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Abstract

Reinforcement Learning has been used for a number of years in single agent environments.
This article reports on our investigation of Reinforcement Learning techniques in a multi-
agent and adversarial environment with continuous observable state information. We intro-
duce a new framework, two-player hexagonal grid soccer, in which to evaluate algorithms.
We then compare the performance of several single-agent Reinforcement Learning techniques
in that environment. These are further compared to a previously developed adversarial Re-
inforcement Learning algorithm designed for Markov games. Building upon these efforts,
we introduce new algorithms to handle the multi-agent, the adversarial, and the continuous-
valued aspects of the domain. We introduce a technique for modelling the opponent in an
adversarial game. We introduce an extension to Prioritized Sweeping that allows gener-
alization of learnt knowledge over neighboring states in the domain; and we introduce an
extension to the U Tree generalizing algorithm that allows the handling of continuous state
spaces. Extensive empirical evaluation is conducted in the grid soccer domain.
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Abstract

Reinforcement Learning has been used for a number of years insingle agent environ-
ments. This article reports on our investigation of Reinforcement Learning techniques in a
multi-agent and adversarial environment with continuous observable state information. We in-
troduce a new framework, two-player hexagonal grid soccer,in which to evaluate algorithms.
We then compare the performance of several single-agent Reinforcement Learning techniques
in that environment. These are further compared to a previously developed adversarial Rein-
forcement Learning algorithm designed for Markov games. Building upon these efforts, we
introduce new algorithms to handle the multi-agent, the adversarial, and the continuous-valued
aspects of the domain. We introduce a technique for modelling the opponent in an adversarial
game. We introduce an extension to Prioritized Sweeping that allows generalization of learnt
knowledge over neighboring states in the domain; and we introduce an extension to the U Tree
generalizing algorithm that allows the handling of continuous state spaces. Extensive empirical
evaluation is conducted in the grid soccer domain.

1 Introduction

Multi-agent adversarial environments have traditionallybeen addressed as game playing situ-
ations. Indeed, one of the first areas to be studied in Artificial Intelligence was game playing.
For example, the pioneering checkers playing algorithm by [Samuel, 1959] used both search
and machine learning strategies. Interestingly, his approach is similar to modern Reinforce-
ment Learning techniques [Kaelblinget al., 1996]. An evaluation function that guides the se-
lection of moves is represented as a parameterized weightedsum of game features. Parameters
are incrementally refined as a function of the game playing performance. This is a similar
method to classical Reinforcement Learning which also provides for incremental update of an
evaluation function, although in this case it is represented as a table of values.

Since Samuel’s work however, Reinforcement Learning techniques were not used again in
an adversarial setting until quite recently. [Tesauro, 1995, Thrun, 1995] have both used neural
nets in a Reinforcement Learning paradigm. [Tesauro, 1995]’s work in the game of checkers
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was successful, but required hand tuned features being fed to the algorithm for high quality
play. [Thrun, 1995] was moderately successful in using similar techniques in chess, but these
techniques were not as successful as they had been in the checkers domain. This work has
been repeated in other domains, but again, without the same success as in the checkers domain
(in [Kaelbling et al., 1996]).

[Littman, 1994] took standard Q Learning, [Watkins and Dayan, 1992], and modified it to
work with Markov games. He replaced the simple��� update used in standard Q Learning
with a mixed strategy (probabilistic)����� �� update. He then evaluated this by playing
against both standard Q Learning and random players in a simple game. The game used in
[Littman, 1994] is a small two player grid soccer game designed to be able to be solved quickly
by traditional Q Learning techniques. He trained 4 different players for his game. Two players
used his algorithm, two used normal Q Learning. One of each was trained against a random
opponent, the other against an opponent of the same type. Littman then froze those four players
and trained ‘challengers’ against them. His results showedthat his algorithms, which learned a
probabilistic strategy, performed better under these conditions than Q Learning, which learned
a deterministic strategy, or his hand coded, but again deterministic, strategy.

We use a similar environment to that used by [Littman, 1994] to investigate Markov games.
Our environment is larger, both in number of states and number of actions per state, to more
effectively test the generalization capabilities of our algorithms. We conduct tests where both
players are learning as they play. This allows learning to take the place of a mixed, or prob-
abilistic, strategy. We look at a number of standard Reinforcement Learning algorithms and
compare them in a simple game. None of the algorithms we test perform any internal search or
lookahead when deciding actions; they all use just the current state and their learnt evaluation
for that state. While search would improve performance, we considered it orthogonal, and a
future step, to learning the evaluation function.

In the Reinforcement Learning paradigm an agent is placed ina situation without knowl-
edge of any goals or other information about the environment. As the agent acts in the environ-
ment it is given feedback: a reinforcement value or reward that defines the utility of being in
the current state. Over time the agent is supposed to customize its actions to the environment
so as to maximize the sum of this reward. By only giving the agent reward when a goal is
reached, the agent learns to achieve its goals.

In an adversarial setting there are multiple (at least two) agents in the world. In particular,
in a game with two players, when an agent wins a game it is givena positive reinforcement
and its opponent is given negative reinforcement. Maximizing reward corresponds directly to
winning games. Over time the agent is learning to act so that it wins the game.

In this paper we investigate the performance of some previously published algorithms in an
adversarial environment; Q Learning, Minimax Q Learning, and Prioritized Sweeping. We also
introduce a new algorithm, Opponent Modelling Q Learning, to try and improve upon these
algorithms. All of these techniques rely on a table of valuesand actions and do not generalize
between similar or equivalent states. The learned tables are “state-specific.” We introduce
Fitted Prioritized Sweeping and a modification of the U Tree algorithm [McCallum, 1995],
Continuous U Tree, as examples of algorithms that generalize over multiple states. Finally, we
look at what can be learned by looking at the world from your opponent’s point of view.
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2 Hexcer: The Adversarial Learning Environment

As a substrate to our investigation, we introduce a hexagonal grid based soccer simulation,
Hexcer, which is similar to the game framework used by [Littman, 1994] to test Minimax
Q Learning. Hexcer consists of a board with a hexagonal grid,two players and a ball (See
Figure 1).

Player X

O Goal

Player O

X Goal

Ball

Figure 1: The Hexcer board

The two players start in fixed positions on the board, as shown. The game then proceeds in
rounds. During each round the players make simultaneous moves of one cell, in any of the six
possible directions. Players must specify a direction in which to move, but if a player attempts
to move off the edge of the grid, it remains in the same cell. Once one player moves onto the
ball, the ball stays with that player until stolen by the other player.

When the two players try to move onto the same cell one of them succeeds and the other
fails, remaining in its original position. The choice of whomoves into the new cell is made
randomly. If one of the players had the ball when this occurs then the player that succeeds in
moving to the contested cell takes possession of the ball.

Play continues until the ball arrives in either goal. At thistime the player who owns the
goal with the ball wins the game and receives some reward. Theopposing player gets an equal,
but negative, reward. It does not matter which player took the ball into the goal; that is, if I
take the ball into my own goal, my opponent receives positivereward and I receive negative
reward.

The hexcer game provides an interesting environment for studying the use of Reinforce-
ment Learning. The learning player observes its position, and the positions of the ball and
adversary. Initially, it does not know that the objective ofthe game is to take the ball to a goal
position. Reinforcement Learning seems the appropriate technique to acquire the necessary
action selection information for each state.

We incrementally compare different algorithms in this domain and develop new extensions
based on an analysis of their performances. We perform empirical comparisons along two
different dimensions. Firstly, how fast does the algorithmlearn to play? Secondly, what level
of expertise is reached, discounting a “reasonable” initial learning period?
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In the next sections, we introduce in detail the algorithms and the experiments. We show
consistently for all the experiments two sets of results. A pair of algorithms played each other
at Hexcer for 100,000 games. Wins were recorded for the first 50,000 games and the second
50,000 games. The first 50,000 games allow us to measure learning speed as all agents start
out with no knowledge of the game. The second 50,000 games give an indication of the final
level of ability of the algorithm.

This 100,000 game test was then repeated 20 times for each pair of algorithms. The results
shown in each table are the number of games (mean� standard deviation) the first player listed
wins. A check mark (�) indicates statistical significance, i.e., the probability random variation
would produce a difference this great is less than 1%.

The generalizing Reinforcement Learning algorithms are significantly slower to update
than the state-specific algorithms. Hence, it is not feasible to run 100,000 games for these
algorithms. However the generalizing algorithms learn to play in fewer games than the state-
specific ones. To compare the generalizing algorithms only 1,000 games were played. Simi-
larly to the rest of the experiments, these 1,000 games were split into the first 500 games and
the second 500 games to measure learning speed and final learned ability.

3 State-Specific Learning Algorithms

In the machine learning formulation of Reinforcement Learning [Kaelblinget al., 1996] there
are a discrete set of states,	, and actions,�. The agent can detect its current state, and in each
state can choose to perform an action which will in turn move it to its next state.

For each state/action pair,
	 � � � there is a reinforcement signal,
 
	 � ��. Action � by the
agent when it is in state	 gives the agent the reward associated with that state/action pair,
 
	 � � �.

The world is assumed to be Markov. That is, the current state defines all relevant informa-
tion about the world. There is no predictive power gained by knowing the agent’s history in
arriving at the current state. This does not mean the world must be deterministic. It is quite
possible that the mapping from state/action pairs to next states is probabilistic. That is, for each
state/action pair,
	 � ��, there is a probability distribution,� �� ��� 
	� �, giving the probability of
reaching a particular successor state,	�, from the state	 when action� is performed in that
state. Because the opponent is not necessarily deterministic, this is the case in Hexcer.

As stated above, the goal is for the agent “to maximize its reward over time.” One might
expect� � ���� � 
 � - we just sum the reinforcement signal for every timestep to get some
measure of how we are doing. Unfortunately, this sum diverges. The standard solution, al-
though others have been tried (see [Kaelblinget al., 1996]), is to discount future rewards. A
discount factor,� , � � � � �, is added to the sum giving:� � ���� � � �
 �. At each step the
agent is supposed to behave in a way that maximizes this sum ofexpected future discounted
reward.� can be interpreted in different ways. It corresponds to there being a chance, proba-
bility 
�  � �, that the world ends between each move. It can also be seen as an interest rate,
or just as a trick to make the sum bounded. In our experiments,� � � !"#.

3.1 Q Learning

Q Learning [Watkins and Dayan, 1992] is a method of building atable of values that can be
used to decide how to act so as to maximize the agent’s discounted reward over time. The
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foundations of this method are the Bellman Equations:

$ 
	 � � � � 
 
	 � �� % � &�' � �� ��� 
	� �( 
	� � (1)

( 
	� � )*+� 
$ 
	 � � �� (2)

These equations define a Q function,
$ 
	 � � �, and a value function,( 
	�. The Q function

is a function from state/action pairs to an expected sum of discounted reward. The result is
the expected discounted reward for executing that action inthat state then behaving optimally
from then on. The value function is a function from states to sums of discounted reward. It
is the expected sum of discounted reward for behaving optimally in that state as well as from
then on.

It is possible, if the state transition probabilities and rewards are known, to solve these
equations directly for the Q function. Once this is known an agent can behave optimally
simply by picking the action that has the highest Q value in the current state. If there is a tie
for highest Q value, then it does not matter which option is taken; usually the choice is made
randomly. Unfortunately, these state transition probabilities and rewards are usually not known
in advance.

Q Learning is a technique for learning the Q function online as the agent explores. The
Q function is recorded in a Q table, which stores the current estimates of

$ 
	 � ��, i.e., the
Q values for each state/action pair. Initially all these estimates are 0. As the agent performs
each action it is able to update the Q value corresponding to that action.

$ 
	 � � � ,� -$ 
	 � �� % 
�  - �

 
	 � � � % � ( 
	� �� (3)

This is achieved by using the Bellman equations and replacing the equality with a weighted
sum assignment. The Q value of the state/action is updated tobe closer to the Q value for this
state/action/next-state transition. The probability distribution, � �� �� � 
	� �, can be removed from
the assignment, because the destination states are distributed according to that distribution.
The learning rate,-, determines how fast the Q values are updated. In our experiments, we
use a fixed learning rate,- � � !#. The Q values will converge to the correct value with prob-
ability 1, assuming that the learning rate decreases slowlytowards zero and each state/action
pair is sampled infinitely often. In order to continue learning, we did not decrease the learning
rate. While this removes the convergence guarantee, it allows the algorithm to play against an
opponent that is itself learning. In this case, there is no fixed simple, i.e. non-stochastic, opti-
mal policy anyway. To ensure adequate exploration, i.e., every state is visited infinitely often
in an infinite series of games, all players described chose a random action with 5% probability.

This formulation works well, but its direct implementationis inefficient for large problems.
Exploration is usually achieved by adding a small probability that a random action will be
chosen. Given a slowly decreasing learning rate, and the guarantee that every state/action pair
will be visited infinitely often this algorithm is guaranteed to converge to an optimal policy. As
stated above, we used a fixed learning rate. We trading guaranteed convergence for the ability
to learn the non-stationary policy we need to play against anopponent that is itself learning.
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3.2 Minimax Q Learning

Minimax Q Learning [Littman, 1994] is a modification of Q Learning to work with Markov
games. Instead of treating the opponent as part of the environment, Minimax Q Learning
records a function not just from state/action pairs to values, but from state/action/action triples
to values,

$ 
	 � �. � �/ �. Both the action of the agent,�. , and the action of its opponent,�/, are
explicitly modelled. Table 1 shows an example of a Minimax Q Learning table for a particular
state. The columns correspond to our agent’s actions, and the rows to the opponent’s actions.
The values are the expected sum of discounted reward for thataction pair in that state.

My Moves,0.
01. 0�.

01/ 500 175
Their Moves,0/ 0 �/ 150 450

02/ 375 200

Table 1: A sample minimax Q table,3 45 6 0. 6 0/ 7, for a state5
Once this table of values exists game theory is used to work out the value of this position

of the board,( 
	�. As moves are made simultaneously, the��� in the equation for the
value of a state is replaced with a����� �� function. The backup of values is the same as
Q Learning. The minimax value is calculated using linear programming (see below). This
returns a probability distribution over the actions for theagent. The agent chooses its action
according to this distribution.

Calculation of the value of a state where there is hidden information, such as what move
your opponent is going to make, relies on game theory and linear programming. Consider
Figure 2 which represents the same data as Table 1. The x-axisrepresents a probability dis-
tribution over our two actions,� 
�. �. On the left we choose move�1. all the time. On the
right we choose move� �. all the time. As we move along the x axis, we change the probability
that we will pick a particular move. We want to find the point onthis axis that maximizes our
expected return.

If we fix the probability distribution over our actions,� 
�. �, then the expected return
assuming the opponent makes move�/ is going to be:

8 
( 
	 9�/ �� � &�: � 
�. �
$ 
	 � �. � �/ � (4)

As we move along the x axis, our expected return if the opponent chooses a particular move
varies as a linear combination of its endpoint values. The endpoint values are the entries in the
Q table, the lines represent the linear combinations; one for each opponent move.

We wish to maximize the expected reward regardless of the opponents action. This cor-
responds to finding the highest point in Figure 2 that is beneath all the opponent move lines.
Projecting this point down onto the x axis gives the requireddistribution over our actions. The
y coordinate of this point is the expected reward for moving with that probability distribution.
Finding this point is a classical linear programming problem. (See [Presset al., 1992] for more
detail.)

In the example above, the maximum expected reward is at the intersection of the lines
generated from opponent moves� �/ and�2/ . The result is that we should choose move�1. with
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10 Probability of choosing move am
1

500

375

150

450

200

175

Expected
Reward

Opponent Chooses

ao
0 Opponent Chooses

ao
1

Opponent

Chooses ao
2

0.47

292

Figure 2: Linear Programming for Mixed Strategies

probability 0.47, and move� �. with probability 0.53. The expected sum of discounted reward
is 292. This the value,( 
	�, of this state.

As [Littman, 1994] points out, this is a pessimistic value. Whatever the opponent actually
does, the expected return value generated, and probabilitydistribution over our moves, will
be that for playing an optimal opponent. This means that the Minimax Q Learning algorithm
learns a strategy for playing an optimal opponent no matter who it plays while learning.

The Minimax Q Learning algorithm has a similar constraint tothat of normal Q Learn-
ing. All Q values must be updated infinitely often for this to converge with probability 1. In
Q Learning this poses no real problem as the agent controls what action is taken and can insert
some exploration (random move selection). In Minimax Q Learning this can be a problem as
the agent requires all combinations of its move and the opponents move to visited infinitely
often. It only controls its move however. This algorithm will learn better against a random
opponent, who will try each move infinitely often, than against an optimal opponent if the
optimal opponent never makes some moves.

Minimax Q Learning being pessimistic is also a problem at thestart of the game. When
a particular entry in the Q table is still zero (i.e. it hasn’tbeen tried yet), it will force the
player away from that column. Consider the very first game played. The algorithm chooses
randomly because all entries are 0. It finally scores a goal through pure luck. Unfortunately,
the pessimistic estimate of that state’s value will still be0 because you’ve only seen it with the
opponent moving in one direction. Without changes, this algorithm requires that we see the
opponent fail to stop us after trying all possible moves before we will back the win up even
one state.

To help alleviate this, we introduced a mild form of generalization into the algorithm. If a
particular Q value has never been changed, then it is considered to be equal to the lowest value
in that column that has been examined. Values are never pushed below zero in this fashion.
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Without this change the algorithm has limited applicability.

3.3 Q Learning and Minimax Q Learning in Hexcer

Table 2 shows the results of 100,000 games between the standard Q Learning algorithm and
the Minimax Q Learning algorithm. As can be seen in the first row, Q Learning learns much
faster than Minimax Q Learning. Minimax Q Learning never quite catches up, although the
difference eventually becomes small.

Q Learning vs. Minimax Q Learning

First 50000 games ;<<;= > ;? @A =;B > =B C
Second 50000 gamesA=ADE > ;@@F FFB > <B C

Total <;EA< > ?=G< <?B > FB C
Table 2: Q Learning vs. Minimax Q Learning

The reason for this is that the stochastic updates in normal QLearning result in a distribu-
tion of moves that approximates the optimal mixed strategy.As long as these updates continue
an explicit mixed strategy is not necessary. As [Littman, 1994] points out though, if you stop
learning then the explicit mixed strategy is an advantage against an opponent that is learning.

3.4 Opponent Modelling Q Learning

Minimax Q Learning is a pessimistic algorithm. It assumes itwill be playing an optimal
opponent and so learns to play against one. We should be able to do better by modelling the
opponent, taking advantage of the opponent’s sub-optimal moves.

We developed a new algorithm, “Opponent Modelling Q Learning,” which achieves this
desired behavior. It assumes that the opponent is Markov, i.e., the history of how the opponent
arrived in its current state is unimportant - it will behave the same way in this state. We record
the number of times our opponent chooses each action in each state as well as the Q table
recorded by Minimax Q Learning,

$ 
	 � �. � �/ �. This gives us the probability distribution of
our opponents actions in each state,� 
�/ 9	�, which is then used to calculate the best action
for us. While this Markov assumption may not be entirely correct, we are assuming a Markov
game so the optimal player is Markov and this assumption doesnot seem too unreasonable.
Table 3 is an example of a Q table used by the Opponent Modelling Q Learning algorithm. For
each state we have the probability distribution over our opponents moves recorded as well as
the minimax Q table.

Probabilities,H 40/ I57 My Moves,0.
20% 500 175

Their Moves,0/ 30% 150 450
50% 375 200

Expected Reward 332.5 270

Table 3: A sample Opponent Modelling Q table

We can find the expected value of one of our moves by simply taking the weighted average
of each column:
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8 
$ 
	 � �. �� � &�J � 
�/ 9	�
$ 
	 � �. � �/ � (5)

The agent picks the action with the highest expected reward in this state,
$ 
	 � �. �. The

value of this action is the value,( 
	�, for that state. This method of picking an action is known
in the game theory literature as ‘solution by fictitious play’ [Owen, 1995]. It has been shown
that two players using this method against each other repeatedly, with a single state and known
move values, will converge. The probability distribution of each players actions will converge
to the same optimal distribution as found by the linear programming method above although
at any particular time one action will be best.

This method of choosing an action does not suffer from most ofthe problems of Minimax
Q Learning. If an opponent never makes a particular move, then it’s associated probability will
be zero and the relevant Q table entries will be ignored.

3.5 Opponent Modelling Q Learning in Hexcer

Tables 4 and 5 show that opponent modelling is an advance overboth normal Q Learning and
minimax Q Learning. Normal Q Learning learns a little fasterthan the opponent modelling,
but does not learn to play as well. The extra time for Minimax QLearning to learn to play
is easily explained by its increased table size. Opponent Modelling is better than Minimax
Q Learning in both dimensions.

Q Learning vs. Opponent Modelling

First 50000 games @ED<; > @@?;E ?GB > A;B
Second 50000 games AGAE; > <@=E ? @B > @AB C

Total ?G @F= > @@E;; ?GB > @AB C
Table 4: Q Learning vs. Opponent Modelling

Minimax Q Learning vs. Opponent Modelling

First 50000 games @< @?; > F@EF ;AB > @GB C
Second 50000 gamesA@<EG > ??F< ?;B > EB C

Total ;=D;; > <@FG ;DB > <B C
Table 5: Minimax Q Learning vs. Opponent Modelling

It should be noted that the opponent modelling strategy is not a mixed (probabilistic) strat-
egy. If we stopped performing updates as [Littman, 1994] didthen it would fail the same way
Q Learning does against a learning opponent.

So, why is opponent modelling effective? On the surface it isvery similar to the original
Q Learning, except Q Learning used stochastic updates to model the opponent in the same
way it uses stochastic updates to model transition probabilities. The answer is in the fact that
changing opponent move probabilities can occur much fasterthan Q Learning will update its
Q table. If the opponent is changing its behavior, as is happening in our experiments as the
opponent learns, then opponent modelling allows more efficient credit blame assignment. The
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change in opponent behavior is detected directly and can cause changes in backed up value
much faster than the normal learning rate would allow.

3.6 Prioritized Sweeping

Prioritized Sweeping [Moore and Atkeson, 1993] is significantly different from the preceeding
methods. Instead of relying on sampling to model the state transition probability distribution,� �� �� � 
	� �, implicitly, Prioritized Sweeping proceeds by building a model of the world explic-
itly. Using this model it can calculate Q values directly rather than just performing stochastic
updates when data arrives. This allows it to propagate significant changes.

Re-solving the Bellman equations entirely at every timestep is too expensive even if all the
probabilities are known. Prioritized Sweeping proceeds byupdating first those entries whose
inputs have changed most.

s s'

s' '

s ' ' '

a'

a

a'

a

Figure 3: The Graph stored by Prioritized Sweeping

As the agent moves through the environment a state transition graph is built (See Figure 3).
Each time the agent makes a transition from state	 to state	� by executing action�, the
transition count on the link from	 to 	� labelled� is incremented. At the same time the reward
for that transition is recorded if not already known.

$ 
	 � � � can then be calculated directly for
the state	 using the Bellman equations. The transition probabilitiesfrom state	, � �� ��� 
	� � can
be calculated from the transition counts when we update

$ 
	 � � �.
We performed two state value updates per simulation step. One update was performed after

each step to reflect the change in transition probabilities after that step. The second update was
performed on the state whose input has changed most since it was last updated to propagate
the change in Q values.

Each time a Q value changes, say
$ 
	� � � �, its state/action pair,
	� � � �, is entered into a

priority queue with its priority being the magnitude of the change. Each timestep the agent can
pull the top pair from the queue and update the value of the state, ( 
	� �. This change in value
for that state leads to a change in the Q value for transitionsinto that state, in our example$ 
	 � �� and

$ 
	 � �� �. If those Q values change, their state/action pairs are entered into the
priority queue and the wave of updates continues.

The number of updates that are performed per step the agent takes is a parameter that can
be optimised for the task. In order to make comparisons as fair as possible between different
algorithms, we only allowed Prioritized Sweeping 2 updatesper move - one to insert the current
node in the priority queue with the correct weight, and one from the priority queue. It was
performing twice as many updates as standard Q Learning, andwas also able to use it’s priority
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queue to perform the most useful updates. The second update might not update the state it just
moved from, but rather propagate an important change it madepreviously.

Prioritized Sweeping also remembers all information gathered, unlike Q Learning which
forgets about any transitions between like-valued nodes.

3.7 Prioritized Sweeping in Hexcer

Tables 6, 7 and 8 show the results of Prioritized Sweeping playing against all the previous
algorithms. It beats all of them by a significant margin. The reason for this is very simple. All
the previous methods make very poor use of the data. On the first run, most of the updates
have no effect as all Q values have the same, zero, value. Onlythe last update actually causes
a table entry to change value - most of the exploration is lost.

Q Learning vs. Prioritized Sweeping

First 50000 games F;?E > E=G @@B > AB C
Second 50000 games F=E= > F?= @AB > @B C

Total @@@?F > @;@D @@B > @B C
Table 6: Q-learning vs. Prioritized Sweeping

Minimax Q Learning vs. Prioritized Sweeping

First 50000 games ;G<E > ?DA <B > @B C
Second 50000 games< @?E > F;G @AB > @B C

Total EA@< > =<; EB > @B C
Table 7: Minimax Q-learning vs. Prioritized Sweeping

Opponent Modelling vs. Prioritized Sweeping

First 50000 games <AF= > @E?D @;B > ?B C
Second 50000 games DA;F > @G@E @<B > AB C

Total @??E; > AADA @?B > AB C
Table 8: Opponent Modelling vs. Prioritized Sweeping

In Prioritized Sweeping all that data is saved. Updates are then performed in the most
useful places first. Using the ability of Prioritized Sweeping to save all data and use it when
relevant to offset the larger table size of the minimax update gives minimax Prioritized Sweep-
ing.

4 Generalizing Algorithms

All the algorithms above have one major weakness. They cannot generalize experience over
multiple states. In a single agent environment this is not good, but in a multi-agent environment
it is disastrous. Imagine a game of Hexcer where our agent hasthe ball in the center of the
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field and the opposing agent is well behind us. By moving directly towards the goal we can
score every time regardless of the opponent’s exact position.

Unfortunately, changing the opponent’s position at all, even by the smallest amount, will
place our agent in a new state. If it has never been in this particular state before then it will not
know how to behave. If the opponent’s position is irrelevantthen the agent should realise this
and generalize over all those states that only differ in opponent position, learning the concept
of “opponent behind”.

One naive generalization method is to take a simple model-free algorithm like Q Learning
and replace the table of values with a generalizing functionapproximator (e.g. a Neural Net).
This has been shown to be unstable in some cases [Boyan and Moore, 1995] never converging
to a solution although some good results have been obtained with this method [Tesauro, 1995].
Methods that are stable do exist for using either Neural Nets[Baird, 1995] or Decision Trees
[McCallum, 1995]. First we introduce a stable method which uses both a table and a gen-
eralizing function approximator. Then [McCallum, 1995]’smethod using Decision Trees is
described and we extend it to handle continuous state values.

4.1 Fitted Prioritized Sweeping

As pointed out in [Boyan and Moore, 1996], generalizing function approximators are not a
problem if the approximation is not iterated. That is, if an approximation is not used to up-
date itself. Fitted Prioritized Sweeping makes use of this result by using standard Prioritized
Sweeping as a base, and then doing the generalization afterwards.

At each timestep during the game, the agent updates a standard Prioritized Sweeping Q-
function over a standard discretization of the state space.To choose its actions however, it
reads the Q-values from a generalizing function approximator that was learnt from the previ-
ous game. At the end of each game the set of Q values generated by the Prioritized Sweeping
algorithm for all visited state/action pairs is used as the input to update the generalizing func-
tion approximator.

Here the approximator is used to decide the agent’s actions,but all data that is used as
input to the approximator is data gathered from the real world. The approximator decides
where to sample, but the value of the sample itself is not approximate. No approximate values
are recycled as input to the approximator directly.

In our implementation a piecewise linear function approximator was used, although any
generalizing function approximator could be used. The piecewise linear approximation was
built up using a recursive splitting technique similar to a decision tree. At each stage in the
recursion the best way of splitting the data is found. If thissplit gives a better fit than having
no split then the split is accepted. Each part of the data is then fit recursively in a similar
manner forming a tree of splits. In the final tree, the leaves contain least squares linear fits of
the data that fall in that leaf. Initially there is a single leaf in the tree with a constant value of 0.
Each time the tree is updated, the leaves of the tree are further divided. Early splits are never
reconsidered. Figure 4 contains the Fitted Prioritized Sweeping Algorithm.

Each state/action pair was represented by a vector of attributes. For Hexcer there were
8 attributes. These were the x and y coordinates of each player, the difference in x and y
coordinates between the two players, the location of the ball (On X, on O or in the middle of
the board), and the action selected (1 through 6). The valuesin the Q table were sorted by each
attribute in turn. For each attribute, the halfway point between every adjacent pair of values
was considered as a possible split point. A linear fit was madeof the data on each side of this
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During Game:

Update Prioritized Sweeping table entry

Choose move using linear approximation tree for Q values

After Game:

Update Prioritized Sweeping table till changes fall below threshold

Grow linear approximation tree using Prioritized SweepingQ table
entries

Figure 4: The Fitted Prioritized Sweeping Algorithm

split point and theK2 statistic of the combined fits was compared to theK2 statistic of a single
linear fit for all the data. If the split with the best combinedK2 statistic is better than no split
then that split is recorded and the splitting proceeds recursively.

Split at x = 0.6

Split at y = 0.3 Split at y = 0.7

Figure 5: A simple recursive partition of a rectangle

Consider Figure 5. We start off with a two dimensional space of data. This is first split at� � � !L. Each side of this split is then itself split recursively. Once down two levels there was
not enough data separation to justify another split so the recursion stops.

4.2 Fitted Prioritized Sweeping in Hexcer

This generalizing algorithm was tested against standard Prioritized Sweeping. As can be seen
in Table 9 it learns significantly faster than standard Prioritized Sweeping. While effective, this
algorithm still requires a prior discretization of the world. It cannot handle continuous state
spaces.

4.3 Continuous U Tree

The U Tree algorithm [McCallum, 1995] is a method for using a decision tree [Quinlan, 1986]
instead of a table of values in the Prioritized Sweeping algorithm. In the original U Tree
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Prioritized Sweeping vs. Fitted Prioritized Sweeping

First 500 games =F > =? @FB > @FB C
Second 500 games @;; > D@ A=B > @<B C

Total AGD > @;F A@B > @?B C
Table 9: Prioritized Sweeping vs. Fitted Prioritized Sweeping

algorithm the state space is described in terms of discrete attributes. If a continuous value is
needed it is split over multiple attributes in a manner analogous to using one attribute for each
bit of the continuous value. We developed a “Continuous U Tree” algorithm, similar to U Tree,
but which handles continuous state spaces directly.

Like U Tree, Continuous U Tree can handle moderately high dimensional state spaces.
The original U Tree work uses this capability to remove the Markov assumption. As we were
playing a Markov game we did not implement this part of the U Tree algorithm in Continuous
U Tree although we see no reason why this could not be done.

Continuous U Tree is different from all the previous algorithms mentioned in that it does
not require a prior discretization of the world into separate states. The algorithm can take a
continuous state vector and automatically form its own discretization upon which one of the
previous algorithms can be used. We used Prioritized Sweeping over this new discretization.

In order to form this discretization, data must be saved fromthe agent’s experience. Unfor-
tunately, there is no prior discretization that can be used to aggregate the data. The datapoints
must be saved individually with full sensor accuracy. In previous algorithms, each different,
but discrete, sensory input would correspond to a differentstate and hence would require its
own Q table entry. Here that is not the case. Areas of similar sensory input are grouped to-
gether by the algorithm to form states. Each datapoint savedis a vector of the sensory input
at the startM , the action performed�, the resulting sensory inputM � and the reward obtained
for that transitionN , 
M � � � M � � N �. As in Fitted Prioritized Sweeping the sensory input is itself a
vector of values, one for each attribute of the sensory input. Unlike Fitted Prioritized Sweeping
these values can be fully continuous. In Hexcer we used the same vector of state attributes for
Continuous U Tree and Fitted Prioritized Sweeping. No action attributes are added to this vec-
tor however (i.e. only the first 7 of the 8 attributes listed above for Fitted Prioritized Sweeping
are used).

The discretization formed is a tree-structure found by recursive partitioning. Initially the
world is considered to be a single state with an expected reward, ( 
	�, of �. At each stage
in the recursive partitioning we re-calculate expected reward values of all the datapoints. For
each state in the current discretization we can then loop through all possible single splits for
that state and choose the split that maximizes the difference between the datapoint values,O 
M � � �, on either side of the split. This difference is measured using the Kolmogorov-Smirnov
statistical test.1 If the most statistically significant split point has a probability of being random
less than some threshold (we usedP � � !� �) then that split is added - forming two new states
to replace the old one.

Calculating the value of a datapoint,O 
M � �� is again based on the Bellman equations. Each
datapoint ends in a state, i.e., the resulting sensory inputM � of a transition,
M � � � M � � N �, will fall
within a particular state in the discretization, say	�. This is considered to be the final state for
the transition. Using the expected reward for that state,( 
	� �, and the recorded reward for the

1see [Presset al., 1992] for more information on these sorts of tests.
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transition,N , we can assign a value to the initial sensory input/action pair.

O 
M � �� � N % � ( 
	� � (6)

Having calculated values for the datapoints and used that todiscretize the world we fall
back into a standard, discrete, Reinforcement Learning problem: we need to find Q values
for our new states,

$ 
	 � ��. This is done by calculating state transition probabilities from the
given data and then using Prioritized Sweeping. If the initial sensory input and the resulting
sensory input for a datapoint are in the same state then that is considered a self-transition. If
the initial and final sensory inputs are in two different states then that is an example of the
action resulting in a state change. Figure 6 contains the Continuous U Tree algorithm.

During Game:

Find current state in discretization,5, using current sensory input,Q
Use Q values for the state5 to choose an action,0
Store transition datapoint4Q 6 0 6 Q � 6 R 7

After Game:

For each leaf:

Update datapoint values,S 4Q 6 07, for each datapoint in that leaf

Find best split point

If split point is statistically significant then split leaf into two states

Add all states to priority queue

Run Prioritized Sweeping over new states until all changes are below thresh-
old

Figure 6: The Continuous U Tree Algorithm

Empirically, when we used this algorithm including self transitions the state values dropped
to 0 very quickly. The large states gave large numbers of self-transitions which reduced the
value of the state. To avoid this we ignored self-transitions when performing the Prioritized
Sweeping.

4.4 Continuous U Tree in Hexcer

Table 10 shows that Continuous U Tree performs better than normal Prioritized Sweeping,
although the differences for the second 500 games are only significant at the 5% level. Table 11
shows that continuous U Tree also performs better than Fitted Prioritized Sweeping. Although
the results for the total are statistically significant at the 5% level, none of these differences are
significant at the 1% level.

5 Impact of Watching the Opponent

In the previous section we noted that tabular ReinforcementLearning techniques require a
large amount of data to learn. To overcome this we introducedgeneralization. Another way
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Prioritized Sweeping vs. Continuous U Tree

First 500 games @=F > E; ;FB > @EB C
Second 500 games @E= > EE ;EB > AGB

Total ;=A > @D; ;=B > @DB C
Table 10: Prioritized Sweeping vs. Continuous U Tree

Continuous U Tree vs. Fitted Prioritized Sweeping

First 500 games AF? > @G@ F@B > AGB
Second 500 games A== > =; FFB > @FB

Total F;E > E@ F?B > EB
Table 11: Continuous U Tree vs. Fitted Prioritized Sweeping

to help overcome this is to acquire more data. One way to do this is to watch your opponent
move.

This data has different properties to watching our own movement. The quality of the data
depends on our opponents level of skill. If our opponent is a better player then the data on how
they play is useful. If our opponent is poor, then the data is less useful.

A problem with using opponent data occurs with the algorithms that use some form of op-
ponent modelling (The opponent modelling and the Prioritized Sweeping algorithms). From
our opponents point of view we are the opponent. If we just flipsome axes in the state repre-
sentation, then anything we do will be incorporated into ourmodel of our opponent. We need
to be able to use the extra data without disturbing our opponent model.

In Hexcer it is possible to get 4 datapoints from each move. Firstly the original datapoint is
duplicated by vertical mirroring. This isn’t opponent watching, but gives us more data. These
two points are then mirrored horizontally - watching our opponent.

To incorporate opponent watching into Prioritized Sweeping we needed to be careful of
modelling ourselves. To make sure that this didn’t happen, any data gained by modelling our
opponent was only used to add links to the state transition graph. Once a link was known about
it’s transition count was not incremented when that link wasseen through a flipped world view.

For opponent watching, the opponent move probabilities were not updated for data gained
watching the opponent.

Tables 12 and 13 show the usefulness of opponent watching. Wecan see in table 12 that
if your opponent is the same as you it does not help much in absolute terms, although the dif-
ference is statistically significant. If your opponent has better exploration than you (Table 13)
then the difference seems minimal (Compare with Table 9).

Prioritized Sweeping vs. Prioritized Sweeping w/ OpponentWatching

First 50000 games A;AGG > EF< ?<B > AB C
Second 50000 games AFG=? > ;=; FGB > @B

Total ?DA=? > @GE@ ?DB > @B C
Table 12: Prioritized Sweeping vs. Prioritized Sweeping w/Opponent Watching
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Fitted Prioritized Sweeping vs. Prioritized Sweeping w/ Opponent Watching

First 500 games @@A > ?D AAB > @GB C
Second 500 games << > ?; @;B > EB C

Total @=D > =F @DB > DB C
Table 13: Fitted Prioritized Sweeping vs. Prioritized Sweeping w/ Opponent Watching

6 Conclusion

Standard Reinforcement Learning algorithms work in an adversarial domain. Algorithms,
like Prioritized Sweeping, that have been shown to be more effective in single agent domains
are again more effective in the domain studied here. However, the exponential explosion in
state space size as the number of agents increases limits theproblem size accessible by these
algorithms.

The Minimax Q Learning algorithm proposed by Littman has a major problem in that it
requires your opponent’s help to explore the space. Withoutminor generalization in the table it
is almost useless. Even with this generalization it is slower to learn than single agent methods.
It does offer the advantage of being able to learn to play optimally.

Introducing extra agents into a domain increases the state space exponentially. Not only
does this affect learning speed, but often the exact location of the other agents is not relevant.
We show effective generalizing Reinforcement Learning algorithms to help reduce this state
space size explosion. Both our generalizing algorithms perform significantly better than the
table based algorithms.

Finally we investigated learning from looking at the opponent. This was seen to be effective
if your opponent knows more than you. You have to be careful that any opponent modelling
does not become confused.
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