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ABSTRACT

The Human Genome Project has extended the reach of modern genetics by providing an
infrastructure of high-resolution genetic maps. Scientists can now find genes using these
maps by genotyping — experimentally assaying the genome at mapped genetic markers.
To track the inheritance patterns of a genetic disorder, individual genomes are genotyped at
high resolution using densely distributed genetic markers, such as the microsatellites.
However, because of the complexity associated with the inheritance patterns of most
common human genetic diseases, hundreds of thousands of genotyping experiments are
typically required to genetically localize even one disorder on the genome.

The full automation of microsatellite-based genotyping is currently limited by the human
scoring bottleneck: every experiment must be viewed by a human eye. The intricate
genotyping data, densely multiplexed for throughput, is confounded with intrinsic data
artifacts such as PCR stuttering. Human experts are required to visually decipher the
highly complex data patterns that resulted. It is estimated that over half the cost of
microsatel lite-based genotyping is due to this human scoring effort.

We have developed and implemented novel computer-based analysis methods that
computationally solve the various problems associated with the microsatellite scoring
bottleneck. Our system, FAST-MAP, is a platform-independent fully automated
genotyping system that accurately calls alleles from quantitative microsatellite data. FAST-
MAP has been extensively tested and used by scientists worldwide to generate genotypes
with high accuracy from real data generated in high throughput genetic laboratories. With
FAST-MAP, we have shown that by appropriately modeling and representing genotype
data, powerful computational strategies can overcome key molecular biology bottlenecks
and significantly advance the rapid localization of genes across the whole human genome.
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1. Introduction

Current progress of the Human Genome Project (Hoffman, 1994; Jordan, 1992; Watson,
1990) has resulted in the construction of highly useful genetic and physical maps (Gyapay
et al., 1994; Matise et al., 1994; NIH/CEPH Collaborative Mapping Group, 1992) which,
for the first time, enabled the routine isolation of the human genes. Using the genetic
maps, geneticists can systematically isolate the causative genes for genetic diseases (Davies
et al., 1994; Lander and Schork, 1994) and (eventually) develop effective strategies for
diagnosis, treatment, and prevention of the diseases by understanding the disease
biochemistry from the causative genes.

Key to the construction and use of the genetic mapsis the ability to rapidly and accurately
sample points of interest on achromosome, i.e., "genotype”. The geneticist uses these
genomic sample points, or "genetic markers', to assess the inheritance patterns of
chromosomal segments between related individuals to discover possible disease gene
locations on the genome. For complex genetic diseases (e.g. diabetes), the associated
complicated inheritance patterns must be disambiguated by sampling the genome at very
high resolution. Currently, to map a complex disease, 300 to 500 genetic markers such as
microsatellite markers (Weber and May, 1989) are sampled along the chromosomes for
every individual in the study (Hyder et al., 1991; Todd, 1994). This number of markersis
expected to increase ten-fold to 3,000 markers or more as the resolution of genetic maps
improves. The number of individualsin a disease study, currently ranging between 500
and 5,000, will also increase as more complex (but common) genetic diseases are being
studied. Thus, to study just one disease, millions of genotyping experiments must be
performed and assayed rapidly. Itistherefore critical to fully automate the genotyping
process, as there are thousands of common complex genetic diseases in humans that must
be studied.

1.1. Problem

There are two major steps in the genotyping process:

1. Generation: Thefirst step is data generation, which involves setting up and running the
genotyping experiments in the laboratories. For each experiment, DNA samples from



individualsin the study areisolated, purified, and then PCR-amplified (Mulliset al.,
1986)with dye-labeled primers. By choosing the appropriate primers for PCR, a
specific region of the DNA, which usually corresponds to a genetic marker, can be
selectively amplified to create millions of copies of the specified (marker) DNA region
for experimental analysis. The resulting PCR mixture is then loaded onto
polyacrylamide gels, on which a process called electrophoresis separates out the DNA
fragments by size. For signa detection, the primers were tagged with radioactive
elements or fluorescent dye molecules so that data can be captured by exposure to afilm
or by laser sensors. To generate huge amounts of data rapidly, hundreds to thousands
of genotyping experiments are typically multiplexed onto asingle gel for maximal
throughput.

2. Anaysis. The second step isdataanalysis. Thisinvolves (i) searching the scanned gel
images for regions containing data for each genotyping experiments multiplexed on the
gdl, (ii) calibrating the genotyping data using known size standardsto label the datain
molecular units, and (iii) parsing the complex data patterns for each experiment to
extract the underlying genotypes. Because of the high degree of data multiplexing and
the inherent data artifacts, analysis of genotyping datais alabor-intensive process that
has precluded automation. This data analysis step, which we will refer to asthe
"genotyping problem", is the problem that we will solve in this dissertation. We will
use the phrase "genotyping process' to refer to both running the PCR and gel
electrophoresis experiments ("generation”) and analyzing the data generated
("analysis").

To find disease genes, athird step follows the genotyping process:

3. Discovery: Once thousands to millions of genotypes of individualsin a population
become available, we can trace the chromosomal inheritance patterns among
individuals. Together with the inheritance patterns of aphysical trait (e.g. the
affectation of a genetic disease), we can statistically localize regions on the
chromosomes that contain the candidate genes for the trait. The more genotyping data
used in tracing inheritance, the higher the resolution of the candidate chromosomal
segments that narrow down the disease gene search.



Tremendous efforts have already been expended in automating the data generation step

(step 2):

* machinery: robot armsare used to handle DNA samples with high precision; PCR
machines are employed to purify and amplify the DNA samples with great efficiency;
sophisticated DNA sequencing machines are used to run the genotyping gels to directly
generate digitized data for computer analysis; and

* molecular biology: experimental methods and reagents specially enhanced for high
throughput automated genotyping are used. For example, AmpliTag Gold, an enzyme
for PCR amplification, isinactive at room temperature so that amplification reaction
mixes may be assembled and pipetted in advance without fear of contamination for high
throughput set-up. Experimental methods such as the reverse primer modification
method (Magnuson et al., 1996) that usestailed reverse primers to eliminate the "plus-
A" artifacts from the data, greatly improves automatic alele caling by generating allele
patterns that can be easily called.

The gene discovery problem (step 3) has a so been well-studied: there are many well-
established computer programs such as LINKAGE (Ott, 1991; Terwilliger, 1994),
MENDEL (Langeet al., 1988), SIBPAL (S.A.G.E., 1997) , and GENEHUNTER
(Kruglyak et al., 1996) that are already widely used for automating the gene discovery (at
least for simple or Mendelian diseases). The key bottleneck that remainsis the step
between data generation and gene discovery: the analysis of the genotyping data (step 2),
which has yet to be fully automated. Nearly all genetic laboratories require at least an
experienced human technician to visually inspect and analyze the gel data. Thisrequisite
manual labor attributes to roughly half of the cost (about $2-3 total per genotype), while
increasing the error, time, and tedium.

Attempts to solve the genotyping problem have been unsuccessful because of the high
degree of data multiplexing and the various confounding data artifacts. To automate the
analysis of genotyping data, we have to overcome the following key difficulties:

» Datatracking. Because of the large quantities of genotypes necessary for genetic
studies, high throughput data generation has been the main focus in genotyping.
Thermocyclers (e.g. PE 9600 and MJ tetrad) which perform high throughput PCR and
integrated catalyst machines (ABI/877) which handle both the liquid handling and
thermal cycling process have greatly increased the number of genotyping experiments
that can be prepared in alaboratory daily. Advancesin genotyping technology enable



hundreds to thousands of these genotyping experiments to be multiplexed onto asingle
gel. The PCR products are loaded onto different lanes on asingle gel, conducted in
multiple non-overlapping windows on asingle lane, and even run in parallel in the
same lane and window by tagging the DNA for different experiments with
distinguishing fluorescent labels. It isanontrivia task to automatically localize and
extract the data for each of the highly multiplexed experiments from agel for analysis.
Even state-of-the-art genotyping systems currently rely on human techniciansto
manually track the lanes on the gels and identify the molecular weight standards used
for caibrating the lanes into molecular size units ("base pairs’, or bps). Thisisonly a
temporary measure, as the total number of experiments that can be packed onto asingle
gel will continue to increase (e.g. from 48 to 96) such that even manual tracking may
soon become infeasible.

Sizing precision. Microsatellites, the commonly used genetic markers for genotyping,
have alleles (i.e. molecular values) that vary in sizes of 2-4 bp (i.e. approximately 1%
differencein size). Molecular size standards technologies (e.g. Genescan-500,
Bioventures) for sizing the DNA can currently only provide up to 20-50 bp resol ution.
The exact alele sizes of DNA must be interpolated from molecular weight calibration
curves of inadequate resolution, incurring interpolation errors.

Binning consistency. In microsatellite genotyping, the allele sizes are discrete values
(i.e. each allele must be awhole number in bp), but the measured allele sizes of the
DNAs are real numbers estimated from low-resolution size standards calibration curve.
These real-numbered values must be mapped to unique integral labels or "alele bins'.
The conventional approach of rounding the estimated allele sizesto the nearest integers
can be ambiguous for allele sizes with large rounding errors, and inconsistent allele
binning is costly asit can reduce the power to detect linkage or give rise to inflated map
lengths (Buetow, 1991).

PCR stuttering. A magjor limitation of using microsatellite markers, especiadly the
dinucleotide repeat markers, is the inherent stutter (or shadow) bands associated with
the PCR amplification of the DNA samples. With a genotype containing two closely-
spaced alees, the stutter bands at one alele overlap with those at the other allele,
resulting in a convoluted stutter pattern that is difficult to decipher even to the human
eye. Assuch, many geneticists have resorted to using the less informative trinucleotide



1.2.

and tetranucleotide repeat markersinstead of the dinucleotide repeat markers, primarily
because of the reduced PCR stuttering typically observed with the former.

Pattern specificity. Pattern characteristics such as the shape of the stutter trails, and the

relative amplification of two allelesin a genotype, may vary from one allele classto
another. In huge studies where there are hundreds of markers (thousands of allele

classes) to be genotyped, allele calling can be a highly cognitive and visual task, as
there are many specific patterns that have to be recognized and distinguished.

Machine portability. Each commercial DNA sequencing machine typically comes with
its own highly specific and labor intensive genotyping software (e.g. the GeneScan
AnaysGENOTY PER software for the ABI machines, the Fragment Manager
software for the Pharmacia ALF machines) that takes time and effort for an incoming
laboratory technician to learn. A generalized genotyping system that is portable
between different DNA sequencers and experimental setups (and preferably, also runs
on different computer platforms) would greatly lower the learning cost when different
sequencers or experimental setups are used in alaboratory.

Solution

Most of the difficulties mentioned above are limitations that cannot be eliminated
experimentally by adjusting experiment conditions or trying out different chemical reagents
in the laboratories, which is a reason why the microsatel lite genotyping problem remains
unsolved in molecular genetics. We hope, with the work in thisthesis, to bring to the
genetic laboratories an additional nontraditional problem solving tool: computational
methods. We will show how computational techniques from computer science and
artificial intelligence can be employed to overcome key molecular biology bottlenecks. To
demonstrate this, we have built a fully automated genotyping system for microsatellite
markers that is accurate, robust, and efficient for real world applications. The system has
been tested and used by real molecular geneticistsin real |aboratories to process rea data
from large scale, high throughput genotyping experiments.

The central claims of this dissertation are:



By systematically applying computationa techniques from computer science and
artificial intelligence, we can overcome key molecular biology bottlenecks, such asthe
genotyping problem.

By understanding the science and technology of genotyping, working closely with
molecular biologists, and testing on large amount of real (not ssimulated) data, we can
build a computer system to fully automate microsatellite genotyping.

By modeling the genotyping data with mathematical models based on their biological
elements, and constantly refining the models by testing with real data, we can formulate
exquisite computational solutions for the genotyping problem, and even enable new
functionality (e.g. pooled genotyping).

By using domain knowledge and data to construct refined expectations to intelligently
guide the computations, we can reduce computation-intensive tasks (e.g. 2-D lane
tracking) into tractable problems that are solvable by ssimple algorithms.

By exploiting data redundancy and abundancy, which istypical in experimental genetic
data, we can attain extra consistency and robustness to overcome spurious noise and
errors.

By employing the computer's organizational and computational capability to
simultaneously apply multiple sources of data and knowledge, we can improve the
quality of the results and provide invaluable organizational utilitiesto the human user,
especially when data sets become massive.

Finally, we a so hope that the work in this dissertation will bring us closer to the following
grand objectives:

Computer Science. Although computers are currently present in modern genetic
laboratories, they often play a passive role asthey are typically used as mere data
storage or presentation devices. Although computers are widely used in the genetic
laboratories, very little of computer science isemployed. Asthe Human Genome
Project rapidly reachesits completion, there will be an impending explosion of genetic
information. Computer science has much to offer in handling the information
explosion from this coming era of genetic revolution. As one of the first steps, in this




dissertation we use the computer to solve a major molecular genetics bottleneck. By
doing so, we hope to demonstrate that the great arsenal of computational techniquesin
computer science for problem solving and information processing can be invaluablein
solving the many data-intensive problemsin molecular genetics.

Genetics. With the work in this dissertation, full automation of genotyping becomes
possible. A tremendous amount of useful genetic data that has been too expensive to
acquire will become available to the geneticit, leading to new and challenging avenues
for molecular biology research. In addition, the associated reduction in cost may
eventually make genome scans aroutine test, accessible one day to the general pubic.
Our ultimate god is to increase health and prolong life of the public by genotyping
families, determining their risk profiles, and then moderating the environmental (or
even genetic) component of genetic disease to reduce their greatest risks. By enabling
the full automation of microsatellite genotyping, it isour hope that the work in this
thesiswill bring us one step closer to such afuture.






2. Domain

A common feature of computer science, especidly artificia intelligence, isthat it is multi-
disciplinary. Typicaly, half the battle is waged by learning about the other field. For
example, speech recognition involves the application of advanced signal processing
techniques, natural language understanding requires the awareness of linguistic theories,
and expert system construction depends on the gathering of expertise from the problem
domains. To successfully apply computer science to solve a problem from a different
domain, the versatile computer scientist must first overcome the formidabl e task of learning
an entirely different field quickly, sufficiently, and selectively.

The genotyping problem is particularly chalenging in this aspect as its domain actually

comprisesthree highly technical and inter-related fields:

» Biology: particularly, the study of the structure and organization of cellsand DNAS,

* Genetics. the study of the mechanics of heredity, and

» Biotechnology: the state-of-the-art engineering tools for investigating problemsin
biology and genetics.

In view of the large number of technical termsinvolved in the three fields, a glossary of
common technical terminology is provided at the end of this dissertation.

2.1. Biology

Life beginswith asingle cell (the zygote) which must contain sufficient programmatic
instructionsfor it to develop into a complex multi-cellular organism in due course. Inthis
section, we study how such genetic information is organized and structured in a compact
form, and how this complex information is permuted for diversity and passed on from one
generation to another.

2.1.1. Ce€ls, DNAs, and chromosomes

All living organisms are strikingly similar at the cellular and molecular levels. We are all
built from basic units called cells. Each cell isacomplex automaton capable of generating
new cellular molecules which are self-sustaining and self-replicating. The "brain” in each



cell (with the exception of bacteria) is anucleus which contain DNA (deoxyribobucleic
acid) that encodes the requisite genetic information for life.

The cell's nuclear DNAs are called the chromosomes. There are typically not one, but
severa chromosomes in each cell, forming, in effect, adistributed DNA database of genetic
information. In agiven species, the number of chromosomes s the same for al members,
for any aberration (e.g. missing one or having extra chromosomes) can be lethal. In
humans, there are twenty-three pairs of homologous (matching) chromosomes. Each
chromosome pair contains one chromosome from each parent. Collectively, the
chromosomes are known as the genome. They contain all the genetic instructions
necessary for building a complex living organism from asingle cell.

The biochemistry of the DNA has revealed an amazing fact: the complex instructions of life
are actually encoded in a deceptively simple language from an al phabet containing only four
letters: {A, C, G, T}. Each chromosome (DNA) is a macromolecule consisting two
intertwining polynucleotide chains commonly known as the "double helix" (Watson and
Crick, 1953). The nucleotides are distinguished by their bases, which can be from one of
two classes. purine (adenine, guanine) or pyrimidine (cytosine, thymine). On the double
helix, the adenine (A) on one strand is always paired to athymine (T) on the other strand,
and the guanine (G) paired to acytosine (C). Knowing the nucleotide sequence of one
DNA strand implies the sequence of the other. As such, we often refer to DNA
information as a single string containing letters from a four-letter aphabet: A, C, G, and T.

2.1.2. Genes, markers, and microsatellites

The genetic information in the human genome is organized hierarchically, as shownin
Figure 2.1. The massive 3 billion DNA letters of genetic information are partitioned into
23 chromosomes. Each chromosome is alinear sequence of thousands of DNA sentences
called genes, with large amounts of non-gene DNA sequences interspersed between the
genes. These non-gene sequences do not code for any known biological function. They
may be considered as "nonsense” biologically, but can be invaluable to scientists as genetic
markers localizing regions on the chromosomes for tracking genetic inheritance.
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Human Genome
100,000 genes
3,000,000,000 letters

23 chromosomes

------

~ 5,000 genes per chromosome
Gene| ...... Gene
~ 5,000 DNA letters per gene
......

Figure 2.1. The genetic information hierarchy in the human genome. The entire
genomic information is partitioned into 23 chromosomes. Each chromosomeisalinear
sequence of DNA letters, some of which are DNA "sentences' (genes) that encode certain
biological functions, while others are merely "nonsense" or "whitespace” |etters which
have no known biological function.

Genes
Genes are DNA sentences along the chromosomes that encode specific functions. The
"classical" genes are those that encode the recipes for constructing the proteins that the
body needs. Other genes encode functions that determine physical traits such as hair color
or increased susceptibility to heart diseases.

Genes are identically ordered along each linear chromosome for every normal human
individual. The"versions' of the genes, however, may differ from one person to another,
leading to the variationsin traits (e.g. different hair color) that are observed in the
population. These different versions of agene are called itsalleles. Every person has two
alleles at every gene locus (except for some of the genes on the sex chromosomes) in the
chromosomal pairsinherited from the parents. The genetic makeup of a person with
respect to aparticular geneis called the genotype, and it comprises two alleles for every
gene (with the exclusion of some of the genes on the sex chromosomes).

In this dissertation, we will use the term geneto refer to functional DNA. Thisincludesthe
protein-encoding and trait-determining DNA, as well as regulatory sequences such as
promoters and enhancers. Therefore, ageneis defined in this dissertation as any inherited
DNA sequence that encodes some biological function.

11



Markers
Markers are specia classes of DNA sentences that are used by geneticists as distinctive
landmarks aong the chromosomes. Some of the markers are unique DNA sequences
which occur only at a specific chromosomal location in everyone's genome (in the same
species). These unique markers (e.g. sequence tagged sites or STSs) are useful in locating
positions on the genome, and they are used extensively in physical mapping. Another type
of landmark consists of genetic loci that are highly variable (i.e., polymorphic). This
means that not everyone has the same version (alele) at that landmark location. In the
(extreme) case of a completely polymorphic marker, chromosomes originated from
different sources will inherit unique alleles. These aleles can serve as unique tags for
chromosomes sharing a common origin.

In thisthesis, we are concerned with this second type of marker for tracking inheritance.
Such amarker must express a measurable form of polymorphism so that its inheritance can
be traced in apedigree. It should also be stable, with each allele inherited intact (that is, no
mutation occurs) from parents to offspring. An ideal marker isone that is both stable and
highly polymorphic, so that its alelesreliably indicate the origin of its chromosomal
segment asiit replicatesin afamily or population through multiple generations.

A marker can be any polymorphic segment of DNA, functional or nonfunctional.
However, genes (functional DNA) are typically not very polymorphic, since any variation
can be alethal aberration eliminating the survival of the carrier. Therefore, genesare
typicaly not very useful as markers for tracking complex inheritance patterns.

Much of the DNA text, however, consists of "nonsense” sequences which do not code for
any known biological function. Long stretches of non-coding "fillers’ called introns are
found interspersed within the DNA sentences of the genes. Repetitive DNA, or repeats,
also occurs abundantly and randomly throughout the genome. The Alu sequences (Schmid
and Jelinek, 1982), VNTRs (Nakamuraet al., 1987), minisatellite arrays (Jeffreys et al .,
1985), and microsatellites (Gyapay et al., 1994; Litt and Luty, 1989; Weber and May,
1989), are some examples of repetitive DNA. The non-encoding nature of these repetitive
DNA elements leads to their relatively high degree of polymorphism; together with their
abundant occurrence in the genome, these repetitive elements are extremely useful as
genetic markers. In particular, the microsatellites, a class of repeats that are highly
polymorphic, abundant, and easily assayed (Weber and May, 1989), have been used

12



routinely by the geneticists to track inheritance of genetic traitsin humans (Hearne et al .,
1992).

Microsatellites
The microsatellite family includes di-, tri-, and tetra-nucleotide repeats that are DNA words
of theform "PR*S", where Pis afixed prefix string, Sis afixed suffix string, R isthe
nucleotide unit of the repetitive sequence R* with the length of R small (e.q., 2, 3, or 4),
and """ denotes Kleene star (Hopcroft and Ullman, 1979). Microsatellite markers have
been found to occur abundantly in the human genome. For example, there are an estimated
100,000 CA-repeats (i.e., amicrosatellite with R = "CA™), which are sufficient to cover the
entire genome at high resolution.

Within the last decade, microsatellite markers such as the CA repeats (Weber and May,
1989) have become the polymorphic markers of choice for constructing high-resolution
genetic maps (Gyapay et al., 1994; Matise et al., 1994) . These repeats are abundant and
easy to find, occurring, on average, every 30,000 bp throughout the genome. They can be
amplified in vitro using polymerase chain reaction, or PCR (Mullis et al., 1986), thereby
consuming little genomic DNA and requiring less time and effort than Southern blotting?.
They also show avery high PIC (polymorphic information content) and can be informative
for genetic linkage. Most importantly, because of their regular structures, the microsatellite
markers are length polymorphisms, with each allele corresponding directly to the number
of the repeated unit (n, in PRMS). This means that geneticists do not need to sequence each
and every DNA letter of the marker to determinethe dleles. Instead, the alleles can be
determined (i.e., genotyped) by simply sizing the amplified PCR products on a standard
electrophoretic sequencing gel. These characteristics make microsatellites ideal for large
scale, high throughput genetic studies, making most older markers obsolete.

With the discovery of the microsatellite markers, the older genetic markers (e.g., restriction
fragment length polymorphisms, or RFLPs) have all but disappeared as markers for
tracking inheritance. The PCR-based microsatellites are more informative and relatively
easier and less expensive to genotype than the less informative bi-allelic markers or the
RFL Ps which require Southern blotting. The minisatellite arrays, their larger counterparts
inthe VNTR (variable number of tandem repeat) family, have larger sequence motifs (i.e.
the repetitive unit R in "PR*S' ranges from 10 to 60 bp long), making minisatellites less

1Southern blotting involves size-separating DNA on agel, then transferring the gel DNA to afilter
("blotting"), and then probing the blot with a second DNA by hybridization.
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amenable to PCR amplification than the microsatellites. The minisatellites are aso less
common and not as evenly distributed along the human genome as are the microsatellites.

Among the microsatellites, the dinucleotide repeats such as the CA-repeats are the most
widely used. The dinucleotides are aso the best candidates for fine-mapping, because they
are generally more polymorphic and densely spaced than the larger repeats, and they are
also genetically stable, with an average mutation rate of about 10-4 per generation
(Weissenbach et al., 1992). The dinucleotides are also found in abundance in other
mammalian species (Moore et al., 1991), and are widely used in agricultural applications.

2.1.3. Meiosis, recombinations, and genetic variations

In sexually reproducing organisms, a special type of cell division called meiosis produces
the sexual cells (eggs and sperms). During meiosis, the chromosomes are duplicated,
followed by two consecutive divisions. Inthe male, thisresultsin four haploid (cells with
half the number of chromosomes) sperms, and in the female, one ovum and three polar
bodies. With the number of chromosomes halved in meiosis, the sperm and the ovum can
then merge during fertilization to form a zygote which contains the correct number of
chromosomes.

3 ':_-_' X X a a
X a X X a a
y b - y y b b — - Yy Yy b b
VA C Z C
Z C Z Z C C
(i) (ii) (iv)

Figure 2.2. Crossing-over. (i) Each parent's chromosomal pairs may contain different
allelesfor the various genes on the chromosome. The example shown here has alleles x, v,
and z on one chromosome, and alleles a, b, and ¢ on the other for the three genes on this
chromosome. (ii) During meiosis, the chromosome pairs double, resulting in two pairs of
each chromosome in each parent. The exact copies are paired together, and the two pairs of
homol ogous chromosomes line up side by side. (iii) Here, crossing-over takes place
between two of the four homologous chromosomes. (iv) A total of four homologous
chromosomes with different allele compositions are produced in each parent. The
offspring may inherit any one of these four chromosomes from this parent.
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If each parent smply passes on a half of the chromosome pairs to the offspring intact, there
would be very limited genetic variation in the progeny. To further ensure genetic variation
(acrucial factor for the species survival), the parental chromosome pairs "cross over”
during meiosis and exchange homol ogous segments before they split into halves (Figure
2.2). Thus, each of the chromosomes in the resulting haploid cellsis actually a mixture of
the two halves of the original parenta pairs.

Meiotic recombinations can make it difficult for the geneticist to determine the origins of
inherited chromosomal segments. When tracing complex inheritance patterns, the
chromosomal segments must be sampled (genotyped) at a high enough resolution to
resolve any ambiguities due to meiotic recombination. The discovery of microsatellite
markers has made it possible to sample the genome at a high resolution of 10-20 cM.
However, the current cost associated with microsatellite genotyping has precluded such
dense genotyping, except at well-funded genotyping centers. By fully automating
microsatel lite genotyping, the associated cost can be lowered tremendoudly, making high
throughput microsatellite genotyping more accessible.

2.2. Genetics

Thousands of common diseases in humans are known to have genetic causes. Discovering
the causative genes for these diseases is essentia for early detection and prevention, and for
finding eventual cures. However, many common diseases (e.g. cancer, diabetes, heart
diseases) are complex genetic diseases. To discover the causative genes for these diseases,
we need to genotype large populations at a high genomic resolution in order to trace the
associated complex inheritance patterns of the diseases. The number of genotypes needed
can number near the millions, requiring full automation of genotyping.

2.2.1. The genetics of common diseases

Human genetic disorders can be grouped into two major classes: smple Mendelian
diseases, and complex non-Mendelian diseases. A Mendelian disease is caused by a
defective genotype at asingle gene locus. Usually, only one disease mechanismis
operating in agiven family, and possession of the high-risk genotype is necessary for
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disease expression. Examples of simple Mendelian disease include cystic fibrosis,
Duchenne's muscular dystrophy and Huntington's disease.

A non-Mendelian (complex) disease, on the other hand, is multifactorial and results from a
complex interaction of multiple genetic and non-genetic (environmental ) factors. Most
common genetic disordersin humans (e.g. diabetes, colon or breast cancer, coronary heart
disease, obesity, alcoholism and schizophrenia) are complex non-Mendelian disease. We
can model acomplex disease as one that is not entirely genetic; its genetic component
merely imparts a certain predisposition toward the disease. This predisposition istriggered
when an individual inherits defective alleles of some small set of the controlling genes.
There may be several sets of controlling genes, such that individuals who have the same
genetic predisposition may carry different sets of defective aleles. Whether each of these
individualswill eventually develop the disease depends on the combined effects from the
genetic and non-genetic environmental factors (e.g. diet, exposure).

There are many other factors that complicate the genetics of common diseases further. For
example, false-negative cases can be caused by reduced penetrance or late age-of-onset of
the disease, while false-positive cases can be caused by the presence of phenocopies or
non-genetic cases. Etiologic heterogeneity and genetic interaction are a so not uncommon
in complex diseases. To begin to unravel all the confounding factors associated with
complex diseases, it is necessary to have alarge amount of genetic data. Geneticists have
had great success with simple Mendelian diseases (Ott, 1991); they are now beginning to
study and dissect complex genetic traits (Lander and Schork, 1994; Risch, 1990; Risch,
1991).

2.2.2. Finding disease genes. positional cloning

Our ability to understand, diagnose, and (eventualy) find atreatment for human genetic
diseases depends largely on our ability to locate and clone genes. By cloning the genes, the
disease-related biochemica malfunctions can be studied extensively. Cloningisa
technique in molecular biology to obtain an interesting piece of DNA (e.g. agene) in alarge
guantity that is convenient for detailed analysis and further experiments. The DNA

segment to be studied isisolated and then inserted into acloning vector (e.g. yeast artificial
chromosomes, plasmids, or cosmids) that is capable of integrating the foreign DNA into
itself without losing its capacity for self-replication. Through these cloning vectors,
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foreign DNA can be introduced into host cells where it can be reproduced and studied at
length.

To clone agene, we must first know where it is on the chromosomes. However, locating
disease genesis aHerculean task. Consider the following scenario: adisease is known to
run in families, following, say, assmple Mendelian pattern of inheritance. The disease
geneisasmall DNA word or sentence that lies somewhere among the one hundred
thousand genes on the twenty-three pairs of human chromosomes containing atext of three
billion DNA letters. Because the biochemical pathways of the disease are not yet known,
thereisno biological clueto help uslocate the defective gene. In fact, we do not even
know where most of the genes are on the chromosomes. How do we proceed to isolate
and clone the defective gene without even knowing what it is?

Thisisaclassic search problem — a problem that is also paradigmatic in computer science,
in particular, artificial intelligence (Rich and Knight, 1991). The search spaceisvast: a
prohibitive three billion characters of text, the content of whichislargely incomprehensible
to the humans (for now). To read thistext character by character (bottom-up) would take
an astronomical amount of time, effort, and money. It ismore feasible to adopt atop-down
search strategy in which we incrementally prune the global search space (~ 3 gigabase, or
Gb) to the resolution level of a single chromosome (~ 100 to 300 megabase, or Mb), and
then to chromosomal regions that are small enough (e.g. ~ 100 kilobase, or kb, to 1 Mb)
labor-intensive local searches. The geneticists can then use physical maps of cloned DNA
fragments to identify candidate genes within the chromosomal regions. The candidate
genes can then be meticuloudly sequenced and tested until the true disease geneis found.

This top-down disease gene discovery approach is known as positional cloning (Collins,
1992; Collins, 1995), a process that is at the heart of the current genetic revolution2. What
we need for this top-down approach is a good evaluation function to prune the search space
from the gigabase genome down to kilobase chromosomal regions. One well-utilized
evaluation function for pruning the genomic search space is the matching between the
inheritance patterns of the genetic trait (in this case, a disease) and the shared chromosomal
inheritance patterns of affected individualsin apopulation. For example, consider two

2positional cloning is not the only method for discovering disease genes. One increasingly popular
approach isthe EST (Adamset al., 1991) or expressed gene method. It involves sequencing short regions
of cDNA clonesisolated from alibrary of a particular tissue such as brain, and then looking for those
(expressed) genes that have interesting amino acid motifs, and comparing the results of normal and affected
tissues.
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related individuals (e.g., siblings) who are both affected by a genetic disease. The
chromosomal regions that they inherit in common from their parents (about 50% of the
genome) are likely placesto look for a causative gene. These shared genome regions are
identical-by-descent (IBD) for the pair. When the IBD regions of many other paired
individuals are determined, the "intersection™ of these regions can point to asmall region
(e.g., ~1 Mb) that contains the causative gene. All that is needed is an efficient way to
determine the shared IBD regions of related individuals.

The determination of this sharing is done by genotyping. A genotype can be viewed as a
small point-like sampling of an individual's DNA at a known chromosomal location (e.g. a
genetic marker). A non-polymorphic DNA point (e.g., ahighly conserved gene) would
have only one alele for everyone, and it would be useless for differentiating two
individuals. The best genetic markers are highly polymorphic with different alelesin a
population so that when two relatives share the same alleles (identical-by-state, or IBS), it
tends to imply that they both inherit the same chromosomal region (IBD). By sampling an
individual's genome with alarge number of highly polymorphic, closely spaced markers,
the geneticist can obtain a high resolution "snapshot” of an individual's genome which can
then be compared with the genetic snapshots of the individual's relatives. With the advent
of very high resolution genetic maps, such genotypic snapshots have become the mainstay
of both regional and genome-wide searches for genes (Hearne et al., 1992).

2.2.3. Tracking genetic inheritance: dense genotyping

To accurately assess therisk of an individual to a disease, it is necessary to determine
whether the individua carries the defective genotypes at the respective geneloci. Idedly,
the individual's genes should be sequenced so that the exact genetic content can be used to
ascertain risk. However, there are thousands of basesin agene (Figure 2.1). Assuch, it
is highly expensive and time-consuming to sequence just one gene. To begin to assessthe
risk of asingleindividual for al the common human genetic diseases, hundreds of millions
of DNA bases will have to be sequenced for each individual.

Thereisamuch more feasible alternative. Using a search strategy similar to that in
positional cloning for finding disease genes, it is possible to determine if an individual
carries the defective aleles without actually sequencing the genes. Asin positional cloning,
we can tag the genome using polymorphic markers that occur along the chromosomes at
high resolution. The chromosomal sharing information between two related individuals
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can be reliably inferred from their genotypes. If anindividua had inherited a chromosomal
segment containing the disease gene from an affected individual in the family, then we can
conclude that thisindividual must also have inherited the defective allele (without having to
know the actual allele of that gene). Furthermore, if the genotyping were done using a
standard set of microsatellite markers that covers the entire genome, the genotyping data
could be re-used to compute the risk for many different genetic diseases, without having to
meticulously sequence any new genes.

Of course, key to using chromosomal inheritance patternsto reliably assessrisksisthe
ability to determine the origins of each inherited chromosomal segments (particularly, the
segment that may contain the disease allele from the affected parent). If the parents had
passed each half of their chromosome pairs on to the offspring intact, then, aslong as we
have a single informative marker on that chromosome, we can tell if an offspring has
inherited the defective allele because the allele must necessarily be inherited together with
the chromosome from the parent. However, because of meiotic recombinations, parents do
not pass on entire chromosome strands to their offspring intact. Instead, the offspring
receives a chromosomal strand that is a combination of the origina parental chromosome
pair. When the markers flanking a chromosomal segment are not informative (i.e. IBS
does not imply IBD), the parental origin of that chromosomal segment can be ambiguous.
Figure 2.3 shows an example in which it isimpossible to determine whether the dlelesin a
marker (the second marker) in the siblings actually originated from the father or from the
mother.

The problem of disambiguating the parental origins of alleles or chromosomal segmentsis
known as the haplotyping problem. When the genetic markers (sample points) are far apart
or when they are not sufficiently polymorphic, recombination events may remain
undetected between uninformative markers, and inheritance of an affected allele cannot be
inferred with certainty from the genotyping information of the flanking markers. To solve
this problem, various analytic solutions have been proposed (Weeks et al., 1995; Wijsman,
1987). However, the haplotyping problem is actually an inherent limitation asin the
example depicted in Figure 2.3. If the parental origins of the chromosomal segments
containing disease alleles cannot be determined unequivocally, it is not possible to assess
the risk of the children to the disease accurately based merely on the genotypes of flanking
markers.

It turns out that the problem can become nonexistent if the chromosomes were densely
genotyped. By sampling the genome at a high resolution with closely-spaced polymorphic
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Figure 2.3. The haplotyping problem. Two individuals may have the same genotypes
but their haplotypes can be different. Both C and D have the same set of allelesfor al three
markers. However, for the second marker, C receives dlele "d" from her father (whois
affected, as indicated with a darkened node) whereas D receives dlele "d" from his mother
(whois hedlthy). In C, there is only one recombination event from the maternal side. For
D, his haplotype is aresult of three recombination events: a double recombination at the
paterna side and one at the maternal side. These recombination events are not unlikely
when the markers are far apart (Ilow-resolution genotyping). The other pair of siblings also
share the same set of alleles, except that E and F's haplotypes both resulted from the same
number of recombination events (two, one from each parent).

markers, recombination events are unlikely to remain undetected since (1) the likelihood of
having all flanking markers uninformative is negligible as the number of flanking markers
increases, and (2) the likelihood of having more than one recombination event occurring
between two closely-spaced flanking markers3 is also negligible. With the full automation
of microsatellite genotyping, it might be feasible to sample genomic points at high
resolution efficiently and inexpensively so that the haplotyping problem is solved.

3| an even number of recombination events had occured between a pair of flanking markers, the markers
genotypes would be indistinguishable from the genotypes in the case of no recombination. If an odd
number of recombination events had occured, the genotypes would be the same as in the case of only one
recombination event. Thus, if there were more than one recombination event between the markers, the
genotypes alone would not be informative enough to distinguish between multiple and single (or no)
recombination events.
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2.3. Biotechnology

The invention of the polymerase chain reaction (PCR) technique by Kary Mullis (Mullis et
al., 1986) in the mid 1980s was a mgjor breakthrough in modern molecular genetics. With
PCR, it became possible to rapidly produce millions of copies of aspecified DNA sequence
invitro. The next related breakthrough for genotyping was the application of PCR to
microsatellite markers such as the CA-repeats by Weber and May in 1989 (Weber and May,
1989). The microsatellites provide an abundant class of closely spaced highly informative
markers that can be amplified by PCR. In addition, they can be genotyped ssimply by their
size differences (using gel electrophoresis), instead of having to meticulously sequence the
DNA segment for each allele. Using sophisticated high throughput sequencer machines
(for example, the ABI/377 and the PharmacialALF machines), it is now possible for a
genetic laboratory to generate vast amounts of data daily. The main bottleneck that remains
isthe tedious task of genotyping all that efficiently generated data.

2.3.1. PCR and PCR stutter

The enzymes that make DNA in the cells are called DNA polymerases. These DNA
polymerases will catalyze the duplication of DNA only in the presence of pre-existing DNA
templates. The PCR process exploits the biology of the DNA polymerasesto replicate
DNA invitro. Using the selectivity of short DNA oligonuclectide primers towards specific
DNA templates, the PCR process can be directed to synthesize a specific region of DNA.
By iterating the replication cycle, millions of copies of the specified DNA regions can be
rapidly generated at an exponential rate. The PCR processis arelatively straightforward
laboratory technique, requiring only avery small amount of the source DNA.

PCR cycle

The PCR cycleis a 3-step process (Figure 2.4):

(1) Denaturation. Thefirst step of the PCR processisto create single-stranded DNA
templates for replication. The double-stranded DNA molecules are separated
("denatured") to form single DNA strands by an increase in temperature (to around
HA°C);

(2) Primer annealing. The second step isto specify aregion on the DNA to be replicated.
To do so, we label the starting point for DNA synthesis with a oligonucleotide
(synthetic) primer that anneals (at alower temperature, say, 30-65°C) to the template at
that point. By supplying apair of flanking primers, only the DNA region between the
flanking primers will be amplified .
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Figure 2.4. The polymerase chain reaction (PCR). By annealing two flanking primers
(primer 1 and 2), the desired short DNA segment is synthesized by a DNA polymerase.

The processis generally repeated 30-60 times to generate millions of copies of the DNA
segment flanked by the two primers.
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(3) DNA synthesis. Thethird step isto replicate the specified DNA region. With the
primers annealed to the binding sites to direct replication, the DNA polymerase (e.g.
Taq polymerase) synthesizes new complementary strands, which can then be
denatured, annealed with primers, and replicated again.

The concentration of the target sequence is doubled with each PCR cycle. After n PCR
cycles, and there are 2" replicated DNA molecules in the resulting PCR mixture.
Typically, the PCR cycleis repeated for as many as 30-60 cycles, taking severa hoursto
complete.

PCR stutter
Ideally, the PCR product should contain only DNA fragments that are exact copies of the
target DNA segment being amplified. When the target segment contains repetitive DNA
regions, aseries of secondary fragmentsis often generated in addition to the target
segment. These extraneous fragments are typically shorter than the target segment, creating
the characteristic "stutter” or "shadow" bands that are observed when the DNA in the PCR
product is size-separated by gel electrophoresis (see Figure 2.5).

Figure 2.5. Autoradiogram of denaturing polyacrylamide gel showing the typing of 5
individuals at a microsatellite marker. Each of the five columns (lanes) contains the result
of size-separating the PCR product of the DNA sample from a different individual.
Because of the pronounced stutter bands, it is difficult to tell if the resulting pattern in each
lane was caused by asingle allele (homozygous) or a pair of aleles (heterozygous) in the
DNA sample, or what these alleles are. (Provided by Dr. Mark Shriver, University of
Pittsburgh.)
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PCR stuttering is generally attributed to the dlippage (misreading) of the polymerase during
the amplification of the template DNA strands (Hauge and Litt, 1993). It isparticularly
pronounced with markers that are tandem repeats of short nucleotide sequences (e.g.
dinucleotides). The dippage of polymerase creates new DNA template strands that are
shortened by alength equal to an integral multiple of the length of the repeating units,
which are then amplified in subsequent PCR cycles. Shorter error templates may also be
created in the subsequent cycles, causing the trail of shadow bands when the PCR product
is sSize-separated on an electrophoretic gel. The stutter bands from one alele may overlap
with those from the other, creating complex band patterns that can be confounding even to
the trained eye of ahuman technician.

Molecular biologists have made numerous attempts to reduce or eliminate the PCR stutters:

1. Modifying the PCR conditions. This approach works to a point (Odelberg and White,
1993) but generally does not remove the artifact completely.

2. Using microsatellite markers with smaller alleles (e.g. using (CA)n, markerswith n
small). Smaller alleles are generally associated with fewer stutter bands asthere are
fewer repeats for the polymerase to "dlip" over. However, this approach drastically
limits the choice of markers, and the smaller n also implies lower polymorphism (fewer
possible aleles) for amarker.

3. Using tri- and tetranucleotide repeats. Markers with larger repeats tend to display little
or no stutter artifact. However, the larger repeats are also more complex, less
informative, and consume more "real estate” onthegel. They are lessdensaly
distributed over the genome than the dinucleotides, and are thus less suitable for fine
analysis.

These conventiona experimental efforts have failed to remove the stutter artifact
completely. Asaresult, current genotyping systems either rely on the human to call the
alleles, or attempt naive alele calling by focusing on the highest peaks (Mansfield et al.,
1994; Ziegle et al., 1992). The latter approach is problematic with single (homozygotic) or
closaly-spaced aleles, and widely-separated alleles with pronounced relative amplification.
It will not work when more than two alleles are present, say, when DNA are pooled from
multiple individualsin a population.

It fact, it may even be unwise to try to remove the PCR stutter from the data totally.
Without the signature stutter pattern, it may be impossible to distinguish a spurious noise
band from an actual data band (Schwengel et al., 1994). With markersthat exhibit
stuttering, the expected presence of the PCR stutter signatures can be used to disambiguate
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true data from spurious noise and contamination bands. 1f we can handle the shadow
bands, data analysis for the stuttering markers (e.g. the dinucleotides) can actually be more
robust against noise and contamination than the stutterless markers (e.g. most tri- and
tetranucl eotides).

2.3.2. Gel electrophoresis

Gel electrophoresisis a standard laboratory technique to separate DNA fragments by size.
When exposed to an electric field, a mixture of DNA molecules travels through amedium
(e.g. an agarose or acrylamide gel) at different rates depending on their molecular sizes.

By labeling the DNA molecules with a radioactive or fluorescent molecule, we can detect
the relative gel positions of the DNA molecules after they have been size-separated and
deduce their relative size differences. If it is necessary to determine the actual sizes of these
DNA molecules, we can run molecular weight (MW) standards or DNAs with known sizes
on the gel together with the unknown DNA molecules (Figure 2.6). We can then use the
calibration curve generated from the gel positions of the size standards to interpolate the
actua sizes of the DNA molecules.

DNA cdibration
mixtures DNA
— -]
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Figure 2.6. Gel electrophoresis. DNA of different sizes migrate at different speedsin a
gel subjected to an electric field. Typically, calibration DNAs with known sizes (molecular
weight standards) are run together with the unknown DNAS so that the unknown DNASs
can be typed by size interpolation.
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Gel electrophoresisis essential for genotyping microsatellite markers. Asmicrosatellites
exhibit length polymorphism, the different aleles directly correspond to different DNA
sizes. Therefore, instead of sequencing the DNA fragments (which can contain 100-500
DNA letters) for the exact DNA content to call the alleles, we only need to size-separate the
PCR product on an electrophoretic gel, and use the calibrated DNA sizes asthe allelesfor
the markers' genotypes.

2.3.3. High throughput genotyping

Because large amounts of genetic data are necessary for statistical genetic linkage analys's,
the main emphasis of genotyping technology is to generate as much data as rapidly as
possible. Figure 2.7 shows the various ways to multiplex gel readout for attaining high
throughput in genotyping:
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Figure 2.7. High throughput genotyping. Multiplexing can occur in three dimensions:
lanes, size, and fluorescence. Firgt, the gl is divided into many lanes (vertical columns) to
allow multiple genotyping on the gel. Second, markers (e.g., M1, M2, and M3 as shown)
with non-overlapping alele window can be genotyped in the samelane. Third, by labeling
markers with different fluorescent dyes, markers with overlapping allele windows can be
multiplexed in each lane (but in a different "plane” or dye). Here, three fluorescent dyes
are used to multiplex atotal of nine markers.
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Multiple lanes. The gel isdivided into as many lanes as possible so that different
genotyping experiments can be run in different lanes on asingle gel. Currently, each
gel contains 30-96 lanes, and this number will continue to increase because of the
constant demand in data throughput.

Multiple size windows. Markers that have non-overlapping allele windows can be
analyzed together in the same lane because their datawill occupy different regions along
thelane. PCR products from three to six different marker assays are routinely pooled
inasingle gel lane for multiplexed readout.

Multiple dye labeling. In multi-channel fluorescence DNA sequencers, additional
multiplexing can be achieved by using different fluorescent dyesto label the markers.
This allows markers that have overlapping alele windows to be run in the same lane,
but emit data from relatively digoint imaging "planes’ (fluorescent dye). For example,
the ABI (Applied Biosystems) machines are four-color systems, in which three of the
dyes aretypically allocated for genetic markers and one for running the MW sizing
markers. This setup increases data throughput by three-fold, while providing each lane
with its own size standards calibration curve.

Figure 2.8. An example gel with 50 lanes and dye-multiplexed marker data. PCR
products of DNA samples were labeled with one of four fluorescent dyes so that the
genotyping experiments could share the same gel lanes and size windows. Here, one of the
dyes was used solely for running internal MW size standards. On this gel, the bands of the
MW standards formed horizontal rows amidst the marker bands since the same size
standards were run in every lane. (Provided by Dr. Vicki Magnuson, National Institutes
of Health.)
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With an average of 12 markers per lane (4 size windows per lane and 3 fluorescent labels)
and 32 lanes (as shown in Figure 2.8), about 400 different microsatellite experiments can
be read out on asingle multiplexed gel. Current efforts to increase data throughput will
continue to increase the number of lanes and fluorescent dyes per gel so that thousands or
more genotypes can be produced on asingle gel. This super-efficiency in data generation
must be coupled by the full automation of data analysis, for even a highly staffed laboratory
will quickly be inundated with aflood of dataif each of the genotypes has to be analyzed
by hand, creating a genotyping bottleneck.

2.4. The Bottleneck: Genotyping

Almost al the major stepsin the genotyping pipeline have been successfully automated:
robotic sample preparation, PCR amplification, gel electrophoresis, and gel data
digitization. The genotyping (gel data analysis) step has remained the critical bottleneck
precluding full automation. Nearly all laboratories require an experienced human technician
to visually inspect the microsatellite data, atask that istedious, error-prone, time-
consuming and expensive. In fact, roughly half of the error and cost (about $2-3 total per
genotype) in current high-throughput microsatellite-based genotyping is attributable to the
need for human operators to semi-automatically scorethe data. A system that can directly
analyze the gel image files from automated DNA sequencers, and automatically detect,
calibrate, quantitate, and genotype the marker data on the gel will remove this costly
bottleneck and achieve the requisite throughput in genotyping studies.
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3. Problem Overview

The data flow of the genotyping problem is straightforward: given a digitized gel image as
input, output the genotypes for al the genotyping experiments multiplexed on the gel (Box
3.1). Theunderlying tasks, however, are nontrivial:

1. Dataretrieval: How do we parse a highly-multiplexed gel image to retrieve segments of
signa intensity profiles (electropherograms) that contain the data for each multiplexed
genotyping experiment?

2. Dataquantitation: How do we extract from the continuous intensity profile of an
el ectropherogram discrete data bands binned with molecular units and quantified with
DNA concentration measures?

3. Datadeconvolution: How do we reduce a convoluted series of quantitated data band
patterns into two consistently labeled alleles?

Input: adigitized multi-dimensional gel image on
which hundreds to thousands of genotyping
experiments are multiplexed.

!
retrieval
!
quantitation
!
deconvolution
!

Output: apair of consistently labeled alleles for each
of genotyping experiments.

Box 3.1. The overall data flow in the genotyping problem. Theinput datais a highly
multiplexed gel image, from which we retrieve the data window for each multiplexed
experiment for analysis, quantitate the extracted signal data into molecular units, and
deconvolve the complex data patterns to accurately call the two alleles in the genotype.
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3.1. Retrieving data from gel

Aswe have discussed previoudly, current biotechnology allows hundreds to thousands of

genotyping experiments to be multiplexed on asingle gel in three dimensions:

* width: by partitioning the gelsinto vertical tracks or lanes, genotyping experiments can
berunin parald onasingle gd in different lanes;

* length: by pooling markers with non-overlapping size windows together, they can be
run out on the same gel lane; and

» plane: by labeling markers with different fluorescent dyes, genotyping experiments can
be run in the same size window and gel lane, emitting data signalsin different "dye

planes”.
Elactrop haragrarm
1o
113 F
dye

Ray  Separation 2D gel o 12er

image - Lr;ag;olﬁe - 125}

(digitized) (pixel)
130
136

(bp)

Figure 3.1. Retrieving datafrom gel. First, the raw digitized image from the DNA
sequencer is separated into two-dimensional gel images for each fluorescent dye used in the
experiment. Then, the coordinate transformation function a convertsthe gel imageinto
linear electropherogram traces of microsatellite datain each lane, calibrated by DNA size
instead of pixel.

Figure 3.1 shows how we can systematically undo the multidimensional multiplexing
systematicaly to retrieve data* from agel for analysis. First, we undo the "plane”
multiplexing by aprocess called dye separation. After we have separated the datainto
different dye planes, we undo the "width" multiplexing by a process called lane tracking
which converts the two-dimensional gel images into one-dimensional intensity profiles
(electropherograms). With the one-dimensional electropherograms, we can then undo the

4Most DNA sequencer systems provide on-line digitized scanning during gel runs, so the raw datais often
generated in a computer-readable format. If not, the gel data may be digitized using high resolution
scanners. We will assume in this dissertation that the input gel images are digitized.
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Figure 3.2. A sizing grid constructed from the MW size standards data. The vertical
grid lines are the lane traces; the horizontal grid lines are contour lines of identical MW
mobility and size. The sizing grid is useful for localizing expected marker alele events on
the gel image.

"length" multiplexing by identifying regions on the gel lanes that contain marker data for
analysis. Asthe dataregions are defined by the size ranges of the possible marker alleles,
it is necessary to trandate the image pixel coordinates into molecular weight unitsfirst. We
call this process molecular weight (MW) calibration. Once alane has been calibrated in
MW sizes (bps), we can then zoom in to regions on the lanes based on the possible allele
sizes of the size-multiplexed markers. Excluding the dye separation step (sincethisis
typically done by the DNA sequencers as part of the data generation step), the overall
operation can be described with a coordinate transformation function:

a: <x,y>pixes o <lane, size> points

This coordinate transformation function isby asizing grid that can be constructed based on
the MW size standards data, as shown in Figure 3.2.
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3.2. Quantitating data bands

From our understanding about PCR and gel electrophoresis, we know that the fluorescent
signals detected by the laser sensors were emitted by discrete classes of DNA fragments
that haveintegral lengthsin bps. Therefore, after we have localized the marker datafor a
genotyping experiment on agel using the sizing grid, we must discretize the continuous
signa intensity profile in the electropherogram extracted from theimage. To convert the
image data into the corresponding "molecular space”, we must (@) reduce the continuous
signalsinto a discrete series of marker bands binned with integer sizes, and (b) quantitate
each detected discrete data band into a DNA concentration measure (Figure 3.3). The
overall operation can be described with the following transformation function:

[B: imagedata+ sizing grid — {<bp, concentration>}
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Figure 3.3. Quantitating the marker data bands. The transformation function g
discretizes the continuous signal profile in an electropherogram. This involves detecting
the marker bands from the background noise, and assigning to each band an integral size
(in bp) and avalue that corresponds to the concentration of the DNA fragments of that size
in the PCR product.
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3.3. Calling the alleles

PCR amplification of ashort tandem repeat allele typically generates additional DNA
fragments, creating more marker bands than the actual alleles present in gel electrophoresis.
These extraneous stutter bands must be eliminated mathematically to recover the underlying
alelesin the genotype, as shown in Figure 3.4. Therequisite transformation, then, isa
deconvolution function y.

y: quantitated data with stutter - genotypes
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Figure3.4. Calingthealleles. Asaresult of PCR stuttering, complicated data band
patterns are observed. We must decide which of the bands (at most two) amidst the
numerous convoluting stutter bands correspond to the true aleles in the genotype.

It is nontrivial to remove PCR stuttering from the quantitated data, as (a) PCR stutters from
two alleles may superimpose onto one another, (b) stuttering patterns may differ from one
allele to another, with the smaller alleles generally displaying steeper stutters than the larger
aleles, and (c) there may be differential amplification between the two alelesin the
genotype as the alleles compete for amplification during PCR. Without properly
accounting for these artifacts, a human genotyper must be relied upon to call the alleles by
visual inspection.
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Figure 3.5. An automated genotyping system takes a two-dimensional gel image,
executes three transformations a, g, and y, and outputs the genotypes of the markers on the
gel. Thefirst transformation o converts the gel image into linear electropherogram traces
of microsatellite datain each lane, calibrated by discrete DNA sizes. Then, gquantitates
each detected data band and computes the DNA concentrations. Finally, y transformsthe
quantitated stutter datainto the two underlying alleles.

3.4. Summary

Asdepicted in Figure 3.5, afully automated genotyping system analyzes the gel
electrophoresis images from automated DNA sequencers by correctly detecting and
determining the lane, size, and relative DNA concentration of every data-related band
detected on the gel, and then mathematically removing the PCR stutter artifacts from the
marker datato correctly call the genotypes. Box 3.2 summarizes the three requisite
transformations that we have identified in this chapter:

1. Coordinate transformation

a: <x,y>pixes - <lane, size> points
2. Databand quantitation

[ imagedata+ sizing grid — {<bp, concentration>}
3. Stutter data genotyping

y: quantitated data with stutter — genotypes

Box 3.2. Datatransformations in solving the genotyping problem: (1) image pixel
coordinates are transformed to facilitate data extraction, (2) data bands are quantitated into
molecular units, and (3) stutter data tare deconvolved into recover thetrue allelesin the
genotypes.



In the next three chapters, we will describe, with examples from real data, how we
computationally handle each of the three data transformations. To further illustrate the
power of the computational approaches that we advocate in this dissertation, we will
describe, in afollowing chapter, how we can enable a new functionality called pooled
genotyping with asimple generalization of our computational solutions.
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4. Grid Construction

In Chapter 1, we outlined the various problems that make full automation of microsatellite
genotyping difficult. Thefirst problem was:

» Datatracking: how to automatically track the relevant data regions on a highly
multiplexed gel with hundreds to thousands of genotyping experiments?

In high throughput microsatellite genotyping, data multiplexing can occur in up to three
dimensions:. dyes, lanes, and marker size windows (as shown in Figure 4.1). To unravel
this intricate multiplexing, we perform the following transformations:

Stage 1. Dye separation. Separating the multi-dimensional raw datainto two-dimensional
image planes for each of the dyesin the system;

Stage 2. Lanetracking. Reducing the two-dimensional image planes into one-dimensional
electropherograms for each of the loaded gel lanes; and

Stage 3. MW calibration. Calibrating the electropherograms from the image units (pixels)
into in molecular units (bps) along each of the gel 1anes, so that marker

Figure4.1. A highly multiplexed gel on which hundreds of genotyping experiments
wereranin paralel. The experiments were highly multiplexed in terms of lanes, size
windows, and fluorescent dyes. Onethisgel, atotal of three fluorescent dyeswere used in
labeling the DNA samplesto allow multiple genotyping experiments to share the same gel
lanes and size windows. A fourth dye was dedicated to labeling the internal MW size
standards for accurate sizing.
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knowledge (e.g. the expected allele size window) can be used to localize data
regions on the electropherograms for analysis.

4.1. Problem

Commercial DNA sequencers (such as the ABI machines) exploit fluorescent primer-
labeling technology to generate maximally multiplexed gel datalabeled in different dyes.
These machines are usually equipped with internal dye-separation mechanisms, so that dye-
separated data are automatically generated. Therefore, in this dissertation, we will assume
that al gel images are already dye-separated by the sequencers, and that the dye-separations
are generaly adequate. In the event that the internal dye separation isimperfect, some post-
processing of the datawill be necessary. For this, we will describe in Section 4.2 how to
filter out artifacts (e.g. dye bleedthroughs) from gel images that are imperfectly separated.

The main data tracking problem isin tracking the gel 1anes and detecting the MW bands.
Thistracking involves the construction of asizing grid a that transforms pixel coordinates
into lanes and molecular sizes:

a: <x,y>pixels - <lane, size> points

Sizing grid construction has not previously been successfully automated. Even in the most
advanced genotyping systems, the human eye is required to resolve various confounding
data artifacts on the gels. Figures 4.2 (a,b), 4.3 (a,b), and 4.4 (a,b,c) show the common
artifacts (from actual gels) that make automated sizing grid construction difficult. Each
figure shows agel image for the TAMRA dye, the dye used for |abeling the MW size
standards. The same set of TAMRA-labeled MW sizes has been loaded in the lanes on
each of the gels, forming the rows of bands observed. The common confounding data
artifacts are;

* Dyebleedthroughs. Imperfect dye separation causes "bleedthrough” bands from anon-
resident dye to occur in the dataimage for another dye, as shown in Figures 4.2a and
4.2b. These non-resident bands can interfere destructively with the actual data bands,
or masquerade as data bands of the resident dye;

* Gd gmiles. Identical DNA fragments may migrate at varying rates along different lanes
on the same gel, causing "gel smiling" patterns such as those depicted in Figures 4.3a
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and 4.3b. The presence of gel smilesimpedes size calibration by linear interpolation
across lanes;

» Saggeredloading. It isacommon practiceto load DNA samplesinto the gel lanesina
staggered mannerS. This loading practice creates highly complicated patterns such as
those shown in Figures 4.4a, 4.4b and 4.4c. When coupled with the "gel smile"
effect, the patterns can be visually indecipherable on a high throughput gel with alarge
number of gel lanes.

Relying on human technicians to manually track the dataiis at best atemporary measure.
Recent advancesin gel separation technology and demands for higher throughput will
further increase the number of lanes that can be packed onto asingle gel. Moreover, the
need for sizing precision will lead to common usage of high resolution MW size standards,
increasing the number of MW bands that has to be calibrated per lane (by hand). As
manual data tracking becomes lessfeasible, the fully automated construction of gel sizing
grids becomes increasingly essential.

SThisis apractice carried over by technicians who are used to loading gels for DNA sequencing instead of
fragment analysis such as microsatellite genotyping. Instead of using a"square-tooth” loading comb, a
"shark-tooth" loading comb is used to load the DNA samples onto agel. With this loading method, there
are no pre-defined loading wells for the lanes on the gel. As such, the lanes must be loaded in batches.
First, a subset of the lanes (e.g. the odd-numbered lanes) is loaded onto the gel with the shark-tooth comb.
The gel isthen allowed to run-out partially before loading the other set of lanes with the shark-tooth
loading comb. Thistime delay resultsin a zig-zagging band patterns observed on the gel, which are useful
for detecting spillovers from neighboring lanes.
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Figure 4.2a. Gel bleedthroughs. Shown here is the image of a 32-lane gel for the
TAMRA dye. Therows of data bands are from the identical set of TAMRA-labeled MW
sizesloaded in each of the 32 lanes. On closer inspection, other data bands can also be
seen in the region between 160-200 bp and lanes 1-15. As magnified in Figure 4.2b, these
bands are "bleedthrough bands" from the HEX dye, which labels a genetic marker with
alele sizes 160-200 bp on thisgel. (Provided by Lillian M. Bloch, Cybergenetics, Inc.)
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for the gel shownin Figure4.2a. On thetop isthe gel image for the TAMRA dye, below it
isthe image for the HEX dye for the same gel region. The data bands from the marker in

the HEX dye have clearly bled into the TAMRA dye image.
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Figure 4.3a. Gel smiles. Instead of forming straight rows across the lanes, the
identical sizing DNA fragments |loaded in each of the 34 lanes on this gel migrated at
different ratesin different lanes, resulting in curved rows ("smiles") across the lanes.
(Provided by Dr. Charles Mein, University of Oxford.)
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Figure 4.3b. Another example of gel smiles. This 50-lane gel exhibits adifferent "gel
smile" pattern from the one in Figure 4.3a. (Provided by Dr. Vicki Magnuson, National
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Figure 4.4a. Staggered loading. Instead of loading all the 48 lanes on this gel
simultaneously, the odd numbered lanes were loaded first, followed by the even numbered
lanes after adlight time delay, resulting in azig-zagged pattern. (Provided by Frosti
Palsson, deCODE Genetics, Inc., Iceland.)
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Figure 4.4b. Another example of staggered loading. On this 48-lane gels, sets of
lanes were |oaded at three different times. First, lanes 1, 4, 7, and so on were |oaded.
Then, lanes 2, 5, 8, and so on were loaded. Finally, the remaining lanes, lanes 3, 6,
9, and so on, were loaded. Thisresulted in acomplex zig-zagging pattern that is very
different from the one shown in Figure 4.3a. (Provided by Frosti Palsson, deCODE
Genetics, Inc., Inceland.)
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Figure 4.4c. Yet another example of staggered loading. In this 48-lane gel, lane
numbers that are multiples of 3 were loaded first, followed by the remaining lanes.
Thisresulted in another pattern that is visually interesting but difficult to track
manually. (Provided by Frosti Palsson, deCODE Genetics, Inc., Iceland.)
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4.1.1. Algorithm

Because of the gel image size® and the various confounding factors such as dye
bleedthroughs, gel smiles, and staggered loading, direct two-dimensional pattern matching
istoo computationally intensive for a practical genotyping system which the complex sizing
grids must be constructed in minutes. To achieve the requisite speedup of our expectation-
based methods, we simplify the problem using a divide-and-conquer strategy (Figure 4.5):
first, we reduce the two-dimensional problem into multiple one-dimensional spacesto
quickly generate a grid template; then, we locally refine the grid template in two-
dimensional space. Assume that there are n gel lanes each loaded with a MW standard of m
DNA sizing fragments.

Step 1: Lanetracking.
Instead of initially searching the entire gel image two-dimensionaly for al the mxn MW
bands, wefirst track the n vertical lanes. Note that gel lanes are reasonably straight , at
least within asmall gel section. We therefore divide the gel image into severa
horizontal subsets, as shown in thefirst pane of Figure 4.5. For each horizontal
subset, we project the two dimensional subset region onto the x-axis to form alocal
"lane template”. We then combine these partial lane templates to form a complete lane
template for the entire gel.

Step 2: MW calibration.
With the n lanes tracked, we reduce the image into n one-dimensiona intensity profiles
or electropherograms, as shown in the second pane of Figure 4.5. We then search one-
dimensionally along each of the electropherograms for the m MW bands. Once every
lane has been processed, we have found the mxn MW bands that form the sizing grid a
for the gel.

Step 3: 2D grid refinement.
Finally, as shown in the third pane of Figure 4.5, we perform local two-dimensional
refinementson a to account for the two-dimensional dependencies|ost during the
divide-and-conquer problem reduction.

6Currently, agel image is about 15Mb. The need for high precision and high throughput will only
continue to increase the gdl size further.
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Figure 4.5. Sizing grid construction. A three-step divide-and-conquer approach for
constructing the sizing grid for atwo-dimensional gel image.
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Algorithm CONSTRUCT_GRID

In this algorithm, we assume that DNA migrates along the direction in the y-axis of the
gel image.

Step 1: Lane tracking.

Construct, using algorithm TRACK _LANE, the mapping function

Olane: <X, y> pixels - lane
This transformation reduces the vast 2D gel image into 1D |lane electropherograms
to facilitate separate MW calibration on each lane.

Step 2: MW cadlibration.

Congtruct, using algorithm CALIBRATE_MW, the mapping function

Ogze: <lane y> - size
This function maps the y-coordinates of each gel lane from the image pixel unitsto
the molecular base pair (bp) units.

Step 3: Grid refinement.

Construct, from the composition of the two mapping functions, an initial band
localization grid:

O = 0gze. Alane: <X, y> pixels - <lane, size>
Refine, using algorithm 2D_REFINE_GRID, each expected MW grid point locally
to adjust for any unaccounted two-dimensional shifts.

Box 4.1. CONSTRUCT_GRID: adivide-and-conquer algorithm for constructing a two-
dimensional band-localization grid. Wetrack the lanes first so that we can reduce the vast
gel image into one-dimensional lane intensity profiles (electropherograms), on which we
search for the MW bands one-dimensionally. To account for the two-dimensional
irregularities resulting from the problem space reduction, we post-process the sizing grid
by refining each grid point locally in two-dimensions.

49



Box 4.1 shows the overall algorithm for automatic construction of the sizing grid a on a
dye-separated gel image containing MW data. The component algorithms for dye
separation, lane tracking, MW calibration, and grid refinement will be described separately
in the ensuing sections.

4.2. Dye separation

By tagging DNA samples with primers labeled with different fluorescent dyes for separate
signal detection, multiple DNA samples can share both the same lane and the same size
window on the same gel. Using dyes that have non-overlapping fluorescent spectrums, we
can detect the signals from the DNA samples labeled with different dyes separately using
multiple laser-induced fluorescence sensors.

The fluorescent spectral ranges of the dye labels may not be perfectly non-overlapping in
reality. Asaresult, dye signals occurring in the overlapping range may also be picked up
by a sensor for detecting data signals from another dye. Asaresult, the signals from one
dye can show up in theimage for a different dye (as shown in Figure 4.2a and 4.2b).
Such signal cross-talk is known as dye bleedthrough. A bleedthrough band may be
indistinguishable from a data band of the resident dye, especialy when thereisahigh
concentration of datain the gel.

Most DNA sequencers provide a multi-component correction filter, usualy in the form of a
"dye separation matrix"”, that can be applied to the raw data to minimize the bleedthrough
effects. For best results, the dye separation matrix must be frequently calibrated on a DNA
sequencer to experimentally minimize the bleedthrough effect observed on gels generated
from that machine. Thisisthe recommended approach for minimizing dye bleedthrough.
However, as afallback, we will also describe an agorithm to computationally refine a dye
matrix that has not been perfected experimentally.

4.2.1. Algorithm

Algorithm MINIMIZE_BLEEDTHROUGH shown in Box 4.2 describes one approach for
computationally refining adye correction filter. The algorithm exploits the expected
location of digoint size datafor overlapping spectral dyes. In essence, the algorithm
maximizes, at every image pixel, the signal from one dye while minimizing the signals
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from the other dyes. As such, the algorithm works best with data that contain mutually
exclusive regions of signals from different dyes. On a high throughput gel wherethereisa
high concentration of datafrom all the dyes, regions with mutual dye exclusion may be
hard to find. In this case, we refine the dye separation matrix using separate calibration
lanes, such as a gel with lanes |oaded with only samples from a single dye to ensure
maximal mutual dye exclusion, or agel with one or more lanes loaded with DNA of known

genotypesfor al the dyes, and then using the algorithm at selected pixels of known dye
exclusions.

Algorithm MINIMIZE_BLEEDTHROUGH

Assume an n-dye system. Let ¥ denote a given bleedthrough correction filter (e.g. a
dye separation correction matrix) to be applied to the dye planes Py, Po, ..., Ph. The
goal isto refinethefilter w to maximize, at each image pixel, the signal for one dye
while minimizing the interference of the other dyes.

Let Pyq(i) denotetheresulting signal intensity at dye d'si-th image pixel after

applying the filter ¥. We can solve the bleedthrough minimization problem by
iteratively refining wuntil we find:

mﬁglz %Dw,o(i)(i) - d;if)w,d(i)%l

where D(i) isthe dye plane with the maximum value at pixel i; in other words,
PD(i)(i) = mdax Py (i)

Box 4.2. MINIMIZE_BLEEDTHROUGH: an algorithm for refining dye-separation to
minimize bleedthroughs.
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4.2.2. Example

A typical multi-component dye separation filter for an n-dye system is an nxn square matrix
with each row adjusting for potential dye signal cross-talk for one of then dye
components. That is, each (i,j)-th element of the dye matrix defines the amount of
fluorescent signal from the j-th non-resident dye that can be included in (or excluded from)
the datafor the resident dyei. If the fluorescence range of the dyes were perfectly non-
overlapping, then the dye separation matrix is simply thenxn identity matrix. More
typically, adye matrix would look like Dgjven, an actua dye separation matrix on the ABI
377 sequencer (a 4-dye system with dyes FAM, TET, HEX, and TAMRA) that generated
the gel shown in Figure 4.2a:

FAM TET HEX  TAMRA

FAM 2.644  -2.809 1387  -0.382
TET -2.203 4.091 -2.369 0.654
HEX -0.114  -1.084 1945 -0.664
TAMRA 0.008 -0.055  -0.405 1.159

To filter the multi-channel raw data using this dye matrix, we align the raw data collected
by the respective laser sensors into arow-matrix with one row for each of the dyesin the
system. Let uscall this datamatrix RAW_DATA. To generate the dye-separated data, we
simply multiply RAW_DATA with the separation matrix Dgjven:

SEPARATED_DATA = Dygjven X RAW_DATA

The resulting gel image for the TAMRA dye after the application of Dgjyen Was shown in
Figure 4.2a. For acloser inspection, we show the intensity profiles of the pre-dye
separated raw datain Figure 4.6a, and the dye-separated profilesin Figure 4.6b. The high
degree of bleedthrough in the raw data was greatly reduced after applying the Dgjyen to the
data. However, some dye bleedthrough can still be seen to remain in the data, as shownin
Figure 4.6b (and Figure 4.2b).
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Figure4.6a. Thesignal intensity profiles from the raw data from the laser
sensors for each of the fluorescent dyes. Without applying the dye separation
matrix, thereis ahigh degree of dye bleedthrough. For example, the data
signals between scan columns (x-axis) 500 and 1000, as well as those near
scan column 1500, showed up in the intensity profiles of all the dyes.
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Figure 4.6b. After applying the dye separation matrix Dgjven , it became
clear that the data bands between scan columns 500 and 1000 belonged to the
HEX dye, whereas the bands around scan column 1500 belonged to the TET
dye. However, the bleedthroughs have not been totally eliminated. For
example, some of the data bands from the HEX dye can till be found in the
datafor the TAMRA (labeled as TAM here) and FAM dyes, and some of the
bands from the TET dye found in the data for the HEX dye.



By using the strategy outlined in algorithm MINIMIZE_BLEEDTHROUGH, we
computationally refine the dye matrix to maximize, at every image pixel, the signal from
one dye while minimizing the cross-talk signals from the other dyes. The corrected dye
matrix, Drefined, iS shown below with the modified vauesitalicized:

FAM TET HEX TAM
FAM 2.644  -2.400 0.750 0.050
TET -2.203 4.091 -2.300 0.654
HEX -0.114  -1.450 1.945  -0.600
TAM 0.008 0.150 -0.650 1.159

In Figure 4.6¢, we show the signal profiles after applying Drefineg. FOr comparison with
the gel images in Figures 4.2a and 4.2b, we also show the resulting gel image for the
TAMRA dyein Figure 4.7a, and magnified gel portionsfor TAMRA and HEX in Figure
4.7b.
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Figure4.6c. Thesignal intensity profiles for the different dyes after applying the
corrected dye separation matrix Dyefineg. The data bands from dye HEX no longer bled into
the dyeimagesfor TAM and FAM, and the bleedthrough bands from the TET dye have
also been eliminated from the data for the HEX dye.
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Figure4.7a. The gel image for the TAMRA dye after the application of the refined
dye matrix Dyefined ON the raw data. See also the gel image shown in Figure 4.2afor
comparison.
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Figure4.7b. Magnification of the gel region between lanes 1-15, and 139-200 bp. The
datafor the TAMRA (top) and HEX (bottom) dyes are shown. Unlike the ssimilar images
shown previously in Figure 4.2b, data bands from the HEX dye no longer bled into the
dataimage for the TAMRA dye.
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4.3. Lane tracking

In multiple-dye systems, data from the different dyes can be treated asif they wererunin
separate "dye planes' in parallel. Inorder to caibrate each gel laneinternaly with
molecular weight (MW) size standards, one of the dye planes, the "MW plane”, istypicaly
devoted to running the size standards exclusively. In single-dye systems, it is usually not
possible to co-electropherosize the size standards with the genetic markers in the same
lanes. Instead, some of the gel lanes are devoted to running the MW size standards while
other lanes run the genetic markers. For these systems, we can create a pseudo "MW
plane" by filtering out the marker data. Thus, data on an electrophoretic gel can generally
be classified into two broad categories: data from the genetic markers (the "marker
planes'), and datafrom the MW size standards (the "MW plane™).

Because the same size standards are run in every calibration lane on the MW plane, highly
regular band patterns are expected to appear on the MW plane. In addition, we can predict
the MW band patterns with great certainty since we know the exact molecular sizes of the
DNA fragments on the MW plane. As compared with the marker planes where the band
patterns are by no means regular or predictable, the MW planeis therefore the best
candidate for tracking gel lanes.

4.3.1. Algorithm

Efficiency and robustness are two important criteriafor a practical system which handles

real data: efficiency can be accomplished by pruning the search space as much as possible,

while robustness can be attained by pruning the search space intelligently. to avoid the

pitfalls created by the various spurious artifactsin real data Computationally, the search

space can be pruned by problem reduction, and the spurious data artifacts can be evaded

using expectation mapping. The general framework, which you will seein most of the

algorithms described in this dissertation, involves:

* Problemreduction: Simplify the problem as much as possible without |osing too much
information about the original problem,;

»  Expectation construction: Create expectations that are as specific as possible using all
the information that we have about the domain, the problem, and the data;

»  Expectation application: Apply the expectations by mapping them onto the observed
patterns of the data; and
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» [Iterative refinement: Refine the solutions constructed from the reduced problem space in
the original problem space to adjust for any artifacts that may have been lost in the
process of problem reduction.

Let us apply this computational framework to solve the lane tracking problem. Inthe
following discussion, we will use the convention that (a) the gel image (i.e. the MW plane)
isarectangular intensity matrix, (b) the gel lanes (or DNA migration) are vertical, and (c)
the same MW standards are loaded in every lane.

Step 1: Reduce problem.

Since the lanes on agel may not be perfectly straight throughout, we divide the gel image
into numerous horizontal sectionsthat are small enough so that the segments of lanes can
be correctly assumed to be straight within the sections. We can then exploit the lane
"gtraightness’ characteristic in each gel section to reduce them into cross-sectiona profiles
formed by vertically projecting the image pixel with the highest intensity in each column
onto the horizontal axis. In thisway, we reduce the problem of tracking lanesin avast two
dimensional image into amuch simpler problem of identifying peaks along a set of one-
dimensional projection profiles.

Step 2: Build expectation.

Using our knowledge about the gel's layout and assuming approximately equal lane
widths, we build a preliminary expectation of where the lane peaks might lie in each of the
projection profiles. We then refine this expectation further by making it conform locally to
the actual detected peaksin the best projection profile in the gel.

Step 3: Apply expectation.

Using the localized expectation from the best projection profile, we map the detected peaks
in the other projection profiles. A good strategy which exploits the gel continuity isto start
mapping from the neighboring gel sections from the best projection profile. When al the
Ccross sections have been processed, we join the mapped lane peaksin the each projection
profiles to form a piece-wise constant lane template for the entire gel.

Step 4. Iteratively refine.

If necessary, we can repeat steps 2 and 3 using different initial projection profilesto seeif
we can improve on the lane template that we have constructed so far. We will postpone the
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adjustment for two dimensional dependencies (using algorithm 2D_REFINE_GRID)
until after we have detected the MW bands.

Box 4.3 presents the detail s of our lane tracking algorithm.

Algorithm: TRACK_LANE
Step 1: Reduce problem.

(& Dividethe gel into several (say, k) horizontal sections: Ry, Ry, ..., Rk such
that each R; is wide enough to contain at least a complete row of MW bands.

(b) Reduceeach R sectioninto an intensity profile pj (X) by projecting every (X,
y) pixel in the region onto the X-axis using:

pi (X) = max R (x,y) foralyinR; .

We use the "max" operator instead of the "sum" or the "mean" operator since it
is more robust to slanted MW rows caused by gel smiles’.

(©) Identify the peaksin each compressed profile p; (X). Each of these peaks
indicates a potential MW-loaded lane. Let us assume that there are n loaded gel
lanes.

Step 2: Build expectation.

(@ Identify abest horizontal section by selecting from the R 's, an Rpeg that
maps with theinitial lane expectation (based on gel layout information and
assuming equal lane widths) best.

(b) Establish the best mapping between the peaks detected in ppegt(X) and then
MW:-lanes laney, laney, ..., laney:

Poest: X — lane

Boest fOrms the lane expectation that we can apply to the other gel sections.

"For example, if the MW rows were slanted from left to right, then a horizontal gel region may contain
more MW bands on the left than on the right. By taking the maximum instead of the summation or the
mean of each column, only one of the MW rows (the one with the maximum intensity) will be projected
onto the summarized profile, regardliess of how many extra MW rows that column happen to contain.
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Step 3: Apply expectation.

Based on fpeg, construct individual mappings for the flanking regions Rpegt-1  and
Roest+1 Which maps the peaks in the cross-sectional profilesto laney, laney, ...,
lanen:

Poest-1: X - lane
Boest+1 X — lane

Locally propagate from Rpegt until all k §i's are determined. Together, the cross-
sectional lane mappings<p1, Bz ..., Bk > form an approximate piece-wise constant
lane template for the entire gel.

Step 4. Iteratively refine.

Repeat Step 2 and 3 using other Rj as Roest to Seeif <f1 B2 ... Bk> canbe
improved further. The mappings are then smoothed and interpolated to form the
final lane template for the gd:

Olane: <X, y> pixels - lane

Box 4.3. TRACK_LANE: an expected-based, divide-and-conquer algorithm for tracking
gel lanes.
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4.3.2. Example

As an example, we will track the gel lanes on the example "bleedthrough” gel from Figure
4.2a. First, we divide the gel into horizontal segments so that we can assume straightness
of thelanesin each gel segments. Using our knowledge about the gel layout (there were
34 wells on the gel, 32 of which were loaded with DNA, skipping lanes 17 and 34), we
create alane peak expectation which we refine by mapping it with the detected peaksin the
best bottom-up projection profile shown in Figure 4.8a. As shown in thefigure, there
were 32 peaks detected (marked "*") as lane candidates. However, lane 22 did not contain
sufficient signal level to be detected initially, while a candidate peak was detected at the
unloaded 34th lane. Using the top-down expectation created from gel layout information,
we robustly mapped the lane peaks (marked "0") by locating the missing 22nd peak and
ignoring the extraneous 34th peak.
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Figure 4.8a. The projection profile of the best horizontal subsection inthegel. The
locally detected data peaks are marked "*", while the "0" markers indicate the final mapped
lane locations using the gel's expectation layout information.

0

Using the refined lane template (marked "o" in Figure 4.89) that we have created from the

best cross-sectiona projection profile, we proceed to map the lane peaksin the other cross-
sections on the gel. Figure 4.8b shows the final mapped lane locations (depicted as dotted
lines) of the first four cross-sections on the gel.
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Figure 4.8b. The mapped lane locations (for all 34 lanes, including the unloaded lanes

17 and 34) for the various gel regions. The lane locations are depicted as vertical dotted

lines, whilethe "*"'s mark the lane peaks that were detected initially on the projection
profiles.

By joining the mapped lane |locations from the different cross sections together, we
congtruct a piece-wise constant lane template for the entire gel. The final lane templateis
shown in Figure 4.8c together with the MW plane, illustrating that the lane template was
fairly accurate even though it was constructed as a two-dimensiona concatenation of one-
dimensionally cross-sectional projection profiles.
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4.4, MW calibration

Once the lanes have been tracked, the two-dimensional gel image can be reduced
immediately to a series of one-dimensional vertical electropherograms which can then be
calibrated separately. In each lane, we detect the MW peaks and label them with the correct
molecular sizes. To filter out extraneous peaks or infer any missing ones, we construct
expectations to accurately predict where the MW bands are on the electropherograms.

To predict the expected positions of the MW peaks, the conventional approach isto assume
afixed mobility function such as the local Southern function (Ghosh et al., 1997,

Southern, 1979). Here, we adopt a data-driven approach by using actual relative pixels of
MW peaks from previous gels to predict where the MW peaks would fall on the current
gel. Therelative pixelsrecord the relative distances of the MW bands. Using the relative
pixels of MW peaks learned from previous gel's running the same MW standards, we can
easily construct ahighly reliable MW peak expectation without globally assuming any
mobility function.

4.4.1. Algorithm

Lanetracking and MW calibration are actually a pair of symmetrical problems:. the former
involves the mapping of detected peaks horizontally ("row"-wise) to infer vertical points,
while the latter involves mapping the peaks vertically (lane-wise) to infer horizontal
patterns. As such, we apply the same computational framework:

(& Reduce problem. The two-dimensional complexity of the problemisdrastically
reduced, since the lane template from TRACK _LANE is used to extract lane
el ectropherograms for one-dimensional MW calibration;

(b) Build expectation. We apply relative pixel information that we have learned from
previous gels, and customize it with the data on the best lane on the current gel;

() Apply expectation. We apply the MW peak expectation to search for MW bandsin the
neighboring lanes. To exploit lane to lane continuity, we adopt the strategy of
searching for the MW peaks in the neighboring lanes first, incrementally refining the
MW expectation as we propagate away from theinitial lanes;
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(d) Ilteratively refine. We iteratively refine the solution by repeating the process using
some other lanes to build the initial MW peak expectation in (b).

Box 4.4 givesthe detailed description our MW calibration algorithm.

Algorithm: CALIBRATE_MW

Step 1: Build expectation.

(@ Select, from laney, laney, ..., lane,, alanepeg that has the cleanest
electropherogram ppest(Y) -

(b) Based on the relative pixels we have learned from previous gels, establish
the best mapping between the peaks in ppegt(y) and the known MW sizes:

Ppet: Y —» SiZe

Step 2: Apply expectation.

Base on the locally refined relative pixelsin ¢peg, construct individual
mappings for the flanking lanes of lanepeg, Namely lanepeg-1 and lanepeg+1:

Pbest-1: Y — Size

Repeat Step 2 for the flanking lanes of lanepeg-1 and lanepeg+ 1, until the MW
peaks of al thelanesin the gel are detected and mapped.

Step 3. Iteratively refine.

Repeat Steps 1 and 2 using other lang 's as lanepeg to seeif the quality of the
MW mappings can be improved further. The best set of <¢1 @2 . P>

collectively forms the MW mapping for al the lanesin the gel:

Opp: <lane, y> - bp

Box 4.4. CALIBRATE_MW: an expected-based algorithm for MW calibration.
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4.4.2. Example

We continue with the "bleedthrough” gel (originally shown in Figure 4.2a) as an example.
The MW size standards used on this gel was "GS350", which contains twelve standard
DNA sizefragments:

‘ MW standards
bp ‘35 50 75 100 139 150 160 200 250 300 340 350

First, we construct a customized MW peak expectation from previous relative pixels for
GS350 and the detected peaks on the best electropherogram, shown in Figure 4.9a (the
smaller sizes are to the |eft of the electropherogram). The detected peaks are marked "*",
and the mapped peaks are marked "0". Notice that there is a bleedthrough band between
the size fragments for 150 bp and 200 bp. Since we are using the relative pixel information
from previous gels running GS350, our algorithm is robust enough to avoid the
bleedthrough band.
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Figure4.9a. The lane electropherogram for constructing the initial MW peak
expectations. The detected peaks are marked "*", and the "0"'s indicate the mapped peaks.
There is ableedthrough band in the middle (the one marked with "*" but without an
associated "0"), but the algorithm intelligently avoids this band using expectation
information. The high intensity signals on the left are due to the excess primer bands from
the markers.
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Thelocalized MW peak expectation enables usto robustly detect and label the MW bands
on the other lane electropherograms. In Figure 4.9b, we show alane electropherogram
where the bleedthrough bands actually have higher intensities than the actual MW bands.
Our expectation-based approach again intelligently avoids the pitfalls.

0.14F T T T T T T T 3
012+ :
0.1k -
0.08 -

O
0.06}F o 2 .
O
0.04 | o 2
0.02} "
U“m”““kwud' :Twlluw v A e

0 1 1 1 1 1 1 1 1 1
0 s00 1000 1500 2000 2500 3000 3500 4000 4500

——

Figure 4.9b. An examplein which the bleedthrough bands (in the middle region) are of
higher signal intensities than the actual MW bands.

Figure 4.9c shows the final mapped MW peaks for the first 5 lanes, and Figure 4.9d
depicts the mapped MW bands for al 32 lanes overlaid on the gel image.

68



Lane 1

0 500 IUUU 1500 2000 2500 3000 3500 4000 4500

0 500 1000 1500 2000 2500 3000 3500 4000 4500
. P I LB . . 1 .

' il 1 1 1 ' 1
500 1000 1500 2000 2500 3000 3500 4000 4500

0 500 IIJIJIJ 1500 2000 2500 3000 3500 4000 4500
. P P PR | . T . | B T T

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 4.9c. The detected ("*"'s) and mapped (dashed lines) MW bands for the first 5
lanes of the gel. Notice how the bleedthrough bands have been avoided by the expectation-
based approach.
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45. Grid refinement

Tremendous speedup is obtained in reducing the two-dimensional grid construction
problem into one-dimensional problems of lane tracking and MW calibration. The
associated price for such problem simplification is that certain subtle two-dimensional
dependencies may be lost in the reduced problem space. In particular, the MW bands are
actually two-dimensional regions with finite widths and lengths, and not merely flat peaks
along one-dimensional lane profiles. So, idedlly, the grid points on the sizing grid should
be the centroids of the two-dimensionally shaped MW bands. When mapping the MW
peaks along the lanes tracked one-dimensionally by TRACK _LANE, we may missthe
actual centroids of some of the MW bands since they could lie dightly off the lane
templates. To account for such two-dimensional singularities, we perform afina grid
refinement by locally searching for the peaks centroids at each grid point.

45.1. Algorithm

From the mappings that we have constructed in TRACK_LANE and CALIBRATE_MW,
namely:

Olane: <X, y> pixels - lane, and

Ogze: <lane y> - size
we obtain abasic grid (as explained in CONSTRUCT_GRID) using functional
composition:

Qinit = Ogze- Olane: <X, y> pixels - <lane, size>

Thisgrid (ajnit) formsthe initial expectation of where the MW bands might lie two-
dimensionally. Aswe have seen, Qijnjt isfairly accurate, so we only need to search locally
in the vicinity of each grid pointsin ajnjt for the peak centroids. Box 4.4 describes how
we refine djpjt two-dimensionally to form the final sizing grid.
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Algorithm: 2D_REFINE_GRID
For each grid point <X, y> in Qjpjt, do:

Step 1. Estimate enclosing rectangle of MW peak.

Using ainjt, we determine an approximate height and width of arectangular
region enclosing the MW peak. For example, we can begin by trying a
rectangle region with a1 bp height and awidth that is 75% of the actual lane
width.

Step 2: Build local contour.
In the estimated rectangular region, build the local contour for the median pixel
intensity value by joining pixelswith at least thisintensity value together.

Step 3: Adjust enclosing rectangle.

If the contour line does not form an enclosing region, then expand the enclosing
rectangle accordingly and repest Step 2.

If there are more than one enclosed contour linesin the rectangular region, then
contract the rectangle towards the contour region that was closest to the
expected size of aMW band, and repeat Step 2.

We stop until asingle enclosed local contour can be drawn inside the
rectangular region.
Step 4: Find centroid.

Compute the centroid <x', y> of the enclosed contour. Replace the grid point
<X, y> inajnjt with <x', y'> , and then proceed to refine the remaining grid
points in djnit.

Box 4.5. 2D_REFINE_GRID: an agorithm for refining the band localization grid locally
and two-dimensionally.

72



45.2. Example

Asan example of aninitial grid peak which deviates from the actual centroid, let uszoomin
on the lower left grid corner (i.e., lane 1, 35 bp) of our example gel. Figure 4.10a shows
the three-dimensional view of the gel region near the lower left grid corner. The grid point
detected by the one-dimensional algorithms TRACK_LANE and CALIBRATE MW
(marked "*") was dightly off the center of the actual MW band.

1150°

Figure4.10a. A close-up three-dimensional contour view of the lower left grid corner
of theexample gel. Theinitial grid point is marked "*".

To refine the misplaced grid point, we define a bounding rectangle in its vicinity which
includes a complete enclosed contour, as shown in Figure 4.10b. We then adjust the grid
point by snapping it to the two-dimensional centroid of the enclosed contour (marked "+"
in Figure 4.10b) in the bounding box. Figure 4.10c shows the relative positions of the
original grid point (marked "*") and the two-dimensionally refined grid point (marked "+")
in athree-dimensional contour view of the gel region.
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Figure 4.10b. Enclosed contour near the original grid point (marked "*"). The centroid

ismarked "+".
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Figure 4.10c. Two dimensional refinement of the grid point (marked "*"). The final
grid point is (marked "+") resides on the tip of the contoured MW peak.
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4.6. Results

We have shown in great detail how our algorithms efficiently and robustly handled
bleedthrough bands in our example gel. The computed grid for this gel is shown in Figure
4.11.
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Figure 4.11. The computed sizing grid for the example "bleedthrough” gel originally

shown in Figure 4.2a.

Our agorithms are also able to handle complex grid patterns caused by gel smiles (shown
in Figures 4.3a and 4.3b) and staggered loading (shown in Figures 4.4a, 4.4b, and 4.4c).
By tracking the lanesfirst, we can calibrate the MW bands separately on the gel 1anes,
handling the possibly drastic lane-to-lane shifts from gel smiles and staggered |oading by
not making any strict lane-to-lane continuity8 assumptions during the independent MW
calibration. Figures4.12aand 4.12b show the computed sizing grids for the gels with gel
smiles (shown originally in Figures 4.3aand 4.3b). The sizing grids for the staggered

8The only lane-to-lane continuity assumption that we exploit is that the relative pixels (and not the
absolute pixels) of the MW bands are more similar for lanes that are closer together than lanes that are
further apart on the same gel.
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loaded gels shown in Figures 4.4a, 4.4b, and 4.4c are shown in Figures 4.13a, 4.13b, and
4.13c respectively.
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Figure 4.12a. The computed sizing grid for a gel showing "gel smile" artifacts.
The original gel image was shown in Figure 4.3a.
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4.7. Discussion

The grid construction agorithms presented in this chapter are computationally
straightforward. Despite their simplicity, these algorithms were very effective in handling
real and complex data, as we have seen from the examples. The algorithms were
specifically designed to meet the various criteriafor practical genotyping problem solving,
such as:

» versatility: the agorithms must be able to handle vastly different loading patterns;

* robustness: the algorithms must not be easily distracted by noise and other pitfalls, such
as extraneous or missing MW bands; and

» efficiency: the algorithms must be able to scan agel and construct an accurate two-
dimensional sizing grid in minutes.

In solving the practical problem of sizing grid construction, we have adopted various
computational strategies. Although they are fundamental computational approaches, they
have been critical in handling complex and noisy data in the case of sizing grid
construction:

» Divide-and-conquer. Whenever possible, we reduce the problem into simpler ones.

Simple problems are more likely to result in simple solutions that are easier to
implement and maintain, and are therefore more robust in the practical sense. The
reduction of problem also increases the degree of modularity in the system. Because
we have separated lane tracking from MW calibration, the computer can handle both
data that require lane tracking (e.g. ABI) and data that are aready lane-tracked (e.g.
Pharmacia), asit can optionally use the lane tracking module with the MW calibration
module;

» Apply expectations. When constructing asizing grid, we invest much effort in creating
accurate localized expectations for guiding the search. Asthe computed expectations
are used asinitial solutions for the search, accurate expectations can drastically reduce
the search required. With good data, the actual solution would be closeto the
expectation, and the computer will be able to find the solution quickly. With imperfect
data, the actual solution deviates further from the expectation, thereby requiring more
search effort from the computer to reach the solution. Thus, an associated advantage of
expectation-based processing is that the computational requirement is directly
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proportional to the quality of the data. Additionally, the expectations provide a robust
reference frame from which the computer can reliably assess the quality of the data,
dynamically allocate its resource to regions of data that need more attention, intelligently
attempt recoveries, and helpfully provide meaningful feedback to the user;

» Refineusing data. Whenever we form an initial expectation based on somea priori
assumption (e.g. equa lanewidthsin TRACK_LANE, initia relative pixelsin
CALIBRATE_MW), we aways refine these expectations locally using the actual data
as soon aswe can. The data-corrected expectations are more accurate than expectations
based on simplifying global assumptions;

» Makefew assumptions. By making as few assumptions about the data as possible, we
can efficiently handle unexpected characteristicsin the data. For example, the practice
of staggered loading, which resulted in complex zig-zagged patterns such as those
shown in Figure 4.4a, b, and c, started only after we implemented the sizing grid
construction module for our system. Because we did not make any a priori
assumptions on strict lane-to-lane alignment, we were able to extend the MW
calibration agorithm to handle the complex |oading patterns;

» Useheuristics. In handling real data, the basic computational power of the algorithms
must be complemented by heuristics which encode the immense obligatory field
expertise. The heuristics handle the "details" that are necessary when working with real
datain apractica system.

This assortment of basic computational strategies turns out to be fairly representative of the
algorithms that we have devel oped for solving the other related problemsin genotyping.
As such, they will recur frequently in the next few chapters as we describe our other
algorithms for solving the remaining problems.
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5. Band Quantitation

The construction of the sizing grid allows us to reduce genotyping complexity in two ways.
First, using the lane mapping in the grid, we reduce the multi-dimensional gel image into
one-dimensional electropherograms; then, using the grid's MW calibration, we apply our
knowledge about the markers expected allele size range to isolate windows of marker data
on the electropherograms for analysis.

In this chapter, we describe the next level of problem reduction. The PCR and gel
electrophoresis process (Chapter 2) generates electrophoretic signals from size-separated
classes of tagged DNA fragments. Each of these DNA fragments has an integral molecular
sizein base pairs (bp). Therefore, underlying the continuous intensity signals that we
observe on the electropherograms are actually series of discrete data bands emitted by
classes of DNA fragments with integral molecular sizes. The next natural problem
reduction step is to discretize the continuous signals on the el ectropherograms into discrete
data bands, each indexed with an integral alele size and quantitated with arelative DNA
concentration measure. That is, we compute the following mapping function:

[B: imagedata+ sizing grid - {<bp, concentration>}
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Figure 5.1. Band quantitation. Thisinvolves converting the continuous el ectrophoretic
signals (shown on the left) into discrete data bands (shown on the right), assigning an
integral sizeto each of the data bands detected, and determining the relative DNA
concentrations of the data bands.
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5.1. Problem

There are two main tasks in band quantitation:

1. binning: indexing each marker band with an integral molecular size, and

2. quantitation: determining each marker band's relative DNA concentration (defined as
either the area under the peak in the intensity profile, or as the peak height).

For the binning task, the MW sizing grid can only give approximate sizes for the marker

bands. There are two potential sources of binning errors:

* Inadequate resolution. The commercialy available MW size standards (Genescan 500,
Bioventures Map) provide only 50 to 20 bp spacing resol ution, whereas the data bands
from the markers can be as close as 2 bp (for dinucleotide repeat markers) or 1 bp (for
mononucleotide repeat markers, or markers exhibiting the "plus-A" artifacts) apart;

» Inappropriate interpolation. The sizing grid is constructed using molecular size
standards DNA, whose DNA sequences may differ chemically from the marker DNAS.
Asaresult, the molecular weight spacing of the marker DNA fragment may not equal
the spacing of the size standards. Thus, interpolating within the size standards may
lead to inaccurate of the marker fragments.

For the quantitation task, since the fluorescent signal intensity is directly related to the
amount of tagged DNA present, we can determine the relative DNA concentrations of the
marker bands based on their intensities in the el ectrophoretic profiles. 1n aperfect system,
the signal for each allele size present would be detected as an unambiguous spike, located
exactly at the integral molecular size with a height (intensity) that is directly proportional to
the amount of DNA of the particular size. With real data, there are two main problems:

* Band widths. Instead of generating unambiguous singular spikes, the DNA fragments
produce data bands with two-dimensional shapes that have significant widths. One
immediate consequenceisthat it is difficult to determine the exact integral sizefor adata
band, asits center can lie anywhere within the band width;

* Band overlap. Because of the band widths, neighboring marker bands may overlap
into one another, making it difficult to determine the individual areas or heights of the
bands independently. Band overlap is particularly problematic with markers having

9The fluorescent molecul es attached to the MW DNA fragments are different from those attached to the
sample DNA in a multi-dye system. More importantly, the marker DNA is most likely to be chemically
different from the MW standards. For example, arepeat unit of a CA-repeat consists of a cytosine (C) and
an adenine (A), whereas a corresponding unit in the MW may contain a different pair of molecules formed
by any two of the nucleoctides adenine, guanine (G), cytosine , and thymine (T).
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small repeats (e.g. the dinucleotide repeat markers), since the marker bands tend to be
close together.

5.2. Binning by stutter crawling

Traditionally, stutter bands have been considered as noise because they obscure the true

alldebands. Geneticists have attempted to minimize PCR stutter in markers

experimentally, or failing that, avoided using markers with stutter altogether. Surprisingly,

abundant stutter bands can provide a perfect solution for the binning problem, since:

(1) stutter bands, which include the true allele bands, provide the precise resolution
needed for binning alleles;

(2) thereare no discrepancies in the sequence chemistry, since the stutter bands have the
same chemical unitsasthetrue aleles.

We will show, by anovel technique called stutter crawling, how we can use the stutter data

to self-calibrate the marker bands, solving two of the problemsintroduced in Chapter 1:

» Sizing precision: how to calibrate the marker data with the requisite resolution, even
when using low resolution MW standards for size calibration,;

» Binning consistency: how to ensure that the alleles are binned with consistent integral
size labels, minimizing interpolation and rounding errors.
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5.2.1. Algorithm

In the laboratory, one can create a high resolution allelic ladder for amarker. Thisisdone
by pooling together many DNA samples from a population and then size-separating the
pooled mixture on asingle gel lane. To ensure that the resulting allelic ladder hasthe
resolution required for disambiguating any two marker alleles, it is best to pool together
many different DNA samples—thiswill sample adiverse set of dleles. Individua DNA
samples can then be size-separated in gel 1anes adjacent to the alelic ladders. This
procedure permits consistent and unambiguous allele binning19, as shown in Figure 5.2.

Figure5.2. Allele binning by experimentally pooling DNA samples. DNA samples
from the popul ation are pooled together in single lane run-outs (lanes 5 and 9). The
resulting alelic ladders are used for binning individual DNA samples alele bandsin the
neighboring lanes, asis shown here. (Provided by Lillian M. Bloch, Cybergenetics, Inc.)

The basic idea of stutter crawling is to computationally simulate a pooled alélic ladder by
superimposing all the available stutter data, as shown in Figure 5.3. One advantage of
pooling the data computationally is that we can superimpose stutter data from different
lanes, and from different gels— we require only that the data share common experimental
conditions. Using additional knowledge (e.g. the marker's repeat size), we intelligently
"crawl" along the highly redundant superimposed stutter datato compute an alelic ladder
for binning alleles.

Box 5.1 describes the details of our stutter crawling algorithm. We bin the stutter bandsin
abreadth-first fashion across the gel 1anes, instead of naively superimposing the stutter
trailsfrom al gel lanes and ignoring the lane information completely. To improve the
robustness of our stutter crawling algorithm, we use local lane information to verify the

101 fact, this is a common practice in DNA forensics.
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continuity of stutter trails within lanes, before globally crawling from one stutter to the

next.
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Figure 5.3. Computational pooling of stutter data from different gel lanes. The bottom

display pane shows the result of superimposing 32 lanes of electropherogramsfor the
dinucleotide repeat marker D16S511. By pooling alarge number of lanes, we would be
able to obtain a marker-specific alelic ladder that is of the requisite 2 bp resolution.
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Algorithm: STUTTER_CRAWL

Step 1: Align stutter trails.

In each lane, identify potential stutter bands in the marker window. Then, aign
the stutter bands across lanes and gels by indexing the bands relative to their
interpolated MW sizes. Thus, bands do not depend on specific pixel positions.

Step 2: Identify an "anchor" row.

Scanning across al data, identify arow that contains the most stutter bands with
high intensities. In other words, determine aMW size mg that maximizes the

total number of high intensity stutter bandsindexed by a size within the range of
Mg = €. Here, € isaheuristically determined bin width.

Assign Bg = round(mg) as the bin label for all stutter bands along this anchor
row.

Step 3. Stutter crawl from anchor row.

(8 Starting from the anchor row, either crawl upwards (in increasing sizes) or
downwards (in decreasing sizes) to search for a neighboring row of stutter
bands that are all approximately n' bp away, where n is the number of
nucleotidesin arepeat unit of the marker, and n' is the corresponding
interpolated MW size of such aunit. Ideally, n=n". However, because of
the chemical difference between the sizing DNA and the marker DNA, as
well asthe inherent error in real data, n' only approximates n. Initially, we
usen' =n=+0.5.

(b) If aneighboring row with comparable number of stutter bands as those

found in the anchor row is found, we add it to the set of binned aleles and
assign it with the appropriate bin label Bg +n (if it is upwards from the

anchor row) or Bg - n (if it is downwards from the anchor row). We also
update locally the expected size (n') of arepeat unit of the marker with the
difference between the mean sizes of the two consecutive bins.

() Repeat (a) and (b) by crawling from any of the binned alleles. Stop when
no more neighboring stutter rows can be binned.
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Step 4: Iterate.

Repeat steps 2 and 3 until no more segregated stutter rows can be binned.

Box 5.1. STUTTER_CRAWL.: an alele binning algorithm for constructing a high-
resolution marker-specific alelic ladder using all the stutter data.

5.2.2. Example

Figure 5.4 shows the actual gelll image for a dinucleotide repeat marker D16S511. The
MW sizing grid (from Bioventures 20-bp ladder) provides an average sizing resol ution of
20 bp. Thisresolution istoo low for a dinucleotide repeat marker that has alleles only 2 bp
apart. However, our stutter crawling algorithm can exploit the high degree of PCR
stuttering in D16S511, and refine the sizing grid into one with the requisite 2-bp resol ution.
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Figure5.4. The marker image for the TET-labeled dinucleotide D16S511. There are 32
lanes on the gel shown. The "o"sindicate the locations of the MW (Bioventures 20 bp
ladder) sizing grid from the TAM dye plane. The highest resolution provided is 10 bp,

11Thisis the gel that we shipped as the demo gel with the FAST-MAP package (see Chapter 8 for
information about the FAST-MAP genotyping system).
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which istoo low for D16S511, a dinucleotide repeat marker requiring 2-bp sizing
resolution. (Data provided by Gordon Bentley, gene/Networks.)

First, using the MW sizing grid, we align al the detected marker bands. In case we are
aligning stutter bands from different gels, we use relative pixels to index the detected
marker bands to avoid any local dependency on the absolute image pixel vaues. With
sufficient data, aregular pattern emerges when all available lanes are aligned. Figure 5.5
shows high signal intensity marker bands in darker colors, making regular rows of dark
bands visually apparent.
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Figure5.5. Binning of the TET-labeled dinucleotide D16S511 by stutter crawling. The
detected marker bandsin each of the lanes (32 lanes are shown) are aligned together; the
darker bands having higher signal intensity than the lighter ones. The 2-bp ladder resulting
from stutter crawling is shown by the horizontal grid lines, which are indexed by their
integral aldic labelson the right.
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To start stutter crawling on the aligned data, we locate the row with the most dark bands
(i.e., the most visually distinct row) as the anchor row. For example, in Figure 5.5, we
pick the row marked "204" bp. Picking arow that has many high intensity marker bands
ensures that most are actual stutter bands that lie on stutter trails. This choice makesthe
row highly "extensible” — we can extend the ladder ("crawl") to stutter bands along the
many emerging stutter trails. Figure 5.5 shows the 2-bp sizing ladder that we constructed
for the gel using stutter crawling.

To investigate the effect of binning by stutter crawling, we show, in Figure 5.6, both the
pre-binning MW sizing grid and the post-binning grid on the superimposed
electropherogram from the 32 lanes on the gel (shown previoudly in Figure 5.3). With the
original MW sizing grid, the marker bands generaly lie dightly off the grid, incurring
significant rounding errors that may result in inconsistent allele calling. With the refined
grid, the marker bands now "snapped" closely to the grid, minimizing rounding errors that
occur when assigning integral alele sizesto the marker bands. The average rounding error
(or "bin width") for the 32 genotypes was reduced from 0.29 bp with the MW-sizing grid,
to 0.17 bp with the refined grid.

pre-binning:

180 184 183 196 200

post-binning

180 184 188 192 196 200 204 208 212

Figure5.6. Sizing grid refinement. In the top pane, the pre-binning MW sizing grid is
overlaid on the superimposed electropherogram of 32 lanes of D16S511 (see aso Figure
5.3). The marker bands lie dightly off the MW sizing grid. In the bottom pane, the post-
stutter crawling grid isoverlaid. The marker bands now snap tightly to the refined grid.
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5.2.3. Discussion

To reiterate, the possible chemical difference between the MW DNA and the marker DNA
makes the MW sizing grid inadequate for sizing the marker bands— 1 bp of MW DNA
may not correspond exactly to 1 bp of marker DNA. Weillustrate thisin Figure 5.7 by
plotting the calibrated MW sizes of the alele bands of marker D16S511 againgt the actual
alelic sizes, and compute the dope of the resulting line. With the unadjusted pre-binning
MW-sizing grid, the size calibration slope gives avalue of 1.92 bp/repeat for marker
D16S511. This means that when sized with the Bioventures 20-bp MW ladder, each repeat
of D16S511 is actually equivaent to only 1.92 bp of the MW DNA molecules. Onthe
other hand, the size calibration curve adjusted with stutter crawling gives the correct slope
of 2 bp/repeat.
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Figure5.7. The size calibration curves for the dinucleotide D16S511. We plot the

interpolated sizes against the actual allele sizes. With the MW-sizing grid ("pre-binning"),

the slope gives 1.92 bp/repeat, whereas with the marker-adjusted grid (" post-binning), the

sizing slopeis an accurate 2.00 bp/repest.
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We show the relative sizing of the other dinucleotide repeat markersin our example gel in
Table5.1. The MW-cdibrated allele size differences range from 1.84 bp to 1.98 bp per
repeat (instead of 2 bp per repeat). The MW sizing discrepancy is especially pronounced
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on this gel with markersthat have larger allele sizes (e.g. D16S515 and D16S503). The
associated rounding error can lead to a miscall when the alleles of a genotype are far apart.

marker dye allele window MW size per repeat
D165405 FAM 103-161 bp 1.98 bp
D15S165 HEX 176-224 bp 1.96 bp
D16S511 TET 178-238 bp 1.92 bp
D16S503 HEX 290-326 bp 1.88 bp
D16S515 FAM 316-366 bp 1.84 bp

Table5.1. The MW sizing of the 5 markers on the example gel (32 lanes). All the
markers are dinucleotide repeats, with an expected spacing of 2 bp per repeat. The gel was
sized with BVMap from Bioventures (20-bp MW ladder).

5.3. Quantitating DNA concentration

The DNA concentrations at the data bands can be quantitated using either the areas of the
data bands or the heights of the corresponding peaks in the electropherograms. Because of
band overlap, it is often difficult to determine these val ues independently, since
neighboring data bands may overlap one another. Conventional genotyping systems
generally ignore the effects of band overlap atogether, using truncated areas or
densitometric intensities at the band centers as rough estimates of the DNA concentrations.

A common approach for handling band overlap isto fit the data bands parametrically to a
model shape function using least square minimization (Galat, 1989; Ribeiro and
Sutherland, 1991; Vohradsky and Panek, 1993). Each fit isthen subtracted from the
electropherogram, and the processisiterated to fit the remaining data bands. One major
advantage of this method is that each band isfitted locally with the model function using
individually optimized parametric values. This can account for any local variation in the
smearing function. Computationally, the accuracy and efficiency of this method rely
heavily on the model function and the data quality. With awrong model function, the
method may not converge to a satisfactory fit. We must therefore carefully select an
appropriate data band model.
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5.3.1. Data Band Model

After experimenting with avariety of model peak shapes, we found that afunction that has
aGaussian left half and a Runga right half fits gel electrophoretic data best (Richards and
Perlin, 1995). We call it the Gauss-Runga function :

Gauss-Runga data band model function:

where ¢ isthe center of the band, h the height, o the half-width of the Gaussian
left half, and v the scale factor of the Rungaright half. T ranges over the x- (base
pair) coordinate.

Box 5.2. Gauss-Runga: A hybrid model function that is useful for fitting data bands
from gel electrophoresis.

Figure 5.8 shows an example of a Gauss-Runga peak. Assuming that DNA migrates from
right to left, the longer Rungatail on the right models the trailing effect of the DNA asit
migrates through the gel. In our experience, the Gauss-Runga mode! function has been
very useful in fitting data from current DNA sequencers such as the ABI machines, and the
Pharmacia ALF. Of course, adifferent model function will be used to fit the data should a
new sequencer produce data bands with a different shape.
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5.3.2. Algorithm

To fit amarker band with a Gauss-Runga function, there are four parameters to optimize:
the band center c, the height h, the Gaussian half-width o, and the Runga scale factor v .
The band center ¢ can beinitially approximated from the stutter crawling agorithm'salele
bins position. The other three peak parameters (height h, Gaussian half-width o, and
Runga scale factor v) are inter-dependent, and should ideally be determined using global
nonlinear optimization. However, the computational requirement for globally optimizing
three parameters per peak isimpractical for real-time systems. Moreover, such
computation would be overkill, since the data bands generally only overlap their immediate
neighbors. Based on these computational considerations, we adopt a hybrid "locally-
optimize globally-refine" approach for fitting the peaks:
* locally optimize: First, weoptimizeh, o, and v localy;
» globally refine: Then, we apply the global optimizer on h aone, asthe band height is
most sensitive towards band overlap.
We repest this process to incrementally refine the solution by comparing the overal fit with
the observed electrophoretic data. Quantitating each genotyping experiment typically takes
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several seconds. Thisreduction in the computational cost isthree orders of magnitude less
than the original "global" algorithm. With thousands of experiments to quantitate per gel,
this improvement isimportant.

Box 5.3 detailsthe QUANTITATE_BAND algorithm.

Algorithm: QUANTITATE_BAND

Step 1: Estimate an initid fit.

For efficiency and convergence in the least-square minimization process, it is
important to accurately estimate the initial fit.

Using the allele bin positions computed by the STUTTER_CRAWL agorithm,
we search for data bands in the marker window with nontrivial heights.
Starting with the tallest data band detected in the marker window, we determine
theinitial valuesfor the parametersc, h, o, and v by finding a best fit locally
within the local region c-0.5 < x < ¢+0.5, where c is the expected bin center
(from STUTTER_CRAWL) for that allele. When done, we subtract the fitted
band I(c,h ,o,v) from the observed electropherogram, and then iteratively
estimate the parameters for the next tallest band in the marker window until the
parameters for al the data bands are estimated.

Step 2: Localy refine each parameter individually.

(& Bandcentersc: Starting with the most confident (i.e., tallest) band, locally
micro-adjust its center ¢ for the best fit relative to the entire
electropherogram. Repeat (), using the next most confident data band.

(b) Gaussian half widths g: Perform (a), adjusting o instead of c.

(c) Rungascalefactors v: Perform (a), adjusting v instead of c.

(d) Heightsh: Perform (a), adjusting h instead of c.

Step 3. Globally optimize the band heights.

Since h isthe parameter most affected by band overlap, globally optimize al the
heights ssimultaneoudly. For efficiency, it isimportant to use afast nonlinear
optimizing algorithm, such as the L evenberg-Marquardt method (Marquardt,
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1963). Fortunately, because the computationally tedious steps 1 and 2 produce
acloseinitia estimate, the nonlinear optimization of h typically converges

rapidly.

Step 4: Iteratively refine (best-first search).
Repesat Steps 2 and 3 until the sum of squares error of the fit versus the
observed electropherogram is minimized.

Step 5: Output band quantitations.

To index each detected data band, assign it the bin label b (such that the band
center c falswithin the bin widths of allele bin b). Using the height h asthe
measure of DNA concentration2, we output the pairs{<b, h>} to form the
transformation function for band quantitation:

[B: imagedata+ sizing grid - {<b, h>}

Box 5.3. QUANTITATE_BAND: A least-squares minimization band fit using the
Gauss-Runga mode function.

5.3.3. Example

Thisexampleisfrom D20S195, a FAM-labeled dinucleotide repeat marker loaded on a 34-
lane ABI/377 gel, with the GS500 sizing standard in the TAM dye. The marker's
electropherogram from one of the gel'slanesis shown in Figure 5.9.

Thefirst step isto identify the marker bands aong the continuous intensity profilein the
electropherogram. Using the binned sizing grid constructed by the STUTTER_CRAWL
algorithm, we search in the expected locations (shown as vertical grid linesin Figure 5.9)
for potential data peaks. The maximaof the detected peaks (marked "*" in the figure) are
used as the peak centers (parameter c).

12\When band overlap effects are eliminated mathematically, the band heights work as well as band areas as
an estimate of DNA concentration. In fact, with real data, band areas may be less robust than band heights
because they are more sensitive to baseline and discontinuity artifacts in the intensity profile. When using
band area for the DNA concentration in [3, use the closed functional form of /(c,h,o,u) inBox 5.2.
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Figure5.9. D20S195's lane electropherogram gridded by the marker-adjusted sizing
grid. Using the pre-binned grid lines as expectations, we quickly and reliably detect the
marker peaks (marked as "*"'s in the electropherogram).

Starting from the highest peak detected (at 144 bp), we iteratively estimate the initial values
for the other peak parametersfor each of the detected peaks: the peak height h, the
Gaussian half-width g, and the Runga scale factor v , as described in Step 1 of the

QUANTITATE_BAND agorithm. Figure 5.10 shows the sum of the initial fits.

136 138 140 142 144 146 148 150 (bp)

Figure 5.10. Initial sum of fit. The solid line shows theinitial sum of the fit from
iteratively estimating an initial fit for each detected peaksindividualy. The original
electropherogram is plotted with a dashed line (of alighter color) above the fitted profile.
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With theinitial fit, we proceed to Step 2 of QUANTITATE_BAND, where we locally
refine each of the peak parametersin the following order: Gaussian half-widths o, Runga
scale factors v, and peak heights h. Figure 5.11 shows the results of locally refining the
Gaussian half-widths 0. Since this parameter affects only the left halves under our Gauss-
Runga peak model, the resulting sum of fit shows marked improvement on the left sides of
the fitted peaks.

146 148 150 (bp)

Figure5.11. Sum of fit after locally optimizing the Gaussian half-widths (o) of the
detected marker peaks. The resulting sum of fit (dark solid line) shows noticeably closer fit
to the original electropherogram (light dashed line) on the left sides of the marker peaks.
Thisis because under our peak model, only the left halves are Gaussian.

136 138 140 142 144
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Similarly, by locally optimizing the Runga parameters, the resulting sum of fit shows
improvement on the right halves of the marker peaks, as shown in Figure 5.12.

n
r
5
"
it

136 138 140 142 144 146 148 150 (bp)

Figure5.12. Sum of fit after locally optimizing the Runga scale factors (v) of the
detected marker peaks. Thistime, the resulting sum of fit (solid line) shows noticeably
closer fit tothe original electropherogram (dashed line) on the right sides of the marker
peaks, since the right-half of our peak model is defined by the Runga parameter.

Thefinal local refinement step optimizes the peak heights. Asshown in Figure 5.13, the
local optimization process has generated afairly accuratefit.

136 138- 140 142 144 146 143 150(bp)

Figure 5.13. Sum of fit (dark solid line) after locally optimizing the peak heights (h) of
each detected marker peaks. Thisisafairly closefit to the origina electropherogram (light
dashed line) after one round of locally optimizing peak parameters.
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In Step 3 of QUANTITATE_BAND, werefine our initial solution by globally optimizing
all the peak heights simultaneoudly. In principle, global optimization is computation-
intensive. However, the good initia fit from the efficient local optimization steps
significantly reduced the global search effort. Figure 5.14 shows the globally optimized
sum of fit.

136 138 140 142 144 146 145 150 (bp)
Figure 5.14. Sum of fit (dark solid line) after globally optimizing the peak heights.

For the best fit, we iteratively refine (Step 5 of QUANTITATE _BAND) the solution by
repeating the "locally-adjust, globally-optimize" process. In this example, only one
iteration was required. The final sum of fit is shown in the top panein Figure 5.15. For
output, we assign an integral size label to each detected band, and compute the relative
DNA concentrations. For the integral size labels, we use the molecular sizes from stutter
crawling, rounding if necessary. For the DNA concentration, we can use band height or
area under each fitted curve (using the closed functional form of I (c,h ,o,u) in Box 5.2).
We show the final output of the band quantitation step in the bottom pane of Figure 5.15.
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Figure 5.15. Band quantitation output. The top pane shows the final sum of fit (solid
line) and the individual peaks benesth it. The bottom pane shows the output of the band
quantitation step: each darkened bar represents a discretized data band located at an integral
alelesize. The heights of the bars depict the computed relative DNA concentrations.

5.3.4. Discussion: Developing algorithms

In this chapter, we have presented algorithms for solving two main problemsin band
quantitation, namely: stutter crawling, which solvesthe allele binning problem, and gauss-
runga peak fitting, which solves the DNA concentration quantitation problem. Although
these are two straightforward algorithms, the process involved in developing them (as well
as the other algorithms described in this dissertation) was not as straightforward. A typical
development process involved making afew false starts along the way, discovering new
facts about the ever-changing domain, and going through several cycles of agorithm
refinements. We describe, in this section, a brief representative account of how we
developed the band quantitation algorithms.
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Stutter crawling

The conventional approach to the allele binning problem was to first call the alleles using
molecular sizes interpolated from the MW sizing grid, and then bin the two alleles by
assigning appropriate integer size labelsto them (Ghosh et al., 1997). This approach
works when the stutter bands are not treated as part of the data, and therefore do not play a
roleinthe alele caling step.

Following the conventional approach, our initial allele binning solution did not involve
binning the alleles for all the data bands (including the stutter bands) in the quantitation
step. Instead, our initial solution involved quantitating the data bands for DNA
concentrations, and then calling the alleles using various stutter deconvolution algorithms
(to be described in the next chapter). Asit turned out, our allele calling algorithms
performed poorly on real data, even though they had worked very well on simulated
guantitated data (Section 6.4 and Appendix A).

Initially, it appeared that the poor performance was due to the allele calling algorithms, but
our effortsto improve our stutter deconvolution methods were to no avail. On further
investigation, the source of the problem turned out to be in the stutter patterns used by the
deconvolution algorithms for calling aleles. Because we did not pre-bin the stutter bands,
sizing interpolation errors led the computer to learn stutter patterns that were inconsistently
sized. Since the computer relied on these compiled patterns as definitive expectationsin
guiding its search for the correct alleles, our expectation-based alele calling agorithms
were adversely affected by the sizing errors.

The stutter band sizing problem led us to devel op a novel technique (" stutter-crawling™) for
binning stutter data. By pre-binning all data bands during the quantitation step, the
computer was able to learn stutter patterns that are consistently sized, and the power of our
stutter deconvolution algorithmsin alele calling began to unveil. Our venture into stutter
binning also led us to discover an unexpected source for binning errors. in addition to the
rounding errors associated with MW sizing interpolation, allele binning can aso be affected
by a sizing mismatch due to the chemical differences between the MW DNA and the marker
DNA (see Table5.1), when we used MW datato calibrate the marker data.

Our experience with the allele binning problem is representative of the high degree of
interdependency between the various algorithms described in this dissertation. Thereal
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cause of errorsin one algorithm (say, alele calling) may have been due to errorsin another
algorithm (say, band quantitation) that pre-processes the input datato the algorithm. In
solving a complex problem reduced into multiple subproblems, it isimportant to keep a
global perspective of the interdependencies between the various subproblems when
debugging the algorithms.

Thereis another aspect of our allele binning experience that istypical of agorithm
development in an emergent domain such as molecular genetics. While attempting to
improve our agorithmic solutions, we a so discovered new non-algorithmic causes of
errors, such as the chemical factor of the sizing errors. In acomplex problem domain that
is ever-changing with new facts and discoveries, it isimportant for the computer scientist to
be closely involved with the process of discovery in the problem domain, so that the
algorithms designed can be easily adapted to the latest domain changes.

Band quantitation

Our experience in devel oping the gauss-runga peak fitting (QUANTITATE_BAND)
algorithm illustrates the power of agorithmic refinements. In our initial
QUANTITATE_BAND dgorithm, we globally optimize all the band parameters (band
centers ¢, Gaussian half widths g, Runga scale factors v, and peak heights h). Thisnaive
strategy resulted in a huge multidimensional search space consisting of about 50 peak
parameters!3 to be simultaneously and globally optimized . Quantitating just one
genotyping experiment took hours of computation, even on a powerful computer.
Furthermore, despite the intense computation invested, the computer did not adwaysfind a
satisfactory solution, as there were many local minimain the vast search space, entrapping
the computer in its unconstrained global search.

Our first algorithmic refinement was to prune the multidimensional search space, using two
common artificial intelligence (Al) approaches. (1) we greatly restricted the range of values
that the peak parameters can be optimized to, and (2) we heuristically improved on the
accuracy of theinitial solution for the global search. Using these two standard Al
techniques, we were able to reduce the computation time about ten-fold.

13For amarker that exhibits PCR stuttering, there are typically 10-15 data bands per genotyping
experiment. Each data band is defined by 4 peak parameters (c, g, v, and h), resulting in atotal of about
40-60 peak parameters.
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Our next attempt was to significantly reduce the number of dimensions of the quantitation
search space, by effectively reducing the number of peak parameters for global
optimization. Instead of applying the global optimizer to all the peak parameters
simultaneoudly, we optimized each of the peak parameters locally, and then globally refined
only the peak parameter most sensitive to band overlapping artifacts (namely, the peak
heights h). Wethen iteratively refined on the parametric fit to ensure convergence. This
third refinement step resulted in another ten-fold speedup, allowing the computer to
guantitate each genotyping experiment in seconds.

This exercise in agorithm refinement showed how basic search space reduction techniques
in computer science can bring about dramatic improvements in agorithms designed for
solving data-intensive problems. In the case of QUANTITATE_BAND, we were able to
reduce the analysis time at least 100-fold, enabling the computer to analyze a highly
multiplexed gel in acouple of hours.

5.3.5. Discussion: "Plus-A" artifacts

Solving a complex interdisciplinary problem requires collaborative problem solving from
all involved domains. Although it isour thesisto advocate using computational approaches
for solving the microsatel lite genotyping problem, we must not overlook the importance of
not re-solving problems that can be easily eliminated with aternative approaches. In this
section, we describe the "plus-A" artifact problem where there is an experimental solution
that is better than the computational counterpart. Interdisciplinary solutions should be
expected when solving a complex interdisciplinary problem such as the one addressed in
this thesis.

Experimental versus Computational solutions

One advantage of our band quantitating approach, in addition to accounting for band
overlap and providing accurate DNA concentration measures, isthat it allows usto
mathematically excise "plus-A" artifacts from the data. During the PCR amplification of
microsatellite markers, polymerases sometimes add atrailing adenosine baseto a
synthesized DNA strand. This causesthe "plus-A" artifact, where not one, but two bands
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appear for every band!4. The combination of "plus-A" and "PCR stutter" artifacts can
produce a pattern of many bands that are separated by only one base pair, and since the
artifact can be highly variable from run to run, it can be unclear which isthe correct alele.

To computationally excise the "plus-A" bands from the data, we need to quantitate each
marker band individually. Thisisdonein our band quantitation, where we quantitate each
marker band with an individualized Gauss-Runga peak model. However, thereis still the
problem of determining which marker bands to excise from the data. We must make
assumptions about the distinguishing characteristics of the "plus-A" bands, such as
whether the "plus A" bands are of lower intensity than the actual bands, or whether the
"plus A" bands are those of odd-numbered sizes (say).

A more robust approach isto experimentally remove the "plus-A" artifact from the data,
and restore the two base pair separation. This can be done by forcing the polymerase to
suppress "plus-A"s, or preferentially enhance "plus-A"s (Magnuson et al., 1996). Since
new, simple experimental procedures effectively remove the "plus-A" s (using the "G-
clamping” or "PIG-tailing" techniques), most genotyping centers now generate clean "plus-
A"-free genotyping data. In the case of "plus A" artifact reduction, the experimental
approach is more elegant than the computational solution. Nevertheless, band quantitation
istill essential for removing the band overlap effects and for quantitating marker bands
with accurate relative DNA concentrations. Such exquisite band quantitation is used by the
deconvol ution genotyping algorithms that we describe in the next chapter, and also for
other non-genotyping applications such as computer-based differential display analysis
(Jones et al., 1997; Liang and Pardee, 1992; Luehrsen et al., 1997).

140ur example marker D20S195 has a small degree of "plus-A", producing small "plus-A" peaksin
between the major evenly-spaced ones (see Figure 5.9).
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6. Allele Determination

In this chapter, we address the final step in microsatellite genotyping: calling the aleles

from quantitated electrophoretic data. Problemsin allele determination include:

* PCR duttering: how to eliminate the shadow bands in the data to recover the underlying
truedlees?

» Relative amplification: how to account for unequal amplification of allelesin the
genotypes?

» Pattern specificity: how to acquire, maintain, and apply marker- and allele-specific
patternsintelligently and efficiently?

These problems are PCR limitations that cannot be eliminated experimentally. Therefore,
we will show how to resolve them computationally. Our final transformation function for
the genotyping problemiis:

y: quantitated data with stutter — genotypes

6.1. Convolution Model

PCR is analogous to an amplifier in conventional signal processing. With perfect fidelity,
the amplification of asingle alele is expected to produce only asingle band on agel. With
an imperfect amplifier, asisin the case of PCR, a distortion response is introduced which
causes an alele to generate multiple bands instead. In a heterozygotic genotype, if the two
alleles are close to each other with respect to their molecular sizes, their trailing shadows
overlap and create a convoluted band pattern when size-separated on an electrophoretic gel
(Figure 6.1).

observed bands

alele dlele from genotype
[ | [ |
[ | [ [ |
- [ ] [
— [ — [ |
—_— — [

Figure 6.1. Overlapping of PCR stutter bands. Stutter patterns from the allelesin a
genotype combine together to form a convoluted band pattern.
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Under fixed PCR conditions (including enzyme, cycle times, number of cycles, template
and primer concentrations, and buffers), the stutter pattern of each alele of agiven marker
isknown to be reproducible (Perlin et al., 1994). This means that we can handle PCR
stuttering in microsatellite markers by applying standard techniques from electronic signal
processing (Papoulis, 1977) for modeling reproducible responses of an amplifier. Using
signal processing techniques, we can accurately model PCR stuttering as a convol ution:

Convolution model for PCR stuttering:

y = AX

A models the marker's distortion responses (i.e. stutter patterns), x
represents the underlying genotype, and y denotes the predicted convoluted
stutter pattern that would be observed on the gel.

Stutter patterns from a single marker typicaly vary from one allele to another, as shownin
Figure6.2. Usually, alleleswith bigger sizes produce flatter and longer stutter trails than
aleleswith smaller sizes (for example, compare the stutter patterns for the 155 bp allele
with the 135 bp allelein Figure 6.2)15. Conventiona (linear shift-invariant) convolution
model uses a single distortion vector — this does not adequately model PCR stutter.
Instead, we use anon shift-invariant convolution with one distortion vector for each alele.
To represent al the possible stutter patternsin a marker, we write down the stutter pattern
for each dlelein amatrix A. Figure 6.3 shows an example of an actual stutter matrix A for
the dinucleotide repeat marker D22S283. Each column in A records the specific stutter
pattern of one alele for the marker.

150ne possible explanation for this stutter variation is that the polymerase tend to "slip" more with the
bigger alleles during PCR, creating more stutter bands than with the smaller aleles.
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Figure 6.2. Stutter patterns for alleles 135 bp, 145 bp, and 155 bp for TET-labeled

g
marker D22S283. D22S283 is a dinucleotide repeat marker with alleles ranging from
13510 165 bp. The stutter patterns shown were acquired from an ABI 377 gel running

16 lanes of marker datafor D225283.
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Figure 6.3. The stutter matrix A for marker D22S283 acquired from an ABI 377 gel
running 16 lanes of marker data. In particular, note the gradual increase in stutter length
from the smaller alleles to the bigger ones.

In our convolution model, the true genotype is represented by a column vector x indexed
by the possible marker alleles. Each row entry in x records the number of copies of a
particular allelethat is present in the genotype. For a heterozygote, x will be a (0,1)-vector
with two 1sfor the two distinct allelesin the genotype. For a homozygote, x will be a
(0,2)-vector with asingle entry in the vector that has the value 2.

When the PCR product of a DNA sampleis size separated on an el ectrophoretic gel, the
stutter bands from each allele in the genotype combine additively (as shown in Figure 6.1
previoudy). Thisconvolution process is mathematically equivaent to asimple matrix-
vector multiplication:

y = AX
wherey is the response vector in our convolution model that predicts the relative DNA
concentrations in the resulting PCR product. In other words, given the true genotype X,
the vector y predicts the relative signal intensities of the shadow bands that would be
observed onthe gel (see Figure 6.4).
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Figure 6.4. Convolution of stutter patterns. The action of the stutter matrix A against
two alleles (encoded as "1"sin the genotype vector X) additively superimposes the
corresponding PCR amplifier patterns, predicting the data vector data vector y observed on
the gel.

6.2. Genotyping Microsatellites by Deconvolution (GMBD)

Our task in genotyping is to recover the genotype vector x from the observed gel datay.
Let us assume for now that we a so have access to a stutter matrix A for each microsatellite
marker to be genotyped. Under our convolution model, we can use deconvolution to
systematically remove the PCR stutter to recover the true alleles for each genotyping
experiment (Figure 6.5). Mathematically, this amounts to a matrix-vector "left division" by
the matrix A:

x= Aly
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Here, |€eft division (the MATLAB26 "\" operation) means solving for x in the least squares
sense for the over- or under-determined system of equations Ax = y. It can be roughly
interpreted as ALy,

genotype vector X

0 1 1 0

observed
band patterns
y output
[
[ mm
[ ] = BE B
[ input -— ams BN R
[ ] — s Em R
|| —_— — s
I _— e—
— —— = | stutter matrix
A

Figure 6.5. The GMBD procedure. The stutter matrix A is divided by the observed
(input) data vector y to compute a best-fit (output) genotype vector x.

The stutter matrix A for amarker can be determined from a set of known reference
(column) genotype vectors X and the corresponding set of experimentally observed
(column) data vectors'Y, by asimple extension of our origina PCR stutter convolution
model y = Ax to the matrix equation:

Y = AX

whereY, A, and X are all matrices. The stutter pattern matrix A can then be computed
using matrix "right division" of the (over or under-determined) linear system:

A=YIX

16MATLAB is the programming language in which we implemented our automated microsatellite
genotyping system FAST-MAP (see Chapter 8).
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With the MATLAB "/" operator (matrix right division), Y/X is roughly interpreted as YX-1.
Since the stutter patterns are only reproducible under identical experimental conditions, the
stutter matrix A must be re-computed should the marker's PCR conditions be changed.

6.3. Relative Amplification

In addition to the stutter artifact, there is a second complication associated with
microsatellite PCR amplification. During PCR, the different fragments present in aDNA
sample compete with one another for amplification by the polymerase enzyme. An dlele of
asmall molecular size tends to be amplified more efficiently than an alele of alarger size,
since there are relatively fewer nucleotides that to duplicate. 1n aheterozygotic genotype,
thisresultsin arelative amplification effect between the two aleles (including their stutter
bands). Generally, the wider the two true aleles are apart, the higher is the degree of
relative amplification between them, asillustrated in Figure 6.6.

1500

750

0 ] 1
131 135 139
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0 i ; i i i i i
131 135 139 143 147 151 155 159 163 (hp)

Figure 6.6. Relative amplification of widely separated aleles. Shown are two examples
from marker D22S283. Shown here are two genotyping experiments of D22S283 from the
samegel. Inthetop pane, thetrue alleles are 139 bp and 151 bp. The stutter bands for the
aleleat 151 bp are dightly less amplified than those for the 139 bp allele. In the bottom
pane, the true aleles are even further apart, at 139 bp and 159 bp. The corresponding
relative amplification effect between the allelesis even more pronounced.

To model the relative amplification effect in our convolution model, we generalize the

genotype vector x from a(0,1)-vector to area-valued vector. Thisextension enablesthe
model to account for genotypes with alleles that amplify in anon 1:1 ratio. Instead of being
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merely a Boolean vector indicating the presence or absence of particular aleles, the
genotype vector x is now aweighted vector that records the alleles' relative amplifications.
The vector sum for x should still be normalized to the total number of aleles present in the
genotype. This meansthat for diploids, x would sum to 2.

6.4. Deconvolution Methods

For solving the matrix division problem in microsatellite genotyping, we have adapted
various deconvol ution methods from diverse areas, including signal processing, matrix
computation, and artificial intelligence. The agorithms can be organized into two main
categories:

() Linear shift-invariant algorithmsthat use a single size-independent PCR stutter pattern
vector afor all alleles.

* POLY: Polynomial division isused to divide the stutter vector a by the data vector y in
order to estimate the genotype vector X.

* FFT: TheFast Fourier Transform is used to deconvolve the data vector y with the
stutter vector a to recover the genotype vector x. Thisisdone by dividing the FFT of y
by the FFT of a, and then recovering the deconvolved vector x by an inverse FFT.

*  WIENER: The FFT method is used with additional Wiener filtering (Presset al.,
1992) to filter out possible noise from the observed data. A noisefilter @, derived
directly from the data, isused. Here, we assume that noise arises from low-power
interference and does not exceed 15% of the observed data,

|P(f)] = min(sp, 0.155y),
where sp and S are the minimum and maximum values of the data's power spectrum
respectively.

(i) Allele-dependent algorithms that use a marker's size-dependent PCR stutter patterns,
recorded in a matrix A.

 GAUSS: Gaussian dimination. Starting from the rightmost band (largest allele size),
successively subtract off each alel€'s stutter pattern.

* SVD: Singular value decomposition. Use SVD to essentially invert the stutter matrix A
and apply the inverse matrix to the data vector y to recover the genotype vector x.

ENUM: Enumeration. Directly enumerate (by exhaustive search) all feasible genotype
vectors x to find the one having the least error between observed data vector y and
predicted pattern vector Ax.
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The linear shift-invariant algorithms POLY, FFT, and WIENER are conventional signal-
processing algorithms that assume (usually incorrectly) that the stutter pattern does not vary
with alele size. The alele-dependent algorithms GAUSS, SVD, and ENUM, on the other
hand, are specifically designed to account for stutter patterns that vary with allele size.
Thus, we would expect the algorithms from the latter category to outperform those from the
former category in analyzing actual data.

A comparative study

To decide on the deconvol ution methods to use for GMBD in our genotyping system, we
conducted a preliminary comparative study (Perlin et al., 1995) on all six algorithmswith
simulated data (Appendix A). Asameasure of the effectiveness of an algorithmin
removing the PCR stutter artifacts, we compared the methods based on the extent with
which they re-center the allele distribution onto the correct genotype (see Figure 6.6). Note
that we did not include relative amplification in our 1995 simulations, which focused on
pure stutter artifacts.

09

0s

0.7

< 06
=
=05
4
=04 =
o
¢ 03

02

01

0 t } t }

- ™ M
+ < < <

n r~ o
T < <

— -

133
135
137
139
151
153
155
157

fragment size (bp)
Figure 6.6. Effect of deconvolution in removing PCR stutter artifact for alleles differing
by 2 bp. Shown are the allele distribution of the uncorrected datay without deconvolution
(blackened bars), and the distribution of the corrected data x with deconvolution
(unblackened bars). The alele distributions are normalized to sumto 2, i.e., the number of
alleles present. Note that the distribution x corrected by deconvolution (in this case, SVD)
islargely centered on the correct two aleles at 151 bp and 153 bp. The data shown isfrom
microsatellite marker D22S283, size separated in one lane of a 34-lane ABI/377 gel.
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Table 6.1 shows the results of our comparative study. It confirmsthat allele-dependent
algorithms are more effective than allele-independent deconvol ution algorithms, especially
in the presence of severe stutter. In particular, ENUM performed perfectly in our study,
sinceit always re-centers the allele mass to exactly two (correct) alleles. SVD and GAUSS
were also highly effectivein re-centering the allele distribution. Since SVD and GAUSS
(unlike ENUM) do not rely on any assumptions on the number of discrete aleles present in
the PCR mixture, they are also useful for detecting abnormalities or contamination in the
DNA samples. For example, if there had been three alleles in the genotype, SVD would
probably have detected this by returning a deconvolved vector x having three non-zero
entries, each with an allele mass of approximately 0.67 units.

Noise
0% 10%
Moderate stutter (5 bands):
Input y 0.635 0.635
POLY 0.991 0.950
FFT 0.990 0.948
WIENER 0.959 0.920
GAUSS 1.000 0.981
SVD 1.000 0.955
ENUM 1.000 1.000
Severe stutter (10 bands):
Input y 0.468 0.469
POLY 0.977 0.921
FFT 0.977 0.919
WIENER 0.896 0.852
GAUSS 1.000 0.979
SVD 1.000 0.938
ENUM 1.000 1.000

Table6.1. The re-centering effects, measured as the fraction of allele distribution re-
centered on the correct genotype, for the six deconvolution algorithms on simulated data.
The ssimulation studies were conducted with 300 simulated genotypes of closely spaced
allelesthat were separated by 0 to 3 dinucleotide repeat units.
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6.5. Processes in GMBD

The transformation in aldle determination is summarized as:

y: quantitated stutter data — Genotypes

To perform this transformation, we need information about the stutter patterns as well as
the relative amplifications of the microsatellite marker. This knowledge is acquired from
prior data analysis of the marker, and is organized in a systematic marker library for
efficient computer retrieval and maintenance. The GMBD transformation y therefore

involves two consecutive processes.

» Marker library construction
y;: stutter data + [known genotypes] — pattern matrix A + ratio table p

»  Genotyping by deconvolution
Y, Stutter data + pattern matrix A + ratio table p — genotypes

Before we proceed to describe the dgorithms for y; and vy, in detail, to better understand

the processesinvolved in GMBD, we first examine an actual program trace of our
genotyping system on amarker. In the program trace below, the gel "3/19/97_rp_Gel
isa34-well ABI/377 gel, 16 lanes of which (lanes 11 through 26) were loaded with marker
panel "panel3 ". Out of the 11 markersin the panel, we focus on marker "D22S283", a
dinucleotide repeat marker with an alele window of 135 to 165 bp (in fact, D22S283 has
been the example marker in this chapter). Hereisthe trace of our genotyping system
analyzing D22S283 on a Macintosh PowerBook 3400c:

Marker D22S283 (5 of 11 markers in panel3): [22-Nov-97 17:17:43]

Scanning 3/19/97_rp_Gel for marker windows.................. Done.
Scanning 3/19/97_rp_Gel for marker bands.................... Done.
Binning marker bands.............cccocoviiiiiie e Done.

.a.b.a.b..Done.

Quantitating D225283 3/19/97 rp_Gel lane 11....

Quantitating D22S283 3/19/97_rp_Gel lane 12.....a.b..Done.
Quantitating D22S283 3/19/97_rp_Gel lane 13.....a.b.a.b.a.b..Done.
Quantitating D22S283 3/19/97_rp_Gel lane 14.....a.b..Done.

Quantitating D22S283 3/19/97_rp_Gel lane 15....
Quantitating D22S283 3/19/97 rp_Gel lane 16.....
Quantitating D225283 3/19/97 rp_Gel lane 17....
Quantitating D22S283 3/19/97_rp_Gel lane 18....
Quantitating D22S283 3/19/97_rp_Gel lane 19....
Quantitating D22S283 3/19/97_rp_Gel lane 20.....
Quantitating D22S5283 3/19/97_rp_Gel lane 21....
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.a.b.a.b.a.b..Done.

a.b.a.b..Done.

.a.b.a.b..Done.
.a.b.a.b.a.b..Done.
.a.b.a.b..Done.

a.b..Done.

.a.b..Done.



Quantitating D225283 3/19/97_rp_Gel lane 22....
Quantitating D22S283 3/19/97_rp_Gel lane 23....
Quantitating D22S283 3/19/97_rp_Gel lane 24....
Quantitating D22S283 3/19/97_rp_Gel lane 25....
Quantitating D22S283 3/19/97_rp_Gel lane 26....

Estimating genotypes

.a.b..Done.

Using the following 14 estimated genotypes to construct initial

stutter library for D22S283:
3/19/97_rp_Gel Lane 11 :
3/19/97_rp_Gel Lane 12 :
3/19/97_rp_Gel Lane 13 :
3/19/97_rp_Gel Lane 14 :
3/19/97_rp_Gel Lane 15:
3/19/97 rp_Gel Lane 17 :
3/19/97_rp_Gel Lane 18 :
3/19/97_rp_Gel Lane 19 :
3/19/97_rp_Gel Lane 20 :
3/19/97_rp_Gel Lane 21 :
3/19/97_rp_Gel Lane 22 :
3/19/97_rp_Gel Lane 23 :
3/19/97_rp_Gel Lane 25 :
3/19/97_rp_Gel Lane 26 :

<151, 159> (qual =
<145, 151> (qual =
<145, 159> (qual =
<151, 151> (qual =
<145, 159> (qual =
<139, 151> (qual =
<151, 153> (qual =
<147, 151> (qual =
<151, 153> (qual =
<139, 139> (qual =
<149, 153> (qual =
<145, 153> (qual =
<145, 149> (qual =

<143, 153> (qual =

0.80)
0.81)
0.83)
0.93)
0.76)
0.85)
0.82)
0.85)
0.85)
0.85)
0.80)
0.84)
0.89)
0.79)

.a.b.a.b..Done.

.a.b.a.b..Done.
.a.b.a.b..Done.
.a.b.a.b..Done.

Bootstrapping initial library A usmg estlmated
genotypes.............: .............................................

Genotyping D22S283 3/19/97_rp_Gel lane 11....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 12....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 13....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 14....Done.
Genotyping D225283 3/19/97 rp_Gel lane 15....Done.
Genotyping D225283 3/19/97 rp_Gel lane 16....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 17....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 18....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 19....Done.
Genotyping D225283 3/19/97_rp_Gel lane 20....Done.
Genotyping D225283 3/19/97 rp_Gel lane 21....Done.
Genotyping D225283 3/19/97 _rp_Gel lane 22....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 23....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 24....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 25....Done.
Genotyping D225283 3/19/97_rp_Gel lane 26....Done.
Updating stutter library....... Done.

Done processing marker D22S283 at 22-Nov-97 17:51:45.

First, the computer scans the gel for regions ("marker windows") containing D22S283's
genotyping data for analysis (" Scanning for marker windows... ). Todo so, the
computer uses the MW sizing grid information and marker information such asthe
expected alele size window, aswell as gel information such as the layout of the loaded
lanes. After the computer has located marker windows in each lane's electropherogram,
the computer scans for marker bands in the data windows ("Scanning for marker

bands.... "). The marker bands are then aligned and binned using our
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STUTTER_CRAWL agorithm to refine the MW sizing grid to the marker's actual alelic
ladder ("Binning marker bands.... ").

Using the binned allelic ladder as a sizing reference, the computer then quantitates the
marker bandsin each of the genotyping experiment (" Quantitating lane

11....a.b.ab.. ") with the QUANTITATE_BAND agorithm. To obtain an
quantitated fit that is as close to the actual data bands as possible, the computer iteratively
refinesits data peak parameters (for the Gauss-Runga peak model) using least-square
methods. Each"a.b " pair in the program trace indicates one such iteration. Asshownin
the example, only two or so iterations are generally needed to reach convergence for clean
data.

Since we are analyzing marker D22S283 for the first time, the computer does not have any
previous marker library that it can use for allele determination. Therefore, the computer
bootstraps by estimating the alleles ("Estimating genotypes.... "), and then constructs
amarker library from the estimated genotypes ("Bootstrapping initial

library.... "). Toobtain aninitial marker library that is as accurate as possible, the
compulter iteratively refines the marker library constructed during bootstrapping process.
Each refining iteration isindicated with acolon ":" in the program trace.

After constructing a marker library for D22S283, the computer then proceedsto the allele
determination step (" Genotyping lane 11.... ") using the marker library. When the
computer has completed calling the alleles on al the genotyping experiments, it learns from
the data by refining D22S283's marker library using the final alele calls ("Updating

stutter library.... "). The computer automatically augmentsitsinternal knowledge
base with new stutter pattern and relative amplification information from the data. Inthis
way, the computer improves its performance over time as it analyzes more data for marker
D22S283.

6.6. Algorithms. Marker Library Construction
In this section, we describe the algorithms for constructing marker libraries. A marker
library stores the relevant characteristics of the marker's expected allele stutter patterns that

the computer can use in genotyping by deconvolution. The library consists of two
components. A, astutter pattern matrix, and p, arelative amplification ratio table.
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Preferably, both A and p should be determined with known reference genotypes. If not
(asis often the case), they can be compiled from a bootstrapping technique.

As previoudly described, we construct the stutter pattern matrix A using matrix "right
divison" of the linear system:

A=YIX

where Y contains quantitated stutter data and X contains known or computed genotypes.
Both X and Y are matrices, with each column representing respectively the genotype or the
data of a genotyping experiment. The relative amplification ratios are computed from the
guantitated data and their known genotypes, using the expected stutter patternsin A.

Box 6.1 describes the overall algorithm for constructing a marker library. Details on the
actual structures of the marker libraries used in our genotyping system are described in
Appendix C.

Algorithm: CONSTRUCT_LIBRARY

Step 1: Construct stutter matrix A.

Case 1: If both the stutter data Y and the reference genotypes X are given,
construct A using algorithm CONSTRUCT _A.

Case 2: If the reference genotypes X are not available, construct A on only the
stutter data Y using algorithm BOOTSTRAP_A.

Step 2: Construct ratio table p.

Construct the amplification ratio table p using agorithm CONSTRUCT _p.

Box 6.1. CONSTRUCT_LIBRARY: An algorithm for constructing a marker library.
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6.6.1. Stutter matrix construction

The stutter matrix A can be constructed from the quantitated data Y and the associated
known genotypes X (weighted by their relative amplifications) by solving the under- or
over-determined linear system Y = AX. If X does not cover al the possible marker
alleles, wefill in the stutter patterns for the absentee alleles with copies of stutter patterns
from the nearest alleles. As more data become available, we refine the stutter matrix by
replacing the copied patterns with the actual stutter patterns from the new data (using the
REFINE_A agorithm).

Box 6.2 below describesthe CONSTRUCT _A agorithm for constructing a stutter matrix
A from agiven set of quantitated stutter data Y and their corresponding genotypes X.

Algorithm: CONSTRUCT_A

Step 1: Normalize columnsin Xand Y.

Normalize the columnsin X and Y such that every column sums to the expected
number of allelesin the genotype represented by that column. Usually,
individual reference genotypes are used!’, so the column sums are 2 (for
diploids).

Step 2: Numerically compute A.
Given Y and X, compute an initial A using matrix "division”:
A = YIX

The symbol "/" represents solving the linear system AX=Y with numerical
least-square algorithms (e.g. Gaussian €limination, Cholesky factorization, or
QR-factorization (Press et al., 1992)). Many numerical programming systems
support this operation as part of the language. For example, in Matlab, we

simply type A = Y/X.

17n principle, we can aso used pooled genotype for constructing A. That is, we can pool together
individual DNA samplesin a single genotyping experiment, as long as we normalize the corresponding
columnsin X and Y to the appropriate allele sums.
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Step 3: Normalize columnsin A.

Depending on the algorithms used in the matrix division, the resulting matrix A
may contain negative entries. Zero out any non-positive entriesin the stutter
matrix, and normalize each column in Ato sum to 1, since each column
contains the stutter pattern for asingle alele.

For each row i in X that has no non-zero entries, zero out the entirei-th column
of matrix A, if itisnot already all zeros.

Step 4: Fill in columnsin A for absentee alleles.

For each all-zero column in A, replace with acopy of the stutter pattern from the
closest non-zero column.

Box 6.2. CONSTRUCT_A: An agorithm for constructing a stutter pattern matrix from
reference genotype data.

Bootstrapping

The reference genotypes X are often not available for stutter matrix construction when we
first genotype amarker (either a marker from anew marker panel or an old marker under a
new experimental condition). In such situations, we must bootstrap the construction of the
marker library without any reference genotypes.

First, we generate approximate reference genotypes from the data by re-using an old stutter
matrix from asimilar marker (or simply ageneric stutter matrix) and use our deconvolution
methods to construct an initial X. Then, using X on Y, we construct an estimated stutter
matrix A. Aswith al our algorithms, asafina step, weiteratively refine A by minimizing
the least-square error between the predicted patterns AX and the observed dataY. Box 6.4
below describes this bootstrapping process in greater detail.
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Algorithm: BOOTSTRAP_A

Step 1: Construct an initia A.

First, either obtain aninitial A from apreviously compiled marker that is ssmilar
to the new marker, or construct A by filling each column with a generic stutter
pattern.

Step 2: Construct an initial X by SVD.

Given Aand Y (normalized), compute a corresponding X using the SVD
deconvolution method. Normalize the entriesin X so that each column contains
at most two non-zero entries, and that each column sumsto 2.

Step 3: Iteratively refine A.

Using agorithm REFINE_A, refine A iteratively.

Box 6.3. BOOTSTRAP_A: An algorithm for constructing a stutter matrix without using
reference genotypes.

Refining

Some of the possible alleles for amarker may not be included in theinitial reference
genotypes for constructing the stutter matrix. Then, the computer estimates the stutter
patterns for these alleles by using the stutter patterns from the nearest reference alleles.
When data for these aleles later become available, the computer should automatically
update its stutter matrix A with the actual stutter patterns. This update allows the computer
to learn and improve over time and data, as well as gracefully adjust to changesin the
marker's behavior (by biasing towards the more recent data, if necessary).

Box 6.5 shows our algorithm for refining the stutter matrix A from new datain X and Y.
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Algorithm: REFINE_A

Step 1: Construct anew A .

Using algorithm CONSTRUCT _A, construct a new stutter matrix Aney from X and
Y.

Step 2: Compare Anew against A.

(@ Using agorithm SYD_DECONVOLVE on Apey and Y, compute new
genotypes in Xpew-

(b) Compute errpan, the total sum of squares error between the matrix product
AnenXnew and the observed data .

Step 3: Iteratively refine.

If errnewislessthan the original sum of squares error between AX and Y, replace A
with Anew , and repeat Steps 1 and 2.

Box 6.4. REFINE_A: An algorithm for incrementally improving the stutter matrix A.

6.6.2. Relative amplification ratio table construction

We define the relative amplification ratio for a genotype asthe ratio of the total DNA
(including stutter bands) from the smaller alele to the total DNA from the larger dlele. In
other words, the relative amplification of a genotype isthe ratio in aweighted genotype
vector X between the vector vaue of the smaller alleleto that of the larger allele. We storea
range of possible amplification ratios for each genotype in a marker's amplification ratio
table, since the relative amplification ratios vary dightly from one genotyping experiment to
another (even if they have the same genotype).

To compute the entriesin the relative amplification table p, we use the same reference
genotype data X and Y used for constructing the stutter pattern matrix A. For each
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genotype in X, we compute the best relative amplification ratio for the allele pair that
minimizes the |east-square error between the observed data vector in Y and the expected
stutter pattern re-constructed in AX.

Since the reference data typically does not include all possible marker aleles, thereis
usually not reference datafor every possible pair of alleles. To compute the relative
amplification ratios, we could fill in the missing amplification ratios either by interpolation
or using the relative amplification ratio values from the nearest reference allele pairs, aswas
done for the absentee alleles in stutter matrix A. However, we have observed that
amplification ratios depend primarily on alele size difference rather than actua allelic
values. We therefore make the following assumption:

p (a1, @) Lp (b1, bp) where[ag -az | = [b1- byl

This simplifying assumption allows us to compress p from an O(n?) table for an n-alele

marker to an O(n) table indexed by the alelic differences. Figure 6.7 shows an example of
acompressed amplification ratio table for D22S283. With the simplified p, there are now

only O(n) relative amplification ratios that have to be determined. Moreover, any missing
values can easily belinearly interpolated (a partialy-filled two-dimensional table p ismore
complex to interpolate). Although we could expand p out to its full-blown n-entry table
as more data become available, our experience has been that the compressed version of pis

adequate for GMBD computations.

In Box 6.5, we describe CONSTRUCT _p , our agorithm for computing the relative
amplification ratios from the quantitated stutter data Y, the reference genotypes X, and the
stutter matrix A .
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Figure 6.7. Relative amplification ratio table. Shown isthe compressed form of
the relative amplification ratio table for TET-labeled dinucleotide marker D22S283
(allele range 135-165 bp), as compiled from an ABI 377 gel running 16 lanes of
marker data. The vertical error bars show an expected range of relative
amplification ratios for each allele pair, while the plotted line shows the mean
amplification ratios. (The stutter matrix for D22S283 was shown in Figure 6.3.)
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Algorithm: CONSTRUCT_p

Step 1: Sort the known genotypes.

Group the columnsin X according to their alele size differences.

Step 2: Compute amplification ratios for each observed alele size difference.

(& For each columnin X that has (non-zero) alele size difference d, compute a
new genotype vector (say, X ). Computex; using the SVD deconvolution
method with stutter matrix A and the data vector y; from the corresponding
columnin. Theratio of the two genotype entriesin x; givestherelative
amplification ratio, uj , for this reference genotype.

(b) Minimally adjust each v; so that the predicted vector A adjusted by v has
least sum of squares error with the observed data vector y; .

(c) Let ugsbethe mean of the computed uj 's, and gsthe corresponding standard
deviation. Set p(d) ~ [Us — O3 Uz + OF].
Step 3: Interpolate amplification ratios for the unobserved alele size differences.

Fill any empty entriesin p using spline interpolation.

Box 6.5. CONSTRUCT _p: An algorithm for constructing a relative amplification ratio
table for amarker from its quantitated stutter data Y, reference genotypes X, and the stutter
matrix A.
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6.6.3. Example

L et us step through the marker library construction for the marker D22S283. We showed
the actual program trace for the entire alele determination process for D22S283 in Section
6.5. Here, we focus on the construction of a marker library for D22S283. For simplicity,
we use asmaller example with only 8 reference lanes.

To construct amarker library for D22S283, we need both the quantitated data Y and the
corresponding reference genotypes X. First, we write down the band quantitations from
each lane's el ectropherogram in the columns of data matrix Y. Each column of Yis
normalized to sum to 2, the expected number of aleles present in the genotype:

Datamatrix Y
(bp | lane1l lanel2 lanel3 laneld lanel5 lanel6 lanel7 lanel8
131 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0.0158 0 0
135 0 0 0 0 0.01 0.1010 0 0
137 0 0.0235 0 0 0.027 0.3271 0 0
139 0 0.0499 0.0109 0 0.0477 0.6166 0 0.0331
141 | 0.0263  0.1428 0.1317 0 0.1319 0 0.0205 0.0531

143 | 0.0485 0.3436 0.3781 0.0627 0.3341 0.056 0.0660 0.1413
145 | 0.1044 0.5710 0.6112 0.1143 0.5314 0.0523 0.1004 0.3208
147 | 0.1794 0.1986 0 0.2822 0.0726 0.1110 0.2141 0.5948
149 | 0.3399 0.2634 0.037 0.6029 0.0532 0.2586 0.4001 0.3037
151 | 0.5230 0.3762 0.0451 0.8264 0.0686 0.3757 0.6807 0.3986

153 0 0 0.0594 0.1115 0.0836 0.0859 0.4235 0.0978
155 | 0.1434 0.0310 0.1058 0 0.1266 0 0.0947 0.0568
157 | 0.2417 0 0.2411 0 0.206 0 0 0
159 | 0.3337 0 0.3273 0 0.2581 0 0 0
161 | 0.0597 0 0.0524 0 0.0492 0 0 0
total 2 2 2 2 2 2 2 2

To construct the stutter matrix A, we aso need a corresponding reference genotype matrix
X. Thisisthefirst time anayzing marker D22S283, so there are no previously analyzed
genotypes available, nor do we know the actual genotypesfor Y. Thus, we bootstrap by
using GMBD on the quantitated data with ageneric marker library to compute a set of
estimated genotypesfor Y astheinitial X. Since D22S283 is a dinucleotide repeat marker,
we use atypical stutter matrix A containing a generic stutter pattern (for dinucleotide repeat
markers) of three data bands with relative DNA concentrations 0.571, 0.286, and 0.143, as
shown in Figure 6.8. In Figure 6.9, we show the default stutter matrix A and the default
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relative amplification ratio table p for bootstrapping dinucleotide marker library
construction.

o o
B (o]

relative [DNA]
o
N

a-4 a-2 a
alelesize (bp)
Figure 6.8. A generic stutter pattern for any alele a of a dinucleotide repeat marker.

This generic stutter pattern is used in bootstrapping dinucleotide marker library
construction.
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Figure 6.9. A default dinucleotide repeat marker library for bootstrapping. Shown on
the left is the default stutter matrix A, and on the right is the default relative amplification
ratio table (compressed form) p.

Using the default dinucleotide marker library A and p on the quantitated data matrix Y, we
estimate the initial reference genotypes X using the SV D agorithm (described in the next
section). Hereisaprogram trace:
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Estimating genotypes..........cooccvvivieveveeeee s
Using the following 8 estimated genotypes to construct initial

stutter library for d22s283:

3/19/97 rp_Gel Lane 11 :
3/19/97 _rp_Gel Lane 12 :
3/19/97 rp_Gel Lane 13 :
3/19/97 rp_Gel Lane 14 :
3/19/97 rp_Gel Lane 15 :
3/19/97 _rp_Gel Lane 17 :
3/19/97 rp_Gel Lane 18 :
3/19/97 _rp_Gel Lane 19 :

<151, 159> (qual = 0.80)
<145, 151> (qual = 0.81)
<145, 159> (qual = 0.83)
<151, 151> (qual = 0.93)
<145, 159> (qual = 0.76)
<139, 151> (qual = 0.85)
<151, 153> (qual = 0.82)
<147, 151> (qual = 0.85)

From the 8 estimated genotypes, we construct a reference genotype matrix Xyef:

reference genotype matrix Xref

lane1l lanel1l2 lanel3 lanel4 lanel5 lanel6 lanel7 lanel8

(bp)
139
141
143
145
147
149
151
153
155
157
159

total

NFPOOORFRPROOOOOO
NOOOORrROORFrROOO
NFPOOOOOORFrROOO
NOOOONOOOOOO
NFPOOOOOOFrOOO
NOOOORrROOOOOR
NOOORFRPROOOOOO
NOOOORORFRPROOOO

For each genotype in X;¢f, We adjust the relative amplification between the alleles to
minimize the sum of sguares errors between the predicted patterns AXy¢ and the observed
patterns Y. The reference genotype matrix Xy¢f is then updated with these amplification
ratios, giving aweighted genotype X:

weighted genotype matrix X

(bp) | lanell lanel2 lanel3d lanel4 lanel5 lanel6 lanel7 lanel8
139 0 0 0 0 0 1.04 0 0
141 0 0 0 0 0 0 0 0
143 0 0 0 0 0 0 0 0
145 0 1.08 1.16 0 1.17 0 0 0
147 0 0 0 0 0 0 0 1.26
149 0 0 0 0 0 0 0 0
151 1.15 0.92 0 2.00 0 0.96 1.10 0.74
153 0 0 0 0 0 0 0.90 0
155 0 0 0 0 0 0 0 0
157 0 0 0 0 0 0 0 0
159 0.85 0 0.84 0 0.83 0 0 0
total 2 2 2 2 2 2 2 2
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With the weighted genotype matrix X and the quantitated data matrix Y, we solvefor Ain
the linear system AX = Y. Hereistheinitial solution from Matlab's"A = Y/X "

operation:
initial stutter matrix from A = Y/X

bp 139 141 143 145 147 149 151 153 155 157 159
131 0 0 0 0 0 0 0 0 0 0 0
133 | 0.02 0 0 0 0 0 0 0 0 0 0
135 | 0.10 0 0 0 0 0 0 0 0 0 0
137 | 0.31 0 0 0.02 0 0 0 0 0 0 -0.01
139 | 0.59 0 0 0.04 0.02 0 0 0 0 0 -0.01
141 | -0.01 0 0 011 0.04 0 0.01 0.01 0 0 0.01
143 | 0.03 0 0 0.29 0.09 0 0.03 0.04 0 0 0.02
145 | -0.01 0 0 047 0.22 0 0.06 0.04 0 0 0.03
147 | -0.03 0 0 0.04 0.38 0 0.15 0.06 0 0 -0.01
149 | -0.02 0 0 0.01 0.07 0 0.29 0.09 0 0 0.02
151 | -0.02 0 0 0 0.08 0 041 0.25 0 0 0.06
153 | 0.06 0 0 0.03 0.06 0 0.03 044 0 0 0.02
155 | -0.01 0 0 0.01 0.04 0 0.01 0.10 0 0 0.14
157 0 0 0 -0.01 0 0 0 0 0 0 0.28
159 0 0 0 -0.01 0 0 0.01 -0.01 0 0 0.38
161 0 0 0 0 0 0 0 0 0 0 0.07
total 1 0 0 1 1 0 1 1 0 0 1
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After removing the negative entriesin A, and normalizing the values in each column to sum
to 1 (for non-zero columns), we have:

normalized A

bp 139 141 143 145 147 149 151 153 155 157 159
131 0 0 0 0 0 0 0 0 0 0 0
133 | 0.01 0 0 0 0 0 0 0 0 0 0
135 | 0.10 0 0 0 0 0 0 0 0 0 0
137 | 031 0 0 0.02 0 0 0 0 0 0 0
139 | 0.58 0 0 0.04 0.03 0 0 0 0 0 0
141 0 0 0 0.12 0.05 0 0.01 0.02 0 0 0
143 0 0 0 031 0.12 0 0.03 0.04 0 0 0
145 0 0 0 050 0.29 0 0.06 0.04 0 0 0
147 0 0 0 0 0.51 0 0.16 0.06 0 0 0
149 0 0 0 0 0 0 031 0.10 0 0 0.03
151 0 0 0 0 0 0 043 0.28 0 0 0.07
153 0 0 0 0 0 0 0 0.47 0 0 0.02
155 0 0 0 0 0 0 0 0 0 0 0.16
157 0 0 0 0 0 0 0 0 0 0 0.31
159 0 0 0 0 0 0 0 0 0 0 0.42
161 0 0 0 0 0 0 0 0 0 0 0
total 1 0 0 1 1 0 1 1 0 0 1

Note that the columns for the alleles 141, 143, 149, 153, and 157 do not contain any stutter
patterns. Thisis because these alleles were not included in the set of reference genotypes X
used in constructing A. To form a complete stutter matrix A, wefill in the stutter patterns
for these absentee aleles using stutter patterns from the nearest non-zero columns. Figure
6.10 shows both the initial stutter matrix A, and the stutter matrix with filled-in columns
(italicized).
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stutter matrix A with filled-in columns

bp 139 141 143 145 147 149 151 153 155 157 159
131 0 0 0 0 0 0 0 0 0 0 0
133 0.01 0 0 0 0 0 0 0 0 0 0
135 | 010 001 0.02 0 0 0 0 0 0 0 0
137 031 010 0.04 0.02 0 0 0 0 0 0 0
139 058 031 012 004 003 0.01 0 0 0 0 0
141 0 058 031 012 005 003 001 002 0 0 0
143 0 0 050 031 012 006 003 004 002 0 0
145 0 0 0 050 029 016 006 0.04 0.04 0 0
147 0 0 0 0 051 031 016 006 0.04 0.03 0
149 0 0 0 0 0 043 031 010 006 0.07 0.03
151 0 0 0 0 0 0 043 028 010 0.02 0.07
153 0 0 0 0 0 0 0 047 028 016 0.02
155 0 0 0 0 0 0 0 0 047 031 016
157 0 0 0 0 0 0 0 0 0 042 031
159 0 0 0 0 0 0 0 0 0 0 0.42
161 0 0 0 0 0 0 0 0 0 0 0
total 1 1 1 1 1 1 1 1 1 1 1
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Figure 6.10. The computed stutter matrix A. Shown (on the left) istheinitial stutter

matrix from solving the linear system AX =Y, given X and Y. Because some of the

marker alleleswere absent in X, their stutter patterns have to be copied from the nearest
reference aleles to construct a completely filled stutter matrix A, as shown (on the right).
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After computing the stutter matrix A, the next step isto compute the relative amplification
ratio table p from A, X, and Y. For each genotype in X, we compute the best relative
amplification ratio between the alele pair in the genotype which minimizes the sum of
sguares error between the predicted patterns in AX and the actual observed dataY. We
then collate the relative amplification ratios from genotypes that share the same allelic
differences to compute the possible range of amplification ratios for that aldlic difference.
The missing values are interpolated. We show in Figure 6.11 theinitial relative
amplification ratio table p computed from our reference data Y.

o 10 20 30 40 50
| allelel - allele2 |

Figure 6.11. Theinitial relative amplification ratio table p for D22S283. Individual

relative amplification ratios are computed from X, and Y using A. The ratios are then

collated and interpolated to form arange of ratios for each allele difference value.
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Finally, we repeat the construction process to iteratively refine the computed A and p for
the library that best models the observed data Y in the least-squares sense. The resulting
stutter matrix Ais:

stutter matrix A for D225283

bp 139 141 143 145 147 149 151 153 155 157 159
131 0.02 0 0 0 0 0 0 0 0 0 0
133 0.04 002 001 0 0 0 0 0 0 0 0
135 012 004 003 0.02 0 0 0 0 0 0 0
137 031 012 005 003 002 0.01 0 0 0 0 0
139 051 031 012 006 003 003 o0.01 0 0 0 0
141 0 051 030 014 006 004 0.03 0 0 0 0
143 0 0 050 030 014 0.07 0.04 0.02 0 0 0
145 0 0 0 044 030 012 0.07 0.06 0.02 0 0
147 0 0 0 0 044 029 012 003 0.06 0.02 0
149 0 0 0 0 0 044 029 016 003 0.06 0.02
151 0 0 0 0 0 0 044 031 016 003 0.06
153 0 0 0 0 0 0 0 042 031 016 0.03
155 0 0 0 0 0 0 0 0 042 031 016
157 0 0 0 0 0 0 0 0 0 042 031
159 0 0 0 0 0 0 0 0 0 0 0.42
161 0 0 0 0 0 0 0 0 0 0 0
total 1 1 1 1 1 1 1 1 1 1 1
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Figure 6.11 showsthe final stutter pattern matrix A and relative amplification ratio table p
for marker D22S283.
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allele (bp) | allelel - allele2 |

Figure 6.11. Computed marker library for marker D22S283. On the left is the final
stutter matrix A constructed from the 8 reference lanes. On the right is the corresponding
relative amplification ratio table p. Compare these with the marker library constructed with
16 reference lanes: the stutter matrix A shown in Figure 6.3 and the amplification ratio table
pshown in Figure 6.7.
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To verify that stutter matrix A can reliably predict stutter patterns from the genotypes, we
multiply stutter matrix A with the weighted genotype matrix X (to generate the predicted
stutter patterns), and then compute the squares of the differences between the predicted and
observed stutter patterns. The small sum of squaresin each column verifies that the stutter
patterns predicted by A areindeed close to the observed patternsin Y.

Predicted pattern matrix AX
(bp | lane1l lanel2 lanel3 laneld lanel5 lanel6 lanel7 lanel8
131 0 0 0 0 0 0.0208 0 0
133 0 0 0 0 0 0.0416 0 0
135 0 0.0217 0.0233 0 0.0235 0.1248 0 0
137 0 0.0326 0.0350 0 0.0353 0.3224 0 0.0254

139 | 0.0115 0.0744 0.0700 0.0200 0.0706 0.5400 0.0110 0.0455
141 | 0.0345 0.1798 0.1633 0.0600 0.1648 0.0288 0.0330 0.0984
143 | 0.0460 0.3628 0.3500 0.0800 0.3531 0.0384 0.0620 0.2073
145 | 0.0805 0.5425 0.5134 0.1400 0.5178 0.0672 0.1310 0.4325
147 | 0.1380 0.1110 0 0.2400 0 0.1152 0.1590 0.6473
149 | 0.3505 0.2682 0.0169 0.5800 0.0167 0.2784 0.4630 0.2160
151 | 0.5570 0.4070 0.0507 0.8800 0.0501 0.4224 0.7630 0.3277

153 | 0.0255 0 0.0253 0 0.0250 0 0.3780 0
155 | 0.1360 0 0.1352 0 0.1336 0 0 0
157 | 0.2635 0 0.2619 0 0.2588 0 0 0
159 | 0.3570 0 0.3549 0 0.3507 0 0 0
161 0 0 0 0 0 0 0 0
total 2 2 2 2 2 2 2 2

Squared differences between Y and AX

(bp | lanell lanel2 lanel3 laneld lanel5 lanel6 lanel7 lanel8
131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
133 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
135 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
137 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
139 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
141 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
145 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01
147 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
149 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
151 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
153 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01
155 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
159 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
161 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sum 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.05
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6.7. Algorithms: Genotyping by Deconvolution

From our preliminary study of different deconvolution methods, the best algorithms for
genotyping microsatellite by deconvolution (GMBD) are SVD, GAUSS, and ENUM.

SVD and GAUSS turn out to be algorithmically similar8, which explains the comparable
performance of both methods on simulated data. ENUM, on the other hand, differsfrom
SVD and GAUSS in that it searches exclusively in the more constrained space of genotypes
containing exactly two alleles.

A useful strategy for improving robustness in handling real dataisto use different methods
to call the aleles, and then intelligently determine a consensus from the independent calls.
For GMBD, we have chosen the SVD and ENUM algorithms. We omit GAUSS asitis
algorithmically similar to SVD, and we prefer SVD for its efficiency, robustness, and
extendibility19.

In Box 6.6, we present our GMBD algorithm DECONVOLVE_GENOTY PE that usesthe
SVD and ENUM algorithms.

18Both SVD and GAUSS invert A and then apply it toY. The difference isthat SVD uses singular value
deomposition to invert A in one single operation, whereas GAUSS uses a Gaussian elimination procedure
to remove the stutters iteratively.

19wWe will seein the next chapter that SVD can be extended to perform pooled GMBD without much
modification.

138



Algorithm: DECONVOLVE_GENOTYPE

Step 1: Call the alleles using multiple independent algorithms.

(& Normalizethe data vector y so that the vector sum is 2, asthere aretwo aleles
in the DNA sample.

(b) Usedgorithm SVYD_DECONVOLVE to determine the aleles on the data vector
y with the marker library <A, p>. Call the resulting genotype vector Xg,g.

(0 Useadgorithm ENUM_DECONVOLVE to determine the aleles, producing the
genotype vector Xenum:

Step 2: Obtain a consensus.

If Xsvd agrees with Xenym, then output it as the consensus genotype vector.

If not, let Xenum j be thei-th best candidate genotype vector from
ENUM_DECONVOLVE. Select from the top candidates the Xenum j With the
smallest total sum of sgquares error between Axenym j andy and between Xenum |
and Aly. Output this Xenum j asthe final consensus genotype vector.

Box 6.6. DECONVOLVE_GENOTY PE: An algorithm for genotyping microsatellites by
deconvolution. It uses two independent deconvolution methods for genotyping, and then
computes the best consensus genotype from these candidate solutions.
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6.7.1. SVD

SVD, or singular value decomposition, isafast and robust algorithm from computational
linear algebra for solving over- and under-determined linear systems (such asAx=y). We
have aready used it on severa occasionsin our library construction algorithm as a quick
and reliable genotyping method. Beside its computational efficiency, SVD can be useful in
detecting any extraalleles (that may be present due to contamination or other data
anomalies) since it does not make any assumptions about the expected valuesin the
genotype vector x. In fact, it isthis"no-assumptions" characteristic that gives SVD its
versatility in performing pooled GMBD (see the next chapter), when there are indeed
extraneous (more than 2) alleles present in the DNA samples. Box 6.7 presents our SVD
deconvolution algorithm in more detail.

Algorithm: SVD_DECONVOLVE

Step 1: Deconvolve with SVD.

Solve for xg,q using the singular value decomposition of the stutter matrix A on the
normalized data vector y (Golub and Van Loan, 1989; Lawson and Hanson, 1974;
Press et a., 1992).

Step 2: Call the dleles.

Depending on the quality of the observed datay, there may be more than two non-
zero entriesin the resulting vector xg/g. To actualy call the alleles, we iterate over
possible genotypes based on these non zero entries in Xg,q, to search for the alele
pair which fits best with data vector y.

Let g denote thei-th entry in the vector Xg/q , and Xl be a genotype vector created
with g asthei-th entry and g asthej-th entry.

Select from xg,q , alimited set of indices with nontrivia a; 's (say, X >0.25).
Create from this set of indices all possible homozygotic (i=]) and heterozygotic (i#))
genotype vectors Xiis, provided that theratio of & to g; isin the range specified by
P (&, ) . Output the genotype vector x!1J with the least sum of squares deviation
between Axi:l andy.

Box 6.7. SVD_DECONVOLVE: A genotyping algorithm using singular value
decomposition.
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6.7.2. ENUM

ENUM isasearch-based GMBD algorithm. Unlike SVD, it assumes that there are at most
two distinct alleles in the genotype, and then searches for the best genotype vector (x) that
produces an expected stutter pattern (Ax, where A isthe stutter matrix) that has the |least
sum of squares error against the observed data vector (y). To handle relative amplification,
ENUM performs alocal hill-climbing search for the best amplification ratio to apply at each
proposed genotype. In contrast with SVD, ENUM's local searching is more cautious and
sensitive to aleleswith low amplifications. SVD isfaster and more robust against
background noise because of its global view. The two agorithms work very well together,
complementing each other's potential limitations.

Box 6.8 shows the details of the ENUM agorithm.
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Algorithm: ENUM_DECONVOLVE

Step 1: Identify candidate alleles.

Let y(i) bethei-th entry in the normalized data vector y, and ac(j) be the
corresponding alele where c(i) isthe corresponding column in the stutter
matrix Afor the allele. Theset {aq(j) : y(i)>0} represents the candidate alleles?
on which we enumerate the possible genotype vectors.

Step 2: Enumerate over candidate aleles.

Let aj j be the mean of the amplification ratio range in p(ac() , ac(j) ). We
enumerate over the set of candidate aleles by creating genotype vectors Xt
with aj j asthe c(i)-th entry and 1/a;; asthe c(j)-th entry initially.

Step 3: Localy search for amplification ratios.

Adjust each xi1l locally by performing a hill-climbing search for the best
amplification ratio allowed by the range p(ac(j) , ac(j) ). Use the sum of squares
error between the predicted vector Axi:l and the observed data vector y as an
error measure in the search.

Step 4. Search for the genotype vector having the best fit.

For each candidate vector xi:|, compute the sum of squares error between the
predicted Axli and the observed y. Keep track of aset of top candidate
genotype vectors for determining a consensus later in the algorithm
DECONVOLVE_GENOTYPE. Output the genotype vector x1 that hasthe
least sum of squares error.

Box 6.8. ENUM_DECONVOLVE: A search-based genotyping agorithm.

20For efficiency, we can prune the candidate allele set even further. For example, we can restrict it to
contain aleles with y(i) > min(1/p) (the smallest allele mass allowable by the amplification ratio table).
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6.7.3. Example

To explore the difference between SVD and ENUM, we review an example from marker
D16$405, a FAM-labeled dinucleotide repeat marker in the allele range 103-161 bp.
Shown in Figure 6.12, the genotyping experiment was run out on lane 9 of a 34-lane
ABI/377 gel?1. The top pane of the figure shows the el ectropherogram, the middle pane
shows the quantitated relative DNA concentrations of the data bands, and the third pane
showsthe alleles called by the computer.
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Figure 6.12. An example genotyping experiment from marker D16405, a FAM-
labeled dinucleotide repeat marker in the allele range 103-161 bp. This genotyping
experiment was run out on lane 9 of a 34-lane ABI/377 gel.

What makes this example interesting is the presence of asingular spurious band in the
electropherogram. This spurious band has asimilar peak shape (e.g., with respect to the
peak width and height) as the data bands in the experiment. It also hasan dlele size (121
bp) with the expected parity (odd) of the alleles for marker D16S405. As such, one cannot
distinguish this band from the other bands based on peak shape or alele parity information.
A naive alele determination agorithm that calls the two highest peaksin the
electropherogram would have called the 121 and 139 bp alleles as the genotype. However,

21N fact, thisis the "demo gel” that we ship with FAST-MAP, our automated genotyping system
described in Chapter 8.
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to the expert human genotyper, it is clear that the 121 bp band is an artifactua band — there
are no stutter bands associated with it, and PCR stuttering is expected for D16S405 (based
on data from the other lanes). Like a human expert, our deconvolution algorithm learns
about the characteristic patterns for marker D16S405, and expects to find stutter patterns
associated with atrue allele band. Asaresult, the computer was able to intelligently call the
alelesat 139 and 141 bp.

To see how SVD and ENUM complement each other in this example, let uslook at Figure
6.13, which shows the different computer calls. On the top pane is the computer's fina
cal. Thisfinal call is based on a consensus of the candidate calls shown in the panes
below. The second pane shows the deconvolution of datay with stutter matrix A by the
SVD agorithm. Because SVD does not restrict its call to at most two distinct aleles, it was
ableto detect three dleles at 121, 139, and 141 bp. However, as an individual's genotype
can contain at most 2 different aleles, SVD must select two of thesethreeinitsfina call. It
does this by selecting the two with the tallest amplification values, which, unfortunately,
erroneously included the 121 bp band. On the other hand, the 121 bp could have actualy
been an dlele from DNA sample contamination or dye bleedthrough, and SVD would
detect such cases and adert the geneticist. The ENUM agorithm, which tries out all
possible allele pair combinations for one that fits the data best, assumes at most two distinct
allelesin the genotype. If there were more than two alleles present in the DNA sample,
ENUM could not detect them. Thus, while SVD is sengitive in detecting extra alleles,
ENUM isrobust against spurious noise. In thiscase, ENUM produces the correct allele
call asitstop choice (ENUM1), with the other two paired combinations of the three alleles
asits second and third choices (ENUM2 and ENUM3).

Sincethe alleles called by SVD differ from those called by ENUM 1, the computer must
select a consensus from the three candidate ENUM allele calls. The selection is based on
two criteria: (1) how well the predicted stutter pattern, computed by multiplying the
proposed genotype vector with the stutter matrix A, fits the observed data, and (2) how
closely the proposed genotype vector, weighted by an appropriate relative amplification
ratio, correlate with the genotype vector obtained by SVD deconvolution. For each of the
three weighted genotype vectors Xenum j in ENUM, the computer computes the sum of
squares error between the observed data vector y and the predicted pattern vector AXenum i,
aswell asthe sum of squares error between Xenum j and SVD's genotype vector Xgyg. In
this example, ENUM1 has the least total sum of squares errors, so the computer outputs
ENUM1 asitsfinal aleecall.
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Figure 6.13. The performance of the SVD and ENUM deconvolution
algorithm on the example shown in Figure 6.12. The darkened barsin each pane
show the alleles called, and the heights correspond to their relative amplifications.
The pane labeled "COMPUTER" shows the final consensus call made by the
computer based on the results from the independent deconvolution algorithms.
The pane marked "SVD" shows the call made by SVD, while"ENUM 1",
"ENUM2", and "ENUM3" display the top three choices made by ENUM. The
real number associated with each pane indicates the computer's confidencein the
corresponding genotype.
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Our GMBD algorithms based their alele calls on pattern matching. Two types of pattern
information are employed: for each marker, the stutter patterns stored in the stutter matrix
A, and the relative amplifications the amplification ratio table p . We have shown in the
previous example how our GMBD algorithms use stutter pattern expectations to robustly
cal the aleles; let us now look at how the algorithms handle relative amplifications between
the allelesin the genotypes.

L26:EP 1(father] (337,357)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 { 1 1 1 1

L27:EP2{mother) (329,335)

PR TR TR TN TR TN SN T TN SN S SN SN SN SN S S S S S S S S S S S

L28:EC1(329,357)

1 1 1 1 L L L L L L L El-l L L 1 1 1 1 I I I :I I I I I
311 319 327 335 343 351 359

Figure 6.14. Relative amplification in marker D16S405. Shown are the
electropherograms for marker D16405 from afamily. The genotyping experiments were
run out on lanes 26 through 30 on the ABI/377 gel from the previous example. The
vertical dotted lines indicate the alleles called by the computer. Each paneislabeled by the
lane number (e.g. L26), the sample ID (e.g. EP1), and the corresponding genotypes.

Figure 6.14 shows the data for marker D16S405 from a nuclear family (the genotyping
experiments for this family were run out on the same gel as the previous example). When
the alelesin a heterozygotic genotype are far apart (e.g. all the individualsin the family
except for the mother EP2), the amplification of the data bands from the smaller alele can
differ greatly from the data bands for the larger alele. It isconceivable that even an expert
human genotyper may miss the less amplified alele in a genotype when thereisa
pronounced relative amplification between the alleles (e.g. EC1 in lane 28). However, by
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using both stutter patterns and relative amplifications as pattern expectations, the computer
was able to accurately call all the alelesin the family shown. Note that the computer does
not make use of any pedigree information to assist its allele determination (we want to leave
the pedigree as an independent information source for the user to confirm alele calls); all
the calls by the computer were based solely on the stutter matrix A and the amplification
ratio table p that the computer had compiled for marker D16S405 from previous
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Figure 6.15. Relative amplification. When the aleles in a genotype are widely separated
(with respect to their sizes), they may not be amplified in an 1:1 ratio. Here, the bands for
the bigger allele (357 bp) are considerably less amplified than the bands for the smaller
alele (337 bp).

Figure 6.15 shows the detailed view of the genotyping datafor the father EP1 (lane 26).
Asyou can see, the total amount of DNA for the bands originated from the smaller alele
(337 bp) is much greater than the total DNA for the bands from the bigger alele (357 bp).
A naive agorithm that assumed equal amplification ratios for the two alleles would missthe
lessamplified 357 bp dlele. Our GMBD algorithms employ the relative amplification
knowledge from the marker library, and know that from past experiences, the larger sized
alelein agenotypethat is 10 bp apart (assuming we are using a compressed amplification
ratio table) istypically much less amplified than the smaller sized allele. With this
information, the computer can construct a highly accurate expectation that fitsthe data. For
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example, in Figure 6.16, the relative amplifications (as indicated by the heights of the
darkened bars) for the proposed genotypesin ENUM1, ENUM2, and ENUM3 are
adjusted so that the individua alleles were all ocated the appropriate proportions of total
amplified DNA. As aresult, the computer was able to call the 357 bp allele, even though it
was much less amplified than the 337 bp dlele.
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Figure 6.16. Adjustment for relative amplification. Using the expected amplification
ratios from the marker library for D16S405, the computer adjusts the relative amplification
between alleles in each proposed genotype accordingly. For example, the larger-sized
allelesfor the genotypesin ENUM1, ENUM2, and ENUM3 were al given asmaller share
of the total DNA fraction (indicated by the heights of the darkened bars) because they were
expected to be less amplified than their smaller-sized counterparts.
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6.8. Discussion

An important computationa approach that is central to this dissertation isto use all the data
available. When analyzing real data, data quantity can be a useful antidote to insufficient
data quality?2. Theinherent data redundancy in large amount of data can be used to detect
data consistency for filtering out random data artifacts present in less perfect data.

To maximize the amount of datathat can be exploited for redundancy, we adopted a non-
conventional approach, treating the PCR stutter bands as data. Traditionally, PCR
stuttering has been considered to be noise, and geneticists tried to suppress the artifactual
bands (Odelberg and White, 1993) from the genotyping data. With our systematic
approach of accounting for the stutter bands, the stutter bands become an integrated part of
the data, critical for robust and consistent processing. In the previous chapter, we made
use of the inherent continuity of stutter bands to overcome (by stutter crawling) the
inadequate sizing resolution of the MW size standards. In this chapter, we used the
expectation of stutter bands to unambiguously detect spurious peaks, even if they looked
just like real data bands (see the D16S405 example in Figure 6.12). To illustrate the
advantage of stuttering further, we show, in Figure 6.17 below, asimilar case for marker
D6S1050, atetranucleotide repeat marker that does not exhibit PCR stuttering. Again, an
additional band is present in the electropherogram that is indistinguishable from actua allele
bands in shape and size. However, without stutter bands, it isimpossible for man or
machine to distinguish the true allele bands from the lone noise band23.

220f course, no amount of datawould be sufficient to recover data that are of very bad quality.

23From the data shown, the other possible scenario in which there are actually two noise bands and only
one allele band (a homozygotic genotype) is less likely because one of the bands (the actua allele band)
would have been much taller (say, twice as tall) than the other bands.
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Figure 6.17. An additional band amidst the allele bands for marker D6S1050, a HEX -
label ed tetranucl eotide repeat marker that has an allele range of 168-215 bp.

Theimplication of our resultsis quite important. Geneticists have recently moved away
from dinucleotide repeat markers because of PCR stuttering. Instead, they have resorted to
trinucleotide and tetranucl eotide repeat markers, mainly because of the lack of stutter bands
in these markers. However, to use these larger repeats that do not exhibit PCR stuttering,
one hasto pay the price of usng markers that are more complex, lessinformative, less
stable, less densely distributed over the genome, and consume more "real estate” on the gel
than the dinucleotide repeat markers. Our work in this dissertation showed that it is
actually not the stuttering but the lack of stutter bands that is a true disadvantage when it
comes to microsatellite genotyping. The geneticists can now resume to using the useful
dinucleotide repeat markers (or even the mononucleotide repeat markers, as we will show
in Chapter 9) for more productive genetic studies.
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7. New functionality: Pooled genotyping

Allele frequency methods such as linkage disequilibrium and association studies are
emergent methods for studying the genetics of complex diseases (Ghosh and Collins,
1996; Lander and Schork, 1994; Risch and Merikangas, 1996). Instead of tracing the
inheritance patterns among individuals in families, these methods ook for causative genes
along the genome by testing, for each marker, whether a particular alele occurs at a higher
frequency among the affected population than the unaffected individuals24. If thereisa
significant collective lossin the alelic variation (asindicated by the alele frequencies) in
the chromosomal regions among the affected population, then the causative genes for the
disease are likely to reside in the proximity of these regions.

However, linkage disequilibrium typically extends over very short genomic distances,
requiring high-resolution genome-wide association tests involving tens of thousands of
genetic markers. In theory, we can (naively) determine the allele frequencies of al the
markers by genotyping every individual in the population, but the scope will be
incapacitating in practice. Moreover, it is probably an overkill to obtain all the individual
genotypes as only the allele frequencies are required for association studies. What we need
is an accurate and efficient method to screen alarge number of marker polymorphisms
(aleles) without having to genotype each and every onein the population individually.

One such method isto pool DNA samples together in asingle experiment for PCR and gel
readout (LeDuc et al., 1995; Risch and Merikangas, 1996). This method is easily
workable with genetic markers that do not exhibit PCR stuttering (e.g. tetranucleotide
repeat markers): the alele frequencies of the pooled samples can simply be read off the
relative allelic concentrations (peak heights or areas) in the electropherograms?. With
PCR stuttering, the observed band pattern for each pooled experiment will be a convolution
of alarge number of stutter patterns. The observed band pattern from a pool size of, say,
10 DNA samples can be a convolution of up to 20 different stutter patterns. Even an
experienced human genotyper would not be able to decipher such convoluted patterns.

24The individuals can be siblings (as in sib-pair analysis), family members (asin familial clustering
analysis), or unrelated individuals from a population (preferably isolated and homogenous).

25Thisis actually an over-simpification, as the effect of relative amplification (which is also present in the
larger repeats) must also be taken into account for. Of course, with stutterless markers, the adjustment of
relative amplification is much more straightforward than markers with convoluted stuttering.
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The larger repeats (e.g. tetranucleotide repeat markers), while typically stutter-free, are less
abundant and can therefore provide only limited resolution for genome scans. Eventualy,
the smaller repeats (e.g. dinucleotide repeat markers) must be used to attain the fine
resolution required for detecting linkage disequilibrium. However, these repeats usually
exhibit PCR stuttering, and pooled sample genotyping is not feasible unless the PCR stutter
bands can be eliminated from the data. In this chapter, we will show how the problem of
PCR stuttering in pooled genotyping can be solved computationally, using only asimple
generalization of our original convolution model for single-sample genotyping.

7.1. Convolution model

The overal pattern observed on agel run-out for a pooled sampleis the sum of the band
patterns from the genotype of each individual sample present in the pool. Under our matrix
convolution model, we can model PCR stuttering in pooled DNA as.

y=) AlX

where each x; represents the genotype vector of a DNA sample in the pool.

Using the distributive law of matrix operations, we re-write the above relation as:

y:A@zx@

Ignoring the effects of relative amplification?® for now, the vector X x; istheallele

distribution in the DNA sample mixture. As with single-sample genotyping, we can recover
this alele distribution vector by deconvolution:

D> X% =AlY

26| n the presence of relative amplification, we can still recover the allele distribution IZ X;from Aly by
adjusting it with the relative amplification ratios p (see step 2 of Algorithm POOLED_SVD).
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To compute the alele frequency from the alele distribution vector, we normalize by
dividing each entry in ini with 2n, where n is the number of equimolar DNA samplesin

the pool.

7.2. Pooled GMBD

An immediate corollary of the above generalized convolution model is that we can apply
convolution methods that are similar to those we have designed for the single-genotype
problem to the multiple-genotype problem. In fact, al the algorithms except ENUM
(POLY, FFT, WIENER, SVD, and GAUSS) can be applied directly in pooled GMBD, as
none of them are algorithmically constrained by the actual number of alleles or genotypes
present. Although ENUM had assumed that there are at most two distinct alleles, we can
easily generalize it to handle 2n aleles, where nis the number of samples pooled. Thereal
problem with ENUM isthat direct enumeration of the O(m") possible genotype vectors for
an n-sample pool genotype of an m-allele marker is computationally prohibitive. To
circumvent this computational threshold, we employ a hill-climbing search instead of
exhaustive enumeration. In fact, hill-climbing is capable of producing comparable resultsif
we start from agood initial estimate. We call this sixth algorithm SEARCH to distinguish
it from ENUM:

* SEARCH: Startswith agood initial solution (e.g. from SVD) and then locally performs
ahill-climbing search procedure to find a better solution.

A comparative study

To verify the feasibility of pooled GMBD and to compare the various deconvol ution
methods in pooled genotyping, we tested the algorithms on simulated pooled genotype data
(Perlinet al., 1995). We generated atest set of 300 simulated pooled genotypes, each
comprising 100 aleles (50 individuals, each with 2 alleles). The aleles were randomly
drawn from each marker based on their frequency distribution. Again, note that we did not
include relative amplification in our smulations of pooled DNA stutter data.

For each of the 300 pooled genotypes, we applied our pooled GMBD agorithms to
compute the allele frequency vectors. For comparison, we computed the average sum of
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sguares errors between the estimated and the actua alele frequency vectors. We show the
resultsin Table 7.1.

The result support our notion of using stutter-based deconvolution in quantitative PCR-
based pooled genotyping. As expected, the allel e-dependent deconvolution algorithms
(GAUSS, SVD, SEARCH) performed better than the allel e-independent algorithms
(POLY, FFT, WIENER) . Infact, the difference was more pronounced with pooled
genotyping, since variation in stutter patterns are accentuated as more alleles were
combined. Just as SVD and ENUM were best with single-sample genotyping, with pooled
genotyping SVD and SEARCH (the hill-climbing version of ENUM) performed better than
the other deconvolution algorithms investigated.

Noise
0% 5% 10% 15%
Moderate stutter (5 bands):
POLY .362 .387 374 437
FFT 192 .203 221 276
WIENER 192 .202 .220 274
GAUSS .000 .031 .065 101
SVD .000 .029 .058 .093
SEARCH .000 .021 .048 .079
Severe stutter (10 bands):
POLY .650 .662 .688 .736
FFT 492 .518 .538 .582
WIENER 492 515 .543 .589
GAUSS .000 .033 .084 .138
SVD .000 .033 .081 125
SEARCH .000 .025 .071 116

Table 7.1. The average sum of squares errors for pooled DNA deconvolution algorithms
on simulated data. The simulation studies were conducted with 300 pools of 50 simulated
genotypes (50x2 aleles) from markers with 10 to 25 normally distributed alleles.
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7.3. Algorithms

For convenience, we compute the allele distribution vectors ( IZ X;), instead of the allele

frequencies. The frequencies can be recovered by dividing the entriesin 2 X by 2n, where

n isthe number of equimolar DNA samplesin the pool. This seemingly trivia choice
actually has an important agorithmic consequence — it greatly reduces our search space
from the real-valued vector space of alele frequenciesto the far more constrained integer-
valued vector space of aleledistributions.

To mathematically remove the convoluted stutters, we use the marker libraries constructed
from single-sample genotype data to deconvolve the pooled data. Again, we use multiple
methods (e.g. SVD and SEARCH) to compute the alele distributions, and then
heuristically determine a consensus from the various calls. Box 7.1 showsthe
POOLED_GENOTY PE agorithm in more detail.
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Algorithm: POOLED_GENOTYPE

Step 1: Compute the alele distribution using two independent algorithms.

(8 Normalizethe datavector y so that the vector sum is2n, wheren isthe
number of samplesin the DNA pool.

(b) Usealgorithm POOLED_SVD to compute an alele distribution vector Xgg.
(c) Usedgorithm POOLED SEARCH to compute an alternate allele distribution
vector Xsearch:
Step 2: Obtain a consensus.

If Xsvd agrees with xsearch, then output xg,q as the consensus allele distribution
vector.

If not, let Xsearch j bethei-th best candidate genotype vector from algorithm
POOLED_SEARCH.

Select from the top candidates the Xsearch | With the smallest total sum of squares
errors between AXgearch | andy and between Xsearch j and Aly. Similarly,
compute the sum of squares error for Xg,g.

If the sum of squares error for Xsearch j iSlessthan that for Xg,q , OUtpUt Xsearch |
asthe allele distribution vector for the pooled data vector y. Otherwise, output Xgg.

Box 7.1. POOLED_GENOTY PE: An algorithm for genotyping pooled microsatellite
DNA samples by deconvolution. It uses two independent deconvol ution methods for
genotyping, and computes the best consensus from the answers.
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SvD

In essence, singular value decomposition performs aweighted re-centering of the allele
mass using the stutter patterns at the various alleles. As such, SVD isnot restricted to the
number of aleles present, and is therefore equally applicable to single-sample GMBD asto
pooled GMBD. That is, the dgorithms POOLED_SVD and SYD_DECONVOLVE are
essentially the same. To output an integral allele distribution vector, we start with the allele
that has the highest value in the SV D vector and iteratively round the vector values until we
have accounted for all the aleles the pooled sample. Box 7.2 describes POOLED_SVD
algorithm in greater detail.
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Algorithm: POOLED_SVD

Step 1: Deconvolve with SVD.

Solvefor xg/g using the singular value decomposition of the stutter matrix A on the
(normalized) data vector y.

Step 2: Iteratively round for the integral alele distribution.

To convert the real-valued vector Xg,g into an integer-valued alele distribution
Vector Xsyd_round, We iteratively round the entries, starting with the most confident
alele, until we havefound al 2n aleles.

(& Letkbetheindex totheentry inxgg that hasthe largest value. Set
Xsvd_round (K) < round(Xsvd (k))

where Xs\/d(k) and std_round(k) denote the k-th entries of Xsvd and Xs\/d_round
respectively.

(b) Leti betheindex totheentry in xg,g that hasthe next largest value. Ifiis
smaller than k, set

Xsvd_round (i) — round(xsyg (i) x mean(o (a, ax)))
Otherwise, set

Xsvd_round () < round(Xsyq (i) + mean(p (ax, &)))
This accounts for relative amplification between the alelesat i and k.

(©) Repeat (b) until al the 2n aleles have been accounted for, or until there are no
non-zero entriesin Xg,g to berounded. Inthelatter case, add the number of
unaccounted alleles to Xsyd round (K). Output the allele distribution vector

Xsvd_round -

Box 7.2. POOLED_SVD: A pooled GMBD algorithm using singular value
decomposition.
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SEARCH

For pooled genotyping, the exhaustive search employed in the ENUM agorithm for single-
sample GMBD isno longer feasible. As such, we use more intelligent search strategies to
overcome the added complexity in pooled genotyping.

Given agood initial solution, local search strategies can produce good results efficiently.
In our POOLED_SEARCH agorithm, we use a hill-climbing search strategy that starts
with the SVD solution asan initial estimate. At each search step, the computer exploresthe
search space by micro-adjusting the distribution vector: the computer creates anew alele
distribution from the old vector by redistributing one unit of an alele to another, and then
evaluating whether the new allele distribution produces an expected band pattern that fits
better with the actual observed pattern. With large number of samplesin the pooled DNA,
or with markers having alarge number of different alleles, even this search step can be
computationaly intensive. Assuch, it isimportant to carefully implement
POOLED_SEARCH using efficient search strategies such as those commonly found in
artificia intelligence (e.g. beam search or A*) (Rich and Knight, 1991). Box 7.3
describes the POOLED_SEARCH agorithm in detail.
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Step 1

Step 2:
@

(b)

(©

(d)

()

Algorithm: POOLED_SEARCH

Identify candidate aleles.

Lety(i) bethei-thentry inthe normalized datavectory. Let agi) bethe
corresponding allele, where c(i) isthe column in the stutter matrix A for the allele.
The set {ag(j) : Y(i)>0} represents the maximal set of candidate alleles?” that may
appear in the allele distribution vector.

Search for a better allele distribution vector.

Let BEST be the set of the best allele distribution vectors that seen thusfar. If
abeam search of width w is employed, restrict BEST to contain only the best
w vectors. Initially, BEST = {Xsvd_round }-

Remove an alele distribution vector Xpeg from BEST that was not processed
before. Create NEW, a set of new allele distribution vectors by iteratively re-
distributing an alele from xpeq Over the candidate alleles. Exclude from NEW
any vectors that were analyzed before.

For each vector xnew in NEW, compute the sum of squares error between the
expected stutter data Axnew and the observed data vector y. Additionally,
minimally adjust the values in xney as permitted by the amplification ratio table
p to further minimize the sum of squares error. Associate with xpey the

smallest error.

If there are any Xpaw 'Sin NEW that have a smaller error than xpeg , then add
them to the set BEST. If not, put xpegt back into BEST, and labeled it
"processed".

Repeat until there are no more unprocessed vectorsin BEST, or until asearch
bound has been reached. Output the best vector in BEST asthefinal alele
distribution vector.

Box 7.3. POOLED_SEARCH: A search-based genotyping algorithm for pooled

samples.

27Asin ENUM_DECONVOLVE,we may want to prune this candidate set even further. For example, we
can restrict it to contain only alleles with y(i) > min(1/p) (the smallest allele mass allowable by the
amplification ratio table).
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7.4. Example

First, individual DNAs for D16$403, a FAM-labeled dinucleotide repeat marker with an
allelerange of 125-155 bp, were PCR amplified and size separated on an ABI/377
sequencer. We used these experiments to determine the allelesin each DNA sample, and
also to construct the binning, stutter, and relative amplification calibrations for D16S403.
Pools of 2, 4, and 8 individual PCR products were constructed, and size separated on the
ABI.

In Figure 7.1, we show the results of pooled GMBD on one of the two-sample pools. The
topmost pane shows the electropherogram from the gel readout of the pooled experiment.
The second pane shows the relative DNA concentrations of the data bands using our band
guantitation methods. 1n the third pane, we show the actua allele distribution for this
experiment, computed from the individual genotypes of the two samplesin the pool. Since
the two genotypes are both heterozygotes, the allele distribution shows four different
alleles. The computer's call isin the fourth pane labeled "COMPUTER". In this example,
our POOLED_GENOTY PE agorithm correctly calsall four aleles present in the pool,
despite the peak overlap, plus-A, and PCR stutter artifacts present in the data.
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pooled2.gel D16S403 (L10, Pool=2)
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Figure 7.1. Pooled-sample genotyping. Two DNA samples (both heterozygotic) from
dinucleotide D163403 were pooled together and then ran out on an ABI gel. The top pane
shows the electropherogram trace for the experiment. The second pane shows the
quantitated results, while the third pane shows the actual allele distribution for this
experiment. The fourth pane (labeled "COMPUTER") shows the computed alele
distribution. The fifth pane, labeled "X _svd") shows the original SVD vector from Aly,
and the pane below it showsthefinal call by the POOLED_SVD agorithm. Thelast pane
shows the top call by the POOLED_SEARCH agorithm. The numbersin the panesfor
COMPUTER, SVD, and SRCHL1 indicates the computer's confidence measure about the
particular result.
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We also show the results of POOLED_SVD and POOLED_SEARCH inFigure 7.1. Inthe
pane labeled "X _svd" isthe original SVD vector from deconvolving the data vector y with
D16$403's stutter matrix A . By iteratively rounding theinitial valuesin X_svd, the
resulting integral alele distribution vector computed by POOLED SVD accurately callsthe
four aleles, as shown in the panelabeled "SVD". Our POOLED_SEARCH algorithm also
ends up with the same allele distribution, as shown in the pane marked "SRCH1".

Asacomparison, let uslook at the results of one of the 8-sample poolsfor D165403 in
Figure 7.2. Again, despite the high degree of stuttering, peak overlap, plus-A, and relative
amplification artifacts in the data, our pooled GMBD agorithm was able to compute an
alee distribution vector (shown in the pane labeled "COMPUTER") quite close to the
actual allele distribution (shown in the third pane). In this example, POOLED SEARCH
actually found different solutions (the top three choices were shown in the panes labeled
"SRCH1", "SRCH2", and "SRCH3" respectively) from POOLED_SVD. For afina
consensus, the computer heuristically selects one of the solutions based on their fit with the
datay and the predicted allele distribution Aly (as described in Step 2 of our
POOLED_GENOTY PE agorithm). In this experiment, the computer selected the allele
distribution computed by POOLED_SVD asthefinal call.

We have used our pooled GMBD algorithm to determine the allele distributions of pooled
samples of up to 96 samples. We report our results for these larger sample poolsin the
"Results" chapter. Our preliminary results showed that pooled genotyping is indeed
possible with GMBD methods. The potential reduction in the required number of
laboratory experimentsis spectacular: for example, with pools of 100 individuals, thereisa
100-fold reduction. With further research on the experimental techniques for generating
pooled DNA datain the laboratory, and additional algorithmic refinementsto
POOLED_GENOTY PE, we may be able to usefully apply this powerful pooled genotyping
functionality to allele frequency studies.

163



pooled2.gel D16S403 [L15, Pool=8)
5000 T T T T T T T

AL

0 1 1 1 1 1 1 1
400d20 12'5 13'0 13'5 1"10 1"15 1?0 1?5 160
[DNA]

2000

0 1 . - 1
g?O 12"5 13'0 135 140 14'15 150 15'5 160
allele distrbution

E

3

0 1 1 1 1
420 12'5 13'0 135 140 1‘35 15'0 15'5 160
COMPUTER (0.844)

=

0 1 1 1 1
420 1%5 1?0 135 140 1?5 15'0 1'{)5 160
¥_swd

=

0 1 1 O a1 W 1
420 125 13'0 135 140 14'5 150 15'5 160

SYD (0.837) '

=

0 1 1 1 l_l... 1

420 125 130 135 140 145 150 155 160
SRCH1 [0.844)

0 s, 1

420 125 130 135 140 145 150 155 160
SRCH2 (0.844)

=

f

0 1 1
420 1%5 1?0 1?5 1‘30 1‘35 150 155 160
SRCH3 (0.844)

f

0 1 1
120 125 130 135 140 145 150 155 160
alleles (bp)

Figure 7.2. Pooling of 8 DNA samples. The top pane shows the electropherogram
from an 8-sample pool for marker D163403. Below it, we show the quantitated
results, the actua alele distribution, the computed allele distribution (labeled
"COMPUTER"), the original SVD vector (labeled "X _svd"), the alele distribution
computed by POOLED_SVD (labeled "SVD"), and the top three allele distributions
computed by POOLED_SEARCH (labeled "SRCH1" through "SRCH3").
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8. FAST-MAP

We implemented our solution to the microsatellite genotyping problem in a platform-
independent automated genotyping system called FAST-MAP28 (Eluorescent Allele-calling
Software Toolkit — Microsatellite Automation Package). Sinceits public releasein 1996,
FAST-MAP has been used by geneticists in academic laboratories, government
laboratories, biotechnology companies and pharmaceutical companies?.

In this chapter, we describe our implementation of a practical system that processes real
datafor rea users (who are typically more acquainted with laboratory equipment than
computers). We give here an overview of our design and implementation of the FAST-
MAP system. Additional details about FAST-MAP are given in the appendices. Appendix
B presents FAST-MAP's user environment, Appendix C describes FAST-MAP'slibraries,
and Appendix D details FAST-MAP's program modules. To help FAST-MAP usersin
widespread (international) locations, we distributed and maintained the software viathe
World-Wide-Web at:

http://www.cs.cmu.edu/~genome/FAST-MAP.html

8.1. Design

The FAST-MAP system is comprised of three primary components — the programs, the

knowledge base, and the user interface:

» The programs constitute the computational engine which automates the requisite tasks
in the genotyping problem;

» The knowledge base enables the system to intelligently focus its computation for
improved accuracy and efficiency;

* Theuser interface permits the user to intervene in the fully automated FAST-MAP
process, and assist, verify results, or make repairs when necessary.

28The commercial successor to FAST-MAP is TrueAllele™. For more information on TrueAllele™, see
http://www.cybergenetics-inc.com .

29Groups which have used FAST-MAP include: (1) academic |aboratories; Human Genetics Department

(Dr. Mike Gorin), University of Pittsburgh; (2) government laboratories: Nationa Center for Human

Genome Research (the FUSION group), National Institutes of Health; (3) biotechnology companies:

Mercator Genetics, gene/Networks, and deCODE Genetics (Iceland); and (4) pharmaceutical companies:

Smithkline Beecham (UK).
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Underlying all three components are unifying semantic objects which correspond to
experimental and genetic entities such as gels, lanes, panels, and markers. These semantic
objects are designed into FAST-MAP as the basic units for computation (programs),
organization (knowledge base), and presentation (user interface).

8.1.1. Semantic objects

The basic computationa unit in FAST-MAP is the genotyping experiment. A genotyping
experiment is defined by the gel and the lane it was |oaded in, and the genetic marker used.
In general, the semantic objectsin FAST-MAP can be grouped into three categories:

* experimentative entities such as gels, lanes, and studies;

» genetic entities such as markers, panels, dyes, and size standards; and

« sampling entities such as individuals and pedigrees¥.

Figure 8.1 shows the rel ationships between the semantic objectsin FAST-MAP. The
semantic objects are related here viathe "set_of" relationship and the "has_attribute"
relationship. They provide adirect and intuitive mapping between the data structures
manipul ated by the computer, and the actual entitiesin the user'sworld. This semantic
connection between user and computer is essential for usability in a non-computer domain.

30An important characteristic of FAST-MAP is that no pedigree information is used to call the alleles —
bottom-up computational strategies alone suffice for accurate allele calling. Pedigree information is used
solely in FAST-MAP's user interface for presenting genotyping results for user verification.
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Figure 8.1. Semantic objectsin FAST-MAP. The basic computational unit is the
"genotyping experiment” semantic object. The other semantic objects are categorized under
three groups: experimentative, genetic, and sampling entities. The semantic objects are
related viathe "set_of" relation and the "has_attribute” relation.

8.1.2. Core programs

For practical genotyping, FAST-MAP includes a comprehensive set of programs for data
analysis, visual display, and result outputs. This section describes the computational
engine of FAST-MAP — the core programs, which implement the various algorithms
discussed in the previous chapters. The other FAST-MAP programs are discussed in
Appendix D, aswell asin the FAST-MAP user manual.

Tasks
L et us recapitul ate the three requisite tasks for scoring microsatellite genotyping data:
1. Dataretrieval: Thisundoes the multidimensional multiplexing by extracting the gel

images and applying a coordinate transformation function:
a: <x,y>pixes - <lane, size> points
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which maps image pixelsinto molecular units. o 's datastructureisasizing grid
constructed from MW data;

2. Data quantitation: This discretizes the continuous intensity signals into individual stutter
bands. These bands are binned with integer allele labels, and quantitated with their
relative DNA concentrations:

[B: imagedata+ sizinggrid a — {<bp, concentration>}

3. Datadeconvolution: Thiseliminates stutter bands from the quantitated data by
deconvolution:

y: {<bp, concentration>} + genotyping library — genotypes
using automatically constructed genotyping libraries.

Electrophoretic gel

l

EXTRACT_IMAGE

Size standards image

» CONSTRUCT_GRID

genetic marker image e :
» | STUTTER_CRAWL :

QUANTITATE_BAND

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

l guantitation

marker
library

CONSTRUCT_LIBRARY

f

DECONVOLVE_GENOTYPE

Genotypes

Figure 8.2. The data flow of the automated genotyping algorithms. First,
EXTRACT_IMAGE extracts gel images from araw electrophoretic gel.
EXTRACT_IMAGE is specific to the DNA sequencer. Next, CONSTRUCT_GRID
builds asizing grid from the size standards data, which can be used to retrieve marker data
for quantitation with STUTTER_CRAWL and QUANTITATE_BAND. Using the marker
libraries constructed by CONSTRUCT _LIBRARY, these quantitated data are then

genotyped using DECONVOLVE_GENOTY PE. All these algorithms (except
EXTRACT_IMAGE) have been discussed in Chapters 4, 5, and 6.
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We discussed algorithms for handling the three genotyping tasks in Chapters 4, 5, and 6.
For dataretrieval, we use CONSTRUCT_GRID (Chapter 4); for data quantitation, we use
STUTTER_CRAWL and QUANTITATE_BAND (Chapter 5); for data deconvolution, we
use CONSTRUCT_LIBRARY and DECONVOLVE_GENOTY PE (Chapter 6). Figure
8.2 shows the relationship between these algorithms, together with EXTRACT _IMAGE, a
dye separation step that is usually provided by the DNA sequencers for dataretrieval.

Programs
Corresponding to the data flow presented in Figure 8.2 are three core programsin FAST-
MAP (See Figure 8.3):

Electrophoretic gel

l

prep_call

size standardsimage image call
sizing grid

genetic marker image allele call

Genotypes

Figure 8.3. Dataflow between FAST-MAP's core programs. The core programs
consist of: prep_call, which prepares sequencer-specific gel datafor FAST-MAP by
extracting gel images from the raw data, image_call, which constructs the sizing grid, and
allele_call, which calsthe aleles for every genotyping experiment on the gel.

* prep_call: Theprogram prep_call implements the sequencer-specific image extraction
(EXTRACT_IMAGE) step. It extracts the image data from the raw gel files generated
by different DNA sequencers, and converts the extracted images into a standard format.
Since prep_call can easily be extended to handle data from new sequencers, FAST-
MAP is not restricted to any particular DNA sequencer or data format.

* image call: The program image_call implements the construction of the sizing grid

(CONSTRUCT_GRID), which performs lane tracking and MW calibration (Chapter
4). The MW sizing grid provides a two-way mapping a between the observed image
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pixel (X, y)-coordinates and the expected (lane, base pair)-coordinates. With the sizing
grid, the computer automatically extracts the electrophoretic intensity profilesfor every
lane and fluorescent dye in agel, reducing the problem from parsing a complex two-
dimensional image into analyzing one-dimensional profiles.

» allde call: Theprogram allele call isFAST-MAPsworkhorse module. It performs
data quantitation and genotyping (both Sand y). For consistent sizing, the program
bins al the data bands across multiple gels and assigns internal size labels using
STUTTER_CRAWL. The program then quantitates the data bands by finding the best
fit between the observed data and the predicted modeling of the bandsin the
electropherogram. When the data bands from a genotyping experiment are quantitated,
allele_call appliesthe marker's stutter and relative amplification information to call the
alledesusng DECONVOLVE_GENOTYPE. The marker libraries are dynamically
learned (CONSTRUCT _LIBRARY) by the computer over multiple gels sharing the
same marker panel.

Computation in FAST-MAP is demand-driven; a program automatically calls the
appropriate precursor program if any intermediate results required by its computation are
not available. That is, in terms of the tasks handled by the programs, each of the core

programs "subsumes’ the program beforeit:
prep_call [Jimage call [Jallde call
where"[]" denotes proper subset inclusion.

For example, if we apply the program image_call on agel that has not been dye-separated,
image_call will automatically invoke prep_call to extract the gel images before constructing
thesizing grid. Thus, for fully automated processing of high quality data, one can ssimply
invoke the allele_call program.

8.1.3. Knowledge base
While the core programs provide computational enginesfor FAST-MAP, the actual

computation is directed by information in FAST-MAP's knowledge base. There arethree
types of information used:
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» global domain knowledge: thisis general information about genetic entities, such asthe
possible size range of amarker's alleles, or the molecular sizes (in bp) of the DNA
fragmentsin aMW size standard,;

» gpecific data knowledge: thisis specific information about genetic experiments, such as
the loading pattern of agel, or the list of component gelsin astudy.

» pattern matching knowledge: thisis pattern-matching knowledge that FAST-MAP has
learned from the data it has processed. Thislearned information includes (a) marker-
and allele-specific stutter patterns, (b) relative amplifications, and (¢) binning
information.

Figure 8.4 depicts the information sources forming FAST-MAP's knowledge.

R
- M M .

dyes
size_stds : : settings
panels gel layout
markers study layout
global : : specific
- domain : : data
| knowledge| ' |knowledge
USERFILES ;' INPUT FILES
BVMap | |D65871 | |D65871
GS500 | |D22$389 | |D228389 |
GS350 D25145 D25145
MW mar ker mar ker
bining bining genotyping
— | libraries libraries libraries

FAST-MAP LIBRARIES

Figure 8.4. FAST-MAP's knowledge base. There are three different sources of
information: the "user files' provide globa general knowledge about the genetic domain,
the "input files" provide specific information about the genetic experiments, and the "library
files' provide pattern matching information learned by FAST-MAP from processing
previous data.
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Global domain knowledge

To search the MW bands in size standard data, FAST-MAP minimally needsto know the
DNA fragment sizes used in the size standard. To genotype microsatellite markers, FAST-
MAP needsto know general characteristics of the markers, such as which fluorescent dye
istagged on the marker, the size range of possible aleles, and the number of base pairsin a
repeat unit. Thisgenera knowledge of genetic entities is supplied by the user to FAST-
MAP by annotating a shared database of genetic knowledge called the user files:

* dyes: contains aliases for the various fluorescent dye names used in the sequencers, for
example:

dye_name aliases

blue fam

green tet

yellow hex

red tam tamra rox

* Sze stds: contains information about the size standards, such as the dye tagging the
DNA fragments, and the sizes of these fragments. For example:

name dye sizes

% Genescan 500
GS500 TAM 3550 75 100 139 ... 400 450 490 500

% Bioventure's 20-bp ladder
BVMap TAM 7080 90 100 120 140 ... 360 380 400
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* markers: contains genetic microsatellite marker information, such as alele size range,
fluorescent dye, repesat type, and whether there has been any specia experimental
handling. For example:

name min max dye repeat plusA ladder

% Markers for "panell”
%

piml 103 161 FAM 2 enhance yes
plm?2 316 366 FAM 2 enhance yes
plm3 176 224 HEX 2 enhance yes
plm4 290 326 HEX 2 enhance yes
plm5 178 238 TET 2 enhance yes

» panels: contains definitions of panel names. Each marker panel is defined by alist of
genetic markers used in that panel. For example:

name markers

panell plml pim2 p1lm3 pim4 plm5
panella plml pim?2

There are other user files that contain globa (but non-genetic) information. For acomplete
list of the user files and their detailed descriptions, please see Appendix B.1.

Specific data knowledge
When human genotypers call alleles on gel data, in addition to using genera genetic
knowledge, they also apply considerable contextual information, such as the design of the
study and the layout of the marker multiplexing. Similarly, the allele_call computer

program needs such information for automated genotyping.

In FAST-MAP, the user supplies specific data knowledge by providing input files that
annotate each gel or study. For agedl, there are two user-annotated input files:
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» settings: contains gel-specific annotations and execution preferences. For example:

attribute value

% Section 1. Gel-specific settings.
%

Gel_file_name R211a.gel
Matrix_file_name MATR211
Sample_file_name R211a.samples
Sequencer_type ABI
Number_of lanes 34
Size_standard BVMap
Min_size_standard 70
Max_size_standard 400
Panel_name panell
Experiment_condition
Noise_threshold 50

% Section 2. Program animation settings
%

Verbose_mode_on yes
Show_plots no

% Section 3. Allele_call settings
%

Redo_import_planes no
Redo_manifold no
Redo_quantitation no
Redo_allele_calling no
Analyze noisy data yes

% Section 4. Allele_results settings
%

Output_noise_genotypes no
Output_sort_by markers
Latest_sample_only no
Round_evenly_spaced no

% Section 5. Allele_view settings
%
Prioritize_results worst_first

% Section 6. Marker_view settings
%
Lanes_per_view 5

% Section 7. Allele_printout settings
%

Send_to_printer yes
Show_figure no
Rows_per_page 4
Columns_per_page 2
Include_electro_plots no
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* layout: tellsFAST-MAP the design of the gel readout experiment — where to find the
individua genotype experiments on the gel. Thisinformation tells FAST-MAP
whether alaneisloaded, and (if so) with which panel and size standard;

lane sample panel size_std
1 ped01P1 panell BVMap
2 ped01P2 panell BVMap
3 ped01C1 panell BVMap
4 ped01C2 panell BVMap
5 ped01C3 panell BVMap
6 ped01C4 panell BVMap
7 ped01C5 panell BVMap
8 ped02P1 panell BVMap
9 ped02P2 panell BVMap
10 ped02C1 panell BVMap
32 ped05C4 panell BVMap
33 blank blank blank
34 blank blank blank

For each study, there are two user-annotated input files:

» settings: contains study-specific execution preferences similar to thosein agel's
"settings' file

* layout: containsalist of nicknames of the study's component gels, such as:

gel

% Gels for panell study
%

GEL1 % 4/15/97, Ped01-Ped06
GEL2 % 4/16/97, Ped06-Ped11
GEL3 % 4/18/97, Ped12-Ped17

For a detailed description of the input files of gels and studies, please see Appendix B.2.

Pattern matching knowledge
When microsatellite markers are PCR amplified and size separated under the same

experimental conditions, the band patterns and artifacts are reproducible. Thus, the
reproducible patterns of prior experiments can be used to computationally remove such
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artifacts from subsequent experiments. In FAST-MAP, this pattern-matching knowledgeis
automatically learned and compiled into internal filescalled libraries. ASFAST-MAP
processes more data, it augments the appropriate library files with additional pattern
matching information to improve the accuracy of its predicted patterns.

Asshown in Figure 8.4, there are three types of libraries maintained by FAST-MAP:

*  MWhbinning libraries: these contain the relative pixel locations of the MW bands found
on previous gels. FAST-MAP uses thisinformation to construct expectations of where
to find MW bands on anew gel;

» marker binning libraries: these contain the relative pixel information on markers that
FAST-MAP haslearned from analyzing previous gels. FAST-MAP uses this binning
information to guide its search for marker bands on the current gel, and to assign
consistent integer alele labels to detected marker bands;

» marker genotyping libraries: these contain information on stutter patterns and relative
amplification ratios observed from previoudy analyzed marker data, which FAST-MAP
uses to deconvolve genotype datainto alleles.

Appendix C describesthe various library filesin detail.
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8.1.4. User interface

WhileitisFAST-MAP's primary goal to fully automate microsatellite genotyping, it is
equally important to allow for user interaction, verification, and assistance when the data
are lessthan perfect. Instead of a system which processes data fully autonomously (and
perhaps autocratically) from beginning to end, we provide optiona "checkpoints® in FAST-
MAP between major computation steps. At these checkpoints, the user can verify and
repair intermediate results, if necessary:

image_view allele_view

prep_call O TPETY = image _call O ™ '€ - allele_call O P - results

Because of the visual nature of the genotyping task, we provide graphical user interfaces3!
at each checkpoint to facilitate data review and editing:

* prep_view: this program allows the user to preview the extracted gel image and verify
that the layout information supplied to FAST-MAP is accurate. The user can also assist
FAST-MAP by pruning confusing regions (e.g., primer regions) away from the gel
image;

* image view: this program allows the user to quickly verify the accuracy of the sizing
grid constructed by image_call by viewing the sizing grid overlaid on top of the size
standardsimage. If the computer made some mistakes, the user can repair the grid;

* marker_view: this program alows the user to view the allele size windows of the
markerson agel at asingle glance. The user can quickly verify that the marker
information supplied to FAST-MAP is correct. If not, the user can repair by
graphically expanding or contracting the allele windows,

» allele view: thisprogram graphically visualizes allele_call's genotyping results. The
user can repair the computer's mistakes by editing erroneous genotypes,

» family view: when supplemental pedigree information is provided, allele view can
provide family_view functionality. The user can view the genotypes of al individuals
in afamily displayed in one window, even when the corresponding genotyping

31FAST-MAP's data viewing and editing graphical interfaces were implemented by Nandita Mukhopadhyay .

177



experiments are on different gels. Thisturns out to be avery useful tool for quickly
(visually) detecting non-Mendelian inheritance.

We detail these viewing programs later on with an example in Section 8.3.

8.2. Implementation

FAST-MAP requires (1) high performance numeric computation for its core programs, (2)
fast dataretrieva for its knowledge base, (3) efficient graphic visualization for its user
interface, and (4) computer platform independence for its system portability. To satisfy
these requirements, we implemented FAST-MAP in the MATLAB computing environment
(MathWorks, 1993)32, MATLAB is ahigh performance computing environment that
integrates numerical analysis, matrix computation, signal processing, and graphics
rendering. Moreover, MATLAB is platform-independent, and runs on UNIX, Macintosh,
and PC systems.

Fast data retrieval

To attain fast dataretrieval for FAST-MAP'slarge (and increasing) knowledge base, we
adopted a two-prong approach:

1. Freguently used data (such asthe global domain knowledge stored in the "user files")
are loaded into memory as part of FAST-MAP's operating environment. This allows
rapid access directly from the system's RAM, instead of from the user files. However,
thisimplementation also requires extra effort to maintain consistency between the
system's environment and the actual contentsin the user files, since the user can
dynamically update the contents of the user files. To detect user updates, we provided
the user with an internal "edit" function.

2. Lessfrequently used data (such as the amount of display datafor the genotyping
experiments) are not loaded into the system because of memory limitations. To
facilitate rapid access from datafiles, FAST-MAP's processing decomposes the display
datainto the smallest possible units, and stores the units as separate small files indexed

32As of this writing, FAST-MAP is implemented in MATLAB v4.2c.
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by descriptive file names. Indexing by these file names emul ates pseudo-random
accessing with direct fileretrievals.

Demand-driven computation

To implement demand-driven computation, FAST-MAP continually stores the partia
resultsin small files (uniquely named for rapid retrieval) as the computation proceeds. By
incrementally saving the partial state of the computation, FAST-MAP alows the user to halt
along-running analysis at any point, and resume from where it left off without losing
previously computed partial results.

Programming language-specific optimizations

FAST-MAP is computationally intensive, and requires efficient algorithm implementations.
Many of the algorithms (e.g. SV D deconvolution) are naturally specified as matrix
computations, and MATLAB is highly optimized for such matrix processing. For other
algorithms, smple algorithmic optimizations that cater to the matrix-based computation in
MATLAB bring about significant improvementsin performance. For example, using radix
search (which takes advantage of the fixed-width characteristic of items stored in a matrix)
and vectorizing the code has yielded significant system speed-ups.
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8.3. Execution

After setting up astudy (say, STUDY 1) for analysisin FAST-MAP, we can process the
datain asingle step, by typing:

>> allele_call STUDY1

FAST-MAP would then perform the necessary automatic lane/size calibration and
genotyping without interruption. This fully-automated "single-step” mode is suitable for
high-throughput centers that routinely generate high quality gel data.

With less-than-perfect data, it is worthwhile to verify partial results at various FAST-MAP
checkpoints. By repairing any errorsin the intermediate results using FAST-MAP's
graphical viewing programs, the user can avoid unnecessary re-computations and improve
the quality of the final genotyping results.

The best sequence in which to run the FAST-MAP programs depend on the availability of
certain data and knowledge33. Figure 8.5 depicts the dependency chart for atypical
scenario of processing gels with "standard” markers (i.e., markers we have analyzed
before). The dependency chart is divided into two sections, an obligatory "calling” section
and an optional "viewing" section. The obligatory section is shown in the upper half of the
figure, with the suggested calling sequence of:

prep_call - image call - allde call

331n TrueAllele™, the commercial successor to FAST-MAP, the dependency between the programs is
automatically generated and customized based on the particular scenario. This dependency relationship is
presented as a flow chart consisting of clickable buttons to direct the user to invoke programsin the best
sequence.
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DEMO

prep_call allele_call

infof infof

image_view

marker_view

Figure 8.5. Dependency chart of the programsto call in FAST-MAP. If thedatais
relatively perfect and there is no need for the user to verify intermediate results, then one
needsonly run allele_call. Otherwise, the user may elect to call intermediate programs (in
the top pane), and optionally use the viewing programs (in the bottom pane) to check the
intermediate results before proceeding further.

The bottom half of the figure shows optional viewing programsthat one can interactively
verify and repair intermediate results. For example, one can call the prep_view program to
view the images extracted by prep_call, or invoke the image_view program to review the
sizing grid constructed by image_call, or use the marker_view program to verify that the
allele window information supplied to the system is correct. After allele call, one invokes
the allele_view program to review the computed genotypes, and edit any miscalls.
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DEMO

size_std_view

prep_call image_call allele_call

infof i infof

marker_view

image_view

Figure 8.6. Dependency chart of FAST-MAP programs for another scenario. The top
pane lays out the obligatory programsto call, with the program dependencies displayed
from left to right, and top to bottom. The bottom pane shows the optional viewing
programs at the various programmeatic checkpoints for the user to verify and correct
intermediate results.

By creating the necessary initial libraries and verifying that the information supplied to the
computer is correct, the user can greatly assist the computer in analyzing new data. In
Figure 8.6, we show the program dependencies when anew MW size standard and a new
marker panel have been used. Since there are no pre-existing MW binning libraries for
FAST-MAP to apply initssizing grid construction, the user assists by invoking the
size std view program (after extracting the gel image with prep_call) to createaMW
binning library for the new MW size standard. With this user defined size standard library,
FAST-MAP can proceed to calibrate the gel datain molecular sizeswith image call.

Before calling the allele_call program, the user should also use the marker_view program to
verify that the correct allele windows have been supplied to the computer, sincethe dlele
window information for a new marker panel from the public databases is often incorrect.
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Example

For discussion, let us go through the multiple steps in analyzing the demonstration gel (that
we include with the FAST-MAP package) in the cautious mode. First, we invoke the
program prep_call to extract the gel images from the input gel file (demo.gel ) intoa
sequencer-independent format. Hereis atrace of the program on demo.gel :

demo.gel: prep_call [4-Dec-97 12:16:36]

Image file demo.gel is an ABI/377 collection file (version 2.00).
demo.gel is a 5720 x 194 gel with 4 dye planes.

Reading gel data from demo.gel..................................Done.
Adjusting image contrast........ Done.

Thisimage conversion step typically takes about several minutes to complete, and it
prepares the image for viewing in FAST-MAP using the prep_view interface (Figure 8.7).
There are three things that the user can do in prep_view that can help FAST-MAP inits
subsequent processing:

(2) Cropping the extraneous regions of the gel image (e.g. the primer region) by setting the
minimum and/or maximum scan numbers;

(2) Verifying the actual range of molecular weight standards captured on the gel; and

(3) Confirming that the loaded lanes specified in the gel's layout file is correct.

For example, to crop away the primer region (the bright bands at the bottom of the gel
shown in Figure 8.7), the user can click on the "Min Scan" button in the prep_view
window. In azoomed-inimage (shown in Figure 8.8), the user can then define the
minimum scan line for the gel by simple mouse clicks. Thislets FAST-MAP ignore the gel
region below the specified minimum scan line, hence avoiding the distractingly bright
primer bands when calibrating the MW bands.
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Figure8.7. Viewing agel imagein prep_view. After prep_call extractsthe gel image
data from raw gel files, the user reviews the gel image in prep_view.
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Figure 8.8. Cropping away primer region in prep_view. To crop the primer region
away from the gel, the user click at one or more minimum scan locations (shown here as a

"+"). The computer automatically extends the clicks into aminimum scan line (shown asa
horizontal dotted line) separating the primer region from the data.
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Once we have verified that the gdl is of good quality, and have confirmed that the sizing
information supplied to FAST-MAP is correct, FAST-MAP can proceed with its automatic
sizing grid construction in the program image _call:

demo.gel: Image_call [4-Dec-97 12:23:46]

Reading image data for dye 4...Done.

Scanning for gel lanes....... ____+++++.iDone.

Scanning for size std bands.... +++++++.Done.
Refining MW peaks .........ccoccvvveeeeeeeeeninin, Done.
Computing pixel-to-bp calibration ................ccuvveee. Done.
Saving size calibration.............cccccoviiiinnnn. Done.
Reading image data for dye 1...Done.

Converting image to profiles..........ccccooviiiiiiinnen. Done.
Reading image data for dye 2...Done.

Converting image to profiles............ccccoeevvvvnnnnn. Done.
Reading image data for dye 3...Done.

Converting image to profiles..........cocceeiviiieennns Done.
Reading image data for dye 4...Done.

Converting image to profiles..........cccccoviiiniiinnen. Done.

As shown in the program trace above, FAST-MAP first tracks the lanes, and then performs
MW size calibration on each lane. When the MW sizing grid is constructed, the user can
use the interface image_view to verify that the sizing grid is correct, and repair any
mistakes that may have been made by FAST-MAP. Figure 8.9 shows the sizing grid
constructed by FAST-MAP on demo.gel asviewedinimage view.
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Figure 8.9. Viewing computed sizing grid. Inimage_view, the sizing grid is overlaid
on the gel image, allowing the user to verify the correctness of the grid at one glance.
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Typicaly, if we are running a marker panel for the first time, we would obtain theinitial
allele windows from public databases (e.g. the CEPH database), which may not include all
the allelesin the samplesfor our study. Since FAST-MAP relies on the allele window
information for extracting data from electropherograms for analysis, it is important to make
sure that the marker information supplied to FAST-MAP is accurate. The user can usethe
marker_view interface to quickly scan through the markers on the gelsin a study, and
define correct allele windows. Figure 8.10 shows the marker_view interface for one of the
markers on demo.gel .

Start bp End bp : m Zoomin |
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Figure 8.10. Determining allele windows for markers. In marker_view, marker bands
from different gel lanes are aigned in asingle window, alowing the user to quickly verify
that the specified allele size window includes al the marker aleleslocally.
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Once we have verified that the sizing grid and the markers' allele size window information
are correct, FAST-MAP can proceed with automated allele calling. It isworthwhileto
confirm that the intermediate results are accurate (as we have been doing thus far) before
proceeding with this computation-intensive process, as there may be thousands of
genotyping experiments to be scored. From this point on, however, the alele calling
processis fully automated and requires no further user assistance, even on difficult data.
As an example, we show the complete program trace for the first marker in demo.gel:
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Marker D50S238 (1 of 5 markers in CHROMS50): [4-Dec-97 12:40:07]

Scanning demo.gel for marker windows................ccuveeeeee. Done.
Scanning demo.gel for marker bands..............coociiiinee. Done.
Binning marker bands.............cccooeiiieeni, Done
Quantitating D50S238 demo.gel lane 1.....a.b..Done.
Quantitating D50S238 demo.gel lane 2.....a.b.a.b..Done
Quantitating D50S238 demo.gel lane 3.....a.b.a.b..Done
Quantitating D50S238 demo.gel lane 4.....a.b.a.b..Done
Quantitating D50S238 demo.gel lane 5.....a.b.a.b..Done
Quantitating D50S238 demo.gel lane 6.....a.b.a.b..Done
Quantitating D50S238 demo.gel lane 7.....a.b.a.b..Done
Quantitating D50S238 demo.gel lane 8.....a.b.a.b..Done
Quantitating D50S238 demo.gel lane 9.....a.b..Done
Quantitating D50S238 demo.gel lane 10.....a.b.a.b..Done.
Quantitating D50S238 demo.gel lane 11.....a.b..Done.

Quantitating D50S238 demo.gel lane 12.....
Quantitating D50S238 demo.gel lane 13....
Quantitating D50S238 demo.gel lane 14....
Quantitating D50S238 demo.gel lane 15....
Quantitating D50S238 demo.gel lane 16.....
Quantitating D50S238 demo.gel lane 17....
Quantitating D50S238 demo.gel lane 18....
Quantitating D50S238 demo.gel lane 19.....
Quantitating D50S238 demo.gel lane 20....
Quantitating D50S238 demo.gel lane 21....
Quantitating D50S238 demo.gel lane 22....
Quantitating D50S238 demo.gel lane 23.....
Quantitating D50S238 demo.gel lane 24....
Quantitating D50S238 demo.gel lane 25....
Quantitating D50S238 demo.gel lane 26....
Quantitating D50S238 demo.gel lane 27....
Quantitating D50S238 demo.gel lane 28....
Quantitating D50S238 demo.gel lane 29....
Quantitating D50S238 demo.gel lane 30.....
Quantitating D50S238 demo.gel lane 31....
Quantitating D50S238 demo.gel lane 32....
Estimating genotypes..........ccccoevveeeennnnnn.

a.b.a.b..Done.
.a.b.a.b..Done.
.a.b..Done.
.a.b.a.b..Done.
a.b.a.b..Done.
.a.b.a.b..Done.
.a.b.a.b..Done.
a.b.a.b..Done.
.a.b.a.b..Done.
.a.b.a.b..Done.
.a.b..Done.
a.b..Done.
.a.b.a.b..Done.
.a.b.a.b..Done.
.a.b..Done.
.a.b.a.b..Done.
.a.b.a.b..Done.
.a.b.a.b..Done.
a.b.a.b.a.b..Done.
.a.b.a.b..Done.
.a.b.a.b.a.b..Done.

Using the following 23 estimated genotypes to construct initial

stutter library for D50S238:
demo.gel Lane 1:<139, 139> (qual =
demo.gel Lane 5: <139, 141> (qual =
demo.gel Lane 6: <141, 153> (qual =
demo.gel Lane 8: <141, 141> (qual =
demo.gel Lane 9:<121, 139> (qual =

demo.gel Lane 11 :
demo.gel Lane 12 :
demo.gel Lane 13 :
demo.gel Lane 14 :
demo.gel Lane 15 :
demo.gel Lane 17 :
demo.gel Lane 18 :
demo.gel Lane 19 :
demo.gel Lane 20 :
demo.gel Lane 22 :

<141, 143> (qual
<141, 143> (qual
<141, 141> (qual
<141, 141> (qual
<141, 141> (qual
<141, 141> (qual
<141, 141> (qual
<141, 141> (qual
<141, 141> (qual
<139, 139> (qual

0.94)
0.95)
0.93)
0.94)
0.92)
= 0.94)
= 0.94)
= 0.93)
= 0.92)
= 0.95)
= 0.93)
= 0.95)
= 0.93)
= 0.95)
= 0.94)
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demo.gel Lane 24 :
demo.gel Lane 25 :
demo.gel Lane 26 :
demo.gel Lane 27 :
demo.gel Lane 28 :
demo.gel Lane 29 :
demo.gel Lane 30 :
demo.gel Lane 32 :

<127, 139> (qual
<137, 139> (qual
<141, 143> (qual
<141, 143> (qual
<141, 143> (qual
<143, 143> (qual
<141, 141> (qual
<141, 145> (qual =

= 0.93)
= 0.96)
= 0.95)
= 0.94)
= 0.94)
= 0.94)
= 0.93)

0.95)

Bootstrappmg initial I|brary A using estimated genotypes............

Genotyping D50S238 demo.gel lane 1....
Genotyping D50S238 demo.gel lane 2....
Genotyping D50S238 demo.gel lane 3....
Genotyping D50S238 demo.gel lane 4....
Genotyping D50S238 demo.gel lane 5....
Genotyping D50S238 demo.gel lane 6....
Genotyping D50S238 demo.gel lane 7....
Genotyping D50S238 demo.gel lane 8....
Genotyping D50S238 demo.gel lane 9....
Genotyping D50S238 demo.gel lane 10....
Genotyping D50S238 demo.gel lane 11....
Genotyping D50S238 demo.gel lane 12....
Genotyping D50S238 demo.gel lane 13....
Genotyping D50S238 demo.gel lane 14....
Genotyping D50S238 demo.gel lane 15....
Genotyping D50S238 demo.gel lane 16....
Genotyping D50S238 demo.gel lane 17....
Genotyping D50S238 demo.gel lane 18....
Genotyping D50S238 demo.gel lane 19....
Genotyping D50S238 demo.gel lane 20....
Genotyping D50S238 demo.gel lane 21....
Genotyping D50S238 demo.gel lane 22....
Genotyping D50S238 demo.gel lane 23....
Genotyping D50S238 demo.gel lane 24....
Genotyping D50S238 demo.gel lane 25....
Genotyping D50S238 demo.gel lane 26....
Genotyping D50S238 demo.gel lane 27....
Genotyping D50S238 demo.gel lane 28....
Genotyping D50S238 demo.gel lane 29....
Genotyping D50S238 demo.gel lane 30....
Genotyping D50S238 demo.gel lane 31....
Genotyping D50S238 demo.gel lane 32....
Updating stutter library........ccccccceeeiiviiicciiiiennn. Done.

Done processing marker D50S238 at 4-Dec-97 13:01:34.

(Note: D50S238 is marker 1 of 5 markers in panel CHROM50 for DEMO.)

Marker D50S215 (2 of 5 markers in CHROM50): [4-Dec-97 13:01:34]

Scanning demo.gel for marker windows................ccuvveeeee. Done.
Scanning demo.gel for marker bands..............oociiiinee. Done.
Binning marker bands..............ccccciiiiiiie Done.
Quantitating D50S215 demo.gel lane 1.....a.b..Done.
a.b..Done.

Quantitating D50S215 demo.gel lane 2.....
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Since the computer requires no further user attentionin allele_call, the user can leave it to
analyze the data (say, overnight) unattended if there are many gelsto be processed. On an
Apple Power Macintosh with a 266 MHz PowerPC™ G3 processor, the total time taken to
process a 32-lane ABI gel with 5 markers (such as demo.gel ) isabout 45 minutes. We
show, in Table 8.1, an approximate breakdown of the total time spent in processing the
various computational tasks. As shown in the table, much of FAST-MAP's computation
(44%) was spent in quantitating the data bands, followed by determining the alleles (23%)
and constructing the sizing grid (22%). Because of FAST-MAP's highly quantitative
expectation-based approach, the actual total running timeis proportional to the quality of
the gel data, and may vary from gel to gel.

Task Program Time Percentage
Gel image extraction prep call 5 min/gel 11 %
Sizing grid construction image _call 10 min/gel 22 %
Data band quantitation alde call | 5-10 sec/experiment 44 %
Allele determination alde call 3-5 sec/experiment 23%
Totd 45 min/gel 100 %

Table8.1. Approximate FAST-MAP running times for a 32-lane 5-marker ABI gel (e.g.
demo.gel ) on an Apple Power G3/266 MHz Macintosh.

When FAST-MAP has finished analyzing the data, the user can return to review the results
using the allele view program. Because FAST-MAP uses expectation-based analysis, by
comparing the data with the expectations, the computer can reliably evaluateitsown allele
cals. Therefore, in addition to calling the alleles, FAST-MAP assigns a confidence
measure to each of its alele calls, and sorts the genotypes in terms of their confidence
values. Thisintelligent sorting functionality allows the user to review the results
selectively, rather than exhaustively. There are numerous sorting orders availablein
allele view for the user to selectively review genotyping results (Figure 8.11). For
example, the user may view the resultsin the "worst-first" order, reviewing just the data
with the most suspect results, and then stopping when the remaining data and results
improve.
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{® Lane order

) Worst-first

() Best-first

{_) Random

") Allelic ladder mismatches only

() SYD/ENUM conflicts only

() "limited.view" only

() "other.results” mismatches only

Figure 8.11. Various sorting orders available in allele_view for reviewing genotyping
results. The user can view the resultsin the default lane order ("Lane order™), or in the
worst-first order ("Worst-first") to correct suspect data. The user can also review the
resultsin best-first order ("Best-first"), or review only arandomly selected subset (say 10)
("Random"). For checking, it can be useful to review just those genotypes not on the
expected alelic ladder ("Allelic ladder mismatches"), or those for which the SVD and
ENUM algorithms disagree ("SVD/ENUM conflicts"). Alternatively, the user can input a
list of experimentsto review ("limited.view"), or supply afile of independently called allele
results to review the mismatches (" other.results mismatches").

The allele view interface organizes and presents the results with the original data, allowing
the user to verify the results at asingle glance, or to correct the calls with simple mouse
clicks. Figure 8.12 showsthe main allele view window with three display panes showing
the (@) electropherogram, (b quantitation, and () genotype for one genotyping experiment.
Each of the display panes are an active graphic object: if the user needs more detailed
information, the display panes can be expanded into a more detailed view by asimple
mouse click in the display pane, as shown in Figures 8.13 to 8.15.
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Figure 8.12. The main allele view window. Thiswindow shows the
electropherogram, the quantitation, and the genotype in three separate display panes.
This compact presentation allows the user to verify the correctness of the callsat asingle
glance. If necessary, the user can expand the view in each of the three display panes by
clicking inside the display pane. The user can also correct the genotype by typing in the
box labeled "Final".
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Figure 8.13. The zoomed-in view from the electropherogram display pane of the
main allele view window. Thiswindow shows the original electropherogram
("blue") for the experiment with the detected data bands (marked "*").
Electropherograms from the other dyes ("green”, "yellow", and "red") are also
shown. Thisalows the user to verify whether a spurious band was a dye
bleedthrough artifact. To determine if there are data bands lying outside the window,
the user can expand or contract the size window by clicking on the appropriate button
("Expand view" or "Contract view") in the window.
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Figure 8.14. The expanded view from the quantitation display pane of the main
allele view window. Thiswindow shows original electropherogram (dashed line)
overlaid with the computed fit (solid line) for comparison. The individual fitted peaks
are shown below the el ectropherogram, and they are labeled with the respective binned
alleles. Thetwo bandsthat correspond to the called alleles are shaded.
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Figure 8.15. The expanded view from the genotype display pane of the main
allele view window. Thiswindow shows the computer's consensus call
("COMPUTER"), the SVD call ("SVD"), and the top three ENUM calls
("ENUM1", "ENUM2", and "ENUM3"). The computer's confidence measures
for the computed genotypes are also displayed. The user can select any of the
computed calls asthe final genotype by clicking in the corresponding display
pane, or edit the genotype in the box labeled "Final".
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FAST-MAP does not use any pedigree information to call alleles. We leave family
information as an independent source for the user to verify and correct genotypes, if
necessary. However, if the user supplies appropriate pedigree information to FAST-MAP,
the computer can organize and display the results by family. To bring up afamily window
showing the electropherograms, quantitations, or genotypes for al individualsin afamily
(see Figures 8.16 to 8.18), the user clicks on the "Family" button in the allele_view
window. The family window shows the data and results of family membersin asingle
window, allowing the user to visually detect any non-Mendelian inheritance in the
genotypes, and correct them accordingly. The user can aso click on the"Lanes' button
(instead of the "Family" button) in the allele_view window to bring up awindow showing
the data and results from multiple adjacent lanes (that are not sorted by family), as shown in
Figure 8.19.
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Figure 8.16. Viewing the electropherograms from a family in one window. Clicking on
the "Family" button in the main allele_view window brings up the family window. The
electropherograms of the individuas in the same family are shown in one window, together
with their genotypes (indicated by the vertical dotted lines). The computer's confidence
values on each of the genotypes are shown on the right.
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Figure 8.17. Viewing the quantitations from afamily in one window. The user can view
the genotype quantitations of the individualsin afamily aligned in one window. The data
bands corresponding to the allele calls are shaded.
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Figure 8.18. Viewing the genotypes from afamily in one window. At asingle glance,
the user can detect non-Mendelian inheritance and correct it in the context of the other
family members' genotypes, if necessary.
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Figure 8.19. Viewing e ectropherograms from adjacent lanes together. In the absence
of family information, the user can view multiple lanes together by clicking on the "Lanes’
button in the main allele_view window. Asin the family view window, the user can view
the quantitations or genotypes of neighboring lanes by selecting the appropriate mode from
the pop-up button on the top of the window (labeled here as "Electropherog...").
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9. Results

Sinceits public release in July 1996, FAST-MAP has been used in academic research
laboratories, national research institutions, and commercia genotyping centers worldwide.
Many of our users downloaded the software from the FAST-MAP web site, and have been
independently using FAST-MAP to score their data generated in their laboratories.

Locally, our group alone has analyzed approximately 500 gels (contributed by our users) in
the twelve-month period from July 1996 to July 1997. By working closely with our
diverse users (including internal users within our group), and extensively testing the
system using real data, we were able to continually improve on FAST-MAP's
computational engines and user interface, making it atruly practical and robust system for
microsatellite genotyping. We report here the results of FAST-MAP on representative sets
of various types of datathat we have analyzed with FAST-MAP.

9.1. ABI data

The ABI/373 and ABI/377 automated DNA sequencers manufactured by Perkin-Elmer
generate the vast majority of fluorescent-based microsatellite genotyping data. For the
purpose of system testing and developing, we have analyzed a selected set of about 50 ABI
gels provided to us by our collaborators, predominantly by Dr. Soumitra Ghosh of the
NIH FUSION34 project, and Gordon Bentley of gene/Networks, Inc. In this section, we
report on acomparison of our automated genotyping software results, versus our
collaborators' labor-intensive use of ABI's Genotyper. Here, our comparisons were made
on aFUSION data subset. We will report the results from a data set provided by Gordon
Bentley at gene/Networks (a mouse phenomics company) in alater section on mouse data.

For assessment, the FUSION group selected six typical ABI gels, three generated on an
ABI/373 and three from an ABI/377. Each gel had 50 lanes, and was run using the same
panel, panel 5, which consists of 13 dinucleotide repeat markers (see Table 9.1), for atotal
of 3,900 experiments (102 uncallable aleleswere not included in thisanalysis). The
FUSION group manually scored their data using ABI's Genotyper asfollows:. first, two
human experts independently reviewed and edited the alleles, using additional inheritance

34FUSION stands for Finland-U.S. Investigation of NIDDM Genetics.
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processing to correct Mendelian inconsi stencies when necessary; then, the experts met with
each other to review their individual allele scores and to reach a consensus on the genotypes
on which they disagreed.

marker dye alldewindow (bp) | repeat (bp)
D4S392 FAM 90 -123 2
D3S1311 FAM 129 — 158 2
D3S1565 FAM 168 — 197 2
D43406 FAM 230 — 266 2
D3s1271 HEX 80—-104 2
D4423 HEX 120 - 152 2
D4428 HEX 183 —209 2
D4405 HEX 274 —-304 2
D3S1285 TET 93-113 2
D4S1534 TET 128 — 164 2
D3S1263 TET 167 -214 2
D3S1614 TET 218 — 258 2
D4S1597 TET 268 — 298 2

Table9.1. The markersin panel 5. A total of 13 dinucleotide markers are designed for
multiplexed run-out on asingle gel: 4 of the markersin the panel are labeled with the FAM
fluorescent dye, 4 with the HEX dye, and 5 with the TET dye.

The FUSION group aso ran an old version of FAST-MAP to automatically compute an
independent set of scores. They compared the old FAST-MAP scores against their own by
comparing the allele size differences between the two methods of scoring. Their results
showed the old FAST-MAP having a 4.39% discrepancy rate relative to the ABI/373 data,
and a 1.06% discrepancy for the ABI/377.

Using the six FUSION assessment gels, we refined FAST-MAP further, and we greatly
reduced its discrepancy ratesto a 1.4% for the ABI/373 data, and avery low 0.3% rate for
the cleaner ABI/377 data3>. Table 9.2 shows the actual number of miscalls per marker
made by FAST-MAP versus the number of post-Mendelian human edits. In this case, the
exquisite quantitative and pattern-matching methodsin FAST-MAP enabled the computer to

35These results were obtained using TrueAllele™ v1.02. TrueAllele™ isthe commercial successor of
FAST-MAP.
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surpass manual scoring using only electrophoretic datawithout resorting to any pedigree

information.
ABI/373 ABI/377
marker no. of miscalls no. of miscalls
genotypes | computer human genotypes | computer human

D4S392 146 4 7 147 0 1
D3S1311 146 3 1 146 1 0
D3S1565 146 1 5 147 1 24
D43406 146 3 9 147 1 4
D3S1271 143 0 0 146 0 1
D43423 145 1 0 146 1 2
D43428 145 0 0 146 0 0
D43405 145 3 0 145 0 2
D3S1285 146 3 3 146 0 1
D4S1534 147 1 0 147 0 0
D3S1263 146 1 12 147 0 4
D3S1614 147 6 2 147 0 0
D4S1597 146 1 0 147 2 0

total 1894 27 39 1904 6 39

(14%)  (2.1%)

(03%)  (2.1%)

Table 9.2. The number of miscalls made by the computer versus the number of post-
Mendelian edits made by the human experts on the six FUSION assessment gels.

In addition, FAST-M AP generates binned allelesin the genotypes which can be used
directly asinputsto linkage analysis programs, whereas conventional genotyping software
such asthe ABI's Genotyper outputs sizes interpolated from the MW sizing calibration

curve asthe aleles. These real-numbered sizes have to post-processed by rounding into

integral valuesfor linkage analyses. We show in Table 9.3 the errors associated with direct

rounding of the MW-interpolated sizes, compared with the errors resulted from rounding
off our stutter-crawling adjusted sizes (which is how FAST-MAP generates the binned
integral allelesin the genotypes). In the comparison, we assume that the alleles for each of
the markersin panel 5 are evenly-spaced, so any alleles that do not fall on the markers
allelic ladders (because of rounding errors) are considered as miscalls. Our results show
that FAST-MAP's stutter-crawling method drastically reduces the associated rounding
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errors, generating superior genotyping results with unambiguous integral allele

assignments.
ABI/373 ABI/377
marker no. of off alelic ladder no. of off alelic ladder
genotypes MW stutter genotypes MW stutter
compared sizing crawling | compared sizing crawling
D4S392 146 78 3 147 6 0
D3S1311 146 61 0 146 83 0
D3S1565 146 1 0 147 1 0
D43406 146 69 2 147 103 0
D3S1271 143 47 1 146 46 0
D43423 145 0 0 146 6 0
D43428 145 8 0 146 30 0
D43405 145 92 0 145 42 0
D351285 146 85 4 146 0 0
D4S1534 147 1 0 147 6 0
D3S1263 146 84 0 147 1 0
D3S1614 147 23 1 147 81 0
D4S1597 146 60 0 147 36 0
total 1894 609 11 1904 441 0
(32.2%) (0.58%) (23.2%) (0.00%)

Table 9.3. The number of genotypes containing alelesthat do not fall on an allelic ladder
(e.g. an odd-even allele pair). The miscalls associated with rounding directly from the
MW:-interpolated sizes are compared with the binning errors using FAST-MAP's stutter-
crawling method.

Precise sizing of the allele bandsis critical in size-polymorphic microsatellite markers —
the subsequent linkage analyses depend directly on accurate and consistent alele
assignments in the genotypes. Asaway to evaluate the reliability of FAST-MAP inits
allele assignments, we measure the "bin widths' of each alele category (or "bin"). The
width of an allele bin is defined as the expected absolute difference between the bin label
(an integer) and the unrounded sizes of the allele bands assigned to the alele bin (i.e. the
expected rounding error). Since the final alele assignment depends on rounding the real-
valued molecular sizes, asmall bin width implies that the alleles can be assigned to the
allele bin with little ambiguity. In Table 9.4, we compare the average bin widths of the
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markersin panel 5 using the interpolated sizes from the MW calibration curves, versus the
adjusted sizes using the stutter-crawling method. Our results show that for the FUSION
group's panel 5 data, stutter crawling reduces the average bin-widths from 0.25 bp to 0.19
bp for ABI/373 data and from 0.24 bp to 0.12 bp for ABI/377 data.

ABI/373 ABI/377
marker bin width (bp) bin width (bp)

MW Stutter MW Stutter

sizing crawling Sizing crawling
D4S392 0.26 0.16 0.20 0.18
D3S1311 0.23 0.14 0.20 0.06
D3S1565 0.25 0.20 0.29 0.11
D43406 0.26 0.25 0.30 0.15
D3S1271 0.28 0.22 0.26 0.16
D43423 0.26 0.19 0.13 0.08
D43428 0.27 0.19 0.27 0.10
D43405 0.25 0.18 0.23 0.08
D3S1285 0.27 0.26 0.22 0.12
D4S1534 0.23 0.17 0.26 0.12
D3S1263 0.23 0.19 0.22 0.15
D3S1614 0.21 0.19 0.30 0.13
D4S1597 0.24 0.14 0.25 0.18
average 0.25 0.19 0.24 0.12

Table9.4. Average alele bin widths using sizes interpolated from MW calibration
curves versus using sizes that were adjusted with stutter-crawling.

Aswe have pointed out in Chapter 5, using unadjusted sizes interpolated directly from the
MW calibration curve can cause errors because of the potential chemical differences
between the marker DNA and the MW DNA used. We show in Table 9.5 the average size
per repeat computed from the gradient of plotting the actual interpolated MW sizes against
the assigned alleles (integers) for each marker in panel5. The results show that the MW
sizes directly interpolated from the MW sizing grid range from 1.87 bp to 2.07 bp per
repeat, instead of the expected 2 bp per repeat (the markers are all dinucleotides). This
discrepancy can cause miscalls such as the off-ladder errorsin Table 9.3, aswell as
miscalls that are on the alelic ladder, but are off by multiples of the marker's repeat size
(this usually happens for genotypes with aleles that are far apart). Let ustake the marker
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D4S1597 as an example. According to Table 9.5, a genotype for D4S1597 having a pair
of alelesthat are 12 repeats apart (e.g., at 270 bp and 294 bp) will have a size difference of
only 22.44 bp (12x1.87) between the alleles on an ABI/373 sequencer instead of the
expected 24 bp (12x2), if we used sizesinterpolated from the MW grid directly. This
means that a genotype of (270 bp, 294 bp) for D4S1597 may have interpolated sizes of,
say, (270 bp, 292.44 bp), which, when rounded, gives an erroneous (270 bp, 292 bp) as
the genotype. In FAST-MAP, this problem is solved by locally adjusting the sizing grid
using the actual marker data on the gels. The stutter crawling approach adapts the MW
sizing grid to conform to the actual 2 bp-per-repeat ladder. Indeed, as shownin Table 9.5,
the expected size per repeat after adjustment by stutter crawling is 2 bp per repeat for every
marker in panel 5.

ABI/373 ABI/377
marker Size per repeat (bp) size per repeat (bp)
MW Stutter MW Stutter
sizing crawling Sizing crawling

D4S392 1.91 1.99 1.97 2.00
D3S1311 2.06 2.00 2.06 2.00
D3S1565 1.91 1.99 1.96 2.00
D45406 1.93 1.99 1.95 1.99
D3S1271 2.07 2.00 1.94 2.00
D43423 2.02 2.00 2.03 2.00
D43428 1.95 2.00 1.94 1.99
D43405 1.91 2.00 1.90 2.00
D3S1285 1.95 1.99 1.98 2.00
D4S1534 2.06 1.99 2.01 2.00
D3S1263 1.94 2.00 1.95 2.00
D3S1614 1.96 2.00 1.96 2.00
D4S1597 1.87 2.00 1.91 2.00

Table9.5. Sizes per repeat using interpolated sizes from the original MW sizing grids
versus using interpolated sizes from sizing grids adjusted by stutter crawling. Asthe
markersin panel 5 are al dinucleotides, the expected size per repeat for each marker is 2
bp.
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9.2. Pharmacia data

The Pharmacia ALF system is another widely used automated DNA sequencer. Because it
isasingle dye system, high density internal size standards such as those in the ABI
machines are not supported. The ALF also may have more limited base pair resolution than
competing DNA sequencers. However, the gels do run very straight, which permits
automatic lane detection into 1D electropherogram signals during signal acquisition,
without any intermediate 2D imaging step. In collaboration with Drs. Michael Gorin,
Robert Ferrell, and Daniel Weeks at the University of Pittsburgh, we reviewed over 400
Pharmacia genotyping gelsfor their retinal genetics project. We report here a comparison
of our automated genotyping software results, versus our collaborator's labor-intensive and
error-prone results using the ALF software.

Over 6-9 months, our collaborators generated Pharmacia ALF gels containing 40 lanes per
gel using panels containing 2 to 5 tetra- (and other) nucleotide repeat markers. They scored
these data, and performed initial statistical anayses on their allele calls, including:
» acomparison of alelefrequenciesfor each marker intheir ALF data, versusthe
reported Cooperative Human Linkage Center (CHLC) frequencies; and
» achi-square analysis for expected degree of allele homozygosity.

Theseinitia analysesrevealed avery large allele scoring error (for some markers, in excess
of 90%), indicating that the gels had to be rescored. Asathree-week project, we rapidly
adapted FAST-MAP to handle ALF data, and helped to rescore over 150 key ALF gels
within the time alotted.

In the first week, we devel oped custom user interfacesfor sizing in ALF data. Most of our
collaborators data differed from the ABI data (that FAST-MAP was designed for) in two
ways:

(@ only two widely separated size standards (e.g. at 100 bp and 500 bp) were used,
giving alow local sizing resolution that was inadequate for the 4 bp separation for
their tetranucleotide markers; and

(b) the size standards were size separated together with the marker DNA in every lane (in
asingle dye), with the result that one size standard was typically buried in the genetic
marker data.
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To solve the problem of low sizing resolution, we extended our expectation-based
approach by pre-constructing arefined MW binning library using gels loaded with a 50-bp
sizing ladder36. This pre-calibrated MW binning library was then used to predict the non-
loaded sizing bands on the gelsthat only ran two size standards. With these pre-calibrated
expectations stored in the MW binning library, we were able to achieve an effective 50-bp
sizing resolution, even on gels with only two size standards that were 500 bp apart.

The second problem of distinguishing the size standard data that were buried in the genetic
marker data was much more difficult to solve computationally without user assistance. To
achieve our primary goal of attaining the best results possible in ashort period of time, we
decided to incorporate user assistance in helping the computer decipher the data. We added
apowerful "snap-to" user interface to FAST-MAP that allowed the operator to click on
only afew of the (visible) size standards to give the computer some information about
where the size standards are. By exploiting the horizontal continuity of size standards
between lanes, the computer horizontally interpol ated between the lanes (by intelligent peak
finding), and automatically filled in the size standard bands for all the lanes, as shown in
Figure 9.1. The computer then used the pre-calibrated MW binning librariesto vertically
interpolate within the lanes, rapidly establishing highly accurate internal lane sizing from
the available data.

36This was the highest sizing resolution available in their data
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Figure 9.1. Custom "snap-to" ImageView ALF interface. Top: The user
clicks on severa size standards to suggest where the size standards are. Bottom:
The computer automatically fillsin the rest of the size row, and then calibrates
the DNA sizesin every lane.
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We were able to rapidly adapt FAST-MAP to process qualitatively different genotyping gel
datain lessthan aweek. We attribute this successto FAST-MAP's highly modular user
interface and computational engine. In the second and third weeks of our project, we
worked closely with our collaborators and succeeded in scoring the 170 ALF gelsthat they
needed for their deadline. We continued working with them to reach atotal of over 400
scored ALF gels over the following month, after which our collaborators continued to use
FAST-MAP to score their gels on their own.

To evaluate the quality of FAST-MAP's dlele scoring on the ALF data, we compared the
allele frequencies for the expected CHL C versus the observed ALF and FAST-MAP calls
for many of the markers analyzed. In Figure 9.2, we plot the comparison for one of the
markers, showing that the ALF calls did not fit the expected alele distribution, whereas the
FAST-MAP scorings did. Infact, for the marker shown, the homozygosity chi-square
values for the ALF and FAST-MAP scorings were 186 and 3, respectively. Overal, the
homozygosity chi-square values for the FAST-MAP scorings were consistent with the
expected CHLC alee distributions (Figure 9.3). The ALF vs. CHLC alele frequency
comparison data suggested to our collaborators that they had a scoring problem. The
FAST-MAP vs. CHL C frequency comparison data reassured them that FAST-MAP's
automated scoring was reasonably accurate.
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Figure 9.2 A comparison of CHLC, ALF, and FAST-MAP allele distributions for a
tetranucleotide repeat marker.
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Figure 9.3. The logarithm of the homozygosity chi-square value (FAST-MAP scoring
vs. CHLC allele distribution), plotted in rank order for FAST-MAP scoring of 30 CHLC

markers.
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9.3. Mouse data

The mouse, a genetic relative of humans, is an indispensable model organism for the
investigation of the genetic mechanisms in human diseases. The power of mouse genetics
ismostly derived from using inbred (genetically "pure") strains of mice for cross-
breeding3’. An inbred mouse strain produces a monoallelic system — each marker is
homozygotic for precisely one alele. Crosses between inbred strains result in an elegant
biallelic system which isvery useful for the study of inherited complex diseases.

Our collaborator Gordon Bentley at gene/Networks (a mouse phenomics company)
generated such backcross genotyping data using microsatellite markers on ABI/377
sequencers. In the study described here, two sets of mouse samples were used, named
MOUSE1 and MOUSE2. MOUSEL and MOUSE2 each have 96 samples. A total of 12
mouse microsatellite marker panels were studied with each sample set. For each marker
panel, PCR products of al 96 samples (from either MOUSEL or MOUSE?2) were |loaded
onto two ABI/XL gels, with 48 samples on each gel. This compact experimental setup
produced atotal of 48 XL gels (16,128 genotypes) for the two sets of mouse samples and
all the twelve marker panels (84 distinct dinucleotide markers3s).

We show some of the mouse electropherograms in Figure 9.4 to illustrate the wide range of
stutter patternsin the data. Although there was great diversity in the stutter patterns
observed in the 84 mouse markers, these stutter patterns were not dissimilar from those
encountered in human data. As such, we expected FAST-MAP to anayze the mouse data
without any system modifications.

37The short breeding time (21-day gestation) of mice allows geneticists to rapidly generate unlimited
numbers of offspring in the laboratories.

38There were actually 91 markers, but 7 of them did not amplify and were discarded from the analysis.
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Figure 9.4. Electropherograms from mouse dinucleotide markers. Shown here are
examples from four mouse markersto illustrate the diverse stutter patternsin the
markers. In particular, the top marker (marker "65"), showed almost no "plus-A™
artifacts. The second marker (marker "67"), showed significant "plus-A" artifacts, but
the "plus-A" bands are less dominant than the actual allele bands. In the third marker
(marker "43"), the "plus-A" bands and the data bands have comparable intensities,
whereas in the last marker (marker "55"), the "plus-A" bands actually dominate the
actual bands. The fluorescent dyes used were FAM, HEX, and NED from ABI'sfilter
set D.
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We ran FAST-MAP unmodified on the 48 gels of mouse data provided to us by our
collaborator. For evaluation purposes, we did not allow FAST-MAP to exploit the bidlelic
characterigtic of the mouse datato help in calling the dleles. Thisartificia limitation
allowed us to assess two FAST-MAP features:
(@) itsprecise sizing to consistently align the alleles from lane to lane, aswell as gel to gel
(since the samples were loaded across two separate gels), and
(b) itsstutter removal to accurately call only two distinct aleles for each marker in the
biallelic mouse system.

Figures 9.5(a,b,c) show how FAST-MAP accurately called the alleles in the mouse data
without imposing any biallelic constraints.
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Figure 9.5a. Electropherograms from a mouse marker (marker "67" from Figure 9.4).
Shown here are 10 lanes of electropherograms, 5 from each of the two gels that was
loaded with the mouse DNA from the corresponding marker panel (we show the last 5
lanes from thefirst gel, and the first 5 lanes for the second gel here). The vertical dotted
lines show the aleles called by FAST-MAP.
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Figure 9.5b. The quantitated data from the electropherograms shown in Figure
9.5a. The darkened bars depict the stutter bands, while the shaded bars show the data
bands corresponding to the called aleles. FAST-MAP was able to systematically
remove the stuttering and accurately call the two alelesin the bialelic system, despite
the high degree of PCR stuttering in this marker. This stutter is shown by the presence
of many darkened bars in each of the experiments.

216



L44:BD2-317-2(208,208) ! 0.9656
1 | | | | 1 1 1 | | 1 |
L45:BD2-318-1(204,208) 0.8276
1 1 1 1 1 1 1 ! 1 ! 1 1 1
L46:BD2-318-2(204,208) 0.8463
L47:BD2-318-3(204,208) 0.8083
1 1 1 1 1 1 1 ! 1 ! 1 1 1
L48:BD2-3184 (204,208) 0.7975
L1:BD2-319-1(204,208) 0.7854
1 1 L 1 L 1 L ! L ! L 1 1
L2:BD2-319-2(208,208) ! 0.757
1 1 | 1 | 1 1 1 1 1 1 1
L3:BD2-319-3(208,208) ! 0.6785
L4:BD2-319-4(204,208) 0.6667
1 1 1 1 1 1 1 ! 1 ! 1 1 1
L5:BD2-319-5(208,208) l 0.7166

Figure 9.5c. The alleles called by FAST-MAP for the mouse data shown in Figure 9.5a.
The results show that FAST-MAP was able to consistently call the two alleles across gels
and amidst high PCR stuttering, producing genotypes that conformed to the underlying
bialelism.
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We evauated FAST-MAP's performance in the mouse data by measuring the number of
genotypes called by FAST-MAP that violated the biallelic constraint. A marker genotype
caled by FAST-MAP that includes athird alele is considered a miscall, since there would
only betwo possible dlelesif al the data (96 genotypes for each sample set) for the marker
had been called correctly3°.
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Table 9.6. Number of markersin each mouse sample set classified by the number of
genotypes called by FAST-MAP with biallelic conflicts.

Table 9.6 shows the number of markerswith bialelic conflictsin the genotypes called by
FAST-MAP. The results show that, without any modifications to handle biallelic mouse
data, FAST-MAP was able to type 22 out of the 84 markersin MOUSE1, and 28 out of

39Note that the converse is not true: perfect biallelism in the called alleles does not necessarily imply
accurate allele calls. Errors such as homozygotes called as heterozygotes (and vice versa) are not accounted
for in our biallelism comparisons. Thus, the biallelism results presented here should be considered as an
upper bound on FAST-MAP's performance on this set of mouse data.
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the 84 markersin MOUSE2, with perfect biadldlic dlele cals. Assummarized in the charts
in Figure 9.5, at least two-thirds of the 84 markers had close to perfect (0 to 5 errors)
bidldicdldecalls.

>20
er;;:s pe;ﬁ;et exrors perfect
175 325
11-20
errors
5%
11-20
erroxs
6-10 11%
exroxs
10%
6-10
erroxs
1 exxox 103 1 exxox
21%
25 115
_xrors -
213 Tios
MOUSE1 MOUSE2

Figure 9.6. Pie-charts showing the percentages of markers in the mouse data with
varying degrees of bialdic conflicts in the genotypes called by FAST-MAP.

The results showed that FAST-MAP's automated genotyping technology was not restricted
to the human species, and that FAST-MAP could genotype biallelic data with reasonable
accuracy without any extensions. Of course, one should take advantage of the biallelic
congtraint in the data to improve the accuracy of the allele calls. FAST-MAP could usethe
additional biallelic constraint to focus its pattern matcher on recognizing at most the two
possible aleles for each marker. We show in Figure 9.7 an example of how thisbiallelic
expectation can considerably improve the accuracy and robustness of FAST-MAP's
expectation-based alele calling by avoiding any spurious bands that occur at the non-
bialelic locations.
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Figure9.7. Potential for automating error detection using the biallelic nature of the data.
We show here an example from marker "3" of MOUSEZ2 in which there were bleedthrough
(or contamination) bandsin every lane at 128 bp (and 129 bp) that caused the miscalls. If
FAST-MAP could exploit the expected bialelism in the data, it would have ignored the
spurious bands at 128 bp using the expectation of only two possible alleles at 115 bp and
143 bp to call the dlelesfor the marker.
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9.4. Pooled DNA data

In Chapter 7, we described how our deconvolution methods enabled a useful new

functionality called pooled microsatellite genotyping.

* By pooling together the DNA from many (e.g., 10-100) individualsin equimolar
ratios, and PCR amplifying with a single genetic marker, allele frequency data can be
generated;

» Estimates of the allele frequency in the pooled population can then be determined using
our deconvolution methods to effectively eliminate underlying PCR stutter in the pooled
data.

The pooled DNA approach is attractive because it can potentially reduce the number of
required experiments 10-100 fold. For example, asingle PCR amplification and sizing of a
pool of 100 individuals reduces 100-fold the work to amplify and size each individual
separately. Chapter 7 described a computational solution for genotyping pooled
microsatellite DNA as an extension of our GMBD algorithms for individual DNA
genotyping. The success of the pooled DNA approach aso relies on experimentally
generating high quality pooled DNA datathat can be automatically analyzed by the
compulter.

9.4.1. Post-PCR pooling

We conducted laboratory experiments to assess how well our automated genotyping
software determined allele frequencies from microsatellite data on pooled DNAs. Lillian
Bloch, from Cybergenetics, Inc., generated the post-PCR pooling data described in this
section, as well as the pre-PCR pooling data to be described in the next section.

Our initial explorations were done using pools of post-PCR products. Individua DNAs
were PCR amplified with microsatellite marker primers, and size separated on an ABI
sequencer. FAST-MAP determined the alelesin each DNA sample, and in the process
constructed the binning, stutter, and relative amplification calibrations for each marker.
Pools of 2, 4, and 8 individual PCR products were then constructed, and size separated on
an ABI/377 sequencer. FAST-MAP then performed pooled GMBD to compute the allele
distributions for the pooled samples of different sizes.
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For comparison, we compute the L 1-norm between a computed allele distribution vector
and the actual alele distribution vector, divided by two to give the number of aleles
"misplaced” by the computer. Each misplaced alele causes a difference of one alele at the
source allele bin, and a second alele at the target allele bin. We divide the L 1-norm by two
so that each misplaced allele is not counted twice.

Let us examine the results of D16S403, one of the dinucleotide repeat markers that we
investigated in more details®. D16403 is a FAM-labeled dinucleotide repeat marker with
an alelerange of 125-155 bp. In our experiment, eight individual DNA samples for
D165403 were PCR amplified, and then pools of 2, 4, and 8 were constructed from the
individual PCR products. All the samples (individual and pooled) were then size separated
on an ABI/377 sequencer, and the resulting gel data automatically analyzed by FAST-
MAP.

FAST-MAP used the individual sample experiments to construct the binning, stutter, and
relative amplification calibrations for D16S403. It also determined the alelesin each DNA
sample, as shownin Table 9.7. From these genotypes, we compute the expected (actual)
allele distributions for the different pooled samples.

sample dleel dlde2
sl 135 137
s2 137 141
s3 143 151
A 139 149
sb 139 141
s6 139 141
s7 137 143
s8 139 139

Table 9.7. Genotypes of the eight individual DNA samples for D165403. The alleles
arein bp units.

With the D16S403 marker library that it had constructed from anayzing the individual
sample experiments, FAST-MAP then computed the allele distributions for the pooled
experiments. We show the results for the eight pooled samplesin Table 9.8.

40w e have shown example pooled data and results for D16S403 in Section 7.4 previously.
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Table 9.8. Actual versus computed allele distributions for D16S403. Each of the pooled
samples were labeled with an si-j, indicating that the pooled sample contained individual
samples s through §. The number of "misplaced” aleles (the rightmost column) in each
computed allele distribution was computed by dividing the L1-norm by 2.

Table 9.9 shows the number of misplaced alelesin the allele distributions computed by
FAST-MAP for the different dinucleotide repeat markersin our post-PCR pooling
experiments. The number of misplaced allelesincreases as the size of the pools become
larger, since there are more alleles to estimate with larger pools.

223



microsatellite| repeat number of misplaced alleles
marker (bp) 2-sample 4-sample | 8-sample
pool pool pool
D163403 2 0 1 0 1 2 1 3
D1468 2 0 0 1 0 2 1 2
D3S1304 2 1 0 1 0 2 1 2
D5S211 2 1 1 1 0 2 1 4
D5$408 2 0 0 1 0 2 1 3

Table9.9. Number of misplaced allelesin the computed allele distributions for different
sizes of pooled samples. A total of 8 DNA samples were used in generating post-PCR
pools of size 2, 4, and 8, giving four 2-sample pools, two 4-sample pools, and one 8-
sample pools for each of the markers studied.

To determine whether our pooled GMBD methods scale up with increasing pool sizes, we
compare the total number of misplaced aleles (out of the 16 alelesfrom the 8 DNA
samples) for different pool sizes. That is, we sum the misplaced alleles from Table 9.9 for
samples of the same pool sizes. Theresultsin Table 9.10 show that the performance of
pooled GMBD does not noticeably diminish asthe pool size increases. For example, the
computed allele distributions (for 16 alleles) from asingle 8-sample pool were as accurate
as those computed from two batches of 4-sample pools.

microsatellite repest total no. of misplaced alleles (out of 16 aleles)
markers (bp) 2-samplepool | 4-samplepool | 8-sample pool
D163403 2 2 3 3
D1468 2 1 3 2
D3S1304 2 2 3 2
D5S211 2 3 3 4
D5408 2 1 3 3

Table 9.10. Total number of misplaced alleles in the computed alele distributions for the
different sizes of pooled samples. A total of 16 allelesfrom 8 individual DNA samples
were determined using batches of 2-sample pools and 4-sample pools, aswell asinasingle
8-sample pool.

These preliminary synthetic results with post-PCR pooled samples suggested that FAST-

MAP's pooled GMBD approach could potentially work well with real pooled DNA data.
Post-PCR pooling does not reduce the work required to amplify the DNA samples, since
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each sample must be individually PCR amplified before pooling for gel run-out. To fully
exploit the efficiency in pooled genotyping, it isimportant to pool the DNA samples prior
to PCR amplification, so that thereis only one PCR amplification experiment for each
pooled sample, regardless of pooling size. Thus, to redistically assess FAST-MAP's
pooled GMBD analysis algorithms, we needed to experimentally generate pre-PCR data.

9.4.2. Pre-PCR pooling

We conducted a new set of pooled experiments with these useful characteristics:
(@ pre-PCR pooling: DNA samples were pooled and PCR amplified asasingle
mixture;
(b) large pool size: DNA from up to 96 individuals were pooled together;
(c) different marker repeats. Di-, tri-, and tetranucl eotide repeat markers were used to
assess the presence of PCR stuttering affects FAST-MAP's automated pooled

genotyping.

We genotyped each individual separately (using FAST-MAP) to generate the actua alele
distributions for comparison. This step also compiled the marker libraries used in pooled
GMBD. For individua DNA genotyping, DNA samples from 96 individuals were
prepared in equimolar 3 ng/ul concentrations, and then separately PCR amplified using
different microsatellite primers, including di-, tri-, and tetranucl eotide repeat markers. The
PCR product of each DNA sample was size separated on an ABI/377 sequencer (including
internal lane size standards). FAST-MAP was then used to automatically determine the
alelesin each sample. Theseindividually scored genotypes collectively formed the actua
allele distributions, and were used to compare with the pooled sample analysis.

For pre-PCR pooling, we pooled the DNA samplesinto 8 pools of 12 samples. We took
aliquots from these pools to construct 4 pools of 24 samples, then 2 pools of 48 samples,
and finally 1 pool containing 96 samples. (We subsequently learned that the 7th of the 8
12-fold pools contained one extra sample, but this addition did not materially affect our
protocols, analysis, or results.) Each pooled template contained 48 ng of DNA in an 18 ul
volume, and was part of a standard 50 ul PCR containing 2.5 units of Amplitag Gold,
1.25ul of each primer, 200uM dNTP's, and 2.5mM MgCl,. We separately PCR amplified
the 15 pools using different di-, tri-, and tetranucl eotide repeat markersin an MJ Research
PTC-100 thermocycler (30 cycles of 94°C for 1.25', 55°C for 1', and 72°C for 1'). We
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size separated the PCR products on an ABI sequencer, including GS350 50 bp internal lane
Size standards.

The FAST-MAP analysis of our data included automated lane tracking, automated binning,
automated DNA quantitation of each peak, and automated estimation of the pooled alele
distribution. Table 9.11 shows the total number of misplaced aleles out of 194 alleles for
the different pool sizesfor adi-, atri- and atetranucleotide marker. We aso present the
graphical comparisons between the three markersin Figure 9.8.

microsatellite | repeat total no. of misplaced aleles (out of 194 alleles)
markers (bp) 12-sample 24-sample 48-sample 96-sample
pool pool pool pool
D10S212 2 63 53 46 31
D10S1230 3 45 55 33 28
D251394 4 46 53 62 47

Table 9.11. Total number of misplaced alleles for the different pool sizes of pre-PCR
DNA pooling. Shown here are the results of one di-, one tri-, and one tetranucleotide
marker. A total of 97 DNA samples were pooled, so one of the eight 12-sample pools
actually had 13 samples, one of the four 24-sample pool had 25 samples, one of the two
48-sampl e pools had 49 samples, and there were 97 samples in the 96-sample pool.

Aswith the post-PCR experiments, the pre-PCR results showed that increased pool size
did not diminish the performance of pooled GMBD. In fact, for the three markers shown,
the larger sample pools had fewer misplaced aleles than the smaller sample pools
collectively. Most striking isthe result of the dinucleotide D10S212, as compared to the
(stutterless) trinucleotide and tetranucleotide. Not only did the presence of PCR stuttering
in D10S212 not hinder FAST-MAP's automated pooled genotyping, but it appeared to
improve the robustness of pooled genotyping. As shown in Figure 9.8, pooled genotyping
of dinucleotide D10S212 was generally more accurate than the stutterless tetranucleotide
D2S1394 (and at least as accurate than the trinucleotide D10S1230, if not more so). In
gpite of its convoluting stutter bands, D10S212 had the most accurate computed allele
distribution for the 96-sample pools. Just asin single-sample genotyping where the
presence of stutter signatures had hel ped to distinguish spurious peaks from actual data, the
stutter signatures appeared to have made pooled GMBD computation more robust. 1nthe
absence of PCR stuttering, alleles are wholly represented by single data bands. Without
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the expectation of stutter patterns, an error in asingle band is difficult to detect or recover,
and can drastically affect the overall alele distribution computation. In the presence of
PCR stuttering, however, the additional stutter bands might serve as secondary "backups®

for data bands that failed to properly amplify, allowing the computer to recover from
Spurious errors.

70
BD105212(di)

60 - OD10S1230 (tri) ||
BD251394 (tetra)
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[ o
o o

no. misplaced alleles (out of 194)
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Figure 9.8. Comparisons of the total number of misplaced alleles for the three different
markersin our pilot pre-PCR pooling experiments.

227



9.5. Mononucleotide data

The mononucl eotide repeats are the most ubiquitous class of microsatellite markers, and
could have been the microsatellite markers of choice for high resolution genetic mapping.
Unfortunately, because of their inherent PCR stuttering and the requisite 1 bp separation
for alele caling, the mononucl eotides avoided for the same reasons that the dinucleotides
have been traditionally avoided.

The mononucleotides are computationally similar to the dinucleotides. Just as FAST-
MAP's deconvol ution methods remove stutter bands from dinucleotides, they can be used
to remove stutter bands in mononucleotides. Similarly, FAST-MAP's stutter-crawling
method can be used to achieve the 1 bp separation required in mononucleotides on high-
resolution sequencing gels. In fact, when binning the alleles by stutter crawling, the
inherent 1 bp separation in the mononucleotide data (which intrinsically lacks the "plus-A"
artifact) can lead to less ambiguity for FAST-MAP, since no other bands are expected to lie
between allelic bands, unlike larger repeat sizes. Therefore, the mononucleotides might
well be superb microsatellite markers for FAST-MAP's data-intensive and data-
disambiguating computational processing.

Since mononucl eotide repeats are non-conventional genotyping data (like the mouse and
pooled DNA data), we need to experimentally generate high quality genotyping data from
mononucleotide markers. One FAST-MAP user, Dr. Charles Mein from Dr. John Todd's
group in the Wellcome Trust Centre for Human Genetics at the University of Oxford,
generated mononucleotide data and provided us with preliminary datafor FAST-MAP
analysis. In the following example, a mononucleotide marker, Monol, inthe allele size
range 100 to 110 bp, was amplified with TET-labeled PCR primers. 34 different DNA
samples for Monol were loaded on an ABI/373 gel4L.

FAST-MAP performed automated lane tracking, automated binning, automated DNA
guantitation of each data peak, and automated allele calling by deconvolution of each
experiment on the gel without any system modifications. In Figure 9.8, we show an
sample electropherogram trace for a heterozygote separated by 1 bp. The observed stutter

41The gel image for the MW sizing plane of this gel was shown in Figure 4.3a of Chapter 4: Grid
Construction.
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patterns of Monol are similar to those from a dinucleotide repeat marker (such as one with
dominant "plus-A" artifacts), except that the true alleles can be as close as 1 bp apart.
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Figure 9.8. An electropherogram trace for Monol, a TET-labeled mononucleotide
marker with the size range of 100 to 110 bp. Shown here is a heterozygote which has
alleles that are separated by only 1 bp (103 bp and 104 bp).

In this pilot study, FAST-MAP scored al 34 different DNA samples of Monol correctly.
We show the electropherogram traces and the allele calls for the first 10 lanesin Figures
9.9 and 9.10. Despite the 1 bp separation between the true alleles of some of the
genotypes, FAST-MAP was able to remove the PCR stutter artifacts and accurately call the
alleles. Our results showed that mononucleotide data can be generated for fully automated
analysisby FAST-MAP.
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Figure 9.9. Electropherogram traces for the first 10 lanes for Monol. The
vertical dotted linesindicate the alleles called by FAST-MAP.
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Figure 9.10. Quantitated results for the first 10 lanes for Monol. The lightly shaded
barsindicate the aleles called by FAST-MAP. Notethat the alleles could beascloseas 1
bp apart, as shown in lanes 6, 8, and 10, where the consecutive bars were called as two
distinct aleles.
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9.8. Other applications

The primary goal of thisthesisisto overcome problems associated with microsatellite

genotyping. Thus far, we have described the results of automating the analysis of

microsatel lite genotyping data from:

(& different DNA sequencers. ABI vs. Pharmacia;

(b) different microsatellite repeats: mononucleotides vs. dinucleotides, trinucleotides, and
tetranucl eotides;

(c) different species: human vs. mouse; and

(d) different pooling sizes: single individual vs. pooled samples.

To explore how our computational problem solving might be applicable to other domainsin
molecular genetics, we went beyond microsatellite analysis and applied our computational
approaches to non-genotyping problems. We describe here two non-genotyping problems:
differential display analysis, and gridded filter scoring. These two problems have vastly
different computational requirements. Differential display analysisinvolves exquisite data
guantitation of lane traces on sequencing gels. Gridded filter scoring, on the other hand, is
acompletely different problem in molecular genetics having a scoring bottleneck that might
be solved computationally. We show in this section how we can transfer our experiences
in microsatellite genotyping to these non-genotyping problemsin molecular genetics.

9.8.1. Differential display

Differentia display (DD) was developed as arapid and sensitive reverse transcriptase PCR
(RT-PCR) technology to amplify and compare gene expression eventsin eukaryotic cells
(Liang and Pardee, 1992). DD RT-PCR has helped identify genes in neoplasia,
senescence, and development. Recent innovations have enabled technological
improvementsin DD RT-PCR, including the use of fluorescence-based automated DNA
sequencers (Jones et al., 1997; Luehrsen et al., 1997). Since a key component of DD
readout is accurate DNA sizing and peak quantitation, we explored the use of the
technology in FAST-MAP by analyzing expressed gene sizing data from DD applications.

Our collaborator Dr. David Whitcomb at the University of Pittsburgh has extensive
experience using conventional DD for gene discovery. Following our specifications, his
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group generated DD data on their ABI automated sequencer, using awithin-lane 20 bp
sizing ladder. We analyzed the data using FAST-MAP —this automated analysis included
lane tracking, binning calibration, DNA peak detection, and peak overlap quantitation.
Since al these DD data analysis steps are already part of FAST-MAP data processing, we
were able to analyze the pilot DD data generated by Dr. Whitcomb's group with minimal
system modifications. Figure 9.11 showsthat the peak quantitation processin FAST-MAP
can also model the peak shapes and account for peak overlap in DD data analysis.
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Figure 9.11. A FAST-MAP viewing window adapted for displaying quantitative DD
analysis. Pane 1 shows the electropherogram trace, pane 2 the quantitative fit of model
peaks to data, and pane 3 the final quantitation results.
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9.8.2. Gridded filter scoring

With the advent of recombinant DNA technology (Watson et al., 1992), libraries of human
DNA fragments are now available for genomic analysis. These genomic libraries consist of
sets of recombinant clones that are made from randomly generated overlapping DNA
fragments covering the entire genome. The clones are hosted as DNA insertsin viral,
bacterial, yeast, and other cloning vectors.

A magjor use of the clone librariesisin building physical maps, where DNA probes are
localized to specific genomic regions by hybridizing against the clones. The key bottleneck
isinthe dataanalysis. determining the degree of hybridization between aprobe and a
clone. Since the hybridization experiments are typically performed on gridded nylon
filters, we call it the gridded filter scoring problem.

Problem

Recombinant clones from a genomic library are generally available as sets of two-
dimensiona microtiter plates. Each cloneisidentified by its plate number and location
(row and column) on the plate. For high throughput screening, an entire library is gridded
onto nylon filters by high precision robots. Thefilters are then hybridized with one or
more DNA probes (Lehrach et al., 1990; Monaco et al., 1991), which probes al the clones
on thefilter in one parallel operation. Such arrayed clone libraries can rapidly screen for a
specific gene or genomic region.

The mgjor stepsin agridded filter screening experiment are:

1. Filter spotting: Amplified products from individual clones are spotted onto 8x12 cm
nylon filters using an N-pin robotic replicating tool (e.g. a 96-pin HDRT replicating
tool of aBiomek 1000 workstation). To maximize the usage of the limited "real estate”
on thefilter, different N-sets of clone products are spotted on the same filter at a
horizontal or vertical offset from the previous sets. By exploiting the dexterity and
accuracy provided by robotic handling, atotal of N x m x n spots can be positioned on
the filter, where mand n are the number of sets displaced horizontally and vertically
respectively. The values of mand n currently range from 2 to 8; these numbers should
increase as gridding technology advances.
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2. Probe hybridization: After the clones have been spotted onto the filter, radioactively
labeled DNA probes are then hybridized overnight against the spotted products. The
filter is then exposed to an autoradiographic film for a period of time (typically 1to 8
days).

3. Filter scoring: The autoradiograph image of thefilter isdeveloped. Sincethereis
currently no effective automated scoring technology, each of the N x m x n spotsis
visualy inspected by an experienced human eye to subjectively score the degree of
probe hybridization.

Aswith microsatellites genotyping, manual scoring isakey bottleneck precluding dense
high throughput gridded filter experiments. The scoring is alabor-intensive, tedious, time-
consuming, and error-prone process. Our goal, therefore, isto transfer the techniques
from automated microsatellite genotyping to remove this bottleneck, and thereby enable the
full automation of gridded filter experiments.

Solution

Figure 9.12 shows an autoradiograph image from a 96 x 2 x 2 gridded filter experiment.
Although its appearance differs greatly from an el ectrophoretic gel, there are many
similaritiesin the underlying structure of the experimental data. The microsatellite
genotyping problem has two main phases — sizing grid construction and marker band
guantitation. Similarly, we develop an automated gridded filter scoring solution that has
two phases — spotting grid construction and spot quantitation. We can adapt the
algorithms from microsatel lite genotyping to solve the scoring problem:
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5 -

Figure 9.12 Gridded filter experiment. In a high throughput gridded filter
experiment, acomplex DNA probe is hybridized against clones previoudy
gpotted on anylon filter. The autoradiograph image shown here is the output of
an experiment with 384 clones arranged ina96 x 2 x 2 array. Thetask isto
consistently score the 384 spots based on each spot's radiographic intensity.
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Spotting grid construction. Thefirst task is to locate where the spots reside on the filter
image. To do this, we construct a spotting grid that is similar to the sizing grid used in
microsatellite genotyping. Using our design knowledge about the layout of the robotic
gridding, we can construct an expected grid. Then, we can rapidly map this
expectation onto the data on the filter image to compute an actual spotting grid for the
filter. Just aswith sizing grid construction, this expectation-based approach is both
efficient and robust in building spotting grids for real laboratory data. Figure 9.13
shows the spotting grid constructed for the filter in Figure 9.12.
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Figure 9.13. A spotting grid for the gridded filter shown in Figure 9.12. The grid
was constructed automatically based on robotic gridding information. With this grid,

the computer can localize the 384 gridded spots on the image, and focus its computation
on the 384 local subproblems.
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Spot quantitation. Unlike DNA migration in gel electrophoresis, the gridded spots
diffuse two-dimensionally on thefilter. However, the same computational technique
for handling marker band diffusion still applies: we use a model function similar to the
Gauss-Runga model for microsatellite data bands to accurately quantitate the spots, as
well as account for diffusion effects from neighboring spots. Here, we use a3-D
Gaussian model for the spots to model the two-dimensional diffusion:

(x=¢)’+(y-¢,)?
ho(CuC,) =hie ot
where (cx, cy) isthe center of aspot, h the height, and o the Gaussian half-width.
Figure 9.14 depicts atypical 3-D Gauss curve.

Figure 9.14. A 3-D Gaussian model for gridded filter spotting. Using this
mathematical mode to fit the filter spots, we can systematically eliminate diffusion
effects, and quantitate the spots by computing the volume under the curve.

The model-based approach allows us to mathematically eliminate the overlapping
diffusion of closely-spaced spots, and accurately quantitate the radiographic intensity of
each spot (i.e. the degree of probe hybridization of each clone). Figure 9.15 showsa
close-up of how the original terrain of the top left corner (first three rows and columns)
compared with the fitted terrain using the 3-D Gaussian model function. Figure 9.16
shows the fitted image resynthei szed by the computer. The score at each gridded spot
was computed from the individual fitted spot volume. Table 9.12 shows the
normalized scores for the top left corner that our software computed.
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Figure 9.15. Close-up plots of the top left corner of the filter in Figure 9.12.

The upper plot depictsthe terrain of the first three rows and columns from the
original autoradiographic image. The lower plot depicts the fitted terrain using the
3D-Gaussian model function generated by the computer. The flattening of the peaks
observed in the original image was due to over-saturation of the x-ray film.
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Figure 9.16. Thefitted image for the filter shown in Figure 9.12. The fitted image was
resynthesized by summing the fitted model of gridded spots using the 3-D Gaussian
function (shown in Figure 9.14).

column 1 column 2 column 3
row 1 0.91 0.53 0.90
row 2 0.43 0.89 0.33
row 3 0.90 0.49 0.12

Table 9.12. Normalized scores of the top left corner of the filter shown in Figure 9.12.
The scores were automatically determined based on the fitted volumes at each spot.

Discussion

The preceding example (Figure 9.12) shows that it is indeed possible to adapt
computational approaches from the genotyping problem to solve a different problem —
scoring gridded filter experiments. We could further improve the results by addressing two
problems:
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» Spot ambiguity. Although we know the spotting pattern of clones onto thefilter, the
pattern need not exactly correspond to the post-hybridization pattern observed on the
autoradiograph. Inthefilter shown in Figure 9.12, 384 clones were spotted onto the
filterina96 x 2 x 2 array. However, not al 384 spots showed up on the
autoradiograph after probe hybridization, since a spot is developed only when the
radioactively labeled DNA probe hybridizes with its clone. Thus, the robotic spotting
pattern only estimates the post-hybridization pattern. In the case where a DNA probe
does not hybridize with most of the clones (asin the filter shown in Figure 9.17), it is
impossible to construct the spotting grid using only robotic spotting information.

» Spot over-saturation. A second problem isthat the autoradiographic signals from the
spots tend to be over-saturated, resulting in "flattened" peaks as shown in Figure 9.15.
The 3-D Gaussian model does not account for this over-saturation effect. Using an
alternative "flattened" gaussian model function would not solve the problem either, as
not all spots are over-saturated.

Problem simplification is arecurring practica strategy in this dissertation. We have seen,
in microsatellite genotyping, how we can ssimplify aproblem algorithmically by reducing it
into simpler subproblems, such as reducing the two-dimensional problem of sizing grid
construction into the one-dimensional problems of lane tracking and MW calibration. Ina
domain like molecular genetics, where data are generated in alaboratory, we can often
simplify a problem non-algorithmically. Thisisdone by changing the nature of the
problem, such asimproving the data quality to experimentally eliminate confounding
artifacts (e.g., using the "G-clamping" or "PIG-tailing" techniques to remove the "plus-A™"
artifacts from microsatel lite genotyping data), or modifying the format of the datato assist
the computer initsanalysis. Interdisciplinary problem solving is a collaborative effort and
often requires interdisciplinary solutions.

To solve the problem of spotting ambiguity in grid construction, we can improve the
certainty of the spotting patterns by introducing "reference spots’. For example, we can
anchor the spotting grid with positive spots by spotting positive DNA controls onto the grid
to guarantee hybridization. Thefilter in Figure 9.17 has a positive reference spot in the top
left corner of each cluster. The computer can construct the spotting grid based on the
positive reference spots, and then interpolate for the other cloning spots. Figure 9.18
shows a spotting grid automatically constructed using the positive reference spotting
information.
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Figure 9.17. A gridded filter with positive reference spots. The robotic spotting hereis
a96 x 3 x 2 array, with 384 clones (i.e., 96 x 4), 96 spots reserved as positive references
(top left spot in each of the 96 clusters), and 96 spots reserved as negative references
(bottom left spot). Unlike the filter in Figure 9.12, most of the clones on thisfilter do not
hybridize with the DNA probes. It would therefore be problematic to automatically
construct a spotting grid for thisfilter without positive reference spots.
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Figure 9.18. The spotting grid for the filter shown in Figure 9.17. This grid was
automatically constructed from the positive reference spots, and interpolated to detect the
remaining cloning spots.

242



To solve the spot over-saturation problem, we can shorten the exposure time of the
autoradiographic film, or taking a snapshot periodically during the exposure to keep track
of thesignal level. Figure 9.19 shows a close-up plot of amiddle section of thefilter in
Figure 9.17 (rows 7, 8, 9, and columns 19, 20, 21, 22). For comparison, we show the
plots from the original image, aswell as from thefitted image. Since the degree of over-
saturation has been minimized for thisfilter, the two plots show a closer match than those
depicted in Figure 9.15. However, some of the (reference) peaks from the original image
are still flattened?2, indicating that a better solution would be to model the over-saturation
effect using a different fit function, and introducing a saturation threshold factor.
Nevertheless, the computer's fitted image shown in Figure 9.20 shows avery good match
with the original image in the data peak regions.

Table 9.13 gives the normalized scores for the twelve spots shown in Figure 9.19. The
scores were computed from the fitted volumes of the spots using the 3-D Gaussian model
function.

column column column  column
19 20 21 22
row 7 0.94 0.67 0.58 0.89
row 8 0.25 0.55 0.63 0.20
row 9 0.92 0.67 0.58 0.67

Table 9.13. Normalized scores of the 12 spots in the middle cluster shown in the close-
upsin Figure 9.19. The scores were assigned based on the estimated volumes of the fitted
spots.

42By ensuring that the reference spots have the most intense signals, and minimizing over-saturation of
these reference spots, we can avoid over-saturation at the clone spots.
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Figure 9.19. Close-up plots of a middle cluster (rows 7, 8, and 9, and columns 19, 20,
21, and 22) in thefilter of Figure 9.17. The upper plot depicts the 3D close-up from the
original autoradiographic image. The lower plot depicts the fitted terrain using the 3D-
Gaussian model function generated by the computer. Although we have tried to minimize
spot over-saturation in thisfilter, some of the reference spots (e.g. the ones at row 7 and
columns 19 or 22) till display dightly flattened peaks.

Figure 9.20. The fitted image resynthesized by summing the fitted 3D-Gaussian model
functions at each of the gridded spots. Note that the background in the original image in
Figure 9.17 has been removed from in the fitted image.
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10. Conclusions

This dissertation shows how we eliminated the scoring bottleneck in microsatellite
genotyping using computational problem solving methods. By studying the science and
technology behind related molecular biology domains, we elucidated the computational
structure underlying the problem. Based on this structure, we divided the problem into
manageabl e subproblems. We then systematically solved these subproblems traditionally
using fundamental computer science techniques, and creatively using novel approaches —
such as exploiting PCR stutter artifact as a useful data component.

Since akey goal isto develop useful technology, we have fully implemented our solutions
in FAST-MAP, a practical microsatellite genotyping software system. FAST-MAP isused
by geneticistsin their laboratories for analyzing genotyping data. By actively including real
users and their datain our system's development and testing cycles, we were able to
design, implement, and (continually) refine a software system that is practical, robust,
accurate, and elegant to both developer and user. Such synergy between computer
scientists and geneticistsis crucial in successfully solving complex cross-disciplinary
problems, such as the microsatel lite genotyping problem.

10.1. Contributions

The mgjor contribution of thisthesisis completely removing the current bottleneck in

microsatellite genotyping. We built a genotyping data analysis system that isfully

automated, robust, accurate, and efficient. Specificaly, we:

» created new computational methods that account for intrinsic data artifacts (such as
PCR stuttering) by accurately modeling the underlying processes;

» devised novel computer-based techniques to overcome data limitations (such as
inadequate MW sizing resolution) by exploiting al available datafor calibration; and

» employed efficient learning strategies that improve the system's performance by
automatically incorporating specific knowledge about genotyping datainto the system.

Moreover, we explored and enabled new functionalities (such as pooled DNA genotyping
for population genetics), and applied our computational strategies to solve other non-
genotyping problemsin molecular genetics (such as differentia display analysisand
gridded filter scoring).
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Most importantly, this thesis has demonstrated that computational strategies can be a
powerful tool in overcoming critical molecular biology bottlenecks. We have shown, with
good results in microsatellite genotyping, that techniques in computation and information
science can be as useful as laboratory innovations for solving key problemsin molecular
biology.

The current genetic revolution is expected to bring about an explosion of genetic
information. We believe that the future of molecular genetics will be shaped
simultaneoudly in traditional "wet" (molecular biology) labsand in "soft" (computer) labs.
Hence, the most valuable contribution of this thesis to both computer science and genetics
isthe introduction of computational problem solving into molecular genetics. We hope that
this thesis has helped bridge the experimental world of molecular biology with the
computational world of computer science.

10.2. Future Work

In solving the microsatellite genotyping problem, we enabled new functionalitiesin
molecular genetics. We aso opened up new areas of research for computational problem
solving. We provide a selective preview of our ongoing and future research.

10.2.1. FAST-MAP refinements

We plan to refine FAST-MAP on adiverse range of data (of varying quality) to further
improve accuracy and robustness. Example projects include:

(a) Learning to improve accuracy from past experience.

FAST-MAP was designed to be a fully automated genotyping system, requiring little or no
user intervention. Thus, we did not provide FAST-MAP with afunctionality that allowsit
to learn directly the user's feedback to its mistakes (since this would require extensive user
interaction, which would contradict the fully-automated design goal). However, when
FAST-MAP repeatedly makes the same mistake, the user should be able to teach the
computer by entering correct user edits. These edits could be flagged in marker libraries,
so that FAST-MAP could recompute calibrations from user-corrected data, instead of
working from incorrect assumptions.
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(b) Adding more independent allel e determination algorithims.

FAST-MAP would benefit from additional allele determination algorithms, besides SVD
and ENUM. Asboth SVD and ENUM call aleles based on quantitated data, one useful
algorithm would call aleles directly from the observed e ectropherogram signal, without
intervening quantitation steps.  Such an algorithm might be more sensitive to input data
characteristics, such as baseline shifts and incorrect peak shapes in the electropherograms.

(c) Supporting more computer and sequencer hardware platforms.

FAST-MAP currently reads data formats from two of the most popular sequencer
machines: the ABI and Pharmacia automated DNA sequencers. Many new instruments
(e.g. from Genomyx, GenSys, Hitachi, LI-COR, and Molecular Dynamics) are becoming
available. FAST-MAP's underlying modularized design should let it handle image data
from these new machines. Moreover, its subsequent image and genotype processing are
independent of the sequencer platforms. By adding input modules that trandate new image
fileformatsinto FAST-MAP's universal image format, FAST-MAP should effectively
process data from virtually any DNA sequencing machines.

(d) Linking to other data and software.

Most genetic linkage studies involve access to diverse databases (e.g., ENTREZ, GDB),
and application of various software tools (e.g. LINKAGE, SIBPAL, GENEHUNTER).
For a networked computer, most of these resources are readily available on the Internet.
To greatly improve the geneticist's productivity in conducting genetic linkage studies using
microsatellite genotyping, we can extend FAST-MAP into an integrated genotyping system
that (1) provides easy on-line access to databases, and (2) allows direct transfer of results
to genetic analysis software.

10.2.3. Pooled DNA analyses

Our pooled DNA analysis pilot study demonstrated that one can generate and analyze
pooled DNA templates using microsatellite markers. Interestingly, these results included
dinucleotide repeat markers with PCR stutter artifact. Our current software solves two
critical problems: accurate peak quantitation and PCR stutter removal. However, we only
partially solved the third signal analysis problem — adjusting the datafor relative alele
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amplification. To date, we have used the amplification ratio table compiled from individual
genotypesto estimate the relative alele amplification in pooled DNA data. However,
relative amplification in pooled aleles may differ from relative amplification between a
singleallele pair. To correct for relative amplification in pooled DNA, theratio of a
marker's pooled distribution to the sum of itsindividual components might provide a more
realistic calibration curve than pair-wise ratios. This new ratio function might depend on
various factors, including pool size, PCR primers and conditions, and allele distribution.
Precalibrating such curves for each marker (across varying pool complexities) might permit
mathematical correction for relative amplification. To fully reaize the potential benefits of
pooled DNA analyses, we plan to further investigate the pooled relative allele amplification
problem.

10.2.4. Genetics in non human species

Mammalian and avian species contain microsatellite markers. In particular, there are many
species of biomedical (e.g., mouse, rat, hamster) and agricultural (e.g., cow, pig, sheep)
importance that contain useful microsatellite markers. It would therefore be very useful to
have an automated genotyping technology that is not restricted to the human species.

Much of power of the animal model derives from inbred strains that can be cross-bred and
genotyped to map complex traits, and ultimately elucidate mechanisms of disease. As
exemplified in our mouse data, genotyping of inbred strains has an important property:
each marker ishialelic. We have shown how this biallelic property introduces a constraint
that can be used by FAST-MAP for more rapid and accurate genotyping of microsatellite
markers. Moreover, by focusing on recognizing only the two possible aleles for each
marker, FAST-MAP might enable sophisticated multiplexing of panelsfor greater
throughput. These new applications will be challenging computational problems that might
be important to molecular genetics.

10.2.5. Forensics and personal identification.

Microsatellites are currently used in forensic science and for personal identification. Most
current and proposed microsatellite forensic panels are comprised of 12-16 tetranucleotide
repeat markers. The larger repeats were introduced because of historical problemswith
dinucleotide repeat PCR stutter. These problems have been overcome by our pattern
recognition methods. Most importantly for forensic applications, PCR stutter provides
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additional information that we have shown to be useful in distinguishing true alleles from
spurious peaks, resulting in more robust personal identification than with tetranucleotides.
Asforensic and personal identification applications require exquisite certainty and precision
measures, we plan to conduct further research in exploring novel experimental designs,
statistical analyses, and computational strategies in exploiting the additional data
redundancy provided by dinucleotide stutter data. The results might increase accuracy and
throughput, at alowered cost.

10.2.6. Using dense genotyping in preventive medicine

By reducing the cost of fully automated microsatellite genotyping, we are closer to
acquiring high-resolution genetic snapshots of individuals and their relativesin the
population. From such snapshots, we can determine who shares which inherited
chromosomal regions with whom. When this genotype information is coupled with large
scale phenotype information, the geneticist may be able to ascertain correlations between
common genetic diseases (e.g., cancer, stroke, diabetes) and their genomic locations from
the highly informative (and highly complex) chromosomal and phenotypic inheritance
patterns. Many new guestions and possihilities arise, many of which are computationally
intensive because of the vast amount of datainvolved. This opens up challenging
unexplored avenues for both modern genetics research and computational problem solving.
Some questions include:
* Areparticular patterns of inheritance associated with specific varieties of disease?
* Cantherelativerisk of acommon (complex) disease be determined from such
patterns of inheritance, without knowing the actual genetic composition of
individuals (see Figure 10.1)?
* What additional genetic and phenotypic information is needed to ascertain disease
risk?
» Can the practice of medicine be fully customized to each individual's genetic
composition?
» Can medical or environmental interventions reduce the risk of common genetic
disease?
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Figure 10.1. Assessing therisk of an individual to a complex genetic disease
from dense genotyping data. In the example shown, the disease risk isincreased by
the occurrence of either an dlelea at the first locus or an dlele b at the second locus,
with the co-occurrence of an alele c at the third locus. The two shaded bars
represent the pair of chromosomes inherited by each individual, with the exact
locations of the disease gene loci marked, from top to bottom, with horizontal lines
between the two chromosomes (here, al threeloci reside on the same
chromosome). In thisdisplay, the alleles are labeled alongside the loci, with $
indicating a mutated allele. With dense genotyping, the only genetic information
available isthe inheritance patterns as depicted by the shadings on the
chromosomes. In particular, no gene allele information isused. To practice
preventive medicine using dense genotyping data, the issue is such these shaded
patterns are sufficient to infer an individual's (say, H's) risk of disease.
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10.3. A Scenario for the Future

With the full automation of large scale, high throughput genotyping, popul ation-wide full-
genome scanning might become technically and economically feasible (and perhaps aso
socialy and politically acceptable). Using a standard set of polymorphic markers for dense
genotyping, an abundant collection of genotypic data that was previously too expensive to
generate could become readily available. This data could be shared and reused for many
projects, such as the localization of disease genes for many of the thousands of human
genetic diseases.

In addition to routine disease gene identification, dense genotypic data could also be
coupled with large-scale phenotypic data of the population to identify non-genetic factors
that contribute to the development of complex disease. This could help isolate al risk
factors, both genetic and non-genetic. With aclear understanding of multifactorial genetic
disorders, ageneticist might accurately assess, for each individual, their predisposition for
common human diseases. Physicians would then prescribe customized treatment and
prevention plans according to these personalized DNA profiles. One can foresee a
paradigm shift in healthcare from the current focus on treatment, to a more effective
preventive approach.

With preventive medicine, curable disorders could be detected and remedied before
irreversible damage occurs. Therisk of certain multifactorial disorders might be reduced
by moderating the environment. For example, a proper genetically prescribed program of
diet, exercise, and pharmaceuticals administered from childhood might significantly reduce
therisk of disease later in life. In thisway, genetic information technol ogies might
significantly improve longevity, the quality of life, and health care costs.
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Appendix A: Stutter Data Simulation

To compare the various deconvol ution methods that we have designed for genotyping
microsatellite markers(Perlin et al., 1995), we implemented a software program in
Common LISP for generating ssimulated microsatellite markers and their genotyping data.
Aswe were not aware of the relative amplification artifact when we conducted the
simulation study, it was not included in our simulation models. However, we did apply a
realistic noise model to ensure that the simulated data were as close to real data as possible.

A.1l. Markers

Aswe were only interested in the performance of our deconvolution algorithms with
microsatellite markers that exhibit pronounced PCR stuttering, we simulated only
dinucleotide repeats. For each marker, we smulated 10 to 25 possible aleles, normally
distributed over the size range from 100 to 200 bp. Associated with each marker was a
stutter matrix A that was simulated as follows: each column of A, which correspondsto an
allele'sreal-valued stutter pattern vector, was generated using an exponential decay rate that
was inversely proportional to alele size. The columnsin A were then normalized to sum to
unity since they each represented arelative DNA mass of asinglealele. In our simulation,
we randomly varied the expected number of stutter bands for each marker. To smulate
minor to extreme PCR stuttering, our markers have trailing stutters that ranged from 3 to 12
bands.

For our comparative study of deconvolution methods, we generated alibrary of 150
simulated microsatellite markers, aswell as their stutter matrices and allele distributions.

A.2. Data

Using the markers ssmulated stutter matrices and allele distributions, we generated
thousands of genotyping data vectors for each marker. To generate a genotyping data
vector y for amarker, we must first generate a random genotype vector x by drawing a pair
of alelesfrom the marker's possible alleles set. Each allele was drawn based on the
marker's allele frequencies and distribution. With the genotyping vector, we can then
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compute the data vector y as the convolution product Ax. Finally, each smulated data
vector was subjected to an additional noise component (see A.3).

A.3. Noise

Our model of noise consisted of two components: (1) random background noise Np, and
(2) scaled (k%) normally distributed measurement error Nm k. For a data vector y, the total
simulated noise reading is the sum Np+ Nm k(y) with a preset noise level of k%.

To model random background noise, we implemented N as a uniformly distributed
random variable within the interval [-Xmin, +Xmin], Where xmin was the minimum
measured value in the simulation. To model the scaled measurement noise, we
implemented Nm k(y) as afunction of the original data vector y, such that Nmk(y) isa
normally distributed random variable with zero mean and a variance scaled relativeto y
such that

Prob(-kx < Nmk(X) <+kx) > 0.99
In this way, the measurement error was simulated within the preset noise level k with high
probability. To study the performance of our deconvolution algorithms under different
levels of noise, we used 0 to 15% for k in our study.
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Appendix B: FAST-MAP's User-Annotated Knowledge Base

When calling the alleles manually, the human genotyper makes use of considerable
contextual information. Information such as the design of the study, the layout of the
marker multiplexing, and the stuttering characteristics of the markers are necessary for
interpreting the gel image data. Such information is similarly needed by FAST-MAP for its
genotyping with allele_call.

To provide the necessary contextual information, the user must annotate two classes of files
prior to running allele_call on agd or study:

o use files: Thesefilesreside in acommon directory ("FAST-MAP/user/") that is
globally accessible by all gels and studies in the system. They contain annotation
information that can be used in the analysis of any gels or studiesin the system:

» preferences. contains user preferences and system-specific settings;
nicknames. contains aliases for gel and study directories, as well as any shared
matrix files (for dye-separating the gel files) or sample sheets;

» dyes: contains aliases for the various dye names used in the sequencers,

* dize stds: containsinformation about various size standards;

* markers: contains information on the markers,
» panels contains definitions of panel names,
pedigrees. contains pedigree definitions (in LINKAGE format).

» input files: These files are associated with a particular gel or study. They residein the
"input/" directory of the corresponding gel or study directory, and contain information
pertaining to the gels or studies that they are associated with. There are only two user

input files:
» settings: contains gel or study-specific annotations as well as execution
preferences,

» layout: for agel, contains the gel layout (which lanes are loaded with what panel
or size standards); for a study, contains alist of the nicknames of the
component gels that make up the study.
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All the user-annotation files are header text files?3 (i.e., table representation), aformat that
is easy for both people and computers (database and spreadsheet programs) to use. In
FAST-MAP, the user can annotate both the user and input files at any time using the "edit"
function. FAST-MAP maintains this user-annotated knowledge base dynamically by
keeping track of the changes to the user-annotated files. Collectively, these user-annotated
filesand the FAST-MAP libraries (described in Appendix C) congtitute the complete
knowledge base for FAST-MAP for itsintelligent processing.

B.1. Global information: User files

The global information are stored in the user files, so called because they reside in the
common "user/" directory that is shared by all the gels and studies. In this section, we
describe the information stored in the various user files.

B.1.1. preferences

The "preferences’ file specifies the computer environment in which the FAST-MAP
programs are run. The user MUST annotate the "preferences’ file correctly before
attempting to run FAST-MAP.

Hereisatypical "preferences’ file:

attribute value

% (A) EDITING preferences:

% Space_char - special character to use in place of SPACE in pathnames
% Editor_name - editor to use for 'edit’/'ed’

%

% (B) DISPLAY preferences:

% Display_type - display images in ‘color' or 'grayscale’

% Mouse_clicks - use 'single’ or 'double’ clicks for mouse

% Watch_cursor - show watch cursor while waiting

% Gel_orientation - display gel image in 'reverse' orientation (smaller
% bps on top) or 'normal’ (bigger bps on top)

%

% (C) PRINTING preferences:

% Printer_name - name of printer to send file/plots to

% Printer_type - 'ps' for postrcript or 'psc' for color postscript

43A "header text file" is atext file where each line represents a record of information, and the whitespace
(e.g., blanks or tabs) in each line separate the different information fields. Thefirst line of the file specifies
the column headers that name the different information fields.
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% Print_orientation - orientation of the printouts

Space_char ~
Editor_name emacs
Display_type color
Mouse_clicks single
Watch_cursor yes
Gel_orientation reverse
Printer_name stone
Printer_type ps
Print_orientation landscape

Detailed descriptions
Here are the definitions of the various attributesin "preferences':

attribute value

The header tells FAST-MAP that the first column is comprised of "attribute”s that FAST-
MAP can set when the program is run, and that the second column contains "value's for
these "attributes’. Each subsequent line therefore contains two entries: the attribute name
describing the property to be set, and the value of that property.

Space_char ~

The specia character to use in place of SPACE in pathnames. For example, to definea
pathname like the following (as typical in Macintosh):

My Macintosh:FAST-MAP Data:Gel 12/22:
Type:

My~Macintosh:FAST-MAP~Data:Gel~12/22:

The user may define"Space_char"  to any character aslong asit isnever used in the
pathnames. The default isthe tilde character "~".
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Editor_name emacs

The"Editor_name"  attribute tells FAST-MAP the editor that the user prefersto work
with. The value of this attribute is the operating system (e.g., UNIX) command that one
would type to start the editing program. For example, this editor command can be the
name of the editor, or a path name to its binary executable fileif it is not on the operating
system'’s search path.

The user must set "Editor_ name”  for FAST-MAP. On UNIX, the recommended
editors are "emacs’ and "vi", which are usually bundled with most UNIX systems. The
user may also set it to a spreadsheet program (such as Excel on Macintosh) aslong as it
inputs and outputs tabbed-text format. On Macintosh, FAST-MAP will bring up Matlab's
own editor if "Editor_name"  isnot set by the user.

Display_type color
(color) Display images and figuresin color.
(gray) Display images and figuresin grayscale.

(default) color

This attribute specifies the display capability of the computer monitor.

Mouse_clicks single
(single) Detect single mouse-clicks.
(double) Detect double mouse-clicks.

(default) single

This attribute specifies whether asingle or a double mouse-click isto be detected by FAST-
MAP to invoke mouse-click-activated actions.
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Watch_cursor yes

(yes) Display awatch cursor while waiting.
(no) Do not display awatch cursor.
(default) yes

This attribute specifies whether awatch cursor should be displayed in abusy window. On
some system, turning this feature off may speed up display time.

Gel_orientation reverse

(normal) Display gel with bigger bps on top.
(reverse) Display gel with smaller bps on top.
(default) reverse

This attribute specifies the preferred orientation of gel images in the displays.

Printer_name slate

The attribute tells FAST-MAP the name of the preferred printer. FAST-MAP assumes that
the computer can access the printer specified. For example, to print a"file€" on a printer
named "date” inaUNIX system, one would type:

> |pr -Pslate "file"
If this commands works from UNIX, then one can set the "Printer_name" attribute to
thevalue "date". On aMacintosh, the user can use the "Print" command under the "File"
menu. In this case, since the "Print" menu command uses the printer specified by the
Macintosh's "Chooser", there is no need to define this attribute.
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Printer_type ps

(ps) Postscript printer.
(psc) Color postscript printer.
(default) ps

This attribute specifies type of the printer as specified in "Printer_name" . Currently,
FAST-MAP only supports Postscript printers on UNIX. On aMacintosh, there is no need
to define this attribute since the user can always use the "Print" menu command to print.

Print_orientation landscape
(landscape) Print in landscape orientation.
(portrait) Print in portrait orientation.
(default) landscape

This attribute specifies orientation of the printouts. Again, on a Macintosh, there is no need
to define this attribute as the user can specify the printout orientation under "Page Setup”
with the "Print" menu command.

B.1.2. nicknames

The "nicknames’ file is where the user can define easy-to-remember aliases to pathnames
of various data objectsin FAST-MAP. For rapid data accesses, the user can refer to these
nicknames instead of having to remember (and type in) the complete pathnames.

There are four types of objects that can be defined in "nicknames™: (1) gel directories; (2)
study directories; (3) shared matrix files; and (4) shared sample sheets. Although FAST-
MAP imposes no restrictions on how the user organizes the "nicknames’, it may be useful
to divide the "nicknames" file into four sections, each corresponding to an object type. By
organizing the "nicknames" in this way, the user can take advantage of the "type" column's
capability of inheriting the value from aprevious row if left unspecified. Hereishow a
typica "nicknames' may look like:
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nickname pathname type
%

% Section 1: Gel Directories

%

GEL1 [afs/cs/project/genome/demo/gels/Gell/ gel

GEL2 /afs/cs/project/genome/demol/gels/Gel2/

%

% Section 2: Study Directories

%

STUDY1  /afs/cs/project/genome/demo/studies/Studyl/ study

%

% Section 3: Shared matrix files

%

MATR211 /afs/cs/project/genome/demo/matrices/R211.matrix matrix
%

% Section 4: Shared sample sheets

%

% None at present

The "nicknames’ file must be annotated by the user when anew gel or study is added to
FAST-MAP. Periodicaly, the user should also remove obsol ete nicknames from the file
for faster performance.

Detailed descriptions
Here are the definitions of each of the three columnsin "nicknames':
nickname pathname type

The header tells FAST-MAP that the "nicknames’ user file contains three columns. Each
row describes a FAST-MAP object by stating first the object's alias under "nickname”,
followed by the full "pathname” of the object, an then the "type"
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Column 1; nickname

Thefirst item in each row contains the alias or nickname of the object that will be used in
FAST-MAP to refer to the object defined. The nickname must (1) be unigue for every
object defined in the "nicknames® file, and (2) contain only non-reserved characters.

Column 2: pathname

The second item contains the compl ete pathname of the object. If the object isadirectory
(object type "gel” or "study"), it must be a pathname pointing to a directory. in other
words, on UNIX, the pathname must end with a"/", whereas on a Macintosh, it must
end witha":". If the objet isafile (object type "matrix" or "sample"), it must be a
complete pathname pointing to afile (that is, ending with the particular file's name).

If the original pathname contains SPA CE characters, replace each SPACE with the
special character defined as"Space_char”  in"preferences’.

Column 3: type

The third item specifies the type of the object. There are four types supported in FAST-
MAP: "gel", "study", "matrix", and "sample". Enter "gel" in the third column if the
object defined isagdl directory, "study" if it isastudy directory. Enter "matrix" if the
object isan ABI matrix file, and "sample” if the object isan ABI samplefile. Note that
the pathname of agel or study nickname points to a directory, whereas the pathname of a
matrix or asample file nickname pointsto afile.

The "type" columnisoptional in the sensethat if it isnot specified, it will inherit the
"type" value from a previous row (if no previous row exists, it defaultsto a"gel"). Take
advantage of this feature by organizing the "nicknames’ file by grouping objects of the
same types together, as shown above. Otherwise, specify the "type" for each object in
"nicknames’ to avoid any confusion.
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B.1.3. dyes

The"dyes" user file specifies synonyms used for each fluorescent dye. Currently, FAST-
MAP supports four classes of fluorescent dye with the names: "blue", "green”, "yellow",
and "red". Despite the chromatic nature of the dye names, they actually define the order of
the dye planesin which they were scanned in the DNA sequencer during data generation:

"blue" o first dye plane
"green" o second dye plane
"yellow" o third dye plane
"red" o fourth dye plane

These chromatic labels of the four dye classes are chosen merely to coincide with the
current conventional color scheme for graphical displays. FAST-MAP can be easily

extended to handle more than four dyesin future by defining additional classesin the
"dyes" user file.

Hereisadefault "dyes' user file:

dye_name aliases

blue fam

green tet

yellow hex

red tam tamra rox

The synonymous dye names can then be used interchangeably in the "dye" fields of user
filessuch as"markers' and "size stds'. For example, with the above "dyes' definitions,
we can use any of the labels "tam", "tamra", "rox", or "red" to define asize standard that is
run on the fourth dye plane.

Detailed descriptions

Here are the detailed descriptions of the "dyes' user file:
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dye_name aliases

The header tells FAST-MAP that the "dyes" user file contains two columns. Each row
describes aparticular class of dyes, followed by alist of one or more common dyes that
belong to that class.

Column 1: dye name

There are currently only four dye classes defined in FAST-MAP: "blue’, "green”,
"yellow", and "red". Technically, they define the first, second, third, and fourth dye
planes of the DNA sequencer. The chromatic nature of the names merely reflects the
conventional color scheme for visualizing the gel images. When new fluorescent dye
technology emerges, we will extend the "dye_name" column to contain as many new
dye classes as necessary.

Column 2: aliases

For each "dye_name" , the user can define the synonymous fluorescent dyes under
"aliases" . For example, the "tamra’ dye and the "rox" dye may both be defined as
aliasesto the "red" dye class.

B.1.4. size stds

The"size stds' user file specifies the size standards. Each size standard is defined by the
fluorescent dye used and the sizes (in base pairs) it contains. Each size standard's
definition must fit oneasingleline. Heresatypical "size stds' file:

name dye sizes

% Genescan 500
%
GS500 TAM 355075 100 139 150 160 200 250 300 340 350 ... 490 500

% Bioventure's 20-bp ladder

%
BVMap TAM 7080 90 100 120 140 160 180 190 200 220 240 ... 380 400
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A new name must be given (for example, with a version number appended to the original
name) when a size standard has been changed (for example, by inserting or deleting a
reference size, or by using a new fluorescent dye). However, thereis no need to define a
new size standard in "size_stds' for caseswhere agel isincompletely imaged such that not
all of the sizesin the size standard appear on that gel. In these situations, the user can
define the actual range of the sizes by setting the "Min_size_standard"” and
"Max_size_standard" parametersin the gel's "settings” file.

Detailed descriptions

Here isadetailed description of the "size_stds’ file:

name dye sizes

The"size stds' file contains three columns as defined in the above headers. A size
standard is specified by both the "dye" it is run with, and the "sizes" it contains. If either
the "dye" field or the "sizes" field has been changed, the size standard must be defined
under anew "name".

Column 1: name

Thefirst item isthe name of the size standard being defined. Aswith al namesin FAST-
MAP, it should contain no "%" or white-space characters.

Column 2: dye

The fluorescent dye used for the size standard. This dye name must be defined in the
"dyes" user file.

Column 3: sizes

Thelist of sizes (in base pairs) of the size standards. They must be ON THE SAME
LINE and delimited by spaces or tabs.
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B.1.5. markers

The "markers" fileiswhere the user defines the characteristics of the markersused. The
definition of a marker consists of:

* name: the name of the microsatellite marker;

* min_size: the size (in base pairs) of the smallest known allele for the marker;

* max_size thesize (in base pairs) of the largest known alele for the marker;

» dye: thefluorescent dye used to tag the marker;

* repeat_size: thesize of the repetitive DNA unit in the microsatellite;

» plusA_handling: specia handling (if any) which suppresses or enhances the plusA
artifect;

» ladder: whether the peak sizes of the marker's alleles usually fall on aregularly spaced
alelic ladder.

Here'satypica "markers’ file:

name in max dye repeat plusA ladder

% Markers for "panell”
%

plml 103 161 FAM 2 enhance yes
plm2 316 366 FAM 2 enhance yes
plm3 176 224 HEX 2 enhance yes
plm4 290 326 HEX 2 enhance yes
plm5 178 238 TET 2 enhance yes

Note that if amarker characteristic (e.g. primer, buffer, enzyme) changes, the PCR stutter
pattern typically changes aswell. The user must make a new entry of the marker in the
"markers’ file and use a different marker name to help FAST-MAP distinguish it from any
previous versions of the same marker locus. We suggest using a version number naming
scheme: for the first version, the user names the marker without a version number (e.g.,
"plml"). For later versions, the user appends aversion identifier (e.g., "pim1_2", or
"plmlb™).

Detailed descriptions

Here's a detailed description of the "markers’ file:
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name in max dye repeat plusA ladder

The "markers’ file contains seven columns as defined by the above headers. Altogether,
they form the requisite marker information used by FAST-MAP in genotyping.

Column 1: name
Thefirst item isthe name of the marker being defined. As mentioned before, the user must

make anew entry under a different marker name if any characteristics of amarker has been
altered.

Column 2: min

The second item isthe size (in base pairs) of the smallest allele thus far detected for the
microsatellite marker.

Column 3: max

Thethird item isthe size (in base pairs) of the largest allele thus far detected for the
microsatellite marker.

Column 4: dye

The fourth item specifies the fluorescent dye used to tag the microsatellite. The dye name
should be defined in the "dyes" user file.

Column 5: repeat

The fifth item specifies the size of the repetitive DNA unit (e.g., "1","2","3", or "4") in
the microsatellite. For example, "2" indicates a di-nucleotide repeat.

Column 6: plusA
(none) No special handling.
(enhance) PlusA was enhanced.
(suppress) PlusA was suppressed.
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(default) none

The sixth item specifies how the plusA artifact for the marker has been handled
experimentally. If there are two occurrences of the same marker with different plusA
handling types, then they should be tagged with different version identifiers, to
distinguish them from one another.

Column 7: ladder
(yes) The peak sizes of the marker's alelesfall on an evenly spaced alelic
ladder.
(no) T hepeak sizes of the marker's aleles do not fall on an evenly
gpaced alelic ladder. That is, odd-even aleles may be common for
this marker.

(default) yes
Thisfinal item specifiesif an evenly-spaced allelic ladder is expected of the marker. That
is, whether the genotypes of the marker contains only alleles from an evenly-spaced
ladder.
Even though FAST-MAP will automatically use the appropriate default values or inherit
from a previous marker if a column isleft unspecified, we strongly advise the user to
alwaysfill in every column for each marker to avoid any confusion.

B.1.6. panels

The "panels’ user file contains the definitions of the marker panels. A panel is defined asa
list of markers. Here'satypical "panels’ file:

name markers

panell pilml pilm2 plm3 plm4 plm5
panella plmlplm2
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Detailed descriptions

And hereis adetailed description of the "panels’ file:

name markers

The "panels’ file's header, as shown above, indicates that each panel entry must contain
two fields: the name of the panel, followed by alist of marker names which has been
defined in the "markers’ file.

Column 1: name

Thefirst item is the name of the genetic marker panel being defined. Aswith all namesin
FAST-MAP, it should contain no "%" or white-space characters.

Column 2: markers

A list of marker names delimited by spaces or talbs ON THE SAME LINE. Each of the
marker names must be defined in the "markers” file.

B.1.7. pedigrees

The "pedigrees’ fileis a header text file which has a similar format with LINKAGE
pedigreefiles. Inthisfile, the user specifies the relationships of individuals (samples)
whose DNA's are being genotyped. For example:

pedigree sample father mother sex
Ped01 Ped01P1 O 0 1

Ped01 Ped01P2 O 0 2

Ped01 Ped01C1 Ped01P1 Ped01P2 0
Ped01 Ped01C2 Ped01P1 Ped01P2 0
Ped02 Ped02P1 O 0 1

Ped02 Ped02P2 O 0 2

Ped02 Ped02C3 Ped02P1 Ped02P2 0
Ped02 Ped02C4 Ped02P1 Ped02P2 0
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In the current version, thereis only one "pedigrees’ file. This meansthat the pedigree
information of all theindividualsin al the gels being analyzed must be specified in asingle
file. The pedigrees are only used in the viewing program allele_view to display the
genotypes of related individuals together. Therefore, instead of keeping all the pedigrees
together in the "pedigrees’ file, it may be better to only import the relevant pedigrees into
the "pedigrees’ file when viewing their genotypes. We will provide a better organization of
the pedigreesfilesin afuture version.

Also, each individual can belong to only one pedigree at onetime.

Detailed descriptions

Here is adetailed description of the "pedigrees’ file:

pedigree sample father mother sex.

The header of the "pedigrees’ file, as shown above, indicates that each individual must be
defined on asingle line by five attributes: the name of the pedigree the individual belongs

to, the sample ID of the individual, the IDs of the two parents, and the sex of the
individual. In other words, "pedigrees” isafile containing five columns.

Column 1: pedigree

Thefirst item isthe name of the pedigree to which the individual belongs.

Column 2: sample

The second item isthe sample ID used in labeling the DNA from the individual .

Column 3: father

(default) 0

Thethird item isthe sample ID of thefather. If the father is unknown, enter "0".
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Column 4: mother

(default) 0

The fourth item isthe sample ID of the mother. If the mother is not known, enter "0".

Column 5: sex
Q) Male.
2 Female.
© Unknown.
(default) 0

Thisfinal item specifies the gender of the sample. If it isnot known, enter "0".

For users who do not already have pedigreesfilesin thisformat, we provide an utility
function add_pedigreesto help the user annotate the "pedigrees’ file from the sample names
provided in the "layout” files automatically.

B.2. Specific information: Input files

Theinput files are so called because they reside in the "<gel>/input/" and " <study>/input/"
directories. Theinput files contain information that are specific to a particular <gel> or
<study>, unlike the user fileswhich are globally accessible by all the gels and studiesin the
system. It istherefore necessary to create and annotate the input files for every new gel or
study.

There are only two input files for both gels and studies:

* Inthe"settings' file, the user (1) provides gel or study-specific information, (2)
controls the operations of the different FAST-MAP programs on the gel or study.
Attributes for (2) appear in both the "settings’ file for agel and the "settings’ file for a
study. The user specify in the study's "settings” file whether to use these values from
the study's "settings" file, or to use each individual gel's settings instead.

» The"layout" file of agel contains information about the marker multiplexing on that
gel, while the "layout” of a study simply lists the names of the gelsin the study.
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B.2.1. settings (gel)

The "settings' file for agel hastwo functions: (1) it lets the user annotate specific details
(e.0. gel file name, DNA-sequencer type) about the gel itself, and (2) it lets the user control
the operation of the different FAST-MAP programs.

For convenience, we divide the "settings' file accordingly:

» Section 1: Gel-specific settings.
Thisisthe only section that the user MUST go through and fill in the appropriate values
(where applicable) when setting up agel;

» Section 2: Program animation settings.
This section contains settings to control the messages and animation of program

execution;

» Section 3: Allele_call settings.
This section contains settings related to the program allele _call ;

» Section 4: Allele_results settings.
This section contains user preferences for generating the resultsfile. Since allele view
displays the genotypesin the resultsfile, these allele_results settings also affect the
allele view indirectly;

» Section 5: Allele_view settings.
This section, together with the section for allele_reults, contain settings to customize the

display inallele view;

» Section 6: Marker_view settings.
This section allows the user to customize the display in marker_view;

» Section 7: Allele_printout settings.
This section isfor controlling the layout of the printouts generated by the program

allele printout.
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When setting up anew gel, it isimportant to create the "settings' file first (using the
command edit), and then followed by the "layout” file. Thisisbecausethe "layout” fileis
created based on information such as the sample file name, the panel name, and the size
standard name provided in Section 1 of the gel's "settings” file.

Hereisatypical "settings' filefor agel:

attribute value
% Section 1. Gel-specific settings (Please fill in this section)
%

Gel_file_name R211a.gel
Matrix_file_name MATR211
Sample_file_name R211a.samples
Sequencer_type ABI

Number_of lanes 34
Size_standard BVMap
Min_size_standard 70
Max_size_standard 400
Panel_name panell
Experiment_condition

Noise_threshold 50

% Section 2. Program animation settings
%

Verbose_mode_on yes
Show_plots no

% Section 3. Allele_call settings
%

Redo_import_planes no
Redo_manifold no
Redo_quantitation no
Redo_allele_calling no
Analyze noisy data yes

% Section 4. Allele_results settings
%

Output_noise_genotypes no
Output_sort_by markers
Latest_sample_only no
Round_evenly _spaced no

% Section 5. Allele_view settings
%
Prioritize_results worst_first

% Section 6. Marker_view settings
%
Lanes_per_view 5

% Section 7. Allele _printout settings

%
Send_to_printer yes
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Show_figure no

Rows_per_page 4
Columns_per_page 2
Include_electro_plots no

Detailed descriptions
Here are the detailed descriptions of the attributesin a gel's "settings' file:
attribute value

The header indicates that each subsequent linein "settings' contains two entries: the
attribute name describing the property to be set, and the value of that property.

% Section 1: Gel-specific settings

Gel_file_name R211a.gel

The name of the gel file or collection file residing in the "input/" directory of age
directory. Thereis no need to specify the complete path asthe gel file must residein
"<gel>/input/" directory. Remember to replace each SPACE with the special
"Space_char" defined inthe"preferences’ fileif there are any SPACE charactersin
the file-name.

Matrix_file_name R211 MATRIX

If the gel dataisin the form of any ABI/377 or ABI/XL datafile, or an ABI/373
"collection" file, the corresponding matrix file must be specified as the value of this
atribute. Any of the following can be avalid value:

« afull path-name,

« afile-namein the gel input directory, or

« avalid nickname specified as a shared matrix filein "nicknames’.

Sample_file_name R211a.samples
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If an ABI samplefile containing the sample names and the gel layout information is
available, FAST-MAP can create a"layout” file by reading from this samplefile. This
saves the user from having to type in all the sample namesin "layout”. Like the matrix
file, any of the following can be avalid value:

« afull path-name,

« afile-namein the gel input directory, or

« avaid nickname specified as a shared samplefile in "nicknames'.

Sequencer_type ABI
(ABI) Any ABI sequencer. FAST-MAP can determine the machine model
(e.g. ABI/373, ABI/377, or ABI/XL) automatically.
(ALF) Pharmacia sequencer.

(default) ABI

The type of DNA sequencing machine used in generating the gel datafile.

Number_of lanes 34

The total number of lanes onthe gel. Some or all of these lanes may be loaded with size
standards and DNA samples. The user will specify the actua loading patternin the
companion "layout" file.

Size_standard BVMap

This attribute is used to help FAST-MAP in creating the "layout” file. The value must be
avalid size standard defined in the "size stds' file.

Since the sole purpose of this attribute isto help FAST-MAP set up the "layout” file,
FAST-MAP refersto the "layout” file for the name of the size standard that has been run
onthege. Therefore, if the"layout” contains adifferent size standard name from the one

in the "settings’, the namein the "layout” is used.

Min_size standard 70
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The actual range of the size standards imaged may not contain all the sizesfrom the size
standard specified. At the lower bp region, the primer peaks may interfere with peaks
from the smaller sizes of the size standard. To get past these primer peaks, the attribute
Min_size_standard allows the user to specify the smallest size standard visible
across all loaded laneson the gel. FAST-MAP's grid construction is able to handle
incorrect specifications of thisfield if they are off by one or two rows. However, when
in doubt, the user should leave this value blank first, and then use prep _call followed by
prep_view to look at the gel image to ascertain the smallest visible size standard bands.
Whilein prep_view, the user can further help FAST-MAP by cropping away the primer
regions (that is, setting the " Start Scan”).

If left unspecified, FAST-MAP will assume that the Min_size_standard isthe
smallest size in the size standard as defined in the user file "size _stds".

Max_size_standard 400

Similarly, the gel may be incompletely imaged such that the bands from the larger sizes
are not captured onthe gel. The attribute Max_size_standard  alowsthe user to
specify the largest size standard visible across all loaded lanesonthe gel. If left
unspecified, FAST-MAP will assume that the Max_size standard  isthelargest size
in the size standard as defined in the user file "size _stds".

Panel_name panell

The Panel_name attributeis also used to help FAST-MAP create the default "layout™
file. The value must be avalid maker panel defined in the "panels’ file. Asbefore, if the
panel namesin the "layout” file differ from that specified in "settings', FAST-MAP uses
the valuesin the "layout".

Experiment_condition

The user can use any character string to describe the experimental conditions. This string
denotes certain experimental conditionsthat can vary between gels when using the same
panel. The reason for distinguishing experimental conditionsisthat certain data features
(e.g., size binning) of amarker may vary dlightly under different conditions (e.g.,
machine type, primers, gel temperature, etc.). For example, suppose that both GelA and
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GelB used the same panel and size standard, but GelA was run on an ABI/373 and GelB
on an ABI/377. To distinguish between the two, enter a different string inside the
"Experiment_condition " dot for the gels. An empty (or absent) stringisavaid
value, and can be used initially.

Noise_threshold 50

This attribute allows the user to set the maximum signal intensity caused by background
noise in the electropherograms. For ABI sequencers, the typical value is a number
between 50 (default) to 100.

% Section 2: Program animation settings

Verbose_mode_on yes
(yes) Display informative text output in the main Matlab window during
program executions.
(no) Execute programsin silence, but display warnings and errors.
(default ) yes
Show_plots no
(yes) Display graphical animation during allele_call and image call (may
slow down computation considerably).
(no) Do not display graphical animation.
(default ) no

% Section 3: Allele_call settings

Redo_import_planes no
(yes) Re-extract gel imagesin allele _call even if extracted images already
exist.
(no) Do not re-extract gel imagesin allele call.
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(default ) no

Notethat calling prep_call directly will always re-extract the gel images from the gel data
fileevenif Redo_import_planes has been set to "no" .

Redo_manifold no
(yes) Alwaysre-build the size-grid in allele_call.
(no) Do not re-build in allele_call the sizing grid if one already exists for
that gel.
(default ) no

Note that in the following cases, FAST-MAP will aways re-build the manifold even if
Redo_manifold  hasbeen setto "no" :

» calingimage call directly onthe gd;

» the gd images have been re-extracted from the gel datafile; or

» the user has modified the manifold using image view.

Redo_quantitation no
(yes) Ignore any quantitation results from a previous run, re-quantitate the
datafor al experiments.
(no) Use the quantitation results from a previous run if they aready
exists.
(default ) no

Note that if anew manifold has been constructed, FAST-MAP will always re-quantitate
the data even if Redo_quantitation has been set to "no" .

Redo_allele calling no

(yes) Performsalele calling again on all experiments.
(no) Do not genotype again those experiments that have already been
genotyped.
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(default ) no

If an experiment has been re-quantitated (in the various ways as described above), FAST-

MAP will always re-genotype the data even if Redo_allele_calling has been set
to"no" .
Analyse_noisy_ data yes
(yes) Do attempt to genotype experiments containing only datawhich are
deemed to be noisy.
(no) Do not genotype experiments containing only noise.

(default ) vyes

In FAST-MAP, those experiments that are considered to contain noise only are assigned
aquality measure of the value 0.

% Section 4: Allele_results settings

Output_noise_genotypes no

(yes) In the resultsfile, output all computer genotypes even if they have 0
quality (i.e. noise).

(no) Do not output, asthe final allele cals, those genotypes of which
FAST-MAP has deemed as noise. Instead, call these noise
genotypes (0,0).

(default ) no

This attribute also affects the display of called allelesin the main window of allele view.
The third panel of the main allele view window displaysthe final allele calls as output in

the resultsfile. For noise genotypes, if Output_noise_genotypes has been set to
"no", a"NOISE ONLY" label is displayed in the main window instead of the attempted
computer calls on the noise genotypes. If Output_noise_genotypes has been set

to"yes ", the noise genotypes will be labeled "noise”, but the attempted computer alele
callswill aso be displayed in the window.
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Output_sort_by markers

(markers ) In the resultsfile, output the alele calls sorted by markers.
(samples ) Output the allele calls sorted by samples.
(default ) markers
Latest_sample_only no
(yes) In the results file, output the latest allele calls of the sampleif there

are multiple copies. Within astudy, the gels are ordered
chronologically according to their order of appearance in the study's
"layout"; within agel, the genotypes are ordered chronologically
according to their lane numbers.

(no) Output al the alele calls, including any duplicate samples.
(default ) no
Round_evenly spaced no
(yes) Round all the alleles so that they fall on a strictly evenly-spaced ladder.

Thisis useful with low resolution size calibration and microsatellites
with along repeat unit, for example, tri-nucleotides and tetra-
nucleotides.

(no) Do not adjust the alleles.

(default ) no

% Section 5: Allele_view settings

Prioritize_results worst_first
(worst_first ) In the "Prioritized" mode, order the experimentsin increasing
genotyping quality (i.e. view the bad genotypesfirst).
(best_first ) In the "Prioritized" mode, order the experimentsin decreasing
genotyping quality (i.e. view the good genotypes first).
(default ) worst_first
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% Section 6: Marker_view settings

Lanes_per_view 5

Number of lanes to be viewed simultaneously in a single marker_view window.

% Section 7: Allele_printout settings

Send_to_printer yes
(yes) The plots are printed immediately on the printer specified in
"preferences’
(no) Plots are not sent to the printer. Instead, they are saved as a post-

script file to be printed by the user later (see "alele printout” for
further details).
(default ) yes

Show_figure no
(yes) The plots are displayed on the screen while they are being saved or
printed.
(no) Plots are not displayed while they are being compiled as hardcopy.

(default ) no

Rows_per_page 4
Severa plots can be printed on one page by arranging them in multiple rows and
columns. The value of this setting sets the number of rows on asingle page. The
default valueis 4.

Columns_per_page 2

Multiple plots can be printed on one row by setting this slot to a value greater than 1.
The default valueis 2. (The default total number of plotsis 8 per page.)
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Include_electro_plots no

(yes) Include electropherograms in the printouts.
(no) Do not include el ectropherograms in the printouts.
(default ) no

By default, only the fitted peak profiles (along with called genotypes highlighted asfilled
peaks) are saved inside a hard-copy. Thisdot allows the long-range electropherogram
trace (which spans the entire allele window) to be included inside the hard-copy.

B.2.2. layout (gel)

In the gel's "layout” file, the user lays out for the computer the marker multiplexing in a

simpleway. There arefour header entries:

» lane, the lane number onthe gel. The lane should still be specified even if it has not
been loaded. In other words, the layout must consist of lanes 1 through
"Number_of lanes"”  asspecifiedin "settings'.

» sample, anidentifier for the DNA sample tested.

» panel, the marker panel used in thislane for PCR amplifying the sample.

» size dtd, the molecular weight size standards used in the lane. In the current software
version, the identical size standards must be used in every loaded lane.

If an ABI samplefileis supplied, FAST-MAP can automatically generate a"layout” file
from this sample file together with the panel and size standard information supplied in the
gel's "settings” file.

The following exampleisapartia listing of agel's"layout” file. The actud file has 34
lanes specified in thisway for amarker panel (panel1l) and the Bioventures molecular
weight markers (BV Map) loaded in lanes 1 through 32.

lane sample panel size_std
1 ped01P1 panell BVMap
2 ped01P2 panell BVMap
3 ped01C1 panell BVMap
4 ped01C2 panell BVMap
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5 ped01C3 panell BVMap
6 ped01C4 panell BVMap
7 ped01C5 panell BVMap
8 ped02P1 panell BVMap
9 ped02P2 panell BVMap
10 ped02C1 panell BVMap
32 ped05C4 panell BVMap
33 blank blank blank

34 blank blank blank

Since thereis often only one marker panel or size standard set used on agiven gel, we
provide asimpler way to specify layouts for these gels. Theruleisthat the panel or size
standard needs to be specified only thefirst timeit isused. After the first occurrence, the
panel or size std is assumed to be unchanged. For example:

D

ne sample_
ped01P1
ped01P2
ped01C1
ped01C2
ped01C3
ped01C4
ped01C5
ped02P1
ped02pP2
0 ped02C1

POO~NOOITRAWNE

32 ped05C4
33 blank
34 blank

panel
panell

blank

size_std
BVMap

blank

When multiple panels are used, asimilar rule applies. For example, if panell isused for
lanes 1-7, and panel 2 is used for lanes 8-10, the following layout file can be used:

D

ne sample_
ped01P1
ped01P2
ped01C1
ped01C2
ped01C3
ped01C4
ped01C5
ped02P1
ped02P2
0 ped02C1

POO~NOOITRAWNE

panel
panell

panel2

size_std
BVMap

283



It isimportant to remember that FAST-MAP is an expectation-based system. It relies
unquestioningly on the loading patterns specified by the user in the "layout” file. To help
FAST-MAP, the user must enter the correct gel loading pattern in "layout”. If necessary,
the user can use the program prep_view to quickly review the extracted gel images and
verify the correct layout before allowing FAST-MAP to proceed with lane tracking (which
depends on the "size_stds' column in "layout"), MW size calibration (which depends on
the"Min_size standard" and "Max_size standard” attributesin "settings").

Detailed descriptions

Here's adetailed description of agel's "layout" file:

lane sample panel size std

The "layout" file contains four columns as defined by the above header. The user specifies
the loading pattern by telling the computer which of the lanes are loaded with DNA samples
and which of the lanes are loaded with molecular weight size standards. With thissmple
specification scheme, we can easily specify complex loading patterns such as (1) different
panels being loaded in different lanes on the same gel, and (2) DNA samples being loaded
in aternate lanes from those loaded with the molecular weight standards (astypical on a
single-dye system).

Column 1: lane

This column contains the lane numbers, which must be from 1 to the value of
"Number_of lanes"  asspecifiedin"settings'.

Column 2: sample
The second column contains the sample names. Aswith any namesin FAST-MAP, the
sample names should not contain any SPACE or "%" characters. To usethe"View
Family" functionality in allele_view, these sample names should also be defined in the

"pedigrees’ file.

If alaneis unloaded, use the keyword "blank" for the sample name.
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Column 3: panel

The third column contains the names of the marker panels used for PCR amplifying the
respective samplesin the lanes. The marker panels need not be the same, but they must
be defined in the "panels’ file. If alaneisunloaded, use the keyword "blank".

Column 4. size_std

The last column contains the names of the molecular weight standards used in the lanes.
Use the keyword "blank” for unloaded lanes. Although this specification scheme allows
the flexibility of using different size standards on the same gel, FAST-MAP's automatic
size calibration program requires that each gel uses only one size standard.

B.2.3. settings (study)

The "settings’ file for astudy isthe same asthe "settings’ file for agel except for the gel-
specific section (Section 1). Instead, this section is replaced by a section which allows the
user to specify whether to use the values in the study's "settings' to process al its
component gels or to use each individual gel's own "settings” instead.

Hereisatypica "settings' for astudy :

attribute value

% Section 1. Study-specific settings
%
Use_study_settings yes

% Section 2. Program animation settings
%

Verbose_mode_on yes
Show_plots no

% Section 3. Allele_call settings
%

Redo_import_planes no
Redo_manifold no
Redo_quantitation no
Redo_allele_calling no
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Analyze noisy data yes

% Section 4. Allele_results settings
%

Output_noise_genotypes no
Output_sort_by markers
Latest_sample_only no

% Section 5. Allele_view settings
%
Prioritize_results worst_first

% Section 6. Marker view settings
%
Lanes_per_view 5

% Section 7. Allele_printout settings
%

Send_to_printer yes
Show_figure no
Rows_per_page 4
Columns_per_page 2
Include_electro_plots no

Detailed descriptions

We describe here only the study-specific section (for the other sections of "settings’, see
"settings (gel)"):

% Section 1: Study-specific settings

Use_study_settings yes
(yes) Use the values in the study's "settings" to process each component
gelsin the study.
(no) Use the gels own "settings" instead.
(default ) yes
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B.2.4 layout (study)

In FAST-MAP, astudy is defined as a set of gels. Therefore, the "layout” of astudy isa
list of nicknames of the component gelsin the study. The order of these nicknames defines
the chronological order of the gels -- newer gels should be appended to the end of the gel
list.

Here'satypical study "layout” file:

gel

%

% Gels for panell study
%

GEL1 % 4/15/97, Ped01-Ped06
GEL2 % 4/16/97, Ped06-Ped11
GEL3 % 4/18/97, Ped12-Ped17

Detailed descriptions
And here's adetailed description of the "layout” file for astudy:
gel

The header of the "layout” file for a study indicates that the file isasingle-column file
consists of gel names.

Column 1: gel

The nicknames of the study's component gels are entered one on each row. They must
be defined under the type "gel” in the "nicknames’ file. The order of these nicknames
reflect the chronological order of the gels, with the older ones on top and the newer ones
appended to the end of thelist.

Aswith any user/input filesin FAST-MAP, the user is free to add comments anywherein
thefiles aslong as they are marked with the "%" character (as shown in the example
"layout” file).
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Appendix C: FAST-MAP's Libraries

For a system to be useful in processing real datain realtime, it must be efficient in its data
processing as well as robust against the various nuances present in real data. In FAST-
MAP, the mgjor means for the requisite speed and robustness is intelligent expectation-
based computation. For speed, FAST-MAP uses well-informed expectations to focus its
attention directly on the relevant features of the input, instead of spending time on the less
important features. For robustness, FAST-MAP uses its learned expectations to
distinguish between data and random noise, thereby avoiding making mistakes due to data
singularities.

The key, then, isto construct useful, realistic, and specific expectations about the data. For
this, FAST-MAP relies on its knowledge acquired on similar data over time. Because the
data knowledge is specific to the types of data being processed, we organize the acquired
information in data structures called libraries, implemented in FAST-MAP asindividua
files that are compiled automatically. As FAST-MAP processes more data, it is able to
augment the appropriate library files with more information and automatically becomes
more knowledgeable over time.

There are four main classes of information learned by FAST-MAP:

* binning information of size standards. FAST-MAP uses previous relative pixel
locations of MW bands to construct reliable expectations on where to rapidly search for
MW bands on the current gel;

* binning information for markers. FAST-MAP usesrelative pixel information on
markers from previous gels to guide its search for marker bands on the current gel.
The binning information is also used in assigning consistent integral alele labelsto the
marker bands;

o dutter information for markers: FAST-MAP uses previously observed stutter patterns
to deconvolve for genotypes; and

» relative amplification information for markers. FAST-MAP usesthe amplification
ratios computed from previously analyzed marker datato adjust for relative
amplification in the current stutter patterns.
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In the following sections, we describe the different types of information that FAST-MAP
storesin itslibraries.

C.1. Binning libraries for size standards

DNA fragments do not migrate linearly on an electrophoretic gel (Southern, 1979). To
robustly predict the whereabouts of MW bands on a gel without assuming any global
functional formsfor DNA migration, we use the locations of MW bands detected on
previous gels that were ran under similar experimental conditions. For this purpose,
FAST-MAP keeps a customized MW library file for every size standard and experimental
condition used by a particular user.

To predict the locations of the MW bands on a gel, the corresponding size standard binning
library must provide the relative pixel information for the MW standard. In FAST-MAP,
we store the absolute pixel values from the previous gelssinceit isonly atrivia
computation to compute the relative pixels from the absolute pixel values (the absol ute pixel
values are useful for debugging the binning libraries). Thus, aFAST-MAP size standard
binning library contains the following information:

» thesizesof the size standard DNA fragments,

» theactua absolute image pixels of each MW band detected previously on agel lane.

Here is an example of a size standard (GS350) binning library:

MW (bp) 50 75 100 139 150 160 200 250 300 340 350
Gell, L1 31 173 314 562 624 688 945 1253 1557 0 0
Gell, L2 31 175 316 564 626 690 948 1258 1559 0 0
Gel2, L1 0 2660 2964 3490 3630 3775 4363 5116 5963 6622 6801
Gel2,L2 0 2597 2898 3423 3561 3706 4295 5049 5899 6558 6737

Each row in thelibrary islabeled by the gel name (e.g. Gel1) and the lane number (e.g.
L1), followed by the absolute pixel vaues for each of the MW size in the standard.
Missing MW fragments are entered zeros as their pixel values. Inthe above example, Gell
contains only size fragments of up to 300 bp, while Gel2 starts at 75 bp instead of 50 bp.
Indeed, the range of MW bands that actually showed up on the gel image tend to vary from
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gel to gel: the smaller MW may have been mixed up with the primer signals, while the
larger MW may not have been separated because of insufficient gel run time.

To predict the relative pixels of anew gel that has the size standard GS350 running, say,
from 75 bp to 300 bp, we take the element-to-element column vector division of the
nonzero columnsin the binning library:

pi = mean((Gi-Csart) -/ (Cend-Catart))
where pj denotes the predicted relative pixel of i bp, ¢; denotes anonzero library column
fori bp, and inthiscase, start = 75 and end = 300. The operator "./" denotes element-to-
element column vector division. The predicted relative pixels (based on the 4 rows shown)
for the new gel are:

P75 P100 P139 P150 P160 P200 P250 P300
0 0967 .2659 .3093 .3544 5365 .7623 1

C.2. Binning libraries for markers

Like the size standard binning libraries, the marker binning libraries store relative pixel
information about marker bands. FAST-MAP uses the relative pixel information acquired
from previous gels to predict where to efficiently search for marker bandsin the current
electropherogram. Additionaly, the corresponding binned sizes allows FAST-MAP to
consistently assign integer allele labels to the detected marker bands.

Unlike the size standard binning libraries, we store the predicted relative pixelsin the
marker binning libraries since it is nontrivial to re-compute them on the fly using stutter
crawling. In addition, we aso store the training data within the libraries so that they can be
incorporated with new data for re-training to facilitate incremental learning.
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Hereisatypica marker (D16S415) binning library in FAST-MAP:

Allelelabels 194 195 196 197 198 199
Relative pixels .008 .023 .038 .053 .068 .083
Repeat unit 2bp

Alleles binned so far 203 205 207 223 225 227
Allele ladder's start bp 195

Gell, L1 (band locations) A74 504 535 .565

Gell, L1 (band heights) .085 .239 .456 .290

Gell, L2 (band locations) 231 261 .291 .306 .323 .443
Gell, L2 (band heights) .025 .085 .361 .129 .999 .031

The binning library file can be divided into three main sections:

Thefirst section (rows 1 and 2) defines the alele bins with an assignment of the
integral allele labelsto the predicted relative pixel values;

The next section provides more information about the marker, such as the expected
length of arepeat unit for the marker, the alleles that FAST-MAP has actually binned so
far, and the start base pair of the predicted allelic ladder to indicate the expected parity
of the possible marker alleles (in this case, we expect aladder of 195 bp, 197 bp, 199
bp, and so on for D16415);

Thefinal section stores the binning training data that we have acquired so far. For each
gel lane that was used for binning, we record the relative pixels of the stutter trail
together with the stutter band's normalized heights. When stutter crawling, the heights
of the bands are used as a quality and confidence measure about the stutter bands.

C.3. Genotyping libraries for markers

Automatic genotyping has been precluded (mainly) by two PCR artifacts: stuttering and
relative amplification. These reproducible artifacts are recorded in FAST-MAP's
genotyping libraries; they are then used to predict the expected stutter and amplification
patterns for deconvolution. Asthe stutter and amplification patterns are highly specific,
FAST-MAP maintains a detailed genotyping library for each marker under every
experimental condition used by an user. Each of the genotyping libraries consists of two
components: a stutter pattern matrix, and arelative amplification ratio table.
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Stutter pattern matrix

Like the marker binning libraries, we store the training data together with the stutter pattern
matrix A in order to facilitate incremental learning. The training set can be augmented with
more data as they become available, allowing FAST-MAP to refine its stutter matrix over
time.

The stutter pattern matrix A is stored as atwo dimensional matrix indexed by integer alele
labels, such as:

114bp 112bp 110bp 108bp 106 bp
114bp = 1.000 0 0 0 0
112bp = 0500  1.000 0 0 0
110bp = 0250  0.600  1.000 0 0
108bp = 0125 0300 0700  1.000 0
106 bp 0 0150 0350 0.800  1.000
104 bp 0 0 0.160  0.400  0.900
102 bp 0 0 0 0.200  0.450
100 bp 0 0 0 0 0.220

For the associated training data, we store the known genotypes, the amplification ratios, the
quality measures, and the observed data vectors:

genotype | ratio | qua observed data vector

Gell, L1 | 112,114  .992 | .895 § .246 .388 .219 .089 .034 .004 .019 .000
Gell,L2 | 106,114 @ 1.23 | .908 | .219 .137 .042 .035 .234 .186 .081 .062
Gel2,L1 | 108,112  1.02 | .921 .017 .228 .145 .277 .187 .083 .064 .000

Relative amplification ratio table

For the relative amplification ratio tables, we generally store only the "compressed"
versions because of insufficient initial data. In a"compressed” amplification ratio table 9,
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we assume that the relative amplification ratio depends only on the allele size difference,
such that 9(aq, ap) = I (ag, as) whenever |ag- ag| = |ag- a4|. As more data becomes
available, we can expand 9 into afull-blown relative amplification ratio table with one entry
for every genotype. However, it has been our experience that the compressed 9 isitself
generaly adequate for handling the relative amplification problem.

In FAST-MAP, the compressed relative amplification table is stored as a vector of triples
<minimum ratio, mean ratio, maximum ratio>

to indicate the range of possible ratios for each fixed size difference in apair of aleles. For

example:

aldedifference 0 bp 2 bp 4 bp 6 bp 8 bp
minimum ratio 1 .952 .899 1.02 1.01
mean ratio 1 .994 1.09 1.13 1.17
maximum ratio 1 1.32 1.25 1.28 1.32

Aswith the stutter matrix, the amplification ratio table can aso be incrementaly refined by

re-computing it using the training data stored in the corresponding stutter pattern matrix
library.
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Appendix D: FAST-MAP's Programs

FAST-MAP (Fluorescent Allele-calling Software Toolkit — Microsatellite Automation
Package) is a software package that we have written for automated microsatellite
genotyping. Sinceits public release* in May 1996, it has been used by geneticistsin
academic research laboratories, national research institutions, and commercia genotyping
centers throughout the world. TrueAllele™, the successor to FAST-MAP, continuesto
improve upon the system as well as the technol ogy4°.

Asapractical genotyping system, FAST-MAP consists of acomprehensive assortment of
programs for data analysis, visual display, and result outputs. In general, we can classify
the programsin FAST-MAP in three categories: core programs, viewing programs, and
utility. The core programs implement the various algorithms that we have discussed in this
dissertation, providing the necessary computational power for fully automated
microsatellite genotyping. The viewing programs provide interactive graphical interface
with which the user can review, edit, and assist the computer at the various programmatic
checkpoints provided in FAST-MAP. The utility programs provide useful functionalities
such as setting up data for analysis and customizing the genotyping results generated by
FAST-MAP.

The following sections contain abstracts from the FAST-MAP user manual that describe the

various FAST-MAP programsin details. In the descriptions, we adopt the following

notation:

» [talicized words refer to computer programs, and double-quoted words refer to
computer "files' or directory "nicknames’™;

* Underscores are used for emphasis,

» Bracketsrefer to a<variable> that isfilled in with a specific value when it is actually
used.

#nttp:/ww.cs.cmu.edu/~genome/FAST-MAP.html.
45http://www.cybergenetics-inc.com.
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D.1. Overview

FAST-MAP isafully-automated genotyping system. When analyzing clean gdl data, the
program allele_call will analyze the data directly from raw gel files and generate genotyping
results without user assistance. In this mode, the user can leave the computer to analyze
the gel dataon its own, and then return to view the genotyping results using an interactive
graphical interface allele view. The sequence of programsto cal in this fully-automated
mode s therefore:

alde call - allde view

For the more cautious users, we provide numerous checkpoints during computation for the
user to verify (and if necessary, edit) the intermediate results at various stages of the data
analysis. For example, the user might want to first ensure that the lane tracking and size
calibration are done properly before proceeding to calling the alleles based on the sizing
grid. For this, the user can use the program image_call to perform lane tracking and size
calibration on raw gel data, and then use the program image_view to graphically inspect the
sizing grid constructed by the computer. 1f the computer was having problems with the
gel, the user can assist it in image_view by providing more information about the gel. For
example, if there was a high degree of gel smile on the gel, the user can tell the computer
the actual shape of the gridinimage view. Or, if the computer misplaced afew size
standards bands, the user can repair the grid by indicating where these bands should be.
After an accurate sizing grid has been generated, the user can then invoke allele_call to
genotype the size-calibrated data and then use allele_view to inspect the results. A typical
sequence of programsto call in this"cautious' modeis:

image call — image view - allde call - allde view
Sometimes, when a new marker panel isused for the first time, the allele ranges covering
all the genotypes of the population being studied may not be known beforehand. Inthis
case, the user can use the program marker_view to graphically scans the markers
electropherograms (that has been size-calibrated with image _call) and then set the correct

enclosing alelewindows. A typica calling sequence for this caseis:

image call - image view - marker view - allde call - allele view
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For the "extra cautious' user, before even proceeding with any computer analysis of the gel
from the raw datafiles, the user might want to inspect the gel images to make sure that the
information provided to FAST-MAP are accurate. In particular, the user may wish to view
the pre-analysis gel image and do any of the following: (1) crop away any primer regions,
(2) check the minimum and maximum size standards that are actually captured on the gdl ;
and (3) verify the number of loaded lanes. In this"extra cautious' mode, the user can use
the program prep_call to extract the gel images from the machine-specific raw gel data
files, and then use prep _view to view the gel images. Here'satypical calling sequence:

prep call — prep view - image call - image view
- marker view - allde call - allee view

In general, the graphical interface for usersto interactively assist FAST-MAP in itsanalysis
are named with asuffix "_view". Although these interface are typically used in the
sequences described above, they can aso be used at any checkpoints as long as the
requisite intermediate results have already been computed. For example, auser may run
FAST-MAP in the fully-automated mode overnight, and return to inspect the genotypes. If
the sizing of the alleles were found to b inaccurate, the user can then useimage view to
inspect and edit the sizing grid, and then call allele_call to re-analyzethe gel. An example
of such acalling sequenceis:

allde call - allde view - image view - allee call

D.2. Program list

Aswe have mentioned earlier, the programsin FAST-MAP can be classified in one of three
categories. core programs, viewing programs, and utility programs. For a quick overview,
we give abrief summary listing of the various programs in each of the categories here. The
individua programswill be described in greater details later in this Appendix.
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Core programs
prep_call Thisprogram prepares the raw dataimage files from various DNA sequencers
by extracting the image data from the filesinto a sequencer-independent format. Itis
automatically called by FAST-MAP programs such asimage _call and allele_call, but the
user can aso cal it directly typing:

>> prep_call <nickname>

Asusual, <nickname> can befor asinglegel or astudy. To process multiple gels or
studies at a single command, simply enter al the nicknames:

>> prep_call <nicknamel> <nickname2> ...
image_call This program performs automatic lane/size determination and
electropherogram data extraction. It isautomatically executed by the allele _call
program, but the user can also invoke it by typing :

>>image_call <nickname>

where "<nickname> " can befor either agel or astudy. To process more than one gel or
study in a single command, type

>>image_call <nicknamel> <nickname2> ...

allele call Thisworkhorse program automatically callsthe alleles. 1t can be configured
on clean datato work fully automatically. It isinvoked by typing

>> allele_call <nickname>

Both gels and studies can be analyzed with allele _call. To batch-process multiple gelsand
studiesin asingle command, smply type:

>> allele_call <nicknamel> <nickname2> ...
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Viewing programs
prep_view This companion program can be called after prep _call to view the extracted
gel images. The user can crop away the primer peak region of the gel aswell as ascertain
the minimum and maximum size standards that actually appear onthe gel. To view the
extracted images of agel or study, type:

>> prep_view <nickname>

Aswith al other graphical viewing programsin FAST-MAP, only one gel or study may be
viewed with asingle command of prep_view.

image_view This companion program is used to visually inspect and edit the lane/size
grid generated by the program image _call. It isinvoked by typing

>>image_view <nickname>
where "<nickname> " can befor either agel or astudy. Only asingle gel or study can be

viewed with asingle image_view command.

marker_view Thisuser-analysis program is used to visually inspect the allele window
for amarker in agel or study (after the el ectropherograms have been calibrated by the
program image_call). Thisis particularly useful when the marker panel is being analyzed
for the first time such that the exact range of alelesfor the marker is not known with
certainty. The user invokes "marker_view " by typing

>> marker_view <nickname>

Again, only asingle gel or study can be inspected with a single command of marker_view.
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allele view Thisprogram is used to visually review the alleles. It isthe main graphical
interfaceto the allele_call program's results. To invoke it, type:

>> allele_view <nickname>

Asinallele call, the<nickname> can befor asingle gd or a study comprising of

multiple gels. However, only asingle gel or study may be allele view'ed at one time.

Utility programs

edit This program allows usersto rapidly access and edit the data files without having to

typein the full path of the files. For example, to edit the "nicknames® file, type:

>> edit nicknames

Or, to edit a particular gel or study's "settings® file, type:

>> edit <nickname> settings

edit will create default files for the user if the file does not already exist. To seealist of
files accessible by edit, type:

>> help edit

inspect Like the program edit, the program inspect allows users to rapidly inspect the
content of datafilesin Matlab without having to typein full pathnames. For example, to
inspect the genotyping results of GEL 1, type:

>> inspect GELL1 results

For alist of files accessible by inspect, type:

>> help inspect
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setup This FAST-MAP script can be used for setting up a gel, a study, a shared matrix
file, or ashared samplefile. To use the setup script, the user must first transfer all relevant
datafilesinto the "FAST-MAP/incoming/" directory, and then invoke setup in FAST-MAP:

>> setup <object> [<nickname>]

The user will be asked a series of questions pertaining to the setting up of the particular
FAST-MAP object. Four typesof FAST-MAP "<object> "scanbeset upinthisway: a
gel, astudy, ashared matrix file, or ashared samplefile. The optional <nickname> can
be supplied to specify the nickname that isto be used for the object . Here are some
examples.

>> setup gel GEL1

>> setup study STUDY1

>> setup matrix S1._MATRIX
>> setup sample S1_SAMPLE

Alternatively, the user may prefer to set up the data manually.
allele results This result-generation program can be used to re-format the result text
filesthat contain the alele calls. These text files can then be examined by users (e.g., in
Excel) or by computers (e.g., by databases or other computer programs). The desired
format of the result text files can be customize using the "settings" file of the gel or study
(using the edit command). The user can specify to have the genotypes sorted by markers
or by individuals. To generate the resultsfiles, type:

>> allele_results <nickname>

To process more than one gel or study at once, type:

>> allele_results <nicknamel> <nickname2> ...
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D.3. Core programs

D.3.1. prep_call

The program prep_call prepares the raw dataimage files generated by various DNA
sequencers. It extracts the image data into a sequencer-independent format. This program
must be called before using prep_view, if the gel has not been analyzed before. The
program allele_call and image_call automatically execute prep_call when analyzing anew

gel.

Program operation

To use prep_call, the user types
>> prep_call <nickname>

e.g.
>> prep_call STUDY1

Calling prep_call directly will always re-extract the image data. If animage dataisre-

extracted, previous genotyping results will be assumed obsolete. 1t will then be necessary
to call allele_call and image_call to re-analyze the gel or study.

To prep_call more than one gdl or study with asingle command, simply type:
>> prep_call <nicknamel> <nickname2> ...

e.g.
>> prep_call STUDY1 GEL3 STUDY2 STUDY3

Up to 45 gels and studies are allowed in asingle batch.
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Example run

Toinvoke prep_call from agd or astudy, type
>> prep_call <nickname>

For example, type
>> prep_call GEL3

And here's acomputer trace of prep_call:

FAST-MAP v1.04b (created April 21, 1997, last revised 04/21/97,
system HP700).

[Session started at 19-Apr-97 13:40:16.]

GEL: GEL3

Clearing previously computed results: GEL3...Done.

GEL3: prep_call [19-Apr-97 13:40:17]

Image file R211c.gel is an ABI/377 collection file (version 2.00).
GEL3 is a 5540 x 194 gel with 4 dye planes.

[Session for "prep_call GEL3" ended at 19-Apr-97 13:46:55.]

GEL 3 isnow ready to be inspected using the companion program prep_view.

D.3.2. image_call

This program is used to directly perform the automated lane/size tracking. It isuseful when
additional editing (in image_view) is required to build the two dimensional gel coordinates.
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Program operation

To useimage call, the user types

>> image_call <nickname>
e.g.

>>image_call STUDY1

Theimage call program will dways perform the lane-tracking and size calibration on
<nickname>. image_call should be followed by user interaction with the image view
program especialy if the user has reason to suspect the gel contains noise, non-uniform
amplification etc. which could lead to an inaccurate size grid.

Toimage_call more than one gel or study with a single command, ssimply type:
>> image_call <nicknamel> <nickname2> ...

e.g.
>>image_call STUDY1 GEL3 STUDY2 STUDY3

Up to 45 gels and studies are allowed in asingle batch.

Example run

First, make sure that the layout and the settings file correctly describes the size standards,
its name, the maximum, and minimum sizes present on the gel. If desired, the user may
invoke prep_call followed by prep_view to view the gel image before image_call.

Invoke image call:
>> image_call GEL3

The computer responds with the following messages.

Clearing previously computed results: GEL3...Done.
GEL3: Image_call [19-Apr-97 15:57:48]

Reading image data for dye 4...Done.
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Depending on whether the graphics option in "settings” is set to yes or no, the user may or
may not see awindow open up with the size standard plane image. Thisimage gets
overlaid by interpolated lanes, then size standard rows, asimage_call continues with
further status reports on its progress. The text output on the screen is also saved in the
“image_call.log” filein the gel output directory. Here is the rest of the sample session:

Scanning for size std bands................. s

Refining MW peaks ........ccccccvieiiiiiiiiiinns Done.
Computing pixel-to-bp calibration .................ccee Done.
Saving size calibration...........ccccccceveeeiiiiiinn, Done.
Reading image data for dye 1...Done.

Converting image to profiles.........ccoceeeviiieenenne Done.
Reading image data for dye 2...Done.

Converting image to profiles...........cccoviiiiiinenn. Done.
Reading image data for dye 3...Done.

Converting image to profiles............cccoeevvvnnnnnn. Done.
Reading image data for dye 4...Done.

Converting image to profiles.........ccoceeevnieenenns Done.

[Session for "image_call GEL3" ended at 19-Apr-97 16:09:44.]

D.3.3. allele call
Theallele_call program isafully automated computer program that genotype aleles from
microsatellite gel data. When fully automated lane/size tracking is problematic, we
recommend running the image_call and image_call programs prior to running allele call.

Program operation
Toruntheallele call program, the user types the command

>> allele_call <nickname>

The <nickname> can befor asingle gel or for astudy. Inastudy, FAST-MAP can

make use of al the data on all the gels simultaneously. For example, consistency of the
size caling across gels can be ensured by binning across al the gelsin the study.
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Therefore, instead of calling allele_call on each gel individually, we recommend that the
user bundle related gels together as a study.

Theallele_call program performs four main steps:

(1) Extracting image data. This step preparesallele_call by extracting the gel
images from raw sequencer datafilesinto aformat that is sequencer-independent. If the
user wishesto preview the gel image (using prep_view) before alele-calling the gel, this
step can be performed prior to running allele_call by explicitly caling the prep_call
program. Otherwise, it will be called automatically as part of allele call .

(2) Tracking lanes and sizes. If desired, this step can also be performed prior to
running allele_call by using the separate image _call program. Otherwise, itis called
automatically as part of allele _call (whichinternally callsimage call). Theimage call
algorithms analyze al the gel's molecular weight sizing data ssmultaneoudly in two
dimensions. The user provides (in "/<gel>/input/settings") estimates of the DNA size
range that will appear on the gel, and the computer handlesthe rest. Thistracking letsthe
analysis program move interchangeably between the observed 2D gel image and the
expected (lane, base pair) coordinates. The separate image view program is a user
interface for checking the computer's tracking results, and for performing other editing
tasks.

(3) Quantitating DNA bands. For the alele deconvolution methods to work well,
accurate estimates of DNA size and concentration for each band (including artifactual stutter
bands) are needed. Thisallele call module performs this quantitation.

(4) Allele determination. Once the data has been quantitated, the allele_call program
determines the aleles by deconvolving the quantitative data relative to the marker's
calibrated stutter artifact. This stutter calibration islearned by allele call asit studies data
on one or more gels; the more gels studied, the more accurate the alele calling. If the PCR
conditions (buffer, enzyme, primers, thermocycling, etc.) change, then the learning has to
start anew.

Theallele _call program'sfour steps areinvisible to the user: the program works fully
automatically. However, the user can control much of the inside workings of the program
by providing settings for parameters and options in the "settings” file (see " Settings").
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To analyze multiple gels and studies with a single command, type

>> allele_call <nicknamel> <nickname2> <nickname3> ...
Up to 45 gels and studies are allowed in asingle batch.
The user can view the status of the batch processing by typing:

>> inspect <nicknamel> status

And astatus report will be displayed, such as the following:

ALLELE_CALL for 2 gels/studies started at 21-Apr-97 12:24:03.

STUDY1: study
Started : 21-Apr-97 12:24:03
Completed :  21-Apr-97 13:48:34

GEL3: gel
Started : 21-Apr-97 13:48:34
Completed :  21-Apr-97 14:57:24
ALLELE_CALL for 2 valid gels/studies completed successfully at 21-
Apr-97 14:57:24.
The user can also review the detailed traces of each nickname by typing:

>> inspect <nicknamel1> logfile

Example run

Before running allele_call, the user must (1) set up the gel or study (see "setup™), and (2)
annotate the user files (see "Annotating Genotyping Data"). Then, in FAST-MAP, type:
>> allele_call <nickname>

This command will start running the genotyping program on the user's gel data according
to the specifications that were provided in the user-annotation files. The program prints out
line-by-line descriptions of what it isdoing; each "." inthe"..." messages indicates
completion of aprogram substep. The user can largely ignore this computer monologue.
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It isuseful primarily for knowing that the program is still running, and may assist the
software support group in helping the user out when thereisa problem. It isa so recorded
ina"logfile" ("<nickname>/output/allele _call.log"), so the user can review it using the
command

>> inspect <nickname> logfile

A typical run starts off as:

>> allele_call STUDY1

FAST-MAP v1.04b (created April 21, 1997, last revised 04/21/97,
system HP700).

[Session started at 21-Apr-97 12:24:05.]

STUDY: STUDY1

Clearing previously computed results: GEL1...GEL2...Done.

Marker p1m1 : [21-Apr-97 12:24:10]

Scanning GEL1 for marker
WINAOWS.....oooiiiiiiiiiiieeeeeeen, Done.
Quantitating GEL1 lane 1.....a.b..Done.
Genotyping GEL1 lane 1....Done.
Quantitating GELL1 lane 2.....a.b..Done.
Genotyping GELL1 lane 2....Done.
Quantitating GEL1 lane 3.....a.b..Done.
Genotyping GEL1 lane 3....Done.
Quantitating GEL1 lane 4.....a.b..Done.
Genotyping GEL1 lane 4....Done.
Quantitating GELL1 lane 5.....a.b..Done.
Genotyping GELL1 lane 5....Done.
Quantitating GEL1 lane 6.....a.b..Done.
Genotyping GEL1 lane 6....Done.

Depending on the "settings' parameters, the user may see:
* A'"sizegrid" window for animating the lane-tracking and size calibration.
e A "quantitation window" for animating the DNA size and concentration determinations.

Asthe program runs, the following steps are done:

(2) lane/size tracking for the entire gel image;
(2) DNA size and concentration determination for all genotypes; and
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(3) alele determination by deconvolution for each genotype.

At the end of the run, the computer signalsthat it has completed the requested genotyping

services. A tabbed text file of the genotyping results is then stored in the

"/<nickname>/output/" directory with the name:
"/<nickname>/output/<nickname>.results’,

i.e., with ".results" appended to the gel or study nickname. In FAST-MAP, the user can

view it using

>> inspect <nickname> results

gel lane  sample marker allelel allele2 computl comput2 qual editl edit2
GEL1 1 PedOl1P1 plml 139 141 139 141 0.9610
GEL1 2 Ped01P2 plml 141 153 141 153 0.9473

GEL1 3 Ped01C1 plml 141 153 141 153 0.9410
GEL1 4 Ped01C2 plml 139 153 139 153 0.9434
GEL1 5 Ped01C3 plml 139 141 139 141 0.9532
GEL1 6 Ped01C4 plml 141 153 141 153 0.8545
GEL1 7 Ped01C5 plml 141 153 141 153 0.9440
GEL1 8 Ped01C6 plml 141 141 141 141 0.9336
GEL1 9 Ped01C8 plml 139 141 139 141 0.8973
1

GEL1 10 Ped02P1 plml 141 143 141 143 0.9491

Although the user can edit the results file using FAST-MAP's edit command or an external
spreadsheet program such as Excedl, the only way to let FAST-MAP know that a genotype
has been edited by istodo it in allele_view. The new resultsfile will include the user edits
inthe "edit1" and "edit2" columns, aswell asin thefina alee calls columns ("allelel" and
"alele2").

On UNIX, the user can print out the results file to the printer specified in the "preferences’
file by:

>> print_now <nickname> results
On Macintosh, the user can print using the "Print" command under the "File" menu
directly.
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D.4. Viewing programs

D.4.1. prep_view

This program can be used after prep_call to view gel images prior to image _call and
allele call. Inprep view, the user can verify the gel layout, check the minimum and
maximum size standards that are captured on the gel, and crop away excess gel regions
(e.g. the primer regions).

Program operation

To use prep_view, the gel images must first be extracted using prep_call. Then, the user

types:
>> prep_view <nickname>

e.g.
>> prep_view STUDY1

In prep_view, the user can do three things:
(2) crop the image (e.g. to remove the primer region) by setting the start and/or end scan;
(2) view alaneto verify the smallest and largest molecular weight standards that were

captured on the gdl; and
(3) view a"row" to verify the loaded lanes.

Example run

To view the extracted gel images, type
>> prep_view <nickname>

For example,
>> prep_view GEL3

The computer responds by:
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Initializing gel settings for GELS3.....Done.
Reading image data for dye 4...Done.

A "Prep View" window is opened, displaying the size plane of the current gel.

Prep View window

J:l Prep View
Gels Dye

Gel : GEL3 MW Std : BVMap Min size : 70 Max size : 400

1000

2000

3000

4000

S000

Figure D.1. The Prep View window with Start Scan already defined (Gel_orientation
'reverse’).

There are two menu items for prep_view:
() Gels: for loading adifferent gel in the study;
(2) Dyes: for loading the image of a different dye of the current gel.

To theright of the gel image, there are eight control buttons:

(1) Zoom in: for zooming in to a selected region of the image;
(2) Zoom out: for zooming out;
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(3) Darken : for darkening the image display;

(4) Brighten : for brightening the image display;

(5) Refresh : for re-displaying the image (on certain display device, the image may not
automatically refresh);

(6) Clear : for deleting al the current edits;

(7) Save: for saving the current edits,

(8) Close: for closing and exiting prep_view.

(7) Marker info. Brings up awindow which graphically displays the markersthat have

been loaded on the gdl.

(8) Layout. Brings up awindow which displays the "layout” file for the gel.

There are four buttons in the area above the gel image: Start Scan, End Scan, Lane View,
and Row View.

The"Start Scan" and "End Scan™" buttons are for cropping away excess gel regions. The
"Start Scan" button is particularly useful for removing the primer region. To crop the
image, click on the "Start Scan™ button, and then click on apoint in theimage. A
horizontal line indicating the selected start scan will be drawn. The user may click on the
image repeatedly to shift the start scan line until satisfied. The"End Scan™ is defined
similarly by clicking on the "End Scan" button. Click on the "Save" button to save the start
and end scans.

The"Lane View" button is useful for viewing alane and ascertaining the molecular weights
that are captured on the gel. Click onthe"Lane View" button, then select a rectangular
region enclosing alane. A new specialized window, "Prep View : Lane", isopened and it
shows the electropherogram of the selected lane region. We can inspect the

€l ectropherogram to ascertain the minimum and maximum size standard captured on the
gel. When necessary, "edit <gel> settings' to change the values of the parameters

"Min_size standard" and "Max_size standard".

The"Row View" button is useful for verifying the gel'sloaded lanes. Click on the button,
then select a horizonta region on the image that contains arow of molecular weight data. A
new specialized window, "Prep View : Row", is opened and it shows the cross-sectional
profile of the selected row region. Each peak corresponds to a size standard band in the
cross-sectional region and can be interpreted as corresponding to aloaded lane. When
necessary, "edit <gel> layout" to correct the gel's layout.
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Click the "Close" button to exit prep_view. A dialog box may pop up to ask to save the
start and end scans if one or both of them has been defined.

D.4.2. image view

This program is used to visually inspect and edit gel images for lane tracking and size
standard calibration. This is the companion program for image _call.

Program operation

image view isagraphical user interface that the FAST-MAP user can bring up after (or
before) image call has automatically constructed the lane/size grid. To useimage view,
the user types the command:

>> image_view <nickname>
e.g.

>> image_view STUDY1

In image_view, user may:

(2) visualy INSPECT and assessimage _callslane/size grid,;

(2) REPAIR grid lines, without rerunning image_call.

(3) DRAW grid corners and gel boundariesto help image _call in avoiding making its
mistakes due to gel smiles or primer bands.

image_view can be called before or after asizing grid has been constructed by image_call

or allele call. If it isinvoked after asizing grid has already been built, then image view
goesto the INSPECT mode where the grid is overlaid on top of the image of the size plane.
If asize grid doesn't exist, image view goes directly to the DRAW mode where the user
can definethe gel corners and boundaries.

Here are some image_view protocols for solving specific image call problems:

» Veify the correctness of the sizing grid constructed by image _call.

313



- Go to INSPECT mode.

The shape of the gel image is warped due to gel smiles.
- Go to DRAW mode and define the corners and boundaries of the gel.

There are high amplification intensity of primersin the smaller base pairs regions.
- Go to DRAW mode and define the corners and boundaries of the gel.
- Or, use prep_view to define the start scan and/or the end scan, and then re-
runimage_call.

A small number of grid peaks have been misplaced.
- Go to REPAIR mode, choose the element "Peak”. To relocate a misplaced peak,
click on the grid peak, and then click on its desired location on the image. To view
its new position, click on "Refresh”. Repeat for the other misplaced peaks.

An entire lane has been misplaced.
- Go to REPAIR mode, choose the element "Lane". First, remove the misplaced
lane by selecting DELETE and clicking on the lane. Then select INSERT, and click
on asize standard band to insert the lane there.

An extralane has been inserted.
- Go to REPAIR mode and DELETE the extralane.
- Or, if the layout was wrong, edit "layout” to put a"blank™ under "size std" in that
extra lane, then re-run image _call.

A lane was missing.
- Go to REPAIR mode and INSERT the missing lane (remember to click on an
existing molecular weight band when inserting the lane there).
- Or, if the layout was wrong, edit "layout™ to add the missing lane, then re-run
image _call.

An entire row has been misplaced.
- Go to REPAIR mode, choose the element "Row". First, remove the misplaced
row by selecting DELETE and clicking on therow. Then select INSERT, and
click on asize standard band to insert the row there.

314



* Anextrarow has been inserted.
- Go to REPAIR mode and DELETE the extrarow.
- Or, if theMin_size standard and Max_size standard valuesin the gel's "settings"
were wrong, edit "settings" to correct, then re-run image_call.

* An entirerow was missing.
- Go to REPAIR mode and INSERT the missing row (remember to click on an
existing molecular weight band when inserting the row there).
- Or, if theMin_size standard and Max_size standard valuesin the gel's "settings"
were wrong, edit "settings" to correct, then re-run image_call.

Example run

Invoke the image _view program by typing
>>image_view  <nickname>

e.g.
>>image_view STUDY1

The program responds with the following messages:

Initializing study STUDY1 : GEL1...GEL2...Done.
Loading manifold data...Done.
Reading image data for dye 4...Done.

and brings up awindow with the image view interface in the "Inspect” mode.
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Figure D.2. The "Inspect" mode (Gel_orientation 'reverse).

Mode 1: INSPECT
The pre-z-scaled size marker image is shown with image_calls grid superimposed.

Six image view menu items are available in the INSPECT mode:

(1) Gel. Thismenuitemisfor going to another gel in the study.

(2) Mode. This menu itemisfor going to the other image view modes (namely Repair and
Draw).

(3) Display. Thismenu item isfor turning the image, grid, or peak displays on/off.

(4) Peak. Thismenu item isfor selecting the pattern for displaying the peaks.

(5) Grid. Thismenu item isfor selecting the line pattern for displaying the grids.

(6) Dye. Thismenu isfor displaying other dye planes from the current gel.
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In the pane on the right hand side, there are six active buttons:

(1) Zoom in. Click on this button, then select aregion on the image for zooming in.
(2) Zoom out. Zoom out to the previous level.

(3) Darken. Darken the gel image.

(4) Brighten. Brighten the gel image.

(5) Refresh. Refresh the displays.

(6) Close. Closetheimage view window.

(7) Marker info. Brings up awindow which graphically displays the markers that have
been loaded on the gdl.

(8) Layout. Brings up awindow which displays the "layout” file for the gel.

To see the electropherogram of a particular lane, click on the grid line for that lane. The
electropherogram of that lane will be displayed in an "Image View : Electropherogram”
window.

Information about the current gel is displayed in the area above the gel image. Above these

information, a help message is displayed periodically to prompt the user for the relevant
actions whenever necessary.
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Image view: REPAIR mode
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Figure D.3. The "Repair" mode, zoomed in.

Mode 2: REPAIR

The user uses this mode to interactively repair the grid without calling the image _call
program. There are three independent "elements’ of REPAIR mode: lane, row, and peak.
Each element's user interface provides INSERT (default) and DELETE as a button with a
popup-menu.

When performing REPAIR actions, the user may need to zoom in to particular regions of
theimage. When zooming in to aregion near the edge of theimage, it isalright to select a
region which includes an area outside the image, as long as the selected region aso
includes part of the gel image.
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Element 1: Grid lane

The"Lane" element is used to add or remove alane from the grid. A laneisinput by
clicking on apoint inside the image. The peak positions of the new lane is very sensitive to
the point entered by the user; the user must click as close as possible to an EXISTING
SIZE STANDARD BAND on the lane being inserted.

Element 2: Grid row

The"Row" element is used to add or remove arow from the grid. A row isinput by
clicking on a point where the user wishes the new row to be located. However, if the grid
already contains arow for each of the sizes defined inside the molecular weight standard,
insertion is not alowed, and awarning message is displayed. To move arow the user
must delete arow first, and then inserting another in the desired |ocation.

Just like grid lanes, the peak positions of the new row is very sensitive to the point entered
by the user. The user must click as close as possibleto AN EXISTING SIZE STANDARD
BAND on the row being inserted.

Element 3: Grid peak

The "peak" element is used to change the location of apeak insidethe grid. ThisisSNOT
done by dragging the peak to be changed. Instead, there are two clicking actions involved:
first, select apeak by clicking as close to it as possible; second, click on the new location
inside the image to move the peak there. To display the changes, click on the "Refresh”

button.

Chick on the "SAVE" button to save all the edits for the current gel.
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Image view: DRAW mode
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Figure D.4. The "Draw" mode.
Mode 3: DRAW

The user uses this mode to provide image _call with additional information about the shape
of thegel. The user should call image call again after providing the new information.
After acorrect grid has been constructed with the additional information, the user can then
cal allele_call to genotype the gdl.

There are two independent "elements' in the DRAW mode: corner, and boundary. User

can select any of these elements from the menu "Element”. The default isto start with
defining the "corners’, and then proceed to defining the various "boundaries’.
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Thereisan "IMAGE CALL" button that the user can click onto call image call. Sincethis
may take 10-15 minutes, it may be more practical to closeimage view, call image call
from the Matlab window, and then image _view the gel again.

Element 1: Corner

When the user selects the DRAW mode, the default element is”Corner”. The user can also
select "Corner" under the menu "Element”. Under the menu "Corner”, the user selectsa
corner: top-left, top-right, bottom-left, or bottom-right. Selecting a corner from the
"corner" menu automatically puts the user into a"zoom™ mode, indicated by a"crosshair”
cursor; the user should not click on the "Zoom in" button for this purpose. The user then
drags arubber-band rectangle inside the image (note again that it is aright to include the
area outside the image, especially when the corner is very close to the edge of the image).

After aportion of the image has been selected, it is displayed inside a second figure labeled
with the corner name. In the image region of thisfigure, the user can perform only one
action: click on apoint. Each click redefines the selected corner. Clicking on "Close"
closes this window and displays the defined corner inside the main Image View window.

The user should define all four corners before choosing the "Boundary” element. When all
four corners are defined, image view automatically creates a box from the four corner
points. Thisformsthe initial shape of the gel. If thisis good enough, the user can "Close"
and call image _call. Otherwise, the user should define the boundaries to further refine the
shape of the gel.

Element 2: Boundary

The pre-requisite for entering the "Boundary" element isthat al four corners must be
specified. A warning message will explain thisto the user in the help message pane on top
of the gel image, if the user selects the "Boundary™ element before defining all the four
corners. Upon entering this element for the first time for a gel, the boundaries contain only
the four corner points.

Using the menu "Boundary” the user selects one of the four boundaries: Top, Bottom, L eft

and Right. This again puts the user into a"zoom" mode indicated by a cross-hair cursor.
The user selects an area enclosing the boundary by dragging a rubber-band rectangle across
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the image containing all or part of the desired boundary. If only part of the boundary was
selected, image view automatically includes the entire boundary.

After aportion of the image has been selected, this portion is displayed inside a second
figure labeled with the boundary name. In the image region of thisfigure, the user can
perform only one action: click on apoint. Each click either adds the point to or deletesiit
from the boundary. Clicking on "Close" closes the boundary window and displays the
whole boundary inside the main image_view window.

Click on "Save'" to save the information entered. The "Close" button in the main
image_view window will close the window and exit image view. The user may then call
image _call to re-build the size grid based on the new information.

D.4.3. marker _view

The marker_view program can be used to visually inspect multiple electropherograms for
ascertaining the actual allele range of the genotypes for the population being anayzed,
especially when using a marker panel for thefirst time.

Program operation

To use marker_view, the gel or study must have the size grids constructed successfully
with image_call and/or image view. Then, the marker windows can be viewed by typing:
>> marker_view <nickname>

e.g.
>> marker_view STUDY1

There are two modes of marker_view. The default mode is the "image” mode, where al
the lanes on agel isdisplayed ssimultaneoudly asintensity images for rapid viewing. The
user can see each lane's electropherogram by clicking on the lane in theimage. This mode
isinvoked by typing:

>> marker_view <nickname>
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or
>> marker_view image <nickname>

In the aternative mode, the "lane” mode, the lane traces are displayed. The user can
quickly step through the el ectropherograms for a marker on agel viewing multiple lanes at
atime. The number of lanes displayed each time can be controlled by the user in the
"settings” file (See "settings’").

In both modes, the user can expand or contract the window by changing the valuesin
"Start bp" and "End bp". The program will also update the "markers’ file automatically if
any changes have been made.

Example run: "Image" mode

Invoke the marker_view program on agel or study that has been "image call'ed” by typing
>> marker_view <nickname>

e.g.
>> marker_view STUDY1

The program responds with the following messages:

Initializing study STUDY1 : GEL1...GEL2...Done.
and then opens a Marker View window showing the gel window of the first marker in the

gel or study's panel.
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Marker View window: "Image" mode
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Figure D.5. The Marker View window in "Image" (default) mode.

There aretwo menu items. "Gels' and "Markers'. The current gel and marker is displayed
on top of theimage. To go to another gel or marker, smply select from the corresponding
menu.

There are also two text boxes labeled " Start bp" and "End bp" above theimage. Initidly,
the marker window specified in the "markers’ fileis displayed. Intheimage, the two
dotted lines mark the marker window. To change the marker window, ssimply typein the
appropriate number (in base pairs) in the text boxes, and hit the"RETURN" key. The
image will expand accordingly if abigger window isneeded. To see the electropherogram
of aparticular lane, smply click on the lane in the image.

The buttonsin the right column are;

324



(2) "Zoomin": to zoom in, click on this button and then select aregion in the image;

(2) "Zoom out": zooms out to the last display;

(3) "Brighten": brightens the image;

(4) "Darken": darkenstheimage;

(5) "Refresh”: refreshes the display;

(6) "Show gel": displaysthe entire gel (to go back to the restricted marker window view,
click on "Refresh”);

(7) "Size grid": overlays the molecular weight grids on the marker bands (toggles the
display of the sizing grid by clicking on the button again);

(8) "Reset": resets back to the original value in the "markers" file for thecurrent marker;
(9) "Save': saves the new marker window in the "markers’ file for the current marker;
(10) "Close": done with marker_view.

(11) "Marker_info" brings up awindow which graphically displays the schematic layout of
all the markers that have been loaded on the gel.

Note that the user should re-run allele_call with "Redo_quantitation” set to "yes' to re-
analyze a gel that has been genotyped previoudly under an old definition of marker
windows. If any problem occurs, it may be necessary to call "reset_now panel
<pane_name>" to clear the previous marker libraries under the old marker window
definitions (see "reset_now").

Example run : "Lane" mode

Invoke the "lane" mode of the marker_view program on agel or study that has been
"image_call'ed" by typing
>> marker_view lane <nickname>

e.g.
>> marker_view lane STUDY1

The program responds with the following messages:

Initializing study STUDY1 : GEL1...GEL2...Done.
and then opens a Marker View window showing the electropherograms of the first marker

in the gel or study's panel.
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Marker View window: "Lane" mode

=————————— Markerliew =—————

L cri g M o W Previous Next
Strtbp - NREER Eno bo - [

Ped01P1(L1):

Ped01P2(L2):

Ped01C1(L3):

Ped01C2(L4):

-"'-'-"-#""M

Ped01C3(L5):

I (TN N =N | I L | I—— ! l l ! A_LAJ\"A"AKA;L.L 1 L | W .
103 109 115 121 W 191 197

Figure D.6. The Marker View window in "Lane" mode.

There are two rows of buttonsin the area on top of the electropherograms. In thefirst row
arefour buttons:

(1) The gel button displays the current gel's name. When clicked, it brings up a pop up
menu of all the gelsin the study, and the user can choose any of them

(2) The marker button displays the current marker's name. When clicked, it brings up a

pop up menu of al the markersin the panel, and the user can choose one of them to go to
that marker.

(3) The"previous' button goes to the previous screen.
(4) The"next" button goes to the next screen, until al the lanes of the current marker have
been viewed. In this case, the user should choose another marker from the marker button.
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The second row contains two text boxes:

(1) The"Start bp" box: Typing in anew number (in base pairs) in this box will change the
left boundary of the marker windows displayed.

(2) The"End bp" box: Typing in a new number (in base pairs) in this box will change the
right boundary of the marker windows displayed.

The"Close" button on the bottom closes the marker_view window. When any of the
markers windows has been changed, a dialog box will pop up to ask if the user wants to
save the changes to the "markers’ file. If the user chooses "yes’, the "markers’ file's
"Min_bp" and "Max_bp" for the markers will be updated. If the user chooses "no", the
"markers’ fileis not changed. Instead, a summary of the marker windows s printed to the
Matlab window for the user's reference.

D.4.4. allele view

Theallele view program is a standalone Matlab application that provides graphical
visualization of allele_call's genotyping results. After running the allele_call program, the
user invokes allele view to inspect and edit the alele calls.

For reviewing allele calls, it is often helpful to:

(1) Review graphical presentations of the (a) underlying electropherogram data, (b) inferred
DNA concentration determinations, and (c) different alele calls of the genotyping
algorithms. These representations can provide the user with far more information than just
reading textual output files.

(2) Review the above graphical presentations of the genotyping experiments from al the
individualsin the same family as defined in the "pedigrees’ file.

(3) Rank the allele calls by confidence. For example, when the allele calls are ranked so
that the least confident genotypes appear first, the user can then focus their efforts on the
most problematic calls, which represent 1%-10% of genotypes with good gel data. The
vast mgjority (90%-99%) of routine allele calls can then be rapidly skimmed (or, the user
can eventually trust the computer on these calls).

The allele view program provides these three crucia graphical review functionalities, along
with allele editing capability.
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Inthe main "Allele View" window, one genotype result is displayed at atime. Thisdisplay
has three main panes that respectively show (1) the electropherogram data, (2) the DNA gel
band quantitation, and (3) the allele calls. The user can navigate through the set of allele
calsfor asingle gel experiment, including serially reviewing the results in order, from least
confident to most confident. Specialized windows can be modularity invoked from this
"Allele View" window by clicking on a pane:

(2) "Allele View Electropherogram™, which shows the extracted el ectropherogram trace of
the data. No user input is accepted.

(2) "Allele View Quantitation”, which shows the fitted peaks that quantitate that
electropherogram data. A quality measureis shown. No user input is accepted.

(3) "Allele View Genotype", which shows diverse views of genotype results, including
different algorithm determinations and different comparisons. Quality measures are
shown. The user may edit the alleles here.

(4) "Allele View Family", which simultaneously displays the genotypes,
electropherograms, or quantitations from individuals that belong to the same family.

From the allele_view graphical windows, the user can view and edit al the genotyping
results thus far computed and stored by the allele_call program. When the graphical
windows are closed, the user can continue operating FAST-MAP from the Matlab
command window.

It may be useful to print out hardcopies of the windows for reference at a later time. Click
on the "Print" button of the window and the content of the window will be printed directly
to the printer as specified in the "preferences’ file. Alternatively, type"P" (upper case)
inside the window. [f the user does not wish to print the pictures immediately, type"S
(upper case) inside the window and it will be appended to a postscript file called

"alele view.ps' inthe gel or study's "output/" directory. (In using "S", first make sure
that thereisno "alele view.ps' filein the "output/" directory that remained from previous
allele_view session, unless the current windows should be collected together with those
already inthe old "allele view.ps' file.) Use the operating system'’s postscript printing
program to print out "alele view.ps" after ingpecting and collecting pictures from al the
relevant genotypes.
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Program operation

Toruntheallele view program, the user types the command

>> allele_view <nickname>
in Matlab. The <nickname> can be either agel or astudy. Only one gel or one study can
be viewed at onetime with allele view. Changethe"Allele view settings' in the gel or
study's "settings” file before running allele view (see "settings" in " Annotating genotyping
data"). The user does not need to re-run allele_call to view the genotypes under the new
alele view settings.

Example run
Oncetheallele _call program has finished its operations, the "/<gel>/display/" files are
generated and the allele_view program can then berun. Instructions are given here for

running the allele_view program, using the demo on our CMU computers as an example.
The steps are followed by typing in the client Matlab window of the host machine.
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Allele View window
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Figure D.7. The main "Allele View" window.

Step 1. View themain"Allele View" window.

Theallele view program can be started once allele_call has completed its genotyping
operations. Be sure that the X-window server is properly configured. At the Matlab

prompt, type:

>> allele_view <nickname>
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For example, typing:

>> allele_view STUDY1

will have the computer reply:

Initializing study STUDY1 : GEL1...GEL2...Done.
Reading genotypes for STUDY1 : GEL1...GEL2...Done.
Sorting results (worst_first) ...... Done.

and then bring up the window shown in Figure D.7.

The Allele View window lets the user visually navigate through the gel experiment. At the
top of the window are control pane items. In the first column:

The current gel's nickname is shown in a pop-up menu of component gel names for the
study.

The marker name is shown in a pop-up menu of valid marker names for the gel study.
The user can select amarker name from the pop-up menu; the computer ensures that
only valid selections are made.

The"Lane" number is shown as an editabletext The user can enter any valid lane
number here to go to a particular lane on the current gel for the current marker.

The "Name" of the current sampleis also shown as an editable text. The user can enter
any valid sample name here to go directly to the latest experiment for thissample. If
there are duplicate samples, FAST-MAP will go to the one on the last gel in the study's
"layout" which contains this sample. If there are duplicate sample on that gel, FAST-
MAP selects the one with the largest lane number . If necessary, use the Gel and Lane
combination to go to a specific experiment.

In the second column of the control paneitems:

A "Print" button is provided to print the window to the printer specified in
"preferences’.

A "Noise" button is provided to set the allele callsto (0,0). This button is pressed to
indicate that the experiment shown does not contain useful data signals, e.g., PCR
failure.

The "Next" button moves to the next ordered genotype when "Prioritized" is"on".
With "Prioritized" off, FAST-MAP moves to the next lane, marker, and gel in the
study.
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The"Previous' button movesto the previous ordered genotype when "Prioritized" is
"on". With "Prioritized" off, FAST-MAP moves to the previous lane, marker, and gel
in the study.

The"View Family" button is clicked to bring up a specialized window which displays
the genotypes, el ectropherograms, or quantitations of all the family members of the
current individual.

In the third column of the control pane items:

The "Save" button is clicked to record al alele edits that the user has made, but does
not update any of the relevant resultsfiles.

The"Close" button is clicked to close al the Allele View windows. If there are any
edited genotypes that have not been saved, a dialog window will pop up to ask the user
whether to save them or not.

The"Prioritized" check box startsin the "off" position. When clicked to set the "on"
position, the genotype experiments are ordered based on the "settings” file. When
prioritized from worst result to best result, the ordering enables the user to focus on the
more difficult alele callsfirst.

The "Priority" number is shown as editable text. The priorities range from"1" through
"n" where n is the number of genotype experiments on the gel. If "Prioritize results' is
set to "worst_first”, then apriority of "1" represents the worst result. If
"Prioritize_results' isset to "best_first", then apriority of "1" represents the best result.
The user can enter avalid priority number when "Prioritized" is"on" to moveto
another genotype experiment.

The"Quality" value shows the computer's assessment of how good the genotype call
was. This assessment is acomposite of relative signal, the electropherogram fit, the
deconvolution fit qualities, and the degree of consensus between the different
deconvolution algorithms. The qualities range from "0.0" (worst) to "1.0" (best). This
valueis not settable by the user.

At the bottom of the window is an edit box labeled "Fina". The current allele call is shown
inside the box. The user can edit thisallele call by typing a new genotype and then hitting
the RETURN key. See"Editing and saving genotypes’ for other ways of editing the
genotypes.

The three graphical panesin the middle of the window show the allele calling at a glance.
The panes share acommon x-axis of DNA size (shown in base pair units). Specificaly:
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(1) The eectropherogram pane shows the datatrace. They-axisisrecorded signal
intensity.

(2) The quantitation pane shows the computed DNA sizes and relative concentrations. The
y-axisranges from 0 to 2.

(3) The genotype pane shows the consensus alele calls. If the corresponding line inside the
results file contains edits, then these are displayed as text inside the genotype pane. They-
axisrangesfrom 0to 2. Thecaled alleles sum to 2, the number of aleles on diploid
chromosomes. No alele calls are displayed for an experiment classified as noise by

allele call givenaquality valueof O.

Clicking anywhere in apane of the "Allele View" window opens a new window that is
specialized for that pane. Each of the three panes opens its own unique specialized
window. While the new window is opening, a"watch" cursor is displayed to indicate a
prolonged computer operation. Thiswatch cursor feature can be turned off by setting
"Watch_cursor” in "preferences’ to "no".
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Allele View Electropherogram window
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Figure D.8. The"Allele View Electropherogram” specialized window.

Step 2. View the"Allele View Electropherogram” specialized window.

"Allele View Electropherogram” window is a specialized window that shows the raw data
recorded from the gel electrophoresis, and then tracked down the one dimensional lane.

The DNA signal (y-axis) is plotted against the DNA size (x-axis) shown in base pair units.
The asterisks "*" denote peaks detected by the computer program.
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Click on the "Expand view" button to look progressively beyond the marker window that
has been defined by the marker's"Min_bp" and "Max_bp" valuesin the "markers’ file.
The "Contract view" button narrows back the expanded window. If aleles outside the
currently defined marker window are discovered, it may be necessary to "edit markers' and
then re-run the genotyping with "Redo_quantitation” in the gel or study's "settings”’ set to
"yes'.

The "Print" button prints the content of the Allele View Electropherogram window to the
printer specified in "preferences’. A keyboard shortcut that produces the sameresult isto
type"P" (Capital "P") inside the window. Alternatively, type"S" (Capital "S") to append
the current window to a postscript file called "alele view.ps', which residesin the
"<gel>/output/" directory. To obtain ahardcopy of al the collected windows, the user can
print out thefile "alele view.ps' at the end of the session using the computer's postscript
printing program.

On a Macintosh computer, the window can be closed (click top left corner) or resized (drag

bottom right corner) using the mouse pointing device. The window persists until it is
explicitly closed by the user.
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Allele View Quantitation window
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Figure D.9. The "Allele View Quantitation" specialized window.

Step 3. View the "Allele View Quantitation™ specialized window.

"Allele View Quantitation” is a specialized window. The top portion of the window shows
the fit of the sum of the predicted DNA bands (solid line) relative to the observed data
(dashed line). The bottom portion of the window shows each predicted DNA band
component (solid line) and its DNA size assignment. The leading left side of each band is
modeled as a Gaussian function, and the trailing right side of each band is modeled as a
Lorentzian function. The computer searches for the band shapes, locations, and sizes
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whose sum best fits the observed data. When found, these band shapes provide
guantitative estimates of DNA size and concentration. The highlighted bands indicate the
cdled dleles.

Thereisa"Print" button which prints the content of the Allele View Quantitation window
to the printer. Alternatively, type"P" in the window, or type"S" to saveto
"<gel>/output/allele view.ps'. Thewindow persists until it isexplicitly closed by the
user, for example, by the clicking the top left corner.
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Allele View Genotype window
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Figure D.10. The "Allele View Genotype" specialized window.
Step 4. View the"Allele View Genotype" specialized window.
"Allele View Genotype" is a specialized window. In the top portion of the window, the

user can edit the computer's alele calls. In the bottom portion, the computer visually
presents the computer's allele calling resullts.
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To edit the genotype, the user typesthe new allelesin the editable text box labeled "Final™.
When both entries are "0", this denotes an uncallable final aleleresult. The computer
accepts the edited values when the user hitsthe RETURN key to signify completion.

In the current visual presentation, three sets of panes are shown.

(1) Thefirst pane showsthe call by the "Computer". The genotype is shown together with
itsquality score. Thetwo called alleles sum to one, and are displayed both as visual
histograms and as printed allele size numbers.

(2) The second pane shows the result of the"SVD" pattern matching algorithm. SVD
(short for "singular value decomposition™) is a numerical matrix inversion algorithm that
solves the equation y=Ax for the allele vector X, given the data vector y and the stutter
pattern matrix A. The computer solves for the alele vector x, and performs additional post-
processing to account for plus-A artifact and possibly inaccurate band sizing. The quality
score quantitates the fit between the predicted alleles and the observed data.

(3) Thelast three panes show the results of the "ENUM" pattern matching a gorithm.
ENUM (short for "enumerate") tests out candidate allele pairs by arithmetically
superimposing the two alleles stutter patterns and comparing this sum against the observed
data; the closest fit of predicted alleles to observed data determinesthe call. The quality
score quantitates this fit between the predicted alleles and the observed data. The algorithm
also variesthe relative weight of the two alleles to account for unequal PCR amplification.

Like before, the window can be printed immediately by clicking on the "Print" button or by
typing "P" inthewindow. Typing"S" savesthe window content to

"<gel>/output/allele view.ps' that the user can print after the session. The window persists
until it is explicitly closed by the user (by clicking on the top left corner, say).

Editing and saving genotypes
FAST-MAPsalelecalsare not always correct. There are several waysto graphically edit
incorrect allele calls. These editing methods use the main "Allele View" window or the
speciaized "Allele View Genotype" window.
Q) Some genotyping PCR experiments produce just noise or background signal,

without any discernible allele bands. If FAST-MAP has erroneoudly attempted to call the
allelesfrom such a"noise" experiment, click on the "noise" button in the main "Allele
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View" window. This button will reset the genotype to (0,0), which indicates a "noise"
result.

Note that turning on the "Output_noise_genotypes’ option inside the "settings' file
(see " Settings') forces FAST-MAP to attempt allele calling for all the data, noisy or not.
Using its pattern matching capability, FAST-MAP can often discern correct alelesin data
that (to the human eye) appearsto be mere noise. However, this option can betime
consuming.

(2 FAST-MAP'sincorrect alele cals can always be textually corrected by the user.
This correction is done using the editabl e text button labeled "Fina™, and is found in both
themain "Allele View" window and the specidized "Allele View Genotype" window.

After typing in the correct allele valuesin one of the "Final" boxes, the user must make sure
to hit RETURN to tell FAST-MAP that he has finished typing.

3 FAST-MAP'sincorrect alele cals can also be graphically corrected by the user.
Often, when FAST-MAP'sfirst choice of allelesisincorrect, FAST-MAP will nonetheless
display the correct dlelesin alternative pane shown in the "Allele View Genotype"
window. To select such a pane's genotype, click inside the pane. Thisclick will set the
final allelesto correspond to the selected pane.

The edits made during the course of an "Allele view" session is saved inside the FAST-
MAP environment, but not permanently inside the resultsfile. This feature has been
provided, not only to increase the speed of user-interaction, but also as a safety mechanism
to avoid making any changes permanent unless the user is absolutely sure. The changes are
incorporated into the results by periodicaly clicking on "Save" inside "Allele View".
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Allele View Family window

Allele View Family

STUDY1 Alleles

Ped01P1{father): (139,141) 0.961
I;eldOlH:'lZ(lm(lJthler;: :[14;1,'15'3;: . u o '0.1941?21
|;e1c1011(:l1:l(1l41l,115§)1 - ! o l!'t;.elnl
Iéeldolu:lz:l (1135,115:13)' - ! — ! 10.54;321
59;101163:(113511,1141')1 . ! - ! 0953

Ll 1 Ll | | I—— 1 Ll 1 Ll Ll Ll 1 Ll 1 |

=
H—
=
=
=
=
-

Ped01C4: (141,153) 0.855
Fl’e::ifll1(315:l(11411,1155)l . I — : l01.9214l
l;eldDI1CIEi:I (1l41l,1l41l]|l I I . IU.l‘-'!3l32l
PedviCT: (3814 o
33 - l101?l | l1115l | l12113l | l1311l | I139 l l1«4:?’l | I1515l -

FigureD.11. The"Allele View Family" specialized window: Alleles.
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Step 5. View the"Allele View Family" specialized window.

Allele View Family is a specialized window of Allele View which displays the parents and
siblings of the current sample. To open this window, click on the "View Family" button
inside"Allele View". Only those relatives which are present in the study are displayed. The
parents (if shown) are labeled as "father" or "mother” next to their sample names, and the
current individual is displayed in adifferent color. The samples names must be defined
inside the "pedigrees’ file.

The Allele View Family aso allowsthe FAST-MAP user to:

(1) Look at current family's genotypes for another marker: click on the pop-up button
containing the current marker's name, and select another marker;

(2) Look at the aleles, quantitation, and electropherogram plots of al membersin the
family: click on the second button and select the appropriate display item. For example,
Figure D.12 shows the family's electropherograms being displayed;

(3) Go directly to another individual in the family: click on the panein Allele View Family
to select that individual asthe current samplein all the displays.
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Allele View Family
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Figure 12. The"Allele View Family" specialized window: Electropherograms.

Viewing subsets of experiments

The allele view program can be customized to view only some of the experiments. This
reduction in data viewing (e.g., to only particularly suspect alele calls) can potentially
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reduce the amount of user operator time spent reviewing genotyping data. One particularly
useful data subset isthose genotypes that have been identified asinconsistent allele calls by
aMenddian inheritance checker. Although for greater automation we plan to eventually
provide Mendelian inheritance checking functionaity within FAST-MAP, these instructions
assume (for now) that the inconsistency checking is done by some external computer
program other than FAST-MAP.

To specify alist of genotype experiments to inspect and/or edit in allele_view, do the
following:

Sep 1: Create a tabbed-text file named limited.view and put it in the
"<nickname>/input/" directory. The file must consist of at |east two columns containing

(2) the sample names, and (2) the marker names. For example, limited.view can be
created by editing a tabbed-text output file from a Mendelian inheritance checker. Thefirst
line of limited.view is used as a header for indicating what information is contained in
each column (for header keywords, use strings with no whitespace). The "sample" column
must be labeled with the keyword sample , and the "marker” column must be labeled with
the keyword marker . The sample and marker columns must be the first two columns,
any other columns are extraneous for this application, and will be ignored by allele view.

Alternatively, if the user wishes to type in the <sample, marker> pairs manually, then type,
in FAST-MAP:

>> edit <nickname> limited_view

Thiswill create alimited.view filein the"<nickname>/input/* directory for the user to
edit.

Note that the file limited.view must reside in the "input/* directory of the gel or study
that the user will be calling allele_view on. For example, if the user placed

limited.view in STUDY 1's "input/" directory, then allele_ view STUDY1 will display
the limited list of experimentsin the "Prioritized" mode. On the other hand, if the user
placed limited.view in, say GEL2's"input/" directory, allele view STUDY1 will not
display the limited subset even though GEL 2 is a component gel of STUDY 1. Inthis case,
useallele view GEL2 instead to view the selected subset.

344



Sep 2 In allele_view, view the selected subset of experiments inside under the
"Prioritized" mode.

Sep 3: The "Prioritized" mode of allele_view will aways show the limited subset
until the file limited.view isremoved from the gel or study's "input/" directory, for
example:

>> remove <nickname> limited_view

Viewing and comparing other allele calls

If the user has other allele calls and wishes to view and compare them with FAST-MAP's
calls, atabbed-text file called other.results can be created and placed in the gel or
study's "input/* directory that will be allele_called(just as in the case with

limited.view ).

The format for other.results isvery similar to the <nickname>.results files generated
by FAST-MAP. Thefirst line serves as the header line, in which the first 6 items
(columns) must contain the following:

gel lane sample marker allelel allele2

The columns must follow the above order. |If there are more than 6 columns, the
extraneous columns will be ignored.

Sep 1 Create other.results which containsthe allele calls by a different
means, and put it in the "<nickname>/input/* directory. To typein the aleles manually, the

user can use FAST-MAP's "edit” utility:

>> edit <nickname> other_results

Thiswill create aother.results in <nickname>'s "input/" directory.
Sep 2 In allele_view, view and edit any mismatches between FAST-MAPscalls
and the dlele callsin other.results under the "Prioritized" mode. Only those

experiments where the allele calls disagree will be shown.
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Sep 3: To resume to the normal mode of allele view, remove the file
other.results from the gel or study's "input/" directory, for example:

>> remove <nickname> other_results

D.5. Utility programs

D.5.1. setup

The setup program is a script for guiding the user through the steps of setting various
FAST-MAP objects for analysis. Currently, setup is programmed to help user in setting up
agel, astudy, ashared matrix file, aswell as a shared samplefile.

Alternatively, the user may set up the data manually.

Program operation

The model is asfollows;

. The user runs one or more gels on aDNA sequencer and transfers all the datafiles

(g€l files, samplefiles, matrix files) into acentralized "drop box" in:
"FAST-MAP/incoming/"

. The user, or another user in charge of running FAST-MAP, then runs the setup

script which will ask a series of questions about the gel or study, automatically create the

gel or study directories, and transfer the data files from "FAST-MAP/incoming/" to the

respective "input /" directories.

Note that to run the setup script, all the requisite data files must be transferred into the
centralized "FAST-MAP/incoming/" directory, not into the individual "'<nickname>/input/*
directory. Infact, the user does not even need to manually create the directories, as setup
will automatically create them and move the data files from "FAST-MAP/incoming/" into
the correct places.

To run the setup script, the user types the command:
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>> setup <type> [<nickname>]
where <type> can be one of the following: gel , study , matrix , and sample ; and
<nickname> (optional) is the nickname of the object to be created.

e.g.
>> setup gel GEL1
>> setup study STUDY1
>> setup matrix MATR211
>> setup sample SAMP211

Here are the data files that must be transferred into "FAST-MAP/incoming/" before running
setup:
e Tosstupagd:

- the ge filg;

- the matrix file (if necessary); and

- the samplefile (if necessary/available).
e Toset upastudy:

- none; except that the user must set up the component gelsfirst.
* To set up ashared matrix file:

- the matrix file.
* To set up ashared samplefile:

- the samplefile.

Example run: gel

Suppose we have already transferred the gel file "R211c.gel” and the samplefile
"R211c.samples’ into the "FAST-MAP/incoming/" directory, and that we will be re-using
ashared matrix file MATR211 that we have set up previoudly (thus, we do not need a copy
of the matrix file again). Let's run setup without supplying a nickname:

>> setup gel

What is the nickname for the new gel?

FAST-MAP prompts for the nickname, and we type in GEL3 The next question is:
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Have you defined the panels, markers, and size_stds used in "GEL3"?
Y/N [N]:

If we haven't, type 'N' or hit return (the default reply isin the square bracket) and setup
will advise:

Please use "edit <userfile>" to define the panels, markers, and
size_stds used in gel "GEL3" first.

Once we have defined the panels, markers and size standards using edit, we can call setup
again. Let's suppose that we have aready provided the requisite information and we type
"Y' instead:

Step 1: Define "GEL3" as a nickname of type "gel".
Please add "GEL3" to 'nicknames' under type "gel" now.

The "nicknames’ fileis automatically opened by an editor for the user to add "GEL 3" asa
"gel”. Notethat the "pathname” for "GEL 3" is what the gel directory will be, not where
the datafiles are currently. That is, do not typein the path "FAST-MAP/incoming/" for
GEL3.

When we have done editing the "nicknames" file, FAST-MAP creates the desired gel
directory that we have just specified in "nicknames’, and proceeds to the second step:

Reloading nicknames...Done.

Step 2: Define the "settings" for gel "GEL3".
Please fill in the 'settings' for GEL3 now.

Creating default user file "settings"...Done.

Thistime, the editor opens up a default "settings" file that FAST-MAP has created for
GEL3. Wefill in Section 1 to provide the gel-specific settings. In particular, we put in
"R211c.gel" asthe Gel file_name ,"MATR211" asthe Matrix_file_name , and
"R211c.samples’ asthe Sample_file_name . Don't forget to fill in the other attributes
in section 1, especialy Size_standard  and Panel_name . When done, FAST-MAP
responds as follows:

Reloading settings...Done.
Moving gel file "R211c.gel" from "incoming" to
"lafs/cs/project/genome/demo/gels/Gel3/input/"...Done.
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Moving sample sheet "R211c.samples” from "incoming" to
"lafs/cs/project/genome/demo/gels/Gel3/input/"...Done.

Step 3: Define the 'layout' for gel "GEL3".
Please fill in the 'layout' for GEL3 now.

Creating default user file "layout”...Reading ABI sample file

R211c.samples......... Done.
Creating GEL3's layout from R211c.samplesS.......ccccceeeernnnne
............. Done

The automatically-created "layout"” file for GEL3 is presented in our editor of choice.
When done inspecting, the set-up is complete:

Reloading layout...Done.

Thank you.

In the event that the user hasto exit setup before the whole procedure is completed
successfully, the setup process can always be resumed by calling setup again:

>> setup gel GEL3

and then answer the questions accordingly.

Example run: study

Let us set up astudy STUDY 2 which consists of three gels with nicknames GEL 1, GEL 2,
and GEL 3. First, wetransfer all the gel files, matrix files, and sample filesin the study
into "FAST-MAP/incoming/". Then, in FAST-MAP, type:

>> setup study STUDY?2

Have you defined the panels, markers, and size_stds
used in study "STUDY2"? Y/N [N]:

If 'N', we can use "edit <userfile>" define the panels, markers, and size standards used in
the study. Let's assume that we have already done so. Wetype'Y"

Step 1: Define "STUDY2" as a nickname of type "study".
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- Please add "STUDY2" to 'nicknames' under type "study".
- Please also add *all* the component gels of STUDY2
to 'nicknames' under type "gel".

We define STUDY 2 asastudy in "nicknames’, taking care to define the " pathname” for
STUDY 2 asthe desired study directory to be created by setup. At this point, we aso need
to define all the component gels of STUDY 2, namely GEL 1, GEL2 and GEL 3 in
"nicknames’. Let us assumed that we have already done so.

Reloading nicknames...Done.

Step 2: Define the "settings" for study "STUDY2".
—————— Please fill in the 'settings' for STUDY?2 now.

Creating default user file "settings"...Done.

The default settings for STUDY 2 need not be changed, so we exit the editor and FAST-
MAP proceeds to the next step:

Reloading settings...Done.

Step 3: Define the 'layout' for study "STUDY2".
—————— Please fill in the 'layout' for STUDY2 now.

Creating default user file "layout"...Done.

Wetypein GEL1, GEL2, and GEL3 in the "layout" file, save it, and close the editor:
You seemed to have already set up all 3 gels of STUDY2. Stop? Y/N

[N]:

FAST-MAP detected that we have aready set up GEL 1, GEL 2, and GEL 3 previously, and
wetype"Y". If not, wewill be automatically guided to set up each of the gel as before.

We have thus completed the setting up of the study STUDY 3, and any FAST-MAP
program can be invoked on STUDY 3.
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Example run: matrix

In this example, we show how to use setup to set up a shared matrix file R212.matrix
under the nickname MATR212. First, we transfer R212.matrix into the "FAST-
MAP/incoming/", and then type:

>> setup matrix MATR212

Step 1: Define "MATR212" as a nickname of type "matrix".
Please add "MATR212" to 'nicknames' under type "matrix".

Thefirst step isto define MATR212 in "nicknames’ under type "matrix". Inthe
"pathname" column, we tell setup where to put the matrix file in, not whereit is currently at
(that is, not "FAST-MAP/incoming/R212.matrix"). Since matrix isafileand not a
directory, we type in the full path of where the matrix file's destination, including the file-
name, such as:

nickname pathname type
MATR22  /afs/cs/project/genome/demo/matrices/R212.matrix matrix

When done, FAST-MAP automatically moves R212.matrix from "FAST-MAP/incoming/"
into the destination as specified in "nicknames’.

Reloading nicknames...Done.
Moving matrix file "R212.matrix" from "incoming" to
"lafs/cs/project/genome/demo/matrices/"...Done.

We may now use MATR212 as a shared matrix file in setting up gels which use the matrix
file"R212.matrix".

Example run: sample

In some high-throughput study designs, a same set of DNA samples may be used for
multiple gels while varying the panels for PCR amplification in each gel. In this case, the
gels may share the same samplefile. Instead of making a copy of the sample fileinside the
"input/" directories of each of the gels, we can set it up as a shared samplefilein
"nicknames’.
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Let us use setup to set up a shared samplefile "R212.samples’ under the nickname
SAMP212:

>> setup sample SAMP212

Step 1: Define "SAMP212" as a nickname of type "sample".
Please add "SAMP212" to 'nicknames' under type "sample".

Aswith shared matrix files, thefirst (and only) step is to define SAMP212 in "nicknames’
asa"sample". Again, typein thefull path of where we want the samplefile to be, and
ending with the file-name (e.g. "/afs/cs/project/genome/demo/samples/R212.samples’).

When done, FAST-MAP automatically moves R212.samplesinto the destination as
specified in "nicknames':
Reloading nicknames...Done.

Moving sample file "R212.samples" from "incoming" to
"lafs/cs/project/genome/demo/samples/"...Done.

We may now use SAMP212 as a shared samplefile in setting up those gels which use the
samplefile "R212.samples’.

D.5.2. allele results

Theallele_results program generates customized formatted output files. The
"<nickname>.results’ file are generated in the "'<nickname>/output/" directory. These
resultsfile are in tabbed-text format and can be opened for post-editing by most spreadsheet
programs.

Program operation

The program allele_resultsis automatically invoked at the end of allele call and allele view
to generate the results file for the gels and studies. However, user may invoke
allde resultsto create aresultsfile with adifferent format. First, edit the "settings’ file to
specify the format:

>> edit <nickname> settings
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Changetheallele results settingsin Section 4:

Output_noise_genotypes no
Output_sort_by markers
Latest sample_only no

» Output_noise_genotypes . If "yes', al genotypes will be reported. If "no",
FAST-MAP will output (0, 0) as the genotype for experiments that it considered to be
noise only, even though it may have attempted to genotype them (that is, when
"Anayze noisy data’ was set to "yes").

* Output_sort_by . If "markers", then genotypes of the same marker are grouped
together. If "samples®, then genotypes of the same sample are reported together (e.g.
for studying haplotypes).

» Latest_sample_only . 1f "yes', only the latest copy of any duplicate samplesis
reported. In FAST-MAP, agd that appears later in the study's "layout” is considered
to be newer. If more than one copy of the sample has been run on a gel, then the one
with the largest lane number is considered latest. If "no", then all copies of the sample
arereported in the resultsfile.

After defining anew results format, invoke the allele_results program to generate new
resultsfiles:

>> allele_results <nickname>

To compile new resultsfiles for more than one gel or study (up to 45 of them) inasingle
command:

>> allele_results <nicknamel> <nickname2> ...

Note that (1) the old resultsfiles will be overwritten; and (2) thereis no need to run
allele_call again to generate the new resultsfiles.
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Example run

First, edit the gel or study's "settings' file to change the settings for allele results. For
example, let's say we want the output to be sorted by "samples' instead of "markers".

Then, invoke the allele_results program to generate new resultsfiles:
>> allele_results <nickname>

For example,
>> allele_results STUDY1

The computer responds by:

FAST-MAP v1.04b (created April 21, 1997, last revised 04/21/97,
system HP700).

[Session started at 19-Apr-97 15:40:31.]

STUDY: STUDY1

Compiling results for STUDY1....... Done.
Compiling results for GEL1....... Done.
Compiling results for GEL2....... Done.

[Session for "allele_results STUDY1" ended at 19-Apr-97 15:40:42.]

And hereisan excerpt of STUDY 1.results:

>> inspect STUDY1 results

gel lane sample marker allelel allele2 computl comput?2 gual
GEL11 Ped01P1plml 139 141 139 141 0.961
GEL11 PedO1P1plm2 336 336 336 336 0.977
GEL11 PedO0lP1plm3 190 190 190 190 0.789
GEL11 PedO0lP1plm4 301 301 301 301 0.963
GEL11 Ped0O1P1plm5 208 208 208 208 0.749
GEL12 Ped01P2plml 141 153 141 153 0.947
GEL12 Ped01P2plm2 334 346 334 346 0.971
GEL12 Ped01P2plm3 190 190 190 190 0.929
GEL12 Ped0lP2plm4 301 309 301 309 0.963
GEL12 Ped0lP2plm5 192 210 192 210 0.874
GEL13 Ped01Cl1lpiml 141 153 141 153 0.941
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D.5.3. allele_printout

Theallele_printout program generates hardcopies of electropherograms, quantitation, and
genotypes for individual genotyping experiments from the graphical Allele View windows.
The pictures of each marker are collated and output in a single postscript file
"<marker>.ps"  stored inthe "/output/" directory. Users may customize the layout of
the hardcopies by changing the settings within " Section 7: Allele_printout settings” in the
"settings” file.

Program operation

Under "Section 7: Allele_printout settings' in the "settings” file, the user can customize the
layout of the hardcopies:

Send_to_printer yes
Show_figure no
Rows_per_page 4
Columns_per_page 2
Include_electro_plots no
* If"Send_to_printer" issetto"yes" , alele_hardcopy will send the hardcopiesto

the printer for immediate printing. Otherwise, afile called "<marker>.ps’ for each
marker will be kept in the gel's output directory for user to print at alater time. (Note
that thisfile will not be present if it has been automatically printed.)

* If"Show_figure "issetto"yes",thefiguresare displayed on the computer
dynamically as the hardcopies are generated. This may be a good (and way cool) way
to display the pre-compiled works of FAST-MAP.

* Theoptions"Rows_per_page " and "Columns_per_page " definethe number of
windows to be printed row-wise and column-wise in apage. Changing these settings
will customize the layout of the hardcopies.

FAST-MAP's analysis detects the gel subregion where the genotype data resides, which

setsthe limited view of the detected bands; FAST-MAP displays and printsthis limited
dataview. To display along-range el ectropherogram view spanning the entire allele size
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range (as defined for the marker), set the option "Include_electro_plots "to
llyeS n

In addition to these settings, allele printout also respects the system printing options, as
defined in the "preferences’ file. These options are "Printer_name”, "Printer_type", and
"Print_orientation"”.

Example run

Theallele printout program isinvoked explicitly by the user by typing:
>> allele_printout <nickname>
or

>> allele_printout <nicknamel> <nickname2> ...

e.g.
>> allele_printout GEL3

The program responds with the following messages (for the case when
"Send_to_printer" issetto"no" ):

GEL3: allele_printout

Saving electropherograms for p1ml....... Done.

Gel GEL3's marker plml's electropherograms have been saved in
/afs/cs/project/genome/demo/gels/Gel3/output/plml.ps to be printed by
user later.

Saving electropherograms for p1mz2....... Done.

Gel GEL3's marker p1lml's electropherograms have been saved in
[afs/cs/project/genome/demo/gels/Gel3/output/p1lm2.ps to be printed by
user later.

Plots for the following gels can be found in their "output/"
directories in the form of <marker_name>.ps to be printed later:
GEL3
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WARNING: Even with multiple windows per page, alarge number of pages may be
generated. To avoid wasting paper or disk space, this function should be used only when
absolutely necessary, and delete the "<marker>.ps " fileswhen done. For printing
hardcopies of individual genotypes, refer to the section on allele view.

D.5.4. size std view

New size standards may be used that are not included in the FAST-MAP library. Inthis
case, FAST-MAP may have no prior binning information for these size standards.
Although FAST-MAP will try to automatically construct new binning information, aless-
than-perfect gel image may lead to incomplete binning. When this happens, the user can
help by indicating the location of the size standard peaks for afew lanes on the first gel
image. BY PERFORMING THIS CALIBRATION FOR A SIZE STANDARD SET JUST
ONCE, FAST-MAP CAN TAKE RESPONSIBILITY THEREAFTER FOR
AUTOMATED SIZING AND LANE TRACKING.

Thesize std view program is the graphical interface that enables the user to perform this
one-time calibration. Theinterfaceissimilar to the image view interface in many ways.

Program operation

Tousesize std view the user types the command
>> size_std_view <nickname>

e.g.
>> size_std_view GEL1

A "Size Std View" window is opened, showing the size plane of the gel. In thiswindow,
the user performs the following:

(1) Specify start and end sizes of the size standard;

(2) Specify alane, and click on all the size standard bands on that lane; and

(3) If desired, repeat Step 2 to specify other lanes. Usually a couple of lanesis sufficient to
help FAST-MAP create an initia binning library for the new size standard.
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When done, click "Close" and answer "yes' when asked whether to save the size points.

Example run

Let usinvokesize std view on GEL1.:
>> size_std_view GEL1

FAST-MAP responds with the following message:

Initializing gel settings for GELL1.....Done.
Reading image data for dye 4...Done.

A "Size Std View" window is crested, displaying the size plane of GEL 1.

358



Size std View window

3Viar N PP Lane ER

500

1|||||| T I ENIEIWIFTET W TT NS

1??? §¥- i

2000F % «
e | %
ok X ¥

3000 ii}
3500 F 3%

4000

4500

5000

SS00

100

120 140 160 180

Figure D.13 Size_std View window.

Thereisonly one menuitem for "Size_std View": "Gels'. If the user has invoked
size_std view on astudy, this menu allows the user to go to another gel in the study.

The size standard name is displayed in the area above the gel image. There are two buttons
next to the name: the first defines the minimum size standard on the gel, the second defines
the maximum size standard. To change, click on the buttons and select the appropriate size
listed in the pop-up menu. To theright, thereis atext box labeled "Lane" for the user to
specify the current lane that is defined.

Buttons for controlling the display are to the right of the gel image:
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* The"Zoomin" and "Zoom out" allows zooming operations on the gel image. To
zoomin, click on the"Zoom in" button and then select aregion onthe gel image. Itis
alright to include areas that are outside the gel image if the size standard bands are very
close to the edges. To zoom out, simply click on the "Zoom out" button and it will return to
the previous state.

* The"Darken" and "Brighten" buttons allow user to control the image contrast.

* The"Refresh” button isfor user to re-display the current user edits on the image.

* The"Insert/Delete” pop-up button allows user to select the mode (insertion or deletion)
of action on asize standard peak for each mouse click.

* The"Clear" button deletes all current input.

» The"Save" button saves all current input.

* The"Close" button asks the user whether to save the current input, and then exit by
closing the "Size std View" window.

Here are the steps to calibrate anew size standard using size std view:

Step 1. Define the minimum and maximum size standards using the two buttons next to the
Sze standard name;

Step 2: Specify alaneinthe "Lane" box. Click on al the size standard bands on the lane.
The default mouse click actionis"Insert”. To seethe points, click on "Refresh”. To delete
apoint, select "Delete pts' from the "Insert/Delete" pop-up button, and each subsequent
mouse-click will delete anearest input point. If "Delete lane” is selected, each mouse click
deletes anearest lane altogether. Re-select "Insert” after deleting. When done, click on
"Save".

Step 3: Repeat Step 2 with another laneif desired. Usually, a couple of lanesis sufficient
to get FAST-MAP started.

Step 4: Click on the "Close" button to exit the program.

D.5.6. edit

FAST-MAP knows where the FAST-MAP "/user/" information filesare. And, viathe
nickname mechanism, FAST-MAP can a so determine where the gel "/input/" data and
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helper filesare. The FAST-MAP "edit" makes use of such knowledge to provide rapid
accessing and editing of thesefiles.

The edit utility allows the user to create and modify user fileswithin Matlab. Without
having to remember and typein the full pathnames, the user can edit the user files by typing
one of the following:

>> edit preferences

>> edit nicknames

>> edit panels

>> edit markers

>> edit size_stds

>> edit dyes

>> edit pedigrees

The user can also edit gdl or study-specific input files by typing:
>> edit <nickname> settings
>> edit <nickname> layout
>> edit <nickname> limited_view
>> edit <nickname> other_results
e.g.
>> edit GEL3 settings
>> edit STUDY1 layout

If the input files are not already in the "/<gel>/input/" subdirectory, default input files will
be created automatically in the subdirectory for the user to edit.

If desired, the user can aso edit output files such as the resultsfile by typing:
>> edit <nickname> results

e.g.
>> edit STUDY1 results

However, keep in mind that FAST-MAP will not detect changes made to the resultsfile

inside the editor. Instead, the proper way to edit genotypesinvolving FAST-MAP isto use
the allele_view program.
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The user must specify the preferred editor in the “preferences’ file. The default editor is
emacs. FAST-MAP prefers an editor that is not executed in the background: if the editor is
executed in the background, the user must call the function reload explicitly after editing the
user library filesto reload the new data, or use the command ed instead of edit.

To save an edited file in Emacs, type Ctrl-X Ctrl-S.

To exit the Emacs editor, type Ctrl-X Ctrl-C.

Toseealist of filesthat can be edited using edit , type
>> help edit

D.5.7. ed

Thisisfor user whose preferred editor is executed in the background. All users of the
Macintosh version of FAST-MAP must use ed instead of edit .

The program ed has the same functionality as edit. See "edit".

D.5.8. inspect

The inspect utility allows the user to review user fileswithin Matlab. Like the edit
program, it provides rapid file access and aleviates the user from having to remember and
typein long pathnames. For example, the user can review user files by typing one of the
following:

>> inspect preferences

>> inspect nicknames

>> inspect panels

>> inspect markers

>> inspect size_stds

>> inspect dyes

>> inspect pedigrees
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To go to the next page in "inspect”, hit the SPACE bar once. To exit "inspect” at any time,
type "q".

The user can aso review gel- and study-specific input files by typing:
>> inspect <nickname> settings
>> inspect <nickname> layout
e.g.
>> inspect GEL1 settings
>> inspect STUDY1 settings

Toreview the genotyping resultsfile, type:
>> inspect <nickname> results

To review the summarized report file, type:
>> inspect <nickname> report

To review the statusfiles and log files generated by image call ,allele _call or any other
major FAST-MAP programs, type:

>> inspect <nickname> status <program>

>> inspect <nickname> logfile <program>

If the user omits the program name, FAST-MAP assumes <program> to be "alele _call”.
For e.g.

>> inspect STUDY1 status

>> inspect GEL1 logfile image_call

D.5.9. help

ThisFAST-MAP utility provides on-line documentation. It isafast way for the user to get
familiarized with the programs of FAST-MAP. For example, typing

>> help FAST-MAP
prints the following message to the screen:

Basic commands in FAST-MAP:
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To setup gels/studies : setup

To analyze gels/studies :

- Fully automated mode : allele_call, allele_view

- Cautious mode : image_call, image_view,
allele_call, allele_view

- Extra cautious mode : prep_call, prep_view,
image_call, image_view, marker_view
allele_call, allele_view

To edit or view files : edit, inspect

To reset environment : reload

Misc useful commands : allele_results, allele_printout,
add_pedigrees, reset_now, remove,
size_std_view, display, done,
check_version

To get more info on any of the above commands, type:

help <command>

For example, to get this help message again, type:
help FAST-MAP

To see the on-line documentation of the various FAST-MAP programs, the user types.
>> help <program>

Hereisan example:
>> help allele_call

prints the following on the screen:

Automatic lane-tracking, quantitation, and genotyping of
gel experiments.

Usage: allele_call NICKNAME_1 NICKNAME_2 ... (up to NICKNAME_45)
- <NICKNAME> can be a gel or a study;

- When done, please use "allele_view" to view the alleles called.

See also allele_view, image_call, image_view.

D.5.10. check_version

To check which version of FAST-MAP that is currently running, the user can type
>> check_version
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The computer prints out the following message banner:

*% *kkkkk *% *kkkkk *% *kkkk

FAST-MAP Version 1.04b
BETA Release
April 21, 1997

(Last revised 04/21/97)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

ans =

1.04b

D.5.11. update settings

For users of old versions of FAST-MAP, updating to a new version may mean that the
"settings’ file for their numerous gel may become outdated. In view of this, FAST-MAP
provides an automatic update function just to handle gels and studies "settings' file. For
example, the user can update an old "settings' file for agel that has been set up with an
older version of FAST-MAP by typing:

>> update_settings <nickname>

Hereisan example:
>> update_settings GEL3

GEL GEL3:
- Saved the original "settings" file in "settings.BAK".
- Created a brand new "settings" file for GEL3.
- Transferred these gel-specific settings for GEL3:
Gel_file_name
Matrix_file_name
Sample_file_name
Sequencer_type
Number_of _lanes
Size_standard
Min_size_ standard
Max_size_standard
Panel_name
Experiment_condition
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Noise_threshold

*** Done updating the "settings" file for GEL3. ***

Note that update settings can only processasingle gel or study at atime. Also, only the
gel- and study-specific settings (namely, the values for those attributesin " Section 1" of the
"settings' file) are carried over from the old "settings' into the new "settings' file. Therest
of the attributes are set with default values. A copy of the old "settings' fileis saved as
"settings.BAK" for reference if necessary.

To update the "settings” file of a study as well as those for the component gels, type:
>> update_settings <study>

For example:

>> update_settings STUDY1

STUDY STUDY1:

- Saved the original "settings" file in "settings.BAK".

- Created a brand new "settings" file for STUDY1.

- Transferred these study-specific settings for STUDY1:
Use_study_settings

*** Done updating the "settings” file for STUDY1. ***

Proceed to update "settings" files for the 2 component gels of
STUDY1? Y/IN [Y]:

GEL GEL1:
- Saved the original "settings" file in "settings.BAK".
- Created a brand new "settings" file for GEL1.
- Transferred these gel-specific settings for GEL1:
Gel_file_name
Matrix_file_name

Noiée_threshold
*** Done updating the "settings" file for GEL1. ***

GEL GEL2:
- Saved the original "settings" file in "settings.BAK".
- Created a brand new "settings" file for GEL2.
- Transferred these gel-specific settings for GEL2:
Gel_file_name
Matrix_file_name

Noiée_threshold
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*** Done updating the "settings" file for GEL2. ***

D.5.12. print_now

Thisfunctionisfor FAST-MAP UNIX usersto print various FAST-MAP filesto the
printer defined in "preferences’. Liketheedit and inspect programs, it provides rapid file
access so that the user does not have to remember and type in long pathnames. For
example, the user can print any of the user files by typing :

>> print_now <nickname> settings
>> print_now <nickname> layout
>> print_now <nickname> results
>> print_now <nickname> report
>> print_now <nickname> other_results
>> print_now <nickname> limited_view
>> print_now <nickname> logfile <program>
>> print_now <nickname> status <program>
>> print_now nicknames
>> print_now panels
>> print_now markers
>> print_now size_stds
>> print_now dyes
>> print_now preferences
>> print_now pedigrees

Users of Macintosh FAST-MAP should always use the "Print" menu command under the
"File" menu instead.

D.5.13. reload

The function reload |oads the various user files and input files (see " Annotating Genotyping

Data') into the current working environment. Under normal circumstances, thereisno
need to invoke this function directly, unless the edit command was executed in
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background, or the working environment appears to be corrupted. In the latter case,
though, we advise quitting FAST-MAP and restart again instead.

Reloading FAST-MAP user files

When invoked with no arguments, this function reloads all the user files from "FAST-
MAP/user/" into the FAST-MAP environment:
>> reload

To reload a particular user file, type:
>> reload <user_file>

e.g.
>> reload pedigrees

Reloading FAST-MAP input files

To reload the user specificationsin the input files of agel or study, type:
>> reload <nickname>

e.g.
>> reload STUDY1

To reload a particular input file, type:

>> reload <nickname> settings
>> reload <nickname> layout

D.5.14. reset_now

This DESTRUCTIVE function deletes previously compiled resultsin order to provide a
clean start for FAST-MAP on agel, study, marker panel, or size standard. Thisfunction
should be used with EXTREME CAUTION, since the previously computed results will be
lost.
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Resetting a gel

To delete all previoudy computed resultsfor agel, type:
>> reset_now <gel>

e.g.
>> reset_now GEL3

This function deletes the "display/" and "output/* directoriesinside the gel directory.

Resetting a study

To delete all previoudly computed results for a study and its component gels, type:
>> reset_now <study>

e.g.
>>reset_now STUDY1

This function deletes the "display/" and "output/" directories inside the study directory and
the component gels directories.

Resetting a marker panel

To delete the previoudly compiled binning libraries and stutter libraries for all the markers
inapand, type:

>> reset_now <panel>
e.g.

>> reset_now PANEL1

Thisfunction deletes all binning and stutter library files for the markers in the named
panels. To deletethe libraries of a marker panel under a particular experimental condition,
type:

>> reset_now <panel> <gel_with_experiment_condition>
e.g.

>> reset_now PANEL1 GEL3
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Thiswill delete al the marker libraries of PANEL 1 under the "Experiment_condition” of
GEL 3 (see "settings: gel™). If no gel name is supplied, the marker libraries with no specia
"Experiment_condition” are deleted by default.

Resetting a size standard

To delete the previoudly compiled binning libraries for a size standard, type:
>> reset_now <size_std>

e.g.
>> reset_now GS500

Thisfunction deletes all the library filesfor the named size standard. To delete the libraries
of asize standard under aparticular experimenta condition, type:

>> reset_now <size_std> <gel_with_experiment_cond>
e.g.

>> reset_now BVMap GEL3

Thiswill delete the BVMap libraries under the "Experiment_condition” of GEL3 (see
"settings : gel™). If no gel nameis supplied, the size standard libraries with no specia
"Experiment_condition” are deleted by default.

D.5.15. remove

This function allows the user to delete various FAST-MAP files without having to
remember and type in long pathnames. For example, the user can delete user files by
typing one of the following:

>> remove <nickname> settings

>> remove <nickname> layout

>> remove <nickname> results

>> remove <nickname> report

>> remove <nickname> limited_view
>> remove <nickname> other_results
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>> remove <nickname> logfile <program>
>> remove <nickname> status <program>
>> remove nicknames

>> remove panels

>> remove markers

>> remove size_stds

>> remove dyes

>> remove preferences

>> remove pedigrees

D.5.16. display

This utility function isfor the most technically inclined user to view the various library
objectsthat FAST-MAP has compiled over time.

Viewing the stutter library

To view the stutter library of amarker, type
>> display libA <marker>

e.g.
>> display libA p1m1l

To view the stutter library of amarker under a particular "Experiment_condition™ (see
"settings: gdl"), include a <gel> after <marker>:

>> display libA <marker> <gel_with_experiment_condition>
Two windows are displayed: a" Stutter Matrix A" window which shows the stutter library

(wecdl it "libA"), and a"Relative Amplifications’ window showing the range of
amplification ratios for different allelic differences.

Viewing the stutter patterns

To view the stutter patterns of a marker, type:
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>> display stutter <marker> <allele1> <allele2> ...
Upto5aleesarealowedinasingle display.

For example,
>> display stutter pIm1 121 131 141 151 161

For viewing markers under a particular "Experiment_condition”, include a <gel> with that
"Experiment_condition” after <marker>:

>> display stutter <marker> <gel> <allele1> <allele2>...

An"Allele Stutters’ window is created, showing the stutter patterns of the various alleles
for that marker.

Viewing the marker binning

To view the binning of a marker, type:
>> display binning <marker>

For example,
>> display binning p1m1

An"Allele Binning" window is created, showing the binning of the alleles for the named
marker.

To view the binning of amarker under a particular "Experiment_condition”, include a
<gel> after <marker>:

>> display binning <marker>
<gel_with_experiment_condition>

Viewing the size standard binning

To view the binning of a size standard, type:
>> display binning <size_std>
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For example,
>> display binning BVMap

A "Size Stds Binning" window is created, showing the binning of the alleles for the named
Size standard.

To view the binning of asize standard under a particular "Experiment_condition”, include a
<gel> after <size std>:

>> display binning <size_std>
<gel_with_experiment_condition>

D.5.17. set_stutter

FAST-MAP'salee caling agorithms are based on stutter deconvolution. If the user
wishes to call the alleles without using stutter deconvolution, type:

>> set_stutter

And FAST-MAP will prompt:

Set to stutterless system? Y/N [N]

By answering "Y", the stutter handling functionalities of FAST-MAP will be turned off in
the subsequent analysis. The user should use this option only under very special
conditions, for example, when analyzing data in which there are no stuttering effects
(typically microsatellites with along repeat unit, such as tri-nucleotides and tetra-
nucleotides under certain experiment conditions).

D.5.18. recover

When the user edits the manifold, copies are saved in both the "display/" and the
"Input/SAVED_EDITS" directories. These edited filesin the "display/" directory are read
in once, and deleted from the "display/" directory immediately afterwards. Therefore, if the
user callsimage call on agel twice, FAST-MAP will read in any user edited manifold in
thefirst image_call, but not in the second time around. To restore the user edited manifold
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(created previoudly inimage view's "Repair" mode) back into the working "display/"
directory again, type:
>> recover <nickname> mani_edited

If restoring a previous sizing grid boundary file (created inimage view's "Draw™ mode),
type:

>> recover <nickname> mani_bounds

Then, the next image_call on <nickname> will be able to re-use the user edited manifolds.

D.5.19. done

To exit from FAST-MAP and Matlab, type
>> done

FAST-MAP responds by

Thank you for using FAST-MAP.
Good-bye...

and exits Matlab.
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Glossary

Adenine (A): A nitrogenous base that is a member of the base pair A-T (adenine and
thymine).

Alleles. Alternative forms of agene or marker. Alleles are inherited separately from each
parent, as the chromosomes from the sperm and the egg pair up in reproduction.

Autosomes: Chromosomes that are not involved in sex determination. In human beings,
each individual has two copies of each autosome (chromosomes 1 to 22), one inherited
from each parent. See also sex chromosomes.

Base pair (bp): Two complementary nitrogenous bases held together by weak bonds.
The two strands of the DNA double helix are held together by the bonds between base pairs
adenine and thymine or guanine and cytosine. The length of aDNA sequence is often
given in bp.

Candidate gene: A gene with known or suspected biological functions which may be
involved in a genetic disorder.

CA-repeats. A microsatellite marker that contains tandem repeats of the simple DNA
sequence C-A (cytosine and adenine).

cDNA: See complementary DNA.

Centimorgan (cM): A unit of measure of recombination distance. A recombination
distance of 1 cM isequa to a 1% chance that amarker at one genetic location will be
separated from amarker at another location due to meiotic recombination. In humans, 1
cM isroughly equal to 1 Mb (one million base pairs).

Chromosomes: The threadlike structures found in acell containing the cellular DNA that
encode the information of heredity. Genes are arranged in linear order along the
chromosomes. The human genome consists of twenty-three pairs of matching
chromosomes; each chromosome in every pair isinherited separately from each parent.
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Clone: A group of genetically identical cells derived from a single precursor.

cM: See centimorgan.

Complementary DNA: DNA molecules synthesized by reverse transcriptase from an
RNA template.

Complex disease: See non-Mendelian disease.

Crossing over: The process during meiosis in which an exchange occur between two
corresponding chromosomes before one member of the chromosome pair isincorporated
into asperm or an egg. This process resultsin areshuffling of genes; the further apart two
genes are, the more likely it isfor them to be reshuffled. Thislikelihood isused asa
measure of how far apart two genes are, and is termed recombination distance with
centimorgans as units.

Cytosine (C): A nitrogenous base that is a member of the base pair G-C (guanne and
cytosine).

DNA (deoxyribonucleic acid): The molecule that encodes hereditary information. It
is adouble-stranded molecule held together by weak bonds between base pairs of
nucleotides.

DNA sequence: The linear order of base pairs along a DNA molecule.
Electrophoresis. A technique for separating large molecules (e.g. DNA) in a mixture.
A medium (e.g. agel) containing the mixtureis exposed to an electric field. Different
moleculestravel at different rates, depending on their electrical charges and sizes. See aso
gel eectrophoresis.

EST: See expressed sequence tag.

Expressed sequence tag (EST): A content-addressable label that is a subsequence of
an expressed gene (CDNA).

Exon: The protein-coding DNA sequence of agene. See also introns.
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Gel electrophoresis: Electrophoresis of DNA molecules using agarose and acrylamide
gels as the media containing the mixtures of molecules.

Gene: Thefundamental unit of heredity. A geneisastretch of DNA that encodes a
specific biological function or functional product (e.g. a protein).

Genelocalization: Determination of the physical position of a gene on a chromosome.
Genetic linkage map: See linkage map

Genetic markers: See markers.

Genome: All the genetic material contained in the chromosomes of a particular organism.
Genotype: The genetic makeup of an individual; the genotype of an individual for a
marker or agene is comprises two alleles; genes on the sex chromosomes are a special
case.

Genotyping: Determination of which pair of allelesis present in an individual.

Guanine (G): A nitrogenous base that is a member of the base pair G-C (guanne and
cytosine).

Haplotype: See phase.
Haplotyping: Setting the phase for a given individual.

Heter ozygosity: Probability that an individual is heterozygous for any two aleles at a
genelocus. Mathematically,

H ﬂ—%ipﬁ@

where p;j is the population frequency of theith allele. See also polymor phic information
content.
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Heterozygous. Anindividual is heterozygous at agene locus if the two allelesin the
genotype are different. See a'so homozygous.

Homozygous: Anindividual is homozygous at a gene locusif the two allelesin the
genotype are the same. See a so heterozygous.

Hybridization: The binding of single strands of DNA or RNA to form double-stranded
molecules.

Introns. Portions of the DNA sequence of a gene that are not part of the protein-coding
sequence of the gene. See also exons.

In vitro: Outside aliving organism.

Linkage: The proximity between genes or markers along a chromosome. The closer the
markers are, the less likely they are to be separated due to crossing over, hence the more
likely that they will be inherited together.

Linkage map: A map of the relative position of the markers and geneson a
chromosome, determined by measuring how often the loci are inherited together. The unit
of such amap is centimorgan (cM). See aso physical map.

Locus: A location on a chromosome that can be identified in a distinctive manner.
Marker: Anidentifiable location on a chromosome that expresses some measurable form
of polymorphism so that its inheritance can be traced in a pedigree. 1t can be agene itself
or some segment of DNA with no known function but whose inheritance can betraced in a

pedigree.

Megabase (Mb): Unit of length for DNA fragments equal to one million nucleotides or
base pairs. It isaso approximately equal to 1 cM.

Meiosis. The cell division process that results in the creation of the sex cells.

Meiotic recombinations. Recombination events caused by crossing over during
meiosis.
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Mendelian disease: A disease that is caused by a defective genotype at a single gene
locus. Usually, only one disease mechanism is operating in a given family, and possession
of the high-risk genotype is necessary for disease expression. See also non-Mendelian
disease.

Microsatellites: Genetic markers that contain tandem repeats of short simple DNA
sequences.

Nitrogenous bases. A nitrogen-containing molecule that behaves chemically as a base.
Non-Mendelian disease: A disease caused by a complex interaction of multiple genetic
and non-genetic factors. Non-Mendelian diseases are multifactorial: programmed by
interacting genes and modified by mostly unknown environmental factors. Most common
genetic diseases are non-Mendelian. See also Mendelian disease.

Nucleotides: A DNA subunit, consisting of a nitrogenous base (adenine, guanine,
thymine, or cytosine) chemically linked to a phosphate molecule and a sugar molecule. A
DNA moleculeis made up of thousands of nucleotides linked to one another.

PCR: See polymerase chain reaction.

PCR stutter: Additional trailing shadow bands that occur during gel electrophoresis of
PCR-amplified microsatellites. These bands are caused by the extraneous PCR products

generated by polymerase dlippage during PCR amplification.

Penetrance: Conditional probability of observing the corresponding phenotype given the
specified genotype.

Phase: The combined genotypes of two or more polymorphic loci on the same parental
chromosome.

Phenotype: The observable features of an organism that are the result of the genotype.

Physical map: A map of the actual location of genes and markers on a chromosome
measured in base pairs. See aso linkage map.
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PIC: See polymorphic information content.
Polymerase: Enzymesthat catalyze the synthesis of DNA on preexisting DNA templates.

Polymerase chain reaction (PCR): A technique for rapidly amplifying a DNA
fragment by aternatively denaturing double-stranded DNA, annealing pairs of primersto
both ends of the DNA segment, and synthesizing the DNA bracketed by the primers using
a heat-stable polymerase .

Polymor phic information content (PIC): Probability that the marker genotype of a
given offspring can be haplotyped. Mathematically,

n n-1 n
PIC=1- 2@— 2p*p°
DLEPBTUL
where pj and pj are the population frequencies of theith and jth alleles. Seeaso
heterozygosity.

Polymor phism: Genetic variationsin the DNA sequence of agene or marker. A highly
polymorphic gene or marker has alarge number of possible alleles.

Primer: Short polynucleotide chain to which new deoxyribonucleotides can be added by
DNA polymerase.

Proband: The affected person through which a pedigree is discovered and explored.
Probe: A labeled DNA or RNA sequence used to detect the presence of a complementary
sequence by molecular hybridization. For example, a probe can be used to recognize a

particular clone in acomplex mixture of DNA or RNA molecules.

Purine: A single-ring nitrogenous basic compound that occursin nucleic acids. Examples
of purines are adenine and guanine.

Pyrimidine: A double-ring nitrogenous basic compound that occurs in nucleic acids.
Examples of pyrimidines are cytosine and thymine.
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Recombination: The process by which an offspring receives a combination of genes
different from that of either parent. See also meiotic recombination.

Reverse transcriptase: An RNA-dependent DNA polymerase or enzyme that
synthesizes DNA from an RNA template.

RNA (ribonucleic acid): The ribonucleotide polymer into which DNA is transcribed.
Sequence tagged site (STS): A short DNA sequence (200 to 500 base pairs) with
known location and base sequence that has a single occurrence in the genome. The STSs
are used as unique landmarks in devel oping the physical map.

Sequencing: Determination of the exact order of nucleotidesin a DNA.

Sex chromosomes. The X and Y chromosomes in human beings that determine the sex
of anindividual. Females havetwo X chromosomes, maleshavean X andaY

chromosome. See aso autosomes.

Sex cells: The sperm or egg cells. In the sex cells, there are only twenty-three
chromosomes and not twenty-three pairs.

Simple disease: See Mendelian disease.
STS. See sequence tagged site.

Tandem repeats: Multiple copies of the same nucleotide sequence on a chromosome,
useful as markersin genetic analysis.

Thymine (T): A nitrogenous base that is a member of the base pair A-T (adenine and
thymine).

Vector: DNA molecule (e.g. from avirus) which can be inserted with another DNA

fragment without losing its self-replicating capacity. Vectors are used to introduce foreign
DNA into host cells where it can then be reproduced in large quantities.
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Yeast artificial chromosome (YAC): An artificial yeast chromosome constructed by
cloning DNA fragments (up to 1.5 mb) into vectors that can replicate in yeast cells.
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