
 1

Documenting Software Architectures:
Recommendations for Industrial Practice

David Garlan and João Pedro Sousa

October 2000
CMU-CS-00-169

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

An important issue for software system development is the documentation
of architecture designs. In this report, we describe techniques for the archi-
tectural documentation of software-based systems in the context of devel-
opment processes that use UML for software design. The architectural
documentation is organized in four kinds of views: problem domain view,
code view, run-time view and deployment view. We examine JavaPhoneTM
as a case study to illustrate the approach: what kinds of information are pro-
vided in each kind of view, what forms of notation should be used, what are
their limitations, and what uses can be made of this documentation.

This material is based upon research sponsored by the DaimlerChrysler Corporation and by the Defense
Advanced Research Projects Agency (DARPA) supported by the Air Force Research Laboratory under
Contracts No. F30602-00-2-0616 and N66001-99-2-8918. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of DaimlerChrysler Corporation, DARPA, or the United States Air Force.

 2

Keywords: software architecture, documentation, software frameworks, software archi-
tecture representation, component integration standards, JavaPhone, UML, formal speci-
fication.

 3

1 Introduction

It is becoming widely recognized that well-designed software architecture is critical to
the success of any complex software-related project. By exposing the key system design
concerns, a properly designed architecture goes a long way towards guaranteeing that a
system will satisfy its principal requirements and it helps insure system integrity as the
system evolves over time.

Moreover, increasingly software-intensive systems are being developed by building on
existing architectural frameworks – both those available as external standards, as well
proprietary, domain-specific product-line architectures developed within a company. The
cost savings that accrue from reusing such existing frameworks (and their associated im-
plementations) is revolutionizing the world of software, which not long ago developed
most of its software from scratch for each new project.

In order for an architectural design to be useful one must first be able to write it down so
others can understand the design, build from it, analyze its properties, and maintain it.
Such architectural documentation then becomes one of the principal artifacts of a soft-
ware project, providing the basis for design reviews, implementation guidance, system
evolution, and even testing.

But what exactly is the architecture of a system and how should one document it? In the
past there has been no good answer to this question. Indeed, the issue of architectural
description has been a major focus of research on software architecture over the past dec-
ade. During this time industry has had to make do with makeshift informal box-and-line
descriptions, ad hoc adaptations of notations not originally intended for the purpose of
architectural documentation, and out-of-date methods.

Thankfully over the past few years, considerable progress has been made. The essential
issues of architectural design have become much clearer, as have the needs for document-
ing them effectively. Moreover a number of standard design notations have begun to
emerge – particularly in the area of object-oriented and component-based design. While
there is still no universally-accepted notational standard for architecture, it is now possi-
ble to provide basic guidance about minimal requirements and useful techniques for ar-
chitectural documentation.

Of course the detailed nature of documentation for a particular system remains strongly
influenced both by the needs to which it will be put, the organizational context in which it
is to be used, as well as the resources a project is prepared to devote to the effort. Hence
any recommendations for architectural documentation must be sensitive to local varia-
tion.

In this report we attempt to provide some guidance for architectural documentation in
context of DaimlerChrysler’s software-based systems and software development proc-
esses. We will do this by examining a case study to illustrate how one can go about

 4

documenting an architecture: what kinds of information must be provided, what forms of
notation should be used, what uses can be made of that documentation.

The scope of this report is to provide a brief, although hopefully useful, guide to architec-
tural documentation. In the brief period that we had to work through a case study, and to
understand the needs of DaimlerChrysler, we could only provide an overview of the main
features of the area. Additional elaboration would certainly be possible via a more exten-
sive project. (See Section 6, which outlines possible future work.) Moreover, we confine
ourselves to describing approaches consistent with current industrial practice of design
documentation – most notably the use of the UML object modeling language. While we
believe there are numerous opportunities to do much better using a new breed of architec-
tural description languages and tools, space and time limitations of this report do not
permit us to explore these avenues here – although we do give a brief indication of the
kinds of benefits that can be realized using a more rigorous architectural specification
language in Section 5.

The structure of this document is as follows: In the next two sections we briefly consider
the purposes of software architecture, and the requirements for architectural documenta-
tion. Next we introduce the case study, JavaPhoneTM that we will use to illustrate both the
pitfalls of current documentation, and guidelines for improving the situation. Then we
provide example documentation for four views of that system. Finally, we conclude by
stressing the key points we have tried to make, and discuss possible future projects.

2 What is Software Architecture?

Before illustrating how to document an architecture, we must be clear about what an ar-
chitecture is intended to describe. Considerable confusion can arise when the developers
of an architecture are unsure about the essential purpose of architecture, and what should
be exposed through architectural documentation.

While there are numerous definitions of software architecture, at the core of all of them is
the notion that the architecture of a system defines its gross structure. This structure il-
luminates the top-level design decisions, including things such as how the system is com-
posed of interacting parts, where are the main pathways of interaction, and what are the
key properties of the parts. Additionally, an architectural description includes sufficient
information to allow high-level analysis and critical appraisal.

By providing an abstract description of a system, the architecture exposes certain proper-
ties, while hiding others. Ideally this representation provides an intellectually tractable
guide to the overall system, permits designers to reason about the ability of a system to
satisfy certain requirements, and suggests a blueprint for system construction and compo-
sition. For example, an architecture for a signal processing application might be con-
structed as a dataflow network in which the nodes read input streams of data, transform
that data, and write to output streams. Designers might use this decomposition, together
with estimated values for input data flows, computation costs, and buffering capacities, to
reason about possible bottlenecks, resource requirements, and schedulability of the com-

 5

putations. The architecture might also suggest ways to package the functionality as code
units.

3 Software Architecture Documentation

Architectural documentation describes the structure of a system through one or more
views, each of which identifies a collection of high-level components and relations
among those components. A component is usually documented visually as some sort of
geometrical object, and represents a coherent unit of functionality. The granularity of
components will depend on the kind of documentation being developed: in some situa-
tions a component may be as large as a major subsystem; in others it might be as small as
a single object class. Typically components represent system structures such as major
modules, computational elements, and run-time processes.

The relations between components are documented visually using lines or adjacency.
Typically such relations indicate what aspects of one component are used by other com-
ponents, and how inter-component communication proceeds over time.

Different views are used to represent distinct aspects of a system, each view providing a
model of some aspect of the system.1 For example, as we will see, one architectural view
might document the structure of a system as a layered description in which the compo-
nents represent logical groupings of code, while another view might document the struc-
ture of a system in terms of its run-time configuration in which components represent
communicating processes.

Different views, or models, are useful for different purposes. Deciding which views to
use is one of the chief jobs of a software architect. Often the choice of views will depend
strongly on the needs for design analysis. For example, a system with real-time schedul-
ing constraints might use one or more views that expose process/task boundaries and in-
dicate various properties such as periodicity and resource requirements. A system that is
more centered on shared data, might devote views to describing the structure of the data
space and the ways different components access that space.

Despite this variability there are typically at least four classes of views that are required
to provide a reasonable set of architectural documents.

1. Context-based views: These indicate the setting in which the system is to be em-
ployed, and often identify the abstract domain elements that determine the sys-
tem’s overall requirements and business context.

2. Code-based views: These describe the structure of the code, indicating how the
system is built out of implementation artifacts, such as modules, tables, classes,
etc. Such views are particularly useful as a guide to implementation and mainte-
nance. They can also be used to indicate boundaries of abstraction between differ-

1 We use the term “model” to refer to a partial, abstract description of a system.

 6

ent parts of the system, and between the system-under-construction other parts of
the system that it uses or that use it. A special, but common, case of a code-based
view is a layered diagram. By partitioning a system into layers, one can improve
portability, modifiability, and ease of use via standard APIs. As we will see, the
case study below makes heavy use of layered diagrams. Another common code-
based view is a class diagram.

3. Run-time views: These describe the structure of the system in operation, indicat-
ing what are the main run-time entities and how they communicate between each
other. Run-time views allow one to reason about behavioral properties and “qual-
ity attributes,” such as run-time resource consumption, performance, throughput,
latencies, reliability, etc.

4. Hardware-based views: These describe the physical setting in which the system
is to run, indicating the number and kinds of processors and communication links.
The information contained in these views is often combined with that in run-time
views to derive system performance properties.

Independent of choice of view classes and specific models within each view class,
there are some important observations that one can make about architectural docu-
mentation in general.
� Current informal practice is not adequate. Most architectural descriptions are

ambiguous, inconsistent, misleading, and ineffective. Often this occurs because
the authors are not clear about the nature of the view they are describing, or about
the meaning of the elements in the views. Later we will illustrate a number of
such problems, and indicate specific advice about how to avoid them.

� Architecture is not low-level programming structure. Architectural documenta-
tion’s most important requirement is to clarify system structure. This can only be
done via careful use of abstractions – hiding inessential details. Many architec-
tural documentation efforts run adrift in a sea of detail, where the important issues
are buried in low-level specifications.

� Multiple views are usually needed. As we noted earlier, different models are
needed to cover the spectrum of issues addressed by a system’s architecture.
Many documentation efforts fail by attempting to combine too many issues into a
single description. Again, we will see examples later.

� Good architectures make use of architectural styles. An architectural style pro-
vides a vocabulary for design together with constraints on how that vocabulary
can be used. For example, a simple client-server style might involve components
that are instances of clients, servers, databases, and user interfaces. These might
be constrained topologically or otherwise. Styles should be documented, so it is
clear to the reader what assumptions are being made about the vocabulary and
constraints.

� Many architectural designs are actually architectural frameworks. In some cases
an architectural description represents a particular system. However, more often,
an architecture is designed to cover a family of systems that differ along certain
dimensions. (The case study below is a good example of a framework.) A key to
documenting architectural frameworks is to be clear what kind of variability is al-
lowed.

 7

� There are many possible notations that one might use. A notation for architectural
documentation should be evaluated for satisfaction of the following properties

o Expressiveness: the notation should be rich enough to express the semantic
distinctions and decisions of the architecture.

o Precision: the notation should be clear enough that one can spot inconsis-
tencies and bad design choices.

o Understandability: the notation should make it easy to see what the key
design decisions are.

o Analytical utility: Ideally, the notation should be formally analyzable.

4 The Example: JavaPhoneTM

4.1 Background

JavaPhone evolved between 1996 and 1999 as a vertical extension to Sun Microsystems’
PersonalJavaTM platform [PJv00]. In addition to Sun, a number of companies in the tele-
communications industry contributed to this definition, including Dialogic, Lucent,
Nortel, Novell, IBM, Intel and Siemens. In 1999, Sun decided to promote JavaPhone as
an industry standard, and new collaborations were enlisted: the ETSI (European Tele-
communications Standards Institute), Ericsson, Motorola, Nokia, Psion, Texas Instru-
ments and Symbian. Version 1.0 of the standard proposal was released on March 22,
2000 after a period of public review [JPh00].

The key motivation behind JavaPhone is to enable application developers to deploy tele-
communication-aware applications on any physical platform that supports an API com-
plying with the JavaPhone specification. Conversely, suppliers of telecommunication
platforms can market their solutions taking advantage of existing value-added applica-
tions - just by obtaining the latter off-the-shelf and deploying them on their newly devel-
oped devices. JavaPhone is, therefore, a specification of an architectural framework from
which concrete systems will be derived.

The documentation that describes the JavaPhone standard provides one (informal) speci-
fication for a layer of software that isolates telecommunication-aware applications from
the specifics of telephony integration platforms (see Figure 1.)

JavaPhone

Value-added
Applications

Telephony
Integration Platform

Device

Telecommunications Infrastructure

JavaPhone

Value-added
Applications

Telephony
Integration Platform

Device

 8

Figure 1: JavaPhone in a nutshell

4.2 Inside JavaPhone

JavaPhone is organized as a set of software packages, each supporting distinct, but com-
plementary, functionality:

• Telephony, also known as JTAPI (Java Telephony API), composed of

− Core package2
basic functionality to make, answer and drop a call;

− Call Control package
extended features like conferencing and forwarding;

− Phone package
drivers for physical devices like phone buttons, display and ringer;

• JTAPI Mobile package
mobile features like network selection and strength of signal;

• Power Monitor package
estimation of available power;

• Power Management package
management of device activity to minimize power consumption;

• Network Datagram package
transport-independent addressing and delivery of messages;

• Secure Sockets Layer package
secure communication over TCP/IP sockets;

• Install package
version-aware installation of Java applications.

Leveraging the functionality commonly required in telecommunication devices, the stan-
dard also specifies interfaces for the following:

• Address Book package
access to contact information on individuals and groups;

• Calendar package
access to scheduling and task information;

• User Profile package
access to the current user/owner’s personal information.

A particular device is not required to support all of the packages above in order to be
considered compliant with JavaPhone. Sun defines a number of possible subsets, or pro-

2 In Sun’s documentation the term JTAPI Core is sometimes used to represent the aggregation of the Core
proper, Call Control and Phone packages.

 9

files, for a device as consistent collections of supported packages.3 Figure 2 reproduces
the table from page 4 of [JPh00], which illustrates the wireless and screenphone profiles.

Figure 2: Device Profiles for Wireless and Screenphone

The architecture of JavaPhone is depicted by Sun primarily using variants of layered dia-
grams. Figure 3 and Figure 4 were taken from an online overview provided by Sun at
http://web2.java.sun.com/products/javaphone/. In Figure 4 the purpose of the layers User
Shell and Personal JavaTM can be safely ignored for the purposes of this document.

3 There are some dependencies among the packages offered by JavaPhone: for instance JTAPI Mobile de-
pends of JTAPI Core in the sense that the former cannot be supported without the latter being supported as
well. Generally, if package A depends on package B, a collection of packages supporting A is consistent
only if it also supports B.

JavaPhone API Wireless Profile Screenphone Profile

Addressbook Required Required

User Profile Required Required

JTAPI Core Required Required

JTAPI Mobile Required Optional

Calendar Required Optional

Network Datagram Required for connectionless transport Optional

Power Monitor Required Optional

Power Management Optional Optional

Install Optional Optional

 10

Figure 3: Layer diagram for a system incorporating JavaPhone

Figure 4: Detail of the JavaPhone layer, marking the wireless profile in color

One can identify a possible clustering of the software packages offered by JavaPhone.
Take, for instance, the two packages pertaining to power management (Power Monitor
and Power Management): there are relationships among the classes and interfaces defined
by these two APIs, but they are isolated from the remaining packages in JavaPhone. The
same is true for the software packages pertaining telephony. Given this natural associa-
tion, and to simplify the diagrams showing the structure of JavaPhone without loss of
consistency with Sun’s definition, we will adopt the following clustering of packages:

• Telephony: JTAPI Core, Call Control, Phone and Mobile

• Data Communication: Network Datagram and Secure Sockets Layer

• Application Management: Install

• Utilities: Address Book, Calendar and User Profile

 11

• Power: Power Monitor and Power Management.

4.3 JavaPhone as a case study for architecture representation

JavaPhone provides an adequate case study for architecture representation because, first,
it describes an architectural framework – that is, a common set of architectural constraints
to which the architecture of the concrete systems must comply. Second, it embodies the
perspectives of a wide number of experts in the Software and Telecommunications indus-
try and, third, the scope is manageable for the purposes of the case study. Furthermore,
the uniformity of the patterns used in JavaPhone allows us to focus in the analysis of only
the Telephony cluster and still cover the same interesting points from the architectural
perspective that could be extracted from an exhaustive analysis of the case study.

There are, however, a number of drawbacks concerning the choice of JavaPhone as a case
study for architecture representation. First, the JavaPhone framework describes the be-
havior of just one layer of software with few interactions among the components of that
layer. Second, the relationships among components are only those common in the object-
oriented approach: inheritance, method calling and event announcing. Third, the specifi-
cation of the framework is not concerned with properties and tradeoffs that an architec-
ture usually addresses, for instance:�

− performance,

− reliability,

− tradeoffs between accuracy/fidelity of computation and response time or
power consumption.

The somewhat narrow scope of the architectural issues brought up by the case study lim-
its the scope of the recommendations concerning architecture representation that we can
offer based on the current research.

5 Documenting the Architecture of JavaPhone

As we discussed in Section 2, we will describe JavaPhone using representations that are
grouped into the following views:4

1. Problem domain view: Although software architecture is not about the representation
of requirements, it is concerned with how the system to be built sits in the structure of
the problem and how the system interacts with its environment. This issue has been
approached from the structural and phenomenological perspective by Michael Jack-
son, and in a more directed use case perspective by Ivar Jacobson [Jack95, Jac+92].

4 See [Kruc95, Ogu+00, You+99] for other examples based on views.

 12

2. Run-time view: This view describes the principal run-time components, their interac-
tions, and their properties. This view is the realm that Architecture Description Lan-
guages traditionally address [SG95, BCK98]. It is concerned with characterizing the
run-time structure of a system, including the behavior of components, interaction pro-
tocols supported by connectors, the location of process boundaries, and analytical
models for properties like throughput and reliability.

3. Code view: This view can be thought of as the link to software design – where one
stops and the other starts is mostly a judgment call, based on how far the software ar-
chitect wants to carry the abstract representations of code structure and behavior. Ex-
actly which representations (layer diagram, class diagram, etc.) are most helpful to
realize the code view depends on the architectural style of the system [SG95, RJB98].

4. Deployment view: This view describes the allocation of software to the deployment
infrastructure. This is an area with relatively little attention from the research com-
munity [RJB98]. It is, however, essential for reasoning about properties like through-
put and reliability [BCK98].

We will present the architectural representation of JavaPhone using each of the views
above. The order in which we will do so is what seemed to us to be the natural order of
explanation of JavaPhone, and should not be taken as an order of relative importance of
the views.

For each view, first, we examine the aspects of the system that to be captured. Second,
we identify a set of candidate representation techniques to realize the view. Since the
ability to communicate effectively with the software engineering community is no less
important than the ability to reason about the properties of a software system, the choice
of the representation techniques that realize each of the views is targeted, as much as pos-
sible, to UML. Third, we examine how each of the representation techniques is used is
current practice, namely in the JavaPhone specification, identifying underlying principles
and potential problems. That insight will be used to evaluate the candidate documenta-
tion techniques with respect to the principles and aspects that are intended to be captured
by the view.

5.1 Problem domain view

The goal of a problem domain view is to clarify the purpose, fit, and limitations of the
system with respect to its environment. Also, this view has been found useful to identify
commonly occurring patterns in the problem description – there are likely to exist proven
solutions that will be cheaper to incorporate in the final system than solution rediscovery.
As such, this view is concerned with:

• Principal parts (domains) of the problem space.

• Phenomena that occur in each domain.

• Sharing of phenomena (interactions) among domains.

• Identification of the domains corresponding to the system to be built.

 13

• Framing of known configurations in the problem space.

In some application domains, such as in the development of safety critical software, peo-
ple have successfully used formal notations to specify the problem space. However, for
most systems a purely formal approach is frequently neither practical nor cost effective.
At the other end of the spectrum in practice problem domains are typically approached
using imprecise representation techniques, such as informal diagrams accompanied by
explanatory prose.

Jackson’s problem frame approach lives between these extremes: it strives for precision
and effective communication without requiring strong formal skills. The work on use
cases started by Jacobson (see [Jac+92]) and continued in the UML setting provides a
nice complement of Jackson’s approach for the description of typical interactions be-
tween domains [RJB98]. We note, however, that this kind of description, although ap-
propriate to obtain a first cut of the system, or to discuss with users, does not deliver the
full potential of the more formal notations used to express the architecture of software as
presented in the following sections.

Although we cannot provide a complete explanation of Jackson’s approach here, we will
illustrate the use of domain diagrams for JavaPhone to indicate the basic principles and
provide further insight into JavaPhone.

Figure 5 depicts the context of operation of JavaPhone, much as did Figure 1. Here the
semantic primitives are the Domain, represented by a box, and the indication of sharing
of phenomena between domains, represented by a line between the domains. There is no
special meaning to the thickness or color of lines, unless noted. A domain may itself be
decomposed into interacting sub-domains, represented as a diagram enclosed inside the
box for the original domain.

In Figure 5, we identify three replicas of the Device domain interacting with a Telecom-
munications Infrastructure domain. Devices contain an Applications domain, a Teleph-
ony Integration Platform and may contain a JavaPhone domain that sits between the two
former. The Telephony Integration Platform is always responsible for the interactions
with the Telecommunications Infrastructure and represents the device’s specific hardware
and software dedicated to telecommunications. Applications are unaware of the details of
the Telephony Integration Platform when JavaPhone sits between them. Of course, we
are interested in the structure and behavior of devices that include JavaPhone, although
they will often coexist with other devices that do not include JavaPhone.

 14

Figure 5: Problem domain of JavaPhone

Figure 6 focuses on a single device and “frames” the kind of problem that we are facing
as an example of one of Jackson’s dozen predefined problem frame. Specifically,
JavaPhone achieves a connection, or adaptation, between telecommunications-aware ap-
plications and the telecommunications platform realized in the device. In Jackson’s ter-
minology this becomes an instance of the “Connection Frame”. Jackson identified several
other problem frames (Information System, Control, Workpieces, etc.). Thinking about
the frame(s) that is (are) applicable to the problem at hand helps identify the dominant
characteristics of the problem and, ideally, helps direct the system’s architect to known
architectural patterns. Again, the architectural notations that we cover in the next sec-
tions flesh out this first cut at the system’s structure and mechanics.

Figure 6: Framing JavaPhone – connection frame

Telecommunications Infrastructure

Applications
Device

JavaPhone

Applications
Device

JavaPhone

Applications

Telephony Integration Platform

Device

Domain

Shared phenomena

Telephony Integration Platform Telephony Integration Platform

Telecommunications Infrastructure

Applications

Telephony Integration Platform

Device

JavaPhone Impl. Connection

Domain

Shared phenomena

System to be built

Connection:
JavaPhone spec

 15

Figure 7 focuses on the internal structure of JavaPhone, where we recognize sub-domains
corresponding to the API grouping that we established in Section 4.2. Note that there is
no sharing of phenomena among these sub-domains of JavaPhone.

Figure 7: Detailing the domain view of JavaPhone

Figure 8 shows a more interesting diagram: the detail of the Telephony domain. The te-
lephony Core domain describes the relationships between Addresses (e.g. phone num-
bers), Terminals (e.g. phones), the abstraction for the telecommunication Providers (to
whom calls are requested), and the Calls themselves.5 Also note that whereas the Call-
Control and Mobile domains interact with the whole Core domain (that is, potentially
with every sub-domain inside the Core), the Phone domain interacts specifically with the
Terminals sub-domain of the Core.

5 Sections 5.2.2 and Figure 16 contain more details on the internals of the Telephony domain.

Telecommunications Infrastructure

Applications
Device

T
el

ep
ho

ny

D
at

a
C

om
m

un
ic

at
io

n

U
til

iti
es

A
pp

li
ca

ti
on

 M
an

ag
.

P
ow

er

JavaPhone

Telephony Integration Platform

 16

Figure 8: Detailing the Telephony domain of JavaPhone

How can diagrams like the ones in Figure 5 through Figure 8 be supported in a UML set-
ting? We examine two alternatives: package diagrams and class diagrams. Figure 9
shows a package diagram corresponding to the domain diagram in Figure 8. As shown,
domains are represented as packages and domain interaction as dependency.

While this serves to capture the main elements of the domain and the existence of rela-
tions between them, there are several warnings that must be heeded. First, one must be
careful not to interpret the problem space decomposition (into domains) as a commitment
to code organization: one domain may end up implemented as several code packages and
vice-versa. Second, domain interaction is intentionally neutral with respect to direction-
ality and final representation of the interactions themselves, whereas package dependency
is directional and has defined semantics for access to services and configuration control.
In other words, one should make sure that a package diagram representing the problem
domain is interpreted as a problem domain view, rather than a package diagram.

Figure 9: Package diagram representing the domain view of Telephony

T
el

ep
ho

ny

Core
Addresses

Phone

Mobile

CallControlTerminals

Providers

Calls

Addresses

Phone

Mobile

CallControlTerminals

Providers

Calls

Telephony

Core

 17

Taking an alternative approach, Figure 10 shows the class diagram corresponding to the
domain diagram in Figure 8. Domains are represented as object classes and domain inter-
action as associations. If we wish to consistently represent every domain as an object
class (and every interaction as an association), we can use the aggregation association to
stand for domain decomposition: in Figure 10, the Core aggregates Addresses, Terminals,
Providers and Calls.

As with the representation of domain diagrams by package diagrams, a few issues of po-
tential miscommunication arise. First, a domain will probably not end up as an single
object class in the final system. Second, class associations typically indicate multiplicity,
unlike domain interactions – it is easy to imagine one using a tool supporting the UML
notation to start specifying the multiplicity of associations in what is supposed to be a
domain diagram.

Figure 10: Class diagram representing the domain view of Telephony

5.2 Code views

Given the description of JavaPhone outlined above (Sections 4.1 and 4.2), we would
naturally expect layer diagrams to be particularly relevant to represent the overall code
structure. Also, since the JavaPhone specification is very much focused on the object-
oriented style, class diagrams are the natural complementary way to capture the class-
oriented organization of JavaPhone.6

We go over layer diagrams and class diagrams in the next two sub-sections. Although
layer diagrams are often used, they are typically misused in ways that lead to miscommu-
nication and even inconsistencies. We will examine a few examples of such problems in
the documentation of JavaPhone itself and then show how we believe a layered view

6 Strangely, however, Sun’s documentation does not include any class diagrams, but only listings of the
classes and interfaces that constitute the JavaPhone API. The relations between those classes and interfaces
were obtained by us through examination of the definitions of the methods and the prose accompanying
each interface.

Addresses

Phone

Mobile CallControlCore

Terminals

Providers

Calls

 18

should be presented. With respect to class diagrams, of course the situation is quite dif-
ferent: the fundamentals of class diagrams are relatively well-understood and explained
by many other authors [RJB98]. As a matter of reference, however, we present a partial
class diagram for the Telephony component.

5.2.1 Layer diagrams

Layer diagrams are typically used in situations where the structure of a system’s code can
be partitioned into a linear sequence of logical modules, with certain visibility restrictions
between those modules. The restrictions allow one to improve portability and maintain-
ability, since the limit the effect of changes to the code.

As for the problem domain view, the first step is to establish what aspects of an architec-
ture a layer diagram should capture. We recommend that the following three items are
paramount.

• The system and its surrounding environment.

• Dependency/isolation between layers.

• Interaction mechanisms between layers.

Usually dependency relations are represented by adjacency of layers and the relevant in-
teraction mechanisms represented either graphically, by some sort of convention, or in
textual notes. A key issue for understanding a given layer diagram is what is the nature
of the access (or visibility) restrictions. In particular, can a given layer access only the
services of the layer immediately below it? Or can it also access services of any layer at a
lower level? Ideally one would hope to find a definitive, uniform answer to those ques-
tions. Unfortunately, in practice this is often not the case, as we will now illustrate.

Figure 11 reproduces Figure 2 appearing on Sun’s page 7 of [JTAPI00].7 What does ad-
jacency mean? Suppose that we assume that a layer can only access services provided by
the lower layer immediately adjacent. Then we would erroneously conclude that applica-
tions access the Java Run-Time layer only through the Java Telephony API (JTAPI part
of JavaPhone).

On the other hand, if we assume that a layer can accesses, and therefore depend on, all of
the layers below it, we would erroneously conclude that applications can depend on ven-
dor specific telephony integration platforms, like Sun’s XTL or Lucent’s TSAPI.

Hence, for the diagram at hand, we must conclude that there is no consistent semantics
for adjacency. This makes the diagram close to useless.

7 The role of color in this figure in not clarified anywhere in Sun’s documentation.

 19

Figure 11: Layer diagram for the desktop configuration of JavaPhone

Take as another example Figure 12, that reproduces Figure 1 on page 7 of [JTAPI00]. It
appears to be a layer diagram that combines aspects from the run-time view. Here, the
arrows between layered boxes (presumably devices) denote some kind of remote access.
Interpreting the diagram, one may be led to believe that the JTAPI (Java Telephony API)
layer on the top box need not be aware of the specifics of the telephony integration plat-
forms (like Sun’s XTL or Lucent’s TSAPI). Wrong again: in this case the Java Run
Time and Remote Telephony Server layers serve as a low-level access mechanism be-
tween the layers for JavaPhone and the telephony integration platforms.

Figure 12: Layer diagram for the network configuration of JavaPhone

From examining examples like these, we can extract a set of principles to guide the
documentation of architectures through layer diagram views:

a) represent only the layers that are relevant to the problem

b) a layer represents a virtual machine

Telephony HW
(POTS Card/Fax Card)

Java Telephony API

Java
Applications

Applets

Java Run-Time

XTL TSAPI TAPI Other
API

R em o te T elep ho n y S erv er

H W

JT A P I

Java
A pp lica tio n

A pp le ts

Jav a R un -T im e

X T L T S A P I T A P I O ther

IP /IS D N /AP B X

 20

c) a layer should depend only on layer(s) immediately below

d) indicate clearly the system to be built

Figure 13 shows a layered representation of the system and its environment as Figure 11
and Figure 12 attempted to capture it, but now according to principles (a) to (d) above.

Figure 13: Top-level layer diagram for JavaPhone

One of the features of most layer diagrams is the use of substructure within a layer. Here
again, current practice is typically ambiguous and inconsistent in the meaning of such
decompositions. For example, the more detailed layer diagram, like the one on Figure 4,
confronts the reader with questions like: “does JTAPI Mobile depend on JTAPI Core?”
(it does) or “does Power Monitoring depend on Datagram?” (it doesn’t) or “what are the
interaction mechanisms between layers?”

One possibility to answer this kind of questions is to introduce explicit representation of
software interaction mechanisms in code view diagrams. Although code views are, in
general, not concerned with the interaction protocols, the interaction mechanisms repre-
sent abstractions that constrain the code itself.8 Figure 14 shows one such diagram that
we created, corresponding to the contents of Figure 4, but enriched by an indication of
interaction mechanisms that otherwise must be painstakingly inferred from the textual
specification of JavaPhone.

8 For instance, code based on direct method invocation presents a different set of constraints than code
based on indirect method calling (or event broadcast).

Software layer

System to be built
Telephony Integration Platforms

Telephony Hardware

Java
Virtual

Machine

JavaPhone implementation

Applications

Software layer

System to be built

 21

Figure 14: Detailed layer diagram for JavaPhone

Note, that in this diagram it is now much easier to infer important relationships. For in-
stance, the Telephony and Power components both accept method calling and announce
events to the Application layer. On the other hand, the Data Communication component
does not announce events. A consequence is that applications must use polling to test for
completion of data transmission and reception.

Now that we have illustrated (Figure 13 and Figure 14) the principles behind the layer
diagrams and how these principles reflect the aspects that we expect to see captured in a
layer diagram, the third step is to identify candidate representations in UML. An obvious
candidate is, again, the UML package diagram. Next, we evaluate how well this kind of
representation supports the principles for the layer diagram that were identified in the ear-
lier.

The most serious potential problem with using package diagrams is a mismatch between
what we are trying to express in a layer diagram and the usual semantics for UML pack-
age diagrams. For instance, people may take the depicted software components as a
commitment to final code organization (in packages): although it seems useful to repre-
sent the JavaPhone layer as a package in the package diagram in Figure 15, there is no
corresponding package definition in Sun’s specification. Another example is the direc-
tion of the representation of the event announcing interaction mechanism between the
Telephone and Power components and the Applications layer: we chose to keep the
direction shown in the layer diagram in Figure 14. However, if we think in terms of
UML dependency, we would expect to see the arrow in the opposite direction – it is the
Applications layer that depends on the definitions of the events in the Telephony and
Power components.

Another practical problem is the potential cluttering of visual information when several
concepts are mapped into the same representation. For instance, from Figure 14 to Figure
15, the several interaction mechanisms end up being represented as stereotyped depend-
encies. It may also be harder to mark clearly which components belong in the system to

Unspecified connection
(vendor dependent)

Event announcing

Method calling

Applications

Telephony Integration Platform

Data Communication

Software Component

System to be built

Telephony Power Utilities Aplic. Management

 22

be built and which are part of the environment (e.g. the Application package.) In Figure
15, the component corresponding to the system to be built is marked with the stereotype
<<system>>.

Figure 15: Package diagram corresponding to Figure 14

Still, we believe that using package diagrams to capture layer views of the code is by far
the best alternative of the notations available in standard UML.

5.2.2 Class diagrams

Class diagrams are a natural way to capture the object-oriented organization of
JavaPhone. Since the fundamentals of class diagrams are relatively well understood and
explained by many authors [RJB98], we take the presentation of a class diagram for the
Telephony component as an opportunity to explain the structure of JavaPhone in more
detail. This insight into JavaPhone will be useful when we specify some of the interac-
tion protocols in Section 5.3.

Figure 16 shows the principal interfaces of the Core package:

• Provider – abstraction for a provider of telecommunication services as delivered
by the Telephony Integration Platform in Figure 13. If a concrete device has ac-
cess to, say, a telephone connection and an IP channel, there will be two distinct
objects that implement the Provider interface,9 one with the characteristics of a
phone service provider and the other with the characteristics of an IP service pro-
vider.

• Address – logical address of a telecommunication device, say, a phone number.
In a concrete implementation of JavaPhone, there may be more than one Address
object being managed by particular provider. The set of such Address objects are

9 Whether or not these distinct objects are instances of the same class or of distinct classes is unspecified by
JavaPhone and, as such, is a decision for the vendor of each implementation of JavaPhone.

<<system>>
JavaPhone

Applications

Telephony Integration Platform

Data CommunicationTelephony Power Utilities Aplic. Management

<
<

so
m

e>
>

<
<

ca
ll>

>

<
<

ca
ll>

>

<
<

ca
ll>

>

<
<

ca
ll>

>

<
<

ca
ll>

>

<
<

ev
en

t>
>

<
<

ev
en

t>
>

<
<

so
m

e>
>

<
<

so
m

e>
>

<
<

so
m

e>
>

<
<

so
m

e>
>

 23

included in the domain of the provider. For instance, the phone numbers are in-
cluded in the domain of the provider of phone services and are returned by the op-
eration Provider.getAddresses.

• Terminal – abstraction for a physical telecommunication endpoint. In a concrete
implementation of JavaPhone, there may be more than one Terminal object being
managed by a particular provider object. The set of such Terminal objects is in-
cluded in the domain of the provider and is returned by the operation Pro-
vider.getTerminals. Addresses and Terminals within a provider’s domain may be
associated in a many-to-many fashion.

• Call – representation of an actual call requested by the telecommunications pro-
vider.

• Connection – there are as many Connection objects associated with a Call object
as there are addresses involved in the call (normally two; more for conference
calls).

• TerminalConnection – association between the (logical) connection and the
physical endpoint that actually takes the call. (Recall that there may be more than
one endpoint associated with an address.)

None of the interfaces above exposes constructor methods to the Applications layer – the
management of the objects that implement such interfaces is made at the level of the con-
crete implementation of JavaPhone.

Figure 16: Class diagram for the JTAPI Core in the Telephony component

Core

Terminal ConnectionConnection

Call Address

Provider

Terminal

0..*

0..*

0..*

1 1

0..*

0..* 0..*
0..*

1
1

0..*0..*

1

CallControlCall

CallControlConnection

CallControlAddress

Phone

Mobile

CallControlTerminalConnection

CallControlTerminal

CallControl

...

...

...
PhoneTerminal

MobileTerminal

MobileAddress

MobileProvider

 24

Recall that JavaPhone specifies an architectural framework and not the architecture of a
concrete system. Therefore, it mostly specifies interfaces rather than prescribing actual
implementations given by object classes.10 Consequently, all the “classes” in Figure 16
actually refer to interfaces in the specification of JavaPhone and should have been affixed
with the stereotype <<interface>>. We omitted the stereotype to reduce the cluttering of
the diagram. A concrete system will have vendor-specific class definitions implementing
each of the interfaces specified in JavaPhone.

From the Phone, Mobile and CallControl packages, Figure 16 shows only the interfaces
that refine (or in Java terminology, extend) interfaces in the Core. Note that interface re-
finement is indeed the only kind of relationship among the several Telephony packages
that is specified by JavaPhone.

JavaPhone follows the event-observer design pattern to realize the event announcing in-
teraction mechanism depicted in Figure 14 (see Section “The Java Telephony Observer
Model” in [JTAPI00]). As such, for each of the principal interfaces above there is an ex-
tra interface for the particular events that may be announced by the implementations of
the principal interface, as well as another interface for a generic observer of such events.
They will be implemented by as many object classes in the Applications layer as needed
to be alerted by the occurrence of the events. It is the principal interface that defines the
operations to register and remove an observer.

For instance, Figure 17 shows the definitions corresponding to the Terminal interface:
there is an interface definition TerminalEvent and another TerminalObserver. Note the
operations that are defined in each interface: the operation terminalChangedEvent in
TerminalObserver is guaranteed to be called by the concrete implementation of Java-
Phone, receiving a list of the events that occurred in the terminal since the last call. Note
also how the class diagram fails to capture this important abstraction: the presence of the
interaction mechanism has to be inferred from the explanatory prose and analysis of the
names of some entities in the class diagram. If we had drawn every interface definition in
Figure 16 it would be very hard to recognize both the structure of the core in terms of
principal interfaces and their associations and even more so the presence of a well-
defined interaction mechanism. Compare this with the clarity of Figure 14.

10 There are very few object-classes (as opposed to interfaces) specified in JavaPhone, exceptions being
associated with the factory design pattern. For instance, in the Telephony package, there is only one class,
JtapiPeerFactory, that ultimately allows an application to obtain references for objects of vendor-specific
classes that implement the Provider interface.

 25

Figure 17: Class diagram for the interfaces defining the event-observer pattern for Terminal

5.3 Run-time view

Capturing the run-time view of a system is the main concern of Architecture Description
Languages (ADLs), such as Acme and Wright [GMW00, All97]. The basic notions of
ADLs are that of component, a cohesive locus of computation, and of connector, a de-
scription of the interactions between the attached components. Historically the para-
mount aspects captured by such run-time views have been:

• Architectural style – defines the types of components and their behavior, as well
as the types of connectors and the interaction protocols they support. Examples of
architectural style are: blackboard, pipe-and-filter, and object-oriented [SG95].
ADLs vary in the degree of formality of their descriptions of component behavior
and interaction protocols, as well as in their support for definition and reuse of ar-
chitectural styles.

• Configuration of the system – identifies the components that constitute the system
and how they are interconnected. The identification of the possible process
boundaries is also important since it constrains the interaction mechanisms that
can be used to realize the connectors as well as the interaction protocols them-
selves (e.g. mutual exclusion, two-phase commit, etc.)

• Analytical models – support the analysis of tradeoffs for architectural properties
of the given configuration [BCK98]. For example, such models enable the soft-
ware architect to make informed tradeoffs between buffer size and throughput,
code maintainability and performance, precision of computation and power con-
sumption.

Architectural frameworks not only choose an architectural style, by identifying precisely
the types of components and connectors, but also constrain the possible system
configurations to particular topologies and the use of particular architectural properties.

JavaPhone specifies an API that stands between Applications and Telephony Integration
Platforms (Figure 1), that is, it specifies both the generic topology of the system and the
behavior of the connection between the two components (Figure 6). As Figure 11 and

TerminalObserver

terminalChangedEvent

0..*1

Terminal

addObserver
getObservers
removeObserver

TerminalEvent

getTerminal

1

0..*

 26

Figure 12 suggest, there are possible variants in the way to realize the generic topology,
but the behavior of the JavaPhone connection remains the same, regardless.

Like many architectural frameworks, JavaPhone leaves concerns about architectural
properties to the specific implementations of the framework. Therefore, we cannot use
JavaPhone to illustrate the definition and use of analytical models. The following sub-
sections focus on the representation of, first the run-time view of the system configura-
tion and, second details of the interactions among components.

5.3.1 System configuration

Figure 18 shows the run-time view corresponding to Figure 5. Recall that, since
JavaPhone’s concern is to represent an architectural framework rather than a concrete
system, both figures illustrate the possible configurations of a device inside a system
rather than a fixed system configuration with three devices.

Figure 18: Possible device configurations for JavaPhone implementations

The choice between representing a particular piece of software as a component or as a
connector in the run-time view is mostly one of usefulness of the abstraction.11 The Ap-
plications and Telephony Integration Platform appear as two loci of computation, one
containing the logic that serves the purposes of the user and the other wrapping the
physical devices that are used in the communication. The Telecommunications Infra-
structure is best represented as a connector, transporting data across between remote de-
vices. As for JavaPhone, its concern is to assure that the Applications reach the services
of the Telephony Integration Platforms in a way that is independent of the vendor-
specific variations in which those services are delivered. JavaPhone is thus also repre-
sented as a connector.

11 More on this can be found in [SG99].

Applications

Telephony Integration
Platform

Applications

Telephony Integration
Platform

Telephony Integration
Platform

Applications

Software Component

Process/Device

JavaPhone

Telecom. Infrastructure
Unspecified
(vendor specific)

 27

Furthermore, the JavaPhone connector has to make sure the applications reach the tele-
communication services seamlessly, regardless of being in the same processing context,
Figure 18 left, or in a different processing context from the Telephony Integration Plat-
form, Figure 18 center. Figure 18 right is shown just to illustrate that the devices that in-
clude JavaPhone are nevertheless able to communicate with devices that do not include
JavaPhone, the difference being the connector (API) that the applications use to access
the services of the Telephony Integration Platform.

Note how the run-time view separates the concerns of specifying the interaction proto-
cols, in the JavaPhone connector, from defining the process boundaries. That the imple-
mentations of JavaPhone will have to deal with communication within the same process
and across processes is a consequence of the architectural statements above. Note also
that it is not an issue for the architectural framework how the implementations will deal
with the problem (or even if the same implementation should handle the two situations,
or, if each situation requires a different implementation of the same interaction protocol).

Let us now focus on the candidate representation techniques to capture the run-time view
of a system or architectural framework more precisely. Architecture Description Lan-
guages and the tools that support them are obvious candidates. Figure 19 shows the
Acme representation corresponding to Figure 18.12 The most obvious advantage of this
representation is that the boxes and lines in it stand exactly for what we expect them to:
components and connectors. Acme provides placeholders for the description of the be-
havior of components and of the interaction protocols supported by connectors.

The most important advantage of this representation is that one can write formal descrip-
tions for the behaviors and protocols and then use appropriate tools to check properties of
interest. In [AGI98] we used this kind of architectural representation to examine the
soundness of a protocol for distributed simulation and were able to detect several flaws
and potential sources of trouble. In [SG99] we did the same for another architectural
framework: Enterprise JavaBeansTM, from Sun MicroSystems, and detected a potential
source of protocol deadlock.

This kind of architectural representation is also useful during system maintenance or re-
configuration. For instance, upon a change of the internal behavior of a component, we
can check whether the new behavior is still compatible with the interaction protocol, be-
sides rechecking the whole system for preservation of the desired responses.

12 The legend with Acme’s symbology is not part of an Acme diagram and is shown here just for clarity. A
detailed explanation of Acme can be found in [GMW00].

 28

Figure 19: Acme representation of the JavaPhone configurations

Finally, note that there is no explicit way to represent the process boundaries, as such, in
Acme. We can, of course, stretch the notation, as we have been doing systematically for
UML, and represent each processing context as a component. Then, the part of the sys-
tem inside each processing context would be represented as a subsystem using the same
kind of notation as in Figure 19.

Figure 20 shows a representation of Figure 18 using a UML package diagram. Here, we
adopt the convention of representing processing contexts as packages, components as
classes and connectors as stereotyped associations. This representation, unlike an ADL
proper, misses the support for the formal verification of properties.

Figure 20: UML representation of the JavaPhone configurations

Besides that, we identified as a nuisance the fact that boxes in a package (or class) dia-
gram are understood as the definition of a specification unit (a package or an object class)
instead of as an occurrence of a processing unit (like a component, or an object instance
by that matter.) Therefore, in order to represent several occurrences of the same compo-
nent, we must name them differently, e.g. by numbering them. For instance, Applica-
tions1 to Applications3 in Figure 20.

 Applications

Telephony Integration
Platform

Applications

Telephony Integration
Platform

Telephony Integration
Platform

Applications

 Component

Connector

Port

Role

JavaPhone Other JavaPhone

Telecom Telecom

Applications1

Telephony Integration
Platform1

Applications3

Telephony Integration
Platform2

Telephony Integration
Platform3

Applications2

<
<

so
m

e>
>

<
<

Ja
va

P
ho

ne
>

>

Device1 Device2 Device4

Device3

<<telecom>> <<telecom>>

<
<

Ja
va

P
ho

ne
>

>

 29

So far, we have discussed the run-time view at a level of granularity where components
correspond to code modules (or, in Java terminology, packages or collections of pack-
ages.) These are well identified at compile-time and remain stable during program
execution. However, sometimes an architecture or architectural framework needs to
provide run-time descriptions of certain critical components at a smaller level of
granularity. JavaPhone is no exception: it prescribes the behavior of interfaces that will
be implemented by objects in a concrete system.

For instance, Figure 21 shows the run-time view of JavaPhone (actually, the Telephony
Core) in the called device during a two way connection.13 In the depicted example, there
is one local address, a2, associated to two terminals, t2 and t3. From our perspective, the
representation of the remote address, a1, needs only to be associated with the representa-
tion of the remote terminal that originated the call, t1, regardless of how many terminals
are actually associated with a1 in the originating device. There are two logical connec-
tions: c2, corresponding to the near end, and c1, representing the remote end. The termi-
nal connection objects ct1 to ct3 represent the state of the associations between the logi-
cal connection and each of the physical endpoints. In this case, if t3 picks the call, ct3
will go active and ct2 will go passive for the duration of the phone call. The lines in
Figure 21 represent the run-time connections between the objects. Note that execution
units corresponding to the calls and connections will complete and then disappear in re-
sponse to the action of the users.

Figure 21: Run-time view of the objects that realize a two-way connection

Now, in the object-oriented architectural style, classes are explicitly identified at compile
time and the rules for potential connection are given by the existence of associations (re-
fer to Figure 16). However, the rules that determine which or how many execution units
(objects) will be created to realize a given computation, or how they will actually be con-
nected, is determined only during the execution of the methods at run-time. Neither

13 Refer to Section 5.2.2 for a short explanation of the purpose of the interfaces in Telephony Core. Note
that the types that qualify the objects in Figure 21 designate object-classes in a concrete implementation of
JavaPhone that implement the corresponding interface definitions in the JavaPhone standard.

ct3: TerminalConnection
c2: Connection

c: Call a2: Address

p: Provider

t3: Terminal

t2: Terminal

t1: Terminala1: Address

c1: Connection
ct2: TerminalConnection

ct1: TerminalConnection

 30

ADLs like Acme or Wright, nor any of the diagrams in UML capture this kind of dy-
namic run-time view. Therefore, the representation of run-time views should remain at a
higher level than what Figure 21 attempts to capture, at least with respect to capturing the
system configuration.

Nevertheless, an essential part of the run-time view is to capture how the execution units
interact. For that, we often need to refer to finer grain units than those we can precisely
capture as components in the run-time view. In the next section we give an example of
how that can be achieved.

5.3.2 Interaction protocols

Figure 22 reproduces Figure 7 on page 16 of [JTAPI00]. It shows the same scenario as
captured in Figure 21, now from the perspective of the state transitions of the objects in-
volved in a two-way call. The time intervals on the vertical axis are of arbitrary length.
To the left of the diagram, the vertical lines labeled Terminal 1 and Address stand for the
objects representing the originating end of the call. To the right, the vertical lines labeled
Address and Terminal 2/Terminal 3 stand for the objects representing the receiving end
of the call. The horizontal lines between Call and Address, on either side, stand for the
state transitions of the Connection object representing the originating end (to the left) and
the receiving end (to the right). Likewise, the horizontal lines between Address and Ter-
minal, on either side, stand for the state transitions of the TerminalConnection objects
representing the originating end (to the left) and the receiving end (to the right). So, in
timeframe 1, both Connection objects are in the idle state. Then the originating side goes
to the connected state and the receiving side goes through the sequence of states: inpro-
gress, alerting, connected and finally, disconnected. Note that on the receiving side, in
timeframe 5, when one of the terminals, presumably Terminal 2, picks up the call, the
corresponding TerminalConnection goes to the active state while the other goes to the
passive state.

 31

Figure 22: Timing diagram for the connection of a two-way call

Now, in JavaPhone both the originating device and the receiving device build a represen-
tation of the call using instances of Call, Connection, etc., as above. Are both representa-
tions identical? If not, to which end of the call does the diagram in Figure 22 corre-
spond? The documentation provided by Sun is not clear about these questions.14

But more important than the misuse of a representation technique are the characteristics
of the technique itself: Figure 22 captures the state transitions of the objects involved in a
given computation, not the interactions that lead to those transitions. Often the latter per-
spective is more useful, especially in an object-oriented setting, where one object should
not depend on the representation of the internal state of another, but rather on the opera-
tions (interface) it supports.

Sun documents the permissible protocols of interaction between an application and
JavaPhone by supplying a sample code example. Figure 23 reproduces the main program
of the code example in pages 18-19 of [JTAPI00]. This code illustrates an application
that originates a phone call from address "4761111" to address "5551212” (these are just
example addresses). The sequence of interactions captured in Figure 24 was built by ex-
amining the code example: once the application has a reference to a provider object, it
obtains, from the provider, a reference to the Address object that represents the originat-
ing address. Then it calls the Address object to obtain a list of the terminals associated

14 We believe it corresponds to the receiving end of the call, since the representation is aware of the exis-
tence of two terminals associated to the called address. From the originating perspective, the representation
should not need to be aware of which, or even how many, terminals are associated with the called address
until one of them picks up the call and becomes, from the caller’s perspective, the answering terminal.

Connections
TerminalConnection

TerminalConnection

TerminalConnection

Connection States

TerminalConnection States

Call AddressAddressTerminal 1
Terminal 2
Terminal 3

1

2

3

4

5

6

T
im

e

ACTIVE CONNECTED

INPROGRESS

IDLEIDLE

ALERTING

CONNECTED

DISCONNECTEDDISCONNECTEDDROPPED DROPPED

DROPPED

ACTIVE

PASSIVE

RINGING

RINGING

 32

with the originating address and it picks one of them arbitrarily. Next, the application
asks the provider to create a Call object (which is created in the idle state). A new object
is created of an application-defined class (named Observer in this example) that imple-
ments the interface CallObserver. This object is registered as an observer of the newly
created Call object. Finally, the application asks the Call object to establish a connection
between the originating address, using the (in this case arbitrarily) picked terminal, and
the destination address (addr2). This request is directed to the Telephony Integration
Platform that feeds the progress on establishing the connection back to JavaPhone. Such
information is wrapped (by implementation-specific code within JavaPhone) as standard
JavaPhone events and feedback to all the registered observers of the Call object.

Figure 25 shows the sequence diagram corresponding to the code example for an applica-
tion that receives a phone call, in pages 21-22 of [JTAPI00]. First, the application calls
the Provider object to obtain a reference for the Terminal object that represents the termi-
nal to be monitored. That Terminal object supports a method that registers a (newly cre-
ated) call observer. Such a call observer receives events pertaining to calls directed to an
address associated with the monitored terminal. In the example, the Observer object re-
ceives a ringing event, signaling an incoming call. The Observer creates a TerminalCon-
nection object within a new thread and requests it to answer the call.15

Both Figure 24 and Figure 25 are sequence diagrams as defined by the UML and are ar-
guably more effective in illustrating one sequence of interactions than showing code
snippets. However, questions remain such as: Is the illustrated order of requests to
JavaPhone the only order permitted? Can the application interleave requests to other ser-
vices in JavaPhone? The representation techniques that are available in UML capture
only example scenarios of interaction – they are unable to express general rules for inter-
action protocols.

15 The documentation provided by Sun does not clarify the purpose of creating the TerminalConnection
object within a new thread, nor the consequences of not doing so.

 33

Figure 23: Coding example for outgoing telephone call

import javax.telephony.*;
import javax.telephony.events.*;

public static final void main(String args[]) {

/*
* Create a provider by first obtaining the default implementation of
* JTAPI and then the default provider of that implementation.
*/
Provider myprovider = null;
try {

JtapiPeer peer = JtapiPeerFactory.getJtapiPeer(null);
myprovider = peer.getProvider(null);

} catch (Exception excp) {
System.out.println("Can’t get Provider: " + excp.toString());
System.exit(0);

}

/*
* We need to get the appropriate objects associated with the
* originating side of the telephone call. We ask the Address for a list
* of Terminals on it and arbitrarily choose one.
*/
Address origaddr = null;
Terminal origterm = null;
try {

origaddr = myprovider.getAddress("4761111");

/* Just get some Terminal on this Address */
Terminal[] terminals = origaddr.getTerminals();
if (terminals == null) {

System.out.println("No Terminals on Address.");
System.exit(0);

}
origterm = terminals[0];

} catch (Exception excp) {
// Handle exceptions;

}

/*
* Create the telephone call object and add an observer.
*/
Call mycall = null;
try {

mycall = myprovider.createCall();
mycall.addObserver(new MyOutCallObserver());

} catch (Exception excp) {
// Handle exceptions

}

/*
* Place the telephone call.
*/
try {

Connection c[] = mycall.connect(origterm, origaddr, "5551212");
} catch (Exception excp) {

// Handle all Exceptions
}

}

 34

Figure 24: Application initiating a call between addresses addr1 and addr2

Figure 25: Application monitoring a terminal with id name

In contrast, consider the Wright ADL, which uses a variant of Hoare’s CSP to describe
the protocols that are supported by a connector [All97]. Figure 26 shows what a Wright
description of JavaPhone as a connector would look like. Note that we chose to structure
the interface that JavaPhone exposes to the application in such a way that it reflects
JavaPhone’s structure.16 Thus, we recognize the roles Provider, Address, Terminal, Call,
Connection and TerminalConnection corresponding to so many interfaces defined by
JavaPhone. Furthermore, since Wright associates a behavior description with each role,
we can capture the known rules for the behavior of each interface in JavaPhone. The de-
scription for the role Provider in Figure 26 is just an example: it allows the attached com-
ponent to choose among any of the available services with no constraints of sequencing.
The informal <...> is not part of the language and is used here to denote a piece of de-
scription that is not shown for brevity.

16 The same principle can be used when describing the architecture of a final system and not just an archi-
tectural framework that defines a collection of interfaces.

Application

obs: Observer impl
CallObserver

origin = getAddress(addr1)

[term] = getTerminals()

c = createCall()

addObserver(obs)

new

p: Provider origin: Address c: Call Telephony
Integration

Platform

connect(origin,term,addr2)

inProgress

alerting

connected

disconnected

Application

obs: Observer impl
CallObserver

dest = getTerminal(name)

addCallObserver(obs)

new

p: Provider dest: Terminal Telephony
Integration

Platform

ringing

tc: TerminalConnection
start thread

answer()

 35

Note also the definition of a role where the Telephony Integration Platform attaches,
TelephonyIntgrPlatform and an undetermined number of identical roles for call observ-
ers, defined using Wright’s parameterization mechanism. The “glue” defined for the
JavaPhone connector describes the rules for the joint behavior of all the roles (corre-
sponding to the interfaces exposed by JavaPhone) and thus defines the interaction proto-
cols supported by Javaphone.

Figure 26: Example of JavaPhone protocols in Wright

For the reader interested in the technical details, we note that the definition of the glue
process and its auxiliary definitions are parameterized with the set of call observers.17
This set is reduced of x after the application invokes Call.RemoveObserver(x). In the
auxiliary process definition that describes the behavior of JavaPhone while originating a
call, Originate{Obs}, we can recognize the same sequence of possible invocations that were
captured in Figure 24. After the invocation of Call.Connect, JavaPhone observes the

17 [SG99] contains an introduction to Wright that is sufficient to read through a specification like the one on
Figure 26.

Connector JavaPhone

Role Provider = getAddress �3URYLGHU
[] createCall �3URYLGHU
[] <...>

Role Address = <...>
Role Terminal = <...>
Role Call = <...>
Role Connection = <...>
Role TerminalConnection = <...>
Role Observer (x:CallObserver) = <...>
Role TelephonyIntgrPlatform = <...>

Glue{Obs} = Originate{Obs}

[] Receive{Obs}
[] Call.RemoveObserver(x) �Glue{Obs}-x

Where Originate{Obs} = Provider.getAddress

�$GGUHVV�JHW7HUPLQDOV
�3URYLGHU�FUHDWH&DOO
�&DOO�DGG2EVHUYHU�[�
�&DOO�FRQQHFW� �2EVHUYH2ULJ{Obs}+x

Where ObserveOrig{Obs}

= TelephonyIntgrPlatform.inProgress
� �[�2EV� �Observer(x).inProgress; ObserveOrig{Obs}

[] TelephonyIntgrPlatform.alerting
� �[�2EV� �Observer(x).alerting; ObserveOrig{Obs}

[] TelephonyIntgrPlatform.connected
� �[�2EV� �Observer(x).connected; ObserveOrig{Obs}

[] TelephonyIntgrPlatform.disconnected
� �[�2EV� �Observer(x).disconnected; Glue{Obs}

Where Receive{Obs} = <...>

 36

events originated in the Telephony Integration Platform, as described in the process defi-
nition ObserveOrig{Obs}. After recognizing an event in the role TelephonyIntegrPlatform,
the connector broadcasts the corresponding event to all registered observers: parallel trig-
gering of a self-initiated event (underlined) in every role Observer(x), for every x in the
set of registered observers.

So, what is the essential difference between a description like the one in Figure 26 and
the sequence diagrams in Figure 24 and Figure 25, or any collaboration diagrams we
might draw for the same scenario? The Wright specification does not define one example
scenario. Rather, it defines exactly which call sequences are permitted and which are not;
which permitted sequences can be interleaved and which cannot. Wright has precise se-
mantics and the tools that support it enable running the specification through other tools
like FDR [FDR92]. With FDR, we can explore the consequences of the specification,
checking if desired behaviors hold, making sure there are no circumstances where the in-
teraction protocols may deadlock.

We believe it is fine to use UML sequence diagrams or collaboration diagrams to repre-
sent typical or particularly important interaction sequences, and to use those representa-
tions for communication, especially during the early stages of development. However,
these representations could be improved significantly using a more precise specification
of the interactions, as argued above.

In the case studies that we have conducted so far, the limitations of architectural descrip-
tion as discussed with respect to Figure 21 were never a problem. As exemplified here,
we were able to describe the interactions of execution units that are smaller than the de-
fined components by capturing them as interacting structures inside the components and
connectors (ports, roles, auxiliary process definitions) and eventually using Wright
parameterization mechanisms to refer to some number of replicas of a given structure.

5.4 Deployment view

The deployment view adds infrastructure elements, both computing and communications,
to the run-time view. The vocabulary of the deployment view includes the components
and connectors identified in the run-time view: components now sit in computing struc-
tures and connectors that run across those structures are supported by communication
media. The formal aspect of the description of behaviors and interaction protocols fades
in this view, changing the focus of attention to the aspects related to analytical models.
The latter are now added of physical properties like speed of computation, bandwidth,
mean time between failures and available power. In heavily distributed applications, rea-
soning about the properties of topological alternatives may also be of interest.

The representation techniques that are commonly used for the deployment view are in-
formal and provide little support for analytical models. Given that the deployment view
adds to the run-time view, it seems important to keep a graphical consistency between the
two, e.g., components should be represented the same way, since they are the same. An
alternative is to build on top of whatever representation we choose for the run-time view,

 37

noting some of the components as being devices, and with the actual software compo-
nents represented as the formers internal structure.

The Acme ADL supports placeholders for noting the components and connectors with
attributes that can be used in the analytical models. Examples of the definition and use of
analytical models are found in [BCK98]. Standard work on UML also has good examples
of documenting this view, using UML deployment diagram notations [RJB98].

6 Summary and Future Work

In this report we have explored the needs for architectural documentation in the context
of a particular architectural framework: JavaPhone. The primary aim was to indicate that
it is possible to do a much better job of architectural description using notations that are
clearly described (both graphically and textually), separating concerns (into separate
views), and providing semantic guidelines for interpreting each documented view. We
also looked at ways of using UML to provide documentation for the views. In each case
we tried to point out the strengths, weaknesses, and pitfalls of using object notations like
UML to do this [RJB98]. Finally, we gave a flavor of two languages for architecture de-
scription that are more directly aimed at expressing architectural concerns (Acme and
Wright).

As a concluding comment, we should mention that many of these topics are closely re-
lated to on-going work at Carnegie Mellon’s Software Engineering Institute and also in
the School of Computer Science [Cle+01].

7 References

[AGI98] Robert Allen, David Garlan, and James Ivers, Formal Modeling and Analysis
of the HLA Component Integration Standard, Proceedings of the Sixth Intl.
Symposium on the Foundations of Software Engineering (FSE-6), Nov. 1998.

[All97] Robert Allen. A Formal Approach to Software Architecture. PhD thesis,
CMU, School of Computer Science, January 1997. CMU/SCS Report CMU-
CS-97-144.

[BCK98] Len Bass, Paul Clements and Rick Kazman, Software Architecture in Prac-
tice, Addison-Wesley, 1998.

[Cle+01] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Robert
Nord and Judy Stafford, Software Architecture Documentation in Practice, to
be published by Addison Wesley, 2001.

[FDR92] Failures Divergence Refinement: User Manual and Tutorial, 1.2fi. Formal
Systems (Europe) Ltd., Oxford, England, 1992.

 38

[GMW00] David Garlan, Robert T. Monroe and David Wile. Acme: Architectural De-
scription of Component-Based Systems, Foundations of Component-Based
Systems, pages 47-68. Cambridge University Press, Gary T. Leavens and Mu-
rali Sitaraman, editors, 2000.

[Jac+92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard,
Object-Oriented Software engineering: a Use Case Driven Approach, Addi-
son-Wesley, 1992.

[Jack95] Michael Jackson, Software Requirements & Specifications, Addison-Wesley,
1995.

[JPh00] Sun Microsystems, JavaPhoneTM API Specification, Version 1.0, March 22,
2000, http://web2.java.sun.com/products/javaphone/.

[JTAPI00] Sun Microsystems, Java Telephony API Specification, Version 1.0, March 22,
2000, http://web2.java.sun.com/products/javaphone/.

[Kruc95] Phillipe Kruchten, The 4+1 View Model of Architecture, IEEE Software, Vol.
12, No. 5, pages 42-50, November 1995.

[Ogu+00] Michael Ogush, Derek Coleman and Dorothea Beringer, A Template for
Documenting Software and Firmware Architectures, Hewlett-Packard,
http://www.architecture.external.hp.com/index.htm.�

[PJv00] Sun Microsystems, PersonalJavaTM Application Environment Specification,
http://web2.java.sun.com/products/personaljava/.

[RJB98] James Rumbaugh, Ivar Jacobson and Grady Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, 1998.

[SG95] Mary Shaw and David Garlan, Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall, 1996.

[SG99] João Pedro Sousa and David Garlan, Formal Modeling of the Enterprise
JavaBeansTM Component Integration Framework, Proceedings of FM’99 –
World Congress on Formal Methods in the Development of Software Systems.
Lecture Notes in Computer Science, vol. 1709, pages 1281-1300. Springer
Verlag, Wing, Woodcock and Davies, editors, 1999.�

[You+99] R. Youngs et al, A Standard for Architecture Description, IBM Systems Jour-
nal, Vol. 38 No. 1, 1999.

