On Static Reachability Analysis of IP Networks

Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang!
Albert Greenberg, Gisli Hjalmtysson, Jennifer Rexford?

June 2004
CMU-CS-04-146

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

LCarnegie Mellon University. Emails:{geoffxie,jibin,dmaltz,hzhang}@cs.cmu.edu. Geoffrey Xie is visiting
from Naval Postgraduate School.

2AT&T Labs—Research. Emails: {albert,gisli,jrex}@research.att.com. Gisli Hjalmtysson is also at Reyk-
javik University

This research was sponsored by the NSF under ITR Awards ANI-0085920, ANI-0331653, and ANI-

0114014. Views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of AT&T, NSF, or the U.S.
government.

A condensed version of this report appears in IEEE INFOCOMM 2005 Proceedings

Keywords: routing protocols, routing design, routing analysis

Abstract

The primary purpose of a network is to provide reachability between applications running
on end hosts. In this paper, we describe how to compute the reachability a network provides
from a snapshot of the configuration state from each of the routers. Our primary contribution
is the precise definition of the potential reachability of a network and a substantial simpli-
fication of the problem through a unified modeling of packet filters and routing protocols.
In the end, we reduce a complex, important practical problem to computing the transitive
closure to set union and intersection operations on reachability set representations. We then
extend our algorithm to model the influence of packet transformations (e.g., by NATs or ToS
remapping) along the path. Our technique for static analysis of network reachability is valu-
able for verifying the intent of the network designer, troubleshooting reachability problems,
and performing “what-if” analysis of failure scenarios.

Contents

1

9

Introduction

1.1 Advantages of Automated Static Analysis
1.2 Our Contributions
1.3 Structure of the Paper

Background on Reachability Configuration

2.1 Packet Filters
2.2 Routing Protocols
2.3 Packet Transformations

Problem Formulation

3.1 A Unifying Model

3.2 Formal Definitions of Reachability Metrics
3.2.1 Instantaneous reachability
3.2.2 Bounding the Instantaneous Reachability
3.2.3 Approximating the Reachability Bounds

3.3 Example Application of Reachability Analysis

Computing the Reachability Bounds

Converting Routing Information into Packet Filters

5.1 Definitions for Modeling Routes and RIBs
5.2 Step 1: Initializing the RIBs
5.3 Step 2: Computing the Potential Set of Routes
5.4 Step 3: Computing I(d) for each router
5.5 Step 4: Computing Packet Filters that Represent the Effects of Routing . . .

Handling Packet Transforms
Improving Scalability with Routing Realm Abstraction

Reachability Analysis in Larger Context
8.1 Understanding and Improving Routing Design
8.2 Moving Beyond Static Analysis

Related Work

10 Conclusions

11 Appendix - Justification for Converting Routing into Packet Filters

11.1 Evaluating the Estimator as an Upper Bound

(@2 3G TGN

NN EEN I

15

17
17
18
19
21
21

22

24

25
26
26

27

27

28
28

11.2 Future Work in Improving the Estimator for the Lower Bound on Reachability 32

11.3 Evaluating the Estimator for the Lower Bound on Reachability

2

32

12 Glossary

33

1 Introduction

While the ultimate goal of networking is to enable communication between hosts that are
not directly connected, a wide variety of mechanisms are being used to limit the set of
destinations the hosts can reach. For example, backbone networks may provide Virtual
Private Network services to connect only remote offices belonging to the same enterprise,
and enterprise networks themselves are often segmented into departments or offices whose
hosts must be isolated for business or security reasons. Also, due to a configuration or
design mistake, two hosts may not be able to communicate under certain failure scenarios,
even though the network remains connected; knowing when these vulnerabilities exist is
crucial to building a more reliable network.

Determining what kinds of packets can be exchanged between two hosts connected to a
network is a difficult and critical problem facing network designers and operators. To our
knowledge, the problem is largely unexamined in the networking research literature. Solving
the problem requires knowing far more than the network’s topology or the routing protocols
it uses. For example, despite having a route to a remote end-point, a sender’s packets may
be discarded by a packet filter on one of the links in the path. The network’s packet filters,
routing policies, and packet transformations all must be taken into account to even ask the
simple and very important question of “can these two hosts communicate?”

This paper crystallizes the problem of calculating the reachability provided by a network.
By mapping packet filters, routing information, and packet transformations to a single uni-
fied model of reachability we have determined how to transform this seemingly intractable
problem into a classical graph problem that can be solved with polynomial time algorithms
such as transitive closure. This is the primary contribution of this paper.

1.1 Advantages of Automated Static Analysis

Currently, the common practice to determine if packets can reach from one point in a network
to another is to use tools such as ping and traceroute to send probe traffic that experi-
mentally test whether reachability exists. In contrast, we have developed a static-analysis
approach that can be applied even if only a description of the network is available. Static
analysis has many advantages over ping and traceroute, including:

e The ability to determine a description of the set of packets that could traverse the
network from a given starting point to a given ending point, whereas experimental
techniques can only check the reachability of the specific probe traffic they send.

e The ability to calculate the set of routers and hosts that a given packet could poten-
tially reach, whereas ping and traceroute can only check reachability along the path
currently selected by the routing protocols.

e The ability to evaluate the reachability of a network during its design phase—before the
network has been deployed or a problem has arisen. Network operators can perform
our static analysis using only the configuration files used to program the network’s
routers, and these files are readily available to them.

4

e The ability to verify whether the reachability a network actually provides matches
the designer’s intent. Static analysis can verify that Virtual Private Networks are, in
fact, isolated from other traffic. It can also be used to conduct “what-if” analysis—
predicting the effects of equipment failures and planned maintenance on the commu-
nication between end hosts. While syntax verification of router configuration has been
evaluated [3, 8], there is little understanding of the power and limitation of semantic
verification based on static analysis.

Manually calculating the static reachability of a network is often impractical, as data
show that campus, enterprise, and backbone networks vary in size from 5 to 500 routers,
with the largest networks having on the order of 1,000 routers, and that real networks
use a wide variety of mechanisms to control the reachability they provide. A survey of
31 production networks [10], including examples of both carrier backbone and enterprise
networks, found that 10 out of the 27 enterprise networks had packet filters applied to their
internal links. Several of the networks deliberately prevented some hosts from reaching others
by preventing the distribution of routing information needed to direct packets between the
hosts. Further complicating the question of a network’s reachability is the use of mechanisms
that actually transform packets as they travel across the network. For example, Network
Address Translators (NATs) [16] that change a packet’s source and destination address were
found in the interior of 10 of the 31 networks. Understanding the reachability “matrix”
created by a network requires a framework for reasoning about the effects of all these different
mechanisms—packet filters, routing policy, and packet transformations—at the same time.

1.2 Our Contributions

First, we formulate the problem of computing the reachability of a network and argue for
the importance of crafting good solutions. We focus on the value of computing reachability
through static analysis. We rigorously define the reachability of a network, and we define
expressions for upper and lower bounds on the reachability.

Second, we describe a tractable framework for jointly reasoning about how packet filters,
routing, and packet transformations affect the reachability that a network provides. Bringing
together these three very different types of mechanisms is critical to accurately computing
the reachability of a network.

Third, we present an algorithm for the static analysis of reachability for IP networks and
explain how the network model can be populated by static analysis of the network’s router
configuration files.

1.3 Structure of the Paper

In Section 2, we present a brief overview of the most relevant aspects of how routers operate
and are configured. We then formally describe our framework for analyzing a network’s
reachability in Section 3, beginning our analysis by focusing on packet filters. We present
our algorithm for calculating reachability in Section 4. In Section 5 we show how to map
routing information to packet filters and how this model of routing is populated by analyzing

Bl A5
T }_A>C|-1 ZL_ O =interface
Al ~ (=
o R & T T ® Rs |- = subnet
? &'Vo(\; R6 © “ —:Erin:(aryll.inll((
Loy = = =backup lin
| 12 et
‘ = external router
A3 o 5 = ... link to Internet
o R3¢ VR O RED - packetiter
< —~ ACL 2
1 AcLs
B3

Figure 1: An example enterprise network with five routers

the router configuration files. In Section 6 we describe how packet transforming mechanisms
are handled. Section 8 discusses the applications and limitations of our approach. After a
brief overview of related work in Section 9, the paper concludes in Section 10 with a summary
of our contributions.

2 Background on Reachability Configuration

In addition to forming the physical topology of routers and links, network operators must
configure the protocols and mechanisms that collectively determine which hosts can commu-
nicate. Today’s routers offer a wealth of configuration options for enabling and tuning packet
filters, routing protocols, and packet transformations. Our analysis techniques operate on a
snapshot of the configuration state for each of the routers in the network, as recorded in a
configuration file. In well-managed networks, these files are routinely captured and archived
for backup purposes, and are available to network operators.

To make our discussion of the different reachability configuration options more concrete,
we focus on the example enterprise network in Figure 1. The network has five routers R1
to R5 (depicted as solid rectangles) connected via physical links (depicted as solid lines)
that terminate at interfaces (depicted as small circles). R1 and R3 are remote sales offices
connected directly to the central office where R2, R4, and R5 reside. R6 represents the
external router in the service provider’s network where the enterprise connects to the Internet.

Each sales office has two subnets, A and B. Critical accounting applications are run by
hosts connected to subnet A, and general purpose computers are connected to subnet B.
Hosts on subnets Al and A3 must be able to communicate with corporate servers in subnet
A5, but the network’s policy is to prevent any other hosts from communicating with the
servers on A5 to reduce the chances of a server compromise. To make the network more
resilient to link failures, the operators are planning to add two backup links (shown with
dashed lines). In Section 4 and beyond, we show that our reachability analysis technique
can predict the effect of adding these links and prevent a design error that would violate the
network’s goals.

ACL Definition

ACL 1 | permit tcp A1 A5 port eq 1433
deny tcp any any port eq 1433
ACL 2 | deny 77 any any

ACL 3 | permit tcp A3 Ab port eq 1433
deny tcp any any port eq 1433
deny ip any 224.0.0.0/8

ACL 4 | deny 55 any any

Table 1: Four packet filters instantiated in Figure 1

2.1 Packet Filters

The simplest way to control reachability is to configure an interface to filter unwanted packets
in the data plane. Today’s routers allow operators to filter packets based on a combination of
fields in the packet header, such as source and destination IP addresses, type-of-service (ToS)
bits, port numbers, and protocol. Each packet filter consists of a sequence of clauses that that
permit or deny certain packets based on their header fields. A filter can be instantiated on
a particular interface to filter incoming or outgoing packets. An interface may have different
filters for incoming and outgoing packets, and different interfaces may be assigned different
filters.

Table 1 shows four access-control list (ACL) specifications, defined in the Cisco I0S
language; packets not matching any clause are permitted by default. Figure 1 shows where
these ACLs are used to filter outgoing packets on four interfaces. ACL1 permits TCP packets
destined to Microsoft SQL servers (port 1433) in subnet A5 from hosts in Al, but denies
them from any other subnet; instantiating this packet filter on the link from R1 to R5 is
meant to prevent other subnets from accessing the corporate servers on subnet A5. ACL2
drops all Sun ND protocol packets (protocol 77), which were implicated in an earlier attack
on Cisco routers. Like ACL1, ACL3 permits TCP packets to the Microsoft SQL server
(port 1433) from hosts in A3, but denies them from any other subnet. ACL 3 also prevents
multicast packets (in the IP address range 224.0.0.0/8) from leaving the office containing R3.
ACL4 drops all Mobile TP packets (protocol 55), which were also implicated in an earlier
attack on Cisco routers.

2.2 Routing Protocols

Routing protocols influence reachability by controlling the construction of the forwarding
table on each router. Conceptually, a route is a network address (e.g., an IP address and a
mask length, such as 10.0.0.0/8) along with additional attributes (e.g., numerical weights,
AS paths, or next-hop IP address) that a router can use to determine which outgoing link to
use to reach that subnet. A router can learn a route in several ways. First, a router knows
locally how to reach all directly-connected subnets—the incident links themselves. Second,
the router may be configured with static routes that map a destination subnet directly to

one or more outgoing interfaces. Third, the router may learn the information dynamically
through a routing protocol, such as OSPF [11], IS-IS [4], BGP [13], RIP [9], or EIGRP [18].

To control the sharing of routing information, each instance of a routing protocol runs as
a separate routing process on the router. Just as with operating system process boundaries,
by default no information is exchanged between these entities, and they operate completely
independently. Each routing process has a Routing Information Base (RIB) that stores the
routes on which it operates, similar to the virtual memory space of a process. To simplify
the discussion, we consider the directly-connected subnets and static routes as belonging
to a single process that creates a local RIB. A router can run multiple routing processes
simultaneously, including multiple instances of the same routing protocol. For example,
Figure 2 illustrates the routing processes (as represented by their RIBs) for the network in
Figure 1, after the two backup links have been added. Router 2 runs two instances of OSPF
and one instance of BGP, and has a local RIB.

Routing processes do not exchange information unless specifically configured to do so.
The dashed lines in Figure 2 indicate adjacencies between routing processes on different
routers, or route redistribution between RIBs on the same router. For example, router 2
exchanges routing information via OSPF with router 1 and router 3; routes from the OSPF
RIB are redistributed to BGP and advertised via external BGP (EBGP) to router 6. The
other instance of OSPF on router 2 does the same for routers 4 and 5. The routes from router
2’s local RIB are also redistributed to the BGP RIB, and onward to router 6. Thus, router
2 takes responsibility for ensuring that the subnets in the enterprise network are reachable
from the rest of the Internet via router 6.

Rather than exchanging routes to every subnet, the distribution of routes is governed by
routing policies. A policy can be thought of as an annotation on the dashed line denoting
the exchange (e.g., routing policies 1 (RP1) and 2 (RP2) in Figure 2). For example, router
2 could be configured to filter the route to subnet A5 (i.e., the sensitive corporate servers)
when distributing routes via eBGP to router 6. Modern routers have rich languages for
specifying routing policies, including the ability to select which routes should be imported
or exported based on any of the attributes associated with the route (e.g., the subnet or
the AS path). Routing policies can also alter the attributes of the routes they accept (e.g.,
changing metrics or adding an AS number onto an AS path).

Upon receiving multiple routes for the same subnet, the routing process must select a
single best route. The selection of the best route depends on the route attributes and logic
defined for the particular protocol. For example, BGP has a complex multi-stage process for
identifying the best route [17], whereas OSPF selects the path with the smallest cost as the
sum of the link weights [11]. If multiple RIBs on the same router have a best route for the
same subnet, the router must determine which routing process should control the entry in
the forwarding table. For example, the router may impose a static ranking on the routing
processes (e.g., giving the local RIB priority over BGP-learned routes).

|
e
RIB
i330)

Router 3

Router 2 Router 4

Figure 2: Interactions of routing processes in the example network in Figure 1. Each routing
process is depicted by the RIB that stores its routes. Dashed lines indicate the import,
export, and redistribution of routes. Interfaces are marked with identifiers and the solid
lines between interfaces are the physical links.

2.3 Packet Transformations

The routers make packet filtering and forwarding decisions based on fields in the header
of each packet. However, these header fields may change as a packet flows through the
network. For example, the network operator may configure router R2 in Figure 1 to reset
the ToS bits of incoming packets from R6. If the enterprise network assigns packets to
different queues based on the ToS bits, setting the ToS bits to a default value would ensure
that traffic coming from the Internet does not enter the same queue as high-priority internal
traffic. Similarly, R2 could be configured to map the source IP addresses of packets leaving
the network via R6, in order to use private IP addresses inside the enterprise and public
addresses in communicating with the external Internet. Although stateful Network Address
Translator (NAT) and firewall devices may transform or rate-limit packets in complex ways,
the functionality supported (and enabled) directly in the routers is often much simpler. In
our analysis, we focus on this simpler form of statically-configured transformations and how
they influence the reachability between end hosts.

3 Problem Formulation

In this section, we formulate the reachability analysis problem. We first describe a graph
model for computing reachability which allows joint reasoning of the effects of packet filters
and routing protocols. We then formally define the reachability metrics targeted by our
analysis. In particular, we introduce the concept of the instantaneous reachability provided
by a network, and explain why it is useful to develop bounds on the reachability provided by
the network. We end this section with an example illustrating the potential value of being
able to compute the reachability bounds.

3.1 A Unifying Model

The crux of determining the reachability of a network is finding a way to unify two very
different views of the network. The first is the graph of routers and links, illustrated in
Figure 1, where vertices are routers and edges are physical links that may have packet filters
applied on them. The second is the routing process graph, illustrated in Figure 2, where
vertices are routing processes and edges are adjacencies that implement routing policy. Uni-
fying these views requires combining the policies governing redistribution of routes with the
packet filters governing which packets can traverse a link. This unified framework underlies
our reachability analysis, and will be extended to address packet transforms in Section 6.

We define the reachability analysis problem by extending the graph of links and routers
— annotating the edges of the graph more elaborately. Formally, we define the graph G =
(V, E, F) where V is the set of routers, F is the set of directed edges defining the connectivity
between the routers, and F is a labeling function that annotates the edges in E. As the graph
is directed, two routers directly connected by a physical link will have two edges between
them, one in each direction. For each edge < u,v >¢ E, F,, € F represents the policies
governing the flow of packets from u to v.!

The challenge in building this graph model G from the static analysis of configuration
data is that F), , cannot be a simple metric like an integer weight. It must embody the effects
of the complex collection of packet filters and routing protocols used by the network, but
still be amenable to efficient arithmetic-like manipulations. We define F), , to be the set of
packets that the network is able to carry from u tov. F,, can also be represented by a packet
filter f, ., containing predicates that test properties of packet p, returning true if the packet
should be in the set F),,. Determining which packets can flow from router u to router v to
router w can then be written simply as Fi,, N Fyw OF fuu A fow-

The advantage of representing the reachability problem as a graph G = (V, E,F) is
that it exposes the similarity between our problem and the class of well-known problems
such as transitive closure and shortest-path computation, allowing us to use their efficient
solutions [1, 6] when computing the reachability of a network.

Packet filters defined by the network can be easily represented in the graph model G.
Network configuration files define a packet filter f as a series of predicates over packet
elements. For example, f may be “p.src.addr € 128.2/16 A p.dest_port # 135”7, which
accepts all packets from the 128.2/16 subnet except for those going to port 135. By parsing
the configuration files we can extract the predicate f applied to the link from router u to
router v, and annotate the edge < u,v >€ FE with the set of packets that f accepts, i.e.,

The intuition behind our framework for jointly modeling routing and packet filtering is
that routing can be thought of as a kind of dynamically constructed packet filter. If routing
process on router A holds a route for subnet d with a next hop of interface i, it means A
might forward packets to d out that interface. Therefore, we can treat this route as if it were
a permit clause for d in the packet filter on interface 7. Inversely, if router A holds no routes

"'We believe our framework can be trivially extended to handle multiple physical links between u and v,
but for the remainder of this paper we assume there is at most one physical link between each pair of routers.

10

that could possibly send packets to destination d out interface i, then we can add a clause
to the packet filter on interface ¢ to drop all packets headed to destination d.

3.2 Formal Definitions of Reachability Metrics

We describe the reachability between two points in a network in terms of the the subset
of packets (from the universe of all IP packets) that the network will carry between those
points. Thus, reachability from router ¢ to router j is given by the subset of packets that
the network will carry from ¢ to j and is denoted as R; ;. Note that it is common for R; ;
to include packets that are neither sourced by a host connected to ¢ nor destined to a host
connected to 7 — this must be true if routers are to forward packets along multiple hops.

Clearly, the action of the network’s routing protocols will directly influence R; ;, for if
router ¢ has no routes for destination d, then packets to d cannot be elements of R; ;, since ¢
will be dropping those packets. More generally, the network is continually affected by events
such as link failures and changes in routing advertisements received from peer networks.
Through the action of routing protocols and other mechanisms, each router will populate its
Forwarding Information Base (FIB) with information determining the interface(s) out which
each packet should be sent. We define the collective contents of the FIB on each router in the
network to be the network’s forwarding state, denoted by s. We also define S to represent
the set of all possible forwarding states that the network can possibly enter, as it responds
to any imaginable set of external advertisements, link failures, etc.?

3.2.1 Instantaneous reachability

The Reachability provided by the network will change as a function of the network’s forward-
ing state s, which may change from instant to instant as the network responds to events.
Therefore, our first step is to precisely define the reachability provided by a network at a
single instant in time, assuming that the forwarding state s in effect at that instant is known.
The influence of any given forwarding state s € § on the reachability in the network can
be accounted for by incorporating additional packet filters into F}, ,. In doing so, the policy
annotation at each edge in the reachability analysis graph becomes a function of s, written
as Fy, ,(s). Assume I,(s,d) to be a function that returns the set of next hop routers to which
router u will forward packets destined to IP subnet d while the network is in forwarding state
s. F,,(s) can then be formally defined as an extension to the statically configured packet
filters F,, .
Fuv(s)=Fu,N{p|pdstaddr € {d|v € I,(s,d)}} (1)

Let P(z,7) be the set of all loop-free paths from i to j in the network’s physical topology.
Using all these concepts, we can now precisely define the instantaneous reachability from i

2When conducting a particular analysis of a particular network, the human conducting the analysis might
want to restrict S to the forwarding states reachable under a more restricted set of events, such as “no more
than one link or router will fail at a time.”

11

to j provided by the network while at routing state s as:

R;;(s) = U ﬂ Fuw(s) (2)

we’P(i,j) <u,v>€m

3.2.2 Bounding the Instantaneous Reachability

In theory, it should be possible to compute exactly what forwarding state, and thus what
reachability, a network provides at any instant in time. After all, each router in the net-
work is a computing device with its behavior programmed and controlled by configuration
commands. Unfortunately, computing the instantaneous reachability of a network requires
knowing the current topology (e.g., which links and routers are up or down) and the exact
information given to the network by neighboring domains in the outside world (e.g., the
routing updates from BGP peers). Dynamic information of this kind might not be available
(e.g., the network is not deployed yet), and its use makes the instantaneous reachability
results depend heavily on the exact inputs used. For example, if the exact set of routes
offered by external peers to the network under analysis is known, then the reachability to
those destinations at that instant could be calculated. However, the calculated reachability
is applicable only in situations where the external peers offer exactly those routes, which
severely limits the usefulness of the reachability analysis.

Further, computing the instantaneous reachability of a network requires knowing not
only the configuration state of each router, it requires the tedious and error-prone coding
of an exact bug-for-bug emulation of the decision logic used by the particular version of
the software running on each router. (More than 200 different software versions were used
by the routers in the 31 production networks we recently examined in our study of IP
routing design [10].) While the routing protocols are defined by standards, each vendor has
implemented them differently. For example, the Border Gateway Protocol (BGP) [13] defines
a seven-step process for selecting a route to a destination, but Cisco has added several more
decision steps in their implementation [17].

The goal of most network designers is to ensure that the network’s behavior remains
within some “acceptable operating region” under reasonable predictions of how routers/links
might fail or outside events might change. This means that more useful than calculating the
instantaneous reachability of a network is the ability to calculate bounds on the reachability
provided by the network. That is, given some set of reasonable events, predict the “operating
region” of the network. We do this by defining two key bounds: the upper bound on
reachability, which is the largest set of packets the network will ever deliver between two
points, and the lower bound on reachability, which is the largest set of packets the network
will always deliver between two points.

Reachability upper bound: Formally, we define the upper bound of the reachability
over all routing states as follows:

RV, = JRij(s) (3)

seS

12

Conceptually, RU captures the notion that as external events change, the path the net-
work chooses for a packet moving from ¢ to j will change as a function of the route selection
logic and the external routing advertisements. Therefore, taking the union of the set of
packets that can traverse each path from i to 7 under each state s produces a superset of the
instantaneous reachability — that is, jo is the set of packets that could potentially reach
from ¢ to j if the routing decisions were made appropriately. The set negation of R
particularly useful, as a packet appearing in this complement of RU- cannot ever reach from
1 to j. Essentially, the packet is blocked along every possible path ThlS allows us to verify
whether the network enforces security policies intended to isolate traffic.

Reachability lower bound: Formally, we define the lower bound for reachability as

follows:
RE, = [Rij(s) (4)

seS

Conceptually, RiLJ- captures the notion that a packet permitted to reach between ¢ and
j under all possible forwarding states s € & will always be able to get from i to j. For the
lower bound to give useful information about the network’s routing design, we first need
to restrict S to those routing states induced from a set of network events targeted by the
analysis. In particular, S should not include any forwarding states corresponding to failure
scenarios that would physically disconnect i and j (or RL will be trivially ().

RZ-LJ is useful to network designers because the network s routing design guarantees that
packets appearing in this set will be deliverable between ¢ and j as long as the network is not
physically partitioned. Designers can then verify that traffic requiring robustness appears in
this set.

3.2.3 Approximating the Reachability Bounds

As discussed earlier, it is difficult and error-prone to precisely model the route selection logic
and external routing advertisements under all events. Further, the size of S is enormous,
even for small networks. Combined together, these two factors make it seem impossible to
accurately compute S or F, ,(s) for every s. Therefore, we cannot use equation (3) to exactly
compute R or equation (4) to compute RZ-LJ—. Instead, we must develop estimators for jo
and RL

We denote estimators to RY; and R}; as RU and RL,

;> respectively. Ideally, these esti-
mators should be looser bounds that is:

AT L U U

as this property maximizes the utility of RU» and RL- in verifying network properties. For
example, a RU that is looser than RU- may 1ncorrectly warn an operator that the packets

in Rg{j jo could violate the network’s traffic isolation policies, but in this situation a
false-positive is much better than a false-negative.

Even simple estimators to RU and RL still have value in predicting network properties.
For example, we can obtain snnple estlmators by ignoring the effect of the routing protocols

13

entirely, so that F,, models only the static packet filters defined on edge < u,v >. The
upper bound can then be calculated by finding the set of packets that at least one path
through the network will allow to pass from i to j, since there could be some routing state
that chooses this path for the packets.

R, = | Fuo (5)

we’P(i,j) <u,v>€m

Similarly, the lower bound can be calculated by finding the set of packets that all paths
from 7 to j allow to pass, since, so long as i and j are not partitioned, at least one of these
paths will exist and could be chosen by the routing protocols.

R = N) Fuo (6)

neP(i,j) <wv>€m

It is straightforward to prove that this estimator Ji’g]) jo when combining the results

of Theorem 2 and Theorem 3 presented in the Appendix. It can be shown that Ji’fj C Rfj
if we can assume that when only one path exists from 7 to j the routing design of network
is such that the path will be used.?

In Section 5, we describe an approach to approximating the effect of the routing protocols
on reachability that yields tighter estimators. Our expectation is that further research will
lead to better and better estimators.

3.3 Example Application of Reachability Analysis

In this subsection, we illustrate the value of the concept of upper and lower bounds on
reachability even if we use only those simple estimators as given above. To do so, let us
revisit the example network defined in Section 2 where network operators were considering
adding two backup links. At a first glance, it may seem to be sufficient to reconfigure routing
parameters on the routers to use the backup links under failure scenarios. However, checking
the reachability bounds reveals that such a design is incorrect. Specifically, the table below
compares two particular reachability bounds before and after the backup links are added,
where AC'L{1,2,4} represents the set of packets permitted by ACL 1, 2 and 4, and so on.

Before After
Rf5 ACL{1,2,4} | ACLA{1,2,3,4}
Rg5 ACL{3,2,4} | ACL{1} U ACL{3,2,4}

(The algorithms for computing these bounds are given in Section 4.) On one hand, the lower
bound from router R1 to router R5 is further constrained by the addition of AC'L3. Recall

3Tt is completely conceivable that a network could have a routing design such that not all paths can
be used, meaning that ¢ and j can be effectively partitioned even when there are still physical paths that
connect them.

14

that for TCP packets with port number 1433 (SQL traffic), AC'L1 permits only those from
hosts in A1 to hosts in A5 and AC'L3 permits only those from A3 to A5. Together, AC'L1 and
ACL3 will deny all TCP packets with port number 1433 from R1 to R5 as A1 and A3 use
distinct address ranges. This defeats the purpose of adding the new backup links as they
will be totally ineffective for SQL traffic from R1 to R5 under failure scenarios. On the other
hand, the upper bound from R3 to R5 is expanded, allowing a portion of multicast traffic to
spill out of R3 against the security policy established by ACL3. Since the backup links are
not used under normal conditions, ping and traceroute tools would not be of much help in
detecting these problems without destructive tests (e.g., by shutting down a primary path).

4 Computing the Reachability Bounds

In this section, we present basic algorithms for computing the simple reachability bound
estimators defined by equations (5) and (6). The same algorithms can also be used to calcu-
late other (potentially tighter) reachability bound estimators as long as the approximation
is based on adding additional static restrictions to pre-configured packet filters.* Section 5
describes such an approximation method.

We assume that there are no packet transformers in the network. We will relax this
condition in Section 6.

Lower bound calculation. To compute }A%ZL,]-, we first prune all the edges < u,v >€ F
that cannot be in any path from i to j. This is accomplished by applying the “Articulation
Points and Biconnected Components” algorithm for any pair of ¢ and j, which is O(E+V) [1].
After that, Ji’{“j is simply the intersection of F,,, for t he remaining edges.

Upper bound calculation. While the calculation of R{JJ is not as straightforward,
we observe that it closely relates to the classical transitive closure algorithm. Consider
F,., as describing the set of packets that F,, accepts, with empty set () and the set of all
possible packets denoted as ®. Our labeling function, F,,, is a map from E to the power
set of ®, P(®), which is closed under the operators U and N. It follows that properties
and algorithms in classical literature apply; in particular, solutions to compute transitive
closure [1] and classical all-pairs shortest paths algorithms [6]

Below is a dynamic programming formulation (as in [1]) for calculating fEZU ;» with the
recurrence relation R(i, 7)™ = J,o R(i, k)N R(k, 7)™ !, where R(i, j)™ represents the set of
packets that can go from ¢ to 7 in up to m hops. The calculation starts from the destination
router j and extends the path by one hop with each iteration of the outermost loop, and
eventually taking all paths from 7 to j into consideration.

/| Computing reachability upper bound matriz column j
1. Initialize R(i,j) to F;; for all i;

2.for (m=1to ||V|—2)do

4Also, the upper bound algorithm can compute the instantaneous reachability if F,(s) is known for
every edge.

15

{5-8} ’
oy (98 | (3-5)

2,1 ,
F 42

Figure 3: Example network for illustrating execution of algorithm.

|

Table 2: Example Execution of Basic Algorithm

m =20 m=1 m=2 m=3
R(1,5) | 0 0 6,7 6,7
R(2,5) | 0 3,4,6,7 | 3,4,6,7 | 3,4,6,7
R(3,5) | 3,4,6,7 | 3,4,6,7 | 3,4,6,7 | 3,4,6,7
R(4,5) | 6,7 3,4,6,7 | 3,4,6,7 | 3,4,6,7
3. for (i=1to ||V]) do
4. R'(i,7) = 0;
5. for (k=1to||V|) do
6. if (<i,k>€ k)
then R/(l>]) = R/(Zu]) U{E,k ﬂR(kJ)},
7. R(i,j) = R'(1,7);

Table 2 shows the intermediate results of R(i, 7)™, when running the dynamic program
on the example network shown in Figure 3. (This network has a more complex structure
than the one defined in Section 2.) For links with packet filters defined, the figure shows
the set of packets the filters will pass. For simplicity, packets are represented by integers:
{5 —8} refers to packets 5,6,7, and 8. An uninstantiated F,, , set indicates a filter that passes
all packets. The destination router j is set to 5. The last column, when m = 3, gives the
final result of the reachability from routers 1-4 to router 5.

Algorithm Complexity. The complexity of the illustrative upper bound algorithm
above is O(V3).5 However, the reachability between all pairs of routers can be computed
also in O(V?) via the same techniques used in the Floyd-Warshall method [6] for computing
all-pairs shortest paths.

Our reachability analysis framework is targeted at computing the reachability for a net-
work operated and controlled by a single organization, rather than the Internet as a whole.
As discussed earlier, the sizes of such networks typically range from 5 to 1,000 routers. With

°It should be noted that we have made a simplifying assumption that step 6 has complexity O(1). In real
networks, £, , is often a nontrivial predicate representation of a set of packets. Performing set operations
over such representations may incur higher cost than O(1). We are currently investigating this issue.

16

V bounded like that, the O(V?3) time complexity is very reasonable. It should also be noted
that the algorithm will be run mainly as part of a design time tool installed on an off-line
system. In that case, timely execution is not a primary concern.

For on-line troubleshooting, the size of V' can be reduced by refining the reachability
analysis graph model to incorporate the routing realm abstraction so that a node in the
graph may represent a collection of routing processes with the same external reachability
[10]. The details are presented in Section 7.

5 Converting Routing Information into Packet Filters

In this section, we explain how the effects of routing on reachability can be incorporated
into our unified framework by adding additional terms to the static packet filters defined in
router configuration files. (We will use F,, to denote the intersection of all packet filters
configured over edge < u,v >.) These terms restrict the set of packets that can travel from
u to v to those packets that the network might route over the link < u,v >. The following
subsections define the key elements in our model and then describe a four step algorithm for
computing the additional terms that must be added to F},,. The algorithm starts with the
routes that are explicitly specified in the configuration of the network. It then computes the
maximal set of routes that could possibly end up in each router, subject to the network’s
routing policies. Finally, it uses these maximal sets of routes to compute the additional
terms.

We have formally established that our algorithm computes a tighter estimator for the
reachability upper bound than the simple one defined by equation (5). The details are
presented in the Appendix, which also discusses a limitation of our algorithm in producing
a tight estimator for the reachability lower bound.

5.1 Definitions for Modeling Routes and RIBs

A destination subnet is traditionally defined as an address and netmask (Section 2). How-
ever, we need the ability to reason about how routers will handle a set of destinations. In
particular, we will need a means to describe the set of all possible destinations. The con-
ceptual representation of this set as a list of all 232 possible IPv4 destinations is unwieldy to
work with in practice, so we must find a more concise notation.

We adopt the representation defined by Cisco, where a set of destination subnets is
represented by a list of {address/netmask-range}. For example, {128.2/16-24} represents
the set of all destinations whose first bits are 128.2 and whose netmasks are from 16 to 24
bits long; {0/0-32} represents the set of all possible IPv4 destination subnets; and {0/1-
32,128/1-32} represents the set of all possible destinations with the default route {0/0}
removed. Our algorithms require that union and subtraction be well defined on these sets
of destinations, and this is easily proven. Where an algorithm in this paper calls for a
destination d, we can use either a single destination subnet or a set of destination subnets
interchangeably.

17

As described in Section 2, each router contains one RIB for each routing process that it
runs. A RIB 7ib is conceptually a function 7ib(d) that maps destination address d to a list
of “routes.” A route rt is a tuple with the following fields defined:
ert.d = set of destination subnets this route applies to
ert.interfaces = the set of interfaces on the router that packets matching rt.d might be routed
out
ert.next_hop_ip = the set of routers (identified by their IP address) whom packets matching
rt.d might be routed towards
ert.type = {interface,static} original source of this route
eattributes.... = a list of key-value pairs

The Router RIB (i.e., the routing table) of each router maps the complete IP address
space onto the set of interfaces according to a longest prefix match. If there is no default
route, all packets not matching a more specific route are dropped. We formalize the action
of the Router RIB on router u as I, (s, d), which returns the set of interfaces that packets to
destination d should be sent out when in forwarding state s.% In this paper, we only consider
converged forwarding states — analysis of transient states is beyond the scope of this work.
Previous works have shown how network configurations can be statically checked to verify
the forwarding state will converge.

For computing the upper and lower bounds on reachability, which predict the network’s
reachability over all s € S, we do not need to compute I,(s,d) but rather the function
fu(d) that specifies all the interfaces router u might potentially use to forward packets to
destination d. That is, I,(d) = U,cs Tu(s,d). Step 2 below shows how we calculate I(d) by
flooding routes through the network and identifying on each router the interfaces that will
be candidates for carrying traffic to d.

While functions like 7, D, and others are router specific, for brevity we will omit the
subscript (e.g., using I(d) instead of I,(d)) when it is clear from the context which router
these functions are associated with.

5.2 Step 1: Initializing the RIBs

Initially all RIBs are cleared of all routes. Then the Local RIB on each router is populated
with all the routes that are explicitly created on the router by its configuration. For each
router r, each interface ¢ on r will be assigned a subnet d by the configuration file: this
is represented by setting LocalRIB(d) =< d, {i}, {r}, type=interface >. Routes manually
configured to direct packets to destination d out interface i are represented in the same
way. Static routes, which are manually configured routes that direct packets to destination
d out whichever interface is used to reach address v, are represented as LocalRIB(d) =<
d, {},{v}, type=static >. The outgoing interface for a static route is determined in Step 3
using a recursive lookup.

If we are computing the reachability upper bound, the RIBs of all routers external to
the network are populated with a single route with destination {0/0-32} — the set of all

61.(s,d) usually maps d to a single interface, but may contain several interfaces if Equal Cost Multiple
Path (ECMP) is in use.

18

Router 1
d3‘

S i31
ospp
) RE || RE
i33Q) [_d3 . d3d1

FIB

Router 3

Router 4

Router 2

Figure 4: RIB level view of the network illustrating the movement of routes between RIBs.
Routes, such as “d1”, “d3”, route filters, such as “+d1,-d3” (“+” as permit, “-” as deny),
and flow of routes according to redistribution policies are shown. Following the route flow
diagram, we can identify the origins of routes and through which interfaces the routes are
imported or exported.

possible destinations. This is a conservative approximation consistent with computing the
upper bound on reachability, since whatever destinations the peer does advertise will be
covered by {0/0-32}.

If we are computing the lower bound on reachability, the RIBs of all routers external to
the network are left empty. This conservative approximation is consistent with computing
the lower bound on reachability, since in the worst case the external routers will export no
routes whatsoever to our routers, perhaps due to misconfiguration, bugs, crashes, etc.

If the routes the external peers are expected to export are known, the RIBs in our model
can be initialized accordingly and the bounds computed on reachability will be correspond-
ingly tighter.

5.3 Step 2: Computing the Potential Set of Routes

In this step, we compute the set of routes that could potentially occupy each RIB by flooding
routes from the local RIBs and external RIBs throughout the network. The flooding process
is governed by the routing policies between adjacent RIBs that determine which routes are
passed, modified, or dropped. At the end of the step, we will have calculated for each RIB rib
the maximal set of routes that rib could potentially hold and D(rib), the set of destinations
that rib covers.

As illustrated in Figure 4, the routing design of a network forms a graph Ggrip =
(Vrig, EriB, P), where Vyip is the set of RIBs in the network and Egrip describes the adja-
cencies between RIBs over which routes are imported, exported, and redistributed. P is the
set of routing policies that govern how routes move between RIBs, i.e., for < z,y >€ FERip,
the policy P, , € P determines which routes can move from RIB x to RIB y. Unlike packet
filters in F, routing policies in P can transform the routes they are applied to by changing
the route’s attributes.

19

Note that graph Ggrg may be partitioned and that adjacencies among RIBs need not
follow the physical links of the network. That is, the edge set of the RIB graph Egrig can
be different from the edge set E of the physical graph G in Section 3. For example, there is
a physical link between routers 1 and 5 in Figure 4, but no RIB adjacency traverses it, or,
in the case of networks using internal BGP (IBGP), a single edge in Grp representing an
IBGP adjacency may traverse multiple physical links.

We first define a helper function push(rib, rt) that takes route 7t found in 7ib and pushes
it into all the adjacent RIBs. Lines 2-5 prepare a candidate route for entry into the adjacent
RIB. Line 6 applies the routing policy governing which routes can be pushed into the adjacent
RIB, potentially altering or dropping the route in the process. Lines 7-8 add the candidate
route into the adjacent RIB.

push(RIB z,Route rt) =
1. Forall < x,y >€ ERip
2. r = router on which RIB x resides

v = router on which RIB y resides

rt.interfaces = {interfaces on v where

edge < z,y > could arrive}

rt.next_hop_ip = r

rt' = Py, (rt)

y(rt'.d) = y(rt’.d) Jrt’

D(y) = D(y)Urt'd
Using push(rib, rt), we compute rib for each RIB on each router by iterative relaxation:
applying push() to each route in each RIB until there are no changes in the contents of any
RIB.

Much of the work in modeling routing lies with the policy P, ,(rt) in step 6. However,
these expressions can be directly extracted by parsing the description of the network (e.g.,
the router configuration files). P,, must implement the export policy of RIB z and the
import policy of y, but has tremendous flexibility given its ability to modify the routes it is
applied to. Typical policies seen in real networks include:

— A policy that passes routes to destination subnets 1/8 and 128.2/16 and drops all other
routes.

=W

P N o

P, (rt) = rt'.d=rtd—{1/8—8,128.2/16 — 16}
if rt’.d # () then return rt’ else ()

— A policy that governs the EBGP adjacency between AS1 and AS2, where all routes are
passed, but AS1 must prepend its AS number to the route’s AS path.

P, ,(rt) = rt.as_path = concatenate(AS1, rt.as_path)

— A policy that governs the EBGP adjacency between AS1 and AS2, where routes whose
AS path matches a regular expression looking for AS3 are dropped.

P,,(rt) = rt'.as_path = rt.as_path — /AS3/
if rt.as_path # () then return 7t else ()

20

The time complexity of this step is O(|Vris| x I X |rt| x 29%!) where [is the length of
the longest cycle in the graph Gy and |rt| is the number of initial routes. The 2%*! factor
results from the potential need to split a route into multiple routes each time it is pushed,
where « is the fraction of policies that require splitting routes. From our experience so far,
« is small for real networks.

5.4 Step 3: Computing /(d) for each router

Recall that I(d) is a router specific function that returns the set of interfaces out which the
corresponding router might forward a packet destined to d. To calculate I (d) for a router,
we go through all the RIBs on that router looking for routes that cover d, and then union
together the interfaces for those routes. I (d) is defined recursively, and the base cases are
generally routes found in the Local RIB. For readability, we introduce a helper function
ifs(rt, rib) that computes the interfaces to which route 7t in rib might direct packets.

I(d) = U ifs(rt, 7ib), where rt = rib(d)
rib: deD(rib)

(rt.interfaces if b is a LocalRIB, and

rt.type = interface;

~

UdErt.noxt_hop_ipS I(d) ifbis a LocalRIB, and
ifs(rt, b) = rt.type = static;

~

UdErt.next_hop_ips I(d) ifbis a BGP_RIB’

\ rt.interfaces otherwise.

Case 1 handles the base case of a simple route that forwards packets out a specific
interface. Case 2 handles static routes, which require a recursive lookup to determine which
interfaces are used to reach the next-hop specified in the route. Case 3 handles BGP sessions,
which are carried in TCP session that can traverse multiple routers. A recursive lookup for
the address at the other end of the session is required to determine which interfaces the TCP
session might arrive on, and thus what outgoing interfaces might be used for routes learned
from that session.” Case 4 handles all other routing protocols, where the potential outgoing
interfaces are those leading to the neighbor routers from which the router imported route d.

5.5 Step 4: Computing Packet Filters that Represent the Effects of
Routing

With [(d) in hand, we know the set of interfaces out which packets destined to d might be
sent. We first compute the inverse mapping of I(d), D(i), which returns the set of destination

“In IBGP it is possible to explicitly set a “third-party” next-hop, but this is unusual. If we see the
configuration commands for this, we set I(d) to be all interfaces on the router for all d potentially learned
over this session.

21

(Case 2)

Figure 5: Explicitly modeling packet transformations using ¢, . and a virtual node.

subnets that potentially map to interface i, i.e., D(i) = {d | i € I(d)}. Using D(i) we map
the routing table information to packet filters as follows:

Let r denote the router under consideration. For all interfaces ¢ on r and for all routers
v that are directly connected to r via interface i, add the following clauses to £} ,.

F.,=F.,n{p|p.dstaddr € D(i)} (7)

This filter will pass any packet going to a destination that r» might possibly route out the
link to v, and drop all the packets that » would never route via v.

6 Handling Packet Transforms

In this section, we refine the basic algorithm presented in Section 4 so that it will work with
networks that include packet transforming filters.®

We have found that this refinement can be accomplished without changing the funda-
mental structure of the basic algorithm. Specifically, we separate the packet transforming
parts from these filters and introduce virtual components to represent them explicitly in the
reachability analysis graph G. This is illustrated in Figure 5. There are two cases: (1) the
packet transformation ¢ is applied after the packet filtering (e.g., ToS remarking), and (2)
the transformation ¢ is applied before the packet filtering (e.g., NAT). In ether case, a virtual
node-edge pair is introduced to model the separate processing stage. Each virtual edge is
labeled with a t function representing a packet transform.

We have discovered that packet transforms may have two undesirable properties that
can complicate the reachability analysis. First, a transform might not be one-to-one. For
example, in the case of ToS remarking, multiple ToS values may be mapped into one single

8For networks containing packet transformers, the set of packets that a destination can receive may be
different than the set a source can send to that destination. For this paper, we calculate reachability as the
set of packets the source can send, although our results can be extended to also calculate a set describing
what those packets might look like on arrival at the destination.

22

ToS value. Also, in the case of NAT, one external address pool is typically reused for many
hosts as long as no two hosts use the same external address and port number at the same
time.

Second, a transform may not even be a deterministic function. In some modes of NAT,
a packet is not always transformed into the same packet; the source address the packet gets
depends on the current availability of the address pool. To address these problems, we define
a generalized inverse function of ¢, over an arbitrary packet set F, as: t™'(F) = U cpip |
q € t(p)}, which returns the set of all possible packets that can be transformed using ¢ to a
packet in F'.

Using the inverse transform function, we have refined the basic algorithm to handle packet
transforms. Specifically, only steps 1 and 6 of the original algorithm need to be changed.

1" For all 4, initialize R(i,7) as follows:
to F, ;, it <1,j > is filter
to set of all packets, if < 7,7 > is transformer
to0),if <i,j >Z E

6. if (<i,k>€ E and < i,k > is transformer)
then R'(i,j) = R'(i,5) Ut; (R(k, 5));
else if (< i,k >€ F and < i,k > is filter)
then R'(i, j) = R'(i, j) U{Fir N R(E, 5) };

The intuition behind the new clause in 6’ is that if the set of packets described by R(k, j)
can reach from k to j, then only those packets arriving at ¢ that ¢; ; transforms into a packet
in the set R(k,j) will be able to reach from ¢ to j. To find this set of packets that ¢ will
transform into R(k,j), we calculate t;,i(R(k:,j)).

The complexity of the new algorithm is still O(V3). It should be noted that the algorithm
requires two additional elements to be complete: (i) an efficient method to compute the
inverse function, and (ii) a condition to throw out paths with loops because a looping path
containing a packet transform edge may alter the outcome. Luckily, the inverse function for
commonly used transforms, such as NAT and ToS remarking, are very simple — though in
general the inverse of other transforms may be more complicated. For brevity, the details of
(ii) are omitted.

Let’s revisit the example network in Figure 3 to illustrate the steps of the refined algo-
rithm. Suppose node 1 now uses a leading packet transform: {1,2} — {5,6}, meaning that
packets 1 and 2 each will be mapped into either packet 5 or 6 before processed by node 1’s
packet filter. The new reachability analysis graph becomes Figure 6 and the execution steps
of the refined algorithm are shown in Table 3. At the last step (m = 4), R(1,5) is changed
due to the transform.

Our framework currently requires that packet transforms be maps over sets of packets.
They cannot test a property of a packet and behave one way if the property is true and
another way if the property is false. In particular, some networks include functionality
called a “stateful firewall”. These are like a NAT, but only create the mapping when a

23

{1,2}->{5,6} {5-8}

ER——

Figure 6: Packet transform example

Table 3: Example Execution of Refined Algorithm

m=0 m=1 m =2 m=3 m=4
R(1,5) | 0 0 6,7 6,7 1.2,6,7
R(2,5) | 0 3,4,6,713,4,6,7|3,4,6,7 | 3,4,6,7
R(3,5) | 3,4,6,7|3,4,6,73,4,6,7|3,4,6,7|3,4,6,7
R(4,5) | 6,7 3,4,6,713,4,6,7|3,4,6,7 | 3,4,6,7

packet traverses from the inside of the firewall to the outside. Since our framework currently
has no notion of whether a packet has already been sent through the stateful firewall from
inside to outside, we cannot directly model the reachability the stateful firewall provides.
However, we can calculate the reachability assuming a packet has traversed the firewall, in
which case the firewall functions as a NAT described above, and again assuming no packet
has traversed it, in which case the firewall functions as a block.

7 Improving Scalability with Routing Realm Abstraction

As discussed in Section 4, calculating the router level reachability matrix with our approach
has time complexity of at least O(V?3), where V is the number of routers in the network.
Although polynomial, such complexity may still pose a challenge for analyzing large net-
works that have thousands of routers. To make our approach more scalable, we refine the
reachability analysis graph model by incorporating the routing realm abstraction so that a
node in the graph may represent a collection of RIBs and routers.

A routing realm represents a set of routing processes that have exactly the same set of
routable subnets in their RIBs. Algorithmically, a routing realm groups together all the
routing processes that are adjacent to each other so long as the adjacencies are free of packet
filters and route filters, regardless of the router boundaries. More specifically, routing realms
can be constructed by analyzing router configuration files as follows. First, select from the
network a routing process that has not yet been assigned a routing realm and assign to it a
new unique realm number. Then locate all the adjacencies of that process which are free of
packet filters and route filters, and compute the transitive closure within the AS boundary
to find the set of routers and routing processes belonging to the new routing realm. The
process is then repeated until all routing processes have been assigned to a routing realm.

24

Realm 4
External BGP peer

EBGP policy

Realm 1 RP1 Realm 2 RP2 Realm 3

[
OSPF BGP OSPF
| ~o \ -

R T //»’/
OSPF| . |ospF| [BGP| |OSPF !
RIB | RIB | [RIB| |RIB

FIB : FIB
. Router3 © Router2

Figure 7: A depiction of routing realm abstraction for the network in Figure 1.

The concept of a routing realm is related to the “routing instance” defined as part of our
prior work on reverse engineering of routing design [10] — the primary difference is that
a routing realm stops expanding when it hits any policy applied to a link or adjacency,
while a routing instance grows to the transitive closure of routing process adjacencies. A
single routing instance can contain multiple routing realms, and from observations of real
production networks this is not uncommon.

Figure 7 shows the result of applying the routing realm abstraction to the example
network in Figure 1. All internal routers in the network have been removed and replaced
with the routing realms of which their routing processes are part. The solid arrows between
realms denote where route redistribution occurs, and can be annotated with a key to the
redistribution policies (e.g., “RP1” in the figure). A dotted box connecting to a routing realm
represents a typical member router in that realm. In the figure, “Router 2” is illustrated as
an example member of three different routing realms.

Because of the way routing realms are defined and constructed, the potential reachability
between two routers in the same routing realm is equal to the set of all routable packets at
the routers, i.e., {packet p | p.dst is part of a routable subnet in routers’ RIB}. And
the potential reachability between two nodes that are in two different routing realms is the
same as the potential reachability between their routing realms. Therefore, by incorporating
the routing realm abstraction, our approach scales much better to large numbers of routers
without losing the ability to calculate reachability at the router level.

8 Reachability Analysis in Larger Context

In this section, we describe how static reachability analysis relates to our larger goal of
understanding and improving the design of IP networks and routing policies. We also discuss
the limitations of static analysis and how to move beyond them.

25

8.1 Understanding and Improving Routing Design

Our work on static reachability analysis contributes to our broader research agenda of im-
proving routing design and network robustness. Today, routing design is largely a complex
“art” mastered by an increasingly overwhelmed community of highly-skilled human opera-
tors. We aim to uncover the fundamental abstractions, such as the reachability bounds Rf{ ;
and RiL,j, that can be used to validate, evaluate, and even generate the routing design for a
network. Our analysis framework opens several avenues for ongoing work:

Verification of network design goals: A network has some (explicit or implicit)
design goals for providing reachability between certain parties under certain conditions. For
example, a network may need to ensure that two business competitors (customers A and B)
can never reach each other under any circumstances. This property can be checked directly
by ensuring that jo is empty for all 7 in customer A’s network and j in B’s network, and
vice versa. Alternatively, a network may need to ensure that a customer can reach a data
center; this can be assured by analyzing the lower bound on reachability. Repeating the
reachability analysis on the subgraphs formed after link and node deletions can test that
network reachability persists under certain failure modes.

Design patterns and best common practices: The same reachability goals can be
satisfied by a wide variety of different routing designs. Our concise representation of reach-
ability provides an appealing way to characterize and compare routing designs and identify
common ways of configuring a network to satisfy the goals. Using router configuration data
for several networks, we plan to identify common kinds of reachability goals and the com-
binations of routing protocols, routing policies, and packet filters used to achieve them. We
also plan to explore the trade-offs between using routing policies and packet filters in con-
straining reachability, and create guidelines for selecting one mechanism over the other. In
particular, we hope to understand the motivations for applying packet filters in the interior
of routing domains, rather than simply at the periphery.

Influence of dynamic routing information: Our upper and lower bounds (jo and
RZ-LJ—) define an “envelope” that constrains the influence of dynamic information, such as
topology changes or routes learned from neighboring domains, on network reachability. We
plan to analyze existing networks in terms of the range between the upper and lower bounds.
The gap between the upper and lower bounds may reflect the purpose of the network—to
provide broad reachability for many client domains to the entire Internet or to to provide
narrow reachability for client domains to specific network services. Alternatively, a wide
range might imply the need for more protective packet and route filtering, whereas a narrow
range may overly constrain the ability of the network to adapt to dynamic changes.

For each of these avenues for future work, our reachability analysis offers a general and
concise way to analyze and compare routing designs at a level of abstraction well above the
low-level details of router configuration commands and specific routing protocols.

8.2 Moving Beyond Static Analysis

Although static analysis provides significant insights, dynamic information determines where
a network actually operates in the space between the lower and upper bounds on reachability.

26

Our static analysis can be extended by incorporating measurements of the dynamic state of
the network and the routes learned from neighboring domains:

Dynamic network state: The configuration state defines the IP links and routing
protocol adjacencies that could exist, without indicating whether they do exist at any given
time. Various kinds of measurement data can provide the missing information. The up/down
status of links and sessions can be tracked via the Simple Network Management Protocol
(SNMP) or vendor-specific “syslog” data. In addition, a routing monitor [15] can continu-
ously track the topology (routers and links) and configurable parameters (e.g., OSPF link
weights) within each routing instance.

Routing information from neighbors: Similarly, static analysis considers the route
advertisements that could come across links and sessions to neighboring domains, rather
than the ones that are available at any given time. The set of routes announced by a
neighboring domain could be gleaned through route monitoring or periodic dumps of the
Routing Information Base (RIB) at the edge routers. In addition to identifying which prefixes
are advertised, the RIB data would identify the route attributes (such as AS path in BGP)
that might affect how the receiving router modifies or selects routes. In addition, the RIB
would indicate whether the neighbor advertises subnets of a given prefix that would have
preference over the supernet in “longest prefix match” forwarding of IP packets.

0 Related Work

Many “ping” and “traceroute” tools have been developed to help troubleshoot reachability
problems in a live network. However, they are limited to the checking the instantaneous
reachability for the particular type of probe packets they generate. There has been significant
progress [19, 12, 5] in understanding the behavior of operating networks by measuring the
routing protocols and establishing the root cause of changes. Our approach does not attempt
to describe the detailed behavior of the routing protocols, and it applies to packet filters and
packet transformation as well as routing.

Bush and Griffin [2] formulate and derive sufficient conditions for the connectivity (reach-
ability) constraints of Virtual Private Routed Networks (VPRNs). Our work is complemen-
tary, but broader in scope in that we frame and tackle the general problem of reachability.

10 Conclusions

This paper rigorously formulates the challenging problem of computing the reachability an
IP network provides and describes a framework that can be used to calculate it.

The framework provides a unified way for jointly reasoning about the effects the three
very different mechanisms of packet filters, routing policy, and packet transformations have
on the network’s reachability.

Finally, we show how the framework can be applied to a static description of the network’s
definition, allowing it to be applied either during the network design process or to a deployed
network. Our technique for static analysis of network reachability is valuable for verifying

27

the intent of the network designer, troubleshooting reachability problems, and performing
“what-if” analysis of failure scenarios.

Now that we have this formal framework, our future work is focused on experimental
evaluation of the algorithms on a set of networks. For example, our framework can be
extended for computing finer-grain reachability bounds, such as ones that consider only a
subset of packets (e.g., those carrying TCP port 1443 traffic) or a subset of paths (e.g.,
excluding certain links). Such extensions should be guided by analysis of a large number of
production networks.

11 Appendix - Justification for Converting Routing into
Packet Filters

11.1 Evaluating the Estimator as an Upper Bound

In this subsection we will prove that the method described in Section 5 for modeling the
effects of routing by adding additional terms to restrict F},, results in a better estimator of
the upper bound on reachability, Rg j» than the simple estimator shown in Section 3.2.3. To
avoid confusion, we will in this discussion refer to the new and simple estimators as fzﬁf ; and

RV

+;» respectively. The new estimator being analyzed can be expressed as follows

#-U N ®

TE€P(4,5) <u,v>ETm

where FHUU is the estimated effective filter on edge < w,v >, calculated using the method
described in Section 5.
First we have the following theorem about the RIB calculation:

Lemma 1 (RIB Upper Bound Lemma) Our method guarantees that at the end of cal-
culation the routes populated into a given RIB b, denoted b, is a superset of b(s) — the routes
that b will hold in any given network state s. Formally,

LJ b(s) € 9)

Proof: Let rt represent an arbitrary route. Based on the definition of push(b,rt) in
Section 5.3, we next inductively prove the following:

Vse S, rteb(s)=rteb (10)

Consider the Grrp graph defined in Section 5.3. 7t € b(s) means that rt is either
originated from b or it is propagated there from another RIB. In the former case, it is
straightforward to show that rt € b.

Now let’s consider the latter case. rt may propagate to b via multiple paths. for example,
if b is running a link state protocol, propagation will occur over every adjacency to b where

28

the link is up and there is no special policy to filter the route. Suppose we pick one path
along which the route rt propagates, denoted by — by — by — ... — b, where bg is the RIB
where rt is originated and b, = b. We will inductively prove that b; contains rt for all i less
than or equal to n.

When ¢ = 0, then rt is originated from b;. Such routes are statically configured, meaning
that rt will be found in b; independent of the state s. The manner in which the route is
configured is protocol dependent (e.g., using static, network, or directly connected commands
for the OSPF and ISIS protocols). Based on our definition, rt is in b;.

Assuming when i = k < n, we have rt € bl, we need to prove that rt € ka Since rt is
populated from by, to by, 1, we have the following: (1) there must be an edge in the routing
process graph from by to by, 1, and (2) the policy on this edge must not filter out r¢. Based
on our push function, this edge will be used by the push function at some point for all the
routes in by,. Based on our assumption that rt € b, and based on our definition of push, rt
will be pushed from by to byy;1. In fact, the push routine always merges new routes into a
RIB and never deletes a route, i.e. bk+1 D) Uo <i<k b Therefore, rt € bk+1

|
Consequently, we have the following interface upper bound lemma.

Lemma 2 (RIB Interface Upper Bound Lemma) Our method guarantees that the set
of interfaces calculated for any given destination d at each router is a superset of all potential
interfaces used by the router to forward packet to destination d. Formally,

|J 1(s.d) € I(d) (11)

Proof: If an interface i is a member of I(s,d), then there must be a route rt in the
FIB for state s, such that rt.destination = d and rt.interface = 7. Since rt must come from
one of the RIBs — say b — at the router, based on the above theorem, rt is in b. Hence i is
in b(d), so it is in I(d).

|
With the above two Lemmas, we can prove the following filter estimator upper bound
theorem.

Theorem 1 (Filter Estimator Upper Bound Theorem) Our method guarantees that
the calculated filter estimator ng for each edge is a superset of all potential packets that can
pass through that edge with the network in any one of the forwarding states. Formally,

U Fuu(s) € F (12)

seS

Proof: For any packet p, we will show that if there exists a forwarding state s such
that p € F, ,(s), then p € FU

p € F,,(s) implies(1) p is allowed by all the static packet filters and (2) that for at

least one RIB b in router u, there exists a route r € b(s) such that p.dest € r.dest and

29

I(s,r.dest) =< u,v >. Based on the RIB Upper Bound Lemma, we have b(s) C Zb); SO
r € b. Based on the RIB Interface Upper Bound Lemma, we have I(s,r.dest) C I(r.dest);
SO < U, v >€ I (r.dest). Since p.dest € r.dest and p is allowed by all the static packet filters,
we can conclude that p € ng
|
We also have:

Lemma 3 (Reachability Upper Bound Lemma)

U N Ur.e02J U) Fusls) (13)

meP(i,j) <u,u>Em seS s€S weP(i,j) <u,v>Em

Proof: ~ We prove the formula using set operations alone. First we prove for each

T € P(i,j):

N UFue2U) Fuls (14)

<u,U>ET seS seS <u,u>ET
Assume m =< Uy, Ug, - - -, Up, Upyq >, With corresponding filter annotations < Fy, Fy,--- | F, >
on the n edges, and S = {s1, $2," -+ , S}, then we have
(N UFuu(s) = (] (Fuu(s1) UF,u(s2) U---UF,u(sm)) (15)
<u,v>€m seS <u,v>ET

= (Fl(Sl) U Fl(SQ) U--- Fl(Sm)) N
(FQ(Sl) U FQ(SQ) U--- FQ(Sm)) N

(Fu(s1) U Fo(s2) - Fu(sm)) (16)
((Sl)ﬂFg(Sl)ﬂ"‘Fn(Sl))U
((SQ)QFQ(SQ)Q“‘Fn((SQ)) U

v
o

(F1(Sm) N Fy(Sm) N -+ Fu(Sm)) (17)

= U m Fu,v(8> (18)

SES <u,v>€Em

Taking the union of both sides of equation (18) over all paths in the topology, we have
J N Urs2U U N~ (19)

T€P(i,j) <uv>Em s€S T€P(i,j) s€ES <u,v>ET

Rearranging the unions on the right-hand side, we arrive at the statement of the theorem,
completing the proof.

30

U N Ur.e2U U) Fusls) (20)

meP(i,j) <u,u>Em seS s€S weP(i,j) <u,v>Em

[
Now we are ready to present the main theorem.

Theorem 2 (Reachability Upper Bound Theorem) The reachability upper bound cal-
culated using our route model is a upper bound of the reachability upper bound. Formally,

Rﬁ{j C Rﬁ{j (21)

Proof:
Using the above Lemma and Theorem 1, the proof is straightforward as follows:

R/, = | U () Fuuls) (22)

s€S weP(i,j) <uv>ET

c U N U~k (23)
TEP(4,5) <u,v>ET SES
c U N £ (24)

meP(i,j) <u,v>Em

= RV, (25)
|
The result of this exercise has been to show that the estimator Rﬁf] we compute using
the method for modeling routing protocols given in Section 5 is a conservative estimator for
the upper bound Rg ;- We can then use this estimator to verify the isolation provided by the
network and know that, while there may be false positives, there will be no false negatives
(i.e., a packet that managed to get between two routers when the estimator said the packet

could not get through).
The next theorem shows that the estimator using routing function is also a tighter bound
on Rg ; than the simple estimator, since the estimator that uses routing information contains

more terms that limit the sets F,,, than the simple estimator that uses only packet filters to
define F,, ,,

Theorem 3 (Upper Bound Tightness Theorem) The estimator R{JJ of the reachabil-
ity upper bound obtained by modeling routing information is a better upper bound than the
estimator }?% that ignores routing and uses only packet filters in defining F, ,,. Formally,
RY C R, (26)
Proof: For any packet that is in J%gj, suppose the packet traverses a path m between ¢
and j. For any link < u,v > on m, modeling the effects of routing adds more routing-based
filters to the link. That is, if we removed the routing based filters, the packet would still be
able to traverse over the link < u,v >, and hence the entire path m; therefore, that packet
will be in RY.
|

31

11.2 Future Work in Improving the Estimator for the Lower Bound on
Reachability

Two issues remain in determining the best estimator for the lower bound on reachability.

The first issue is the best interpretation for the set S of all forwarding states, over which
the Lower Bound is defined. There are three candidates: (1) S.: the set of all forwarding
states (including even states which the routing design of the network cannot ever put the
network into); (2) Sy: the set of all feasible forwarding states (all of the states the routing
design can conceivably reach, although it might require extreme preconditions, such as the
failure of all but a specific handful of links); and (3) S;: the set of “interesting” forwarding
states the network will reach under all scenarios the network operator decides are plausible
or worth considering.

We have a proof for properties of the lower bound estimator if we use set S, (shown in
the next subsection), but this proof predicts the lower bound to be larger than it really is
(as it includes forwarding states that the network cannot reach). Ideally, we would be able
to succinctly represent set S;.

The second issue is how the push() operation should be defined when computing the
lower bound. As explained in Section 5.3, we compute the maximal set of routes that can be
present in a RIB by taking the union of all routes pushed into the RIB. Consider, however,
a case where a route is pushed into a RIB over interface i1, but lists interface 75 as the
next_hop (or maybe the set {ij,is}) for that route. This case creates a paradox, as there
is potentially a scenario under which interface ¢; fails, and thus the route is never learned,
but yet the route is increasing the computed lower bound reachability. It is arguable that
when computing the lower bound, an additional “scrubbing” step should be added after all
pushes are completed. The purpose of the scrubbing would be to remove from the routes
any next_hop interface that creates the paradox outlined above. However, this scrubbing
seems to imply that only routes that a router learns over all interfaces can be relied on when
computing the lower bound, and that requirement seems too strict given our ultimate desire
to compute the lower bound under set S;.

11.3 Evaluating the Estimator for the Lower Bound on Reachability

Unfortunately, the method for estimating the Lower Bound as outlined in Section 5 results
in an estimator that contains packets that are not in RiL,j. That is, RiLJ- C RZLJ This is
suboptimal, as described in Section 3.2.3. However, one way of using the lower bound is
for robustness testing in the network design, i.e., to check that critical traffic will survive
all failures as long as the network is not partitioned. While traffic that shows up in the
estimated reachability Ji’{“j might not be preserved across all (non-partitioning) forwarding
states, if the critical traffic is not even in the lower bound estimation we calculated, then the
traffic will definitely not be in the real reachability lower bound. So, based on this usage,

the lower bound estimation may still be a useful tool for reachability verification.

Theorem 4 (Reachability Lower Bound Theorem) The reachability lower bound cal-
culated using our model in Section 5 is an upper bound of the reachability lower bound.

32

Formally,
L AL
R € Ry (27)

%) —

Proof: First, }?ZL] can be formally expressed as follows:

Rsz ﬂ ﬂ FuL,v (28)

Te€P(i,5) <u,v>€ET

where FuLU is the estimated effective filter on edge < u,v >, calculated using the method
described in Section 5.

For any physical path 7 between ¢, 7, we can construct a network state s where 7 is the
only path between 7, j by removing all the other links in the network. Let us assume s € S.
(It is certainly the case that s € S.)

Let X be the union of all these s for each path m € P(i,j). Now X is a subset of the
the set of all forwarding states S, so the intersection of R; j(s),s € X is a superset of the
intersection of R; ;(s),s € S. Formally,

() Rig(s) € () Rigls) (29)

seS seX

Because the way we calculate routes (see the RIB and Interface Upper Bound Lemmas),
the packet filters FuLv used in computing RZLJ allow even more paths than those in X. That
is, the packet filters constructed to model the maximal possible set of routes in each RIB is
less strict than the FIBs used in the forwarding states in X. Hence, we have

| Ris(s) € RE, (30)

seX

Combining equations (29) and (30), we have

(VRis(s) € [Rigls) € | Rials) € RY; (31)

seS seX seX

12 Glossary

Terms used in this paper:

1,7, u,v Routers in the network

< u,v > An edge in the physical topology of the network between routers v and v.

s A network’s forwarding state — conceptually a snapshot of the FIB at each router in the
network.

33

S The set of all possible forwarding states that the network can possibly enter, as it responds
to any imaginable set of external advertisements, link failures, etc. Alternate definitions
of § are explored in Section 11.2.

R, ;(s) The instantaneous reachability between router i and router j when the network is in
forwarding state s.

Rg ; The upper bound of the reachability between router 7 and router j. Packets not in this
set cannot possibly get from i, to j, regardless of the network’s forwarding state.

RZ-LJ» The lower bound of the reachability between router ¢ and router j. Packets not in this
set will be prevented from getting from 7, to j in some forwarding states..

A

R; ; An estimator to approximate the reachability of the network. Two different estimators
are described in this paper. The simple estimators that ignore routing (Section 3.2.3)
and estimators that model the effects of routing (Section 5).

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[2] Randy Bush and Timothy G. Griffin. Integrity for virtual private routed networks. In Proc. IEEE
INFOCOM, 2003.

[3] Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert Greenberg, Gisli Hjalmtysson, and Jennifer Rexford.
The cutting EDGE of IP router configuration. In Proc. ACM SIGCOMM Workshop on Hot Topics in
Networking, November 2003.

[4] R. Callon. RFC 1195 - Use of OSI IS-IS for routing in TCP/IP and dual environments, 1990.

[5] D.-F. Chang, R. Govindan, and J. Heidemann. The temproal and topological characteristics of BGP
path changes. In Proc. International Conference on Network Protocols, November 2003.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT
Press (McGraw-Hill), 1990.

[7] Nick Feamster and Hari Balakrishnan. Verifying the correctness of wide-area Internet routing. Technical
Report MIT-LCS-TR~948, Massachusetts Institute of Technology, May 2004.

[8] Anja Feldmann and Jennifer Rexford. IP network configuration for intradomain traffic engineering.
IEEE Network Magazine, pages 46-57, September/October 2001.

[9] C. Hedrick. RFC 1058 - Routing Information Protocol, 1988.

[10] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg. Routing design in operational
networks: A look from the inside. In Proc. ACM SIGCOMM, August 2004.

[11] J. Moy. RFC 2178 - OSPF Version 2, 1997.

[12] Packet Design, Inc. Route Explorer.
http://www.packetdesign.com/products/products.htm.

[13] Y. Rekhter and T. Li. RFC 1771 - A Border Gateway Protocol 4 (BGP-4), 1995.
[14] E. Rosen and Y. Rekhter. RFC 2547 - BGP/MPLS VPNs, March 1999.

34

Aman Shaikh and Albert Greenberg. OSPF monitoring: Architecture, design, and deployment experi-
ence. In Proc. USENIX/ACM NSDI, March 2004.

P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology and Considerations.
Internet Engineering Task Force, Aug 1999. RFC 2663.

Cisco Systems. BGP Best Path Selection Algorithm. http://www.cisco.com/warp/public/459/25.shtml.

Cisco Systems. Enhanced IGRP. http://www.cisco.com/univercd/cc/td/doc/-
cisintwk/ito_doc/en_igrp.htm.

Renata Teixeira and Jennifer Rexford. A measurement framework for pin-pointing routing changes. In
ACM SIGCOMM Workshop on Network Troubleshooting, September 2004.

35

