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Abstract

In this thesis we investigate methods for speeding up automatic control

algorithms. Specifically, we provide new abstraction techniques for Reinforce-

ment Learning and Semi-Markov Decision Processes (SMDPs). We introduce

the use of policies as temporally abstract actions. This is different from pre-

vious definitions of temporally abstract actions as we do not have termination

criteria. We provide an approach for processing previously solved problems

to extract these policies. We also contribute a method for using supplied or

extracted policies to guide and speed up problem solving of new problems.

We treat extracting policies as a supervised learning task and introduce the

Lumberjack algorithm that extracts repeated sub-structure within a decision

tree. We then introduce the TTree algorithm that combines state and temporal

abstraction to increase problem solving speed on new problems. TTree solves

SMDPs by using both user and machine supplied policies as temporally ab-

stract actions while generating its own tree based abstract state representation.

By combining state and temporal abstraction in this way, TTree is the only

known SMDP algorithm that is able to ignore irrelevant or harmful subregions

within a supplied abstract action while still making use of other parts of the

abstract action.
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Chapter 1

Introduction

There is an important class of control problems known to computer scientists asReinforce-

ment Learning(RL) tasks (Sutton and Barto, 1998; Watkins and Dayan, 1992; Kaelbling

et al., 1996). This class of tasks is flexible enough to contain a wide range of challenges for

robotics. Examples of challenges that can be formulated as reinforcement learning tasks

include a robot learning to walk, automatic piloting of a helicopter, games such as Pente

and the Towers of Hanoi, and warehouse scheduling.

In reinforcement learning tasks we assume that an agent starts with very little knowl-

edge of its environment. It knows neither the dynamics of the world, nor a reward structure

for its actions. The agent discovers the dynamics and reward structure through experimen-

tation. It performs actions in the world and observes both the results of the actions and the

reward it gets for the actions. The agent’s goal is to learn which actions to perform such

that it maximizes the reward it receives over time.

One important formalism for reinforcement learning is the Semi-Markov Decision Pro-

cess (SMDP). Defined more completely in Chapter 2, this is a formal description of one

way to specify a set of world dynamics and a reward structure. The world is assumed to be

a form of stochastic state machine with the agent having some control over the transition

probabilities. With this formalism the Reinforcement Learning problem can be broken into

two problems. The first is to learn a model of the world as an SMDP. The second is to use

the SMDP model of the world to discover a policy that maximizes the agent’s reward. A

policyspecifies which action is performed in each world state.

Often the number of discrete states of the world is very large, and this can make finding

a policy difficult. In particular, often the state of the world is specified in terms of state

1



2 CHAPTER 1. INTRODUCTION

variables and the number of individual world states is exponential in the number of state

variables. If we need to consider each state separately in the policy, for example if we

are representing the policy using a large table, then we need to do an exponential amount

of work in the number of state variables and this is slow. To speed things up, we exploit

structure in the policy.

We focus in this thesis on structure related to temporal abstraction – sequences of ac-

tions that are repeated within and between problem solutions. In the process of achieving

their goals, most agents have to repeat similar subtasks multiple times. If the methods of

performing these subtasks can be stored and re-used when needed, then the work of finding

how to perform a subtask only has to be done once.

As actions cause the agent to move through the world, temporal patterns in the actions

of an agent become spatial patterns in the policy. We discover these patterns by looking for

substructure repetition within a tree representation of the policy. We use syntactic matching

within policies to recognize the repeated action sequences that are formed when solving a

subtask multiple times.

Since finding these repeated patterns within a policyas you are learning itis a difficult

problem, the approach we use in this thesis is to look within previously learned policies.

For example, assume we have a series of similar problems to solve. We solve the first

problem in the series using standard techniques without any information from prior tasks.

Having solved this problem, we can now process the policy we have found, to look for

repeated substructure. If a structure is found repeatedly in the solution to one problem then

it is likely that it appears in the solution to other problems. Having found these repeated

problem pieces, we then use them to help solve further problems.

Let us look at a more concrete example. Imagine we have a robot, Robbie, with two

legs; a left leg and a right leg. With a few restrictions, each of these legs can be raised and

lowered one unit, and the raised foot can be moved one unit in each of the four compass

directions: north, south, east and west. The legs are restricted in movement so that they are

not both in the air at the same time. They are also restricted to not be diagonally separated,

e.g., the right leg can be either east or north of the left leg, but it cannot be both east and

north of the left leg.

More formally, we represent the position of the robot using the two dimensional coor-

dinates of the right foot,〈x, y〉. We then represent the pose of the robot’s legs by storing

the three dimensional position of the left foot relative to the right foot,〈∆x, ∆y, ∆z〉. We

represent East on the+x axis, North on the+y axis and up on the+z axis. The formal
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restrictions on movement are that∆x and∆y cannot both be non-zero at the same time

and that each of∆x, ∆y and∆z are in the set{−1, 0, 1}. Consider some example leg

poses; if both feet are on the ground with the left foot to the north of the right foot, then

the pose of the legs would be represented by the tuple〈0, 1, 0〉. 〈0,−1, 0〉 represents the

left foot being south of the right foot. If the legs are together, but the right foot is raised,

we would represent that as〈0, 0,−1〉. If that raised right foot were moved north, then the

robot is considered to have moved north one square, and the left foot has moved one unit

south relative to the right foot. The resulting pose of the legs is〈0,−1,−1〉.

To help get a feel for this domain, let us consider a ‘simple’ policy. Table 1.1 shows

a policy for walking north starting with both feet together on the ground. We only show

the∆z-∆y plane as that is all that is needed when you start with your feet together. This

policy is ‘simple’ in that it completely ignores the global location of the robot and any maze

it might be in; it just walks north in an open area. Notice that even this ‘simple’ policy is

not trivial. Also note that the state space for Robbie is simpler than that used by real legged

robots;e.g.the Sony AIBO robot requires three joint angles to be specified for each of four

legs and ‘simple’ policies like walking are even more complex for this style of robot.

Now let us see how the approach taken in this thesis applies to Robbie solving the

series of problems shown in Figure 1.1. Each problem is a maze, and Robbie’s goal in each

problem is to walk through the maze to reach the grey square. The walls limit Robbie’s

ability to move his legs – any action that would cause Robbie to end up with his feet on

either side of a wall fails, and gives Robbie a small negative reward.

The first problem, shown in Figure 1.1a, is solved without the benefit of any information

from prior tasks. A simplified representation of Robbie’s solution to the first problem is

shown in Figure 1.2a. The solution shown has been simplified by abstracting away the

details of the walking motion and just leaving the direction Robbie walks in each part

of the maze. In the full policy, each area where Robbie walks north contains a piece of

policy as complex as the policy shown in Table 1.1. Walking in other directions is similarly

complex. Now let us consider solving the second problem under two scenarios. In the first

scenario, Robbie solves the problem in Figure 1.1b the traditional way, without the benefit

of any information from prior tasks. In the second scenario, Robbie processes the solution

to the first task and uses the information learned to help solve the second task. In either

case, the final policy learned is that shown in Figure 1.2b.

In the first case, Robbie has to learn the policy shown in Figure 1.2b from scratch.

This means that Robbie has to learn to walk north again. Moreover, as there is no transfer
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if ∆z = 0 then {both feet on the ground}
if ∆y > 0 then {left foot north of right foot}

raise the right foot

else

raise the left foot

end if

else if∆z = 1 then {the left foot is in the air}
if ∆y > 0 then {left foot north of right foot}

lower the left foot

else

move the raised foot north one unit

end if

else{the right foot is in the air}
if ∆y < 0 then {right foot north of left foot}

lower the right foot

else

move the raised foot north one unit

end if

end if

+z

+y

(a) (b)

Table 1.1: The policy for walking north when starting with both feet together. (a) Shows

the policy in tree form, (b) shows the policy in diagram form. Note: only the∆z-∆y plane

of the policy is shown as that is all that is required when starting to walk with your feet

together.
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(a) (b)

Figure 1.1: A pair of example mazes for our robot. The robots’s goal in each maze is to

reach the grey patch.

(a) (b)

Figure 1.2: The abstract policies Robbie finds for the mazes in Figure 1.1. Only the two

dimensions of the state space that describe Robbie’s global location are shown for each

maze. The other dimensions are abstracted into a direction robbie must walk. In full detail,

each region marked contains a sub-policy at least as complex as the one shown in Table 1.1.

(a) The solution to the maze shown in Figure 1.1a. (b) The solution to the maze shown in

Figure 1.1b.
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(a) (b) (c)

Figure 1.3: Three policies extracted from Figure 1.2a. As in Figure 1.2, only the〈x, y〉
plane is shown. When abstracted to just this plane these policies are degenerate – they are

uniform over〈x, y〉 plane. (a) The policy for walking north. (b) The policy for walking

south. (c) The policy for walking east. Non-abstract representations of these policies are

not degenerate, and are shown in Tables 1.1 and 1.2.

between subtasks within a problem, Robbie has to learn to walk north eight times while

solving this maze. Additionally, he has to learn to walk south, east and west seven times

each. Remember that learning each of these walking subtasks is a nontrivial amount of

work.

In the second case, using the approach proposed in this thesis, Robbie does not attack

the problem directly. Robbie first processes his solution to the first problem looking for

non-trivial repeated sub-policies within that policy (Robbie’s solution to the first problem

is shown in Figure 1.2a). The repeated sub-policies are extracted from their locations in

the old policy and generalized to cover the entire state space. The result is a set of policies;

functions that return an action to perform for every state. The three policies we would

expect to be extracted from Robbie’s solution to the first problem are shown in Figure 1.3.

These are the policies for walking north, south and east. We would not expect to generate

a policy for walking west, as there is no example of this in the original policy.

Now Robbie can start solving his second problem using knowledge extracted from the

first problem. Robbie no longer has to learn to walk north from scratch, rather he tests the

walk-north policy and finds that it moves him north. Instead of having to learn to walk north

8 times, Robbie has to test the policies he has found eight times. This testing of already

known policies is a much more efficient process than solving the problem from scratch, and

so Robbie is able to solve the second problem more easily than the first. In some cases,

Robbie does not have a policy from a previous problem that helps. In particular, there is no
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place where Robbie has to walk west in the first problem Robbie encountered, and hence no

policy for walking west is available when solving the second problem. Robbie has to learn

to walk west from scratch in the second problem, and as there is no reuse while solving a

problem, the sub-policy of walking west is learned seven times.

1.1 Thesis Problem and Contributions

The question I investigate in this thesis is:

How can finding a policy for one Semi-Markov Decision Problem be used to

speed up the discovery of a policy for other, similar, Semi-Markov Decision

Problems?

The approach outlined in this thesis is to use a representation of the policy that allows

symbolic analysis: we use a tree based representation. The thesis question is then ap-

proached by breaking the problem down into two related sub-questions. How can useful

information be extracted from a previously solved problem? And, how can the informa-

tion extracted be used to help solve new problems? We then proceed to answer these two

questions separately.

1.1.1 Extracting useful information from solved problems

The first part of extracting useful information is to decide on what information may be

useful in future problems. We detect repeated temporal patterns in the behavior of the

robot. If they are repeated in one problem then we assume they will be repeated in future

problems.

As the world our agent moves through is fully observable, temporal patterns in the

behavior of the robot become spatial patterns in the policy. To see this, consider Table 1.1b

which shows the policy for walking north laid out graphically. Described as a series of

actions, starting with both feet on the ground and the right foot north of the left, we get: lift

left foot, move raised foot north, move raised foot north, lower left foot, raise right foot,

move raised foot north, move raised foot north, lower right foot. This sequence repeats

for as long as we walk north. Because each of these actions moves us to a new state, the

sequence of actions lays out a trajectory through the state space, and the temporal pattern

forms a corresponding spatial pattern.
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if ∆z = 0 then {both feet on the

ground}
if ∆y <= 0 then

raise the left foot

else

raise the right foot

end if

else if∆z = 1 then {the left foot is in

the air}
if ∆y < 0 then

lower the left foot

else

move the raised foot south one

unit

end if

else{the right foot is in the air}
if ∆y > 0 then

lower the right foot

else

move the raised foot south one

unit

end if

end if

if ∆z = 0 then {both feet on the

ground}
if ∆x <= 0 then

raise the left foot

else

raise the right foot

end if

else if∆z = 1 then {the left foot is in

the air}
if ∆x > 0 then

lower the left foot

else

move the raised foot east one unit

end if

else{the right foot is in the air}
if ∆x < 0 then

lower the right foot

else

move the raised foot east one unit

end if

end if

(a) (b)

Table 1.2: The policies for walking (a) south and (b) east
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Our approach is to use supervised learning detect these patterns. We use a tree-based

supervised learning system to re-represent the policy by re-learning it. During this learning

process we process the structure of the tree to detect repeated spatial patterns.

A supervised learningproblem is one where we are supplied with data as a set of

input/output pairs, assumed to have been sampled from an unknown function, and we wish

to reconstruct the function that generates the data. To solve a supervised learning problem,

a program must process the supplied examples to find a function that accurately predicts

the output for a given input vector. In our case the function is the policy from a previous

problem that is supplied to the learner as a series of state/action pairs.

Most supervised learning techniques attempt to increase the accuracy of their func-

tion approximation through generalization: for ‘similar’ inputs, the outputs are assumed

to be ‘similar’. The traditional definition of similar is based upon distance in input space:

‘nearby’ states are assumed to be ‘similar’. The form of generalization that this definition

of similar generates is already handled by state abstraction techniques in reinforcement

learning. We want a definition of similar that helps us find spatial patterns.

In this thesis we use a definition of similar based upon structural similarity within the

tree representation in addition to the normal ‘nearby in input space’ measure. Consider

Robbie’s solution to the first maze represented in Figure 1.2a. This policy is represented

as a tree in Table 1.3. Notice that many of the sub-trees are identical, and in the table are

simply references to other tables.

By detecting this repeated internal structure in the representation of the policy, we can

extract some repeated patterns in the policy. Extracting a subtree means removing the

surrounding tree structure. This surrounding structure is a limitation on when the sub-tree

supplies the policy for the agent. Removing this surrounding structure generalizes the sub-

tree so it can apply in the entire state space.

1.1.2 Using policies to speed up problem solving

We wish to use policies as abstract actions to improve the speed at which good solutions

are found. We want to do this without limiting our algorithm’s convergence to optimality

in the limit of infinite exploration. Our approach is to extend the set of supplied policies

so that any policy can be represented as a combination of the extended set of policies, and

then to look for the best combination.

We extend the set of supplied policies by adding a set of degenerate policies, one for
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if x < 1 then

if y < 9 then

Insert the walking north policy tree here. See Table 1.1a for the complete subtree.

else

Insert the walking east policy tree here. See Table 1.2b for the complete subtree.

end if

else ifx < 2 then

if y < 1 then

Insert the walking east policy tree here. See Table 1.2b for the complete subtree.

else

Insert the walking south policy tree here. See Table 1.2a for the complete subtree.

end if

else ifx < 3 then

if y < 9 then

Insert the walking north policy tree here. See Table 1.1a for the complete subtree.

else

Insert the walking east policy tree here. See Table 1.2b for the complete subtree.

end if

else ifx < 4 then

if y < 1 then

Insert the walking east policy tree here. See Table 1.2b for the complete subtree.

else

Insert the walking south policy tree here. See Table 1.2a for the complete subtree.

end if

else

The rest of the state space is similar to the above, and we leave it out to save space.

end if

Table 1.3: The policy, represented as a tree, for solving the maze in Figure 1.1a. This is the

same policy represented diagrammatically in Figure 1.2a.
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each action. These policies perform the same action in every state. Policies are then com-

bined by using a tree structure to map regions of state space to policies. In this way it is

possible to combine the set of degenerate policies to form any other policy. Adding the set

of policies found from previous problem solving episodes makes it faster to find some com-

binations. We prove, under some assumptions given in Chapter 5, that our TTree algorithm

finds a combination that optimizes the reward obtained by the policy.

1.1.3 Contributions

In summary, we present in this thesis i) an algorithm for automatically extracting repeated

substructure in the policies of previously solved problems, ii) an algorithm that can use

policies as abstract actions to solve related problems more efficiently than without the ab-

stract actions, and finally, iii) formal machinery that allows us to prove our polling style

algorithm is correct.

1.2 Thesis Overview

Chapter 2 is an introduction to the formal framework used throughout this thesis. Rein-

forcement Learning and the related Semi-Markov Decision Processes (SMDPs) are

formally described. Additionally, a number of different ways of representing infor-

mation within the SMDP framework are described. Finally, we introduce some of

the experimental domains used in the thesis.

Chapter 3 describes a tree-based algorithm for solving reinforcement learning problems.

This algorithm demonstrates many of the techniques for using decision/regression

trees in reinforcement learning, but cannot make effective use of abstract actions.

Chapter 4 describes the Lumberjack algorithm. This algorithm is our approach to the first

problem: extracting a behavior that can be reused. The Lumberjack algorithm does

not completely solve this problem. Rather, it is a supervised learning algorithm that

can be used to generate a decomposed representation of any function. Some manual

intervention is required to use it to decompose policies.

Chapter 5 introduces a second reinforcement learning algorithm, TTree, which can make

use of policies as abstract actions to improve its problem solving speed.
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Chapter 6 describes related work on using macros for reinforcement learning.



Chapter 2

Technical Overview

As described in the previous chapter, this thesis presents efficient algorithms for Reinforce-

ment Learning and Semi-Markov Decision Problem solving (Puterman, 1994; Sutton and

Barto, 1998). This chapter formally describes SMDPs, some standard solution methods

and theory for SMDPs, and then describes some of the domains we use to evaluate our

algorithms.

2.1 Semi-Markov Decision Processes

We are interested in control for reinforcement learning problems. In a reinforcement learn-

ing problem, an agent1 initially knows nothing about the world. The agent moves about

the world and learns both the world dynamics and the reward structure of the world (either

implicitly or explicitly). The goal of our algorithms is to find a set of behaviors that max-

imizes the sum of rewards received by the agent as it moves about the world. In order to

formalize this process, we assume that a model for both the world dynamics and the reward

structure is learned explicitly. The properties of this combined model are formalized here

as aSemi-Markov Decision Process(SMDP).

Before introducing SMDPs we briefly describe a simplified model, theMarkov Deci-

sion Process(MDP). An MDP is a type of state-machine. It has a collection of states with

transitions between them. In a normal finite state machine the resulting state of a transition

is dependent upon the starting state of the transition. In an MDP, there is also an agent.
1Here we use the term agent to refer to a control mechanism in the broadest sense, from extremely simple

to very complex.

13



14 CHAPTER 2. TECHNICAL OVERVIEW

The resulting state for a transition depends not only upon the starting state, but also upon

an action performed by the agent. In this way, the effects of an agent upon the world can

be modelled. An MDP also includes a model of the reward received by the agent for each

transition.

Use of a Markov Decision Process implies certain assumptions about the world. We

assume that the state contains all relevant information about the robot’s history. This as-

sumption is known as theMarkovassumption. Given the current state, information about

previous states the robot has passed through tells us nothing. In particular, it tells us noth-

ing about the effects of actions nor about the rewards for those actions. For an office robot,

the state would include such information as the location of the robot, the current position of

any robot actuators as well as less obvious information such as whether the coffeepot in the

room down the hall has fresh coffee. Every relevant piece of information about the world

is contained in the state.

A Semi-Markov Decision Process is the same as a Markov Decision Process, but tran-

sitions can take varying amounts of time. This allows us to model a series of transitions

through one SMDP as a single transition in a more abstract SMDP.

Formally, an SMDP is defined as a tuple〈S,A, P, R〉.2 S is the set of states. We use

lower cases to refer to particular states,e.g.s ∈ S, s′ ∈ S. When referring to a particular

transition in the SMDP, we generally uses to refer to the start state of the transition and

s′ to refer to the resulting state. We assume that the states embed into ann-dimensional

space:S ≡ S1 × S2 × S3 × · · · × Sn. A is the set of actions. We use lower casea to refer

to particular actions,e.g.ai ∈ A. When discussing the algorithms formally we assume

A is constant across all states. The extension to haveA depend upon the current state is

straightforward.

Ps,a(s
′, t) : S × A × S × < → [0, 1] is a joint probability distribution over both next-

states and transition times, defined for each state/action pair. It is the inclusion of time in

this distribution that separates an SMDP from an MDP.R(s, a) : S × A → < defines the

expected reward for performing an action in a state. In general, the reward for an individual

transition can be stochastic and depend upon both the resulting state and the time for the

transition. However we only need the expected reward, so any stochasticity drops out.

Additionally, as the resulting state and the time for the transition depend only upon the

state and action, they also fall out of the expectation.
2P is often known asQ in the SMDP literature, however as we are usingQ elsewhere, we are using MDP

notation to avoid confusion.
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When our agent is first switched on, the world is in a particular state,s. We assume that

the agent always knows the current state of the world;i.e. that the world isfully observable.3

The agent then performs an action,a. That action takes a length of time,t, to move the

agent to a new state,s′, the time and resulting state determined byPs,a(s
′, t). The agent

gets reward for the transition with expected valueR(s, a).

Some domains have an additional set of states known asabsorbing states. These states

have no transitions leading out of them. When one of these states is entered the agent can

do nothing and receives no further reward.

We impose the constraint onP that there is no probability of a negative time transition:

∀s, a, s′ andt < 0, Ps,a(s
′, t) = 0. Also, we require that there are no zero-time, probability

1 cycles in the state space. More formally, there is no policy,π(s) : S → A, and state

s, such that when you start in states the set of possible trajectories all take zero time and

lead back tos. Formally, there does not exist an assignment of actions to the states in

S, π(s), such that there exists a start state,s, and a set ofm trajectories froms back to

s,
{
{s0

0, s
0
1, . . . , s

0
n0
}, {s1

0, s
1
1, . . . , s

1
n1
}, · · · , {sm

0 , sm
1 , . . . , sm

nm
}
}

, where, the sum of the

probability that those trajectories take no time is1:

m∑
j=0

[
Ps,π(s)(s

j
0, 0)Psj

nj
,π(sj

nj
)(s, 0)

nj−1∏
i=0

Psj
i ,π(sj

i )
(sj

(i+1), 0)

]
= 1 (2.1)

The usual way to avoid these zero-time cycles is to have no zero-time transitions. This

is the approach we take in this thesis.

2.1.1 Policies: controlling SMDPs

The reason we model the world as an SMDP is to help the agent learn a policy. A policy

is a method of controlling an agent in an environment, see Puterman (1994) for a complete

taxonomy. In this thesis we concentrate on a subset of general policies: complete, deter-

ministic, Markovian policies. Unless stated otherwise we will drop the qualifiers and just

use the term ‘policy’.

A complete, deterministic, Markovian policy,π(s) : S → A, is a function from states

to actions. For each state, the policy returns the action the agent performs in that state. In
3Much work has been done with partially observable worlds, where only some information is known about

the current state. While partial observability is a very important research area we do not deal with it in this

thesis.
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particular, we want the policy that maximizes the reward for the agent.

It is known that deterministic Markovian policies represent a useful subclass of general

policies, however they are not the only type of policy. We can define astochastic policythat

maps states to a probability distribution over actions. We can also define a non-Markovian

policy that maps the entire history of the agent into an action. For MDPs and SMDP

we know that there exist optimal, deterministic, Markovian policies and hence we can

generally ignore other classes of policies.

As stated above, our optimality criterion is to maximize the sum of rewards. We refer

to a policy that optimizes the sum of rewards asπ∗. In the following sections, we formalize

the concept of a trajectory through the state space and use that to formalize this concept of

‘sum of rewards’.

2.1.2 Trajectories through the world

The agent starts at a particular state,s0.4 It then follows a series of transitions leading it

through a series of states:〈s0, s1, s2, . . .〉. This series of states is the agent’strajectory. If

there are any absorbing states then the trajectory is defined to end once the agent enters an

absorbing state.

Additionally, the transitions between states take varying amounts of time. We letti be

the time taken by theith transition, andτi be the time at the start of theith transition. These

are related in the obvious way:

τi =
i−1∑
j=0

tj (2.2)

We can list the states in the trajectory annotated with the time the agent arrives in

that state:〈sτ0
0 , sτ1

1 , sτ2
2 , . . .〉. Finally, we can list the rewards gathered by the agent, again

annotated with the time they were gathered:〈rτ0
0 , rτ1

1 , rτ2
2 , . . .〉.

4Sometimes agents are defined to have a starting distribution over states, rather than a starting state. The

two formulations are equivalent. A starting distribution can be transformed into a single start state by adding

a new start state and making the transitions out of that state follow the starting distribution.
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2.1.3 Optimality criteria

For a particular trajectory of the agent we can find the sum of rewards, SoR, gathered by

the agent:

SoR=
∞∑
i=0

ri (2.3)

However, the trajectory followed by the agent is stochastic: given the same SMDP

and policy, different experimental trials result in different trajectories. To account for this,

we alter our criterion to maximize theexpectedsum of rewards, ESoR, over all possible

trajectories.

ESoR= E
trajectories

[
∞∑
i=0

ri

]
(2.4)

whereEtrajectories[X] is the expected value ofX over all trajectories.

Unfortunately there is another issue. This infinite sum is often unbounded. There are

two different modifications to this sum that are commonly applied in the literature to deal

with this.

One of these is known as theaverage rewardformulation. Here the goal is to find a

policy that maximizes the average reward per unit time. Formally, we maximize:

X = E
trajectories

[
lim

τmax→∞

1

τmax

τmax∑
τi=0

rτi
i

]
(2.5)

This formulation is intuitively close to the infinite sum above while still remaining

bounded. Unfortunately, it can be difficult to work with and so we refer to the interested

reader to Puterman (1994) and instead use the next approximation.

The reformulation we use is known as thediscounted rewardformulation. It is called

this because future rewards are discounted by a multiplicative factor,γ ∈ (0, 1), for each

unit of time that passes. Formally, we maximize:

X = E
trajectories

[
∞∑
i=0

γτirτi
i

]
(2.6)

Here, as above,rτi
i refers to the reward received in stepi, which is initiated at timeτi.
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The discount factor,γ, can be justified in a number of ways. It could be viewed as a

simple trick to make the sum bounded. It could be viewed as an inflation rate, decreasing

the usefulness of future rewards and encouraging the agent to act now rather than later. It

can also be viewed as a probability of catastrophic failure stopping the infinite sum. In

general we chooseγ ≈ 0.95 and use unit time intervals.

2.2 Dynamic Programming Solutions for SMDPs

Markov Decision Processes and methods for solving MDPs have been known since the

1960s (Bellman, 1957). While these methods are only practical for small models, they give

a good foundation for our approach. These methods for finding policies also work with

Semi-Markov Decision Processes, and we present them here in that framework.

These approaches define functions of the state that reflect the long term desirability

of being in a particular state. There are two standard functions that are defined.5 Each

is defined with respect to a particular policy, usually either the current policy,π, or the

optimal policy,π∗.

One of these standard functions is known as thestate value functionor just thevalue

function, V : S → <. It returns the expected sum of discounted reward for following the

policy from the given state:
5Traditionally these functions are represented as tables of values.
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V π(s) = E
trajectories

[
∞∑

is=0

γτis r
τis
is

]
(2.7)

= R(s, π(s)) + E
Ps,π(s)(s

′,t1)

(

γt1

[
R(s′, π(s′)) + E

Ps′,π(s′)(s
′′,t2)

(
γt2
[
R(s′′, π(s′′)) + E

Ps′′,π(s′′)(s
′′′,t3)

(

...

)
])])

(2.8)

= R(s, π(s)) + E
Ps,π(s)(s

′,t)

[
γtV π(s′)

]
(2.9)

where is is the ith step from states, ris is the reward for that transition,τis is the

time since we first left states that the step is taken, andEP (x) is the expectation over the

probability distributionP . In particular,

E
Ps,a(s′,t)

(X) ≡
∑
s′∈S

∫ ∞

t=0

Ps,a(s
′, t)X dt (2.10)

The other standard function is known as thestate-action value functionor Q function,

Q : S×A → <. It returns, for a particular state and action, the expected sum of discounted

reward for being in that state and performing that action once, and henceforth following the

policy (Watkins and Dayan, 1992). We can define this formally as:

Qπ(s, a) = R(s, a) + E
Ps,a(s′,t)

[
γtV π(s′)

]
(2.11)

We can expand the expectations in the above functions to get the following standard

recursive forms for the equations:
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Qπ(s, a) = R(s, a)

+
∑
s′∈S

∫ ∞

t=0

Ps,a(s
′, t)γtV π(s′) dt

(2.12)

V π(s) = Qπ (s, π(s)) (2.13)

Solving these functions for a fixed policy is known asvalue determination. If the Q

andV functions are represented as tables of values, then we can replace the equality signs

above with assignments to get the following:

Qπ(s, a)← R(s, a)

+
∑
s′∈S

∫ ∞

t=0

Ps,a(s
′, t)γtV π(s′) dt

(2.14)

V π(s)← Qπ (s, π(s)) (2.15)

If these assignments are executed repeatedly for all state action pairs, then the table of

values converges to the value of the functions defined in equations 2.12 and 2.13.

We can use theQ and value functions to improve the policy. In particular, if we define

the policyπ∗ as:

π∗(s) = argmax
a∈A

Q∗(s, a) (2.16)

then we can solve the set of equations 2.12, 2.13 and 2.16 to obtain the optimal policy:

the policy that maximizes the sum of discounted rewards from each state.

Solving this set of simultaneous equations can be done in a number of ways. Again,

assuming we have tables of values representing the various functions, we can replace the

equalities with assignments:

Q∗(s, a)← R(s, a)

+
∑
s′∈S

∫ ∞

t=0

Ps,a(s
′, t)γtV ∗(s′) dt

(2.17)

V ∗(s)← Q∗ (s, π(s)) (2.18)

π∗(s)← argmax
a∈A

Q∗(s, a) (2.19)
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Again, as long as all points in the domain of all the functions are updated infinitely

often, this set of update rules converges in the limit to the optimal policy. There are some

named schemes of updating these functions.

Value iterationis a scheme that alternates between updating a state in theQ and value

functions, and then updating the policy for that state. A more common style of value

iteration does not store the policy. As the action stored in the policy for a particular state

is updated after theQ and value functions for that state, the policy is always up-to-date.

Hence it is not necessary to store the policy; it can be calculated from theQ function when

it is used. A third style of value iteration only stores the value function. TheQ values for

a particular state are calculated, the value function is updated, and then theQ values are

discarded.

At the other extreme, thepolicy iterationscheme updates theQ and value functions for

the current policy until they converge without changing the policy. This is a value determi-

nation step as described above. Once the values have converged, the policy is updated at

each state. These two phases alternate until the policy converges.

Prioritized sweeping(Moore and Atkeson, 1993) (see also Peng and Williams, 1993)

is a particularly effective scheme for performing these updates. This scheme is a form of

value iteration that controls the order in which states are updated. The states are entered in

a priority queue. At each step, the state with the highest priority is updated. The process of

updating a state has some extra complexity in order to handle the priorities. First, the value

of the state is updated and the change in value,∆V , is recorded temporarily. Next, the

priority of that state is reset to zero. Finally, any state that might be affected by that change

in value (any state that has a transition into the updated state) has its priority increased by

∆V . As in other schemes, updating continues until the values converge.

All of the above techniques have been used in practice, although they are all rather

slow (polynomial in|S|, which is in turn exponential in the dimensionality of the state

space). We refer to them astraditional reinforcement learning techniques. We have found

that Prioritized Sweeping is generally the most effective and use it in this thesis as both a

base-line to compare against, and as a method for solving abstract SMDPs.
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2.3 Model Free vs. Model Based Reinforcement Learning

The approaches to finding a policy discussed above fall into a category known asmodel

basedreinforcement learning because an explicit model of the SMDP is used when finding

a policy. It is assumed that the agent has explored the world and learned approximations

to P andR. In many algorithms this sampling ofP andR occurs in parallel with the

calculation ofV andQ. This is still considered model based reinforcement learning.

Another approach is themodel freeapproach. In this approach the SMDP is never

modelled explicitly. Rather the policy is learned directly while exploring the state space.

The model free techniques still assume an underlying SMDP, even if it is not modelled

explicitly.

The normal model free approach is to convert equations 2.17–2.19 into incremental

update functions. The functions are updated when transitions are seen in the world. The

new value of the function at a particular location is a weighted average of its old value and

the value estimated using the transition the agent has just seen; the weight in this average

is known as thelearning rate. Equations 2.20–2.22 show these formulae, withη ∈ [0, 1]

being the learning rate. In these formulae we assume that onlyQ is being learned and that

V andπ are calculated fromQ when needed. Ifη is decreased in an appropriate manner as

learning progresses, then the table representation ofQ converges, with probability1, to the

correct value defined in equation 2.12.

Q(s, a) ← (1− η)Q(s, a) + η
(
R(s, a) + γtV (s′)

)
(2.20)

V (s) = max
a

Q(s, a) (2.21)

π(s) = argmax
a∈A

Q(s, a) (2.22)

There are also intermediate approaches between model free and model based reinforce-

ment learning. One intermediate approach uses agenerative model. With a generative

model we do not have an explicit representation ofP , but we can obtain samples fromP .

This type of model is a simulator rather than a representation of the world. This differs

from sampling directly from the world in that the agent can choose which state/action pair

it samples from without being forced to follow a trajectory through the state space. Two

other intermediate points on the model free/model based spectrum are to allow the agent to

reset to either a fixed state, or to a random state, and then sample trajectories from there.

The TTree algorithm described in Chapter 5 assumes a generative model has already been
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learned or supplied. We then concentrate on solving the SMDP given this generative model.

2.4 Improving Problem Solving Speed

All the above techniques suffer from a serious problem: exponential state explosion. The

number of states in an SMDP is exponential in the number of variables that describe the

world. Exploring and updating all these states is too slow.

A number of techniques have been used to help overcome exponential state explosion

and solve large SMDPs. One of these is to use a function approximation technique to store

the value function of the current problem. All function approximation techniques have a

generalization biasallowing them to predict the function values for unseen states or actions.

If this generalization bias matches a problem then this technique is effective. If the bias is

incorrect for a problem then the technique may be very slow, or even fail to converge to an

answer at all.

There are also techniques to abstract the SMDP into a simpler, usually approximate,

form. State abstraction refers to the technique of grouping many states together and treating

them as one abstract state. Temporal abstraction refers to techniques that group sequences

of actions together and treat them as one abstract action. There is a strong relationship

between function approximation techniques and these abstraction techniques. Most current

function approximation techniques have a very similar effect to state abstraction.

2.4.1 Styles of state abstraction

While in generalstate abstractionrefers to the technique of grouping many states together

and treating them as oneabstract state, this has been done in the literature in a number of

different ways. As already noted, there is a strong relationship between state abstraction

and function approximation, and many of the techniques discussed below have elements

of both. We are including in this section some forms of function approximation that have

effects similar to state abstraction.

The simplest approach to state abstraction is to manually make a new ‘abstract’ SMDP.

Each state in the abstract SMDP corresponds to a group of states in the original SMDP.

This new SMDP can then be solved using a traditional technique.

Another approach to state abstraction is to use a CMAC function approximator (Albus,
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1981; Miller et al., 1990; Lin and Kim, 1991; Sutton, 1996) to represent theQ or value

functions. The CMAC represtation uses a user supplied division of the state space into

overlapping regions. Each of these regions is assigned a value in the CMAC. The output of

the CMAC at a particular state is the average of the values of the regions that contain that

state. This style of function approximation is easily differentiable and allows incremental

update.

A third approach to state abstraction is to use a linearly interpolating function approx-

imator for the value function (Gordon, 1995). In this approach, the user breaks the state

space into a series of regions defined by points on their border. Each of these points is given

a value. The value of the function approximator within a region is a linear combination of

the values at the points defining that region.

All of the previous approaches have required the user to pre-specify how a state space

is discretized. We now discuss some styles of state abstraction that attempt to discover how

the state should be abstracted. These methods of forming a state abstraction are sometimes

described as discretizing a state space, and this description is used even when the state

space is already discrete. In this case it may help the reader to think of discretization as

re-discretization; the original discretization is set aside and then useful parts of it are re-

introduced.

The first group of automatic state abstraction techniques are known asvariable reso-

lution techniques (Moore, 1994; Munos and Moore, 1999). In these techniques the world

is initially discretized into a coarse grid. The algorithms then iterate trying to detect re-

gions where the resolution is too low and increasing the resolution in those regions. The

technique is known as variable resolution because the resolution can be increased in some

regions and not others. Normally, the discretization is represented as a tree structure. Each

grid region is a leaf in the tree. The resolution is increased in a region by replacing that

region’s leaf with an internal node and more leaves. The branching factor is usually either

two, or 2d whered is the dimensionality of the space. A region is divided either halfway

along its longest axis or halfway along each axis.

The second group of automatic state abstraction techniques are known asregression

tree techniques (Breiman et al., 1984; Quinlan, 1992; Chapman and Kaelbling, 1991; Mc-

Callum, 1995; Uther and Veloso, 1998). Like variable resolution techniques, regression

tree techniques also discretize the state space using a tree structure, and also increase the

resolution of that discretization by growing the tree in some regions of the state space. The

difference between the two types of algorithms is in the method by which the tree is grown.
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Variable resolution techniques make a binary distinction at each leaf in the tree, “Should

this node have its resolution increased?” Regression tree techniques ask the additional

question, “How should I increase the resolution of this node?” In particular, regression tree

techniques attempt to find the right attribute and location to split a node, rather than just

dividing down the middle. This thesis uses regression tree techniques.

2.4.2 Styles of temporal abstraction

Temporal abstractionrefers to techniques that group sequences of actions together and treat

them as oneabstract action. There are two main styles of temporal abstraction described in

the literature. The first style (e.g. Dietterich, 1998; Parr and Russell, 1998) has a strict, pre-

defined hierarchy of actions. Each action can use only the actions in the next lower level

of the hierarchy to achieve its goal. Often this hierarchy includes some state abstraction

related to the temporal abstraction (Dietterich, 2000). Hengst (2000) has recently generated

hierarchies of a limited form by finding a fixed ordering of the state variables. While this

approach is effective, it is limited by requiring the same variable ordering in all regions of

the state space.

The second main style (Sutton et al., 1998; Precup, 2000) revolves around defining

policies with termination criteria, known asoptions. If only the termination criteria are

defined then the policies can be learnt, but the termination criteria are required. These

policy/end point pairs can then be used as base level actions in an SMDP. Once an option is

selected to be executed, its policy is followed until the termination criteria are fulfilled. The

combined series of base level actions is treated as one, temporally extended, action by the

SMDP. McGovern and Barto (2001) have recently managed to automatically find options

for the class of endpoints defined by ‘bottlenecks’ in the state space.

This thesis introduces a new style of temporal abstraction similar to options (Sutton

et al., 1998), but we remove the requirement for defining the end points of the option.

Our abstract actions are simply policies. It is up to the algorithm using these abstract

actions to decide in which regions of the state space each abstract action is followed. In

fact, arbitrary controllers can be plugged in to the algorithm, but we do not consider non-

markovian controllers in the proof of correctness or experiments.

Consider, for example, a robot that walks through a maze as in Chapter 1. This robot

is legged, and the walking motion is non-trivial. One might imagine a set of four policies,

each of which walks the robot in one the four cardinal directions, north, south, east and
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west. Each of these policies depends only upon the state variables that define the leg po-

sition, and not upon the state variables defining the position of the robot in the maze. An

algorithm solving the walking robot in a maze problem need only learn which policy to use

in which region of the maze.

2.4.3 Subroutines vs. polling

Another dimension along which we can classify temporal abstraction algorithms is the

subroutines vs. polling dimension. The first class of algorithms treats abstract actions as

subroutines– once an abstract action is selected it executes until completion. The second

class relies uponpolling – the abstract controller is called every time a decision is needed,

it selects which abstract action to use for that decision, and then the abstract action selects

a base action to perform.

There are advantages and disadvantages to each of these approaches. The reward struc-

ture of a subroutine is defined by its termination conditions and hence subroutines have

the advantage that they can be optimized independently of the reward structure of the rest

of the problem. It is even possible to optimize a number of subroutines in parallel. The

disadvantage of subroutines is that they limit the policies that can be represented using just

the abstract actions – it is not possible to use only the first half of a subroutine.

Polling algorithms are not as limited in their optimality. As long as in every state,

each base level action is used by at least one of the abstract actions, a polling algorithm

can represent any policy. However, it is much harder to optimize the abstract actions in a

polling algorithm independently of the problem they are helping to solve.

Many previous reinforcement learning algorithms for temporal abstraction, and most of

the algorithms with theoretical guarantees, fall in the subroutine category. We investigate

the polling approach. Rather than attempt to learn abstract actions and optimize them for

the current problem, we extract abstract actions from previous problems.

2.5 Decision and Regression Trees

There are numerous functions defined in the preceding sections of this chapter, for example

theQ and value functions for an SMDP. Throughout this thesis we use trees to represent

functions of various types. This section is a brief introduction to tree-based representation
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of functions.

A function maps an input space, thedomain, onto an output space, therange. In a tree

based representation, nodes in the tree correspond to regions in the domain. An internal

node contains information that divides the region amongst its children. A leaf node contains

an element of the range of the function. The function represented by the tree maps the

region of the domain corresponding to a leaf into the element of the range stored in that

leaf node.

There are a number of different types of trees depending upon whether the domain

and/or range are discrete or continuous. As noted above when discussing decision and

regression trees, there are also different types of trees which vary on how internal nodes

divide their region of space. We make a distinction between variable resolution trees (Fried-

man et al., 1977) and regression or decision trees (Breiman et al., 1984; Quinlan, 1992).

In summary, avariable resolution treehas internal nodes that divide their region of

state space either down the middle of the region’s longest dimension, or down the middle

of each dimension. When growing this type of tree, the learner simply needs to decide

whether a leaf node should have increased resolution. The function to be represented has

no effect onhow the resolution is increased. This is in contrast to aregression treeor

decision tree. In this type of tree an internal node contains more specific information about

how the current region is divided. For example, it is most common for an internal node to

divide along only one dimension. If that dimension is continuous then the internal node

stores where along that dimension the region is divided. Other ways of dividing the region

have also been investigated, for example linear divisions of the region are not uncommon

(Utgoff and Brodley, 1991; Murthy et al., 1994). For reasons of simplicity we stick with

axis-parallel divisions in this thesis.

In this thesis we concentrate on the regression tree representation. The important dis-

tinction is that the internal nodes in a regression tree store more information about the func-

tion being represented. This is important for our analysis of these functions in Chapter 4,

and for accurately building an abstract SMDP in Chapter 5.

2.6 Domains

To experimentally test our algorithms we have simulated a number of different domains.

In this section we describe those domains. We should note that not all these domains



28 CHAPTER 2. TECHNICAL OVERVIEW

were used with all the algorithms. Additionally, different algorithms have different ability

to handle ordered discrete attributes and so we may have multiple representations for a

domain even if the underlying dynamics are the same.

2.6.1 A heated corridor domain

Our first domain is a robot 2 dimensional domain with a robot moving down a heated

corridor. The two state dimensions are location and temperature. Location is an ordered,

discrete attribute and the agent needs to distinguish between all locations to represent the

correct value function. Temperature is continuous, but can be divided into three quali-

tatively different regions - cold, normal and hot. The agent is not given this qualitative

division.

In this domain the length of the corridor is divided into three sections: sections A, B

and C. These three sections of corridor each have a different base temperature. A is cooled,

B is normal temperature and C is heated. The robot is temperature sensitive, but also has

limited temperature control on board. The robot starts at a random position in the corridor

and is rewarded when it reaches the right-hand end of the corridor. The robot must learn to

move towards the correct end of the corridor, to turn its heater on in section A and to turn

its cooler on in section C.

The robot’s actions make it move and change its temperature control settings. The

robot has 6 actions it can perform: move forward or backward 1 unit, each with either

heater on, cooler on, or neither on. The robot moves nondeterministically as a function

of its temperature. While the robot’s temperature is in the (30◦, 70◦) range, it successfully

moves with 90% probability, otherwise it only moves with a 10% probability.

The robot’s temperature is the base temperature of that section of corridor adjusted by

the robot’s temperature control unit. In our experiments, the corridor was 10 units long.

Sections A , B and C were 3, 4 and 3 units in length respectively, with base temperature

ranges of (5◦, 35◦), (25◦, 75◦) and (65◦, 95◦) respectively. The robot’s temperature control

unit changed the temperature of the robot to differ from the corridor section base temper-

ature by (+25◦, +45◦) if the heater was on, and by (−25◦,−45◦) when the cooler was on.

All temperatures and temperature adjustments were independently sampled at each time-

step from a uniform distribution over the range given. Figure 2.1 illustrates some of the

state transitions for this domain.
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heater-on

heater-off

heater-on

heater-off
heater-off

heater-on

70°

30°

Figure 2.1: Sample transitions for part of the heated corridor domain. The y axis is the

robot’s temperature. The x axis represents two consecutive locations in the cool section of

the corridor. High probability transitions moving right are shown.

2.6.2 A hexagonal soccer domain

Our second domain is a hexagonal grid based soccer simulation calledHexcer. Hexcer is

similar to, but larger than, the game framework used by Littman (1994) to test Minimax

Q Learning. Hexcer consists of a field with a hexagonal grid of 53 cells, two players and

a ball (see Figure 2.2). Each player can be in any cell not already occupied by the other

player. The ball is either in the center of the board, or is controlled by (in the same cell as)

one of the players. This gives a total of 8268 distinct states in the game.

X Goal Player X
Ball

Player O O Goal

Figure 2.2: The Hexcer board

The two players start in fixed positions on the board, as shown in Figure 2.2. The game

then proceeds in rounds. During each round the players make simultaneous moves to a

neighboring cell in any of the six possible directions. Players must specify a direction in

which to move, but if a player attempts to move off the edge of the grid, it remains in the

same cell. Once one player moves onto the ball, the ball stays with that player until stolen

by the other player.
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When the two players move so that they would end up in the same cell, one of them

succeeds and the other fails, remaining in its original position. The choice of who moves

into the contested cell is usually made randomly with each player having an equal chance.

The single exception is when one of the players is already in the contested cell (for example,

if it tried to move into a wall and so did not move). In this case the player already occupying

the cell is considered to win and remains in that cell. The ball, if it was in the control of one

of the players, moves into the contested cell regardless of which player wins. This allows

the ball to change hands.

Players score by taking the ball into their opponent’s goal. When the ball arrives in

a goal the game ends. The player guarding the goal loses the game and gets a negative

reward. The opponent receives an equal magnitude, but positive, reward. It is possible to

score an own goal.

In our Hexcer experiments, each state is represented by a vector of 7 attributes. These

attributes are the x and y coordinates of each player, the location of the ball (On X, on

O or in the middle of the board), and the difference in x and y coordinates between the

two players. This representation is redundant in that the difference in x and y coordinates

between the two players can be calculated from the other attributes.

The simple form of decision used by both Continuous U Tree and TTree in their state

trees can only divide the space parallel to the axes of the input space. Other more complex

types of decision exist in the regression tree literature (e.g. Utgoff and Brodley, 1991), but

simple decisions have been shown to be remarkably effective , and much faster to find than

more complex decisions. By adding redundant attributes that are linear combinations of the

primary attributes we can allow the algorithm to find diagonal splits.

The hexcer domain is different from other domains described in this section in that it

has multiple players. If one of the players has a fixed, although possibly stochastic, policy

then this domain still fits neatly in the SMDP framework. The fixed player is simply part of

the domain as viewed by the other player. When both players are learning, then the SMDP,

as viewed by each player, becomes non-stationary. We do not cover this in detail in this

thesis but refer the reader to the literature on stochastic games (e.g. Bowling and Veloso,

2000).
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2.6.3 The towers of hanoi domain

The Towers of Hanoi domain is not a single domain, but rather a series of domains of

different sizes. Each of these domains consists of 3 pegs,{P0, P1, P2}, on which sitN

disks,{D1, D2, . . . , DN}. The number of disks determines the size of the domain. Each

disk is of a different size,D1 being the smallest,D2 the next smallest,etc., and they stack

such that smaller disks always sit above larger disks. Some example states from the eight

disc problem are shown in Table 2.1. There are six actions, shown in Table 2.2, which

move the top disk on one peg to the top of one of the other pegs. An illegal action, trying

to move a larger peg on top of a smaller peg, results in no change in the world. The object

is to move all the disks to a specified peg, usually pegP2; a reward of100 is received in

this state. All actions take one time step. The decomposed representation we used has a

boolean variable for each disk/peg pair. These variables are true if the disk is on the peg.

Example Disks on peg

state ID P0 P1 P2

s1 D1 D2D3D4D5D6D7D8

s2 D1D4D7 D2D5 D3D6D8

s3 D1D4D7 D2D5D8 D3D6

s4 D1D4D8 D2D5D7 D3D6

Table 2.1: A set of sample states in the Towers of Hanoi domain.

Action Move Disc

From Peg To Peg

a0 P0 P1

a1 P0 P2

a2 P1 P2

a3 P1 P0

a4 P2 P1

a5 P2 P0

Table 2.2: The base level actions in the Towers of Hanoi domain
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2.6.4 The walking robot domain

This domain has already been introduced in Chapter 1 with Robbie the robot, but we cover

it more formally here. This domain simulates a two legged robot walking through a maze.

The two legs are designated left and right. With a few restrictions, each of these legs can be

raised and lowered one unit, and the raised foot can be moved one unit in each of the four

compass directions: north, south, east and west. The legs are restricted in movement so that

they are not both in the air at the same time. They are also restricted to not be diagonally

separated,e.g.the right leg can be either east or north of the left leg, but it cannot be both

east and north of the left leg.

More formally, we represent the position of the robot using the two dimensional coor-

dinates of the right foot,〈x, y〉. We then represent the pose of the robot’s legs by storing

the three dimensional position of the left foot relative to the right foot,〈∆x, ∆y, ∆z〉. We

represent East on the+x axis, North on the+y axis and up on the+z axis. The formal

restrictions on movement are that∆x and∆y cannot both be non-zero at the same time

and that each of∆x, ∆y and∆z are in the set{−1, 0, 1}. A subset of the state space is

shown diagrammatically in Figures 2.3 and 2.4. These figures are too small to show the

entire global state space. They also ignore the existence of walls.

The robot walks through a grid with a maze imposed on it. Some example10 × 10

mazes are shown are shown in Figure 2.5. The mazes have the effect of blocking some of

the available actions: any action that would result in the robot having its feet on either side

of a maze wall fails. Any action that would result in an illegal leg configuration fails and

gives the robot reward of−1. Upon reaching the grey square in the maze the robot receives

a reward of100.

In some of the algorithms in this thesis we do not handle ordered discrete attributes

such as the global maze coordinates,x andy. In these cases we transform each of the

ordered discrete attributes into a set of binary attributes. There is one binary attribute for

each ordered discrete attribute/value pair describing if the attribute is less than the value.

For example, we replace thex attribute with a series of binary attributes of the form:{x <

1, x < 2, . . . , x < 9}. They attribute is transformed similarly. The Continuous U Tree

algorithm (see Chapter 3) can handle ordered discrete attributes because it applies a similar

transformation automatically.

In addition to the mazes above, we use the ‘gridworlds’ shown in Figures 2.6 and 2.7

for experiments. It should be remembered that the agent has to walk through these grids.
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Raise/Lower
Left Foot

Move raised foot
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<0,0,0,0,0,1>
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<0,-1,1,0,0,0>
<0,-1,1>

<0,-1,0,0,0,0>
<0,-1,0>

+z

+y

+x

Representation 1 <LeftX, LeftY, LeftZ, RightX, RightY, RightZ>
Representation 2 <dX, dY, dZ>

This is both feet
together on the ground

Raise/Lower
Left Foot

Raise/Lower
Left Foot

Raise/Lower
Right Foot

Raise/Lower
Left Foot

Raise/Lower
Left Foot

Raise/Lower
Right Foot

Raise/Lower
Right Foot

Raise/Lower
Right Foot

Raise/Lower
Right Foot

<0,1,0,0,0,0>
<0,1,0>

Move raised foot
East/West

Move foot
North/South

Move foot
North/South

Move foot
North/South

Dashed lines also move robot in
global coordinates

Move raised foot
East/West

Move raised
foot East/West

Figure 2.3: The local transition diagram for the walking robot domain without walls. This

shows the positions of the feet relative to each other. Solid arrows represent transitions

possible without a change in global location. Dashed arrows represent transitions possible

with a change in global location. The different states are shown in two different coordinate

systems. The top coordinate system shows the positions of each foot relative to the ground

at the global position of the robot. The bottom coordinate system shows the position of the

left foot relative to the right foot.
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Figure 2.4: A subset of the global transition diagram for the walking robot domain. Each

of the sets of solid lines is a copy of the local transition diagram shown in Figure 2.3. As in

that figure, solid arrows represent transitions that do not change global location and dashed

arrows represent transitions that do change global location.
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(a) (b)

Figure 2.5: A pair of example mazes for our robot. The robots’s goal in each maze is

to reach the grey patch. These are the same mazes as Figure 1.1, repeated for ease of

reference.

Unless stated otherwise in the experiments we have a reward of100 in the bottom right

square of the gridworld.

2.6.5 The taxi domain

The taxi domain (Dietterich, 1998) is a gridworld that has been used by other researchers to

evaluate their temporal abstraction algorithms. The idea behind the domain is that there is

a taxi moving about a gridworld. There are four taxi stands in the world. The taxi must go

to a taxi stand, pick up a passenger, take the passenger to the destination taxi stand and then

drop the passenger off. The gridworld is shown in Figure 2.8. The four squares marked

with the lettersR, G, B andY are the four taxi stands.

The state has four dimensions: thex and y location of the taxi, the location of the

passenger (either one of the four taxi stands, or in the taxi) and the destination of the

passenger (one of the four taxi stands). There are six actions the agent can perform: it

can move the taxi in one of the four cardinal directions, it can also pick up and put down

the passenger. There is a reward of−10 for executing the pickup and putdown actions

when not in the correct location. There is a reward of100 for getting the passenger to their

destination. This formulation is slightly different from that of Dietterich. He uses a final

reward of20 and a cost of−1 for each step. The reasons for this change are discussed in
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Figure 2.6: A set of four10× 10 rooms for our robot to walk through.

Figure 2.7: A set of sixteen10× 10 rooms for our robot to walk through.

R G

Y B

Figure 2.8: The simple gridworld of the Taxi domain.
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Chapter 5.
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Chapter 3

Continuous U Tree

In the introduction and technical overview chapters we introduced the SMDP framework

and also noted that it has difficulty scaling to large problems. In this chapter we describe our

Continuous U Tree algorithm; a state abstraction algorithm extending the work of Chapman

and Kaelbling (1991) and McCallum (1995). This chapter shows how regression trees can

be used for state abstraction reinforcement learning. It also introduces concepts about

regression tree based reinforcement learning that we build on in later chapters.

Continuous U Tree is a state abstraction algorithm. In many SMDPs there are parts of

the state space where the exact position in state space is irrelevant to the agent. All the

states in such a region are equivalent and can be replaced by a single state, reducing the

size of the state space and hence making the problem easier to solve.

The G algorithm (Chapman and Kaelbling, 1991) and the U Tree algorithm (McCallum,

1995) are two similar algorithms that perform state abstraction by re-discretizing proposi-

tional state spaces. A policy can then be found for the new discretization using traditional

techniques. Both algorithms start with the world as a single abstract state and recursively

split it where necessary. The Continuous U Tree algorithm extends these algorithms to

work with continuous state spaces rather than propositional state spaces.

To evaluate Continuous U Tree we used two domains, a small two dimensional domain

and a larger seven dimensional domain. The small domain, a robot travelling down a cor-

ridor, shows some of the main features of the algorithm. The larger domain, hexagonal

grid soccer, is similar to the one used by Littman (1994) to investigate Markov games. It is

ordered discrete rather than strictly continuous. We increased the size of this domain, both

in number of states and number of actions per state, to test the generalization capabilities

39
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of our algorithm.

3.1 Markov Decision Problems

In the previous chapter we introduced Semi-Markov decision problems as a generalization

of Markov Decision Problems. This algorithm was developed in the MDP framework and,

while the algorithm is readily extendable to the SMDP framework, we present the algo-

rithm in its original form here. An MDP is a tuple〈S,A, P, R〉., just like an SMDP. The

difference is in the definition ofP . In an MDP,P(s,a)(s
′) is a probability distribution over

states, not states and times.

We can then state the MDP form of the Bellman equations, defining the Q and value

functions:

Q(s, a) = R(s, a) +
∑

s′

P(s,a)(s
′)γV (s′) (3.1)

V (s) = max
a

Q(s, a) (3.2)

3.2 Continuous U Tree

The G-Algorithm (Chapman and Kaelbling, 1991) and U Tree (McCallum, 1995) both ap-

ply propositional decision tree techniques to reinforcement learning. Continuous U Tree is

an extension to these techniques that is capable of directly handling both propositional

and continuous-valued domains. Continuous U Tree, uses decision tree learning tech-

niques (Breiman et al., 1984; Quinlan, 1986) to find a discretization of the continuous state

space.

Continuous U Tree is different from traditional reinforcement learning algorithms in

that it does not require a prior discretization of the world into separate states. The algorithm

takes a state space decomposed into a series of continuous, ordered discrete or discrete

attributes, and automatically discretizes it to form a discrete MDP. Any discrete, state-

based, reinforcement learning algorithm can then be used on this MDP.

In both U Tree and Continuous U Tree there are two distinct concepts of state. In

Continuous U Tree the first type of state is the fully continuous state of the world that the
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agent is moving through. We term thissensory input, or base level state. The second type

of state is the position in the discretization being formed by the algorithm. We use the

term abstract state to describe this second type of state. Each abstract state is an area in the

sensory input space, and each sensory input falls within an abstract state. In many previous

algorithms these two concepts were identical. Sensory input was discrete and each different

sensory input corresponded to a state.

The translation between these two concepts of state is in terms of astate treethat de-

scribes the discretization. Each node in this binary tree corresponds to an area of sensory

input space. Each internal node has adecisionattached to it that describes a way to divide

its area of sensor space in two. These decisions are described in terms of an attribute of the

sensory input to split on, and a value of that attribute. Any sensory input where the relevant

attribute falls above or below the stored value is passed down the left or right side of the

tree respectively. Leaf nodes in the tree correspond to abstract states. A state tree enables

generalization – abstract states correspond to regions in sensory input space.

We refer to each step the agent takes in the world as atransition. Each saved transition

is a tuple of the starting sensory input,I, the action performed,a, the resulting sensory

input, I ′ and the reward obtained for that transition,r: 〈I, a, I ′, r〉. The sensory input is

itself a vector of values. These values can be continuous.

As the agent is forming its own discretization, there is no prior discretization that can

be used to aggregate the data. (If a partial prior discretization exists, this can be utilized by

the algorithm by initializing the state tree with that discretization, but this is not required.)

Only a subset of the transitions need to be saved, but they need to be saved with full sensor

accuracy.

Each transition〈I, a, I ′, r〉 is used to generate onedatapoint〈I, a, q(I, a)〉 – a triple

of the sensory input,I, the action,a, and a value,q(I, a). The value of a datapoint is its

expected reward for performing that transition and behaving optimally from then on. The

calculation of this value is discussed below.

Continuous U Tree forms a discretization by recursively growing the state tree. The

algorithm, shown in Table 1, is as follows: Initially the world is considered to be a single

abstract state with an expected reward,V (s) = 0. The state tree is a single leaf node

corresponding to the entire sensory input space. The algorithm then loops through a two

phase process: Datapoints are accumulated for learning in a data gathering phase, and then a

processing phase updates the discretization. During the data gathering phase the algorithm

behaves as a standard reinforcement learning algorithm, with the added step of using the
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state tree to translate sensory input to a state. It also remembers the transitions it sees.

During the processing phase, the values of all the datapoints,q(I, a), are re-calculated. If

a significant difference in the distribution of datapoint values is found within an abstract

state, then that abstract state is split in two. A split adds two new leaves to the state tree

representing the two new abstract states formed by dividing the old abstract state. The

MDP defined over the new discretization is solved to find theQ function over the abstract

states which can in turn be used to find a policy. Initializing the abstract state values to the

values in the previous discretization and using an incremental algorithm makes updating

these values relatively fast. Deciding when to execute a pass through the processing phase

is a parameter to the algorithm. In our experiments we perform a pass of the processing

phase at the end of every trial. Trials end when an absorbing state is reached or when 1000

steps have been taken in the world.

This is similar to the recursive partitioning of a decision or regression tree, except that

the values of the datapoints can change when more data is gathered and the MDP is re-

solved after each processing phase. Splitting is also breadth-first rather than depth-first. By

this we mean that we do not use the same left-recursive algorithm to grow the trees that

is used in many supervised decision tree algorithms. Rather, all leaves that need increased

resolution are expanded at the same time, and then the abstract MDP is re-solved before

testing the leaves again.

Procedure 1: The Continuous U Tree algorithm

loop

while Gathering Datado

Gather Data (see Procedure 2)

end while

Expand Tree (see Procedure 3)

end loop

The value of a datapointq(I, a) is calculated using a modification of the Bellman equa-

tions. Using the value for the resulting state of a transitionV (s′) and the recorded reward

for the transitionr, we can assign a value to the corresponding datapoint:

q(I, a) = r + γV (s′) (3.3)

Having calculated these datapoint values, Continuous U Tree then tests if the statistical
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Procedure 2: Gather Data

I ← current sensor vector

s← GetLeaf (I) (see Procedure 4)

a← argmaxa′ Q(s, a′)

Perform actiona

I ′ ← current sensor vector

r ← reward for previous transition

D ← D ∪ {〈I, a, I ′, r〉}
T ← T ∪ {〈s, a,GetLeaf (I ′), r〉}
UpdateQFunction(T )

distribution of the values varies systematically within any state, and, if so, finds the best

single decision to use to divide that state in two. This is done using decision tree techniques.

Each attribute in the sensory input is considered in turn. The datapoints are sorted according

to that attribute. The algorithm loops through this sorted list and a trial split is added

between each consecutive pair of datapoints. This split divides the datapoints into two

sets. These two sets are compared using asplitting criterion (see below) which returns a

single number describing how different the two distributions are. The trial split that leads

to the largest difference between the two distributions is remembered. The “best” split is

then evaluated by a fixedstopping criterion(see below) to check whether the difference is

significant.

Having found a discretization, the task of finding a policy has been reduced to a stan-

dard, discrete, reinforcement learning problem: finding Q values for the new abstract states,

Q(s, a). This is done by calculating state transition probabilities,P(s,a)(s
′), and expected

rewards,R(s, a), from the recorded transitions and then solving the MDP so specified. We

have used both Prioritized Sweeping (Moore and Atkeson, 1993) and conjugate gradient

descent on the sum-squared Bellman residuals (Baird, 1995) to solve the MDP defined

over this new discretization.

3.2.1 Splitting Criteria: Testing for a difference between data distri-

butions

We tried two different splitting criteria. The first is a non-parametric statistical test – the

Kolmogorov-Smirnov test. The second is based on sum-squared error.
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Procedure 3: Grow The Tree

Dq ← ∅
for all leavesl do

for all points〈I, a, I ′, r〉 ∈ D such thatGetLeaf (I) = l do

Dq ← Dq ∪ {〈I, a, (r + γV (GetLeaf (I ′))〉}
end for

Kbest ← ∅
Pbest ← 0

for all possible divisions,K, of l do

P ← evaluation ofK using the splitting criterion andDq

if P > Pbest then

Pbest ← P

Kbest ← K

end if

end for

if Kbest 6= ∅ then

Replacel with Kbest

end if

end for

T ← ∅
for all 〈I, a, I ′, r〉 ∈ D do

T ← T ∪ {〈GetLeaf (I), a,GetLeaf (I ′), r〉}
end for

UpdateQFunction(T )
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Procedure 4: Get the leaf for a sensor vector

Let noden← root

while n is not a leafdo

K ← decision criterion in internal noden

if K(I) then

n← left child of n

else

n← right child ofn

end if

end while

returnn

The first splitting criterion is that used by McCallum (1995) in the original U Tree

algorithm, which looked for violations of the Markov assumption. If the distribution of

datapoint values in each of the two new states was different, then there is a possible viola-

tion of the Markov assumption – more information about the world is available by knowing

where the agent is within the old abstract state. Knowing how you got into that abstract

state might tell you something about where you are, and hence history has become impor-

tant – a violation of the Markov assumption. The splitting criterion was then a test of the

statistical similarity of the distributions of the datapoints on either side of the split. We used

the Kolmogorov-Smirnov non-parametric test. This test is based on the difference in the

cumulative distributions of the two datasets.

Figure 3.1 illustrates the cumulative distributions of two datasets. The arrow between

the two lines marks the maximum differenceD between the cumulative probability distri-

butions,C1 andC2. This distance has a distribution that can be approximately calculated

for two independent, but identically distributed, sets of datapoints regardless of what distri-

bution the sets are drawn from. Assuming the cumulative distributions areC1 andC2, with

dataset sizes ofN1 andN2 respectively, the probability that the observed difference could

be generated by noise is calculated using the equations in Table 3.1 (Press et al., 1992).

The smaller this probability, the more evidence there is of a true difference. If it is small

enough to pass the stopping criterion, then a split is introduced.

We investigated a second squared-error based splitting criterion (Breiman et al., 1984).

The aim is to approximate the Q values of the transitions,q(I, a), using only the Q values
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D = max
−∞<x<∞

|C1(x)− C2(x)| (3.4)

Ne =
N1N2

N1 + N2

(3.5)

λ =
[√

Ne + 0.12 + 0.11/
√

Ne

]
D (3.6)

PNoise = 2
∞∑

j=1

(−1)j−1e−2j2λ2

(3.7)

Table 3.1: The Kolmogorov-Smirnov test equations

of the states,Q(s, a). The error measure for this fit is the sum-squared error.1

One good splitting criterion would be to introduce the split, solve the MDP formed over

the abstract states, and then see if the two new abstract states formed have different values.

The difference between the values of the two new abstract states is a measure of how useful

the split is. This is too expensive.

If we make the simplifying assumptions that the Q values of other abstract states do

not change, and that there are no transitions between the prospective abstract states, then

the Q values of the two prospective abstract states equal the mean of the datapoints in

those states. A sum squared error splitting criterion is measuring the weighted sum of the

variances of the Q values of the transitions on either side of the split. A second justification

for this splitting criterion is the finding of Williams and Baird (1993) that reducing the

Bellman residual of a value function increases performance.

Both these splitting criteria can be made more sensitive by performing the tests sepa-

rately for each action and then combining the results. For the mean-squared error test a

weighted sum was used to combine the separate tests. For the Kolmogorov-Smirnov test

we multiply the probabilities calculated.

Importantly from an efficiency viewpoint, both of these tests can be done at least partly

incrementally. For the sum-squared error, we can keep track of
∑

n x and
∑

n x2 and use

these to estimate the variance, giving a resulting time complexity for a series of tests of
1This measure is closely related to the t-test used by Chapman and Kaelbling (1991).
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O(n).

Variance=

∑
n x2 − (

∑
n x)

2

n

n− 1
(3.8)

For the Kolmogorov-Smirnov test, the datasets need to be sorted to find the cumulative

probability distributions. This sorting can be performed once for a series of tests by trading

O(n) space, but we still need to loop over the distributions to findD for each test making

the total timeO(n2).

3.2.2 Stopping Criteria: Should we split?

When learning a regression tree from data, the standard technique is to grow the tree by

recursively splitting the data until a stopping criterion is met. Obviously, if all the datapoints

in a leaf have the same value, then there is no need to grow the tree. Additionally, there is

no effective way to grow the tree if there is no way to separate the data – for example all

datapoints fall at the same point in the sensory input space.

More generally, the algorithm should stop when it cannot detect a significant difference

between the datasets on either side of the best split in a leaf. Here the word significant

can have different meanings. For the Kolmogorov-Smirnov test we use significant to mean

statistically significant at theP = 0.05 level.

The stopping criterion for the squared-error based test is the reduction in mean squared-

error. If the difference between the variance of the entire dataset and the weighted mean

variance of the datasets induced by the split is below a threshold, then there is not a sig-

nificant difference. This test is less theoretically based than the other test, but with careful

adjustment of the threshold it produced reasonable results.

In the tree based learning literature, it is well known that stopping criteria often have

to be weak to find good splits hidden low in the tree. To stop overly large trees being

produced, the trees are often pruned before being used. We do not prune. We assume that

little error is introduced by over-discretizing.

3.2.3 Datapoint sampling: What do we save?

In the description of the algorithm above, we noted that transitions are saved. Notably,

Continuous U Tree does not need to save all of the transitions. Its generalization capabilities
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allow it to learn from non-contiguous trajectories through state space. Recording all of the

transitions is expensive, both in terms of memory to record the data and in processing time

when testing for splits. However, if fewer transitions are recorded then it is harder to detect

differences within a leaf.

When limiting the number of saved datapoints, we recorded a fixed number of data-

points per abstract state/leaf in the tree. Even once the number of transitions to store is set,

it is still unclear which transitions to store. In the experiments reported we remembered all

transitions until the preset per-leaf limit was reached. We then made room for new transi-

tions by discarding a random transition from that leaf. This has the advantage that no bias,

which might mislead our splitting or stopping criterion, is introduced.

3.3 Experimental Results

We performed experiments with this algorithm in two domains; the heated corridor domain

described in Section 2.6.1, and the hexagonal soccer domain described in Section 2.6.2.

As a quick reminder, the heated corridor domain has a robot moving down a corridor. The

location in the corridor is 1 dimensional with 10 ordered-discrete states. The corridor has

a second dimension, temperature. This dimension is continuous with three qualitatively

different ranges of temperature. The hexagonal soccer domain has two agents moving

around a hexagonal gridworld, each trying to move a ball to their own goal.

Figure 3.2 shows the discretization and policy for the corridor domain after 3000 steps

in the world. They axis is the temperature of the robot on a scale of0− 100. Thex axis is

the location of the robot in the corridor, on a scale of1− 10.

In the tests run in the corridor domain, both splitting criteria behaved similarly. The

sum-squared error testing is significantly faster however.

In the Hexagonal Soccer (Hexcer) domain we performed empirical comparisons along

two different dimensions – how fast does each algorithm learn to play, and to what level

of expertise does the algorithm learn to play, discounting a “reasonable” initial learning

period? Essentially we have two points on a learning curve.

In this experiment the pair of algorithms played each other at Hexcer for 1000 games.

Wins were recorded for the first 500 games and the second 500 games. The first 500 games

allowed us to measure learning speed as the agents started out with no knowledge of the

game. The second 500 games gave an indication of the level of ability of the algorithm
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after the initial learning period.

This 1000 game test was then repeated 20 times. The results shown in table 3.2 are the

number of games (mean± standard deviation) won by each algorithm. The percentage at

the end of each row is the level of statistical significance of the difference.

Table 3.2 shows that Continuous U Tree performs better than Prioritized Sweeping.

Interestingly, looking at the (often quite large) trees generated by Continuous U Tree we

can see that it has managed to learn the concept of “opponent behind.”

Prioritized Sweeping Continuous U Tree Significance

First 500 games 175± 93 35%± 19% 325± 93 65%± 19% 1%

Second 500 games 197± 99 39%± 20% 303± 99 61%± 20% 5%

Total 372± 183 37%± 18% 628± 183 63%± 18% 1%

Table 3.2: Hexcer results: Prioritized Sweeping vs. Continuous U Tree

3.4 Discussion

Continuous U Tree learns to play Hexcer with much less world experience than Prioritized

Sweeping. Despite requiring less data, the Continuous U Tree algorithm is slower in real-

time than the prioritized sweeping algorithm for the domains tested. For domains where

data can be expensive or time-consuming to gather, trading algorithm speed for efficient

use of data is important. In this area Continuous U Tree has an advantage over traditional

reinforcement learning algorithms.

The corridor domain makes clear a number of details about the algorithm. Firstly, our

algorithm successfully reduced a continuous space down to a discrete space with only 32

states (see figure 3.2). The algorithm has managed to find the30◦ and70◦ cutoff points

with reasonable accuracy - it does not try to represent the entire temperature range. Con-

tinuous U Tree does not make perfect splits initially, but introduces further splits to refine

its discretization. A possible enhancement would be to have old splits reconsidered in the

light of new data and optimize them directly.

Secondly, the algorithm has divided the length of the corridor up as much as possible.

Unlike the temperature axis, where large numbers of different datapoints values are grouped

in one state, every different corridor location is in a different state.
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The location of the agent in the corridor is directly relevant to achieving the goal. The

state values in a fully discretized world change along this axis. By comparison, the values of

different points below30◦ in the temperature range, but with the same corridor location, are

equal. Once the agent is below30◦ it only moves10% of the time – no further information

is needed.

Like U Tree, Continuous U Tree inherits from its decision tree background the ability

to handle moderately high dimensional state spaces. The original U Tree work used this

capability to partially remove the Markov assumption. As we were playing a Markov game

we did not implement this part of the U Tree algorithm in Continuous U Tree although

there is no reason why this could not be done.

3.5 Limitations

While Continuous U Tree is effective in the domains shown, it has a number of limitations.

Many of these limitations fall into two categories: limitations caused by the fact that the

value function is stored as a single value in a leaf and hence is flat across each abstract state,

and limitations caused by the semantics of the abstract MDP.

The fact that leaves store only a single value is a limitation. If there is an underlying

discrete MDP embedded in a continuous state space, then Continuous U Tree can represent

it exactly. If the underlying dynamics are themselves continuous, for example a wheeled

robot driving towards a goal at the end of a 1 dimensional corridor, then Continuous U Tree

may not be able to represent the value function exactly. In this corridor example, the true

value function is an exponential function decaying from the reward at the end of the corri-

dor. That cannot be modelled exactly by a tree with flat leaves, although as the algorithm

gathers more data it continues splitting and hence approximates the true value function with

increasing accuracy. We do not attempt to remedy this problem in this thesis, but refer the

reader to the related work in Chapter 6.

The second major class of limitations is caused by the semantics of the abstract MDP.

In particular, the abstract states are assumed to have the Markov property, even though at

the early stages of tree formation this assumption is grossly false. This has a number of

effects which we demonstrate in the simple grid-world shown in Figure 3.3. There is a

single reward - the grey square in the top right. The agent can move in the four cardinal

directions. There is no penalty for running into walls, but the agent does not move in that

case.
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Let us first consider the initial split. Like all reinforcement learners, Continuous U Tree

is going to have to explore to find the reward. All transitions into the reward are going to

have highq values. All other transitions are going to have equalq values, regardless of

whether they are blocked by a wall or not. The initial split divides either the top row or the

right column from the grid-world, as these are the only places with differentq values. It

takes a large number of sampled transitions for these splits to become statistically signifi-

cant as the splits are axis parallel. The differentq values are only at one end of the row that

will be split off – their difference is diluted by theq values in the rest of the row. This effect

becomes worse in higher dimensions; it becomes harder and harder to find the initial split.

Once this first split has been introduced, the new abstract MDP is solved and all tran-

sitions that cross into another leaf haveq values different from the abstract self-transitions.

This means that another split can be introduced – parallel to the first split, one step over.

Note that theq(I, a) values in a leaf only really contain information near the edges of that

leaf. Splitting continues in this way, chopping layers from the edges, until the entire state

is discretized.

Slicing from the edges of leaves in this way is bad. We noted above that we would end

up having to discretize the entire space. We now can see that we are not even discretizing

the space so that the intermediate results are as useful as possible.

Finally, we note that because much of the information in theq values is only visible

one step away from another leaf, there is no information available for temporal abstraction

which, by definition, requires multiple steps.

We note two possible directions to move to solve these problems. Firstly, introducing

non-flat, usually linear, value functions into the leaves attacks many of these issues. It

causesq values on abstract self-transitions to have values that depend upon the dynamics

of the state space as well as the reward, making it easier to find splits. While we investigated

this path, we found no techniques more effective than those discussed in the related work

in Chapter 6, (e.g. Munos and Moore, 1999). Moving Continuous U Tree to have linear

leaves does not allow the use of the types of temporal abstraction we propose in this thesis.

The approach we used was to try and fix the semantics of the abstract MDP. We discuss

this work in Chapter 5.



52 CHAPTER 3. CONTINUOUS U TREE
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Figure 3.1: Two cumulative probability distributions

Splits: Policy:

Figure 3.2: The learnt discretization and policy for the corridor task after 3000 steps. The

y axis is the robot’s temperature. The x axis is the location along the corridor. The goal is

on the right hand edge. The policy was to move right at every point. Black areas indicate

the heater was to be active. White areas indicate the cooler was to be active.

Figure 3.3: A simple gridworld to demonstrate some limitations of Continuous U Tree.



Chapter 4

Lumberjack

Trees have been used for the representation of induced concepts in numerous areas of AI.

In this thesis we are using trees to represent a discretization of a state space when solving

Semi-Markov Decision Problems. Supervised learning is another area with large applica-

tion of trees (Breiman et al., 1984; Quinlan, 1992). Despite their frequent use, trees are not

perfect; to represent some concepts trees may need to represent some subconcepts multiple

times. For example, to represent the boolean conceptAB∨CD a decision tree has to repeat

the representation of eitherAB or CD (see Figure 4.1a whereCD is repeated).

This repetition of entire subtrees is well known in the supervised learning community

and has been studied by several researchers (see Section 4.1). In addition, we have found

that in most reinforcement learning domains in which temporal abstraction is useful, rep-

resenting the policy as a tree repeats internal structure. Reversing our viewpoint, we can

look at repeated structures in the tree representation of a policy as subtasks in that domain.

For example, consider a concept mapping a tuple of boolean inputs,〈A, B, C,D〉, to action

A B True
C D True

False
False

C D True
False

False

A B North
C D North

East
East

C D South
West

West

(a) A tree representing the boolean (b) A concept with repeated

conceptAB ∨ CD internal structure

Figure 4.1: Two trees with repeated structure

53
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outputs,{North, South, East, West} as shown in Figure 4.1b. The internal structure of the

CD subtree is repeated even though the leaves are not. It chooses between either North and

East, or South and West depending upon the value ofA.

In most inductive systems work must be performed to learn each part of the tree. If

a subconcept is represented twice then it must be learnt twice. Moreover, each individual

representation of a subconcept is learnt using only part of the available data. For example,

in Figure 4.1b the representation ofCD when A is true is learned separately from the

representation ofCD whenA is false.

One way to avoid this re-learning is to use a different representation. The target concept

can be described as a hierarchy of concepts, each of which can use concepts below it in the

hierarchy as building blocks. In the example above, the conceptCD could be learned once

and then simply referenced in multiple places while learning the full conceptAB ∨ CD.

In this chapter we present a new representation, thelinked decision forest1. This rep-

resentation allows trees in the forest to reference other trees in the forest as subconcepts.

The linked decision forest does not have to repeatedly represent, and so repeatedly relearn,

subconcepts.

We also introduce an algorithm, Lumberjack, for growing these linked forests. In this

algorithm new trees are introduced and old trees removed as the algorithm progresses.

Additionally, all trees in the forest are grown in parallel. This allows the representation

used by the trees, which includes the other trees, to change dynamically. We show in the

empirical results at the end of the chapter that Lumberjack generalizes more effectively

than a simple decision tree on hierarchically decomposable concepts.

The hierarchical decomposition of the tree into a linked decision forest is presented in

this chapter in terms of supervised learning. Given a series of examples from a function,

we try to learn a representation that can predict the output for future inputs. It is important

to note however, that the decomposition itself can be applied to trees in other domains.

This algorithm follows theMinimum Description Length(MDL) (Rissanen, 1983) or

Minimum Message Length(MML) (Wallace and Boulton, 1968) paradigm. In this paradigm,

a theory is encoded and then the data is encoded using the theory. The theory that gives

the shortest combined code length is chosen. The theory is used to compress the data.
1The term ‘decision forest’ has been used previously in the machine learning literature to refer to a collec-

tion of different decision trees, each separately representing the same concept (Murphy and Pazzani, 1994).

We introduce the termlinked decision forestto refer to a collection of decision trees with references between

the trees so the forest as a whole, not just the individual trees, represents a concept.
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In Lumberjack the theory is itself compressed by extracting redundant subtrees and only

representing them once. This extracted structure is itself represented as a tree and so the

extraction algorithm can be run recursively. The result is a hierarchy of concepts that are

used to represent the data.

4.1 Related Work in Substructure Detection

Duplicated subtrees, as in Figure 4.1a, are a well known problem. Two decision tree-like

systems that attempt to factor out repeated substructure are the FRINGE system (Pagallo

and Haussler, 1990) and the decision graph induction system of Oliver and Wallace (1992).

Read once oblivious decision graphs (Kohavi, 1995) are also related, although they use a

significantly different method to generate the graph.

The FRINGE system works by first growing a normal decision tree. Once this tree is

fully grown, the last two decisions above each leaf in the tree (the fringe of the tree) are

processed to form new attributes. The original tree is discarded and a new tree is grown

using both the original attributes and the new attributes. The whole process is repeated,

with the number of attributes constantly growing, until accuracy on a separate dataset starts

dropping. The fact that attributes are not removed if they turn out not to be useful is an

efficiency concern, as is the repeated re-growing of the tree.

Oliver and Wallace (1992) inferred decision graphs directly using the Minimum Mes-

sage Length Principle (MML) (Wallace and Boulton, 1968; Quinlan and Rivest, 1989; Wal-

lace and Patrick, 1993). The system proceeds much as would a decision tree learner, except

for two changes. Instead of a depth first approach to recursively splitting the dataset, the

splits are introduced in a best first manner; the location of the next decision node is chosen

using MML. Also, instead of introducing a new decision node, the system can join two

leaves together, forming a directed acyclic graph. This decision is also made using the

MML criterion.

The HOODG (Kohavi, 1995) system is very closely related to the Ordered Binary De-

cision Diagrams of Bryant (1992). These have a number of differences from arbitrary

decision graphs. Both HOODG and OBDDs require an ordering among the variables and

only generate graphs that test the variables in that order. As discussed by Kohavi, this

limits the representation so that it is less efficient than an arbitrary decision graph. Also,

the algorithm is not incremental and so cannot be transferred to RL using the techniques

described in Chapter 3. Hoey et al. (1999) have used Arithmetic Decision Diagrams in a
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reinforcement learning setting. In that work they are used in a non-approximate manner.

Both Oliver and Wallace (1992) and Kohavi (1995) use a decision graph representation.

A decision graph is not capable of factoring out structure which is only repeated internally,

like theCD subtree in Figure 4.1b. Additionally, the decision graph algorithm of Oliver and

Wallace (1992) chooses when to factor out repeated structure (join two leaves) using MML.

The algorithm is choosing subtrees to ‘join’ based on comparison of their outputs, without

any comparison of the structures required to represent the correct subconcepts (which have

not been grown at the time the decision to join is made). At the time the research in this

chapter was performed we were intending to apply these algorithms to approximation of

the value function of a reinforcement learning problem. When approximating the value

function it is important to allow variation in the absolute value of a region of space while

still being able to capture repeated structure. With our current approach, extracting structure

from thepolicy, this need to extract internal structure is less urgent. It might be useful in

future work to compare these algorithms for finding repeated structure.

Our work is based on the SEQUITURalgorithm (Nevill-Manning, 1996; Nevill-Manning

and Witten, 1997) for the automatic decomposition of strings. Given a linear sequence

of symbols with no prior structure, SEQUITUR forms a simple grammar where repeated

substrings are factored out. For example, given the stringS → abcdababcd, SEQUITUR

produces the grammar:A → ab, B → Acd, S → BAB. This grammar re-represents the

original string in a compact form.

It is important to note that finding the most compressive decomposition of this type for

a linear string is an NP-hard problem (Storer, 1982). The problem in strings is reducible

to the similar problem in trees2, so decomposing trees for optimal compression is also NP-

hard. SEQUITUR is a linear time heuristic algorithm for decomposing strings that has been

shown to give good results.

4.2 The Linked Forest Representation

For linear strings the grammar is a well known representation for a hierarchical decompo-

sition. We introduce the linked forest representation which allows hierarchical decompo-

sition of trees. A linked forest is composed of trees with references between them in the

same way a grammar is composed of rewrite rules with references between them. One tree
2A string can be embedded in a degenerate binary tree that only has non-leaf children on one side.
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T0: Root
A B True

[A T2] <ID1>: True
<ID2>: G True

False
<ID3>: False

[V T1]

T1
C False

D True
False

T2
E F <ID1>

<ID2>
<ID3>

Figure 4.2: A linked decision forest showing the root tree T0, and the trees T1 and T2; T0

includes a value reference to T1, [V T1], and an attribute reference to T2, [A T2]

in the linked forest is marked as the root tree. The root node of this tree is the starting point

for classification by the forest. Figure 4.2 shows an example of a boolean linked decision

forest.

The inter-tree references take two forms. When a node makes avalue referenceto

another tree the semantics are similar to a jump instruction; processing simply continues

in the new tree. When a node makes anattribute referenceto another tree the semantics

are similar to a function call. The referencing node has children which are in one-to-one

correspondence with the leaves of the referenced tree. Control is passed across to the

referenced tree until a leaf is reached, then passed back to the corresponding child of the

referencing node.

If a tree is only referenced by attribute references, anattribute tree, then it does not

require class labels or other data in its leaves. It simply has ID values that allow the cor-

responding children to be found. Lumberjack does not yet form value trees. They are

mentioned for comparison purposes. One can view FRINGE as forming attribute trees, like

Lumberjack, and the Decision Graph induction algorithm as forming value trees.

4.3 The Lumberjack Algorithm

The SEQUITUR algorithm detects common subsequences in strings by tracking digrams.

For our algorithm we define a structure similar to a digram for trees, adi-node, that can be

hashed for fast duplicate detection.

A di-node is defined as a pair of internal nodes in the forest such that one node is a child

of the other. Two di-nodes are defined to be equal if the parent nodes are equal, the child

nodes are equal, and the child is in the same location in both di-nodes (i.e. child ordering
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is important). For example, in Figure 4.1a the two nodes labelledA andB form a di-node.

The two nodes labelledA andB in Figure 4.2 also form a di-node. These di-nodes are

equal; the difference in nearby nodes is irrelevant. There are also two di-nodes made up of

nodes labelledC andD in Figure 4.1a. Those di-nodes are equal, but they are not equal

to the di-node made up of nodes labelledC andD in Figure 4.2; theD node is not in the

same location relative to its parent.

Note that either, or both, of the nodes in a di-node can be a reference to another tree,

and so a di-node can represent an arbitrarily large set of nodes. Also note that two di-nodes

are equal if and only if they represent equivalent sets of nodes that have been decomposed

in the same way. In addition, note that matching di-nodes do not have to occur in the root

tree, or even the same tree.

We are now in a position to give an overview of the Lumberjack algorithm. Table 5

shows the algorithm in detail. Initially the forest starts as a single tree with a single leaf

node. Leaves are then split one at a time; they are replaced with new decision nodes. As

the forest is updated a hash table records all di-nodes currently in the forest. We use the

Minimum Description Length (MDL) principle to choose the next decision node and to de-

cide when to stop growing the forest (the details of the MDL selection are discussed later).

Once an internal node has been added the forest is checked for duplicate di-nodes using the

di-node hash. Any non-overlapping duplicates are extracted to form a new attribute tree

and the original di-nodes are replaced with references to the new tree. Any trivial attribute

trees (trees referenced only once or having less than two internal nodes) are removed and

their structure reinserted into the referencing tree(s).

This extraction and reinsertion of di-nodes removes all duplicated substructure from the

forest. Because duplicate di-nodes are detected in all trees, it is common for the structure

to be more than two levels deep.

Note that we only form attribute trees from internal nodes. When generating the gram-

mar for a string it is possible to form a rewrite rule containing the last character of a string

because the end of the string is unique. If we want to add any further characters we know

where to add them. If we merge leaves in Lumberjack then we lose the ability to differen-

tiate the positions where we might wish to add further nodes. While this might sometimes

be useful for linked decision forests, as shown by Oliver and Wallace (1992), it is diffi-

cult to find a suitable criterion for doing this while retaining the ability to form attribute

references.
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Procedure 5: The main linked forest learning algorithm

1: Forest ← new leaf,Hash ← ∅, DAG ← ∅
2: repeat

3: BestLengthall ← Length(Forest)
4: BestLengthnew ←∞
5: for all leaves,l, in BestForest do

6: if splitting this leaf would mean splitting a non-leaf elsewherethen

7: Continue with next leaf

8: end if

9: for all decision types,d do

10: if Introducing a decision of this type at this leaf would cause a cycle inDAG then

11: Continue with next decision type

12: end if

13: Forest ← BestForestall
14: Replacel in Forest with an internal node,i, of typed and new leaves (clones ofl)

15: Update forest structure (see Procedure 6)

16: ThisLength ← Length(BestForest)
17: if ThisLength < BestLengthnew then

18: BestLeaf ← l

19: BestDecision ← d

20: BestLengthnew ← ThisLength
21: end if

22: Removei and replace it withl {Undoing this change to the forest}
23: Update forest structure (see Procedure 6)

24: end for

25: end for

26: Update forest structure (see Procedure 6)

27: if BestLengthnew <∞ then

28: ReplaceBestLeaf in Forest with an internal node,i, of typeBestDecision and new leaves

(clones ofBestLeaf )

29: if the parent ofi is itself a decision nodethen

30: Add the di-node〈parent(i), i〉 to Hash
31: Update substructure (see Procedure 7)

32: end if

33: end if

34: until BestLengthall < Length(Forest)
35: ReturnForest
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Procedure 6: The subroutine to update forest structure

1: for all treest ∈ DAG , in topological orderdo

2: for all nodesn ∈ t, in post-orderdo

3: if n is a reference to another tree,tr then

4: for all childrenc of n do

5: if c corresponds to a leaf intr that no longer existsthen

6: Removec from the tree

7: end if

8: end for

9: for all leavesl ∈ tr without children inn do

10: add a new leaf ton as the corresponding child tol

11: end for

12: end if

13: end for

14: end for

Procedure 7: The subroutine to find common substructure

1: while there are duplicate di-nodes, single use trees or degenerate treesdo

2: if there are duplicate di-nodesthen

3: Use the first pair of non-overlapping duplicate di-nodes to form a new attribute

tree

4: Replace the di-nodes with references to the new tree

5: else ifthere are single use treesthen

6: Reinsert the tree

7: else ifthere are degenerate treesthen

8: Reinsert the tree

9: end if

10: UpdateHash andDAG

11: end while
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4.3.1 Altering the inductive bias

In the previous text we did not supply all the details of the algorithm. If the decision

criteria for new nodes are chosen from only the original attributes, and only leaves of the

root tree are extended, then the concept learned is the same as that learned by a normal tree

induction algorithm; there is no change in inductive bias. The new representation has all

repeated structure separated into other trees, but this is only a change in representation, not

concept. We can change the inductive bias of the algorithm, and hence the concept learned,

by extending the ways the forest is grown.

The first change is to allow the induction algorithm to split not only on the original

attributes, but also to introduce an attribute reference to any tree in the forest. This can

be viewed as a form of macro replay. The one restriction is that the use of this tree not

introduce a cycle in the forest. Lumberjack records which trees reference which other trees

in a directed acyclic graph (DAG). No split that would introduce a cycle in this graph is

allowed.

The second change is to allow the algorithm to refine the attribute trees: we allow the

induction algorithm to grow the forest not only at leaves of the root tree, but at the leaves

of any tree in the forest. This can be viewed as a form of macro refinement. Again there

is a restriction. Recall that leaves of attribute trees correspond with the children of the

nodes that reference them. If you split a leaf of an attribute tree, then you must split the

corresponding children of the referencing node(s). If any of the corresponding children is

not a leaf then we do not allow the split.

Growing attribute trees changes the number of outcomes of decision nodes elsewhere

in the forest. That in turn changes the number of outcomes of other decision nodes,etc.

Because the trees form a DAG, it is possible to update the trees in reverse topological order

and know that all trees being referenced by the tree currently being updated are themselves

up to date.

Finally, the correspondence between the leaves of an attribute tree and the children of

a node that references that tree is important for the hashing of di-nodes. The hash table

should use that correspondence rather than child numbering for generating hash codes and

testing equality. By avoiding the use of child numbering the algorithm does not have to

re-hash di-nodes when an attribute tree grows or shrinks.
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4.3.2 Example: Growing a CNF function

Figures 4.3 and 4.4 show two series of decision forests that might be generated while grow-

ing the boolean functionABC ∨DEF . The algorithm is deterministic and so to generate

two different forests would require different sets of training data, even if sampled from the

same original concept. Rather than use real data and MDL we have chosen the decision

nodes added at each stage ourselves to demonstrate aspects of the algorithm. To save space

a number of steps are omitted.

Figure 4.3 demonstrates the common substructure detection of Lumberjack. In part (a)

the forest is a single tree with no repeated structure. In part (b) we show an intermediate

stage with a repeated di-node,DE. This is then extracted in part (c) to form a new tree, T1,

with attribute references in the root tree. Note that internal structure has been extracted; the

second reference to T1 has a non-leaf child,F , through outcome<ID1> .

Parts (d) and (e) show another aspect of the decomposition. Part (d) shows the root

tree with a repeated di-node, two copies of the [A T1]F combination mentioned above.

In part (e) these di-nodes have been extracted to form a new tree, T2. Syntactically, the

repeated structure was constant size and so could be detected quickly. However, because

repeated references match, semantically the repeated structure was a larger subtree.

In part (e), T1 is only referenced once. In this case Lumberjack reinserts the tree. This

is shown in part (f). This reinsertion is important for the algorithm. As noted above, two

di-nodes match only if they represent the same structure decomposed in the same way.

Reinsertion reduces the number of ways a concept can be decomposed and so removes a

barrier to matching equivalent subtrees. Reducing the number of trees in the forest also

reduces the number of possible decision nodes that could be introduced and so increases

the speed of the algorithm.

Figure 4.4 again shows a set of forests that could be generated while learning the func-

tion ABC ∨DEF . One can assume this was learnt from a different dataset to the example

in Figure 4.3. Again, rather than use real data and MDL we have chosen the decision nodes

added at each stage ourselves to demonstrate aspects of the algorithm. Here we show

Lumberjack reusing and refining previously learnt subconcepts.

Again, we skip some normal growth steps and start following in detail when the tree

in (a) has been learnt. We will then assume our data causesDE to be grown in another

subtree leading to the forest in (b). It is at this point that the first repeated di-node,DE, is

detected. The di-node is extracted to form a new tree in part (c).
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T0: Root
A B C True

False
False

D E F True
False

False
False

T0: Root
A B C True

False
D E True

False
False

D E F True
False

False
False

(a) A tree representing part of the concept (b) The tree with a duplicate di-node,DE

T1:
D E <ID1>

<ID2>

<ID3>

T0: Root
A B C True

False
[A T1] <ID1>: True

<ID2>: False
<ID3>: False

[A T1] <ID1>: F True
False

<ID2>: False
<ID3>: False

(c) A forest where the duplicate di-node from (b) has been separated into T1

T1:
D E <ID1>

<ID2>

<ID3>

T0: Root
A B C True

False
[A T1] <ID1>: F True

False
<ID2>: False
<ID3>: False

[A T1] <ID1>: F True
False

<ID2>: False
<ID3>: False

(d) A forest with a duplicate di-node, [A T1]F .

T1:
D E <ID1>

<ID2>

<ID3>

T0: Root
A B C True

False
[A T2] <ID4>: True

<ID5>: False
<ID6>: False
<ID7>: False

[A T2] <ID4>: True
<ID5>: False
<ID6>: False
<ID7>: False

T2:
[A T1] <ID1>: F <ID4>

<ID5>

<ID2>: <ID6>

<ID3>: <ID7>

(e) The duplicate from (d) has been removed to form T2

T0: Root
A B C True

False
[A T2] <ID4>: True

<ID5>: False
<ID6>: False
<ID7>: False

[A T2] <ID4>: True
<ID5>: False
<ID6>: False
<ID7>: False

(f) Tree T1 from (e) has been re-inserted into T2

Figure 4.3: A series of forests while learning the boolean functionABC ∨ DEF . This

series demonstrates the common substructure detection aspects of Lumberjack.
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Node Type Bits

Leaf log2(
b

b−1
)

decision node log2(b) + log2(NA + NPT )

Table 4.1: Costs to encode a non-root node

Having found the substructure we can then immediately use it by splitting on the new

tree. The resulting forest is shown in part (d).

Finally we can grow the forest at the leaves of any tree. In this case we grow tree T1 so

that it represents the conceptDEF (see part (e)). This involves removing leaf<ID1> and

replacing it with a decision and two new leaves. Note that in each of the references to T1

all the children through<ID1> were leaves. These are removed and new children added

for the new IDs. Children through other IDs are unchanged.

4.3.3 MDL coding of linked decision forests

The Minimum Description Length (Rissanen, 1983) or Minimum Message Length (Wal-

lace and Boulton, 1968) Principle is a way of finding an inductive bias. It uses Bayes’

Rule3 and Shannon’s information theory4 to choose between competing models for data.

The model and data are both encoded according to a coding scheme. The model which

gives the shortest total code length is chosen.

The Lumberjack algorithm could also be used with other decision node selection cri-

teria. MDL was chosen for ease of implementation and because it supplies a stopping

criterion.

Our coding scheme for MDL comparisons is a minor change from the Wallace and

Patrick (1993) scheme for decision trees. LetNT be the number of trees,NA the number of

attributes,NPT the number of trees after the current tree in the topological ordering andb be

the branching factor of our parent node. First, the number of trees in the forest is encoded

usingL∗(NT ) bits.5 Then the trees are encoded in reverse topological order. Each tree is

encoded by performing a pre-order traversal of the tree and encoding each node using the

number of bits shown in Table 4.1.
3We use a weak form of Bayes’ Rule:P (T |D) ∝ P (T )P (D|T ).
4The optimal code length in bits of a symbol that has probabilityp is− log2(p).
5L∗(X) = log∗2(X) + log2(c), wherec ' 2.865064, is a code length for an arbitrary integer.log∗2(X) =

log2(X) + log2(log2(X)) + . . . summing only positive terms (Rissanen, 1983).
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D E True
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False
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(a) A tree representing part of the concept (b) The tree with a duplicate di-node,DE

T0: Root
A B C True

False
[A T1] <ID1>: True

<ID2>: False
<ID3>: False

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

T1:
D E <ID1>

<ID2>

<ID3>

(c) A forest where the duplicate di-node from (b) has been separated into T1

T0: Root
A B C True

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

[A T1] <ID1>: True
<ID2>: False
<ID3>: False

T1:
D E <ID1>

<ID2>

<ID3>

(d) Tree T1 from (c) has been reused

(e) Tree T1 from (d) has been extended

Figure 4.4: A series of forests while learning the boolean functionABC ∨ DEF . This

series demonstrates the aspects of Lumberjack that result in a change of bias.
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• For each value leaf in the forest

– Encode each example using− log2(pi,j) bits

where,

• i is the number of examples of this class seen so far in this leaf

• j is the total number of examples seen so far in this leaf

• M is the number of classes

• pi,j = i+1
j+M

Table 4.2: Costs of MDL example coding

The one cost not yet specified is the cost to encode the root nodes of the trees. These

have no parent node and henceb is undefined. When there is only one tree, a leaf at the root

is encoded usinglog2(NA) bits and a decision node is encoded usinglog2(
NA

NA−1
)+log2(NA)

bits, as in Wallace and Patrick (1993). When there is more than one tree, we know that

none of the root nodes are leaves. The root decision nodes can be encoded using only

log2(NA + NPT ) bits. Finally, the examples are encoded using the costs in Table 4.2.

4.4 Experiments

We tested Lumberjack using standard supervised learning experiments. We compared the

generalization accuracy of a decision tree learner and Lumberjack, each using the same

MDL coding. The results are shown in Figures 4.5 and 4.6. The graphs show the averages

over10 trials. We tested for significance using a paired Wilcoxon rank-sum test (p = 0.05).

The first set of results are for the boolean functionABC ∨ DEF ∨ GHI. Training

samples were sampled with replacement from the concept, then the output was flipped in

10% of the samples. The testing dataset was a complete dataset without noise. Results are

shown in Figure 4.5. The difference in error rate between the tree and forest algorithms

is significant for sample sizes1000 through2500 inclusive, and also for the3000 sample
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Figure 4.5: Experimental results learning the conceptABC ∨DEF ∨GHI

dataset.6

The second set of results uses a dataset generated by mapping a reinforcement learning

problem back into a supervised learning problem. The domain used was the walking robot

domain described in Section 2.6.4. This problem was fed into a traditional Markov Deci-

sion Problem algorithm, and the resulting policy was used as a dataset for our supervised

learning experiment. The domain is discrete. The∆s each have only 3 possible values,

and theX, Y location was encoded using a series of variables{X < 1, X < 2, . . . , X <

9, Y < 1, Y < 2, . . . , Y < 9}. This coding is similar to the one implicitly used by C4.5

for continuous variables. Training datasets were generated by randomly sampling, with

replacement, from this true dataset. The testing dataset was the full true dataset.

Again the results, in Figure 4.6, are the averages over 10 trials. There is a significant

difference between the two algorithms for sample sizes of 2000 or more. While the results

at sample size4000 are still significant, it is clear that both algorithms are converging again

as sample size increases; the tree has enough data to grow the repeated structure. Looking at

the forest for large sample sizes it is possible to see the separation of structure representing

the maze from structure representing the ability to walk.
6We also compared with C4.5. C4.5 is always significantly better than the MDL tree learning system. This

is a well known deficiency of MDL vs. C4.5 and is orthogonal to the use of Lumberjack style decomposition.

With 1000 or more datapoints, C4.5 and Lumberjack perform similarly.



68 CHAPTER 4. LUMBERJACK

Robot Maze Problem

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000

Training Sample Size

E
rr

o
r 

R
at

e

Tree

Lumberjack

Figure 4.6: Experimental results learning a policy to walk through a maze

4.5 Lumberjack and Solving SMDPs

In the introduction to this chapter we noted that although this chapter was phrased in terms

of supervised learning, the decomposition could be applied to other domains. In particular

we have applied lumberjack style decomposition directly to the state tree in the Continuous

U Tree algorithm as that tree is being grown. This does not work particularly well. The

reason appears to be the nonstationary nature of the learning that occurs in Continuous

U Tree – the dataset being used to divide the state space changes each time the MDP is re-

solved. However, as shown above, Lumberjack is effective in decomposing a reinforcement

learning policy once the problem has been solved and the policy has become stationary.



Chapter 5

TTree

In this chapter we introduce the Trajectory Tree, or TTree, algorithm. The goal of this

algorithm is to take an SMDP and a small collection of supplied policies, and discover

which supplied policy should be used in each state to solve the SMDP. We wish to do this

in a way that is more efficient than finding the optimal policy directly.

This is part of our approach to solving a series of SMDPs that was introduced in Chap-

ter 1. To recap, our approach consists of two stages: firstly, the solutions to early problems

are processed. In the second stage the results of that processing are used to solve later prob-

lems. In this chapter we describe the second stage of that process in more detail. The input

to this algorithm is a set of policies that are likely to be useful for solving sub-problems in

the current problem.

The TTree algorithm is an extension of the Continuous U Tree algorithm described in

Chapter 3. In addition to adding the ability to use temporal abstraction, we also fix some of

the semantic issues discussed in Section 3.5.

TTree uses policies as temporally abstract actions. They are solutions to subtasks that

we expect the agent to encounter. We refer to these supplied policies as abstract actions

to distinguish them from the solution – the policy we are trying to find. This definition

of “abstract actions” is different from previous definitions. Other definitions of abstract

actions in reinforcement learning have termination criteria that our definition does not.

Definitions of abstract actions in planning (e.g. Knoblock, 1991), where an abstract action

is a normal action with some pre-conditions removed, are even further removed from our

definition. This ‘planning’ definition of abstract actions is closer to the concept of state

abstraction than temporal abstraction.

69
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Each of the supplied abstract actions is defined over the same set of base-level actions

as the SMDP being solved. As a result, using the abstract actions gives us no more rep-

resentational power than representing the policy through some other means,e.g.a table.

Additionally, we ensure that there is at least one abstract action that uses each base-level

action in each state, so that any policy for the SMDP can be represented as as a policy over

the abstract actions.

The previous paragraph shows that a policy over the abstract actions has identical rep-

resentational power to a normal policy over the states of an SMDP. However, if we have a

policy mapping abstract states to abstract actions, then we have increased the representa-

tion power over a policy mapping abstract states to normal actions. This increase in power

allows our abstract states to be larger while still representing the same policy.

5.1 Definitions

In Chapter 2, equations 2.12 and 2.13, we gave the definition of theQ and value functions

of an SMDP. TheQπ(s, a) function is the expected sum of discounted reward for taking

actiona in states and following the policyπ from then onwards. We reprint the equations

here:

Qπ(s, a) = R(s, a) +
∑
s′∈S

∫ ∞

t=0

Ps,a(s
′, t)γtV π(s′) dt (5.1)

V π(s) = Qπ (s, π(s)) (5.2)

We now introduce a related function, theT π function. This function is defined over a

set of statesS ′ ⊂ S. It measures the discounted sum of reward for following the given

action until the agent leavesS ′, then following the policyπ.

T π
S′(s, a) = R(s, a)

+
∑
s′∈S′

∫ ∞

t=0

Ps,a(s
′, t)γtT π

S′(s′, a) dt

+
∑

s′∈(S−S′)

∫ ∞

t=0

Ps,a(s
′, t)γtV π(s′) dt

(5.3)
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We assume that instead of samplingP andR directly from the world, our agent instead

samples from agenerative modelof the world,e.g.Ng and Jordan (2000). This is a function,

G : S×A → S×<×<, that takes a state and an action and returns a next state, a time and

a reward for the transition. Our algorithm usesG to sample trajectories through the state

space starting from randomly selected states.

5.2 The TTree Algorithm

TTree works by building an abstract SMDP that is smaller than the original, or base, SMDP.

The solution to this abstract SMDP is an approximation to the solution to the base SMDP.

The abstract SMDP is formed as follows: The states in the abstract SMDP, theabstract

states, are formed by partitioning the states in the base SMDP; each abstract state corre-

sponds to the set of base level states in one element of the partition. Each base level state

falls into exactly one abstract state. Each action in the abstract SMDP, anabstract action,

corresponds to a policy, or stochastic policy, in the base SMDP. We allow these abstract

actions to have stochastic outcomes. The abstract transition and reward functions are found

by sampling trajectories from the base SMDP.

We introduce some notation to help explain the algorithm. We use a bar over a symbol

to distinguish the abstract SMDP from the base SMDP,e.g.s̄ vs.s, or Ā vs.A. This allows

us a shorthand notation: when we have a base state,s, we usēs to refer specifically to the

abstract state containings. Also, when we have an abstract actionā we useπā to refer to the

base policy corresponding tōa and henceπā(s) is the corresponding base action at states.

Additionally, we sometimes overload̄s to refer to the set of base states that it corresponds

to,e.g.s ∈ s̄. Finally, it is useful, particularly in the proofs, to define functions that describe

the base states within an abstract state,s̄, but only refer to abstract states outside ofs̄. We

mark these functions with a tilde. For example, we can define a function related toTS′(s, a)

above,T̃s̄(s, a).

T̃s̄(s, a) = R(s, a)

+
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtT̃s̄(s

′, a) dt

+
∑

s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.4)
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Note that thẽTs̄ function is labelled with a tilde, and hence within the abstract states̄ we

refer to base level states, outside ofs̄ we refer to the abstract value function over abstract

states.

We describe the TTree algorithm from a number of different viewpoints. First we de-

scribe how TTree builds up the abstract SMDP,〈S̄, Ā, P̄ , R̄〉. Then we follow through the

algorithm in detail, and finally we give a high level overview of the algorithm comparing it

with previous algorithms.

5.2.1 Defining the abstract SMDP

TTree uses a tree to partition the base level state space into abstract states. Each node in

the tree corresponds to a region of the state space with the root node corresponding to the

entire space. As our current implementation assumes state dimensions are discrete, internal

nodes divide their region of state space along one dimension with one child for each discrete

value along that dimension. It is a small, but currently unimplemented, extension to handle

continuous and ordered discrete attributes in the same way Continuous U Tree does. Leaf

nodes correspond to abstract states; all the base level states that fall into that region of space

are part of the abstract state.

TTree uses a set of abstract actions for the abstract SMDP. Each abstract action corre-

sponds to a base level policy. There are two ways in which these abstract actions can be

obtained; they can be supplied by the user, or they can be generated by TTree. In particular,

TTree generates one abstract action for each base level action, and one additional ‘random’

abstract action. The ‘random’ abstract action is a base level stochastic policy that performs

a random base level action in each base level state. The other generated abstract actions are

degenerate base level policies: they perform the same base level action in every base level

state:∀s; πā1(s) = a1, πā2(s) = a2, . . . , πāk
(s) = ak. These generated abstract actions are

all that is required by the proof of correctness. Any abstract actions supplied by the user

are hints to speed things up and are not required for correctness.

Informally, the abstract transition and reward functions are the expected result of start-

ing in a random base state in the current abstract state and following a trajectory through the

base states until we reach a new abstract state. To formalize this we define two functions.

R̃s̄(s, ā) is the expected discounted reward of starting in states and following a trajectory

through the base states usingπā until a new abstract state is reached. If no new abstract

state is ever reached, theñR is the expected discounted reward of the infinite trajectory.



5.2. THE TTREE ALGORITHM 73

P̃s,ā(s̄′, t) is the expected probability, over the same set of trajectories asR̃s̄(s, ā), of reach-

ing the abstract statēs′ in time t. If s̄′ is s̄ then we change the definition;̃Ps,ā(s̄′, t) is the

probability that the trajectory never leaves states̄ whent =∞ and0 otherwise.

We note that assigning a probability mass tot = ∞ is a mathematically suspect thing

to do as it assigns a probability mass, rather than a density, to a single ‘point’ and, further-

more, that ‘point’ is∞. We justify the use of̃Ps,ā(s̄,∞) as a notational convenience for

“the probability we never leave the current state” as follows. We note that each timeP is

referenced with̄s′ = s̄, it is then multiplied byγt, and hence fort =∞ the product is zero.

This is the correct value for an infinitely discounted reward. In the algorithm, as opposed

to the proof,t =∞ is approximated byt ∈ (MAXTIME ,∞). MAXTIME is a constant in

the algorithm, chosen so thatγMAXTIME multiplied by the largest reward in the SMDP is ap-

proximately zero. The exponential discounting involved means that MAXTIME is usually

not very large.

The definitions ofP̃ andR̃ are expressed in the following equations:

R̃s̄(s, ā) = R(s, πā(s)) +
∑
s′∈s̄

∫ ∞

t=0

Ps,πā(s)(s
′, t)γtR̃s̄(s

′, ā) dt (5.5)

P̃s,ā(s̄′, t) =



∑
s′′∈s̄′

Ps,πā(s)(s
′′, t)

+
∑
s′′∈s̄

∫ t

t′=0

Ps,πā(s)(s
′′, t′)P̃s′′,ā(s̄′, t− t′) dt′

: s̄′ 6= s̄

0 : s̄′ = s̄, t 6=∞

1−
∑
s̄′′ 6=s̄

∫ ∞

t=0

P̃s,a(s̄′′, t) dt : s̄′ = s̄, t =∞

(5.6)

HereR̃ is recursively defined as the expected reward of the first step plus the expected

reward of the rest of the trajectory.̃P also has a recursive formula. The first summation

is the probability of moving froms to s̄′ in one transition. The second summation is the

probability of transitioning froms to another states′′ ∈ s̄ in one transition, and then con-

tinuing froms′′ on to s̄′ in a trajectory using the remaining time. Note, the recursion in the

definition of P̃ is going to be bounded as there are no zero time cycles in the SMDP (see

Section 2.1).

We can now define the abstract transition and reward functions,P̄ andR̄, as the ex-

pected values over all base states in the current abstract state ofP̃ andR̃:
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P̄s̄,ā(s̄′, t) = E
s∈s̄

P̃s,ā(s̄′, t) (5.7)

R̄(s̄, ā) = E
s∈s̄

R̃s̄(s, ā) (5.8)

In english,P̄ andR̄ are the expected transition and reward functions if we start in a

random base level state within the current abstract state and follow the supplied abstract

action until we reach a new abstract state.

5.2.2 An overview of the TTree algorithm

In the algorithmP̄ andR̄ are not calculated directly from the above formulae. Rather, they

are sampled by following trajectories through the base level state space as follows. A set of

base level states is sampled from each abstract state. From each of these start states, for each

abstract action, the algorithm uses the generative model to sample a series of trajectories

through the base level states that make up the abstract state. In detail for one trajectory:

Let the abstract state we are considering be the states̄. The algorithm first samples a set of

base level start states,{s0, s1, . . . , sk} ∈ s̄. It then gathers the set of base level policies for

the abstract actions,{πā1 , πā2 , . . . , πāl
}. For each start state,si, and policy,πāj

, in turn, the

agent samples a series of base level states from the generative model forming a trajectory

through the low level state space. As the trajectory progresses, the algorithm tracks the

sum of discounted reward for the trajectory, and the total time taken by the trajectory. The

algorithm does not keep track of the intermediate base level states.

These trajectories have a number of termination criteria. The most important is that

the trajectory stops if it reaches a new abstract state. The trajectory also stops if the system

detects a deterministic self-transition in the base level state, if an absorbing state is reached,

or if the trajectory exceeds a predefined length of time, MAXTIME. The result for each

trajectory is a tuple,〈sstart , āj, sstop , t, r〉, of the start base level state, abstract action, end

base level state, total time and total discounted reward.

We turn the trajectory into a sample transition in the abstract SMDP:〈s̄start , āj, s̄stop , t, r〉.
The sample transitions are combined to estimate the abstract transition and reward func-

tions,P̄ andR̄.

The algorithm now has a complete abstract SMDP. It can solve it using traditional tech-

niques,e.g.Moore and Atkeson (1993), to find a policy for the abstract SMDP: a function
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from abstract states to the abstract action that should be performed in that abstract state.

However, the abstract actions are base level policies, and the abstract states are sets of base

level states, so we also have a function from base level states to base level actions; we have

a policy for the base SMDP.

Having found a policy, TTree then looks to improve the accuracy of its approximation

by increasing the resolution of the state abstraction. It does this by dividing abstract states;

growing the tree. In order to grow the tree, we need to know which leaves should be divided

and where they should be divided. A leaf should be divided when the utility of performing

an abstract action is not constant across the leaf, or if the best action changes across a leaf.

We can use the trajectories sampled earlier to get point estimates of theT function de-

fined in equation 5.3. First, we assume that the abstract value function,V̄ , is an approxima-

tion of the base value function,V . Making this substitution gives us thẽT function defined

in equation 5.4. The sampled trajectories with the current abstract value function allow us

to estimateT̃ . We refer to these estimates asT̂ . For a single trajectory〈si, āj, sstop , r, t〉 we

can finds̄stop and then get the estimate1:

T̂s̄(si, āj) = r + γtV̄ (s̄stop) (5.9)

From thesêT (s, ā) estimates we obtain three different values used to divide the abstract

state. Firstly, we divide the abstract state ifmaxā T̂ (s, ā) varies across the abstract state.

Secondly, we divide the abstract state if the best action,argmaxā T̂ (s, ā), varies across

the abstract state. Finally, we divide the abstract state ifT̂ (s, ā) varies across the state for

any abstract action. It is interesting to note that while the last of these criteria contains a

superset of the information in the first two, and leads to a higher resolution discretization of

the state space once all splitting is done, it leads to the splits being introduced in a different

order. If used as the sole splitting criterion,T̂ (s, ā) is not as effective asmaxā T̂ (s, ā) for

intermediate trees.

Once a division has been introduced, all trajectories sampled from the leaf that was

divided are discarded, a new set of trajectories is sampled in each of the new leaves, and

the algorithm iterates.
1It has been suggested that it might be possible to use a single trajectory to gainT̂ estimates at many

locations. We are wary of this suggestion as those estimates would be highly correlated; samples taken from

the generative model near the end of a trajectory would affect the calculation of many point estimates.
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Constant Definition

Na The number of trajectory start points sampled from the entire

space each iteration

Nl The minimum number of trajectory start points sampled in

each leaf

Nt The number of trajectories sampled per start point, abstract

action pair

MAXTIME The number of time steps before a trajectory value is

assumed to have converged. Usually chosen to keep

γMAXTIMEr/(1− γt) < ε, wherer andt are the largest re-

ward and smallest time step, andε is an acceptable error

Table 5.1: Constants in the TTree algorithm

5.2.3 The TTree algorithm in detail

The TTree algorithm is shown in Procedure 8. The various constants referred to are defined

in Table 5.1.

The core of the TTree algorithm is the trajectory. As described above, these are paths

through the base-level states within a single abstract state. They are used in two different

ways in the algorithm; to discover the abstract transition function and to gather data about

where to grow the tree and increase the resolution of the state abstraction. We first discuss

how trajectories are sampled, then discuss how they are used.

Trajectories are sampled in sets, each set starting at a single base level state. The func-

tion to sample one of these sets of trajectories is shown in Procedure 9. The set of trajec-

tories containsNt trajectories for each abstract action. Once sampled, each trajectory is

recorded as a tuple of start state, abstract action, resulting state, time taken and total dis-

counted reward,〈sstart , ā, sstop , ttotal , rtotal〉, with sstart being the same for each tuple in the

set. The tuples in the trajectory set are stored along withsstart as a sample point, and added

to the leaf containingsstart .

The individual trajectories are sampled with the randomness being controlled (Ng and

Jordan, 2000; Strens and Moore, 2001). Initially the algorithm stores a set ofNt random

numbers that are used as seeds to reset the random number generator. Before thej th tra-

jectory is sampled, the random number generator used in both the generative model and

any stochastic abstract actions is reset to thej th random seed. This removes some of the
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Procedure 8: ProcedureTTree(S, Ā, G, γ)

1: tree ← a new tree with a single leaf corresponding toS
2: loop

3: Sa ← {s1, . . . , sNa} sampled fromS
4: for all s ∈ Sa do

5: SampleTrajectories(s, tree, Ā, G, γ) {see Procedure 9}
6: end for

7: UpdateAbstractSMDP(tree, Ā, G, γ) {see Procedure 10}
8: GrowTTree(tree, Ā, γ) {see Procedure 11}
9: end loop

randomness in the comparison of the different abstract actions within this set of trajectories.

There are four stopping criteria for a sampled trajectory. Reaching another abstract

state and reaching an absorbing state are stopping criteria that have already been discussed.

Stopping when MAXTIME time steps have passed is an approximation. It allows us to get

approximate values for trajectories that never leave the current state. Because future values

decay exponentially, MAXTIME does not have to be very large to accurately approximate

the trajectory value (e.g. Ng and Jordan, 2000). The final stopping criterion, stopping when

a deterministic self-transition occurs, is an optimization, but it is not always possible to

detect deterministic self-transitions. The algorithm works without this, but samples longer

trajectories waiting for MAXTIME to expire, and hence is less efficient.

The TTree algorithm samples trajectory sets in two places. In the main procedure,

TTree randomly samples start points from the entire base level state space and then samples

trajectory sets from these start points. This serves to increase the number of trajectories

sampled by the algorithm over time regardless of resolution. Procedure 10 also samples

trajectories to ensure that there sampled trajectories in every abstract state to build the

abstract transition function.

As well as using trajectories to find the abstract transition function, TTree also uses

them to generate data to grow the tree. Here trajectories are used to generate three values.

The first is an estimate of theT function,T̂ , the second is an estimate of the optimal abstract

action,π̂(s) = argmaxā T̂ (s, ā), and the third is the value of that action,maxā T̂ (s, ā). As

noted above, trajectories are sampled in sets. The entire set is used by TTree to estimate

theT̂ values and hence reduce the variance of the estimates.
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Procedure 9: ProcedureSampleTrajectories(sstart , tree, Ā, G, γ)

1: Initialize new trajectory sample point,p, atsstart {p will store Nt trajectories for each

of the|Ā| actions}
2: Let {seed1, seed2, . . . , seedNt} be a collection of random seeds

3: l← LeafContaining(tree, sstart)

4: for all abstract actions̄a ∈ Ā do

5: let πā be the base policy associated withā

6: for j = 1 to Nt do

7: Reset the random number generator to seedj

8: s← sstart

9: ttotal ← 0, rtotal ← 0

10: repeat

11: 〈s, t, r〉 ← G(s, πā(s))

12: ttotal ← ttotal + t

13: rtotal ← rtotal + γttotalr

14: until s 6∈ l, or ttotal > MAXTIME, or

〈s′, ∗, ∗〉 = G(s, πā(s)) is deterministic ands = s′, or s is an absorbing state

15: if the trajectory stopped because of a deterministic self transitionthen

16: rtotal ← rtotal + γ(ttotal+t)r/(1− γt)

17: ttotal ←∞
18: else ifthe trajectory stopped because the final state was absorbingthen

19: ttotal ←∞
20: end if

21: sstop ← s

22: Add 〈sstart , ā, sstop , ttotal , rtotal〉 to the trajectory list inp

23: end for

24: end for

25: Add p to l
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Procedure 10: ProcedureUpdateAbstractSMDP(tree, Ā, G, γ)

1: for all leavesl with fewer thanNl sample pointsdo

2: Sa ← {s1, . . . , sNa} sampled froml

3: for all s ∈ Sa do

4: SampleTrajectories(s, tree, Ā, G, γ) {see Procedure 9}
5: end for

6: end for

7: P ← ∅ {Reset abstract transition count}
8: for all leavesl and associated pointsp do

9: for all trajectories,〈sstart , ā, sstop , ttotal , rtotal〉, in p do

10: lstop ← LeafContaining(tree, sstop)

11: P ← P ∪ {〈l, ā, lstop , ttotal , rtotal〉}
12: end for

13: end for

14: TransformP into transition probabilities

15: Solve the abstract SMDP

As noted above (equation 5.9 – reprinted here), for a single trajectory,〈sstart , āj, sstop , r, t〉,
we can find̄sstop and can calculatêT :

T̂s̄start (sstart , ā) = r + γtV̄ (s̄stop) (5.10)

For a set of trajectories all starting at the same base level state with the same abstract

action we find a better estimate:

T̂s̄start (sstart , ā) =
1

Nt

Nt∑
i=0

[
ri + γtiV̄ (s̄stopi

)
]

(5.11)

This is the estimated expected discounted reward for following the abstract actionā

starting at the base level statesstart , until a new abstract state is reached, and then following

the policy defined by the abstract SMDP. If there is a statistically significant change in the

T̂ value across a state for any action then we should divide the state in two.

Additionally, we can find which abstract action has the highestT̂ estimate2, π̂, and the

value of that estimate,̂V :
2Ties are broken in favor of the abstract action selected in the current abstract state.
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V̂ (sstart) = max
ā

T̂ (sstart , ā) (5.12)

π̂(sstart) = argmax
ā

T̂ (sstart , ā) (5.13)

If the V̂ or π̂ value changes across an abstract state, then we should divide that abstract

state in two. Note that it is impossible forπ̂(s) or V̂ (s) to change without̂T (s, ā) changing

and so these extra criteria do not cause us to introduce any extra splits. However, they do

change the order in which splits are introduced. Splits that would allow a change in policy,

or a change in value function, are preferred over those that just improve our estimate of the

Q function.

In Chapter 3 we used a non-parametric test, the Kolmogorov-Smirnov test, to decide

when to split an abstract state. The experiments in this chapter use a Minimum Description

Length (MDL) based test, similar to the one in Chapter 4. The division that maximizes the

statistical difference between the two sides is chosen.

There are two differences between the MDL test in Lumberjack and the one that is used

by TTree. Both differences are in the encoding of the values in the leaves. Firstly, the TTree

encoding is slightly redundant in thatV̂ , π̂ andT̂ values are all encoded in the leaves. The

π̂ values are categorical and can be encoded exactly as in Lumberjack. TheV̂ andT̂ values

are continuous and need to be encoded differently.

These continuous values are encoded as follows. Firstly, the means,µV and{µā0, . . . , µān},
and standard deviations,σV and{σā0, . . . , σān}, of the continuous values in each leaf are

recorded, each using− log2(Cconst) bits, whereCconst = 10−10 is a constant representing

the accuracy with which we wish to encode these values. Then the probability of each value

under that normal distribution is found,pV
i = NµV ,σV

(
V̂ (si)

)
, pā

i = Nµā,σā

(
T̂ (si, ā)

)
.

Finally, each value is encoded using− log2(Cconst p) bits. This encoding is closely related

to the sum-squared error test used in Continuous U Tree.

We now have the code lengths of three different sets of values:C(V̂ ), C(π̂) andC(T̂ ).

These are combined into a code length for the leaf as follows:

Cleaf = C(V̂ ) + 20C(π̂) (5.14)

If the Cleaf values don’t introduce a split, then theC(T̂ ) values are added. The result

is that all splits based on value function and policy are introduced before splits based on

non-optimal actions.
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Procedure 11: ProcedureGrowTTree(tree, Ā, γ)

1: DT ← ∅ {Reset split data set.DT is a set of states with associatedT̂ estimates.}
2: Dπ ← ∅
3: DV ← ∅
4: for all leavesl and associated pointsp do {a point contains a set of trajectories starting

in the same state}
5: T̂ (sstart , .)← ∅ {T̂ (sstart , .) is a new array of size|Ā|}
6: for all trajectories inp, 〈sstart , ā, sstop , t, r〉 do {Nt trajectories for each of|Ā| ac-

tions}
7: lstop ← LeafContaining(tree, sstop)

8: T̂ (sstart , ā)← T̂ (sstart , ā) + (r + γtV (lstop))/Nt

9: end for

10: DT ← DT ∪ {〈sstart , T̂ 〉} {addT̂ estimates to data set}
11: V̂ ← maxā T̂ (sstart , ā)

12: π̂ ← argmaxā T̂ (sstart , ā)

13: DV ← DV ∪ {〈s, V̂ 〉} {add best value to data set}
14: Dπ ← Dπ ∪ {〈s, π̂〉} {add best action to data set}
15: end for

16: for all new splits in the treedo

17: EvaluateSplit(DV ∪ Dπ ∪ DT ) {Use the splitting criterion to evaluate this split}
18: end for

19: if ShouldSplit(DV ∪ Dπ ∪ DT ) then {Evaluate the best split using the stopping crite-

rion}
20: Introduce best split into tree

21: Throw out all sample points,p, in the leaf that was split

22: end if
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As well as knowinghow to grow a tree, we also need to decideif we should grow the

tree. This is decided by a stopping criterion. Procedure 11 does not introduce a split if the

stopping criterion is fulfilled, but neither does it halt the algorithm. TTree keeps looping

gathering more data. In the experimental results we use a Minimum Description Length

stopping criterion. We have found that the algorithm tends to get very good results long

before the stopping criterion is met, and we did not usually run the algorithm for that long.

The outer loop in Procedure 8 is an infinite loop, although it is possible to modify the

algorithm so that it stops when the stopping criterion is fulfilled. We have been using the

algorithm as an anytime algorithm.

5.2.4 Discussion of TTree

Now that we have described the technical details of the algorithm, we look at the moti-

vation and effects of these details. TTree was developed to fix some of the limitations of

Continuous U Tree described in Section 3.5. In particular we wanted to reduce the splitting

from the edges of abstract states and we wanted to allow the measurement of the usefulness

of abstract actions. Finally, we wanted to improve the match between the way the abstract

policy is used and the way the abstract SMDP is modelled to increase the quality of the

policy when the tree is not fully grown.

Introducing trajectories instead of transitions solves these problems. TheT̂ values,

unlike theq values in Continuous U Tree, vary all across an abstract state, solving the edge

slicing issue. The use of trajectories allows us to measure the effectiveness of abstract

actions along a whole trajectory rather than only for a single step. Finally, the use of

trajectories allows us to build a more accurate abstract transition function.

Edge slicing was an issue in Continuous U Tree where all abstract self-transitions with

the same reward had the sameq values, regardless of the dynamics of the self-transition.

This means that often only the transitions out of an abstract state have differentq values,

and hence that the algorithm tends to slice from the edges of abstract states into the middle.

TTree does not suffer from this problem as the trajectories include a measure of how much

time the agent spends following the trajectory before leaving the abstract state. If the state-

dynamics change across a state, then that is apparent in theT̂ values.

Trajectories allow us to select abstract actions for a state because they provide a way

to differentiate abstract actions from base level actions. In one step there is no way to

differentiate an abstract action from a base level action. Over multiple steps, this becomes
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possible.

Finally, trajectories allow a more accurate transition function because they more accu-

rately model the execution of the abstract policy. When the abstract SMDP is solved, an

abstract action is selected for each abstract state. During execution that action is executed

repeatedly until the agent leaves the abstract state. This repeated execution until the abstract

state is exited is modelled by a trajectory. This is different from how Continuous U Tree

forms its abstract MDP where each step is modelled individually. TTree only applies the

Markov assumption at the start of a trajectory, whereas Continuous U Tree applies it at

each step. When the tree is not fully grown, and the Markov assumption inaccurate, fewer

applications of the assumption lead to a more accurate model.

However, the use of trajectories also brings its own issues. If the same action is always

selected until a new abstract state is reached, then we have lost the ability to change direc-

tion halfway across an abstract state. Our first answer to this is to sample trajectories from

random starting points throughout the state, as described above. This allows us to mea-

sure the effect of changing direction in a state by starting a new trajectory in that state. To

achieve this we require a generative model of the world. With this sampling, if the optimal

policy changes halfway across a state, then theT̂ values should change. But we only getT̂

values where we start trajectories.

It is not clear that we can find the optimal policy in this constrained model. In fact,

with a fixed size tree we usually can not find the optimal policy, and hence we need to grow

the tree. With a large enough tree the abstract states and base level states are equivalent,

so we know that expanding the tree can lead to optimality. However, it is still not obvious

that theT̂ values contain the information we need to decide if we should keep expanding

the tree;i.e. it is not obvious that there are no local maxima, with all theT̂ values equal

within all leaves, but with a non-optimal policy. We prove that no such local maxima exist

in Section 5.3 below.

The fact that we split first on̂V = maxā T̂ (., ā) and π̂ = argmaxā T̂ (., ā) values be-

fore looking at all theT̂ values deserves some explanation. If you split onT̂ values then

you sometimes split based on the data for non-optimal abstract actions. While this is re-

quired for the proof in Section 5.3 (see the example in Section 5.3.2), it also tends to cause

problems empirically (see the example in Section 5.5). Our solution is to only split on

non-optimal actions when no splits would otherwise be introduced.

Finally, we make some comments about the random abstract action. The random ab-

stract action haŝT values that are a smoothed version of the reward function. We saw with
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Continuous U Tree that there could be a problem finding an initial split if there was a single

point reward. The point reward may not be sampled often enough to find a statistically

significant difference between it and surrounding states. The random abstract action im-

proves the chance of finding the point reward and introducing the initial split. In some of

the empirical results we generalize this to the notion of an abstract action for exploration.

5.3 Proof of Convergence

Previous state abstraction algorithms, like Continuous U Tree described in Chapter 3, have

generated data in a manner similar to TTree, but using single transitions rather than trajec-

tories. In that case, the data can be interpreted as a sample from a stochastic form of the

Q-function (TTree exhibits this behaviour as a special case when MAXTIME= 0). When

trajectories are introduced, the sample values no longer have this interpretation and it is no

longer clear that splitting on the sample values leads to an abstract SMDP with any formal

relation to the original SMDP.

In this section, we analyze the trajectory values and show that splitting so that theT̂

values are equal for all actions across a leaf leads to the optimal policy for the abstract

SMDP, π̄∗, also being an optimal policy for the original SMDP. We also give a counter-

example for a simplified version of TTree showing that having constant trajectory values

for only the highest valued action is not enough to achieve optimality.

5.3.1 Assumptions

In order to separate the effectiveness of the splitting and stopping criteria from the conver-

gence of the SMDP solving, we assume optimal splitting and stopping criteria and that the

sample sizes,Nl andNt, are sufficient. That is, the splitting and stopping criteria introduce

a split in a leaf if, and only if, there exist two regions, one on each side of the split, and the

distribution of the value being tested is different in those regions.

Of course, real world splitting criteria are not optimal, even with infinite sample sizes.

For example, most splitting criteria have trouble introducing splits if the data follows an

XOR or checkerboard pattern. Our assumption is still useful as it allows us to verify the

correctness of the SMDP solving part of the algorithm independently of the splitting and

stopping criteria.
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This proof only refers to base level actions. We assume that the only abstract actions

are the automatically generated, degenerate abstract actions, and hence∀ā,∀s, πā(s) = a

and we do not have to distinguish betweena andā. Adding extra abstract actions does not

affect the proof, and so we ignore them for convenience of notation.

Theorem 1 If the T̂ samples are statistically constant across all states for all actions, then

an optimal abstract policy is an optimal base level policy. Formally,

∀ā ∈ Ā,∀s̄ ∈ S̄,∀s1 ∈ s̄, ∀s2 ∈ s̄, T̃ (s1, ā) = T̃ (s2, ā)⇒ π̄∗(s1) = π∗(s1) (5.15)

We first review the definition of̃T introduced in Equation 5.4:

T̃s̄(s, a) = R(s, a)

+
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtT̃s̄(s

′, a) dt

+
∑

s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.16)

This function is the expected value of thêT samples used in the algorithm, assuming

a large sample size. It is also closely related to theT function defined in equation 5.3; the

two are identical except for the value used when the region defined byS ′ or s̄ is exited. The

T function used the value of a base level value function,V , whereas thẽT function uses

the value of the abstract level value function,V̄ .

We also define functions̃Vs̄

∗
(s) andQ̃s̄

∗
(s, a) to be similar to the normalV ∗ andQ∗

functions within the set of states corresponding tos̄, but once the agent leavess̄ it gets a

one-time reward equal to the value of the abstract state it enters,V̄ .

Q̃s̄

∗
(s, a) = R(s, a)

+
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtṼs̄

∗
(s′) dt

+
∑

s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.17)

Ṽs̄

∗
(s) = max

a
Q̃s̄

∗
(s, a) (5.18)
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Intuitively these functions give the value of acting optimally withins̄, assuming that the

values of the base level states outsides̄ are fixed.

We now have a spectrum of functions. At one end of the spectrum is the baseQ∗

function from which it is possible to extract the set of optimal policies for the original

SMDP. Next in line is theQ̃∗ function which is optimal within an abstract state given the

values of the abstract states around it. Then we have theT̃ function which can have different

values across an abstract state, but assumes a constant action until a new abstract state is

reached. Finally we have the abstractQ̄∗ function which does not vary across the abstract

state and gives us the optimal policy for the abstract SMDP.

The outline of the proof of optimality when splitting is complete is as follows. First,

we show in Lemma 1 that̃T really is the same as our estimates,T̂ , for large enough sample

sizes. We then show that, when splitting has stopped, the maximum over the actions of

each of the functions in the spectrum mentioned in the previous paragraph is equal and is

reached by the same set of actions. We also show thatQ̄∗ ≤ Q∗. This implies that an

optimal policy in the abstract SMDP is also an optimal policy in the base SMDP.

Lemma 1 TheT̂ samples are an unbiased estimate ofT̃ . Formally,

E
trajectories starting ats

〈s,ā,s′,r,t〉

T̂s̄(s, ā) = T̃s̄(s, a) (5.19)

Consider E
trajectories starting ats

〈s,ā,s′,r,t〉

T̂s̄(s, ā):

E
trajectories starting ats

〈s,ā,s′,r,t〉

T̂s̄(s, ā) (5.20)

= E
trajectories starting ats

〈s,ā,s′,r,t〉

[
r + γtV̄ (s̄′)

]
by substituting in equation 5.9 (5.21)

= E
trajectories starting ats

〈s,ā,s′,r,t〉

r + E
trajectories starting ats

〈s,ā,s′,r,t〉

γtV̄ (s̄′) (5.22)

We now move from samples to thẽR and P̃ functions defined in equations 5.5 and 5.6.

Assuming that sample sizes are large, these values are equivalent.

=R̃s̄(s, a) +
∑
s̄′∈S̄

∫ ∞

t=0

P̃s,a(s̄′, t)γ
tV̄ (s̄′) dt (5.23)
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We then separate the current abstract state from the rest.

=R̃s̄(s, a) +

∫ ∞

t=0

P̃s,a(s̄, t)γ
tV̄ (s̄) dt+∑

s̄′∈(S̄−{s̄})

∫ ∞

t=0

P̃s,a(s̄′, t)γ
tV̄ (s̄′) dt

(5.24)

But P̃s,.(s̄, t) is only non-zero whent = ∞. This is multiplied byγt and hence the self-

transition disappears, as noted in the commentary whenP̃ was defined (immediately above

Equation 5.6).

=R̃s̄(s, a) +
∑

s̄′∈(S̄−{s̄})

∫ ∞

t=0

P̃s,a(s̄′, t)γ
tV̄ (s̄′) dt (5.25)

Now we substitute in the definitions of̃R andP̃ from equations 5.5 and 5.6.

=

[
R(s, a) +

∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt

]
+

∑
s̄′∈(S̄−{s̄})

∫ ∞

t=0

∑
s′′∈s̄′

Ps,a(s
′′, t)+

∑
s′′∈s̄

∫ t

t′=0

Ps,a(s
′′, t′)P̃s′′,a(s̄′, t− t′) dt′

]
γtV̄ (s̄′) dt

(5.26)

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s̄′∈(S̄−{s̄})

∫ ∞

t=0

∑
s′′∈s̄′

Ps,a(s
′′, t)γtV̄ (s̄′) dt+

∑
s̄′∈(S̄−{s̄})

∫ ∞

t=0

∑
s′′∈s̄

∫ t

t′=0

Ps,a(s
′′, t′)P̃s′′,a(s̄′, t− t′) dt′γtV̄ (s̄′) dt

(5.27)

Then we rewrite the pair of summations on the second line as a single summation.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s′′∈(S−s̄)

∫ ∞

t=0

Ps,a(s
′′, t)γtV̄ (s̄′′) dt+

∑
s̄′∈(S̄−{s̄})

∫ ∞

t=0

∑
s′′∈s̄

∫ t

t′=0

Ps,a(s
′′, t′)P̃s′′,a(s̄′, t− t′) dt′γtV̄ (s̄′) dt

(5.28)
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We reverse the order of the second and third lines.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s̄′∈(S̄−{s̄})

∫ ∞

t=0

∑
s′′∈s̄

∫ t

t′=0

Ps,a(s
′′, t′)P̃s′′,a(s̄′, t− t′) dt′γtV̄ (s̄′) dt+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.29)

We swaps′ ands′′ in the second line. This is simply a variable rename. Also, we move

together the two integrals in the second line.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s̄′′∈(S̄−{s̄})

∑
s′∈s̄

∫ ∞

t=0

∫ t

t′=0

Ps,a(s
′, t′)P̃s′,a(s̄′′, t− t′)γtV̄ (s̄′′) dt′ dt+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.30)

We replace
∫∞

t=0

∫ t

t′=0
X dt′ dt with

∫∞
t′=0

∫∞
t=t′

X dt dt′.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s̄′′∈(S̄−{s̄})

∑
s′∈s̄

∫ ∞

t′=0

∫ ∞

t=t′
Ps,a(s

′, t′)P̃s′,a(s̄′′, t− t′)γtV̄ (s̄′′) dt dt′+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.31)

We splitγt into γt′γ(t−t′) in the second line.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s̄′′∈(S̄−{s̄})

∑
s′∈s̄

∫ ∞

t′=0

∫ ∞

t=t′
Ps,a(s

′, t′)P̃s′,a(s̄′′, t− t′)γt′γ(t−t′)V̄ (s̄′′) dt dt′+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.32)
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We re-order the summations on the second line and bringPs,a(s
′, t′)γt′ outside some of the

summations.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s′∈s̄

∫ ∞

t′=0

Ps,a(s
′, t′)γt′

∑
s̄′′∈(S̄−{s̄})

∫ ∞

t=t′
P̃s′,a(s̄′′, t− t′)γ(t−t′)V̄ (s̄′′) dt dt′+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.33)

We swapt andt′ variable names on the second line. This is just a change in variable names.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtR̃s̄(s

′, a) dt+

∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γt

∑
s̄′′∈(S̄−{s̄})

∫ ∞

t′=t

P̃s′,a(s̄′′, t
′ − t)γ(t′−t)V̄ (s̄′′) dt′ dt+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.34)

We re-order the summations again to bring
∑

s′∈s̄

∫∞
t=0

Ps,a(s
′, t)γt out of the first and sec-

ond lines.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γt

[
R̃s̄(s

′, a)+

∑
s̄′′∈(S̄−{s̄})

∫ ∞

t′=t

P̃s′,a(s̄′′, t
′ − t)γ(t′−t)V̄ (s̄′′) dt′

]
dt+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.35)

We subtractt from t′ in the integral in the second line, then add it back to each reference to

t′ and cancel the terms.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γt

[
R̃s̄(s

′, a)+

∑
s̄′′∈(S̄−{s̄})

∫ ∞

t′=0

P̃s′,a(s̄′′, t
′)γt′V̄ (s̄′′) dt′

]
dt+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.36)
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The section of Equation 5.36 in square brackets matches Equation 5.23. We substitute

Equation 5.20, which is equivalent.

=R(s, a) +
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γt ET̂s̄(s

′, a) dt+

∑
s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.37)

The above line is equal to Equation 5.20. We have a recursive function. This recursive

function is of the same form as Equation 5.4. Any solution to one recursive definition must

be a solution to the other also. Hence,

=T̃s̄(s, a) (5.38)

2

Lemma 2 ∀s ∈ s̄, ∀a, Q̃s̄

∗
(s, a) ≥ T̃s̄(s, a)

This is true by inspection. Equations 5.4 and 5.17 are reprinted here for reference:

T̃s̄(s, a) = R(s, a)

+
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtT̃s̄(s

′, a) dt

+
∑

s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.39)

Q̃s̄

∗
(s, a) = R(s, a)

+
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtṼs̄

∗
(s′) dt

+
∑

s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt

(5.40)

SubstitutingṼs̄

∗
(s) = maxa Q̃s̄

∗
(s, a) into Equation 5.40 makes the two functions differ

only in thatQ̃ has amax whereT̃ does not. HencẽQ ≥ T̃ .

2

Lemma 3 If T̃s̄ is constant across̄s for all actions, thenmaxa T̃s̄(., a) = maxa Q̃s̄

∗
(., a)

andargmaxa T̃s̄(., a) = argmaxa Q̃s̄

∗
(., a).
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ConsiderQ̃s̄

∗
(s, a)− T̃s̄(s, a):

Q̃s̄

∗
(s, a)− T̃s̄(s, a) =

(
R(s, a) +

∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtṼs̄

∗
(s′) dt

+
∑

s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt


−

(
R(s, a) +

∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtT̃s̄(s

′, a) dt

+
∑

s′∈s̄′,s̄′ 6=s̄

∫ ∞

t=0

Ps,a(s
′, t)γtV̄ (s̄′) dt



(5.41)

=
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtṼs̄

∗
(s′) dt

−
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γtT̃s̄(s

′, a) dt

(5.42)

=
∑
s′∈s̄

∫ ∞

t=0

Ps,a(s
′, t)γt

[
Ṽs̄

∗
(s′)− T̃s̄(s

′, a)
]

dt (5.43)

ConsiderQ̃s̄

∗
(s, a)− T̃s̄(s, a) in the state/action pair in̄s with the largest value of̃Qs̄

∗
,

s∗, a∗. By assumption,∀s, s′ ∈ s̄, ∀a, T̃s̄(s, a) = T̃s̄(s
′, a). So,

Q̃s̄

∗
(s∗, a∗)− T̃s̄(s

∗, a∗) ≥ max
a

Q̃s̄

∗
(s′, a)− T̃s̄(s

∗, a∗) for anys′ ∈ s̄

= max
a

Q̃s̄

∗
(s′, a)− T̃s̄(s

′, a∗)

= Ṽs̄

∗
(s′)− T̃s̄(s

′, a∗) (5.44)

The sum and integral in equation 5.43 are simply taking an expectation, and there is a

factor ofγ giving:

∑
s′∈s̄

∫ ∞

t=0

Ps∗,a∗(s′, t)γt
[
Ṽs̄

∗
(s′)− T̃s̄(s

′, a∗)
]

dt

≤ γα
[
Q̃s̄

∗
(s∗, a∗)− T̃s̄(s

∗, a∗)
]

whereα > 0 (5.45)
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Hence:

Q̃s̄

∗
(s∗, a∗)− T̃s̄(s

∗, a∗) ≤ γα
[
Q̃s̄

∗
(s∗, a∗)− T̃s̄(s

∗, a∗)
]

(5.46)

∴ Q̃s̄

∗
(s∗, a∗)− T̃s̄(s

∗, a∗) = 0 (5.47)

∴ Q̃s̄

∗
(s∗, a∗) = T̃s̄(s

∗, a∗) (5.48)

But, T̃s̄(s, a) is constant across alls ∈ s̄ for all a. Moreover, as shown above in

lemma 2,Q̃ ≥ T̃ . Hence:

∀s′ ∈ S ′, T̃s̄(s
′, a∗) = Q̃s̄

∗
(s, a∗) (5.49)

2

Lemma 4 If T̃s̄ is constant across the abstract states̄ for all actions thenQ̄(s̄, a) =

T̃s̄(s, a) for all actions.

During the proof of lemma 1 we saw that (equation 5.23),

T̃s̄(s, a) = R̃s̄(s, a) +
∑
s̄′∈S̄

∫ ∞

t=0

P̃s,a(s̄′, t)γ
tV̄ (s̄′) dt

Now,

Q̄(s̄, a) = R̄(s̄, a) +
∑
s̄′∈S̄

∫ ∞

t=0

P̄s̄,a(s̄′, t)γ
tV̄ π(s̄′) dt (5.50)
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Substituting equations 5.7 and 5.8,

= E
s∈s̄

[
R̃s̄(s, a)

]
+
∑
s̄′∈S̄

∫ ∞

t=0

E
s∈s̄

[
P̃s,a(s̄′, t)

]
γtV̄ π(s̄′) dt (5.51)

=
1

|s̄|

[∑
s∈s̄

R̃s̄(s, a)

]

+
∑
s̄′∈S̄

∫ ∞

t=0

1

|s̄|

[∑
s∈s̄

P̃s,a(s̄′, t)

]
γtV̄ π(s̄′) dt

(5.52)

=
1

|s̄|
∑
s∈s̄

R̃s̄(s, a)

+
1

|s̄|
∑
s∈s̄

∑
s̄′∈S̄

∫ ∞

t=0

P̃s,a(s̄′, t)γ
tV̄ π(s̄′) dt

(5.53)

=
1

|s̄|
∑
s∈s̄

[
R̃s̄(s, a)

+
∑
s̄′∈S̄

∫ ∞

t=0

P̃s,a(s̄′, t)γ
tV̄ π(s̄′) dt

] (5.54)

= E
s∈s̄

T̃s̄(s, a) (5.55)

But given thatT̃s̄(s, a) is constant acrosss ∈ s̄, we know that∀s′ ∈ s̄,Es∈s̄ T̃s̄(s, a) =

T̃s̄(s
′, a).

2

Lemma 5 If T̃s̄ is constant across the abstract states̄ for all actions, andV̄ (s̄′) = V ∗(s′)

for all base level states in all abstract statess̄′, s̄′ 6= s̄, thenV̄ (s̄) = V ∗(s) in s̄.

SubstitutingV̄ (s̄′) = V ∗(s′) for other states into equation 5.17, we see thatQ̃∗ = Q∗

for the current state and sõV ∗ = V ∗ for the current state. Also,argmaxa Q̃∗(s, a) =

argmaxa Q∗(s, a) and so the policies implicit in these functions are also equal.

Moreover, becausẽTs̄ is constant across the current abstract state, we know, by Lemma 4,

thatQ̄(s̄, a) = T̃s̄(s, a). For the same reason we also know by Lemma 3 thatmaxa T̃s̄(s, a) =

Ṽs̄

∗
(s).

So,
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Q̄(s̄, a) = T̃s̄(s, a) (5.56)

∴ V̄ (s̄) = max
a

T̃s̄(s, a) (5.57)

= Ṽs̄

∗
(s) (5.58)

= V ∗(s) (5.59)

2

Lemma 6 If T̃s̄ is constant across each abstract state for each action, then settingV ∗ = V̄

is a consistent solution to the Bellman equations of the base level SMDP.

This is most easily seen by contradiction. Assume we have a tabular representation of

the base level value function. We will initialize this table with the values fromV̄ . We will

further assume that̃Ts̄ is constant across each abstract state for each action, but that our

table is not optimal, and show that this leads to a contradiction.

As in lemma 5, becausẽTs̄ is constant across the current abstract state, we know, by

Lemma 4, thatQ̄(s̄, a) = T̃s̄(s, a). For the same reason we also know by Lemma 3 that

maxa T̃s̄(s, a) = Ṽs̄

∗
(s).

This means that our table containsṼs̄

∗
for each abstract state. Hence, there is no single

base level state that can have its value increased by a single bellman update. Hence the

table must be optimal.

This optimal value function is achieved with the same actions in both the base and

abstract SMDPs. Hence any optimal policy in one is an optimal policy in the other.

2

5.3.2 Splitting on non-optimal actions

We did not show above that thẽT andQ∗ functions are equal for non-optimal actions. One

might propose a simpler algorithm that only divides a state whenT̃ is not uniform for the

action with the highest value, rather than checking for uniformity all the actions. Here is a

counter-example showing this simplified algorithm does not converge.

Consider an MDP with three states,s1, s2 ands3. s3 is an absorbing state with zero

value. Statess1 ands2 are both part of a single abstract state,s3 is in a separate abstract
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state. There are two deterministic actions.a1 takes us from either state intos3 with a reward

of 10. a2 takes us froms1 to s2 with a reward of100, and froms2 to s3 with a reward of

−1000. Table 5.2 shows thẽT andQ∗ values for each state whenγ = 0.9. Note that even

though theT (s, a1) values are constant and higher than theT (s, a2) values, the optimal

policy does not choose actiona1 in both states.

Function s1 s2

Q(s, a1) 9 9

T (s, a1) 9 9

Q(s, a2) 108.1 -900

T (s, a2) -710 -900

V (s) 108.1 9

Table 5.2:T , Q andV for sample MDP.

5.4 An Example TTree Execution

This example describes TTree running in the Towers of Hanoi domain. The full domain is

described in Section 2.6.3. In summary, this is a discrete, deterministic, and high dimen-

sional domain with well known structure in the solution.

In our example we use the eight disc domain andγ = 0.99. We also assume that TTree

has been supplied with solutions to the three seven disc problems. These are policies that

move the seven smallest discs, referred to as the7 disc stack, onto a particular peg. These

macros choose uniformly among the base level actions when the7 disc stack is already on

the appropriate peg. The complete set of abstract actions is shown in Table 5.3.

5.4.1 Building the abstract SMDP

Initially the algorithm has the entire state space as a single abstract state. The first thing the

algorithm does is sample some trajectories.

Sampling Trajectories

TTree starts by choosing random start points for the trajectories. For our example, we as-

sume the algorithm chooses the points in Table 2.1. We reprint that table here as Table 5.4.
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Action Effect

Generated abstract actions

ā0 Perform actiona0 in all states

ā1 Perform actiona1 in all states

ā2 Perform actiona2 in all states

ā3 Perform actiona3 in all states

ā4 Perform actiona4 in all states

ā5 Perform actiona5 in all states

ār Choose uniformly from{a0, . . . , a5} in all states

Supplied abstract actions

ā7P0 If the 7 disc stack is onP0 then choose uniformly from

{a0, . . . , a5}, otherwise follow the policy that moves the7 disc

stack toP0.

ā7P1 If the 7 disc stack is onP1 then choose uniformly from

{a0, . . . , a5}, otherwise follow the policy that moves the7 disc

stack toP1.

ā7P2 If the 7 disc stack is onP2 then choose uniformly from

{a0, . . . , a5}, otherwise follow the policy that moves the7 disc

stack toP2.

Table 5.3: The abstract set of actions in the Towers of Hanoi domain

Trajectories are then taken from each start point with each action. Consider the first

sample point,s1. From this location, actiona1 solves the problem in a single step and

receives reward. In our set of abstract actions,ā1 does the same thing. In addition,ā7P2

also performs that base level action and solves the problem.ār has one chance in six of

performing the right action in this state. Even if it does not solve the problem with its first

move, it performs a random walk near the solution and so has a high probability of solving

the problem.

None of the other abstract actions solves the problem froms1. In detail; ā7P0 andā7P1

both move the agent away from the goal. Once they have moved the7 disc stack to the ap-

propriate peg, they perform a random action, and then fix the stack again if necessary: they

never reach the solution. There are three base level actions that are illegal. The correspond-

ing abstract actions simply stop with deterministic self-transitions after one step. There are

two other legal base actions apart from the one that solves the problem. These move the
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Example Disks on peg

state ID P0 P1 P2

s1 D1 D2D3D4D5D6D7D8

s2 D1D4D7 D2D5 D3D6D8

s3 D1D4D7 D2D5D8 D3D6

s4 D1D4D8 D2D5D7 D3D6

Table 5.4: A set of sample states in the Towers of Hanoi domain.

top disc on pegs 0 and 2 respectively to peg 1. These actions do not solve the problem.

Furthermore, in the Towers of Hanoi domain performing any action leaves the agent in a

state where performing the same action again is illegal, hence the generated abstract actions

stop after two steps with a deterministic self-transition.

Having considered the resulting state of these trajectories, let us consider how long they

take to run.̄a1 andā7P2 both solve the problem in one step. The solution state is absorbing,

so both trajectories stop immediately. The generated deterministic abstract actions that

perform ‘illegal’ actions and so perform deterministic self-transitions likewise generate

single-transition trajectories. The two generated deterministic abstract actions that do not

perform ‘illegal’ actions as their first action perform illegal actions for their second action;

their trajectories are two steps long. The ‘random’ abstract action take a variable amount

of time that depends upon the distance to the goal.ā7P0 andā7P1 each run for MAXTIME

time steps.

Now we consider the second starting point. This starting point is similar tos1 except

that the problem cannot be solved in a single step from here.ā1 behaves like the other

generated abstract actions and onlyā7P2 solves the problem efficiently.̄ar is the other

abstract action that might solve the problem. If it does so, the trajectory is likely to be

fairly long.

The third and fourth starting points behave in similar ways. Like the second starting

point, there is no base level action that solves the problem. Again, the random action

might solve the problem, but it is unlikely, and we expect that if a solution is found it is

significantly longer than the solution found from start point 2. This is simply due to the fact

that the length of the shortest solution from point 2 is shorter than the length of the shortest

solution from points 3 and 4.

None of the supplied macros solves the problem from points 3 or 4. Ifā7P2 is selected,

thenD8 is never moved ontoP2. If one of the other macros is selected, thenD8 might be
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moved ontoP2 at some point but the7 disc stack is never moved toP2.

We can generalize these results to classes of start points. Any start point withD8 onP2

reaches the goal state usingā7P2 . Any start point with theD8 disc onP0 or P1 is not solved

by any macro, with the possible exception of the random macro. In a normal execution,

TTree is set up to sample enough points that these regions are clearly outlined in the data.

The abstract transition function

Having sampled these trajectories, TTree uses them to construct an abstract SMDP. All the

trajectories either reached the absorbing goal state or ended in the same abstract state they

started in (there is only one state). The abstract transition function is as follows: The gen-

erated abstract action that solves the problem from start state one solves the abstract SMDP

with low probability,p = 0.25 with just the four example start points, and self transitions

the rest of the time. The random abstract action solves the problem with decreasing fre-

quency and increasing trajectory length as the start state moves away from the goal state.

ā7P2 solves the problem froms1 ands2. More generally, it solves the problem from any

start state whereD8 is on P2. It self-transitions the rest of the time. The other abstract

actions all self-transition. Figure 5.1 shows the abstract state transition diagram. We have

labelled the transitions withγt rather thant, as this is the value that is averaged when form-

ing the transition function. Note that the random transition is marked with the maximum

possible discount factor and reward. We would expect that they would both be significantly

lower for any particular sample. It takesā7P2 116 steps to solve the problem from states2,

but only 1 step from states1. These times giveγt ≈ 0.31, r ≈ 15.7 andγt = 0.99, r ≈ 50.

The transition shown from the abstract state to the absorbing state uses weighted average

values,γt = 0.65 andr ≈ 32.87.

This abstract SMDP can then be solved (with the additional constraint that the absorbing

state is assumed to have value 0). The resultingQ̄ values are 0 for all abstract actions

exceptinḡa7P2 andār. ā7P2 has aQ̄ value of32.87. ār has aQ̄ value smaller than that, the

exact value depending upon the random trajectory length. These values cause the algorithm

to select̄a7P2 as the action to perform in all non-absorbing states. This policy is optimal in

approximately1/3 of the states.
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A = {A0, A2, A3,
A4, A5, AG0, AG1}
p = 1
r = 0
g = 0

A = {AG2}
p = 0.5
r = 32.87
g = 0.65

A = {A1}
p = 0.75
r = 0
g = 0

A = {A1}
p = 0.25
r = 50
g = 0.99

A = {AG2}
p = 0.5
r = 0
g = 0

A = {Ar}
p = 0.5
r < 32.87
g < 0.65

A = {Ar}
p = 0.5
r = 0
g = 0

Figure 5.1: Example abstract state transition diagram for the Towers of Hanoi domain

5.4.2 Refining the abstract state space

Having formed a policy, the algorithm now attempts to refine the state. Each of the trajecto-

ries has a value assigned to the start state,T̂s ← r + γtV̄ (s̄′) wherer andt are the recorded

values for the transition, and̄V (s̄′) is the value associated with the resulting abstract state

for the trajectory.

In the current example, the value of the trajectory happens to equal the reward for the

trajectory because all the transitions either haveγt = 0 or transition into the absorbing

state.

If we added more random start states then we would see a pattern similar to the classes

of trajectories mentioned in Section 5.4.1 above. TheT̂ values of the trajectories for̄ar

are high near the goal state, and decrease quite quickly as you move away from the goal

state. Any other trajectory starting withD8 on P0 or P1 hasT̂ = 0. Any trajectory for

ā7P2 starting withD8 onP2 reaches the goal. These trajectories haveT̂ values that increase

as the trajectory length decreases. These values are higher than the values forār. Other

trajectories havêT = 0 except the the one that starts in states1 and uses action̄a1 which

hasT̂ = 50.

For a reasonable statistical test, you need more than four start states. With a large

enough set, the algorithm finds a distinction between states in whichD8 is onP2 and other

states. The resulting abstract state tree is shown in Figure 5.2.
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H2 State S1
State S2

Figure 5.2: Example abstract state tree for the Towers of Hanoi domain

5.4.3 Further details

Having divided the state space, we now have two abstract states,s̄1, ands̄2. Moreover, we

do not know when or even if the trajectories previously sampled cross between the states.

We discard those trajectories and sample some new ones.

The generated abstract actions do not change their behavior much, so we concentrate

on the supplied abstract actions.

In abstract statēs2, D8 is onP2. From any base state in this abstract state,ā7P2 reaches

the goal. Neither̄a7P0 nor ā7P1 reaches the goal in this abstract state.

In abstract statēs1, D8 is either onP0 or P1. If D8 is onP0 thenā7P0 moves other discs

on top ofD8. Once the other discs are stacked onP0, ā7P0 chooses a random action. This

action can only moveD1 or choose an illegal action.

However, if action̄a7P1 is chosen then all the discs exceptD8 are moved toP1. Once in

this state,̄a7P1 chooses a random base-level action. This has a one in six chance of moving

D8 to P2. That moves the problem into abstract states̄2, from whence it can be solved. The

other two legal base level actions moveD1 to another peg.̄a7P1 simply moves it straight

back and makes more random moves untils̄2 is reached. If theD8 is onP1 then symmetric

situation arrises –̄a7P0 moves to statēs2.

Sampling the transition function and solving the abstract SMDP leads to the following

policy: In s̄2, ā7P2 is chosen and solves the problem, and ins̄1, ā7P0 and ā7P1 are both

equally effective – they each lead to states̄2 half the time and self transition the other half

of the time.

The T̂ values in statēs1 clearly indicate the regions wherēa7P0 andā7P1 are effective.

Dividing s̄1 based on the location ofD8 separates thosêT values; this is the split that TTree

introduces next.

At this point, the algorithm has three abstract states, one for each position ofD8. Once

the transition function is sampled and the SMDP solved, there is one clearly superior ab-

stract action in each state. Looking ahead a little to the empirical results, this state de-
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Figure 5.3: An SMDP with a single abstract state and two prospective divisions of that

abstract state

composition corresponds to the peak in expected reward at 150 000 samples in Figure 5.4a.

There are only two base level states where the action in non-optimal. These are the two

states whenD8 is not on P2 and the other discs are stacked such that the supplied abstract

action chooses randomly amongst the base level actions.

In addition to these two states not having optimal actions, the actions in the other states

have not beenprovenoptimal by the algorithm; thêT values across the states are not

constant. In order to find a provably optimal policy, TTree must continue dividing the state.

This division of the state does not necessarily monotonically improve the policy found by

TTree.

5.5 An Example of a Problematic State Division

Consider the example shown in Figure 5.3. This figure shows a two dimensional state

space. The grey region on the right hand side of the state space is absorbing with a reward

of 50 for any action that enters that space. No other transitions in the space carry any

reward. There are two actions. In the top half of the state space, both actions move the

agent down in the same way. In the bottom half of the state space things are more complex.

Action ā0, shown with solid arrows, moves the agent up and to the right. It does this in a

way that takes two steps to reach the top half of the state space. In the bottom half of the

state space action̄a1, shown with dashed arrows, moves the agent to the top left of the state

space.

Also shown as dotted lines are two potential divisions of this state space. One divides

the right of the state space from the left of the state space, and the other divides the top from

the bottom of the state space. With the state space undivided, actionā0 has trajectories that

reach the absorbing region on the right, whereas actionā1 loops without gaining any reward
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on the left hand edge of the state space. Actionā0 is chosen as the optimal action in the

abstract SMDP.

If we introduce the first of the two possible divisions and split the right hand side of the

state from the left, then the optimal actions in the abstract SMDP do not change. Action

ā0 still moves the agent to the right and to the reward, and actionā1 moves the agent to the

left. In fact as long as the state is divided based on thex value of the state then it does not

matter at whichx value the split occurs – action̄a0 is still the optimal action in each of the

new abstract states.

If we introduce the second of the two possible divisions, and divide the top from the

bottom of the state space, then we see that the optimal policy in the abstract SMDP is worse

after the split than before. To see this, let us construct the transition function for the abstract

SMDP. There are two abstract states, the top state,s̄t, and the bottom state,̄sb. In s̄t, both

actions have the same transition function that moves the agent either intos̄b or to the reward

in a single step. In̄sb the actions have different effects.ā0 moves the agent intōst in two

steps, whereas̄a1 takes only one step to reach̄st. Neither action gets any direct reward.

Becausēst has positive value, and action̄a1 gets the agent tōst faster than action̄a0, action

ā1 is selected in̄sb. This is far from optimal in the non-abstract problem.

What is happening is that information is lost on abstract state transitions. Often this is

good because the information that is discarded is irrelevant. If the state is divided in the

wrong way then important information can be lost. This is what happens in the example

above. When the state is divided into top and bottom regions, thex location of the agent is

lost each time there is a state transition. This makes the action that flips between abstract

states faster look better than the one that flips between abstract states more slowly, but

which moves the agent to the right.

TTree usually makes the correct decision when dividing states. TheT̂ values estimate

how much discounted reward an agent receives for performing an action from a particular

point. In the example above, thêT values for action̄a0 would decrease from right to left

across the state. This is the largest variation and a split dividing the left of the state from

the right of the state would be introduced first.

TTree can make mistakes when there are not enoughT̂ values sampled in a region,

particularly if the region has high dimensionality. In this case, random variation can cause

less desirable splits to be chosen first. It is important to note that even when this occurs,

future splits are introduced that allow the optimal policy to be found.
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5.6 Empirical Results

We evaluated TTree in a number of domains. For each domain the experimental setup

was similar. We compared mainly against the Prioritized Sweeping algorithm of Moore

and Atkeson (1993). The reason for this is that, in the domains tested, Continuous U Tree

was ineffective as the domains do not have much scope for normal state abstraction. It

is important to note that Prioritized Sweeping is acertainty equivalencealgorithm. This

means that it builds an internal model of the state space from its experience in the world, and

then solves that model to find its policy. The model is built without any state or temporal

abstraction and so tends to be large, but, aside from the lack of abstraction, it makes very

efficient use of the transitions sampled from the environment.

The experimental procedure was as follows. There were 15 learning trials. During each

trial, each algorithm was tested in a series of epochs. At the start of their trials, Prioritized

Sweeping had its value function initialized optimistically at 500, and TTree was reset to

a single leaf. At each time step Prioritized Sweeping performed 5 value function updates.

At the start of each epoch the world was set to a random state. The algorithm being tested

was then given control of the agent. The epoch ended after 1000 steps were taken, or if

an absorbing state was reached. At that point the algorithm was informed that the epoch

was over. TTree then used its generative model to sample trajectories, introduce one split,

sample more trajectories to build the abstract transition function, and update its abstract

value function and find a policy. Prioritized Sweeping used its certainty equivalence model

to update its value function and find a policy. Having updated its policy, the algorithm be-

ing tested was then started at 20 randomly selected start points and the discounted reward

summed for 1000 steps from each of those start points. This was used to estimate the ex-

pected discounted reward for each agent’s current policy. These trajectories were not used

for learning by either algorithm. An entry was then recorded in the log with the number

of milliseconds spent by the agent so far this trial (not including the 20 test trajectories),

the total number of samples taken by the agent so far this trial (both in the world and from

the generative model), the size of the agent’s model, and the expected discounted reward

measured at the end of the epoch. For Prioritized Sweeping, the size of the model was the

number of visited state/action pairs divided by the number of actions. For TTree the size

of the model was the number of leaves in the tree. The trial lasted until each agent had

sampled a fixed number of transitions (which varied by domain).

The data was graphed as follows. We have two plots in each domain. The first has the

number of transitions sampled from the world on thex-axis and the expected reward on the
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y-axis. The second has time taken by the algorithm on thex-axis and expected reward on

they-axis. Some domains have a third graph showing the number of transitions sampled

on thex-axis and the size of the model on they-axis.

For each of the 15 trials there was a log file with an entry recorded at the end of each

epoch. However, the number of samples taken in an epoch varies, making it impossible to

simply average the 15 trials. Our solution was to connect each consecutive sample point

within each trial to form a piecewise-linear curve for that trial. We then selected an evenly

spaced set of sample points, and took the mean and standard deviation of the 15 piecewise-

linear curves at each sample point. We stopped sampling when any of the log files was

finished (when sampling with time on thex-axis, the log files are different lengths).

5.6.1 Towers of Hanoi

The Towers of Hanoi domain is well known in the classical planning literature for the

hierarchical structure of the solution; temporal abstraction should work well. Described in

Section 2.6.3 on page 31, it consists of 3 pegs, on which sitN disks. Each disk is of a

different size and they stack such that smaller disks always sit above larger disks. There

are six actions which move the top disk on one peg to the top of one of the other pegs. An

illegal action, trying to move a larger peg on top of a smaller peg, results in no change in

the world. The object is to move all the disks to a specified peg; a reward of100 is received

in this state. All base level actions take one time step, withγ = 0.99. The decomposed

representation we used has a boolean variable for each disk/peg pair. These variables are

true if the disk is on the peg.

Figure 5.4 shows a comparison of Prioritized Sweeping and TTree. In Figure 5.4b the

TTree data finishes significantly earlier than the Prioritized Sweeping data; TTree takes sig-

nificantly less time per sample. Continuous U Tree results are not shown as that algorithm

was unable to solve the problem. The problem has 24 state dimensions and Continuous

U Tree was unable to find an initial split.

The Towers of Hanoi domain had sizeN = 8. We had a discount factor,γ = 0.99.

TTree was given policies for the threeN = 7 problems, the complete set of abstract

actions is the same as that shown in Table 5.3 on page 96. The TTree constants were,

Na = 20, Nl = 20, Nt = 1 and MAXSTEPS= 400. Prioritized Sweeping used Boltzmann

exploration with carefully tuned parameters (γ was also tuned to help Prioritized Sweep-

ing). The tuning of the parameters for Prioritized Sweeping took significantly longer than
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for TTree.

We also tested Continuous U Tree and TTree on smaller Towers of Hanoi problems

without additional macros. TTree with only the generated abstract actions was able to

solve more problems than Continuous U Tree. We attribute this to the fact that the Towers

of Hanoi domain is particularly bad for U Tree style state abstraction. In U Tree the same

action is always chosen in a leaf. However, it is never legal to perform the same action

twice in a row in Towers of Hanoi. TTree is able to solve these problems because the,

automatically generated, random abstract action allows it to gather more useful data than

Continuous U Tree.

In addition, the transition function of the abstract SMDP formed by TTree is closer to

what the agent actually sees in the real world than the transition function of abstract SMDP

formed by Continuous U Tree. TTree samples the transition function assuming it might

take a number of steps to leave the abstract state. Continuous U Tree assumes that it leaves

the abstract state in one step. This makes TTree a better anytime algorithm.

5.6.2 The taxi domain

The taxi domain is described in Section 2.6.5 on page 35. We supplied TTree with four

abstract actions that move the agent to the four taxi stands and then performs the pick up and

put down actions randomly. The various constants wereγ = 0.99, Na = 80, Nl = 80, Nt =

1 and MAXSTEPS= 500. The results for the taxi domain are shown in Figure 5.5.

5.6.3 The rooms domains

In the introduction, and then more formally in Section 2.6.4 on page 32, we described

walking robot domain. Figures 2.6 and 2.7, reprinted here as Figures 5.6 and 5.7, show

some rooms for the robot to walk through. In each case there is a reward of100 in the

lower right of the world.

When solving the smaller of the two worlds, shown in Figure 5.6, TTree was given

abstract actions that walk in the four cardinal directions: north, south, east and west. These

are the same actions described in the introduction,e.g.Tables 1.1 and 1.2. The various

constants wereγ = 0.99, Na = 40, Nl = 40, Nt = 2 and MAXSTEPS= 150. Addition-

ally, the random abstract action was not useful in this domain, so I removed it. The other

generated abstract actions, one for each base level action, remained. The results for the
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Figure 5.4: Results from the Towers of Hanoi domain. (a) A plot of Expected Reward vs.

Number of Sample transitions taken from the world. (b) Data from the same log plotted

against time instead of the number of samples.
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Figure 5.5: Results from the Taxi domain. (a) A plot of Expected Reward vs. Number of

Sample transitions taken from the world. (b) Data from the same log plotted against time

instead of the number of samples.
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Figure 5.6: A set of four10× 10 rooms for our robot to walk through.

Figure 5.7: A set of sixteen10× 10 rooms for our robot to walk through.
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small rooms domain are shown in Figure 5.8.

When solving the larger world, shown in Figure 5.7, we gave the agent three additional

abstract actions above what was used when solving the smaller world. The first of these

was a ‘stagger’ abstract action, shown in Table 5.5. This abstract action is related to both

the random abstract action and the walking actions: it takes full steps, but each step is in

a random direction. This improves the exploration of the domain. The other two abstract

actions move the agent through all the rooms. One moves the agent clockwise through

the world and the other counter-clockwise. The policy for the clockwise abstract action is

shown in Figure 5.9. The counter-clockwise abstract action is similar, but follows a path in

the other direction around the central walls.

The results for this larger domain are shown in Figure 5.10. The various constants were

γ = 0.99, Na = 40, Nl = 40, Nt = 1 and MAXSTEPS= 250. Additionally I modified the

coefficient on the policy code length in the MDL coding to be 10 instead of 20.

5.6.4 Discussion

There are a number of points to note about the TTree algorithm. Firstly, it generally takes

TTree significantly more data than Prioritized Sweeping to converge, although TTree per-

forms well long before convergence. This is unsurprising. Prioritized Sweeping is remem-

bering all it sees, whereas TTree is throwing out all trajectories in a leaf when that leaf is

split. For example, all data gathered before the first split is discarded after the first split.

However, TTree is significantly faster that Prioritized Sweeping in real time in large

domains (see Figures 5.4b, 5.8b and 5.10b). It performs significantly less processing on

each data point as it is gathered and this speeds up the algorithm. It also generalizes across

large regions of the state space. Figure 5.11 shows the sizes of the data structures stored by

the two algorithms. Note that they-axis is logarithmic. TTree does not do so well in small

domains like the taxi domain.

Given this generalization, it is important to note why we didn’t compare to other state

abstraction algorithms. The reason is because other state abstraction algorithms do not have

a temporal abstraction component and so cannot generalize across those large regions.e.g.

Continuous U Tree performs very poorly on these problems.

The next point we would like to make is that the abstract actions help TTree avoid

negative rewards even when it hasn’t found the positive reward yet. In the walking robot

domain, the agent is given a small negative reward for attempting to move its legs in an
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Figure 5.8: Results from the walking robot domain with the four room world. (a) A plot

of expected reward vs. number of transitions sampled. (b) Data from the same log plotted

against time instead of the number of samples.
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if ∆z < 0 then {the right foot is in the air}
if ∆x < 0 then {left foot west of right foot}

move the raised foot one unit west

else if∆x = 0 then {right foot is same distance east/west as left foot}
if ∆y < 0 then {left foot south of right foot}

move the raised foot one unit south

else if∆y = 0 then {left foot is same distance north/south as right foot}
lower the right foot

else{left foot north of right foot}
move the raised foot one unit north

end if

else{left foot east of right foot}
move the raised foot one unit east

end if

else if∆z = 0 then {both feet are on the ground}
if ∆x = 0 and∆y = 0 then {the feet are together}

raise the left foot

else

raise the right foot

end if

else{the left foot is in the air}
if ∆x = 0 and∆y = 0 then {the left foot is directly above the right foot}

Move the raised foot north, south, east or west with equal probability

else

lower the left foot

end if

end if

Table 5.5: The ‘stagger’ policy for taking full steps in random directions.
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Figure 5.9: The clockwise tour abstract action.

illegal manner. TTree notices that all the trajectories using the generated abstract actions

receive these negative rewards, but that the supplied abstract actions do not. It chooses to

use the supplied abstract actions and hence avoid these negative rewards. This is evident in

Figure 5.8 where TTree’s expected reward is never below zero.

The large walking domain shows a capability of TTree that we haven’t emphasized

yet. TTree was designed with abstract actions like the walking actions in mind where

the algorithm has to choose the regions in which to use each abstract action, and it uses the

whole abstract action. However TTree can also choose to use only part of an abstract action.

In the large walking domain, we supplied two additional abstract actions which walk in a

large loop through all the rooms. One of these abstract actions is shown in Figure 5.9. The

other is similar, but loops through the rooms in the other direction.

To see how TTree uses these ‘loop’ abstract actions, we show in Table 5.6 a small part

of a tree seen while running experiments in the large walking domain. In the particular

experiment that generated this tree there was a small,−0.1, penalty for walking into walls.

This induces TTree to use the abstract actions to walk around walls, at the expense of more

complexity breaking out of the loop to reach the goal. The policy represented by this tree is

interesting as it shows that the algorithm is using part of each of the abstract actions rather

than the whole of either abstract action. The abstract actions are only used in those regions

where they are useful, even if that is only part of the abstract action.

This tree fragment also shows that TTree has introduced some non-optimal splits. If

the values78 and68 were replaced by79 and70 respectively then the final tree would

be smaller3. As TTree chooses its splits based on sampling, it sometimes makes less than

optimal splits early in tree growth. The introduction of splits causes TTree to increase its
3The value79 comes from the need to separate the last column to separate the reward. The value70 lines

up with the edge of the end rooms.
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Figure 5.10: Results from the walking robot domain with the sixteen room world. (a) A

plot of Expected Reward vs. Number of Sample transitions taken from the world. (b) Data

from the same log plotted against time instead of the number of samples.
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Figure 5.11: Plots of the number of states seen by Prioritized Sweeping and the number

of abstract states in the TTree model vs. number of samples gathered from the world. The

domains tested were (a) the Towers of Hanoi domain, and (b) the walking robot domain

with the sixteen room world. Note that they-axis is logarithmic.
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if x < 78 then

if x < 68 then

if y < 10 then

perform the loop counter-clockwise abstract action

else

perform the loop clockwise abstract action

end if

else

{Rest of tree removed for space}
end if

else

{Rest of tree removed for space}
end if

Table 5.6: Part of the TTree tree during the learning of a policy for the large rooms domain

in Figure 5.7.

sample density in the region just divided. This allows TTree to introduce further splits to

achieve the desired division of the state space.

The note above about adding a small penalty for running into walls in order to induce

TTree to use the supplied abstract actions deserves further comment. The Taxi domain as

described by Dietterich (2000) has a penalty of−10 for misusing the pick up and put down

actions. It has a reward of20 for successfully delivering the passenger. We found TTree

had some difficulty with this setup. The macros we supplied chose randomly between the

pick up and put down actions when the taxi was at the appropriate taxi stand. While this

gives a net positive reward for the final move (with an expected reward of10), it gives a

negative expected reward when going to pick up the passenger. This makes the abstract

action a bad choice on average. Raising the final reward makes the utility of the abstract

actions positive and helps solve the problem.

When running our preliminary experiments in the larger walking domain, we noticed

that sometimes TTree was unable to find the reward. This did not happen in the other

domains we tested. In the other domains there were either abstract actions that moved the

agent directly to the reward, or the random abstract action was discovering the reward. In

the walking domain the random abstract action is largely ineffective. The walking motion

is too complex for the random action to effectively explore the space. The abstract actions
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that walk in each of the four compass directions will only discover the reward if they are

directly in line with that reward without an intervening wall. Unless the number of sample

points made very large, this is unlikely. Our solution was to supply extra abstract actions

whose goal was not to be used in the final policy, but rather to explore the space. In contrast

to the description of McGovern (2002), where macros are used to move the agent through

bottlenecks and hence move the agent to another tightly connected component of the state

space, we use these exploration abstract actions to make sure we have fully explored the

current connected component. We use these ‘exploration’ abstract actions to explore within

a room rather than to move between rooms.

An example of this type of exploratory abstract action is the ‘stagger’ abstract action

shown in Table 5.5. We also implemented another abstract action that walked the agent

through a looping search pattern in each room. This search pattern covered every space in

the room, and was replicated for each room. The stagger policy turned out to be enough

to find the reward in the large walking domain and it was significantly less domain specific

than the full search, so it was used to generate the results above.

5.7 Future Work

There are a number of dimensions along which the current TTree algorithm could be fruit-

fully extended. We list a number of these below.

As shown by Munos and Moore (1999), linear fits for the value function in the leaves

of the tree can be useful. We had previously tested linear fits with Continuous U Tree and

found them to be slow and to complicate the splitting criterion. We believe that it would be

much easier to find a good splitting criterion for linear fits with trajectories.

As noted in Section 5.5, sometimes introducing a new split can degrade the performance

of the policy in the short term, although future splits will bring the performance back to

optimal. Linear fits in the leaves may help this. Another possible fix is to bias the splitting

criterion away from splits that cut trajectories.

The choice of a Minimum Description Length (MDL) splitting criterion was made be-

cause we had previously been working with Lumberjack which used MDL and much code

was reused. While the MDL splitting criterion does make it possible to combine the test

for a change in̂π values and the test for a change inV̂ values, we would like to investigate

other splitting criteria. If linear splits are introduced this will almost certainly be required.
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At the moment TTree searches for the best leaf to divide, divides it, samples more

data, solves the SMDP and then searches for a new leaf to divide. Other algorithms, like

Continuous U Tree, divide multiple leaves at once. It would be worth exploring what effect

this has upon TTree.

All of the above changes are relatively small. One more ambitious change would be

to try to find a way of randomly sampling a start state within a region,without requiring

teleportation. This would allow TTree to work without a generative model.

5.8 Further Experiments

There have been two questions raised about the TTree algorithm. Firstly, the experiments

above compare an algorithm with both state and temporal abstraction against an algorithm

with neither; is it possible to separate the contributions of these abstraction techniques in

TTree? Secondly, the experiments presented previously are mostly deterministic; how does

a stochastic environment affect TTree?

5.8.1 Separating state and temporal abstraction

Separating state and temporal abstraction within TTree is non-trivial. In particular, the tem-

poral abstraction within TTree requires the state abstraction to be effective, and hence the

temporal abstraction cannot be tested without the state abstraction. It is, however, possi-

ble to test the state abstraction without the temporal abstraction. We modified the walking

robot domain to remove element that requires temporal abstraction – the walking motion.

The actions that moved the legs were replaced with four actions allowing movement in the

four compass directions. This gives us a ‘sliding robot’ domain similar to the grid-worlds

commonly used in reinforcement learning.

The domain had the same overall layout as the 4 room walking robot domain (see

Figure 2.6). Additionally we wished to be able to vary the number of states in the domain

without changing the value function. To achieve this we modified the domain to be a full

SMDP. Each of thex, y locations in Figure 2.6 was defined to be 1 time step wide in the

new domain, but was subdivided into either 16 (Lo Res,4×4), or 36 (Hi Res,6×6) states.

The actions that move between states were set to take either1/4 (Lo Res) or1/6 (Hi Res)

time units. TTree only used the automatically generated macros in this domain – it was

only being used for state abstraction, not temporal abstraction. Thex, y location of the
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robot was transformed into an attribute vector using the same techniques described for the

walking robot domain,i.e. a list of boolean attributesx < 1, x < 1.25, x < 1.5, . . .. TTree

was then compared with Prioritized Sweeping in this new domain.

My predictions before running these experiments were that the increase in resolution

would affect Prioritized Sweeping, but not TTree. The results of the experiments are shown

in Figures 5.12 and 5.13. There are a number of points to notice in these graphs. In

Figure 5.12a we see that Prioritized Sweeping is significantly affected by the increase in

the number of states between the Lo Res and the Hi Res domains. In Figure 5.12b we see

that TTree is not significantly affected, however there is a small decrease in efficiency as

the problem size increases. The reason for this is obvious in hindsight: while both theT̂

values and the learnt trees are similar in the Lo Res and Hi Res experiments, the trajectories

themselves are 50% longer in the Hi Res experiments. These longer trajectories take more

time to sample, but the increase is proportional to the change in length of each dimension

separately, whereas the number of states is proportional to the product of the change in

length of each dimension. Stated slightly differently, the trajectories increase in length

proportionally to the increase in linear size of the domain, whereas the number of states

increases proportionally to the increase inareaof the domain – proportionally to the square

of the increase in linear size.

Figure 5.13 shows the above results quite clearly, and also shows another somewhat

surprising result: it looks like TTree is converging to an expected reward 30% lower than

Prioritized Sweeping. There are two obvious questions: what is going on, and why is it

more obvious here than in previous experiments? The answer is that TTree only divides

the ‘best’ leaf in each iteration of the main loop, whereas other state abstraction algorithms

divide every leaf that should be divided. TTree’s method is not as effective. In light of these

results a little more discussion is warranted.

Initially we made the choice to only introduce the best split in each iteration for two rea-

sons: it allowed the implementation of TTree to build upon the tree library developed for

Lumberjack, and it meant that other splits would be able to take advantage of the increased

resolution and hence be more accurate. It should be noted that this choice is orthogonal to

the main contribution of the TTree algorithm, temporal abstraction, and we mentioned in-

vestigating the choice in more detail in the future work section above. Unfortunately, these

results show that introducing only one split for iteration seems to have a net negative effect

on the algorithm. It introduces two problems. The first is simply that the algorithm takes

longer to reach a given resolution. The increase in accuracy of the splits is not enough to
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Figure 5.12: Results from the sliding robot domain. (a) A plot of expected reward vs. time

taken for Prioritized Sweeping. (b) A plot of expected reward vs. time taken for TTree.
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Figure 5.13: Results from the sliding robot domain. A plot of expected reward vs. number

of sampled transitions.

offset the decrease in speed. The second is that TTree tends to increase resolution in one

area at a time. If one area needs an increase in resolution more than others it is divided.

After it is divided, more samples are taken in that region increasing the local sample res-

olution. This makes it likely that another split will be introduced in the same area. The

end result is that TTree converges slowly in this case. While the results above suggest that

TTree has converged, it has not. It is simply converging very slowly.

This slow convergence shows up more clearly in these experiments than others because

of the representation of the state space. The Lo Res sliding domain and the walking do-

main are of similar size (the increasedx, y resolution in the sliding domain replaces the

state required for walking). However, the translation into attributes used to divide the state

space is significantly different. In the walking domain, the increase in state-space size is

represented as three extra attributes. In the sliding domain, the increase in state-space size

is represented as an increase in resolution in thex, y plane. This is then translated into four-

fold increase in the number of boolean attributes used to represent the plane. This massive

difference in the number of attributes between two state spaces of approximately the same

size explains the difference in results.
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Figure 5.14: Results from the walking robot domain with the four room world. A plot of

expected reward vs. number of sampled transitions.

5.8.2 Response to stochastic domains

The second question raised about TTree was its response to stochastic domains. TTree

allows a trajectory to terminate early when a deterministic self-transition is encountered.

The domains we used for testing in previous experiments were designed to take advantage

of this by making all self-transitions deterministic. Relaxing this requirement is going to

significantly impact TTree. We predicted that it would not have much impact apart from

the loss of the self-transition optimization.

To test this we modified the walking robot domain to move randomly with 10% prob-

ability. This change modifies the optimal expected discounted reward in the domain, as

shown in Figure 5.14. The stochastic domain has an optimal expected discounted reward

approximately 5 lower than the deterministic domain. We then made a modified TTree

algorithm without the deterministic self-transition termination criterion for trajectories. Fi-

nally we compared the modified algorithm in the deterministic domain with the unmodified

algorithm in the stochastic domain.

Figure 5.15 shows the results of this experiment. Note that both forms of the TTree al-

gorithm are using significantly more samples than prior experiments – Prioritized Sweeping

solves the problem before TTree has really gotten started. Also note that the two forms of

TTree do differ in expected discounted reward, however it is explained by the difference in
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the expected discounted reward of the optimal policy between the stochastic and determin-

istic domains. It is also interesting to note that TTree is still faster than prioritized sweeping

even if less efficient in terms of samples.
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Figure 5.15: Results from the walking robot domain with the four room world. (a) A plot

of Expected Reward vs. Number of Sample transitions taken from the world. (b) Data from

the same log plotted against time instead of the number of samples.
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Chapter 6

Related Work

In earlier parts of this thesis we have referenced work that was closely related to ours, and

work that we have built upon. In this chapter we review some of that research in more

detail, and also look at other people’s approaches to temporal abstraction in reinforcement

learning.1

There are a number of dimensions along which we can classify this related work. For

state abstraction we can ask if work uses a tree based representation? If so, is that repre-

sentation a variable resolution tree, or a decision/regression tree? For temporal abstraction

we can ask if the high level controller can interrupt a low level task (see Section 2.4.3, sub-

routines vs. polling)? Is the hierarchy strict: can a high level in the hierarchy skip the level

immediately below it and access the lower levels of the hierarchy directly? Do the sub-

tasks overlap in the state space or not? Is the hierarchy in the policy, the transition function

or the value function? We classify each piece of work along the relevant dimensions.

We introduce this work out of chronological order. That is, we use some of the more

well known and theoretically justified frameworks to explain some of the other work, even

if the more theoretically justified frameworks came later.

6.1 State Abstraction

Gordon (1995) was the first person to introduce a class of function approximation tech-

niques for reinforcement learning with known convergence guarantees. While individual
1We do not review related work in supervised learning in this chapter. We refer the reader back to Sec-

tion 4.1.
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convergent techniques were known prior to this, many techniques were also known to have

difficulties in some cases. Gordon showed that for a function approximation technique to

converge with a standard incremental update rule (irrespective of whether the final solution

is actually useful) the function approximator must be a contraction mapping. That is, any

change in the inputs to the function approximator cannot lead to a larger change in the

outputs. An example of a function approximator that fails this test is linear extrapolation.

There, small changes in training values at one point can lead to large changes in predicted

value at other locations. Linear interpolation, however, is safe: the values between two

interpolation points change less than the values of the points themselves. If a grid of inter-

polation points is imposed over the state space, then something related to state abstraction

is achieved.

The G-Algorithm (Chapman and Kaelbling, 1991) was an early algorithm that used

decision trees. It was used to control a computer game with an underlying continuous state

space. The attributes of the computer game were manually discretized in an ego-centric

manner. That is, the state was discretized in terms of distance from the agent, rather than

in an absolute coordinate system. The G-Algorithm then built a tree, using the discretized

attributes to discretize the state. Initially there was one large state in the world. The value

of individual transitions was calculated in a manner similar to Continuous U Tree, and

tests for variation were performed using a t-test. The attribute that had the most variation

across its prior discretization was introduced as a split. Our Continuous U Tree algorithm,

described in Chapter 3, is an extension of this algorithm to continuous spaces.

The U-Tree algorithm (McCallum, 1995) also extended the G-Algorithm. As well as

attributes of the current state, U-Tree could introduce divisions in the tree based upon the

attributes of prior states. This allowed U-Tree to handle partially observable MDPs as long

as the memory length required in the controller was limited. U-Tree only handled discrete

attributes.

The Parti-Game algorithm (Moore, 1994) is the first of the variable resolution algo-

rithms we consider. It has a large number of similarities with our TTree algorithm. Parti-

Game uses a pre-supplied controller that can “move greedily towards any desired state”,

although “there is no guarantee that a request to the greedy controller will succeed.” Parti-

game then partitions the state space using a tree and annotates each leaf with the direction

the local controller should head to reach the next leaf. This is somewhat analogous to TTree

in that where Parti-Game uses a low level controller, TTree uses supplied policies. Parti-

Game also has a number of differences from TTree. Parti-game assumes a deterministic
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environment. It assumes a single goal region in the state space, rather than a set of rewards

to maximize. This rules out policies that achieve maintenance goals.

The state abstraction algorithm of Munos and Moore (1999), which we will refer to as

the influence-variance algorithm, is also quite closely related to TTree. However, again,

there are a number of differences. Both algorithms use trees to discretize the state space.

Both algorithms sample within the leaves and integrate the effects of actions from a sample

point to the edge of the leaves. However, where TTree was designed more for discrete

state spaces, the influence-variance algorithm was designed for continuous state spaces.

Where TTree uses decision-tree style splitting, the influence-variance algorithm uses vari-

able resolution splitting. Where TTree uses abstract actions, the influence-variance al-

gorithm uses only base level actions.2 Where TTree uses single valued ‘flat’ leaves, the

influence-variance algorithm uses linear interpolation. Finally, the splitting criteria are

quite different. The influence-variance algorithm uses variable resolution techniques that

need to be able to decide “Do I increase resolution here?”, whereas TTree tries to decide

howto increase resolution as well.

The effect of the differences between the influence-variance algorithm and TTree de-

serves some more discussion. Many of the choices made above reflect the different focuses

of the algorithms. The influence-variance algorithm provides much more accurate function

approximation at a low level, while TTree was designed to support temporal abstraction.

While both algorithms use trees, and integrate trajectories to the edge of the current leaf to

build up transition functions over those trees, the different choices made reflect the different

emphases. Firstly, single value leaves vs. linearly interpolated leaves: By using flat leaves

TTree is able to supply its proof of correctness, whereas the influence-variance algorithm

is heuristic and usually starts with some discretization to prime the splitting. Another dif-

ference is TTree’s use of more accurate splitting. By using regression tree splits instead

of variable resolution splits, TTree has higher effective resolution at intermediate stages of

tree growth. This is useful as it helps the semantics of the abstraction match the base level

SMDP (see Section 5.5).

There have been other techniques for function approximation apart from decision trees.

The Residual Gradient Descent algorithm (Baird, 1995) was the first algorithm for using

general gradient descent function approximation techniques with reinforcement learning

(Baird used neural nets for his experiments). With the correct topology, these neural nets
2However, both algorithms use these actions in the same way and so this is more a difference in how the

algorithms are used, rather than how they operate.
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could have implemented a form of temporal abstraction. With a single hidden layer in the

neural net only state abstraction is achieved.

Unrelated to the above is another class of state abstraction systems that do not try and

perform their state abstraction online. Gordon (1995) noted that linear extrapolation is

unstable when used for function approximation in traditional reinforcement learning value

function updates. Boyan and Moore (1995, 1996) noted that if performed offline, these

’unstable’ approximation algorithms could be made stable. This culminated in the Batch

Fit to Best Paths (BFBP) algorithm of Wang and Dietterich (2002). This the same overall

approach used in our thesis. Lumberjack does not work well when naively combined with

Continuous U Tree. The result is that we use it offline and then use the results of that offline

decomposition to help with the next problem.

6.2 Temporal Abstraction

The options framework (Sutton et al., 1998; Precup, 2000) is a very clean definition of

macro actions for reinforcement learning. In this framework, options are defined as poli-

cies with termination conditions. The termination conditions consist of a set of states, and

for each of those states a probability of terminating. The options are used in an SMDP

just as base level actions would be – they are called, they run until termination and then

control is returned to the caller. Options are purely a solution to the temporal abstraction

problem. They are designed to be orthogonal to state abstraction techniques. They are also

not defined with hierarchy – they are used in addition to the base level actions rather than

instead of base level actions and they often overlap. It is possible to learn the policy for an

option given an SMDP. Usually the SMDP defined for an option has rewards at the termi-

nating states, possibly in addition to the rewards in the original SMDP. One important point

is that the policy learned for an option depends upon the rewards in the option’s SMDP. If

there are large rewards at the termination states, then the agent accepts lower rewards on

the way to the termination state in order to arrive there quickly. Like the termination states

themselves, the SMDP used to learn an option is supplied by the user, although there are

simple heuristics that give reasonable SMDPs for a set of termination states.

The work of McGovern and Barto (2001) and McGovern (2002) builds directly upon

the options of Precup (2000). The original work on options defined the use of macros given

pre-defined termination conditions. McGovern and Barto (2001) detects bottlenecks in the

state space and uses these as the termination criteria of new options. McGovern makes
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the interesting point that options discovered this way increase the connectivity of the state

space and can thereby make exploration more uniform. For example, in a gridworld with

four rooms, the doorways are bottlenecks. It is more likely that the agent will find a random

path between a pair of states within a single room than between a pair of states in two

separate rooms. Adding options that move to the doorways increases the chance of moving

between rooms.

The Hierarchical Distance to Goal (HDG) algorithm of (Kaelbling, 1993) defines “land-

marks” which the agent heads towards (somewhat like the termination criterion of options).

Specifically, the user supplies a set of landmarks and a distance metric. The Voronoi di-

agram is then used to partition the state space into a set of regions. Within each of these

regions a policy is learned to reach the landmarks of each of the neighboring regions. A

goal can be reached by planning over the abstract space defined by the landmarks. The

agent heads either for the goal state directly, if it is close, or for the next landmark along its

abstract path. This work is also interesting because the agent only reaches the intermediate

landmarks by accident on the way to another landmark. Once the agent has moved into the

region containing the landmark it is heading towards it moves one step in its abstract plan

and aims for a new landmark: this is a polling system rather than a subroutine system.

The airports algorithm (Moore et al., 1999) is an extension of the HDG algorithm. It

extends that algorithm by automatically generating the hierarchical decomposition of the

state space (as well as having multiple levels of hierarchy and a slight re-formulation of the

regions surrounding each airport/lighthouse). Like many of the hierarchical reinforcement

learning algorithms, this algorithm is motivated by the requirement to solve a series of

related tasks. In this formulation the tasks are related by having the same world dynamics.

Each task has a different state as its goal.

Feudal reinforcement learning (Dayan and Hinton, 1993) also tiles the state space with

regions. Like the airports algorithm there are multiple layers to the hierarchy. Unlike the

airports algorithm, all the divisions at one level fit within the divisions at higher levels. At

the lowest level the state space is tiled with managers that use base level actions to move

in each direction. At the next level the space is tiled with a coarser grid. Each grid square

is a manager that uses the managers at the level below to learn to move in each of the four

directions. This hierarchy is built up until at the top level there is only one grid square.

Feudal RL uses a neural net controller for each region to learn how to exit the region in

each of the four cardinal directions. This was shown to slow down the solution of a single

problem, but once the lower managers had learned policies, new problems could be solved
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relatively quickly.

The MaxQ algorithm (Dietterich, 1998, 2000) formalizes the strict hierarchy algorithms

we have seen above. It takes a user-supplied decomposition of the SMDP and uses it to

improve problem solving speed. Thetask graphis a strictly hierarchal decomposition of

the action hierarchy for the current task. Each node in the task graph is either a primitive

action, or a task that can be completed. Each task has as children the tasks or primitive

actions it is allowed to use. As the task graph decomposes the action space of the problem,

the MaxQ graphdecomposes the value function of the problem. The result is a method

for online learning using a pre-supplied decomposition of the action hierarchy. Dietterich

(2000) notes that the final policy is required to follow the supplied action decomposition

and is hence only hierarchically optimal, although once learned the value function can

be executed in a polling manner giving some improvement towards true optimality. He

also notes that state abstraction is very useful in combination with temporal abstraction,

something we have found to be true in TTree.

The HexQ algorithm (Hengst, 2000, 2002) can be viewed as an extension of the MaxQ

algorithm (Dietterich, 2000). Whereas MaxQ uses a pre-supplied hierarchical decomposi-

tion, HexQ generates a hierarchical decomposition and then solves it using MaxQ-like tech-

niques. HexQ, like our work, requires a factored representation of the state space. HexQ

then uses a heuristic to impose an ordering on the state variables. Variables that change

more quickly are associated with the lower levels of the hierarchy. With this variable or-

dering in place, HexQ proceeds to build the hierarchy in a bottom up manner. In HexQ

hierarchy is discovered in the state transition function, whereas in our work hierarchy is

discovered in the policy. Unlike both Options and MaxQ, HexQ defines the termination

criteria of abstract actions in terms of particular transitions, rather than particular states.

Singh’s CQ-learning and H-DYNA algorithms (Singh, 1991, 1992b,a) can be viewed

as early forms of the MaxQ algorithm. A hierarchy is supplied externally. The abstract

actions in the hierarchy are constrained to have a single termination state. The problems

being solved are constrained to be non-discounted, and hence finite. The value function for

the combined MDP is simply the value functions of the parts each adjusted by a constant.

Dean and Lin (1995) describe a pair of algorithms for solving decomposed MDPs.

These algorithms take a decomposition of a state space into regions and treat those regions

as options. The algorithms the optimize the termination values of the options so that the

MDP can be solved optimally in a strictly hierarchical manner.

The macros of Hauskrecht et al. (1998) are similar to the options framework, but with a
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number of changes. Specifically, Hauskrecht et al. (1998) integrate the use of state abstrac-

tion with their macro actions, and also impose a strict hierarchy on their abstract actions.

The model relies upon the region based decomposition of Dean and Lin (1995). The state

space is decomposed into regions, and the edges of the regions are used as the termination

criteria for macros. There is some discussion of reuse of macros between problems. This is

defined in terms of explicitly reused subsets of the state space without any generalization.

The Hierarchical Abstract Machines described by Parr and Russell (1998) and Parr

(1998) are a way of constraining the solution to an MDP. Along with the MDP, a user

supplies a series of state machines. These state machines can refer to each other, and hence

form a hierarchy. The state machines partially specify a policy. They can be viewed as

a set of constraints – only those policies consistent with the state machines are allowed.

Parr then gives algorithms for turning the original MDP and constraints into a new, smaller

MDP. This smaller MDP can be solved using traditional methods. The policies discovered

for the smaller MDP are optimal among those policies that fit the supplied constraints.

The Skills algorithm (Thrun and Schwartz, 1995) attempts to learn a hierarchical de-

composition of a state space. Like Lumberjack, the Skills algorithm uses a minimum de-

scription length methodology. Skills are defined while solving a set of problems in parallel,

all of which have the same set of states and dynamics. A skill consists of a subset of those

states and the action assignments for those states. The number of skills that the algorithm

attempts to find is predefined. Description length is minimized when the solution policies

of the problems have subsets of states with similar action assignments. That set of states

and their action assignments are moved into a skill. The skills are used with a very simple

top-level controller. There is a top level controller for each problem that has a probability of

using each of the skills, or a full Q-table for the current problem. This top level controller is

‘polled’ at each time step, but the weight of a particular skill does not depend on the current

state. The weights of all skills that are defined for the current state are normalized and a

skill to execute is chosen stochastically using the normalized weights as probabilities.

The SPUDD algorithm (Hoey et al., 1999) uses function approximation to achieve a

limited form of temporal abstraction. It uses Arithmetic Decision Diagrams (ADDs), re-

lated to the Ordered Binary Decision Diagrams of Bryant (1992), to represent the value

function while it performs value iteration. Decision Diagrams are very similar to decision

trees, but use a directed acyclic graph rather than a tree. They also require a specific or-

dering of the variables. With this ordering they are able to efficiently construct a compact

canonical representation for functions. If there is a section of the value function, defined
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over a subset of the variables, that is exactly duplicated in two regions of the state space,

then the ADD is usually able to merge the representation of the two regions, given an ef-

fective variable ordering. St-Aubin et al. (2000) extends this work to allow the regions

to match approximately. This approximate matching allows the regions to differ by small

amounts in many places, but it does not allow them to be offset from each other by a larger

constant.

Nested Q Learning (Digney, 1996) is an algorithm which attempts to build a hierarchy

of skills. Initially a set of ‘skills’ are defined, with each ‘skill’ being similar to an option

with a termination criterion of making one state attribute have a particular value. This leads

to a very large set of skills. These skills can use both the base level actions and each other,

as actions. It is this recursive nature of the large number of pre-defined options that makes

this hierarchical. In Digney (1998) the number of defined skills is limited to those whose

endpoints have either high state count or high reinforcement.
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Conclusion

The goal of this thesis was to investigate the generation and use of hierarchy in reinforce-

ment learning. We investigated the question: “How can the solution to one problem be

processed to provide data for future problems?”

Our approach to this involved using decision/regression tree representations to divide

the base state space into abstract states, and using policies for temporally abstract actions

over those abstract states. Solving large problems involves solving smaller, related, prob-

lems first. The solutions to these problems are analyzed to extract repeated structure in the

solutions. This is used to help solve larger problems.

We introduce one small modification of a previous algorithm, and two significantly new

algorithms in this thesis. Continuous U Tree is only a small change from G-Algorithm or

U Tree. It can generate its own abstract discrete state space from a continuous underlying

state space. Its main purpose in this thesis is to introduce regression tree reinforcement

learning. Lumberjack is a supervised learning algorithm that decomposes a function as it

learns the representation for it. TTree is a significant extension of Continuous U Tree. As

shown in Chapter 5, it is more effective than Continuous U Tree and additionally, it can

make use of supplied abstract actions.

Lumberjack deserves further review. It is a supervised learning algorithm; given a series

of examples of input-output pairs it attempts to model the generating function. Lumberjack

does this using a tree based structure. By detecting, extracting and re-using duplicated

structure, Lumberjack is able to improve its accuracy over a simple tree based learning

method.

TTree is a tree based SMDP solver. It takes a generative model of the world and any

133



134 CHAPTER 7. CONCLUSION

abstract actions the user is able to supply. It uses them to build a policy and value function

for the SMDP. The abstract SMDP that TTree forms internally is designed to make the

policy effective before discretization is complete and the value function is accurate.

It should be noted that as yet we have not fed the output of the Lumberjack algorithm in

as abstract actions to TTree. There is a format mismatch in that the output of Lumberjack

is a Linked Decision Forest, and the input to TTree is a series of policies. The translation

process we envisage is as follows: The input examples, in the form of state/action pairs,

are passed through the linked decision forest. As well as recording frequency counts in the

value leaves, the leaves of the root tree, we record them in the attribute leaves, the leaves of

the other trees.

With this change we can now treat all trees in the forest as policies. Classification can

start at the top of any tree. Attribute references are followed and returned from. Once a

leaf of the tree we started in is reached, that leaf is treated as an value leaf, even if it is an

attribute leaf. An action is picked randomly according to the distribution of actions stored

in the leaf.

Aside from closing the gap between Lumberjack and TTree there are a number of other

paths of future research opened by this thesis.

We noted in Chapter 5 that introducing bad splits in TTree can significantly reduce the

quality of the abstract SMDP. Bad splits seem to be those that cut trajectories. One line

of research involves modifying the splitting criterion so that splits that cut trajectories are

minimized.

Along similar lines, if we are going to be trying to minimize splits that cut trajectories

in TTree, it would be nice if the abstract actions supported this. It would be interesting to

modify Lumberjack so that the splits introduced minimize the number of transitions cut in

the optimal policy. This would introduce a bias similar to the one in HexQ (Hengst, 2002),

but without the requirement for a constant variable ordering across the entire state space. It

also gives a strong justification for that bias.

One big issue with TTree is the flat leaves. Unfortunately, these are also required for the

proof of correctness. It would be worth investigating if this restriction can be relaxed while

still maintaining correctness. Is it enough that, within a single abstract state, the actions

have values with constant difference, rather than requiring them to be constant? (i.e. the Q

function is a series of parallel planes within each leaf, but those planes are not necessarily

level.)
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It would be nice to have TTree do some intelligent pruning of the abstract actions it

attempts to use. This might be achieved by either linking the application of abstract actions

to features of the state space (e.g. only try theWalk-Up-Stairsabstract action if you see

stairs) or by using adaptive sampling (e.g. adjust how many samples are taken for a par-

ticular action in a particular state depending upon whether the action is close to optimal in

the current estimate).

Finally, TTree requires a Generative Model. This is a supervised learning problem. Can

Lumberjack help with learning this generative model?
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