Adversarial Reinforcement Learning

William Uther Manuela Veloso

January 2003
CMU-CS-03-107

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

This manualscript was originally submitted for publication in April 1997. Corrections
were never completed, and so the paper was not published. However, a copy was
placed on the web and a number of people referenced the work from there. It is now
being published as a technical report for ease of reference. With the exception of the
addition of this title page, the work is unmodified from the 1997 original.

Keywords: Reinforcement Learning, Markov Games, Adversarial Reinforcement Learn-
ing

Abstract

Reinforcement Learning has been used for a number of years in single agent environments.
This article reports on our investigation of Reinforcement Learning techniques in a multi-
agent and adversarial environment with continuous observable state information. We intro-
duce a new framework, two-player hexagonal grid soccer, in which to evaluate algorithms.
We then compare the performance of several single-agent Reinforcement Learning techniques
in that environment. These are further compared to a previously developed adversarial Re-
inforcement Learning algorithm designed for Markov games. Building upon these efforts,
we introduce new algorithms to handle the multi-agent, the adversarial, and the continuous-
valued aspects of the domain. We introduce a technique for modelling the opponent in an
adversarial game. We introduce an extension to Prioritized Sweeping that allows gener-
alization of learnt knowledge over neighboring states in the domain; and we introduce an
extension to the U Tree generalizing algorithm that allows the handling of continuous state
spaces. Extensive empirical evaluation is conducted in the grid soccer domain.

il

This page intentionally left blank.

v

Adversarial Reinforcement Learning

William Uther and Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
{uther,velosp@cs.cmu.edu

April 24, 1997

Abstract

Reinforcement Learning has been used for a number of yeasmdte agent environ-
ments. This article reports on our investigation of Reiofmnent Learning techniques in a
multi-agent and adversarial environment with continudoseovable state information. We in-
troduce a new framework, two-player hexagonal grid sodaeshich to evaluate algorithms.
We then compare the performance of several single-agenfdkeément Learning techniques
in that environment. These are further compared to a preljialeveloped adversarial Rein-
forcement Learning algorithm designed for Markov gamesildiyg upon these efforts, we
introduce new algorithms to handle the multi-agent, theseshrial, and the continuous-valued
aspects of the domain. We introduce a technique for modetfia opponent in an adversarial
game. We introduce an extension to Prioritized Sweepingalhavs generalization of learnt
knowledge over neighboring states in the domain; and wednire an extension to the U Tree
generalizing algorithm that allows the handling of contins state spaces. Extensive empirical
evaluation is conducted in the grid soccer domain.

1 Introduction

Multi-agent adversarial environments have traditionalien addressed as game playing situ-
ations. Indeed, one of the first areas to be studied in Adifiaitelligence was game playing.
For example, the pioneering checkers playing algorithm3anjuel, 1959] used both search
and machine learning strategies. Interestingly, his amdras similar to modern Reinforce-
ment Learning techniques [Kaelblireg al., 1996]. An evaluation function that guides the se-
lection of moves is represented as a parameterized weightadf game features. Parameters
are incrementally refined as a function of the game playimfjopmance. This is a similar
method to classical Reinforcement Learning which also iges/for incremental update of an
evaluation function, although in this case it is represgmtea table of values.

Since Samuel’'s work however, Reinforcement Learning tiegtas were not used again in
an adversarial setting until quite recently. [Tesauro,519%run, 1995] have both used neural
nets in a Reinforcement Learning paradigm. [Tesauro, 199&jrk in the game of checkers

1

was successful, but required hand tuned features beingftktalgorithm for high quality
play. [Thrun, 1995] was moderately successful in usinglsiméchniques in chess, but these
techniques were not as successful as they had been in thkech@omain. This work has
been repeated in other domains, but again, without the saccess as in the checkers domain
(in [Kaelbling et al., 1996]).

[Littman, 1994] took standard Q Learning, [Watkins and DayE92], and modified it to
work with Markov games. He replaced the simplén update used in standard Q Learning
with a mixed strategy (probabilistianinimaz update. He then evaluated this by playing
against both standard Q Learning and random players in desiggme. The game used in
[Littman, 1994] is a small two player grid soccer game desibto be able to be solved quickly
by traditional Q Learning techniques. He trained 4 difféq@ayers for his game. Two players
used his algorithm, two used normal Q Learning. One of eachtreéned against a random
opponent, the other against an opponent of the same typmdritthen froze those four players
and trained ‘challengers’ against them. His results shawathis algorithms, which learned a
probabilistic strategy, performed better under these itiond than Q Learning, which learned
a deterministic strategy, or his hand coded, but again ihétéstic, strategy.

We use a similar environment to that used by [Littman, 19684ftestigate Markov games.
Our environment is larger, both in number of states and nurabactions per state, to more
effectively test the generalization capabilities of owaaithms. We conduct tests where both
players are learning as they play. This allows learning ke the place of a mixed, or prob-
abilistic, strategy. We look at a number of standard Regdorent Learning algorithms and
compare them in a simple game. None of the algorithms we ég&inmn any internal search or
lookahead when deciding actions; they all use just the nugtate and their learnt evaluation
for that state. While search would improve performance, amswered it orthogonal, and a
future step, to learning the evaluation function.

In the Reinforcement Learning paradigm an agent is placedsituation without knowl-
edge of any goals or other information about the environm&sithe agent acts in the environ-
ment it is given feedback: a reinforcement value or rewaad defines the utility of being in
the current state. Over time the agent is supposed to cusdtaiactions to the environment
so as to maximize the sum of this reward. By only giving thenageward when a goal is
reached, the agent learns to achieve its goals.

In an adversarial setting there are multiple (at least twggnés in the world. In particular,
in a game with two players, when an agent wins a game it is givpasitive reinforcement
and its opponent is given negative reinforcement. Maxingjizieward corresponds directly to
winning games. Over time the agent is learning to act so theihs the game.

In this paper we investigate the performance of some preiyquublished algorithms in an
adversarial environment; Q Learning, Minimax Q Learniny] Brioritized Sweeping. We also
introduce a new algorithm, Opponent Modelling Q Learnirgtry and improve upon these
algorithms. All of these techniques rely on a table of valaled actions and do not generalize
between similar or equivalent states. The learned tablesstéate-specific.” We introduce
Fitted Prioritized Sweeping and a modification of the U Tregodthm [McCallum, 1995],
Continuous U Tree, as examples of algorithms that generalier multiple states. Finally, we
look at what can be learned by looking at the world from yoysapgent’s point of view.

2

2 Hexcer: The Adversarial Learning Environment

As a substrate to our investigation, we introduce a hexdggnith based soccer simulation,
Hexcer, which is similar to the game framework used by [L#tm1994] to test Minimax
Q Learning. Hexcer consists of a board with a hexagonal gnd,players and a ball (See
Figure 1).

\ Player X Player O /
O Goal X Goal

Figure 1: The Hexcer board

The two players start in fixed positions on the board, as shdla game then proceeds in
rounds. During each round the players make simultaneougsmaivone cell, in any of the six
possible directions. Players must specify a direction ifchvko move, but if a player attempts
to move off the edge of the grid, it remains in the same cellc&lome player moves onto the
ball, the ball stays with that player until stolen by the otplayer.

When the two players try to move onto the same cell one of thesoeeds and the other
fails, remaining in its original position. The choice of whwves into the new cell is made
randomly. If one of the players had the ball when this ocches the player that succeeds in
moving to the contested cell takes possession of the ball.

Play continues until the ball arrives in either goal. At ttiee the player who owns the
goal with the ball wins the game and receives some rewardoppesing player gets an equal,
but negative, reward. It does not matter which player toektall into the goal; that is, if |
take the ball into my own goal, my opponent receives posit@veard and | receive negative
reward.

The hexcer game provides an interesting environment falysig the use of Reinforce-
ment Learning. The learning player observes its positiow, the positions of the ball and
adversary. Initially, it does not know that the objectivelug game is to take the ball to a goal
position. Reinforcement Learning seems the appropriatentque to acquire the necessary
action selection information for each state.

We incrementally compare different algorithms in this domand develop new extensions
based on an analysis of their performances. We perform @apgomparisons along two
different dimensions. Firstly, how fast does the algoritlearn to play? Secondly, what level
of expertise is reached, discounting a “reasonable” ileg&rning period?

3

In the next sections, we introduce in detail the algorithmd #he experiments. We show
consistently for all the experiments two sets of results.ak pf algorithms played each other
at Hexcer for 100,000 games. Wins were recorded for the fir§i® games and the second
50,000 games. The first 50,000 games allow us to measurerigapeed as all agents start
out with no knowledge of the game. The second 50,000 gamesagivndication of the final
level of ability of the algorithm.

This 100,000 game test was then repeated 20 times for eaobf pdgorithms. The results
shown in each table are the number of games (mestandard deviation) the first player listed
wins. A check marky/) indicates statistical significance, i.e., the probapilitndom variation
would produce a difference this great is less than 1%.

The generalizing Reinforcement Learning algorithms agaitantly slower to update
than the state-specific algorithms. Hence, it is not feadiblrun 100,000 games for these
algorithms. However the generalizing algorithms learnl&y in fewer games than the state-
specific ones. To compare the generalizing algorithms oji9d.games were played. Simi-
larly to the rest of the experiments, these 1,000 games vpditerdo the first 500 games and
the second 500 games to measure learning speed and finaldesbitity.

3 State-Specific Learning Algorithms

In the machine learning formulation of Reinforcement LéaagriKaelblinget al,, 1996] there
are a discrete set of states,and actionsg. The agent can detect its current state, and in each
state can choose to perform an action which will in turn move its next state.

For each state/action pails, a) there is a reinforcement signak(s, a). Action a by the
agent when it is in state gives the agent the reward associated with that statefiapha,
R(s,a).

The world is assumed to be Markov. That is, the current sigfiees all relevant informa-
tion about the world. There is no predictive power gained bgvwking the agent’s history in
arriving at the current state. This does not mean the worldtiine deterministic. It is quite
possible that the mapping from state/action pairs to naxéstis probabilistic. That s, for each
state/action pairs, a), there is a probability distributionP, ,)(s'), giving the probability of
reaching a particular successor state from the states when actiona is performed in that
state. Because the opponent is not necessarily deterimitigs is the case in Hexcer.

As stated above, the goal is for the agent “to maximize itardvover time.” One might
expectG = Y 12 R; - we just sum the reinforcement signal for every timestepetiospme
measure of how we are doing. Unfortunately, this sum divergehe standard solution, al-
though others have been tried (see [Kaelblmal., 1996]), is to discount future rewards. A
discount factory, 0 < v < 1, is added to the sum givings = 3-2°, 7' R;. At each step the
agent is supposed to behave in a way that maximizes this sxpetted future discounted
reward.~ can be interpreted in different ways. It corresponds toething a chance, proba-
bility (1 — +), that the world ends between each move. It can also be seeniaterest rate,
or just as a trick to make the sum bounded. In our experimegnts(.95.

3.1 Q Learning

Q Learning [Watkins and Dayan, 1992] is a method of buildinglade of values that can be
used to decide how to act so as to maximize the agent’s dissdusward over time. The

4

foundations of this method are the Bellman Equations:

Q(s;a) = R(s,a) +7) Pay(s)V () (1)

s’

V(s) = max(Q(s,a) @

These equations define a Q functi@s, a), and a value function’(s). The Q function
is a function from state/action pairs to an expected sum sifadinted reward. The result is
the expected discounted reward for executing that actidhanstate then behaving optimally
from then on. The value function is a function from statesums of discounted reward. It
is the expected sum of discounted reward for behaving opijinmathat state as well as from
then on.

It is possible, if the state transition probabilities andiaeds are known, to solve these
equations directly for the Q function. Once this is known @erdg can behave optimally
simply by picking the action that has the highest Q value endhrrent state. If there is a tie
for highest Q value, then it does not matter which option keta usually the choice is made
randomly. Unfortunately, these state transition prolitédsl and rewards are usually not known
in advance.

Q Learning is a technigue for learning the Q function onliseltse agent explores. The
Q function is recorded in a Q table, which stores the curretitnates ofQ(s,a), i.e., the
Q values for each state/action pair. Initially all thesaénaates are 0. As the agent performs
each action it is able to update the Q value correspondinggatoaiction.

Q(s,a) = aQ(s,a) + (1 - a)(R(s,a) +yV(s)) ®3)

This is achieved by using the Bellman equations and repjabia equality with a weighted
sum assignment. The Q value of the state/action is updateel ¢tser to the Q value for this
state/action/next-state transition. The probabilitytrdigtion, P(s,a)(sl)! can be removed from
the assignment, because the destination states are wlisttibccording to that distribution.
The learning rateq, determines how fast the Q values are updated. In our expetanwe
use a fixed learning rate, = 0.5. The Q values will converge to the correct value with prob-
ability 1, assuming that the learning rate decreases sltawgrds zero and each state/action
pair is sampled infinitely often. In order to continue leamiwe did not decrease the learning
rate. While this removes the convergence guarantee, wsilbe algorithm to play against an
opponent that is itself learning. In this case, there is nedfisimple, i.e. non-stochastic, opti-
mal policy anyway. To ensure adequate exploration, i.eryestate is visited infinitely often
in an infinite series of games, all players described choaa@dom action with 5% probability.

This formulation works well, but its direct implementatiminefficient for large problems.
Exploration is usually achieved by adding a small probgbilhat a random action will be
chosen. Given a slowly decreasing learning rate, and theagtee that every state/action pair
will be visited infinitely often this algorithm is guarantk® converge to an optimal policy. As
stated above, we used a fixed learning rate. We trading gea@ieonvergence for the ability
to learn the non-stationary policy we need to play againgtipoonent that is itself learning.

5

3.2 Minimax Q Learning

Minimax Q Learning [Littman, 1994] is a modification of Q Leamg to work with Markov
games. Instead of treating the opponent as part of the emaint, Minimax Q Learning
records a function not just from state/action pairs to v&|b&t from state/action/action triples
to valuesQ(s, an, a,). Both the action of the agent,,, and the action of its opponernt,, are
explicitly modelled. Table 1 shows an example of a Minimax €aining table for a particular
state. The columns correspond to our agent’s actions, &bis to the opponent’s actions.
The values are the expected sum of discounted reward foadiian pair in that state.

My Moves,a,,
ad | al
al [500| 175
Their Movesga, a! [150| 450
a’ | 375 200

Table 1: A sample minimax Q tabl€)(s, a.,, a,), for a states

Once this table of values exists game theory is used to warkhewalue of this position
of the board,V(s). As moves are made simultaneously, thex in the equation for the
value of a state is replaced withmainimax function. The backup of values is the same as
Q Learning. The minimax value is calculated using lineagpronming (see below). This
returns a probability distribution over the actions for #gent. The agent chooses its action
according to this distribution.

Calculation of the value of a state where there is hidderrinéion, such as what move
your opponent is going to make, relies on game theory anaripeogramming. Consider
Figure 2 which represents the same data as Table 1. The xeptissents a probability dis-
tribution over our two actionsP(a,,). On the left we choose mowe, all the time. On the
right we choose move., all the time. As we move along the x axis, we change the préibabi
that we will pick a particular move. We want to find the pointtbis axis that maximizes our
expected return.

If we fix the probability distribution over our action$)(a,,), then the expected return
assuming the opponent makes mayés going to be:

E(V(S‘G,o)) = Zp(am)Q(saamaao) (4)

As we move along the x axis, our expected return if the oppotctesoses a particular move
varies as a linear combination of its endpoint values. Tligpeimt values are the entries in the
Q table, the lines represent the linear combinations; onegoh opponent move.

We wish to maximize the expected reward regardless of theraayis action. This cor-
responds to finding the highest point in Figure 2 that is bénath the opponent move lines.
Projecting this point down onto the x axis gives the requdistribution over our actions. The
y coordinate of this point is the expected reward for movirithwhat probability distribution.
Finding this point is a classical linear programming proil¢See [Presst al., 1992] for more
detail.)

In the example above, the maximum expected reward is at thesection of the lines
generated from opponent mowgsanda?. The result is that we should choose mayewith

6

Opponent Chooses

Opponent Chooses
a9 a1
0
Opponent
500 Chooses ao2
450
375
Expected 292
Reward
200
150 175

0.47

Probability of choosing move am1 1

Figure 2: Linear Programming for Mixed Strategies

probability 0.47, and move., with probability 0.53. The expected sum of discounted rewar
is 292. This the valuéy (s), of this state.

As [Littman, 1994] points out, this is a pessimistic valuehdtever the opponent actually
does, the expected return value generated, and probadhigitgfbution over our moves, will
be that for playing an optimal opponent. This means that tirénvix Q Learning algorithm
learns a strategy for playing an optimal opponent no matter ivplays while learning.

The Minimax Q Learning algorithm has a similar constrainthat of normal Q Learn-
ing. All Q values must be updated infinitely often for this wneerge with probability 1. In
Q Learning this poses no real problem as the agent contras adtion is taken and can insert
some exploration (random move selection). In Minimax Q béay this can be a problem as
the agent requires all combinations of its move and the oppisnmove to visited infinitely
often. It only controls its move however. This algorithm Widarn better against a random
opponent, who will try each move infinitely often, than agaian optimal opponent if the
optimal opponent never makes some moves.

Minimax Q Learning being pessimistic is also a problem atdtaet of the game. When
a particular entry in the Q table is still zero (i.e. it hasbéen tried yet), it will force the
player away from that column. Consider the very first gamggaa The algorithm chooses
randomly because all entries are 0. It finally scores a goautgh pure luck. Unfortunately,
the pessimistic estimate of that state’s value will stillddgecause you've only seen it with the
opponent moving in one direction. Without changes, thisdlgm requires that we see the
opponent fail to stop us after trying all possible moves tefee will back the win up even
one state.

To help alleviate this, we introduced a mild form of genezatiion into the algorithm. If a
particular Q value has never been changed, then it is carside be equal to the lowest value
in that column that has been examined. Values are never gsHew zero in this fashion.

7

Without this change the algorithm has limited applicaailit

3.3 Q Learning and Minimax Q Learning in Hexcer

Table 2 shows the results of 100,000 games between the sfa@daearning algorithm and
the Minimax Q Learning algorithm. As can be seen in the firat, 1Q Learning learns much
faster than Minimax Q Learning. Minimax Q Learning nevertguiatches up, although the
difference eventually becomes small.

| Q Learning vs. Minimax Q Learning

First 50000 games|| 36637 & 3412 | 73% £+ 7% Vv
Second 50000 games27289 & 3115 | 55% + 6% Vv
Total 63926 + 4706 | 64% + 5% V

Table 2: Q Learning vs. Minimax Q Learning

The reason for this is that the stochastic updates in normadapning result in a distribu-
tion of moves that approximates the optimal mixed stratégyong as these updates continue
an explicit mixed strategy is not necessary. As [LittmarQ4]9oints out though, if you stop
learning then the explicit mixed strategy is an advantagénayan opponent that is learning.

3.4 Opponent Modelling Q Learning

Minimax Q Learning is a pessimistic algorithm. It assumewilt be playing an optimal
opponent and so learns to play against one. We should beabtetietter by modelling the
opponent, taking advantage of the opponent’s sub-optinoaks

We developed a new algorithm, “Opponent Modelling Q Leagriimvhich achieves this
desired behavior. It assumes that the opponent is Markoythe history of how the opponent
arrived in its current state is unimportant - it will behatie same way in this state. We record
the number of times our opponent chooses each action in ¢aihas well as the Q table
recorded by Minimax Q Learning)(s, am, a,). This gives us the probability distribution of
our opponents actions in each stala,|s), which is then used to calculate the best action
for us. While this Markov assumption may not be entirely eoty we are assuming a Markov
game so the optimal player is Markov and this assumption doeseem too unreasonable.
Table 3 is an example of a Q table used by the Opponent Modé&Jlihearning algorithm. For
each state we have the probability distribution over ouromgmts moves recorded as well as
the minimax Q table.

| Probabilities,P(a,|s) | My Moves,a,

20% 500 175

Their Movesa, 30% 150 450
50% 375 200

Expected Reward 332,56 270

Table 3: A sample Opponent Modelling Q table

We can find the expected value of one of our moves by simplyntgtie weighted average
of each column:

E(Q(s,am)) = ZP(aols)Q(Saamaao) (5)

The agent picks the action with the highest expected rewathis stateQ(s, a,,). The
value of this action is the valu®(s), for that state. This method of picking an action is known
in the game theory literature as ‘solution by fictitious plg9wen, 1995]. It has been shown
that two players using this method against each other reglyatvith a single state and known
move values, will converge. The probability distributioheach players actions will converge
to the same optimal distribution as found by the linear progning method above although
at any particular time one action will be best.

This method of choosing an action does not suffer from mogt@problems of Minimax
Q Learning. If an opponent never makes a particular move, itlseassociated probability will
be zero and the relevant Q table entries will be ignored.

3.5 Opponent Modelling Q Learning in Hexcer

Tables 4 and 5 show that opponent modelling is an advancebotiemormal Q Learning and
minimax Q Learning. Normal Q Learning learns a little fadtean the opponent modelling,
but does not learn to play as well. The extra time for Minimax.&arning to learn to play
is easily explained by its increased table size. Opponerddifiag is better than Minimax
Q Learning in both dimensions.

| Q Learning vs. Opponent Modelling

First 50000 games || 19863 + 11439 | 40% = 23%
Second 50000 games 20293 + 6179 | 41% £ 12% | +/
Total 40157 £ 11933 | 40% + 12% | +/

Table 4: Q Learning vs. Opponent Modelling

| Minimax Q Learning vs. Opponent Modelling

First 50000 games|| 16143 & 5195 | 32% £ 10% vV
Second 50000 gameis21690 + 4456 | 43% + 9% Vv
Total 37833 £ 6150 | 38% £ 6% V

Table 5: Minimax Q Learning vs. Opponent Modelling

It should be noted that the opponent modelling strategy timmoixed (probabilistic) strat-
egy. If we stopped performing updates as [Littman, 1994tkiéh it would fail the same way
Q Learning does against a learning opponent.

So, why is opponent modelling effective? On the surface veiy similar to the original
Q Learning, except Q Learning used stochastic updates te@intloel opponent in the same
way it uses stochastic updates to model transition praokiabil The answer is in the fact that
changing opponent move probabilities can occur much faiséer Q Learning will update its
Q table. If the opponent is changing its behavior, as is haipgein our experiments as the
opponent learns, then opponent modelling allows more effigredit blame assignment. The

9

change in opponent behavior is detected directly and casecelbanges in backed up value
much faster than the normal learning rate would allow.

3.6 Perioritized Sweeping

Prioritized Sweeping [Moore and Atkeson, 1993] is signiiiiadifferent from the preceeding
methods. Instead of relying on sampling to model the statesttion probability distribution,
Ps,0)(s"), implicitly, Prioritized Sweeping proceeds by building @del of the world explic-
itly. Using this model it can calculate Q values directlyhetthan just performing stochastic
updates when data arrives. This allows it to propagatefgigni changes.

Re-solving the Bellman equations entirely at every timeg&d¢oo expensive even if all the
probabilities are known. Prioritized Sweeping proceedsifixyating first those entries whose
inputs have changed most.

Figure 3: The Graph stored by Prioritized Sweeping

As the agent moves through the environment a state tramgjtéph is built (See Figure 3).
Each time the agent makes a transition from state states’ by executing actioru, the
transition count on the link fromto s’ labelleda is incremented. At the same time the reward
for that transition is recorded if not already know(s, a) can then be calculated directly for
the states using the Bellman equations. The transition probabilifiem states, P, ,) (s") can
be calculated from the transition counts when we updHte a).

We performed two state value updates per simulation step.update was performed after
each step to reflect the change in transition probabilitites that step. The second update was
performed on the state whose input has changed most sin@sitast updated to propagate
the change in Q values.

Each time a Q value changes, s@ys’, a), its state/action pair(s’, a), is entered into a
priority queue with its priority being the magnitude of theange. Each timestep the agent can
pull the top pair from the queue and update the value of the,3tds’). This change in value
for that state leads to a change in the Q value for transitiotosthat state, in our example
Q(s,a) andQ(s,a’). If those Q values change, their state/action pairs areethieto the
priority queue and the wave of updates continues.

The number of updates that are performed per step the adestisaa parameter that can
be optimised for the task. In order to make comparisons as$gpossible between different
algorithms, we only allowed Prioritized Sweeping 2 updg@iEsmove - one to insert the current
node in the priority queue with the correct weight, and ormenfithe priority queue. It was
performing twice as many updates as standard Q Learningyasdlso able to use it’s priority

10

queue to perform the most useful updates. The second updizté mot update the state it just
moved from, but rather propagate an important change it mesléously.

Prioritized Sweeping also remembers all information gattieunlike Q Learning which
forgets about any transitions between like-valued nodes.

3.7 Prioritized Sweeping in Hexcer

Tables 6, 7 and 8 show the results of Prioritized Sweepingimaagainst all the previous
algorithms. It beats all of them by a significant margin. Téason for this is very simple. All
the previous methods make very poor use of the data. On theuirsmost of the updates
have no effect as all Q values have the same, zero, value.tlmlast update actually causes
a table entry to change value - most of the exploration is lost

| Q Learning vs. Prioritized Sweeping
First 50000 games|| 5349 +970 | 11% + 2% Vv
Second 50000 games 5797 & 547 | 12% + 1% Vv
Total 11145 £ 1318 | 11% + 1% | +/

Table 6: Q-learning vs. Prioritized Sweeping

| Minimax Q Learning vs. Prioritized Sweeping

First 50000 games| 3069 + 482 | 6% + 1% V4
Second 50000 gameis6149 + 530 | 12% + 1% V4
Total 9216 £ 763 | 9% £ 1% v

Table 7: Minimax Q-learning vs. Prioritized Sweeping

| Opponent Modelling vs. Prioritized Sweeping

First 50000 games|| 6257 41948 | 13% £ 4% vV
Second 50000 games 8235 4 1019 | 16% + 2% Vv
Total 14493 £ 2282 | 14% =+ 2% v

Table 8. Opponent Modelling vs. Prioritized Sweeping

In Prioritized Sweeping all that data is saved. Updates lzea performed in the most
useful places first. Using the ability of Prioritized Swew®pio save all data and use it when
relevant to offset the larger table size of the minimax upd@tes minimax Prioritized Sweep-

ing.

4 Generalizing Algorithms
All the algorithms above have one major weakness. They ¢agerteralize experience over

multiple states. In a single agent environment this is notigbut in a multi-agent environment
it is disastrous. Imagine a game of Hexcer where our agentheaball in the center of the

11

field and the opposing agent is well behind us. By moving diydowards the goal we can
score every time regardless of the opponent’s exact positio

Unfortunately, changing the opponent’s position at aleretry the smallest amount, will
place our agent in a new state. If it has never been in thigcphat state before then it will not
know how to behave. If the opponent’s position is irreleviduein the agent should realise this
and generalize over all those states that only differ in appb position, learning the concept
of “opponent behind”.

One naive generalization method is to take a simple moeel-digorithm like Q Learning
and replace the table of values with a generalizing funciijgproximator (e.g. a Neural Net).
This has been shown to be unstable in some cases [Boyan ang M&885] never converging
to a solution although some good results have been obtaiitbdhis method [Tesauro, 1995].
Methods that are stable do exist for using either Neural NBagd, 1995] or Decision Trees
[McCallum, 1995]. First we introduce a stable method whislesiboth a table and a gen-
eralizing function approximator. Then [McCallum, 1995jfseethod using Decision Trees is
described and we extend it to handle continuous state values

4.1 Fitted Prioritized Sweeping

As pointed out in [Boyan and Moore, 1996], generalizing fiorc approximators are not a
problem if the approximation is not iterated. That is, if gpeximation is not used to up-
date itself. Fitted Prioritized Sweeping makes use of tagult by using standard Prioritized
Sweeping as a base, and then doing the generalization aftisw

At each timestep during the game, the agent updates a sthRdaritized Sweeping Q-
function over a standard discretization of the state spdoechoose its actions however, it
reads the Q-values from a generalizing function appro>amihiat was learnt from the previ-
ous game. At the end of each game the set of Q values genesatlkd Brioritized Sweeping
algorithm for all visited state/action pairs is used as ttpit to update the generalizing func-
tion approximator.

Here the approximator is used to decide the agent’s actlmrtsall data that is used as
input to the approximator is data gathered from the real dvoifhe approximator decides
where to sample, but the value of the sample itself is notaimate. No approximate values
are recycled as input to the approximator directly.

In our implementation a piecewise linear function appradion was used, although any
generalizing function approximator could be used. Theaguigse linear approximation was
built up using a recursive splitting technique similar toexidion tree. At each stage in the
recursion the best way of splitting the data is found. If gpét gives a better fit than having
no split then the split is accepted. Each part of the datadn ftt recursively in a similar
manner forming a tree of splits. In the final tree, the leawgain least squares linear fits of
the data that fall in that leaf. Initially there is a singlefé the tree with a constant value of O.
Each time the tree is updated, the leaves of the tree areefuliided. Early splits are never
reconsidered. Figure 4 contains the Fitted Prioritized &pireg Algorithm.

Each state/action pair was represented by a vector of wgb For Hexcer there were
8 attributes. These were the x and y coordinates of each rplthe difference in x and y
coordinates between the two players, the location of thie(@al X, on O or in the middle of
the board), and the action selected (1 through 6). The vaiubs Q table were sorted by each
attribute in turn. For each attribute, the halfway pointwestn every adjacent pair of values
was considered as a possible split point. A linear fit was nodidee data on each side of this

12

During Game:

Update Prioritized Sweeping table entry

Choose move using linear approximation tree for Q values
After Game:

Update Prioritized Sweeping table till changes fall belaveshold

Grow linear approximation tree using Prioritized Sweepihgable
entries

Figure 4: The Fitted Prioritized Sweeping Algorithm

split point and they? statistic of the combined fits was compared to #Restatistic of a single
linear fit for all the data. If the split with the best combing#i statistic is better than no split
then that split is recorded and the splitting proceeds saaely.

Splitat x = 0.6
haN
Splitaty =0.3 Splitaty =0.7
«\/\/ \
-
-

Figure 5: A simple recursive partition of a rectangle

Consider Figure 5. We start off with a two dimensional spdogata. This is first split at
z = 0.6. Each side of this split is then itself split recursively. &@rdown two levels there was
not enough data separation to justify another split so tberston stops.

4.2 Fitted Prioritized Sweeping in Hexcer

This generalizing algorithm was tested against standaatifzed Sweeping. As can be seen
in Table 9 it learns significantly faster than standard Rrzed Sweeping. While effective, this
algorithm still requires a prior discretization of the warllt cannot handle continuous state
spaces.

4.3 Continuous U Tree

The U Tree algorithm [McCallum, 1995] is a method for usingeaidion tree [Quinlan, 1986]
instead of a table of values in the Prioritized Sweeping rilgm. In the original U Tree

13

| Prioritized Sweeping vs. Fitted Prioritized Sweeping

First500 games | 75+ 74 | 15% 4 15% Vv
Second 500 games 133 £ 81 | 27% + 16% Vv
Total 208 + 135 | 21% + 14% V

Table 9: Prioritized Sweeping vs. Fitted Prioritized Swiagp

algorithm the state space is described in terms of discti&ibues. If a continuous value is
needed it is split over multiple attributes in a manner agals to using one attribute for each
bit of the continuous value. We developed a “Continuous W& Tadgorithm, similar to U Tree,
but which handles continuous state spaces directly.

Like U Tree, Continuous U Tree can handle moderately highedsional state spaces.
The original U Tree work uses this capability to remove thekda assumption. As we were
playing a Markov game we did not implement this part of the BeTalgorithm in Continuous
U Tree although we see no reason why this could not be done.

Continuous U Tree is different from all the previous aldaris mentioned in that it does
not require a prior discretization of the world into separstates. The algorithm can take a
continuous state vector and automatically form its ownréigzation upon which one of the
previous algorithms can be used. We used Prioritized Swgepier this new discretization.

In order to form this discretization, data must be saved filmeragent’s experience. Unfor-
tunately, there is no prior discretization that can be useaafgregate the data. The datapoints
must be saved individually with full sensor accuracy. Invpaes algorithms, each different,
but discrete, sensory input would correspond to a diffestate and hence would require its
own Q table entry. Here that is not the case. Areas of simédasary input are grouped to-
gether by the algorithm to form states. Each datapoint sevadsector of the sensory input
at the start/, the action performed, the resulting sensory inpdt and the reward obtained
for that transitionr, (I, a,I’,7). As in Fitted Prioritized Sweeping the sensory input islitae
vector of values, one for each attribute of the sensory ingotike Fitted Prioritized Sweeping
these values can be fully continuous. In Hexcer we used the sactor of state attributes for
Continuous U Tree and Fitted Prioritized Sweeping. No actitiributes are added to this vec-
tor however (i.e. only the first 7 of the 8 attributes listedabfor Fitted Prioritized Sweeping
are used).

The discretization formed is a tree-structure found by r&iea partitioning. Initially the
world is considered to be a single state with an expectedrteWds), of 0. At each stage
in the recursive partitioning we re-calculate expectedarelvalues of all the datapoints. For
each state in the current discretization we can then loapugir all possible single splits for
that state and choose the split that maximizes the differdmetween the datapoint values,
q(I,a), on either side of the split. This difference is measuredgitfie Kolmogorov-Smirnov
statistical test. If the most statistically significant split point has a prbhity of being random
less than some threshold (we ugee: 0.01) then that split is added - forming two new states
to replace the old one.

Calculating the value of a datapoigt,Z, a) is again based on the Bellman equations. Each
datapoint ends in a state, i.e., the resulting sensory iffta transition,(1, a, I',), will fall
within a particular state in the discretization, séyThis is considered to be the final state for
the transition. Using the expected reward for that std{g;), and the recorded reward for the

see [Presst al, 1992] for more information on these sorts of tests.

14

transition,r, we can assign a value to the initial sensory input/actian pa

qI,a) = r+9V(s) (6)

Having calculated values for the datapoints and used thdistwetize the world we fall
back into a standard, discrete, Reinforcement Learningleno: we need to find Q values
for our new states)(s,a). This is done by calculating state transition probabaitieom the
given data and then using Prioritized Sweeping. If theahgensory input and the resulting
sensory input for a datapoint are in the same state thenghainisidered a self-transition. If
the initial and final sensory inputs are in two different egathen that is an example of the
action resulting in a state change. Figure 6 contains theil@amus U Tree algorithm.

During Game:

Find current state in discretizatiof,using current sensory input,
Use Q values for the stateto choose an action,
Store transition datapoitf, a, I', r)

After Game:

For each leaf:
Update datapoint valueg(/, a), for each datapoint in that leaf
Find best split point
If split point is statistically significant then split leafto two states
Add all states to priority queue

Run Prioritized Sweeping over new states until all changedealow thresh-
old

Figure 6: The Continuous U Tree Algorithm

Empirically, when we used this algorithm including selitséions the state values dropped
to 0 very quickly. The large states gave large numbers oftgatiitions which reduced the
value of the state. To avoid this we ignored self-transgiorhen performing the Prioritized
Sweeping.

4.4 Continuous U Tree in Hexcer

Table 10 shows that Continuous U Tree performs better thamailoPrioritized Sweeping,
although the differences for the second 500 games are anlifisant at the 5% level. Table 11
shows that continuous U Tree also performs better thandH#tritized Sweeping. Although
the results for the total are statistically significant & ®% level, none of these differences are
significant at the 1% level.

5 Impact of Watching the Opponent

In the previous section we noted that tabular Reinforceneairning techniques require a
large amount of data to learn. To overcome this we introdgssteralization. Another way

15

| Prioritized Sweeping vs. Continuous U Tree

First 500 games || 175 £93 | 35% £+ 19% Vv
Second 500 games 197 £ 99 | 39% £ 20%
Total 372+ 183 | 37% + 18% V

Table 10: Prioritized Sweeping vs. Continuous U Tree

| Continuous U Tree vs. Fitted Prioritized Sweeping

First 500 games || 254 + 101 | 51% 4 20%
Second 500 games 277 £ 73 | 55% £ 15%
Total 539 £91 | 54% + 9%

Table 11: Continuous U Tree vs. Fitted Prioritized Sweeping

to help overcome this is to acquire more data. One way to doighio watch your opponent
move.

This data has different properties to watching our own mammThe quality of the data
depends on our opponents level of skill. If our opponent ietéeb player then the data on how
they play is useful. If our opponent is poor, then the datass useful.

A problem with using opponent data occurs with the algorghhat use some form of op-
ponent modelling (The opponent modelling and the Pri@itiBweeping algorithms). From
our opponents point of view we are the opponent. If we juststime axes in the state repre-
sentation, then anything we do will be incorporated into madel of our opponent. We need
to be able to use the extra data without disturbing our oppomedel.

In Hexcer it is possible to get 4 datapoints from each mowestlizithe original datapoint is
duplicated by vertical mirroring. This isn't opponent waittg, but gives us more data. These
two points are then mirrored horizontally - watching our opent.

To incorporate opponent watching into Prioritized Swegpie needed to be careful of
modelling ourselves. To make sure that this didn't happag,data gained by modelling our
opponent was only used to add links to the state transitiapigrOnce a link was known about
it's transition count was not incremented when that link w&esn through a flipped world view.

For opponent watching, the opponent move probabilitiesewet updated for data gained
watching the opponent.

Tables 12 and 13 show the usefulness of opponent watchingcaweee in table 12 that
if your opponent is the same as you it does not help much inlatesterms, although the dif-
ference is statistically significant. If your opponent hattér exploration than you (Table 13)
then the difference seems minimal (Compare with Table 9).

| Prioritized Sweeping vs. Prioritized Sweeping w/ Opporwatching

First 50000 games| 23200 + 956 | 46% + 2% Vv
Second 50000 gamess 25074 + 373 | 50% + 1%
Total 48274 + 1091 | 48% + 1% Vv

Table 12: Prioritized Sweeping vs. Prioritized Sweepingmponent Watching

16

H Fitted Prioritized Sweeping vs. Prioritized Sweeping wfOpent Watching

First 500 games || 112 + 48 | 22% + 10% vV
Second 500 games 66 43 | 13% + 9% Vv
Total 178+ 75 | 18% + 8% Vv

Table 13: Fitted Prioritized Sweeping vs. Prioritized Spiag w/ Opponent Watching

6 Conclusion

Standard Reinforcement Learning algorithms work in an esér@&al domain. Algorithms,
like Prioritized Sweeping, that have been shown to be mdeetgfe in single agent domains
are again more effective in the domain studied here. Howéherexponential explosion in
state space size as the number of agents increases limjisatblem size accessible by these
algorithms.

The Minimax Q Learning algorithm proposed by Littman has gomproblem in that it
requires your opponent’s help to explore the space. Withonor generalization in the table it
is almost useless. Even with this generalization it is skadwdearn than single agent methods.
It does offer the advantage of being able to learn to playnugty.

Introducing extra agents into a domain increases the spateesexponentially. Not only
does this affect learning speed, but often the exact latatidhe other agents is not relevant.
We show effective generalizing Reinforcement Learningalgms to help reduce this state
space size explosion. Both our generalizing algorithm$opar significantly better than the
table based algorithms.

Finally we investigated learning from looking at the oppaind his was seen to be effective
if your opponent knows more than you. You have to be carefatl #imy opponent modelling
does not become confused.

References

[Baird, 1995] Leemon Baird. Residual algorithms: Rein@arent learning with function ap-
proximation. In A Prieditis and S Russell, editoPspceedings of the Twelfth International
Conference on Machine Learningages 30-37, San Francisco, C.A., 1995. Morgan Kauf-
mann.

[Boyan and Moore, 1995] J. A. Boyan and A. W. Moore. Geneasilin in reinforcement
learning: Safely approximating the value function. In Gsdiaro, D. S. Touretzky, and T. K.
Leen, editorsAdvances in Neural Information Processing Systerokime 7, Cambridge,
MA, 1995. The MIT Press.

[Boyan and Moore, 1996] Justin A. Boyan and Andrew W. Mooreaining evaluation func-
tions for large acyclic domains. In L. Saitta, editblachine LearningMorgan Kaufmann,
1996.

[Kaelbling et al,, 1996] Leslie Pack Kaelbling, Michael L. Littman, and Andr&/. Moore.
Reinforcement learning: A surveyournal of Artificial Intelligence Research:237—-285,
1996.

[Littman, 1994] Michael L. Littman. Markov games as a franogkvfor multi-agent reinforce-
ment learningMachine Learning11:157-163, 1994.

17

[McCallum, 1995] Andrew Kachites McCallunReinforcement Learning with Selective Per-
ception and Hidden Staté’hd. thesis, University of Rochester, 1995.

[Moore and Atkeson, 1993] A. Moore and C. G. Atkeson. Prizeil sweeping: Reinforce-
ment learning with less data and less real tifdlachine Learning13, 1993.

[Owen, 1995] Guillermo Owen.Game Theory Academic Press, San Diego, California, 3
edition, 1995. ISBN: 0-12-531151-6.

[Presset al,, 1992] William H. Press, Saul A. Teukolsky, William T. Vatiag, and Brian P.
Flannery. Numerical Recipies in C: the art of scientific computir@ambridge University
Press, 2nd edition, 1992.

[Quinlan, 1986] J. R. Quinlan. Induction of decision treddachine Learning 1:81-106,
1986.

[Samuel, 1959] A. L. Samuel. Some studies in machine legmging the game of checkers.
IBM Research JournaB(3), 1959. Reprinted in 'Readings in Machine LearningShavlik
and Dietterich.

[Tesauro, 1995] G Tesauro. Temporal difference learnirytdrgammon.Communications
of the ACM 38(3):58-67, 1995.

[Thrun, 1995] Sebastian Thrun. Learning to play the gaméhebs. In G. Tesauro and D. S.
Touretzky, editorsAdvances in Neural Information Processing Systevokime 7, Cam-
bridge, MA, 1995. The MIT Press.

[Watkins and Dayan, 1992] Christopher J. C. H. Watkins anéHayan. Q-learningMa-
chine Learning8(3):279-292, 1992.

18

