Exploration and Policy Reuse

Fernando Fernandez Manuela Veloso

July 2005
CMU-CS-05-172

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This research was conducted while the first author wasmigi@iarnegie Mellon from the Universidad Carlos I1I
de Madrid, supported by a generous grant from the Spaniskstirof Education and Fullbright. The second au-
thor was partially sponsored by Rockwell Scientific Co., Lul@er subcontract no. B4U528968 and prime contract
no. W911W6-04-C-0058 with the US Army, and by BBNT SolutiphsC under contract no. FA8760-04-C-0002
with the US Air Force. The views and conclusions containe@ineare those of the authors and should not be inter-
preted as necessarily representing the official policiesxdorsements, either expressed or implied, of the spargsori
institutions, the U.S. Government or any other entity.

Keywords: Reinforcement Learning, Policy Reuse, Exploration Stjiate

Abstract

We define Policy Reuse as a learning technique guided by pésigs offering the challenge of
balancing among three choices: exploitation of the onglaagned policy, exploration of random
actions, and exploration towards the past policies. Inwask we introduce a new exploration
strategy,r-reuse, as an intelligent bias to reuse a past policy whenitepa new one. Inter-
estingly, this strategy also provides a similarity metmeamg a set of past policies and the new
one. We therefore definerareuse based similarity metric between policies. We intoeda new
algorithm that combines the selection and reuse of pastipslusing this similarity metric. We
show empirical results that demonstrate the usefulnesaraéxploration strategyr-reuse, as an
intelligent bias to reuse past policies, and also, its &ffeness in defining similarity between
policies.

1 Introduction

Policy Reuse can be defined as the capability of integratasg @ction policies in new learning
processes. In this work, the motivation of Policy Reuse isd® the knowledge acquired to solve
different tasks when learning a new one in the same domaige.ddbmain defines how the agent
behaves in the environment, i.e. the state transition fonpeach different task in the same domain
is characterized through its reward function.

We introduce reusing of past policies in Reinforcement higy as an exploration bias during
a learning process. However, it is still a challenge, givest tbiasing the learning inherently
complicates the exploration strategy. That is becauseditiad to the classical balance between
exploring new states or exploiting the current policy, itlac third factor of exploiting the past
policy. However, this balance has been successfully fonrather problems like path planning,
where reusing waypoints used in past plans has demonstaabeduseful to solve new planning
problems [3].

In this work we introduce a new exploration strategy, calietkuse, that integrates a past
policy in an ongoing learning process. This strategy assuhed a supervisor provides the action
policy used to bias the exploration. We demonstrate thategaming performance of the new
policy can be improved by biasing the exploratory proceg$ wie past policy, depending on
whether the policy provided by the supervisor solved a tasicwvas “similar” to the new one or
not.

However, the application of Policy Reuse is much more coriplee receive a set of policies,
because then we need to select the most accurate one to &isathing of the new task. In
this sense, we exploit the capabilities of Policy Reuse fmmde similarity metric between the
past policies and the new one. This similarity metric is dase the performance obtained when
following ther-reuse strategy to solve the new task with the different palsties. The higher the
performance is, the higher the similarity is.

The report is organized as follow. The next section sumrmearielated work, focusing on
exploration strategies and in policy reuse methods. Se@&idormalizes the concepts of task
and domain. Section 4 introduces the new exploration gfyatereuse. Section 5 describes the
experiments performed, whose results motivate the defindf the similarity metric presented in
Section 6. Section 7 discusses the main conclusions aritefugsearch.

2 Related Work

This work is motivated by two main research areas, the retig@ast policies and exploration
strategies. Reusing sub-policies which were learned faffereint but related task can be used
to minimize the experience required to solve a new task. f&ance a subproblem of an MDP
can be defined as a new MDP where the state space is a subsetaigimal one. Then, the
original MDP can be solved reusing policies learned foredéht subproblems [2]. Intra-Option
Learning [9] and TTrees [13] also reuse macro-actions tamlaaw action policies, in both cases,
in Semi-Markov Decision Processes. Hierarchical RL usffsrdnt abstraction levels to organize
subtasks [5].

Some methods try to learn environment independent knowleddhe learned knowledge can
be used for similar tasks in different scenarios [11]. Regighe Q function that represents a

1

policy learned for a task can be useful if it is similar to tleewone [4]. However, it requires the Q
function to be available, and not only the policy.

Balancing exploration and exploitation is typically exdifipd with the multi-armed bandit
problem [8], and tries to define whether to explore new or @xpghe knowledge already ac-
quired [1]. In the literature, different kinds of explomti strategies can be found. A random
strategy always selects randomly the action to executdyowitusing the acquired knowledge.
The e-greedy strategy selects the best action suggested by thadQ)dn with a probability o,
and it selects a random action with probability(@f— ¢). Boltzmann strategy ranks the actions,
providing with a higher probability to the actions with a heg value of Q.

Directed exploration strategies memorize exploratiogesffr knowledge that is used for guid-
ing the exploration search[10]. These strategies are basleeuristics that bias the learning so
unexplored states tend to have a higher probability of bekmored that recently visited ones.
However, most of them require a model of the domain (the $tatesition function) to execute the
heuristics.

Most of the previous examples are focused only on explaratioin reuse of sub-policies.
Instead, our work focuses on policy as an exploration biakeémew learning problem, and we
investigate such exploration strategies.

3 Domains and Tasks

Markov Decision Process [7] is represented with a tupl&, A, §, R >, whereS is the set of
all possible states4 is the set of all possible actiongjs an unknown stochastic state transition
function,s : S x A x § — R, andR is an unknown stochastic reward functidd, S x A — R.
We focus in RL domains where differetaskscan be solved. We introduce a task as a specific
reward function, but the other concepts, A andJ stay constant for all the tasks. Thus, we
extend the concept of an MDP introducing two new conceptsialo and task. We characterize
a domain,D, as a tuple< S, A, >. We define a task), as a tuple< D, R >, whereD is a
domain as defined before, aitl, is the stochastic and unknown reward function.

In this work we assume that we are solving a task with absgrgoal states. Thus, ¥; is a
goal statej(s;,a,s;) = 1, 6(s;,a,s;) = 0fors; # s;, andR(s;,a) = 0, for alla € A. Atrial
starts by locating the learning agent in a random positiainénenvironment. Each trial finishes
when a goal state is reached or when a maximum number of st@p#,, is achieved. Thus, the
goal is to maximize the expected average reinforcementipérdayll’, as defined in equation 1:

1 K H .
W:E227 Tk,h (1)

k=0 h=0
wherey (0 < v < 1) reduces the importance of future rewards, angdefines the immediate
reward obtained in the stdpof the trial%, in a total of K trials.

4 An Exploratory Strategy for Policy Reuse

The goal of this work is to describe how learning can be helpdidferent policies, which solve
different tasks, are used in the learning of the action gadicanother similar task. But first, we
need to describe how only one past policy biases the leaofitige new one.

4.1 Scope

We define an action policy], as a functiorll : S — A. If the action policy was created to solve
a defined task(?, the action policy is calledl,,. The gain, or average expected reward, received
when executing an action polidy in the task is callediW}'. Lastly, an optimal action policy for
solving the task? is calledll;,. Then, the scope of this section is the following:

e We need to solve the task i.e. learnll,.

e \We have previously solved the set of tagky, . . ., €2, }, so we have their respective optimal
policies {II, , ..., 11 }

e Let's assume that there is a supervisor who, gietells us which is the most similar task,
2, to Q2. Thus, we know that the policy to reusells.

Thus, in this section we assume that it exists a supervisorprbvides a policy that solves
a task similar to the one that we are trying to solve. A disicusen how similarities between
tasks and their respective policies can be computed, anddawtomatically estimate the policy
to reuse, will be introduced in Section 6.

4.2 Ther-reuse Exploration Strategy

We denote the old policy witll°?, and the one we are currently learning wilh We assume
that we are using a direct RL method to learn the action poioywe are learning its relateg
function. Any algorithm can be used to learn thdunction, with the only requirement that it can
learn off-policy, i.e. it can learn a policy while executiaglifferent one, as Q-Learning does [14].

The goal of ther-reuse strategy is to balance random exploration, expimitaf the old policy,
and exploitation of the new policy, which is being learnedently. Ther-reuse strategy follows
the past policy with a probability af. However, with a probability of — v, it exploits the new
policy. Obviously, random exploration is always required,when exploiting the new policy, it
follows ane-greedy strategy, as is defined in Table 1. Lastly,«thparameter allows to decay the
value ofy in each trial.

Thus, there are three probabilities involved: the prolighilf exploiting the past policy, the
probability of using current policy, and the probabilityadting randomly. These probabilities are
shown in Figure 1, for input values &f = 100, ¢» = 1 andv = 0.95. In this case the parameter
is set in each step tb— .

The figure shows that in the initial steps of each trial, thstglicy is exploited. As the
number of steps increases, exploration also increasek imhthe final steps of the trial, the new
policy will be exploited. The transition from exploitingetpast policy and exploiting the new one
depends on the parameter. If this parameter is low, the transition occuitbeé initial steps, while
if it is high, the transition is delayed.

n-reuse [yq, K, H, 9, v).
fork=1to K
Set the initial states, randomly.
Sety; ¢
forh=1t0 H
With a probability ofyy,, a = I,4(s)
With a probability ofl — ¢, a = e-greedyIl,,c.,(s))
Receive current staté, and rewardyy 5,
UpdateQ™ <« (s, a), and thereforell,,..,
Setyy 1 — Ypv
Sets « s’
W= % Ef:o Ztho Vhrkvh
ReturnWV andIl,,.,,

Table 1:7-reuse Exploration Strategy.

5 Experiments

In this section, we describe the experiments performednuotistrate the usefulness of the explo-
ration strategy defined above. But first, we describe the doossed.

5.1 Tasks in a Robot Navigation Domain

This domain consists of a robot moving inside of an office gaeahown in Figure 2, similar to the
one used in other RL works [6, 12]. The environment is represeby walls, free positions and
goal areas, all of them of sidze< 1. The whole domain i$V x M (24 x 21 in this case). The possible
actions that the robot can execute are “North”, “East”, “®d&and “West”, all of size one. The
final position after each action is noised by a random vagi&tilowing a uniform distribution in
the range& —0.20, 0.20). The robot knows its location in the space through contiswmordinates
(x,y) provided by some localization system. In this work, we asstinat we have the optimal
uniform discretization of the state space (which consi§t4ox 21 regions). Furthermore, the
robot has an obstacle avoidance system that blocks thetexeofiactions that would crash it into
a wall. The goal in this domain is to reach the area marked W@ithwhen the robot reaches it, it
is considered a successful trial, and it receives a rewatd Otherwise, it receives a reward of 0.

Figure 2 shows six different tasks in the same dom@in, 2., 23, 2, and(?, given that the
goal states, and therefore, the reward functions, arerdifte Biasing the learning di (to solve
Q) usingll; (policy that solves?,) seems to be useful given that both policies could be equal fo
a large number of states. However, what states share the @aliog and what states do not is
completely unknown a priori, given that both the reward fiorcand the state transition function
are unknown.

Probabilities

0 10 20 30 40 50 60 70 80 90

Exploit past policy

i Act randomly-----
Exploit new policy ------

Figure 1: Evolution of the probabilities of exploring andpéiting in a trial for ther-reuse explo-
ration strategy.

5.2 Description of the Learning Curves

In the following subsections, we will describe the experma results of applying different ex-
ploration strategies for learning the ta3kshown in Figure 2(e). For each of these strategies (and
parameter settings), we will present two results showingdifferent curves, the learning curve,
and the test curve.

The learning curve of each strategy describes the perfarenafnsuch strategy in the learning
process. Learning has been performed using the Q-Learigogitam, for fixed parameters of
~ = 0.95 anda = 0.05, which empirically have demonstrated to be accurate faonlag.

A learning trial consists of executing = 2000 trials. Each trial consists on following the
defined strategy until the goal is achieved or until the maximmumber of stepsi{ = 100, is
executed. In the figures containing the curves, thaxis shows the trial number. Theaxis
represents the gain obtained. Thus, a value of 0.2 for tak26il0 means that the average gain
obtained in the 200 first trials has been 0.2.

The test curve represents the evolution of the performamdbeopolicy while it is being
learned. Each 100 trials of the learning process, the Q ifinmdearned up to that moment is
stored. Thus, after the learning process, we can test aetpolicies. Each test consists on 1000
trials where the robot follows a completely greedy stratebyus, the x axis shows the learning
trial in which that policy was generated, and thaxis show the result of the test, measured as the
average number of steps executed to achieve the goal in @@etést trials.

For both the learning and test curves, the results providetha average of ten executions. In
the curves, error bars provide the standard deviation iteth@xecutions.

5.3 Learning from Scratch

We want to learn the task described in Figure 2(e). For commpareasons, the learning and test
processes have been executed firstly following differeptaratory strategies that do not use any
past policy. Specifically, we have used four different simégs. The first one is a random strategy.

5

{EE T

(a) Task), (b) Task, (c) Task€2;
(d) Task€y, (e) Task

Figure 2: Office Domain.

The second one is a completely greedy strategy. The thirdsongreedy, for an initial value of

e = 0, which is incremented by 0.0005 in each trial. Lastly, Balénn strategy has been used,
initializing 7 = 0, and increasing it in 5 in each learning trial. Figure 3 shtiveslearning and test
curves for all of them.

0.25

02

0.15 -
z

0

200 400 600 800 1000 1200 1400 1600 1800 2000

Trials

I-greedy -~ - Bolzmann -

(a) Learning Curve

e—greedy -~

0.4

0.35

0.3

0.25

02

0.15

0.1

0.05

0

0

Random

200 400 600 800 1000 1200 1400 1600 1800 2000
Trials

l-greedy "~~~ - Bolzmann -

(b) Test Curve

e—greedy — -~

Figure 3: Learning and test evolution when learning fronatxr

Figure 3(a) shows the learning curve. We see that when actimgomly, the average gain
in learning is almost 0, given that acting randomly is a veopmpstrategy. However, when a
greedy behavior is introduced, (strategy 1-greedy), treecshows a slow increment, achieving
values of almost 0.1. The problem with the 1-greedy straiedfyat it also produces a very high
standard deviation in the 10 executions performed, shothiaiga completely greedy strategy may
produce very different results. The curve obtained by th#zBwann strategy do not offer any
improvements. However, thegreedy strategy seems to compute an accurate policy imiteds
trials, and obtain the highest average gain at the end oétraihg.

The random strategy ardgreedy outperforms the other strategies in the test curoes in
Figure 3(b). This is due to the fact that both strategied) Wié defined parameters, are less greedy

6

than the other policies in the initial steps. Typically, inég exploration at the beginning results in
more accurate policies.

5.4 Reusing the Past Policy Followingr-reuse

We want to learn to solve the task defined in Figure 2(e). To do this, we need to learn the action
policy, I, that maximizesVy, as defined in equation 1. In this case, we assume that a ssguerv
provides a similar task, sdy,, and the exploration strategyreuse is used to learn the new action
policy.

Figure 4(a) shows the learning curves of different learmracesses. In each of them, a dif-
ferent policy has been reused. As in the previous expersndm parameters used ate= 0.95
anda = 0.05 in the Q-Learning update function: = 1 andv = 0.95, which empirically have
demonstrated to be accurate. We distinguish three diffeases. In the first one, the task previ-
ously learned i$2, (2, = 1), the goal of which is into the same room as the godlofin the
second casé), = (), so their goals are in different rooms. However, their optipolicies could
be the same for all the domain except for the rooms where #peotive goals are located. In the
last two cased), = 2, and(2; respectively, which are very different when comparefto

0.25 0.4

- ETE SR - % % % X X 0351 B =2 - - smep]
0.2 % ¥ X R:

0.15 | % %% ,,,,, %,H@,x@,,,‘@,,,,,ﬁ,,,,ﬁ,,,,El 0.3F

025 .7
2 02 ¢/
015~

01

0.05

I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800
Trials Trials

—~0.05 1 1 1 1 1 1 1 1 1 0 1 1 1 1

Learning from[1 o Learning from 1 ;3 Learning from [1 4 Learning fronf1 2 Learning froml1 3 Learning from ' e
Learning from 1y ===~ Learning froml1, -=---

(a) Learning Curve (b) Test Curve

Figure 4: Learning and test evolution when following thelexgtion strategyr-reuse.

Figure 4(a) shows how, when biasing the exploration protmstearning the task) with
the policiesll; andIl,, the obtained gain increases dramatically within the fest frials of the
execution. For instance, when reusifg, in only 100 iterations the average gain is higher than
0.15, and after 400 iterations the value stays around 0.2erWausindll,, the gain is higher
than 0.1 after only 200 trials, and after 500 trials it stagsiad 0.15. In both cases, the standard
deviation is high in the initial trials, but it approachesrOsubsequent trials. The behavior of
the test curves is also very good in both cases, showingrilaily 400 iterations, a gain higher
than 0.3 is obtained with a very low deviation. These resigtmonstrate that reusing similar past
policies produces a significant improvement over explorasitrategies that learn from scratch.

However, when the learning is biased with a very differerdiggpasIl, andIls;, the average
gain shown in Figure 4(a) is below 0.05, so the learning eceeven worse than when learning
from scratch. Their test curves present a better behavidyoth cases there is an inflexion in the
test curve, obtaining, at the end of the 2000 trials, a smpéaformance than unbiased strategies.

7

The inflexion is due to the learning of an initial path to thelgdlowever, in this case the standard
deviation is very high, demonstrating that the inflexion roagur in very different moments of the
learning process.

6 Similarity between Policies

Previous results show that reusing a past policy providgasib the exploration process which
speeds up the learning. The improvement depends on whétheetised policy solves a task
similar to the one we are currently learning. However, thatat the only benefit of policy reuse.
One interesting observation about the results in Figurgid@at the learning curves provide us
with a very useful metric of similarity between policies. that figure, the gain obtained for each
of the past policies can be understood as: (i) an estimafitww similar the policy reused is to
the current one; and (ii) an estimation of how useful theqyaleused is in order to learn the new
policy. Actually, the gain obtained by each one could be use@nk the similarity of the past
policies with respect to the new one. In this case, the mastasiis I1,, followed bylIl;, I, and
Hg.

Furthermore, the estimations above can be computed vdrpa&Bigure 5 demonstrates. The
figure zooms in on the initial 100 trials of Figure 4(a). Theufiggshows that in only 25 trials, the
gain of reusing the policli, significantly outperforms the gain of reusing the othergek. Thus,
in a total of 100 trials (25 for each policy), the most simiedicy, and therefore, the best policy
to reuse, can be computed. These ideas are formalized next.

0.18 T T T

ol pEEE

ERREEY s
: JHW%M j PR

I I I I I I I I
10 20 30 40 50 60 70 80 90 100
Trials

0.06 . | .

-0.02

Learning froml1,, —— Learning from [- Learning from M, -~~~
Learning from I 10T

Figure 5: Computation of the Similarity Among Policies.

6.1 A Similarity Metric Between Policies

As introduced below, we call§, the optimal action policy for solving the task To be optimal
means thatV" > W1, for all policieslII in the space of all possible policies. Then, the following
theorem can be derived.

Theorem: Given two different tasks(); and();, and their optimal policiesll,, andIlg,
respectively, then:

* 5
Wolt > Wy ¥, £ O, @)

It is easy to demonstrate this theorem, given ligtis the optimal policy for the task that we
are involved in now, i.ef);. That ensures the maximum expected reward will be recegigdn
that:

Vi (s) > R(s,a) + 32, es (s, a, s’)VH?2 (), fora = arg, maxIlg (s,d’).

IT¥
The previous theorem ensures th@g — Wy, > (. Therefore, we can define how useful
the policyll; could be in learning the pollclg{ using the distance metric shown in equation 3.
d_ (I, 1) = Wi 3)

In this case the distance metric is not symmetric,dsqll;, I1;) could be different from
d_.(I1;,11;). Then, the most useful policy to reuse is:

* H*
argq, min(WgQ — WQ“Z'),@' =1,...,n (4)

However,Wga is independent of, so the previous equation is equivalent to:

H*
argg, max(Wo™),i=1,...,n (5)

This equation is not possible to compute, given ﬂh@l‘;{t”i is unknown a priori. Furthermore,
if we follow the policyll;, greedily, probably the task will never be solved. However, if instead
of following 115, greedily, we reuse it following the-reuse exploration strategy, we can compute
the gain of reusingly, to solvef). In this sense, all the past policies could be reused, camgput
their respective gains, until an accurate estimation igiobtl. Then, past policies with a lower
gain are discarded, and the one with a higher gain is usecin-thuse exploration strategy. The
next section describes a simple algorithm that appliestitesas.

6.2 An Algorithm for Policy Reuse

A basic algorithm for policy reuse from a set of policies riegsithe following two steps:

¢ Obtain the most similar policy],. To do this, itis necessary (i) to compute the gain obtained
when following ther-reuse exploration policy with each of the past policies] &) to
choose the policy with a higher gain. We call the number of trials used to learn the
similar policy.

e Learn a new action policy]g. II; is used in ther-reuse exploration strategy to learn a new
action policy. We callK,. the number of trials used to learn the new policy.

The previous steps are formalized in Table 2 where we assbiate-reuse is a method that
we can call with the parameters defined in Table 1.

9

Policy Reuse Algorithm

e Given:

1. Asetofn tasks{,...,Q,}.

2. Their respective optimal policiegll;, , ..., IL;, } to solve them
3. A new task2, that we want to solve

4. A maximum number of steps per trid,

5. A maximum number of trials to executk,

6. The tuple of integer values; K, K, >, suchask' = K, + K,
7. The parameterg andv used in the exploration strategyreuse.

e fori=1tondo

1. Executer-reusell;, K /n, H, ¢, v).
2. Obtain the associated gaif;.

o Setlly = argy, max IV;
e Learnllg by callingr-reusell,, K., H, 1, v)

Table 2: An Algorithm for Policy Reuse

6.3 Empirical Results

Figure 6 shows the learning curve obtained when the Polieis®algorithm is executed for two
set of parameterds, = 100 and K, = 1900, and K, = 400 and K,, = 1600 respectively. This
learning curve demonstrates that, even when the similacypolust be computed, policy reuse
can be very useful to bias the exploration of a learning megeroviding better performance than
learning from scratch. The test curves correspond with tieestiown in Figure 4(b) when reusing
I14, but delayed:, steps.

However, the success of policy reuse, when it is applied ¢edpp learning, depends on sev-
eral factors. For instance, it requires the definition ofthkies of K, and K, that, at the same
time, could depend of the domain, the task, and the numbestfgolicies available. Furthermore,
it does not make the most of the experience obtained; foamast, the experience used in the com-
putation of the most similar policy could be used also torledhe new policy. Thus, more accurate
algorithms should reduce the number of parameters usedcad outperform the results.

7 Conclusions and Further Research

In this report, we have described Policy Reuse as an exparaias that balances the exploration
of random actions, the exploitation of the ongoing learnelitp, and the exploration toward of a

10

0.25
0.2 ‘@7@”@7@7”@@, 5 338 —§~?;
¥ ¥2 ERERE Ty
0.15F % 1 1+ T E
z - ¥ Lt
A :r,jr
01F 1§ LA N
' b % o F
0.05F 1+ 7. -
2R
0 I I I I I I I I

|
0 200 400 600 800 1000 1200 1400 1600 1800
Trials

Ks=100 " Ks=400" - - -

Figure 6: Learning Curve when following the Policy Reuseoatfym.

past policy. We have instantiated the concept of Policy Béysdefining a new exploration strat-
egy,-reuse. This new strategy successfully achieves the previalance, and has demonstrated
that it can improve the learning performance obtained wlkaming from scratch with different
strategies.

Furthermore, we have demonstrated that Policy Reuse m®wddsimilarity metric between
policies. Such a metric allows to discriminate, from a sepas$t policies, which is the most
similar one to the policy we currently are learning.

Policy Reuse and the concept of similarity introduced is thork open a wide range of chal-
lenging research lines, including across domain or agemhieg and the ability to scale RL in
complexity considerably.

References

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapiream@ling in a rigged casino:
The adversarial multi-armed bandit problem. In IEEE Corep&ociety Press, editd36th
Annual Symposium on Foundations of Computer Scigramges 322—-331, 1995.

[2] Michael Bowling and Manuela Veloso. Bounding the sulmatity of reusing subproblems.
In Proceedings of IJCAI-991999.

[3] James Bruce and Manuela Veloso. Real-time randomiz#éidganning for robot navigation.
In Proceedings of IROS-2003witzerland, October 2002. An earlier version of this pape
appears in the Proceedings of the RoboCup-2002 Symposium.

[4] James Carroll and Todd Peterson. Fixed vs. dynamic suisfer in reinforcement learn-
ing. InProceedings of the International Conference on Machinehieg and Applications
2002.

11

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Thomas G. Dietterich. Hierarchical reinforcement leag with the MAXQ value function
decompositionJournal of Artificial Intelligence Researcth3:227-303, 2000.

Fernando Fernandez and Daniel Borrajo. On determitiandling while learning reduced
state space representations Phoceedings of the European Conference on Atrtificial Intell
gence (ECAI 2002)Lyon (France), July 2002.

M. L. Puterman.Markov Decision Processes - Discrete Stochastic DynamigiRmming
John Wiley & Sons, Inc., New York, NY., 1994.

H. Robbins. Some aspects of the sequential design ofrerpets.Bulletin American Math-
ematical Society55:527-535, 1952.

Richard S. Sutton, Doina Precup, and Satinder Singhradoption learning about tempo-
rally abstract actions. IRroceedings of the Internacional Conference on Machineriieg
(ICML’98), 1998.

Sebastian Thrun. Efficient exploration in reinforcemnkearning. Technical Report C,I-CS-
92-102, Carnegie Mellon University, January 1992.

Sebastian Thrun and Tom Mitchell. Lifelong robot léagh Robotics and Autonomous
Systemgsl5:25-46, 1995.

Sebastian Thrun and A. Schwartz. Finding structureinforcement learning. I1Advances
in Neural Information Processing SystemswidT Press., 1995.

[13] William T. B. Uther. Tree Based Hierarchical Reinforcement LearniRipD thesis, Carnegie

[14]

Mellon University, August 2002.

C. J. C. H. Watkins.Learning from Delayed Rewards$?hD thesis, King’'s College, Cam-
bridge, UK, 1989.

12

