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Abstract

Multi-agent systems in complex, real-time domains require agents to act e�ectively both au-

tonomously and as part of a team. This dissertation addresses multi-agent systems consisting

of teams of autonomous agents acting in real-time, noisy, collaborative, and adversarial envi-

ronments. Because of the inherent complexity of this type of multi-agent system, this thesis

investigates the use of machine learning within multi-agent systems. The dissertation makes
four main contributions to the �elds of Machine Learning and Multi-Agent Systems.

First, the thesis de�nes a team member agent architecture within which a 
exible team
structure is presented, allowing agents to decompose the task space into 
exible roles and
allowing them to smoothly switch roles while acting. Team organization is achieved by

the introduction of a locker-room agreement as a collection of conventions followed by all
team members. It de�nes agent roles, team formations, and pre-compiled multi-agent plans.
In addition, the team member agent architecture includes a communication paradigm for

domains with single-channel, low-bandwidth, unreliable communication. The communica-
tion paradigm facilitates team coordination while being robust to lost messages and active

interference from opponents.
Second, the thesis introduces layered learning, a general-purpose machine learning

paradigm for complex domains in which learning a mapping directly from agents' sensors

to their actuators is intractable. Given a hierarchical task decomposition, layered learning
allows for learning at each level of the hierarchy, with learning at each level directly a�ecting

learning at the next higher level.
Third, the thesis introduces a new multi-agent reinforcement learning algorithm, namely

team-partitioned, opaque-transition reinforcement learning (TPOT-RL). TPOT-RL is de-

signed for domains in which agents cannot necessarily observe the state changes when other
team members act. It exploits local, action-dependent features to aggressively generalize its

input representation for learning and partitions the task among the agents, allowing them to

simultaneously learn collaborative policies by observing the long-term e�ects of their actions.
Fourth, the thesis contributes a fully functioning multi-agent system that incorporates

learning in a real-time, noisy domain with teammates and adversaries. Detailed algorithmic
descriptions of the agents' behaviors as well as their source code are included in the thesis.

Empirical results validate all four contributions within the simulated robotic soccer do-

main. The generality of the contributions is veri�ed by applying them to the real robotic
soccer, and network routing domains. Ultimately, this dissertation demonstrates that by

learning portions of their cognitive processes, selectively communicating, and coordinating

their behaviors via common knowledge, a group of independent agents can work towards a
common goal in a complex, real-time, noisy, collaborative, and adversarial environment.
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Chapter 1

Introduction

Multi-Agent Systems (MAS) is the sub�eld of Arti�cial Intelligence (AI) that aims to provide
both principles for construction of complex systems involving multiple agents and mecha-
nisms for coordination of independent agents' behaviors. While there is no generally accepted

de�nition of \agent" in AI, for the purposes of this dissertation, an agent is an entity with
perceptions, goals, cognition, actions, and domain knowledge, situated in an environment.

The ways it acts, or its mappings from perceptions over time to actions, are called its \be-
haviors."

When a group of agents in a multi-agent system share a common long-term goal, they

can be said to form a team. Team members (or teammates) coordinate their behaviors by
adopting compatible cognitive processes and by directly a�ecting each others' perceptory
inputs including via communicative actions. Other agents in the environment that have

goals opposed to the team's long-term goal are the team's adversaries.

This thesis contributes several techniques for generating successful team behaviors in
real-time, noisy, collaborative and adversarial multi-agent environments. As of yet, there

has been little work within this type of multi-agent system.

Because of the inherent complexity of this type of multi-agent system, Machine Learn-
ing (ML) is an interesting and promising area to merge with MAS. ML has the potential
to provide robust mechanisms that leverage upon experience to equip agents with a large

spectrum of behaviors, ranging from e�ective individual performance in a team, to collabora-
tive achievement of independently and jointly set high-level goals. Using a hierarchical task

decomposition, multiple ML modules can be combined to produce more e�ective behaviors
than a monolithic ML module that learns straight from sensors to actuators.

By learning portions of their cognitive processes, selectively communicating with each

other, and coordinating their behaviors via common knowledge, a group of independent
agents can work together towards a common goal in a complex, real-time, noisy, adversarial

environment.

1.1 Motivation

The line of research addressed in this dissertation was originally inspired by the Dynamite

test bed [Barman et al. 93]. Their successful implementation of two non-holonomic robots
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pushing a ping-pong ball towards opposite goals on a walled �eld was the �rst real robotic

soccer system. While limited to a single robot on each team in 1994, Dynamite demonstrated

the feasibility of creating robotic soccer agents for studying real-time, collaborative and

adversarial multi-agent systems. Inspired by their success, we set out to create a robotic

soccer system with several robots on each team. In so doing, it was immediately clear that

the research issues introduced by the extension from single to multiple robot teams would

be numerous and challenging.

Dynamite operates in a real-time, noisy, adversarial domain. This thesis focuses on a

domains with those same three characteristics plus an additional one:

Real-time domains are those in which success depends on acting in response to a dynami-

cally changing environment.

Noisy domains are those in which agents cannot accurately perceive the world, nor can

they accurately a�ect it.

Collaborative domains are those in which a group of agents share a common goal.

Adversarial domains are those in which there are agents with competing goals.

While no previous system has addressed a domain with all of these characteristics, there
have been previous systems examining each of these characteristics individually. Pengi [Agre

and Chapman 87] is a real-time system in which an agent in a video game environment
must act quickly in response to a dynamically changing environment. All robotic domains

(e.g. [Brooks 86,Arkin 87]) are noisy as real-world sensors perceive the world imperfectly and
robotic actuators are typically unreliable. Collaborative environments have been examined
in the �eld of MAS [Grosz 96, Sycara et al. 96, Cohen et al. 99], and adversarial domains

have been considered in AI game playing systems such as for checkers [Samuel 59] and
chess [Newell and Simon 72]. However these adversarial domains are turn-taking as opposed

to real-time, they are not noisy, and there are no collaborative agents.
Some of these four domain characteristics have also been considered in combination. Sev-

eral multi-agent robotic systems [Arkin 92,Mataric 94a, Parker 94] consider collaborative,

noisy environments. Dynamite, mentioned above, operates in a real-time, noisy, adversar-
ial environment. In this thesis, I consider real-time, noisy, collaborative and adversarial

multi-agent domains, using simulated robotic soccer with multiple agents on each team as a

representative test bed. The challenges that arise in this domain have motivated my thesis

research.

One of the �rst observations made was that creating all of the behaviors and agent

interactions directly would be an impossible task in such a complex multi-agent domain.

Thus, a primary research goal of this thesis is the investigation of whether and how ML

techniques can be used to create a team of cooperating agents.

1.2 Objectives and Approach

1.2.1 Thesis Question

The principal question addressed in this thesis is:
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Can agents learn to become individually skilled and to work together

in the presence of both teammates and adversaries in a real-time, noisy

environment with limited communication?

More speci�cally, the thesis contributes an agent structure enabling the use of ML tech-

niques to improve an agent's behavior in domains with the following characteristics:

� A need for real-time decision-making;

� Sensor and actuator noise with hidden state.

� Several independent agents with the same well-de�ned high-level goal: teammates

� Several agents with a con
icting well-de�ned high-level goal: adversaries

Note that the intermediate or low-level goals of teammates and adversaries can di�er inde-
terminately.

The agents are assumed to have at their disposal the following resources:

� Sensors of the environment that give partial, noisy information;

� The ability to process the sensory information and use it to update a world model;

� Noisy actuators that a�ect the environment;

� Low-bandwidth, unreliable communication capabilities.

This thesis contributes a successful method|using machine learning|of equipping such
agents with e�ective behaviors in such a domain.

1.2.2 Approach

The general approach to answering the thesis question has been to create an existence proof:

a full-
edged functioning multi-agent system that incorporates learning in a real-time, noisy

environment with both teammates and adversaries.
Robotic soccer is a domain which �ts the above characteristics while being both accessible

and suitably complex. Insofar as the main goal of any test bed is to facilitate the trial and
evaluation of ideas that have promise in the real world, robotic soccer proved to be an

excellent test bed for this thesis. All of the thesis contributions were originally developed in

simulated robotic soccer. However, some were then applied in either real robotic soccer or
in network routing.

An initial assumption was that, due to the complexity of the environment, agents in
domains with the above characteristics would not be able to learn e�ective direct mappings

from their sensors to their actuators, even when saving past states of the world. Thus, the

approach taken was to break the problem down into several behavioral layers and to use ML

techniques when appropriate. Starting with low-level behaviors, the process of creating new

behavior levels and new ML subtasks continues towards high level strategic behaviors that
take into account both teammate and opponent strategies.
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In the process, a key advantage of such an approach surfaced: learning low-level behaviors

can facilitate the learning of higher level behaviors. Either by creating the behavioral com-

ponents that make up the new learned behavior or by manipulating the input space of the

new learned behavior, previously learned behaviors can enable the creation of increasingly

complex learned behaviors. This new approach to multi-agent machine learning is called

layered learning.

Layered learning assumes that the appropriate behavior granularity and the aspects of the

behaviors to be learned are determined as a function of the speci�c domain. Layered learning

does not include an automated hierarchical decomposition of the task. Each layer is learned

by applying or developing appropriate ML algorithms. The thesis methodology consisted of

investigating several levels of learning to demonstrate the e�ectiveness of combining multiple

machine learning modules hierarchically.

1.3 Contributions

This thesis makes four distinct contributions to the �elds of MAS and ML.

Team Member Agent Architecture. The team member agent architecture is suitable
for domains with periodic opportunities for safe, full communication among team mem-

bers, interleaved with periods of limited communication and a need for real-time action.
This architecture includes mechanisms for task decomposition and dynamic role assign-

ment as well as for communication in single-channel, low-bandwidth communication
environments. It is implemented in both simulated and real robotic soccer.

Layered Learning. Layered learning is a hierarchical ML paradigm that combines mul-
tiple machine learning modules, each directly a�ecting the next. Layered learning

is described in general and then illustrated as a set of three interconnecting learned
behaviors within a complex, real-time, collaborative and adversarial domain.

Team-Partitioned, Opaque-Transition Reinforcement Learning (TPOT-RL).

TPOT-RL is a new multi-agent reinforcement learning method applicable in domains in
which agents have limited information about environmental state transitions. TPOT-

RL partitions the learning task among team members, allowing the agents to learn

simultaneously by directly observing the long-term e�ects of their actions in the en-
vironment. TPOT-RL is demonstrated to be e�ective both in robotic soccer and in

another multi-agent domain, network routing.

The CMUnited Simulated Robotic Soccer System (CMUnited). The CMUnited

simulated robotic soccer team is a fully implemented and operational team of sim-

ulated robotic agents. Coupled with the detailed descriptions and source code in the

appendices, CMUnited's algorithmic details presented throughout the thesis should
enable future researchers to build upon CMUnited's successful implementation.

While the last of these contributions is inherently domain-speci�c, for each of the �rst

three contributions, this thesis provides a general speci�cation as well as an implementation



1.4. READER'S GUIDE TO THE THESIS 23

within a complex domain: simulated robotic soccer. In addition, opportunities for general-

ization to other domains are discussed, illustrated, and implemented.

1.4 Reader's Guide to the Thesis

Following is a general description of the contents of each chapter as well as guidelines as to

which chapters are relevant to which contribution. Since CMUnited is described throughout

the entire thesis, all chapters are relevant and it is not mentioned in the guidelines.

Chapter 2 introduces the domains used as test beds within the thesis: simulated and real

robotic soccer as well as network routing. The simulated robotic soccer domain is used

as an example throughout the thesis and all contributions are implemented in this

domain. The team member agent architecture is also implemented in the real robotic

soccer domain, while TPOT-RL is also implemented in network routing.

Chapter 3 describes the team member agent architecture. It is de�ned generally and then

implemented in both simulated and real robotic soccer. This architecture is used within
the implementations of both layered learning and TPOT-RL.

Chapter 4 introduces the general layered learning method. The implementation of lay-
ered learning described in Chapters 5{7 also contribute to the complete description of

layered learning.

Chapter 5 describes a learned, individual robotic soccer behavior. It is presented as the
�rst learned layer in our layered learning implementation.

Chapter 6 presents a learned multi-agent behavior built upon the individual behavior from
Chapter 5. This second learned layer in our layered learning implementation also serves

as the basis for the team learning algorithm described in Chapter 7, namely TPOT-RL.

Chapter 7 introduces the novel multi-agent reinforcement learning algorithm, TPOT-RL.
TPOT-RL builds upon the multi-agent behavior described in Chapter 6 to create a
team-level collaborative and adversarial behavior. This team-level behavior is the high-

est implemented learned layer in the simulated robotic soccer implementation of the

layered learning paradigm. The chapter also includes a description and implementation

of TPOT-RL in network routing, demonstrating its generalization to other multi-agent
domains.

Chapter 8 provides general results of the implemented robotic soccer systems in interna-
tional competitions. While focussed evaluations are provided in several of the previous

chapters, anecdotal evidence of the success of the overall approach is provided in this

chapter.

Chapter 9 provides an extensive survey of work related to the research in this thesis. While
several chapters contain their own related work sections describing the research most

relevant to their contents, this chapter surveys the �eld of MAS from a machine learning
perspective, and presents a broad overview of robotic soccer research around the world.
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Chapter 10 summarizes the contributions of this thesis and outlines the most promising

directions for future work.

Table 1.1 summarizes the relevance of each chapter to the thesis contributions.

Chapter

Contribution 2 3 4 5 6 7 8 9 10

Team Member Agent Architecture � � � � � � + + +

Layered Learning � + � � � � + + +
TPOT-RL � + � � + � + + +

CMUnited � � � � � � � � +
� : essential; + : relevant; � : irrelevant

Table 1.1: Correspondence between the thesis contributions and the dissertation chapters.



Chapter 2

Substrate Systems

The innovations reported in this thesis are designed primarily for real-time, noisy, collab-
orative and adversarial domains. As such, simulated robotic soccer|the RoboCup soccer

server [Noda et al. 98] in particular|has served as an ideal research test bed. However, the
positive results achieved are not limited to this domain. Throughout the thesis, the extent

to which each result generalizes is discussed. In addition, some of the techniques developed
in simulated robotic soccer have been applied in two other domains with some similar char-
acteristics: real robotic soccer and network routing. This chapter compares and contrasts

these three domains while specifying their details as they are used for empirical testing.

2.1 Overview

As the main test bed, all the contributions of this thesis are originally developed and imple-
mented in simulated robotic soccer. It is a fully distributed, multi-agent domain with both
teammates and adversaries. There is hidden state, meaning that each agent has only a partial

world view at any given moment. The agents also have noisy sensors and actuators, meaning
that they do not perceive the world exactly as it is, nor can they a�ect the world exactly
as intended. In addition, the perception and action cycles are asynchronous, prohibiting the

traditional AI paradigm of using perceptual input to trigger actions. Communication oppor-

tunities are limited; the agents must make their decisions in real-time; and the actions taken

by other agents, both teammates and adversaries, and their resulting state transitions are

unknown. We refer to this last quality of unknown state transitions as opaque transitions.
These italicized domain characteristics are appropriate for the development of all four thesis

contributions as presented in Section 1.3.

In order to test the generality of our simulator results, we transfer some of our techniques

to our real robot system. In particular, portions of the team member agent architecture are
implemented in the real robot system as well as in simulation. The real robot system is
a completely di�erent domain from the simulator. First, at the most basic level, the I/O

is entirely di�erent. While the simulator deals with abstract, asynchronous perceptions

and actions, the robotic system processes real-time video images via an overhead camera

and outputs motor control commands synchronously (i.e. triggered by perception) via radio.

Second, the agents all share the same perception of the world, which makes the robotic system

25
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not completely distributed. However, functionally the robots are controlled independently:

each is controlled by an independent function call using a turn-taking methodology. They

can also be controlled by separate processes with a common sensory input stream. Three

other di�erences of the robots from the simulator are the absence of communication among

teammates (which is possible, but not used in our system), the absence of hidden state

(agents have a full world view via an overhead camera), and a resulting full knowledge about

the state transitions in the world. These domain di�erences prevent the use of identical

agent programs in the two domains, but they do not limit the applicability of the 
exible

teamwork structure.

While developed within the context of robotic soccer, the multi-agent algorithms pre-

sented in this thesis generalize beyond robotic soccer as well. To support this claim, we

implement one of our algorithms in a di�erent domain, namely network routing. We believe

several other multi-agent domains are also similar to robotic soccer. It is part of our future

work to continue to identify other such multi-agent domains (see Chapter 10).

Although network routing di�ers from robotic soccer in a lot of ways, in an abstract
sense it is very similar. Even though our network routing simulator does not involve commu-
nication, noisy sensors and actuators, or adversaries, it retains the essential characteristics

motivating the development of TPOT-RL: a distributed team of agents operating in real-time
with opaque transitions. As reported in Chapter 7, TPOT-RL is successfully implemented

in network routing as well as in robotic soccer.

Table 2.1 summarizes the domain comparison. The remainder of this chapter provides the

domain speci�cations of simulated robotic soccer, real robotic soccer, and network routing
as used experimentally in this thesis. I use this chapter to describe in detail the aspects of

the domains that are not part of the thesis contributions: the substrates upon which the
contributions are built.

Simulator Robots Network routing

Distributed perception yes no yes

Distributed action yes yes yes

Asynchronous perception/action yes no no

Teammates yes yes yes

Adversaries yes yes no

Hidden state yes no yes

Noisy sensors yes yes no

Noisy actuators yes yes no

Communication yes no no

Real-time yes yes yes

Opaque transitions yes no yes

Table 2.1: A comparison of the experimental domains used in this thesis.
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2.2 The RoboCup Soccer Server

The RoboCup soccer server [Noda et al. 98] has been used as the basis for successful inter-

national competitions [RoboCup 97] and research challenges [Kitano et al. 97]. As one of the

�rst users, I helped to test and tune it over the course of its development, and participated

in its �rst test as the basis for a competition (Pre-RoboCup-96 at IROS-96). Experiments

reported in this thesis are conducted in several di�erent versions of the simulator ranging

from version 1 to the current version 4. This section describes the current simulator.

The soccer server is a complex and realistic domain. Unlike many AI domains, the

soccer server embraces as many real-world complexities as possible. It models a hypothetical

robotic system, merging characteristics from di�erent existing and planned systems as well

as from human soccer players. The server's sensor and actuator noise models are motivated

by typical robotic systems, while many other characteristics, such as limited stamina and

vision, are motivated by human parameters.

In this section I describe version 4 of the soccer server in detail. While not as detailed as

the soccer server user manual [Andre et al. 98a], this section de�nes all of the concepts and
parameters that are important for the thesis.

Section 2.2.1 gives a high-level overview of the simulator. Section 2.2.2 de�nes the envi-
ronment including the �eld and all of the objects recognized by the simulator. Sections 2.2.3

and 2.2.4 specify the perceptions and actions available to agents in the simulator. Sec-
tion 2.2.5 gives a detailed illustrative trace of the interactions between the server and a
client over a period of time. Section 2.2.6 summarizes the challenging characteristics of this

simulated robotic soccer domain.

2.2.1 Overview of the Simulator

The simulator, acting as a server, provides a domain and supports users who wish to build
their own agents (also referred to as clients or players). Client programs connect to the

server via UDP sockets, each controlling a single player. The soccer server simulates the
movements of all of the objects in the world, while each client acts as the brain of one player,
sending movement commands to the server. The server causes the player being controlled

by the client to execute the movement commands and sends sensory information from that

player's perspective back to the client.

When a game is to be played, two teams of 11 independently controlled clients connect
to the server. The object of each team is to direct the ball into one of the goals at the ends

of the �eld, while preventing the ball from entering the other goal.

The server's parameters that are relevant to this thesis are listed, along with their default

values and descriptions, in Table 2.4. Refer to this table as the parameters are alluded to in
the text of this section.

The simulator includes a visualization tool, pictured in Figure 2.1. Each player is repre-

sented as a two-halved circle. The light side is the side towards which the player is facing.

In Figure 2.1, all of the 22 players are facing the ball, which is in the middle of the �eld.
The black bars on the left and right sides of the �eld are the goals.

The simulator also includes a referee, which enforces the rules of the game. It indicates
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Figure 2.1: The soccer server display. Each player is represented as a two-halved circle. The light

side is the side towards which the player is facing. All players are facing the ball, which is in the

middle of the �eld. The black bars on the left and right sides of the �eld are the goals.

changes in play mode, such as when the ball goes out of bounds, when a goal is scored, or
when the game ends. It also enforces the o�sides rule. Like in real soccer, a player is o�sides

if it is in the opponent's half of the �eld and closer to the opponent's goal line (the line along
which the goal is located) than all or all but one of the opponent players when the ball is
passed to it. The crucial moment for an o�sides call is when the ball is kicked, not when

it is received: a player can be behind all of the opponent defenders when it receives a pass,
but not when a teammate kicks the ball towards it1.

One of the real-world complexities embraced by the soccer server is asynchronous sensing
and acting. Most AI domains use synchronous sensing and acting: an agent senses the
world, acts, senses the result, acts again, and so on. In this paradigm, sensations trigger

actions. On the other hand, both people and complex robotic systems have independent
sensing and acting rates. Sensory information arrives via di�erent sensors at di�erent rates,

often unpredictably (e.g. sound). Meanwhile, multiple actions may be possible in between

sensations or multiple sensations may arrive between action opportunities.

The soccer server uses a discrete action model: it collects player actions over the course

of a �xed simulator cycle of length simulator step, but only executes them and updates

the world at the end of the cycle. If a client sends more than one movement command

in a simulator cycle, the server chooses one randomly for execution. Thus, it is in each

client's interest to try to send at most one movement command each simulator cycle. On the

other hand, if a client sends no movement commands during a simulator cycle, it loses the

opportunity to act during that cycle, which can be a signi�cant disadvantage in a real-time

adversarial domain: while the agent remains idle, opponents may gain an advantage. Each
cycle, the simulator increments the simulated time counter by one.

1
In real soccer, an o�sides call is actually subjective based on the referee's opinion of whether the player

in an o�sides position is gaining an advantage by being there. The soccer server arti�cially operationalizes

the o�sides rule, making it an objective call.



2.2. THE ROBOCUP SOCCER SERVER 29

Figure 2.2 illustrates the interactions between the server and two clients over the course

of 3 simulator cycles at times t-1, t, and t+1. The thick central horizontal line represents

the real time as kept by the server. The top and bottom horizontal lines represent the time-

lines of two separate clients. Since they are separate processes, they do not know precisely

when the simulator changes from one cycle to the next. The dashed arrows from the server

towards a client represent perceptions for that client. The solid arrows from a client towards

the server represent movement commands sent by that client. These arrows end at the

point in time at which the server executes the movement commands, namely the end of the

simulator cycle during which they are sent.

Client 1 sends movement commands after every perception it receives. This strategy

works out �ne in cycle t-1; but in cycle t it misses the opportunity to act because it receives

no perceptions; and in cycle t+1 it sends two movement commands, only one of which will

be executed.

Client 2, on the other hand, successfully sends one movement command every cycle.
Note that in cycle t it must act with no new perceptual information, while in cycle t+1,
it receives two perceptions prior to acting and one afterwards. Ideally, it would act after

receiving and taking into account all three perceptions. However, it does not know precisely
when the simulator cycle will change internally in the soccer server and it cannot know

ahead of time when it will receive perceptions. Thus, in exchange for the ability to act every
simulator cycle, it sometimes acts with less than the maximal amount of information about
the world. However, as each simulator cycle represents only a short amount of real time

(simulator step msec), the world does not change very much from cycle to cycle, and the
client can act accurately even if it takes some of its perceptions into account only before its
subsequent action.

Client 1

Server

Client 2

Cycle t-1 t t+1 t+2

Figure 2.2: A sample period of the server-client interface over the course of 3 simulator cycles

at times t-1, t, and t+1. The thick central horizontal line represents the real time as kept by the

server. The top and bottom horizontal lines represent the time-lines of two separate clients. The

dashed arrows from the server towards a client represent perceptions for that client. The solid

arrows from a client towards the server represent movement commands sent by that client. These

arrows end at the point in time at which the server executes the movement commands, namely the

end of the simulator cycle during which they are sent.

Asynchronous sensing and acting, especially when the sensing can happen at unpre-
dictable intervals, is a very challenging paradigm for agents to handle. Agents must balance

the need to act regularly and as quickly as possible with the need to gather information about
the environment. Along with asynchronous sensing and action, the soccer server captures

several other real-world complexities, as will become evident throughout the remainder of

this section.
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2.2.2 The Simulated World

This section paraphrases a similar section in the soccer server user manual [Andre et al. 98a].

Field and Objects

The soccer server is a two-dimensional simulation. There is no notion of height for any

object on the �eld. The �eld has dimensions field length � field width with the goals

of width goal width, all of which are parameters de�ned in Table 2.4. There are up to 22

players on the �eld at a time along with 1 ball, all of which are modeled as circles. There

are also several visible markers, including 
ags and side lines, distributed around the �eld

as illustrated in Figure 2.3.

Figure 2.3: The locations and names of the visible markers in the soccer server. This �gure

originally appeared in the soccer server user manual [Andre et al. 98a]

The players and the ball are all mobile objects. At the simulator cycle for time t, each

object is in a speci�c position (pt
x
; pt

y
) and has a speci�c velocity (vt

x
; vt

y
). Each player is also

facing in a speci�c direction �t. These positions are maintained internally as 
oating point

numbers, but player sensations are only given to one decimal place. Thus, the perceived
state space with the server parameters we use has more than 109

22
= 10198 states: each of

the 22 players can be in any of 680 � 1050 � 3600 positions. Taking into account the ball,

velocities, and past states, the actual state space is much larger than that.

Object Movement

As described in the user manual:

In each simulation step, the movement of each object is calculated in the following
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manner:

(ut+1
x

; ut+1
y

) = (vt
x
; vt

y
) + (at

x
; at

y
) : accelerate (2.1)

(pt+1
x

; pt+1
y

) = (pt
x
; pt

y
) + (ut+1

x
; ut+1

y
) : move

(vt+1
x

; vt+1
y

) = decay � (ut+1
x

; ut+1
y

) : decay speed

(at+1
x

; at+1
y

) = (0; 0) : reset acceleration

where, decay is a decay parameter speci�ed by ball decay or player decay.

(at
x
; at

y
) is the object's acceleration, which is derived from the Power parameter

in dash (if the object is a player) or kick (if a ball) commands as follows:

(at
x
; at

y
) = Power� (cos(�t); sin(�t))

In the case of a player, its direction is calculated in the following manner:

�t = �t + Angle

where Angle is the parameter of turn commands. In the case of a ball, its

direction is given in the following manner:

�tball = �tkicker +Direction

where �tball and �tkicker are the directions of the ball and kicking player re-

spectively, and Direction is the second parameter of a kick command [Andre et
al. 98a].

The commands and their parameters referred to above are speci�ed precisely in Sec-
tion 2.2.4.

Collisions

As described in the user manual:

If at the end of the simulation cycle, two objects overlap, then the objects are

moved back until they do not overlap. Then the velocities are multiplied by �0:1.

Note that it is possible for the ball to go through a player as long as the ball and
the player never overlap at the end of the cycle [Andre et al. 98a].

Noise

The soccer server adds evenly distributed probabilistic noise to all objects' movements. In
particular, as described in the manual:

noise is added into Equation 2.1 as follows:

(ut+1
x

; ut+1
y

) = (vt
x
; vt

y
) + (at

x
; at

y
) + (~rrmax; ~rrmax)
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where ~rmax is a random number whose distribution is uniform in the range

[�max;max]. rmax is a parameter that depends on the velocity of the object as

follows:

rmax = rand � j(vt
x
; vt

y
)j

where rand is a parameter speci�ed by player rand or ball rand.

Noise is added also into a Power parameter in a turn command as follows:

Angle = (1 + ~rrand) � Angle

[Andre et al. 98a]

Stamina

The soccer server prevents players from constantly running at maximum velocity
(player sp max) by assigning each player a limited stamina. The stamina is modeled in
three parts.

� stamina 2 [0; stamina max] is the actual limit of the Power parameter of a dash

command.

� effort 2 [effort min; 1:0] represents the e�ciency with which the player can move.

� recovery 2 [recovery min; 1:0] represents the rate at which stamina is replenished.

A player's stamina has both replenishable and non-replenishable components. The re-

plenishable components are stamina and effort; recovery is non-replenishable.
The stamina parameters listed in Table 2.4 are used as follows:

� If a player tries to dash with power Power, the e�ective power of its dash is a�ected
by stamina and effort while stamina is subsequently decremented:

{ effective dash power = Min(stamina,Power) � effort.

{ stamina = stamina � effective dash power.

� On every cycle, effort is decremented if stamina is below a threshold, and incremented
if it is above a threshold:

{ if stamina � effort dec thr � stamina max and effort > effort min, then

effort = effort � effort dec.

{ if stamina � effort inc thr � stamina max and effort < 1.0, then effort

= effort + effort inc.

� On every cycle, recovery is decremented if stamina is below a threshold:

{ if stamina � recover dec thr � stamina max and recovery > recover min,

then recovery = recovery � recover dec.
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� On every cycle, stamina is incremented based on the current value of recovery:

{ stamina = stamina + recovery � stamina inc.

{ if stamina > stamina max, then stamina = stamina max.

2.2.3 Agent Perception

Agents receive three di�erent types of sensory perceptions from the server: aural, visual,

and physical. This section describes the characteristics of the sensory information, which

are summarized in Table 2.2.

Aural information

The soccer server communication paradigm models a crowded, low-bandwidth environ-

ment. All 22 agents (11 on each team) use a single, unreliable communication channel.
When an agent or the referee speaks, nearby agents on both teams can hear the mes-
sage immediately. There is no perceptual delay. They hear a message in the format

(hear Time Direction Message) where:

� Time is the current simulator cycle;

� Direction is the relative direction from whence the sound came;

� Message is the message content;

Note that there is no information about which player sent the message or that player's
distance.

Agents have a limited communication range, hearing only messages spoken from within

a distance speci�ed by the parameter audio cut off dist. They also have a limited com-
munication capacity, hearing a maximum of hear inc messages in hear decay simulation

cycles. Thus communication is extremely unreliable. Using the parameters in Table 2.4, if

more than 1 agent speaks over the course of 2 simulation cycles, a player will miss hearing
all but 1 of the messages. Messages from the referee are treated as privileged and are always

transmitted to all agents.

In short, the characteristics of the low-bandwidth communication environment include:

� All 22 agents (including adversaries) on the same channel;

� Limited communication range and capacity;

� No guarantee of sounds getting through;

� Immediate communication: no perceptual delay.
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Visual information

As described in the user manual:

Visual information arrives from the server in the following basic format:

(see Time ObjInfo ObjInfo . . . )

Time indicates the current time.

ObjInfo is information about a visible object in the following format:

(ObjName Distance Direction DistChng DirChng FaceDir )

ObjName = (player Teamname UNum)

j (goal Side)

j (ball)

j (flag c)

j (flag [l|c|r] [t|b])

j (flag p [l|r] [t|c|b])

j (flag [t|b] [l|r] [10|20|30|40|50])

j (flag [l|r] [t|b] [10|20|30])

j (flag [l|r|t|b] 0)

j (line [l|r|t|b])

Distance, Direction, DistChng and DirChng are calculated by the following way:

prx = pxt � pxo

pry = pyt � pyo

vrx = vxt � pxo

vry = vyt � pyo

Distance =
q
p2
rx
+ p2

ry

Direction = arctan (pry=prx)� ao

erx = prx=Distance

ery = pry=Distance

DistChng = (vrx � erx) + (vry � ery)

DirChng = [(�(vrx � ery) + (vry � erx))=Distance] � (180=�)

where (pxt; pyt) is the absolute position of a target object, (pxo; pyo) is the absolute

position of the sensing player, (vxt; vyt) is the absolute velocity of the target

object, (vxo; vyo) is the absolute velocity of the sensing player, and ao is the
absolute direction the sensing player is facing. In addition, (prx; pry) and (vrx; vry)

are respectively the relative position and the velocity of the target, and (erx; ery)

is the unit vector that is parallel to the vector of the relative position. Facedir is

only included if the observed object is another player, and is the direction of the

observed player relative to the direction of the observing player. Thus, if both
players are facing the same direction, then FaceDir would be 0.
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The (goal r) object is interpreted as the center of the goal. (
ag c) is a virtual


ag at the center of the �eld. (
ag l b) is the 
ag at the lower left of the �eld.

(
ag p l b) is a virtual 
ag at the lower inside corner of the penalty box on the

left side of the �eld. The remaining types of 
ags are all located 5 meters outside

the playing �eld. For example, (
ag t l 20) is 5 meters from the top sideline and

20 meters left from the center line. In the same way, (
ag r b 10) is 5 meters

right of the right sideline and 10 meters below the center of the right goal. Also,

(
ag b 0) is 5 meters below the midpoint of the bottom sideline.

In the case of (line . . . ), Distance is the distance to the point there the center

line of the player's view crosses the line, and Direction is the direction of line.

All of the 
ags and lines are shown in Figure 2.3. [Andre et al. 98a]

The frequency, range, and quality of visual information sent to a particular agent are
governed by the integer server parameters send step and visible angle; and the player pa-
rameters view quality 2 fhigh,lowg, view width 2 fnarrow, normal,wideg, and the 
oating

point number view angle. A player can directly control its view quality and view width

via its actuators. By default, view quality = high, view width = normal and view angle

= visible angle. In that case the agent receives visual information every send step msec.

However, the agent can trade o� the frequency of the visual information against its quality
and width via its view mode = fview quality,view widthg. By using low view quality|

in which case it receives angle information, but no distances to object|the agent can get
sights twice as frequently: every send step/2. Similarly, the agent can get sights twice as fre-

quently by switching to a narrow view width, in which case view angle = visible angle/2.
On the other hand, the player can use a wide view width (view angle = visible angle �

2) at the expense of less frequent visual information (every send step � 2 msec). With

both view width = narrow and view quality = low, visual information arrives every
send step/4 msec.

The meaning of the view angle parameter is illustrated in Figure 2.4. In this �gure, the
viewing agent is the one shown as two semi-circles. The light semi-circle is its front. The

black circles represent objects in the world. Only objects within view angleo/2, and those
within visible distance of the viewing agent can be seen. Thus, objects b an g are not

visible; all of the rest are.

As object f is directly in front of the viewing agent, its angle would be reported as 0

degrees. Object e would be reported as being at roughly -40o, while object d is at roughly

20o.

Also illustrated in Figure 2.4, the amount of information describing a player varies with

how far away the player is. For nearby players, both the team and the uniform number

of the player are reported. However, as distance increases, �rst the likelihood that the

uniform number is visible decreases, and then even the team name may not be visible. It is

assumed in the server that unum far length � unum too far length � team far length

� team too far length. Let the player's distance be dist. Then

� If dist � unum far length, then both uniform number and team name are visible.
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d

b
e

ca
g

f

field_length

field_width

visible_distance

view_angle

unum_far_length

unum_too_far_length
team_far_length

team_too_far_length

Client whose vision perspective is being illustrated

Figure 2.4: The visible range of an individual agent in the soccer server. The viewing agent is

the one shown as two semi-circles. The light semi-circle is its front. The black circles represent

objects in the world. Only objects within view angleo/2, and those within visible distance of

the viewing agent can be seen. unum far length, unum too far length, team far length, and

team too far length a�ect the amount of precision with which a players' identity is given.

� If unum far length < dist < unum too far length, then the team name is always
visible, but the probability that the uniform number is visible decreases linearly from
1 to 0 as dist increases.

� If dist � unum too far length, then the uniform number is not visible.

� If dist � team far length, then the team name is visible.

� If team far length < dist < team too far length, then the probability that the team

name is visible decreases linearly from 1 to 0 as dist increases.

� If dist � team too far length, then neither the team name nor the uniform number

is visible.

For example, in Figure 2.4, assume that all of the labeled black circles are players. Then

player c would be identi�ed by both team name and uniform number; player d by team

name, and with about a 50% chance, uniform number; player e with about a 25% chance,
just by team name, otherwise with neither; and player f would be identi�ed simply as an

anonymous player.

Finally, the precision of information regarding an object's distance decreases with its
distance. As written in the user manual:

In the case that an object in sight is a ball or a player, the value of distance to
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the object is quantized in the following manner:

d0 = Quantize(exp(Quantize(log(d); 0:1)); 0:1)

where d and d0 are the exact distance and quantized distance respectively, and

Quantize(V;Q) = rint(V=Q) �Q

This means that players can not know the exact positions of very far objects. For

example, when the distance is about 100.0, the maximum noise is about 10.0,

while when the distance is less than 10.0, the noise is less than 1.0.

In the case of 
ags and lines, the distance value is quantized in the following

manner.

d0 = Quantize(exp(Quantize(log(d); 0:01)); 0:1)

[Andre et al. 98a]

This visual paradigm creates a huge amount of hidden state for each individual agent.
In addition, with the parameters identi�ed in Table 2.4, by default, the agents receive visual

information less frequently (every 150 msec) than they can act (every 100 msec). Thus,
unless they are to miss many action opportunities, the agents must sometimes choose more

than one sequential action from a given state.
With these parameters, play occurs in real time: the agents must react to their sensory

inputs at roughly the same speed as human or robotic soccer players. Our own robots have

been able to act between 3 and 30 times per second. Human reaction times have been
measured in the 200-500 msec range [Woodworth 38].

Physical information

Upon request from an agent, the server also sends physical information about the agent.
Such sense body information includes:

� the agent's current stamina, effort, and recovery values;

� the agent's current speed;

� the agent's current view quality and view width values.

The agent's speed is given as a magnitude only: it must infer the direction of its movement

from visual cues.
Table 2.2 summarizes types of sensory information available to soccer server agents.

2.2.4 Agent Action

Agents can send several di�erent types of commands to the simulator as their actuators:

they change the world in some way. This section describes the characteristics of the di�erent
commands which are summarized in Table 2.3.
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Name When received Information type Limitations

see every send step msec visual limited angle, precision

(default) decreases with distance

hear instantaneously when aural limited distance
a nearby agent (or the and frequency

referee) speaks

sense body upon request physical none

Table 2.2: The soccer server agents' sensors.

Communication

Agents can \say" any text string up to 512 ascii characters in length. Both teammates and

opponents will hear the complete message subject to the range and frequency constraints

described in Section 2.2.3.

An agent can speak as often as it wants. But since teammates can only hear one message

every 2 cycles, it is useless to speak more frequently than that.

Movement

The agent has just four actuators for physically manipulating the world: turn, dash, kick,

and catch. The server only executes one of these commands for each player at the end of
each simulator cycle. If an agent sends more than one such command during the same cycle,

only one is executed non-deterministically. Since the simulator runs asynchronously from
the agents, there is no way to keep perfect time with the server's cycle. Therefore any given
command could be missed by the server. It is up to the agent to determine whether a given

command has been executed by observing the future state of the world.

The movement commands are all parameterized with real number arguments indicating
the Angle and/or Power associated with the action. As always, angles are relative to the

direction the agent is currently facing (�t).

The details of the movement commands are as follows:

Turn(Angle): -180 � Angle � 180 indicates the angle of the turn. Rotation e�ciency is

reduced for moving players. That is, the higher a player's speed, the smaller a fraction
of Angle the agent will actually turn according to the equation:

actual angle = Angle=(1:0 + inertia moment � player speed)

Dash(Power): -30 � Power � 100 indicates the power of the dash. Agents only move

in the direction they are facing, either forwards or backwards. To move in another

direction, they must �rst turn. Dashing e�ciency is reduced for players with low

stamina as indicated in Section 2.2.2. A dash sets the acceleration in Equation 2.1

for one simulation cycle. It does not cause a sustained run over time. In order to

keep running, the agent must keep issuing dash commands. Power is multiplied by the

server parameter dash power rate before being applied in Equation 2.1.
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Kick(Power, Angle): 0 � Power � 100 indicates the power of the kick, -180 � Angle �

180, the angle at which the ball is accelerated. Like the dash, the kick sets the ball's

acceleration in Equation 2.1. There are four points about the kick model of the server

that should be understood.

� A kick changes the ball's velocity by vector addition. That is, a kick accelerates

the ball in a given direction, as opposed to setting the velocity. Thus multiple

kicks on successive cycles can move the ball faster than a single kick.

� An agent can kick the ball when it is within kickable area which is de�ned

as ball size + player size + kickable margin). The ball being within

kickable area is a precondition for successfully executing a kick.

� The ball and the player can collide as indicated in Section 2.2.2. Thus in order

to smoothly kick the ball, a player must take care to avoid kicking the ball into

itself.

� The actual power with which the ball is kicked depends on its relative location to
the player. As presented in the user manual:

Let dir_diff be the absolute value of the angle of the ball relative to

the direction the player is facing (if the ball is directly ahead, this would
be 0). Let dist_ball be the distance from the center of the player to
the ball. Then the kick power rate is �gured as follows:

kick power rate * (1 - .25 * dir diff / 180 -

.25 * (dist ball - player size - ball size) / kickable area)

This number is then multiplied by the Power parameter passed to the kick com-
mand before applying Equation 2.1.

According to this paradigm, the strongest kick occurs when the ball is as close as

possible to the player and directly in front of it. The power decreases as distance
and/or angle increases. [Andre et al. 98a]

Catch(Angle): -180 � Angle � 180 indicates the angle of the catch. Only the goaltender
can catch, and only within its own penalty box. These conditions are preconditions of

the catch command. A catch is only e�ective if the ball is within a rectangle of size

catchable area w � catchable area l with one edge on the player and extending

in the direction indicated by Angle. The ball being in such a position is another

precondition for successfully executing a catch.

Perception control

The two remaining commands available to agents directly control the type of perception

information they receive from the server. The sense body command requests physical in-

formation from the server. The change view command speci�es a view quality (low/high)

and a view width (narrow/normal/wide). As described in Section 2.2.3, higher quality and

greater width lead to less frequent visual information.

The sense body command can be executed up to 3 times per simulator cycle (by con-
vention), while change view can be executed once per cycle.
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Table 2.3 summarizes all of the actuators available to agents in the soccer server. The

types and ranges of the arguments are shown along with when the commands are executed

by the server. In the table, \cycle" refers to a simulation cycle of length simulator step.

As described in the text, only kick and catch have preconditions.

Argument When Frequency

Syntax meaning Type Range executed limit

say(x) message to be ascii � 512 characters instantly teammates only

broadcast text hear 1 every

2 cycles

turn(x) angle to turn 
oat -180 � x � 180 end of cycle

dash(x) power to dash 
oat -30 � x � 100 end of cycle 1 of these

kick(x; y) power to kick, 
oat 0 � x � 100, end of cycle per cycle

angle to kick 
oat -180 � y � 180

catch(x) angle to catch 
oat -180 � x � 180 end of cycle

sense body() instantly 3 per cycle

change view(x; y) view quality discrete high/low instantly 1 per cycle

view width discrete narrow/normal/wide

Table 2.3: The soccer server agents' commands. In the table, \cycle" refers to a simulation cycle

of length simulator step.

2.2.5 Sample Trace

Figure 2.5 illustrates the format of the interface between the server and a speci�c client. In

the pictures, the white arrow and text are added for reference purposes: they are not part of
the actual display. The input/output trace below the pictures is given from the perspective
of the client labeled \CLIENT."

In Figure 2.5(a) the client is about to run to the ball and kick it towards the goal.
Figure 2.5(b) shows the resulting scene after the kick. In the input/output trace below
the pictures, as speci�ed earlier in this section, dashes are followed by a power (they are

always in the direction that the player is facing), turns are followed by an angle, and kicks
are followed by a power and an angle. Sensory information from the server comes in the

form of \hear," \see," and \sense body" strings representing aural, visual, and physical

information respectively. In all cases, the number after the type indicator (\hear," \see",

or \sense body") indicates the elapsed time in the match. Aural information then indicates

whether it is the referee speaking or else from what angle the sound came. Visual information

includes the distances followed by angles of the visible objects. If an object is close enough,
two additional numbers indicate the object's relative velocity. In the case of other players, a

�fth number indicates the relative direction that the player is facing. Sense body information

indicates the client's physical parameters.

Since the client's vision is limited to 45o on either side of the direction it is facing (the

black semi-circle is the back of the player, the light semi-circle is the front), not all objects
are visible at each sensory step. For example, at the beginning of the trace in Figure 2.5

(time 94), the client sees two teammates and two opponents (one of which is indicated by
\player opponent 1"). However by the end of the trace (time 112), it is no longer able to
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(goal r)

(flag g r t)

(flag r t)
(line t)

(line r)

3

2
1

1

2

(flag p r t)

CLIENT

2

3

1

2

1

CLIENT

(a) (b)
**-> (dash 100.00)

(see 94 ((goal r) 15.3 27) ((flag r t) 47.9 8) ((flag p r t) 34.8 -15) ((flag p r c) 16.4 -34 0 0)

((flag g r t) 21.8 19) ((ball) 8.2 0 0 0) ((player CMUnited) 40.4 -8)

((player CMUnited 2) 16.4 -37 0 0 117) ((player Opponent 1) 16.4 15 0 0 -148)

((player Opponent) 44.7 0) ((line t) 47.5 89))

**-> (sense body)

(sense body 95 (view mode high normal) (stamina 1280 1) (effort 1.0) (recovery 1.0) (speed 0.39))

*-> (dash 100.00)

(see 96 ((goal r) 13.6 31) ((flag r t) 46.1 8) ((flag p r t) 33.1 -16) ((flag p r c) 14.9 -39 -0.298 -0.9)

((flag g r t) 19.9 20 -0.398 0.5) ((ball) 6.7 -2 -0.402 0) ((player CMUnited) 36.6 -8)

((player CMUnited 2) 14.9 -41 -0.298 -0.9 117) ((player Opponent 1) 14.9 17 -0.298 0.5 -148)

((player Opponent) 40.4 0) ((line t) 45.6 89))

**-> (dash 100.00)

**-> (sense body)

(sense body 97 (view mode high normal) (stamina 1120 1) (effort 1.0) (recovery 1.0) (speed 0.44))

**-> (dash 100.00)

.

.

.

(hear 103 -70 shoot the ball) (see 104 ...((ball) 1.8 6 0.108 5.4) ...)

**-> (say shooting now)

**-> (kick 100.00 65.40)

(hear 104 self shooting now)

**-> (sense body)

(sense body 105 (view mode high normal) (stamina 980 1) (effort 1.0) (recovery 1.0) (speed 0))

**-> (turn 31.76)

(see 106 ...((ball) 4.1 14 1.23 7) ...)

**-> (turn 14.00)

.

.

.

**-> (dash 100.00)

(see 112 ((goal r) 6.8 12) ((flag r t) 38.5 -32) ((flag g r t) 12.3 -14 -0.246 0) ((ball) 7.4 2 0.74 1.5)

((player Opponent 1) 7.4 -18 -0.148 -0.2 107) ((player Opponent) 33.1 -44) ((line r) 8.2 -40))

(hear 113 referee goal l 1)

(hear 113 referee kick off r)

Figure 2.5: A trace of the soccer server's input and output to the client controlling player 3

(indicated \CLIENT"). The player starts in the position shown in (a), moves to the ball and shoots

it towards the goal, ending in the position shown in (b). Commands from the player are indicated

with \**->" preceding them.
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see the teammates. Similarly, by the end of the trace, it is no longer able to see the center

of the penalty area: (
ag p r c).

The method of communication is illustrated by the message from teammate number 2

that is heard at time 103 (\shoot the ball"), and by the spoken response \shooting now."

Two messages from the referee at time 113, indicating the successful goal and the subsequent

restart, are also present at the end of the trace. The capacity limits on hearing do not apply

to messages from the referee.

Both the sensors and the actions in the simulator are noisy. Notice that even though

the player begins by facing directly at the stationary ball (the ball's angle is 0) and dashes

straight toward it, the ball does not remain directly in front of the player: in the subsequent

visual string, the ball's angle is -2. Also notice that the nearby players (CMUnited 2 and

Opponent 1) are identi�ed by team and number. The players that are farther away are

only identi�ed by team name. Although not apparent from this trace, when players are far

enough away, even their team may not be visible.

The trace in Figure 2.5 begins at elapsed time 94 and continues through 113. Each time
increment occurs in 100 msec of real time and visual sensor information arrives every 150

msec. The entire trace, from the moment pictured in Figure 2.5(a) until the ball enters the
goal in Figure 2.5(b), occurs in about 2 seconds.

2.2.6 Summary

The parameters governing the operation of the soccer server as referred to in this section are
summarized in Table 2.4. Their default values are also given.

All of the simulator features described in this section combine to make it a very chal-
lenging and realistic environment in which to conduct research. Table 2.5 summarizes the

challenges that agents must face.

2.3 The CMUnited-97 Real Robots

While originating from similar motivations, robotic soccer with real robots is quite a di�erent
domain than the soccer server. Robotic soccer with real robots is the subject of an entirely

separate research challenge from the simulator challenge [Asada et al. 98]. Whereas the soccer

server provides an abstract sensor and actuator interface, the real robots must perceive the
world via real NTSC video images, and they move by controlling the speeds of real motors.

Therefore the sources and types of noise di�er from the evenly distributed, probabilistic
models incorporated into most simulations (including the soccer server). Although it is

quicker and easier to get to the point of creating basic behaviors in simulation2, it is also

easy to ignore real-world complexities that may be abstracted away by the simulator. As
presented in Chapter 3, the robots are used in this thesis to validate the team member agent

architecture which was �rst implemented in the soccer server.

2
After downloading the soccer server, it took about 3 days to create a simple go-to-the-ball-and-shoot

behavior. It took at least 6 months of development before we were able to create such a behavior using the

real robots.
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Parameter Name Default Explanation

Value

�eld width 68 Width of the �eld.

�eld length 105 Length of the �eld.

goal width 14.02 Width of the goal.

simulator step 100 Milliseconds in each simulation cycle.

unum far length 20 Distance below which players' uniform numbers and the ball's velocity are always

visible.

unum too far length 40 Distance above which players' uniform numbers and the ball's velocity are never

visible.

team far length 40 Distance below which players' uniform colors are always visible.

team too far length 60 Distance above which players' uniform colors are never visible.

player size 0.8 Radius of a player.

player decay 0.4 Decay rate of player speed. If this is 1.0, a player keeps its speed, and if this is 0.0,

a player loses all of its speed in one simulation cycle.

player rand 0.1 Amount of noise added in player's movements and turns.

player speed max 1.0 Maximum speed of a player during 1 simulation cycle (i.e. the player can achieve a

maximum speed of 10 m/sec when simulator step=100).

ball size 0.085 Radius of the ball.

ball decay 0.96 Decay rate of the ball speed.

ball rand 0.05 Amount of noise added in the movement of the ball.

ball speed max 2.7 Maximum speed of the ball during 1 simulation cycle (i.e. the ball can achieve a
maximum speed of 27 m/sec when simulator step=100).

stamina max 2000.0 Maximum stamina of a player.

stamina inc max 20.0 Amount of stamina that a player gains in a simulation cycle.

recover dec thr 0.3 Decrement threshold for player's recovery.

recover dec 0.0002 Decrement step for player's recovery.

recover min 0.5 Minimum player recovery.

e�ort dec thr 0.3 Decrement threshold for player's e�ort capacity.

e�ort dec 0.005 Decrement step for player's e�ort capacity.

e�ort inc thr 0.6 Increment threshold for player's e�ort capacity.

e�ort inc 0.01 Increment step for player's e�ort capacity.

e�ort min 0.6 Minimum value for player's e�ort capacity.

audio cut dist 50.0 Maximum distance a message said by a player can reach.

hear max 2 Maximum hearing capacity of a player. A player can hear N(= hear inc) messages

in M(= hear decay) simulation cycles.

hear inc 1 Minimum hearing capacity of a player.

hear decay 2 Decay of hearing capacity of a player.

inertia moment 5.0 Inertia moment of a player. It a�ects its turns.

kickable margin 1.0 The area within which the ball is kickable is: kickable area = kickable margin +

ball size + player size.

catchable area l 2.0 Goaltender catchable area length.

catchable area w 1.0 Goaltender catchable area width.

catch probability 1.0 The probability for a goaltender to catch the ball.

dash power rate 0.01 Rate by which the Power argument in the dash command is multiplied.

kick power rate 0.016 Rate by which the Power argument in the kick command is multiplied.

visible angle 90 Angle of view cone of a player in the standard view mode.

send step 150 Length of the interval for sending visual information to a player in the standard view
mode (milliseconds).

Table 2.4: Soccer server version 4 parameters along with their default values used in this thesis.

This table is adapted from the parameter table in the soccer server user manual [Andre et al. 98a].

Building a fully functioning robot system can be a frustrating process full of false starts

and dead ends. The CMUnited-97 real robots [Veloso et al. 98b, Veloso et al. 99c] are

the culmination of more than two years of development. After building one preliminary

version [Achim et al. 96], we were able to build CMUnited-97, an autonomous team of robots

that won the RoboCup-97 small-robot competition at IJCAI-97 in Nagoya, Japan [Veloso et

al. 98a]. The CMUnited real robot team is an on-going e�ort. In 1998, the team entered and

won the RoboCup-98 small-robot competion with CMUnited-98, a di�erent team of robots



44 CHAPTER 2. SUBSTRATE SYSTEMS

� Sensing and acting is asynchronous.

� The players' vision is limited, giving them a partial view of the world with lots of

hidden state.

� The players can communicate by speaking a message that is audible to all nearby

players.

� All players are controlled by separate processes, enforcing a distributed approach.

� Each player has limited stamina;

� There are many sources of noise:

{ Noise in actuator parameters;

{ Noise in object motion;

{ Noise in visual perceptions.

� Percepts sent to the agent or commands from the agent may be lost:

{ There is no guarantee that any sent commands are ever executed;

{ The agent must verify whether commands are executed from the sensory infor-

mation it receives.

� Everything happens in real time:

{ Visual information arrives at 150 msec intervals (with high view quality and

normal view width);

{ Aural information arrives asynchronously whenever it is issued;

{ Agents can act (physically) at most once every 100 msec.

Table 2.5: Challenges for the soccer server agents.

and mostly di�erent software [Veloso et al. 99a]. This section describes the CMUnited-97

robots since they are the ones used for the research reported in this thesis.

The robots are no bigger than 180 cm2 in area (footprint) and operate on a �eld with

the same size and surface as a ping-pong table. Their object is to push an orange golf ball

into one of the goals at the ends of the �eld. A team consists of up to 5 robots playing at
one time. Figure 2.6 shows a picture of the CMUnited-97 robotic agents on the �eld. One

of the 6 robots was used as a reserve in case any of the others temporarily malfunctioned.

2.3.1 Overall Architecture

The architecture of our system addresses the autonomous robotic control task by viewing

the overall system as the combination of the robots, the camera, an image processor, and
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Figure 2.6: The CMUnited-97 robot team that competed in RoboCup-97. One of the 6 robots

was used as a reserve in case any of the others temporarily malfunctioned.

several clients as the minds of the small-size robot players. Figure 2.7 sketches the building

blocks of the architecture.

Coaching/

Perceiving/

Transmitting

Interface

Client

Module

Client

Module

Client

Module

Client

Module

Client

Module

Raw Vision

Data

Action

Code

Robot-specific

Action code

Object

Positions

Figure 2.7: The CMUnited-97 robot architecture with global perception and distributed action.

The complete system is fully autonomous consisting of a well-de�ned and challenging

processing cycle:

� The overhead camera with framegrabber grabs still images of the �eld.

� The image processor �nds the ball's and the robots' locations and orientations in the
still images.

� The client control modules use the objects' position information to produce control
information. Each control module controls one robot. Actions are abstract commands

indicating how the robots should move.

� The wireless communication link transmits the control information from the host com-
puter to the robots. Each robot has an identi�cation binary code that is used on-board

to detect commands intended for that robot. The abstract commands from the control

modules are converted to a sequence of motor control bytes.
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� The robot hardware receives the motor commands and moves the physical robots.

Table 2.6 summarizes the inputs and outputs of the �ve components of the complete robot

architecture.

Functionality Entity Input Output

vision camera/framegrabber continuous visual data still frames

perception image processor still frames robots' and ball's

coordinates

skills and client control robots' and ball's abstract commands

strategy modules coordinates

communication radio link abstract commands motor commands

movement robots motor commands robot movement

Table 2.6: The functional layers of the robot architecture with their inputs and outputs.

The remainder of Section 2.3 is organized as follows. In Section 2.3.2, I describe our
development of a preliminary image processor as well as the portions of the current image

processor developed principally by Han [Han and Veloso 97] that are relevant to understand-
ing the sensing capabilities of the robot agents. Then, in Section 2.3.3, I precisely specify
the perception and abstract actions that are the inputs and outputs of the client control

modules. Details of the other hardware components (the camera, framegrabber, radio link
and the physical robots) can be found in [Achim et al. 96]. The client control modules are

part of this thesis work and are therefore described in detail in a later chapter (Section 3.7).

2.3.2 The Image Processor

In this section I describe the preliminary image processor that I developed as part of our

initial CMUnited-96 robot implementation [Achim et al. 96]. Then I describe the portions
of the CMUnited-97 vision system developed principally by Han [Han and Veloso 97] that
are relevant to understanding the sensing capabilities of the robot agents.

The robots need sensory information describing the positions of the robots and the ball
on the �eld. The vision system provides this sensory information by way of an overhead
camera, framegrabber, and image processor. The fact that perception is achieved by a video

camera that overlooks the entire �eld o�ers an opportunity to get a complete, global view

of the world state. Although this setup may simplify the sharing of information among

multiple agents, it presents a challenge for reliable and real-time processing of the movement
of multiple moving objects|in our case, the ball, �ve agents on our team, and �ve agents
on the opposing team.

The CMUnited-96 Vision System

In our initial robot implementation [Achim et al. 96] which we entered in the MiroSot-96

competition [Kim 96], I was the principal developer of the image processor. In that system,

we use a standard camcorder mounted above the �eld. It produces NTSC video output that

is then processed by the framegrabber.
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The framegrabber takes raw, continuous image data and converts it into digital frames

at a maximum rate of 30 frames per second. The framegrabber produces still images such

as the one shown in Figure 2.8. The format is a 320� 240 array of pixels, each having a red,

green, and blue value ranging from 0{255.

Figure 2.8: An example of a still image of our initial CMUnited-96 robot implementation captured

by the framegrabber. Each robot has two di�erent color patches so that we can detect both position

and orientation. Each shade in this greyscale image is a di�erent color in reality

Fast image processing to discover the positions and orientations of the objects on the

�eld is a signi�cant challenge. Our method is color-based. By knowing the color of the ball
and coding each robot with two di�erent colors, one per half as shown in Figure 2.8 (each
shade in the greyscale image is a di�erent color in reality), it is possible to scan the image

for pixels that are within a certain threshold distance from these colors.

Once one such pixel is found, the center of a color region is found by computing the
center of gravity of all the pixels in a local region that match that color within a threshold.

For example, the ball is orange. Thus, to �nd the ball, the entire image can be scanned for

a pixel that is close to orange. Then, in a small region around that pixel, the coordinates of
all of the orange pixels are averaged to indicate the center of the ball. For the robots, the

centers of the two halves are found in the same way, making it trivial to compute the centers
and orientations of the robots.

One important technique for speeding up the image processing is to rely on the assump-
tion that objects will not move very far from frame to frame. Thus we can search for

objects in a small region around their previous locations. Our image processing algorithm is

summarized in Table 2.7.

While we use several techniques to speed up the CMUnited-96 vision processing, it still

does not operate at frame rate: while the images are grabbed 30 times/sec, we can only

process them roughly 7 times/sec. The ability to operate reliably at frame rate is a signi�cant
improvement in the CMUnited-97 vision system.
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To �nd robot R, consisting of colors C1 and C2, at time T :

� Find a pixel of color C1 near the location of robot R at time T � 1. (At time 0, the

entire image must be scanned.)

� Find the center of gravity of all C1-colored pixels near that pixel.

� Find the center of gravity of all C2-colored pixels near that pixel.

� Use the two centers of gravity to compute the center and the orientation of the robot.

Table 2.7: A high-level view of our algorithm for locating a given robot in a still frame used by

the CMUnited-96 vision-processing software.

The CMUnited-97 Vision System

In contrast to the robots detected by the algorithm laid out in Table 2.7, the CMUnited-97
robots are all marked with the same two colors. Thus there is the added challenge of

keeping track of which robot is which. Our current image processor, developed principally
by Han, successfully keeps track of �ve individual identical-looking teammates as well as �ve
opponents. The ball's position and velocity are calculated at frame rate using a Kalman-Bucy

�lter [Han and Veloso 97].

2.3.3 Agent Perception and Action

This section speci�es the perception and action capabilities of the CMUnited-97 robot team
which is used as a substrate system in this thesis. The cognition component comprising the
client control modules is described in Section 3.7 since it is an implementation of the team

member agent architecture.

Perception

While the agents all get the same sensory information from a centralized image processor,

the control decisions are made in a distributed manner. The agents are controlled either one

at a time by the same process, or by completely separate processes all receiving the same

visual information.

Visual information arrives at the framegrabber's processing rate: 30 frames/sec. The
vision system sends sensory information to each of the agents in the following form:

� 5 teammates: absolute (x; y; �) position and orientation coordinates.

� 5 opponents: absolute (x; y) position coordinates. Orientation markers are team-

dependent and thus cannot be reliably detected.

� Ball: absolute (x; y) position coordinates as well as (dx; dy) velocity information.
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Position information is accurate to within about 1cm and orientation information is

accurate to within about 10 degrees, but the noise does not follow any regular distribution.

Since the camera always sees the entire �eld, there is no hidden state.

The �eld is 274cm in length and 153cm in width. Therefore, each of the 10 robots can

be in any of 274*153 possible positions, with the 5 teammates having any of 36 possible

orientations. In addition, the ball can be in the same number of positions. Not considering

the continuous ball velocity and the past states of the world, the perceived state space has

(274 � 153)11 > 1049 di�erent states. Of course, the actual state space is in�nitely large since

the robot positions and orientations can vary continuously.

Action

The output of the client modules is abstract commands indicating how the robots should

move. Note that the two motors on the robots can be controlled separately. The motors

have encoders which enable precise control [Achim et al. 96]. Two types of commands are
available:

Distance mode: Each motor moves a speci�ed distance in a speci�ed direction. Used for
precise on-the-spot-turns.

Velocity mode: Each motor accelerates to a speci�ed velocity. Used for continuous straight
or curved movement.

The communication link converts the abstract commands to a stream of motor control

bytes which can then be executed by the motor controllers on the robots. The commands
are executed reliably and can be sent at the vision system's frame rate: 30 times/sec. Thus
perception and action are synchronous with sensations triggering actions.

2.4 Network Routing

Network routing is a domain with enough similar characteristics to robotic soccer that the
new TPOT-RL algorithm is e�ective, but enough di�erences to validate its generalizability.
As a domain for the experiments reported in Chapter 7, we use a modi�ed version of a

publicly available packet routing simulator [Boyan and Littman 94].

In this simulator, a network at time t consists of:

� A set of nodes N = fn0; : : : ; nm�1g; jN j = m. Each node ni consists of a queue of

packets Kni
� K, jKni

j = kt;ni at time t. As packets are introduced into and removed

from the queue, Kni
, and consequently kt;ni, changes over time.

� A set of links L � ffni; njgjni; nj 2 Ng connecting pairs of nodes. From any node ni,

Lni
� N is the set of links from ni: Lni

= fn 2 N jfn; nig 2 Lg. jLni
j = lni.

� A set of packets K = fk0; : : : ; kzt�1g; jKj = zt at time t. Each packet ki is introduced

at a source node kisource 2 N and travels towards its destination node kidest 2 N . The
packet also stores the time at which it left its source, kistime

, and when it arrives, the
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time at which it reaches its destination kidtime
. kipath � L is an ordered list of links

along which ki has traveled from kisource to its current position along with the times at

which it has traversed each link. As packets are introduced into and removed from the

network, K, and consequently zt, changes over time.

� A node capacity Cnode indicating the maximum number of packets allowed in a node's

packet queue: 8i; kt;ni � Cnode.

� A network capacity Cnet indicating the number of packets that can be active at one

time in the network: zt � Cnet.

Two other parameters a�ecting the simulation are tl which is the time it takes a packet to

traverse a link and tn which is the time it takes for a node to process one packet. If at time

t, packet k enters the queue Kni
at node ni, it will stay there for kt;nitn seconds.

As described by its authors, the network routing simulator is . . .

. . . a discrete event simulator to model the motion of packets through a local

area network. Packets are periodically introduced into the network at a random
node with a random destination. Multiple packets at a node are stored in an
unbounded FIFO queue; however, we set a limit on the total number of packets

active in the network at a time. . . . In unit time, a node takes the top packet in
its queue, examines its destination, and chooses a neighboring node to which to
send the packet. A packet sent directly to its destination node is removed from

the network immediately [Littman and Boyan 93].

At any give time, the state space can have up to Cnet packets with a source, destination,
and current location all in N (jN j = m). Thus the instantaneous size of the state space is:

jSj = (m3)Cnet (2.2)

In addition, each packet has traversed some subset of the jLj links in the network, and the
agents internal states' keep track of network statistics over time, thus increasing the e�ective
size of the state space inde�nitely.

The packet routing problem can be viewed as a multi-agent collaborative problem by
modeling each node as having an independent agent which makes the routing decisions at
that node. When a node gets a packet, its agent must decide to which neighboring node

it should forward the packet. This decision certainly depends on the packet's destination

and might also depend upon the node's perception of the current state of the network. The

team's goal is to route packets e�ciently so that nodes do not reach their queue capacities
and so that packets arrive at their destinations as quickly as possible.

This formulation of network routing is a team problem: all the agents are trying to work

together to achieve optimal network performance. While neither the sensors nor the actua-

tors are noisy, there is no explicit inter-agent communication, and there are no adversaries,
the overall task is similar to robotic soccer in that unpredictable changes in network tra�c,

like unpredictable changes in opponent behaviors, can dynamically change the task charac-
teristics. In addition, teammates' actions and their resulting state transitions are unknown.

This last quality is that of opaque transitions and is a key characteristic enabling the e�ective

use of the TPOT-RL algorithm.
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2.4.1 Agent Perception and Action

Perception

When faced with the decision of where to send a particular packet ki at time t, the sensory

information available to an agent at a given node nj is:

� kisource, the packet's source;

� kidest, the packet's destination;

� kistime
, the time the packet left its source;

� kipath, the links traversed (with times) by the packet;

� Kt;nj
, the queue of packets waiting to be processed.

In addition, the agent can keep track of the tra�c along its links. Since it either sends or
receives every packet that travels along one of these links, it can keep local tra�c statistics

over time. Finally, the agent gets periodic overall network performance statistics as the
feedback of the team's performance.

Action

The actions the agent can take are straightforward: the agent at node nj can send packet ki
to a neighboring node along any of the links in Lnj

. Sensing and acting are synchronous in
this domain: actions are triggered by a perception that the world has changed.

2.4.2 Example Network

Figure 2.9 illustrates our simulation of the packet routing problem. Nodes are represented
as circles and links are lines. Suppose that node A receives a packet destined for node B

along link 1. It must then decide whether to forward it along link 2, link 3, or possibly back
along link 1.

B

A

3

21

Figure 2.9: An example of the packet routing problem. Nodes are represented as circles and links

are lines. In this case, node A is receiving a packet destined for node B along link 1 and must

decide along which link to route it.
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This simulator is meant to be a test bed for learning experiments rather than a realistic

simulation of network routing. Nonetheless, it has been used by researchers other than the

simulator's creators to test reinforcement learning approaches [Subramanian et al. 97].



Chapter 3

Team Member Agent Architecture

In order to create a coherent team of agents, the entire agent architecture must be designed
with the team in mind. \Collaboration must be designed into systems from the start; it

cannot be patched on. [Grosz 96]"

A multi-agent system which involves several agents that collaborate towards the achieve-
ment of a joint objective is viewed as a team of agents. Most proposed teamwork structures

(e.g. joint intentions [Cohen et al. 99], shared plans [Grosz 96]) rely on agents in a multi-agent
system to negotiate and/or contract with each other in order to initiate team plans. How-

ever, in dynamic, real-time domains with unreliable communication, complex negotiation
protocols may take too much time and/or be infeasible due to communication restrictions.

Simulated robotic soccer provides a time-critical environment in which agents in a team

alternate between periods of limited and unlimited communication. Before games and at
half-times, the team can e�ectively communicate with no limitations: each agent can be
given the entire internal decision-making mechanisms of all of its teammates. However, as

described in Section 2.2, during the course of a game, the agents must act independently in a
dynamic, real-time, low-bandwidth communication environment: if the agents take the time

to fully synchronize while playing, they may miss critical action opportunities and concede
an advantage to the opponents.

These domain characteristics motivate the introduction of the concept of periodic team

synchronization (PTS) domains. In PTS domains, during the limited communication pe-

riods, agents need to act autonomously, while still working towards a common team goal.
Time-critical environments require real-time response and therefore eliminate the possibil-

ity of heavy communication among team agents. However, in PTS domains, agents can
periodically synchronize in a safe, full-communication setting.

In this chapter, I describe our general team member agent architecture suitable for cre-

ating teams of agents in PTS domains [Stone and Veloso 99b]. This architecture includes a
mechanism for de�ning pre-determined multi-agent protocols accessible to the entire team,

called locker-room agreements. Within this team member agent architecture and using the

locker-room agreement, we de�ne our 
exible teamwork structure that allows for task decom-
position and dynamic role assignment in PTS domains [Stone and Veloso 99a]. In addition,

we de�ne a communication protocol in service of the locker-room agreement that is suitable
for use during low-communication periods in a class of PTS domains: domains such as the

53
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soccer server with single-channel, low-bandwidth communication environments [Stone and

Veloso 98b].

The team member agent architecture described in this chapter de�nes a complete agent,

including perception, cognition, and action. It is fully implemented as a simulated robotic

soccer team.

This chapter is organized as follows. Section 3.1 expands upon the introduction of PTS

domains and the two main contributions of this chapter: a 
exible teamwork structure and a

low-bandwidth communication paradigm. Section 3.2 presents the general agent architecture

within which both the 
exible teamwork structure and the low-bandwidth communication

paradigm are situated. Sections 3.3 and 3.4 formally present the teamwork structure and

the communication paradigm respectively. Section 3.5 gives details of our full implementa-

tions of both main contributions of this chapter within the simulated robotic soccer domain.

Section 3.6 presents extensive empirical results testing the e�ectiveness of these implemen-

tations. Section 3.7 describes the implementation of the team member agent architecture
and 
exible formations within a second domain, namely real robotic soccer, and Section 3.8
is devoted to discussion and related work.

3.1 PTS Domains

We de�ne periodic team synchronization domains as domains with the following character-
istics:

� There is a team of autonomous agents A that collaborate towards the achievement of

a joint long-term goal G.

� Periodically, the team can synchronize with no restrictions on communication: the
agents can in e�ect inform each other of their entire internal states and decision-

making mechanisms with no adverse e�ects upon the achievement of G. These periods
of full communication can be thought of as times at which the team is \o�-line."

� In general (i.e. when the agents are \on-line"):

{ The domain is dynamic and real-timemeaning that team performance is adversely

a�ected if an agent ceases to act for a period of time: G is either less likely to be
achieved, or likely to be achieved farther in the future. That is, consider agent ai.
Assume that all other agent behaviors are �xed and that were ai to act optimally,

G would be achieved with probability p at time t. If ai stops acting for any period

of time and then resumes acting optimally, either:

� G will be achieved with probability p0 at time t with p0 < p; or

� G will be achieved with probability p at time t0 with t0 > t.

{ The domain has unreliable communication, either in terms of transmission relia-
bility or bandwidth limits. In particular:

� If an agent ai 2 A sends a message m intended for agent aj 2 A, then m

arrives with some probability q < 1; or
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� Agent ai can only receive x messages every y time units.

In the extreme, if q = 0 or if x = 0, then the periods of full communication are interleaved

with periods of no communication, requiring the agents to act completely autonomously. In

all cases, there is a cost to relying on communication. If agent ai cannot carry on with its

action until receiving a message from aj, then the team's performance could su�er. Because

of the unreliable communication, the message might not get through on the �rst try. And

because of the dynamic, real-time nature of the domain, the team's likelihood of or e�ciency

at achieving G is reduced.

The soccer server provides a PTS domain since teams can plan strategies before the

game, at halftime, or at other breakpoints; but during the course of the game, communi-

cation is limited. Its communication protocol involves a single, low-bandwidth, unreliable

communication channel for all 22 agents (see Chapter 2).

In PTS domains, teams are long-term entities so that it makes sense for them to have
periodic, reliable, private synchronization opportunities in which they can form o�-line agree-

ments for future use in unreliable, time-critical environments. This view of teams is com-
plementary to teams that form on the 
y for a speci�c action and keep communicating

throughout the execution of that action as in [Cohen et al. 99]. Instead, in PTS domains,
teams de�ne coordination protocols during the synchronization opportunity and then dis-
perse into the environment, acting autonomously with limited or no communication possible.

It has been claimed that pre-determined team actions are not 
exible or robust to fail-

ure [Tambe 97]. In the context of PTS domains, a key contribution of our work is the
demonstration that pre-determined multi-agent protocols can facilitate e�ective teamwork
while retaining 
exibility. We call these pre-determined protocols locker-room agreements.

Formed during the periodic synchronization opportunities, locker-room agreements are re-
membered identically by all agents and allow them to coordinate e�ciently.

In this chapter, I present the team member agent architecture, an agent architecture suited

for team agents in PTS domains. The architecture allows for an agent to act collaboratively
based on locker-room agreements.

A �rst approach to PTS domains is to break the task at hand into multiple rigid roles,
assigning one agent to each role. Thus each component of the task is accomplished and

there are no con
icts among agents in terms of how they should accomplish the team goal.

However such an approach is subject to several problems: in
exibility to short-term changes

(e.g. one robot is non-operational), in
exibility to long-term changes (e.g. a route is blocked),

and a lack of facility for reassigning roles.

We introduce instead formations as a teamwork structure within the team member agent
architecture. A formation decomposes the task space de�ning a set of roles with associated

behaviors. In a general scenario with heterogeneous agents, subsets of homogeneous agents

can 
exibly switch roles within formations, and agents can change formations dynamically.

Within these PTS domains and our 
exible teamwork structure, several challenges arise.
Such challenges include:

� how to represent and follow locker-room agreements;

� how to determine the appropriate times for agents to change roles and/or formations;
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� how to ensure that all agents are using the same formation; and

� how to ensure that all roles in a formation are �lled: since the agents are autonomous

and do not share memory, they could easily become uncoordinated.

Also within the teammember agent architecture, we introduce a communication paradigm

appropriate for agents in PTS domains with single-channel, low-bandwidth, unreliable com-

munication during the dynamic, real-time (on-line) phases of operation. Not all PTS domains

have such communication environments, but agents operating in those that do can implement

this communication paradigm within their locker-room agreements.

In a nutshell, the contributions of this chapter are: the introduction of the concepts of

PTS domains and locker-room agreements; the de�nition of a general team member agent

architecture for de�ning a 
exible teamwork structure; the facilitation of smooth transi-

tions among roles and entire formations; a method for using roles to de�ne pre-compiled

multi-step, multi-agent plans; and techniques for dealing with the obstacles to inter-agent

communication during the low-communication periods of PTS domains with single-channel,
low-bandwidth, unreliable communication during the \on-line" periods.

In addition to simulated robotic soccer, there are several other examples of PTS domains,
such as hospital/factory maintenance [Decker 96b], multi-spacecraft missions [Stone 97],
search and rescue, and battle�eld combat [Tambe 97]. There are also several other domains

with similar communication requirements to the ones considered here. For example, aural
communication in crowded settings is one. Both people and robots using aural sensors

(e.g. [Fujita and Kageyama 97]) must contend with multiple simultaneous audible streams.
They also have a limit to the amount of sound they can process in a given amount of time,
as well as to the range within which communication is possible. Another example of such

a communication environment is arbitrarily expandable systems. If agents are not aware of
what other agents exist in the environment, then all agents must use a single universally-
known communication channel, at least in order to initiate communication.

3.2 Architecture Overview

The team member agent architecture is suitable for PTS domains. Individual agents can

capture locker-room agreements and respond to the environment while acting autonomously.

Based on a standard agent paradigm, our team member agent architecture allows agents to
sense the environment, to reason about and select their actions, and to act in the real world.

At team synchronization opportunities, the team also makes a locker-room agreement for
use by all agents during periods of limited communication. Figure 3.1 shows the functional

input/output model of the architecture.

The agent keeps track of three di�erent types of state: the world state, the locker-room
agreement, and the internal state. The agent also has two di�erent types of behaviors:

internal behaviors and external behaviors.

The world state re
ects the agent's conception of the current state of the real world, both

via its sensors and via the predicted e�ects of its actions. This conception can be

represented as a belief state in terms of probability distributions or con�dence values.
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ARCHITECTURE
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Figure 3.1: A functional input/output model of the team member agent architecture for PTS

domains.

The world state is updated as a result of interpreted sensory information. It may also

be updated according to the predicted e�ects of the external behavior module's chosen
actions. The world state is directly accessible to both internal and external behaviors.

The locker-room agreement is set by the team when it is able to privately synchronize.
It de�nes the 
exible teamwork structure and the inter-agent communication protocols,

if any. It is identical for all team members. The locker-room agreement is accessible
only to internal behaviors.

The internal state stores the agent's internal variables. It may re
ect previous and current
world states, possibly as speci�ed by the locker-room agreement. For example, the

agent's role within a team behavior could be stored as part of the internal state. A
window or distribution of past world states could also be stored as a part of the internal
state. The agent updates its internal state via its internal behaviors.

The internal behaviors update the agent's internal state based on its current internal
state, the world state, and the team's locker-room agreement.

The external behaviors reference the world and internal states, and select the actions to

send to the actuators. The actions a�ect the real world, thus altering the agent's future
percepts and predicted world states. External behaviors consider only the world and

internal states, without direct access to the locker-room agreement.

Internal and external behaviors are similar in structure. They are both sets of condi-

tion/action pairs where conditions are logical expressions over the inputs and actions are

themselves behaviors as illustrated in Figure 3.2. In both cases, a behavior is a directed
acyclic graph (DAG) of arbitrary depth. The leaves of the DAGs are the behavior types'

respective outputs: internal state changes for internal behaviors and action primitives for
external behaviors. One leaf is illustrated in Figure 3.2.
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if (condition) then Behavior(args)

if (condition) then Behavior(args)

if (condition) then Behavior(args)

if (condition) then Behavior(args)

if (condition) then Behavior(args)

if (condition) then Behavior(args)

Behavior(args)

Behavior(args)

if (condition) then Primitive(args)

if (condition) then Primitive(args)

if (condition) then Primitive(args)

Behavior(args)

Figure 3.2: Behaviors in the team member agent architecture. Both internal and external behav-

iors are organized in directed acyclic graphs.

This notion of behavior is consistent with that laid out in [Mataric 94a]. In particular,

behaviors can be nested at di�erent levels: selection among lower-level behaviors can be

considered a higher-level behavior, with the overall agent behavior considered a single \do-

the-task" behavior. There is one such top-level internal behavior and one top-level external
behavior; they are called when it is time to update the internal state or act in the world,
respectively.

The following section introduces the teamwork structure that builds upon this team
member agent architecture. The teamwork structure is designed for use in PTS domains. It
exploits the locker-room agreement and the behavior de�nitions of the team member agent

architecture.

3.3 Teamwork Structure

Common to all players, the locker-room agreement includes the team structure used by team
members while they are acting in a time-critical environment with limited or no communi-
cation. In this section, I present our teamwork structure. It de�nes:

1. Flexible agent roles with protocols for switching among them;

2. Collections of roles built into team formations; and

3. Multi-step, multi-agent plans for execution in speci�c situations: set-plays.

The teamwork structure indirectly a�ects the agents' external behaviors by changing the
agents' internal states via internal behaviors.

3.3.1 Roles

A role, r, consists of a speci�cation of an agent's internal and external behaviors. The
conditions and arguments of any behavior can depend on the agent's current role, which is

a function of its internal state. At the extreme, a top-level external behavior could be a

switch, calling an entirely di�erent behavior sub-graph for each possible role. However, the

role can a�ect the agent's overall behavior at any level of its behavior graph: it could a�ect

just the arguments of a behavior deeply embedded in the behavior graph.
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Roles may be rigid, completely specifying an agent's behavior. Or they may be 
exible,

leaving a certain degree of autonomy to the agent �lling the role. For example, consider an

agent that has access to a clock and that can blow a whistle. Role r could rigidly specify

that the agent �lling it must blow a whistle on the hour every hour. On the other hand, role

r could leave some 
exibility to the agent that �lls it, specifying that no fewer than 25% but

no more than 75% of the times that the hour changes, the agent must blow a whistle. In

this case, the agent must stay within a parametric range in order to successfully �ll the role,

but on every given hour change, it can choose for itself what to do. By specifying ranges

of parameters or behavior options, the agent �lling role r can be given an arbitrary amount

of 
exibility. In this sense, a role can be thought of as a \soft constraint" on an agent's

behavior.

A role in the robotic soccer domain, can be a position such as a mid�elder. In the

hospital maintenance domain, a role could specify the wing of the hospital whose 
oors the

appropriate agent should keep clean, while in the web search domain, it could specify a server
to search.

3.3.2 Formations

We achieve collaboration between agents through the introduction of formations. A forma-
tion decomposes the task space de�ning a set of roles. Formations include as many (possibly

redundant) roles as there are agents in the team, so that each role is �lled by one agent.
In addition, formations can specify sub-formations, or units, that do not involve the whole

team. A unit consists of a subset of roles from the formation, a captain, and intra-unit
interactions among the roles.

For a team of n agents A = fa1; a2; : : : ; ang, any formation is of the form

F = fR; fU1; U2; : : : ; Ukgg

where R is a set of roles R = fr1; r2; : : : ; rng such that i 6= j ) ri 6= rj. Note that there are
the same number of roles as there are agents. However, it is possible to de�ne redundant

roles such that the behavior speci�cation of ri is equivalent to that of rj (i 6= j). Each unit
Ui is a subset of R: Ui = fri1; ri2; : : : ; rikg such that ria 2 R, a 6= b ) ria 6= rib and ri1 is
the captain, or unit leader. The map A 7! R is not �xed: roles can be �lled by di�erent

homogeneous agents. A single role may be a part of any number of units and formations.

Units are used to deal with local problem solving issues. Rather than involving the entire

team in a sub-problem, the roles that address it are organized into a unit. Captains are
unit-members with special privileges in terms of directing the other unit members.

Roles and formations are introduced independently from the agents that are to �ll them.

The locker-room agreement speci�es an initial formation; an initial map from agents to roles;

and run-time triggers for dynamic changing of formations. At any given time, each agent has
an opinion as to what formation the team is currently using. Agents keep mappings A 7! R

from teammates to roles in the current formation. All this team structuring information is
stored in the agent's internal state. It can be altered via the agent's internal behaviors.

Since agents are autonomous and operating in a PTS domain, during the periods of

limited communication there is no guarantee that they will all think that the team is using
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the same formation, nor that they have accurate maps A 7! R. In fact, the only guarantee

is that each agent knows its own current role. Thus, in our implementation of the teamwork

structure, we create robust behaviors for team agents which do not depend upon having

correct, up-to-date knowledge of teammates' internal states: they degrade gracefully. When

limited communication is available, e�cient low-bandwidth communication protocols can

allow agents to inform each other of their roles periodically. Figure 3.3 illustrates a team of

agents smoothly switching roles and formations over time.

a4a3a2a1

Time

r1

r3

r4

r5

r6

r2

F2F1

Units

Locker-Room Agreement
Roles Formations

F1 = fr2,r4,r5,r6,fr4,r5gg

F2 = fr1,r3,r5,r6,fr5,r6gg

Team Formation = F2

A 7! R = f(a1,r5),(a2,r6),(a3,r1),(a4,r3)g

Team Formation = F2
A 7! R = f(a1,r5),(a2,r3),(a3,r6),(a4,r1)g

Team Formation = F1
A 7! R = f(a1,r5),(a2,r4),(a3,r6),(a4,r2)g

Figure 3.3: A team of agents smoothly switching roles and formations over time. Di�erent roles

are represented as di�erently shaded circles. Formations are possibly overlapping collections of

roles. Units within the formations are indicated within a dotted enclosure. The de�nitions of all

roles, formations, and units are part of the locker-room agreement and are known to all agents.

An agent's current role is indicated by the shaded circle in its head and its current formation is

indicated by an arrow to the formation. The agents �rst switch roles while staying in the same

formation; then they switch to an entirely new formation.

3.3.3 Set-Plays

As a part of the locker-room agreement, the team can de�ne multi-step, multi-agent plans

to be executed at appropriate times. Particularly if there are certain situations that occur
repeatedly, it makes sense for the team to devise plans for those situations ahead of time.

We de�ne a set-play as the combination of:

� A trigger condition indicating the set of states in which the set-play is activated; and

� A set of set-play roles Rsp = fspr1; : : : ; sprmg, m � n de�ning the actions to be taken
by the participants in the set-play. Each set-play role spri includes:

{ A set-play behavior to be executed; and
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{ A termination condition indicating the set of states in which an agent should

cease �lling the set-play role and resume its normal behavior.

The set-plays are de�ned in the locker-room agreement so that they are known to all

agents on the team. Note that a set-play need not involve the entire team: m � n. The

locker-room agreement also includes a general function to map roles in a formation to roles

in a set-play: R 7! Rsp. Thus set-play roles are not assigned to pre-determined agents;

instead they are �lled by whichever agent is �lling the appropriate role in the team's current

formation.

3.4 Communication Paradigm

The teamwork structure de�ned in Section 3.3 is designed to be appropriate for all PTS

domains. In the subclass of PTS domains with single-channel, low-bandwidth, unreliable
communication during the periods of limited communication, such as the soccer server, the

communication paradigm de�ned in this section is also appropriate. The communication
paradigm further illustrates the use of the locker-room agreement within the team member
agent architecture. Recall that PTS domains may have no communication possible during

the \on-line" periods. In those cases, of course, the communication paradigm presented here
does not apply.

Domains with single-channel, low-bandwidth, unreliable communication raise several
challenges for inter-agent communication. The locker-room agreement can be used to make

inter-agent communication more e�cient and reliable. The �ve challenges addressed by our
communication approach are:

1. Team members need some method of identifying which messages on the single channel
are intended for which agent.

2. Since there is a single communication channel, agents must be prepared for active

interference by hostile agents. A hostile agent could mimic messages it has previously
heard at random times.

3. Since the communication channel has low bandwidth, the team must prevent itself

from \talking all at once." Many communication utterances call for responses from
all team members. However, if all team members respond simultaneously, few of the

responses will get through.

4. Since communication is unreliable, agents must be robust to lost messages: their be-

haviors cannot depend upon receiving communications from a teammate.

5. Teams must determine how to maximize the chances that they are using the same

team strategy (formation) despite the facts that each is acting autonomously and that

communication is unreliable.

The characteristics and challenges of this communication environment are summarized in

Table 3.1.
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Communication Environment

� Many agents, teams

� Single-channel

� Low-bandwidth

� Unreliable

�

Challenges

� Message targeting and distinguishing

� Robustness to active interference

� Multiple simultaneous responses

� Robustness to lost messages

� Team coordination

Table 3.1: The characteristics and challenges of the type of communication environment considered

in this section.

In order to meet these challenges, we specify that a team uses messages with the following

�elds, all of whose syntax and semantics are de�ned within the locker-room agreement:

� The <team-identi�er> identi�es messages from within the team as opposed to another

team in an adversarial environment.

� The <unique-team-member-ID> is a di�erent sequential integer assigned to each team
member.

� The <encoded-time-stamp> is a security code that can be used to verify a message's

authenticity.

� The <time-stamped-team-strategy> indicates the current formation that the sender

believes the team is using.

� The <selected-internal-state> contains portions of the sender's internal state.

� The <message-type> and <message-data> contain the semantic content of the indi-
vidual message. The messages can use any syntactic and semantic codes (KQML [Finin

et al. 94] and KIF [Genesereth and Fikes 92] for example). The locker-room agreement
also includes a mapping from message type to response requirements.

� The <target> indicates the intended recipient(s) of the message. It could be intended

for a single team member identi�ed either by <unique-team-member-ID> or by role

within the team's current formation; for a unit of the current formation; or for all team

members.

In addition to this protocol which is de�ned within the locker-room agreement, some in-
ternal state variables need to be devoted to communication. When an agent hears a message,

it interprets it and updates the world state to re
ect any information transmitted by the mes-
sage. It also stores the content of the message as a special variable last-message. Further-

more, based on the locker-room agreement, an internal behavior then updates the internal

state. If the message requires a response, three variables in the internal state are manipulated

by an internal behavior: response, response-flag, and communicate-delay. response is

the actual response that should be given by the agent as determined in part by the locker-
room agreement. All three of these variables are then referenced by an external behavior to
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determine when a response should be given. For example one condition-action pair of the top-

level external behavior might be: if (response-flag set and communicate-delay==0)

then say(response).

These message �elds and internal state variables are components of our novel communi-

cation paradigm and represent contributions of our team member agent architecture. The

remainder of this section details how these particular message �elds and internal state vari-

ables can be used to meet the challenges summarized in Table 3.1.

3.4.1 Message Targeting and Distinguishing

Since there is a single communication channel, agent ai hears messages sent by all agents

whether or not they are intended for it. Messages sent by agents from another team are

completely ignored. Messages sent by a teammate are identi�ed by the <team-identi�er>

�eld. Since all team members know the locker-room agreement, agents monitor all messages
from teammates to determine their teammates' internal states, even if the content of the
message is intended for another teammate.

Agents can distinguish messages that are intended for them by checking the <team-
identi�er> and <target> �elds. An agent ai pays attention to a message from a member

of the same team that is targeted to ai, to the entire team, or to some subset of the team
that includes ai. The <target> �eld could identify an individual agent either by its unique
ID number or by the role that it is currently playing. Thus, a message could be sent to the

agent playing a particular role without knowing which agent that is. Similarly, a message
could be targeted towards all agents in a unit of the team's current formation.

3.4.2 Robustness to Active Interference

The only further di�culty related to an agent distinguishing which messages are intended

for it arises in the presence of active interference. Consider a hostile agent h which hears a
message that is directed to ai at time t. h has full access to the message since all agents use

the same communication channel. Thus if h remembers the message and sends an identical

message at time u, agent ai will mistakenly believe that the message is from a teammate.
Although the message was appropriate at time t, it may be obsolete at time u and it could

potentially confuse ai as h intends.

This potential di�culty is avoided with the <encoded-time-stamp> �eld. Even a simple

time stamp is likely to safeguard against interference since h is not privy to the locker-room

agreement: it does not necessarily know which �eld is the time stamp. However, if h discovers

which �eld is the time stamp by noticing that it always matches the time of the message, it

could alter the �eld based on the time elapsed between times t and u. Indeed, if there is a

globally accessible clock, h would simply have to replace t with u in the message. However,
the team can safeguard against such interference techniques by encoding the time-stamp

using an injective function chosen as a part of the locker-room agreement. This function

can use any of the other message �elds as arguments in order to make decryption as di�cult

as possible. The only requirement is that a teammate receiving the message can invert the

function to determine the time at which the message was sent. If the time at which it was
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sent is either too far in the past or in the future (according to the locker-room agreement),

then the message can be safely ignored. In particular, the locker-room agreement has a

variable message-lag-tolerance encoding this time. If a message sent at time t arrives at

time u with u� t > message-lag-tolerance, then the message is ignored.

By observing enough messages and comparing them with the actual time, it is theoreti-

cally possible for hostile agents to crack simple codes and alter the <encoded-time-stamp>

�eld appropriately before sending a false message. However, the function can be made arbi-

trarily complex so that such a feat is intractable within the context of the domain. If secrecy

is critical and computation unconstrained, a theoretically safe encryption scheme can be

used. The degree of complexity necessary depends upon the number of messages that will

be sent after the locker-room agreement. With few enough messages, even a simple linear

combination of the numerical message �elds su�ces.

3.4.3 Multiple Simultaneous Responses

The next challenge to meet is that of messages that require responses from several teammates.
However, not all messages are of this type. For example, a message meaning \where are you?"
requires a response, while \look out behind you" does not. Therefore it is �rst necessary for

agents to classify messages in terms of whether or not they require responses as a function of
the <message-type> �eld. Since the low-bandwidth channel prevents multiple simultaneous

responses, the agents must also reason about the number of intended recipients as indicated
by the <target> �eld. Taking these two factors into account, there are six types of messages,
indicated here as a1,a2,a3,b1,b2, and b3:

Response requested
Message Target no yes

Single agent a1 b1

Whole team a2 b2
Part of team a3 b3

When hearing any message, the agent updates its internal belief of the other agent's status as
indicated by the <time-stamped-team-strategy> and <selected-internal-state> �elds. How-

ever, only when the message is intended for it does it consider the content of the message.

Then it uses the following algorithm in response to the message:

1. If the message requires no response (types a1{3), the agent simply updates its internal
state.

2. If the message requires a response then set response to the appropriate response

message, response-flag = 1 and

� If the agent was the only target (type b1), respond immediately:
communicate-delay = 0;

� If the message is sent to more than one target (types b2 and b3), set

communicate-delay based on the di�erence between the <unique-team-member-
ID> of the message sender and that of the receiver. Thus each teammate responds

at a di�erent time, leaving time for teammate messages to go through.
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An internal behavior keeps decrementing communicate-delay as time passes. An external

behavior uses the communication condition-action pair presented above:

if (response-flag set and communicate-delay==0) then say(response)

where say is an actuator primitive. Players also set the communicate-delay variable in

the event that they need to send multiple messages to the same agent in a short time. This

communication paradigm allows agents to continue acting in real-time while reasoning about

the appropriate time to communicate.

3.4.4 Robustness to Lost Messages

In order to meet the challenge raised by unreliable communication leading to lost messages,

agents must not depend on communication to act. Communication is structured so that it

helps agents update their world and internal states. But agents do not stop acting while

waiting for communications from teammates. As brought up in [Tambe 96a], such a case
could cause in�nite looping if a critical teammate fails to respond for any reason. As well as
continuing to act while waiting for communicate-delay to expire, agents ensure that they do

not rely on inter-agent communication by continuing to act while waiting for responses from
teammates. They also maintain world and internal states without help from teammates.
Communication can improve the reliability of an agent's world state by elucidating some

of an agent's hidden state; but communication is not necessary for an agent to maintain a
reasonable approximation of the world state.

3.4.5 Team Coordination

Finally, team coordination is di�cult to achieve in the face of the possibility that autonomous
team members may not agree on the <time-stamped-team-strategy> or the mapping from
teammates to roles within the team strategy. Again, there are no disastrous results should

team members temporarily adopt di�erent strategies; however they are more likely to achieve
their goal G if they can stay coordinated.

One method of coordination is via the locker-room agreement. Agents agree on globally

accessible environmental cues as triggers for switches in team strategy. Another method of
coordination which complements this �rst approach is via the time stamp. When hearing

a message from a teammate indicating that the team strategy is di�erent from the agent's
current idea of the team strategy, the agent adopts the more recent team strategy: if the

received message's team strategy has a time-stamp that is more recent than that on the

agent's current team strategy, it switches; otherwise it keeps the same team strategy and
informs its teammate of the change. Thus changes in team strategy can quickly propagate

through the team.

In particular, suppose that agent ai hears at time t that the team formation is F1. It
then hears a message from agent aj indicating that the team formation was set to F2 at

time u. If t < u, then F2 is a more recent team decision and it updates its notion of the

team's formation to F2. However, if u < t, it is agent aj that has an obsolete view of the

formation. ai then sends a message to aj indicating in the <time-stamped-team-strategy>

�eld that the formation was set to F1 at time t, thus causing aj to update its notion of the
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team's formation. In the event that t = u, the locker-room agreement must specify an order

of precedence among roles in order for the agents to determine which agent's idea of the

current formation to regard as correct.

Depending on the available bandwidth in the particular application, the <selected-

internal-state> can also be used to facilitate team coordination by helping to keep the team

members up-to-date regarding the mapping A 7! R, and perhaps regarding object locations

that might be hidden to individual agents.

3.5 Implementation in Robotic Soccer

Robotic soccer is a very good example of a PTS domain: teams can coordinate before

the game, at half-time, and at other break points, but communication is limited during

play. In addition, as described in Chapter 2, the soccer server models a single-channel,
low-bandwidth, unreliable communication environment.

This section provides a detailed description of a speci�c implementation of the team mem-
ber agent architecture, the teamwork structure, and the communication approach presented

in Sections 3.2{3.4. The implementation is that of the CMUnited-98 simulated robotic soccer
team.

The implementation is described in great detail. In particular, Section 3.5.1 presents the
low-level action cycle, skills, and world model of CMUnited-98 agents. Further details, par-

ticularly implementation details of the skills, are available in Appendix B. The low-level de-
tails presented in Section 3.5.1 are important for gaining an understanding of the basic agent
perception and action capabilities. In the context of the team member agent architecture,

they represent the interpreter, the world state, the predictor, and the external behaviors.
These portions of the agent architecture are concerned principally with issues relating to an

individual agent. On the other hand, the teamwork structure and communication paradigm
implementations, presented in Sections 3.5.2 and 3.5.3, deal with collaborative, team issues.
They are de�ned within the locker-room agreement, internal behaviors, and internal state.

3.5.1 Action Cycle and World Model

This section de�nes the portions of the CMUnited-98 simulated robotic soccer agent im-
plementation that relate to an individual agent. In the context of the team member agent

architecture presented in Section 3.2, this section covers the interpreter, the world state, the
predictor, and the external behaviors.

Timing Actions

CMUnited-98 agents are capable of perception, cognition, and action. By perceiving the
world, they build a model of its current state. Then, based on a set of behaviors, they

choose an action appropriate for the current world state.

A driving factor in the design of the agent architecture is the fact that the simulator

operates in �xed cycles of length simulator step (100 msec). As presented in Section 2.2,
the simulator accepts commands from clients throughout a cycle and then updates the world
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state all at once at the end of the cycle. Only one action command (dash, kick, turn, or

catch) is executed for a given client during a given cycle.

Therefore, agents (simulator clients) should send exactly one action command to the

simulator in every simulator cycle. If more than one command is sent in the same cycle,

a random one is executed, possibly leading to undesired behavior. If no command is sent

during a simulator cycle, an action opportunity has been lost: opponent agents who have

acted during that cycle may gain an advantage. In the team member agent architecture,

sending an action corresponds to executing the top-level external behavior.

Since the simulator updates the world at the end of every cycle, it is advantageous to try

to determine the state of the world at the end of the previous cycle when choosing an action

for the current cycle. As such, the basic agent loop during a given cycle t is as follows:

� Assume the agent has consistent information about the state of the world at the end

of cycle t� 2 and has sent an action during cycle t� 1.

� While the server is still in cycle t � 1, upon receipt of a sensation (see, hear, or
sense body), process the sensation in the interpreter and store the new information in

temporary structures. Do not update the world state.

� When the server enters cycle t (determined either by a running clock or by the receipt

of a sensation with time stamp t), use all of the information available (temporary
information from sensations and predicted e�ects of past actions) to update the

world state to match the server's world state (the \real world state") at the end of

cycle t� 1. Then choose and send an action to the server for cycle t: execute the
top-level external behavior.

� Repeat for cycle t+ 1.

While the above algorithm de�nes the overall agent loop, much of the challenge is involved
in updating the world state e�ectively and choosing an appropriate action. The remainder
of this section goes into these processes in detail.

The World State

When acting based on a world model, it is important to have as accurate and precise a model

of the world as possible at the time that an action is taken. In order to achieve this goal,

CMUnited-98 agents gather sensory information over time, extracting its meaning via the
interpreter, and process the information by incorporating it into the world state immediately

prior to acting.

There are several objects in the world, such as the goals and the �eld markers which

remain stationary and can be used for self-localization. Mobile objects are the agent itself, the
ball, and 21 other players (10 teammates and 11 opponents). These objects are represented

in a type hierarchy as illustrated in Figure 3.4.

Each agent's world state stores an instantiation of a stationary object for each goal,

sideline, and �eld marker; a ball object for the ball; and 21 player objects. Since players

can be seen without their associated team and/or uniform number, the player objects are
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Mobile
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Ball Player

Object

Figure 3.4: The agent's object type hierarchy.

not identi�ed with particular individual players. Instead, the variables for team and uniform

number can be �lled in as they become known.

Mobile objects are stored with con�dence values within [0,1] indicating the con�dence

with which their locations are known. The con�dence values are needed because of the large

amount of hidden state in the world: no object is seen consistently. While it would be a

mistake to only remember objects that are currently in view, it is also wrong to assume that

a mobile object will stay still (or continue moving with the same velocity) inde�nitely. By
decaying the con�dence in unseen objects over time, agents can determine whether or not

to rely on the position and velocity values [Bowling et al. 96].
All information is stored as global coordinates even though both sensor and actuator

commands are speci�ed in relative coordinates (angles and distances relative to the agent's

position on the �eld). Global coordinates are easier to store and maintain as the agent
moves around the �eld because the global coordinates of stationary objects do not change

as the agent moves, while the relative coordinates do. It is a simple geometric calculation to
convert the global coordinates to relative coordinates on demand as long as the agent knows
its own position on the �eld.

The variables associated with each object type are as follows:

Object :

� Global (x; y) position coordinates
� Con�dence within [0,1] of the coordinates' accuracy

Stationary Object : nothing additional

Mobile Object :

� Global (dx; dy) velocity coordinates

� Con�dence within [0,1] of the coordinates' accuracy

Ball : nothing additional

Player :

� Team

� Uniform number
� Global � facing angle

� Con�dence within [0,1] of the angle's accuracy

Updating the World State

Information about the world can come from
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� Visual information;

� Audial information;

� Sense body information; and

� Predicted e�ects of previous actions.

Visual information arrives to the interpreter as relative distances and angles to objects

in the player's view cone. Audial information could include information about global ob-

ject locations from teammates. Sense body information pertains to the agent's own status

including stamina, view mode, and speed.

Whenever new information arrives at the interpreter, it is stored in temporary structures

with time stamps and con�dences (1 for visual information, possibly less for audial informa-

tion). Visual information is stored as relative coordinates until the agent's exact location is
determined.

When it is time to act during cycle t, all of the available information is used to best
determine the server's world state at the end of cycle t � 1. If no new information arrived
pertaining to a given object, the velocity and actions taken are used by the predictor to

predict the new position of the object and the con�dence in that object's position and
velocity are both decayed.

When the agent's world state is updated to match the end of simulator cycle t� 1, �rst

the agent's own position is updated to match the time of the last sight; then those of the
ball and players are updated.

The Agent Itself: Since visual information is given in coordinates relative to the agent's
position, it is important to determine the agent's exact position at the time of the
sight. When updating the world state to match the end of simulator cycle t� 1, there

may have been visual information with time stamp t � 1 and/or t (anything earlier
would have been incorporated into the previous update of the world state at the end

of cycle t� 1).

If the latest visual information has time stamp t � 1, then the agent's own position

is not updated until after the other objects have been updated since their coordinates

are given relative to the old agent position. On the other hand, if the latest visual

information has time stamp t, or if there has been no new visual information since the

last world-state update, the agent's status can be updated immediately.

In either case, the following process is used to update the information about the agent:

� If new visual information has arrived:

{ The agent's position can be determined accurately by using the relative co-

ordinates of one seen line and the closest stationary object.

� If no visual information has arrived:

{ Bring the velocity up to date, possibly incorporating the predicted e�ects of

any actions (a dash) taken during the previous cycle.
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{ Using the previous position and velocity, predict the new position and veloc-

ity.

� If available, reset the agent's speed as per the sense body information. Assume

velocity is in the direction the agent is facing.

� Bring the player's stamina up to date either via the sense body information or

from the predicted action e�ects.

The Ball: As the key focus of action initiative in the domain, the ball's position and velocity

drives a large portion of the agents' decisions. As such, it is important to have as

accurate and up-to-date information about the ball as possible.

The ball information is updated as follows:

� If there was new visual information, use the agent's absolute position at the
time (determined above), and the ball's temporarily stored relative position to
determine the ball's absolute position at the time of the sight.

� If velocity information is given as well, update the velocity. Otherwise, check if
the old velocity is correct by comparing the new ball position with the expected

ball position.

� If no new visual information arrived or the visual information was from cycle t�1,
estimate its position and velocity for cycle t using the values from cycle t� 1. If

the agent kicked the ball on the previous cycle, the predicted resulting ball motion
is also taken into account.

� If the ball should be in sight (i.e. its predicted position is in the player's view cone),
but isn't (i.e. visual information arrived, but no ball information was included),
set the con�dence to 0.

� Information about the ball may have also arrived via communication from team-
mates. If any heard information would increase the con�dence in the ball's posi-
tion or velocity at this time, then it is used as the correct information. Con�dence

in teammate information can be determined by the time of the information (did

the teammate see the ball more recently?) and the teammate's distance to the

ball (since players closer to the ball see it more precisely).

Ball velocity is particularly important for agents when determining whether or not

(or how) to try to intercept the ball, and when kicking the ball. However, velocity
information is often not given as part of the visual information string, especially when

the ball is near the agent and kickable. Therefore, when necessary, the agents attempt

to infer the ball's velocity indirectly from the current and previous ball positions.

Teammates and Opponents: The biggest challenge in keeping track of player positions

is that the visual information often does not identify the player that is seen (see Fig-
ure 2.4). One might be tempted to ignore all ambiguously-speci�ed players. However,

for strategic planning it is very useful to have a complete picture of the player positions

around the �eld.
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In general, player positions and velocities are determined and maintained in the same

way as in the case of the ball. A minor addition is that the direction a player is facing

is sometimes available from the visual information.

When a player is seen without full information about its identity, previous player posi-

tions can be used to help disambiguate the identity. Knowing the maximum distance

a player can move in any given cycle, it is possible for the agent to determine whether

a seen player could be the same as a previously identi�ed player. If it is physically

possible, the agent assumes that they are indeed the same player.

Since di�erent players can see di�erent regions of the �eld in detail, communication

can play an important role in maintaining accurate information about player locations.

From the complete set of player locations, an agent can determine both the defensive

and o�ensive o�sides lines. It is particularly important for forwards to stay in front of

the last opponent defender in order to avoid being called o�sides. Forwards periodically
look towards the opponent defenders in order to increase the reliability of their location
information.

Agent Skills: Low-Level External Behaviors

Once the agent has determined the server's world state for cycle t as accurately as possible,

it can choose and send an action to be executed at the end of the cycle. That is, it must
execute its external behavior. At the top level, it �rst chooses its behavior mode or its local
goal within the team's overall strategy. The behavior mode determines the subgraph of

the external behavior to be executed. The subgraphs contain several low-level skills which
provide the agent with basic capabilities. The output of the skills are primitive movement
commands.

The skills available to CMUnited-98 players include kicking, dribbling, ball interception,
goaltending, defending, and clearing. The implementation details of these skills are described

in Appendix B.

The common thread among these skills is that they are all predictive, locally optimal

skills (PLOS). They take into account predicted world states as well as predicted e�ects of

future actions in order to determine the optimal primitive action from a local perspective,
both in time and in space.

One simple example of PLOS is each individual agent's stamina management. The

server models stamina as having a replenishable and a non-replenishable component. Each
is only decremented when the current stamina goes below a �xed threshold. Each player

monitors its own stamina level to make sure that it never uses up any of the non-replenishable

component of its stamina. No matter how fast it should move according to the behavior the
player is executing, it slows down its movement to keep itself from getting too tired. While

such behavior might not be optimal in the context of the team's goal, it is locally optimal

considering the agent's current tired state.

Even though the skills are predictive, the agent commits to only one action during each

cycle. When the time comes to act again, the situation is completely reevaluated. If the

world is close to the anticipated con�guration, then the agent will act similarly to the way
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it predicted on previous cycles. However, if the world is signi�cantly di�erent, the agent will

arrive at a new sequence of actions rather than being committed to a previous plan. Again,

it will only execute the �rst step in the new sequence.

Behavior Modes: The Top-Level External Behavior

Given all of the individual skills available to the CMUnited-98 agents, it becomes a signi�cant

challenge to coordinate the team so that the players are not all trying to do the same thing

at the same time. Of course one and only one agent should execute the goaltending behavior.

But it is not so clear how to determine when an agent should move towards the ball, when

it should defend, when it should dribble, or clear, etc.

A player's top-level external behavior decision is its behavior mode. Implemented as

a rule-based system, the behavior mode determines the abstract behavior that the player

should execute. For example, there is a behavior mode for the set of states in which the
agent can kick the ball. Then, the decision of what to do with the ball is made by way of a
more involved decision mechanism represented as a subgraph of the external behavior. On

each action cycle, the �rst thing a player does is re-evaluate its behavior mode.
The behavior modes include:

Goaltend: Only used by the goaltender.

Localize: Find own �eld location if it's unknown.

Face Ball: Find the ball and look at it.

Handle Ball: Used when the ball is kickable.

Active O�ense: Go to the ball as quickly as possible. Used when no teammate could get
there more quickly.

Auxiliary O�ense: Get open for a pass. Used when a nearby teammate has the ball.

Passive O�ense: Move to a position likely to be useful o�ensively in the future.

Active Defense: Go to the ball even though another teammate is already going. Used in
the defensive end of the �eld.

Auxiliary Defense: Mark an opponent.

Passive Defense: Track an opponent or go to a position likely to be useful defensively in

the future.

The detailed conditions and e�ects of each behavior mode are described in Appendix C.

However, they will also become more clear as the role-based 
exible team structure is de-

scribed in Section 3.5.2.

The remainder of this section details the implementations of both main contributions

of this chapter: the 
exible teamwork structure and the communication paradigm. Both

implementations are uni�ed within the CMUnited simulated robotic soccer system, building

upon the action cycle and world state model presented here.
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3.5.2 Teamwork Structure Implementation

One approach to task decomposition in the soccer server is to assign �xed coordinate positions

to agents.1 Such an approach leads to several problems: i) short-term in
exibility in that

the players cannot adapt their positions to the ball's location on the �eld; ii) long-term

in
exibility in that the team cannot adapt to opponent strategy; and iii) local ine�ciency

in that players often get tired running across the �eld back to their positions after chasing

the ball. Our formations allow for 
exible teamwork and combat these problems. (The term

\position" is often used to denote the concept of \role" in the soccer domain. In this section

I use the two terms interchangeably.)

This section describes the CMUnited simulator team implementation of the teamwork

structure presented in Section 3.3. In the context of the team member agent architecture

in Section 3.2, it covers the locker-room agreement, the internal behaviors, and the internal

state.

Domain Instantiations of Roles and Formations

Figure 3.5 shows a simpli�ed top-level external behavior used by a team agent. The agent's
top priority is to locate the ball. If the ball's location is known, it moves towards the ball or

goes to its position (i.e. to assume its role), depending on its internal state. It also responds to
any requested communications from teammates. The sub-behaviors of the top-level behavior
are all behavior modes.

If (Ball known AND Chasing)
If (Ball known AND Not Chasing)
If (Commuincate Flag Set)

If (Ball Lost)
Handle Ball(args1)

Communicate()

External Behavior:  Play Soccer()

Face Ball()

Passive Offense(args2)

Figure 3.5: An example of a simpli�ed top-level external behavior for a robotic soccer player.

The referenced \handle ball" and \passive o�ense" behaviors may be a�ected by the
agent's current role and/or formation. Such e�ects are realized by references to the internal

state either at the level of function arguments (args1, args2), or within sub-behaviors. None
of the actions in the condition-action pairs here are action primitives; rather, they are calls
to lower level behaviors.

The de�nition of a position includes home coordinates, a home range, and a maximum

range, as illustrated in Figure 3.6. The position's home coordinates are the default location

to which the agent should go. However, the agent has some 
exibility, being able to set its
actual home position anywhere within the home range. When moving outside of the max

range, the agent is no longer considered to be in the position. The home and max ranges of
di�erent positions can overlap, even if they are part of the same formations.

A formation consists of a set of positions and a set of units (as de�ned in Section 3.3.2).

The formation and each of the units can also specify inter-position behavior speci�cations

1
One of the teams in Pre-RoboCup-96 used and depended upon these assignments: the agents passed to

the �xed positions regardless of whether or not there was a teammate there.
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Figure 3.6: Di�erent positions with home coordinates and home and max ranges.

for the member positions, as illustrated in Figure 3.7(a). In this case, the formations specify

inter-role interactions, namely the positions to which a player should consider passing the

ball. We use decision tree learning to enable players to decide where to pass from among

these options (see Chapter 6). Figure 3.7(b) illustrates the units, the roles involved, and

their captains. Here, the units contain defenders, mid�elders, forwards, left players, center

players, and right players.

= Unit = Unit Captain

(a) (b)

Figure 3.7: (a) A possible formation (4-3-3) for a team of 11 players. Arrows represent passing

options. (b) Positions can belong to more than one unit.

Since the players are all autonomous, in addition to knowing its own role, each one has its
own belief of the team's current formation along with the time at which that formation was

adopted, and a map of teammates to positions. Ideally, the players have consistent beliefs

as to the team's state, but this condition cannot be guaranteed between synchronization

opportunities.

For example, consider the passive o�ense behavior in Figure 3.5. This external behavior

references the agent's internal state via a series of function calls. Speci�cally, the agent is to

move to some location within the home range of its current position in the team's current
formation:

TargetLocation 2 HomeRange(MyPosition(CurrentFormation())) (3.1)

where HomeRange(p) returns the home range of position p; MyPosition(f) returns a player's

own current position in formation f; and CurrentFormation() returns the player's own

opinion of the team's current formation. Thus the internal behaviors that determine the

player's current position and formation a�ect its external behavior. Notice that by specifying
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a range of possible locations, the role leaves some 
exibility to the autonomous player: it

can choose which speci�c TargetLocation to move to within the range.

Di�erent roles can also have entirely di�erent external behaviors. As presented in Sec-

tion 3.3.1, each role could have an entirely di�erent external behavior subgraph.

Our teamwork structure for PTS domains allows for several signi�cant features in our

simulated soccer team. These features are: (i) the de�nition of switching among multiple

formations with units; (ii) 
exible position adjustment and position switching; (iii) and

pre-de�ned, special-purpose plays (set-plays).

Dynamic Switching of Formations

We implemented several di�erent formations, ranging from very defensive (8-2-0) to very

o�ensive (2-4-4).2 The full de�nitions of all of the formations are a part of the locker-room

agreement. Therefore, they are all known to all teammates. However during the periods of
full autonomy and limited communication, it is not necessarily known what formation the

rest of the teammates are using. Three approaches can be taken to address this problem:

Static formation: the formation is set by the locker-room agreement and never changes;

Run-time formation switch: during team synchronization opportunities, the team sets
globally accessible run-time evaluation metrics as formation-changing indicators.

Communication-triggered formation switch: one team member decides that the team

should switch formations and communicates the decision to teammates.

Both run-time formation switches and communication-triggered formation switches are
internal behaviors. The run-time triggers and communication protocols are de�ned in the

locker-room agreement. When a run-time evaluation metric indicates that the formation
should change, or when a heard communication triggers a formation change, an internal
behavior changes the player's opinion of the team's formation in its internal state.

This change in internal state can then a�ect external behaviors. For example, a switch in

formations changes the output of the CurrentFormation() function in Equation 3.1. The

outputs of MyPosition() and HomeRange() are also altered: the new formation consists of

a di�erent collection of roles with di�erent home ranges. Thus the passive o�ense external

behavior changes as a result of the formation switch.

The CMUnited simulator team uses run-time formation switches. Based on the amount

of time left relative to the di�erence in score, the team switches to an o�ensive formation if it

was losing near the end of the game and a defensive formation if it was winning. Speci�cally,
the team starts out in a 4-4-2 formation. If �Minutes is the number of minutes left in the

game, and �Score is the di�erence in score (�Score > 0 if the team is winning; �Score < 0
if the team is losing), then the team uses the following run-time algorithm:

� If �Score < 0 and ��Score � �Minutes, then switch to a 3-3-4 formation;

2
Soccer formations are typically described as X-Y-Z where X, Y, and Z are the number of defenders,

mid�elders, and forwards respectively. It is assumed that the eleventh player is the goaltender [LaBlanc and

Henshaw 94].
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� If �Score > 0 and �Score � �Minutes, then switch to a 8-2-0 formation;

� Otherwise switch to (or stay in) a 4-4-2 formation.

Since each agent is able to independently keep track of the score and time, the agents are

always able to switch formations simultaneously.

Communication-triggered formation switches have also been implemented and tested.

Details are presented in the context of the communication paradigm implementation (Sec-

tion 3.5.3).

Flexible Positions

As emphasized throughout, homogeneous agents can play di�erent positions. But such

a capability raises the challenging issue of when the players should change positions. In
addition, with teammates switching positions, a player's internal player-position map A 7! R

could become incorrect and/or incomplete. The locker-room agreement provides procedures
to the team that allow for coordinated role changing. In CMUnited's case, the locker-room

agreement designates an order of precedence for the positions within each unit. Unless their
pursuit of the ball leads them from their position, players only switch into a more important
position than their current position.

By switching positions within a formation, the overall joint performance of the team can
be improved. Position-switching has the potential to save player energy and to allow them

to respond more quickly to the ball. However, switching positions can also cause increased
player movement if a player has to move across the �eld to occupy its new position. Players

must weigh the possible costs and bene�ts before deciding to switch positions.

Like switching formations, switching positions can change external behaviors via their

references to the internal state. In Equation 3.1, switching positions changes the value re-
turned by MyPosition(), thus also a�ecting the value of HomeRange(): the player executing
the passive o�ense external behavior chooses its location from a di�erent range of possible

positions.

In addition to having the 
exibility to switch to a di�erent position, CMUnited-98 agents
also have 
exibility within their positions. That is, the external behavior references the

internal state to determine a range of possible locations that are determined by the player's

current position. However, within this range, the role does not specify the player's precise
location. For example, in the passive o�ense external behavior (equation 3.1), the player

must choose its TargetLocation from within the home range of its current position.

In the CMUnited multi-agent approach, the player positions itself 
exibly such that it

anticipates that it will be useful to the team, either o�ensively or defensively. The agents
can exercise this 
exibility within its external behaviors in three ways:

� Opponent marking;

� Ball-dependent positioning;

� Strategic positioning using attraction and repulsion (SPAR).
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When marking opponents, agents move next to a given opponent rather than staying at

the default position home. The opponent to mark can be chosen by the player (e.g. the closest

opponent), or by the unit captain which can ensure that all opponents are marked, following

a preset algorithm as part of the locker-room agreement. The low-level agent behavior used

when marking an opponent is speci�ed in Appendix B (Section B.1.6).

When using ball-dependent positioning, the agent adjusts its location within its range

based on the instantaneous position of the ball. For example, when the ball is on the same

side of the �eld as the agent, the agent tries to move to a point on the line de�ned by its

own goal and the ball. When the ball is on the other side of the �eld, the player adjusts its

position back towards its own goal.

Ball-dependent positioning is an improvement over rigid roles in which agents stay in a

�xed home position. However, by taking into account the positions of other agents as well

as that of the ball, an even more informed positioning decision can be made. The idea of

strategic position by attraction and repulsion (SPAR) is one of the novel contributions of
the CMUnited-98 software. It was developed jointly in simulation and on the CMUnited-98
small-robot platform [Veloso et al. 99b].

When positioning itself using SPAR, the agent uses a multi-objective function with at-
traction and repulsion points subject to several constraints. To formalize this concept, we

introduce the following variables:

� P - the desired position for the passive agent in anticipation of a passing need of its
active teammate;

� n - the number of agents on each team;

� Oi - the current position of each opponent, i = 1; : : : ; n;

� Ti - the current position of each teammate, i = 1; : : : ; (n� 1);

� B - the current position of the active teammate and ball;

� G - the position of the opponent's goal.

SPAR extends similar approaches of using potential �elds for highly dynamic, multi-

agent domains [Latombe 91]. The probability of collaboration in the robotic soccer domain
is directly related to how \open" a position is to allow for a successful pass. Thus, SPAR

maximizes the distance from other robots and minimizes the distance to the ball and to the
goal according to several forces, namely:

� Repulsion from opponents, i.e. maximize the distance to each opponent:

8i;max dist(P;Oi)

� Repulsion from teammates, i.e. maximize the distance to other passive teammates:
8i;max dist(P; Ti)

� Attraction to the active teammate and ball: min dist(P;B)

� Attraction to the opponent's goal: min dist(P;G)
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Ball

0 1

2 3

Figure 3.8: The four possible rectangles, each with one corner at the ball's location, considered

for positioning by simulator agents when using SPAR.

This formulation is a multiple-objective function. To solve this optimization problem,
we restate the problem as a single-objective function. As each term may have a di�erent

relevance (e.g. staying close to the goal may be more important than staying away from
opponents), we want to apply a di�erent weighting function to each term, namely fOi

, fTi ,
fB, and fG, for opponents, teammates, the ball, and the goal, respectively. Our anticipation

algorithm then maximizes a weighted single-objective function with respect to P :

max(
nX
i=1

fOi
(dist(P;Oi)) +

n�1X
i=1

fTi(dist(P; Ti))� fB(dist(P;B))� fG(dist(P;G)))

In our case, we use fOi
= fTi = x, fB = 0, and fG = x2. For example, the last term of

the objective function above expands to (dist(P;G))2.

One constraint in the simulator team relates to the position, or role, that the passive
agent is playing relative to the position of the ball. The agent only considers locations that
are within one of the four rectangles illustrated in Figure 3.5.2: the one closest to the position

home of the position that the agent is currently playing. This constraint helps ensure that
the player with the ball will have several di�erent passing options in di�erent parts of the
�eld. In addition, players do not need to consider moving too far from their positions to

support the ball.

Since this position-based constraint already encourages players to stay near the ball, we

set the ball-attraction weighting function fB to the constant function y = 0. In addition to
this �rst constraint, the agents observe three additional constraints. In total, the constraints

in the simulator team are:

� Stay in an area near one's home position;

� Stay within the �eld boundaries;

� Avoid being in an o�sides position;

� Stay in a position in which it would be possible to receive a pass.
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This last constraint is evaluated by checking that there are no opponents in a cone with

vertex at the ball and extending to the point in consideration.

In our implementation, the maximum of the objective function is estimated by sampling

its values over a �ne-grained mesh of points that satisfy the above constraints.

Using this SPAR algorithm, agents are able to anticipate the collaborative needs of their

teammates by positioning themselves in such a way that the player with the ball has several

useful passing options.

Pre-Planned Set-Plays

The �nal implemented improvement facilitated by our 
exible teamwork structure is the

introduction of set-plays, or pre-de�ned, special-purpose plays. As a part of the locker-room

agreement, the team can de�ne multi-step, multi-agent plans to be executed at appropriate

times. Particularly if there are certain situations that occur repeatedly, it makes sense for
the team to devise plans for those situations.

In the robotic soccer domain, several situations occur repeatedly. For example, after

every goal, there is a kicko� from the center spot; and when the ball goes out of bounds,
there is a goal-kick, a corner-kick, or a kick-in. In each of these situations, the referee
informs the team of the situation. Thus all the players know to execute the appropriate

set-play. A particular referee's message is the trigger condition for each set-play. Associated
with each set-play role is a set-play behavior indicating a location on the �eld as well as
an action to execute when the ball arrives. The player in a given role might pass to the

player �lling another role, shoot at the goal, or kick the ball to some �xed location. The
termination condition for each role is either the successful execution of the prescribed action

or the passage of a speci�ed amount of time from the beginning of the set-play.

The locker-room agreement speci�es that the roles in the current team formation are
mapped to the set-play roles in the way requiring the least movement of agents from their
position homes. That is F 7! Rsp is chosen to minimize

X
spr2Rsp

Dist(r; spr)

where Dist(r; spr) is the distance from the home location of role r to the home location of
its associated set-play role spr. This assignment of roles to set-play roles is part of each
agent's internal behavior.

For example, Figure 3.9 illustrates a sample corner-kick set-play. The set-play designates

�ve set-play roles, each with a speci�c location, which should be �lled before the ball is put

back into play. Based on the home positions of the current formation, each individual agent

can determine the best mapping from positions to set-play locations, i.e. the mapping that

requires the least total displacement of the 5 players. If there is no player �lling one of the
necessary formation roles, then there must be two players �lling the same role, one of which

must move to the vacant role. In the event that no agent chooses to do so, the set-play

can proceed with any single set-play role un�lled. The only exception is that some player

must �ll the set-play role responsible for kicking the ball back into play. A special-purpose

protocol is incorporated into the set-play behaviors to guarantee such a condition.
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Once the set-play roles are �lled, each player executes the action associated with its

set-play role as an external behavior. As illustrated by the role starting the corner-kick in

Figure 3.9, a player could choose among possible actions, perhaps based on the opponent

positions at the time of execution. No individual player is guaranteed of participating in

the play. For example, the uppermost set-play position is there just in case one of the other

players misses a pass or shoots wide of the goal: no player will pass directly to it. Each

player leaves its set-play role to resume its former role either after successfully kicking the

ball, or after a pre-speci�ed, role-speci�c amount of time.

= ball

Figure 3.9: A sample corner-kick set-play. The dashed circles show the positions in the team's

current formation and dashed arrows indicate the locations of the set-play roles|black circles|

that they would �ll. Solid arrows indicate the direction the ball is to be kicked as part of each

set-play role.

The set-plays signi�cantly improved CMUnited's performance. During the RoboCup-97
and RoboCup-98 simulator competitions, several goals were scored as a direct result of set-
plays.

3.5.3 Communication Paradigm Implementation

In our teamwork structure, players are organized into team formations with each player
�lling a unique role. However players can switch among roles and the entire team can change

formations. Both formations and roles are de�ned as part of the locker-room agreement, and
each player is given a unique ID number. It is a signi�cant challenge for players to remain

coordinated, both by all believing that they are using the same formation and by �lling all

the roles in the formation. Since agents are all completely autonomous, such coordination is
not guaranteed.

In PTS domains with limited communication (as opposed to no communication) possible
during the dynamic, real-time periods, inter-agent communication can help the team stay

coordinated. Communication protocols de�ned in the locker-room agreement combine with

heard messages to trigger internal behaviors that alter the agent's internal state.
This section describes the CMUnited simulator team implementation of the communica-

tion paradigm presented in Section 3.4. All of the agent messages are of the format:

(CMUnited <Uniform-number> <Encoded-stamp> <Formation-number>

<Formation-set-time> <Position-number> <target> <Message-type>
[<Message-data>])
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For example, player 8 might want to pass to player 6 but not know precisely where player 6

is at the moment. In this case, it could send the message (CMUnited 8 312 1 0 7 ----> 6

Where are you?). \CMUnited 8" is the sender's team and number; \312" is the <Encoded-

stamp>, in this case an agreed-upon linear combination of the current time, the formation

number, and the sender's position number; \1 0" is the team formation player 8 is using

followed by the time at which it started using it; \7" is player 8's current position; \---->

6" indicates that the message is for player 6; and \Where are you?" is a message type

indicating that a particular response is requested: the recipient's coordinate location. In

this case, there is no message data.

All teammates that hear such a message update their internal states to indicate that

player 8 is playing position 7. However only player 6 sets its response and response-flag in-

ternal state variables. In this case, since the target is a single player, the communicate-delay


ag remains at 0. Were the message targeted towards the whole team or to a subset of the

team, then communicate-delay would equal:

� IF (my number > sender number)

((my number � sender number � 1) � 2) � communicate-interval

� ELSE (((sender number � my number � 1) � 2) + 1) � communicate-interval

where communicate-interval is the time between audible messages for a given agent

(hear decay = 2 simulator cycles in the case of the soccer server). Thus, assuming no
further interference, player 8 would be able to hear responses from all targets.

Once player 6 is ready to respond, it might send back the message (CMUnited 6 342 1 0

5 ----> all I'm at 4.1 -24.5). Notice that player 6 is using the same team formation
but playing a di�erent position from player 8: position 5. Since this message doesn't require

a response (as indicated by the \I'm at" message type), the message is accessible to the
whole team (\----> all"): all teammates who hear the message update their world states

to re
ect the message data. In this case, player 6 is at coordinate position (4:1;�24:5).
Were player 8 not to receive a response from player 6 before passing, it could still pass to

its best estimate of player 6's location: should the message fail to get through, no disaster

would result. Such is the nature of most communication in this domain. Should there

be a situation which absolutely requires that a message get through, the sending agent
could repeat the message periodically until hearing con�rmation from the recipient that the

message has arrived. However, such a technique consumes the single communication channel
and should be used sparingly.

Notice that in the two example messages above, both players are using the same team-

formation. However, such is not always the case. Even if they use common environmental
cues to trigger formation changes, one player might miss the cue. In order to combat such a

case, players update the team formation if a teammate is using a di�erent formation that was
set at a later time as detailed in Section 3.4. For example, if player 6's message had begun

\(CMUnited 6 342 3 50 ..." indicating that it had been using team formation 3 since

time 50, an internal behavior in player 8 would have changed its internal state to indicate

the new team strategy.

Other examples of message types used in our implementation of simulated robotic soccer
players include:
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� Request/respond ball location

� Request/respond teammate location

� Inform pass destination

� Inform going to the ball

� Inform taking/leaving position

3.6 Results

Although the 
exible teamwork structure and communication paradigm implementations are

merged into a single robotic soccer system, we are able to isolate the e�ects of each contri-

bution through controlled testing. This section presents empirical results demonstrating the
e�ectiveness of both main contributions of this chapter: the 
exible teamwork structure and

the low-bandwidth communication paradigm.

3.6.1 Teamwork Structure Results

The 
exible teamwork structure improves over a rigid structure by way of three character-

istics: 
exible positioning within roles, set-plays, and changeable formations. We tested the
bene�ts of the �rst two characteristics by playing a team with 
exible, changeable positions

and set-plays against a \default team" with rigid positions and no set-plays. The behaviors
of the players on the two teams are otherwise identical. The advantage of being able to
change formations|the third characteristic|depends on the formation being used by the

opponent. Therefore, we tested teams using each de�ned formation against each other.
Standard games in the soccer server system last 10 minutes. However, due to the large

amount of noise, game results vary greatly. All reported results are cumulative over several

games. Compiled statistics include the number of 10-minute games won, the total cumulative
goals scored by each team, average goals per game, and the percentage of time that the ball

was in each half of the �eld. The last statistic gives a rough estimate of the degree to which

each team was able to control the ball.

Flexible Positions and Set-Plays

In order to test the 
exible teamwork structure, we ran a team using ball-dependent 
exible

positions with set-plays against one using rigid positions and no set-plays. Both teams used
a 4-4-2 formation. As shown in Table 3.2, the 
exible team signi�cantly outperformed the

default team over the course of 38 games.

Further experimentation showed that both aspects of the 
exible team contribute sig-
ni�cantly to the team's success. Table 3.3 shows the results when a team using 
exible

positions but no set-plays plays against the default team and when a team using set-plays
but rigid positions plays against the default team, again over the course of 38 games. Both

characteristics provide a signi�cant advantage over the default team, but they perform even

better in combination.
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(Game = 10 min.) Flexible and Set-Plays Default

Games won 34 1

Total goals 223 82

Avg. goals 5.87 2.16

Ball in own half 43.8% 56.2%

Table 3.2: Results when a 
exible team plays against a rigid team. The 
exible team won 34 out

of 38 games with 3 ties.

Only Flexible Positions

(Game = 10 min.) Flexible Default

Games won 26 6

Total goals 157 87

Avg. goals 4.13 2.29

Ball in own half 44.1% 55.9%

Only Set-Plays

(Game = 10 min.) Set-Plays Default

Games won 28 5

Total goals 187 108

Avg. goals 4.92 2.84

Ball in own half 47.6% 52.4%

Table 3.3: Results when only using 
exible positions and only using set-plays. Each individually

works better than using neither.

Formations

In addition to the above tests, we tested the various formations against each other, as
reported in Table 3.4. Each entry shows the goals scored for and against when a team using

one formation played against a team using another formation over the course of 24 10-minute
games. The right-most column collects the total goals scored for and against the team using

that formation when playing against all the other teams. In all cases, the teams used 
exible
positions, but no set-plays.

formations 4-3-3 4-4-2 3-5-2 8-2-0 3-3-4 2-4-4 totals

4-3-3 68{60 68{54 24{28 59{64 70{65 289{271 (51.6%)

4-4-2 60{68 68{46 22{24 51{57 81{50 282{245 (53.5%)

3-5-2 54{68 46{68 13{32 61{72 75{73 249{313 (44.3%)

8-2-0 28{24 24{22 32{13 27{28 45{36 156{96 (61.9%)

3-3-4 64{59 57{51 72{61 28{27 87{69 308{267 (53.6%)

2-4-4 65{70 50{81 73{75 36{45 69{87 293{385 (43.2%)

Table 3.4: Comparison of the di�erent formations. Entries in the table show the number of

goals scored. Total (and percentage) cumulative goals scored against all formations appear in the

right-most column.

The results show that the defensive formation (8-2-0) does the best in terms of the

percentage of goals scored for versus those allowed against. However the total goals scored

when using the defensive formation is quite low. On the other hand, the 3-3-4 formation

performs well with a high goal total.

This study allowed us to devise an e�ective formation-switching strategy for the RoboCup

competitions. For example, our RoboCup-97 team [Stone and Veloso 98a] used a 4-4-2

formation in general, switching to an 8-2-0 formation if winning near the end of the game,

or a 3-3-4 formation if losing. This strategy, along with the 
exible teamwork structure as a
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whole, and the communication paradigm, helped us to perform well in the RoboCup-97 and

RoboCup-98 tournaments (see Chapter 8).

3.6.2 Communication Paradigm Results

While contributing to the overall success of the CMUnited simulator team, our communica-

tion paradigm is also demonstrably e�ective in controlled experimentation. In this section, I

report results re
ecting the agents' robustness to active interference, their ability to handle

messages that require responses from multiple team members, and their ability to maintain

a coordinated team strategy.

Robustness to Interference

Relying on communication protocols involves the danger that an opponent could actively
interfere by mimicking an agent's obsolete messages: since there is a single communication

channel, opponents can hear and mimic messages intended for teammates. However, the
<Encoded-stamp> �eld guards against such an attempt. As a test, we played a commu-

nicating team (team C) against a team that periodically repeats past opponent messages
(team D). Team C set the <Encoded-stamp> �eld to <Uniform-number> �(send-time +
37). Thus teammates could determine send-time by inverting the same calculation (known

to all through the locker-room agreement). Messages received more than a second after the
send-time were disregarded (message-lag-tolerance = 1 sec). The one-second leeway ac-
counts for the fact that teammates may have slightly di�erent notions of the current global

time.

In our experiment, agents from team D sent a total of 73 false messages over the course of

a 5-minute game. Not knowing team C's locker-room agreement, they were unable to adjust
the <Encoded-stamp> �eld appropriately. The number of team C agents hearing a false
message ranged from 0 to 11, averaging 3.6. In all cases, each of the team C agents hearing

the false message correctly ignored it. Only one message truly from a team C player was
incorrectly ignored by team C players, due to the sending agent's internal clock temporarily

diverging from the correct value by more than a second. Although it did not happen in the

experiment, it is also theoretically possible that an agent from team D could mimic a message
within a second of the time that it was originally sent, thus causing it to be indistinguishable

from a valid message. However, in this case, the content of the message is presumably still

appropriate and consequently unlikely to confuse team C.

Handling Multiple Responses

Next we tested our method of handling multiple simultaneous responses to a single message.

Placing all 11 agents within hearing range, a single agent periodically sent a \where are
you" message to the entire team and recorded the responses it received. In all cases, all

10 teammates heard the original message and responded. However, as shown in Table 3.5,
the use of our method dramatically increased the number of responses that got through to

the sending agent. When the team used communicate-delay as speci�ed in Section 3.5,

message responses were staggered over the course of about 2.5 seconds, allowing most of
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the 10 responses to get through. When all agents responded at once (no delay), only one

response (from a random teammate) was heard.

Number of Responses Response Time (sec)
Min Max Avg Min Max Avg

No Delay 1 1 1.0 0.0 0.0 0.0

Delay 6 9 8.1 0.0 2.6 0.9

Table 3.5: The number of responses that get through to agents when responses are delayed and

when they are not. When the team uses communicate-delay as speci�ed in Section 3.5, an average

of 7.1 more responses get through than when not using it. Average response time remains under

one second. Both experiments were performed 50 times.

Team Coordination

Finally, we tested the team's ability to maintain coordinated team strategies when changing

formations via communication. One player was given the power to toggle the team's forma-
tion between a defensive and an o�ensive formation. Announcing the change only once, the

rest of team had to either react to the original message, or get the news from another team-
mate via other communications. As described in Section 3.5, the <Formation-number> and
<Formation-set-time> �elds are used for this purpose. We ran two di�erent experiments,

each consisting of 50 formation changes. In the �rst, a mid�elder made the changes, thus
making it possible for most teammates to hear the original message. In the second experi-

ment, fewer players heard the original message since it was sent by the goaltender from the
far end of the �eld. Even so, the team was able to change formations in an average time of
3.4 seconds. Results are summarized in Table 3.6.

Entire Team Change Time (sec) Heard From

Decision-Maker Min Max Avg Var Decision-Maker

Goaltender 0.0 23.8 3.4 17.8 46.6%

Mid�elder 0.0 7.9 1.3 2.8 80.6%

Table 3.6: The time it takes for the entire team to change team strategies when a single agent

makes the decision. Even when the decision-making agent is at the edge of the �eld (goaltender)

so that fewer than half of teammates can hear the single message indicating the switch, the team

is completely coordinated after an average of 3.4 seconds.

3.7 Transfer to the Real Robots

As described in Chapter 2, the CMUnited-97 real robot platform di�ers from the soccer

server platform in many ways, including agent perception and action capabilities. In addi-

tion, the robots do not have any inter-agent communication abilities. Nonetheless, the real

robot soccer domain is a PTS domain and many components of the CMUnited simulator

implementation described in Section 3.5 are directly transferable to the CMUnited-97 small-
robot software. In particular, the teamwork structure transfers very easily and has been used
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successfully [Veloso and Stone 98]. Since the robots do not use inter-agent communication,

the communication paradigm is not appropriate for transfer.

The speci�c software components that transfered from the simulation to the real robot

implementations include:

� The world model;

� Skill functionalities;

� Behavior modes;

� Team structure including the locker-room agreement

The objects in the world are de�ned according to the same type hierarchy depicted in

Figure 3.4 and the same information is stored about each object. The one exception is that
opponent orientation is not discernible by the small-robot vision system.

Since the movement capabilities and action command syntax of the robots di�er greatly

from those of the simulated agents, the low-level agent skill implementations are entirely dif-
ferent. However, the functionalities of the skills are similar. For example, like the simulated

agents, the real robots also have ball-interception and goaltending skills. The implementation
details of the robots' skills are provided in Appendix B.

With slightly less complex behaviors than the simulated agents, the robots need fewer

behavior modes. However, they still choose one of several behavior modes as the top-level
action decision. The default position-holding behavior occurs when the robot is in an inactive
state. However, when the ball is nearby, the robot changes into an active state. In the active

state, the robot moves towards the ball, attempting either to pass it to a teammate or to
shoot it towards the goal based on an evaluation function that takes into account teammate
and opponent positions. A robot that believes itself to be the intended receiver of a pass

moves into the auxiliary state in which it tries to intercept a moving ball towards the goal.
There is also a special goaltend mode for the goaltender. The CMUnited-97 decision function

sets the robot that is closest to the ball into the active state; other robots �lling a forward

role (if any) into the auxiliary state; and all other robots (other than the goaltender) into
the inactive state.

Most signi�cantly within the context of this chapter, the team structure implementation
described in Section 3.5.2 transfered directly to the real robot software. Changing nothing in

the code except for the actual formation con�gurations (to accommodate teams of 5 rather

than teams 11), the robots are instantly able to bene�t from the advantages of the teamwork
structure:

� Dynamic formations;

� Flexible positions; and

� Set-plays.

As in the simulator implementation, the formation de�nes a set of roles, or positions, with

associated behaviors. It is speci�ed within the locker-room agreement, a part of the team



3.8. DISCUSSION AND RELATED WORK 87

member agent architecture described in Section 3.2. The robots are dynamically mapped

into the positions. Each robot is equipped with the knowledge required to play any position

in each of several formations.

Positions are de�ned as 
exible regions within which the player attempts to move towards

the ball. For example, a robot playing the \right-wing" (or \right forward") position remains

on the right side of the �eld near the opponents' goal until the ball comes towards it. Positions

are classi�ed as defender, mid�elder, or forward based on the locations of these regions. They

are also given behavior speci�cations in terms of which other positions should be considered

as potential pass-receivers.

In the CMUnited-97 small-robot team, only the ball-dependent 
exible positioning is

implemented. However, the subsequent CMUnited-98 software was used in conjunction with

the simulator to develop the SPAR 
exible positioning algorithm [Veloso et al. 99b].

At any given time each of the robots plays a particular position on the �eld. However,

each robot has all of the knowledge necessary to play any position. Therefore the robots
can|and do|switch positions on the 
y. For example, robots A and B switch positions
when robot A chases the ball into the region of robot B. Then robot A continues chasing

the ball, and robot B moves to the position vacated by A.
The pre-de�ned positions known to all players are collected into formations, which are

also commonly known. An example of a formation is the collection of positions consisting of
the goaltender, one defender, one mid�elder, and two attackers. Another possible formation
consists of the goaltender, two defenders and two attackers. For illustration, see Figure 3.10.
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Figure 3.10: Two di�erent de�ned formations. Notice that several of the positions are reused

between the two formations.

The CMUnited-97 robots only used a single set-play: on a kicko�, one robot would pass

the ball up the wing to another robot which would then shoot towards the goal. However,
the concept of set-plays was originally developed in a previous real-robot soccer implementa-

tion [Achim et al. 96]. In that case, our 3-robot team was equipped with about 10 set-plays

for several di�erent restart situations.

3.8 Discussion and Related Work

This chapter has presented a team member agent architecture appropriate for PTS domains.

While the implementation described here is in robotic soccer, it is easy to see how the

architecture would apply to other sports, such as American football. In that case, the syn-

chronization opportunities are more frequent, but formations can change during the course
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of a game, roles are de�ned with some 
exibility so that agents can adjust to opponent

behaviors on the 
y, and agents must communicate e�ciently both between plays on a drive

and during plays.

There are several other examples of non-sports-related PTS domains. Having successfully

developed and deployed an autonomous spacecraft [Pell et al. 98], NASA is now interested in

multi-spacecraft missions, or constellations [Stone 97]. Since spacecraft pointing constraints

limit the communication both between the spacecraft and ground control, and among the

spacecraft, the spacecraft must be able to act autonomously while still working towards

the constellation's overall goal. Using interferometry missions|in which several spacecraft

coordinate parts of a powerful imaging instrument to view distant objects|as an example,

the locker-room agreement could be used to de�ne several formations to be used for viewing

objects that are at various distances or in di�erent parts of the sky. Depending on the

relative locations of these objects, the various spacecraft might interchange roles as they

image di�erent objects.

Search and rescue scenarios could also be formulated as PTS domains. If several robotic
agents are trying to locate victims in a remote disaster sight, they may have to act quickly

and autonomously. Nonetheless, before beginning the search, they could de�ne several for-
mations corresponding to di�erent geographical areas of focusing their search. Within these
formations, agents would need to be assigned 
exible roles given that the precise situation

may not be known or may change unexpectedly. The agents might also agree, as part of
their locker-room agreement to switch formations either after a certain time or as a result of

some limited communication, perhaps from a unit captain.

Other PTS domains that could be applications for the team member agent architecture

are hospital/factory maintenance [Decker 96b] and battle�eld combat [Tambe 97]. While in
this thesis network routing is used to generalize the TPOT-RL algorithm (see Chapter 7),

it could also be formulated as a PTS domain if the network nodes are permitted to freely
use network bandwidth during periods of otherwise low usage. They could then exchange
policies and feedback with regards to network performance.

The remainder of this section summarizes the previous work most closely related to the
teamwork structure and communication paradigm as presented in this chapter.

3.8.1 Teamwork Structure

Two popular multi-agent teamwork structures, joint intentions [Cohen et al. 99] and shared

plans [Grosz 96], consider a team to be a group of agents that negotiate and/or contract with
each other in order to initiate a team plan. Both of these teamwork structures as well as

STEAM [Tambe 97], another teamwork structure based on joint intentions and shared plans,
include complex communication protocols for forming and disbanding a team in pursuit of

a goal. The team forms dynamically and stays in close communication until the execution

of the plan is completed. In contrast, the teamwork structure presented in this chapter
supports a persistent team e�ort towards a common high-level goal in the face of limited

communication.

The concept of the locker-room agreement facilitates coordination with little or no com-
munication. Taking advantage of the property of PTS domains that the team and its long-
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term goal are persistent, our teamwork structure eliminates the need for the overhead inher-

ent in previous paradigms.

Although it has been claimed that pre-determined team actions are not 
exible or robust

to failure [Tambe 97], the locker-room agreement provides a mechanism for pre-de�ning

team actions with enough 
exibility to succeed. In particular, set-plays are pre-determined

team actions that can be executed without the need to negotiate or use extensive inter-agent

communication: the locker-room agreement provides enough 
exibility that the agents are

able to seamlessly assume the appropriate roles.

While I use the term \formation" to refer to the largest unit of the teamwork structure,

soccer formations are not to be confused with military-type formations in which agents must

stay in precise relative positions. Despite this dual usage of the term, I use it because

formation is a standard term within the soccer domain [LaBlanc and Henshaw 94]. For an

example of a multi-agent system designed for military formations, see [Balch and Arkin 95].

Castelfranchi [95] classi�es di�erent types of commitments in multi-agent environments.
In this context, locker-room agreements can be viewed as C-commitments, or commitments

by team members to do the appropriate thing at the right time, as opposed to S-commitments
with which agents adopt each other's goals. In the context of [Conte et al. 99], the creation
of a locker-room agreement is norm acceptance while its use is norm compliance. Within the

framework presented in [M�uller 99], the architecture is for interactive software and hardware
multi-agents.

As mentioned in Section 3.2, the concept of behavior in the context of our team member
agent architecture is consistent with that laid out by Mataric [Mataric 94a]. There, \behav-

ior" is de�ned as \a control law with a particular goal, such as wall-following or collision
avoidance." Behaviors can be nested at di�erent levels with selection among lower-level

behaviors consisting of a higher-level behavior. Similarly, internal and external behaviors
in our system maintain team coordination goals, physical positioning goals, communication
goals, and environmental information goals (such as knowledge of where the ball is). These

behaviors are combined into top-level internal and external behaviors.

3.8.2 Communication Paradigm

Most inter-agent communication models assume reliable point-to-point message passing with
negligible communication costs. In particular, KQML assumes point-to-point message pass-

ing, possibly with the aid of facilitator agents [Finin et al. 94]. Nonetheless, KQML perfor-
matives could be used for the content portions of our communication scheme. KQML does

not address the problems raised by having a single, low-bandwidth communication channel.

When communication is reliable and the cost of communication relative to other actions is

small, agents have the luxury of using reliable, multi-step negotiation protocols. For example,
in Cohen's convoy example [Cohen et al. 99], the communication time required to form and

maintain a convoy of vehicles is insigni�cant compared to the time it takes the convoy to

drive to its destination. Similarly, message passing among distributed information agents is

typically very quick compared to the searches and services that they are performing. Thus,

it makes sense for agents to initiate and con�rm their coalition while guaranteeing that they
will inform each other if they have trouble ful�lling their part of the joint action.
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With only a single team present, a situation similar to the one considered here is examined

in [Maio and Rizzi 95]. In that case, like in the soccer server, messages sent are only heard

by agents within a circular region of the sender. Communication is used for cooperation and

for knowledge sharing. Like in the examples presented in the soccer domain, agents attempt

to update each other regarding their own internal states when communicating. However,

the exploration task considered there is much simpler than soccer, particularly in that there

are no opponents using the same communication channel and in that the nature of the task

allows for simpler, less urgent communication.

Although communication in the presence of hostile agents is well studied in military

contexts from the standpoint of encryption, the problem considered here is not the same.

While any encryption scheme could be used for the message content, the work presented

here assumes that the adversaries cannot decode the message. Even so, they can disrupt

communication by mimicking past messages textually: presumably past message have some

meaning to the team that uttered them. Our method of message coding based on a globally
accessible clock circumvents this latter problem.

Even when communication time is insigni�cant compared to action execution, such as in

a helicopter �ghting domain, it can be risky for agents to rely on communication. As pointed
out in [Tambe 96a], if the teammate with whom an agent is communicating gets shot down,

the agent could be incapacitated if it requires a response from the teammate. This work
also considers the cost of communication in terms of risking opponent eavesdropping and
the bene�ts of communication in terms of shifting roles among team members. However, the

problems raised by a single communication channel and the possibility of active interference
are not considered.

Another approach that recognizes the danger of basing behaviors upon multi-step com-

munication protocols is ALLIANCE [Parker 94]. Since a primary goal of this work is fault-
tolerance, only broadcast communications are used. Agents inform each other of what they

are currently doing, but never ask for responses. In ALLIANCE, the team uses time-slice
communication so that each agent periodically gets exclusive use of the single communication
channel.

A possible application of our communication method is to robots using audio commu-
nication. This type of communication is inherently single-channel and low-bandwidth. An

example of such a system is the Robot Entertainment Systems which uses a tonal lan-

guage [Fujita and Kageyama 97]. Agents can communicate by emitting and recognizing a
range of audible pitches. In such a system, the number of bits per message would have to

be lowered, but the general techniques presented in this chapter still apply.
Another example of such a communication environment is arbitrarily expandable sys-

tems. If agents aren't aware of what other agents exist in the environment, then all agents

must use a single universally-known communication channel, at least in order to initiate
communication.



Chapter 4

Layered Learning

As described in Section 3.2, our agents build up a world model and then use it as the basis

for behaviors that respond e�ectively to the environment. Internal behaviors update the
internal state while external behaviors produce executable actuator commands. Spanning
both internal and external behaviors, layered learning [Stone and Veloso 98c] is our bottom-

up hierarchical approach to agent behaviors that allows for machine learning at the various
levels.

The introduction and implementation of layered learning is one of the main contribu-
tions of this thesis. Layered learning is a machine learning paradigm de�ned as a set of
principles for the construction of a hierarchical, learned solution to a complex task. This

chapter lays out the principles of layered learning (Section 4.1) and gives an overview of the
implementation which is detailed in Chapters 5{7 (Section 4.2). In Section 4.3, I discuss

some of the general multi-agent learning issues that arise within layered learning and within
our implementation in particular. Section 4.4 presents related work.

4.1 Principles

Layered learning is de�ned by four principles. In this section, I identify, motivate, and specify

these four principles.

Principle 1: Motivated by robotic soccer, layered learning is designed for domains that

are too complex for learning a mapping directly from an agent's sensory inputs to
its actuator outputs. We assume that any domain that �ts the description in Sec-

tion 1.2.1|limited communication, real-time, noisy environments with both team-
mates and adversaries|is too complex for agents to learn direct mappings from their

sensors to actuators.

Instead, the layered learning approach consists of breaking a problem down into several

behavioral layers and using machine learning (ML) techniques at each level. Layered

learning uses a bottom-up incremental approach to hierarchical task decomposition.

Starting with low-level behaviors, the process of creating new ML subtasks continues

until reaching high-level strategic behaviors that deal with the full domain complexity.

91
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Principle 2: The appropriate behavior granularity and the aspects of the behaviors to be

learned are determined as a function of the speci�c domain. The task decomposi-

tion in layered learning is not automated. Instead, the layers are de�ned by the ML

opportunities in the domain.

Layered learning can, however, be combined with any algorithm for learning abstraction

levels. In particular, let A be an algorithm for learning task decompositions within

a domain. Suppose that A does not have an objective metric for comparing di�erent

decompositions. Applying layered learning on the task decomposition and quantifying

the resulting performance can be used as a measure of the utility of A's output.

Figure 4.1 illustrates an abstract layered learning task decomposition within a col-

laborative and adversarial multi-agent domain. Learning can begin with individual

behaviors, which facilitate multi-agent collaborative behaviors, and eventually lead to

full-team collaborative and adversarial behaviors.

Individual Behaviors

Team Behaviors

Adversarial Behaviors

Environment

World Model

High Level Goals

Opportunities
Machine Learning

Multi-Agent Behaviors

Figure 4.1: A sample task decomposition within the layered learning framework in a collaborative

and adversarial multi-agent domain. Layered learning is designed for use in domains that are too

complex to learn a mapping straight from sensors to actuators. We use a hierarchical, bottom-up

approach

Principle 3: Machine learning is used as a central part of layered learning to exploit data

in order to train and/or adapt the overall system. ML is useful for training behaviors

that are di�cult to �ne-tune manually. It is useful for adaptation when the task details

are not completely known in advance or when they may change dynamically. In the

former case, learning can be done o�-line and frozen during actual task execution. In

the latter, on-line learning is necessary: since the agent needs to adapt to unexpected

situations, it must be able to alter its behavior even while executing its task. Like

the task decomposition itself, the choice of machine learning method depends on the

subtask.
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Principle 4: The key de�ning characteristic of layered learning is that each learned layer

directly a�ects the learning at the next layer. A learned subtask can a�ect the sub-

sequent layer either (i) by providing a portion of the behavior used during training

or (ii) by creating the input representation of the learning algorithm. In general, ma-

chine learning algorithms|e.g. neural networks, Q-learning [Watkins 89], and decision

trees [Quinlan 93]|require an input and output representation, a target mapping from

inputs to outputs, and training examples. The goal of learning is to generalize the tar-

get mapping from the training examples which provide the correct outputs for only a

portion of the input space.

When using ML for behavior learning (as opposed to classi�cation), training examples

are generated by placing an agent in a situation corresponding to a speci�c instance of

the input representation; allowing it to act; and then giving some reward, or indication

of the merit of the action in the context of the target mapping. Thus previous learned

layers can (i) provide a portion of the behavior used during training by either deter-
mining the actions available or a�ecting the reinforcement received. Previous learned

layers can also (ii) create the inputs to the learning algorithm by a�ecting or determin-
ing the agent's input representation. Both possibilities are illustrated in our simulated
robotic soccer implementation described in Section 4.2.

If each learned layer in a task decomposition directly a�ects the learning at the next
layer, then the system is a layered learning system, even if the domain does not have

identical properties to those considered in this thesis. Without this characteristic, the
approach does not fall within the realm of layered learning.

In summary, layered learning is a machine learning paradigm designed to allow agents to
learn to accomplish a goal in a complex environment. Layered learning allows for a bottom-
up de�nition of agent capabilities at di�erent levels in a complex domain. Machine learning

opportunities are identi�ed when data is available or the task is unpredictable and hand-
coded solutions are too complex to generate. Individual learned behaviors are organized,

learned, and combined in a layered fashion, each facilitating the creation of the next. The

principles of the layered learning technique are summarized in Table 4.1.

1. A mapping directly from sensors to actuators is not tractably learnable.

2. A bottom-up, hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt. Learning occurs separately at

each level.

4. The output of learning in one layer feeds into the next layer.

Table 4.1: The key principles of layered learning.
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4.2 Instantiation in Simulated Robotic Soccer

One tempting way to approach any new agent-based domain is to try to learn a direct

mapping from the agent's sensors to its actuators. However, a quick consideration of the

robotic soccer domain is enough to convince oneself that it is too complex for such an

approach: the space of possible sensory inputs is huge, there are many possible actions, and

there is a large amount of hidden state. Such complexity is an important characteristic of

the domain for the purposes of this thesis, since robotic soccer is meant to represent other

domains which are too complex for the straightforward approach.

Table 4.2 illustrates a possible set of learned behavior levels within the simulated robotic

soccer domain that correspond to the abstract task decomposition represented in Figure 4.1.

We identify a useful low-level skill that must be learned before moving on to higher-level

strategies. Then we build upon it to create higher-level multi-agent and team behaviors.

Using our own experience and insights to help the agents learn, we acted as human coaches
do when they teach young children how to play real soccer. Section 4.2 gives an overview of

our layered learning implementation in the simulated robotic soccer domain and discusses
how the implementation could be extended further.

Layer Strategic level Behavior type Example

1 robot{ball individual ball interception

2 one-to-one player multi-agent pass evaluation

3 one-to-many player team pass selection

4 team formation team strategic positioning

5 team-to-opponent adversarial strategic adaptation

Table 4.2: Examples of di�erent behavior levels in robotic soccer.

4.2.1 Implemented Learned Layers

Our implementation consists of three learned subtasks, each of which is described more fully
along with extensive empirical tests later in the thesis:

1. Ball Interception | an individual skill (Chapter 5).

First, the agents learn a low-level individual skill that allows them to control the

ball e�ectively. While executed individually, the ability to intercept a moving ball is

required due to the presence of other agents: it is needed to block or intercept opponent
shots or passes as well as to receive passes from teammates. As such, it is a prerequisite

for most ball-manipulation behaviors. We chose to have our agents learn this behavior
because it was easier to collect training data than to �ne-tune the behavior by hand1.

Since the skill does not need to change during the course of play, we are able to use

o�-line learning, speci�cally a neural network with four inputs.

1
The learning was done in an earlier implementation of the soccer server in which agents did not receive

any velocity information when seeing the ball. Thus the ball interception skill described in Appendix B was

not applicable.
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2. Pass Evaluation | a multi-agent behavior (Chapter 6).

Second, the agents use their learned ball-interception skill as part of the behavior for

training a multi-agent behavior. When an agent has the ball and has the option to

pass to a particular teammate, it is useful to have an idea of whether or not the pass

will actually succeed if executed: will the teammate successfully receive the ball? Such

an evaluation depends on not only the teammate's and opponents' positions, but also

their abilities to receive or intercept the pass. Consequently, when creating training ex-

amples for the pass-evaluation function, we equip the intended pass recipient as well as

all opponents with the previously learned ball-interception behavior. Again, we choose

to have our agents learn the pass-evaluation capability because it is easier to collect

training data than to construct it by hand. Working under the assumption that the

concept would remain relatively constant from game to game, we again use an o�-line

learning algorithm, namely the C4.5 decision tree training algorithm [Quinlan 93]. De-

cision trees are chosen over neural networks because of their ability to ignore irrelevant

attributes: in this case, our input representation has 174 continuous attributes.

3. Pass Selection | a collaborative and adversarial team behavior (Chapter 7).

Third, the agents use their learned pass-evaluation capability to create the input space
for learning a team behavior. When an agent has the ball, it must decide to which

teammate it should pass the ball2. Such a decision depends on a huge amount of
information including the agent's current location on the �eld, the current locations
of all the teammates and opponents, the teammates' abilities to receive a pass, the

opponents' abilities to intercept passes, teammates' subsequent decision-making capa-
bilities, and the opponents' strategies. The merit of a particular decision can only
be measured by the long-term performance of the team as a whole. In this sense,

Q-learning, a reinforcement learning method for maximizing long-term discounted re-
ward, seemed applicable. However, Q-learning is known for working poorly with large

input representations. Therefore, we drastically reduce the input space with the help
of the previously learned decision tree: rather than considering the positions of all
of the players on the �eld, only the pass evaluation for the possible passes to each

teammate are considered. Nonetheless, due to the multi-agent and opaque transition

characteristics of the task, Q-learning still does not apply directly. Instead, we create

TPOT-RL, a new multi-agent reinforcement learning method motivated by Q-learning.
In this case, since the learned behavior is meant to adapt to a dynamically changing

environment (changing in part because teammates are learning their decision-making

policies simultaneously), we need an on-line learning method, which TPOT-RL is.

The learning methods used for each of the above behaviors are summarized in Table 4.3.
Possible implementations of the last two layers in Table 4.2 are future work and are described

in Section 4.2.2.

The three learned layers described above illustrate the principles of the layered learning
paradigm as laid out in Section 4.1:

2
It could also choose to shoot. For the purposes of this behavior, the agents are not given the option to

dribble.
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Layer Learned behavior Learning method Training type

1 ball interception neural network o�-line

2 pass evaluation decision tree o�-line

3 pass selection TPOT-RL on-line

Table 4.3: The learning methods used for the implemented layers in the simulated robotic soccer

layered learning implementation.

� The decomposition of the task into smaller subtasks enables the learning of a more

complex behavior than would be possible if learning straight from the agents' sensory

inputs (see Section 4.4 for supporting evidence).

� The hierarchical task decomposition is constructed in a bottom-up, domain-dependent

fashion.

� Machine learning methods are chosen or created to suit the subtask in question. They

exploit available data to train di�cult behaviors (ball interception and pass evaluation)
or to adapt to changing/unforeseen circumstances (pass selection).

� Learning in one layer feeds into the next layer either by providing a portion of the
behavior used for training (ball interception { pass evaluation) or by creating the
input representation (pass evaluation { pass selection).

4.2.2 Future Learned Layers

This section carries the robotic soccer example of layered learning beyond its implementation
in this thesis, describing how the principles of layered learning could be used to create

additional, higher-level learned layers. In particular, I discuss how to implement the last two
layers in Table 4.2|strategic positioning and strategic adaptation|on top of the currently-
implemented learned layers.

The strategic positioning and strategic adaptation behaviors build upon two character-
istics of the implementation of the pass-selection learning that are not described above:

� When using TPOT-RL, the simulated robotic soccer agents stay in a �xed formation
and do not switch positions.

� TPOT-RL training is done against a �xed opponent.

In contrast, the following new behaviors would facilitate the learning of the agent positioning

which best suits the pass-selection algorithm and the learning of which learned policy to use

against a new opponent.

4. Strategic Positioning | a team behavior.

The team of agents could use their pass-selection behavior as part of the training

behavior for creating another team behavior. As described in Chapter 3, the team can

play in any of a number of di�erent formations. Each player also has some 
exibility
within its position. Our training of the pass-selection behavior uses players in an
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arbitrarily chosen �xed formation. However, there is no reason to believe that this

formation is the best for learning against a particular opponent. If allowed to use the

TPOT-RL learning algorithm while simultaneously adjusting their formation, the team

may be able to perform even better. The position adjustments could be done using

observational reinforcement learning (RL), another on-line algorithm [Andou 98].

5. Strategic Adaptation | an adversarial behavior.

Finally, the agents comprising the team could use their combined strategic-

positioning/pass-selection behaviors as the input representation for strategic adap-

tation. The previous behavior is trained against a �xed opponent. However, there are

many di�erent possible opponent strategies. By training the strategic-positioning/pass-

selection behavior against a variety of opponents, several di�erent policies could be

learned. Then, the opportunity arises to try to match the current opponent with the

most similar past opponent as quickly as possible so that the previously learned policy

can be adopted. A possible o�-line learning approach to this problem would be to
characterize teams by a set of performance statistics (e.g. average player location) over

the course of a �xed time period. Based on this representation, a memory-based algo-
rithm could be used to match teams with the previously seen opponents that behave
most similarly. Then during games, after the �xed evaluation period has identi�ed a

similar past opponent, the pass-selection policy that was learned against this similar
opponent team could be adopted by the agents.

The learning methods proposed for both of the above behaviors are summarized in Table 4.4.
Again, just as is the case for the implemented behaviors, these new behaviors follow the

principles of layered learning as laid out in Section 4.1.

Layer Learned behavior Learning method Training type

4 strategic positioning observational RL on-line

5 strategic adaptation memory-based o�-line

Table 4.4: The proposed learning methods for the future layers in the simulated robotic soccer

layered learning implementation.

4.3 Discussion

In this section I discuss some issues pertaining to layered learning and our implementation

thereof as they relate to multi-agent learning in general. I begin by bringing up several issues

related to the relative merits of, and appropriate times for, o�-line and on-line learning. I

also frame the above implementation within our team member agent architecture and discuss
the possible propagation of errors among the learned behaviors in a layered learning system.

4.3.1 On-line and O�-line Learning

As illustrated in Section 4.2, the type of learning used at each layer in layered learning

depends upon the subtask characteristics. We use neural networks and decision trees to learn
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ball interception and pass evaluation. These o�-line approaches are appropriate for �xed

tasks that can be trained outside of game situations. In fact, o�-line learning is necessary for

such basic skills due to the fact that no individual gets enough training examples in game

situations to learn them on-line.

This o�-line learning of basic skills is similar to chunking [Newell 90], something done

by human experts in many domains. Performing tasks closely related to simulated robotic

soccer, human athletes spend a good deal of time acquiring basic skills so that they can

execute them \automatically" during competition. For example, human soccer players, like

our robotic soccer agents, learn to control and pass a ball through hours and hours (over

many years) of practice outside of game situations.

Similarly, it has been documented that chess experts, rather than reasoning from �rst

principles all the time, learn to recognize common patterns of pieces on the board [Newell

and Simon 72]. Their chunking allows them to quickly eliminate or focus on certain lines of

play so that they can e�ciently evaluate their options on a given move.

Unlike human learners, when AI agents use o�-line learning, there is the opportunity
for them to share their learned knowledge with other team members. Rather than each

individual agent needing to learn a particular skill, a single agent can do the learning and
transfer knowledge to teammates. In fact, we use this method of knowledge sharing for both
the ball-interception and pass-evaluation layers.

In PTS domains (see Chapter 3) such as robotic soccer, even on-line learning can be
shared to some extent. While the agents may learn di�erent things due to their di�erent
experiences during execution, they can still share their experiences completely at the periodic

team synchronization opportunities. This approach is the one we take for the learned pass-
selection behavior: each agent learns a policy while staying in a �xed position within a �xed
formation. However, when given the opportunity, the agents share their learned policies so

that they can subsequently switch positions freely.

This sharing of all learned information leads to completely homogeneous agents. It is in
contrast with attempts to promote behavioral diversity in learning teams of agents [Balch

98]. While it is important that not all agents in a team are doing exactly the same thing at
the same time, there is no need to enforce di�erence in behavior capabilities or knowledge.

Rather than using heterogeneous agents, we have our agents decompose and share their task

via their 
exible team formations. Although at any given time each agent �lls a di�erent

role, each agent is capable of switching to any other role.

Two other common issues related to on-line multi-agent learning are exploration ver-

sus exploitation and the escalating arms race problem. On-line behavior learning methods,
whether or not they involve multiple agents, must contend with the tradeo� between explo-

ration and exploitation. Exploration is acting sub-optimally given the available information

in order to gather additional information. On the other hand, exploitation is always taking
the best available action given the current state of knowledge at the cost of possibly miss-

ing new opportunities. Particularly in simulated robotic soccer, where games last only 10

minutes, agents can only a�ord to explore on-line brie
y. In fact, even our on-line pass-

selection training is executed over the course of several games against a �xed opponent using

Boltzmann exploration: a probabilistic exploration method that gradually increases the rate
of exploitation. And the proposed strategic adaptation learning method is executed o�-line
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with only a brief (perhaps one minute) on-line period to gather performance statistics for the

current opponent. In order to adapt on-line within the course of a single game, the learning

method must be capable of almost immediate exploitation.

The escalating arms race problem is a phenomenon occurring in on-line multi-agent

learning systems with concurrently adapting opponents. As one team changes its strategy

to counteract the current opponent strategy, the opponent simultaneously alters its strategy

to improve its own performance. In this way, the target concept to be learned constantly

shifts and neither team is able to converge to a stable strategy. Our layered learning imple-

mentation sidesteps this issues by training against �xed opponents. We have not attempted

to learn against another adaptive team.

4.3.2 Framing within the Team Member Agent Architecture

In the context of the team member agent architecture presented in Chapter 3, the imple-
mented ball-interception and pass-selection layers are external behaviors, directly a�ecting

the agent's actions. On the other hand, the pass-evaluation layer a�ects the agent's internal
state: it is an internal behavior. Strategic positioning and strategic adaptation are also
internal behaviors as they a�ect aspects of the formation and overall strategy which are

components of the internal state via the locker-room agreement.

4.3.3 Error Propagation

An issues that is often raised in regards to layered learning is the problem of error propa-
gation. That is, since the learning at each layer a�ects the learning at subsequent layers, if
something goes wrong, how can we determine which layer is to blame? Or conversely, if the

team performs well, which layer deserves the credit? While this question is worth careful
examination, such an examination is not a part of this thesis. When testing the e�ectiveness

of each new learned layer, we isolate it by comparing agent performance with and without

the new layer. Thus we validate that the learning does indeed improve performance. How-

ever any particular error that does occur with the new layer could be due to that layer or to

any previous layer.

One often overlooked fact with regard to error propagation is that each additional layer
does not necessarily add to the overall error rate. Instead, it is possible for higher-level

behaviors to learn to overcome errors in the underlying layers. For example, in our robotic

soccer implementation, the pass-evaluation function may be able learn which passes will be
likely failures for the ball-interception function and therefore degrade the predicted likelihood

of completing the pass. Similarly, the pass-selection routine may be able to compensate for
faulty evaluations by the pass-evaluation layer by, for example, requiring higher success

con�dences for passes in critical situations.

A detailed study of error propagation and compensation within layered learning imple-
mentations is a promising area for future research.
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4.4 Related Work

In this section, I brie
y discuss some of the most related work to layered learning along three

dimensions. (Related work for the thesis as a whole is discussed in detail in Chapter 9.) First,

I substantiate my claim that robotic soccer is too complex a domain for learning straight

from sensors to actuators. Second, I present other layered architectures. Third, I bring some

other hierarchical learning approaches to attention.

4.4.1 Robotic Soccer

One of the principles of layered learning as laid out in Section 4.1 is that it is to be used

in domains that are too complex for learning a mapping directly from sensors to actuators.
In general, we assume that any domain that �ts the description in Section 1.2.1|limited

communication, real-time, noisy environments with both teammates and adversaries|is such
a domain. In particular, empirical evidence indicates that robotic soccer is such a domain:

layered learning enables the creation of more successful behaviors than could be achieved if
using the agents' sensors as the input representation for a single, all-encompassing learned
behavior.

This evidence is based on two attempts to do just that|learn straight from the agents'
sensors|in the same robotic soccer domain. First, Luke et al. [98] set out to create a

completely learned team of agents using genetic programming [Koza 92]. However, the
ambition was eventually scaled back and low-level player skills were created by hand as the
basis for learning. The resulting learned team won two of its four games at the RoboCup-97

competition, losing in the second round. In that same competition, our CMUnited-97 team,
using layered learning, made it to the semi-�nals (fourth round) and, although never directly
matched against the genetic programming team, was qualitatively clearly a better team.

The following year, at RoboCup-98, another genetic programming attempt at learning
the entire team behavior was made [Andre and Teller 99]. This time, the agents were

indeed allowed to learn directly from their sensory input representation. While making some
impressive progress given the challenging nature of the approach, this entry was unable to
advance past the �rst round in the tournament.

Given the complex nature of the robotic soccer domain, our initial inclination was that
it would be impossible to create successful behaviors by learning straight from sensors to

actuators: the space of possible sensory inputs is huge, there are many possible actions, and

there is a large amount of hidden state. Combined with the anecdotal evidence provided
by the two generally unsuccessful attempts at such learning, we feel con�dent in our claim

that layered learning's decomposition of the robotic soccer task into smaller subtasks enables
the creation of more complex and successful learned behaviors than are possible if learning

straight from the agents' sensory inputs.

For a further discussion of other learning approaches within the robotic soccer domain,

see Chapter 9 (Section 9.2).
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4.4.2 Layered Architectures

The layered learning approach is somewhat reminiscent of Brooks' subsumption architec-

ture [Brooks 86] which layers reactive control modules, allowing high-level controllers to

override lower-lever ones. Each control level is capable of controlling the robot on its own up

to a speci�ed level of functionality. Brooks implements his approach on real robots, building

controllers for simple tasks such as avoiding collisions and wandering around.

Mataric brings the subsumption architecture to a multi-agent learning domain, building

controllers on top of a set of learned basis behaviors [Mataric 95]. Mataric's basis behaviors

are chosen to be necessary and su�cient for the learning task, while remaining as simple and

robust as possible. Since Mataric's robots were to learn social behaviors such as 
ocking and

foraging, they were equipped with basis behaviors such as the ability to follow each other

and the ability to wander without running into obstacles.

While layered learning also makes use of multiple behavior layers, the robotic soccer
task is much more complex: the agents must be able to generalize across situations, handle

adversaries, and achieve complex goals. In order to move quickly to high-level behaviors,
the commitment to have every layer be completely able to control the robot is abandoned.
Instead, many situation-speci�c (but as general as possible) behaviors are produced which

are then managed by higher-level behaviors. In addition, the robotic soccer behaviors are
not entirely reactive, building upon the agents' internal state which changes over time.
Nevertheless, the idea of building higher levels of functionality on top of lower levels is

retained. It is in producing the situation-speci�c behaviors that ML techniques are used.

Also building on top of the subsumption architecture, the ALLIANCE systems was built

to deal with \loosely-coupled, largely independent tasks" for heterogeneous robots [Parker
94]. Example tasks are box pushing, janitorial service (dust, empty trash, clean 
oors), and
hazardous waste cleanup. ALLIANCE assumes that the robots have the abilities to do each

of the low-level tasks; it provides the coordination mechanism. The L-ALLIANCE variant
learns some of the system parameters indicating, for instance, how good each robot is at
performing each task. Like in Mataric's work, the learning in L-ALLIANCE is at the level

of choosing among hard-wired behaviors: the learning does not cross multiple layers in the
architecture. In addition, the tasks considered are neither real-time nor adversarial.

As opposed to the purely reactive subsumption architecture, three-layer architectures

include behaviors that refer to an agent's internal state. The three layers are the controller,
which executes purely reactive behaviors mapping sensors to actuators; the sequencer, which

references past world states in order to select which reactive behavior to use at a given time;
and the deliberator, which predicts future states in order to do time-consuming computations

such as \planning and other exponential search-based algorithms" [Gat 98].

INTERRAP [Mueller 96] is a recent example of a three-layer architecture which is de-

signed for multi-agent systems. In INTERRAP, the highest layer includes collaborative

reasoning using a BDI [Rao and George� 95] model to consider other agents' goals and in-
tentions and to resolve con
icts. INTERRAP does not include any machine learning. Indeed,

learning is not a consideration in three-layer architectures in general [Gat 98].

The layers in layered learning are orthogonal to the layers in a three-layer architecture.

Layered learning could easily be used within a three-layer approach with learned layers in-
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tersecting the controller, the sequencer, and the deliberator in any way. While our team

member agent architecture is not a three-layer approach since there are no purely reactive

behaviors (even the lowest-level skills rely on predictions of future world states based on cur-

rent and past states), robotic soccer could be implemented within the three-layer paradigm

while retaining the same learned layers: ball interception would be a part of the controller;

pass evaluation and pass selection would be part of the sequencer; and strategic positioning

and strategic adaptation would be part of the deliberator.

Layered learning can be used within existing layered architectures or within most other

robotic architectures. As long as there are behaviors which build upon each other in some

ways, then learning in one behavior can be used to facilitate or in
uence learning in subse-

quent behaviors.

4.4.3 Hierarchical Learning

The original hierarchical learning constructs were devised to improve the generalization of a

single learning task by running multiple learning processes. Both boosting [Shapire 90] and
stacked generalization [Wolpert 92] improve function generalization by combining the results

of several generalizers or several runs of the same generalizer. These approaches contrast
with layered learning in that the layers in layered learning each deal with di�erent tasks.
Boosting or stacked generalization could potentially be used within any given layer, but not

across di�erent layers.

More in line with the type of hierarchical learning discussed in this thesis are hierarchical

reinforcement learning algorithms. Because of the well-known \curse of dimensionality"
in reinforcement learning|RL algorithms require time that is polynomial in the number
of states [Dietterich 98]|RL researchers have been very interested in hierarchical learning

approaches. As surveyed in [Kaelbling et al. 96], most hierarchical RL approaches use gated
behaviors:

There is a collection of behaviors that map environment states into low-level
actions and a gating function that decides, based on the state of the environ-

ment, which behavior's actions should be switched through and actually exe-

cuted. [Kaelbling et al. 96]

In some cases the behaviors are learned [Mahadevan and Connell 91], in some cases the

gating function is learned [Maes and Brooks 90], and in some cases both are learned [Lin
93]. In this last example, the behaviors are learned and �xed prior to learning the gating

function. On the other hand, feudal Q-learning [Dayan and Hinton 93] and the MAXQ
algorithm [Dietterich 98] learn at all levels of the hierarchy simultaneously. A constant

among these approaches is that the behaviors and the gating function are all control tasks

with similar inputs and actions (sometimes abstracted). In the RL layer of our layered
learning implementation, the input representation itself is learned. In addition, none of the

above methods has been implemented in a large-scale, complex domain.

In all of the above RL approaches, like in layered learning, the task decomposition is

constructed manually. However, there has been at least one attempt at the challenging

task of learning the task decomposition. Nested Q-learning [Digney 96] generates its own
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hierarchical control structure and then learns low-level skills at the same time as it learns to

select among them. Thus far, like other hierarchical RL approaches, it has only been tested

on very small problems (on the order of 100 states in this case).

The hierarchical RL research mentioned in this section is all done with single learning

agents. For a full discussion of multi-agent learning approaches, see Chapter 9 (Section 9.1).
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Chapter 5

Learning an Individual Skill

As presented in Chapter 4, the initial layer in our simulated robotic soccer layered learn-
ing implementation is an individual skill, namely ball interception. In this chapter, I de-

scribe our ball-interception learning, the initial learning experiments in the RoboCup soccer
server [Stone and Veloso 96c, Stone and Veloso 98c]. First, in Sections 5.1 and 5.2, I moti-

vate the choice of ball-interception as our initial learned layer and describe the experimental
setup. Then, in Section 5.3, I present our detailed empirical results demonstrating the e�ec-
tiveness of the learned behavior. Sections 5.4 and 5.5 are devoted to discussion and related

work.

As the experiments reported in this chapter were carried out in an earlier version of the
soccer server|version 2|there were some di�erences from the current version 4 as described

in Chapter 2. For example, when seeing an object, the agents only received information
pertaining to its distance and angle from the agent: never velocity information. I point out

this and other di�erences between server versions when they are relevant to the text.

5.1 Ball Interception in the Soccer Server

Just as young soccer players must learn to control the ball before learning any complex
strategies, robotic soccer agents must also acquire low-level skills before exhibiting complex

behaviors. In multi-agent systems in general, it is crucial that the agents are individually
skilled: the most sophisticated understanding of how to act as part of a team is useless

without the ability to execute the necessary individual tasks. Therefore, we de�ned an

individual skill as the lower abstraction level to be learned in the layered learning approach.

The low-level skill we identi�ed as being most essential to our soccer server agents was

the ability to intercept a moving ball. This skill is ubiquitous in all soccer-type frameworks.

Intercepting a moving ball is considerably more di�cult than moving to a stationary ball
both because of the ball's unpredictable movement (due to simulator noise) and because the

agent may need to turn and move in such a direction that it cannot see the ball, as illustrated
in Figure 5.1.

Intercepting a moving ball is a task that arises very frequently in the soccer server. Unless

the ball has decelerated completely without an agent collecting it, this skill is a prerequisite
for any kicking action. It is used by agents �lling all the di�erent roles: goaltenders and

105
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defenders must intercept shots and opponents' passes, while mid�elders and forwards must

frequently \intercept," or receive, passes to them from teammates.

Ball interception is a di�cult task in the soccer server because of the noise in the ball's

motion and because the agents have limited sensing capabilities. As presented in Section 2.2,

each agent has a limited visible angle and it gets sensory information at discrete intervals

(send step = 250 msec in soccer server version 2). Often when an agent is trying to intercept

the ball, the ball is moving roughly in the direction of the agent, the condition which causes

the di�culty illustrated in Figure 5.1. The ball can move past the agent as it goes to where

the ball used to be. But if the agent turns to move to where the ball will be, it may lose

sight of the ball. Since the ball's motion is noisy, the agent cannot predict its motion while

it is not visible.
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Figure 5.1: The challenge of ball interception. If the defender moves directly towards the ball

(left arrow), it will miss entirely. If the defender turns to move in the appropriate direction (right

arrow), it may no longer be able to see the ball.

There were two possible methods for equipping our agents with the ability to intercept

a moving ball:

Analytically estimating the ball's velocity from its past positions (recall that velocity in-
formation was not directly available), and predicting its future motion based on this

velocity.

Empirically collecting examples of successful interceptions, and using a supervised learning

technique to create a general ball-interception behavior.

We implemented both approaches. For the empirical approach, we used neural networks

(NNs) as the supervised learning technique.

As it turns out, the two approaches were roughly equal both in e�ort of implementation
and in e�ectiveness (see Section 5.3). As the initial learning experiment in our layered
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learning implementation, we preferred the empirical approach for its appropriateness to our

machine learning paradigm. Isolating a situation that requires this skill, we drilled the

agents, providing the appropriate reinforcement, until they were able to learn to execute this

skill reliably.

5.2 Training

In order to train the ball-interception behavior, we focus on a speci�c instance of the behavior:

a defender blocking a shot from an opponent. The training setup is as follows:

� The defender starts at a distance of 4 in front of the center of the goal, facing directly

away from the goal.

� The ball and shooter are placed randomly at a distance between 20 and 30 from the

defender.

� For each training example, the shooter kicks the ball directly towards the defender

with maximum power (Power = 100).

� The defender's goal is to save the shot. A save is a successful ball interception; a goal

is an unsuccessful attempt in which the ball enters the goal; a miss is an unsuccessful

attempt in which the ball goes wide of the goal.

Due to the noise in the simulator, the ball does not always move directly at the defender: if
the defender remains still, the ball hits it only 35% of the time. Furthermore, if the defender

keeps watching the ball and moving directly towards it, it is only able to stop the ball 53%
of the time.

The defender's behavior during training is more complex than the shooter's. As we are

using a supervised learning technique, it must �rst gather training data by acting randomly
and recording the results of its actions. As its input representation for learning, the defender

notices the ball's distance at time t (BallDistt), the ball's relative angle at time t (BallAngt),

and the ball's distance at the time when the previous visual information string was received

(BallDistt�1). As no explicit velocity information is available in version 2 of the soccer server,

BallDistt�1 serves as an indication of the ball's rate of movement. It would have been possible

to base the velocity estimate on several past ball positions. However, we found that a single
previous position was su�cient to allow the agent to learn to intercept the ball. Figure 5.2

illustrates the experimental setup, indicating the starting positions of both agents and the

ball.

The defender's goal is to determine its turn angle TurnAngt or the angle it should turn at
time t relative to the ball's angle in order to intercept the ball. The defender acts randomly
during training according to the following algorithm:

� While BallDistt > 14, Turn(BallAngt)

� When BallDistt � 14, set TurnAngt = Random Angle between -45o and 45o.
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Figure 5.2: The range of training situations for learning ball interception. At the beginning of

each trial, the defender starts at a distance of 4 from the goal, while the ball and shooter are placed

randomly at a distance between 20 and 30 from the defender. BallDist is the distance from the

defender to the ball. When the defender is looking straight at the ball, as in this �gure, BallAng

= 0.

� Collect the features of the training instance: BallDistt, BallAngt, BallDistt�1, and
TurnAngt.

� Turn(BallAngt + TurnAngt).

� Dash forward.

� Gather classi�cation as a successful training instance (save) or an unsuccessful instance

(goal or miss).

Until the ball is within a given range (14), the defender simply watches and faces the ball,

thus ensuring that all of the world features used for training are known. Then, once the

ball is in range, the defender turns a random angle (within a range) away from the ball and

dashes. This procedure of gathering data does not produce a successful training instance
on every trial: only the saves correspond to the correct mapping from world features to the

agent's action. Since the defender acts randomly during training, it often misses the ball

(76% of the time). However, it can learn based on the successful training examples.

Our domain is characterized by an agent not always knowing the e�ects of its actions due

to a large amount of hidden state in the world. If the defender is not facing the ball at the
end of a trial, it does not know the ball's location, and therefore it does not know whether

its interception attempt was successful or not. In order to automate the training process, we

use an omniscient, omnipotent centralized agent. The centralized agent classi�es each trial

as a failure when the ball gets past the defender (a goal or miss) or as a success when the

ball starts moving back towards the shooter (a save). Only saves are considered successful
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training instances and thus used for training. At the end of the trial, the centralized agent

resets the positions of the defender, the shooter, and the ball for another trial.

The goal of learning is to allow the defender to choose the appropriate turn angle

(TurnAngt) based upon BallDistt, BallAngt, and BallDistt�1. In order to learn the TurnAngt,

we chose to use a Neural Network (NN). NN's are appropriate for the task because of their

ability to learn continuous output values from continuous inputs.

After a small amount of experimentation with di�erent NN con�gurations, we settled on

a fully-connected net with 4 sigmoid hidden units and a learning rate of 10�6. The weights

connecting the input and hidden layers used a linearly decreasing weight decay starting at

.1%. We used a linear output unit with no weight decay. We trained for 3000 epochs. This

con�guration proved to be satisfactory for our task with no need for extensive tweaking of

the network parameters.

5.3 Results

5.3.1 Number of Training Examples

In order to test the NN's performance, we ran 1000 trials with the defender using the output
of the NN to determine its turn angle. The behaviors of the shooter and the centralized
agent are the same as during training. Thus, the testing examples are drawn from the same

distribution as the training data. The results for NNs trained with di�erent numbers of
training examples are displayed in Figure 5.3. The misses are not included in the results since

those are the shots that are far enough wide that the defender does not have much chance
of even reaching the ball before it is past. The �gure also records the percentage of shots
on-goal (Saves+Goals) that the defender saved. Reasonable performance is achieved with

only 300 training examples, and examples beyond about 750 do not improve performance.
The defender is able to save almost all of the shots despite the continual noise in the ball's
movement.

5.3.2 E�ect of Noise in the Simulation

In order to study the e�ect of noise in the ball's movement upon the defender's performance,
we varied the amount of noise in the soccer server (the ball rand parameter). Figure 5.4

shows the e�ect of varying noise upon the defender when it uses the trained NN (trained
with 750 examples) and when it moves straight towards the ball. The default ball rand

value in the soccer server is .05. The \straight" behavior always sets TurnAng=0, causing

the defender to go directly towards where it last saw the ball. Notice that with no ball

noise, both the straight and learned behaviors are successful: the ball and the defender move

straight towards each other. As the noise in the ball's motion increases, the advantage of

using the learned interception behavior becomes signi�cant. The advantage of the NN can

also be seen with no noise if the shooter aims slightly wide (by 4 degrees) of the goal's center.

Then the defender succeeds 99% of the time when using the NN, and only 10% of the time

when moving straight towards the ball.
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Saves
Goals

Saves/On-goal

Training Saves

Examples Saves(%) Goals(%) Goals+Saves(%)

100 57 33 63

200 73 18 80
300 81 13 86

400 81 13 86
500 84 10 89

750 86 9 91

1000 83 10 89
4773 84 9 90

Figure 5.3: The defender's performance when using NNs trained with di�erent numbers of training

examples. A \save" is a successful interception of the ball, a \goal" is a failed attempt. The last

column of the table indicates the percentage of shots that were \on goal" that the defender saved.

5.3.3 Comparison with other Methods

From an examination of the weights of the trained NN, it is apparent that the NN focuses

primarily upon the ball's angle (BallAngt). Consequently, we were curious to try a behavior
that simply uses a lookup table mapping BallAngt to the typical output of the NN for that

BallAngt. We identi�ed such outputs for BallAngt ranging from -7 to 7. Using this one

dimensional lookup-table, the defender is able to perform almost as well as when using the

full NN (see Table 5.1).

We also were curious about how well the NN would compare to analytical methods. As a
basis for comparison, we used a behavior constructed by another student in the project whose

goal was to create the best possible analytic behavior1. The resulting behavior computes
the ball's motion vector from its current and previous positions and multiplies this vector

by 3, thus predicting the ball's position two sensory steps (500 msec) into the future. The

1
We thank Michael Bowling for creating this behavior. Michael Bowling joined the robotic soccer project

as a full-time graduate student in 1998. He now focuses on the real robots [Veloso et al. 99a].
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Noise Behavior Saves(%) Goals(%) Goals+Saves(%)

0 NN 100 0 100

Straight 100 0 100
.05 NN 86 9 91

Straight 53 35 60

.06 NN 75 13 86

Straight 47 35 57
.07 NN 68 14 83

Straight 40 36 53

.08 NN 59 16 78
Straight 34 36 49

.09 NN 53 17 75

Straight 32 33 50

.1 NN 49 18 73

Straight 28 32 47

Figure 5.4: The defender's performance when using NNs and moving straight with di�erent

amounts of ball noise. A \save" is a successful interception of the ball, a \goal" is a failed attempt.

defender's TurnAngt is then the angle necessary to move directly towards the end of the

lengthened vector. In particular, if (xt; yt) is the ball's current position, and (xt�1; yt�1) was

its position at the time of the previous visual input (250 msec in the past), then the agent

aims at the point (xt�1; yt�1) + 3((xt; yt) � (xt�1; yt�1)). Table 5.1 shows the results of the

lookup table and analytic methods as compared to the learned NN.
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Defender

Behavior Saves(%) Goals(%) Saves/(Goals+Saves) (%)

NN 86 9 91

Lookup Table 83 8 91

Analytic 82 13 86

Table 5.1: The defender's performance when using a NN, a one-dimensional lookup table, and an

analytic method to determine the TurnAngt.

5.4 Discussion

In this chapter I presented the initial layer of our layered learning implementation. We used

a supervised learning technique to allow agents to learn a useful individual skill in a multi-

agent domain. In addition to the successful learned method, we investigated other methods

of achieving the same behavior functionality, verifying that the learning approach compares
favorably with the other options.

Ball interception is a ubiquitous skill in robotic soccer. Not only our agents in the soccer

server, but also all other agents in any real-time robotic soccer domain must be able to
intercept the ball. Another ball-interception method for the soccer server that relies on

knowing the instantaneous ball velocity is used by the AT Humboldt-97 team [Burkhard et

al. 98]. It is similar to our own hand-coded ball-interception skill for version 4 of the soccer
server described in Appendix B (Section B.1.4). Also in Appendix B (Section B.2.2), there

is a description of the ball-interception behavior used by our real robotic agents.

As mentioned above, the learning described in this chapter is done in an early imple-
mentation of the soccer server in which agents do not receive any velocity information when

seeing the ball. Thus the ball interception skill described in Appendix B is not applicable.
Although we eventually hand-coded the ball interception skill for use in the new version

of the server, the next learned layer|to be described in Chapter 6|uses the learned ball-
interception behavior described in this chapter as part of its training behavior. Thus, the
two layers link as advocated by the principles of layered learning.

Also in line with the principles of layered learning, the ball-interception subtask is an
important initial skill for which it is possible to gather training data. Within the context of
layered learning, the subtask is given as part of the task decomposition. We chose the NN

machine learning method in order to exploit data to learn a continuous action parameter

from three continuous features of the world state as inputs. Both of these choices|the

subtask itself and the ML method|are heuristic choices. Other options may have worked
equally well.

5.5 Related Work

Although the learned ball-interception described in this chapter was the �rst learning research

conducted in the soccer server, individual behaviors had been previously learned in other

robotic soccer systems. This section discusses these other early robotic soccer learning
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systems2.

Prior to conducting the research reported in this chapter, we used neural networks to

teach an agent to shoot a moving ball into a goal in a simulator based closely upon the

Dynasim system [Sahota 96]. The simulator models the non-holonomic wheeled Dynamite

robots [Sahota et al. 95]. In this scenario, we were able to use one neural network to time

the agent's approach towards the ball, and another to aim the ball. The learned behavior

successfully enabled the agent to redirect a moving ball with varying speeds and trajectories

into speci�c parts of the goal. By carefully choosing the input representation to the neural

networks so that they would generalize as much as possible, the agent was able to use

the learned behavior in all quadrants of the �eld even though it was trained in a single

quadrant [Stone and Veloso 98d].

Learning was applied in both simulated and real robotic, to hit a stationary ball into the

goal using the concept of learning from easy missions [Asada et al. 94a]. By �rst placing

the ball directly in front of the goal and then gradually moving it farther away, thus making
the task harder, the learning time was reduced from exponential to linear in the size of the
state space within an RL framework. The robots achieved 70% success in simulation and

40% success in the real world.
Another early example of learning an individual skill in the RoboCup soccer server in-

volved using a neural network to enable an agent to learn when to shoot and when to
pass [Matsubara et al. 96]. An agent was given the ball near the opponent's goal with a
goaltender blocking the way and a teammate nearby. Based on the positions of the ball, the

goaltender, and the teammate, the agent with the ball learned when it was best to shoot
directly at the goal and when it was best to pass.

In a similar setup, using the same Dynasim-based simulator mentioned above, we used

memory-based learning to allow an agent to learn when to shoot and when to pass the
ball [Stone and Veloso 96a]. This learning was of an individual skill since the goaltender and

the teammate used deterministic, �xed behaviors.

2
A full discussion of related robotic soccer systems, including more recent learning approaches, appears

in Chapter 9 (Section 9.2).
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Chapter 6

Learning a Multi-Agent Behavior

In this chapter I present a learned multi-agent behavior, the second layer in our layered
learning implementation of simulated robotic soccer agents. Pass evaluation|the estimation

of whether or not a pass to a particular teammate will succeed|is a necessary but di�cult
capability with which to equip our agents. However, by collecting data and using it to train

the agents, a successful evaluation function can be constructed [Stone and Veloso 98c]. As
prescribed by the principles of layered learning, this training process incorporates the learned
ball-interception skill (see Chapter 5).

Chapter 6 is organized as follows. Section 6.1 describes the motivation for, training of,

and testing of the learned multi-agent behavior. Section 6.2 veri�es that the o�-line training
can be successfully used in a real-time game situation. In Section 6.3 I describe our use
of the learned pass-evaluation capability in a full team behavior. Sections 6.4 and 6.5 are

devoted to discussion and related work.

6.1 Decision Tree Learning for Pass Evaluation

6.1.1 Setup and Training

Once young soccer players have learned how to control a ball, they are ready to use their skill

to start learning how to make decisions on the �eld and playing as part of a team. Similarly,

our simulated robotic soccer agents can use their learned ball-interception skill to exhibit a

more complex behavior: passing. Passing requires action by two di�erent agents. A passer

must kick the ball towards the receiver, who must collect the ball. Since the receiver's task is

identical to that of the defender in Chapter 5, the agents can (and do) use the same trained

neural network.

Although the execution of a pass in the open �eld is not di�cult given the receiver's

ball-interception skill, it becomes more complicated in the presence of opponents that try
to intercept the pass. In this section, we assume that the opponents are equipped with the

same learned ball-interception skill as the receivers. The passer is faced with the task of

assessing the likelihood that a pass to a particular teammate will succeed. For example, in

Figure 6.1 teammate 2 may be able to receive a pass from the passer, while teammates 3

and 4 are much less likely to be able to do so. The function that our agents learn evaluates
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whether or not a pass to a given teammate is likely to succeed.

When deciding whether or not to make a pass, there are many world state features that

may be relevant. When many features are available for a machine learning task, it can be

very di�cult to determine which ones are predictive of the target concept. Therefore, we use

a learning method that is capable of determining for itself the features on which to focus.

In particular, we use the C4.5 decision tree (DT) training algorithm [Quinlan 93].

In order to gather training data, like for the ball-interception behavior, we again de�ne a

constrained training scenario and use an omniscient, omnipotent agent to monitor the trials.

The training process is illustrated in detail in Figures 6.1{6.5 including their accompanying

captions. Table 6.1 speci�es the training procedure.

1. The players are placed randomly within a region (Figure 6.1).

2. The passer announces its intention to pass (Figure 6.1).

3. The teammates reply with their views of the �eld when ready to receive (Figure 6.2).

4. The passer chooses a receiver randomly during training, or with a DT during testing

(Figure 6.3).

5. The passer collects a large number of features of the training instance (see below).

6. The passer announces to whom it is passing (Figure 6.4).

7. The receiver and four opponents attempt to get the ball using the learned ball-

interception skill (Figure 6.5).

8. The training example is classi�ed as a success if the receiver manages to advance the
ball towards the opponent's goal; a failure if one of the opponents clears the ball in the
opposite direction; or a miss if the receiver and the opponents all fail to intercept the

ball (Figure 6.5).

Table 6.1: The training procedure for learning pass evaluation.

Rather than restricting the number of features in the input representation used for learn-

ing, we capitalized on the DT's ability to �lter out the irrelevant ones. Thus, we gather a

total of 174 features for each training example, half from the passer's perspective and half
from the receiver's. The features from the receiver's perspective are communicated to the
passer before the passer has to decide to which player to pass.

The complete list of features|all continuous or ordinal|available to the DT are

de�ned in Table 6.2. All of the features starting with \passer" are from the passer's

perspective; features starting \receiver" are from the receiver's perspective. For example,
receiver-players-dist8-ang12 is the number of players that the receiver sees within a

distance of 8 and angle of 12 from the passer. The features are de�ned in the following

terms. If x and y are players, then:

� dist(x,y) = the distance between players x and y;
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I’m Ready

To Pass...

+2 other players per team

1 Passer: 4 Defenders:3 Teammates:

1

2

4
3

Figure 6.1: The pass evaluation training process, part 1. At the beginning of a trial, the passer

is placed behind the ball. 3 teammates and 4 opponents are placed randomly within the region

indicated by the dashed line, while 2 other players from each team are placed randomly on the

�eld. In this and the following �gures, the players involved in the play are enlarged for presentation

purposes. When the passer sees that it has the ball, it announces its intention to pass. Its goal is

to assess the likelihood of a pass to a given teammate succeeding.

I’m Ready to

Receive... Here’s

My data: xxxxxx

1

2

4
3

Figure 6.2: The pass evaluation training process, part 2. When the teammates are facing the ball,

they tell the passer what the world looks like to them. The passer can use the transmitted data

to help it assess the likelihood that each teammate would successfully receive a pass. The data

includes distances and angles to the other players as well as some statistics regarding the numbers

of players within given distances and angles.
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Teammate 2
Teammate 3
Teammate 4

����
����
����
����

��
��
��
�� * 3

Sample Decision Tree Output

: Success with confidence 0.3
: Failure with confidence 0.6
: Success with confidence 0.8

1

2

4
3

Figure 6.3: The pass evaluation training process, part 3. During training, the passer chooses

its receiver randomly. During testing, it uses a DT to evaluate the likelihood that a pass to each

of the teammates would succeed. It passes to the one most likely to successfully receive the pass

(Teammate 2 in this case).

I’m Passing

To Player 2

1

4
3

2

Figure 6.4: The pass evaluation training process, part 4. After choosing its receiver, the passer

announces its decision so that the receiver knows to expect the ball and the other teammates can

move on to other behaviors. In our experiments, the non-receivers remain stationary.
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Success!!

1

4

3

2

Figure 6.5: The pass evaluation training process, part 5. Finally, the receiver announces the result

of the pass.

� ang(x,y) = the angle to player y from player x's perspective;

� rel-ang(x,y,z) = jang(x,y) � ang(x,z)j;

� rel-dist(x,y,z) = jdist(x,y) � dist(x,z)j.

Even though the training examples do not include full teams of players, the features are
de�ned such that they could be used in a game situation. The players whose positions are
unknown create missing feature values.

Along with the ability to ignore irrelevant features, another strength of decision trees
is their ability to handle missing features. Whenever fewer than the maximum number

of players are visible, some features are missing. In addition, if the potential receiver is
unable to successfully communicate the data from its perspective, all of the features from
the receiver's perspective are missing.

The goal of learning is to use the feature values to predict whether a pass to the given
teammate will lead to a success, a failure, or a miss. For training, we use standard o�-the-
shelf C4.5 code with all of the default parameters [Quinlan 93]. We gathered a total of 5000

training examples, 51% of which were successes, 42% of which were failures, and 7% of which

were misses.

Training on this data produces a pruned tree with 87 nodes giving a 26% error rate on
the training set. The resulting tree is shown in Figure 6.6. The �rst node in the tree tests
for the number of opponents within 6 degrees of the receiver from the passer's perspective.

If there are any such opponents, the tree predicts that the pass will fail. Otherwise, the tree

moves on to the second node which tests the angle of the �rst opponent. Since the passer
sorts the opponents by angle, the �rst opponent is the closest opponent to the receiver in

terms of angle from the passer's perspective. If there is no opponent within 13 degrees of
the receiver, the tree predicts success. Otherwise it goes on to deeper nodes in the tree.

Each leaf in the tree shown in Figure 6.6 includes a classi�cation (\S" for success or

\F" for failure|no misses are shown) followed by two numbers in parentheses: (N/E). As
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� Distance and Angle to the receiver (2 features):

� passer-receiver-distance = dist(passer,receiver).

� passer-receiver-angle = ang(passer,receiver).

� Distance and Angle to other teammates sorted by angle from the receiver (18 features):

� Sort the 9 other teammates such that 8i,j, if i<j, then

rel-ang(passer,teammate-i,receiver) < rel-ang(passer,teammate-j,receiver).

� For i=1-9, passer-teammate(i)-distance = dist(passer,teammate-i).

� For i=1-9, passer-teammate(i)-angle = ang(passer,teammate-i).

� Distance and Angle to opponents sorted by angle from the receiver (22 features):

� Sort the 11 opponents such that 8i,j, if i<j, then

rel-ang(passer,opponent-i,receiver) < rel-ang(passer,opponent-j,receiver).

� For i=1-11, passer-opponent(i)-distance = dist(passer,opponent-i).

� For i=1-11, passer-opponent(i)-angle = ang(passer,opponent-i).

� Distance and Angle from the receiver to teammates sorted by distance (20 features):

� Sort the 10 teammates (including the passer) such that 8i,j, if i<j, then

dist(receiver,teammate-i) < dist(receiver,teammate-j).

� For i=1-10, receiver-teammate(i)-distance = dist(receiver,teammate-i).

� For i=1-10, receiver-teammate(i)-angle = ang(receiver,teammate-i).

� Distance and Angle from the receiver to opponents sorted by distance (22 features):

� Sort the 11 opponents such that 8i,j, if i<j, then

dist(receiver,opponent-i) < dist(receiver,opponent-j).

� For i=1-11, receiver-opponent(i)-distance = dist(receiver,opponent-i).

� For i=1-11, receiver-opponent(i)-angle = ang(receiver,opponent-i).

� Player distribution statistics from the passer's (45 features) and receiver's (45 features) perspectives:

� For i=1-6, passer-teammates-ang(i) =

jfk2teammates j rel-ang(passer,k,receiver) � i ^ dist(passer,k) � dist(passer,receiver)gj.

� For i=1-6, passer-opponents-ang(i) =

jfk2opponents jrel-ang(passer,k,receiver) � i ^ dist(passer,k) � dist(passer,receiver)gj.

� For i=1-6, passer-players-ang(i) = passer-teammates-ang(i) + passer-opponents-ang(i).

� For i=1-3, j=1-3, passer-teammates-dist(4i)-ang(4j)=

jfk2teammates j rel-ang(passer,k,receiver) � 4i ^ rel-dist(passer,k,receiver) � 4jgj.

� For i=1-3, j=1-3, passer-opponents-dist(4i)-ang(4j)=

jfk2opponents j rel-ang(passer,k,receiver) � 4i ^ rel-dist(passer,k,receiver) � 4jgj.

� For i=1-3, j=1-3, passer-players-dist(4i)-ang(4j)=

passer-teammates-dist(4i)-ang(4j) + passer-opponents-dist(4i)-ang(4j).

� For i=1-6, receiver-teammates-ang(i) =

jfk2teammates j rel-ang(receiver,k,passer) � i ^ dist(receiver,k) � dist(passer,receiver)gj.

� For i=1-6, receiver-opponents-ang(i) =

jfk2opponents jrel-ang(receiver,k,passer) � i ^ dist(receiver,k) � dist(passer,receiver)gj.

� For i=1-6, receiver-players-ang(i) =

receiver-teammates-ang(i) + receiver-opponents-ang(i).

� For i=1-3, j=1-3, receiver-teammates-dist(4i)-ang(4j)=

jfk2teammates j rel-ang(receiver,k,passer) � 4i ^ rel-dist(receiver,k,passer) � 4jgj.

� For i=1-3, j=1-3, receiver-opponents-dist(4i)-ang(4j)=

jfk2opponents j rel-ang(receiver,k,passer) � 4i ^ rel-dist(receiver,k,passer) � 4jgj.

� For i=1-3, j=1-3, receiver-players-dist(4i)-ang(4j)=

receiver-teammates-dist(4i)-ang(4j) + receiver-opponents-dist(4i)-ang(4j).

Table 6.2: The complete list of 174 continuous and ordinal features available to the decision tree.
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C4.5 [release 8] decision tree interpreter

------------------------------------------

Decision Tree:

passer-opponents-ang6 > 0 : F (1266.0/251.3)

passer-opponents-ang6 <= 0 :

| passer-opponent1-angle > 13 : S (1054.6/290.5)

| passer-opponent1-angle <= 13 :

| | passer-teammates-ang6 <= 0 :

| | | passer-receiver-distance <= 22 :

| | | | passer-opponent1-distance <= 20.9 :

| | | | | passer-players-dist8-ang12 <= 3 : S (162.0/72.9)

| | | | | passer-players-dist8-ang12 > 3 : F (15.0/5.8)

| | | | passer-opponent1-distance > 20.9 :

| | | | | passer-opponent2-distance <= 21.1 :

| | | | | | passer-opponents-dist12-ang8 <= 1 :

| | | | | | | passer-teammates-dist8-ang8 <= 1 :

| | | | | | | | passer-opponents-dist12-ang4 <= 0 :

| | | | | | | | | passer-receiver-distance <= 20.3 : S (52.2/8.6)

| | | | | | | | passer-opponents-dist12-ang4 > 0 :

| | | | | | | | | passer-opponents-dist4-ang12 <= 1 : S (60.5/20.0)

| | | | | passer-opponent2-distance > 21.1 :

| | | | | | receiver-teammates-dist8-ang12 <= 1 : S (704.3/139.6)

| | | passer-receiver-distance > 22 :

| | | | passer-opponent1-distance <= 23.1 :

| | | | | passer-opponents-dist12-ang12 <= 0 :

| | | | | | receiver-players-dist8-ang12 <= 1 : S (87.5/44.7)

| | | | | passer-opponents-dist12-ang12 > 0 :

| | | | | | passer-opponents-dist12-ang8 > 0 : F (191.0/63.0)

| | | | | | passer-opponents-dist12-ang8 <= 0 :

| | | | | | | passer-opponents-dist4-ang12 > 1 : S (14.0/6.8)

| | | | | | | passer-opponents-dist4-ang12 <= 1 :

| | | | | | | | passer-teammate1-distance <= 19.5 : S (15.0/6.8)

| | | | | | | | passer-teammate1-distance > 19.5 : F (234.0/91.7)

| | | | passer-opponent1-distance > 23.1 :

| | | | | passer-opponents-dist12-ang12 <= 1 : S (665.9/259.2)

| | | | | passer-opponents-dist12-ang12 > 1 :

| | | | | | passer-players-dist4-ang12 <= 1 : F (11.0/5.6)

| | | | | | passer-players-dist4-ang12 > 1 :

| | | | | | | passer-opponents-dist4-ang8 <= 0 : S (49.0/19.9)

| | | | | | | passer-opponents-dist4-ang8 > 0 :

| | | | | | | | passer-opponent2-distance <= 23.1 : F (85.0/26.5)

| | | | | | | | passer-opponent2-distance > 23.1 :

| | | | | | | | | passer-opponents-dist12-ang12 <= 2 :

| | | | | | | | | | receiver-opponent3-angle <= 48 : F (9.6/2.2)

| | | | | | | | | | receiver-opponent3-angle > 48 : S (108.4/43.0)

| | passer-teammates-ang6 > 0 :

| | | passer-teammates-ang5 > 0 : F (21.0/7.0)

Figure 6.6: The trained decision tree. Some subtrees with fewer cases covered have been removed

for purposes of presentation. The features are described in Table 6.2. Predictions are indicated as

\S" for success and \F" for failure. The numbers in parentheses indicate the predicted error rates

for unseen cases at each leaf.
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explained in [Quinlan 93, page 42], \N is the number of training examples covered by the

leaf. E is just the number of predicted errors if a set of N unseen cases were classi�ed by the

tree." Fractional values of N arise when activations are split among branches of the tree due

to missing attributes. C4.5 uses N and E to associate a con�dence factor 2 [0; 1] with each

predicted classi�cation [Quinlan 93].

We use C4.5's con�dence factors to de�ne a function �(passer,receiver) 7! [�1; 1]. As-

sume that for a pass from passer to receiver the DT predicts class � with con�dence 
 2 [0; 1].

Then

�(passer; receiver) =

8><
>:


 if � = S (success)

0 if � = M (miss)

�
 if � = F (failure)

6.1.2 Results

In order to test the DT's performance, we ran 5000 trials with the passer using the DT to
choose the receiver in Step 4 of Table 6.1. All other steps including the placement of players,
and consequently the example distribution, are the same during testing as during training.

Since the DT returns a con�dence estimate in its classi�cation, the passer can choose the
best receiver candidate even if more than one is classi�ed as likely to be successful: it passes

to the teammate with maximum �(passer; teammate).

We compiled results sorted by the DT's con�dence in the success of the pass to the

chosen receiver (see Table 6.3). The largest number of passes were classi�ed as successes
with con�dence between .7 and .8, with another large portion classi�ed as successes with
con�dence between .8 and .9. Overall, the success rate of 65% is much better than the 51%

success rate obtained when a receiver is chosen randomly. However, this result is obtained
under a condition of forced passing: the passer is required to pass the ball during all trials.

In a game situation the passer would be given the option to dribble or shoot instead. Notice
that if the passer wants to be fairly sure of success, it could pass only when the DT predicted
success with con�dence greater than .8. The resulting 79% success rate approaches the limit

imposed by the success rate of the ball-interception skill. When the testing is repeated with
no opponents to intercept the ball, the success rate is 86%.

�(passer,receiver)

(success predictions) (failure predictions)
Total .8{.9 .7{.8 .6{.7 �.6{(�.7) �.7{(�.8) �.8{(�.9)

(Number) (5000) (1050) (3485) (185) (34) (3) (39)

Success (%) 65 79 63 58 44 33 13

Failure (%) 26 15 29 31 53 67 79

Miss (%) 8 5 8 10 3 0 8

Table 6.3: The results of 5000 trials during which the passer uses the DT to choose the receiver.

Overall results are given as well as a breakdown by the passer's con�dence prior to the pass. The

passer is forced to pass even if it predicts failures for all 3 teammates. In that case, it passes to the

teammate with the lowest likelihood of failure. Results are given in percentages of the number of

cases falling within each con�dence interval (shown in parentheses).
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With all the di�erent features describing each training example, it is not obvious how to

construct an analytic heuristic for the passer to use when choosing a receiver. For comparison

purposes, we de�ned a heuristic by which the passer always passes to the closest of the three

teammates.

Over 5000 trials, the closest teammate heuristic produces a success rate of 64%. Although

this number compares favorably with the overall DT success rate, it is signi�cantly lower

than the 79% success rate the passer can achieve with the DT when given the option of

not passing. Furthermore, the closest teammate heuristic gives no way of estimating the

likelihood that a pass will succeed. It simply postulates that given a choice, the passer

should pass to the closest teammate. Since the likelihood estimation is the true goal of our

learning in this section, there is a clear advantage to using the DT method. As shown in

Section 6.3, when deciding whether to pass, dribble, or shoot, the knowledge of whether or

not a given pass is likely to succeed is extremely useful.

6.1.3 Summary

In this section, I demonstrated that a higher-level decision can be built upon the low-level

skill learned in Chapter 5. Using a DT, our agents learn to judge the likelihood that a pass
to a given receiver will be successfully received. This judgment represents the second layer
in our layered learning implementation.

Before moving on to the third layer in Chapter 7, I �rst present some experiments that
demonstrate the e�ectiveness of the learned ball-interception and pass-evaluation capabili-
ties in game situations. Since they are both trained and tested o�-line in limited types of

situations, their applicability to more realistic scenarios has not yet been established. Sec-
tion 6.2 presents the initial veri�cation that encourages us to proceed. Section 6.3 presents
extensive results demonstrating the utility of the learned behaviors in full game situations.

6.2 Using the Learned Behaviors

Once able to judge the likelihood that a pass will succeed, a human or simulated soccer

player is ready to start making decisions in game-like situations. When considering what to
do with the ball, the player can pass to a strategically positioned teammate, dribble, or shoot.

To verify that the second level of our layered learning implementation can be incorporated

into game-like situations, we implemented a play sequence that uses the passing decision

described in Section 6.1.

In Figure 6.7 which illustrates the play sequence, the teammates executing the play

sequence are shown as white circles and labeled A-G; opponents are shown as black circles.

The play sequence is as follows:

� Player A starts with the ball in front of it and dribbles towards the opponent's goal.

� When it approaches within 15 of an opponent, it stops dribbling and prepares to pass
to one of the two closest teammates: players B and C.
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� In accordance with the protocol laid out in Table 6.1, it announces its intention to pass

and gets responses from the two nearest players. It then uses the DT to decide which

teammate is more likely to successfully receive the pass. In Figure 6.7, player A passes

to teammate B (�(A,B) > �(A,C)).

� Player B and the adjacent opponent then both try to intercept the ball using the

trained ball-interception skill. If the opponent gets the ball, it kicks it back towards

the left goal and the play starts over. However, if player B gets the ball, it immediately

kicks the ball to player D (if player A had passed to player C, the ball would have been

sent to player E and the play would have continued symmetrically).

� Since player D is not covered, it can easily collect the ball and begin dribbling towards

the goal. Using the same behavior as player A, player D stops dribbling when it

approaches within 15 of a defender and chooses between passing to teammates F and

G. Again, it uses the trained DT.

� If player F or G is able to get to the ball before the opponents, it immediately shoots

towards the goal.

?

?

Dribble

Pass

Pass
Pass

Shoot

Teammate Opponent

A

B

C

D

E

G
F

Figure 6.7: An illustration of the implemented play sequence. Players are emphasized for improved

visibility. Teammates are labeled A{G. Every player uses at least one of the two learned behaviors:

ball interception and pass evaluation.

We ran this play sequence several times in order to verify that the learned behaviors
are both robust and reliable. Since the opponents are all equipped with the same ball-

interception skill as the receivers, the opponents are sometimes able to break up the play.

However, the fact that the attacking team can sometimes successfully string together three
passes and a shot on goal when using the learned behaviors demonstrates that these behaviors

are appropriate for game-like situations.
Indeed, in the following section, the learned behaviors are incorporated into a full team

of soccer-playing agents. The power of the learned pass evaluation is tested by comparing

teams that use it against teams that do not.
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6.3 Scaling up to Full Games

As presented in Chapter 5 and above, the ball-interception and pass-evaluation behaviors are

both trained and tested in limited, arti�cial scenarios which do not re
ect the full range of

game situations. In this section I extend these basic learned behaviors into a full multi-agent

behavior that is capable of controlling agents throughout an entire game [Stone and Veloso

98e]. This multi-agent behavior is designed for the purposes of testing: it is not the same as

the CMUnited-98 behavior speci�cation laid out in Section 3.5.

Since the two learned behaviors de�ned thus far only apply when a player is in the vicinity

of the ball, the player needs to have some other mechanism for acting when it does not have

the ball. In addition, when it does have the ball, it must decide when to pass it: in some

cases it may have enough time to execute the ideal pass; however, in other cases it may have

to release the ball immediately in order to avoid losing it to an opponent player.

This section is organized as follows. Section 6.3.1 de�nes the mechanism by which the
player with the ball chooses its action, either with the aid of the learned DT or without.

In Section 6.3.2, I explain how our agents reason about the time available to execute a
pass. Section 6.3.3 presents the full multi-agent behavior including behavior speci�cations for
occasions when the player does not have the ball. Section 6.3.4 demonstrates the e�ectiveness

of the learned pass-evaluation function in the context of full game situations via extensive
empirical testing.

6.3.1 Receiver Choice Functions

Recall that the DT estimates the likelihood that a pass to a speci�c player will succeed.

Thus, for an agent to use the DT in a game, the DT must be incorporated into a full receiver
choice function (RCF). We de�ne an RCF to be a function that determines what the agent
should do when it has possession of the ball|when the ball is within kickable area (see

Section 2.2)|and it has the opportunity to choose a receiver to which to pass. The input
and output of a receiver choice function are as follows.

Input. The input of an RCF is the agent's perception of the current state of the world. This
perceived state includes both the agent's latest sensory perception and remembered

past positions of currently unseen objects (see Section 3.2).

Output. The output of an RCF is an action from among the options dribble, kick, or pass,

and a direction, either in terms of a player (i.e. towards teammate number 4) or in
terms of a part of the �eld (i.e. towards the goal).

First, the RCF identi�es a set of candidate receivers given the current world state. Then,

the RCF selects a receiver or else indicates that the agent should dribble or kick the ball.

The set of candidate receivers is determined in part by the player's position, or role.
Each player is assigned a particular position on the �eld, and the team remains in a constant

formation (see Chapter 3). Throughout this section, the team being tested uses the 4-3-3
formation illustrated by the black team in Figure 6.8. The positions in this formation are

a goaltender (G), a sweeper (S), three defenders|left (LD), center (CD), and right(RD)|

three mid�elders (LM, CM, and RM), and three forwards (LF, CF, and RF). The arrows
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emanating from the players indicate the positions to which each player considers passing

when using the RCFs. The options are also apparent in Table 6.5. The position on the left

of the �eld (LD, LM, and LF) consider symmetrical options to their counterparts on the

right of the �eld. The goaltender (G) has the same options as the sweeper (S).

G
S

LB LM

CM

RM RF

LF

CF

CD

RD

Figure 6.8: Player positions in the 4-3-3 formation used by the behaviors in this section. The black

team, moving from left to right, has a goaltender (G), a sweeper (S), three defenders|left (LD),

center (CD) right(RD)|three mid�elders (LM, CM, and RM), and three forwards (LF, CF, and

RF). The arrows emanating from the players indicate the positions to which each player considers

passing when using the RCFs. The players on the left of the �eld (top of the diagram) consider

symmetrical options to their counterparts on the right of the �eld. The goaltender has the same

options as the sweeper. The white team has the same positions as the black, except that it has no

players on its left side of the �eld, but rather two in each position on its right.

When a player is near its default position, it periodically announces its position to team-
mates; when a player leaves its position to chase the ball, it announces this fact and is no
longer considered \in position." The agents determine which players are in which positions

by listening to their teammates' announcements.

Notice that Figure 6.8 is the same as Figure 3.7, except that an opposing team is also
depicted. The white team has the same positions as the black, except that it has no players

on its left side of the �eld. Instead, it has two players in each position on the right side of

the �eld.

Table 6.4 de�nes three RCFs, one of which uses the DT; the others are de�ned for the
purposes of comparison.

� The PRW|prefer right wing|RCF uses a �xed ordering on the candidate receivers for
each of the positions on the �eld. In general, defenders prefer to pass to the wings rather

than forward; mid�elders prefer to pass forward rather than sideways; and forwards
tend to shoot. All players in the center of the �eld, as indicated by the name, prefer

passing to the right rather than passing to the left. The ordered preference lists Dr of

the di�erent positions r are speci�ed in Table 6.5. The RCF simply returns the most
preferable candidate receiver according to this �xed ordering. Again, if no receivers are

eligible, the RCF returns \dribble" or \kick." This RCF was our initial hand-coded
behavior for use in games (at Pre-RoboCup-96).



6.3. SCALING UP TO FULL GAMES 127

Let agent � 2 A have the ball at time t and be using the RCF. Assume agent � is in position

(role) � 2 R (recall from Chapter 3 that A is the set of agents and R is the set of roles

in the team's current formation). First, the RCF determines the set of candidate receivers

C�;t � A. Each position r 2 R has a set of candidate receiver roles Cr � R, as indicated in

Figure 6.8. For example, CCM = fLM,RM,LF,CF,RFg. At time t, �'s mapping from agents

A 7! R speci�es which agent is playing which position. Let ar;t be the agent playing position

r at time t.

1. Start by setting C�;t = far;tjr 2 C�g.

2. Any potential receiver that is too close (closer than dmin) or too far away (farther

than dmax) according to �'s world state at time t is eliminated from consideration: set

C�;t = fa 2 C�;tjdmin � dist(�; a) � dmaxg. We use dmin = 10 and dmax = 40.

3. Any player that is out of position (because it was chasing the ball) is eliminated from

consideration. Let A0 � A be the set of agents that are currently away from their
home positions as determined by the periodic announcements from all teammates. For

instance, these agents might be chasing the ball. Set C�;t = C�;t � A0.

4. IF 9i 2 opponents such that dist(�; i) � dmin THEN let C 0 � C�;t be the set of
agents to which � cannot kick the ball directly without the ball hitting �: C 0 = fa 2

C�;tj(jang(�; a)� ang(�; ball)j) > cangg. We use cang = 130. Set C�;t = C�;t � C 0.

After having determined the set of candidate receivers C�;t, the RCF speci�es which candi-
date receiver, if any, should receive the pass.

5. IF C�;t = ; THEN

� IF 9i 2 opponents such that dist(�; i) � dmin, THEN return kick to the oppo-

nent's goal.

� ELSE return dribble to the opponent's goal.

6. ELSE (C�;t 6= ;) THEN pass according to which RCF is being used:

PRW (Prefer Right Wing): Use a �xed ordering on the receivers D� � R = (d1; d2; : : :)

as speci�ed in Table 6.5. Return pass to c 2 C�;t such that c = adi;t ^ 8adj ;t 2

C�;t; j � i.

RAND (Random): Choose randomly among the receivers. Return pass to some c 2 C�;t.

DT (Decision Tree): Set C�;t = fa 2 C�;tj�(�; a) > 0g.
IF C�;t = ; THEN return kick or dribble as in Step 5.

ELSE return pass to c 2 C�;t such that 8b 2 C�;t;�(�; c) > �(�; b).

Table 6.4: Speci�cation of three RCFs: PRW, RAND, and DT.

� The RAND|random|RCF is the same as the PRW RCF except that it chooses

randomly from among all candidate receivers.
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� As suggested by its name, the DT|decision tree|RCF uses the DT described in

Section 6.1 to choose from among the candidate receivers. In particular, as long as the

DT predicts a pass to at least one candidate would be successful, the DT RCF indicates

that the passer should pass to the teammate with the highest success con�dence,

breaking ties randomly. If the DT does not predict that any pass would succeed, the

RCF speci�es that the agent with the ball should dribble or kick the ball forwards

(towards the opponent goal or towards one of the forward corners).

r Dr

G (RD,RM,LD,LM,CM)

S (RD,RM,LD,LM,CM)

LD (LM,LF,CM)

CD (RM,LM,CM)

RD (RM,RF,CM)

LM (LF,CF,RF)

CM (RM,RF,CF,LM,LF)

RM (RF,CF,LF)

LF (CF)

CF |

RF (CF)

Table 6.5: The ordered preference lists of the positions in the 4-3-3 formation when using the PRW

RCF. Dr is the preference list for position r. The positions are indicated as labeled in Figure 6.8.

The CF position has no passing options: it always dribbles or shoots.

6.3.2 Reasoning about Action Execution Time

In the experiments reported in this chapter, the agents are not equipped with the turnball

behavior described in Appendix B (Section B.1.1). Thus, when a player is between the ball
and the teammate to which it wants to pass, it must move out of the ball's path before
passing, which empirically takes between 5 and 15 simulator cycles. If there is an opponent

in the vicinity, it may be able to steal the ball in that time.
Therefore, the RCF de�nition (Table 6.4) includes reasoning about the available time to

execute an action. In particular, if there is an opponent within dmin, there is a danger of

losing the ball before being able to pass or shoot it. In this situation, it is to the passer's

advantage to get rid of the ball as quickly as possible.

This priority is manifested in the RCFs in two ways:

� In Step 4 of Table 6.4, when there is an opponent within dmin, the RCFs only consider
passing to players to whom the agent can pass immediately. As mentioned above, this

concept is not purely reactive: the positions of opponents that are outside an agent's

�eld of view are remembered.

� In Step 5, when an opponent is within dmin, the agent kicks the ball away (or shoots)

rather than dribbling. The point of dribbling the ball (kicking the ball a small amount
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in a certain direction and staying with it) is to keep the ball for a little longer until a

good pass becomes available or until the player is in a good position to shoot. However,

if there is an opponent nearby, dribbling often allows the opponent time to get to the

ball. In this situation, as indicated in Step 5 of Table 6.4, the RCF causes the player

to kick the ball forward (or shoot) rather than dribbling.

Thus, the RCF considers whether there is enough time to execute an action without

an opponent stealing the ball. The ability to reason about how much time is available for

action is an important component of the RCFs and contributes signi�cantly to their success

in game situations (see Section 6.3.4).

6.3.3 Incorporating the RCF in a Behavior

In Section 6.3.1, the method of using a DT as a part of an RCF is described in detail.

However, the RCF is itself not a complete agent behavior: it only applies when the ball
is within kickable area of a the player. This section situates the RCF within a complete
behavior that can then be used throughout the course of a game. Again, this behavior is not

the same as the CMUnited-98 implementation presented in Section 3.5: it is a preliminary
version of the full-
edged CMUnited-98 implementation. The complete behavior is laid out
in Table 6.6.

Let � be the agent using this behavior, and ball-dist = dist(�,ball).

1. IF con�dence in the ball's location (see Section 3.5.1) < :5 THEN face the ball.

2. IF ball-dist � dchase or 8a 2 teammates, ball-dist � dist(a,ball) THEN:

� IF ball-dist > kickable area THEN move to the ball, using the trained NN
when appropriate;

� ELSE pass, dribble, or kick the ball as indicated by the RCF.

3. ELSE: (ball-dist > dchase and 9a 2 teammates, ball-dist > dist(a,ball))

� Move within �'s home position using ball-dependent 
exible positioning (see Sec-
tion 3.5.2).

Table 6.6: The complete behavior used by the players in game situations to test the di�erent

RCFs.

When using this behavior, the player's �rst priority (Step 1) is always to �nd the ball's

location (only objects in front of the player are seen). If it does not know where the ball

is, it turns until the ball is in view. When turning away from the ball, it remembers the

ball's location for a short amount of time; however after about three seconds without seeing

the ball, its con�dence in the ball's location decays enough that it assumes that it no longer

knows where the ball is (see Section 3.5.1).

Once the ball has been located, the agent can carry on with its behavior. As indicated

in Step 2 of Table 6.6, the agent chases the ball when either of two conditions is met:



130 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

� When the ball is within dchase, the agent always goes towards the ball. We set dchase =

10.

� The agent chases the ball whenever it thinks that it is the closest team-member to the

ball.

In the second case, notice that the agent may not actually be the closest player to the ball if

some of its teammates are too far away to see and if they have not announced their positions

recently. However, if a player mistakenly thinks that it is the closest player, it will get part

of the way to the ball, notice that another teammate is closer, and then turn back to its

position.

As required for use of the DT, every player is equipped with the trained neural network

(see Chapter 5) which can be used to help intercept the ball. Whenever the ball is within

kickable area, the agent uses its RCF to decide whether to dribble, kick, or pass, and to

where. Every team member uses the same RCF.

Finally, as described in Section 6.3.1, each player is assigned a particular position on

the �eld. Unless chasing the ball, the agent goes to its position, moving around within the
position's home range using ball-dependent 
exible positioning (Step 3).

6.3.4 Results

In this section I present the results of empirically testing how the behaviors speci�ed in
Section 6.3.3 perform. Since the behaviors di�er only in their RCFs, I refer below to,

for example, \the complete behavior using the DT RCF" simply as \the DT RCF." Also
presented are empirical results verifying the advantage of reasoning about action-execution
time.

In order to test the di�erent RCFs, we created a team formation that emphasizes the ad-
vantage of passing to some teammates over others. When both teams use the standard 4-3-3

formation (that of the black team in Figure 6.8), every player is covered by one opponent.
However, this situation is an arti�cial artifact of using the ball-dependent player-positioning
algorithm. In reality, the players|using SPAR (Section 3.5.2)|have the ability to move to

open positions on the �eld. For the purposes of these experiments we use a simpler behavior
than the full CMUnited-98 implementation: the players only use ball-dependent positioning.

In order to re
ect the fact that some players are typically more open than others, we test the
RCFs against the OPR|only play right|formation which is illustrated by the white team in

Figure 6.8. We also use the symmetrical OPL|only play left|formation for testing. These

behaviors are speci�ed in Table 6.7.

During testing, each run consists of 34 �ve-minute games between a pair of teams. We

tabulate the cumulative score both in total goals and in games won (ties are not broken) as
shown in Table 6.8. Graphs record the di�erences in cumulative goals scored (Figure 6.9)

and games won (Figure 6.10) as the runs progress.

In order to test the e�ectiveness of the DT RCF, we compared its performance against
the performance of the PRW and RAND RCFs when facing the same opponent: OPR. While

the DT and RAND RCFs are symmetrical in their decision making, the PRW RCF gives

preference to one side of the �eld and therefore has an advantage against the OPR strategy.
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� The opponent behaviors are exactly the same as the RAND behavior except that the

players are assigned to di�erent positions:

OPR (only play right): As illustrated by the white team in Figure 6.8, two players

are at each position on the right side of the �eld, with no players on the left side

of the �eld.

OPL (only play left): Same as above, except all the players are on the left side of the

�eld.

Table 6.7: OPR and OPL behavior speci�cations.

RCF (vs. OPR) Games (W { L) Overall Score

DT 19 { 9 135 { 97

PRW 11 { 14 104 { 105

PRW (vs. OPL) 8 { 16 114 { 128
RAND 14 { 12 115 { 111

Table 6.8: The results of using di�erent RCFs. Results are cumulative over 34 �ve-minute

games: ties are not broken. Unless otherwise indicated, the opponent|whose score always ap-

pears second|uses the OPR formation.
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Figure 6.9: The di�erences in cumulative goals as the runs progress.

Thus we also include the results of the PRW RCF when it faces the symmetrical opponent:

OPL. From Table 6.8 and Figures 6.9 and 6.10 it is apparent that the DT RCF is an e�ective
method of decision making in this domain.

In order to test the e�ectiveness of the reasoning about action-execution time, we compare

the performance of the standard DT RCF against that of the same RCF with the assumption

that there is never an opponent within dmin (\No-rush DT"): even if there is, the RCF ignores

it. This assumption a�ects Steps 4 and 5 of the RCF speci�cation in Table 6.4 as described in

Section 6.3.2. Both RCFs are played against the OPR behavior. As apparent from Table 6.9,
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Figure 6.10: The di�erences in cumulative games won as the runs progress.

the reasoning about action-execution time makes a signi�cant di�erence.

RCF (vs. OPR) Games (W { L) Overall Score

Standard DT 19 { 9 135 { 97
No-rush DT 13 { 16 91 { 108

Table 6.9: The e�ect of reasoning about action-execution time within an RCF. No-rush DT is the

same RCF as the standard DT RCF except that there is no reasoning about action-execution time.

The Standard DT RCF performs signi�cantly better.

6.3.5 Summary

This section demonstrated that, even though trained in a limited, arti�cial scenario, the
learned pass-evaluation capability trained in Section 6.1.1 generalizes successfully to full

games. The players can successfully use it to choose which pass to make from among several
options. Combined with some basic reasoning about the action-execution times of di�erent

options|necessitated by the real-time nature of this domain|the DT-based control function

outperforms both random and hand-coded alternatives. The success of this multi-agent
behavior encouraged us to incorporate it into a learned full team behavior as presented in

Chapter 7.

6.4 Discussion

In this section I discuss two aspects of the learned pass-evaluation capability presented in

this chapter. First, I discuss how it �ts within the layered learning context. Then I discuss
the use of the decision tree con�dence factors for agent control.
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6.4.1 Pass Evaluation within Layered Learning

The pass-evaluation capability described in this chapter is the second layer of our robotic

soccer layered learning implementation. Its choice and implementation follow the principles

of layered learning as laid out in Section 4.1:

� It is easier to gather data and to exploit it for training a pass-evaluation function than

it is to code such a function by hand. Especially since the question of whether or not

a pass will succeed depends on the abilities of players to receive the ball, there is no

obvious heuristic that could be used.

� We choose the learning method|the C4.5 decision tree training algorithm|based on

the task characteristics. We identify 174 features with potential predictive power for

pass evaluation, many of which are frequently unknown. Therefore, the abilities of

C4.5 to identify the most relevant features and to handle missing feature values are
very important. In addition, the fact that C4.5 provides con�dence factors along with

its predictions turns out to be very useful.

� The previous learned layer|ball-interception|is used as part of the training behavior:

both the intended receiver and all of the opponents use the trained neural network when
trying to intercept the moving ball.

Just as this multi-agent behavior builds upon the interception skill, higher-level learned
behaviors can be built upon the knowledge of when a pass will succeed. Such knowledge can

contribute to the decision of to which player to pass or of whether to pass, dribble, or shoot.
The behavior de�ned in Section 6.3 uses the DT as a part of a hand-coded high-level

multi-agent behavior. However, the decision function is highly constrained by the limited

number of passing options allowed to each player. A behavior that learns completely how
to map the classi�cations and con�dence factors of the DT to passing/dribbling/shooting

decisions may perform better.
Indeed, in Chapter 7, such a learned behavior is created. It uses the learned pass-

evaluation function as the input representation to a reinforcement learning algorithm. The

result is a completely learned RCF with no limitations on the passing options: players can

pass backwards as well as forwards.

6.4.2 Con�dence Factors for Agent Control

Although Decision Trees are widely used for classi�cation tasks, they are typically not used
for agent control. Nevertheless, the DT RCF uses the con�dence factors associated with
classi�cations to di�erentiate between pass options at a �ne-grained level. Rather than just

classifying each option as a likely success or likely failure, the RCFs choose the option with

the highest con�dence of being a success.
The experiments reported Section 6.3.4 indicate that the con�dence factors provided

by standard DT software can be used for e�ective agent control. To my knowledge, this
is the �rst successful use of DT classi�cation con�dence factors for agent control. As DT

con�dence factors are e�ective tools in this domain, they are potentially useful for agent

control in general.
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6.5 Related Work

The DT RCF is not the only instance of using tree-like structures for agent control. Specif-

ically, in a multi-agent planning context, operator success probabilities have been stored in

COBWEB trees [Garland and Alterman 96]. This multi-agent, case-based planning system

derives operator success probabilities from the results of past operator executions and uses

the success probabilities to guide an agent's future planning choices. If an operator fails to

achieve its intended e�ect due to the non-cooperation of other agents, an agent can adapt

by instead using an operator (or operators) that allows it to achieve its goal on its own.

While the COBWEB tree is built with the explicit aim of estimating the success prob-

ability of an operator, the DT trained in this chapter was originally intended simply to

classify the results of passes into three discrete classes. This classi�cation task is the type of

task that DT training algorithms such as C4.5 are typically used for. The con�dence factors

embedded in the C4.5 algorithm have not been used for control tasks before.



Chapter 7

Learning a Team Behavior

This chapter serves a dual purpose. It presents the third and �nal implemented learned layer
in our simulated robotic soccer layered learning implementation, and it simultaneously intro-
duces a separate contribution of this thesis, namely the team-partitioned, opaque-transition

reinforcement learning (TPOT-RL) algorithm [Stone and Veloso 99c]. TPOT-RL is a new
machine learning method used to train collaborative and adversarial team behaviors. In the
robotic soccer context, we use TPOT-RL to learn pass selection, taking advantage of the

learned pass-evaluation capability described in Chapter 6 to construct the input representa-
tion for learning.

This chapter is organized as follows. In Section 7.1, I introduce the new collaborative

and adversarial robotic soccer behavior and motivate the need for a new multi-agent learning
algorithm in order to train it. Section 7.2 formalizes the TPOT-RL algorithm in domain-
independent terms and Section 7.3 applies it to simulated robotic soccer with extensive

empirical testing. In Section 7.4, TPOT-RL is applied in a di�erent multi-agent domain|
network routing|in order to verify the generality of the new algorithm. Sections 7.5 and 7.6

are devoted to discussion and related work respectively.

7.1 Motivation

In this section, I motivate the need for a new RL algorithm in order to continue our layered

learning implementation in the simulated robotic soccer domain. I do so by �rst describing
the task to be learned (Section 7.1.1); then showing that existing RL algorithms cannot be

used for this task (Section 7.1.2). I formally de�ne the TPOT-RL algorithm in Section 7.2.

7.1.1 Pass Selection

Once young soccer players have learned how to judge whether a particular pass will succeed,

they are ready to learn how to act strategically as part of a team. Based on experience, they

can start to estimate the long-term e�ects of their actions within the context of a game in

which the true goal is to help one's team to beat the opponents. Similarly, our simulated

robotic soccer agents cooperate to achieve the team's goal of beating the opponents by
learning pass selection, a team behavior. Good pass selection requires an understanding of

135
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the long-term e�ects of local decisions given the behaviors and abilities of teammates and

opponents.

In Section 6.3.3, I presented a full team behavior based upon the �rst two learned layers of

our layered learning implementation; i.e. ball interception and pass evaluation. Speci�cally,

the learned pass evaluation function was incorporated into the DT (decision tree) receiver

choice function (RCF), that determines to which teammate an agent should pass when it

has possession of the ball. In the DT RCF, the learned pass-evaluation capability is used

in a heuristic, hand-coded function: the potential receivers are limited to those that are at

least as close to the opponent's goal as the agent with the ball (Cr), and the agent always

passes the ball to the potential receiver to which it can pass with the highest con�dence of

success according to the trained DT (maximum �(passer,receiver)).

While the DT RCF was useful for verifying that the pass-evaluation capability can be

used in full-game situations, in reality the choice of where to pass is much more complicated

than allowed for by the DT RCF. For one thing, there may be situations in which the best

pass is to a receiver that is farther away from the goal than the passer. For another, the
receiver that is most likely to successfully receive the pass may not be the one that will

subsequently act most favorably for the team.

Figure 7.1 illustrates a situation in which the player with the ball, agent b, may want to
pass backwards (to the left in the �gure). Agent b and its teammates are attacking the right

goal. The white arrows emanating from the ball indicate potential passes and their labels
indicate the predictions by the DT as to whether or not they will succeed: \S" for success
and \F" for failure. In this situation, the DT predicts that all three possible forward passes,

to teammates f, g, and h, will fail. However, there are two predicted-successful backwards
passes to teammates c and d. If agent b's goal is simply to complete a pass to a teammate,

it should clearly pass to teammate c or d.

However, in the context of the team's high-level task of kicking the ball into the oppo-
nent's goal, the choice is not so clear:

� Suppose that the opponents are very bad at intercepting the ball. Then the pass to

teammate g may be best for the team. Recall that the decision tree is trained o�-
line in an arti�cial situation and does not adjust its predictions based on the current

opponent. Thus despite the DT's prediction, teammate g may be able to receive the

pass. Since it is closest to opponent's goal, the team might be best o� if agent b passes

forwards to teammate g.

� Suppose instead that the opponents are good at intercepting the ball but that team-

mate c has a poor decision-making policy. Despite the appearance that its best option

would be to pass to teammate f, agent c instead decides to pass to teammate e, which
would likely result in the opponents stealing the ball. Again, the team might be better

o� if agent b passes forwards to teammate f, g, or h despite the DT's prediction.

� On the other hand, suppose that the opponents are good at intercepting the ball and

that teammate c has a good decision-making policy: it would pass to teammate f after

receiving the ball. Then the team will probably be best o� in the long run if agent b
passes passes backwards, away from the goal, to teammate c.
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Figure 7.1: An example of when it might be useful to pass backwards. The white arrows emanating

from the ball indicate potential passes and their labels indicate predictions by the trained DT as to

whether or not they will succeed: \S" for success and \F" for failure. The teammates are attacking

the right goal; the opponents, the left.

In short, when learning an RCF, the local pass-evaluation information, while helpful, is
not enough on which to base a decision. The agent needs to learn strategic information which
depends on the behaviors of teammates and opponents and which can only be measured by

its team's long-term success at achieving its collective goal against an opponent team in
a real game. Therefore, as opposed to both lower-level learned behaviors (ball interception
and pass evaluation), the pass-selection behavior must be trained on-line in a game situation

against a particular opponent.
When choosing an ML method for learning an RCF, there are �ve other task character-

istics that are important.

� The pass-selection decision depends on a huge amount of information, including the
agent's current location on the �eld, the current locations of all the teammates and op-

ponents, the teammates' abilities to receive a pass, the opponents' abilities to intercept

passes, teammates' subsequent decision-making capabilities, and the possibly-changing
opponents' strategies. As presented in Section 2.2, the simulated robotic soccer domain

has more than 10198 states.

� The agents must learn with limited training examples. When running with two full

teams of agents, the soccer server is computationally intensive. To run at full speed,
the server and the clients must be distributed across at least two 266 MHz computers.

And in real games, empirically each agent gets the ball, and therefore the opportu-

nity to collect a training example, about once a minute on average. With additional
computational power, the simulation can be sped up somewhat. But unlike most sim-

ulations, and more like real robotic domains, training data is relatively di�cult and
time-consuming to collect.
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� The merit of a particular decision can only be measured by the long-term performance

of the team as a whole and thus only becomes clear over time.

� Since the expected reward for taking a particular action depends on teammates' be-

haviors, this expected reward changes as teammates simultaneously learn to improve

their behaviors. In ML terms, the task to be learned is said to be a shifting concept.

� As the teammates each stay in a di�erent geographical region of the �eld (their positions

within the team formation|see Chapter 3), the learning task is partitioned among the

teammates: each agent only learns how to act when located in a speci�c part of the

�eld.

In addition to the above task characteristics, recall one important domain characteristic

from the presentation of simulated robotic soccer in Chapter 2 that has a bearing on the

choice of ML algorithm. In simulated robotic soccer there are opaque transitions: when an
agent takes an action (passes the ball), the resulting state transition as well as the subsequent
actions taken by other agents|both teammates and adversaries|and their resulting state

transitions are often unknown.

In summary, the characteristics of an ML algorithm needed for learning pass selection
are:

1. on-line;

2. capable of dealing with a large state space despite limited training;

3. capable of learning based on long-term, delayed reward;

4. capable of dealing with shifting concepts;

5. works in a team-partitioned scenario; and

6. capable of dealing with opaque transitions.

7.1.2 Reinforcement Learning for Pass Selection

Although no previously existing ML algorithm has all of the above characteristics, some of
the ones that come closest are reinforcement learning (RL) algorithms. RL is an e�ective

paradigm for training an agent to act in its environment in pursuit of a goal. RL techniques

rely on the premise that an agent's action policy a�ects its overall reward over time. A policy
is de�ned as an agent's mapping from the state it is in to the action it will take. In the

robotic soccer context, an RCF can be thought of as a policy over the set of states in which
an agent has possession of the ball. Throughout this chapter, the RCF is the only part of

the agents' policies being learned or otherwise varied in any way.

As surveyed in [Kaelbling et al. 96], standard RL algorithms are on-line learning algo-

rithms that can learn control policies for Markov decision tasks based on long-term, delayed

reward. Whether model-based (e.g. prioritized sweeping [Moore and Atkeson 93]) or model-

free (e.g. TD(�) [Sutton 88] and Q-learning [Watkins 89]), these RL techniques rely on a
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single agent being able to observe the environmental state transitions in order to propagate

reward back from states that generate reward to previous states. In addition, these tech-

niques require time that is polynomial in the number of states. This \curse of dimensionality"

typically limits them to relatively small state spaces with abundant training opportunities1.

In contrast, motivated by the presentation in Section 7.1.1, we restrict our attention to

domains with the following characteristics:

� There are multiple agents organized in a team: they have a common long-term goal.

� There are opaque state transitions: agents cannot observe state transitions when they

or other agents act and therefore cannot build a model of transitions in the domain.

� There are too many states and/or not enough training examples for traditional RL

techniques to work.

� The target concept can change during the course of learning, for example as a result of

other agents in the environment changing their policies. Thus, the Markov property,
that the e�ect of an action depends only on the current state of the world, does not
hold.

� There is long-range reward available: agents can notice the long-term e�ects of their
actions by directly observing the environment.

� There are action-dependent features available. By \action-dependent," we mean that
the feature value depends both on the current world state and the action being consid-

ered: in a given state, each possible action has its own action-dependent classi�cation.

As opposed to the ultimate learning goal of determining the long-term reward to be
expected when executing an action, action-dependent features classify the predicted
short-term e�ects of actions based on local state information.

In order to enable teams of agents to learn in such domains, we introduce team-partitioned,
opaque-transition reinforcement learning (TPOT-RL). Like previous RL methods, TPOT-

RL allows agents to learn on-line and from delayed rewards. TPOT-RL extends RL to work

in domains with the above characteristics.

7.2 TPOT-RL

This section presents TPOT-RL in detail. Like Q-learning, TPOT-RL learns a value function

that maps state-action pairs to expected rewards. TPOT-RL includes three main adaptations

to the standard RL paradigm:

� The value function is partitioned among the team, with each agent only learning for

states from which it can act. All agents are trained simultaneously with a gradually

decreasing exploration rate and an increasing exploitation rate.

1
One notable exception is TD-Gammon [Tesauro 94], which achieved champion status in backgammon

using RL. It dealt successfully with backgammon's large state space by introducing hand-crafted features

and allowing for an extremely large amount of training.
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� Action-dependent features are used to produce an aggressively generalized feature

space, which is used as the input representation for learning. While other RL ap-

proaches aggregate states to reduce the size of the learning task (e.g. [McCallum 96]),

action-dependent features enable the creation of a particularly small but informative

feature space for learning.

� Long-term, discounted rewards are gathered directly from the rewarding states in the

environment rather than being propagated back through intermediate states, as the

state-transition probabilities are not known. While other RL approaches have learned

based on reward from eventual rewarding states (e.g. TD(1) [Sutton 88]), none has

been applied in a multi-agent scenario and they generally do not discount reward based

on the time between an action and the eventual reward.

Formally, a policy is a mapping from a state space S to an action space A such that the

agent using that policy executes action a whenever in state s. At the coarsest level, when

in state s, an agent compares the expected, long-term rewards for taking each action a 2 A

and chooses an action based on these expected rewards. These expected rewards are learned

through experience.

Designed to work in real-world domains with far too many states to handle individually,
TPOT-RL exploits action-dependent features to create a small feature space V . V is used
as a component of the input representation of the learned value function Q : V � A 7! IR.

In short, the policy's mapping from S to A in TPOT-RL can be thought of as a 3-step
process:

State generalization: The state s is generalized to a feature vector v using the state
generalization function f : S 7! V .

Value function learning: The feature vector v is used as an input to the learned value

function Q : V �A 7! IR, which estimates the expected reward for taking each possible
action.

Action selection: An action a is chosen for execution and its long-term, observed reward

is used to further update Q.

While these steps are common in other RL paradigms, each step has unique characteristics
in TPOT-RL. State generalization, value function learning, and action selection in TPOT-RL
are further speci�ed in Sections 7.2.1, 7.2.2, and 7.2.3 respectively.

7.2.1 State Generalization

f : S 7! V maps the current state of the world, s, to the feature vector used for learning,
v. f relies on a unique approach to constructing V . Rather than discretizing the various

dimensions of S, it uses an action-dependent feature function.

The action-dependent feature function

e : S � A 7! U
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evaluates each possible action ai 2 A based on s. U is a discrete set of features re
ecting

expected short-term e�ects of actions. Unlike Q, e does not produce the expected long-term

reward of taking an action; rather, it classi�es the likely short-term e�ects of the action. For

example, since state transition probabilities are unknown, e might predict the transition to

be caused by executing action ai based on s.

In the multi-agent scenario, other than one output of e for each action, the feature space

V also involves one coarse component that partitions the state space S among the agents.

The partition function

P : S 7!M

breaks the state space into jM j disjoint partitions to be divided among the teammates, with

jM j � m where m is the number of agents in the team. In particular, if the set of possible

actions in state s is A = fa0; a1; : : : ; an�1g, then

f(s) = he(s; a0); e(s; a1); : : : ; e(s; an�1); P (s)i; and so

V = U jAj �M:

Thus, jV j = jU jjAj � jM j. Since the goal of constructing V is to create a feature space that

is smaller than the original state space, the ranges of the action-dependent feature function
and partition function, U and M respectively, are ideally as small as they can be without
abstracting away the useful information for learning.

This state generalization process reduces the complexity of the learning task by con-

structing a small feature space V which partitions S into jM j regions. Each agent need learn
how to act only within its own partition(s). Nevertheless, for large sets A, the feature space
can still be too large for learning, especially with limited training examples. Our particular

action-dependent formulation allows us to reduce the e�ective size of the feature space in the
value-function-learning step. Choosing features for state generalization is generally a hard

problem. While TPOT-RL does not specify the function e, our work illustrates e�ective
choices of e.

7.2.2 Value Function Learning

As we have seen, TPOT-RL uses action-dependent features. When using action-dependent

features, we can assume (heuristically) that the expected long-term reward for taking action

ai depends only on the feature value related to action ai. That is,

Q(f(s); ai) = Q(f(s0); ai) (7.1)

whenever e(s; ai) = e(s0; ai) and P (s) = P (s0). Recall that

f(s) = he(s; a1); : : : ; e(s; an�1); P (s)i

f(s0) = he(s0; a1); : : : ; e(s
0; an�1); P (s

0)i

Another way of stating this same assumption is that Q(f(s); ai) depends upon e(s; ai) and

is independent of e(s; aj) for all j 6= i.
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Without this assumption, since there are jAj actions possible for each element in V , the

value function Q has jV j�jAj = jU jjAj�jM j�jAj independent values. Under this assumption,

however, the Q-table has at most jU j1 � jM j � jAj entries: for each action possible from state

s, only one of the jAj action-dependent feature values e(s; ai) comprising f(s) is relevant.

Therefore, even with only a small number of training examples available, we can treat the

value functionQ as a lookup-table without the need for any complex function approximation.

To be precise, Q stores one value for every possible combination of a 2 A, e(s; a) 2 U , and

P (s) 2M .

For example, Table 7.1 shows the entire feature space for one agent's partition of the

state space when jU j = 3 and jAj = 2. U = fu0; u1; u2g, A = fa0; a1g. qi;j is the estimated

value of taking action ai when e(s; ai) = uj. Since this table is for a single agent, P (s)

remains constant.

There are jU jjAj = 32 di�erent entries in feature space with jAj = 2 Q-values for each

entry: one for each possible action. jU jjAj � jM j is much smaller than the original state space

for any realistic problem, but it can grow large quickly, particularly as jAj increases. However,
as emphasized by the right side of Table 7.1|which is simply a condensed representation

of the left side|under the assumption described above, there are only 3 � 2 independent
Q-values to learn, reducing the number of free variables in the learning problem from 18 to
6, or by 67%, in this case.

e(s; a0) e(s; a1) Q(f(s); a0) Q(f(s); a1)

u0 u0 q
0;0

q
1;0

u0 u1 q
0;0

q
1;1

u0 u2 q
0;0

q
1;2

u1 u0 q
0;1

q
1;0

u1 u1 q
0;1

q
1;1

u1 u2 q
0;1

q
1;2

u2 u0 q
0;2

q
1;0

u2 u1 q
0;2

q
1;1

u2 u2 q
0;2

q
1;2

=)

e(s; ai) Q(f(s); a0) Q(f(s); a1)

u0 q
0;0

q
1;0

u1 q
0;1

q
1;1

u2 q
0;2

q
1;2

Table 7.1: A sample Q-table for a single agent when jU j = 3 and jAj = 2: U = fu0; u1; u2g,

A = fa0; a1g. qi;j is the estimated value of taking action ai when e(s; ai) = uj . Since this table is

for a single agent, P (s) remains constant. The table on the right emphasizes that there are only 6

independent q values in the table on the left.

The Q-values learned depend on the agent's past experiences in the domain. In particular,
after taking an action a while in state s with f(s) = v, an agent receives reward r and uses

it to update Q(v; a) from its previous value Q(v; a) as follows:

Q(v; a) = Q(v; a) + �(r �Q(v; a)) (7.2)

where � is the learning rate. Since state transitions are opaque, the agent cannot use the

dynamic programming (and Q-learning) approach of updating the value function based on

the value of the state that results from executing action a. Instead, the reward r is derived
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from the observable environmental characteristics|those that are captured in S|over a

maximum number of time steps tlim after the action is taken. The reward function

R : Stlim 7! IR

returns a value at some time no further than tlim in the future. The reward is discounted

based on the amount of time between acting and receiving the reward. During that time,

other teammates (or opponents, if any) can act in the environment and a�ect the action's

outcome, but the agent may not be able to observe these actions. In practice, the range of

R is [�Qmax; Qmax] where Qmax is the reward for immediate goal achievement. In order to

associate the eventual reward with the action it took, the agent must keep track of the last

action taken ai and the feature vector v at that time.

Notice from Equation 7.2 that in TPOT-RL, the updated action value depends only on

the previously stored action value in the same state as opposed to chains of learned state
values. That is, when updating Q(v; a) TPOT-RL doe not reference any Q(v0; a0) such that
v 6= v0 or a 6= a0. If the actual value of executing action a from state s with f(s) = v

changes, the agent can adjust by simply executing a in such a state several times: no other
states-action pairs need to be updated �rst. Therefore, TPOT-RL is able to adopt relatively

quickly to shifting concepts.
The reward function, including tlim and Qmax, is domain-dependent. One possible type

of reward function is based entirely upon reaching the ultimate goal. In this case, an agent

charts the actual (long-term) results of its policy in the environment. However if goal achieve-
ment is infrequent, a reward function based on intermediate reinforcement, which provides
feedback based on intermediate states towards the goal, may be needed.

7.2.3 Action Selection

As in all RL techniques, the issue of exploration vs. exploitation is important for TPOT-RL.
Particularly since the target concept can shift due to teammates learning and changing their
policies, or due to changes in policies of opponents (if any), it is important for agents to

gather information about the value of actions that are currently considered sub-optimal by
the value function. Any standard exploration heuristic, such as the randomized Boltzmann

exploration strategy [Kaelbling et al. 96], could be used.

Informative action-dependent features can be used to reduce the free variables in the
learning task still further at the action-selection stage if the features themselves discriminate

situations in which actions should not be used. For example, suppose we can de�ne a set
W � U such that if e(s; a) =2 W , then a should not be considered as a potential action from

state s.

Formally, consider W � U and B(s) � A with B(s) = fa 2 Aje(s; a) 2 Wg. When in
state s, the agent then chooses an action from B(s) instead of from the entire action set

A, either randomly when exploring or according to maximum Q-value when exploiting. In

e�ect, W acts in TPOT-RL as an action �lter which reduces the number of options under

consideration at any given time. Again, any standard exploration heuristic can be used over

the possible actions in B(s). Of course, exploration at the �lter level can also be achieved
by dynamically adjusting W .
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For example, Table 7.2, illustrates the e�ect of varying jW j. Notice that when W 6= U ,

it is possible that B(s) = ;: 8ai 2 A; e(s; ai) =2 W . In this case, either a random action

can be chosen, or rough Q-value estimates can be stored using sparse training data. This

condition becomes rarer as jAj increases. For example, with jU j = 3, jW j = 1, and jAj = 2

as in Table 7.2(b), 4/9 = 44.4% of feature vectors have no action that passes the W �lter.

However, with jU j = 3, jW j = 1, and jAj = 8 only 256/6561 = 3.9% of feature vectors have

no action that passes the W �lter. If jU j = 3, jW j = 2 and jAj = 8, only 1 of 6561 feature

vectors fails to pass the �lter. Thus using W to �lter action selection can reduce the number

of free variables in the learning problem without signi�cantly reducing the coverage of the

learned Q-table. However, there is always the danger that the best possible action from a

particular state could be �ltered out: an informed, heuristic choice of W is required.

e(s; a0) e(s; a1) Q(f(s); a0) Q(f(s); a1)

u0 u0 q
0;0 q

1;0

u0 u1 q
0;0 |

u0 u2 q
0;0 q

1;2

u1 u0 | q
1;0

u1 u1 | |

u1 u2 | q
1;2

u2 u0 q
0;2 q

1;0

u2 u1 q
0;2 |

u2 u2 q
0;2 q

1;2

(a)

e(s; a0) e(s; a1) Q(f(s); a0) Q(f(s); a1)

u0 u0 | |

u0 u1 | |

u0 u2 | q
1;2

u1 u0 | |

u1 u1 | |

u1 u2 | q
1;2

u2 u0 q
0;2 |

u2 u1 q
0;2 |

u2 u2 q
0;2 q

1;2

(b)

Table 7.2: The resulting Q-tables when U = fu0; u1; u2g, A = fa0; a1g, and (a) W = fu0; u2g, or

(b) W = fu2g.

7.2.4 Summary

By partitioning the state space among teammates, by using action-dependent features to
create a coarse feature space and to �lter actions, and with the help of a reward function
based entirely on individual observation of the environment, TPOT-RL enables team learning

in complex multi-agent, non-stationary environments even when agents cannot track state

transitions.

In order to apply TPOT-RL to particular learning problems, as we do in Sections 7.3

and 7.4, the following functions and variables must be speci�ed within the domain:

� The action-dependent feature function e and its range U .

� The partition function P and its range M .

� The reward function R including variables Qmax and tlim.

� The learning rate �.

� The action-�ltering set W � U .



7.3. TPOT-RL APPLIED TO SIMULATED ROBOTIC SOCCER 145

In the two TPOT-RL implementations reported in Sections 7.3 and 7.4, the speci�cations

of these variables are all indented for emphasis.

7.3 TPOT-RL Applied to Simulated Robotic Soccer

In this section, I describe our application of TPOT-RL to a complex multi-agent learning

task, namely pass selection in simulated robotic soccer. Pass selection is the third layer in

our layered learning implementation.

In the soccer domain, we apply TPOT-RL to enable each teammate to simultaneously

learn a high-level action policy, or receiver choice function (RCF). The RCF is a function

that determines what an agent should do when it has the opportunity to kick the ball. When

it does not have the ball, the agent acts according to a manually created behavior as de�ned
in Section 6.3.3.

As presented in Section 6.3.1, the input of the RCF is the agent's perception of the
current world state; the output is a target destination for the ball in terms of a location on

the �eld, e.g. the opponent's goal. In our experiments reported in this section, each agent
has 8 possible actions in A: it can pass towards either of the two goals, towards any of the
four corners of the �eld, or to either side of the mid�eld line. Notice that in this case, the

agents consider passing to locations on the �eld rather than to actual players. Nonetheless,
the trained pass-evaluation DT can be used as if there were a teammate in the proposed

�eld location. The action space is illustrated in Figure 7.2.

Figure 7.2: The action space used in this chapter. The black and white dots represent the players

attacking the right and left goals respectively. Arrows indicate a single player's (the player from

which the arrows emanate) action options when in possession of the ball. The player kicks the ball

towards a �xed set of markers around the �eld, including the corner markers and the goals.

We extend the de�nition of � �rst presented in Section 6.1.1 to cover the action space

used in this section as follows. Assume that for the action a 2 A (a kick to a location on the

�eld), the DT predicts class � with con�dence 
 2 [0; 1] when the agent is in state s. The

DT is evaluated as if there were a teammate at the kick destination corresponding to action
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a. Then2

�(s; a) =

8><
>:


 if � = S (success)

0 if � = M (miss)

�
 if � = F (failure)

The two previously-learned behaviors (see Chapters 5 and 6) are both trained o�-line in

limited, controlled training situations. They can be trained in such a manner due to the

fact that they only involve a few agents: ball interception only depends on the ball's and

the agent's motions; passing only involves the passer, the receiver, and the agents in the

immediate vicinity. On the other hand, deciding where to pass the ball during the course

of a game requires training in real games since the value of a particular action can only

be judged in terms of how well it works when playing with particular teammates against

particular opponents. For example, as presented in Section 7.1.1, passing backwards to a

defender could be the right thing to do if the defender has a good action policy, but the

wrong thing to do if the defender is likely to lose the ball to an opponent.

Although our trained DT accurately predicts whether a player can execute a pass, it
gives no indication of the strategic value of doing so. But the DT reduces a detailed state

description to a single continuous output. It can then be used to drastically reduce the
complex state and provide a useful state generalization. In this work we use the DT to

de�ne the crucial action-dependent feature function e in TPOT-RL. Thus, in the context of
our layered learning implementation, the new learned layer (pass selection) uses the previous
layer (pass evaluation) as part of its input representation.

7.3.1 State Generalization Using a Learned Feature

As is the case throughout this thesis and as illustrated in Figure 7.2, the team formation is

divided into 11 positions. Thus,

M = the team's set of positions (roles) (jM j = 11)

P (s) = the player's own current position

Using the layered learning approach, we use the previously trained DT to de�ne e, which is

the main component of the input representation used to learn Q. In particular, we use � to

cluster actions into two sets indicating predicted success or failure:

U = fSuccess; Failureg

e�(s; a) =

(
Success if �(s; a) � C

Failure if �(s; a) < C

In our experiments, we use C = :734 as the threshold for clustering action. We �nd that
this threshold clusters the predictions into classes of roughly equal size.

2
In Chapter 6, the parameter s was implicit for consistency of notation within the chapter. Similarly,

for notational consistency within this chapter, the fact that � is evaluated from the perspective of the

\passer"|the agent that is acting|is implicit.
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According to these de�nitions, jU j = 2 and V = U8 � fP layerPositionsg so jV j =

jU jjAj � jM j = 28 � 11. Under the assumption that Q(s; ai) depends only on e(s; ai), the total

number of independent Q-values is jU j � jM j � jAj = 2 � 8 � 11.

This feature space is immensely smaller than the original state space, which has more than

10198 states (see Section 2.2). Since e indicates the likely success or failure of each possible

action, at action-selection time, we only consider the actions that are likely to succeed:

W = fSuccessg

. Therefore, each agent learns jW j�jAj = 8 Q-values, with a total of 88 (jW j�jAj�jM j) learned

by the team as a whole. Even though each agent only gets about 10 training examples per

10-minute game and the reward function shifts as teammate policies improve, such a learning

task is tractable.

In addition to e�, we de�ne two other action-dependent feature functions for the purpose

of comparison:

� er is a random function, returning Success or Failure randomly.

� eh is a hand-coded heuristic pass-evaluation function based on one de�ned in Ap-
pendix B (Section B.2.5) that we successfully used on our real robot team.

7.3.2 Value Function Learning via Intermediate Reinforcement

As in any RL approach, the reward function plays a large role in determining what policy

is learned when using TPOT-RL. One possible reward function, Rg is based entirely upon
reaching the ultimate goal. In the soccer domain, we de�ne Rg in terms of goals scored. If
a goal is scored t time steps after action a is taken (t � tlim), then the reward is �Qmax=t

depending on whether the goal is scored for or against. In this way, an agent charts the actual
(long-term) results of its policy in the environment. Notice that the reward is discounted

based on how long after acting the rewarding state is achieved.
Although goals scored are the true rewards in this domain, such events are very sparse.

In order to increase the feedback from actions taken, it is useful to use an intermediate

reinforcement function, which provides feedback based on intermediate states towards the

goal [Mataric 94a]. Without exploring the space of possible such functions, we created one

reward function Ri using intermediate reinforcement.

Like Rg, Ri gives rewards for goals scored. However, agents also receive rewards if the

ball goes out of bounds, or else after a �xed period of time tlim based on the ball's average

lateral position on the �eld. In particular, when an agent takes action ai in state s such

that e(s; ai) = u, the agent notices the time t at which the action was taken as well as the

x-coordinate of the ball's position at time t, xt. The reward function Ri (like Rg) takes as

input the observed ball position over time tlim (a subset of Stlim) and outputs a reward r.
Since the ball position over time depends on other agents' actions, the reward is stochastic

and non-stationary. Under the following conditions, the agent �xes the reward r:

1. if the ball goes out of bounds (including a goal) at time t+ to (to < tlim);

2. if the ball returns to the agent at time t+ tr (tr < tlim);



148 CHAPTER 7. LEARNING A TEAM BEHAVIOR

3. if the ball is still in bounds at time t+ tlim.

In case 1, the reward r is based on the value ro as indicated in Figure 7.3:

r =
ro

1 + (�� 1) � to=tlim
: (7.3)

Thus, the farther in the future the ball goes out of bounds (i.e. the larger to), the smaller

the absolute value of r. This scaling by time replaces the discount factor used in Q-learning.

We use:

tlim = 30 seconds (300 simulator cycles)

Qmax = 100

� = 10

100-100

25

10-10

-25
1 25

25 -1

Kick-in for

Kick-in against

Goal
against

Goal
for

Goal-kick
for

Goal-kick
againstagainst

kick 
Corner- Corner-

kick
for

0,0

y

x

attack direction

Figure 7.3: The component ro of the reward function Ri based on the circumstances under which

the ball goes out of bounds. For kick-ins, the reward varies linearly with the x-position of the ball.

In cases 2 and 3, the reward r is based on the average x-position of the ball over the time

t to the time t+ tr or t+ tlim. Over that entire time span, the agent samples the x-coordinate

of the ball at �xed, periodic intervals and computes the average xavg over the times at which

the ball position is known. Then if xog is the x-coordinate of the opponent goal (the right

goal in Figure 7.3) and xlg is the x-coordinate of the learner's goal:

r =

8<
:

� �
xavg�xt

xog�xt
if xavg > xt

�� �
xt�xavg

xt�xlg
if xavg � xt

(7.4)

Thus, the reward is the fraction of the available �eld by which the ball is advanced, on

average, over the time-period in question. Note that a backwards pass can lead to positive

reward if the ball then moves forward in the near future and conversely, a forwards pass can

lead to a negative reward. The use of parameter � in both Equations 7.3 and 7.4 insures that

intermediate rewards cannot override rewards for attaining the ultimate goal, Qmax which is
the maximum value of ro in Equation 7.3.
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When using either Rg or Ri, the reward r is based on direct environmental feedback. Rg

passes discounted reward back to the agents only when the world enters a state with which

some reward is associated. Ri is a domain-dependent intermediate reinforcement function

based upon heuristic knowledge of progress towards the goal.

Notice that Ri relies solely upon the agent's own impression of the environment. If it

fails to notice the ball's position for a period of time, the intermediate reward is a�ected (the

agents always notice when the ball goes out of bounds or into a goal via an aural message

from the referee). However, agents can track the ball much more easily than they can deduce

the internal states of other agents as they would have to do were they to determine future

team state transitions.

Finally, after taking action ai and receiving reward r, Q(e(s; ai); ai) is updated according

to equation 7.2 with the learning rate

� = :02

Thus, even though we average all reward values achieved as a result of taking an action in

a given state, each new example accounts for 2% of the updated Q-value: rewards achieved
further in the past are weighted less heavily.

7.3.3 Action Selection for Multi-Agent Training

One characteristic of some multi-agent domains that makes them non-stationary is the fact

that multiple agents are concurrently learning. Thus, from each individual's perspective,
the environment is not a stable system. In order to deal with this challenge, we adopt two
action strategies:

� Each agent stays in the same state partition throughout training;

� Exploration rate is very high at �rst and gradually decreases simultaneously for all
agents;

By having each agent remain in the same partition throughout training, we are, in e�ect,
distributing training into jM j partitions, each with a lookup-table of size jAj � jU j. After

training, each agent can be given the trained policy for all of the values of M , enabling the
agents to move through the entire state space. Were each agent required to learn the policies

of all positions, training would take at least jM j times longer3.

As in all RL paradigms, the tradeo� between exploration and exploitation is potentially

problematic. Especially since rewards in our case are stochastic and feature values encode

large numbers of states, early exploitation runs the risk of ignoring the best possible actions

in certain states. As a result, when in state s, our agents choose the action with the highest
Q-value|action ai such that 8j, Q(f(s); ai) � Q(f(s); aj)|with probability p, and a random

action with probability 1� p. In all of our training runs, p gradually increases from 0 to .99.

3
Training would likely take even longer than that. Since teammates would all be learning more slowly as

well, it would take longer for the agents to receive informative reinforcement values.
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7.3.4 Results

Empirical testing demonstrates that TPOT-RL can e�ectively learn multi-agent control poli-

cies with few training instances in a complex, dynamic domain. Unless otherwise noted, for

all experiments reported in this section:

� The learning agents start out acting randomly and with empty Q-tables: 8v 2 V; a 2

A;Q(v; a) = 0.

� Over the course of learning, the probability of acting randomly, p, decreases linearly

over periods of 40 games from 1 to .5 in game 40, to .1 in game 80, to .01 in game 120

and thereafter.

� The learning agents use the intermediate reward function Ri.

Figure 7.4 plots cumulative goals scored by a learning simulated soccer team playing
against an otherwise equally-skilled team that passes to random destinations over the course

of a single long run equivalent in time to 160 10-minute games. As apparent from the
graph, the team using TPOT-RL learns to vastly outperform the randomly passing team.

Other than the pass decisions, the behaviors of the agents on the randomly passing team
are identical to those on the learning team. During this experiment, jU j = 1, thus rendering
the function e irrelevant: the only relevant state feature is the player's own position on the

�eld.

0
50

100
150
200
250
300
350
400
450

0 20 40 60 80 100 120 140 160

G
oa

ls

Game Number

Cumulative Goals vs. Game Number

Learning
Random

Figure 7.4: Total goals scored by a learning team playing against a randomly passing team. The

independent variable is the number of 10-minute games that have elapsed.

A key characteristic of TPOT-RL is the ability to learn with minimal training exam-

ples. During the run graphed in Figure 7.4, the 11 players get an average of 1490 action-

reinforcement pairs over 160 games. Thus, players only get reinforcement an average of 9.3

times each game, or less than once every minute. Since each player has 8 actions from which

to choose, each action is only tried an average of 186.3 times over 160 games, or just over

once every 10-minute game. Under these training circumstances, very e�cient learning is

clearly needed.
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TPOT-RL is e�ective not only against random teams, but also against goal-directed,

hand-coded teams. For testing purposes, we construct an opponent team which plays with

all of its players on the same side of the �eld, leaving the other side open as illustrated by

the white team in Figure 7.2. The agents use a hand-coded RCF which directs them to pass

the ball up the side of the �eld to the forwards who then shoot on goal. The team switches

from one side of the �eld to the other every 5 minutes of simulation (half of a game). We

call this team the switching team. Note that the switching team is similar to a team that

switches between the OPR and OPL (only play right/left) strategies de�ned in Chapter 6.

The only di�erence is that the switching team uses a goal-directed, rather than a random,

RCF.

Were the opponent team to always stay on the same side of the �eld, as is the case with

the goal-directed OPR team, the learning team could advance the ball up the other side

of the �eld without any regard for current player locations. Thus, TPOT-RL could be run

with jU j = 1, which renders e inconsequential. Indeed, we veri�ed empirically that TPOT-
RL is able to learn an e�ective policy against the OPR team using jU j = 1. As shown in
Figure 7.5(b), after 160 games of learning, the learning team is able to beat the OPR team

by a cumulative score of 259{124 over the course of 40 test games. As a point of comparison,
Figure 7.5(a) shows the result of always shooting towards the opponent goal|a reasonable
heuristic|when playing against the OPR team.
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Figure 7.5: The results after training of 3 di�erent runs against the OPR team (always shown as

the white bar). (a) shows the result of always executing the shoot action. (b) and (c) show the

results when training for 160 and 80 games respectively when using TPOT-RL with jU j = 1.

Also against the OPR team, we tested the e�ect of training time on the e�ectiveness of

the learned policy. The results can be seen by comparing Figures 7.5(b) and 7.5(c). These

two trials are identical except that the latter used an accelerated training schedule: The

exploration rate was decreased over 20-game intervals for a total of 80 games rather than

40-game intervals for a total of 160 games. The reduced training leads to worse performance

over 40 subsequent test games. The purpose of this experiment was to verify the need for on
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the order of 160 training games to adequately evaluate TPOT-RL's performance. Further

testing indicated that training beyond 160 games does not signi�cantly a�ect performance.

All other trials reported below use 160 games of training.

Exploiting the Previously Learned Features

Against the switching team, an agent's best action depends on the current state: in general,

the agent should pass away from the side of the �eld on which the opponents are located.

Thus an action-dependent feature function that discriminates among possible actions dy-

namically can help TPOT-RL. Figure 7.6 compares TPOT-RL with di�erent functions e

and di�erent sets W when learning against the switching team.

0

50

100

150

200

G
o
a
ls

: 
4
0
 p

o
st

-l
e
a
rn

in
g
 g

a
m

e
s

Learning team Switching team

e

er
eh

|W|=1 |W|=2

|U|=2,
|W|=2,

(e)(d)(c)(b)(a)

|U|=1

|U|=2,
|W|=1,

|U|=2, e=

e=
e=

Figure 7.6: The results after training of 5 di�erent TPOT-RL runs against the switching team.

With jU j = 1 (Figure 7.6(a)), the learning team is unable to discriminate among states
in which passes are likely to succeed or fail since each agent has only one Q-value associated
with each possible action4. With jU j = 1, it loses 139{127 (cumulative score over 40 games

after 160 games of training).
In contrast, with the previously trained DT classifying passes as likely successes or failures

(e�) and with �ltering out the failures (W = fSuccessg), the learning team wins 172{113

(Figure 7.6(b)). Therefore the learned pass-evaluation feature is able to usefully distinguish

among possible actions and help TPOT-RL to learn a successful action policy. The DT

also helps learning when W = U (Figure 7.6(c)), but when W = fSuccessg performance is
better.

Figure 7.6(d) demonstrates the value of using an informative action-dependent feature

function e. When a random function er is used, TPOT-RL performs noticeably worse than

when using e�. For er we show jW j = 2 because it only makes sense to �lter out actions
when e contains useful information. Indeed, when e = er and jW j = 1, the learning team

performs even worse than when jW j = 2 (it loses 167{60). The DT even helps TPOT-RL

4
Notice that whenever jU j = 1, it must be the case that W = U .
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more than a hand-coded heuristic pass-evaluation function (eh) based on the one de�ned in

Appendix B (Section B.2.5) that we successfully used on our real robot team (Figure 7.6(e)).

Final score is the ultimate performance measure. However, we examined learning more

closely in the best case experiment (e = e�,W = fSuccessg|Figure 7.6(b)). Recall that the

learned feature provides no information about which actions are strategically good. TPOT-

RL must learn that on its own. To test that it is indeed learning to advance the ball towards

the opponent's goal (other than by �nal score), we calculated the number of times each

action is predicted to succeed (e�(s; a) = Success) and the number of times it was actually

selected by TPOT-RL after training. Throughout the entire team, the 3 of 8 (37.5%) actions

towards the opponent's goal were selected 6437/9967 = 64.6% of the times that they were

predicted to succeed. Thus TPOT-RL learns that it is, in general, better to advance the ball

towards the opponent's goal.

Verifying that the �lter is eliminating action choices based on likelihood of failure, we

found that 39.6% of action options were �ltered out when e = e� and jW j = 1. Out of

10,400 action opportunities, it was never the case that all 8 actions were �ltered out: in all
cases, B(s) 6= ;.

Comparing Reward Functions

The reward function Ri, used in all the experiments reported above, is engineered to increase

the amount of reinforcement information available to the agents as opposed to the extremely
sparse reinforcements available from goals scored (Rg). Nevertheless, while not as e�ective
as Ri, Rg does provide enough reinforcement for agents to learn e�ective policies. Using the

same 160-game training paradigm and using jU j = 1, a team learning with Rg is able to
beat the OPR team (Figure 7.7(a)), though by considerably less than the team using Ri in

otherwise identical circumstances (Figure 7.7(b)|the same trial as shown in Figure 7.5(b)).
Therefore, the intermediate reinforcement reward function, Ri is a key component to achiev-
ing successful results with TPOT-RL.

7.4 TPOT-RL Applied to Network Routing

Section 7.3 demonstrates that TPOT-RL can be used to learn e�ective behaviors in one
team-partitioned, opaque-transition domain. However, in creating TPOT-RL, we intend

it as a new general multi-agent learning algorithm. This section demonstrates that it can
indeed apply beyond simulated robotic soccer.

We identify network routing as another team-partitioned, opaque transition domain.

As presented in Section 2.4, in our formulation of network routing, each network node is

considered as a separate agent. The agents act as a team as they try to cooperate in sending

packets through the network as e�ciently as possible. The domain is team-partitioned since

each agent learns only a policy at its own node: the function P partitions the state space

based, in part, on the node at which each agent is situated. Prior research indicates that

distributed network control is advantageous even in high-speed networks (such as ATM

networks) in which centralized control is possible [Horikawa et al. 96].
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Figure 7.7: The results after training of 2 di�erent runs against the OPR team. (a) shows the

result of learning with the Rg reward function. (b) shows the result of training with the Ri reward

function. In both cases, jU j = 1.

Network routing is opaque-transition because agents cannot see a packet's route after

sending it along a link. Like in robotic soccer, agents' actions are chained, with each agent
able to a�ect which agent will act next, but with no control beyond that. Agents get no
short-term reward for their actions and cannot track the transitions in the environment.

Nonetheless, the team of agents can learn to e�ectively route packets by observing local

state information (network tra�c). The action-dependent feature function e in our imple-
mentation of TPOT-RL for network routing provides useful local information that correlates

with the long-term reward: e returns the amount of recent network tra�c on the links lead-
ing from an agent's node. In our experiments, we assume that the agents get intermittent
long-term performance statistics transmitted back to them. Thus they are able to learn to

collaborate.

Aside from being team-partitioned and opaque-transition, network routing is also similar
to robotic soccer in that the world changes dynamically in a manner beyond the team's

control. In robotic soccer, opponents can change their strategies; in network routing the
distribution of packets introduced into the network can change.

In this section, I present in detail our application of TPOT-RL to network routing, a

second multi-agent learning task. In Sections 7.4.1{7.4.3, I provide the algorithmic details

of our implementation of TPOT-RL. Section 7.4.4 speci�es our experimental methodology
including the parameters used in the network routing simulator and Section 7.4.5 presents de-

tailed empirical results demonstrating the e�ectiveness of TPOT-RL in the network routing
domain.

7.4.1 State Generalization

As de�ned in Section 7.2.1, the function f : S 7! V generalizes the state space based on two

components: an action-dependent feature function e : S � A 7! U and a coarse partitioning

function P : S 7!M . Given a state s 2 S from which the agent at node ni is faced with the
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decision of routing packet kj:

M = N �N (jM j = m2)

P (s) = (ni; kjdest)

Recall that, as de�ned in Section 2.4, m is the number of nodes in the network: jN j = m.

Using this partitioning function P , the agent at node ni learns to act only in the cases that

P (s) = (ni; kjdest) for some j: the space is partitioned evenly among the m agents, with each

getting m partitions.

The action-dependent feature function e : S � A 7! U is de�ned as follows. A is the set

of actions available and is represented in terms of the nodes to which a packet can be sent.

Thus A = N . However, the agent at node ni may only use the actions in Lni
� N|the set

of links from node ni. The elements of

U = fhigh; lowg

re
ect the network activity over a particular link in the last activity window time units.

An agent can store the link activity along all of the links from its node since it is either the
sender or the recipient of all packets sent along these links.

De�ne �(s; a; activity window) as the number of packets sent along the link correspond-
ing to action a in the last activity window time units divided by activity window. Then
if action a is the act of sending a packet along link l,

e(s; a) =

(
high if �(s; a; activity window) � C

low if �(s; a; activity window) < C

We use activity window = 100 and C = :5. Notice that e is an action-dependent function
since it depends on the proposed action of sending a packet along link l. It is also based

entirely upon local information available to agents that maintain internal state, collecting
tra�c statistics over time.

Like in the robotic soccer example, this state generalization drastically reduces a huge

state space to the point that agents can store Q-values in a lookup table. In our implemen-
tation, according to Equation 2.2, the entire state space in our experiments has more than
103000 states (m = 12,Cnet = 1000). However, with jU j = 2, jAj � 3, and jM j = m2 the total

number of Q-values for the team to learn is at most 6m2, with each agent learning no more

than 6m values. In our experiments reported below, m = 12. Therefore each agent must

learn only 72 Q-values.

7.4.2 Value Function Learning

As per equation 7.2, agents learn Q(v; a)|the value of taking action a when in a state s such

that f(s) = v|by receiving a reward r via a reward function R. In this case, if v indicates

that node n is trying to send a packet k on its way to node kdest (P (s) = (n; kdest)), then

Q(v; a) is meant to estimate the time that it will take for the packet to reach node kdest.
Thus agents aim to take actions that will lead to minimal r.
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Unlike the soccer domain, in which agents can observe the ball's progress over time,

network routing does not provide much opportunity for intermediate reinforcement. R is

almost entirely based on the actual time that the packet k takes to travel from node ni to

its destination kdest.

When k successfully arrives at kdest, the agent at node kdest can examine the times at

which it left each node along its path from ksource as stored in kpath. From this information,

it can deduce the time taken from each node along the path given the action taken at that

node. Then periodically, every update interval seconds, the nodes in the network update

each other on the long-term results of their actions.

Thus, after the agent at node ni sends a packet ki along link l at time tki;l, the agent

at node ni receives reward r equal to the time it took for the packet to eventually reach its

destination kidest:

r = kidtime
� tki;l

In this case, the goal of each node is to minimize its reward r. Notice that this formulation

of the reward function R is entirely goal oriented|in general, there is no opportunity for
the agent at node ni to observe a packet's progress on the way to its destination.

However, there is one exception. Especially at the early stages of learning when actions
are mostly random, a packet often returns to a node from whence it came at some interval

t later than it last left the node. In this situation, the agent at the node in question infers
that the previous action a taken on this packet was ine�ective and generates an intermediate

reward signal r = Q(v; a) + t, thus increasing the cost estimate Q(v; a).

To put a bound on the timing of rewards, the reward r is bounded by Qmax. That is, if
a node takes longer than Qmax to arrive, r = Qmax. A node can assume that the packet did
not arrive in this time if it has not heard about its arrival after Qmax+ update interval

simulated seconds. Therefore, tlim = Qmax+ update interval. In our experiments, we use

Qmax = 2000

update interval = 10

tlim = 210

Finally, just as in the robotic soccer implementation of TPOT-RL, after the agent
at node n takes action a on a packet k destined for node kdest and receives reward r,

Q((e(s; a); (n; kdest)); a) is updated according to equation 7.2 with the learning rate

� = :02

Thus, again, even though we average all reward values achieved as a result of taking an

action in a given state, each new example accounts for 2% of the updated Q-value: rewards

achieved further in the past are weighted less heavily.

7.4.3 Action Selection

In our network routing implementation of TPOT-RL, Q-values are all initialized to low

values (0 or the shortest path length between nodes) before learning and agents always
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choose the action with the lowest Q-value. Thus, each action is tried at least once, but

there is no deliberate exploration. We �nd this total exploitation strategy to be e�ective,

presumably because as unsuccessful actions are repeated, their costs increase due to network

congestion, thus naturally causing agents to try the other alternatives periodically. However,

should exploration become necessary, we could easily switch to a probabilistic action-selection

strategy as we use in the robotic soccer implementation.

We do not experiment with action �ltering in this domain, �nding that it is not necessary

to achieve good results. Thus, in all of our experiments,

W = U

7.4.4 Experimental Setup

In this section I lay out the details of our experimental setup for testing the e�ectiveness of

TPOT-RL in the network routing domain. The detailed empirical results are then reported
in Section 7.4.5.

All of the experiments use a network architecture (node and link patterns) as shown in
Figure 7.8. The nodes are numbered for reference in the text. Packets are injected into
the network at random intervals according to a Poisson distribution at an average rate of c

per simulated second. In our experiments, we use c = 3. We create three di�erent tra�c
patterns within this network by controlling the distributions of sources and destinations of

injected packets. Our tra�c patterns are controlled by two variables: p6, the probability
that a new packet is destined for node 6 (see Figure 7.8); and fs, the frequency with which
the tra�c patterns switches (i.e. number of simulated seconds between pattern switches). In

our experiments, we use p6 = :25 and fs = 10,000. The three tra�c patters we de�ne are:

Top-heavy: With probability p6, the injected packet has node 6 as its destination and a

random source; with probability 1� p6, the injected packet has source and destination
chosen randomly (without replacement) from the set of nodes f1,2,3,4,5g.

Bottom-heavy: With probability p6, the injected packet has node 6 as its destination and

a random source; with probability 1�p6, the injected packet has source and destination

chosen randomly from the set of nodes f7,8,9,10,11g.

Switching: Every fs simulated seconds, the tra�c pattern switches between the top-heavy

and bottom-heavy patterns.

As laid out in Section 2.4, there are several parameters governing the timing and capac-

ities of network tra�c. We use Cnode = Cnet = 1000, tn = tl = 1:0.

In our experiments, we test several di�erent packet routing strategies under the di�erent

tra�c patterns de�ned above. I de�ne the strategies in terms of what the agent at node n

does when trying to route packet k to its destination kdest. It must choose from among the
possible links in Ln.

Random (RAND): k is sent along a random link l 2 Ln.
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Figure 7.8: The network architecture used for our experiments. The nodes are numbered for

reference in the text.

Shortest (SHRT): k is sent along the link that would get it to kdest in the fewest number

of hops. Shortest paths are precomputed and stored based on the network topology. If
more than one link would lead along paths of the same shortest length, one such link

is chosen randomly.

Hand-coded (HAND): We created a policy by hand designed to work well with the top-
heavy tra�c pattern.

� When kdest = 6, if n 2 f7; 8; 9; 10; 11g, k is sent along the shortest path to-

wards node 6 (along the bottom of the network in Figure 7.8). Otherwise,
(n 2 f0; 1; 2; 3; 4; 5g) k is sent to a node in the set f6; 7; 8; 9; 10; 11g from where it
can then continue along the shortest path to node 6. Note that in all cases k can

be sent to a node in this set in one hop.

� When kdest 2 f1; 2; 3; 4; 5g, k is sent along the shortest path (along the top of the

network).

� Similarly, when kdest 2 f7; 8; 9; 10; 11g, k is sent along the shortest path (along

the bottom of the network).

We expect this policy to do fairly well with the top-heavy tra�c pattern since the
tra�c is distributed fairly evenly among the top and bottom portions of the network.

Packets headed for node 6 (p6 = 25% of the packets) use the bottom, while other
packets use the top of the network.

Q-routing (QROUT): This strategy is the Q-routing algorithm introduced in [Littman

and Boyan 93]. We use exactly the same implementation for testing. There are two
variants. One that starts with all Q-values initialized to 0, and another that initializes

all Q-values to be the shortest distance between nodes. In the former case, the policy

at the beginning is equivalent to RAND; in the latter, it is equivalent to SHRT. In both
cases, the Q-values can change freely during learning. We use the default learning rate

of � = 0:7.

TPOT-RL: This strategy is the one described in detail in Sections 7.4.1{7.4.3. Like
QROUT, TPOT-RL can be initialized with Q-values at 0 or with the length of the
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shortest path between nodes. In the latter case, the initialization is immediately over-

written by the �rst real reward signal. However, the initialization guides the initial

agent decisions.

In addition, stored Q-routing and TPOT-RL policies can be loaded and used exclusively

with no further learning allowed. We use this technique for testing purposes.

A major di�erence between Q-routing and TPOT-RL is that when using Q-routing,

neighboring nodes send back their own value estimates after every packet transfer. Thus Q-

routing generates a considerable amount of additional tra�c. On the other hand, we assume

that agents do not know anything about the network beyond their own nodes and links.

Performance statistics are propagated through the network in batches periodically, allowing

for a tradeo� between overhead packets and learning rate. However, unlike Q-routing agents,

TPOT-RL agents are unable to use dynamic programming.

7.4.5 Results

This section presents detailed empirical results verifying the e�ectiveness of TPOT-RL in
the network routing domain. First I present comparisons of the di�erent routing strategies

in a top-heavy tra�c pattern. Then I describe the e�ects of testing the resulting policies on
the bottom-heavy tra�c pattern. Finally, I present our results from training policies on the
switching tra�c and testing their generalization across the three tra�c patterns.

Top-Heavy Tra�c

First, we tested the �ve di�erent routing strategies under top-heavy network tra�c condi-

tions. I chart both the average delivery time of the packets and the average number of hops
per packet. Results are tabulated over intervals of 100 simulated seconds. Because of the
di�erence in scales of the performance of, on the one hand RAND and SHRT, and on the

other hand HAND, QROUT, and TPOT-RL, I break the results into two sets of graphs.
Figures 7.9 and 7.10 compare the results of using the RAND, SHRT, and TPOT-RL routing

strategies in terms of average delivery time and average number of hops respectively. Notice

that as the network �lls up, the RAND performs worse and worse in both respects. By de�-
nition, SHRT produces the minimum possible number of hops per packet, but again exhibits

a continual increase in average delivery time as the nodes' packet queues lengthen.

In this and all other TPOT-RL runs, unless speci�ed otherwise, update interval = 10,

Qmax = 2000, and jU j = 1: like in robotic soccer, under constant conditions, TPOT-RL can
be e�ective even without the help of action-dependent features.

Figures 7.11 and 7.12 are drawn on a much smaller y-axis scale, as the HAND, QROUT,

and TPOT-RL strategies all vastly outperform the other two (at least in terms of average

delivery time). In these runs, QROUT and TPOT-RL are both initialized with the shortest

paths to eliminate the big spike that would otherwise throw o� the scale at the beginning of

the graphs as the algorithms begin acting randomly. When these algorithms start out with

Q-values initialized to 0, the right hand parts of the curves look qualitatively the same.

Again, the average number of hops does not correlate with the average delivery time, the

real measure of interest. TPOT-RL outperforms both HAND and QROUT by sending some
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Figure 7.9: Average delivery time of packets in a network with the top-heavy tra�c pattern when

using three di�erent routing strategies: RAND, SHRT, and TPOT-RL.
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Figure 7.10: Average number of hops for packets in a network with the top-heavy tra�c pattern

when using three di�erent routing strategies: RAND, SHRT, and TPOT-RL.

packets along longer, but less congested paths. The remainder of the results in this section

are presented only in terms of average packet delivery time.

Bottom-Heavy Tra�c

Figure 7.13 illustrates the results of running policies designed for top-heavy tra�c under

bottom-heavy conditions. The solid bars show average tra�c delivery time for SHRT, HAND,

QROUT, and TPOT-RL under top-heavy tra�c. These numbers are the same as the end-

results shown in Figures 7.9 and 7.11. As noticed above, the HAND, QROUT, and TPOT-RL

strategies all perform well, having been designed or trained for these conditions.
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Figure 7.11: Average delivery time of packets in a network with the top-heavy tra�c pattern

when using three di�erent routing strategies: QROUT, HAND, and TPOT-RL.
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Figure 7.12: Average number of hops for packets in a network with the top-heavy tra�c pattern

when using three di�erent routing strategies: QROUT, HAND, and TPOT-RL.

However, when the resulting policies are tested under bottom-heavy tra�c conditions,
none of them perform well. In these runs, shown with hollow bars, the policies from the ends

of the previous runs are used with no additional learning. Of course the SHRT and HAND

policies, which do not learn, are constant throughout both runs.

I use a logarithmic scale on the y axis in Figure 7.13 in order to accommodate the large

discrepancy in values while still illustrating the di�erences.
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Figure 7.13: Fixed policies running in the top-heavy and bottom-heavy tra�c patterns. The

QROUT and TPOT-RL policies are both trained under top-heavy conditions. Note the log scale

on the y axis.

Switching Tra�c

While we would not expect a policy trained exclusively under top-heavy network tra�c
conditions to generalize to bottom-heavy conditions, we would like a policy trained under

switching conditions, since it includes periods of both of the other tra�c patterns, to gen-
eralize across all three. Figure 7.14 shows the results of HAND, QROUT, and two variants
of TPOT-RL under all three tra�c patterns. In all of the learning cases, the policy is

�rst trained under switching network tra�c for 30,000 simulated seconds and then �xed for
testing. In all cases, the solid bar shows results for top-heavy tra�c, the hollow bar for

bottom-heavy tra�c, and the striped bar for switching tra�c. Again, I use a logarithmic
scale on the y axis for presentation purposes.

The two TPOT-RL runs di�er only in the set U used. When jU j = 1, no di�erence is
made based on local tra�c conditions: routing decisions are based entirely upon the packet's

destination. When jU j = 2, agents can implement di�erent policies based on di�erent

local tra�c conditions. Note that Q-routing always routes packets based solely on their
destinations.

Figure 7.14 clearly shows the advantage of TPOT-RL. Since HAND is designed explicitly

for top-heavy tra�c, it fails as expected in other conditions (Figure 7.14(a)). Similarly,
QROUT is forced to adapt to one tra�c pattern at the expense of the other (Figure 7.14(b)).

In this case, it clearly optimizes its performance under bottom-heavy conditions, sacri�cing
its performance under top-heavy conditions, and thus under switching conditions as well.

On the other hand, TPOT-RL with jU j = 1 (Figure 7.14(c)) �nds a middle ground in
which the network performs fairly well under all tra�c conditions, but never as well as is

possible. It is when jU j = 2 (Figure 7.14(d)) that TPOT-RL can take advantage of its

action-dependent feature function to �nd correlations between local information and long-
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Figure 7.14: Fixed policies running in the top-heavy, bottom-heavy, and switching tra�c patterns.

The QROUT and TPOT-RL policies are both trained under switching conditions. Note the log

scale on the y axis.

term reward. In this case, TPOT-RL is able to perform well under all tra�c conditions with

a single policy.

This last result repeats the result reported in the simulated robotic soccer domain in

Section 7.3.4. Namely, TPOT-RL is capable of learning an e�ective policy under dynamic
conditions in a team-partitioned, opaque-transition domain.

7.5 Discussion

As mentioned at the outset, this chapter serves a dual purpose. First, it represents the �nal

layer in our layered learning implementation in the simulated robotic soccer domain. Second,

it de�nes a new multi-agent learning technique that generalizes outside of the robotic soccer
domain.

7.5.1 Pass Selection within Layered Learning

Pass selection represents the third and highest-level behavioral layer within our layered

learning implementation. Its implementation follows the principles of layered learning as
laid out in Section 4.1:

� Pass selection is a behavior that must be adaptable. Since it depends on the behaviors

of teammates and opponents, agents must be able to adjust their decisions based on

the empirical results of past decisions. Thus, pass selection is an appropriate behavior
for learning because of the possibility of exploiting data to adapt to a shifting concept.
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� We chose the machine learning method for pass selection based on the task character-

istics. As presented in Section 7.1, no pre-existing machine learning method is suitable

for learning pass selection in simulated robotic soccer. Therefore, we introduce a new

multi-agent reinforcement learning algorithm, TPOT-RL, to accomplish this task.

Low-level learning in complex domains can be well-de�ned with easy-to-isolate prob-

lems that allow agents to gather extensive training examples. However, when learn-

ing high-level multi-agent behaviors, training opportunities can be sparse and agents

cannot be trained in isolation since agent policies are interdependent. Although RL

typically su�ers from the \curse of dimensionality," the use of TPOT-RL to learn a

successful pass-selection behavior indicates that it can be used to learn complex multi-

agent behaviors with few training examples in very large state spaces.

� The previous learned layer|pass evaluation|is used as part of the input space for

TPOT-RL. In particular, the trained DT for pass evaluation is used to de�ne the
crucial action-evaluation function e when using TPOT-RL for learning pass selection.

The previously-trained DT gives an indication of the likelihood that a given pass will
succeed based on the con�guration of teammates and opponents, but regardless of the
receiver's position on the �eld. The trained RCF then maps the collection of feature

values (decision tree classi�cations) to a Q-value for each action. A key assumption
is that the Q-value of a particular action does not depend on the feature values for
the other actions. The Q-values indicate the long-term strategic value of taking a

particular action given the predicted short-term e�ect of that action in the current
state.

In this chapter, TPOT-RL is used to learn pass selection, the third layer of our layered
learning implementation. When learning pass selection, the team of agents uses a �xed

formation against a �xed opponent. As presented in Section 4.2.2, our layered learning im-
plementation could be extended by incorporating pass selection within higher-level learned

behaviors. For example, the team might learn to adjust its formation against a �xed op-
ponent. It might also learn to switch among pass selection policies when facing di�erent
opponents.

7.5.2 TPOT-RL

TPOT-RL is an e�ective technique for enabling a team of agents to learn to cooperate

towards the achievement of a speci�c goal. It is an adaptation of traditional RL methods

that is applicable in complex, non-stationary, multi-agent domains with large state spaces
and limited training opportunities. TPOT-RL enables teams of agents to learn e�ective

policies with very few training examples even in the face of a large state space with large

amounts of hidden state.

In short, TPOT-RL applies in domains with the following characteristics:

� There are multiple agents organized in a team.

� There are opaque state transitions.
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� There are too many states and/or not enough training examples for traditional RL

techniques to work.

� The target concept is non-stationary.

� There is long-range reward available.

� There are action-dependent features available.

There are several such domains. As seen in Sections 7.3 and 7.4, simulated robotic soc-

cer and network packet-routing are two such team-partitioned, opaque-transition domains.

Other domains to which TPOT-RL could potentially be applied are information networks,

distributed logistics, and rescue missions. For example, an information agent may broadcast

a message without any knowledge of who will receive and react to it.

In all of these team-partitioned, opaque-transition domains, a team of agents works to-

gether towards a common goal, but each individual agent only executes a portion of the
actions along the path to the goal. Agents can control their own destinies only intermit-
tently and at irregular intervals. While not in full control of the team's goal achievement,

they must still learn how to act so as to help their team achieve its goal. These domains
are in contrast with, for example, grid world domains in which a single agent moves from
some initial location to some �nal goal location; domains where agents take actions in par-

allel though also possibly in coordination|two robots executing tasks in parallel; and game
domains where the rules of the game require that an agent and its opponent alternate actions.

One main contribution of this thesis is the adaptation of the RL paradigm to a non-
stationary, opaque-transition multi-agent domain with a huge state space and extremely

limited training examples. TPOT-RL succeeds in this challenging domain by:

� Partitioning the value function among multiple agents.

� Training all agents simultaneously with a gradually decreasing exploration rate.

� Using action-dependent features to aggressively generalize the state space.

� Gathering long-term, discounted reward directly from the environment.

7.6 Related Work

The use of machine learning in multi-agent systems has recently been receiving a good deal

of attention. For a detailed discussion, see Chapter 9. This section highlights some of the

prior RL research that is most related to TPOT-RL.

TPOT-RL mixes characteristics of di�erent RL approaches. From a team perspective,

there are a series of action opportunities resulting in state transitions and occasionally leading

to rewards. In this sense, it is similar to Q-learning. However, from an individual agent's

perspective, since transitions are opaque, TPOT-RL is more like a Monte Carlo system in

which actions are rewarded for their eventual outcomes without any regard for the path of
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states traversed between the action and the reward. In this sense, TPOT-RL is similar to

TD(1) [Sutton 88] 5.

One method of dealing with large state spaces in RL is approximation of the function

Q. There has been much research into function approximation techniques in which the

value function is a neural network or perhaps a decision tree (e.g. [Boyan and Moore 95]|

see [Kaelbling et al. 96] for a survey). In contrast to TPOT-RL's construction of a small

feature space prior to learning, function approximators generalize large state spaces during

learning.

When using a feature space V , the de�nition of V can have a huge e�ect on the nature

of Q. For example, in [Salustowicz et al. 98], a grid-like discretization is used for V . Since

too many states result for a lookup-table, a neural network is used as the value function

approximator. This approach is shown not to work very well, and the authors conclude

that a more complex function approximator might work better. In contrast, we take the

approach of using a smaller feature space and the simplest possible evaluation function: a
lookup-table.

One RL application that has some similar characteristics to simulated robotic soccer is
distributed elevator control [Crites and Barto 96]. In this domain, a team of RL agents|

each responsible for one of four elevator cars|in a large, partially hidden, continuous state
space. Since the four agents learn simultaneously, the reinforcement to each individual agent

is non-stationary: it depends on the policies of the other agents. Crites and Barto report
very good results in comparison with heuristic control policies.

Elevator control as presented in [Crites and Barto 96] di�ers in two main ways from the

problems with which we are concerned. First, the approach is not team-partitioned since
each agent learns to operate in the entire state space. Second, it is not opaque-transition.

After taking an action in a state, an elevator agent knows the subsequent state that it enters
and is able to update its value function based on the value of this subsequent state.

TPOT-RL is able to learn with very few training examples. Prioritized sweeping [Moore
and Atkeson 93] is another method for learning with limited training examples. However,
like many other RL techniques, it relies on being able to store trajectories of state transitions

in the environment.

Even the partially observable Markov decision process (POMDP) [Kaelbling et al. 94]

framework, which is designed for problems with hidden state, relies on agents having some

knowledge of state transitions: POMDPs assume that the agent knows when the system
has transitioned to a new state and a new action can be taken. Thus reward can still

be propagated back through the state-action trajectory. Without access to future action
opportunities agents must accumulate their rewards directly from the environment.

Although the use of the environment for reward accumulation is a necessity in this do-

main, it has also been shown to be an advantage in similar situations. Searching in stochastic

policy space and using an average payo� for evaluating observation-action pairs can produce

successful policies without relying on the Markov property [Singh et al. 94]. As in our case,

the work reported there involves a domain in which several states are in the same observation

class due to the use of coarse features.

5
TD(1) is equivalent to a form of Monte Carlo learning [Singh and Sutton 96].
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The intermediate reinforcement in the reward function R is similar to progress estima-

tors [Mataric 94a]. Progress estimators use the short-term real-world e�ects of actions as

intermediate rewards to help robots reach their ultimate goal location. Mataric's conditions

also play a similar role to the features used here, reducing the size of the domain of the value

function. This work was done using a reactive approach, as opposed to our more deliberative

approach which takes into account past world states and agents' internal states.

Previous multi-agent reinforcement learning systems have typically dealt with much sim-

pler tasks than the one presented here. Littman uses Markov games to learn stochastic

policies in a very abstract version of 1-on-1 robotic soccer [Littman 94]. There have also

been a number of studies of multi-agent reinforcement learning in the pursuit domain with

four predators chasing a single prey in a small grid-like world. For example, Tan [93] com-

pares situations in which predator agents are allowed to share reinforcement information

and/or policies; Arai [97] provides agents with reinforcement for enabling successful actions

by teammates; and Ono [97] equips each predator agent with di�erent behavior modules
based on how many teammates are closer than it is to the prey. Even the relatively complex
backgammon [Tesauro 94] and elevator control [Crites and Barto 96] domains have much

smaller state space than the simulated robotic soccer domain.
In another predator-like task, Zhao and Schmidhuber [96] use a single run to deal with

the opponents' shifting policies and ignore the opponents' policies just as we do. The e�ects
of opponent actions are captured in the reward function.

In robotic soccer, a reinforcement learning approach has been used for strategic position-

ing [Andou 98] in the soccer server. Introducing observational reinforcement learning, this
system allows players to notice where the ball has traveled most often in the past and to
adjust their positions such that they are closer to the ball's path in the future.

Within network routing, Q-routing [Boyan and Littman 94] is discussed in detail above
as it is one of the benchmarks against which we compare TPOT-RL. Another approach

to network routing in the same simulator is inspired by an ant metaphor [Subramanian et

al. 97]. Ants crawl backwards over the network to discover link costs and shortest paths.
This system rests on the assumption that link costs are the same for packets going in either

direction. It also adds an overhead cost of sending the ant packets through the network.
Similarly inspired by the ant metaphor, AntNet [Caro and Dorigo 98] agents traverse a

routing network and write information at the nodes re
ecting their experience of the current

network status. Within the framework presented in [Caro and Dorigo 98], TPOT-RL is a
distributed, adaptive, non-minimal (i.e. packets do not necessarily always go along minimal

cost paths), and optimal (i.e. the objective is to optimize the entire network's performance
as opposed to any individual packet's traversal time) routing algorithm.
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Chapter 8

Competition Results

In Chapters 3{7, I presented the main contributions of this thesis along with extensive
controlled experiments empirically validating each individual contribution. However, since

the overall goal is to a create a complete team of agents that can operate in an adversarial
environment, it is also interesting and informative to note how the team performs against a
wide range of previously-unseen adversaries.

This chapter documents our experiences at several robotic soccer competitions in which

we have participated over the years. Since competitions are not controlled experiments, their
results are not presented as scienti�c validation of our individual techniques. Such validation
is presented in the previous chapters. However, I believe that competition results provide

useful evaluations of complete systems. In addition, I believe that qualitative evaluations
and anecdotes from these competitions teach some valuable lessons and provide insights into
the strengths and weaknesses of various approaches.

We named all of the teams that we entered in competitions \CMUnited." In this chapter,

I di�erentiate among the teams based on the year and platform in which they competed.
For example, the \CMUnited-96 simulator team" competed in the simulator competition
in 1996; the \CMUnited-97 small-robot team" competed in the small-robot competition in

1997.

No individual team that we entered in a competition embodies all of the research con-

tributions of this thesis. The team member agent architecture is used in several of the

teams, while TPOT-RL is used in none: it requires more training against an opponent than

is possible in competitions. Throughout this chapter, I indicate which techniques are used

by each team and Table 8.1 summarizes the correspondence between teams and techniques.

Although set-plays (Section 3.3.3) and SPAR (Section 3.5.2) are presented in Chapter 3 as

part of the 
exible teamwork structure, they are given separate entries in the table since

they are both used outside of the teamwork structure by at least one team.

Sections 8.1{8.4 provide match results and anecdotes from 4 competitions in which we

participated. Section 8.5 concludes with the most important lessons learned from these

competitions.

169
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Team Learned Learned

CMUnited Member Ball Pass

Team Agent Comm. Teamwork Set- Intcpn. Eval.
(year/platform) Arch. Paradigm Struct. Plays SPAR (NN) (DT)

96/simulator +

96/robots +

97/simulator + + + + + +

97/robots + + +

98/simulator + + + + + +

98/robots + +

Table 8.1: The research techniques used by the various CMUnited teams which we entered in

competitions.

8.1 Pre-RoboCup-96

The �rst robotic soccer competition of any sort was held on November 5{7, 1996 in Osaka,

Japan [Kitano 96]. In conjunction with the IROS-96 conference, Pre-RoboCup-96 was meant
as an informal competition to test the RoboCup soccer server in preparation for RoboCup-97.
Most of the entrants were from the Tokyo region and were in frequent contact with the

developer of the soccer server.

At the time of the competition, we had only begun our agent development, having created

nothing more than the learned ball-interception behavior described in Chapter 5. In last-
minute preparation for the event, we developed a static team formation and a �xed, hand-
coded receiver choice function (RCF) similar to the prefer right wing (PRW) RCF de�ned

in Section 6.3.1. The player closest to the ball always moved towards it and then passed to
a pre-determined teammate, with one designated player shooting towards the goal.

We were aware at the time that our CMUnited-96 simulator team implementation was
preliminary, but we entered the competition in order to attain a feeling for what areas needed
the most attention, and to help test the soccer server. Table 8.2 shows the results of the

games in which CMUnited-96 participated.

Opponent A�liation Score

(CMU{Opp.)

Oota Tokyo Institute of Technology, Japan 4 { 1

ETL Electrotechnical Laboratory, Japan 7 { 0

Sekine Tokyo Institute of Technology, Japan 1 { 13

Ogalets Tokyo University, Japan 1 { 9

Waseda Waseda University, Japan 3 { 4*

TOTAL 16 { 27

Table 8.2: The scores of CMUnited-96's games in the simulator league of Pre-RoboCup-96.

CMUnited-96 won 2 of its 5 games, �nishing in 4th place out of 8 teams. *The last game was

lost by one goal in overtime.
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An important lesson learned at this competition was that it is very important to be able

to get to the ball quickly and e�ciently. The two top teams, Ogalets and Sekine, each had

several players quickly moving towards the ball, thus increasing the likelihood that they

would retain possession. Our preliminary strategy of having a single player moving slowly

and deliberately towards the ball proved to be ine�ective. The trained neural network was

good at blocking the ball, but there was no incentive built into the training regime to get

to the ball quickly. We learned at this competition that robot soccer teams must have

either very e�cient ball-interception, or several players moving towards the ball at once. In

later competitions, we aimed to improve ball-interception e�ciency, while also occasionally

sending multiple players towards the ball.

8.2 MiroSot-96

The �rst robotic soccer competition involving real robots was held immediately after

Pre-RoboCup-96, on November 9{12, 1996 in Taejon, South Korea [Kim 96]. Called
MiroSot-96, 19 robotic teams competed in this tournament. As a single elimination tour-
nament, it provided for only a single game for many of the teams, including CMUnited-96,

which was matched in its �rst game against the eventual runner-up.

MiroSot-96 required smaller robots than the ones described in Section 2.3 (7.5cm3 max-
imum). In addition, there were only three allowed per team. The robots we used in this

competition were a preliminary version of those described in Section 2.3 [Achim et al. 96]. Al-
though they did not use the team member agent architecture or any of the machine learning
techniques described in this thesis, they did include complex set-plays.

Table 8.3 shows the result of our single game at the MiroSot-96 competition. The Miro

team ended up losing in the �nals 20{0 to the team from NewtonLabs, USA.

Opponent A�liation Score

(CMU{Opp.)

Miro Korean Advanced Institute of Science and (KAIST) 3 { 7

TOTAL 3 { 7

Table 8.3: The score of CMUnited-96's game in the robot league of MiroSot-96. CMUnited-96

lost its only game.

The winner of MiroSot-96, NewtonLabs, dominated at this tournament due mostly to

the speed of its vision system and robots [Sargent et al. 97]. At this tournament we learned

the importance of the vision component of robotic soccer systems.

In addition to the 3-robot competition, MiroSot-96 also included a single robot com-

petition: each team was allowed just a single robot on the �eld. In this competition, the

CMUnited-96 robot lost in the �nals by one goal. Table 8.4 shows the results of the two

games in which it competed.
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Opponent A�liation Score

(CMU{Opp.)

Rogi University of Girona, Catalonia, Spain 4 { 2

Lami Federal Institute of Technology, Switzerland 4 { 5

TOTAL 8 { 7

Table 8.4: The scores of CMUnited-96's games in the single robot league of MiroSot-96.

CMUnited-96 won 1 of its 2 games, �nishing in 2nd place out of 4 teams.

8.3 RoboCup-97

RoboCup-97 was the �rst formal RoboCup championship. It was held on August 23{29, 1997

in Nagoya, Japan in conjunction with the IJCAI-97 conference [Kitano 98]. At RoboCup-97,

we entered both the simulator competition and the small-robot competition.

8.3.1 Simulator Competition

The RoboCup-97 simulator competition was the �rst formal simulated robotic soccer compe-
tition. With 29 teams entering from all around the world, it was a very successful tournament.

It was in preparation for this competition that the team member agent architecture,

including both the 
exible teamwork structure and the inter-agent communication paradigm,
described in Chapter 3 was developed. In addition to the team member agent architecture,

the CMUnited-97 simulator team which entered this competition used the learned ball-
interception and pass-evaluation skills. In particular, the decision tree (DT) RCF presented
in Section 6.3.1 was used.

Table 8.5 shows the results of CMUnited-97's games in this tournament. CMUnited-97
won 3 of its �rst 4 matches by wide margins, with the other match being a close victory. Its

5th opponent, FCMellon, was also our own team and was identical to CMUnited except that
it did not use a 
exible teamwork structure: players did not switch positions, did not use

exible positioning of any sort, and did not use set-plays. Our goal in entering FCMellon

in the competition was to highlight the impact of our research contributions in CMUnited.
Due to the results reported in Section 3.6, we expected CMUnited to win this game. Before
the game between CMUnited and FCMellon, FCMellon won its 4 games by a combined score

of 49{4.

The subsequent game was against the eventual tournament champion AT-Humboldt. As

described in Section 3.6, CMUnited-97 used a 4-4-2 formation in general, switching to an 8-
2-0 formation if winning near the end of the game, or a 3-3-4 formation if losing. The triggers
for these formation switches were de�ned as part of the locker-room agreement. However,

by the time CMUnited-97 played against them, it was clear from watching other games

that AT-Humboldt was the team to beat. Therefore, we altered the team's locker-room
agreement so that it would adopt a more conservative, defensive strategy at the beginning

of the game. As a result, AT-Humboldt scored fewer goals against CMUnited-97 than it did
against any of its other competitors. The 6{0 result might have been closer had CMUnited-97

not automatically switched to the more o�ensive 3-3-4 formation near the end of the game

when it was losing in an attempt, though unsuccessful, to score some goals.
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Opponent A�liation Score

(CMU{Opp.)

LAI Universidad Carlos III De Madrid, Spain 9 { 1

RM Knights Royal Melbourne Inst. of Tech., Australia 16 { 0

Kinki Kinki University, Japan 6 { 5

Team Garbage Collectors Justsystem, Japan 24 { 0

FCMellon Carnegie Mellon University, USA 6 { 0

AT-Humboldt Humboldt University of Berlin, Germany 0 { 6

ISIS Information Sciences Institute (USC), USA 1 { 2*

TOTAL 62 { 14

Table 8.5: The scores of CMUnited-97's games in the simulator league of RoboCup-97.

CMUnited-97 won 5 of its 7 games, �nishing in 4th place out of 29 teams. *The last game was lost

by one goal in overtime.

One of the main advantages of the AT-Humboldt team was its ability to kick the ball

harder than any other team. Its players did so by kicking the ball around themselves,
continually increasing its velocity so that it ended up moving towards the goal faster than
was imagined possible. Since the soccer server did not enforce a maximum ball speed, a

property that was changed immediately after the competition, the ball could move arbitrarily
fast, making it impossible to stop. With this advantage at the low-level behavior level, no

team, regardless of how strategically sophisticated, was able to defeat AT-Humboldt.

Having lost in the semi-�nals, CMUnited-97 then played in the 3rd-place game against
ISIS. CMUnited-97 scored �rst in this game o� of a corner-kick set-play. However, ISIS

equalized near the end of the game and the game went to overtime. ISIS scored to win in
what proved to be one of the more exciting matches of the tournament.

The RoboCup-97 simulator competition was won by the team that found the best domain-

dependent solutions, moving and kicking better than the other teams. However, this team's
success alerted other teams to the necessity of solving the low-level problems. At the subse-

quent competition, RoboCup-98, there were several teams with roughly equal low-level skills,
thus allowing the high-level, more MAS-research-based solutions to make the key di�erences.

8.3.2 Small-Robot Competition

As described in Section 3.7, our team member agent architecture|including the teamwork
structure and set-plays| while developed in simulation, was also used by the CMUnited-97

real robots which won the RoboCup-97 small-robot competition [Veloso et al. 98a]. Table 8.6

shows the results of the games at RoboCup-97.

In total, CMUnited-97 scored thirteen goals, allowing only one against. The one goal
against was scored by the CMUnited goaltender against itself, though under an attacking

situation from MICROB. We re�ned the goaltender's behavior as presented in Appendix B
(Section B.2.4), following the observation of our goaltender's error.

As the CMUnited-97 small-robot matches proceeded, spectators noticed many of the

team behaviors described in Chapter 3. The robots switched positions during the games,
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Opponent A�liation Score

(CMU{Opp.)

NAIST Nara Institute of Science and Technology, Japan 5 { 0

MICROB University of Paris VI , France 3 { 1

Girona U. University of Girona, Catalonia, Spain 2 { 0

NAIST Nara Institute of Science and Technology, Japan 3 { 0

TOTAL 13 { 1

Table 8.6: The scores of CMUnited-97's games in the small-robot league of RoboCup-97.

CMUnited-97 won all 4 games, �nishing in 1st place out of 4 teams.

and there were several successful passes. The most impressive goal of the tournament was

the result of a 4-way passing play: robot 1 passed to robot 2, which passed back to robot 1;

then robot 1 passed to a third robot, robot 3, which shot the ball into the goal.

Like in the simulator competition, this �rst RoboCup small-robot competition was won by
the team with the best low-level sensing and acting abilities. No other team had the reliable

vision or skills exhibited by the CMUnited-97 robots. However, also like in the simulator
competition, CMUnited-97's success alerted other teams to the importance of these low-level
abilities, leading to a competition among several more equally-skilled teams the following

year.

8.4 RoboCup-98

The second international RoboCup championship, RoboCup-98, was held on July 2{9, 1998

in Paris, France [Asada and Kitano 99]. It was held in conjunction with the ICMAS-98
conference. As mentioned in Section 8.3, the winners of both the simulator and small-robot
competitions at RoboCup-97 had much better low-level skills than the other teams and won

easily. At RoboCup-98, both the simulator and small-robot competitions had much closer
matches among the best teams. CMUnited-98 won both of these competitions due to a
combination of good low-level and high-level strategic reasoning.

8.4.1 Simulator Competition

As one of the main contributions of this thesis, The CMUnited-98 simulator team is fully
speci�ed in Section 3.5 and Appendix B, Section B.1. It uses the team member agent archi-

tecture, including the teamwork structure, communication paradigm, set-plays, and SPAR,

and a trained decision tree for pass evaluation. At the RoboCup-98 simulator competition,
CMUnited-98 won all 8 of its games by a combined score of 66{0, �nishing 1st in a �eld of

34 teams. Table 8.7 details the game results.

From observing the games, it was apparent that the CMUnited-98 low-level skills were

superior in the �rst 6 games: CMUnited-98 agents were able to dribble around opponents,

had many scoring opportunities, and su�ered few shots against.

However, in the last 2 games, the CMUnited-98 strategic formations, communication,
and ball-handling routines were put more to the test as the Windmill Wanderers (3rd place)
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Opponent A�liation Score

(CMU{Opp.)

UU Utrecht University, The Netherlands 22 { 0

TUM / TUMSA Technical University Munich, Germany 2 { 0

Kasuga-Bitos II Chubu University, Japan 5 { 0

Andhill'98 NEC, Japan 8 { 0

ISIS Information Sciences Institute (USC), USA 12 { 0

Rolling Brains Johannes Gutenberg-University Mainz, Germany 13 { 0

Windmill Wanderers University of Amsterdam, The Netherlands 1 { 0

AT-Humboldt'98 Humboldt University of Berlin, Germany 3 { 0

TOTAL 66 { 0

Table 8.7: The scores of CMUnited-98's games in the simulator league of RoboCup-98.

CMUnited-98 won all 8 games, �nishing in 1st place out of 34 teams.

and AT-Humboldt'98 (2nd place) also had similar low-level capabilities. In these games,
CMUnited-98's abilities to use set-plays to clear the ball from its defensive zone, to get
past the opponents' o�sides traps, and to maintain a cohesive defensive unit became very

apparent. Many of the goals scored by CMUnited-98 were a direct result of the opponent
team being unable to clear the ball from its own end after a goal kick: a CMUnited-98 player

would intercept the clearing pass and quickly shoot it into the goal. In particular, two of
the goals in the �nal game against AT-Humboldt'98 were scored in this manner. On the
other hand, the CMUnited-98 simulator team was able to clear the ball successfully from

its own zone using its ability to execute set-plays, or pre-compiled, multi-agent plans (see
Section 3.5.2). Rather than kicking the ball up the middle of the �eld, one player would
pass out to the sideline to a second player that would then clear the ball up the �eld. After

a series of 3 or 4 passes, the ball was usually safely in the other half of the �eld.

Another strategic advantage that was clear throughout CMUnited-98's games was the

players' abilities to maintain a coherent defensive unit exploiting the o�sides rule, and con-
versely, its ability to get through the defense of other teams. Often, the opposing teams

were unable to get anywhere near the CMUnited-98 goal because of the defenders' ability to
stay in front of some of the opposing forwards, thus rendering them o�sides and prohibiting
them from ever successfully receiving the ball.

In order to deal with opposing teams that tried to use a similar technique, the

CMUnited-98 forwards would kick the ball towards the o�ensive corners of the �eld (the

\sending" skill described in Appendix B, Section B.1.7) and then either get to the ball be-

fore the defenders or intercept defenders' clearing passes. CMUnited-98 scored several goals

after such kicks to the corners.

In addition to the strategic reasoning that helped the team win its �nal two games, the

�ne points of the dribbling and goaltending skills also came into play. Using their predictive,

locally optimal skills (PLOS|see Section 3.5.1), the CMUnited-98 players were occasionally

able to dribble around opponents for shots. At a crucial moment against the Windmill

Wanderers, the CMUnited-98 goaltender made a particularly important save: while winning
1{0 near the end of the game, a shot got past the goaltender, but it was able to turn and
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catch the ball before the ball entered the goal.

8.4.2 Small-Robot Competition

Like in the simulator competition, the RoboCup-98 small-robot competition featured

matches against several teams with similar low-level sensing and acting abilities. Since the

CMUnited-97 small-robot team is more re
ective of the contributions of this thesis than the

CMUnited-98 small-robot team, it is the CMUnited-97 small-robot team that is described

in Section 3.7 and Appendix B, Section B.2. However, CMUnited-98 uses both the team

member agent architecture and SPAR (see Section 3.5.2, which was developed in parallel

both in simulation and on the real robots. Table 8.8 shows the scores of the games of the

CMUnited-98 small-robot team.

Opponent A�liation Score
(CMU{Opp.)

iXS iXs Inc. 16 { 2

5DPO University of Porto, Portugal 0 { 3

Paris-8 University of Paris-8 3 { 0

Cambridge University of Cambridge, UK 3 { 0

Roboroos University of Queensland, Australia 3 { 1

TOTAL 25 { 6

Table 8.8: The scores of CMUnited-98's games in the small-robot league of RoboCup-98.

CMUnited-98 won 4 of its 5 games, �nishing in 1st place out of 11 teams.

In the second match, against 5DPO, we experienced the brittleness of low-power radio

communication in public places. In this match, CMUnited-98 performed miserably, often
just turning in circles. We think that this failure occurred because of radio interference.
After identifying and eliminating a possible source of interference, CMUnited-98 was able to

resume its successful performance.

The �nal two games, against Cambridge and Roboroos, were both close matches against

teams with similar sensing and acting capabilities to those of CMUnited-98. The key to

CMUnited-98's success was its strategic play, including sophisticated goaltending, defending,
and collaborative attacking using SPAR.

8.5 Lessons Learned from Competitions

Robotic soccer competitions have the potential to accelerate scienti�c progress within the

robotic soccer domain. However, there are also many potential hazards that can render them
detrimental to progress. By participating in the competitions described in Sections 8.1{8.4,

we learned many things, both about competitions themselves and about our own research.

RoboCup, one of the main robotic soccer organizations and the one with which I am

most closely associated, is primarily a research initiative. As such, the goal of the entire

organization is to help advance the state of the art. It has certainly done so by providing
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new and challenging domains for studying issues within robotics and AI, such as \design

principles of autonomous agents, multi-agent collaboration, strategy acquisition, real-time

reasoning and planning, intelligent robotics, sensor-fusion, and so forth" [Kitano et al. 97].

However, the domains exist without the competitions. In this section, I examine the

potential hazards and potential bene�ts of having periodic large-scale robotic soccer com-

petitions, drawing on our experiences as participants. I operate under the premise that

scienti�c progress (as opposed to, for example, entertainment) is the primary goal.

I start, in Section 8.5.1, by examining the potential hazards of competitions. Then, in

Section 8.5.2, I point out the potential bene�ts. As many potential hazards and bene�ts are

quite similar, it is up to the participants and organizers to sway the balance towards the

bene�ts.

8.5.1 Hazards

There are many potential hazards to scienti�c progress involved in holding organized robotic

soccer competitions. However, many can be avoided through careful organization of the
competitions along with an engineered social climate within the community. Here, I list the
possible hazards while, where possible, indicating how RoboCup has tried to avoid them.

Obsession with winning. One of the most obvious potential hazards of competitions is

that people try to win them at the expense of all else, including science. Especially if
there are monetary prizes involved, many people will focus only on winning and there is
a potential incentive to keep successful techniques secret from year to year. RoboCup

does its best to avoid this hazard by not awarding any monetary prizes. In addition,
\scienti�c challenge" awards are given to teams who, in the opinions of the organizers,

have demonstrated the best scienti�c contributions in their teams. In comparison with
the competition winners, winners of these scienti�c challenge awards are given equal,
if not greater, status at the awards ceremonies and within the community. Thus, there

is explicit incentive given to deemphasize winning in favor of focusing on scienti�c
contributions. Nonetheless, competitive spirit can easily take over.

Domain-dependent solutions. Another potential hazard of competitions, particularly
within complex domains, is that it can be di�cult to avoid getting bogged down in the

low-level details of the domain. If the competition is to serve scienti�c interests, the
winning solutions should be ones that are generally applicable beyond the particular do-

main in question. Of course, it is impossible to avoid requiring some domain-dependent

solutions. However, while necessary, they should not be su�cient to produce a winning
team. One way to encourage an emphasis on high-level, generalizable solutions is to

repeat the same competition several times. While the �rst iteration is likely to be
won by the best domain-dependent solution, subsequent events are more likely to �nd

several teams using the same low-level approach that has already been proven e�ective.

Then the di�erence among the teams will be more at the general levels. For example,

at RoboCup-97, the winning teams in both the simulator and small-robot competitions

were the ones that had the best low-level sensing and acting capabilities. However at
RoboCup-98, there were several teams with similar low-level capabilities. Instead, the
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crucial di�erences were at the level of collaborative and adversarial strategic reasoning

using techniques, such as those described in this thesis, that are not limited to the

robotic soccer domain.

Cost escalation. Especially in the robot competitions, there is the potential to have in-

creasingly expensive solutions. If an expensive technology provides a signi�cant ad-

vantage at one competition, then it might become a prerequisite for success in future

years. If the expense is prohibitive to academic researchers, then the competition

could die out. This issue has not yet been addressed in RoboCup. One possible solu-

tion would be to require that all teams use a common hardware platform, restricting

the di�erences to the software. In fact, the RoboCup-98 legged robot competition

used this approach as the only robots meeting the competition speci�cations were the

Sony legged robots [Veloso et al. 98c]. However, in general, this is not a satisfactory

approach for RoboCup given that some of the interesting research issues are in the

creation of the hardware itself. Another possible solution would be to enforce cost
limits on entrants. However, such a restriction would be very di�cult to de�ne and
enforce adequately. Cost escalation may become a serious issue for RoboCup in the

near future.

Restrictive rules. While it is important to have well-de�ned rules for competitions, there

is a potential to discourage research innovations via these rules. Especially for com-
petitions involving robots, it is di�cult to create rules that do not have loopholes
but that are not overly restrictive. RoboCup's approach has been to make the rules


exible enough to allow for a wide variety of robot-design decisions. The inevitable
rules disputes are then handled as amicably as possible in a spirit of cooperation at
the competitions. While this approach has the potential to lead to some very heated

arguments, it is the best from a research perspective.

Invalid evaluation conclusions. There is the potential at competitions to conclude that

if team A beats team B, then all of the techniques used by team A are more successful
than those used by team B. However, this conclusion is invalid. Unless the teams are
identical except in one respect, no individual aspect of either team can conclusively

be credited with or blamed for the result. Indeed, the CMUnited team won several of
the competitions described above, but I do not present this chapter as an evaluation

of any of the general thesis contributions other than the team as a whole. Instead, we
conduct extensive controlled experiments to validate our research contributions.

8.5.2 Bene�ts

While there are many potential hazards to holding robotic soccer competitions, there are

also many potential bene�ts. Here I list the possible bene�ts, again illustrating them with

speci�c examples from RoboCup whenever possible.

Research Inspiration. While one potential hazard of competitions stemming from peo-

ples' competitive spirit is an obsession with winning, a related bene�t is that compe-

titions are a great source of research inspiration. Several of the innovations reported
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in this thesis, most signi�cantly the entire team member agent architecture, are the

direct result of preparations for one of the above competitions. While they started

as innovative solutions to challenging speci�c problems, we were then able to abstract

their contributions into general frameworks. The natural desire to win is a strong

motivation to create a good team by solving the challenging aspects of the domain.

Deadlines for creating complete agents. Competitions create hard deadlines for the

creation of complete working systems. In order to compete, it is not su�cient for

any one component of the system to be operational. Therefore, entrants must con-

front the challenging issues of \closing the loop," i.e. getting all components working

from sensing, to acting, to strategic reasoning. They must create complete agents. No

matter how sophisticated a team's high-level strategic reasoning, if it does not solve

the low-level issues, some other team will easily win. Our experience has been that

these deadlines have forced us to solve di�cult holistic problems that we might have

otherwise overlooked: these problems have been a source of research inspiration for us.

Common platform for exchanging ideas. Robotic soccer competitions bring together
a group of people who have all tried to solve the same problems in the same domain.

Unlike in many research communities, there is a common substrate system and a com-
mon language among participants. For example, in the planning community [Simmons

et al. 98], researchers use a wide variety of planning systems, each with its own prop-
erties and idiosyncrasies, sometimes making it di�cult to directly compare approaches
and technique. In RoboCup, on the other hand, everyone implements their ideas in

the same underlying architecture. Consequently, it is relatively easy to compare the
various systems.

Continually improving solutions. When holding repeated competitions with the same

platform, there is likely to be a continual improvement in solutions from event to event.
All entrants know that in order to have a chance of winning a competition, they must

be able to outperform the previous champion. Therefore, they are motivated to �nd
some method of improving over the previous solutions. Of course, this bene�t only
applies if the same, or similar, rules are used as the basis for competition year after

year. For example, in the AAAI robot competitions [Arkin 98], there are new tasks to

be solved every year. While the new tasks encourage new entrants, there is no basis

for directly measuring improvement from year to year.

Excitement for students at all levels. The inherent excitement of the robotic soccer

competitions encourages students at all levels to become involved in serious research.

Competition entries often come from large teams of professors, graduate students, and
undergraduates working together. By encouraging more people to become involved in
the research, the competitions can speed up progress.

Wide pool of teams created. After each competition, all of the entrants have created

teams capable of performing in the given domain. If these teams are made available

in some way, they can subsequently be used for controlled testing of research contri-

butions. For example, in order to test technique x that is a single aspect of one's
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team, one could play the team against another team �rst with technique x active, and

then without, thus establishing the e�ects of technique x. While such testing could be

done against any team, it is often up to the researchers themselves to create the team

against which to test. As a result the comparison is often done against a trivial or

simple team. The competition can provide several teams against which to test, each

of which is the result of serious e�ort by an independent group of researchers.

Encourage 
exible software and hardware. Taking one's system out of one's own lab

and into a new setting, whether it be a software system that is to be run on di�erent

computers or a robotic system that is to be run under di�erent environmental con-

ditions, requires a certain degree of 
exibility in the system's creation. For example,

rather than creating a vision system that works only in the lighting conditions in one's

own lab, researchers must create a system that is easily adaptable to new conditions.

Thus, the competition encourages general solutions that are more likely to apply in a

wide variety of circumstances.

It has been our experience so far that the bene�ts of robotic soccer competitions outweigh
the hazards. Most signi�cantly as a strong source of research inspiration, robotic soccer

competitions have played an important role in my thesis research. Again, the competition
results themselves are not scienti�cally conclusive. But the process of competition, including

the lessons learned, can be scienti�cally valuable.



Chapter 9

Related Work

This dissertation contributes to the �elds of Multi-Agent Systems (MAS), Machine Learning
(ML), and a sub�eld of ML, Reinforcement Learning (RL). In each of these areas, there is
an immense body of literature. The thesis also contributes to the growing body of research

within the robotic soccer domain.

In this chapter, I review the prior work in these areas that is most related to my thesis
research. In Section 9.1, I review the intersection of MAS and ML. In particular, I give an

overview of MAS with emphasis on multi-agent learning approaches [Stone and Veloso 97].
In Section 9.2, I review research within the robotic soccer domain.

Note that Chapters 3{7 each contain discussions of the related work that most closely

pertains to their individual topics. This chapter does not repeat those discussions.

9.1 MAS from an ML Perspective

There are many possible ways to divide MAS and the related �eld of Distributed Arti�cial
Intelligence (DAI). Overviews and taxonomies are numerous [Decker 87, Bond and Gasser

88,Durfee et al. 89,Durfee 92,Lesser 95,Parunak 96,Stone and Veloso 97,Jennings et al. 98,
Sycara 98], each with its own way to organize the �eld. This chapter is organized along two
main dimensions: agent heterogeneity and amount of communication among agents. Agents

are homogeneous if they are physically and behaviorally identical; they are heterogeneous if
they di�er in some way. Communication is direct interaction among agents in the world.

Beginning with the simplest multi-agent scenario, homogeneous non-communicating agents,
the full range of possible multi-agent systems, through highly heterogeneous communicating

agents, is considered.

Because of the inherent complexity of MAS, there is much interest in using ML techniques
to help deal with this complexity [Wei� and Sen 96, Sen 96,Wei� 97]. Many existing ML

techniques can be directly applied in multi-agent scenarios by delimiting a part of the domain

that only involves a single agent. However multi-agent learning is more concerned with

learning issues that arise because of the multi-agent aspect of a given domain. As described

by Wei�, multi-agent learning is \learning that is done by several agents and that becomes

possible only because several agents are present" [Wei� 95].

In this section, I consider MAS from an ML perspective. Speci�cally, I consider the

181
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primary research topics in MAS, giving examples of ML approaches to these topics when

possible. Section 9.1.1 considers multi-agent systems with homogeneous non-communicating

agents; Section 9.1.2 considers multi-agent systems with heterogeneous non-communicating

agents; Section 9.1.3 considers multi-agent systems with homogeneous communicating agents;

and Section 9.1.4 considers multi-agent systems with heterogeneous communicating agents.

Many of the issues that arise in the earlier scenarios also apply in the later scenarios. Nev-

ertheless, they are only mentioned again in the later scenarios to the degree that they di�er

or become more complex. The multi-agent scenarios along with the issues that arise therein

are summarized in Table 9.1.

Homogeneous non-communicating

� Reactive vs. deliberative agents

� Local or global perspective

� Modeling other agents' states

� How to a�ect others

Heterogeneous non-communicating

� Benevolence vs. competitiveness

� Stable vs. evolving agents

� Modeling others' goals, actions, knowledge

� Resource management (interdependent actions)

� Social conventions

� Roles
Homogeneous communicating

� Distributed sensing

Heterogeneous communicating

� Understanding each other

� Planning communicative acts

� Benevolence vs. competitiveness

� Negotiation

� Resource management (schedule coordination)

� Commitment/decommitment

Table 9.1: Issues arising in the various MAS scenarios as re
ected in the literature.

In multi-agent systems, there are multiple agents which model each other's goals and/or
actions. In the fully general multi-agent scenario, there may be direct interaction among

agents via communication. Although this interaction could be viewed as environmental stim-
uli, we present inter-agent communication as being separate from the environment. From an
individual agent's perspective, the environment's dynamics can be a�ected by other agents.

In addition to the uncertainty that may be inherent in the domain, other agents intentionally
a�ect the environment in unpredictable ways. Thus, all multi-agent systems can be viewed

as having dynamic environments.

Figure 9.1 illustrates the view that each agent is both part of the environment and mod-
eled as a separate entity. There may be any number of agents, with di�erent degrees of

heterogeneity and with or without the ability to communicate directly. From the fully gen-
eral case depicted here, I begin by eliminating both the communication and the heterogeneity

to present homogeneous, non-communicating MAS (Section 9.1.1). Then, in Sections 9.1.2

and 9.1.3, the possibilities of agent heterogeneity and inter-agent communication are con-
sidered one at a time. Finally, in Section 9.1.4, we arrive back at the fully general case by

considering heterogeneous agents that can interact directly.

For each of these scenarios, I present the research issues that arise and the existing

techniques to deal with them. The issues may appear across scenarios, but they are presented

and discussed in the �rst scenario to which they apply. When possible, ML approaches are
emphasized.
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Environment

effectors

sensors

knowledge
Domain

Agent
Goals

Goals

Agent

Actions

Actions

Domain
knowledge

Figure 9.1: The general multi-agent scenario. Agents model each other's goals, actions, and

domain knowledge, which may di�er as indicated by the di�erent fonts. They may also interact

directly (communicate) as indicated by the arrows between the agents.

The simulated robotic soccer domain can be used to study all of the di�erent multi-agent
scenarios presented in this section. Throughout the section, I discuss how the di�erent issues
are re
ected in this domain. Section 9.2 presents related robotic soccer research in detail.

9.1.1 Homogeneous, Non-Communicating MAS

In homogeneous, non-communicating multi-agent systems, all of the agents have the same
internal structure including goals, domain knowledge, and possible actions. They also have
the same procedure for selecting among their actions. The only di�erences among agents

are their sensory inputs and the actual actions they take: they are situated di�erently in the
world. Having di�erent e�ector output is a necessary condition for MAS: if the agents all

act as a unit, then they are essentially a single agent. In order to realize this di�erence in
output, homogeneous agents must have di�erent sensor input as well. Otherwise they will
act identically. For this scenario, in which I consider non-communicating agents, assume

that the agents cannot communicate directly. Figure 9.2 illustrates the homogeneous, non-

communicating multi-agent scenario, indicating that the agents' goals, actions, and domain
knowledge are the same by representing them with identical fonts.

Even in this most restrictive of multi-agent scenarios, there are several issues with which
to deal. The techniques provided here are representative examples of ways to address the

presented issues. The issues and techniques are summarized in Table 9.2.

Reactive vs. Deliberative agents. When designing any agent-based system, it is impor-

tant to determine how sophisticated the agents' reasoning will be. Reactive agents

simply retrieve pre-set behaviors similar to re
exes without maintaining any internal

state. On the other hand, deliberative agents behave more like they are thinking,

by searching through a space of behaviors, maintaining internal state, and predicting
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Figure 9.2: MAS with homogeneous, non-communicating agents. Only the sensor input and

e�ector output of agents di�er, as represented by the di�erent arrow styles. The agents' goals,

actions, and domain knowledge are all identical as indicated by the identical fonts.

Homogeneous, Non-Communicating MAS

Issues

� Reactive vs. deliberative agents

� Local or global perspective

� Modeling other agents' states

� How to a�ect others

Techniques

� Reactive behaviors for formation maintenance. [Balch and Arkin 95]

� Deliberative behaviors for pursuit. [Levy and Rosenschein 92]

� Mixed reactive and deliberative behaviors. [Sahota 94,Rao and George� 95]

� Local knowledge sometimes better. [Roychowdhury et al. 96]

� (limited) Recursive Modeling Method (RMM). [Durfee 95]

� Don't model others{just pay attention to reward. [Schmidhuber 96]

� Stigmergy. [Goldman and Rosenschein 94,Holland 96]

� Q-learning for behaviors like foraging, homing, etc. [Mataric 94a]

Table 9.2: The issues and techniques for homogeneous, non-communicating multi-agent systems

as re
ected in the literature.

the e�ects of actions. Although the line between reactive and deliberative agents can

be somewhat blurry, an agent with no internal state is certainly reactive, and one

which bases its actions on the predicted actions of other agents is deliberative. Here
we describe one system at each extreme as well as two others that mix reactive and

deliberative reasoning.

Balch and Arkin [95] use homogeneous, reactive, non-communicating agents to study
formation maintenance in autonomous robots. The robots' goal is to move together

in a military formation such as a diamond, column, or wedge. They periodically come

across obstacles which prevent one or more of the robots from moving in a straight line.
After passing the obstacle, all robots must adjust in order to regain their formation.

The agents reactively convert their sensory data (which includes the positions of the
other robots) to motion vectors for avoiding obstacles, avoiding robots, moving to a goal

location, and formation maintenance. The actual robot motion is a simple weighted

sum of these vectors. Military formations di�er from the formations introduced as part
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of our 
exible teamwork structure in Section 3.3. In our case, a \formation" refers to

a decomposition of the team's overall task as opposed to a geometrical con�guration

of agents.

At the deliberative end of the spectrum is some research in the pursuit domain [Benda

et al. 86], a multi-agent domain in which several independent predators try to catch a

prey. Levy and Rosenschein [92] create agents that each act in service of its own goals.

They use game theoretic techniques to �nd equilibrium points and thus to decide how

to act. These agents are clearly deliberative, as they search for actions rather than

simply retrieving them.

There are also several existing systems and techniques that mix reactive and deliber-

ative behaviors. One example is the OASIS system which reasons about when to be

reactive and when to follow goal-directed plans [Rao and George� 95]. Another ex-

ample is reactive deliberation [Sahota 94]. As the name implies, it mixes reactive and
deliberative behavior: an agent reasons about which reactive behavior to follow under
the constraint that it must choose actions at a rate of 60 Hz. Reactive deliberation

was developed on the �rst robotic soccer platform [Barman et al. 93].

The agents developed in this thesis also mix reactive and deliberative behaviors. In-

ternal behaviors in the team member agent architecture are exclusively deliberative as
they rely upon the locker-room agreement and past internal states. In our soccer im-

plementation, the top-level external behavior which chooses the agent's behavior mode
is also deliberative, whereas some of the low-level external behaviors, such as turning
to face the ball when it is visible, are purely reactive. When turning to face the ball,

an agent refers only to the ball's current relative angle and turns in that direction.

Local or global perspective. Another issue to consider when building a multi-agent sys-
tem is how much sensor information should be available to the agents. Even if it is
feasible within the domain to give the agents a global perspectives of the world, it may

be more e�ective to limit them to local views.

As presented in Chapter 2, agents in the simulated robotic soccer and network routing

domains are restricted to local perspectives by the nature of their sensory inputs: they

can only see a portion of the world. In the real robotic soccer domain, our agents have

a global world view.

Roychowdhury et al. consider a case of multiple agents sharing a set of identical re-
sources in which they have to learn (adapt) their resource usage policies [Roychowdhury

et al. 96]. Since the agents are identical and do not communicate, if they all have a

global view of the current resource usage, they will all move simultaneously to the

most under-used resource. However, if they each see a partial picture of the world,
then di�erent agents gravitate towards di�erent resources: a preferable e�ect. Better
performance by agents with less knowledge is occasionally summarized by the cliche

\Ignorance is Bliss."

Modeling other agents' states. Durfee [95] gives another example of \Blissful Ignorance,"

mentioning it explicitly in the title of his paper: \Blissful Ignorance: Knowing Just
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Enough to Coordinate Well." Now rather than referring to resource usage, the saying

applies to the limited recursive modeling method (RMM). When using RMM, agents

explicitly model the belief states of other agents, including what they know about

each others' beliefs. If agents have too much knowledge, RMM could recurse indef-

initely. Even if further information can be obtained by reasoning about what agent

A thinks agent B thinks agent A thinks . . . , endless reasoning can lead to inaction.

Durfee contends that for coordination to be possible, some potential knowledge must

be ignored.

Although it may be useful to build models of other agents in the environment, agent

modeling is not done universally. A form of multi-agent RL is de�ned in which agents

do not model each other as agents [Schmidhuber 96]. Instead they consider each other

as parts of the environment and a�ect each other's policies only as sensed objects. The

agents pay attention to the reward they receive using a given policy and checkpoint

their policies so they can return to successful ones. Schmidhuber shows that the agents

can learn to cooperate without modeling each other.

Similarly, the agents developed in this thesis learn to act in an environment involving
adversaries without explicitly modeling the adversaries' intentions. They do, on the

other hand, model the goals and internal states of teammates.

How to a�ect others. When no communication is possible, agents cannot interact with
each other directly. However, since they exist in the same environment, the agents
can a�ect each other indirectly in several ways. They can be sensed by other agents,

or they may be able to change the state of another agent by, for example, pushing
it. Agents can also a�ect each other by one of two types of stigmergy [Holland 96].

First, active stigmergy occurs when an agent alters the environment so as to a�ect the
sensory input of another agent. For example, a robotic agent might leave a marker
behind it for other agents to observe. Goldman and Rosenschein [94] demonstrate an

e�ective form of active stigmergy in which agents heuristically alter the environment
in order to facilitate future unknown plans of other agents. Second, passive stigmergy
involves altering the environment so that the e�ects of another agent's actions change.

For example, if one agent turns o� the main water valve to a building, the e�ect of
another agent turning on the kitchen faucet is altered.

Holland [96] illustrates the concept of passive stigmergy with a robotic system designed

to model the behavior of an ant colony confronted with many dead ants around its

nest. An ant from such a colony tends to periodically pick up a dead ant, carry it for

a short distance, and then drop it. Although the behavior appears to be random, after
several hours, the dead ants are clustered in a small number of heaps. Over time, there

are fewer and fewer large piles until all the dead ants end up in one pile. Although the

ants behave homogeneously and, at least in this case, we have no evidence that they

communicate explicitly, the ants manage to cooperate in achieving a task.

Holland [96] models this situation with a number of identical robots in a small area

in which many pucks are scattered around. The robots are programmed reactively to

move straight (turning at walls) until they are pushing three or more pucks. At that
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point, the robots back up and turn away, leaving the three pucks in a cluster. Although

the robots do not communicate at all, they are able to collect the pucks into a single

pile over time. This e�ect occurs because when a robot approaches an existing pile

directly, it adds the pucks it was already carrying to the pile and turns away. A robot

approaching an existing pile obliquely might take a puck away from the pile, but over

time the desired result is accomplished. Like the ants, the robots use passive stigmergy

to a�ect each other's behavior.

A similar scenario with more deliberative robots is explored by Mataric [94a]. In this

case, the robots use Q-learning to learn behaviors including foraging for pucks as well as

homing and following. Mataric's robots actively a�ect each other through observation:

a robot learning to follow another robot can base its action on the relative location of

the other robot.

Our small-robots use active stigmergy. When a robot that does not have the ball is
�lling a forward role and it moves to a new location on the �eld, it changes the result of
the pass evaluation function used by the robot that does have the ball. As presented in

Section B.2.5 of Appendix B, the robot with the ball bases its action on the perceived
locations of teammates and opponents.

Similarly, our simulated robotic soccer agents use active stigmergy when they change
their locations in the environment. Particularly when using the SPAR variant of 
exible

positioning (see Section 3.5.2), teammate positions a�ect an agent's behavior.

9.1.2 Heterogeneous, Non-Communicating MAS

The multi-agent scenario with heterogeneous, non-communicating agents is depicted in Fig-
ure 9.3. As in the homogeneous case (Figure 9.2), the agents are situated di�erently in
the environment which causes them to have di�erent sensory inputs and necessitates their

taking di�erent actions. However in this scenario, the agents have much more signi�cant
di�erences. They may have di�erent goals, actions, and/or domain knowledge, as indicated

by the di�erent fonts in Figure 9.3.

Goals
Actions
Domain
knowledge

knowledge
Domain

Goals
Actions

Actions
Domain
knowledge

Goals

Figure 9.3: MAS with heterogeneous, non-communicating agents. Now agents' goals, actions,

and/or domain knowledge may di�er as indicated by the di�erent fonts. The assumption of no

direct interaction remains.

To this point, we have only considered agents that are homogeneous. Adding the possi-
bility of heterogeneous agents in a multi-agent domain adds a great deal of potential power
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at the price of added complexity. Agents might be heterogeneous in any of a number of

ways, from having di�erent goals to having di�erent domain models and actions. An im-

portant sub-dimension of heterogeneous agent systems is whether agents are benevolent or

competitive. Even if they have di�erent goals, they may be friendly to each others' goals

or they may actively try to inhibit each other. This aspect of heterogeneous systems, along

with several others summarized in Table 9.3, is described below.

Heterogeneous, Non-Communicating MAS

Issues

� Benevolence vs. competitiveness

� Stable vs. evolving agents

� Modeling others' goals, actions, knowledge

� Resource management (interdependent actions)

� Social conventions

� Roles

Techniques

� Game theory, iterative play. [Mor and Rosenschein 95,Sandholm and Crites 96]

� Minimax-Q. [Littman 94]

� Competitive co-evolution. [Rosin and Belew 95,Haynes and Sen 96,Grefenstette and Daley

96]

� Deduce intentions, abilities through observation. [Huber and Durfee 95,Wang 96]

� Autoepistemic reasoning (ignorance). [Permpoontanalarp 95]

� Model as a team (individual! role). [Tambe 95,Tambe 96b]

� Social reasoning: depend on others for goal ( 6= game theory). [Sichman and Demazeau 95]

� GAs to deal with Braes' paradox (more resource ! worse). [Glance and Hogg 95,Arora and

Sen 96]

� Multi-Agent RL for adaptive load balancing. [Schaerf et al. 95]

� Focal points/emergent conventions. [Fenster et al. 95,Walker and Wooldridge 95]

� Agents �lling di�erent roles. [Prasad et al. 96,Tambe 97,Balch 98]

Table 9.3: The issues and techniques for heterogeneous, non-communicating multi-agent systems

as re
ected in the literature.

Benevolence vs. competitiveness. One of the most important issues to consider when
designing a multi-agent system is whether the di�erent agents will be benevolent or
competitive. Even if they have di�erent goals, the agents can be benevolent if they

are willing to help each other achieve their respective goals [Goldman and Rosenschein

94]. On the other hand, the agents may be sel�sh and only consider their own goals
when acting. In the extreme, the agents may be involved in a zero-sum situation so

that they must actively oppose other agents' goals in order to achieve their own.

Mor and Rosenschein [95] illustrate the benevolent scenario in the context of the pris-
oner's dilemma. In the prisoner's dilemma, two agents try to act so as to maximize

their own individual rewards. They are not actively out to thwart each other since
it is not a zero-sum game, yet they place no inherent value on the other receiving

reward. The prisoner's dilemma is constructed so that each agent is given two choices:

defect or cooperate. No matter what the other agent does, a given agent receives a
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higher reward if it defects. Yet if both agents cooperate, they are better o� than if

they both defect. In any given play, an agent is better o� defecting. Nevertheless,

Mor and Rosenschein show that if the same agents come up against each other repeat-

edly (the iterated prisoner's dilemma), cooperative behavior can emerge. In e�ect, an

agent can serve its own self-interest by establishing a reputation for being cooperative.

Then when coming up against another cooperative agent, the two can bene�t from a

sense of trust for each other: they both cooperate rather than both defecting. Only

with repeated play can cooperation emerge among the sel�sh agents in the prisoner's

dilemma.

In the prisoner's dilemma, the agents are sel�sh but not inherently competitive: in

speci�c circumstances, they are willing to act benevolently. However, when the agents

are actually competitive (such as in zero-sum games), cooperation is no longer sensible.

For instance, Littman considers a zero-sum game in which two agents try to reach

opposite ends of a small discrete world. The agents can block each other by trying to
move to the same space. Minimax-Q is a variant of Q-learning which is designed to
work on Markov games as opposed to Markov decision processes [Littman 94]. The

competitive agents learn probabilistic policies since any deterministic policy can be
completely counteracted by the opponent. Minimax-Q is applied to a simpli�ed soccer
simulation. Like in this application, the robotic soccer domains considered in this

thesis are zero-sum games at the team level: the two teams are in direct competition
with one another.

Stable vs. evolving agents. Another important characteristic to consider when designing

multi-agent systems is whether the agents are stable or evolving. Evolving agents can
be useful in dynamic environments. But particularly when using competitive agents,

allowing them to evolve can lead to complications. Such systems that use competitive
evolving agents are said to use a technique called competitive co-evolution. Systems
that evolve benevolent agents are said to use cooperative co-evolution.

The evolution of both predator and prey agents in the pursuit domain quali�es as
competitive co-evolution [Haynes and Sen 96]. When just the predators are evolved

together, it is cooperative co-evolution [Haynes et al. 95]. Rather than evolving preda-

tor agents in a single evolutionary pool and then combining them into teams to test
performance, this approach considers each individual in the population as a team of

four agents already speci�cally assigned to di�erent predators. Thus the predators can
evolve to cooperate. This co-evolution of teammates is one possible way around the

absence of communication in a domain. In place of communicating planned actions to

each other, the predators can evolve to know, or at least act as if knowing, each other's
future actions.

Grefenstette and Daley [96] conduct a preliminary study of competitive and cooperative

co-evolution in a domain that is loosely related to the pursuit domain. Their domain

has two robots that can move continuously and one morsel of (stationary) food that

appears randomly in the world. In the cooperative task, both robots must be at the
food in order to \capture" it.
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One problem to contend with in competitive rather than cooperative co-evolution is

the possibility of an escalating \arms race" with no end. Competing agents might

continually adapt to each other in more and more specialized ways, never stabilizing at

a good behavior. In a dynamic environment, it may not be feasible or even desirable

to evolve a stable behavior. Applying RL to the iterated prisoner's dilemma, it has

been demonstrated that a learning agent is able to perform optimally against a �xed

opponent [Sandholm and Crites 96]. But when both agents are learning, there is no

stable solution.

Another issue in competitive co-evolution is the credit-assignment problem. When

performance of an agent improves, it is not necessarily clear whether the improvement is

due to an improvement in that agent's behavior or a negative change in the opponent's

behavior. Similarly, if an agent's performance gets worse, the blame or credit could

belong to that agent or to the opponent.

One way to deal with the credit-assignment problem is to �x one agent while evolving

the other and then switch. This method encourages the arms race more than ever. Nev-
ertheless, Rosin and Belew [95] use this technique, along with an interesting method
for maintaining diversity in genetic populations, to evolve agents that can play Tic-

TacToe, Nim, and a simple version of Go. When it is a given agent's turn to evolve, it
executes a standard Genetic algorithm (GA) generation. Individuals are tested against
individuals from the competing population, but a technique called \competitive �tness

sharing" is used to maintain diversity. When using this technique, individuals from
agent X's population are given more credit for beating opponents (individuals from

agent Y's population) that are not beaten by other individuals from agent X's popula-
tion. More speci�cally, the reward to an individual for beating individual y is divided
by the number of other individuals in agent X's population that also beat individual

y. Competitive �tness sharing shows much promise for people building systems that
use competitive co-evolution.

TPOT-RL (Chapter 7) implements cooperative co-evolution. The individual agents

learn their policies simultaneously, eventually creating a compatible set of policies.
Competitive co-evolution is not considered in this thesis.

Modeling others' goals, action, knowledge. In the case of homogeneous agents, it was

useful for agents to model the internal states of other agents in order to predict their

actions. With heterogeneous agents, the problem of modeling others is much more
complex. Now the goals, actions, and domain knowledge of the other agents may also

be unknown and thus need modeling.

Without communication, agents are forced to model each other strictly through obser-

vation. Huber and Durfee [95] consider a case of coordinated motion control among

multiple mobile robots under the assumption that communication is prohibitively ex-

pensive. Thus the agents try to deduce each other's plans by observing their actions.

In particular, each robot tries to �gure out the destinations of the other robots by

watching how they move. Plan recognition of this type is also useful in competitive

domains, since knowing an opponent's goals or intentions can make it signi�cantly
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easier to defeat.

In addition to modeling agents' goals through observation, it is also possible to learn

their actions. The OBSERVER system [Wang 96] allows an agent to incrementally

learn the preconditions and e�ects of planning actions by observing domain experts.

After observing for a time, the agent can then experimentally re�ne its model by

practicing the actions itself.

When modeling other agents, it may be useful to reason not only about what is true

and what is false, but also about what is not known. Such reasoning about ignorances

is called autoepistemic reasoning [Permpoontanalarp 95].

Just as RMM is useful for modeling the states of homogeneous agents, it can be used

in the heterogeneous scenario as well. Tambe [95] takes it one step further, studying

how agents can learn models of teams of agents. In an air combat domain, agents

can use RMM to try to deduce an opponents' plan based on its observable actions.
For example, a �red missile may not be visible, but the observation of a preparatory

maneuver commonly used before �ring could indicate that a missile has been launched.

When teams of agents are involved, the situation becomes more complicated. In this

case, an opponent's actions may not make sense except in the context of a team ma-
neuver. Then the agent's role within the team must be modeled [Tambe 96b].

One reason that modeling other agents might be useful is that agents sometimes depend
on each other for achieving their goals. Unlike in game theory where agents can
cooperate or not depending on their utility estimation, there may be actions that

require cooperation for successful execution. For example, two robots may be needed
to successfully push a box, or, as in the pursuit domain, several agents may be needed to

capture an opponent. Sichman and Demazeau [95] analyze how the case of con
icting
mutual models of di�erent co-dependent agents can arise and be dealt with.

Resource management. Heterogeneous agents may have interdependent actions due to
limited resources needed by several of the agents. Example domains include network

tra�c problems, including the network routing domain used in this thesis, in which

several di�erent agents must send information through the same network; and load
balancing in which several computer processes or users have a limited amount of com-

puting power to share among them.

One interesting network tra�c problem called Braess' paradox has been studied from

a multi-agent perspective using GAs [Glance and Hogg 95]. Braess' paradox is the
phenomenon of adding more resources to a network but getting worse performance.

When using a particular GA representation to represent di�erent parts of a sample

network that has usage-dependent resource costs, agents that are sharing the network

and reasoning separately about which path of the network to use cannot achieve global

optimal performance [Glance and Hogg 95]. When the GA representation is improved,
the system is able to �nd the globally optimal tra�c 
ow [Arora and Sen 96].

Adaptive load balancing has been studied as a multi-agent problem by allowing di�er-
ent agents to decide which processor to use at a given time. Using RL, heterogeneous
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agents can achieve reasonable load balance without any central control and without

communication among agents [Schaerf et al. 95]. The agents keep track of how long a

job takes when it is scheduled on a given resource, and they are given some incentive

to explore untried processors or processors that did poorly in the past.

Social conventions. There has been some very interesting work done on how heteroge-

neous, non-communicating agents can reach \agreements," or make coinciding choices,

if necessary. The locker-room agreement presented in Section 3.2 is an implementation

of social conventions in a team of agents. As well as being used by the the communicat-

ing simulated robotic soccer agents, it is used by the non-communicating small-robot

agents to achieve team coordination.

The focal point method is another example of social conventions [Fenster et al. 95]. The

phenomenon of cultural (or programmed) preferences allows agents to \meet" without

communicating. In this method, all else being equal, agents who need to meet should
choose rare or extreme options.

Rather than coming from pre-analysis of the options as in the focal point method, con-
ventions can emerge over time if agents are biased towards options that have been cho-
sen, for example, most recently or most frequently in the past [Walker and Wooldridge

95].

Roles. When agents have similar goals, they can be organized into a team. Each agent then

plays a separate role within the team. With such a benevolent team of agents, one
must provide some method for assigning di�erent agents to di�erent roles. The 
exible

teamwork structure presented in Section 3.3 provides one such method.

Prasad et al. [96] study design agents that can either initiate or extend a design of a
steam pump. In di�erent situations, di�erent agents are more e�ective at initiation

and at extension. Thus a supervised learning technique is used to help agents learn
what roles they should �ll in di�erent situations.

STEAM [Tambe 97] allows a team of agents to �ll and switch roles dynamically. Par-
ticularly if a critical agent fails, another agent is able to replace it in its role so that

the team can carry on with its mission.

If allowed to evolve independently, a group of agents might end up �lling di�erent roles
in the domain or all end up with the same behavior. Balch [98] investigates methods

of encouraging behavioral diversity in a team of agents.

9.1.3 Homogeneous, Communicating MAS

The multi-agent scenario with homogeneous, communicating agents is depicted in Figure 9.4.

As in the homogeneous, non-communicating case (Figure 9.2), the agents are identical except

that they are situated di�erently in the environment. However in this scenario, the agents can

communicate directly as indicated by the arrows connecting the agents in Figure 9.4. From a
practical point of view, the communication might be broadcast or posted on a \blackboard"
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Figure 9.4: MAS with homogeneous, communicating agents. Only the sensor input and e�ector

output of agents di�er. Information can be transmitted directly among agents as indicated by the

arrows between agents. Communication can either be broadcast or transmitted point-to-point.

for all to interpret, or it might be targeted point-to-point from an agent to another speci�c

agent.
Communication raises several issues to be addressed in multi-agent systems. However,

in most cases, the issues are addressed in the literature with heterogeneous, communicating
agents. In this section, I consider distributed sensing, which is addressed with homogeneous,
communicating agents as indicated in Table 9.4. Many more communication-related issues

are addressed in Section 9.1.4.

Homogeneous, Communicating MAS

Issues

� Distributed sensing

Techniques

� Active sensing [Matsuyama 97]

� Query propagation for distributed tra�c mapping [Moukas and Maes 97]

Table 9.4: The issues and techniques for homogeneous, communicating multi-agent systems as

re
ected in the literature.

Distributed Sensing The cooperative distributed vision project [Matsuyama 97] aims to

construct and monitor a broad visual scene for dynamic three dimensional scene un-
derstanding by using multiple cameras, either stationary or on mobile robots. For

example, consider the problem of tracking an individual car using cameras mounted

at urban intersections. When the car leaves one camera's range and enters another's,
there needs to be a way of identifying the two images as representing the same car,

even though it probably looks di�erent in the two cases (i.e. it is driving away from one
camera and towards the other). The project combines active sensing|the ability to

shift attention towards an area of higher uncertainty or interest|and communication

among multiple sensing agents.

Another distributed sensing project is the tra�copter system [Moukas and Maes 97].

In tra�copter, cars themselves collect and propagate tra�c information to help each

other decide on the best route to a given location. For example, a car driving in one
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direction might query an oncoming vehicle about tra�c conditions up the road. By

propagating such queries among vehicles, the original car can build a map of tra�c

conditions along di�erent routes to its goal.

Our simulated robotic soccer agents use communication to achieve distributed sensing.

In particular, the <selected-internal-state> in the communication paradigm presented

in Section 3.4 can be used to transmit information that is visible to one agent and

hidden to another. For example, in the soccer implementation, opponent and ball lo-

cations are communicated to agents that would otherwise not know their whereabouts.

9.1.4 Heterogeneous, Communicating MAS

The fully general multi-agent scenario with heterogeneous, communicating agents is illus-

trated in Figure 9.5.
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Figure 9.5: MAS with heterogeneous, communicating agents. Agents can be heterogeneous to

any degree. Information can be transmitted directly among agents. Communication can either be

broadcast or transmitted point-to-point.

Since heterogeneous communicating agents can choose not to communicate, and in some
cases can also choose to be homogeneous or at least to minimize their heterogeneity, most of

the issues discussed in the previous two scenarios apply in this one as well. Two of the most
studied issues are communication protocols and theories of commitment. Already discussed
in the context of the heterogeneous, non-communicating MAS scenario (Section 9.1.2), the

issue of benevolence vs. competitiveness becomes more complicated in the current context.

These issues and others along with some of the existing techniques to deal with them are
described below and summarized in Table 9.5.

Understanding each other. In all communicating multi-agent systems, and particularly

in domains that include agents built by di�erent designers, there must be some set
language and protocol for the agents to use when interacting. Independent aspects

of protocols are information content, message format, and coordination conventions.

Among many others, existing language protocols for these three levels are: KIF for

content [Genesereth and Fikes 92], KQML for message format [Finin et al. 94], and

COOL for coordination [Barbuceanu and Fox 95]. There has been a lot of research
done on re�ning these and other communication protocols.
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Heterogeneous, Communicating MAS

Issues

� Understanding each other

� Planning communicative acts

� Benevolence vs. competitiveness

� Negotiation

� Resource management (schedule coordination)

� Commitment/decommitment

Techniques

� Language protocols: KIF [Genesereth and Fikes 92], KQML [Finin et al. 94],

COOL. [Barbuceanu and Fox 95]

� Legacy systems integration. [Jennings and Wittig 92]

� Language learning. [Grand and Cli� 98]

� Speech acts. [Cohen and Levesque 95,Lux and Steiner 95]

� Learning social behaviors. [Mataric 94b]

� Reasoning about truthfulness. [Rosenschein and Zlotkin 94,Sandholm and Lesser 96]

� Multi-agent Q-learning. [Tan 93,Wei� 95]

� Training other agents' Q-functions (track driving). [Clouse 96]

� Minimize the need for training. [Potter et al. 95]

� Cooperative co-evolution. [Bull et al. 95]

� Contract nets for electronic commerce. [Sandholm and Lesser 95b]

� Market-based systems. [Huberman and Clearwater 95]

� Bayesian learning in negotiation: model others. [Zeng and Sycara 96]

� Market-based methods for distributed constraints. [Parunak et al. 98]

� Generalized partial global planning (GPGP). [Decker and Lesser 95,Lesser 98]

� Learning to choose among coordination methods. [Sugawara and Lesser 95]

� Query response in information networks. [Sycara et al. 96]

� Division of independent tasks. [Parker 94]

� Internal, social, and collective (role) commitments. [Castelfranchi 95]

� Commitment states (potential, pre, and actual) as planning states. [Haddadi 95]

� Belief/desire/intention (BDI) model: OASIS. [Rao and George� 95]

� BDI commitments only over intentions. [Rao and George� 95]

� Coalitions. [Zlotkin and Rosenschein 94,Shehory and Kraus 95,Sandholm and Lesser 95a]

Table 9.5: The issues and techniques for heterogeneous, communicating multi-agent systems as

re
ected in the literature.

One of the �rst industrial multi-agent systems, ARCHON [Jennings and Wittig 92]
successfully integrated several legacy systems. Applied in �ve di�erent industrial set-

tings, ARCHON successfully allows independently developed, heterogeneous computer

systems to communicate in order to create collaborative, process control systems.

Creatures [Grand and Cli� 98] is a multi-agent computer game based on sophisti-

cated biological models. Agents have the ability to grow and learn, including a simple

verb-object language, based on interactions with a human user or other agents in the

environment.

Within the team member agent architecture presented in Section 3.2, agents under-
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stand each other based on a communication protocol de�ned within the locker-room

agreement.

Planning communicative acts. When an agent transmits information to another agent,

it has an e�ect just like any other action would have. Thus within a planning frame-

work, one can de�ne preconditions and e�ects for communicative acts. When combined

with a model of other agents, the e�ect of a communication act might be to alter an

agent's belief about the state of another agent or agents. The theory of communication

as action is called speech acts [Cohen and Levesque 95,Lux and Steiner 95].

Mataric adds a learning dimension to the idea of speech acts. Starting with the foraging

behavior mentioned above [Mataric 94a], the agents can then learn to choose from

among a set of social behaviors that includes broadcasting and listening [Mataric 94b].

Q-learning is extended so that reinforcement can be received for direct rewards or for

rewards to other agents.

When using communication as a planning action, the possibility arises of communicat-
ing misinformation in order to satisfy a particular goal. For instance, an agent may

want another agent to believe that something is true. Rather than actually making it
true, the agent might just say that it is true. For example, Sandholm and Lesser [96]

analyze a framework in which agents are allowed to \decommit" from agreements with
other agents by paying a penalty to these other agents. They consider the case in which
an agent might not be truthful in its decommitment, hoping that the other agent will

decommit �rst. In such situations, agents must also consider what communications to
believe [Rosenschein and Zlotkin 94].

The communication paradigm for single-channel, low-bandwidth unreliable communi-

cation environments presented in Section 3.4 safeguards against false communications
with the <encoded-time-stamp> �eld. In the simulated robotic soccer implementation
(Section 3.5), it is assumed that messages from teammates are truthful: only opponent

messages could be deceptive.

Benevolence vs. competitiveness. Several studies involving competitive agents were de-

scribed in the heterogeneous, non-communicating scenario in Section 9.1.2. In the

current scenario, there are many more examples of competitive agents.

In the pursuit domain, multi-agent Q-learning has been investigated [Tan 93]. Agents

help each other by exchanging reinforcement episodes and/or control policies. Simi-

larly, competing Q-learners can bid against each other to earn the right to control a

single system [Wei� 95]. The highest bidder pays a certain amount to be allowed to

act, then receives any reward that results from the action.

Another Q-learning approach, this time with benevolent agents, has been to explore

the interesting idea of having one agent teach another agent through communica-
tion [Clouse 96]. Starting with a trainer that has moderate expertise in a task, a

learner can be rewarded for mimicking the trainer. Furthermore, the trainer can rec-
ommend to the learner what action to take in a given situation so as to direct the

learner towards a reward state. Eventually, the learner is able to perform the task

without any guidance.
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While training is a useful concept, some research is driven by the goal of reducing the

role of the human trainer. As opposed to the process of shaping, in which the system

designer develops simple behaviors and slowly builds them into more complex ones,

populations appropriately seeded for competitive co-evolution can reduce the amount

of designer e�ort. Potter and Grefenstette [95] illustrate this e�ect in their domain

described above in which two robots compete for a stationary pellet of food. Subpop-

ulations of rules used by GAs are seeded to be more e�ective in di�erent situations.

Thus specialized subpopulations of rules corresponding to shaped behaviors tend to

emerge.

GAs have also been used to evolve separate communicating agents to control di�erent

legs of a quadrapedal robot using cooperative co-evolution [Bull et al. 95].

TPOT-RL as presented in Chapter 7 is another example of cooperative co-evolution.

Independent agents learn policies that coordinate to create an e�ective team behavior.

Negotiation Drawing inspiration from competition in human societies, several researchers
have designed negotiating multi-agent systems based on the law of supply and demand.
In the contract nets framework [Smith 80], agents all have their own goals, are self-

interested, and have limited reasoning resources. They bid to accept tasks from other
agents and then can either perform the tasks (if they have the proper resources) or

subcontract them to other agents. Agents must pay to contract their tasks out and
thus shop around for the lowest bidder. Many multi-agent issues arise when using
contract nets [Sandholm and Lesser 95b].

In a similar spirit is an implemented multi-agent system that controls air temperature

in di�erent rooms of a building [Huberman and Clearwater 95]. A person can set one's
thermostat to any temperature. Then depending on the actual air temperature, the
agent for that room tries to \buy" either hot or cold air from another room that has an

excess. At the same time, the agent can sell the excess air at the current temperature
to other rooms. Modeling the loss of heat in the transfer from one room to another,
the agents try to buy and sell at the best possible prices. The market regulates itself

to provide equitable usage of a shared resource.

Zeng and Sycara [96] study a competitive negotiation scenario in which agents use

Bayesian Learning techniques to update models of each other based on bids and counter

bids in a negotiation process.

The MarCon system [Parunak et al. 98] uses market-based methods for distributed

constraint problems. Designers at di�erent points along a supply chain negotiate the

characteristics of the overall design by buying and selling characteristics and propa-

gating the resulting constraints.

Resource management. MarCon is an example of multi-agent resource management: the

design characteristics desired by one agent may consume the resources of another.

Similarly, generalized partial global planning (GPGP) allows several heterogeneous

agents to post constraints, or commitments to do a task by some time, to each other's

local schedulers and thus coordinate without the aid of any centralized agent [Decker
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and Lesser 95]. A proposed general multi-agent architecture based on GPGP contains

�ve components: \local agent scheduling, multi-agent coordination, organizational de-

sign, detection, and diagnosis [Lesser 98]."

In a heterogeneous, communicating multi-agent system applied to diagnosis of a local

area network, agents learn to choose among di�erent coordination strategies based

on the current situation [Sugawara and Lesser 93, Sugawara and Lesser 95]. Less

sophisticated coordination methods require fewer network and time resources, but may

lead to tasks failing to be executed or to redundant actions by multiple agents.

RETSINA [Sycara et al. 96] uses three classes of heterogeneous, communicating agents

to deliver information in response to speci�c user queries in information networks.

RETSINA is able to satisfy the information requests of multiple users by searching mul-

tiple information sources, while considering network constraints and resource limita-

tions of information agents. RETSINA has been used to implement several distributed

network applications including a �nancial portfolio manager, a personal information
manager and meeting scheduler, and a satellite visibility forecaster.

ALLIANCE and its learning variant L-ALLIANCE [Parker 94] use communication
among heterogeneous robots to help divide independent tasks among the robots. With
an emphasis on fault tolerance, agents only broadcast the task that they are currently

working on. If the communication fails, multiple robots might temporarily try to do
the same task, but they will eventually realize the con
ict by observation and one will

move on to a di�erent task. In L-ALLIANCE, robots learn to evaluate each other's
abilities with respect to speci�c tasks in order to more e�ciently divide their tasks
among the team.

Commitment/decommitment. When agents communicate, they may decide to cooper-
ate on a given task or for a given amount of time. In so doing, they make commitments

to each other. Committing to another agent involves agreeing to pursue a given goal,
possibly in a given manner, regardless of how much it serves one's own interests. Com-
mitments can make systems run much more smoothly by providing a way for agents

to \trust" each other, yet it is not obvious how to get self-interested agents to commit
to others in a reasonable way. The theory of commitment and decommitment (when

the commitment terminates) has consequently drawn considerable attention.

Castelfranchi [95] de�nes three types of commitment: internal commitment|an agent

binds itself to do something; social commitment|an agent commits to another agent;

and collective commitment|an agent agrees to �ll a certain role. Setting an alarm
clock is an example of internal commitment to wake up at a certain time.

Commitment states have been used as planning states: potential cooperation, pre-

commitment, and commitment [Haddadi 95]. Agents can then use means-ends analysis
to plan for goals in terms of commitment opportunities. This work is conducted within

a model called belief/desire/intention, or BDI.

BDI is a popular technique for modeling other agents. Other agents' domain knowledge

(beliefs) and goals (desires) are modeled as well as their \intentions," or goals they
are currently trying to achieve and the methods by which they are trying to achieve
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them. The BDI model is used to build a system for air-tra�c control, OASIS [Rao and

George� 95], which has been implemented for testing (in parallel with human operators

who retain full control) at the airport in Sydney, Australia. Each aircraft is represented

by a controlling agent which deals with a global sequencing agent. OASIS mixes

reactive and deliberative actions in the agents: they can break out of planned sequences

when coming across situations that demand immediate reaction. Since agents cannot

control their beliefs or desires, they can only make commitments to each other regarding

their intentions.

Finally, groups of agents may decide to commit to each other. Rather than the more

usual two-agent or all-agent commitment scenarios, there are certain situations in which

agents may want to form coalitions [Zlotkin and Rosenschein 94]. Since this work is

conducted in a game theory framework, agents consider the utility of joining a coalition

in which they are bound to try to advance the utility of other members in exchange for

reciprocal consideration. Shehory and Kraus [95] present a distributed algorithm for
task allocation when coalitions are either needed to perform tasks or more e�cient that

single agents. Sandholm and Lesser [95a] use a vehicle routing domain to illustrate a
method by which agents can form valuable coalitions when it is intractable to discover
the optimal coalitions.

Within the context of this thesis, when using set-plays as presented within the 
exible

teamwork structure (Section 3.3), agents are committed to each other for the duration
of the execution of the multi-agent plan. If any agent fails to �ll its set-play role, the
plan is less likely to succeed.

9.1.5 Summary

This section has given an overview of the prior research within the �eld of MAS, with

emphasis on multi-agent learning approaches. Based on this detailed review of the literature,
this thesis makes several contributions to the state of the art.

Several people have studied collaboration among agents (commitment, co-evolution, etc.),

and several people have studied adversarial multi-agent situations (game theory, Markov
games, etc.). Yet there has been little e�ort towards studying situations in which agents

reason about collaborating with other benevolent agents while at the same time trying to

outwit one or more opponents. Our agents within the simulated robotic soccer domain are
the �rst to operate in a real-time, noisy, collaborative and adversarial environment.

TPOT-RL (Section 7.2) is a multi-agent RL algorithm for domains in which agents do

not know the e�ects of their actions in terms of state transitions. While there are several

multi-agent RL approaches mentioned in this section [Tan 93,Littman 94,Mataric 94a,Clouse
96,Schaerf et al. 95,Wei� 95], none is situated in an opaque-transition environment.

There have been some prior e�orts towards having di�erent agents change roles dynami-

cally [Prasad et al. 96,Tambe 97]. But there is no previous system in which a team of agents

operating in a real-time environment can dynamically change both its set of roles (formation)

and role assignments within the formation. As illustrated in Figure 3.3 and implemented in

the simulated robotic soccer implementation (Section 3.5.2) the 
exible teamwork structure
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de�ned within the team member agent architecture (Section 3.3) contributes a method for

agents to smoothly switch both formations and roles within a formation.

In Sections 9.1.3 and 9.1.4, several communicating multi-agent systems were presented.

However, none addresses communication in single-channel, low-bandwidth, unreliable com-

munication environments. The communication paradigm presented in Section 3.4 contributes

a method for teams to communicate in such environments by taking advantage of the locker-

room agreement within the team member agent architecture.

Finally, layered learning is a new approach to learning in complex systems, including

those with multiple agents. While several multi-agent learning systems are described in this

section, none layers multiple machine learning techniques within a single application. As

presented in Chapters 4{7, layered learning allowed us to connect learned individual skills,

multi-agent behaviors, and team behaviors to create a coherent team of agents in a complex,

multi-agent domain.

9.2 Robotic Soccer

Robotic soccer is a particularly good domain for studying multi-agent systems. The main

goal of any test bed is to facilitate the trial and evaluation of ideas that have promise in the
real world [Decker 96a]. A wide variety of real MAS issues can be studied in robotic soccer.
In fact, all of the seventeen MAS issues listed in Table 9.1 can be feasibly studied in the

soccer simulator.

Homogeneous, non-communicating MAS can be studied in robotic soccer by �xing the

behavior of the opposing team and populating the team being studied with identical,
mute players. To keep within the homogeneous agent scenario, the opponents must

not be modeled as agents.

� In this context, the players can be reactive or deliberative to any degree. The

extremely reactive agent might simply look for the ball and move straight at it,
shooting whenever possible. At this extreme, the players may or may not have
any knowledge that they are part of a team.

� On the other hand, players might model each other, thus enabling deliberative

reasoning about whether to approach the ball or whether to move to a di�erent

part of the �eld in order to defend or to receive a pass.

� With players modeling each other, they may also reason about how to a�ect each

other's behaviors in this inherently dynamic environment.

� It is possible to study the relative merits of local and global perspectives on the

world. Robots can be given global views with the help of an overhead camera, and

the soccer server comes equipped with an omniscient mode that permits global
views. Simulated robotic soccer is usually approached as a problem requiring local

sensing.

Heterogeneous, non-communicating MAS can also be studied in robotic soccer.
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� Since each player has several teammates with the same global goal and several

opponents with the opposite goal, each player is both benevolent and competitive

at the same time. This possibility for combination of collaborative and adversarial

reasoning is a major feature of the domain.

� If the teams are learning during the course of a single game or over several

games, all the issues of evolving agents, including the \arms race" and the credit-

assignment problem, arise.

� In the soccer server, stamina is a resource assigned to each individual agent. At

the team level, stamina is important for resource management: if too many agents

are tired, the team as a whole will be ine�ective. Therefore, it is to the team's

advantage to distribute the running among the di�erent agents.

� When trying to collaborate, players' actions are usually interdependent: to exe-

cute a successful pass, both the passer and the receiver must execute the appropri-
ate actions. Thus modeling each other for the purpose of coordination is helpful.

In addition, if opponents' actions can be predicted, then proactive measures might
be taken to render them ine�ective.

� Social conventions, such as programmed notions of when a given agent will pass
or which agents should play defense, can also help coordination. The locker-room
agreement is an example of social conventions within a team.

� Since communication is still not allowed, the players must have a reliable method
for �lling the di�erent team roles needed on a soccer team (e.g. defender, forward,
goaltender). The 
exible teamwork structure presented in Section 3.5.2 is one

such method.

Homogeneous, communicating MAS can be studied by again �xing the behavior of the
opposing team and allowing teammates to communicate.

� Distributed sensing can be studied in this context due to the large amount of
hidden state inherent in the soccer server (see Section 2.2). At any given moment,

a particular agent sees only a small portion of the world. By communicating with
teammates, it can get a more complete picture of the world. In our communication
paradigm presented in Section 3.4, the <selected-internal-state> �eld is designed

for this purpose.

Heterogeneous, communicating MAS is perhaps the most appropriate scenario to study

within the context of robotic soccer. Since the agents indeed are heterogeneous and
can communicate, the full potential of the domain is realized in this scenario.

� With players sending messages to each other, they must have a language in order

to understand each other. Our agents de�ne such a language within the locker-

room agreement.

� Especially in the single-channel, low-bandwidth communication environment mod-

eled by the soccer server, agents must plan their communicative acts. If the op-
ponents can understand the same language, a planned utterance can a�ect the
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knowledge of both teammates and opponents. The utility of communication must

be carefully considered and the possibility of lying in order to fool the opponent

arises. In addition, the low-bandwidth creates the condition that sending a mes-

sage may prevent other messages from getting through.

� Like in the heterogeneous, non-communicating scenario, since agents have both

teammates and adversaries, they must reason about being both benevolent and

competitive.

� Negotiation protocols may be useful in the robotic soccer domain if di�erent

agents, based on their di�erent sensory perspectives, have di�erent opinions about

what course of action would be best for the team.

� In a real-time environment, timing is very important for any team play, including

a simple pass. Thus, resource management in terms of timing, or action coordi-

nation, is crucial.

� Protocols are also needed for commitment to team plays: the passer and receiver

in a pass play must both agree to execute the pass. For more complex team plays,
such as our set-plays, several players may need to commit to participate. But then

the issue arises of how single-mindedly they must adhere to the committed play:
when may they react to more pressing situations and ignore the commitment?

As demonstrated above, all of the MAS issues summarized in Table 9.1 can be studied
in robotic soccer. I now review the research that has been conducted in this domain. In

Section 9.2.1, I describe research conducted in the \early years", before organized robotic
soccer workshops, that served as the foundations for the recent popularity of the domain.

Then, in Section 9.2.2, I review some of the research presented at dedicated robotic soccer
workshops held in conjunction with the international competitions described in Chapter 8,
as well other contemporary robotic soccer-related research.

9.2.1 Foundations

Producing natural language commentary from real-time input, the SOCCER system [Andre
et al. 88] was the �rst AI research related to soccer. SOCCER analyzed human soccer games.

By looking for triggers and terminations of events such as a player running or the ball being

passed, SOCCER aims to announce important events without redundancy.
Robotic soccer was introduced as an interesting and promising domain for AI research at

the Vision Interface conference in June, 1992 [Mackworth 93]. Dynamite, the �rst working
robotic soccer system [Barman et al. 93, Sahota et al. 95] was also described at that time.

A ground-breaking system for robotic soccer, and the one that served as the inspiration and

basis for my work, the Dynamite test bed was designed to be capable of supporting several
robots per team, but most work has been done in a 1 vs. 1 scenario. It uses an overhead

camera and color-based detection to provide global sensory information to the robots. Dyna-

mite was used to introduce a decision making strategy called reactive deliberation which was

used to choose from among seven hard-wired behaviors [Sahota 94]. Subsequently, an RL

approach based on high-level sensory predicates was used to choose from among the same
hard-wired behaviors [Ford et al. 94].
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Asada et al. [94a] developed the �rst robots equipped with on-board sensing capabilities.

As mentioned in Section 5.5, these robots use learning from easy missions, an RL training

technique, to learn to hit a stationary ball into the goal. One contribution of this work is the

construction of state and action spaces that reduce the complexity of the learning task [Asada

et al. 96]. As opposed to the action-dependent features used by TPOT-RL which create an

abstract feature space prior to learning, states are clustered during learning based on the

best action to take from each state. Another contribution is the combination of low-level

behaviors, such as shooting and avoiding an opponent, that are learned using RL [Asada et

al. 94b,Uchibe et al. 96]. Rather than building the learned behaviors at di�erent behavior

levels as in layered learning, two previously learned control strategies are used to produce a

new one, which then replaces the original two.

Minimax-Q learning for Markov games was �rst applied in an abstract simulated soccer

game [Littman 94]. This version of the domain is much simpler than the soccer server, having

800 states, 5 actions, and no hidden information. One player on each team moves in a grid

world and the ball is always possessed by one of the players. Using minimax-Q, players learn
optimal probabilistic policies for maneuvering past each other with the ball.

In research prior to that reported in this dissertation, we conducted machine learning
experiments in a simulator based closely on the Dynasim simulator [Sahota 96] which simu-

lates the Dynamite robots mentioned above. First, we used memory-based learning to allow
a player to learn when to shoot and when to pass the ball [Stone and Veloso 96a]. We then
used neural networks to teach a player to shoot a moving ball into particular parts of the

goal [Stone and Veloso 96b]. Based on training in a small region of the �eld, our agent
was able to learn to successfully time its approach to a moving ball such that it could score

from all areas of the �eld. These experiments served as the basis for our initial learning
experiments in the soccer server [Stone and Veloso 96c].

In another early learning experiment in the soccer server, a player learned when to shoot
and when to pass [Matsubara et al. 96]. As described in Section 5.5, the agent bases its

decision on the positions of the ball, the goaltender, and one teammate.

9.2.2 The Competition Years

The research reported in Section 9.2.1 con�rmed the potential of robotic soccer as an AI

research domain and justi�ed the value of having large-scale competitions from a research per-

spective. Starting with the �rst competitions held in 1996 (Pre-RoboCup-96 and MiroSot-96)

and continuing since then, there has been a great deal of robotic soccer-related research. It
has been presented both at dedicated robotic soccer workshops held in conjunction with

the competitions and in other scienti�c forums. In this section I review some of this recent

robotic soccer research.

Robot Hardware

Much of the research inspired by competitions has been devoted to building robot hardware

that is suitable for this challenging environment, e.g. [Achim et al. 96,Hong et al. 96,Hsia

and Soderstrand 96,Kim et al. 96, Shim et al. 96]. The emphasis in hardware approaches
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varies greatly. Some research focuses on fast and robust visual perception of the environ-

ment [Sargent et al. 97,Cheng and Zelinsky 98,Han and Veloso 98]. In response to the need

for vision systems that work under various lighting conditions (conditions at competitions

are never the same as in the lab), some research focuses on automatic calibration of vision

parameters [Shen et al. 98,Veloso and Uther 99]. Instead of vision, one alternative approach

is to use a laser range-�nder for localization in the environment [Gutmann et al. 98].

Other research focuses on robot path planning in crowded, dynamic, environments [Han

et al. 96,Kim and Chung 96]. Path planning is particularly challenging with non-holonomic

robots because they can only move straight in the direction that they are facing or in curved

paths starting from their current location and direction. Our approach to non-holonomic

robotic path planning is described in Appendix B, speci�cally in Section B.2.1. Omnidi-

rectional robots can simplify path planning considerably: they do not have to consider the

direction they are facing as a constraint [Price et al. 98,Yokota et al. 98].

In addition to robots developed speci�cally for the competitions, there have been robots
created to exhibit special soccer-related skills. Shoobot [Mizuno et al. 96,Mizuno et al. 98] is

a nomad-based robot that can dribble and shoot a soccer ball as it moves smoothly through
an open space. The Sony legged robots [Fujita and Kageyama 97] walk on four legs. They
have been used as the basis of an exclusively legged-robot soccer competition [Veloso et

al. 98c]. And the Honda humanoid robots [Hirai 97] have been demonstrated kicking a real
soccer ball and performing a penalty shot with a shooting and a goaltending robot. This
demonstration indicates the feasibility of RoboCup's long-term goal of having a humanoid

robot soccer competition on a real soccer �eld [Kitano et al. 98].

Soccer Server Accessories

This dissertation uses the soccer server described in Section 2.2 as a test bed for research
in MAS and ML. In order to test the teamwork structure and communication paradigm
presented in Chapter 3, our agents �rst needed to be equipped with the low-level individual

skills described in Sections 3.5.1 and B.1 (Appendix B). Other approaches to building
individual skills in the soccer server are also presented in the literature, e.g. [Burkhard et

al. 98,Pagello et al. 98].

In addition to soccer-playing agent development, the soccer server has been used as

a substrate for 3-dimensional visualization, real-time natural language commentary, and

education research.

Figure 2.1 shows the 2-dimensional visualization tool that is included in the soccer server

software. SPACE [Shinjoh 98] converts the 2-dimensional image into a 3-dimensional image,

changing camera angle and rendering images in real time.

Another research challenge being addressed within the soccer server is producing natural

language commentary of games as they proceed. Researchers aim to provide both low-level
descriptions of the action, for example announcing which team is in possession of the ball,

and high-level analysis of the play, for example commenting on the team strategies being used
by the di�erent teams. Commentator systems for the soccer server include ROCCO [Andre

et al. 98b], MIKE [Matsubara et al. 99], and Byrne [Binsted 99].

Robotic soccer has also been used as the basis for education research. A survey of
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RoboCup-97 participants indicates that the majority of participants were students motivated

principally by the research opportunities provided by the domain [Verner 99]. There has also

been an undergraduate AI programming course based on teaching students to create robotic

soccer-playing agents in the soccer server [Coradeschi and Malec 99].

Multi-Agent Control and Robotic Soccer Strategy

The robotic soccer domain has inspired many di�erent approaches to building and organizing

teams of agents, including the team member agent architecture and layered learning as

presented in this dissertation.

Some research is based on applying existing programming methodologies to the robotic

soccer domain. Team GAMMA [Noda 98] is built using Gaea [Nakashima et al. 95], a logic

programming language that is essentially a multi-threaded, multi-environment version of

prolog. Gaea implements a dynamic subsumption architecture, allowing agents to override
behaviors in di�erent ways based on the current environment, or behavior context. Team

ROGI [de la Rosa et al. 97] is built using another programming methodology, namely agent-
oriented programming [Shoham 90].

Other research, like our own, introduces new multi-agent control methodologies and

applies them to robotic soccer. For example, the MICROB robotic soccer team is an im-
plementation of the Cassiopeia programming method [Drogoul and Collinot 98]. Cassiopeia
focuses on the organizational issues of multi-agent tasks, analyzing the interdependencies of

low-level skills and facilitating the formation of groups based on these inter-dependencies.
Temporary organizations are formed based on the contract net framework [Smith 80]. For
example, the player with the ball might contract with another player to place itself in a

particular location to receive a pass. This approach di�ers from our own in that our agents
position themselves autonomously, for instance using SPAR, and the agent with the ball

decides autonomously where to pass: no negotiation is involved, enabling the players to act
as quickly as possible.

Another multi-layered approach to robotic soccer is presented by Scerri [98]. However,
unlike our own hierarchical approach, it does not involve the learning of any behaviors. In

this approach, the di�erent abstraction layers deal with di�erent granularities of sensory

input. For example, a low-level move-to-ball behavior is given the ball's precise location,

while a high-level defend behavior|which might call go-to-ball|knows only that the ball is

in the defensive half of the �eld. The Samba control architecture [Riekki and Roening 98]

uses two behavior layers: the reactive layer which de�nes action maps from sensory input to

actuator output; and the task layer which selects from among the action maps.

ISIS [Tambe et al. 98] is a role-based approach based on STEAM [Tambe 97]. STEAM
de�nes team behaviors that can be invoked dynamically. There has also been another

formation-based approach to positioning agents on the soccer �eld [Matsumoto and Nagai

98]. However, unlike in our dynamic formations with 
exible positions, the player positions
are static and the team formation cannot change dynamically. Several other researchers also

recognize the importance of decomposing the soccer task into di�erent roles, e.g. [Coradeschi
and Karlsson 98,Ch'ng and Padgham 98].

One approach with dynamically changing roles is developed in a soccer simulator other



206 CHAPTER 9. RELATED WORK

than the soccer server [Balch 98]. Balch uses a behavioral diversity measure to encourage

role learning in an RL framework, �nding that providing a uniform reinforcement to the

entire team is more e�ective than providing local reinforcements to individual players.

Often, de�nitions of robotic soccer positions involve �xed locations at which an agent

should locate itself by default, e.g. [Gutmann et al. 98,Matsumoto and Nagai 98]. In contrast,

as described in Section 3.5.2, our 
exible positions allow players to adjust their locations

within their roles. The ranges of 
exibility are de�ned a priori as a part of the locker-room

agreement. Observational reinforcement learning [Andou 98] allows agents to learn their

positions dynamically based on the distribution of past ball locations in a game. A similar

approach is also described in [Inoue and Wilkin 97].

In another learning approach, teammate and opponent capabilities are learned through

repeated trials of speci�c actions [Nadella and Sen 97]. This research is conducted in a soccer

simulator in which the ball is always in possession of a player, eliminating the necessity for

�ne ball control. Each player has an assigned e�ciency in the range [0; 1] for the execution
of actions such as passing, tackling, and dribbling corresponding to the probability that the

action will succeed. Agents do not know the abilities of themselves, their teammates, or the
opponents. Instead, they learn to estimate them based on repeated trials. The agents can
then base action decisions on the learned parameters.

All of the learning approaches described above, as well as the approach described in this

dissertation, are used to learn portions of an agent's behavior. Other aspects are created
manually. In contrast, a few entirely learned soccer behaviors have been created.

Hexcer [Uther and Veloso 97] is an extension of the grid world soccer game described

above [Littman 94]. Rather than square grid locations, the world is de�ned as a lattice
of hexagons. Thus the action space is increased and the geometric constraints are altered.
The added complexity necessitates the development of generalized U-trees to allow agents to

learn successful policies [Uther and Veloso 97]. In hexcer, it is possible to learn straight from
sensors to actuators because, like Littman's simulation, it has a much smaller state space
than the soccer server and the agents have no hidden state.

As mentioned in Section 4.4.1, the RoboCup-97 and RoboCup-98 competitions each

included one team created using genetic programming [Koza 92]. In both cases, the goal was

to learn entirely from agent sensors to actuators in the soccer server. The �rst attempt [Luke

et al. 98] was eventually scaled down, although a successful team was created based on some

manually created low-level skills. The following year, Darwin United [Andre and Teller 99]
entered an entirely learned team.

9.2.3 Summary

Within this large and growing body of research in the robotic soccer domain, this dissertation

�lls several gaps:

� While there are several role-based approaches, and at least one examination of possible

team formations ( [Matsumoto and Nagai 98]), no other robotic soccer system enables
its agents to dynamically switch both roles and formations.
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� No other implemented system includes pre-de�ned, multi-agent plans (set-plays) for

frequently occurring situations.

� Our communication paradigm for single-channel, low-bandwidth, unreliable commu-

nication environments, such as that of the soccer server, is the only such paradigm

presented.

� While there have been many learning approaches to robotic soccer, including several

within the soccer server, no other system layers multiple learning modules as we do

using layered learning.

Nonetheless, even with all of the above contributions by us and by others, there is still

a lot of room for new AI research within the robotic soccer domain. The next and conclud-

ing chapter outlines some of these potential future directions as well as summarizing the

contributions of this dissertation.
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Chapter 10

Conclusions and Future Work

Motivated by the challenges inherent in the soccer server, a simulated robotic soccer domain,

this thesis contributes several techniques for building successful agents in real-time, noisy,
collaborative and adversarial environments. This chapter reviews the dissertation's scienti�c
contributions to the �elds of Multi-Agent Systems and Machine Learning (Section 10.1) and

then discusses promising directions for future research in this challenging class of domain
(Section 10.2).

10.1 Contributions

The four main contributions of this thesis are summarized as follows.

� The team member agent architecture presented in Chapter 3 is suitable for PTS

domains: domains with team synchronization opportunities interleaved with periods
of real-time, dynamic action and limited communication. The team member agent

architecture incorporates a locker-room agreement, which includes the de�nition of a

exible teamwork structure including mechanisms for task decomposition and dynamic

role assignment. Roles, team formations, and multi-agent set-plays are de�ned.

For PTS domains with limited communication (as opposed to no communication) pos-

sible during the dynamic periods, the locker-room agreement also de�nes inter-agent

communication protocols. This thesis presents a communication paradigm for PTS

domains with single-channel, low-bandwidth, unreliable communication environments.

This communication paradigm facilitates team coordination while being robust to lost

messages and active interference from opponents.

The team member agent architecture is implemented both in simulated robotic soc-
cer and in real robotic soccer. Empirical results demonstrate the e�ectiveness of the
teamwork structure and communication paradigm implementations.

� Layered learning (Chapter 4) is a hierarchical ML paradigm applicable in complex

domains in which learning a mapping directly from sensors to actuators is intractable.

Given a hierarchical task decomposition, layered learning allows for learning at each
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level of the hierarchy, with learning at each level directly a�ecting learning at the next

higher level.

Layered learning is applied in simulated robotic soccer as a set of three interconnecting

learned behaviors. At the lowest layer, ball interception, an individual skill, is learned

(Chapter 5). This learned individual skill is used as part of the training behavior

for learning pass evaluation, a multi-agent behavior (Chapter 6). The learned multi-

agent behavior is then used to create the input space for learning pass selection, a

team behavior (Chapter 7). All of the learned behaviors are validated empirically in

controlled testing scenarios.

� TPOT-RL (Chapter 7) is a new multi-agent reinforcement learning method. TPOT-

RL is designed for complex domains in which agents cannot necessarily observe the

state transitions caused by their or other agents' actions. It exploits local, action-

dependent features to aggressively generalize its input representation for learning and
partitions the task among the agents, allowing them to simultaneously learn collabora-

tive policies by observing the long-term e�ects of their actions. TPOT-RL is applicable
in domains with large state spaces and limited training opportunities.

TPOT-RL is developed and tested in the simulated robotic soccer domain. It is also
successfully applied in another multi-agent domain, namely network routing.

� The CMUnited simulated robotic soccer system (Chapters 3{8 and Appen-

dices B{D) is a fully implemented and operational team of simulated robotic soccer
agents which has performed successfully at international tournaments. This thesis
contributes algorithmic details of the CMUnited implementation, as well as its source

code.

10.2 Future Directions

10.2.1 Future Directions within Robotic Soccer

The challenges inherent in the simulated robotic soccer domain have motivated the research

reported in this dissertation. While CMUnited has performed successfully in competitions as

a result of this research, there are still many challenges within robotic soccer to be addressed.
These challenges could be addressed either within robotic soccer or within a similar real-time,

collaborative, and adversarial domain.

Short-term, on-line learning and prediction. The on-line learning implemented in this

thesis|TPOT-RL|takes many games against a �xed opponent to learn an e�ective
behavior. It is still an open question whether useful on-line learning can be accom-

plished in this domain within the course of a single 10-minute game. For example, can
the actions of a particular opponent agent be learned quickly enough that predictions

can be exploited before the end of the game?

Opponent modeling. All of the robotic soccer behaviors created in this thesis have either

ignored opponents' behaviors or considered them a part of the environment. Explicit
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modeling of opponents' behaviors and short-term goals may facilitate the adaptation

of behaviors to speci�c adversarial situations.

On-line multi-agent planning. The set-plays created as part of our 
exible teamwork

structure are pre-compiled multi-agent plans. They are created ahead of time for use in

situations that occur repeatedly within the domain. The creation of multi-agent plans

on-line for use during an unanticipated situation remains an open research problem.

Since the robotic soccer simulator changes periodically, adding new challenges to replace

those that have been successfully met, I anticipate additional research challenges from this

domain in the future. For example, if the soccer server moves from a 2-dimensional to a

3-dimensional simulation, or if the visual information format is changed to simulate video

camera input, the low-level skills will become more challenging to create, thus introducing

additional learning opportunities. In addition, if heterogeneous agents or a coach agent are
introduced into the environment, the resulting collaborative and adversarial aspects of the

domain will present new research challenges.

This dissertation contributes several successful techniques for building agents in the

robotic soccer domain. However, it is not yet a \solved" domain.

10.2.2 Future Directions within the Contributed Algorithms

In this section I discuss future research directions regarding the main contributions of this
thesis: the team member agent architecture, layered learning, and TPOT-RL. Each contri-
bution has been implemented in simulated robotic soccer and at most one other domain. In

all three cases, an important future direction is the application of these algorithms to addi-
tional domains. Broad applications can verify the algorithms' generality as well as helping

to identify their most important features for achieving successful results.

Team Member Agent Architecture

Automatic set-play de�nition. The 
exible teamwork structure speci�es how to execute

pre-compiled, multi-agent plans, or set-plays. However, these set-plays must currently
be input to the system. A general mechanism for automatically de�ning set-plays

would be a useful direction for future research.

One possible approach to automatically de�ning set-plays is to use a probabilistic

planning algorithm such as Weaver [Blythe 98]. Since PTS domains are dynamic,
a probabilistic planner is needed to deal with unpredictable environmental changes.
In noisy domains, the probabilistic methods are also needed to handle the uncertain

e�ects of agents' actuators.

In order to use such a planning algorithm, one must de�ne an initial state, a goal state,

and a set of operators. The initial state is the situation in which the set-play is called,

the goal state is the team's joint goal G (or an intermediate state on a path of states

towards G), and the operators are the agents' actuators in the domain. Since set-plays
are de�ned as part of the locker-room agreement, the planning algorithm could create
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a set-play for the entire team at once. The team could then break the plan into its

individual roles in order to encode it within the locker-room agreement.

When to switch roles. The 
exible teamwork structure de�ned within the team member

agent architecture de�nes a mechanism by which agents can smoothly switch roles

within a formation. However, we have not discovered any useful heuristics governing

when agents should switch roles. De�ning such heuristics would be an interesting

extension to our teamwork structure.

For example, if agent a1 is �lling role r1 and agent a2 is �lling role r2, one clear reason

to switch roles would be if a1 has more of the resources necessary for �lling r2 than

does a2 and likewise a2 for r1. In this and other situations in which homogeneous

agents might switch roles, the cost to the team in terms of possible discontinuities of

roles being �lled and in terms of inconsistent agent impressions of the mapping A 7! R

must be considered.

In addition to being implemented in the simulated robotic soccer domain, the team
member agent architecture, including the 
exible teamwork structure, has been applied in

the real robotic soccer domain. Since our robots do not use inter-agent communication, the
communication paradigm for PTS domains with single-channel, low-bandwidth, unreliable
communication environments does not apply on our current robots. For soccer-playing robots

with inter-agent communication capabilities, however, the communication paradigm can be
applied.

An important direction of future work is to apply the teammember agent architecture, the
teamwork structure, and the communication paradigm to domains other than robotic soccer.

The most obvious extension is to other team-sports domains, such as American football. As
opposed to soccer, football has much more frequent synchronization opportunities: between

every play, teammates can discuss their next play. Even so, formations can change during
the course of a single play. And like in soccer, each formation consists of a set of roles that
are each de�ned with some 
exibility left to the player that �lls it. The communication

environment during the dynamic periods is also quite similar to soccer: it is single-channel,
low-bandwidth, and unreliable. In football, set-plays would be a much more prevalent part
of the locker-room agreement.

As mentioned in Section 3.8, there are several examples of non-sports-related PTS do-

mains, including multi-spacecraft missions [Stone 97], search and rescue domains, hospi-

tal/factory maintenance [Decker 96b], battle�eld combat [Tambe 97], and network rout-

ing. Another PTS domain with single-channel, low-bandwidth, unreliable communication

is multi-robot systems with audio communication [Fujita and Kageyama 97]. Applying the
team member agent architecture to some of these domains is an important direction for

future work.

Layered Learning

More learned layers. The layered learning implementation in this dissertation consists of

three learned layers ranging from an individual behavior to a team behavior. Sec-
tion 4.2.2 details the possible extension of this implementation to include another
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team behavior and an adversarial behavior. Successfully implementing these or other

additional learned layers would be an interesting avenue for future research.

Automatic task decomposition. Layered learning works with a given task decomposi-

tion. However, it could be combined with a method for learning task decompositions.

As presented in Section 4.1,

let A be an algorithm for learning task decompositions within a domain.

Suppose that A does not have an objective metric for comparing di�erent

decompositions. Applying layered learning on the task decomposition and

quantifying the resulting performance can be used as a measure of the utility

of A's output.

The creation of an algorithm A for learning task decompositions is a challenging open

research direction.

Error propagation. In this dissertation, each of the learned layers is validated in a con-
trolled testing scenario, demonstrating the e�ectiveness of the learned behavior. How-

ever, no study is made of the propagation of errors from one layer to the next. It
is possible that errors at initial layers could hurt performance at all subsequent lay-
ers. However, since learned layers are trained individually, it is also possible that

the learning at subsequent layers could compensate for earlier errors and thus render
them inconsequential. A detailed study of error propagation and compensation within

layered learning implementations is a promising area for future research.

Layered learning is applied in simulated robotic soccer in this dissertation. A possible
next step is to apply layered learning in real robotic soccer as well. In this case, the same

task decomposition as is used in simulated robotic soccer might apply.

In general, layered learning applies in domains that are too complex for tractably learning
a mapping directly from an agent's sensory inputs to its actuator outputs. Many real-
world domains �t this characteristic. For example, layered learning could be applied in a

multi-agent search and rescue domain. Like in robotic soccer, agents could learn individual,

multi-agent, team, and adversarial behaviors.

TPOT-RL

Choosing a representation. One of the key responsible factors for TPOT-RL's success in

both simulated robotic soccer and network routing is the choice of input representation

for learning. In particular, the action-dependent feature function e(s; a) determines

the representation of the learned function. In the case of robotic soccer, the input

representation is constructed from the previously learned layer in layered learning.

In both implementations of TPOT-RL in this dissertation, a single input representation

is successfully used. However, other representations are possible. For example, in

robotic soccer, rather than using the learned pass-evaluation function as e, the agents

could perhaps learn based on the distance of the closest opponent to the pass target.
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Quantifying the e�ect of learned TPOT-RL behaviors as a function of the input rep-

resentation used would be an interesting result.

Choosing a reward function. Similarly, the implementations of TPOT-RL in this dis-

sertation vary the agents' reward function only minimally. As with all reinforcement

learning methods, the reward function has an important e�ect on what is learned.

It would be interesting to quantify the e�ects of the reward function on the learned

behaviors when using TPOT-RL.

As presented in Section 7.5, TPOT-RL applies in domains with the following character-

istics:

� There are multiple agents organized in a team.

� There are opaque state transitions.

� There are too many states and/or not enough training examples for traditional RL
techniques to work.

� The target concept is non-stationary.

� There is long-range reward available.

� There are action-dependent features available.

In addition to simulated robotic soccer and network packet-routing, such domains include
information networks, distributed logistics, and rescue missions. As with all of the thesis

contributions, it is a valuable direction of future research to apply TPOT-RL to these other
multi-agent domains.

10.3 Concluding Remarks

In short, this dissertation contributes techniques for building agents in a particularly com-

plex class of real-world domains: real-time, noisy, collaborative and adversarial multi-agent

environments. I believe that AI agents will be applied to this type of domain more and

more frequently in the near future. I hope that the thesis contributions will prove useful
in addressing the problems that arise in these domains, and, ultimately, will improve our

understanding of what it takes to build complete, AI agents.



Appendix A

List of Acronyms

Following is the list of acronyms used in this thesis.

AAAI: American Association of Arti�cial Intelligence

AI: Arti�cial Intelligence

BDI: Belief/Desires/Intentions

DAG: Directed Acyclic Graph

DAI: Distributed Arti�cial Intelligence

DT: Decision Tree

GA: Genetic Algorithm

GPGP: Generalized Partial Global Planning

ICMAS: International Conference on Multi-Agent Systems

IJCAI: International Joint Conference on Arti�cial Intelligence

IROS: International Conference on Intelligent Robotic Systems

KIF: Knowledge Interchange Format

KQML: Knowledge Query and Manipulation Language

MAS: Multi-Agent Systems

MiroSot: Micro-Robot Soccer Tournament

ML: Machine Learning

NN: Neural Network

OPL: Only Play Left
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OPR: Only Play Right

PLOS: Predictive, Locally Optimal Skills

PRW: Prefer Right Wing

PTS: Periodic Team Synchronization

RCF: Receiver Choice Function

RL: Reinforcement Learning

RMM: Recursive Modeling Method

SPAR: Strategic Positioning using Attraction and Repulsion

TPOT-RL: Team-Partitioned, Opaque-Transition Reinforcement Learning



Appendix B

Robotic Soccer Agent Skills

This appendix complements the description of the CMUnited implementations described

in Chapter 3. The implementation details of the simulated and robotic agent skills are
presented. In the context of the team member agent architecture, the skills are low-level
external behaviors culminating in action primitives.

B.1 CMUnited-98 Simulator Agent Skills

The skills available to CMUnited-98 players include kicking, dribbling, ball interception,
goaltending, defending, and clearing. The common thread among these skills is that they

are all predictive, locally optimal skills (PLOS). They take into account predicted world states
as well as predicted e�ects of future actions in order to determine the optimal primitive action
from a local perspective, both in time and in space.

Even though the skills are predictive, the agent commits to only one action during each
cycle. When the time comes to act again, the situation is completely reevaluated. If the

world is close to the anticipated con�guration, then the agent will stay in the same behavior
mode and carry on with the same skill, acting similarly to the way it predicted on previous
cycles. However, if the world is signi�cantly di�erent, the agent will arrive at a new sequence

of actions rather than being committed to a previous plan. Again, it will only execute the

�rst step in the new sequence.

Many of the skills presented here were developed in collaboration with Riley [Stone et

al. 99].

B.1.1 Kicking

Recall from Section 2.2 that an agent can only kick the ball when it is within the

kickable area = player size + ball size + kickable margin = 1.885 with the cur-

rent server parameters.

As a �rst level of abstraction when dealing with the ball, all reasoning is done as a

desired trajectory for the ball for the next cycle. Before a kick is actually sent to the server,
the di�erence between the ball's current velocity and the ball's desired velocity is used to
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Figure B.1: The turnball skill. Figure B.2: Basic kicking with

velocity prediction.

determine the kick to actually perform. If the exact trajectory can not be obtained, the ball
is kicked such that the direction is correct, even if the speed is not.

In order to e�ectively control the ball, a player must be able to kick the ball in any
direction. In order to do so, the player must be able to move the ball from one side of its

body to the other without the ball colliding with the player. This behavior is called the
turnball behavior. It was developed based on code released by the PaSo'97 team [Pagello et
al. 98]. The desired trajectory of a turnball kick is calculated by getting the ray from the

ball's current position that is tangent to a circle around the player (see Figure B.1). Note
that there are two possible such rays which correspond to the two directions that the ball

can be turned around the player. Care is taken to ensure that the ball stays well within the
kickable area from kick to kick so that the player keeps control of the ball.

The next important skill is the ability to kick the ball in a given direction, either for
passing or shooting. The �rst step is to �gure out the target speed of the ball. If the agent
is shooting, the target speed is the maximum ball speed, but for a pass, it might be better

to kick the ball slower so that the receiving agent can intercept the ball more easily. In this

case, the agent must take into account the ball's deceleration over time when determining

how hard to kick the ball.

In order to get the ball to the desired speed, several kicks in succession are usually

required. By putting the ball to the side of the player (relative to the desired direction of

the kick) the agent can kick the ball several times in succession. If a higher ball speed is

desired, the agent can use the turnball kicks to back the ball up so that enough kicks can be

performed to accelerate the ball.

This skill is predictive in that it looks at future velocities of the ball given di�erent possible

kicks. In some cases, doing a weaker kick one cycle may keep the ball in the kickable area so

that another kick can be executed the following cycle. In Figure B.2, the agent must choose

between two possible kicks. Kicking the ball to position A will result in the ball not being

kickable next cycle; if the ball is already moving quickly enough, this action may be correct.

However, a kick to position B followed by a kick during the next cycle may result in a higher

overall speed. Short term velocity prediction is the key to these decisions.
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B.1.2 Dribbling

Dribbling is the skill which allows the player to move down the �eld while keeping the ball

close to the player the entire time. The basic idea is fairly simple: alternate kicks and dashes

so that after one of each, the ball is still close to the player.

Every cycle, the agent looks to see that if it dashes this cycle, the ball will be in its kickable

area (and not be a collision) at the next cycle. If so, then the agent dashes, otherwise it

kicks. A kick is always performed assuming that on the next cycle, the agent will dash. As

an argument, the low-level dribbling code takes the angle relative to the direction of travel

at which the player should aim the ball (see Figure B.3). This is called the \dribble angle"

and its valid values are [�90; 90]. Deciding what the dribble angle should be is discussed in

Section B.1.3.

Dribble Angle
Player

Ball

Predicted Position in 2 cyclesCurrent Position

Figure B.3: The basic dribbling skill.

First the predicted position of the agent (in 2 cycles) is calculated:

pnew = pcurrent + v + (v � pdecay + a)

where pnew is the predicted player position, pcurrent is the current position of the player, v
is the current velocity of the player, pdecay is the server parameter player decay, and a is

the acceleration that a dash gives. As presented in Section 2.2, the a value is usually just
the dash power times the dash power rate in the direction the player is facing, but stamina

may need to be taken into account.

Added to pnew is a vector in the direction of the dribble angle and length such that the

ball is in the kickable area. This is the target position ptarget of the ball. Then the agent
gets the desired ball trajectory by the following formula:

traj =
ptarget � pball

1 + bdecay

where traj is the target trajectory of the ball, pball is the current ball position, and bdecay

is the server parameter ball decay. This process is illustrated in Figure B.3.

If for some reason this kick can not be done (it would be a collision for example), then
a turnball kick is done to get the ball in the right position. Then the next cycle, a normal

dribble kick should work.

As can be seen from these calculations, the basic dribbling is highly predictive of the

positions and velocities of the ball and player. It is also quite local in that it only looks 2
cycles ahead and recomputes the best action every cycle.
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B.1.3 Smart Dribbling

The basic dribbling takes one parameter that was mentioned above: the dribble angle. Smart

dribbling is a skill layered on the basic dribbling skill that decides the best dribble angle

based on opponent positions. Intuitively, the agent should keep the ball away from the

opponents, so that if an opponent is on the left, the ball is kept on the right, and vice versa.

The agent considers all nearby opponents that it knows about. Each opponent is given

a \vote" about what the dribble angle should be; each opponent votes for the valid angle

[�90; 90] that is farthest from itself. For example, an opponent at 45 degrees, would vote

for -90, while an opponent at -120 degrees would vote for 60. Each opponent's vote is

weighted by the distance and angle relative to the direction of motion. Closer opponents

and opponents more in front of the agent are given more weight (see Figure B.4).

Distance from Player

Angle WeightDistance Weight

Angle from Center
(of agent’s direction)

Figure B.4: The weights for smart dribbling.

B.1.4 Ball Interception

There are two types of ball interception, referred to as active and passive interception. The

passive interception is used only by the goaltender in some particular cases, while the rest of
the team uses only the active interception. Each cycle, the interception target is recomputed
so that the most up to date information about the world is used.

The active interception is similar to the one used by the Humboldt '97 team [Burkhard
et al. 98]. The active interception predicts the ball's position on successive cycles, and then
tries to predict whether the player will be able to make it to that spot before the ball does,

taking into account stamina and the direction that the player is facing. The agent aims for

the earliest such spot.

This process can be used for teammates as well as for the agent itself. Thus, the agent
can determine which player should go for the ball, and whether it can get there before the
opponents do.

The passive interception is much more geometric. The agent determines the closest point

along the ball's current trajectory that is within the �eld. By prediction based on the ball's
velocity, the agent decides whether it can make it to that point before the ball. If so, then

the agent runs towards that point.
These analytic ball-interception skills were developed in a later version of the simulator

(version 4) than the learned ball-interception skill described in Chapter 5 (version 2). These

routines were not appropriate in version 2 of the simulator because players were not given



B.1. CMUNITED-98 SIMULATOR AGENT SKILLS 221

information about the ball's instantaneous velocity in their visual information. In addition,

sensory information arrived much less frequently (every 500 msec as opposed to the current

150 msec). Therefore, in version 2 of the soccer server, it was much harder to accurately

predict the ball's future path.

B.1.5 Goaltending

The assumption behind the movement of the goaltender is that the worst thing that could

happen to the goaltender is to lose sight of the ball. The sooner the goaltender sees a

shot coming, the greater chance it has of preventing a goal. Therefore, the goaltender

generally uses the widest view mode (view width = wide) and uses backwards dashing when

appropriate to keep the ball in view while positioning itself in situations that are not time-

critical.

Every cycle that the ball is in the defensive zone, the goaltender looks to see if the
ball is in the midst of a shot. It does this by extending the ray of the ball's position and
velocity and intersecting that with the baseline of the �eld. If the intersection point is in

the goaltender box and the ball has su�cient velocity to get there, the ball is considered to
be a shot (though special care is used if an opponent can kick the ball this cycle). Using the

passive interception if possible (see Section B.1.4), the goaltender tries to get in the path of
the ball and then run at the ball to grab it. In this way, if the goaltender misses a catch or
kick, the ball may still collide with the goaltender and thus be stopped.

When there is no shot coming, the goaltender positions itself in anticipation of a future
shot. Based on the angle of the ball relative to the goal, the goaltender picks a spot in the
goal to guard; call this the \guard point." The further the ball is to the side of the �eld, the

further the goaltender guards to that side. Then, a rectangle is computed that shrinks as
the ball gets closer (though it never shrinks smaller than the goaltender box). The line from

the guard point to the ball's current position is intersected with the rectangle, and that is
the desired position of the goaltender.

B.1.6 Defending

CMUnited-98 agents are equipped with two di�erent defending modes: opponent tracking
and opponent marking. In both cases, a particular opponent player is selected as the target

against which to defend. This opponent can either be selected individually or as a defensive

unit via communication (the latter is the case in CMUnited-98).

In either case, the agent defends against this player by observing its position over time
and position itself strategically so as to minimize its usefulness to the other team. When

tracking, the agent stays between the opponent and the goal at a generous distance, thus
blocking potential shots. When marking, the agent stays close to the opponent on the ball-

opponent-goal angle bisector, making it di�cult for the opponent to receive passes and shoot

towards the goal. Defensive marking and tracking positions are illustrated in Figure B.5.

When marking and tracking, it is important for the agent to have accurate knowledge

about the positions of both the ball and the opponent (although the ball position is not

strictly relevant for tracking, it is used for the decision of whether or not to be tracking).
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Ball
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Tracker

Goal
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Figure B.5: Positioning for defensive tracking and marking.

Thus, when in the correct defensive position, the agent always turns to look at the object

(opponent or ball) in which it is least con�dent of the correct position. The complete
algorithm, which results in the behavior of doggedly following a particular opponent and

glancing back and forth between the opponent and ball, is as follows:

� If the ball position is unknown, look for the ball.

� Else, if the opponent position is unknown, look for the opponent.

� Else, if not in the correct defensive position, move to that position.

� else, look towards the object, ball or opponent, which has been seen less recently (lower

con�dence value).

This defensive behavior is locally optimal in that it defends according to the opponent's

current position, following it around rather than predicting its future location. However,
in both cases, the defensive positioning is chosen in anticipation of the opponent's future
possible actions, i.e. receiving a pass or shooting.

B.1.7 Clearing

When in a defensive position, it is often advantageous to just send the ball up�eld, clearing

it from the defensive zone. If the agent decides that it cannot pass or dribble while in a

defensive situation, it clears the ball. The important decision in clearing the ball is where
to clear it to. The best clears are up�eld, but not to the middle of the �eld (you don't want

to center the ball for the opponents), and also away from the opponents.

The actual calculation is as follows. Every angle is evaluated with respect to its usefulness,

and the expected degree of success. The usefulness is a sine curve with a maximum of 1 at

30 degrees, .5 at 90 degrees, and 0 at -90, where a negative angle is towards the middle of
the �eld. The actual equation is (� is in degrees):

usefulness(�) =
sin(3

2
�+ 45) + 1

2
(B.1)

The expected degree of success is evaluated by looking at an isosceles triangle with one

vertex where the ball is, and congruent sides extending in the direction of the target being
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evaluated. For each opponent in the triangle, its distance from the center line of the triangle

is divided by the distance from the player on that line. For opponent C in Figure B.6, these

values are w and d respectively. The expected success is the product of all these quotients.

In Figure B.6, opponent A would not a�ect the calculation, being outside the triangle, while

opponent B would lower the expected success to 0, since it is on the potential clear line

(w = 0).

d

w

Player

C

B

A

Clear

Direction

Figure B.6: Measuring the expected success of a clear.

By multiplying the usefulness and expected success together for each possible clear angle,
and taking the maximum, the agent gets a crude approximation to maximizing the expected

utility of a clear.

Closely related to clearing, there is another behavior called o�ensive \sending." Rather
than trying to clear the ball to the sides, the agent sends the ball to the middle of the

o�ensive zone in the hope that a teammate will catch up to the ball before the defenders.
This is useful if the agent is too tired or unable to dribble for some reason. It is especially

useful to beat an o�sides trap because it generally requires the defenders to run back to get
the ball.

The only di�erence between o�ensive sending and defensive clearing is the usefulness

function. For sending, the usefulness function is linear, with slope determined by the agent's
y position on the �eld. The closer the agent is to the sideline, the steeper the slope, and the

more that it favors sending to the middle of the �eld.

B.2 CMUnited-97 Small-Robot Skills

The skills available to the CMUnited-97 robots include path-planning, two forms of ball

handling, obstacle avoidance, goaltending, and pass evaluation [Veloso and Stone 98].

B.2.1 Non-holonomic Path Generation

The non-holonomic path planning problem has been addressed by many researchers, e.g.,
[Latombe 91,Fujimura 91]. However, most of the algorithms deal with static worlds and gen-

erate pre-planned global paths. In the robot soccer domain, this pre-planning is not possible

as the domain is inherently dynamic and response times need to be very fast. Furthermore,

the world dynamics include possible interference from other robots (e.g., pushing), making

precisely mapped out paths ine�ective and unnecessary.



224 APPENDIX B. ROBOTIC SOCCER AGENT SKILLS

Implemented by Han and described in detail in [Han and Veloso 98], the navigational

movement for the CMUnited-97 robots is done via reactive control. The control rules were

inspired by the Braitenburg vehicle [Braitenburg 84].

B.2.2 Ball Handling

If a robot is to accurately direct the ball towards a target position, it must be able to approach

the ball from a speci�ed direction. Using the ball prediction from the vision system, the robot

aims at a point on the far side of the target position. The robots are equipped with two

methods of doing so:

� Ball collection: Moving behind a ball and knocking it towards the target.

� Ball interception: Waiting for the ball to cross its path and then intercepting the
moving ball towards the target.

When using the ball collection behavior, the robot considers a line (line a in Figure B.7(a))

from the target position to the ball's current or predicted position, depending on whether
or not the ball is moving. The robot then plans a path to a point on line a and behind the
ball such that it does not hit the ball on the way and such that it ends up facing the target

position. Finally, the robot accelerates to the target. Figure B.7(a) illustrates this behavior.

����

RobotBall

Line aLine b

Intermediate
Targets

Final Ball Target

D
Line a

Line b

Ball

Robot

Final Ball Target

Point
Interception
Predicted

Target
Intermediate

(a) (b)

Figure B.7: Single-agent behaviors to enable team collaboration (a) Ball collection (aiming for a

pass or to the goal); (b) Ball interception (receiving a pass).

When using the ball interception behavior (Figure B.7(b)), on the other hand, the robot
considers a line from itself to the target position (line a) and determines where the ball's

path (line b) will intersect this line. The robot then positions itself along this line so that it

will be able to accelerate to the point of intersection at the same time that the ball arrives.

In practice, the robot chooses from between its two ball handling routines based on

whether the ball will eventually cross its path at a point such that the robot could intercept

it towards the goal. Thus, the robot gives precedence to the ball interception routine, only

using ball collection when necessary. When using ball collection, it actually aims at the ball's

predicted location a �xed time in the future so as to eventually position itself in a place from

which it can intercept the ball towards the target.
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B.2.3 Obstacle Avoidance

In the robotic soccer �eld, there are often obstacles between the robot and its goal location.

Our robots try to avoid collisions by planning a path around the obstacles. Due to the highly

dynamic nature of this domain, our obstacle avoidance algorithm uses closed-loop control

by which the robots continually replan their goal positions around obstacles. In the event

that an obstacle blocks the direct path to the goal location, the robot aims to one side of the

obstacle until it is in a position such that it can move directly to its original goal. Rather

than planning the entire path to the goal location at once, the robot just looks ahead to

the �rst obstacle in its way under the assumption that other robots are continually moving

around. Using the reactive control described above, the robot continually reevaluates its

target position. For an illustration, see Figure B.8.

Line a

Robot

Intermediate
Target

Final Robot Target

Obstacle

Figure B.8: Obstacle avoidance through dynamic generation of intermediate targets.

The robot starts by trying to go straight towards its �nal target along line a. When
it comes across an obstacle within a certain distance of itself and of line a, it aims at an
intermediate target to the side, and slightly beyond the obstacle. The robot goes around the

obstacle the short way, unless it is at the edge of the �eld. Using reactive control, the robot
continually recomputes line a until the obstacle is no longer in its path. As it comes across
further obstacles, it aims at additional intermediate targets until it obtains an unobstructed

path to the �nal target.
Even with obstacle avoidance in place, the robots can occasionally get stuck against other

robots or against the wall. Particularly if opponent robots do not use obstacle avoidance,
collisions are inevitable. When unable to move, our robots identify the source of the problem
as the closest obstacle and \unstick" themselves by moving away. In order to prevent looping,

they move a considerable distance from the closest obstacle before considering themselves

unstuck. Once free, normal control resumes.

B.2.4 Goaltending

The goaltender robot has both special hardware and special software. Thus, it does not

switch positions or active modes like the others. The goaltender's physical frame is distinct

from that of the other robots in that it is as long as allowed under the RoboCup-97 rules
(18cm) so as to block as much of the goal as possible. The goaltender's role is to prevent

the ball from entering the goal. It stays parallel to and close to the goal, aiming always to

be directly even with the ball's lateral coordinate on the �eld.

Ideally, simply staying even with the ball would guarantee that the ball would never get

past the goaltender. However, since the robots cannot accelerate as fast as the ball can, it
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would be possible to defeat such a behavior. Therefore, the goaltender continually monitors

the ball's trajectory. In some cases it moves to the ball's predicted destination point ahead

of time. The decision of when to move to the predicted ball position is both crucial and

di�cult, as illustrated in Figure B.9. Our goaltender robot currently takes into account the

predicted velocity and direction of the ball to select its moves. If the ball is moving slowly, it

tries to stay even with the ball as shown by the solid goaltender robot; if the ball is moving

quickly, it goes directly to its predicted position as shown by the dashed goaltender robot.

����

Ball A

fast

slow
Ball B

Figure B.9: Goaltending.

B.2.5 Run-time Evaluation of Collaborative Opportunities

Unlike the simulated agents which use a learned pass evaluation function (see Chapter 6), the
robots do not have any learned modules. Instead, they use a special-purpose pass-evaluation

procedure.
When in active mode, the robots use an evaluation function that takes into account

teammate and opponent positions to determine whether to pass the ball or whether to shoot.

In particular, as part of the formation de�nition, each position has a set of positions to which
it considers passing (see Chapter 3). For example, a defender might consider passing to any
forward or mid�elder, while a forward would consider passing to other forwards, but not

backwards to a mid�elder or defender.
For each such position that is occupied by a teammate, the robot evaluates the pass to

that position as well as evaluating its own shot. To evaluate each possible pass, the robot

computes the obstruction-free-index of the two line segments that the ball must traverse if
the receiver is to shoot the ball (lines b and c in Figure B.10). In the case of a shot, only

one line segment must be considered (line a). The value of each possible pass or shot is the
product of the relevant obstruction-free-indices. Robots can be biased towards passing or

shooting by further multiplying the values by a factor determined by the relative proximities

of the active robot and the potential receivers to the goal. The robot chooses the pass or
shot with the maximum value. The obstruction-free-index of line segment l is computed by

the following algorithm (variable names correspond to those in Figure B.10):

1. obstruction-free-index = 1.

2. For each opponent O:
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� Compute the distance x from O to l and the distance y along l to l's origin, i.e. the

end at which the ball will be kicked by the robot (See Figure B.10).

� De�ne constants min-dist and max-denominator. Opponents farther than min-

dist from l are not considered. When discounting obstruction-free-index in the

next step, the y distance is never considered to be larger than max-denominator.

For example, in Figure B.10, the opponent near the goal would be evaluated

with y = max-denominator, rather than its actual distance from the ball. The

reasoning is that beyond distance max-denominator, the opponent has enough

time to block the ball: the extra distance is no longer useful.

� if x < min-dist and x < y,

obstruction-free-index = obstruction-free-index � x=MIN(max-demoninator,y).

3. return obstruction-free-index.

Thus the obstruction-free-index re
ects how easily an opponent could intercept the pass

or the subsequent shot. The closer the opponent is to the line and the farther it is from the
ball, the better chance it has of intercepting the ball.

����

���� xy
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Figure B.10: Run-time pass evaluation based on the positions of opponents.
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Appendix C

CMUnited-98 Simulator Team

Behavior Modes

This appendix describes the detailed conditions and e�ects of the behavior modes used by

the CMUnited-98 simulator agents. As laid out in Chapter 3, speci�cally in Section 3.5.1, the
agents have several behavior modes. In the context of the team member agent architecture,
the choice of behavior mode is the top-level external behavior. The full set of modes is:

� Goaltend

� Localize

� Before kick o�

� Face ball

� Set-play

� Recover

� Get onside

� Handle ball

� Active o�ense

� Auxiliary o�ense

� Passive o�ense

� Active defense

� Auxiliary defense

� Passive defense

Here I present the detailed conditions and e�ects of these behavior modes.
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C.1 Conditions

During each simulator cycle, an agent's �rst step towards choosing an action is to reevaluate

its behavior mode. They use the following rule-based system. Some of the conditions depend

on an evaluation of which team currently has possession of the ball. The agent evaluates

which of all the players on the �eld could intercept the ball's path most quickly. If it is an

opponent, then the opponent team has possession. Otherwise, the agent's own team has

possession.

The agent uses the �rst of the following rules that applies.

� If playing the goaltender position: use goaltend mode.

� If own location is unknown: use localize mode.

� If the server's play mode is \before kicko�:" use before kicko� mode.

� If the ball's location is unknown: use face ball mode.

� If there is a set-play de�ned for the situation and playing a position involved in the
play: use set-play mode.

� If there is a set-play de�ned for the situation and not playing a position involved in

the play: use passive o�ense mode.

� If the ball is close enough to kick (within kickable area): use handle ball mode.

� If stamina is lower than the server's threshold for decrementing the recovery parameter

(recover dec thr � stamina max) : use recover mode.

� If the ball is not moving and no teammate is closer to the ball: use active o�ense mode.

� If no teammate could intercept the ball's current trajectory more quickly (taking into
account what is known about own and teammates' current staminas): use active o�ense
mode.

� If able to intercept the ball's current trajectory, the opponents have possession of the
ball, and no more than one teammate is closer to the ball: use active defense mode.

� If expecting to receive a pass (a teammate has recently announced an intention to

execute such a pass): use face ball mode.

� If in an o�side position: use get onside mode.

� If playing a defender position:

{ If own team is in possession of the ball and the ball is further back on the �eld

than own position: use auxiliary o�ense mode.

{ If recently assigned to mark an opponent: use auxiliary defense mode.

{ Otherwise: use passive defense mode.
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� If playing a mid�elder position:

{ If the opponents have possession: use passive o�ense mode.

{ Otherwise: use auxiliary o�ense mode.

� Otherwise (if playing a forward position):

{ If the ball's location is close to the home location of the position being played

(within 30 meters on the �eld's lengthwise axis): use auxiliary o�ense mode.

{ Otherwise: use passive o�ense mode

C.2 E�ects

The e�ects of being in the di�erent behavior modes are as follows:

Goaltend: Execute the goaltender skill detailed in Appendix B.

Localize: Turn until visual information is su�cient to determine own location on the �eld.

Before kick o�: Move to a location appropriate for kicko�s (on own side of the �eld and
close to own position's home location). Then face the ball.

Face ball: If the ball's location is unknown, turn until it is visible. Otherwise, turn directly
towards the ball.

Set-play: Fill the appropriate role in the appropriate set-play for the current situation.

There are defensive and o�ensive set-plays de�ned for all dead-ball situations (kicko�s,
corner kicks, free kicks, etc.). The number of players involved in each set play varies
from 1 (1 player gets in front of the ball when it's the opponent's kick in) to 5 (see

the corner kick example in Section 3.5.2). Agents use the current team formation to
map formation positions to set-play positions based on geographical proximity. As set-

play positions have behaviors associated with them, the agent involved in a set-play
executes its assigned behavior either until the play is over or until a time-limit expires.

Then it returns to choosing from among the other behavior modes as usual.

Recover: Stay still until stamina recovers above the server's threshold for decrementing the

recovery parameter: (recover dec thr � stamina max).

Get onside: Move to a position that is not o�side, i.e. in front of the opponent's last

defender.

Handle ball: One of the most important decisions in the robotic soccer domain arises when
the agent has control of the ball. In this state, it has the options of dribbling the ball in

any direction, passing to any teammate, shooting the ball, clearing the ball, or simply

controlling the ball.

In CMUnited-98, the agent uses a complex heuristic decision mechanism, incorporating

a machine learning module, to choose its action. The best teammate to receive a
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potential pass (called potential receiver below) is determined by a decision tree trained

o�-line (see Chapter 6). Following is a rough sketch of the decision-making process

without all of the parametric details. The referenced low-level skills are described in

Section B.1.

To begin with, since kicks (i.e. shots, passes, and clears) can take several cycles to

complete (Section B.1.1), the agent remembers the goal of a previously started kick

and continues executing it. When no kick is in progress (do the �rst that applies):

� If close to the opponent's goal and no defenders are blocking the path to the

goal (de�ned as a cone with vertex at the ball): shoot or dribble based on the

goaltender's position, the position of the closest opponent, and the distance to

the goal.

� At the other extreme, if close to the agent's own goal and there is an opponent

nearby: clear the ball (see Section B.1.7).

� If approaching the line of the last opponent defender: dribble the ball forward if
possible; otherwise send the ball past the defender (see Section B.1.7).

� If the potential receiver is closer to the goal and has a clear shot: pass to the
potential receiver.

� If no opponents are in the direct path to the goal: dribble to the goal (see Sec-
tion B.1.2).

� If fairly close to the opponent's goal and there is at most one opponent in front
of the goal: shoot.

� If no opponents are in the way of one of the corner 
ags: dribble towards the
corner 
ag.

� If there is a potential receiver: pass.

� If it's possible to hold onto the ball without moving (at most one opponent is
nearby): hold the ball.

� Otherwise: Kick the ball away (clear).

Active o�ense: Intercept the ball as described in Section B.1.4.

Auxiliary o�ense: Use the SPAR variant of 
exible positioning to try to get open to receive
a pass (see Section 3.5.2).

Passive o�ense: Use the ball-dependent variant of 
exible positioning (see Section 3.5.2).

Active defense: Go towards the ball even though another teammate might also be going

towards it. As the second player to the ball, this player tries to block the opponent

from dribbling away from the �rst teammate to the ball.

Auxiliary defense: Mark or track an opponent as described in Section B.1.6. The defen-

sive unit captain assigns defenders their opponents to mark so that each opponent is

covered.

Passive defense: Use the ball-dependent variant of 
exible positioning (see Section 3.5.2).



Appendix D

CMUnited Simulator Team Source

Code

The source code of the CMUnited simulator teams is an on-line appendix. It is located at

the following URL:

http://www.cs.cmu.edu/~pstone/thesis

The page at this URL includes links to the CMUnited-97 simulator team source code and
portions of the CMUnited-98 simulator team source code. Executables are also available.
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