
An Implementation Architecture to
Support Single-Display Groupware

Brad A. Myers

May, 1999
CMU-CS-99-139

CMU-HCII- 99-101

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

bam@cs.cmu.edu
http://www.cs.cmu.edu/~bam

Abstract
Single-Display Groupware (SDG) applications use a single display shared by multiple people. This kind of
interaction has proven very useful for children, who often share a computer for games and educational software,
and also for co-located meetings, where multiple people are in the same room discussing, annotating and editing a
design or presentation which is shown on a computer screen. We have developed a number of SDG applications
that use multiple 3Com PalmPilots and Windows CE devices to emulate a PC’s mouse and keyboard. All users can
take turns sharing a single cursor to use existing applications like PowerPoint. We have also created other new
applications where all users have their own independent cursors. This paper describes the architectural additions to
the Amulet toolkit that make it easy for programmers to develop applications with multiple input streams from
multiple users. Amulet supports shared or independent editing, and shared or independent undo streams. The
implementation differs from other Computer-Supported Cooperative Work (CSCW) architectures in that others
have one Model and multiple Views and Controllers (one for each user), whereas we have one Model and one View,
and multiple Controllers.

Copyright © 1999 — Carnegie Mellon University

This research was partially sponsored by Microsoft, and partially by NCCOSC under Contract No. N66001-94-C-
6037, Arpa Order No. B326. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: Single Display Groupware, Pebbles, Amulet, Toolkit, Computer-Supported
Cooperative Work (CSCW), Personal Digital Assistants (PDAs), PalmPilot, Windows CE,
Model-View-Controller (MVC).

An Implementation Architecture to Support Single-Display Groupware - 3

INTRODUCTION

The Pebbles project is creating applications to connect multiple Personal Digital Assistants

(PDAs) to a main computer such as a PC. We are supporting both 3Com PalmPilots and Win-

dows CE devices. We created various PDA-side applications to allow each user to send input

from their PDAs to a PC as if they were using the PC’s mouse and keyboard. The Remote

Commander application allows each person to take turns controlling the real cursor, so they can

share existing, off-the-shelf applications. Scribble allows each person to have an independent

cursor, which “floats” above the real applications and can draw directly on the screen, as if on a

new layer. All of the cursors are independent of the real cursor, and do not affect any applica-

tions. This is useful for pointing and quick, ephemeral annotations. Most relevant to this

paper, the MultiCursor application allows each person to have an independent cursor inside

custom applications which can handle multiple cursors. One such application is “Pebbles-

Draw,” which is a shared whiteboard application we built that investigates how multiple people

can draw and edit pictures while sharing the same PC display. A previous paper [Myers 1998]

describes the overall design and user interface of the Pebbles groupware applications. Other

applications are described on the Pebbles web pages: http://www.cs.cmu.edu/~pebbles. The

current paper discusses the implementation architecture that makes it all possible, focusing on

the issues arising from MultiCursor and PebblesDraw. Note that although we are using PDAs

as the input device, the underlying multi-user architecture described in this paper would work

no matter what kind of input devices are supplying the parallel streams of input.

The interesting innovation in this architecture is how the multiple streams of input on a single

computer are handled independently (so that, for example, there is no interference if one user

presses the mouse button and then a different user releases a mouse button). One goal of the

project is to allow multiple people on the shared display to use familiar interaction techniques

and widgets, even though these interaction techniques were originally designed for use by a

single user. We discovered that palettes, selection handles, and menus had to be modified in

interesting ways, both in their user interface and in their implementation.

This research is being performed as part of the Pebbles and Amulet projects. Pebbles stands

for: PDAs for Entry of Both Bytes and Locations from External Sources. Amulet [Myers 1997]

stands for Automatic Manufacture of Usable and Learnable Editors and Toolkits, and is a C++

toolkit into which the multi-user architecture has been integrated. The Amulet part of the

multi-user architecture runs on X/11, Windows, and the Macintosh, but the part of Amulet that

handles PDAs currently only works on Windows.

Amulet needed to be modified in a number of ways to support multiple users. A new slot

was added to the interactive behavior objects (called “Interactor” objects) and widgets (such as

menus and scroll bars) to control which user they belong to, or to specify that the Interactor or

An Implementation Architecture to Support Single-Display Groupware - 4

widget can be shared in various ways by multiple users. Many of the widgets and commands

needed to be “hardened” in various ways to make them more robust for multiple users. The

undo facility allows all the commands to go into a single undo history, which allows any user to

either undo their own last operation, or anyone’s last operation. Alternatively, each user can

have a separate undo history over the same set of operations and objects.

Using the “Model-View-Controller” terminology [Krasner 1988], most previous multi-user

systems have had a single model (or multiple models with some kind of synchronization

mechanism) and multiple View-Controller pairs. For example, this is the design for GroupKit

[Roseman 1996]. In contrast, our system has a single Model and a single View, but multiple

Controllers sharing that one View and Model.

MOTIVATION

Most Computer-Supported Cooperative Work (CSCW) applications deal with multiple peo-

ple collaborating, each with their own computer. Why would multiple people want to provide

input to the same computer using separate input devices? The first example is kids collaborat-

ing around games and educational software. Background studies have shown that children

often argue and fight about who will control a single mouse [Stewart 1998], but when using

separate mice, the children exhibited enhanced collaborative behavior. Another study showed

that children stay more focused on their tasks when each child has their own mouse and they

simultaneously manipulate the same object together [Bricker 1998].

The second example of when multiple people might want separate input devices with a single

computer is in certain kinds of meetings, including design reviews, brainstorming sessions, and

organization meetings, where a PC is used to display slides or a current plan, and the people in

attendance provide input. In small, informal meetings, the users might simply look at a PC’s

screen. For larger meetings, the PC’s screen might be projected on a wall. Many conference

and presentation rooms today have built-in facilities for projecting a PC onto a large screen,

and various inexpensive technologies are available for rooms that do not. When a PC is used as

part of the discussion, often different people will want to take turns controlling the mouse and

keyboard. For example, they might want to try out the system under consideration, to investi-

gate different options, or to add their annotations. With standard setups, they will have to

awkwardly swap places with the person at the PC. Also, there are times when it will be pro-

ductive for multiple people to provide input at the same time, such as during brainstorming

[Stefik 1987][Nunamaker 1991]. Other ideas for applications of single-display groupware are

as a demonstration guide, where one user can help another user through an application (just as a

driving instructor might have an extra brake or even a steering wheel in a car), and in joint

coding and debugging sessions, where one user might be typing in fixes while another user is

searching in header files and annotating important features.

An Implementation Architecture to Support Single-Display Groupware - 5

We observed that at most meetings and talks, attendees do not bring their laptops, probably

because they are awkward and slow to set up, and there is a social stigma against typing during

meetings. Today, however, many people are taking notes on their PDAs. For example, the

popular PalmPilot is a small PDA from 3Com with a 3¼ inch diagonal LCD display screen

which is touch sensitive, and a small input area for printing characters using a special alphabet.

There are various vendors of palm-size Windows CE devices, including Casio and HP. PDAs

have the advantages that they are small, they turn on instantly, the batteries last for weeks, and

notes are taken by writing silently with a stylus. One of the most important reasons that PDAs

are so popular is that they connect very easily to a PC (and also to a Macintosh or Unix work-

station) for synchronization and downloading. Each PDA is shipped with a cradle and wire that

connects to a computer’s standard serial port. Software supplied with the PDA will synchro-

nize the data with the PC. It is also easy to load new applications into the PDA. Pebbles takes

advantage of this easy connection to a PC. Since people have the PDAs in their hands anyway,

we developed a set of applications to explore how these PDAs could be used to allow everyone

to provide mouse and keyboard input to the PC without leaving their seats. The architectural

issues discussed in this paper would also be useful if multiple regular mice and keyboards were

attached to a PC.

RELATED WORK

MMM [Bier 1991] (Multi-Device, Multi-User, Multi-Editor) was one of the first Single Dis-

play Groupware (SDG) environments to explore multiple mice on a single display. MMM only

supported editing of text and rectangles, and only supported up to three mice. MMM was im-

plemented with two “editors” – one for rectangles and another for editing text. Each editor had

to know about multiple users and had to handle each user’s state separately. Also, each editor

combined the handling of the View and Controller. In Pebbles, the View and Controllers are

separated, and neither keeps track of the multiple users’ state since instead independent in-

stances of the pre-defined Controller objects are used, and multiple Controllers share the same

View objects.

The Xerox Liveboard [Elrod 1992] originally supported multiple cursors operating at the

same time, but when produced commercially, it only supported one person with one cursor at a

time. The Tivoli system [Pederson 1993] supports up to three people using pens simultaneously

on the original version of the LiveBoard. However, the LiveBoard applications do not seem to

have been created using a general multi-user architecture as in Amulet.

The term “Single Display Groupware” was coined by Stewart et. al. [Stewart 1998]. Stew-

art’s KidPad [Stewart 1998] is a SDG environment for kids, where multiple mice are connected

to a Unix computer. Stewart explicitly decided not to support standard widgets and interaction

An Implementation Architecture to Support Single-Display Groupware - 6

techniques, and instead uses a “tools” model because it seemed easier for children, and because

it avoided many of the issues that needed to be addressed in Amulet.

The M-Pad system [Rekimoto 1998] supports multiple users collaborating with PDAs and a

large whiteboard, which is similar to our PebblesDraw, but there does not seem to be underly-

ing architectural support in their toolkit, and they do not deal with conventional widgets.

Most CSCW tools support multi-display groupware. Pebbles is most closely related to the

form of multi-display groupware called tightly-coupled WYSIWIS (what you see is what I see)

systems. However, these systems were generally found to be too limited [Stefik 1987], and

most multi-computer systems provide different views for each user, or else use a “relaxed”

WYSIWIS style where, for example, the menus and other widgets are not shared [Dewan

1991]. Thus, these systems avoid the issues that need to be addressed by Pebbles.

There are many CSCW toolkits for multi-display groupware. For example, Rendezvous [Hill

1994] provides for multiple users, each with their own display supported by a single server.

The software architecture replicates the View and Controller parts, and uses constraints to keep

them synchronized. Groupkit [Roseman 1996] is a multi-user toolkit in tcl/tk which supports a

distributed architecture and also uses a multiple View and Controller mechanism. Groupkit is

exploring techniques for presenting the pop-up menus and other interactions from users on

other computers in a way that will be less disturbing [Gutwin 1998]. The GINA system

[Berlage 1993] studied how to distribute command objects to support multi-user undo on mul-

tiple machines.

EXAMPLE APPLICATION

Figure 1 shows PebblesDraw, an example application that will be used to explain the single-

display groupware features added to Amulet. Each user can pick a particular shape which will

be used to identify that user’s pointing cursor, selected objects, and text editing cursor. Unlike

other systems that assign each user a color (e.g., [Bier 1991][Roseman 1996]), we assign each

user a shape because in a drawing editor, users can create objects of any color. For example, if

the blue user was creating a red circle, it would be confusing. All active users are shown along

the bottom of the window, which corresponds to MMM’s “home areas” [Bier 1991], but we

also show each user’s state in their cursor to reduce confusion and eye movements. The cursor

shows the current drawing mode, line color and fill color. At the left of the window are the

conventional drawing and color palettes. At the right is a button panel that contains the most

common commands. The details of the design of PebblesDraw are covered elsewhere [Myers

1998].

An Implementation Architecture to Support Single-Display Groupware - 7

Figure 1. PebblesDraw with a number of people simultaneously editing a drawing. Brad has the
yellow oval selected while Herb is growing the blue rectangle. Bonnie and Albert are both edit-
ing the text string, while Robert is drawing some freehand letters.

ARCHITECTURE

The general architecture of Pebbles is shown in Figure 2. Various PDA applications run on

the PDAs. The user switches among the applications on the PDA as desired. The PDA commu-

nicates with the PC using either a serial cable or some wireless technology. Currently, we only

support infrared (IR) but we are hoping for a good radio frequency (RF) technology soon. Most

relevant for the current paper is when the PDA is running the MultiCursor application.

On the PC end, the serial ports and wireless ports are monitored by the PebblesPC program,

which is the general controller. PebblesPC can handle multiple PDAs connected at the same

time. PebblesPC loads various “plug-ins” that support the Pebbles capabilities. Each PDA ap-

plication requests whichever plug-in is desired. Note that there is not a one-to-one

correspondence between PDA applications and the plug-ins. Multiple PDAs can share a single

instance of the plug-in, although some plug-ins store PDA-specific state to support multiple us-

ers simultaneously. Plug-ins are implemented as Windows “dynamic link libraries” (DLLs),

which allows new ones to be easily added without recompiling or re-linking PebblesPC or any

other plug-in.

An Implementation Architecture to Support Single-Display Groupware - 8

PDA
MultiCursor

App

PebblesPC

Plug-in 1

Plug-in 2

Plug-in 3

MultiCursor
Plug-in

PC App 1
On the PC

Any PC
app

Windows
OS

Connections via
serial cable or
wireless (IR)

Connection via
Windows messages
or sockets

Connection via
Windows messages

PDA app1

PDA app n

Amulet Event Handler

Amulet Pebbles Handler

Dispatched to Interactors

Widgets Graphical Objects

Amulet

On various PDAs

Figure 2. The general Pebbles architecture, including the Amulet connection for MultiCursor,
shown in the lower-right.

PebblesPC runs multiple threads—one for each active plug-in, and one for each different

user. The threads block waiting for input on the various communication ports.

The messages among the PDAs, PebblesPC and the plug-ins use a standard protocol we de-

signed, and we have created libraries for the PalmPilot, Windows CE and Windows operating

systems to support it. This makes creating new Pebbles applications relatively easy. The proto-

col is simply a byte stream, where each message has a command code byte, a length, and data.

Messages are marked with an identifier of the source. Some of the command codes are reserved

for the Pebbles protocol. These include ones to announce when a new PDA is connected to the

PC, to specify which plug-in is desired, and to announce that the PDA application is exiting.

Plug-ins can use any of the command codes that have not been reserved by PebblesPC. Note

that different plug-ins can use the same command code for different purposes since PebblesPC

first determines which plug-in to run, and then establishes a connection between the plug-in and

the PDA. The Pebbles library supplies several functions to help encode and decode Pebbles

messages, such as dealing with the different byte orders of 16 bit numbers on the different ar-

chitectures, and pulling out the different parts of a message. Mostly, however, the specifics of

the communication are up to the application.

An Implementation Architecture to Support Single-Display Groupware - 9

Plug-ins perform their operation in various ways. One Pebbles application attaches to

PowerPoint using OLE Automation. To develop this kind of plug-in clearly requires significant

knowledge about OLE and the application being controlled. At the other extreme, the some

Pebbles applications just send keys and mouse clicks by inserting the appropriate events into

the standard Windows event stream. This plug-in does not need to know anything about the

applications that eventually receive the input events. Another option is that the actual work is

performed by an application that receives the Pebbles messages either using custom Windows

events or through a socket interface. The next sections specifically discuss how the MultiCursor

PDA application and PC-side plug-in work.

The MultiCursor Application

On the PDA side, the user can run one of the various Pebbles applications that we created.

Figure 3 shows the 3Com PalmPilot running the MultiCursor application. Strokes on the main

display area of the PDA control the PC’s mouse cursor, and the user can give Graffiti character

input to emulate the PC’s keyboard input. A feature of MultiCursor not shown in Figure 3 is

an on-screen keyboard for entering the special characters such as F1 and ESC. The full designs

of the user interface for the various Pebbles applications are described elsewhere [Myers 1998].

m Display and input area,
currently running the
Pebbles MultiCursor
application

m Labels for the applica-
tion buttons.

m Input area for “Graf-
fiti” text i nput.

m 4 round application
buttons, and 2 “up-down”
arrow keys in the center.

Figure 3. The 3Com PalmPilot running the Pebbles MultiCursor application. The input area is
used to make strokes to emulate the mouse, and so is mostly empty. The Graffiti area is used to
make gestures to emulate the keyboard. The round application buttons are used for the modifier
keys like Shift and Control. The two up-down arrow keys in the center bottom are used as the
left and right mouse buttons, analogously to the way buttons are handled on lap-tops with a
touch pad.

An Implementation Architecture to Support Single-Display Groupware - 10

The input is sent to the PC through the serial cable or Infrared. Each event on the PDA

causes MultiCursor to send a one byte event type code to the PC, possibly followed by event

data. For regular characters, the type is CMD_KEYDOWN and the data is the ASCII value of

the character. For all the special characters, the type tells which special key it is, and there is

no data. For press and move events, the data is the X and Y of the stylus. A header (.h) file is

used by both the PC and PDA sides so that the codes are guaranteed to be consistent.

When the byte stream arrives at the PC end, the Pebbles software converts it back into events.

The main interesting feature of this conversion is the handling of coordinates from the PDA.

After experimentation, we decided that the best way to use the PDA is like a tablet, so relative

movements across the surface correspond to corresponding relative movements of the cursor on

the screen.

We discovered that the positions reported by the PDA digitizer are very jittery, varying by 1

or 2 pixels in all directions when the stylus is kept still, so the cursor jumped all over the PC’s

screen. Therefore, we added filtering of the positions. After experimenting with various algo-

rithms and parameters, the best behavior resulted from collecting the last 7 points returned by

the PDA, and returning the average as the current point. This removes most of the jitter with-

out adding too much lag. This filtering starts over each time the stylus comes in contact with

the PDA, and the array of the last 7 points is initialized with the initial point. This allows

points to be provided immediately when the stylus comes in contact with the surface. We also

added extra acceleration to the PDA output so one swift movement across the PDA screen

would move entirely across the PC’s screen. This uses an acceleration algorithm where if the

delta position of the cursor movement in a time interval is bigger than a particular value, the

delta is multiplied by a bigger number before adding it into the mouse’s position.

Sending Events to Amulet

Amulet was designed with a single input queue for all windows. The low-level Amulet Event

Handler (see Figure 2) converts the machine-specific window manager event into a machine-

independent Amulet event record. The Amulet event record was augmented for Pebbles to

contain a User-ID field. Input from the window manager for the regular mouse and keyboard

are marked as coming from user zero.

The standard Amulet Event Handler blocks waiting for window manager input. The multiple

Amulet Pebbles Handlers (one for each PDA stream) take the input events from the Pebbles

Event Constructor and need to dispatch these to the single Amulet Event Handler. We do not

want to insert the events into the regular PC event stream, because this would cause the real

cursor to move around, and for Amulet we want instead to make sure that the real cursor is only

controlled by the real mouse, and use Amulet’s custom cursors for all the PDA input. To

achieve this, we use the Window Manager’s mechanisms to insert special events into the stan-

An Implementation Architecture to Support Single-Display Groupware - 11

dard event stream. The Amulet Pebbles Handlers therefore construct these special events and

insert them into the window manager’s event stream. For example, under Windows we use

PostMessage to send a message with a Pebbles-defined type-code, and the data pointer is the

Amulet event. Each PDA event is marked with the user-id of the serial port number (which can

never be 0). The single Amulet Event Handler then accepts these special events along with all

the regular Window Manager events, including regular mouse and keyboard input events, and

dispatches them in the regular way to the Amulet Interactors.

Identifying the Correct Window

An interesting complication is identifying the window to which the event should be directed.

Window managers automatically send the input from the mouse and keyboard to the active

window, but the cursor can still move anywhere on the screen. A complication with multiple

users sharing a single display is that different users might be working in different (non-modal)

windows at the same time. Only one of these windows will be considered the “active” window

by the window manager. The same problem occurs with the pop-up windows used to imple-

ment menubars and other pop-up and drop-down menus. These windows are not marked as the

“active” window by the window manager, but input should still be directed to them.

To solve this problem, Amulet checks mouse events to see which window they should be di-

rected to. The coordinates of the input device are mapped to the screen, and then mapped from

the screen to see which window-manager window the coordinates are in. If it is another win-

dow for the same application, then the event is marked as coming from that window instead of

the active window. This allows the PDAs to control pop-up menus and provide input to differ-

ent windows even while the real mouse is doing other things.

Modal dialog boxes are still a problem however, since they lock up all the windows of the

application. If any user does an operation that causes a modal dialog box to display (like an er-

ror message or a file dialog), then all operations in other windows must halt until someone

dismisses the modal dialog window. Hopefully, multi-user applications will be designed with

very few modal dialogs.

SEPARATING EVENT HANDLING

Interactors and Widgets

The low level event handling described above is completely hidden from programmers using

Amulet. Instead, programmers use high-level input handler objects called “Interactors”

[Myers 1997]. Each Interactor object type implements a particular kind of interactive behavior,

such as moving an object with the mouse, or selecting one of a set of objects. To make a

graphical object respond to input, the programmer simply attaches an instance of the appropri-

ate type of Interactor to the graphics. The graphical object itself does not handle input events.

An Implementation Architecture to Support Single-Display Groupware - 12

In the “Model-View-Controller” idea from Smalltalk [Krasner 1988], Interactors are the Con-

troller. Most previous systems, including the original Smalltalk implementation, had the View

and Controller tightly linked, so that the Controller would have to be re-implemented whenever

the View was changed, and vice versa. Indeed, many later systems such as Andrew [Palay

1988] and InterViews [Linton 1989] combined the View and Controller and called both the

“View.” In contrast, Amulet’s Interactors are independent of graphics, and can be reused in

many different contexts.

Internally, each Interactor operates similarly. It waits for a particular starting event over a

particular object or over any of a set of objects. For example, an Interactor to move one of a

set of objects might wait for a left mouse button press over any of those objects. When that

event is seen, the Interactor starts running on the particular object clicked on, processing mouse

move events, while looking for a stop event such as the left button up event. Each Interactor

operates independently, so that multiple Interactors can be waiting for input events at the same

time.

All of the widgets in Amulet are implemented internally using Interactors. For example, the

menubar at the top of Figure 1 uses a single Choice-Interactor to allow the user to select the

menu items.

For Pebbles, the Interactors were augmented with a User-ID field. This field can contain the

ID of a particular user or one of two special values. Widgets also have a User-ID field, and just

copy the value to the Interactors inside the Widget.

If the User-ID field is a particular user’s ID, then this Interactor will only accept input events

coming from that user, and will ignore input from all other users. For example, in Figure 1,

PebblesDraw creates a cursor icon for each user, and attaches a Move-Grow-Interactor to it.

The Move-Grow-Interactor will be set with that user’s User-ID to make sure that the icon only

follows that user’s input. Note that this means that for each graphical object (the “View” and

the underlying data structure (the “Model”), there can be multiple Interactors (“Controllers”),

one for each user.

A special value for the User-ID field is Am_ANYONE_MIXED_TOGETHER, which means

that everyone can use this widget, even simultaneously. In this case, any user can operate the

Interactor and the input events from all users sent to the same Interactor. This might be useful

for situations where the designer wants the inputs from all users to be mixed together, possibly

for cooperatively controlled objects [Bricker 1998].

The default value for the User-ID field for all Interactors is the special value

Am_ONE_AT_A_TIME. This means that any user can start the Interactor, but once that Inter-

actor is running, only that same user can provide input to it until the interaction is complete.

The standard widgets in Figure 1 are all marked Am_ONE_AT_A_TIME, including the menu-

An Implementation Architecture to Support Single-Display Groupware - 13

bar, palettes, and scroll bars. For example, if Bonnie starts dragging the indicator of a scroll

bar in Figure 1, the Interactor in the scroll bar will be marked for Bonnie, and input from all

other users will be ignored. When Bonnie provides the stop event for the Interactor (which is

left mouse button up), then the Interactor reverts to waiting for input from any user. This

solves the problem reported by other systems where widgets would get confused if one user

pressed down, and then a different user pressed down or released the mouse button before the

first user was finished.

For example, Figure 4 shows the internal architecture for two parts of Figure 1: the two Text-

Edit-Interactors editing the string, and the Interactor in the color palette. Note that since the

palette can only be used by one user at a time, it has a single Interactor. Since two users are

editing the string at the same time, there are two Interactors affecting the one view. The other

users also have Text_Edit_Interactors, but they are currently idle and not affecting any graphi-

cal objects.

Bonnie’s Text_Edit Interactor
(Controller)

Albert’s Text_Edit Interactor
(Controller)

Text Graphical Object
(View)

Text String
(Model)

"Is to WORK TOGETHER"

Choice_ Interactor
(Controller)

Button Panel Widget
(View)

List of Colors
(Model)

(Black, Red, Green, Blue, Brown, ...

(a)

(b)

Figure 4. (a) The color panel can only be used by one user at a time, so it has one
Text_Edit_Interactor (one controller). (b) Multiple users can edit the text so each user has a
separate Text_Edit_Interactor (multiple controllers).

Because all the Interactors operate independently, the various Interactors in an application

can be in different states. For example, in Figure 1, Herb has a Move-Grow-Interactor running

to change the size of the rectangle, which is waiting for Herb’s mouse-button up event to signal

completion. This Interactor will ignore the input from all other users. Meanwhile, Albert is

using a Text-Editing-Interactor which is processing keys from Albert and waiting for either a

An Implementation Architecture to Support Single-Display Groupware - 14

RETURN character or a mouse button down outside the string to stop. Note that all input is

treated the same—both from the mouse and keyboard.

Internally, Amulet uses a single process which handles each event sequentially. Each Inter-

actor keeps track of its own state using variables in the Interactor object itself. In effect, each

Interactor runs its own independent state machine. Therefore, one Interactor can be running

(like Herb’s Move-Grow-Interactor) and processing mouse movement events and waiting for a

mouse button up event, while another Interactor is waiting for its start event.

When an input event occurs, Amulet checks each of the Interactors in turn to see which one

wants the event.1 If the Interactor wants the event, it processes the event, possibly updating its

internal state and various graphical objects, and then returns control to the main loop. If the

Interactor does not want the event, then the main loop checks the other Interactors. If none

wants the event, it is discarded. Thus, when an input event comes in marked with a particular

User-ID, that event will be given only to those Interactors with an appropriate value in their

User-ID field.

In designing an application, the programmer can decide what level of cooperation and paral-

lelism is desired. If a widget or object should be operated by only a single user at a time, then

it can have a single Interactor using Am_ONE_AT_A_TIME. On the other hand, if multiple us-

ers should be able manipulate objects at the same time, then each user might have their own

separate Interactors marked with that user’s ID. To enable maximal parallelism, the Pebbles-

Draw application allocates a set of Interactors for each user so each user can create and edit

graphical objects at the same time.

Text Editing

The default behavior for text editing would be for only a single user to be able to edit a text

string at a time. However, as shown in Figure 4, we wanted to explore multiple users editing

the same string at the same time. This raises similar issues to multi-screen multi-user text edi-

tors, such as SASSE [Baecker 1993].

The original Amulet single-user text object had a built-in ability to show a cursor. All of the

text editing operations, such as inserting a character and deleting the previous word, operate

with respect to this cursor. Some of these operations are fairly complex because, for example,

they handle various encodings of Japanese multi-byte character embedded in a single-byte

string. To extend this to the multi-user case, we added a set of cursor positions, indexed by

User-ID. Before each incremental text inserting or editing operation, the Text-Interactor sets

the internal “main” cursor with the appropriate user’s cursor position, performs the insert or

1 There are many options and optimizations that make this mechanism much more flexible and efficient, includ-
ing multiple priorities for Interactors, separating the handling of independent windows, etc. [Myers 1997].

An Implementation Architecture to Support Single-Display Groupware - 15

edit, reads out the new cursor position, stores the new position with the user’s ID, and then sets

the internal cursor to be off. This enables the system to use all the original editing functions

without change, while still supporting multiple users.

One complication is that all the cursors’ positions may need to be updated whenever any user

performs an edit. For example, if Bonnie deletes some characters in Figure 1, Albert’s cursor

should still be before the “T.” Therefore, an extra step is needed at the end of the loop de-

scribed above to update the other cursors if necessary.

To show the different user’s cursors on the screen, separate graphical objects are used for

each user’s text cursor. In PebblesDraw, a vertical line with the user’s shape at the bottom is

used. The list of cursor objects and their associated positions is associated with the text object

so the various text Interactors can update them.

Another tricky issue with text editing is dealing with undo, which is discussed in the “Undo”

section, below.

Selection Handles

The Amulet toolkit provides a selection handles widget to select, move, and grow graphical

objects. All other toolkits require that each application re-implement this standard behavior.

To support single-display groupware, the selection handles widget was augmented with a User-

ID field, and the ability to show any shape as the handle, instead of just using squares.

In PebblesDraw, a separate selection handles widget is created for each user, and set with that

user’s User-ID.2 This allows each user’s actions to be independent, as shown in Figure 1. The

cursor shapes are designed so users can always see that the object is multiply selected, although

it can be difficult to tell by which users. The operations do reasonable things if two people ma-

nipulate the same object at the same time. For example, if one user deletes an object while

another is growing it, then the grow will abort. If two people try to grow the same object at the

same time from opposite corners, then each user will have a separate interim feedback rectangle

that shows the current size as that user independently moves his or her corner, and as each user

releases the button, the corner will snap to the final position.

In the future, we might want to disallow multiple people from selecting the same object at the

same time if this proves too confusing. Alternatively, we might make is easier to see which us-

ers have the object selected. For example, since there happen to be eight handles around an

object and PebblesDraw currently supports up to eight shapes, an obvious idea is to divide the

handle positions among all the users who have this object selected. However, this might con-

2 Note that a single selection handles widget will allow multiple objects to be selected in the usual way, by using
shift-click or dragging in background. The use of multiple selection handles widgets allows there to be independ-
ent sets of selected objects.

An Implementation Architecture to Support Single-Display Groupware - 16

fuse users into thinking that they can only change the object’s size from the handles that have

their shape. Further studies of these issues are planned.

Command Objects

Rather than using a “call-back procedure” as in other toolkits, Amulet allocates a command

object and calls its “Do” method [Myers 1996]. Amulet’s commands also provide slots and

methods to handle undo, selective undo and repeat, and enabling and disabling the command

(graying it out). Command objects promote re-use because commands for such high-level be-

haviors as move-object, create-object, change-property, become-selected, cut, copy, paste,

duplicate, quit, to-top and bottom, group and ungroup, undo and redo, and drag-and-drop are

supplied in a library and can often be used by applications without change.

For Pebbles, Amulet’s command objects were augmented to support multiple users. When a

command is about to be executed, it is set with the User-ID of the user who invoked that com-

mand. For a single-user application, there is a single selection handles widget, which the

commands such as Cut and Change-Color use to determine which objects should be affected.

In the multi-user case, there might be multiple selection handle widgets. Therefore, the built-in

command objects were augmented to accept a list of selection handle widgets, in which case the

command object will look for the particular selection handle widget whose User-ID matches

the User-ID set into the command. Then, the list of selected objects is retrieved from that se-

lection handles widget. For example, in Figure 1, if Brad does a cut, only the yellow oval will

be affected.

An interesting issue arises about the graying out of illegal items. Since only one user at a

time can use the drop-down menus, it makes sense for the items in those menus to gray out as

appropriate for that user. For example, since in Figure 1, Bonnie has nothing selected, if she

uses the drop-down menus, the commands that require a selection, such as Cut, would be

grayed out. If Brad used the drop-down menus, then Cut would not be grayed out.

However, the button panel of commands (at the right of Figure 1) is always visible. There-

fore, it does not work for items to be grayed out in the button panel, because some commands

will be valid for one user but invalid for another user. Therefore, we had to modify all the op-

erations to make sure that they did something reasonable, like beep or display an error message,

if they were invoked when they were not valid for the current user. The previous implementa-

tion of these commands in Amulet assumed that since they would be grayed out, they could

never be invoked when not valid. As a further enhancement, the widget can be set to gray out

the items immediately after the user pressed the mouse button in the widget. Thus, when Bon-

nie presses in the button panel, the items for cut, copy, etc. will gray out at that point, and

return to black when Bonnie releases the mouse button. This will prevent illegal actions from

being executed, as in the conventional menu design.

An Implementation Architecture to Support Single-Display Groupware - 17

Palettes

The palettes in PebblesDraw (for the current drawing tool and current colors) are imple-

mented as button panels. As such, they automatically get the Am_ONE_AT_A_TIME behavior.

The interesting problem is that a palette cannot display the currently selected value in the pal-

ette itself as in all single user applications. If one user is drawing a red circle at the same time

that another is typing blue text, how would that be shown? Most CSCW applications are for

multiple machines and assume that each user can see their own private copy of the palettes on

their own separate displays, so this is not an issue. The palettes in MMM [Bier 1991] did not

show any state and showed each user’s current modes only in the home areas. The Tivoli proj-

ect [Pederson 1993] mentioned this problem with palettes, but apparently provided no feedback

as to the users’ modes. To solve this problem in PebblesDraw, the button panels for the pal-

ettes are marked so they do not show any final feedback as to where the user selects (although

they still show interim feedback as the user is making a selection). Instead, the user’s selected

mode is copied into a per-user data structure and shown in the user’s cursor that follows the

mouse, as well as in the user’s home area. Amulet’s built-in Change-Property command was

modified to accept a list of current values indexed by User-ID. Similarly, the Create-Object

command uses the per-user data structure to get the values to use for the new object, so each

user can have an independent mode.

UNDO

Amulet provides built-in support for undo. In addition to the conventional multi-level undo

that can undo all the previous operations back to the beginning (like Microsoft Word version 6

and later), Amulet also supports a selective undo mechanism. Any previous command, includ-

ing scrolling and selection operations, can be selectively undone, repeated on the same object,

or repeated on a new selection [Myers 1996]. The Selective-Undo method has an associated

method which checks to see whether the command can still be executed. For example, if an

operation changes the color of an item, the Selective-Undo-Allowed method will check to make

sure that the object is still visible. If not, then the Selective-Undo command in the menu will

be grayed out.

Normally, all users will share a single undo history. This is the design used in PebblesDraw.

The undo dialog box for Amulet was augmented to annotate each command with the shape for

the user who executed it (see Figure 5). The normal Undo command undoes the last executed

command no matter who executed it. Similarly for Redo.

We also added a new Undo-by-User command which undoes the last command of the user

who executes this undo command. Undo-by-User searches back through the history looking

for a command that was performed by the current user. If a command is found, its Selective-

Undo-Allowed method is checked to make sure that the command can be undone. If so, then

An Implementation Architecture to Support Single-Display Groupware - 18

the command is Selectively Undone using the standard mechanism. For example, in Figure 5, if

Herb performs undo-by-user, it will skip over Bonnie’s commands and undo the Move of a

rectangle (command # 34). If that rectangle had been deleted by a different user, then Herb’s

attempt to do undo-by-user would just beep, since his last command could not be undone.

Figure 5. Undo dialog box [Myers 1996] for PebblesDraw where each command is marked with
the shape for the user who performed it.

Unlike regular undo which pops items off the undo history, Selective Undo always adds the

inverse of the command to the top of the history [Myers 1996]. For example, if Herb performs

Undo-by-User, it will add a new command to the top of the history (as number 37) that will be

labeled “Undo Move.” The action of this command will be to move the object back where it

was before command 34 was executed. An interesting consequence of this design is that if

Herb does another Undo-by-User, it will add an additional command to the top of the stack that

will undo the previous undo, and therefore move the object back where it was. Thus, Undo-by-

User keeps toggling the effect of one command rather than undoing a series of command like

regular undo. If this proves to be a problem, we could have an undo mode, as in the Emacs

editor, where each subsequent Undo-by-User would move back in the history and undo a previ-

ous command, until the user signalled the end of undo-mode. This design for Undo is similar

to that used in GINA [Berlage 1993].

Independent Undo Histories

A different design gives each user an independent undo history. Since the command objects

are each marked with the appropriate user, it is easy to find which undo history to attach each

command to. The complication of having independent histories is that for the single-user case,

the undo methods could assume that whenever Undo was executed, the state of the system was

An Implementation Architecture to Support Single-Display Groupware - 19

always the same as just after the operation was performed. However, in a multi-user situation,

if each user has their own undo history, then one user might modify an object such that a dif-

ferent user’s undo will no longer be valid. For example, one user might change the color of an

object, then a different user might delete the object, and the first user then could try to undo the

change color.

Even though the Undo method is different from the Selective Undo method for performing

the operation [Myers 1996], it turns out that the regular undo method can be performed when-

ever the selective undo method can be performed. Therefore, the Selective-Undo-Allowed

method that checks to make sure the Selective Undo is possible, can be reused to check whether

the regular Undo is possible in the current state. We just add a check in the top-level undo

menu item to see if the selective-undo-allowed method returns true before executing the regular

Undo method.

Note that the undo operation will often work even if other users have manipulated an object,

because all commands save their old values in the command itself. For example, if a rectangle

is white and one user changes it to be red, and then a second user changes it to be yellow, the

first user’s undo will still be valid, and will change the rectangle back to being white (the color

before the first user performed the operation).

Undoing Text Edits

The text strings in PebblesDraw are short labels. Like other drawing packages, editing of the

text label starts with clicking in the label, and ends with clicking somewhere else. The unit for

undoing is therefore the complete edit from the start to the finish. Thus, if a string starts out as

“one” and is edited to be “two” the undo will restore it to be “one” no matter what the opera-

tions performed to edit it. This is in contrast to text editors like Microsoft Word where there is

no obvious start and end to an edit session and the editor uses heuristics to decide what is the

unit for undoing.

Supporting multiple users adds a significant complication to this simple undo model. If a

string starts out as “one” and the first user edits it to be “one two” but the second user then

starts editing and makes it be “one two three”, what should the string be if the first user then

call for undo? Currently, since the unit for undo is the full label, the system undoes the string

back to its state before the user started editing it. Therefore, in this case the string would be-

come “one”, thereby losing the second user’s edits.

We have a design for a more sophisticated multi-user undo facility for text, but it requires

much more mechanism which is probably not necessary for short labels. The new mechanism

keeps multiple marks in the text, showing the location of each edit in the history. Then, each

independent text edit operation in the history would refer to the specific marks in the string that

are associated with the edit. If the marks are still available in the text, then the undo can be

An Implementation Architecture to Support Single-Display Groupware - 20

performed. If the marks are no longer valid, which might happen if that section of the text was

deleted, then the undo is no longer available. This mechanism would allow the edits for differ-

ent users on the same string be independent.

STATUS AND FUTURE WORK

The implementation of multi-user support in Amulet is complete, as described above. We

have implemented PebblesDraw and a few other test applications using it. We are now plan-

ning user tests on the various options for the user interface to see what is most effective for

users.

We believe in distributing the results of our research, to help collect useful feedback and aid

in technology transfer. You can download Pebbles, along with PebblesDraw, MultiCursor and

many other applications from the Pebbles web site: http://www.cs.cmu.edu/~pebbles. As a

whole, the Pebbles applications have been downloaded about 12,000 times, although we have

no way to tell how many people tried MultiCursor or PebblesDraw. The Amulet toolkit has

been downloaded over 10,000 times in the past year, and is available from

http://www.cs.cmu.edu/~amulet. However, the features to support multiple users described in

this paper are not yet included in the released version of Amulet.

For the future, we want to explore having a more sophisticated program running on the PDA.

For example, instead of having the users’ current modes shown in the cursor as in Pebbles-

Draw, they might be shown on each person’s PDA screen. An interesting research question is

then how to augment the communication path to support the high-level semantic input from the

PDAs. For example, we might include facilities like M-Pad that uses palettes on the PDA to

set parameters of objects on the large screen [Rekimoto 1998].

Of course, we want to explore using this architecture to implement many new applications.

The CSCW literature contains a number of interesting programs designed for multiple comput-

ers, such as “Electronic Brainstorming” and “Structured Idea Generation Process” from Univ.

of Arizona [Nunamaker 1991] and Xerox PARC’s Cognoter [Stefik 1987]. We want to see

which of these will be effective if used with PDAs and a single PC display implemented using

the architecture described here.

CONCLUSIONS

The Amulet toolkit was augmented with multiple user support for single display groupware.

This highlighted a number of interesting research issues both in the user interface of applica-

tions and in the architecture needed to support them. New widgets and interaction techniques

were needed so that multiple users can share the same set of widgets at the same time. The In-

teractor behavior objects and widgets were augmented with an additional parameter so they

could be reserved for a single user, used by any user but one at a time, or used by multiple us-

An Implementation Architecture to Support Single-Display Groupware - 21

ers simultaneously. Many of the commands in Amulet had to be “hardened” so they could be

called even when they would normally be grayed out for a single user. The result is that Amu-

let now supports having one Model and one View with multiple Controllers, which is a

different design than previous CSCW toolkits. We believe that multiple users sharing a single

display can be an effective way to collaborate for a number of different applications, and hav-

ing an easy-to-use architecture to explore it will make this kind of software significantly easier

to build.

ACKNOWLEDGMENTS

For help with this paper, we would like to thank Rob Miller, Jason Stewart, and Lauren

Bricker.

REFERENCES

[Baecker 1993] Ronald M. Baecker, Dimitrios Nastos, Ilona R. Posner and Kelly Mawby. “The
User-centered Iterative Design of Collaborative Writing Software,” Human
Factors in Computing Systems, Proceedings INTERCHI'93. Amsterdam, The
Netherlands, Apr, 1993. pp. 399-405.

[Berlage 1993] Thomas Berlage and Andreas Genau. “A Framework for Shared Applications
with a Replicated Architecture,” ACM SIGGRAPH Symposium on User Inter-
face Software and Technology, Proceedings UIST'93. Atlanta, GA, Nov,
1993. pp. 249-257.

[Bier 1991] Eric A. Bier and Steve Freeman. “MMM: A User Interface Architecture for
Shared Editors on a Single Screen,” ACM SIGGRAPH Symposium on User
Interface Software and Technology, Proceedings UIST'91. Hilton Head, SC,
Nov, 1991. pp. 79-86.

[Bricker 1998] Lauren Bricker. Cooperatively Controlled Objects in Support of Collaboration.
Seattle, WA, Department of Computer Science and Engineering, University of
Washington. 1998. PhD Thesis.

[Dewan 1991] Prasun Dewan and Rajiv Choudhary. “Flexible User Interface Coupling in a
Collaborative System,” Human Factors in Computing Systems, Proceedings
SIGCHI'91. N.O., LA, Apr, 1991. pp. 41-48.

[Elrod 1992] Scott Elrod, et. al. “LiveBoard: A Large Interactive Display Supporting Group
Meetings, Presentations and Remote Collaboration,” Human Factors in Com-
puting Systems, Proceedings SIGCHI'92. Monterey, CA, May, 1992, 1992.
pp. 599-607.

[Gutwin 1998] Carl Gutwin and Saul Greenberg. “Design for Individuals, Design for Groups:
Tradeoffs between Power and Workspace Awareness,” Submitted for Publica-
tion, 1998.

[Hill 1994] Ralph D. Hill, Tom Brinck, Steven L. Rohall, John F. Patterson and Wayne
Wilner. “The Rendezvous Architecture and Language for Constructing Multi-
user Applications,” ACM Transactions on Computer-Human Interaction. 1994.
1(2). pp. 81-125.

An Implementation Architecture to Support Single-Display Groupware - 22

[Krasner 1988] Glenn E. Krasner and Stephen T. Pope. “A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 system,” Journal of
Object Oriented Programming. Journal of Object Oriented Programming. 1988.
1(3). pp. 26-49.

[Linton 1989] Mark A. Linton, John M. Vlissides and Paul R. Calder. “Composing user inter-
faces with InterViews,” IEEE Computer. IEEE Computer. 1989. 22(2). pp. 8-
22.

[Myers 1996] Brad A Myers and David Kosbie. “Reusable Hierarchical Command Objects,”
Proceedings CHI'96: Human Factors in Computing Systems, Vancouver, BC,
Canada, April 14-18, 1996. pp. 260-267.

[Myers 1997] Brad A. Myers, et. al. “The Amulet Environment: New Models for Effective
User Interface Software Development,” IEEE Transactions on Software Engi-
neering. 1997. 23(6). pp. 347-365. June.

[Myers 1998] Brad A. Myers, Herb Stiel and Robert Gargiulo. “Collaboration Using Multiple
PDAs Connected to a PC,” Proceedings CSCW'98: ACM Conference on Com-
puter-Supported Cooperative Work, Seattle, WA, November 14-18, 1998. pp.
285-294.

[Nunamaker 1991] J. A. Nunamaker, Alan R. Dennis, Joseph S. Valacich, Douglas R. Vogel
and Joey F. George. “Electronic Meeting Systems to Support Group Work,”
CACM. 1991. 34(7). pp. 40-61. July.

[Palay 1988] Andrew J. Palay, et. al. “The Andrew Toolkit - An Overview,” Proceedings
Winter Usenix Technical Conference, Dallas, Tex, Feb, 1988. pp. 9-21.

[Pederson 1993] Elin Pederson, Kim McCall, Thomas P. Moran and Frank G. Halasz. “Tivoli:
An Electronic Whiteboard for Informal Workgroup Meetings,” Human Factors
in Computing Systems, Proceedings INTERCHI'93. Amsterdam, The Nether-
lands, Apr, 1993. pp. 391-398.

[Rekimoto 1998] Jun Rekimoto. “A Multiple Device Approach for Supporting White-
board-based Interactions,” Human Factors in Computing Systems, Proceedings
SIGCHI'98. Los Angeles, CA, Apr, 1998. pp. 344-351.

[Roseman 1996] M. Roseman and S. Greenberg. “Building Real Time Groupware with Group-
Kit, A Groupware Toolkit,” ACM Transactions on Computer Human
Interaction. 1996. 3(1). pp. 66-106.

[Stefik 1987] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning
and Lucy Suchman. “Beyond the Chalkboard: Computer Support for Collabo-
ration and Problem Solving in Meetings,” Communications of the ACM. 1987.
30(1). pp. 32-47.

[Stewart 1998] Jason Stewart, Elaine M. Raybourn, Ben Bederson and Allison Druin. “When
Two Hands Are Better Than One: Enhancing Collaboration Using Single Dis-
play Groupware,” Human Factors in Computer Systems, Adjunct Proceedings
of SIGCHI'98. Los Angeles, CA, Apr, 1998. pp. 287-288.

