
Exploration and Policy Reuse

Fernando Fernández Manuela Veloso
July 2005

CMU-CS-05-172

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was conducted while the first author was visiting Carnegie Mellon from the Universidad Carlos III
de Madrid, supported by a generous grant from the Spanish Ministry of Education and Fullbright. The second au-
thor was partially sponsored by Rockwell Scientific Co., LLCunder subcontract no. B4U528968 and prime contract
no. W911W6-04-C-0058 with the US Army, and by BBNT Solutions, LLC under contract no. FA8760-04-C-0002
with the US Air Force. The views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies orendorsements, either expressed or implied, of the sponsoring
institutions, the U.S. Government or any other entity.

Keywords: Reinforcement Learning, Policy Reuse, Exploration Strategies.

Abstract

We define Policy Reuse as a learning technique guided by past policies offering the challenge of
balancing among three choices: exploitation of the ongoinglearned policy, exploration of random
actions, and exploration towards the past policies. In thiswork we introduce a new exploration
strategy,π-reuse, as an intelligent bias to reuse a past policy when learning a new one. Inter-
estingly, this strategy also provides a similarity metric among a set of past policies and the new
one. We therefore define aπ-reuse based similarity metric between policies. We introduce a new
algorithm that combines the selection and reuse of past policies using this similarity metric. We
show empirical results that demonstrate the usefulness of our exploration strategy,π-reuse, as an
intelligent bias to reuse past policies, and also, its effectiveness in defining similarity between
policies.

1 Introduction

Policy Reuse can be defined as the capability of integrating past action policies in new learning
processes. In this work, the motivation of Policy Reuse is touse the knowledge acquired to solve
different tasks when learning a new one in the same domain. The domain defines how the agent
behaves in the environment, i.e. the state transition function; each different task in the same domain
is characterized through its reward function.

We introduce reusing of past policies in Reinforcement Learning as an exploration bias during
a learning process. However, it is still a challenge, given that biasing the learning inherently
complicates the exploration strategy. That is because in addition to the classical balance between
exploring new states or exploiting the current policy, it adds a third factor of exploiting the past
policy. However, this balance has been successfully found in other problems like path planning,
where reusing waypoints used in past plans has demonstratedto be useful to solve new planning
problems [3].

In this work we introduce a new exploration strategy, calledπ-reuse, that integrates a past
policy in an ongoing learning process. This strategy assumes that a supervisor provides the action
policy used to bias the exploration. We demonstrate that thelearning performance of the new
policy can be improved by biasing the exploratory process with the past policy, depending on
whether the policy provided by the supervisor solved a task which was “similar” to the new one or
not.

However, the application of Policy Reuse is much more complex if we receive a set of policies,
because then we need to select the most accurate one to bias the learning of the new task. In
this sense, we exploit the capabilities of Policy Reuse to define a similarity metric between the
past policies and the new one. This similarity metric is based on the performance obtained when
following theπ-reuse strategy to solve the new task with the different pastpolicies. The higher the
performance is, the higher the similarity is.

The report is organized as follow. The next section summarizes related work, focusing on
exploration strategies and in policy reuse methods. Section 3 formalizes the concepts of task
and domain. Section 4 introduces the new exploration strategy, π-reuse. Section 5 describes the
experiments performed, whose results motivate the definition of the similarity metric presented in
Section 6. Section 7 discusses the main conclusions and further research.

2 Related Work

This work is motivated by two main research areas, the reuse of past policies and exploration
strategies. Reusing sub-policies which were learned for a different but related task can be used
to minimize the experience required to solve a new task. For instance a subproblem of an MDP
can be defined as a new MDP where the state space is a subset of the original one. Then, the
original MDP can be solved reusing policies learned for different subproblems [2]. Intra-Option
Learning [9] and TTrees [13] also reuse macro-actions to learn new action policies, in both cases,
in Semi-Markov Decision Processes. Hierarchical RL uses different abstraction levels to organize
subtasks [5].

Some methods try to learn environment independent knowledge so the learned knowledge can
be used for similar tasks in different scenarios [11]. Reusing the Q function that represents a

1

policy learned for a task can be useful if it is similar to the new one [4]. However, it requires the Q
function to be available, and not only the policy.

Balancing exploration and exploitation is typically exemplified with the multi-armed bandit
problem [8], and tries to define whether to explore new or exploit the knowledge already ac-
quired [1]. In the literature, different kinds of exploration strategies can be found. A random
strategy always selects randomly the action to execute, without using the acquired knowledge.
The ε-greedy strategy selects the best action suggested by the Q function with a probability ofε,
and it selects a random action with probability of(1 − ε). Boltzmann strategy ranks the actions,
providing with a higher probability to the actions with a higher value of Q.

Directed exploration strategies memorize exploration-specific knowledge that is used for guid-
ing the exploration search[10]. These strategies are basedin heuristics that bias the learning so
unexplored states tend to have a higher probability of beingexplored that recently visited ones.
However, most of them require a model of the domain (the statetransition function) to execute the
heuristics.

Most of the previous examples are focused only on exploration or in reuse of sub-policies.
Instead, our work focuses on policy as an exploration bias inthe new learning problem, and we
investigate such exploration strategies.

3 Domains and Tasks

Markov Decision Process [7] is represented with a tuple< S,A, δ,R >, whereS is the set of
all possible states,A is the set of all possible actions,δ is an unknown stochastic state transition
function,δ : S ×A×S → <, andR is an unknown stochastic reward function,R : S ×A → <.
We focus in RL domains where differenttaskscan be solved. We introduce a task as a specific
reward function, but the other concepts,S, A and δ stay constant for all the tasks. Thus, we
extend the concept of an MDP introducing two new concepts: domain and task. We characterize
a domain,D, as a tuple< S,A, δ >. We define a task,Ω, as a tuple< D,RΩ >, whereD is a
domain as defined before, andRΩ is the stochastic and unknown reward function.

In this work we assume that we are solving a task with absorbing goal states. Thus, ifsi is a
goal state,δ(si, a, si) = 1, δ(si, a, sj) = 0 for si 6= sj , andR(si, a) = 0, for all a ∈ A. A trial
starts by locating the learning agent in a random position inthe environment. Each trial finishes
when a goal state is reached or when a maximum number of steps,sayH, is achieved. Thus, the
goal is to maximize the expected average reinforcement per trial, sayW , as defined in equation 1:

W =
1

K

K∑

k=0

H∑

h=0

γhrk,h (1)

whereγ (0 ≤ γ ≤ 1) reduces the importance of future rewards, andrk,h defines the immediate
reward obtained in the steph of the trialk, in a total ofK trials.

2

4 An Exploratory Strategy for Policy Reuse

The goal of this work is to describe how learning can be helpedif different policies, which solve
different tasks, are used in the learning of the action policy of another similar task. But first, we
need to describe how only one past policy biases the learningof the new one.

4.1 Scope

We define an action policy,Π, as a functionΠ : S → A. If the action policy was created to solve
a defined task,Ω, the action policy is calledΠΩ. The gain, or average expected reward, received
when executing an action policyΠ in the taskΩ is calledWΠ

Ω . Lastly, an optimal action policy for
solving the taskΩ is calledΠ∗

Ω. Then, the scope of this section is the following:

• We need to solve the taskΩ, i.e. learnΠ∗
Ω.

• We have previously solved the set of tasks{Ω1, . . . ,Ωn}, so we have their respective optimal
policies,{Π∗

Ω1
, . . . ,Π∗

Ωn
}

• Let’s assume that there is a supervisor who, givenΩ, tells us which is the most similar task,
Ωs to Ω. Thus, we know that the policy to reuse isΠ∗

s.

Thus, in this section we assume that it exists a supervisor who provides a policy that solves
a task similar to the one that we are trying to solve. A discussion on how similarities between
tasks and their respective policies can be computed, and howto automatically estimate the policy
to reuse, will be introduced in Section 6.

4.2 Theπ-reuse Exploration Strategy

We denote the old policy withΠold, and the one we are currently learning withΠ. We assume
that we are using a direct RL method to learn the action policy, so we are learning its relatedQ
function. Any algorithm can be used to learn theQ function, with the only requirement that it can
learn off-policy, i.e. it can learn a policy while executinga different one, as Q-Learning does [14].

The goal of theπ-reuse strategy is to balance random exploration, exploitation of the old policy,
and exploitation of the new policy, which is being learned currently. Theπ-reuse strategy follows
the past policy with a probability ofψ. However, with a probability of1 − ψ, it exploits the new
policy. Obviously, random exploration is always required,so when exploiting the new policy, it
follows anε-greedy strategy, as is defined in Table 1. Lastly, theυ parameter allows to decay the
value ofψ in each trial.

Thus, there are three probabilities involved: the probability of exploiting the past policy, the
probability of using current policy, and the probability ofacting randomly. These probabilities are
shown in Figure 1, for input values ofH = 100, ψ = 1 andυ = 0.95. In this case theε parameter
is set in each step to1− ψh.

The figure shows that in the initial steps of each trial, the past policy is exploited. As the
number of steps increases, exploration also increases, while in the final steps of the trial, the new
policy will be exploited. The transition from exploiting the past policy and exploiting the new one
depends on theυ parameter. If this parameter is low, the transition occurs in the initial steps, while
if it is high, the transition is delayed.

3

π-reuse (Πold, K,H, ψ, υ).
for k = 1 toK

Set the initial state,s, randomly.
Setψ1 ← ψ
for h = 1 toH

With a probability ofψh, a = Πold(s)
With a probability of1− ψh, a = ε-greedy(Πnew(s))
Receive current states′, and reward,rk,h

UpdateQΠnew(s, a), and therefore,Πnew

Setψh+1 ← ψhυ
Sets← s′

W = 1

K

∑K

k=0

∑H

h=0
γhrk,h

ReturnW andΠnew

Table 1:π-reuse Exploration Strategy.

5 Experiments

In this section, we describe the experiments performed to demonstrate the usefulness of the explo-
ration strategy defined above. But first, we describe the domain used.

5.1 Tasks in a Robot Navigation Domain

This domain consists of a robot moving inside of an office area, as shown in Figure 2, similar to the
one used in other RL works [6, 12]. The environment is represented by walls, free positions and
goal areas, all of them of size1×1. The whole domain isN×M (24×21 in this case). The possible
actions that the robot can execute are “North”, “East”, “South” and “West”, all of size one. The
final position after each action is noised by a random variable following a uniform distribution in
the range(−0.20, 0.20). The robot knows its location in the space through continuous coordinates
(x, y) provided by some localization system. In this work, we assume that we have the optimal
uniform discretization of the state space (which consists of 24 × 21 regions). Furthermore, the
robot has an obstacle avoidance system that blocks the execution of actions that would crash it into
a wall. The goal in this domain is to reach the area marked with’G’. When the robot reaches it, it
is considered a successful trial, and it receives a reward of1. Otherwise, it receives a reward of 0.

Figure 2 shows six different tasks in the same domain,Ω1, Ω2, Ω3, Ω4 andΩ, given that the
goal states, and therefore, the reward functions, are different. Biasing the learning ofΠ (to solve
Ω) usingΠ1 (policy that solvesΩ1) seems to be useful given that both policies could be equal for
a large number of states. However, what states share the samepolicy and what states do not is
completely unknown a priori, given that both the reward function and the state transition function
are unknown.

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
ie

s

Steps

Exploit past policy
Exploit new policy

Act randomly

Figure 1: Evolution of the probabilities of exploring and exploiting in a trial for theπ-reuse explo-
ration strategy.

5.2 Description of the Learning Curves

In the following subsections, we will describe the experimental results of applying different ex-
ploration strategies for learning the taskΩ, shown in Figure 2(e). For each of these strategies (and
parameter settings), we will present two results showing two different curves, the learning curve,
and the test curve.

The learning curve of each strategy describes the performance of such strategy in the learning
process. Learning has been performed using the Q-Learning algorithm, for fixed parameters of
γ = 0.95 andα = 0.05, which empirically have demonstrated to be accurate for learning.

A learning trial consists of executingK = 2000 trials. Each trial consists on following the
defined strategy until the goal is achieved or until the maximum number of steps,H = 100, is
executed. In the figures containing the curves, thex axis shows the trial number. They axis
represents the gain obtained. Thus, a value of 0.2 for the trial 200 means that the average gain
obtained in the 200 first trials has been 0.2.

The test curve represents the evolution of the performance of the policy while it is being
learned. Each 100 trials of the learning process, the Q function learned up to that moment is
stored. Thus, after the learning process, we can test all those policies. Each test consists on 1000
trials where the robot follows a completely greedy strategy. Thus, the x axis shows the learning
trial in which that policy was generated, and they axis show the result of the test, measured as the
average number of steps executed to achieve the goal in the 1000 test trials.

For both the learning and test curves, the results provided are the average of ten executions. In
the curves, error bars provide the standard deviation in theten executions.

5.3 Learning from Scratch

We want to learn the task described in Figure 2(e). For comparison reasons, the learning and test
processes have been executed firstly following different exploratory strategies that do not use any
past policy. Specifically, we have used four different strategies. The first one is a random strategy.

5

G G

G

(a) TaskΩ1 (b) TaskΩ2 (c) TaskΩ3

G
G

(d) TaskΩ4 (e) TaskΩ

Figure 2: Office Domain.

The second one is a completely greedy strategy. The third oneis ε-greedy, for an initial value of
ε = 0, which is incremented by 0.0005 in each trial. Lastly, Boltzmann strategy has been used,
initializing τ = 0, and increasing it in 5 in each learning trial. Figure 3 showsthe learning and test
curves for all of them.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Random 1−greedy e−greedy Bolzmann

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Random 1−greedy e−greedy Bolzmann

(a) Learning Curve (b) Test Curve

Figure 3: Learning and test evolution when learning from scratch

Figure 3(a) shows the learning curve. We see that when actingrandomly, the average gain
in learning is almost 0, given that acting randomly is a very poor strategy. However, when a
greedy behavior is introduced, (strategy 1-greedy), the curve shows a slow increment, achieving
values of almost 0.1. The problem with the 1-greedy strategyis that it also produces a very high
standard deviation in the 10 executions performed, showingthat a completely greedy strategy may
produce very different results. The curve obtained by the Boltzmann strategy do not offer any
improvements. However, theε-greedy strategy seems to compute an accurate policy in the initials
trials, and obtain the highest average gain at the end of the learning.

The random strategy andε-greedy outperforms the other strategies in the test curve shown in
Figure 3(b). This is due to the fact that both strategies, with the defined parameters, are less greedy

6

than the other policies in the initial steps. Typically, higher exploration at the beginning results in
more accurate policies.

5.4 Reusing the Past Policy Followingπ-reuse

We want to learn to solve the taskΩ, defined in Figure 2(e). To do this, we need to learn the action
policy,ΠΩ that maximizesWΩ, as defined in equation 1. In this case, we assume that a supervisor
provides a similar task, sayΩs, and the exploration strategyπ-reuse is used to learn the new action
policy.

Figure 4(a) shows the learning curves of different learningprocesses. In each of them, a dif-
ferent policy has been reused. As in the previous experiments, the parameters used are:γ = 0.95
andα = 0.05 in the Q-Learning update function.ψ = 1 andυ = 0.95, which empirically have
demonstrated to be accurate. We distinguish three different cases. In the first one, the task previ-
ously learned isΩ4 (Ωs = Ω1), the goal of which is into the same room as the goal ofΩ. In the
second case,Ωs = Ω1, so their goals are in different rooms. However, their optimal policies could
be the same for all the domain except for the rooms where the respective goals are located. In the
last two cases,Ωs = Ω2 andΩ3 respectively, which are very different when compared toΩ.

Π1

Π4Π2 Π
3

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Learning from

Learning from

Learning from Learning from

Π1

Π4Π2 Π3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Learning from

Learning from

Learning from Learning from

(a) Learning Curve (b) Test Curve

Figure 4: Learning and test evolution when following the exploration strategyπ-reuse.

Figure 4(a) shows how, when biasing the exploration processfor learning the taskΩ with
the policiesΠ1 andΠ4, the obtained gain increases dramatically within the first few trials of the
execution. For instance, when reusingΠ1, in only 100 iterations the average gain is higher than
0.15, and after 400 iterations the value stays around 0.2. When reusingΠ4, the gain is higher
than 0.1 after only 200 trials, and after 500 trials it stays around 0.15. In both cases, the standard
deviation is high in the initial trials, but it approaches 0 in subsequent trials. The behavior of
the test curves is also very good in both cases, showing that in only 400 iterations, a gain higher
than 0.3 is obtained with a very low deviation. These resultsdemonstrate that reusing similar past
policies produces a significant improvement over exploration strategies that learn from scratch.

However, when the learning is biased with a very different policy, asΠ2 andΠ3, the average
gain shown in Figure 4(a) is below 0.05, so the learning process is even worse than when learning
from scratch. Their test curves present a better behavior. In both cases there is an inflexion in the
test curve, obtaining, at the end of the 2000 trials, a similar performance than unbiased strategies.

7

The inflexion is due to the learning of an initial path to the goal. However, in this case the standard
deviation is very high, demonstrating that the inflexion mayoccur in very different moments of the
learning process.

6 Similarity between Policies

Previous results show that reusing a past policy provides a bias in the exploration process which
speeds up the learning. The improvement depends on whether the reused policy solves a task
similar to the one we are currently learning. However, that is not the only benefit of policy reuse.
One interesting observation about the results in Figure 4(a) is that the learning curves provide us
with a very useful metric of similarity between policies. Inthat figure, the gain obtained for each
of the past policies can be understood as: (i) an estimation of how similar the policy reused is to
the current one; and (ii) an estimation of how useful the policy reused is in order to learn the new
policy. Actually, the gain obtained by each one could be usedto rank the similarity of the past
policies with respect to the new one. In this case, the most similar is Π4, followed byΠ1, Π2 and
Π3.

Furthermore, the estimations above can be computed very fast, as Figure 5 demonstrates. The
figure zooms in on the initial 100 trials of Figure 4(a). The figure shows that in only 25 trials, the
gain of reusing the policyΠ4 significantly outperforms the gain of reusing the other policies. Thus,
in a total of 100 trials (25 for each policy), the most similarpolicy, and therefore, the best policy
to reuse, can be computed. These ideas are formalized next.

Π1

Π4Π2 Π
3

Learning from

Learning from

Learning from Learning from

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 10 20 30 40 50 60 70 80 90 100

W

Trials

Figure 5: Computation of the Similarity Among Policies.

6.1 A Similarity Metric Between Policies

As introduced below, we callΠ∗
Ω the optimal action policy for solving the taskΩ. To be optimal

means thatWΠ∗

Ω ≥WΠ
Ω , for all policiesΠ in the space of all possible policies. Then, the following

theorem can be derived.

8

Theorem: Given two different tasks,Ωi and Ωj , and their optimal policies,ΠΩi
and ΠΩj

respectively, then:

W
Π∗

Ωi

Ωi
≥W

Π∗

Ωj

Ωi
, ∀Ωj 6= Ωi (2)

It is easy to demonstrate this theorem, given thatΠ∗
Ωi

is the optimal policy for the task that we
are involved in now, i.e,Ωi. That ensures the maximum expected reward will be received,given
that:
V Π∗

Ωi (s) ≥ R(s, a) +
∑

s′∈S δ(s, a, s
′)V Π∗

Ωi (s′), for a = arga′ max Π∗
Ωj

(s, a′).

The previous theorem ensures thatW
Π∗

Ωi

Ωi
−W

Π∗

Ωj

Ωi
≥ 0. Therefore, we can define how useful

the policyΠi could be in learning the policyΠ, using the distance metric shown in equation 3.

d→(Πi,Π) = W
Π∗

Ω

Ω
−W

Π∗

Ωi

Ω
(3)

In this case the distance metric is not symmetric, sod→(Πi,Πj) could be different from
d→(Πj ,Πi). Then, the most useful policy to reuse is:

argΩi
min(W

Π∗

Ω

Ω
−W

Π∗

Ωi

Ω
), i = 1, . . . , n (4)

However,W
Π∗

Ω

Ω
is independent ofi, so the previous equation is equivalent to:

argΩi
max(W

Π∗

Ωi

Ω
), i = 1, . . . , n (5)

This equation is not possible to compute, given thatW
Π∗

Ωi

Ω
is unknown a priori. Furthermore,

if we follow the policyΠ∗
Ωi

greedily, probably the taskΩ will never be solved. However, if instead
of following Π∗

Ωi
greedily, we reuse it following theπ-reuse exploration strategy, we can compute

the gain of reusingΠ∗
Ωi

to solveΩ. In this sense, all the past policies could be reused, computing
their respective gains, until an accurate estimation is obtained. Then, past policies with a lower
gain are discarded, and the one with a higher gain is used in theπ-reuse exploration strategy. The
next section describes a simple algorithm that applies these ideas.

6.2 An Algorithm for Policy Reuse

A basic algorithm for policy reuse from a set of policies requires the following two steps:

• Obtain the most similar policy,Πs. To do this, it is necessary (i) to compute the gain obtained
when following theπ-reuse exploration policy with each of the past policies; and (ii) to
choose the policy with a higher gain. We callKs the number of trials used to learn the
similar policy.

• Learn a new action policy,ΠΩ. Πs is used in theπ-reuse exploration strategy to learn a new
action policy. We callKr the number of trials used to learn the new policy.

The previous steps are formalized in Table 2 where we assume thatπ-reuse is a method that
we can call with the parameters defined in Table 1.

9

Policy Reuse Algorithm

• Given:

1. A set ofn tasks{Ω1, . . . ,Ωn}.

2. Their respective optimal policies,{Π∗
Ω1
, . . . ,Π∗

Ωn
} to solve them

3. A new task,Ω, that we want to solve

4. A maximum number of steps per trial,H

5. A maximum number of trials to execute,K

6. The tuple of integer values,< Ks, Kr >, such asK = Ks +Kr

7. The parametersψ andυ used in the exploration strategyπ-reuse.

• for i=1 to n do

1. Executeπ-reuse(Πi, Ks/n,H, ψ, υ).

2. Obtain the associated gain,Wi.

• SetΠs = argΠi
maxWi

• LearnΠΩ by callingπ-reuse(Πs, Kr, H, ψ, υ)

Table 2: An Algorithm for Policy Reuse

6.3 Empirical Results

Figure 6 shows the learning curve obtained when the Policy Reuse algorithm is executed for two
set of parameters,Ks = 100 andKr = 1900, andKs = 400 andKr = 1600 respectively. This
learning curve demonstrates that, even when the similar policy must be computed, policy reuse
can be very useful to bias the exploration of a learning process, providing better performance than
learning from scratch. The test curves correspond with the one shown in Figure 4(b) when reusing
Π4, but delayedks steps.

However, the success of policy reuse, when it is applied to speed up learning, depends on sev-
eral factors. For instance, it requires the definition of thevalues ofKs andKr that, at the same
time, could depend of the domain, the task, and the number of past policies available. Furthermore,
it does not make the most of the experience obtained; for instance, the experience used in the com-
putation of the most similar policy could be used also to learn the new policy. Thus, more accurate
algorithms should reduce the number of parameters used, andcould outperform the results.

7 Conclusions and Further Research

In this report, we have described Policy Reuse as an exploration bias that balances the exploration
of random actions, the exploitation of the ongoing learned policy, and the exploration toward of a

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Ks=100 Ks=400

Figure 6: Learning Curve when following the Policy Reuse algorithm.

past policy. We have instantiated the concept of Policy Reuse by defining a new exploration strat-
egy,π-reuse. This new strategy successfully achieves the previous balance, and has demonstrated
that it can improve the learning performance obtained when learning from scratch with different
strategies.

Furthermore, we have demonstrated that Policy Reuse provides a similarity metric between
policies. Such a metric allows to discriminate, from a set ofpast policies, which is the most
similar one to the policy we currently are learning.

Policy Reuse and the concept of similarity introduced in this work open a wide range of chal-
lenging research lines, including across domain or agent learning and the ability to scale RL in
complexity considerably.

References

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino:
The adversarial multi-armed bandit problem. In IEEE Computer Society Press, editor,36th
Annual Symposium on Foundations of Computer Science, pages 322–331, 1995.

[2] Michael Bowling and Manuela Veloso. Bounding the suboptimality of reusing subproblems.
In Proceedings of IJCAI-99, 1999.

[3] James Bruce and Manuela Veloso. Real-time randomized path planning for robot navigation.
In Proceedings of IROS-2002, Switzerland, October 2002. An earlier version of this paper
appears in the Proceedings of the RoboCup-2002 Symposium.

[4] James Carroll and Todd Peterson. Fixed vs. dynamic sub-transfer in reinforcement learn-
ing. In Proceedings of the International Conference on Machine Learning and Applications,
2002.

11

[5] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition.Journal of Artificial Intelligence Research, 13:227–303, 2000.

[6] Fernando Fernández and Daniel Borrajo. On determinismhandling while learning reduced
state space representations. InProceedings of the European Conference on Artificial Intelli-
gence (ECAI 2002), Lyon (France), July 2002.

[7] M. L. Puterman.Markov Decision Processes - Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY., 1994.

[8] H. Robbins. Some aspects of the sequential design of experiments.Bulletin American Math-
ematical Society, 55:527–535, 1952.

[9] Richard S. Sutton, Doina Precup, and Satinder Singh. Intra-option learning about tempo-
rally abstract actions. InProceedings of the Internacional Conference on Machine Learning
(ICML’98), 1998.

[10] Sebastian Thrun. Efficient exploration in reinforcement learning. Technical Report C,I-CS-
92-102, Carnegie Mellon University, January 1992.

[11] Sebastian Thrun and Tom Mitchell. Lifelong robot learning. Robotics and Autonomous
Systems, 15:25–46, 1995.

[12] Sebastian Thrun and A. Schwartz. Finding structure in reinforcement learning. InAdvances
in Neural Information Processing Systems 7. MIT Press., 1995.

[13] William T. B. Uther.Tree Based Hierarchical Reinforcement Learning. PhD thesis, Carnegie
Mellon University, August 2002.

[14] C. J. C. H. Watkins.Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge, UK, 1989.

12

