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Abstract

We consider the problem of reconstructing near-perfect phylogenetic trees using binary character
states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most
once in the evolutionary tree, yielding an algorithm for binary character states that is computa-
tionally efficient but not robust to imperfections in real data. A near-perfect phylogeny relaxes
the perfect phylogeny assumption by allowing at most a constant number of additional mutations.
In this paper, we present a simple lower bound for the size of an optimal phylogeny, develop two
algorithms for constructing optimal phylogenies and show experimental results for one of the vari-
ants. The first algorithm is intuitive and reconstructs an optimal near-perfect phylogenetic tree in
time (q + κ)O(q)nm + O(nm2) where κ is the number of characters that share four gametes with
some other character. A second, more involved algorithm shows the problem to be fixed param-
eter tractable in q by solving it in time qO(q)nm + O(nm2) where n is the number of taxa and
m is the number of characters. This is a significant improvement over the previous best result of
nmO(q)2O(q2s2), where s is the number of states per character (2 for binary). We implement the first
algorithm and show that it finds the optimal solution quickly for a selection of population datasets
including mitochondrial and Y chromosome samples from humans and other primates. Our results
describe the first practical phylogenetic tree reconstruction algorithm that finds guaranteed optimal
solutions while being easily implemented and computationally feasible for data sets of biologically
meaningful size and complexity.





1 Introduction

One of the core areas of computational biology is phylogenetics, the reconstruction of evolutionary
trees [13]. This problem is often phrased in terms of a parsimony objective, in which one seeks
the simplest possible tree to explain a set of observed organisms. Parsimony is a particularly
appropriate metric for trees representing short time scales, which makes it a good choice for inferring
evolutionary relationships among individuals within a single species or a few closely related species.
The intraspecific phylogeny problem has become especially important in studies of human genetics
now that large-scale genotyping and the availability of complete human genome sequences [23, 16]
have made it possible to identify millions of single nucleotide polymorphisms (SNPs) [21, 25], sites
at which a single DNA base takes on two common variants. If we wish to be able to infer the most
plausible evolutionary histories on the rapidly growing human variation datasets, we can expect a
growing need for algorithms for the intraspecies phylogeny problem capable of dealing with large
data sets, especially large SNP data sets.

Minimizing the length of a phylogeny is the problem of finding the most parsimonious tree, a well
known NP-complete problem [10]. Researchers have thus focused on either sophisticated heuristics
(for e.g [11], [4]) or solving optimally for special cases (fixed parameter variants, for e.g, [1], [17]).
Heuristics such as hill climbing searches are particularly popular among programs that optimize
for the parsimony objective, but can result in solutions far from optimal. A popular alternative
is to use branch-and-bound algorithms, which guarantee an optimal solution on termination but
are computationally intensive and therefore cannot scale to more than a few taxa. Our algorithms
can guarantee optimality on termination and can scale to sizes much larger than branch-and-
bound. Previous attempts at such solutions for the general parsimony problem have only produced
theoretical results, yielding algorithms too complicated for practical implementation.

Fernandez-Baca and Lagergren recently considered the problem of reconstructing optimal near-
perfect phylogenies [9], which assume that the size of the optimal phylogeny is at most q larger
than that of a perfect phylogeny for the same input size. They developed an algorithm to find the
most parsimonious tree in time nmO(q)2O(q2s2), where s is the number of states per character, n is
the number of taxa and m is the number of characters. This bound may be impractical for sizes
of m to be expected from SNP data, even for moderate q. Given the importance of SNP data, it
would therefore be valuable to develop methods able to handle large m for the special case of s = 2,
a problem we call Binary Near Perfect Phylogenetic tree reconstruction (BNPP).

Here we present theoretical and practical results on the optimal solution of the BNPP problem.
We first prove a simple lower bound on the size of the optimal phylogenetic tree. We then completely
describe and analyze an intuitive algorithm for the BNPP problem that has running time (q +
κ)O(q)nm + O(nm2), where κ is the number of characters that are involved in the four gamete
condition. This algorithm is fixed parameter tractable when q and κ are constants. Since κ can
be at most the number of characters in the input, our algorithm can never have a worse running
time than the prior algorithm. In practice we find that κ is about the same as q and therefore,
the running time of our algorithm is not exponential in the size of the input. Fernandez-Baca
and Lagergren [9] stated that the most important open problem in the area is the proof of W[1]-
hardness or showing the existence of an FPT algorithm for near-perfect phylogeny. We show, using
a somewhat more complicated algorithm that BNPP can be solved in time qO(q)nm + O(nm2),
proving for the first time that BNPP is in FPT.

We demonstrate our initial intuitive algorithm on a selection of real data sets, including examples
of mitochondrial and Y-chromosome data. We find that the algorithm generally substantially
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outperforms its worst-case bounds. The results show the method to be fast for real data sets of
interest and in at least one case to yield superior results to a commonly used heuristic method for
these problems.

We first develop formal definitions and fundamental theorems in the following section. We
provide the complete pseudo-code for the first algorithm in Figures 2 and 3. In Section 3.1 we
prove the correctness of the algorithm. In section 4 we provide a highlevel description and analysis
of the faster algorithm . Finally, in section 6, we conclude with experimental results and discussion.

2 Related Work and Problem Specification

A phylogenetic tree T is called perfect if for all states s and characters c, all taxa having state s at
character c lie in a connected component of the phylogeny. The problem of reconstructing perfect
phylogenies was proved to be NP-hard independently by Bodlaender et al. [2] and Steel [20]. Some
special cases of the phylogeny model can be solved optimally and efficiently. Gusfield considered
an important special case of the perfect phylogeny problem when the number of states is bounded
by 2, called the binary perfect phylogeny problem (BPP), showing that such phylogenies can be
reconstructed in linear time [12]. Day and Sankoff [6], however, showed that finding the maximum
subset of characters containing a binary perfect phylogeny is NP-complete. Bodlaender et al. [3]
proved a number of crucial negative results, among them that finding the perfect phylogeny when
the number of characters is fixed is W [t]-hard for all t. Since FPT ⊆W [1], this shows in particular
that the problem is not fixed parameter tractable (unless the complexity classes collapse).

In defining formal models for parsimony-based phylogeny construction, we borrow definitions
and notations from Fernandez-Baca and Lagergren [9]. The input used for the phylogeny recon-
struction problem is a matrix I where rows R represent taxa and are strings over states. The
columns C = {1, · · · ,m} are referred to as characters. The set of states corresponding to any
character c is denoted by Ac. Thus, every taxon r ∈ A1 × · · · × Am. In a phylogenetic tree, or
phylogeny, each vertex v corresponds to a taxon and has an associated label l(v) ∈ A1 × · · · ×Am.

Definition 1 A phylogeny for a set of n taxa R is a tree T (V,E) with the following properties:

1. if a taxon r ∈ R then r ∈ l(V (T ))

2. for all (u, v) ∈ E(T ), H(l(u), l(v)) = 1 where H is the Hamming distance

Definition 2 The length of a phylogeny T , length(T) = |E(T )|

Definition 3 The penalty of phylogeny T , penalty(T ) = length(T )−
∑

c∈C(|Ac| − 1)

Definition 4 A vertex v of phylogeny T is terminal if l(v) ∈ R and Steiner otherwise.
The BNPP problem: Given an integer q and an n×m input matrix I, where each row(taxon)

r ∈ {0, 1}m, find a phylogeny T such that penalty(T ) is minimized or declare NIL if all phylogenies
have penalty larger than q. The problem is equivalent to finding the minimum Steiner tree on a
hyper-cube if the optimal tree is at most q larger than the number of dimensions or declaring NIL

otherwise. The problem is fundamental and therefore expected to have diverse applications besides
phylogenies.
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3 Simple Algorithm

Our algorithm breaks the BNPP problem into several instances of perfect phylogeny problem. The
perfect phylogeny solutions are then linked to form the near perfect phylogeny. We start with some
basic notations and definitions, and follow it up with a high level description of the algorithm along
with complete pseudo-code.

Definition 5 We define the following notations:

• l(v) ∈ {0, 1}m: the taxa that vertex v of the phylogeny represents

• r[i] ∈ {0, 1}: the state in character i of taxa r

• µ(e) : E(T )→ C: the character corresponding to edge e = (u, v) with the property l(u)[µ(e)] 6=
l(v)[µ(e)]

• mul(c′, T ): for any character c′ and phylogeny T is the number of times c′ mutates in T , i.e
|{e ∈ T | µ(e) = c′}|

We say that an edge e mutates character c′ if µ(e) = c′. We will use the following well known
definition and lemma on phylogenies:

Definition 6 The set of gametes Gi,j for characters i, j is defined as: Gi,j = {(k, l)|∃r ∈ R, r[i] =
k, r[j] = l}. Two characters i, j ∈ C contain (all) four gametes when |Gi,j | = 4.

Lemma 3.1 [12] The most parsimonious phylogeny for input I is not perfect if and only if I
contains the four-gamete property.

Input Assumptions

If no pair of characters in input I contains the four-gamete property, we can use Gusfield’s elegant
algorithm [12] to reconstruct a perfect phylogeny. We assume that the all zeros taxa is present in
the input. If not, using our freedom of labeling, we convert the data so that it contains the same
information with the all zeros taxa (see section 2.2 of Eskin et al [7] for details). We now remove
any character that contains only one state. Such characters do not mutate in the whole phylogeny
and are therefore useless in any phylogeny reconstruction. We also assume that for every pair
of characters c′, c′′, |Gc′,c′′ | ≥ 3. This does not change the general problem, since if |Gc′,c′′ | = 2,
then the characters c′, c′′ contain identical information and such pairs are usually referred to as a
non-informative pair of characters. We show at the end of Section 3.1 how to pre-process the input
such that this condition holds for all characters.

Conflict Graph G

The conflict graph G, introduced by Gusfield et al. [14], is used to represent the imperfectness of
the input in a graph. Each vertex v ∈ V (G) of the graph represents a character c(v) ∈ C. An
edge (u, v) is added if and only if all the four gametes are present in c(u) and c(v). Let V C be any
minimum vertex cover of G. We now show a simple but useful lower bound on the perfectness of
the optimal phylogeny:
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Figure 1: An unrooted phylogeny T and skeleton s(T,C ′) with C ′ = {1, 8}. Edges are labeled with
characters that mutate µ and super nodes with tags t. For conciseness, we show the tag only on
the characters that mutate in s(T,C ′); they contain 0 in all other characters. Note that the tags
are not unique.

Lemma 3.2 For any phylogeny T , penalty(T ) ≥ |V C|.

Proof: Follows immediately from the fact that for any pair of characters (i, j) s.t. |Gi,j | = 4, the
phylogeny T must contain two edges e, e′ s.t. either µ(e) = µ(e′) = i or µ(e) = µ(e′) = j. �

We now introduce definitions that will be used to decompose a phylogeny:

Definition 7 For any phylogeny T and set of characters C ′ ⊆ C:

• a super node is a maximal connected subtree T ′ of T s.t. for all edges e ∈ T ′, µ(e) /∈ C ′

• the skeleton of T , s(T,C ′), is the tree that results when all super nodes are contracted to
a vertex. The vertex set of s(T,C ′) is the set of super nodes. For all edges e ∈ s(T,C ′),
µ(e) ∈ C ′.

Definition 8 A tag t(u) ∈ {0, 1}m of super node u in skeleton s(T,C ′) has the property that
t(u)[c′] = l(v)[c′] for all c′ ∈ C ′ and vertices v ∈ u; t(u)[i] = 0 for all i /∈ C ′.

Throughout this paper, wlog we will deal with phylogenies and skeletons that are rooted at
the all zeros taxa and tag respectively. Note that in such skeletons, tag t(u)[i] = 1 iff character i
mutates an odd number of times in the path from the root to u. Figure 1 shows an example of a
skeleton of a phylogeny. We will use the term sub-phylogeny to refer to a subtree of a phylogeny.

Overview of the Algorithm

Throughout the analysis, we fix an optimal phylogeny Topt and show that our algorithm finds it.
We assume that both Topt and its skeleton is rooted at the all zeros label and tag respectively.
The algorithm starts by determining the set of characters c(Vnis) that corresponds to the non-
isolated vertices of the conflict graph. We will later show that s(Topt, c(Vnis)) contains a perfect
sub-phylogeny in every supernode. The algorithm then guesses the skeleton S so that it is the
same as s(Topt, c(Vnis)). The algorithm can now determine the super node where every taxon
resides using the tags of the super nodes. We will later show that the tags of s(Topt, c(Vnis)) are
unique. These steps are performed by function buildNPP of the pseudo-code in Figure 2. We have
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function buildNPP ( matrix M , integer q )

1. Let G(V,E) be the conflict graph of M

2. Let Vnis ⊆ V be the set of non-isolated vertices

3. Guess skeleton tree S(Vs, Es) s.t. µ(e) ∈ c(Vnis) for all e ∈ Es and penalty(S) ≤ q

4. If there exists super nodes u, v ∈ Vs s.t. tags t(u) = t(v), then return NIL

5. Define λ : R 7→ Vs s.t. λ(r) = u iff for all i ∈ c(Vnis), r[i] = t(u)[i]

6. Tf := linkTrees (S(Vs, Es))

Figure 2: Pseudo-code to find the skeleton.

therefore reduced the problem of reconstructing an imperfect phylogeny to constructing several
perfect phylogenies and linking them together.

For each super node, the algorithm now constructs a unique perfect phylogeny on the set of taxa
that resides in it. To determine the root of this sub-phylogeny it finds a small set Pi of candidate
vertices based on the states they share with the rest of the phylogeny. The algorithm then links the
rooted perfect sub-phylogenies using the skeleton edges in function linkTrees of the pseudo-code
in Figure 3. We prove the correctness of the pseudo-code in the following section.

3.1 Algorithm correctness

After some basic definitions, we will first prove the correctness of function buildNPP. We do this by
first showing that the tags of the supernodes in the skeleton are unique in Corollary 3.7. This enables
us to define function λ at Step 5 of function buildNPP. Throughout the analysis of correctness we
will assume that every ‘guess’ in the pseudo-code is ‘correct’. The correctness of a guess is defined
as follows (these definitions may assume that previous guesses have all been correct):

1. Step 3 of function buildNPP: In Topt, contracting edges e, µ(e) /∈ c(Vnis) results in tree S.

2. Step 2f of function linkTrees: In Topt, w is the root of the minimal sub-phylogeny containing
all terminal vertices of Si.

At the heart of many FPT algorithms is a kernalization proof that shows that the search space
of optimal solutions (kernel) is significantly smaller than the space of all solutions. The following
definitions and transform are useful in establishing that phylogenies outside a small kernel are non-
optimal. These are pertinent only for the proofs of Lemmas 3.4 and 3.6 and are not required for
the understanding of the rest of the paper.

Definition 9 A vertex v in a phylogeny T is bad w.r.t (i, j) if the states at characters i, j of l(v) is
not present in the input, i.e (l(v)[i], l(v)[j]) /∈ Gi,j. Note that by definition bad vertices are Steiner
vertices.
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function linkTrees ( skeleton S(Vs, Es) )

1. Let R′ := R

2. For any leaf super-node Si ∈ Vs do

(a) Let Ri := {r ∈ R′|λ(r) = Si}

(b) Let Ti := perfect-phylogeny ( Ri )

(c) Let Pi := vertex set of Ti

(d) for every character c s.t. there exists e ∈ Ti, µ(e) = c do

i. if for all taxa r1, r2, (λ(ri) ∈ S \ Si) =⇒ (r1[c] = r2[c]),
then remove all vertices v from Pi if l(v)[c] 6= r[c] for any r, λ(r) ∈ S \ Si

(e) Let c′ := µ(Si,parent(Si))

(f) Guess vertex w from Pi, and let w′ be a vertex with l(w′)[c′] 6= l(w)[c′] and
l(w′)[i] = l(w)[i] for all i 6= c′

(g) Add w′ to R′, let λ(w′) = parent(Si) and remove leaf Si from S

3. repeat step 1 until S is empty

Figure 3: Pseudo-code to construct and link perfect phylogenies to form a near-perfect phylogeny.

Definition 10 The neighborhood Ni,j(v) of a vertex v ∈ T w.r.t a pair of characters i, j is

Ni,j(v) = {u | path v → u does not contain edge e st µ(e) = i or j}

A neighborhood is bad or Steiner if every vertex in the neighborhood is bad or Steiner respectively.

Definition 11 The boundary of Ni,j(v) for a phylogeny T (V ′, E′) is the set of edges that connect
vertices in Ni,j(v) to the rest of the tree, i.e {(v1, v2) ∈ E′ | v1 ∈ Ni,j(v), v2 /∈ Ni,j}.

Transform τ : We now introduce transform τ that is used to restructure a phylogenetic tree.
Let N denote a Steiner (possibly bad) neighborhood w.r.t (i, j). Transform τi,j(N) deletes the
mutations of character i from the boundary and adds mutation of i after every mutation of j in the
boundary. Since the neighborhood is Steiner, if the tree T was previously a phylogeny, it remains so
after an application of transform τ . Since the length of the phylogeny after the transform changes
iff the number of mutations of i and j at the boundary are different, we can prove the following
simple claim:

Claim 3.3 In any optimal phylogeny Topt, every Steiner neighborhood Ni,j has an equal number of
mutations of i and j at the boundary.

The following two lemmas prove that the structure of Topt is restrictive. Intuitively, if a character
x mutates twice in Topt, then there has to be a mutation of character x′ that lies between the two
mutations of x s.t. x and x′ share all four gametes in the input. The following lemma is a slightly
stronger statement:

Lemma 3.4 A phylogeny T with the following properties cannot be optimal:
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Figure 4: Proof of Lemma 3.6: Figure (a) deals with the case when Nx,y(v1) is bad, Figure (b) is
the phylogeny before applying τx,y(v2) and Figure (c) is the phylogeny after transform τx,y(v2).

• there exists character x and edges e1 = (v1, v2) and e2 = (v5, v6) s.t. µ(e1) = µ(e2) = x

• for all characters x′ s.t. |{e ∈ path v2 → v5 | µ(e) = x′}| is odd, at least one of the four
induced neighborhoods Nx,x′(v1), Nx,x′(v2), Nx,x′(v5), Nx,x′(v6) is Steiner

Proof: For the sake of contradiction, assume not. Among the optimal phylogenies that violate the
above property, select a phylogeny in which H(l(v1), l(v6)) is minimized, where H is the Hamming
distance. Since optimality prevents l(v1) and l(v6) to be identical, we should have some character
y that mutates an odd number of times in the path v2 → v5, i.e |{e ∈ path v2 → v5 | µ(e) = y}| is
odd. First consider the case when Nx,y(v2) is Steiner (Nx,y(v5) is symmetric). We can now apply
transform τy,x(Nx,y(v2)), which results in an optimal phylogeny with H(l(v1), l(v6)) reduced by
one, a contradiction. This is because a mutation of y is removed from the path v2 → v5. Now con-
sider the case when neighborhood Nx,y(v1) is Steiner (Nx,y(v6) is symmetric). Applying transform
τy,x(Nx,y(v1)) results in adding a mutation of y into the path v2 → v5 and once again yields an
optimal phylogeny where the Hamming distance is reduced by one, contradiction. �

The following simple corollary to the above lemma states that if a character corresponding to
an isolated vertex of the conflict graph mutates more than once, then the phylogeny is non-optimal:

Corollary 3.5 For all isolated vertices v /∈ Vnis, in any optimal phylogeny Topt, mul(c(v), Topt) = 1.

Lemma 3.6 The tags of the super nodes in skeleton s(Topt, c(Vnis)) are unique.

Proof: We start the proof with a definition that characterizes the structure of the phylogeny:

Definition 12 The sandwich strength of an optimal phylogeny Topt(V
′, E′) is the number of dis-

tinct ordered pairs of characters (µ(x), µ(y)), s.t. x and y are non-isolated and isolated vertices of
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the conflict graph respectively, and there exists edge e, µ(e) = y in the path connecting two mutations
of x: |{(x, y) | x ∈ Vns, y /∈ Vns,∃e1, e2, e3 ∈ E′, µ(e1) = µ(e2) = x, µ(e3) = y and e3 ∈ path e1 →
e3}.

For the sake of contradiction assume that there exist optimal phylogenies with super nodes
u, u′ ∈ Vs s.t. tags t(u) = t(u′). Among the optimal phylogenies select Topt based on the following
criteria (in order):

• the minimum distance between any two super nodes of identical tags is minimized

• the sandwich strength of Topt is minimized

In Topt, let u and u′ be the super nodes with t(u) = t(u′) separated by minimum distance (see
Figure 4). Since Topt is optimal, we know that l(u′

1) 6= l(u′

2). Therefore, in Topt there exists char-
acter y that mutates an odd number of times in the path connecting super nodes u and u′. Since
t(u) = t(u′), the path connecting u and u′ should have even mutations of every character corre-
sponding to non-isolated vertices of the conflict graph G. This implies that y /∈ c(Vnis) and therefore
mul(y) = 1; let µ(v3, v4) = y be the only mutation of character y. Note that because of our selection
of u, u′ there exists no super node u′′ ∈ path u → u′ with t(u′′) = t(u). Therefore, there exists
character x and vertices v1, v2, v5, v6 st µ(v1, v2) = µ(v5, v6) = x and (v3, v4) ∈ path v2 → v5. This
shows that the sandwich strength of Topt is non-zero. Since y /∈ c(Vnis) we know that |Gx,y| < 4.
Therefore at least one of the four neighborhoods: Nx,y(v1), Nx,y(v2), Nx,y(v5), Nx,y(v6) is bad. The
case when Nx,y(v1) is bad is easy to handle using Claim 3.3 and the property that mul(y) = 1.
Consider the case when Nx,y(v2) is bad. We now perform transform τx,y(Nx,y(v2)). As shown in
the Figure, (y, x) no longer contributes to the sandwich strength. It is easy to see that there exists
no additional character z such that (z, x) contributes to the sandwich strength after the transform.
Therefore the sandwich strength reduces by at least one, a contradiction. The case when Nx,y(v5)
or Nx,y(v6) is bad is symmetric. �

Corollary 3.7 The tags found in step 5 of function buildNPP are unique.

This completes the proof of correctness of function buildNPP. To conclude the analysis, we now
show that every super node of Topt contains a perfect phylogeny and then follow it with a proof of
correctness of function linkTrees. Finally we provide proofs that the two guesses performed by
our algorithm can be implemented efficiently.

Lemma 3.8 The sub-phylogeny contained in every super node of every optimal phylogeny Topt is
perfect.

Proof: For the sake of contradiction, assume not. Let edges e1, e2 lie in super node Si with
µ(e1) = µ(e2) = c′. Using Lemma 3.4 we know that the path connecting e1 and e2 should contain
some character c′′ s.t. |Gc′,c′′ | = 4. However, neither character is a skeleton edge mutation, (i.e.)
c′, c′′ /∈ µ(Es) and c′, c′′ /∈ c(Vnis). This shows that c′, c′′ were isolated in the conflict graph, a
contradiction to Corollary 3.5. �

Assume that skeleton S has been guessed and so s(Topt) = S(Vs, Es). We can now use the
skeleton S to decompose Topt into connected components, each of which corresponds to a super
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node in Vs. We can therefore say that a vertex v ∈ Topt belongs to super node u ∈ Vs, if it lies in
the connected component of Topt that corresponds to u. Similarly, we can say that a skeleton edge
e ∈ Es is the ‘same’ as an edge e′ in Topt if it joins the corresponding set of connected components.

Lemma 3.9 In function linkTrees a vertex that is not present in Pi cannot be the root of the
minimal subtree of Topt containing all terminal vertices of Si.

Proof: Recall that the perfect phylogeny constructed in Si is Ti. If a vertex v ∈ Ti is not in Pi,
then there exists character c s.t. l(v)[c] = 0 (wlog) and for all terminal vertices of Topt, v′ ∈ S \ Si,
v′[c] = 1. Furthermore, there exists e, µ(e) = c in Ti and therefore c is not a mutation of any
skeleton-edge, c /∈ µ(Es). For the sake of contradiction assume that v is the root, then there exists
e, µ(e) = c in Sj ∈ S \ Si of Topt. Using Corollary 3.5 we know that c ∈ Vnis. This implies that
c ∈ µ(Es), a contradiction. �

We now informally describe the correctness of function linkTrees. Let Ri be the taxa assigned
to super node Si. Since the skeleton s(Topt, c(Vnis)) was guessed and the tags are unique, Ri contains
all the labels of terminal vertices of Si in Topt. Assume inductively that Ri contains the labels of
the vertices of Topt that connect Si to any child. We can now construct a unique perfect phylogeny
Ti. It is not hard to show the following two details. Even though a pair of characters might not
share three gametes in Ri, the third gamete in Ti should be the same as the third gamete in the
input for those characters. There exists an optimal phylogeny Ti s.t. there is no degree 2 Steiner
vertex v is adjacent to the edge (Si,parent(Si)). We guess the root w correctly and therefore we
can add vertex w′ into parent(Si). This completes the perfect phylogeny for Si, and w′ added into
parent(Si) ensures that the vertex that connects Si and parent(Si) is present in parent(Si). The
proof follows inductively.

We now analyze the two guesses performed by our algorithm.

Lemma 3.10 The probability of a correct guess at Step 2f of function linkTrees is at least O(q−1).

Proof: We will prove the lemma by showing that |Pi| ≤ q + 1. Consider any character c s.t. there
exists e ∈ Si with µ(e) = c. By the construction of set Pi if c has a single state s in S \ Si, then
l(v)[c] = s. This implies that for any two vertices v1, v2 ∈ Pi if l(v1)[c] 6= l(v2)[c], then character
c mutates at least two times in Topt – once in Si and at least once in S \ Si. Therefore there are
at most q characters c in which the vertices of Pi can differ. Since Ti is a perfect phylogeny, each
character c can mutate at most once in Ti. It follows that there are at most q + 1 vertices in Pi. �

Corollary 3.11 The probability all guesses at Step 2f in function linkTrees are correct is at least
q−O(q).

Proof: Each time we perform a guess at Step 2f of function linkTrees, with |Pi| > 1, we know
that there exist edges e1 ∈ Si and e2 ∈ S \ Si s.t. µ(e1) = µ(e2). In other words, we have a
mutation of a character c in super node Si that mutates at least once more in S \ Si. This proves
that there are at most O(q) such super nodes Si where a guess with |Pi| > 1 has to be performed. �

Lemma 3.12 Step 3 of buildNPP can be implemented with correct guess probability atleast (q +
κ)−O(q).

9



Figure 5: Detailed proof of Lemma 3.12. The initial skeleton super nodes u are filled circles. The
skeleton ρ(u) if present, is shown inside the corresponding super node u. Initially S is a perfect
phylogeny. Super node of ρ skeleton marked with * is guessed. Super node marked with + is found
based on the states of the taxa present in the child.

Proof: We first show that this probability is bounded by (q + κ)−O(q+κ). We start by guessing
mul(c′, Topt) for all c′ ∈ c(Vnis). Since there are

(

q+κ
q

)

different ways of assigning mul(c′, Topt), the

probability of guessing correctly is at least (q +κ)−q. We can now guess the skeleton as a tree with
2q +κ labelled edges. Using a naive bound on the number of edge-labelled trees [18], we know that
the probability of a correct guess is at least (2q + κ + 1)−(2q+κ−1).

We first provide the intuition for the improved analysis. We can improve the previous im-
plementation by first guessing the set of characters M for which mul(c′, Topt) > 1. We can now
construct a unique perfect phylogeny P on the characters c(Vnis) \M . The number of different
ways of extending P by the addition of edges mutating M is bounded by κ2qqO(q). This essentially
proves the above lemma. We now provide the detailed proof.

As mentioned above we begin with guessing the characters M of c(Vnis) that mutate more than
once. There are at most q such characters and so the probability that our subset is correct is at
least κ−q−1. We can now guess mul(c′) for all c′ ∈ M with overall probability 1/

(

2q
q

)

. Using our
observation we can construct a perfect phylogeny on the characters of Vnis \M .

The perfect phylogeny is unique since for all pairs of characters c′, c′′ ∈ Vnis \M , |Gc′,c′′| = 3
[12]. Since the all zeros taxa is present, we root skeleton S at the all zeros tag. This will be our
initial skeleton S with the super node tags defined by the characters in Vnis \M . We will now
expand S so that it also contains mutations of characters in M . Note that in Topt any mutation of
a character in M lies in one of the super nodes of S. Since we already guessed mul(c′) for all c′,
we can now guess the supernode that contains each mutation of each character. This has a success
probability of at least κ−2q. For every super node u ∈ S using the characters of M assigned to it,
we can guess a second skeleton ρ(u) by brute-force with overall probability of success (2q+1)−2q−1,
since the number of possible edge-labelled trees with k edges is (k + 1)k−1 [18]. For all ρ(u) we can
also guess the root and its tag with overall probability at least (2q)−q. We now have a skeleton
S and a skeleton ρ(u) associated with some of the super nodes u of S as shown in Figure 5. The
skeletons ρ(u) will replace the super nodes u to obtain the final skeleton. For any u, note that the
tags of ρ(u) defined by the characters µ(e), e ∈ ρ(u) are unique due to Corollary 3.7.
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The final step that remains is to replace u by ρ(u) and link using the edges of S. We perform
the linking bottom-up starting from the leaves and working up to the root of S. Since we have a
perfect phylogeny, the tags of S are unique. Therefore for any super node u ∈ S, we know exactly
the set of taxa that lie in the supernode. Every pair of characters c′, c′′ ∈ Vnis \M mutate just once
in Topt and share exactly three gametes. Therefore every super node u contains at least one taxa
(not completely composed of Steiner vertices) in Topt.

We now have four cases for any super node u and parent(u) of skeleton S based on whether
each super node contains multiple mutations. If both super nodes do not contain any multiple
mutations (i.e we do not have ρ(u) or ρ(parent(u))), then there is nothing to do to process u.
Similarly, if ρ(parent(u)) does not exist but ρ(u) does, then we simply connect the root of ρ(u) to
parent(u). If ρ(u) does not exist but ρ(parent(u)) does, then we find the supernode in ρ(parent(u))
that has the same tag as the taxa assigned to u. If both contain multiple mutations, then we need
to guess a super node in ρ(parent(u)) to connect to the root of ρ(u). This node can be guessed
with probability 1/q. Note that during this linking phase, we only perform a guess when both ρ(u)
and ρ(parent(u)) exists. Since the number of supernodes of S with multiple mutations is O(q), the
probability that all the guesses are correct during the bottom-up linking phase is q−O(q). �

Derandomizing: Although we presented a randomized algorithm for ease of exposition, our algo-
rithm can be naively derandomized. Consider the guesses performed in the implementation of step
3 of function buildNPP as described in the proof of Lemma 3.12. It is easy to see that every guess
can be performed in time equal to the reciprocal of the probability. Similarly, instead of guessing
a root from set Pi of function linkTrees, we simply enumerate all possible roots from set Pi.
Pre-processing input I: For every pair of characters c, c′ if |Gc′,c′′ | = 2, we (arbitrarily) remove
character c′′. Note that, at the end of this step, for all characters c′, c′′, |Gc′,c′′ | ≥ 3. Let the original
input be I1 and the processed input be I2. It is not hard to show that since c′, c′′ are essentially
identical, mul(c′, Topt) = mul(c′′, Topt) in any optimal phylogeny for I1. Contracting any edge e
s.t. µ(e) is a character c′′ in I1 but not in I2, results in a phylogeny T2 for I2. We can now add
back the characters c′′ of I1 that were absent in I2 by placing them adjacent to mutation of every
character c′. Since this is a phylogeny T1 for I1 with mul(c′, T1) = mul(c′′, T1), it has to be the
optimal phylogeny for I1. The relative ordering of c′, c′′ determines the third gamete. Even though
T2 might not be optimal for I2, it has to be the case that for all vertices v1, v2 ∈ T2, l(v1) 6= l(v2)
since the labels of T1 are unique. Furthermore, since T1 is q-near perfect, contracted tree T2 has to
be q-near perfect. Therefore, our algorithm finds phylogeny T2 as described above and can identical
characters at the end to obtain T1. Alternatively, we can arbitrarily declare a third gamete for every
pair of characters c′, c′′ at the start of the algorithm without a pre-processing step.

4 Achieving FPT for BNPP

Fernandez-Baca and Lagergren [9] claim that the most important open problem in the area is
to determine if the near-perfect phylogeny problem was W[1]-hard or fixed parameter tractable
(FPT). We solve the open problem for the case when the number of states s is 2, by demonstrating
a fixed parameter tractable algorithm. The algorithm and analysis is rather involved and therefore
we provide a high level description in this section. The full details of the algorithm can be found
in Section 5. The algorithm has the same flavor as the simpler algorithm but has substantial
additional details.
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Figure 6: An example of how s(Topt) can be found for a 2-near perfect phylogeny. The skeleton
contains c1 at the beginning. Distinguishing character c2 that partitions tags 0 and 1 is first found.
Character c2 mutates multiple times and the skeleton still contains same tag supernodes. Final
distinguishing character c3 partitions tags −1 − 0− and −0 − 0− and mutates once. Tags after
adding c3 are unique

We begin by finding any O(q) size vertex cover V C of the conflict graph G for input I. We
now guess the skeleton S(Vs, Es) s.t. µ(e) ∈ c(V C) and penalty of S is at most q. Note that this is
similar to Step 3 of function buildNPP except that V C ⊆ Vnis and the κ term is eliminated from
the running time of the step. However, we cannot prove the existence of unique tags and therefore
Corollary 3.7 no longer holds. The step to partition the input taxa R (analogous to Step 5 of
function buildNPP) into super nodes is the hardest step of the algorithm. This amounts to finding
‘distinguishing edges’:

Definition 13 An edge e ∈ E(T ) or character µ(e) is distinguishing super nodes v1 and v2 w.r.t
a phylogeny T if |{e′ ∈ path v1 → v2|µ(e′) = µ(e)}| is odd.

Using the fact that in any Topt there exists no two vertices v1, v2 ∈ Topt s.t. l(v1) = l(v2), we
can show that there exists a distinguishing edge for every pair of super nodes in Topt. Assume for
the sake of simplicity that there exists an oracle θ(v1, v2) that returns a distinguishing character
wrt Topt for super nodes v1, v2 efficiently. Then we have the following simple algorithm to partition
R: Let v1, v2 ∈ Vs with t(v1) = t(v2); Let c ← θ(v1, v2); Add c to V C and guess new skeleton
S(Vs, Es). We repeat the above procedure until the tags of all the super nodes are unique. At most
q of the characters returned by θ can mutate multiple times in Topt. Since after each call to θ we
either find a multiple mutating character or a character that mutates once and is distinguishing,
the algorithm terminates with O(q) calls to θ. It is not hard to see that it spends O(qq2

) total time
in extending the skeleton one character at a time. Although, good enough for FPT, the technical
report shows how to defer adding the characters, such that O(q) characters can be added to S in
a single step, thereby reducing the running time to qO(q).

We now have a skeleton S that contains unique tags. We can therefore proceed along the lines
of the simpler algorithm: we execute function linkTrees as specified in the pseudo-code of Figure
3. The only part left therefore is implementing θ efficiently. To support this, we define equivalence
classes Vt of super nodes in any skeleton S based on the equality of tags t. As shown in Figure 6, an
edge (or the mutating character) that distinguishes two super nodes v1, v2 itself lies in a third super
node v3. If v1, v2 have no super node of the same tag in the path v1 → v2 then the distinguishing
characters have both states (0 and 1) on two different equivalence classes. We can use this piece
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1. G← conflict graph for input I

2. Q← 2-approx VC of G; if |Q| > 2q then return nil

3. for all trees S with onto function µ : E(S)→ Q and |S| ≤ 3q

(a) label taxa with elements of V (S)

(b) ‘inside’ each v ∈ V (S)

i. build perfect phylogeny Tv for taxa labeled v

(c) link perfect phylogenies Tv into final tree Tf

(d) if |Tf | < |To| then To := Tf

4. if penalty(To) ≤ q then return To else return nil

Figure 7: Overview of the algorithm

of information to identify the distinguishing characters. In the following section, we describe the
algorithm in detail.

5 FPT for general BNPP

A high level pseudo-code of the algorithm is given in Figure 7. The remainder of this section
elaborates on each of the steps of this pseudo-code.

5.0.1 Preprocessing

Before beginning the main algorithm, a preprocessing step is performed to eliminate uninformative
characters of the input. We use the usual notation r[i], to denote the state in the ith character of
taxa r. The following definitions will be useful in understanding the preprocessing:

Definition 14 The set of gametes Gi,j for characters i, j is defined as: Gi,j = {(k, l)|∃r ∈ R, r[i] =
k, r[j] = l}. Two characters i, j ∈ C contain (all) four gametes when |Gi,j | = 4.

We begin preprocessing by removing all the characters that that have only a single state (i.e.
they do not mutate at all). We then look for the pairs of input characters i, j for which |Gi,j | = 2.
In such a case, both the characters contain the same information. We remove one of the two
characters from the input. Only the remaining characters are ‘informative’ for a phylogenetic tree.
As shown in the previous section, the preprocessing steps do not alter the overall running time or the
correctness of the algorithm. It is well known that the most parsimonious phylogeny reconstructed
is imperfect if and only if the input I contains the four-gamete property [12]. The pre-processing
allows us to make the following claim, which simplifies subsequent steps of the algorithm:

Claim 5.1 At the end of pre-processing, for all characters i, j, |Gi,j | ≥ 3
Note: We assume that the all zeros taxa is in I. If not, using our freedom of labeling, we

convert the data so that it contains the same information with the all zeros taxa (See section 2.2
of [7]).
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5.0.2 Finding the Conflict Graph G and Vertex Cover Characters Q

Our next step is to construct a conflict graph G corresponding to input I introduced by Gusfield
et al. [14]. Each vertex v ∈ V (G) of the graph represents a character c(v) ∈ C. An edge (u, v)
is added if and only if all four gametes are present in c(u) and c(v). To find the vertex cover, we
use the classical 2-approximation algorithm [5]. We set Q to be the set of characters corresponding
to the vertex cover returned by the algorithm. We note the following simple observation that was
proved in the previous section:

Lemma 5.2 There exists no q-near-perfect phylogeny if |Q| > 2q.

5.0.3 Partitioning Taxa

This is the most complicated step of the algorithm (step 3a in Figure 7) and to describe it we need
some preliminary definitions:

Definition 15 We define the following notations:

• l(v) ∈ {0, 1}m: the taxa that vertex v of the phylogeny represents

• r[i] ∈ {0, 1}: the state in character i of taxa r

• µ(e) : E(T )→ C: the character corresponding to edge e = (u, v) with the property l(u)[µ(e)] 6=
l(v)[µ(e)]

• mul(c′, T ): for any character c′ and phylogeny T is the number of times c′ mutates in T , i.e
|{e ∈ T | µ(e) = c′}|

Definition 16 For any phylogeny T and set of characters Q:

• a super node is a maximal connected subtree T ′ of T s.t. for all edges e ∈ T ′, µ(e) /∈ Q

• the Q-skeleton of T , s(T,Q), is the tree that results when all super nodes are contracted to a
vertex. The vertex set of s(T,Q) is the set of super nodes. For all edges e ∈ s(T,Q) µ(e) ∈ Q.

Definition 17 Notation Pv1,v2
(T ) denotes the path between (and including) vertices v1 and v2 of

a tree T . If v1 and v2 are super nodes in s(T,Q) and T is the phylogeny, then Pv1,v2
(T ) denotes

the path in T (not s(T,Q)) that connects super nodes v1 and v2.

We use the notation < v1, v2, v3, · · · >∈ T which denotes that there exists a path P in T that
connects v1, v2, v3, · · · in that order. Figure 1 shows an example of a phylogenetic tree along with
its skeleton. Every super node v in the tree is tagged with the states of characters Q and t(v)
denotes the tag. By arbitrarily rooting the skeleton at super node v with t(v) = (0, · · · , 0), the
edges of the skeleton define the tags for the other super nodes. The goal of this sub-section is to
partition the set of input taxa and assign a subset to each super node so that a perfect phylogeny
can be constructed on the taxa assigned to each super node. This task would be easy if the tags
t(v) of all super nodes of the skeleton are unique. If this is not the case, then we identify a subset
of O(q) characters that in addition to Q would enable us to construct an extended skeleton S′ that
contains unique-tags. Such a skeleton is identified in step 1c in Figure 8 and step 2 in Figure 9. We
first describe an important structural property of Topt and then explain the details of the routine.
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5.0.4 Structure of Topt

From now unless otherwise stated, Q is the set of characters corresponding to the vertex cover of
the conflict graph. The following definitions are helpful:

Definition 18 A vertex v is bad wrt a pair of characters (i, j) if i, j /∈ Q and (l(v)[i], l(v)[j]) /∈ Gi,j .
Note: We call a vertex v simply bad if ∃(i, j) st v is bad wrt (i, j); only Steiner vertices can be bad.

Note that this is slightly different from the definition provided in the previous section. We are
now ready to prove an important property about the structure of an optimal phylogeny Topt. The
goal of this sub-section is to establish that if there exists an optimal phylogeny with penalty at
most q, then there exists one without any bad vertices w.r.t Q.

The main idea of the proof is to take any optimum solution and to transform it into one which
has the above property. This is achieved through a series of transformations that reduce the number
of bad vertices. We first show that transform τ satisfies the following properties:

Lemma 5.3 After applying the transform τb,c(N) (or τc,b(N)), for all bad neighborhoods (b, c) of
T ′, all vertices of the tree T ′ are good w.r.t (b, c).

Proof: The vertices that were good w.r.t (b, c) stay good even after the transform. All the bad
vertices w.r.t (b, c) were replaced by good vertices during transform. So no bad vertices are left. �

Definition 19 We call a character c clean in a phylogeny T , if all the vertices of T are good w.r.t
(c, x) for all characters x.

Fact 5.4 If the character x is clean in the phylogeny T and y is any other character, then the
following properties hold:

1. Between any two mutations of character x, there is an even number of mutations of character
y.

2. Between any two mutations of character y there is an even number of mutations of x.

Fact 5.5 If the phylogeny T does not have any bad vertices w.r.t (c, x), then the resulting phylogeny
T ′ after applying transform τb,c will not have any bad vertices w.r.t (c, x).

Lemma 5.6 If the character x is clean, then the transform τb,− will not create any bad vertices
w.r.t (b, x).

Proof: We divide the proof in two cases: an odd number of b’s are not sandwiched between two
x’s and an odd number of x’s are not sandwiched between two b’s after the transform τb. We prove
the first case in Claim 5.8 and the second case in Claim 5.9. �

We will be working with bad neighborhoods V1, · · · , Vk wrt characters (b, c).

Claim 5.7 If the character x is clean in the phylogeny T , then mutations of x in T are all outside
∪iVi or all inside.
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Proof: For the sake of contradiction, assume that there is a mutation of x inside V1 and another
one outside ∪iVi. Consider a path between these two mutations. It is easy to see that either b or c
mutates odd number of times between the two mutations of x. This contradicts the fact that x is
clean. �

Claim 5.8 Transform τb,c does not create odd number of mutations of b between two mutations of
a clean character x.

Proof: Using the result of Claim 5.7, we consider following two cases.

case 1 (All x’s are outside) Consider a pair of mutations of x. If it does not have any mutation of
b or c between them, then their parity will not change. If there were an even number of mutations
of b in between, then in transform τb,c, an even number of mutations (twice the number of bad
neighborhoods on the path) will get deleted and hence the parity won’t change. If there were an
even number of c’s, then two mutations of b will be added for every bad neighborhood on the path.
Overall, parity does not change.

case 2 (All x’s are inside) In this case, every c gets replaced by cb. Since there were even number
of b’s and c’s an even number of b’s get created and an even number of b’s get deleted between any
pair of x’s. Thus the parities do not change. �

Remark 1 Claim 5.8 is required only if the character x mutates multiple times in the optimal
phylogeny.

Note that in transform τb,c only b’s are deleted or added. So a similar claim for c holds auto-
matically.

Claim 5.9 The phylogeny T ′ resulting from transform τb,c does not leave odd mutations of a clean
character x’s between two mutations of b’s.

Proof: We show that between every adjacent pair of mutations of b in phylogeny T ′, there are
even number of mutations of x. For the sake of contradiction assume that a pair of b’s has odd
number of x’s in phylogeny T ′ resulting after the transform τb,c was applied. Let b1 and b2 denote
the two mutations of b that sandwich an odd number of mutations of x. Note that both b1 and b2

cannot be present in the phylogeny T . Without loss of generality, assume that b1 was created in
phylogeny T ′. Therefore, there is a mutation of character c next to b1. Call it c1.

In the phylogeny T , the character x was clean. Since the transform τb,c does not change in
mutations of c, no mutation of x is sandwiched between two mutations of c in the new phylogeny
T ′.

If b2 is a new mutation added to phylogeny T ′, then let c2 be a mutation of the character c which
is next to b2 in the phylogeny T ′. In this case, the odd number of mutations of x are sandwiched
between c1 and c2 which is not possible. Therefore b2 is present in the phylogeny T .

We use Claim 5.7 to separate the following two cases:
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case 1 (All x’s are outside) Let Nb,c denote the bad neighborhood where b1 was created. Let b̂1

be a mutation of b that was deleted from the boundary of Nb,c. Then the path from b̂1 to c1 in
phylogeny T contains no mutations of x, while the path from c1 to b2 contains an odd number of
mutations of x. Therefore, in phylogeny T there are an odd number of mutations of x between b̂1

and b2, which contradicts the fact that x was clean in phylogeny T .

case 2 (All x’s are inside) Note that b2 could not have been on the boundary of a bad neigh-
borhood in the phylogeny T , otherwise it would have been removed in the phylogeny T ′. Since all
the mutations of x were inside bad neighborhoods, at least one of the neighborhoods on the path
from b1 to b2 had an odd number of mutations. If this bad neighborhood is the one where b1 was
created in the transform, then the path b1 to b2 includes the mutation c1. In T ′, all the vertices
are good w.r.t (b, c). Hence there must be another mutation of c (call it c2) between b1 and b2.
Note that the path c1 and c2 contains an odd number of mutations of x. This is a contradiction.
Therefore, the bad neighborhood containing odd number of mutations of x is not the one where b1

was created. But in that case, consider the path from b1 to b2 in the old phylogeny T . It must have
entered and exited the bad neighborhood via mutations of b. Thus the odd number of mutations
of x were sandwiched between two mutations of b in the old phylogeny T . This is a contradiction
to the fact that x was clean. �

We will now use transformation τ and the preceding lemmas about it to make the following
claim: The following claim follows immediately from the definition of transform τ :

Claim 5.10 The optimal phylogeny contains equal number of mutations of characters b and c.

Proof: Assume for purposes of contradiction that the claim is untrue. Then applying transforma-
tion τ will reduce the number of mutations in the phylogeny. This contradicts the optimality of
the phylogeny. �

We are now ready to prove the main result of this sub-section:

Theorem 5.11 If there exists a q-near-perfect phylogeny that has bad vertices (w.r.t Q) then there
exists a q-near-perfect phylogeny that does not contain any bad vertices (w.r.t Q).

Proof: Consider a lexicographic order on the characters c1, c2, . . .. We start with an optimum
phylogeny T . We first make character c1 clean by considering bad vertices w.r.t (c1, ci) for each
i and applying transform τci,c1. Note that the transform τci,c1 will not create bad vertices w.r.t
(c1, ci′). From Lemma 5.3, it follows that at the end of this step character c1 will be clean.

Now inductively assume that characters c1, . . . , cj are clean. Next we look at all the bad vertices
w.r.t (cj+1, ci) (for i > j +1) for each i and apply transform τci,j+1. Note that the transform τci,j+1

does not create any bad vertices w.r.t (cj , ci′). Moreover, by Lemma 5.6, we can say that the
resulting phylogeny has characters c1, . . . , cj clean. Also, it follows from Lemma 5.3 that at the
end of this step the character cj+1 is clean.

Therefore, in the end all the characters are clean. In other words, there are no bad vertices in
the phylogeny. �

This theorem immediately leads to the following corollary:
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Corollary 5.12 In Topt, if there exist two edges e = (v1, v2) and e′ = (v3, v4) such that µ(e) =
µ(e′) = i, where i /∈ Q, < v1, v2, v3, v4 >∈ Topt then for all characters j /∈ Q, |{e ∈ Pv2,v3

(Topt)|µ(e) =
j}| is even and therefore l(v1)[j] = l(v4)[j].

Proof: For the sake of contradiction, assume that |{e ∈ Pv2,v3
(Topt)|µ(e) = j}| is odd. Conse-

quently, l(v1)[j] 6= l(v4)[j]. However, note that l(v1)[j] = l(v2)[j] and l(v3)[j] = l(v4)[j]. Now
consider the character i. For this character, we can say that l(v1)[i] = l(v4)[i] and l(v2)[i] = l(v3)[i],
but l(v1)[i] 6= l(v2)[i]. Thus we see that the vertices v1, v2, v3, v4 give us all four gametes of the pair
(i, j). Since both i, j 6∈ Q, we get a contradiction to Theorem 5.11. �

5.0.5 function partition

For the rest of the paper, we fix an optimal phylogeny Topt that does not contain any bad vertices.
The pseudo-code for function partition is given in Figure 8. We will prove briefly describe
the function and prove its correctness. The following definitions are important for the proof of
correctness:

Definition 20 Two super nodes v1 and v2 of s(T,Q) are tag-adjacent if

1. t(v1) = t(v2) and

2. there exists no super node v3 ∈ Pv1,v2
(s(T,Q)) st v3 6= v1, v2 and t(v3) = t(v1).

Definition 21 Two super nodes v1 and v2 of s(T,Q) are paired-tag-adjacent if there exists no
super node v3 6= v1, v2 in Pv1,v2

(s(T,Q)) st t(v3) = t(v1) or t(v3) = t(v2).

Definition 22 An edge e ∈ E(T ) or character µ(e) is distinguishing super nodes v1 and v2 w.r.t
a phylogeny T if |{e′ ∈ Pv1,v2

(T )|µ(e′) = µ(e)}| is odd.

It is easy to see the following claim:

Claim 5.13 For any optimal phylogeny Topt, for all vertices v1, v2 ∈ Topt, l(v1) 6= l(v2).
Using Claim 5.13 it is then easy to prove that for the optimal near-perfect phylogeny Topt there

exists a distinguishing edge for every pair of tag-adjacent super nodes. We define equivalence classes
Vt containing super nodes based on the equality of tags t of super nodes. It is straightforward to
partition the taxa R for each equivalence class of super nodes using the tags of each equivalence
class. At any point in time, the algorithm maintains a partition P (Vti) for each equivalence class.
Each recursive call refines one of the partitions of one of the equivalence classes. To avoid excessive
notations we will use P (Vti) = {S1, · · · , Sk} for all i. It should be clear from the context which
equivalence class Si belongs to. We say that a character i partitions a set Sj if there exists two
taxa r1, r2 ∈ Sj such that r1[i] = 0 and r2[i] = 1. The partition can be written as Sj0 = {r1 ∈
Sj|r1[i] = 0} and Sj1 = {r2 ∈ Sj|r2[i] = 1}.

The value mark(v) denotes our guess as to whether or not the super node v contains any
terminal vertices in Topt. The value is set to ‘terminal’ if we guess that there exists at least one
terminal vertex in v and ‘steiner’ otherwise. The skeleton S that is passed into the initial call
of function partition is assumed to have the correct mark values guessed. A partition P (Vti) is
complete when the number of sets in P (Vti) is equal to the number of super nodes v in Vti with
mark(v) = terminal, that is: |P (Vti)| = |{v ∈ Vti |mark(v) = terminal}|.
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function partition ( P (Vt1), · · · , P (Vtp) , int list singleMutations, skeleton S )

1. if ∀i, P (Vti) is complete then

(a) guess the assignments of the partitions Si to the super nodes of the skeleton

(b) guess expansion of skeleton S into S′ using characters in singleMutations

(c) return S′

2. let D2 = {i|∃>1j, ∃k s.t. i partitions Sk ∈ P (Vtj )}

3. if |D2| ≤ q + 1

(a) guess expansion of skeleton S into S′ using characters in singleMutations and D2

(b) guess mark(v) for all super nodes v ∈ S′

(c) use-interface ( S′ )

4. else

(a) consider any D′

2 ⊆ D2 s.t. |D′

2| = q + 1

(b) ∀ i ∈ D′

2 and for any two j s.t. ∃Sk ∈ P (Vtj ), i partitions Sk

i. let P (Vtj ) = (P (Vtj )\{Sk}) ∪ {Sk0
} ∪ {Sk1

}
ii. partition ( P (Vt1), · · · , P (Vtp), singleMutations ∪ {i}, S )

Figure 8: Algorithm to partition and assign taxa of the input to super nodes

The partition function initially finds the set D2 consisting of (distinguishing) characters that
refine the partition in at least two different equivalence class. If |D2| ≥ q + 1, then the function
picks an arbitrary set of q + 1 characters and performs 2(q + 1) recursive calls on partition induced
by each character on two arbitrary equivalence classes (steps 4 to 4(b)ii). If |D2| ≤ q, the recursion
bottoms out, and the function guesses all the mutations of the characters in D2, singleMutations
and adds them to s(T,Q) (steps 3 to 3c). Note that each added edge splits a single super node into
two new super nodes. When we guess the extension, we assume that characters in singleMutations
mutate exactly once and characters in D2 mutate once or more. The following two lemmas (lemma
5.14 and lemma 5.15) are used to establish that D2 becomes empty at the end of step 3a and
remains empty and to show the correctness of function partition:

Lemma 5.14 At any point if D2 does not contain some character c, then c will not be in D2 at
any later point in the algorithm (specifically after step 3a of function partition described in Figure 8
and step 4(d)i of function use-interface described in Figure 9).

Proof: For the sake of contradiction, assume that D2 did not contain character c and after ex-
panding using character d, c partitions two different equivalence classes Vt1 and Vt2 . Clearly t1
and t2 should have been the same tag before the expansion using character d. Consider terminal
vertices v1, v2 ∈ Vt1 and v3, v4 ∈ Vt2 , st l(v1)[c] 6= l(v2)[c] and l(v3)[c] 6= l(v4)[c]. But we know that
l(v1)[d] = l(v2)[d] 6= l(v3)[d] = l(v4)[d]. This immediately implies that c and d share four gametes
in Topt, a contradiction since neither is in Q. �
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function use-interface ( skeleton S )

1. let D1 = {i ∈ C|∃1j, i partitions R(Vj)}.

2. select some Vj that is incomplete, return S if none exists

3. select a lowest pair v1, v2 ∈ Vj of tag-adjacent super nodes, s.t. mark(v1) = mark(v2) =
terminal

4. if ∃h ∈ D1, v3 ∈ Vt′ and v4 ∈ Vt′′ , for some t′ 6= t′′ and j 6= t′, t′′ such that

(a) mark(v3) = mark(v4) = terminal

(b) h partitions R(Vt′) ∪R(Vt′′)

(c) Pv1,v2
(S) and Pv3,v4

(S) share a super-node of S

(d) (v1, v3) and (v2, v4) are paired-tag-adjacent then

i. guess extension S′ of skeleton S by mutating character h (once or multiple times)

ii. guess mark(v) for super nodes adjacent to mutation(s) of h

iii. use-interface ( S′ )

5. else return nil

Figure 9: Algorithm to find interface edges and extend the skeleton

For any equivalence class Vti , consider taxon partition Popt(Vti) for super nodes of skeleton
s(Topt, Q).

Definition 23 A partition P (Vti) = {S1, · · · , Sk} is good if ∀Sopt
j ∈ Popt(Vti) ∃Si ∈ P (Vti), s.t.

Sopt
j ⊆ Si.

Informally, a partition is good if it can be refined by further partitions into that of Topt for
skeleton s(Topt, Q) defined on Q. A set of partitions {P (Vt1), · · · , P (Vtp)} is good if every partition
is good.

Lemma 5.15 If the argument set of partitions P (Vti) is good for a call of partition, then the
argument set of partitions P (Vti) for at least one of the recursive calls (step 4(b)ii) is good.

Proof: Consider any one call to partition function and assume inductively that its argument is
good. We recursively perform partition in step 4(b)ii. If |D2| ≥ q + 1 then there exists at least
one character i ∈ D2 that mutates only once in Topt. A character i that mutates only once induces
a partition on P (Vtj ) only when two super nodes (of the same equivalence class Vtj ) contain e
with µ(e) = i in the path connecting them or if i mutates inside a super node v ∈ Vtj . We know
however that i partitions at least two different equivalence classes Vtj , Vtj′

. Since i mutates once,
it can mutate inside the super node of at most one of Vtj or Vtj′

and lie in the path connecting two
super nodes of the other equivalence class. We recurse on both the partition induced on P (Vtj )
and P (Vtj′

). Moreover, since the arguments of partition is good, the partition induced by using i
on at least one of Sj ∈ P (Vtj ) or Sj ∈ P (Vtj′

) is good. �
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Correctness: From the above Lemma, it is clear that at Step 1a, if the argument set of partitions
is good then P (Vti) = Popt(Vti) for all ti and skeleton S′ found in Step 1c has O(q) edges and unique
tags. This shows one part of the correctness of function partition. Assuming that all guesses are
correct, we can further claim that the skeleton passed into function use-interface is O(q) in size,
D2 is empty for S′ and S′ is the same as the skeleton of Topt defined over Q, D2 and singleMutations.

5.0.6 function use-interface

In the goal of trying to figure out a O(q) sized skeleton that has unique tags, we are left with one
last case: discovering distinguishing characters that mutate once or more but partition only one
equivalence class of skeleton S that is passed into function use-interface. Note that the skeleton
S and the tags of S at the beginning of use-interface are defined over the characters of D2 and
singleMutations in addition to Q. Define R(Vt) ⊆ R for any equivalence class Vt to be the set of
taxa that match tag t. Consider the partition of taxa defined by Topt on any one equivalence class
Vt of super nodes.

Definition 24 An edge e in super node v1 is internal if there exists two terminal vertices of Topt,
u, v ∈ v1 st l(u)[i] 6= l(v)[i]. We define an edge e that is not internal as interface.

Since D2 is empty, ∀v1, v2 ∈ Vt that are tag-adjacent, every distinguishing edge is an interface
edge. By definition, a distinguishing character i for super nodes v1, v2 with mark(v1) = mark(v2) =
terminal has the following property: there exists terminal vertices u ∈ v1, v ∈ v2 st l(u)[i] 6= l(v)[i].

Definition 25 Two tag adjacent terminal super nodes v1 and v2 are defined to be lowest pair
in s(Topt, Q) if there exists vertex x ∈ Topt st for all terminal super nodes v3 ∈ s(Topt, Q) with
t(v3) = t(v1), x ∈ Pv1,v3

(Topt) and x ∈ Pv2,v3
(Topt). The vertex x is called the branch point of v1

and v2.

The next lemma shows that for every lowest pair of super nodes in Topt, there exists at least one
distinguishing interface edge that has the properties that the pseudo-code uses to identify them in
step 4 of function use-interface:

Lemma 5.16 In Topt, for every lowest pair super nodes v1, v2 ∈ Vt with branch point x such that
every distinguishing edge of v1 and v2 is an interface edge, there exists at least one distinguishing
edge e, µ(e) = h with the following properties(P ):

1. character h partitions R(Vt)

2. ∃v3 ∈ Vt′ , v4 ∈ Vt′′ , t 6= t′, t′′ s.t. v1, v3 and v2, v4 are paired-tag-adjacent and h partitions
R(Vt′) ∪R(Vt′′) and

3. the paths Pv1,v2
(s(Topt, Q)) and Pv3,v4

(s(Topt, Q)) share a super-node.

Proof: First note that the character h that partitions R(Vt′) ∪ R(Vt′′) can only partition it into
{R(Vt′), R(Vt′′)}. This is because h induces a partition only in one equivalence class Vt and t 6= t′, t′′.
For the same reason t′ 6= t′′. Throughout the proof of the lemma, the distance between two vertices
(or edges) on a phylogeny is simply the number of edges in the path connecting the vertices (or
edges).

We will make use of a very simple transform, ρc,c′, that operates on any phylogeny T and is
defined over two characters c, c′ and a Steiner vertex v. To apply transform ρc,c′ on Steiner vertex
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Figure 10: Application of transform ρ. The edge-labels c and c′ are interchanged.

v, all vertices v′ such that v′ is the only terminal vertex in Pv,v′(T ) should satisfy the following
property. There exists edge e ∈ Pv,v′(T ) s.t. µ(e) = c or µ(e) = c′. An example of when such
a transform can be applied is shown in Figure 10. For all such paths from v to v′, the transform
replaces the first mutation of c with c′ and vice-versa. The result after applying the transform is
shown in Figure 10. Clearly, the transform does not change the cost of the phylogeny.

We know that for an optimal phylogeny, there has to exist at least one distinguishing edge h
for v1 and v2. Let u1 and u2 be the vertices in v1 and v2 respectively, that lie on either ends of
Pv1,v2

(Topt). Therefore h has to mutate odd number of times in exactly one of Pu1,x(Topt) and
Px,u2

(Topt). Without loss of generality assume that it mutates an odd number of times in Pu1,x.
Consider the edge e closest to u1 such that µ(e) = h. In Topt if the path from e to u1 consists
entirely of degree 2 steiner vertices, then the mutation of e can be incrementally swapped with the
mutation of the neighboring edge, until the mutation of h is moved inside super node v1. Note that
swapping adjacent edges of a degree 2 steiner vertex is just a trivial application of ρ on the vertex.
After several applications of ρ, character h is no longer distinguishing between v1 and v2 in the new
optimal solution.

If the path from e to u1 contains a vertex w of degree greater than 2, then every branching
path from w leads to a terminal vertex (since steiner vertices can not be a leaf). Consider any
such terminal vertex r, the super node in which r lies cannot have tag t since it contradicts the
assumption that v1 and v2 are a lowest pair. Now consider the case when for all such terminal
vertices r, the path Pw,r(Topt) contains a mutation of h. Using transform ρ, the mutation of h
can be swapped with neighboring edges until it is adjacent to w. Once again let e be the edge
adjacent to w, st µ(e) = h. Let e′ ∈ Pu1,x, e 6= e′ be another edge adjacent to w. We can now apply
transform ρµ(e′),h on vertex w. The result of the transform is that the mutations of h and µ(e′)
swap positions. We can therefore keep applying transform ρ to move the mutation of h closer to
u1. There are only two cases when we can not apply the transform any further. In both the cases
described below, we find super node v3 that contains a terminal vertex.
Case 1: If the path from e to u1 contains a terminal vertex r, that belongs to a super node v3

say, then t(v3) 6= t(v1), since we assumed that v1 and v2 are tag-adjacent.
Case 2: If the path from e to u1 contains a vertex w of degree greater than 2, that contains a
branch leading to a terminal vertex r ∈ v3, where t(v3) 6= t(v1) such that the path from w to r does
not contain a mutation of h. Note that t(v3) 6= t(v1) since v1 and v2 are a lowest pair.

Now consider the edge e ∈ Pu1,x(Topt) such that µ(e) = h and the distance of e from v1 is the
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largest. Using a series of transforms ρ, we can move the mutation of h toward x. Once again with
a similar argument we can either claim that there exists a terminal vertex r′ in a super node v4

that either lies in the path from e to x or is in the induced phylogeny of w which lies in the path
from e to x. If this is the case, then r and r′ are two terminal vertices separated by an odd number
of mutations of h. Also, t(v1) 6= t(v3), t(v4). This satisfies all the properties of the lemma.

Now consider the case when the mutation of h can be moved so that it is adjacent to x. Now
consider any vertex cover character c that mutates an odd number of times between x and v2.
There has to exist at least one such edge since x can not belong to a super node of tag t as v1

and v2 are tag-adjacent. Consider the edge e′ such that µ(e′) = c and the distance from e′ to v2

is maximum. First assume that all the vertices in Pu2,x(Topt) are of degree 2 and steiner. Clearly
now, using the trivial ρ transform, the mutation of c can be moved so that it is adjacent to x. We
can now perform transform ρc,h on x to obtain a new optimal phylogeny where the mutations of
h and c adjacent to x have switched places. Note that the condition of ρc,h requires that every
path from x to a terminal vertex contains either a mutation of h or a mutation of c. This can be
proved as follows for the optimal phylogeny Topt. Consider any path from x to the first terminal
vertex r′ that is in a super node v4. If t(v4) = t(v2) then the path from x to v4 should contain an
odd number of mutations of c, since the path from x to v2 contains an odd number of mutations
of c. If t(v4) 6= t(v2), then the path from x to v4 should contain an odd number of mutations of
h, otherwise r′ and r that lie in v3 and v4 respectively satisfy the properties of the Lemma. After
applying ρc,h, we can move the mutation of h inside v2 since all the vertices are degree 2 the result
of which is that h is no longer distinguishing between v1 and v2.

The last case that is left to analyze is when the path from x to e′ contains either terminal
vertices or steiner vertices of degree greater than 2. If it contains a terminal vertex r′, then r′

along with r satisfy the properties of the Lemma. If there exists a vertex w that has degree greater
than 2, then the induced subtree rooted at w contains terminal vertices, and all paths to terminal
vertices should contain a mutation of h (otherwise we can use the terminal vertex along with r to
satisfy the properties of the lemma). Therefore 6 ∃e′′′ ∈ Px,u2

with µ(e′′′) = h, since otherwise we
can move the mutation of h using a series of ρ transforms so that it is adjacent to x. This is a
contradiction to optimality since we already have e adjacent to x with µ(e) = h. Therefore, we
can directly apply transform ρh,c on vertex x. We can then move the mutation of h into u2 with a
series of ρ transforms.

Putting everything together, we have the fact that if for any distinguishing character h there
exists no super nodes that satisfy the properties of the lemma, then the edge corresponding to the
mutation of h can be moved such that it is no longer distinguishing. Furthermore, no new charac-
ter becomes distinguishing in this process. We can continue this argument for every distinguishing
character. If none satisfy the properties of the lemma, then eventually the first and last vertices of
the path Pv1,v2

(Topt) are identical, a contradiction to optimality. �

Note that the converse — only distinguishing interface edges satisfy these properties — is
not true. We do prove, though, that only internal edges that mutate multiple times can satisfy
them. Intuitively, this shows that not too many internal characters are are used in Step 4(d)i of
use-interface.

Lemma 5.17 If internal edge e, µ(e) = h satisfies P then h mutates more than once in Topt.

Proof: Let e be an internal edge satisfying all the properties. Note that at step 4 of function
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Figure 11: Proof that character h has to mutate multiple times to be an internal character that
also satisfies the properties of a distinguishing interface character.

use-interface, character h partitions Vt and also partitions R(Vt′) ∪ R(Vt′′). Since h is an internal
character, there exists internal edge e′′ in some super node v ∈ Vt s.t. µ(e′′) = h. See Figure 11.
Super node v /∈ Pv3,v4

because we assumed that (v1, v3) and (v2, v4) are paired-tag adjacent. Assume
that h lies in Pu3,u4

in Topt where u3 ∈ Vt′ and u4 ∈ Vt′′ . Note that for h to partition R(Vt′)∪R(Vt′′)
it has to be the case that both u3 and u4 contain at least one terminal vertex. Note that one of u3

or u4 could be v3 or v4 respectively.
Consider the two paths Pv3,u3

and Pv4,u4
(shown in Figure 11). If h mutates just once, then

it should be the case that the mutation of h, edge e′′, should lie in one of the two paths. This
is however a contradiction since h now partitions two equivalence classes Vt and one of Vt′ or Vt′′

(since v3, u3, v4 and u4 each contain at least one terminal vertex in Topt). �

Correctness: Inductively assume that the skeleton S passed into any call of use-interface is
the same as s(Topt, Q) where both skeletons are defined over some subset Q′ of the characters. It
is easy to see that for any Vj , there has to exist two super nodes v1, v2 ∈ Vj that are a lowest
pair. Using Lemma 5.16 we know that there exists a character h that satisfies properties P . Steps
4(d)i and 4(d)ii simply guesses the locations of h and the mark as present in Topt. Assuming that
the guesses are correct, the skeleton S passed in the call to use-interface in Step 4(d)iii has to
be the same as s(Topt, Q) defined over the characters Q′ ∪ {h}. If the argument S is the same as
s(Topt, Q) for some set of characters Q′ and all Vj are complete, then skeleton S that is returned
has unique tags and the correctness follows inductively. Furthermore, it is easy to see that the
returned skeleton S has O(q) edges as follows. Using Lemma 5.17, we know that in the returned
skeleton S, the sum of the number of internal edges and the number of multiple mutant interface
edges is at most q. When adding any single mutant interface edge h to the skeleton, the number of
terminal super nodes remains the same. This is because, by the definition of interface edges, one of
the two newly created super nodes is marked steiner. However, the number of equivalence classes
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function linktrees ( skeleton S )

1. let Si ← any leaf super-node of S

2. build perfect phylogeny Ti on the taxa assigned to Si

3. let Pi ← the set of vertices of Ti

4. for each character c st ∃e ∈ Si with µ(e) = c, do
if ∃k ∈ {0, 1}, ∀v1 ∈ S \ Si, l(v1)[c] = k, then remove all vertices v from Pi st l(v)[c] 6= k

5. guess a vertex w from Pi, and let l(w′)[i] = l(w)[i] for all i 6= µ(e) and l(w′)[µ(e)] 6= l(w)[µ(e)],
where edge e is (Si, p(Si))

6. add w′ to p(Si)

7. if (S \ Si = Φ) then return Ti else return (linktrees(S \ Si) ∪Ti ∪ (Si, p(Si)) )

Figure 12: Algorithm to build the tree using the skeleton and partition

increases by at least one. This is because, v1 and v2 belonged to the same equivalence class before
adding interface character h. After adding h, however, the tags of v1 and v2 differ in character h.
Therefore, after adding q single mutant distinguishing interface edges, all Vj are complete. This
completes the proof of correctness for function use-interface.

5.0.7 Building and Linking Perfect Phylogenies

We now show the final step to complete the near-perfect phylogeny (Step 3c of Figure 7. From the
proofs of correctness, after partition and use-interface, the resulting skeleton S′ (say) has O(q)
edges and unique tags. By simple book-keeping we can project partitions defined by S′ back to the
skeleton S defined just over Q. Recall that S was found in Step 3 of the pseudocode in Figure 7
and passed into the first call to function partition. From now we will simply work with skeleton
S defined over Q. This keeps the analysis simple and allows us to perform Step 3a of Figure 7. We
can prove the following intuitive property on the optimal phylogeny Topt similar to the statement
in the previous section. The proof is different since we do not assume that the skeleton contains
all characters corresponding to non-isolated vertices of the conflict graph.

Lemma 5.18 Every super node of the skeleton s(Topt, Q) contains a perfect phylogeny.

Proof: For the sake of contradiction, assume that there exist edges e, e′ in super node u with
µ(e) = µ(e′) = c. Let P denote the connecting edges e and e′. There exists no character c′ /∈ Q
that mutates an odd number of times in P according to Corollary 5.12. By the definition of the
super-nodes and skeleton we know that there exists no edge e ∈ u with µ(e) = c if c ∈ Q. For
optimality, we can not have two vertices v and v′ with l(v) = l(v′). Therefore there can not exists
edges e and e′ as stated. �

We discover the edges of Topt bottom up in function linktrees explained in Figure 12. We can
reconstruct a unique perfect phylogeny that has no bad vertices (Step 2) within each Si as follows.
Restricting to the taxa assigned to Si, we know that for any pair of characters (i, j), |Gi,j | ≤ 3.
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If |Gi,j | = 2, then we arbitrarily remove i. If |Gi,j | = 1 then we remove both i and j. After this
preprocessing, every pair of characters contain exactly three gametes. Therefore a unique perfect
phylogeny can be built [12]. For every pair (i, j) st |Gi,j | = 2, we add back character i adjacent
to mutation of j. The relative ordering of i and j is determined based on the third gamete that
is present in the input. Let the parent of a vertex v in a rooted tree be denoted by p(v). The
following Lemma is trivial and assumes that phylogeny Topt is rooted at the all zeros taxa:

Lemma 5.19 In rooted phylogeny Topt, consider any induced subtree T ′. If Topt \ T ′ contains
vertices v and v′ st l(v)[c] = 0 and l(v′)[c] = 1 then there exists an edge e st µ(e) = c in Topt \ T ′.

Proof: Assuming not, the mutation of character c must occur in T ′. But T ′ and Topt\T
′ are

connected by a single edge. Thus, Topt\T
′ contains only one of either 0 or 1 in character c, a

contradiction. �

Corollary 5.20 If both T ′ and Topt\T
′ each contain both states of some character c, then there

are at least 2 edges e, e′ ∈ Topt s.t. µ(e) = µ(e′) = c.

Proof: The proof follows directly from lemma 5.19 by treating T ′ and Topt\T
′ of the corollary as

the induced subtree T ′ of the lemma. �

Note that in the rooted Topt, the perfect phylogeny inside each super node u, Tu, can be
decomposed into a minimal connected component of a perfect phylogeny connecting all terminal
vertices T r

u , which we call a core tree. The edges in Tu \T
r
u are called peripheral edges. An interface

edge (defined in Section 5.0.6) has to be a peripheral edge. The core tree is the unique perfect
phylogeny on the taxa that have been assigned to the super node. We now consider the optimal
phylogeny Topt with the following additional property: no super node u (except the root) contains
a degree two vertex that is adjacent to both a peripheral edge and the vertex cover edge (u, p(u)).
The next lemma establishes that such an optimal tree exists:

Lemma 5.21 If there exists a q-near-perfect phylogeny, then there exists an optimal phylogeny Topt

that contains no vertex v in super node u st degree(v) = 2 and v is adjacent to both a peripheral
edge and the vertex cover edge (u, p(u)).

Proof: Assume for the purposes of contradiction that no such phylogeny exists. Then consider the
optimal phylogeny Topt that contains the minimum number of vertices v with the above property.
One edge adjacent to v is the vertex cover edge say ev , with say µ(ev) = k. The second edge
connects to a vertex v′ inside super node u and let µ(v, v′) = l. Now we can flip the ordering of
mutations of ev and (v, v′) such that µ(ev) = l and µ(v, v′) = k to obtain a new phylogeny T ′

opt.
Note that this is just a trivial operation of transform ρk,l on steiner vertex v. It is easy to see that
the only pair of characters in v of T ′

opt that could contain a new gamete not present in the original
phylogeny Topt contains one character of the vertex cover. Therefore in T ′

opt, all the vertices are
good (assuming they were in the original phylogeny). The number of vertices in the super node
p(u) increased by one and the number of super nodes in u decreased by one since v was previously
part of u and now is part of p(u). Therefore the number of vertices with the property given in the
claim decreased by one, a contradiction to the assumption. �
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Correctness: In s(Topt, Q), consider a super node S0, that has children super nodes S1, · · · , Sk.
Since S is assumed to be identical to s(Topt, Q), we use Si to refer to the super node of both the
skeleton S and s(Topt, Q). Let Ti be sub-phylogeny present inside the super node Si in Topt. Let
T ′

i be the sub-phylogeny of Topt, obtained by removing the vertex cover edge (Si, S0), rooted at
a vertex in Si. Assume inductively that the subtrees T1, . . . , Tk corresponding to the supernodes
S1, . . . , Sk have been built as in Topt. Now we proceed to construct the tree inside super node S0.
This amounts to building the core tree and finding the peripheral edges (used in connecting the
core tree to Si) of T0. Using Corollary 5.20 and Lemma 5.18 we know that |Pi| ≤ q. We now make
the following claim:

Claim 5.22 Only the selected vertices in Pi can be vertices of Topt that connects Si to S0.

Proof: There exists exactly one edge e = (v0, v1), s.t. µ(e) = c in Si. The edge e partitions Si

into S0
i and S1

i based on the value on the character c and assume v0 ∈ S0
i and v1 ∈ S1

i . For the
sake of contradiction assume that in Topt, a vertex v from S1

i connects to S0 via the vertex cover
edge. Clearly every path to a terminal vertex in Topt\S

′

i from v contains an edge e′ = (v′1, v
′

0) with
µ(e′) = c.

Consider the edges e′ that is the first mutation of character c in every path from e to a terminal
vertex in Topt\T

′

i . Let M be the set of characters that mutate in the path connecting v0 and v.
Since there are no bad vertices, all mutations of characters except vertex cover between e and e′

occur even numbers of times. Therefore, specifically v0 and v′0 are identical in all the characters
in M . Therefore, connecting v0 instead of v to u via vertex cover and deleting all mutations of M
that occurs in the path between e and e′ results in a phylogeny of smaller cost, a contradiction to
optimality. �

We continue by finding sets Pi for each of Si. Now, using exhaustive search, we select a vertex
from each Pi. One would be the correct set of vertices as used in Topt. For each v selected from Pi,
we mutate the character µ(Si, S0) and add to S0. Since we guessed correctly, each vertex added to
S0 should be present in T0 of Topt. To identify all the peripheral edges, we simply grow the unique
perfect phylogeny in S0, which we know exists from Lemma 5.18. It follows from Lemma 5.21
that we have now completely identified the tree in S0. The correctness follows inductively. This
therefore completes the description and correctness of the BNPP algorithm.

5.1 Evaluating Running Time

The running time for pre-preprocessing and constructing the conflict graph is O(nm2). The running
time for function partition can be bounded as follows. The recursion tree has height q, and any
function call to partition makes at most 2(q+1) recursive calls. Therefore the number of leaves of the
recursion tree is bounded by 2q(q+1)q. Each leaf of the recursion tree contains at most q characters
in its list singleMutations. Expanding the skeleton, Step 1b can be naively implemented by once
again enumerating all skeletons S′ using the characters of Q and singleMutations together. We can
then discard any trees S′ from which S cannot be obtained by deleting edges of singleMutations from
S′ in time qO(q). Step 3a can be implemented similarly. Since the number of trees with 2q vertices
is bounded by 2O(q)qO(q), the total time spent by partition function is bounded by 2O(q)qO(q)nm.

We can similarly bound the time spent in function use-interface. As already analyzed in the
correctness, the depth of the recursion tree and therefore the size of the skeletons examined is O(q).
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Addition of an edge splits a super node into two new super nodes. The number of possible resulting
skeletons for an addition of a single edge on a specific super node of degree g in the skeleton, is at
most 2g. Therefore, the total number of skeletons examined in Step 3a (and hence the degree of
a node in the recursion tree) is at most 2O(q)qO(q). A naive analysis gives a bound of 2O(q2)qO(q2)

number of calls to the function use-interface. This however is a weak bound. It is easy to see
that if the skeleton S currently has penalty q′ then character h of function use-interface can
mutate at most q − q′ + 1 times. Therefore, the time spent in executing function use-interface

on a skeleton with penalty q − p and current depth d on the recursion tree can be bounded as:
T (p, d) ≤ O(nm +

∑p
i=0

(

cq
i+1

)

22iT (p − i, d − 1)), T (x, 0) = 1, T (0, y) = cq, where cq is an upper

bound on the size of any skeleton explored, 0 ≤ x, 1 ≤ y. The term
(

cq
i+1

)

comes from placing
i + 1 mutations of character h in the super nodes of the current skeleton. Since super nodes
contain perfect phylogenies, a super node can not have two mutations of character h. Term 22i

is for guessing mark values of the newly created super nodes. After adding i + 1 mutations, the
penalty of the skeleton increases by i and therefore the skeleton passed into the recursive call has
penalty q − p + i, and the recursive call increases the depth by 1. The recursion can be bounded
by T (q, q) ≤ (cq)O(q)nm since the maximum depth and maximum penalty is q.

The running time for linktrees can be bounded as follows. Recall that we used S0 to denote
a super node that had children {S0, · · · , Sk} in s(Topt, Q). The function guesses one vertex from
each of Si and adds it to S0. This implies that the time taken to exhaustively search for all possible
vertices to add into S0 is O(

∏

i |Pi|). From the proof of correctness, |Pi| ≤ q and the number of
super nodes in S at any point is at most cq. Therefore, the time taken to process the entire subtree
of S0, T (S0) ≤ O(nm + qk

∏

i T (Si)), T (L) = 1, where L is any leaf super node. This recursion can
be solved as: T (RS) ≤ O(nmqcq), where RS is the root supernode. Putting together the preceding
analyses leads to our primary result:

Theorem 5.23 The algorithm solves the BNPP problem in qO(q)nm + O(nm2) time.

6 Experiments

We implemented a version of the simpler (q + κ)O(q)nm + O(nm2) algorithm and applied to it
datasets of non-recombining DNA sequences. In such sequences, the most likely explanation for a
pair of characters exhibiting all four gametes is recurrent mutations. We find as a common theme
that κ is nearly the same size of q. Since this was the case, we simply enumerate all skeletons by
brute-force at step 3 of function buildNPP, a modification which would not affect correctness of the
method.

Data Sources

In humans, autosomal chromosomes are not typically used for phylogenetic analysis because of the
hardness of accounting for recombination events in phylogenetic trees [24]. The two most frequently
used sources of genetic variation are therefore mitochondrial DNA (mtDNA) and the Y chromosome.
The hyper-variable segments of the mitochondrial DNA (HVS I and II) are of particular use when
analyzing population groups that diverged more recently, due to their high mutation rates. We use
examples of both mtDNA and Y chromosome DNA for empirical validation.

We first analyzed data from the International HapMap Consortium [15]. The HapMap contains
SNPs typed in four population groups: CEPH (Utah Residents with Northern and Western Euro-
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pean ancestry); Han Chinese in Beijing, China; Japanese in Tokyo, Japan; and Yoruba in Ibadan,
Nigeria. The SNPs typed varied from one population to the other. We used all the males typed by
the HapMap project on the SNP loci that were common to all the four populations. This resulted
in 150 sequences typed at 49 SNP sites. Missing SNP allele values were replaced with the major
alleles for the corresponding loci.

Our second source of data is from a study conducted by Stone et al. [22] on the relationship
between humans and our closest living relatives, the chimpanzee (Pan troglodytes) and the bonobo
(Pan paniscus). The main contribution of their work was analyzing sequence diversity of the Y
chromosome. The Y chromosome data was composed of humans (1), gorilla (1), P. troglodytes
troglodytes (5), P. paniscus (3), P. troglodytes verus (2), P. troglodytes of unknown sub-species (2)
and P. troglodytes schweifurthii (1), for a total of 15 taxa. The sequences had 98 polymorphic
sites of which 10 were indels and the remaining were SNPs. As in Stone et al., we treated indel
mutations as character changes, leaving exclusively binary markers.

We also use P. troglodytes mtDNA, which was also gathered by Stone et al. and was published as
supplementary data to the same paper. The mtDNA consisted of 25 taxa: P. troglodytes troglodytes
(16), P. troglodytes schweifurthii (5) and P. troglodytes verus (4). The sequences were typed at 1041
loci, presenting us with a much larger input than in the other examples.

Results

We derived optimal phylogenetic trees for all the input data. In all three cases, the algorithm
completed within seconds. For the HapMap data set, the algorithm finds a 1-near perfect phylogeny
(Figure 13 (a)). The phylogeny partitions all haplotypes by population sample, with haplotypes
found in multiple population groups occurring at the boundaries between the population-specific
haplotypes. The result therefore supports the validity of the parsimony metric for these data.

Figure 13(b) shows a 1-near-perfect phylogeny inferred from Stone et al. Y chromosome data [22].
Distinct population groups are again perfectly partitioned into distinct subtrees. Our optimal so-
lution is identical to that inferred by Stone et al. They, however, used branch-and-bound to infer
the optimal phylogeny, whereas our algorithm finds the solution without a worst-case exponential
time search.

Figure 13(c) shows an optimal 2-near-perfect phylogeny inferred from the Stone et al. chim-
panzee mtDNA data. The total number of base changes in our phylogeny (called the parsimony
score) is 63. The data did not partition as neatly by subspecies as did the Y-chromosome data,
perhaps suggesting lesser validity to the parsimony assumption for this data set.

For comparison, we applied the pars program for phylogenetic tree inference from the PHYLIP

software package [8] to all three data sets. The program with default parameters finds the optimal
solution as does our algorithm for the two 1-near-perfect Y-chromosome samples. For the mtDNA
data, though, pars produces tree with parsimony score 254, substantially worse than our provably
optimal result of 63. These results suggest that while heuristic methods in common use may often
produce optimal or near-optimal trees, they can do much worse in practice on at least some real
datasets.
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(a) (b)

(c)

Figure 13: Near-perfect phylogenies inferred for real testing data. Individuals with identical hap-
lotypes are collapsed into single nodes. Single edge could represent multiple character mutations.
Nodes are labeled according to the population groups (HapMap data) or the species (Stone et
al. data) (a): 1-near-perfect phylogeny constructed from the HapMap Y chromosome data [15].
(b): 1-near-perfect phylogeny inferred from primate Y-chromosome DNA [22]. (c): 2-near-perfect
phylogeny inferred from the chimpanzee mtDNA [22]
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7 Conclusion

We have presented two algorithms for inferring optimal near-perfect binary phylogenies. This
problem is of considerable practical interest for evolutionary tree reconstruction from SNP data.
One algorithm provides a simple, practical method for optimally finding near-perfect phyloge-
nies. The other proves the problem fixed-parameter tractable by showing it to be solvable in time
qO(q)nm + O(nm2). Empirical results on the first method show it can quickly reconstruct optimal
trees for near-perfect real data sets, at least occasionally substantially outperforming a commonly
used heuristic method. Our methods may have practical value not just for mitochondrial and Y-
chromosome data, but for such applications as tracing evolution of non-eukaryotic organisms or
explaining recombination-free regions of autosomal eukaryotic chromosomes. It remains to be seen
what values of q can be made computationally feasible in practice and how often values permitting
provable optimization are found in real data sets of interest.
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