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I. Introduction

Convexity plays a central role in a wide variety of machine learning and statistical inference prob-

lems. A standard paradigm is to distinguish a preferred member from a set of candidates based

upon a convex impurity measure or loss function tailored to the specific problem to be solved.

Examples include least squares regression, decision trees, boosting, online learning, maximum like-

lihood for exponential models, logistic regression, maximum entropy, and support vector machines.

Such problems can often be naturally cast as convex optimization problems involving a Bregman

distance, which can lead to new algorithms, analytical tools, and insights derived from the powerful

methods of convex analysis.

In this paper we formulate and prove a convex duality theorem for minimizing a general class

of Bregman distances subject to linear constraints. The duality result is then used to derive

iterative algorithms for solving the associated optimization problem. Our presentation is motivated

by the recent work of Collins, Schapire, and Singer (2001), who showed how certain boosting

algorithms and maximum likelihood logistic regression can be unified within the framework of

Bregman distances. In particular, specific instances of the results given here are used by Collins

et al. (2001) to show the convergence of a family iterative algorithms for minimizing the exponential

or logistic loss.

While invoking methods from convex analysis can unify and clarify the relationship between differ-

ent methods, the higher level of abstraction often comes at a price, since there can be considerable

technicalities. For example, in some treatments the assumptions on the convex functions that can

be used to define Bregman distances are very technical and difficult to verify. Here we trade off

generality for relative simplicity by working with a restricted class of Bregman distances, which

however includes many of the examples that arise in machine learning. Our treatment of duality

and auxiliary functions for Bregman distances closely parallels the results presented by Della Pietra

et al. (1997) for the Kullback-Leibler divergence. In particular, the statement and proof of the

duality theorem given in (Della Pietra et al., 1997) carries over with only a few changes to the class

of Bregman distances we consider.

Our approach differs from much of the literature in convex analysis in several ways. First, we work

primarily with the argument at which a convex conjugate takes on its value, rather than the value

of the function itself. The reason for this is that the argument corresponds to a statistical model,

which is the main object of interest in statistical or machine learning applications, while the value

corresponds to a likelihood or loss function. Second, while Bregman distances are typically defined

only on the interior of the domain of the underlying convex function, we assume that there is a

continuous extension to the entire domain. This makes it possible to formulate a very natural

duality theorem that also includes many cases required in practice, when the desired model may

lie on the boundary of the domain.

The following section recalls the standard definitions from convex analysis that will be required, and

presents the technical assumptions made on the class of Bregman distances that we work with. We

also introduce some new terminology, using the terms Legendre-Bregman conjugate and Legendre-

Bregman projection to extend the classical notion of the Legendre conjugate and transform to

Bregman distances. Section 3 contains the statement and proof of the duality theorem that connects

the primal problem with its dual, showing that the solution is characterized in geometrical terms
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by a Pythagorean equality. Section 4 defines the notion of an auxiliary function, which is used to

construct iterative algorithms for solving constrained optimization problems. This section shows

how convexity can be used to derive an auxiliary function for Bregman distances based on separable

functions. The last section summarizes the main results of the paper.

II. Bregman Distances and Legendre-Bregman Projections

In this section we begin by establishing our notation and recalling the relevant notions from convex

analysis that we require; the classic text (Rockafellar, 1970) remains one of the best references

for this material. We then define Bregman distances and their associated conjugate functions and

projections, and derive various relations between these that will be important in proving the duality

theorem. Next we state our assumptions on the underlying convex function that enable us to derive

these properties for the continous extension of the Bregman distance to the entire domain.

A. Notation and Basic Definitions

We will use notation that is suggestive of our main applications: rather than φ(x) we will write

φ(p) or φ(q), having in mind probability distributions p or q. A convex function φ : S ⊂ R
m −→

[−∞,+∞] is proper if there is no q∈S with φ(q) = −∞ and there is some q with φ(q) 6= ∞. The

effective domain of φ, denoted ∆φ, is the set of points where φ is finite: ∆φ = {q∈S | φ(q) <∞};

for brevity we usually refer to ∆φ as simply the domain of φ. A proper convex function is closed if

it is lower semi-continuous. The conjugate φ∗ of φ is given by

φ∗(v) = sup
q∈ S

(〈q, v〉 − φ(q)) (2.1)

A proper convex function φ is said to be essentially smooth or steep if it is differentiable on the

interior of its domain int(∆φ) 6= ∅, and if limn→∞ |∇φ(qn)| = +∞ whenever qn is a sequence in

int(∆φ) converging to a point on the boundary of int(∆φ). The function φ is said to be coercive in

case the level set {q∈S | φ(q) ≤ c} is bounded for every c∈R.

Definition 2.1. Let φ be a closed, convex and proper function defined on S ⊂ R
m, such that φ

is differentiable on int(∆φ) 6= ∅. The Bregman distance Dφ : ∆φ × int(∆φ) −→ [0,∞) is defined by

Dφ(p, q) = φ(p)− φ(q)− 〈∇φ(q), p− q〉 (2.2)

Bregman distance can be interpreted as a measure of the convexity of φ. This is easy to visualize

in the one-dimensional case: drawing a tangent line to the graph of φ at q, the Bregman distance

Dφ(p, q) is seen as the vertical distance between this line and the point φ(p).

Legendre functions are a very well behaved family of convex functions that will make working with

Bregman distances much easier.

Definition 2.2. A closed convex function φ is Legendre, or a convex function of Legendre type, in

case int(∆φ) is convex and φ is essentially smooth and strictly convex on int(∆φ).
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The primary properties that make working with Legendre functions convenient are summarized in

the following results quoted from (Rockafellar, 1970).

Proposition 2.3. (Rockafellar, 1970; Theorem 26.5) If φ is a convex function of Legendre type

then ∇φ : int(∆φ) −→ int(∆φ∗) is a bijection, continuous in both directions, and ∇φ∗ = (∇φ)−1.

Proposition 2.4. Suppose that φ is Legendre, and ψ is a proper closed, convex function that is

also essentially smooth. Then φ+ ψ is Legendre.

In particular, since for fixed q∈ int(∆φ) the mapping p 7−→ 〈∇φ(q), p− q〉 + φ(q) is affine linear,

the function p 7−→ Dφ(p, q) is Legendre with domain ∆φ, and with conjugate domain ∆φ∗−∇φ(q).

Definition 2.5. For φ a convex function of Legendre type we define the Legendre-Bregman con-

jugate `φ : int(∆φ)× R
m −→ R ∪ {∞} as

`φ(q, v) = sup
p∈∆φ

(〈v, p〉 −Dφ(p, q)) (2.3)

We define the Legendre-Bregman projection Lφ : int(∆φ)× R
m −→ ∆φ as

Lφ(q, v) = arg max
p∈∆φ

(〈v, p〉 −Dφ(p, q)) (2.4)

whenever this is well defined.

Let us explain our choice of terminology in the above definition, which is nonstandard. When h

is a convex function of Legendre type, the Legendre conjugate, as defined in (Rockafellar 1970;

Chapter 26), corresponds to the convex conjugate h∗. For fixed q, our definition of the Legendre-

Bregman conjugate is simply the classical Legendre conjugate for the convex function h(p) =

Dφ(p, q). Note that Rockafellar defines the Legendre transform as the mapping from the original

convex function (and domain) to its Legendre conjugate (and associated domain). The Legendre-

Bregman projection Lφ(q, v) is the actual argument at which the maximum is attained. As shown

by the following result, our use of the term “projection” accords with the standard terminology of

Bregman projections.

Proposition 2.6. Let φ be Legendre. Then for q∈ int(∆φ) and v ∈ int(∆φ∗) − ∇φ(q), the

Legendre-Bregman projection is given explicitly by

Lφ(q, v) = (∇φ∗) (∇φ(q) + v) (2.5)

Moreover, it can be written as a Bregman projection

Lφ(q, v) = arg min
p∈∆φ∩H

Dφ(p, q) (2.6)

for the hyperplane H = {p∈R
m | 〈p, v〉 = b} with b = 〈Lφ(q, v), v〉.
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Proof. To prove the first statement, note that a stationary point p∗ of 〈p, v〉 −Dφ(p, q) must

satisfy:

∇φ(p∗) = ∇φ(q) + v (2.7)

Since φ is Legendre, for ∇φ(q) + v ∈ int(∆φ∗), we then have that

p∗ = (∇φ)−1(∇φ(q) + v) (2.8)

= (∇φ∗)(∇φ(q) + v) (2.9)

using the fact that (∇φ)−1 is well defined and equal to ∇φ∗ from Proposition 2.3. The second

statement follows from, for example, the results in Section 2.2 of Censor and Zenios (1997) on

projections onto hyperplanes, noting that every Legendre function is zone consistent.
�

In our formulation of the duality theorem, it is the Legendre-Bregman projection Lφ(q, v) rather

than the conjugate function `φ(q, v) that plays a central role, leading to a natural and simple

statement of convex duality for Bregman distances. This projection corresponds to a statistical

model, which is the primary object of interest for machine learning problems.

B. Basic Relations

We now derive some basic algebraic relations between Dφ, Lφ, and `φ. These relations will be

important in establishing the geometrical aspects of the duality theorem, as well as for deriving

auxiliary functions. In order to free us from having to specify the domain of `φ and Lφ, we will in

the following assume that ∆φ∗ = R
m.

Proposition 2.7. Let φ be Legendre, with ∆φ∗ = R
m. For fixed p∈∆φ, Dφ(p,Lφ(q, v)) is con-

tinuous in q∈ int(∆φ) and convex in v. Together, the Legendre-Bregman conjugate and projection

satisfy

Dφ(p, q)−Dφ(p,Lφ(q, v)) = 〈v, p〉 − `φ(q, v) (2.10)

= D(Lφ(q, v), q) + 〈v, p−Lφ(q, v)〉 (2.11)

for all p∈∆φ, q∈ int(∆φ) and v ∈R
m.

Proof. Using the definition of Bregman distance and Proposition 2.6, we have for q∈ int(∆φ)

that

Dφ(p, q)−Dφ(p,Lφ(q , v))

= φ(Lφ(q , v))− φ(q) + 〈∇φ(Lφ(q , v)), p−Lφ(q , v)〉 − 〈∇φ(q), p− q〉 (2.12)

= φ(Lφ(q , v))− φ(q) + 〈∇φ(q) + v, p−Lφ(q , v)〉 − 〈∇φ(q), p− q〉 (2.13)

= 〈v, p〉 − 〈v,Lφ(q , v)〉+ φ(Lφ(q , v))− φ(q)− 〈∇φ(q),Lφ(q , v)− q〉 (2.14)

= 〈v, p〉 − 〈v,Lφ(q , v)〉+Dφ(Lφ(q , v), q) (2.15)

= 〈v, p〉 − `φ(q, v) (2.16)
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Therefore (2.10) holds for p∈∆φ and q∈ int(∆φ). From the definition of the Legendre-Bregman

conjugate we have for q∈ int(∆φ), that

`φ(q, v) = 〈v,Lφ(q , v)〉 −Dφ(Lφ(q , v), q) (2.17)

Equation (2.24) results from combining this with (2.10). The convexity of Dφ(p,Lφ(q, v)) in v

follows from (2.10), which expresses Dφ(p,Lφ(q, v)) as a sum of the convex functions `φ(q, v) and

Dφ(p, q)− 〈v, p〉.
�

The next result shows how Dφ(p,Lφ(q, v)) varies with v, and will be an important ingredient in

the duality result of the next section.

Proposition 2.8. Let φ be Legendre, with p∈∆φ and q∈ int(∆φ). Then for v∈R
m, the mapping

t 7→ Dφ(p,Lφ(q, tv)) is differentiable at t = 0, with derivative

d

dt

∣

∣

∣

∣

t=0

Dφ(p ,Lφ(q, tv)) = 〈v, q〉 − 〈v, p〉 . (2.18)

Proof. Since φ is Legendre, if q∈ int(∆φ) then Lφ(q, tv)∈ int(∆φ); see for example Theorem

3.12 of (Bauschke & Borwein, 1997). From Proposition 2.7 we have that

d

dt

∣

∣

∣

∣

t=0

Dφ(p ,Lφ(q, tv)) =
d

dt

∣

∣

∣

∣

t=0

(〈tv,Lφ(q, tv)〉 − 〈tv, p〉+Dφ(Lφ(q, tv), q)) (2.19)

= 〈v, q〉 − 〈v, p〉+
d

dt

∣

∣

∣

∣

t=0

φ(Lφ(q, tv))− 〈∇φ(q),
d

dt

∣

∣

∣

∣

t=0

Lφ(q, tv)〉 (2.20)

= 〈v, q〉 − 〈v, p〉 (2.21)

which proves the result for p∈∆φ and q∈ int(∆φ).
�

C. The Continuous Extension

The results above are given in terms of the Bregman distance using its standard definition as a

function on ∆φ× int(∆φ). We now make assumptions that allow us to work with Dφ as an extended

real-valued function on ∆φ ×∆φ. This enables us to formlate a very natural and general duality

result, presented in the following section.

Informally, we assume that Dφ extends continously from ∆φ × int(∆φ) to ∆φ ×∆φ, and that Lφ

extends continously from int(∆φ)×R
m to ∆φ×R

m. In addition, we require a form of compactness

to guarantee the existence of certain minimizers. As before, in order to simplify the presentation

we assume that the range of ∇φ is all of R
m.
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Thus, we make the following assumptions on φ:

A1. φ is of Legendre type;

A2. ∆φ∗ = R
m;

A3. Dφ extends to a function Dφ : ∆φ ×∆φ −→ [0,∞] such that Dφ(p, q) is jointly continuous in

p and q, and satisfies Dφ(p, q) = 0 if and only if p = q.

A4. Lφ extends to a function Lφ : ∆φ × R
m → ∆φ such that Lφ(q, v) is jointly continuous in q

and v, and satisfies Lφ(q, 0) = q.

A5. Dφ(p, ·) is coercive for every p∈∆φ\int(∆φ);

Note that since for a Legendre function ∇φ is continous on int(∆φ) (Proposition 2.3), it follows

from Definition 2.1 that Dφ(p, q) is jointly continous on ∆φ × int(∆φ) and from Proposition 2.6

that Lφ(q, v) is jointly continous on int(∆φ)× R
m. We also note that since we assume ∆φ∗ = R

m,

Dφ(p, ·) is automatically coercive for p∈ int(∆φ). Together, conditions A1–A5 imply that φ is a

Bregman-Legendre function as defined by Bauschke and Borwein (1997).

Now, from the definition of the Legendre-Bregman conjugate we have

`φ(q, v) = 〈v,Lφ(q, v)〉 −Dφ(Lφ(q, v), q) (2.22)

for q∈ int(∆φ). Properties A4 and A5 allow us to define `φ : ∆φ × R
m −→ R as the continuous

extension of `φ : int(∆φ) × R
m −→ R, satisfying the same identity. Thus, the Legendre-Bregman

conjugate `φ(q, v) is continuous in q, continuous and convex in v, and satisfies `φ(q, 0) = 0.

Proposition 2.7 now generalizes to the continuous extension.

Proposition 2.9. Let φ satisfy A1–A4. For fixed p∈∆φ, Dφ(p,Lφ(q, v)) is continuous in q and

convex in v. Together, the Legendre-Bregman conjugate and projection satisfy

Dφ(p, q)−Dφ(p,Lφ(q, v)) = 〈v, p〉 − `φ(q, v) (2.23)

= D(Lφ(q, v), q) + 〈v, p−Lφ(q, v)〉 (2.24)

for all p, q ∈∆φ and v ∈R
m.

Proof. This follows directly from the joint continuity of Dφ, Lφ, and `φ.
�

The differential identity in Proposition 2.8 also extends.

Proposition 2.10. Let φ satisfy A1–A4, and let p, q∈∆φ with Dφ(p, q) <∞. Then for v ∈R
m,

the mapping t 7→ Dφ(p,Lφ(q, tv)) is differentiable at t = 0, with derivative

d

dt

∣

∣

∣

∣

t=0

Dφ(p ,Lφ(q, tv)) = 〈v, q〉 − 〈v, p〉 . (2.25)
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Proof. Let q∈ int(∆φ). From Proposition 2.8 we know that

d

dt

∣

∣

∣

∣

t=0

Dφ(p ,Lφ(q, tv)) = 〈v, q〉 − 〈v, p〉 (2.26)

Thus, since Lφ(q, (t+ s)v) = Lφ(Lφ(q, tv), sv), we also have that

d

dt
D(p,Lφ(q, tv)) = 〈v,Lφ(q, tv)〉 − 〈v, p〉 (2.27)

To show that the result holds when q∈∆φ\int(∆φ), we’ll use a fact from elementary analysis: if

fn → f , and f ′n is continuous with f ′n(t) → g(t) uniformly for t∈ [a, b], then g is continous and

f ′(t) = g(t). First, let q ∈ int(∆φ) and p /∈ int(∆φ). Suppose pn ∈ int(∆φ) with pn → p. Since

Lφ(q, tv)∈ int(∆φ), we have from the above calculation that

d

dt
D(pn,Lφ(q, tv)) = 〈v,Lφ(q, tv)〉 − 〈v, pn〉 −→ 〈v,Lφ(q, tv)〉 − 〈v, p〉 (2.28)

where the convergence is uniform on every interval [a, b] around zero; property (2.25) follows.

Now suppose that p∈∆φ, q∈∆φ\int(∆φ), and qn ∈ int(∆φ) with qn → q. Because Lφ(q, v) is

jointly continous in q and v, it is uniformly continuous on every compact set of (q, v). In particular,

〈v,Lφ(qn, tv)〉−〈v, p〉 converges uniformly in t to 〈v,Lφ(q, tv)〉−〈v, p〉 on every interval [a, b]. Thus

property (2.25) holds for all p, q∈∆φ.
�

Proposition 2.9 and 2.10 are the main computations that we will require in the following section.

III. Duality

In this section we derive the main duality result. The setup is that we have a set of features

f (j) ∈R
m, j = 1, 2, . . . , n and denote by F the m × n matrix with columns given by the f (j).

These features correspond to the “weak learners” in boosting, or to the sufficient statistics in an

exponential model. The primal problem constrains the values
〈

p, f (j)
〉

, and these constraints carry

over to Lagrange multipliers in a family of Legendre-Bregman projections L(q, Fλ) in the dual

problem.

Definition 3.1. For a given element p0 ∈∆φ, the feasible set for p0 and F is defined by

P(p0, F ) =
{

p∈∆φ | 〈p, f (j)〉 = 〈p0, f
(j)〉, j = 1, . . . n

}

(3.1)

For a given q0 ∈∆φ, the Legendre-Bregman projection family for q0 and F is defined by

Q(q0, F ) = {q∈∆φ | q = Lφ(q0, Fλ) for some λ∈R
n} (3.2)

Trivially, both sets are non-empty since p0 ∈P(p0, F ) and q0 ∈Q(q0, F ). Since p0, q0, and F will

be fixed, we will use abbreviated notation and refer to these sets as P and Q. We use Q to denote

the closure of Q(q0, F ) as a subset of R
m. Duality relates the projection onto P to the projection

onto Q .
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Proposition 3.2. Let φ satisfy A1–A5, and suppose that p0, q0 ∈∆φ with Dφ(p0, q0) <∞. Then

there exists a unique q? ∈∆φ satisfying the following four properties:

(1) q? ∈P ∩Q

(2) Dφ(p, q) = Dφ(p, q?) +Dφ(q?, q) for any p∈P and q∈Q

(3) q? = arg min
p∈ P

Dφ(p, q0)

(4) q? = arg min
q∈Q

Dφ(p0, q)

Moreover, any one of these four properties determines q? uniquely.

In order to prove Proposition 3.2, we first prove two lemmas. The first shows that there is at least

one member in common between P and Q ; the second shows that the Pythagorean equality (2)

holds for any such member.

Lemma 3.3. If Dφ(p0, q0) <∞ then P ∩Q is nonempty.

Proof. Note that sinceDφ(p0, q0) <∞, Dφ(p0, q) is not identically ∞ onQ . Also, the mapping

λ 7→ Dφ(p0,Lφ(q0, Fλ)) is continuous and convex. Let R be the level set

R = {q∈∆φ | Dφ(p0, q) ≤ D(p0, q0)} (3.3)

We know from Assumption A5 that R is bounded. Thus Dφ(p0, q) attains its minimum at a (not

necessarily unique) point q? ∈Q ∩R ⊂ Q . We will show that q? is also in P.

Let q∈Q , and let µj ∈R
n be such that q = limj→∞Lφ(q0, Fµj). Then by the continuity of Lφ(·, ·),

Lφ(q, Fλ) = lim
j→∞

Lφ(Lφ(q0, Fµj), Fλ) (3.4)

= lim
j→∞

Lφ(q0, F (µj + λ)) ∈ Q (3.5)

Thus Q is closed under the mapping q 7→ Lφ(q, Fλ) for λ∈R
m, and Lφ(q?, Fλ) is in Q for any λ.

By the definition of q?, it follows that λ = 0 is a minimum of the function λ 7→ Dφ(p0,Lφ(q?, Fλ)).

Taking derivatives with respect to λ and using Proposition 2.10 we conclude that 〈q?, f〉 = 〈p0, f〉;

thus q? ∈P.
�

Lemma 3.4. If q? ∈P ∩Q then the Pythagorean equality Dφ(p , q ) = Dφ(p , q?)+Dφ(q?, q ) holds

for any p ∈P and q ∈Q .

Proof. Suppose that p 1, p2, q 1, q 2 ∈∆φ with q 2 = Lφ(q 1, Fλ). From Proposition 2.9 we have

that

Dφ(p1, q 1)−Dφ(p1, q 2) = 〈p1, Fλ〉 − `φ(p1, Fλ) (3.6)
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and similarly

Dφ(p2, q 1)−Dφ(p2, q 2) = 〈p2, Fλ〉 − `φ(p2, Fλ) (3.7)

Therefore,

Dφ(p1, q 1)−Dφ(p1, q 2)−Dφ(p2, q 1) +Dφ(p2, q 2) = 〈p1, Fλ〉 − 〈p 2, Fλ〉 (3.8)

=
n

∑

j=1

λj

(

〈p1, f
(j)〉 − 〈p2, f

(j)〉
)

It follows from this identity and the continuity of Dφ that

Dφ(p1, q 1)−Dφ(p1, q 2)−Dφ(p2, q 1) +Dφ(p2, q 2) = 0 (3.9)

if p1, p2 ∈P and q 1, q 2 ∈Q . The lemma follows by taking p 1 = q 1 = q?.
�

Proof of Proposition 3.2. Choose q? to be any point in P∩Q . Such a q? exists by Lemma 3.3.

It satisfies property (1) by definition, and it satisfies property (2) by Lemma 3.4. As a consequence

of property (2), it also satisfies properties (3) and (4). To check property (3), note that if q is any

point in Q , then Dφ(p0, q ) = Dφ(p0, q?)+Dφ(q?, q ) ≥ Dφ(p0, q?). Similarly, property (4) must hold

since if p is any point in P, then Dφ(p , q0) = Dφ(p , q?) +Dφ(q?, q0) ≥ D(q?, q0) .

It remains to prove that each of the four properties (1)–(4) determines q? uniquely. In other words,

we need to show that if m is a point in ∆φ satisfying any of the four properties (1)–(4), then

m = q?. Suppose that m satisfies property (1). Then property (2) with p = q = m implies that

Dφ(m,m) = Dφ(m, q?)+Dφ(q?,m). Since Dφ(m,m) = 0, it follows that Dφ(m, q?) = 0 so m = q?.

If m satisfies property (2), then the same argument with q? and m reversed proves that m = q?.

Suppose that m satisfies property (3). Then

Dφ(p0, q?) ≥ Dφ(p0,m) = Dφ(p0, q?) +Dφ(q?,m) (3.10)

where the second equality follows from property (2) for q?. Thus Dφ(q?,m) ≤ 0 so m = q?. If m

satisfies property (4), then

Dφ(q?, q0) ≥ Dφ(m, q0) = Dφ(m, q?) +Dφ(q?, q0) (3.11)

showing once again that m = q?.
�

In the following section we outline the auxilary function method for building iterative algorithms to

compute q?, and show how to use convexity to derive an auxiliary function for separable Bregman

distances.

IV. Auxiliary Functions

The auxiliary function approach is conceptually simple: bound the change in Bregman distance

from below using a function that is easy to compute and that decouples the constraints. Maximizing

9



this auxiliary function we obtain new parameters λ′ = λ+ ∆λ and a new model qλ+∆λ given by

qλ+∆λ = Lφ(qλ, F∆λ) (4.1)

= Lφ(Lφ(q0, Fλ), F∆λ) (4.2)

= Lφ(q0, F (λ+ ∆λ)) (4.3)

We then use the duality theorem to show that when ∆λ = 0, we must have that q = q?.

The strategy is very similar to EM. In an EM algorithm, the Q-function Q(λ′, λ) is computed as a

lower bound to the change in log-likelihood:

∑

x

p0(x) log
q (x |λ′)

q (x |λ)
=

∑

x

p0(x) log

∑

h q (x, h |λ′)

q (x |λ)
(4.4)

=
∑

x

p0(x) log
∑

h

q (h |x, λ)
q (x, h |λ′)

q (x, h |λ)
(4.5)

≥
∑

h

q (h |x, λ) log
q (x, h |λ′)

q (x, h |λ)
(4.6)

def

= Q(λ′, λ) (4.7)

where (x, h) is the complete data, x is the incomplete data, and the inequality follows from the

concavity of the logarithm. After computing Q in the E-step, it is then maximized over λ ′ in the

M-step.

In the same way, for Bregman distances the aim is to derive an auxiliary function A(λ ′, λ) whose

calculation can be carried out efficiently in something like an E-step, and such that it can be easily

maximized over λ′ in an M-step. However, just as for EM, this is a general strategy more than it is

a precise algorithm. A particular Bregman distance problem may require some ingenuity in order

to come up with an appropriate auxiliary function.

This is the general motivation behind the following two definitions.

Definition 4.1. A function A : ∆φ ×R
n −→ R is called an auxiliary function for p0 and F in case

1. A(q , λ) is continuous in q and A(q , 0) = 0

2. Dφ(p0, q )−Dφ(p0,Lφ(q , Fλ)) ≥ A(q , λ)

3. If λ = 0 is a maximum of A(q , λ), then
〈

q , f (j)
〉

=
〈

p0, f
(j)

〉

for j = 1, . . . , n.

Definition 4.2. Let A be an auxiliary function and q0 ∈∆φ. The update sequence for q0 with

respect to A is defined by q (0) = q0 and

q (t+1) def

= Lφ(q (t), Fλ(t)) where λ(t) = arg maxλA(q (t), λ) (4.8)

The reason for defining auxiliary functions in this way is the following result, which can be proved

in a similar way to Proposition 5 in (Della Pietra et al., 1997) or Lemma 2 in (Collins et al., 2001).

The compactness assumption will in general follow from coercivity in Assumption A5.
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Proposition 4.3. Suppose that the sequence q (t) lies in a compact set. Then

lim
t→∞

q (t) = arg min
q ∈Q

Dφ(p0, q ) (4.9)

As we now explain, auxiliary functions can be conveniently constructed by using the relation

Dφ(p , q )−Dφ(p ,Lφ(q , v)) = 〈p , v〉 − `φ(q , v) (4.10)

from Proposition 2.9 and exploiting the convexity of `φ(q , v). For simplicity, we will assume that

φ is separable, so that φ(p) =
∑

i φi(pi) with each φi : R → R satisfying properties A1–A5 (with

m = 1). Auxiliary functions in the general case can be derived using similar arguments. For the

separable case, clearly

Dφ(p , q ) =

m
∑

i=1

Dφi
(p i, q i) (4.11)

`φ(q , v) =
m

∑

i=1

`φi
(qi, vi) (4.12)

where `φi
(q, v) = supp∈∆φi

(pv −Dφi
(p, q)) is the Legendre-Bregman conjugate of φi.

Proposition 4.4. For each i = 1, . . . ,m, select Ni so that
∑n

j=1 |f
(j)
i | ≤ Ni, and set sij =

sign(f
(j)
i ). Then

A(q, λ)
def

=
n

∑

j=1

λj

〈

p0, f
(j)

〉

−
m

∑

i=1

1

Ni

n
∑

j=1

|f
(j)
i | `φi

(qi, sijNiλj) (4.13)

is an auxiliary function for p0 and F , and the corresponding update scheme is given by

q(t+1) = Lφ(q (t), Fλ(t)) (4.14)

where λ
(t)
j satisfies

m
∑

i=1

f
(j)
i Lφi

(q
(t)
i , sijNiλj) =

〈

p0, f
(j)

〉

(4.15)

The idea of factoring out the signs sij is taken from Collins et al. (2001). If we take Ni = 1 for

all i we obtain the algorithms presented in that paper. If we take Ni =
∑

j |f
(j)
i | then we obtain

algorithms analogous to the IIS algorithm of Della Pietra et al. (1997).

Proof. We verify that the function defined in (4.13) satifies the three properties of Defini-

tion 4.1. Property (1) of the definition holds since `φi
(qi, 0) = 0. Property (2) follows from the

convexity of `φi
. In particular, we have the inequality

`φ(q , Fλ) =

m
∑

i=1

`φi
(qi, (Fλ)i) (4.16)
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=
m

∑

i=1

`φi
(qi,

n
∑

j=1

sij|Fij |λj) (4.17)

≤
m

∑

i=1





n
∑

j=1

|Fij |

Ni

`φi
(qi, sijNiλj) +



1−
n

∑

j=1

|Fij |

Ni



 `φi
(qi, 0)



 (4.18)

=
m

∑

i=1

n
∑

j=1

|Fij |

Ni

`φi
(qi, sijNiλj) (4.19)

which together with Proposition 2.9 says that

Dφ(p , q ) −Dφ(p ,Lφ(q , Fλ)) ≥
n

∑

j=1

λj

〈

p , f (j)
〉

−
m

∑

i=1

n
∑

j=1

|Fij |

Ni

`φi
(qi, sijNiλj) (4.20)

Now, using Propositions 2.9 and 2.10, it can be shown that

∂

∂v
`φi

(qi, v) = Lφi
(qi, v) (4.21)

which shows that (4.15) is the correct update. Therefore, at a maximum λ∗ of A(q, λ) we have that

〈

p0, f
(j)

〉

=
m

∑

i=1

f
(j)
i Lφi

(qi, sijNiλ
∗
j ) for each j (4.22)

If λ∗ = 0, then

〈

p0, f
(j)

〉

=

m
∑

i=1

f
(j)
i Lφi

(qi, 0) =
〈

q, f (j)
〉

(4.23)

showing that Property (3) holds. Thus (4.13) defines an auxiliary function.
�

While the auxiliary function (4.13) looks a bit messy, both the “E-step” and “M-step” for this type

of auxiliary function are generally quite practical and easy to implement.

V. Conclusion

This paper has presented a convex duality theorem for constrained optimization using Bregman

distances. The main result, Proposition 3.2, differs from results presented in the convex analysis

literature in that the Bregman distance is defined on the entire essential domain, rather than only

on the interior. This generality is needed in many applications. Though the assumptions A1–A5

that we make on the underlying convex function are fairly restrictive, it may well be possible to

relax these assumptions to cover a broader class of examples. In particular, assumption A2, which

states that the conjugate domain is all of R
m, may not be essential in our approach.

The auxiliary function technique presented in Section 4 is a general and practical method for

deriving algorithms for solving the dual problem. Although the specific auxiliary function we

derive assumes the Bregman distance is separable, similar arguments can be used for non-separable
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Bregman distances. The analysis given here makes clear the role of convexity, as the bounds are

derived using only the properties of the underlying Legendre-Bregman conjugate.
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