
Multi-Splay Trees

Chengwen Chris Wang

CMU-CS-06-140

July 31, 2006

School of Computer Science
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Daniel Sleator, Chair

Manuel Blum
Gary Miller

Robert Tarjan, Princeton University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2006 Chengwen Chris Wang

This research was sponsored by National Science Foundation (NSF) grant no. CCR-0122581.

Keywords: Binary Search Tree, Competitive Algorithm, Dynamic Finger, Deque, Dy-
namic Optimality, Splay Tree, Tango

Abstract

In this thesis, we introduce a new binary search tree data structure called
multi-splay tree and prove that multi-splay trees have most of the useful prop-
erties different binary search trees (BSTs) have. First, we demonstrate a close
variant of the splay tree access lemma [ST85] for multi-splay trees, a lemma
that implies multi-splay trees have theO(log n) runtime property, the static
finger property, and the static optimality property. Then, we extend the access
lemma by showing the remassing lemma, which is similar to the reweighting
lemma for splay trees [Geo04]. The remassing lemma shows that multi-splay
trees satisfy the working set property and key-independent optimality, and
multi-splay trees are competitive to parametrically balanced trees, as defined
in [Geo04]. Furthermore, we also prove that multi-splay trees achieve the
O(log log n)-competitiveness and that sequential access in multi-splay trees
costsO(n).

Then we naturally extend the static model to allow insertions and deletions
and show how to carry out these operations in multi-splay trees to achieve
O(log log n)-competitiveness, a result no other BST scheme has been proved
to have. In addition, we prove that multi-splay trees satisfy the deque prop-
erty, which is still an open problem for splay trees since it was conjectured in
1985 [Tar85]. While it is easy to construct a BST that satisfies the deque prop-
erty trivially, no other BST scheme satisfying other useful properties has been
proved to have deque property. In summary, these results show that multi-
splay trees have most of the important properties satisfied by different binary
search trees.

iv

Acknowledgments

I am pleased to acknowledge the people who made this research possible. First and fore-
most, I am deeply indebted to Professor Daniel Sleator for his unwavering support and
valuable suggestions. I am grateful to Professor Gary Miller for many useful suggestions
and helpful discussions. I owe a debt of gratitude to Jonathan Derryberry for extensive
discussions that stimulated my thinking and helped to clarify many of the ideas presented.
Lastly, many thanks to Maverick Woo for his helpful suggestions and constructive criti-
cisms.

v

vi

Contents

1 Introduction 1

1.1 Related Works . 2

1.1.1 Splay Trees . 2

1.1.2 Tango . 5

1.1.3 Chain Splay . 5

2 Binary Search Trees (BSTs) 7

2.1 BST Model . 7

2.2 Competitive Analysis on BST . 8

2.3 Interleave Lower Bound . 8

2.4 Properties of anO(1)-competitive BST 9

2.4.1 Implications between the Properties 13

3 Multi-Splay Trees 17

3.1 The Multi-Splay Tree Data Structure . 17

3.1.1 Simplified Drawing of a Multi-Splay Tree 18

3.1.2 Recursive Definition of a Multi-Splay Tree 20

3.2 The Multi-Splaying Algorithm . 20

3.3 Details of Multi-Splaying Algorithm . 24

3.3.1 Determining the Direction of a Switch 24

3.3.2 Switch on a Node with Missing Children 24

vii

3.3.3 Switch withoutrefLeftParent or refRightParent 25

3.4 Running Time Analysis . 26

3.4.1 Multi-Splay Tree SatisfiesO(log log n)-Competitive Property . . 26

3.4.2 Multi-Splay Tree Satisfies Access Property 28

3.4.3 Multi-Splay Tree Satisfies Reweight Property 35

3.4.4 Multi-Splay Tree Satisfies Scanning Property 37

3.5 Comment on the Fields of the Multi-Splay Tree Nodes 40

4 Dynamic Binary Search Trees 43

4.1 Dynamic BST Model . 43

4.2 Competitive Analysis on Dyanmic BST 44

4.3 Dynamic Interleave Lower Bound . 44

4.3.1 Proof of the Dynamic Interleave Bound 45

4.4 Properties of anO(1)-dynamic-competitive BST 48

5 Dynamic Multi-Splay Trees 51

5.1 Making Multi-Splay Tree Dynamic . 51

5.2 Simulating Pointer Traversal in the Reference Tree – Virtual Traversal . . 52

5.2.1 Locating Child in the Reference Tree 52

5.2.2 Locating Parent in the Reference Tree 53

5.3 Simulating Rotations in the Reference Tree – Virtual Rotation 54

5.4 Implementing Insertion . 56

5.5 Implementing Deletion . 58

5.6 Running Time Analysis . 60

5.6.1 Proof ofO(log n) amortized time per operation 60

5.6.2 Proof ofO(log log n)-dynamic-competitiveness 61

5.6.3 Proof of Deque Theorem . 62

6 Conclusion 67

6.1 Comparisons between Multi-Splay Tree and Splay Tree 68

viii

6.2 Lower Bounds . 68

6.3 More Open Problems . 69

A Lists of Notations and Symbols 71

B Table of Constants 75

Bibliography 77

ix

x

List of Figures

2.1 Construction and example of a static BST for a fix finger. 14

2.2 Implication relationships of BST properties. 16

3.1 The fields of a node in a multi-splay tree. 18

3.2 A multi-splay tree with fields and its simplified version. 19

3.3 An example of a multi-splay tree and its corresponding reference tree. . . 21

3.4 Graphical representations of a single left-to-right switch. 23

3.5 Graphical representations of a single left-to-right switch with missing chil-
dren. 25

3.6 Graphical representations of a single left-to-right switch with missing parent. 27

3.7 Notations in reference tree . 30

5.1 Preprocessing of a rotation in the reference tree. 54

5.2 A rotation in the reference tree. 55

5.3 After queryingx or z during an insertion. 57

5.4 An example of a multi-splay tree during deletion. 59

xi

xii

List of Tables

A.1 The symbols that are used throughout the thesis. 71

A.2 The notation used throughout the thesis. 72

A.3 The terminology used throughout the thesis. 73

A.4 The notation used in Section 3.4.2 and 3.4.3. 73

A.5 The notation used in Section 3.4.4. 74

A.6 The notation used for Section 4.3. 74

B.1 Table of constants. 75

xiii

xiv

Chapter 1

Introduction

Efficiently maintaining and manipulating totally ordered sets is a fundamental problem in
computer science. Specifically, many algorithms need a data structure that can efficiently
support at least the following operations: insert, delete, predecessor, and successor, as
well as membership testing. A standard data structure that maintains a totally ordered set
and supports these operations is a binary search tree (BST). Various types of BSTs were
independently developed by a number of researchers in the early 1960s [Knu73]. Over
the years, many types BSTs achieved the theoretical minimum number ofO(log n) key
comparisons needed per operation. Hence, many BST algorithms are optimal (up to a
constant factor) using worst-case analysis.

However, for many sequencesσ of m operations, the optimal cost for executing the
sequence iso(m log n), lower than the theoretical minimum that uses worst-case, per-
operation bounds. To exploit the patterns of query sequences from specific applications,
such as randomly and independently drawn queries from a fixed distribution1, finger
search2, and sequential queries3, researchers have designed specialized BST algorithms
that efficiently support various types of access patterns.

In 1985, Sleator and Tarjan [ST85, Tar85] showed that it is possible to efficiently han-
dle all of the query patterns mentioned above (and many more) in a single BST data struc-
ture called asplay tree. A splay tree is a self-adjusting form of BST such that each time a
node in the tree is accessed, that node is moved to the root according to an algorithm called
splaying. Splay trees have a number of remarkable properties including the Balance Theo-

1See [Knu71, Fre75, Meh75, Meh79, GW77, HT71, HKT79, Unt79, Hu82, Kor81, KV81, BST85]
2See [BY76, GMPR77, Tsa86, TvW88, HL79, Har80, HM82, Fle93, SA96, BLM+03, Pug89, Pug90,

Iac01b, Bro05]
3See [Tar85, Sun89a, Sun92, Elm04]

1

rem [ST85], the Static Optimality Theorem [ST85], the Static Finger Theorem [ST85], the
Working Set Theorem [ST85], the Scanning Theorem [Sun89a, Tar85, Sun92, Elm04], the
Reweighting Lemma [Geo04], the Dynamic Finger Theorem [CMSS00, Col00], the Key
Independence properties [Iac02], and competitiveness to parametrically balanced trees
[Geo04]. Because splay trees satisfied so many such properties, they were conjectured
to bedynamically optimalby Sleator and Tarjan [ST85], meaning that splay trees were
conjectured to beO(1)-competitive to the optimal off-line BST. After more than 20 years,
the Dynamic Optimality Conjecture remains an open problem.

Since no one has shown that any BST isO(1)-competitive, Demaineet al. suggested
searching for alternative BST algorithms that have small but non-constant competitive
factors [DHIP04]. They proposedtango, a BST algorithm that achieves a competitive ratio
of O(log log n). Tango is the first data structure proved to achieve a nontrivial competitive
factor. Unfortunately, tango does not satisfy many of the necessary conditions of a constant
competitive BST, including some that splay trees are known to satisfy. For example, it does
not satisfy the Scanning Theorem.

In this thesis, we introduce a new data structure called multi-splay trees. We prove that
multi-splay trees can efficiently execute most (if not all) query sequences proven to execute
efficiently on other binary search trees. In Chapter 2, we define the static BST model and
explain competitive analysis on BST. Then we describe a lower bound and enumerate
many of the necessary properties of a constant competitive BST. In Chapter 3, we proceed
to prove that multi-splay trees have almost all of the properties mentioned in Chapter 2.
In Chapter 4, we generalize the BST model to support insertions and deletions. Since this
is a new model, we prove a new lower bound and describe a few desirable properties in
our new model. In Chapter 5, we prove that multi-splay trees areO(log log n) dynamic
competitive and satisfy deque property. No other dynamic binary search trees are proven
to beO(log log n) competitive. Moreover, the deque property is a long-standing unproven
conjecture for splay trees.

1.1 Related Works

1.1.1 Splay Trees

Sleator and Tarjan [ST85] proved that the amortized cost of splaying a node is bounded
by O(log n) in a tree ofn nodes. By the use of the flexible potential described below,
they proved tighter bounds on the amortized cost of splaying for access sequences that are
non-uniform (e.g., the Static Optimality Theorem). This framework is essential for the

2

analysis of multi-splay trees.

For an arbitrary positive weight functionw over the nodes of a splay tree, they defined
the sizes(v) of nodev to be

∑
v∈subtree(v) w(v), the sum of the weights of all nodes inv’s

subtree. They defined the potential of the tree to be
∑

v∈V lg s(v), whereV is the set of
nodes in the splay tree.

As a measure of the cost (running time) of a splaying operation, they used the distance
from the node being splayed to the root plus 1. With these definitions, Sleator and Tarjan
proved the following theorem about the amortized cost of splaying.

Theorem 1 (Access Lemma). [ST85] The amortized time to splay a nodev in a tree
currently rooted atr is at mostcs ∗ lg(s(r)/s(v)) + csa, wherecsa = 1 andcs = 3.

Theorem 2 (Generalized Access Lemma). Given a pointer to an ancestor nodea, the
amortized time to splay a nodev with respect to an ancestora in the same splay tree is at
mostcs ∗ lg(s(a)/s(v)) + csa.

The main difference between this and the original access lemma is that we are allowed
to stop at any ancestora. In other words, splayv in the subtree rooted ata. Its truth follows
from the proof of the original access lemma because that proof does not require splaying
to go all the way to the root.

Theorem 3(Reweighting Lemma). [Geo04] For any sequence of interleaving splays and
reweights, the amortized time to splay a nodev in a tree currently rooted atr is at most
cs ∗ lg(s(r)/w(v))+ csa, and4 the amortized time to reweight a nodev fromw(v) to w′(v)
is max(0, cr ∗ log(w′(v)/w(v))), wherecr = cs + 1 = 4.

While this theorem is proved in [Geo04], the theorem is not very well-known. For
completeness, here is an informal proof.

Proof. Consider an extended version of the Splay Tree Access Lemma, modified as fol-
lows. Using the same potential function as used in the access lemma proof, change the
amortized cost of a splay tocs ∗ lg(s(r)/w(v)) + csa (changing the denominator inside the
log from s(v) to w(v)). Becauses(v) ≥ w(v) for all v, the Splay Tree Access Lemma
shows this expression is a valid upper-bound on the amortized cost of a splay.

Additionally, allow two operations, DecW(w(x), w′(x)) and IncRootW(w(r), w′(r)).
The operation DecW(w(x), w′(x)), which decreases the weight of nodex from w(x) to
w′(x) can only decrease the potential, so its amortized cost is at most0. The operation

4The denominator inside the log isw(v), which is different from the access lemma.

3

IncRootW(w(r), w′(r)), which increases the weight of the rootr from w(r) to w′(r) only
changes the potential of the root, which it increases. To account for this increase in poten-
tial, it suffices to pay the following amortized cost:

Change in potential= log s′(r)− log s(r)

= log
s(r) + w′(r)− w(r)

s(r)

≤ log
w′(r)

w(r)
.

Note that reweighting an element does not change the actual cost, and the amortized
cost derived from the extended access lemma is an upper bound on the actual cost. Thus,
if the total cost computed using the reweighting lemma is at least as much as the total
cost computed using the extended access lemma, then the total cost from the reweighting
lemma is an upper bound on the actual cost. Hence, we only need to assign a cost to each
of the reweight operations so that the cost according to the reweighting lemma is always
at least the cost according to the extended access lemma.

To match the cost of reweighting lemma to that of the extended access lemma, we
use the same potential function as the access lemma, and use the same splay cost and
decrease weight cost bounds as used in the extended access lemma. That is, Splay(x)
costscs ∗ lg(s(r)/w(v)) + csa, and DecW(w(x), w′(x)) costs0.

As for the IncW(w(x), w′(x)) operation, (which increases the weight ofx to w′(x)),
the reweighting lemma will reweightx immediately instead of waiting untilx is splayed
to the root, which the extended access lemma has to do since the weight increase can only
be performed at the root. Note that since decreases in weight always occur immediately,
while increases in weight are delayed in the extended access lemma,s(r) in the extended
access lemma is always less than or equal tos(r) in the reweighting lemma. To avoid
confusion, we uses(r) to denote the total weight in extended access lemma, ands(r)+ to
denote the total weight in the reweighting lemma.

Moreover, for a particular nodev, there is no reason to increase the weight ofv unless
we are about to splay it because if we are not planning to splayv, increasing its weight only
increases the total weight without making any other operations cheaper. Once we splayv,
its weight will be the same in both the extended access lemma and the reweighting lemma.
Thus, for a fixed nodev, the reweighting lemma pays less than the extended access lemma
paysonly on thefirst splay ofv after v’s weight increases. Thus, we can figure out the
cost of IncW(w(v), w′(v)) so reweight always pay more than the extended access lemma
as follows:

4

(Amortized cost of extended access lemma)≤ (Total cost of reweighting lemma)

Splayaccess(v) + IncRootW(w(v), w′(v)) ≤ IncW(w(v), w′(v)) + Splayreweight(v)

cs lg
s(r)

w(v)
+ csa + lg

w′(v)

w(v)
≤ IncW(w(v), w′(v)) + cs lg

s(r)+

w′(v)
+ csa

cs lg
s(r) ∗ w′(v)

w(v) ∗ s(r)+
+ lg

w′(v)

w(v)
≤ IncW(w(v), w′(v))

(cs + 1) ∗ lg
w′(v)

w(v)
≤ IncW(w(v), w′(v)).

Thus, if we assign a cost of(cs + 1) ∗ lg(w′(v)/w(v)) to IncW(w(v), w′(v)), the total
cost computed using the reweighting lemma will always be at least the cost using the
extended access lemma and, hence, it is at least the cost computed using the original Splay
Tree Access Lemma.

1.1.2 Tango

Proposed by Demainet al, Tango was the firstO(log log n)-competitive BST. Currently,
the best and the only non-trivial competitive factor for BST isO(log log n). Unfortunately,
tango does not satisfy many of the necessary conditions of a constant competitive BST,
including some that splay trees are known to satisfy. Inspired by tango, we invented multi-
splay trees in attempt to alleviate some of the theoretical shortcomings of tango while
maintaining itsO(log log n)-competitiveness property. A multi-splay tree is essentially
the same as tango, except the multi-splay tree is a collection of splay trees while tango is a
collection of red-black trees. Another minor difference is that tango searches for different
nodes during a simulated switch of the reference tree. This differences are elucidated in
the description of multi-splaying algorithm in Section 3.2.

1.1.3 Chain Splay

Based on tango, Georgakopoulos [Geo05] modified the splay algorithm [ST85] to achieve
O(log log n)-competitiveness andO(log n) amortized running time. His algorithm, called
chain splaying, exhibits none of the other necessary conditions of a constant competi-
tive BST. Although it is quite similar to multi-splay tree (without insertion and deletion),

5

Georgakopoulos independently discovered his data structure. These two data structures
only differs on the locations of the partial splays during a series of the switches. Because
of those differences, Georgakopoulos managed to uselg lg n less bits per node. Unfor-
tunately, these small differences make it so that most of the techniques we developed to
analyze multi-splay tree do not apply to chain splaying. The effect of these small differ-
ences is discussed in Section 3.5.

6

Chapter 2

Binary Search Trees (BSTs)

2.1 BST Model

In order to discuss the optimality of BST algorithms, we need to give a precise definition
of this class of algorithms and their costs. The model we use is implied by Sleator and
Tarjan [ST85] and developed in detail by Wilber [Wil89]. A static set ofn keys is stored
in the nodes of a binary tree. The keys are from a totally ordered universe, and they are
stored in symmetric (left to right) order. Each node has a pointer to its left child, to its right
child, and to its parent. Also, each node may keepo(log n) bits of additional information
but no additional pointers.

A BST algorithm is required to process a sequence of queriesσ = σ1, σ2, . . . , σm. Each
accessσi is a query to a keŷσi in the tree1, and the requested nodes must be accessed in
the specified order. Each access starts from the root and follows pointers until the desired
node (the one with keŷσi) is reached. The algorithm is allowed to update the fields in
any node or rotate any edges that it touches along the way2. The cost of the algorithm to
execute a query sequence is defined to be the number of nodes touched plus the number of
rotations.

Finally, we do not allow any information to be preserved from one access to the next,
other than the nodes’ fields and a pointer to the root of the tree. It is easy to see that this
definition is satisfied by all of the standard BST algorithms, such as red-black trees and
splay trees.

1WLOG, this model is only concerned with successful searches [AW98].
2A definition of rotation can be found in [CSRL01]

7

2.2 Competitive Analysis on BST

Given any initial treeT0 and anym-element access sequenceσ, for any BST algorithm
satisfying these requests, the cost can be defined using the model in Section 2.1. Thus, we
can define OPT(T0, σ) to be the minimum cost of any BST algorithm for satisfying these
requests starting with initial treeT0. Furthermore, since the number of rotations needed
to change any binary search tree ofn nodes into another one is at mostO(n) [Cra72,
CW82, STT86, M̈ak88, LP89], it follows that OPT(T0, σ) differs from OPT(T ′

0, σ) by at
most O(n). Thus, as long asm = Ω(n), the initial tree is irrelevant. We denote the
off-line optimal cost starting from thebestpossible initial tree as OPT(σ). Similarly, for
any on-line binary search algorithm A, A(σ) denotes the on-line cost to executeσ starting
from theworst initial tree. Because the initial tree of a BST algorithm could be a very
unbalanced binary search tree, we assume the number of operations,m, is greater than
n log n to avoid unfairly penalizing the on-line BST algorithm.

An on-line binary search tree algorithm A isT -competitive if

∀σA(σ) < T ∗OPT(σ) + O(m).

This framework in which theO(log log n)-competitive bounds for the best competi-
tive on-line binary search trees [DHIP04, SW04, Geo05, WDS06] are proven does not
allow for insertions or deletions. We generalize this framework to include these update
operations, and extend the lower bound appropriately in Chapter 4. We also show how
to modify the multi-splay tree data structure to handle insertions and deletions, and prove
that it remainsO(log log n)-competitive.

2.3 Interleave Lower Bound

Given an initial treeT0 and anm-element access sequenceσ, for any BST algorithm satis-
fying these requests there is a cost, as defined above. Wilber [Wil89] derived a lower bound
on OPT(T0, σ) which was later modified and name theinterleave boundby Demaineet
al. [DHIP04].

Let IB(P, σ) denote the interleave lower bound on the cost of accessing the sequence
σ, whereP is a BST (later called areference tree) over the same set of keys asT0. Define
IB(P, σ) =

∑
v∈P IB(P, σ, v), where for each nodev, IB(P, σ, v) is defined as follows.

First, restrictσ to the set of nodes in the subtree ofP rooted atv (including v). Next,
label each access in this restrictedσ as either “left” (or “right”) depending on whether the

8

accessed element is in the left subtree (includingv) or right subtree ofv. Now, IB(P, σ, v)
is the number of times the labels switch.

Theorem 4(Interleave Lower Bound). [Wil89, DHIP04, DSW05]

OPT(T0, σ) ≥ IB(P, σ)/2−O(n) + m

Since the number of rotations needed to change any binary tree ofn nodes into another
one is at most2n − 6 [Cra72, CW82, STT86, M̈ak88, LP89]. It follows that OPT(T0, σ)
differs from OPT(T ′

0, σ) by at most2n− 6. Thus, as long asm = Ω(n), the initial tree is
irrelevant.

Using the Interleave Lower Bound, the smallest competitive ratio proved for on-line
binary search trees [DHIP04, SW04, Geo05, WDS06] areO(log log n)-competitive. Cur-
rently, we still do not know if it is possible to have a smaller competitive ratio. In partic-
ular, we do not know if it is possible to have anO(1)-competitive BST, but we know an
extensive list of properties that anyO(1)-competitive BST must satisfy.

2.4 Properties of anO(1)-competitive BST

Before we move on to discuss the properties identified as necessary for anO(1)-
competitive BST, let us first discuss the assumptions of this section. In this section, all
sequences of operations are assumed to involve only queries. We call a sequence without
insertions and deletions aquery sequence. Since the set of keys do not change, we can
assume WLOG that there aren keys numbered from1, 2, . . . , n.

Now we are ready for a complete list of the useful binary search tree properties.

Property. A binary search tree structure has theO(log n) runtimeproperty if it executes
everyσ in timeO(m log n)

In the worst case, some query sequences will needΩ(m log n) time [Wil89]. Thus,
having this property implies the data structure is theoretically optimal under worst-case
analysis. Almost every binary search tree has theO(log n) runtime property.

Property. [ST85] A binary search tree structure has thestatic fingerproperty if it executes
everyσ in time O(m +

∑m
i=1 log(|f − σi| + 1)) for every integer1 ≤ f ≤ n, wheref is

called a finger.

9

There exists a specialized data structure [GMPR77, Bro98] which is tuned for a spe-
cific value off , and has this property for that specific finger. However, for a data structure
to have the static finger property, it must have the finger search running time for all possible
fingersf .

Property. [AW98] A binary search tree structureA is O(1)-distribution-competitiveif for
all n, all distributionsD on n elements and all initial treesT0, the expected cost forA to
serve a request is less than a constant times the optimal static tree for distributionD.

An example of a binary search tree that satisfiesonly theO(1)-distribution-competitive
property is themove-to-rootbinary search tree [AM78]. This binary search tree always
rotates the queried nodex repeatedly untilx become the root. Because the optimal static
tree for a fixed distributionD is a static tree, theO(1)-distribution-competitive property is
implied by thestatic optimalityproperty described below.

Property. [ST85] A binary search tree structure has thestatic optimalityproperty if the
time to executeσ is O(m+

∑m
i=1 f(i) log(m/f(i)), wheref(i) is the number of times key

i is queried.

BecauseΩ(
∑m

i=1 f(i) log(m/f(i))) [Abr63] is an informational theoretical lower
bound on a static BST for a sequence of queries with frequencyf(i), the binary search
trees with static optimality is constant competitive to any static binary search tree, in-
cluding the optimal static tree for distributionD. Several data structures [Knu71, Fre75,
Meh75, Meh79, GW77, HT71, HKT79, Unt79, Hu82, Kor81, KV81, BST85] have the
static optimality, but they need to knowf(i) during initialization. On the other hand, splay
trees have the static optimality property without knowing the frequencyf(i) in advance.
Any data structure with the static optimality property also has the static finger property
[Iac01a].

Property. [ST85] A binary search tree structure has theworking setproperty if the time
to executeσ is O(m +

∑m
i=1 log d(l(i), i)), whered(i, j) is the number of distinct keys

accessed in the subsequenceσi, σi+1 . . . σj, andl(i) is the index of the last access toσi in
the subsequenceσ1, σ2, . . . σi−1. (l(i) = 1 if σi does not appear in the subsequence.)

The working set property implies both static finger and static optimality. It also implies
that if all queries are in a small subset of keys of sizek, then the query sequence can be
executed inO(m log k). In many applications, such as compression [Jon88, GRVW95], a
recently queried element is likely to be queried again. These recent queries are exactly the
element with low amortized cost in the working set property.

10

Property. [Iac02] A binary search tree structure has thekey-independentproperty if the
time to executeσ is O(E[OPT (b(σ))]), whereb is random bijection of the keys fromn to
n.

Iacono [Iac02] introduced the key-independent optimality as another necessary condi-
tion for anO(1)-competitive binary search tree, and he proved that the key independent
property is equivalent to the working set property up to a multiplicative constant factor.

Property. [ST85] A binary search tree structure has theaccessproperty if for any positive
weight assignmentw(x) for each element, the time to executeσ is O(m+

∑m
i=1 log W

s(σi)
),

whereW =
∑n

i=1 w(i), s(σi) must be greater thanw(σi) (ands(x) can depend on the
structure of the binary search tree).

With a simple weight assignment, this property implies the static finger and the static
optimality properties [ST85]. Because of the flexibility in assigning weights, the access
property can be used to combine and generalize properties proved with weight assignment.
For instance, the access property implies that for any constant number of fingerf1, f2...fk,
the amortized cost to execute a sequence is summation of the log of the distance to the
closest finger. That is,O(m +

∑m
i=1 minj log(|fj − ai|+ 1)).

Property. [Geo04] Letwi(x) be any positive weight assignment ofx right beforeith

query. A binary search tree structure has thereweightproperty if the time to executeσ is
O(m +

∑m
i=1 log Wi

wi(σi)
+
∑m

i=2

∑n
j=1 log max(0, wi(j)

wi−1(j)
)), whereWi =

∑n
j=1 wi(j).

This property is almost the same as the access property with an additional reweight
operation, and the cost to increase the weight of element fromold to new is roughly
O(log new

old). The reweight operation is not an operation in the data structure, it is merely
used in the analysis. The reweight operation enables the analysis to adapt to the query
patterns and prove tighter bounds [Geo04].

Property. A binary search tree structure has thedynamic fingerproperty if the time to
executeσ is O(m +

∑m
i=2 log(d(i) + 1)), whered(i) is the difference in rank between the

ith query and the(i− 1)th query.

Brodal [Bro05] wrote a chapter on finger search trees and some of the common data
structures with the dynamic finger property. Several search trees [BY76, GMPR77, Tsa86,
TvW88, HL79, Har80, HM82, Fle93, SA96, BLM+03] have this property, but many vi-
olate the definition of Binary Search Tree. For instance, the level linked (2, 4)-tree of
Huddleston and Mehlhorn [HM82] and unified data structure of Iacono [Iac01b, BD04]

11

use extra pointers that are not valid in the BST model; randomized skip lists of Pugh
[Pug89, Pug90] duplicates the same key multiple times, which is a violation of the BST
model; or the auxiliaryhanddata structure of Blelloch, Maggs and Woo [BMW03] main-
tains extra pointers into a degree balanced binary search tree. Splay tree [ST85] is one
of the few data structure that satisfies the binary search tree model and has the dynamic
finger property [CMSS00, Col00].

Property. [Tar85, ST85] A binary search tree structure has thescanningproperty if the
time to executeσ = 1, 2, 3, . . . , n is O(n) starting at any valid initial tree.

Property. [ST85] A binary search tree data structure has thetraversalproperty if given
any initial treeT0 and a input treeTi, the cost of sequentially querying elements in the
order they appear in preorder ofTi is O(n).

WhenTi is a right path, the elements in preorder ofTi is 1, 2, . . . n, which is exactly
the query sequence in the scanning property. Thus, any data structure that satisfies this
property also satisfies the scanning property. While anyO(1)-competitive binary search
tree must have the traversal property, no binary search tree is known to have the traversal
property. However, special case of the traversal property (whenT0 = Ti [CH93], or when
Ti is a right path [Sun89a, Tar85, Sun92, Elm04]) was proved for splay trees.

Property. A binary search tree data structure has theO(log log n)-competitiveproperty if
it executesσ in timeO(log log n) ∗OPT (σ).

TheO(log log n)-competitive property is currently the best competitive (and only non-
trivial) bound proved for a binary search tree [DHIP04, SW04, Geo05, WDS06].

Property. A binary search tree structure iscompetitive to parametrically balanced trees
if the data structure isO(1)-competitive to parametrically balanced trees.

Parametrically balanced trees is a large class of balance search trees introduced by
Georgakopoulos [Geo04]. The class includes most balanced trees, such as BB(α)-trees
[NR73, BM80], AVL-trees [AVL62], half-balanced trees [Oli82, Ove83], B-tree [RB72].
These parametrically balanced trees are allowed to restructure based on future queries
and pay a small cost proportional to the number of local changes in the structure. Since
Georgakopoulos [Geo04] has a detailed description on this class of balanced trees, we
omit the details here.

12

2.4.1 Implications between the Properties

In this section, we show or cite the proof for each implication. All the implications are
shown in Figure 2.2.

Lemma 1. [ST85] If a BST satisfies the access property, then it also satisfies the static
optimality property.

Lemma 2. [ST85] If a BST satisfies the access property, then it also satisfies the static
finger property.

Lemma 3. [Iac02] A BST satisfies the working set property if and only if it also satisfies
the key-independent property.

Lemma 4. [Geo04] If a BST satisfies the reweight property, then is also satisfies the
working set property.

Lemma 5. [Geo04] If a BST satisfies the reweight property, then it is competitive to para-
metrically balanced trees.

Lemma 6. [Iac00] If a BST satisfies the working set property, then it also satisfies the
static optimality property.

Lemma 7. If a BST satisfies the static optimality property, then it also satisfies theO(1)-
distribution-competitive property.

Proof. Since the optimal BST for a fix distribution is defined as a static tree, and a stat-
ically optimal BST isO(1)-competitive to every static tree, a BST with static optimality
property also satisfiesO(1)-distribution-competitive property.

Lemma 8. If a BST satisfies the static optimality property, then it also satisfies the static
finger property.

Lemma 9. If a BST satisfies the static finger property, then it also satisfies theO(log n)
runtime property.

Proof. This is trivially true because the distance of a node to a finger can be at mostn.

Proof. As shown in Figure 2.1, for every fix fingerf , we can create a static treeT whose
left spine and right spine aref, f − 1, f − 2, f − 4, . . . , f − 2j andf, f + 1, f + 2, f +
4, . . . , f + 2k, respectively, wherej = max{i|f − 2i ≥ 1} andk = min{i|f + 2i ≤ n}.
Then we construct a balanced tree for each set of nodes hanging off the nodes on the

13

� � � �

� � � � �
	
 � � �
 � � � � � �
� � � �
 � � � � �
 � � �

� �
 � � � � � � �

� � � � �

� �

�

 !

" "

"

#

$ #

� % � $ � � " % � " % �

� " $ � " � �

� !
� " � � $ $ �

� $ � � � � �

& ' () * ' () +

' (, ' - ,

'

' (. ' - .

' - /

' - 0

' (/

1 2 3 4

& ' -) * ' -) +

& ' - 5 * ' - 6 +

1 2 7 8& ' - 9 * ' - , 5 +

& ' - , 6 * ' -) , +

& ' (6 * ' (5 +

' (0

& ' (, : * ' (9 +

1 ; 3 4

& ' () , * ' (, 6 +

1 ; 7 8

� < � = � 	
 � � �
 � � � � � � � � � �
 � � � � �
 � � � � �
 � � � � �
 �

Figure 2.1: The construction of a static BST for a fix fingerf is shown on the left. An
example of a50 nodes BST with finger at7 is shown on the right.

left and right spines. Base on our construction, the depth of a node with valuev has
O(log |f − v|) depth. Since we can construct a static tree for each finger, and statically
optimal tree isO(1)-competitive to all static tree, a BST with static optimality property
also satisfies static finger property.

Lemma 10. [Geo04] If a BST is competitive to parametrically balanced trees, then it also
satisfies the static finger property.

Proof. For every fix fingerf , the construction shown in Figure 2.1 is a parametrically
balanced tree.3 Thus, the same argument in Lemma 8 applies.

Lemma 11(private conversation with Jonathan Derryberry and Marverick Woo). If a BST
satisfies the dynamic finger property, then it also satisfies the static finger property.

3For those who are familiar with [Geo04], every static tree is a parametrically balanced tree because we
can setb(x) = 1/3d(x). Moreover, if the static tree hasO(log n) height, then the difference between initial
and final potential is bounded byO(n log n).

14

Proof. When the last the last query isx, and the next query isy, it suffices to show that if
the amortized dynamic finger cost to queryy is c lg(|x−y|+1), then the amortized cost is
also at most2c lg(|f−x|+1) for any finger. Let the potential function bec lg(|f−x|+1),
then the amortized dynamic finger cost is,

(log of the distance to the last query) + (initial potential) - (final potential).

For any query, the last query and the next query is either on the same side of the finger, or
difference sides (case 1). When the queries are on the same side, it either moves closer to
the finger (case 2) or further from the finger (case 3). Using the property that for alla ≥ 1
andb ≥ 1, lg(a + b) ≤ lg a + lg b, we bound the amortized cost ofc ∗ lg(|x − y| + 1) +
c ∗ lg(|f − y|+ 1)− c ∗ lg(|f − x|+ 1) for each case as follow:

1) If x ≤ f ≤ y, lg(y − x + 1) + lg(y − f + 1)− lg(f − x + 1)

≤ lg(y − f + f − x + 2) + lg(y − f + 1)− lg(f − x + 1)

≤ lg(y − f + 1) + lg(f − x + 1) + lg(y − f + 1)− lg(f − x + 1)

≤ 2 ∗ lg(y − f + 1)

2) If x ≤ y ≤ f , lg(y − x + 1) + lg(f − y + 1)− lg(f − x + 1)

= (lg(y − x + 1)− lg(f − x + 1)) + lg(f − y + 1)

≤ lg(f − y + 1)

3) If y ≤ x ≤ f , lg(x− y + 1) + lg(f − y + 1)− lg(f − x + 1)

≤ lg(x− y + 1) + lg(f − y + 1)

≤ 2 ∗ lg(f − y + 1)

Since we did not make any assumption on the location of the fingerf , this proof
applies for all possible fingers. Moreover, this proof is tight when the queries are
f, x, f, x, f, x,

Lemma 12. [ST85] If a BST satisfies the traversal property, then it also satisfies the scan-
ning property.

Lemma 13. [ST85] If a BST satisfies the dynamic finger property, then it also satisfies the
scanning property.

15

� � � � � � � � � 	
 �
 � � 	
 � � 	 � �

� � � � 	 � � � �

� � � � � � � � � � � 	 � �
 �
 � � � � � � 	 �

� � � � � � � �

� 	 � 	 � � �

� � � � � � � � � � �
� � � � 	
 �
 � � 	

� � � � 	
 �
 � � 	
 �
� � � � � 	
 � � � � � � �
� � � � � � 	 �
 � 	 	

� � � � � � � 	
! 	 � � " � � 	 � 	 � � 	 �

� � � � � � � � # �
 � � 	

� � � � � � � � � � � � �
� � � � 	
 �
 � � 	

� 	 $ # 	
� #
 � #

� 	 �
 � � �
 	 �
� 	 $ # 	

% & ' () & * +
, ' * (& ' -) . ' ,

/ , + 0 1 2 3
% & ' () & * + (& ' -) . ' ,

4 ' 5) 0 1 2 3

% & ' () & * + 6 7 5 (8 7) 4 0
6 0

9 : ; : < =

> ? @ < A : B C D ? <

E < = F : G : C D ? <

H D C I @ < A : B C D ? <

E < = F : G : C D ? <

� � � � � � � �
 � � � #
 � � � �
� � � � 	
 �
 � � 	�
 �
 � � � �
 � � � � �
 �

J K L M N L M N O P
Q R O S T U V W

X M T Y Z [U [U \ Z % & ' -) ' ,] 1 2 7 ,
* ^ 7 4 * ^) 4 7 4

0 1 2 3 7 4 / 8 8 0 1 2 4) _ `) (*] 1 2

Figure 2.2: This figure shows the implication relationships for the list of properties in
Section 2.4 and Section 4.4. The minimum set of edges are shown so that the transitive
closure of the above graph includes all the implications. (MST stands for multi-splay tree
in the legend.)

16

Chapter 3

Multi-Splay Trees

3.1 The Multi-Splay Tree Data Structure

Consider abalanced1 BSTP made up ofn nodes, which we will refer to as thereference
tree. BecauseP is balanced, the depth of any node inP is at most2 lg(n + 1). (The depth
of the root is defined to be 1.) Each node in the reference tree has apreferred child. The
structure of the reference tree is static (but we will generalize it to support insert and delete
in Chapter 5), except that the preferred children will change over time, as explained below.
We call a maximal chain of preferred children apreferred path. The nodes of the reference
tree are partitioned into approximatelyn/2 sets, one for each preferred path. The reference
tree is not explicitly part of our data structure, but is useful in understanding how it works.

A multi-splay tree is a BSTT (over the same set ofn keys contained in the reference
treeP) that evolves over time, and preserves a tight relationship to the reference tree.
Each edge of a multi-splay tree is eithersolid or dashed. We call a maximal set of vertices
connected by solid edges asplay tree. There is a one-to-one correspondence between the
splay trees of a multi-splay tree and the preferred paths of its reference tree. The set of
nodes in a splay tree is exactly the same as the set of nodes in its corresponding preferred
path. In other words, at any point in time a multi-splay tree can be obtained from its
reference tree by viewing each preferred edge as solid, and executing a series of rotations
on only the solid edges.

Each node of a multi-splay treeT has several fields in it, which we enumerate here.
First of all, it has the usualkeyfield, and pointersleftChild, rightChild, andparent. Al-

1By “balanced” we mean that every subtreet has height at most2 lg(|t|)

17

� � �

� � � � � � � � 	
 �

� � � � � 	
 �

�
 � � �
 � �

Figure 3.1: The fields of a node in a multi-splay tree.

though the reference treeP is not explicitly represented inT , each node stores infor-
mation related toP . In each node’srefDepth field, we keep its depth inP .2 Note that
every node in the same splay tree has a different depth inP . In addition, each nodev
stores the minimum depth of all of the nodes insplaySubtree(v) in its minRefDepth field
(splaySubtree(v) contains all of the nodes in the same splay tree asv that havev as an
ancestor, includingv). Finally, to represent the solid and dashed edges, each node has
an isRoot boolean variable that indicates if the edge to its parent is dashed. Because the
reference tree is a balanced tree3, we only useO(log log n) extra bits per node to store the
additional informations.

3.1.1 Simplified Drawing of a Multi-Splay Tree

Throughout this thesis, we show many figures of multi-splay trees. For the sake of clarity,
rather than showing the entire multi-splay trees with all the fields, we will simplify the
drawing as shown in Figure 3.2. First, we will draw each multi-splay tree with its corre-
sponding reference tree. We will always draw rectangular shapes for nodes of a multi-splay
tree and circular shapes for nodes of a reference tree. Second, we will label each node with
its key value, and mark each whoseisRoot bit is true with a thicker border. Third, because
it is easy to derive therefDepth, and theminRefDepth fields from the reference tree, we
ignore those fields in the simplified drawing. Fourth, we will only draw the left and right

2Note that this quantity is static in our initial description of multi-splay trees, but becomes dynamic in
Chapter 5 when we extend multi-splay trees to support insert and delete.

3In the Chapter 5, we generalize multi-splay tree to support insertions and deletions. We use red black
tree as a reference tree, so we will also need an additional bit to store if a node is red or black.

18

�

�

�

� � � � �

� 	
 � � �
 � � � � � �

� � �
 � � � � � �

	 � � � � � � � � � �

� � � � �

� 	
 � � �
 � � � � � �

� � �
 � � � � � �

	 � � � � � � � � � � �

� � � � �

� 	
 � � �
 � � � � � �

� � �
 � � � � � �

	 � � � � � � � � � � �

� � � � �

� 	
 � � �
 � � � � � �

� � �
 � � � � � �

	 � � � � � � � � � �

� � � � �

� 	
 � � �
 � � � � � �

� � �
 � � � � � �

	 � � � � � � � � � �

� � � � �

� 	
 � � �
 � � � � � �

� � �
 � � � � � �

	 � � � � � � � � � � �

� � �

� �

�

�

�

�

� ! " # $ % & ' # (%) (* # # + , + - . %

 # /) $ % $ 0 % 1 2 - % 3 % - - % $ 4 ') / $

5 6 (' % $ % $ 0 % 1 . 7 2 - % 3 % - - % $ 4 ') / $

� ! 7 # $ % &) + ' 8 % 9 88

8 * % 3 % - % 7 4 % + - % % 7 # $ % &) + ' 8 % 9 8

Figure 3.2: This figure shows a multi-splay tree with fields (left), and its simplified version
(right). The simplification steps are described in Section 3.1.1

19

children pointers, and we ignore parent and nil pointers. Lastly, we use dashed arrows
for pointers connecting nodes in two different splay trees, and solid arrows for the other
pointers, even thought the types of pointers are already deducible from theisRoot bit.

While it is easy to derive if a pointer connects nodes in two different splay trees using
the isRoot bit, for clarity, we use dashed arrows for pointers connecting nodes in two
different splay trees, and solid arrows for other pointers. Using the simplified drawing, it
is easy to derive the actual multi-splay tree. In this thesis, we will always use the simplified
drawing.

3.1.2 Recursive Definition of a Multi-Splay Tree

This is an alternative recursive definition of multi-splay trees. First, we start with a fixed
balanced treeP called thereference tree. Second, we pick a root-to-leaf path and call it
a preferred path. Each node on the path has apreferred childdefined by the preferred
path, and we call the other child thenon-preferred child. Third, we rotate the nodes on
this preferred path to create a splay tree,S, and we mark the topmost node inS as a
root. Fourth, we recurse the first step on the tree rooted at each non-preferred child of the
preferred path. Each recursion returns a multi-splay tree. Fifth, to produce a single multi-
splay tree, we connect the multi-splay trees toS’s leaves in the symmetric order. Since
each missing child of a binary search tree corresponds to an interval of keys, and the splay
treeS has the same set of keys as the preferred path, each missing child ofS corresponds
to a non-preferred child’s subtree.

3.2 The Multi-Splaying Algorithm

Like splay tree, there is a self-adjusting update algorithm that rotates a key to the root.
This algorithm is called the multi-splay algorithm. In this section, we first explain the
algorithm assuming we have the reference treeP , then we explain how to implement the
corresponding operations in our actual representationT .

As stated above, the preferred edges inP evolve over time. Aswitchat a node just
swaps which child is the preferred one. For each access, switches are carried out from the
bottom up, so that the accessed nodev is on the same preferred path as the root ofP . In
addition, one last switch is carried out on the node that is accessed.

In other words, traverse the path fromv to the root doing a switch at each parent of
a non-preferred child on the path, and then finally switchv. That is the whole algorithm

20

� �

�

� �

�

�

� � �

�

� � � �

� �

� �

� � � �

� 	

� � � �

� �

� �

� � � �

� �

� � � �

� �

� 	

	 � �

� �

	

�

� �

�

� �

�

�

� �

� �

� �

� �

� 	

� �

� �

� �

� �

� �

� �

� �

� 	

� �

� �

� �

� �

� �

� �

�

�

�

 � � �

 � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � ! � � " # $ % � � � & ' � � (�) � (� & ' � � (� �

* " ! � � + , � � � � � � � � � � � � ! � #
� � � & � � (' � & & � ' � � � � - � � . � (� � �
� � � �) � (/ � � � & � � � 0
 1

� �

2
 1 3 � � �

 �) � (� & ' � 1 (� �
3 � � �

4 (�) � ((� � ' � � � �

3 � � - (�) � ((� � ' � � � �

Figure 3.3: An example of a multi-splay tree and its corresponding reference tree.

21

from the point of view of the reference tree. The tricky part is to do it without the reference
tree. Note that if the multi-splaying algorithm did not make the final switch on the queried
node, the number of switches caused by single query would equal the increase in interleave
bound. With the extra switch, the amortized number of switches only increases by at most
2 per query.

Unfortunately, the reference treeP is not our representation, the multi-splay treeT
is. To achieveO(log log n)-competitiveness, we can only afford to spendO(log log n)
amortized time per switch. To simulate the series of switches in the reference treeP , we
first traverse the multi-splay tree to find the queried node. While we traverse, we remember
all the switches we need to perform. Then we perform those switches from bottom up. As
shown below, we can simulate a switch inP with at most three splay operations, and two
changes ofisRoot bits inT .

More specifically, suppose we want to switchy’s preferred child from left to right.
To understand the effect of this, temporarily make both children ofy preferred. Now,
consider the setS of nodes inP reachable fromy using only preferred edges. This set can
be partitioned into four parts:L, those nodes in the left subtree ofy in P ; R, those nodes
in the right subtree ofy in P ; U those nodes abovey in P ; andy. When setS is sorted by
key,L andR form contiguous regions of keyspace, separated byy (See Figure 3.4).

Let us see what this means in a multi-splay treeT . The splay tree inT containing
y consists of nodesL ∪ U ∪ {y}. After the switch it consists ofR ∪ U ∪ {y}. To do
this transformation we need to removeL and add inR. BecauseL andR are contiguous
regions in the symmetric ordering, we can use splaying to efficiently split off the tree
containingL and join in the tree containingR. We first splayy. Then we first findx, the
predecessor ofL in S, using theminRefDepth field. (Note thatx is the largest node less
thany with depth less thany, andx must be a member ofU . Thus, to findx, we start
from y’s left child and) Then, we splayx until x becomes the left child ofy. This ensures
that the set of nodes in the right subtree ofx is L. Thus, we mark the right child ofx
as a root in order to removeL from y’s splay tree. As for joining inR, we simply splay
the successor ofy (calledz) in U until z becomes the right child ofy, so that unmarking
the isRoot bit of the left child ofz joins in R. As a detail, to prove multi-splay trees
use onlyO(log n) amortized cost per query, we can only afford to splay nodes that are in
{y} ∪ U . As a result, we cannot splitL by splayingy and then splayingl, the leftmost
node inL (stopping at the left child ofy). This technique would have been analogous to
the technique used in [DHIP04].

However, an access is not just a single switch inP , it is a sequence of switches. For the
purposes of our running time analysis, we do these from bottom to top. Also, we perform a
final switch on the accessed node to pay for the traversal from the root ofT to the accessed

22

�

�

� �

� � � � � � 	
 � �
 �
 �

� �

� � �
 �
 �
 � �
 � �

 � �

�

�

�

��

�

� �

� � � � � �
 � � � � � � � �

 � �
� � �
 � � � � � � � �

� �

�

�

� � � � �

� � 	 � �

� �
 �
 � �
 � !
 � "
� � �
 # $

� � � � �
 �
 � �
 � !
 � "
% � � !
 # $

� �
 � � � � �
 �

� � � �

�
 �
 �
 � �
 � �

 � �

Figure 3.4: During a single left-to-right switch ony, this figure shows the graphical repre-
sentations ofS, U , L, R, x, y, andz immediately after the 3 splays.

23

node. Notice that this final switch brings the accessed node to the root ofT .

This description has glossed over a number of subtle details, like how to determine if
the switch is from left to right or from right to left. In addition, we have not discussed the
boundary cases such as whenx or z does not exist.

3.3 Details of Multi-Splaying Algorithm

3.3.1 Determining the Direction of a Switch

When serving a queryσi for key σ̂i, we traverse the multi-splay treeT to find σ̂i. After we
traverse, we perform a switch for each noder whoseisRoot bit is true (from bottom up).
Because the reference tree is static, the switches on the same node must alternate between
left-to-right switch and right-to-left switch. To determine the direction of a switch, we can
store an extra bit to encode the direction of the last switch for eachr (whoseisRoot bit is
true). Thus, when we touchr, we can deduce the direction of a switch from the extra bit.

However, this extra bit is unnecessary, because we can also deduce the direction of a
switch as follows. As we traverse down the multi-splay treeT to find σ̂i, we maintainvj =
pred(σ̂i) andwj = succ(σ̂i) for the jth splay tree encountered, wherepred(σ̂i) denotes
the predecessor of̂σi andsucc(σ̂i) denotes the successor ofσ̂i. Notice that the switch in
thejth splay tree must occur at the deeper ofvj andwj in the reference tree (this is where
the access path in the reference tree diverges from the preferred path corresponding to the
jth splay tree). Letαj be the node we switch, andβj be the other node. To decide the
direction of the switch, observe that ifαj < βj, we switch from left to right. Otherwise,
we switch from right to left.

3.3.2 Switch on a Node with Missing Children

In this section, we describe how to switch a node in the reference tree with zero or one
child. This type of switch only occurs at the final switch on the accessed node. Specifically,
if the accessed nodêσi has zero or one child in the reference tree, then the final switch on
σ̂i still induces the corresponding splays, but no root marking will occur. In more detail, let
A(y) be the set of proper ancestors ofy in the reference treeP . LetrefLeftParent(y) be the
predecessor ofy in A(y), and definerefRightParent(y) analogously. When we perform a
left-to-right (right-to-left) switch on a nodey with missing children in the reference tree,
we splay therefLeftParent(y), y, andrefRightParent(y) as usual. (During a switch, we

24

�

�

�

� � � � � � � 	
 � � � 	

� �

� � � 	 � 	
 	 � � 	 �
 	 	 �

�

�

�

�

�

�

� � � � � � � � � � � � � �
 	 	 �

� � � 	
 � � � � � � �

�

�

�

�

� � � � � 	

� � � �
 	 	
�
 	 � 	

 	 � ! � � "
� � � � # $ 	

� � � �
 	 � 	

 	 � ! � � "
% � � ! 	 # $ 	

� � 	 � � � � � 	 �

� � � �

� 	 � 	
 	 � � 	 �
 	 	 � � 	

Figure 3.5: During a single left-to-right switch ony with a missing right child, this figure
shows the graphical representations ofS, U , L, x, y, andz immediately after the 3 splays.

typically usex to denote therefLeftParent(y), andz to denote therefRightParent(y).)
If y has no left child in the reference tree, then the right child of therefLeftParent(y)
does not exist iny’s splay tree. So we skip the marking (unmarking) of theisRoot bit
on that node. Similarly, ify has no right child in the reference tree, then the left child of
therefRightParent(y) does not exist. So we skip the unmarking (marking) of theisRoot
bit on that node. An example of a left-to-right switch with missing children is shown in
Figure 3.5.

3.3.3 Switch withoutrefLeftParent or refRightParent

Sincey’s refLeftParent andrefRightParent is not necessarily iny’s splay tree, when we
switch on a nodey, we might not be able to findrefLeftParent(y) or refRightParent(y).

25

Let x berefLeftParent(y) andz berefRightParent(y). For the proof of the multi-splay
access lemma in Section 3.4.2, we can not afford to search forx andz if they do not exist.
Specifically, we pay all the pointer traversal with rotations, so if we traversed to search for
x or z and fail, we must splay the last node we touched as we traversed. We can not afford
to pay the amortized cost of this splay in the analysis of the multi-splay access lemma.
Fortunately, we can deduce ifx andz exist by using theminRefDepth field after we splay
y. SincerefDepth(x) < refDepth(y), if minRefDepth(leftChild(y)) > refDepth(y),
thenx does not exist iny’s splay tree. Similarly, becauserefDepth(z) < refDepth(y), if
minRefDepth(rightChild(y)) > refDepth(y), thenz does not exist iny’s splay tree.

If both x andz exist, then we proceed to mark and unmark as described in 3.2. If
x does not exist, then the leftsplaySubtree of y after splayingy is exactlyL. (L andR
are defined in Section 3.2.) Thus, during a left-to-right (right-to-left) switch, we mark
(unmark)leftChild(y)’s isRoot bit. If z does not exist, then the rightsplaySubtree of y
after splayingy is exactlyR. Thus, during a left-to-right (right-to-left) switch, we un-
mark (mark)rightChild(y)’s isRoot bit. An example of a left-to-right switch with missing
children is shown in Figure 3.6.

3.4 Running Time Analysis

Theorem 5. For any query in a multi-splay tree, the worst-case cost isO(log2 n).

Proof. This follows from the fact that to query a node, we visit at mostO(height(P))
splay trees. Because the size of each splay tree isO(log n), the total number of nodes we
can possibly touch isO(log2 n).

3.4.1 Multi-Splay Tree SatisfiesO(log log n)-Competitive Property

For the purpose of this analysis, we define the potential of a multi-splay treeT as follows.
If each nodev has an arbitrary positiveweightw(v) = 1, define thesizes(v) of nodev to
be
∑

v∈splaySubtree(v) w(v) (i.e., the sum of the weights of all descendants ofv in T reach-
able by traversing only solid edges). Define the potential of the tree to be

∑
v∈T lg s(v).

In other words, the weight of each node in each splay tree is 1, and the potential of the
multi-splay tree is the sum of the potentials of the splay trees.

Theorem 6. For an arbitrary access sequenceσ = σ1 · · ·σm in a multi-splay tree withn
elements, the cost ofσ is O(OPT(σ) ∗ log log n).

26

�

�

� �

� � � � � � 	
 � �
 �
 �

�

� � �
 �
 �
 � �
 � �

 � �

�

�

��

�

�

� � � � � �
 � � � � � � � �

 � �
� � �
 � � � � � � � �

�

�

�

�

� � � � � �

� � 	 � �

� �
 �
 � �
 � �
 � � !
� � �
 � " � #

� � � � �
 �
 � �
 � �
 � � !
$ � �
 � " � #

� �
 � � � � � �
 �

� � � �

�
 �
 �
 � �
 � �

 � � �

Figure 3.6: During a single left-to-right switch ony with a missingrefRightParent , this
figure shows the graphical representations ofS, U , L, R, x, andy immediately after the
two splays.

27

Proof. The total number of switches in a multi-splay tree duringσ is at mostIB(P, σ) +
2m [DHIP04] (the extra2m term results from the additional switch on̂σi, which may need
to be undone later in the access sequence), so it suffices to show that the amortized cost of
each switch isO(log log n).

In this proof, we useyi to denote theith node we switch,xi to denote a node whose
child will be unmarked as a root during theith switch of an access, andzi to denote a node
whose child will be marked as a root during theith switch of an access. If we omit the
subscripti, then we are referring to any switch. Each switch at an arbitrary nodey consists
of up to 3 splays followed by up to 2 changes toisRoot bits. To analyze the amortized cost
of each of these operations, we invoke the access lemma for splay trees, and recall that it
uses the following potential function for a splay treeTS :

∑
v∈TS

log s(v). The analysis in
this sub-section assumes uniform constant weights are used for all nodes in all splay trees
comprising a multi-splay tree.

The amortized cost of each of the 3 splays isO(log s(ri)), whereri is the root of the
splay tree corresponding toyi’s preferred path in the reference tree. Becauses(ri) =
O(log n), the amortized cost of the 3 splays isO(log log n).

The amortized cost of markingchild(z) is O(1) because it does not increase the size of
any subtrees in any splay trees, so the overall potential does not increase. The amortized
cost of unmarkingchild(x) (if it exists) isO(log log n) because the only nodes whose size
increase arex andy, and the increase in each of their sizes is bounded by the size of the
splay tree rooted atchild(x), which isO(log n).

To summarize, the amortized cost of each switch is:

Amortized cost = cost of splays

+ root marking cost

+ root unmarking cost

= O(log log n + 1 + log log n)

= O(log log n).

3.4.2 Multi-Splay Tree Satisfies Access Property

In this section, we show that multi-splay trees, satisfy a property similar to the access
lemma for splay trees. Using this lemma, we can easily prove the static finger theorem,

28

static optimality theorem, and many other properties of splay trees proved using the access
lemma. In particular, we prove the following theorem.

Theorem 7(Multi-Splay Tree Access Lemma). In a multi-splay treeT with an arbitrary
(not necessarily balanced) reference treeP , letmass(x) be any positive weight assignment
on the nodes, and letσ = σ1 · · ·σm be a sequence of elements to query. The amortized
cost of multi-splayingσi is cms(lg

W
ŵ(σi)

) + cmsa, whereW =
∑

y mass(y), cms andcmsa

are constants.

Our overall approach to proving Theorem 7 will be to assign a set of weights to the ele-
ments of the BSTT roughly based on mass assignment and repeatedly use the Reweighting
Lemma of [Geo04]. The amortized cost of each switch will be bounded by the cost of the
3 splays according to the access lemma for splay trees, plus the change in potential due to
adding/removing weight from the tree due to root markings (for the purposes of analysis,
T is assumed to be broken into multiple splay trees which are linked together to form one
larger BST), plus the cost of reweighting some nodes inT as will be described later. The
total amortized cost of all of the switches will form a telescoping sum and give us the
required bound.

Before we can define the weight of each element in the splay trees that constitute
a multi-splay treeT with reference treeP , we need the following definitions. Let
uchild(x) be the unpreferred child ofx in P . Let A(x) be the set of proper ancestors
of x in P . Let refLeftParent(x) be the predecessor ofx in A(x), if it exists, and define
refRightParent(x) analogously. Letlip(x) be the set of nodes inx’s left inner path inP ,
the set of nodes reachable starting atx’s left child in P and following right child pointers
in P , and letrip(x) be defined analogously. LetrefSubtree(x) be the set of nodes inx’s
subtree inP . In addition, to help define the node-weights we will use when we prove the
Multi-Splay Tree Access Lemma, we will use the following notation:

U(x) = refSubtree(uchild(x))

ŵ(x) = mass(x) +
∑

y∈U(x)

mass(y)

♦(x) = lip(x) ∪ rip(x) ∪ {x}
w(x) = max

y∈♦(x)
ŵ(y).

(3.1)

We assign a weight ofw(x) to each element in a multi-splay tree for the purposes
of our analysis. The size,s(x), of nodex is equal to

∑
y∈splaySubtree(x) w(x), where

29

�

�

� � � � � � � 	
 �

�
 � � � � 	 � �
�

�

� � � � � � � 	 � �

� � � � � � � 	 � � �

♦(y)

� � � 	 � � � � � 	 � �

� � � �
 � � � � � 	 � �

Figure 3.7: Notations in reference tree

splaySubtree(x) is the subtree rooted atx of the splay tree containingx. The potential
of T is

∑
x∈T log(s(x)). If we were to usêw(x) as the weight assignment, then this would

essentially be the same weight assignment as used in link-cut tree analysis [ST85].

However, each time we switchx in a multi-splay tree, in addition to splayingx, we
also splayrefLeftParent(x) andrefRightParent(x). On the other hand, in link-cut trees,
we would only splayx. To pay for the cost of the extra two splays, we choose the weight
assignment carefully so that the extra two splays will be relatively cheap. Our definition
of w(x) above gives us the following invariant.

Invariant 1. For all nodesx, w(refLeftParent(x)) ≥ ŵ(x), w(refRightParent(x)) ≥
ŵ(x), andw(x) ≥ ŵ(x) wheneverrefLeftParent(x) or refRightParent(x) exists.

Note that for a fixed reference tree and mass assignment, different choices of pre-
ferred children can result in different weight assignments. Thus, as the algorithm per-
forms switches to change the preferred children, the weights of the switched nodes may
change. Such a change in weight will be accounted for by using the Reweighting Lemma
(Theorem 3).

Lemma 14. In a multi-splay treeT with reference treeP , let refPath(z) be the set of
nodes inz’s preferred path that are at least as deep asz in P . For everyx ∈ P ,∑

y∈refPath(uchild(x))

w(y) ≤ ct ∗
∑

u∈U(x)

mass(u) ≤ ctŵ(x).

30

wherect = 3.

Proof. First, it is clear that3∗
∑

u∈U(x) mass(u) ≤ 3ŵ(x) by the definition ofŵ(x), so we
only need to show that

∑
y∈refPath(uchild(x)) w(y) ≤ 3 ∗

∑
u∈U(x) mass(u). In order to see

this, we will show that
∑

y∈refPath(uchild(x))(ŵ(yL)+ŵ(y)+ŵ(yR)) ≤ 3∗
∑

u∈U(x) mass(u),
whereyL = argmaxx∈lip(y) ŵ(x) andyR is defined analogously (yL and/oryR may not
exist, in which case we assumêw(yL) = 0 and/orŵ(yR) = 0).

Notice that
∑

y∈refPath(uchild(x)) ŵ(y) =
∑

u∈U(x) mass(u) by definition, so it suf-
fices to show that

∑
y∈refPath(uchild(x)) ŵ(yL) ≤

∑
y∈refPath(uchild(x)) ŵ(y). The yR

case is symmetrical. To demonstrate this, fory ∈ refPath(uchild(x)), let aL =
argmaxz∈refPath(uchild(x))∩(A(yL)∪yL) refDepth(z), whererefDepth(z) is depth ofz in P .
Notice thataL ∈ lip(y) if it exists so thatrefRightParent(aL) = y. Thus, eachaL that
exists is distinct so

∑
y∈refPath(uchild(x)) ŵ(aL) ≤

∑
y∈refPath(uchild(x)) ŵ(y). Furthermore,

ŵ(yL) ≤ ŵ(aL) because eitheryL = aL or yL ∈ U(aL). Thus, we have∑
y∈refPath(uchild(x))

ŵ(yL) ≤
∑

y∈refPath(uchild(x))

ŵ(aL) ≤
∑

y∈refPath(uchild(x))

ŵ(y).

With Lemma 14 in hand we are ready to prove the Multi-Splay Access Lemma.

Proof. Each query consists of a sequence ofk switches, and a final switch on the queried
element. Each switch consists of at most 3 splays, and at most 2 changes toisRoot bits.
Let yi be theith node being switched going upT ’s access path towardT ’s root andri be
the root of the splay treeTi containingyi (y1 is the first node switched, and by convention
the splay tree rooted atr0 contains the queried elementy0 = σj). Let xi andzi denote
refLeftParent(yi) andrefRightParent(yi), respectively (if these nodes exist), and letLi

andRi denote the elements of the (possibly empty) subtrees ofP containing the intervals
(xi, yi) and (yi, zi), respectively. The amortized cost of a switch consists of three parts
(here we assume the switch is from left to right): splayingyi up tori’s location,xi until it
is the left child ofyi (if xi ∈ Ti), andzi until it is the right child ofyi (if zi ∈ Ti); marking
theisRoot bit of the least common ancestor (LCA) ofLi if Li 6= ∅ (i.e., marking the right
child of xi if xi exists and is inTi) and unmarking theisRoot bit of the LCA of Ri; and
reweightingxi, yi, andzi if they exist so as to restore Invariant 1 (even ifxi andzi exist
but are not inTi). We bound each of these costs in the following few paragraphs.

31

First, by Invariant 1 and the Reweighting Lemma (Theorem 3), the amortized cost of
the three splays is at most,

cs ∗
(

lg

(
s(ri)

w(yi)

)
+ lg

(
s(ri)

w(xi)

)
+ lg

(
s(ri)

w(zi)

))
+ 3csa ≤ 3cs ∗ lg

(
s(ri)

ŵ(yi)

)
+ 3csa.

Second, it is free to mark the LCA ofLi as a root because this decreases potential ofT .
As for unmarking the LCA ofRi, by Lemma 14, the increase ins(yi) ands(zi) is bounded
by ct ∗ ŵ(yi) and by Invariant 1,̂w(yi) ≤ w(zi). Hence, the increase in potential resulting
from the increased sizes ofyi andzi is bounded by2 lg(ct + 1).

Third, after a switch onyi, ŵ(yi) could have increased or decreased. For all other nodes
x, ŵ(x) remains the same. This change inŵ(yi) can only affect the weights ofxi, yi, and
zi (even ifxi or yi is not inTi). If ŵ(yi) decreases, thenw(xi), w(yi) andw(zi) cannot
increase. So we can apply the Reweighting Lemma and pay a cost of0. On the other hand,
if ŵ(yi) increases, we have to bound the changes in weights. To account for the amortized
cost of the changes in weights, we lower-bound the weights before reweighting occurs and
we upper-bound the weights after reweighting occurs.

By invariant 1, before reweightingxi, yi, andzi,

w(xi) ≥ ŵ(yi)

w(yi) ≥ ŵ(yi)

w(zi) ≥ ŵ(yi)

(3.2)

After reweighting, whenŵ(yi) has its new valuêw′(yi), if w(xi), w(yi), or w(zi)
increases (tow′(xi), w′(yi), or w′(zi)), it must increase tôw′(yi). Becauseyi is in Ti, it is
true thatŵ′(yi) ≤ s(ri). Thus, for allv ∈ {xi, yi, zi} for whichw′(v) > w(v)

w′(v) ≤ s(ri). (3.3)

Thus, by the Reweighting Lemma, Equation 3.2, and Equation 3.3, the amortized cost
of reweighting is at most3cr lg(s(ri)/ŵ(yi)), which is the same (up to a constant) as the
upper bound on the amortized cost of the splays.

We still need to account for the amortized cost of the series of switches ony1, y2, . . . , yk

and the amortized cost of the final switch on the queried element. By Lemma 14,s(ri) ≤
ctŵ(yi+1), the series ofk switches costs at most

k∑
i=1

(
csw ∗ lg

(
s(ri)

ŵ(yi)

)
+ cswa

)
≤ csw ∗

k∑
i=1

lg

(
ct ∗ s(ri)

s(ri−1)

)
+ cswak

≤ csw ∗ lg

(
s(rk)

w(y0)

)
+ (csw lg ct + cswa)k,

32

where

csw = 3cs + 3cr

cswa = 3csa + 2 lg(ct + 1)

Sincek is smaller than the number of rotations needed for splayingy0 the final switch,
(csw lg ct + cswa) can be charged to the last switch if each splaying step pays for an addi-
tional (csw lg ct + cswa) units of work. The amortized cost of the final switch is(

csw ∗ lg

(
s(splayRoot)

ŵ(y0)

)
+ cSwitchAdd

)
+(csw ∗ lg ct + cswa)

(
cs ∗ lg

(
s(splayRoot)

ŵ(y0)

)
+ csa

)
= (csw + cscsw lg ct + cscswa) lg

(
s(rk)

ŵ(y0)

)
+ (cswa + csacsw lg ct + csacswa)

= cf lg

(
s(splayRoot)

ŵ(y0)

)
+ cfa

where

cf = csw + cscsw lg ct + cscswa

cfa = cswa + csacsw lg ct + csacswa.

A multi-splay operation consists of a sequences of switches and a final switch. Thus,
the total amortized cost of a multi-splay onσi is

csw lg

(
s(rk)

w(σi)

)
+ cswa + cf lg

(
s(rk)

ŵ(σi)

)
+ cfa

≤ (csw + cf) ∗ lg

(
ctW

w(σi)

)
+ cfa + cswa

= (csw + cf) ∗ lg

(
W

w(σi)

)
+ (csw + cf) lg ct + cfa + cswa

= cms lg

(
W

w(σi)

)
+ cmsa

33

where

cms = csw + cf

cmsa = (csw + cf) lg ct + cfa + cswa

W =
∑

y

mass(y)

We did not make any assumption on the reference tree in this proof. Thus, the proof
works on any reference tree. (However, for a multi-splay tree to be provablyO(log log n)-
competitive, it is still important to have a balanced reference tree.) Moreover, we did not
account for the initial and final potential, which needs to be accounted for when we apply
this lemma. We note that if the ratio of the maximum and the minimum masses is bounded
by O(poly(n)), then the maximum difference in potential is bounded byO(log n) for each
node, so the difference between initial and final potential is bounded byO(n log n).

Corollary 1. [ST85] Multi-splay trees satisfy the static finger property.

Proof. The access lemma implies static finger property [ST85].

Corollary 2. [ST85] Multi-splay trees satisfy the static optimality property.

Proof. The access lemma implies static optimality property [ST85].

Corollary 3. Multi-splay trees satisfy the working set property.

Proof. The techniques used in this proof are identical to the proof of Working Set Theorem
for splay trees. For the purpose of mass assignment, we maintain a linked list of all the
keys. Whenever a key is queried, we move the key to the front of the list. This is essentially
a move-to-front list of all the keys. Letp(v) denote the position of keyv in the move-to-
front list. We assignmass(v) to 1/p(v)2. Note thatM =

∑
v mass(v) = O(1).

Whenever we queryv, the cost of the query isO(log(M/mass(v))+1) = O(p(v)+1)
by the access lemma. After we queryv, we increasemass(v) to 1, and decrease the
mass of all other nodes. Because of this change in mass, we increase the weight of 3
nodes, specifically,w(refLeftParent(v)), w(v), w(refRightParent(v)). By Invariant 1,
the weight of each of these three nodes is at leastmass(v). Thus, the cost of reweighting
each node up to1 is at mostO(1/mass(v)) = O(p(v)).

34

Corollary 4. [Iac02] Multi-splay trees satisfy the key independent optimality property.

Proof. The working set property implies the key-independent optimality property [Iac02].

3.4.3 Multi-Splay Tree Satisfies Reweight Property

In this section, we extend the multi-splay tree access lemma to allow nodes to be “re-
massed” arbitrarily to any positive number, giving a result that is similar to the reweighting
lemma for splay trees [Geo04]. As a simple corollary, it will follow that multi-splay trees
satisfy the working set theorem.

Theorem 8 (Remassing Lemma). In a multi-splay treeT (whereT also denotes the set
of keys stored in the tree), letmass0, . . . ,massm be a sequence of mass functions where
mass0 = mass1 such thatmass i : T → R>0 for eachi ∈ {1, . . . ,m}. Letσ = σ1, . . . , σm

be a sequence of accesses inT . The cost of accessingσ is at most

Φ0 − Φm +
m∑

i=1

(
log

(
Wi

mass i(σi)

)
+
∑
v∈T

max

(
0, log

(
mass i(v)

mass i−1(v)

)))
,

whereWi =
∑

v∈T mass i(v) and Φi represents the potential ofT , as described in Sec-
tion 3.4.2, after theith access (Φ0 is the potential before the first access).

Before proving the remassing lemma, we need to extend the multi-splay tree access
lemma to prove a “lazy” version of the remassing lemma. By lazy, we mean that the
changes in weight betweenmass i and mass i+1 are not applied for each node whose
mass increasesuntil that node is a member ofrefPath(refRoot) (decreases in mass
are still applied immediately, just as in Theorem 8), even though we charge a price of
max(0, log(mass′(v)

mass(v)
)) immediately wheneverv is tagged to be remassed tomass ′(v) at

a later time when its current mass ismass(v). (Note that whenv’s actual remassing fi-
nally occurs when it becomes a member ofrefPath(refRoot), say at timej, we remass it
to massj(v), its most recently assigned mass.) Letmass ′i(v) denote the mass of nodev
during theith access using lazy remassing.

Informally, we can prove this lazy version of the remassing lemma simply by show-
ing that the increase inT ’s potential due to an increase in mass at any one par-
ticular nodev when v’s remassing is finally applied after thejth access is upper-

bounded bylog(
mass′j+1(v)

mass′j(v)
). This will suffice to prove the lazy remassing lemma be-

cause we have collected
∑j

k=i+1 max(0, log(massk+1(v)

mass′k(v)
)) units of potential from each

35

individual step since timei, the last timev was a member ofrefPath(refRoot), and∑j
k=i+1 max(0, log(massk+1(v)

mass′k(v)
)) ≥ log(

mass′j+1(v)

mass′j(v)
) by the concavity of the log function.

We can show that the increase in the potential ofT after thejth access is upper-bounded

by 3cr ∗ log(
mass′j+1(v)

mass′j(v)
) as follows. Afterv becomes a member ofrefPath(refRoot) at

time j, at most 3 nodes’ weights will increase whenv’s mass increases frommass ′j(v)
to mass ′j+1(v) (recall the definition of weight in Equation 3.1), and the ratio of the new

weights of each of these nodes to its old weight is easily bounded by
mass′j+1(v)

mass′j(v)
. Hence,

by the eager version Georgakopoulos’s reweighting lemma, the cost of remassingv (ac-
counted for by 3 eager splay tree reweighting operations performed in the splay tree

refPath(refRoot)) is 3cr ∗ log(
mass′j+1(v)

mass′j(v)
)), as suffices.

Note that we have ignored the initial and final potential of the tree, however this does
not matter because the potential of the tree with eager remassing is always higher than
the potential of the tree with lazy remassing. Also, for notational convenience, we do not
perform lazy remassing after themth access on nodes who joinTr as a result of themth

access.

Finally, we can prove the eager version of the multi-splay tree remassing lemma, as
stated in Theorem 8, by arguing that the cost of eager remassing is at least as high as the
cost of lazy remassing.

Proof. Rather than concern ourselves with all nodes whose mass change at a particular
point in time, let us restrict our attention to a single nodev whose mass changes from
mass i(v) to mass i+1(v) after theith access. To prove Theorem 8, it suffices to show that
the amortized cost of this remassing operation,O(max(0, log(massi+1(v)

massi
))), is enough to

pay for the cost of lazy reweighting. Then, we can simply apply this analysis to each node
whose mass changes.

If mass i+1(v) ≤ mass i(v), then the lazy and eager versions of the remassing lemma
coincide – both immediately remassv. On the other hand, consider the case in which
mass i+1(v) > mass i(v). Let W denote the total weight ofT defined as

∑
v′∈T w(v)

assuming we eagerly remass nodes as per the theorem statement. LetW ′ denote the total
weight of T if remassing is performed lazily. Notice thatW ≥ W ′ at all times, so the
amortized cost of each splay at a node other thanv has not decreased using the analysis
from the access lemma. On the other hand, when a splay is induced onv at timej, the
cost according to the access lemma could be lower with eager remassing than with lazy
remassing, but after this access is complete,v will be a member ofrefPath(refRoot) so
the lazy version of remassing resynchronizes with the eager version so thatmassj+1(v) =

36

mass ′j+1(v).

Thus, it suffices to show that we can pay for this discrepancy merely by increasing the
constant in front oflog(massi(v)

massi−1
) in the amortized cost per remass with eager remassing.

In particular, we show that paying(3cr + cms) ∗ lg(massi

massi−1(v)
) is enough.

In the lazy version of the remass lemma, the cost of splayingv and increasing the mass
of v is (cms lg(W ′

i/mass (v)) + cmsa + 3cr lg(m′/mass(v))). In the eager version, the cost
of splayingv and increasing the mass ofv is (cms lg((W −mass(v) + m′)/m′) + cmsa +
(3cr + cms) ∗ lg(m′/mass(v))). It is easy to see that we always pay at least as much as
the lazy version for each remass operation. Hence,(3cr + cms) ∗ lg(m′/mass(v)) suffice
to pay for each remass operation.

Corollary 5. [Geo04] Multi-splay trees areO(1)-competitive to parametrically balanced
binary search trees.

Proof. The remass property implies that multi-splay trees areO(1)-competitive to para-
metrically balanced binary search trees.

3.4.4 Multi-Splay Tree Satisfies Scanning Property

We begin with several simple lemmas.

Lemma 15. (Worst Switch Cost Lemma) The cost of a switch isO(log n) worst-case, not
amortized.

Proof. Each switch consists of 3 splays and up to 2 root markings/unmarkings. Because
the size of each splay tree isO(height(P)) = O(log n), the worst-case cost of the splays
is O(log n), and clearly the root markings costO(1) worst-case.

Lemma 16. During a sequential access of all nodes ofT , when a node with a left child
(in P) is accessed, exactly one switch occurs.

Proof. Within a sequential access, a query to a nodev with a left child immediately follows
a query to a node in its left ref-subtree, so the preferred path from the root includesv. The
one switch occurs because the multi-splaying algorithm always switches the node that is
accessed.

37

Lemma 17. (Touch Lemma) In a splay treeTS with rootr (r changes as the root changes),
if all splay operations are performed on a connected set of nodesS ⊆ TS , andr ∈ S, then
the splay algorithm will never rotate any node outside ofS. (This allows us to analyze the
cost of splaying assuming all nodes in(TS \ S) do not exist.)

Proof. Observe that if all the rotations are performed on nodes inS, then the set of nodes
S will always be a connected set of nodes that includes the root ofTS. A splay operation
on v ∈ S will rotate nodes on the path fromv to the root. BecauseS consists of a
connected set of nodes, all of these rotated nodes must be inS. Thus, the invariant thatS
is a connected set andr ∈ S is maintained.

Lemma 18. During a sequential access sequence, when accessing nodes from the right
ref-subtreeR of y, the multi-splaying algorithm touches at most 2 nodes outside ofR.

Proof. After y is accessed,y is the root of the multi-splay tree, its right childz is the
successor ofR, and all the nodes ofR are inz’s left splay subtree (See Figure 3.4). The
following splays induced by queryingR can only touchy, R, andz by lemma 17.

Lemma 19. In a red-black treeTRB of n nodes,
∑

v∈TRB
lg |subtree(v)| = O(n).

Proof. Suppose we merge all the red nodes with their parents. For instance, if a black node
originally has two red children and each red child has two black children, then we are left
with a black node with 4 black children after the merge. (Essentially, we are converting
the red-black tree into its corresponding 2-3-4 tree.)

Since every root-to-leaf path in a red black tree has the same number of black nodes,
each black node can have at most two red children, and each red node has two black
children, the merge process reduces the number of nodes in the subtree of every black
node by at most a factor of 3.

Definebh(v) to be the number of black nodes fromv to a leaf, excludingv. Observe
that the number of black nodes atbh(v) is at most n

2bh(v) . Also, note that the number of
nodes in a black nodev’s subtree is at most4bh(v).

Hence,

38

∑
v∈TRB

lg |subtree(v)| ≤ 3 ∗
∑

black v,v∈TRB

lg |subtree(v)|

≤ 3 ∗
∑

black v,v∈TRB

lg 4bh(v)

≤ 6 ∗
∑

black v,v∈TRB

bh(v)

≤ 6 ∗
dlg ne∑
i=1

i ∗ n

2i

≤ 12n.

Theorem 9. In any multi-splay treeT of n nodes, the cost of the access sequenceσ =
σ1, · · · , σn, whereσi < σi+1 is O(n).

Proof. In this proof, we assume thatP is a full red-black tree [GS78]. Using the previous
lemmas, we can develop a recurrence for the cost of sequential access. First, we define
rightParent(v) to bep if the left child of p is v. Also, we define theright ascending path
of v to be the set of nodesu, such thatrightParent∗(v) = u. Finally, we defineA(v) to be
the size of the right ascending path ofv. We analyze the cost of sequentially accessing all
of the nodes of a multi-splay treeT in terms of the cost of sequentially accessing subtrees
of P . More specifically, we recursively account for the cost as follows:

Time(t) = Time(leftRefSubtree) + Time(root(t))

+ Time(rightRefSubtree),

wheret is some subtree ofP , and Time(t) is the amortized time used when sequentially
accessing the nodes oft within the context of sequential access toall nodes ofT , not just
the ones int.

However, to tightly bound the time for accessing the root oft, we need to incorporate
A(root(t)). Hence, we define

Time(t, a) = Time to sequentially access all nodes

in t, whereA(root(t)) = a,

39

wheret is a subtree ofP (taken within the context ofT ’s full reference tree, so thatt’s
root may have a non-trivial right ascending path). With this expanded accounting method,
the cost of sequentially accessing all of the nodes ofT is Time(P, 1).

In general, we can write

Time(t, a) = Time(tL, a + 1) + Time(tR, 1) + O(a + log |t|),
for the case in whichroot(t) is an internal node becauseroot(tL) has a right ascending path
with one more node than the path ofroot(t), root(tR) has a right ascending path including
just itself, and accessingroot(t) causes at most one switch by Lemma 16, whose running
time isO(a+1+log |t|) worst-case because the number of nodes touched during a switch
at noderoot(t) isO(2+A(root(t))+log |t|) = O(A(root(t))+log |t|). TheO(A(root(t))+
log |t|) bound is true because at most 2 nodes higher inP thanroot(t)’s right ascending
path are touched as seen by Lemma 18, and the number of nodes inroot(t)’s splay tree
including root(t)’s right ascending path and below isA(root(t)) + height(t), which is
O(A(root(t)) + log |t|).

For the base case in whichroot(t) is a leaf inP , we have

Time(t, a) = O(a2)

because at mosta switches occur during the access ofroot(t)4, each of which costsO(a)
using similar logic to above, for a total ofO(a2).

To see that this recurrence solves toO(n), we show how to account for all of the
O(a+log |t|) terms and all of theO(a2) terms so that their costs totalO(n). For eacht such
that root(t) is not a leaf, note that if we spread theO(a) = O(A(root(t))) portion of the
cost evenly among the nodes ofroot(t)’s right ascending path, each nodev in the reference
tree is charged at mostO(height(v)) = O(log |subtree(v)|). Similarly, to account for
theO(a2) cost for each leafl, we chargeΘ(k + 1) to rightParentk(l) so that each node
is charged at mostO(height(v)) = O(log |subtree(v)|). Thus, it suffices to show that∑

v∈P O(log |subtree(v)|) = O(n), which is true by Lemma 19.

3.5 Comment on the Fields of the Multi-Splay Tree Nodes

To proof that multi-splay trees have theO(log log n)-competitive property, we only need
to store theisRoot field and therefDepth field for each multi-splay tree node. In the de-
scription of multi-splay tree algorithm in Section 3.2 and Section 3.3.3, we only use the

4Because the deepest left ancestorv of root(t) was just queried, there is always a preferred path from the
root ofP to v, and the number of nodes betweenv androot(t) is at mosta.

40

minRefDepth field to find therefLeftParent(y) (refRightParent(y)) during a left-to-right
(right-to-left) switch ony. After we splayy during a left-to-right (right-to-left) switch on
y, we can find therefLeftParent(y) (refRightParent(y)) using Georgakopoulos’s obser-
vation for the chain splaying algorithm in [Geo05]. Letx denotesrefLeftParent(y) and
z denotesrefRightParent(y). Observe that for all the nodesu in y’s left (right) subtree,
if refDepth(u) < refDepth(y), thenu ≤ x (u ≥ z), and if refDepth(u) > refDepth(y),
thenu > x (u < z). When we search forx (z) starting iny’s left (right) childu, we setu
to the right (left) child ofu if refDepth(u) < refDepth(y), and we setu to the left (right)
child of u if refDepth(u) > refDepth(y). We stop just before we setu to nil or leavey’s
splay tree, andu must be eitherx (z) or succ(x) (pred(z)). If refDepth(u) > refDepth(y),
thenu is x (z). If refDepth(u) < refDepth(y), then we splayu andsucc(u) (pred(u)) to
find x (z). Thus, we can find therefLeftParent(y) (refRightParent(y)) without using the
minRefDepth field.

However, the above modification breaks our analysis of multi-splay tree access lemma.
To proof the multi-splay tree access lemma in Section 3.4.2, we can only afford to splay
nodesu such thatrefDepth(u) ≥ refDepth(y) during a switch ony. Because shallower
nodes in the reference tree generally have larger weight, we charge the cost of all the
splays during a switch ony to the cost of splayingy. If we splaysucc(refLeftParent(y)) or
pred(refRightParent(y)) during a switch ony, then the charging argument breaks because
succ(refLeftParent(y)) andpred(refRightParent(y)) are deeper thany.

41

42

Chapter 4

Dynamic Binary Search Trees

4.1 Dynamic BST Model

Before we can reason about the properties and competitiveness of dynamic binary search
trees, we must introduce an intuitive definition of what it means for a dynamic BST to be
competitive. We assume an arbitrary dynamic BST algorithmA must start from an empty
tree and execute a sequence of operationsσ = σ1, . . . , σm, each of which isquery(σ̂i),
insert(σ̂i), or delete(σ̂i). For eachσi, we assumeA must pay the following costs:

• To executequery(σ̂i), it must pay for touching each node on the path from the root
to σ̂i.

• To executeinsert(σ̂i), it must pay for inserting the node at a leaf in addition to the
traversal to get there. This is reasonable becauseA must search for̂σi to realize its
BST does not contain̂σi.

• To executedelete(σ̂i), it must pay for accessinĝσi and for performing rotations until
σ̂i has no children (at which point, the node can be removed).

During (or after) each operation, a BST algorithm may perform any rotations it wishes
at the cost of one per rotation. The cost of an operation is simply the total number of nodes
touched, plus the number of rotations. Without insertions and deletions, this definition
would be identical to the one in Section 2.1.

In this model, we do not allow BSTs to swap nodes and contract edges during deletion.
This implies that it must also pay for accessing bothpred(σ̂i) andsucc(σ̂i) while deleting

43

σ̂i. Because of this restriction, small modifications are necessary to include many standard
binary search trees in this model.

4.2 Competitive Analysis on Dyanmic BST

In the standard BST model defined in Section 2.1, BST algorithms can not change the
set of elements, so algorithms must start with a non-empty initial tree. Since there are
many possible initial trees, we defined OPT(σ) to start with the best possible initial tree.
However, the definition of optimal dynamic BST model is simpler, because every dynamic
binary search tree algorithm starts with an empty tree. Since there is only one choice of
initial tree, we use DOPT(σ) to refer to the cost of an optimal off-line dynamic BST
algorithm executingσ.

An on-line binary search tree algorithmA is T -dynamic-competitive if

∀σA(σ) < T ∗DOPT (σ) + O(m)

Before we make multi-splay tree dynamic and prove that dynamic multi-splay tree
is O(log log n)-dynamic-competitive in Chapter 5, we first prove a lower bound on the
dynamic BST model.

4.3 Dynamic Interleave Lower Bound

With our new definitions, we must prove a new lower bound for DOPT(σ). Fortunately,
techniques similar to those in [Wil89] suffice. Our new lower bound is a generalization of
the one in [DHIP04], which is a variant of Wilber’s first lower bound. Our lower bound
generalize the interleave lower bound by allowing rotations in the reference tree. Allowing
rotations is essential, without rotations, it is impossible to delete some of the nodes from
the reference tree.

As in the original definition of the interleave bound, for each nodev in the ini-
tial reference treeP0, we track if the last query inrefSubtree(v) is in either Lv =
leftRefSubtree(v) ∪ {v} or Rv = rightRefSubtree(v). Whenever the tracking for a node
changes, we increment the dynamic interleave bound, DIB(ρ, σ), by one. (ρ is a sequence
of changes to the reference tree, and it is carefully defined in the proof.) For an insert of
v, we add the cost of queryingpred(v) followed bysucc(v) (because both of these nodes
must be touched to insertv at a leaf). For a delete ofv, we add the cost of querying

44

pred(v), v, andsucc(v) in succession because all three of these nodes must be touched in
order to rotatev to a leaf of the BST. Whenever we rotate a nodev, we reset the tracking
of v andrefParent(v) to Lv but do not increase the interleave bound. Without insertions,
deletions, and rotations, this definition would be identical to the original interleave bound.
With rotations, this is a generalization of the original interleave bound even in the static
BST model.

We will proof the theorem below.

Theorem 10(Dynamic Interleave Bound). For a sequence of operationsσ = σ1, . . . , σm

where eachσi is a query, insert, or delete, the cost of an arbitrary BST algorithmA on σ
is at leastΩ(DIB(ρ, σ)/2 − n − 2k + cm), wheren is the number of nodes inPm, ρ =
ρ1, . . . , ρm is a sequence of changes toP , where eachρi contains asequenceof rotation
operations to be performed onP (insertions and deletions inP correspond to those inσ),
andk is the number of rotate operations inρ (i.e.,k =

∑m
i=1(# of rotations inρi)).

In the Dynamic Interleave Bound reference tree, we assume deletion of nodev is ac-
complished as in [Tar83], by “splicing out”v unless it has two non-null children, in which
casev is swapped with its predecessor and then spliced out.1

The operationsρi are the changes toP that occur between successive operations ofσ.
(For multi-splay trees,ρi represents the rebalancing rotations performed on its reference
tree following an insert or a delete.) Differentρ sequences give different lower bounds on
the cost of executingσ.

4.3.1 Proof of the Dynamic Interleave Bound

Here we present an extended version of Wilber’s first lower bound [Wil89]. Our presenta-
tion is similar to Demaineet al.’s, with modifications to permit the lower bound tree to be
dynamic.

In our description of the bound, there are two trees,P andT , which are both dynamic
BSTs over the same keys. The treeP is a reference treethat the lower bound will use (P
does not really exist), and each internal node always has exactly one preferred child (like
the reference tree for a multi-splay tree). The treeT refers to the tree maintained by an
arbitrary BST algorithmA adhering to the model described in Section 4.1.

Let σ = σ1, . . . , σm be a sequence of operations onT for which eachσi is either a
query, an insert, or a delete, andA is responsible for executing these operations in order.

1Although our model for BST deletion does not allow such swapping/splicing, multi-splay trees will only
besimulatingthem while adhering to our dynamic BST model.

45

Because bothP andT are dynamic, we often refer to them by their time index. ByPi

andTi, we mean the state ofP andT right beforeσi is executed. For notational simplicity,
bothP andT are assumed to be empty initially (i.e.,P0 andT0 are empty).

Further, becauseP is dynamic, we need a way to describe changes to it. Letρ =
ρ1, . . . , ρm be a sequence of changes toP , where eachρi contains asequenceof rotations
to be performed onP . Insertions and deletions in the reference tree correspond to the
operations inσ and follow the standard BST insert and delete procedures. That is, an
insertion occurs at the relevant leaf, and a deletion typically swaps the nodev to be deleted
with pred(v) and splices outv. The change inρi is performed immediately beforeσi is
executed byA (i.e., afterσi−1 is executed fori > 1). Note thatρ1 andρ2 are always empty
because there is at most one node inP prior to σ2. Whenever a node inP is involved in
a rotation (i.e., it is eitherv or p for a rotation ofv overp), its preferred child is set to its
leftmost child, if it has a child. This child setting isnotconsidered a switch for accounting
purposes (e.g., in DIB(ρ, σ) as described below).

If σi queriesσ̂i, Pi switchesits nodes’ preferred children as necessary so as to cre-
ate a path consisting only of preferred child edges toσ̂i starting from the root. In the
case of insert, the switches connect both the predecessor and successor ofσ̂i to the root
in succession. For delete,pred(σ̂i), succ(σ̂i), and σ̂i are connected to the root in arbi-
trary order (note that the order only affects the lower bound by a constant additive term
per deletion). Let DIBi(ρ, σ, v) be the number of switches of nodev’s preferred child
that are made inPi to accommodateσi. Let DIB(ρ, σ, v) =

∑m
i=1 DIBi(ρ, σ, v), and let

DIB(ρ, σ) =
∑

v∈V DIB(ρ, σ, v), whereV is the set of all nodes that are inserted intoP
(andT) at some point.

Our lower-bound proof runs parallel to the proof for a static reference tree in [DHIP04],
with some changes to allowP to be dynamic. We defineLy = leftRefSubtree(y) ∪ y and
Ry = rightRefSubtree(y) (Ly andRy can be indexed by time as well). For a nodey, define
the transition pointof y to be the highest nodez in T such that the path fromz to the
root contains at least one node from bothLy andRy. Observe thatz is either the lowest
common ancestor ofLy or of Ry.

We restate a few useful lemmas from [DHIP04]. Lemma 21 has been modified to
account forP ’s being dynamic. The proofs of Lemmas 20 and 22 are the same as
in [DHIP04] because these lemmas refer to a snapshot ofP .

Lemma 20. [DHIP04] The transition pointz in Ti for a nodey in Pi is unique.

Lemma 21. Suppose a BST access algorithm does not touch a nodez in T for the time
interval i ∈ [j, k], andz is the transition point inTj for a nodey in Pj. Further, suppose
that y is not rotated in the reference tree by the execution ofρj+1, . . . ρk (i.e., there is no

46

rotation in ρj+1, . . . ρk of v over its parentp wherey = v or y = p). It follows thatz
remains the transition point ofy for the entire time interval[j, k].

Proof. Suppose, without loss of generality, thatz ∈ Ry
j . Notice that all ofRy

j is in the
subtree rooted atz in Tj becausez is the lowest common ancestor ofRy

j in Tj. Becausez
is not touched,z remains the lowest common ancestor ofRy

i for all i ∈ [j, k].2 Moreover,
at timej the predecessora of the nodes in the setsubtree(z)∩ (Ly

j ∪Ry
j) is in Ly because

Ly∪Ry forms a contiguous region of keyspace. Notice thata is the deepest left-ancestor of
z in T .3 Thus, no rotation inρj+1, . . . , ρk changes the fact thata is the deepest left-ancestor
of z, anda cannot be deleted fromT during[j, k] because it has a right child.

Lemma 22. [DHIP04] At any timei, no node inTi is the transition point for multiple
nodes inPi.

The following theorem relates DIB(ρ, σ) to a lower bound on DOPT(σ):

Theorem 10. (Dynamic Interleave Bound) For a sequence of operationsσ = σ1, . . . , σm

where eachσi is a query, insert, or delete, the cost of an arbitrary BST algorithmA on σ
is Ω(DIB(ρ, σ)/2− n− 2k + cm), wheren is the number of nodes inPm, ρ = ρ1, . . . , ρm

is a sequence of changes toP , where eachρi contains asequenceof rotation operations
to be performed onP (insertions and deletions inP correspond to those inσ), andk is
the number of rotate operations inρ (i.e.,k =

∑m
i=1(# of rotations inρi)).

Proof. First, note that thecm term in the lower bound appears because each operation
costs at least a constantc.

Following [DHIP04], suppose every time a nodey in P is switched from left to right
the lower bound places a marble on the transition point ofy in T . Moreover, whenever
the lower bound rotatesv over p in P , it removes any marbles from the transition point
of v and ofp in T . On the other hand, wheneverA touches a node, it discards all of the
marbles at that node, and whenA deletes a nodey the lower bound removes the marble
from y’s transition pointz if z exists and still has a marble afterA deletesy. Clearly, if the
number of marbles sitting on a node never exceeds 1 then the number of marbles removed
is at mostA’s cost forσ.

Moreover, to prove the theorem it suffices to show that no node can ever have more
than one marble. Because the number of marbles placed is at least half the number of

2 Notice thatz remains a member ofRy
i because if it needs to be swapped as a result of its successor’s

being deleted, our model dictates that the BST algorithm must accessz in T , contradicting our assumption
that the algorithm does not touchz in T .

3 By “deepest left-ancestor ofz”, we mean the parent of the highest node inz’s right ascending path.

47

total switches (because there are at least as many left-to-right switches as right-to-left
switches4) andA must remove all of the marbles that are placed onT except those that
either remain onTm at the end (up ton) or are removed by the lower bound (up to2k
removed for rotations and up tom removed for deletions).

To see that no node can ever have more than one marble, notice that by Lemma 22 no
two nodes inPi ever have the same transition point inTi. As argued in [DHIP04], when
a left-to-right switch is made aty at timesi andj (i < j), the transition point fory in Ti

must be touched at some time during the interval(i, j], assuming that the transition point
remains constant during that interval. By Lemma 21,y’s transition pointz during this
interval remains constant unlessA touchesz in T , in which caseA removed its marbles,
or the lower bound executed a rotation involvingy, in which case the lower bound removed
the marbles ofz.

4.4 Properties of anO(1)-dynamic-competitive BST

Partly because competitive analysis in standard BST model is already difficult, there are
few results on the dynamic BST model. Below is a list of properties researchers have
considered or mentioned. In this thesis, I will prove that multi-splay trees satisfy all of the
following properties. Of the properties below, only multi-splay trees are known to satisfy
both theO(log log n)-dynamic-competitive property and the deque property.

Property. A dynamic binary search tree has theO(log n) dynamic runtimeproperty if a
sequence ofm operation is executed in timeO(m log n).

In the worst case, some sequences will needΩ(m log n) time using the sorting lower
bound. Thus, having this property implies the data structure is theoretically optimal under
worst-case analysis. Almost every dynamic binary search tree has theO(log n) runtime
property.

Property. [Tar85] A dynamic binary search tree has thedequeproperty if a sequence of
m push, pop, inject and eject operation is executed in timeO(m + n).

Splay trees are conjectured to satisfy the deque property [Tar85]. Lucas [Luc88]
showed that the total cost of a sequence of ejects and pops isO(nα(n, n)) if the ini-
tial tree is a simple path ofn nodes. Currently, the best bound is proved by Sundar

4 This is true if we do not count the at mostm right-to-left switches following the insertion of a node as
a left child of a node that has a right child.

48

[Sun89a, Sun89b, Sun92]. He showed that splay trees can execute a sequence ofm deque
operations onn nodes inO((m + n)α(m + n, n + n)).

Tarjan [Tar85] proved that splay tree satisfy a special case of the deque property - the
output restricted deque property.

Property. A dynamic binary search tree has theoutput restricted dequeproperty if a se-
quence ofm push, pop and inject operation is execute in timeO(m + n)

Property. A dynamic binary search tree has theO(log log n)-dynamic-competitiveprop-
erty if it execute every sequenceσ of queries, inserts and deletes in timeO(log log n ∗
DOPT (σ)).

Multi-splay tree is the only data structure proved to satisfy this property. However, it
may be possible to prove this property on otherO(log log n)-competitive BSTs with some
small modifications.

49

50

Chapter 5

Dynamic Multi-Splay Trees

5.1 Making Multi-Splay Tree Dynamic

With some modifications, our data structure can support insertions and deletions while
maintaining the competitiveness and the runtime property. To think about what is neces-
sary for supporting insert and delete, it is illustrative to think about the effect of insert and
delete on the reference tree. When nodes are inserted into and deleted from the reference
tree we need to maintain the invariants that the tree is balanced and that every internal node
has exactly one preferred child. We meet the balance requirement by allowing rotations on
the reference treeP (after insertion and deletion), and makingP a dynamic red-black tree.
We meet the single preferred child requirement by making a constant number of switches
prior to each rotation. Because the reference tree is implicitly maintained, we need to
be able to simulate the update operations on the reference tree (e.g., rotations, pointer
traversals) efficiently. Simulating each of these operations turns out to costO(log log n)
amortized time in a multi-splay tree so it is important that the corresponding reference
tree requires onlyO(m) reference tree traversals and reference tree rotations during a se-
quence ofm operations. (Finding thelocation of the update doesnot involve reference
tree traversals.) To emphasize that the reference tree is not explicitly maintained, we call
each reference tree traversal avirtual traversal, and each reference tree rotation avirtual
rotation. Red-black trees meet this requirement because they require onlyO(1) amortized
time to rebalance after an insert or delete [Tar83]. Because the reference tree is a red black
tree, we also need an additional bit to store if a node is red or black.

51

5.2 Simulating Pointer Traversal in the Reference Tree –
Virtual Traversal

To simulate a pointer traversal in the reference tree from nodev in a multi-splay tree, we
need to locaterefParent(v), refLeftChild(v), andrefRightChild(v). In this section, we
show how to find these nodes with a constant number of switches.1

5.2.1 Locating Child in the Reference Tree

To find the refLeftChild(v), we perform four switches. First, we switchv so the
set of nodes in therefSubtree(refLeftChild(v)) is identical to the set of nodes in
splaySubtree(rightChild(leftChild(v))), which we will refer to asTl. If refLeftParent(v))
is not inv’s splay tree, thenTl = splaySubtree(leftChild(v)). Then we search in theTl for
the nodel with minimum refDepth in Tl using theminRefDepth field. The nodel must
be therefLeftChild of v. Finally, we switchl twice and switchv again.

In our design, we switchl so the cost of searching forl is dominated by the switch cost,
so we only need to account for the switch cost in our analysis. We switchl andv twice
so the virtual traversal does not change the preferred path. Note that while the second
switches onl andv are not necessary, they simplify some of the running time analysis.

Likewise, to find therefRightChild(v) in four switches, we first switchv so the
set of nodes in therefSubtree(refRightChild(v)) is identical to the set of nodes in
splaySubtree(leftChild(rightChild(v))), which we will callTr. (If refRightParent(v)) is
not inv’s splay tree, thenTr = splaySubtree(rightChild(v)).) Then we search for the node
r with minimumrefDepth in Tr usingminRefDepth field in Tr. The noder must be the
refRightChild of v. Finally, we switchr twice and switchv again. Thus, ifrefLeftChild
of v andrefRightChild of v do exist, then we can find them in four switches.

If refLeftChild of v does not exist, then after we switchv, the leftsplaySubtree of v
will be empty. Similarly, ifrefRightChild of v does not exist, then the rightsplaySubtree
of v will be empty after we switchv. Thus, we can determine ifrefLeftChild of v or
refRightChild of v exist with a single switch.

In fact, the second switch onv, l, andr only consists of root marking, and the amount
of potential change due to the marking and unmarking is the same as the first switch onv,
l, andr. Thus, the second switches are free, and we only need to pay for two switches to

1 In our original paper [WDS06], we added 3 new fields to store the values of therefParent , refLeftChild
andrefRightChild of each node. While it is a simpler solution, it uses3 ∗ log n extra bits.

52

find eitherrefLeftChild or refRightChild .

5.2.2 Locating Parent in the Reference Tree

Observe thatrefParent(v) must be eitherrefLeftParent(v) or refRightParent(v), and
(refDepth(refParent(v)) = refDepth(v) − 1). To find refParent of v, we first switchv
twice. If refParent(v) is in v’s splay tree, then it must be splayed to eitherv’s leftChild
or rightChild. Because each splay tree is a preferred path, there are at most one node of
eachrefDepth in a single splay tree. Thus, if therefDepth of leftChild(v) or rightChild(v)
equals torefDepth(v)− 1, then that node isv’s refParent .

If refParent(v) is not inv’s splay tree, thenv is refParent(v)’s non-preferred child.
If we let Tp be the splay tree containingparent(v), thenrefParent(v) must be either the
succ(v) or pred(v) in Tp. Now we could simply search forv’s key in Tp, and stop when
we find a node whoserefDepth equals torefDepth(v)− 1. In fact, whenrefParent(v) is
not inv’s splay tree, we do not even have to search for it, because of the following lemma.

Lemma 23. If v is a non-preferred child, thenrefParent(v) must appear on the path from
splayRoot to v in multi-splay tree. Moreover, if we letr be the root of splay tree containing
v, thenrefParent(v) must be either pred(subtree(r)) or succ(subtree(r)).

Proof. Sincev is a non-preferred child, the set of nodes inrefSubtree(v) is identical to the
set of nodes insubtree(r). Hence,

refLeftParent(v) = pred(refSubtree(v)) = pred(subtree(r))

refRightParent(v) = succ(refSubtree(v)) = succ(subtree(r)).

Observe that for every node in every binary search tree,pred(subtree(x)) and
succ(subtree(x)) must be ancestors ofx. Thus,refLeftParent(v) andrefRightParent(v)
are ancestors ofr which is an ancestor ofv.

In this section, we have shown how to find therefParent , the refLeftChild , and the
refRightChild of any node. Moreover, all the pointer traversals in multi-splay tree can
be paid by the cost of the switches, and we only need to pay for two switches per virtual
traversal at most.

53

� �

�

� �

�

� � � � � � � 	
�

�

�

�

Figure 5.1: Before a right (left) rotation onv in the reference tree, we must make sure
v’s preferred child is right (left), andp’s preferred child isv. Note that the partition of the
nodes by the preferred paths remains the same before and after the rotation.

5.3 Simulating Rotations in the Reference Tree – Virtual
Rotation

To simulate a right rotation of a nodev over its parent in the reference tree, a multi-splay
tree first ensures thatv’s preferred child is its right child, andv’s parent’s preferred child
is its left child by performing either 1 or 2 switches onv andv’s parent. By meeting these
requirementsT ensures that the partition of preferred paths in the reference tree remains
the same before and after the rotation,, as seen in Figure 5.1.

Similarly, to simulate a left rotation of a nodev over its parentp in the reference tree,
a multi-splay tree first ensures thatv’s preferred child is its left child, andv’s parent’s
preferred child is its right by performing either 1 or 2 switches onv andv’s parent. After
the rotation,v’s preferred child is set to the left child (which isp), andp’s preferred child
is set to right child. Thus, the set of nodes on each preferred path remains the same before
and after the rotation.

We also need to be able to quickly update the fields in each ofT ’s nodesv when
a virtual rotation is performed inP . Recall that we storerefDepth (the depth ofv in
the reference tree), andminRefDepth (the minimumrefDepth of all the nodes inv’s
splay subtree). To update these values efficiently, we do not store the values explic-
itly. Instead, inv we storerefDepth(v) − refDepth(parent(v)), andminRefDepth(v) −
minRefDepth(parent(v)), except if v is the root ofT , in which case it simply stores
its refDepth, and minRefDepth. This is analogous to the technique used in link-cut
trees [ST85].

Let v be the node we rotate in the reference treeP (and the corresponding node in the
multi-splay treeT). Let p be the parent ofv in P . Without loss of generality, we assume
v is the left child ofp. At first glance, a rotation ofv overp in P changes therefDepth

54

� � �

� � � � � � 	
 �
� � � � � � 	 � �

� �

� � � �

� � � � � � 	 � �
�

� �

� �

� � � �

� � � �
� � � ��

� � � ! � " # � � ! � � $

� � � �

� �

�

�

�

� � � �

� �

�

�

�

Figure 5.2: Observe that after we callswitch(v) andswitch(p), the sets of nodes inLv

andRp form two subtrees in a multi-splay tree. A rotation ofv over p in the reference
tree decreases the depth value of each of the nodes inLv by one, and increases the depth
value of each of the nodes inRp by one (Shown in Figure 5.1). BecauseLv andRp are
grouped together by the switches, the updates in depth values costO(1) after performing
the switches.

55

value for many nodes, so it would be difficult to update. However, the sets of nodes whose
depths change constitute two subtrees in the reference tree. More specifically, therefDepth
of each node inleftRefSubtree(v), Lv, decreases by one, while therefDepth of each node
in rightRefSubtree(p), Rp, increases by one. Using this observation, we can decrease the
depth value of all of the nodes inv’s ref-subtree by executingswitch(v) andswitch(p) in
T , which isolatesLv andRp as shown in Figure 5.2 so we can change the difference value
at a single node to decrease (or increase) the storedrefDepth of each node inLv (or Rp)
by one. This method can be used for theminRefDepth field as well.

Hence, a rotation inP can be simulated inT using a constant number of switches and
field updates, so its amortized cost isO(log log n) if the reference tree is balanced.

5.4 Implementing Insertion

To insertσ̂i, we query its successor or predecessor, then we perform a normal BST insert,
and we set the appropriate fields ofσ̂i and its (constant number of) ancestors. We can
find refParent(σ̂i) as we search for̂σi in the multi-splay tree, becauserefParent(σ̂i) is
the node of maximumrefDepth on the access path. Then we rebalance the reference tree
using amortizedO(1) simulated rotations and pointer traversals. Finally, we queryσ̂i again
to bring it to the root of the multi-splay tree.

To elaborate on the above summary, letx be thepred(σi) andz be thesucc(σi). Be-
causeσ̂i is not in the multi-splay tree, when we search forσ̂i, we must touch bothx and
z. Then we queryx or z depending on itsrefDepth. Note that becausex is pred(z) before
the insertion,refDepth(x) 6= refDepth(z). If refDepth(x) > refDepth(z), we queryx.
(Because bothx andz are splayed during this query, so the cost of pointer traversals are
dominated by rotations.) After queryingx, x becomes the root of the multi-splay tree and
z becomes the right child ofx as shown in Figure 5.3. Then we insertσ̂i as the left child of
z. On the other hand, ifrefDepth(x) < refDepth(z), we queryz instead. After querying
z, z becomes the root of the multi-splay tree andx becomes the left child ofz as shown in
Figure 5.3. Then we insert̂σi as the right child ofx.

Sinceσ̂i must be the child of the deeper ofx andz in the reference tree, we set the
refDepth(σ̂i) = max(refDepth(x), refDepth(z))+1. Since onlyx andz are the ancestors
of σ̂i, only the fields ofx andz can change after insertinĝσi. Thus, we can update all the
field changes due to this insertion inO(1) time.

After the insertion, we might need to virtually rebalance the reference tree. Since
the deeper of the two,x andz, is refParent(σ̂i), we already know the location of this

56

�

�

�

�

�

�

�

�

� � � � � � � � 	
 � � � � � � � � � � 	
 � � � � � � � � � 	
 � � � � � � � � � � 	
 �

� � �
�� � ��

� � �
�� � ��

Figure 5.3: After queryingx or z during an insertion.

57

insertion in the reference tree. In a red-black tree, we only need amortizedO(1) pointer
traversal and rotations for rebalancing. We can perform each of those virtual traversals
and virtual rotations in a constant number of switches as shown in Section 5.3 and Section
5.2. Finally, we queryrefParent(σ̂i) again to bring it to the root of multi-splay tree.

The above discussion omits a few trivial details, such as the first insertion, and the
insertion of the smallest or the largest element. Ifσi is the first insertion, we can just create
the node inO(1) time. If σ̂i is smaller than all the existing elements, thenx does not exist.
In this case, we queryz and insertσ̂i as the left child ofz. Then we setrefDepth(σ̂i) to
refDepth(z) + 1 and proceed to virtually rebalance the reference tree as usual. Similarly,
if σ̂i is larger than all the existing elements, thenz does not exist. We queryx, insertσ̂i as
the right child ofx, setrefDepth(σ̂i) to refDepth(x) + 1, and proceed as usual.

5.5 Implementing Deletion

In the reference tree (or the standard red-black tree), a nodeσ̂i has zero, one, or two
children. To deletêσi when it has no children, we can simply remove it because it is a leaf.
Whenσ̂i has one children, we can contract it in the red-black tree. Ifσ̂i has two children,
then we first swap̂σi with its predecessor, then contractσ̂i. In the following paragraphs,
we describe how to simulate each of the above steps in the multi-splay trees.

To deleteσ̂i in the multi-splay tree, we first querŷσi If σ̂i has no children in the ref-
erence tree, then we switchrefParent(σ̂i) so σ̂i becomes a leaf in multi-splay tree. Then
we switchrefParent(σ̂i) so σ̂i is the only element in its splay tree. Onceσ̂i is a leaf and
the only element in its tree, we could simply remove it without affecting the fields of any
other nodes.

If σ̂i has exactly one child in the reference tree, then we queryσ̂i and switch
refParent(σ̂i) so thatσ̂i becomes the non-preferred child. Then we switchσ̂i so that
its only child is a non-preferred child, and̂σi becomes the only element in its splay tree.
Let c be the (only) child of̂σi in the multi-splay tree. We proceed to rotatec soσ̂i becomes
a leaf, and removêσi. (We have to rotatec before we deletêσi because our dynamic BST
model does not allow contraction. We only allow deletion at the leaf.) Due to the removal
of σ̂i, for each nodev in refSubtree(σ̂i), refDepth(v) is reduced by one. Note that the set
of nodes inrefSubtree(σ̂i) are identical tosubtree(c). So we only need to update the fields
of c to reflect all that changes inrefDepth andminRefDepth.

Finally, we consider the case in whicĥσi has two children in the reference tree. Be-
fore rebalancing the reference tree using amortizedO(1) simulated rotations and pointer

58

� � � � � � � � �
� � � � �

� 	

� �

�

�

� �

� � � � � � � � � � �
� � � � �

� 	

Figure 5.4: An example of what a multi-splay tree looks like during deletion of node
σ̂i with two children in the reference tree, wherev = σ̂i, p = pred(σ̂i), s = succ(σ̂i),
rp = refParent(pred(σ̂i)) after the sequencequery(p), switch(rp), query(p), query(s),
andquery(v). Here we show the case in whichrp < p.

traversals, we must first swap̂σi with pred(σ̂i) and splice out̂σi using a constant num-
ber of switches, rotations, and field updates in addition to a constant number of ac-
cesses topred(σ̂i), σ̂i, andsucc(σ̂i), which will be justified in Section 5.6. To accom-
plish this, we first perform the sequence:query(pred(σ̂i)), switch(refParent(pred(σ̂i))),
query(pred(σ̂i)), query(succ(σ̂i)), andquery(σ̂i). Notice that this sequence adheres to our
cost specification, and results in a multi-splay tree that looks like the one in Figure 5.4.

There are two important aspects of this multi-splay tree. First,pred(σ̂i), σ̂i, and
succ(σ̂i) are located close together. Second,pred(σ̂i)’s subtree is isolated in its own sub-
tree of the multi-splay tree (the subtreePS in Figure 5.4). Thus, after we performed
the sequence of queries and switches, we can deleteσ̂i as follows. We first swap̂σi and
pred(σ̂i), then contract̂σi to delete it. However, since we do not allow swap and contrac-
tion in our dynamic BST model, the operation is implemented by rotatingσ̂i to the leaf,
removing it, and rotatingpred(σ̂i) to takeσ̂i’s place. Becausepred(σ̂i), σ̂i, andsucc(σ̂i)
are located close together,O(1) rotations suffice. Then we change the field of the root of
PS to decrement therefDepth andminRefDepth fields of every node inPS by one.

59

After the deletion, we might need to virtually rebalance the reference tree. In a red-
black tree, we only need amortizedO(1) pointer traversal and rotations for rebalancing.
We can perform each of those virtual traversals and virtual rotations in a constant number
of switches as shown in Section 5.3 and Section 5.2.

5.6 Running Time Analysis

5.6.1 Proof ofO(log n) amortized time per operation

Theorem 11. The amortized cost of insertion, deletion or query on the multi-splay tree is
O(log n), wheren is the maximum number of elements exists in the multi-splay tree at any
time.

Proof. In this proof, we will use the multi-splay tree access lemma in Section 3.4.2 with
mass(v) = 1 for all v. We first account for the cost of each virtual traversal and virtual
rotation, then we bound the cost of each query, each insertion and each deletion.

Each virtual traversal and rotation is implemented with a constant number of switches.
We apply the multi-splay tree access lemma to show that each switch has an amortized
cost of at mostO(log n).2 In addition, because virtual rotation ofv overp changes♦(v)
and♦(p), we need to account for the difference in potential due to the virtual rotation.
Since themass of every node is1, thew of each node is proportional to itsrefSubtree. In
a red-black tree, the size ofv andp’s refSubtree can only change by a constant factor due
to the rotation. Thus, the potential ofv andp only changes by a constant after the rotation.
Since bothp and v’s depths are less than or equal to3 in their splay trees (as shown
in Figure 5.2), the total potential changes per virtual rotation (excluding the switches) is
bounded byO(1). Hence, the total amortized cost of all the virtual traversal and virtual
rotations is at mostO(m log n).

Because we have already accounted for the cost of virtual traversal and rotation, we
can assume there are no virtual traversal and rotation while bounding the cost of query,
insertion and deletion.

By the multi-splay tree access lemma, the amortized cost of each query isO(log n).

2In the proof of multi-splay tree access lemma in Section 3.4.2, we bound the amortized cost of a query
by upper bounding the amortized cost of each switch. Thus, while the amortized cost of a query might be
smaller than the amortized cost of a switch, ourupper boundon the amortized cost of a query is always
larger than the amortized cost of a switch.

60

When we insert an element at the leaf, there are at mostO(log n) elements in the
inserted splay tree. The potential of each node in that splay tree can increase by at most
1, and the potential of the inserted node is at mostO(log n). Thus, an insertion can only
increases the potential by at mostO(log n). The final query on the inserted element also
has an amortized cost ofO(log n), and this final query pays for the time to traverse to the
location of insertion. Thus, the amortized cost of an insertion isO(log n).

When we delete an elementv, we first perform a constant number of queries and
switches sov, pred(v) andsucc(v) have constant depths in multi-splay tree. By the multi-
splay tree access lemma, each query and each switch have an amortized cost ofO(log n).
Then we swapv with pred(v) (through a constant number of rotations) and deletev. This
swap and delete only increase the potential ofpred(v), the potential for all other nodes
decreases. Sincev was the root of multi-splay tree, the potential ofpred(v) is no more
than the potential ofv before the deletion. Hence, the increase in potential due topred(v)
is accounted for by the reduction in potential whenv is removed. Thus, the amortized cost
of a deletion is alsoO(log n).

Corollary 6. Multi-splay trees satisfy theO(log n) dynamic runtime property.

Proof. Since the initial potential is0, and the final potential is greater than or equal to
0, by Theorem 11, a sequence ofm operations uses at mostO(m log n), wheren is the
maximum number of elements exists in the multi-splay tree at any time.

5.6.2 Proof ofO(log log n)-dynamic-competitiveness

For the purpose of this analysis, we define the potential of a multi-splay treeT as follows.
If each nodev has an arbitrary positiveweightw(v) = 1, define thesizes(v) of node
v to be

∑
v∈splaySubtree(v) w(v) (i.e., the sum of the weights of all descendants ofv in T

reachable by traversing only solid edges). Define the potential of the multi-splay tree to
be
∑

v∈T lg s(v). In other words, the weight of each node in each splay tree is 1, and the
potential of the multi-splay tree is the sum of the potentials of the splay trees.

Because we used the same potential function to prove that multi-splay tree is
O(log log n)-competitive, by the analysis in Theorem 6, the amortized cost for each switch
is O(log log n).

Theorem 12. For an arbitrary sequenceσ = σ1 · · ·σm in a multi-splay tree, the cost ofσ
is O(DOPT(σ)∗ log log n), wheren is the maximum number of elements in the multi-splay
tree.

61

Proof. For each query, the number of switches is exactly the increase in the Dynamic
Interleave Bound plusO(1). Each switch costs amortizedO(log log n) in the multi-splay
tree.

For eachinsert(σ̂i), the number of switches caused by queries, which each cost amor-
tizedO(log log n), performed during the insert’s query is equal to the increase in the Dy-
namic Interleave Bound. After we accounts for the switches from queries, there are only
O(1) switches left, and each switch costO(log log n). (TheO(1) switches consist of the
extra switches on̂σi andrefParent(σ̂i) and the amortizedO(1) switches from virtual re-
balancing.3) We charge these unaccountedO(log log n) amortized cost to the minimum
cost of 1 per operation in any BST algorithm.

For each delete operation, the number of switches performed during the queries to
pred(σ̂i), σ̂i, andsucc(σ̂i) is bounded by 3 times the maximum number of switches caused
by queries to these 3 nodes plus a constant number to account for the extra switches per-
formed on the queried nodes and the lowest common ancestors between pairs of these 3
nodes in the reference tree (and additionally, in our case, a switch onrefParent(pred(σ̂i))).
The constant number of extra switches and the rest of the additionalO(log log n) amor-
tized cost (consisting of the field updates, the virtual traversals, the virtual rotations, the
extra rotations to move the deleted element to the leaf, and the actual deletion) is charged
to the minimum cost of 1 per operation in any BST algorithm. Finally, because the number
of rotations performed on the reference tree isO(1) worst-case per operation, we can af-
ford to pay for the−2k term in the lower bound with the+cm term (for a suitable constant
c), it follows that dynamic multi-splay trees areO(log log n)-competitive.

5.6.3 Proof of Deque Theorem

Before we prove the deque theorem, we give a brief description of what happens during
a deque operation (e.g., push, pop, inject, or eject) on a multi-splay treeT with reference
treeP , whereP is a red-black tree. Because of the similarity between push and inject, and
between pop and eject, this description will focus only on push and pop.

To performpush(x), we first do a standard BST insert intoT , and then queryx in T
(we do not need the fields ofx to perform this operation). Next, we virtually insertx into
P by setting therefDepth andminRefDepth. Nodes on the current access path ofx may

3Because our weight assignments do not depend on the non-preferred subtree, and the set of nodes in
each splay tree is identical before and after the rotation, virtual rotation doesnot change the potential.

62

have theirminRefDepth values affected, but there are only a constant number of these, so
updating these takes only constant time. Finally,P is virtually rebalanced, which includes
performing a series of virtual pointer traversals followed by a constant number of virtual
rotations and a switch onx.

During a pop, we query the smallest elementx of T , then the successor ofx, then we
virtually deletex, which is now a leaf ofT , fromT and fromP , which includes performing
a constant number of field updates and performing virtual rebalancing similarly to what is
done in push. Thus, we have the following invariant.

Invariant 2. After a push or pop (inject or eject), the left (right) path ofP is a preferred
path, and the right (left) path ofP , excludingrefRoot , is a preferred path.

The following property of red-black trees will be useful in our proof.

Lemma 24. During any sequence ofm rebalancing operations following an insertion or
a deletion at a node of height 0 or 1 in a red black tree, the number of times we touch a
node at heighth is at mostc1 ∗m/2(h/c2) + c3, wherec1, c2, andc3 are fixed constants.

Proof. See [HM82].

Our proof of the deque theorem will use a potential function, which we will now define.
First, define theouter shellof P to be the union of the left and right paths ofP . For each
nodex on the outer shell ofP , theblack heightof x, denoted bybh(x), is defined to be the
number of black nodes on any path fromx to a leaf. We assign weightsw(x) = 1/2bh(x)

to each node on the outer shell with the exception of the root, which is given weight 1.
All other nodes are assigned weight 0. The size of nodex, denoted bys(x) is defined as
usual as the sum of the weights of nodes inx’s subtree inT (ignoring the root markings
that partitionT). The rank of nodex, denoted byr(x) and defined only for nodes on the
outer shell ofP , is equal tolg s(x). The potential of a multi-splay tree is the sum of the
ranks of nodes on the outer shell ofP . Because we will always be performing splay steps
on nodes with strictly positive weight during a sequence of deque operations with using
this weighting scheme, so we can apply the Reweighting Lemma for splay trees [Geo04]
to all splays or partial splays on nodes of the outer shell.

Notice that we will need to change the weights of some nodes as their black heights
change so as to conform to our weighting scheme. This is why we use the Reweighting
Lemma instead of the Access Lemma. Also, we will need to assign and remove weights
to and from nodes as they enter and leave the outer shell ofP .

Invariant 2 implies that the outer shell ofP forms a connected component inT and
all children of leaves of this component are marked as roots, which implies that splay

63

steps executed on nodes outside the outer shell of the multi-splay tree will not change the
potential ofT so their costs can be accounted for separately. However, whenever a node
enters or leaves the outer shell ofP due to a virtual rotation inP , we need to account for
the change in potential.

Lemma 25. In a sequence of deque operations, the amortized cost of a switch at heighth
in P is O(h) and each switch ofrefRoot costsO(1).

Proof. Only nodes on the outer shell ofP , or children of the nodes of the outer shell are
switched during a sequence of deque operations. When we switch a nodex at heighth not
on the outer shell ofP , the number of nodes inx’s splay tree is at mosth by Invariant 2.
Thus, theworst-casecost of such a switch isO(h). Moreover, sincex is not in a splay tree
that contains any nodes on the outer shell, such switch does not change the potential ofT .

A switch of a nodex at heighth on the outer shell consists of two splay operations in
T (onx andrefParent(x)) in addition to a constant number of field updates. Because the
weight ofx is 2−bh(x) andh ≤ 1 + 2bh(x), it follows that the amortized cost of switching
x is O(bh(x)) = O(h) using the Reweighting Lemma. (We are not reweighting here, but
must invoke the Reweighting Lemma because we will be reweighting elsewhere.) Finally,
the amortized cost of switchingrefRoot is O(1) because switchingrefRoot consists only
of performing a constant amount of field updates in addition to one splay ofrefRoot ,
whose weight is 1, a constant fraction of the total weight ofT .

Lemma 26. Letx be the highest node inP that is virtually traversed or involved in a vir-
tual rotation during a virtual rebalancing operation. The amortized cost of a reweighting
due to this operation isO(refHeight(x)).

Proof. The black height of a nodex in a red-black tree can only change ifx is touched
during the rebalancing operation. Therefore, if the highest node touched is at heighth,
then onlyO(h) nodes’ black height can change because only a constant number of nodes
of any particular black height are touched during rebalancing.

Moreover, ifx’s black height changes frombh(x) to bh ′(x) during a rebalancing op-
eration, then|bh ′(x) − bh(x)| ≤ 1. Hence, the cost of reweighting each node whose

black height changes isO(log wnew (x)
wold (x)

) = O(log 2−bh′(x)

2−bh(x)) = O(1) in the case in which the

reweighted node is notrefRoot andO(log 1
2−bh(y)) = O(bh(refRoot)) wheny is rotated

overrefRoot .

For each virtual rotation inP , a node may join or leave the outer shell ofP . When a
node leaves the outer shell, the potential ofT decreases when its weight is removed. On
the other hand, when a nodex joins outer shell at heighth in P , x has at most 2 ancestors in

64

T because the virtual rotation that placedx in the outer shell switchedx andrefParent(x),
which are in the same splay tree asrefRoot . Thus, updating all of the necessary fields has a
worst-case cost ofO(1). Additionally,x’s newly added weight only increases the potential
of a constant number of nodes. Finally, notice that for each ancestora of x, it is the case
thatrefHeight(a) ≤ refHeight(x) + 1. Therefore, the increase in rank at each ancestor is
bounded näıvely by lg 3 so that the total increase in potential caused by a virtual rotation
of x onto the outer shell ofP is O(1).

Theorem 13(Deque Theorem). In a multi-splay tree, a sequence ofm deque operations
(push, pop, inject, and eject) starting from an empty tree costsO(m).

Proof. In addition, to the work to perform the actual insertion or deletion, which can be
paid for by the query executed during a deque operation, the cost of each operation can
be broken down into two parts: the cost of the initial query that is performed, the cost
of virtual rebalancing, and the cost of reweighting the nodes ofT as a result of virtual
rebalancing.

The cost of the initial query isO(1) because it involves at most 2 switches, one at the
root and one at the queried node (of black height 0), both of which costO(1) by Lemma 25.

During virtual rebalancing, the nodes that we virtually traverse and rotate inP are the
same as nodes we would actually traverse inP if it existed, and each such virtual traversal
or operation consists of, in addition a constant amount of bookkeeping, a constant number
of switches to nodes whose black heights are at most one larger than the highest node
touched during that particular node or rotation. This, along with Lemma 25, shows that
the amortized cost of traversing or rotating a nodex is O(bh(x)). Similarly, by Lemma 26
the cost of reweighting due to a virtual traversal or rotation of nodex is O(bh(x)). Thus,
by Lemma 24, the total cost of switches due to virtual rebalancing is

O

(
∞∑

h=0

h ∗ (c1 ∗m/2(h/c2) + c3)

)
= O(m).

Finally, notice that the potential ofT is 0 initially, and afterm operations, we can pop
all elements in at mostm additional operations while bringing the potential back to 0.

Intuitively, it is easier to argue that multi-splay trees support efficient deque operations
than to argue for splay trees because the left and right paths of the reference tree of a multi-
splay tree do not interfere with one another. To see this, consider what happens when we
are trying to find the queried element. If the search does not causerefRoot to switch,
then finding the queried element takes constant time because it is always at the root of the

65

multi-splay tree. If an operation causesrefRoot to switch, after we perform one switch at
refRoot , the element being queried must have depth 2 or 3 unless a large number of injects
have been performed. In other words,refRoot essentially acts as a “divider” inT , which,
helps insure that restructuring due to pushes and pops does not interfere with restructuring
due to injects and ejects.

66

Chapter 6

Conclusion

In this thesis, we have introduced multi-splay trees, and proved several results demonstrat-
ing that multi-splay trees have many desirable properties. First, we proved a close variant
of the splay tree access lemma [ST85] for multi-splay trees that is sufficient to show that
multi-splay trees have theO(log n) runtime property, the static finger property, and static
optimality. Then, we extended the access lemma by proving the remassing lemma, which
is similar to the reweighting lemma for splay trees [Geo04]. The remassing lemma shows
that multi-splay trees satisfy the working set property, key-independent optimality, and
are competitive to parametrically balanced trees, as defined in [Geo04]. We also proved
that multi-splay trees achieveO(log log n)-competitiveness and we showed that sequential
access in multi-splay trees costsO(n).

We extended the interleave lower bound to allow insertions and deletions, and showed
how to carry out these operations in multi-splay trees. We proved that the runtime and
competitiveness bounds for query-only case apply when insertions and deletions are also
allowed. Then, we proved that multi-splay trees satisfy the deque property, which is still an
open problem for splay trees since it was conjectured in 1985 [Tar85]. While it is easy to
construct a BST that trivially satisfies the deque property, no other BST scheme satisfying
other useful properties has been proved to have deque property.

67

6.1 Comparisons between Multi-Splay Tree and Splay
Tree

The multi-splaying algorithm is similar to splaying, but differs in a few important ways.
Consider modifying the algorithm so that it does not splay the left parent during a left-to-
right switch and right parent during a right-to-left switch. In this modified algorithm, an
access to a nodev is then a series of partial splays (ones that stop before getting all the way
to the root) of nodes onv’s path to the root. The pattern is that starting at an ancestor ofv,
we splay for a while, stop, then move to an ancestor, then splay for a while, then stop, then
move to an ancestor, etc. Finally we switchv so that it moves to the root. These partial
splays do not keep multi-splay trees balanced. However, with the additional splays (not on
the path between the queried element and the root), multi-splay trees become somewhat
balanced (i.e., their maximum depth becomes bounded byO(log2 n)).

Moreover, one way of thinking about the marking of root bits is that it effectively
“removes” from the tree a large amount of weight. In other words, the root markings
allow us to temporarily split and join splay trees. Basically, if we do not expect future
access in a subtreeL of the splay treeT , we split off L. As a result, when we access
elements inT , we do not have to pay for anything inL. But when we need to accessL, we
pay an extra cost to re-attachL into T . This technique allows us to prove tighter bounds
on multi-splay trees. However, it is difficult to apply this technique to splay trees, partly
because there are significantly less structure in splay trees.

Given the similarities between multi-splay trees and classical splay trees, it is natural to
ask whether splay trees are alsoO(log log n)-competitive. Proving this would be a major
contribution toward proving the dynamic optimality of splay trees.

6.2 Lower Bounds

As far as we know, multi-splay trees may be dynamically optimal. Is this true? One
big difficulty in addressing this problem is the lack of tight lower bounds on the cost of
accessing a sequence. The static interleave bound is insufficient, because it is known to be
off by a factor oflog log n for some sequences. While the static and the dynamic interleave
lower bounds are very similar, we do not know if the new dynamic interleave lower bound
is tight.

Another open problem regarding the dynamic interleave lower bound is whether the
best bound can be computed in polynomial time. If not, another interesting problem

68

is whether it can be approximated to within a constant factor, or some factor that is
o(log log n).

Lower bounds sometimes lead to new algorithms. Examples of this are the de-
velopment of new algorithms for binary search trees based on Wilber’s first lower
bound [Wil89, DHIP04, WDS06]. There is the possibility that our lower bound formu-
lation could be used in this fashion.

6.3 More Open Problems

Returning to the original motivation for this research, the problem of finding ao(log log n)-
competitive on-line BST remains open. Even in the off-line model, the problem of finding
anO(1)-competitive BST is difficult. The best known off-line constant competitive algo-
rithm use dynamical programming. The algorithm not only requires exponential time to
compute what rotations to do, but also provides little insight.

Another problem is devising an on-line comparison-based data structure (that does not
necessarily adhere to the BST model) that is within a factor ofo(log log n) of the optimal
off-line BST. For example, Iacono devised a non-BST comparison-based data structure
called theunified structurethat exploits temporal and spatial locality of accesses with
better bounds than have been proven for most BSTs [Iac01b], but his data structure is only
O(log n)-competitive.1

1 Consider the sequence ofn accesses0,
√

n, 2
√

n, . . . , (
√

n−1)
√

n, 0,
√

n, 2
√

n, . . . , (
√

n−1)
√

n,
The unified structure requiresΩ(log n) time per access while splay trees require onlyO(1) time per access.
To see that splay trees require onlyO(1) time per access for this sequence, notice that this first round of

√
n

accesses costsO(n) by the Dynamic Finger Theorem. After the first round, at most2
√

n nodes remain on the
left spine and the nodes0,

√
n, 2

√
n, . . . , (

√
n− 1)

√
n are all among them. Thus, all following rounds will

not touch any nodes that were not on the left spine at the end of first round. Applying the Dynamic Finger
Theorem on this smaller tree with at most2

√
n nodes shows that successive rounds cost onlyO(

√
n).

69

70

Appendix A

Lists of Notations and Symbols

Symbols
n the number of nodes in the multi-splay tree
m the length of the sequence of requests
P a reference tree
ri root(ti) = the root of theith splay tree
σ the sequence of queries (we generalizeσ to include insertions and deletions

after Chapter 4)
σi theith operation
σ̂i the key or node ofσi

T multi-splay tree
|t| the number of nodes insubtree(t), includingroot(t)
ti the splay tree involved inith switch during an operation
Ti the state ofT whenσi is executed
y (usually) the node that the multi-splaying algorithm switches inT
yi theith node switched during an operation
xi, zi the two additional nodes we splay during theith switch

Table A.1: The symbols that are used throughout the thesis.

71

Notation
DOPT(σ) the minimum cost BST to serve the dynamic sequenceσ
IB static interleave bound
isRoot(v) a bit to store if nodev in multi-splay tree is the root of a splay

tree
leftChild(v) the left child ofv (this is independent of the preferred chil-

dren relationships)
leftRefSubtree(v) the left subtree ofv in the reference tree
OPT(σ) the minimum cost BST to serve the query sequenceσ
pred(v) the largest node smaller thanv
minRefDepth(v) the minimumrefDepth of all the nodes insplaySubtree(v)
refDepth(v) the depth of nodev in the reference tree (root has depth 1) in

the reference tree
refRoot the root of the reference tree
refSubtree(v) the subtree rooted atv in the reference tree (this tree is the

same regardless of the preferred children relationships)
rightChild(v) the right child ofv (this is independent of the preferred chil-

dren relationships)
rightRefSubtree(v) the right subtree ofv in the reference tree
root(t) the root of tree/subtreet (either a splay tree, a multi-splay

tree, or a reference tree)
splayRoot the root of the multi-splay tree
splaySubtree(v) the subtree rooted atv in multi-splay tree restricted tov’s

splay tree
subtree(v) all the descendants ofv (this is independent of the preferred

children relationships)
succ(v) the smallest node larger thanv in t
switch(v) swaps which child is the preferred one in reference tree; (de-

tails on how to simulate a switch in multi-splay trees are in
Section 3.2)

s(v) size ofv =
∑

u∈splaySubtree(v) w(u)

w(v) weight ofv (usually in a splay tree)

Table A.2: The notation used throughout the thesis.

72

Terminology
BST binary search tree
dashed edge an edge that connects different splay trees
preferred child the child that is more recently touched if we were to perform

all the operations on reference tree
preferred path a path formed by a maximal chain of preferred child relations

in the reference tree. Specifically, if a nodev is in a preferred
path, thenv’s preferred child is also in the preferred path.

multi-splay an algorithm (defined in Section 3.2 that moves a node to the
root in multi-splay tree using a series of switches

solid edge the edges inside a single splay tree

Table A.3: The terminology used throughout the thesis.

Notation for the Multi-Splay Tree Access Lemma and Remass Lemma
♦(x) lip(x) ∪ rip(x) ∪ {x}
Φi the potential of the multi-splay tree after theith access
lip(x) the set of nodes inx’s left inner path in the reference tree

(i.e. the set of nodes reachable starting atx’s left child and
following right child pointers)

mass(x) mass ofx (analogous to the weight of a node in splay tree)
refLeftParent(x) the predecessor ofx in the proper ancestors ofx in the refer-

ence tree
refRightParent(x) the successor ofx in the proper ancestors ofx in the refer-

ence tree
rip(x) the set of nodes inx’s right inner path in the reference tree

(i.e. the set of nodes reachable starting atx’s right child and
following left child pointers)

refPath(x) the set of nodes inx’s preferred path that are at least as deep
asx

uchild(x) the non-preferred child ofx in the reference tree
U(x) refSubtree(uchild(x))
w(x) maxy∈♦(x) ŵ(y)
ŵ(x) mass(x) +

∑
y∈U(x) mass(y)

Table A.4: The notation used in Section 3.4.2 and 3.4.3.

73

Notation for the Scanning Theorem
A(v) the size of theright ascending pathof v
right ascending path ofv the set of nodesu, such thatrightParent∗(v) = u
rightParentof a nodev p if p’s left child isv
tL the left subtree of treet
tR the right subtree of treet
TRB a red black tree
TS a splay tree

Table A.5: The notation used in Section 3.4.4.

Notations for Dynamic Interleave Lower Bound
DIB new dynamic interleave bound
DIBi the number of switches that must be made inPi (which is

implicit from ρ)
Ly

i leftRefSubtree(v) ∪ {y} during the execution ofσi

Pi the state ofP afterσi is executed
ρ a sequences of changes to the reference treeP
ρi theith change to the reference treeP
Ry

i rightRefSubtree(y) during the execution ofσi

Table A.6: The notation used for Section 4.3.

74

Appendix B

Table of Constants

Constant Name Symbol Definition Value
multiplicative splay cs = 3
addictive splay csa = 1
multiplicative reweight cr = cs + 1 = 4
multiplicative telescope ct = 3
multiplicative switch csw = 3cs + 3cr = 21
additive switch cswa = 3csa + 2 lg(ct + 1) = 7
multiplicative final switch cf = csw + cscsw lg ct + cscswa = 42 + 63 lg 3
addictive final switch cfa = cswa + csacsw lg ct + csacswa = 14 + 21 lg 3
multiplicative multi-splay cms = csw + cf = 63 + 63 lg 3
additive multi-splay cmsa = (csw + cf) lg ct + cfa + cswa ≈ 312.4

Table B.1: Table of constants.

75

76

Bibliography

[Abr63] N. Abramson. Information Theory and Coding. McGraw-Hill, New York,
1963. 2.4

[AM78] Brian Allen and Ian Munro. Self-organizing binary search trees.J. ACM,
25(4):526–535, 1978. 2.4

[AVL62] G.M. Adel’son-Vel’ski and E.M. Landis. An algorithm for the organization
of information.Soviet Math. Dokl., 3:1259–1263, 1962. 2.4

[AW98] Susanne Albers and Jeffery Westbrook. Self-organizing data structures. In
Developments from a June 1996 seminar on Online algorithms, pages 13–51,
London, UK, 1998. Springer-Verlag. 1, 2.4

[BD04] Mihai Bădoiu and Erik D. Demaine. A simplified and dynamic unified struc-
ture. In Proceedings of the 6th Latin American Symposium on Theoretical
Informatics (LATIN 2004), volume 2976 ofLecture Notes in Computer Sci-
ence, pages 466–473, Buenos Aires, Argentina, April 5–8 2004. 2.4

[BLM +03] Gerth S. Brodal, George Lagogiannis, Christos Makris, Athanasios Tsaka-
lidis, and Kostas Tsichlas. Optimal finger search trees in the pointer ma-
chine. Journal of Computer and System Sciences, Special issue on STOC
2002, 67(2):381–418, 2003. 2, 2.4

[BM80] N. Blum and K. Mehlhorn. On the average number of rebalancing operations
in weight balanced trees.Theoretical Computer Science, 11:303–320, 1980.
2.4

[BMW03] G. Blelloch, B. Maggs, and M. Woo. Space-efficient finger search on degree-
balanced search trees, 2003. 2.4

[Bro98] Gerth S. Brodal. Finger search trees with constant insertion time. InSODA
’98: Proceedings of the ninth annual ACM-SIAM symposium on Discrete

77

algorithms, pages 540–549, Philadelphia, PA, USA, 1998. Society for Indus-
trial and Applied Mathematics. 2.4

[Bro05] Gerth S. Brodal. Finger search trees. In Dinesh Mehta and Sartaj Sahni,
editors,Handbook of Data Structures and Applications, chapter 11, page 11.
CRC Press, 2005. 2, 2.4

[BST85] S. Bent, D. Sleator, and R. Tarjan. Biased search trees.SIAM Journal of
Computing, 14:545–568, 1985. 1, 2.4

[BY76] J.L. Bently and A. C.-C. Yao. An almost optimal algorithm for unbounded
searching.Information Processing Letters, 5(3):82–87, 1976. 2, 2.4

[CH93] R. Chaudhuri and H. Ḧoft. Splaying a search tree in preorder takes linear
time. SIGACT News, 24(2):88–93, 1993. 2.4

[CMSS00] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dy-
namic finger conjecture for splay trees. Part I: Splay Sorting log n-Block Se-
quences.Siam J. Comput., 30:1–43, 2000. 1, 2.4

[Col00] Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The
Proof. Siam J. Comput., 30:44–85, 2000. 1, 2.4

[Cra72] C.A. Crane. Linear lists and priority queues as balanced binary trees. Techni-
cal Report STAN-CS-72-259, Dept. of COmputer Science, Stanford Univer-
sity, 1972. 2.2, 2.3

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2001.
2

[CW82] K. Culik, II and D. Wood. A note on some tree similarity measures.Inform.
Process. Lett., pages 39–42, 1982. 2.2, 2.3

[DHIP04] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pătraşcu. Dynamic
Optimality–Almost.FOCS, 2004. 1, 2.2, 2.3, 4, 2.3, 2.4, 3.2, 3.4.1, 4.3, 4.3.1,
20, 22, 4.3.1, 6.2

[DSW05] J. Derryberry, D. D. Sleator, and C. C. Wang. A lower bound framework
for binary search trees with rotations. Technical Report CMU-CS-05-187,
Carnegie Mellon University, 2005. 4

78

[Elm04] Amr Elmasry. On the sequential access theorem and deque conjecture for
splay trees.Theoretical Computer Science, 314:459–466, 2004. 3, 1, 2.4

[Fle93] Rudolf Fleischer. A simple balanced search tree with o(1) worst-case update
time. In ISAAC ’93: Proceedings of the 4th International Symposium on
Algorithms and Computation, pages 138–146, London, UK, 1993. Springer-
Verlag. 2, 2.4

[Fre75] M. L. Fredman. Two applications of a probabilistic search technique: sorting
x + y and building balanced search trees.Proc. Seventh ACM symposium on
Theory of Computing, pages 240–244, 1975. 1, 2.4

[Geo04] George F. Georgakopoulos. Splay trees: a reweighing lemma and a proof
of competitiveness vs. dynamic balanced trees.Journal of Algorithms,
51(1):64–76, April 2004. (document), 1, 3, 1.1.1, 2.4, 4, 5, 10, 3, 3.4.2,
3.4.3, 5, 5.6.3, 6

[Geo05] George F. Georgakopoulos. How to splay for loglogn-competitiveness. In
Sotiris E. Nikoletseas, editor,Experimental and Efficient Algorithms: 4th In-
ternational Workshop, WEA 2005, 2005. 1.1.3, 2.2, 2.3, 2.4, 3.5

[GMPR77] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts.
A new representation for linear lists. InSTOC ’77: Proceedings of the ninth
annual ACM symposium on Theory of computing, pages 49–60, New York,
NY, USA, 1977. ACM Press. 2, 2.4

[GRVW95] Dennis Grinberg, Sivaramakrishnan Rajagopalan, Ramarathnam Venkatesan,
and Victor K. Wei. Splay trees for data compression. InSODA ’95: Pro-
ceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms,
pages 522–530, Philadelphia, PA, USA, 1995. Society for Industrial and Ap-
plied Mathematics. 2.4

[GS78] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees.
Nineteenth Annual IEEE Symposium on Foundations of Computer Science,
pages 8–12, 1978. 3.4.4

[GW77] A. M. Garsia and M. L. Wachs. A new algorithm for minimal binary search
trees.SIAM Journal on Computing, 6:622–642, 1977. 1, 2.4

[Har80] D. Harel. Fast updates of balanced search trees with a guaranteed time bound
per update. Technical Report 154, University of California, Irvine, 1980. 2,
2.4

79

[HKT79] T. C. Hu, D. J. Kleitman, and J. K. Tamaki. Binary search trees optimum
under various criteria.SIAM J. Appl. Math., 37:246–256, 1979. 1, 2.4

[HL79] D. Harel and G.S. Lueker. A data structure with movable fingers and dele-
tions. Technical Report 145, University of California, Irvine, 1979. 2, 2.4

[HM82] S. Huddleston and K. Mehlhorm. A new data structure fore representing
sorted lists.Acta Informatica, 17:157–184, 1982. 2, 2.4, 5.6.3

[HT71] T. C. Hu and A. C. Tucker. Optimal computer-search trees and variable-length
alphabetic codes.SIAM J. Appl. Math., 21:514–532, 1971. 1, 2.4

[Hu82] T. C. Hu. Combinatorial Algorithms. Addison-Wesley, Reading, MA, 1982.
1, 2.4

[Iac00] John Iacono. New upper bounds for pairing heaps. InScandinavian Workshop
on Algorithm Theory (LNCS 1851), pages 32–45, 2000. 6

[Iac01a] J. Iacono.Distribution Sensitive Data Structures. PhD thesis, Rutgers, The
State University of New Jersey, Graduate School, New Brunswick, 2001. 2.4

[Iac01b] John Iacono. Alternatives to splay trees with o(log n) worst-case access times.
In SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms, pages 516–522, Philadelphia, PA, USA, 2001. Society
for Industrial and Applied Mathematics. 2, 2.4, 6.3

[Iac02] John Iacono. Key independent optimality. InISAAC ’02: Proceedings of the
13th International Symposium on Algorithms and Computation, pages 25–31,
London, UK, 2002. Springer-Verlag. 1, 2.4, 3, 4, 3.4.2

[Jon88] D. W. Jones. Application of splay trees to data compression.Commun. ACM,
31(8):996–1007, 1988. 2.4

[Knu71] D. E. Knuth. Optimum binary search trees.Acta Informatica, 1:14–25, 1971.
1, 2.4

[Knu73] D. E. Knuth.The art of computer programming, vol. 3: Sorting and search-
ing. Addison-Wesley, Reading, MA, 1973. 1

[Kor81] J. F. Korsch. Greedy binary search trees are nearly optimal.Inform. Proc.
Letters, 13:16–19, 1981. 1, 2.4

80

[KV81] H. P. Kriegel and V. K. Vaishnavi. Weighted multidimensional b-trees used as
nearly optimal dynamic dictionaries.Mathematical Foundations of Computer
Science, 1981. 1, 2.4

[LP89] F. Luccio and L. Palgi. On the upper bound on the rotation distance of binary
trees.Inf. Process. Lett., 31(2):57–60, 1989. 2.2, 2.3

[Luc88] J. M. Lucas. Arbitrary splitting in splay trees. Technical Report DCS-TR-
234, Rutgers University, 1988. 4.4

[Mäk88] Erkki Mäkinen. On the rotation distance of binary trees.Inf. Process. Lett.,
26(5):271–272, 1988. 2.2, 2.3

[Meh75] K. Mehlhorn. Nearly optimal binary search trees.Acta Inform., 5:287–295,
1975. 1, 2.4

[Meh79] K. Mehlhorn. Dynamic binary search.SIAM Journal on Computing, 8:175–
198, 1979. 1, 2.4

[NR73] J. Nievergelt and E.M. Reingold. Binary search trees of bounded balanced.
SIAM J. on Computing, 2:33–43, 1973. 2.4

[Oli82] H. J. Olivié. A new class of balanced search trees: half balanced search trees.
Theoret. Inform. Appl., 16:51–71, 1982. 2.4

[Ove83] M. H. Overmars. The design of dynamic data structures. InLecture Notes in
Computer Science, volume 156. Springer-Verlag, Heidelberg, 1983. 2.4

[Pug89] W. Pugh. A skip list cookbook. Technical Report CS-TR-2286.1, Dept. of
Computer Science, University of Maryland, 1989. 2, 2.4

[Pug90] William Pugh. Skip lists: a probabilistic alternative to balanced trees.Com-
mun. ACM, 33(6):668–676, 1990. 2, 2.4

[RB72] E. McCreight R. Bayer. Organization and maintenance of large ordered in-
dexes.Acta Informatica, 1:173–189, 1972. 2.4

[SA96] Raimund Seidel and Cecilia R. Aragon. Randomized search trees.Algorith-
mica, 16(4/5):464–497, 1996. 2, 2.4

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees.Journal of the ACM, 32(3):652–686, July 1985. (document),
1, 1.1.1, 1, 1.1.3, 2.1, 2.4, 1, 2, 12, 13, 3.4.2, 1, 3.4.2, 2, 3.4.2, 5.3, 6

81

[STT86] D. D. Sleator, R. E. Tarjan, and W. P. Thurston. Rotation distance, triangu-
lations, and hyperbolic geometry.Proc. 18th Annual ACM Symposium on
Theory of Computing, pages 122–135, 1986. 2.2, 2.3

[Sun89a] R. Sundar. Twists, turns, cascades, deque conjecture, and scanning theorem.
Proceedings of the 13th Symposium on Foundations of Computer Science,
pages 555–559, 1989. 3, 1, 2.4, 4.4

[Sun89b] R. Sundar. Twists, turns, cascades, deque conjecture, and scanning theorem.
Technical Report 427, Courant Institue, New York University, 1989. 4.4

[Sun92] R. Sundar. On the deque conjecture for the splay algorithm.Combinatorica,
12:95–124, 1992. 3, 1, 2.4, 4.4

[SW04] D. D. Sleator and C. C. Wang. Dynamic optimality and multi-splay trees.
Technical Report CMU-CS-04-171, Carnegie Mellon University, 2004. 2.2,
2.3, 2.4

[Tar83] Robert Endre Tarjan.Data structures and network algorithms. Society for
Industrial and Applied Mathematics, 1983. 4.3, 5.1

[Tar85] R. Tarjan. Sequential access in splay trees takes linear time.Combinatorica,
5:367–378, 1985. (document), 1, 3, 2.4, 4.4, 6

[Tsa86] Athanasios K Tsakalidis. Avl-trees for localized search.Inf. Control, 67(1-
3):173–194, 1986. 2, 2.4

[TvW88] Robert E. Tarjan and Christopher van Wyk. An o (n log log n)-time algorithm
for triangulating a simple polygon.SIAM J. Comput., 17(1):143–178, 1988.
2, 2.4

[Unt79] K. Unterauer. Dynamic weighted binary search trees.Acta Inform., 11:341–
362, 1979. 1, 2.4

[WDS06] C. C. Wang, J. Derryberry, and D. D. Sleator. O(log log n) competitive dy-
namic binary search tree. InSODA ’06: Proceedings of the seventeenth an-
nual ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 2006. 2.2, 2.3, 2.4, 1, 6.2

[Wil89] Robert Wilber. Lower bounds for accessing binary search trees with rotations.
SIAM Journal of Computing, 18(1):56–67, 1989. 2.1, 2.3, 4, 2.4, 4.3, 4.3.1,
6.2

82

Index

multi-splay tree, 17–41
data structure, 17–20

recursive, 20
deletion, 58–62
drawing, 18–20
dynamic, 51–66
insertion, 56–58, 60, 62
multi-splay, 20–26
node fields, 17, 40–41, 54
property,seemulti-splay tree property
reference tree

child, 52
parent, 53
rotation, 54–56, 60
traversal, 52–53, 60

running time,seemulti-splay tree prop-
erty

worst case, 26
multi-splay tree property, 26–40, 60–66

O(log log n)-competitive, 26–28
O(log log n)-dynamic-competitiveness,

61–62
O(log n) dynamic runtime, 60–61
access, 28–35
deque, 62–66
reweight, 35–37
scanning, 37–40

binary search tree,seeBST
BST, 7–15

algorithm, 7

competitive analysis, 8
dynamic, 43–49

competitive analysis, 44
lower bound, 44–48
model, 43
property,seeBST property

lower bound, 8
model, 7
property,seeBST property

BST property, 9–12
O(1)-distribution-competitive, 10, 13
O(log log n)-competitive, 12
O(log log n)-dynamic-competitive, 49
O(log n) dynamic runtime, 48
O(log n) runtime, 9, 13
T -competitive, 8
access, 11, 13
competitive to parametrically balanced

trees, 12–14
deque, 48
dynamic finger, 11, 14, 15
implication, 13–16
key-independent, 11, 13
output restricted deque, 49
reweight, 11, 13
reweight property, 13
scanning, 12, 15
static finger, 9, 13, 14
static optimality, 10, 13
traversal, 12, 15
working set, 10, 13

83

chain splay, 5, 40
constants, 75

cfa, 33, 34, 75
cf , 33, 34, 75
cmsa, 29, 33, 34, 37, 75
cms, 29, 33, 34, 37, 75
cr, 3, 32, 33, 36, 37, 75
csa, 3–5, 32, 33, 75
cswa, 32–34, 75
csw, 32–34, 75
cs, 3–5, 32, 33, 75
ct, 30–34, 75

dynamic interleave lower bound, 44–48

interleave lower bound, 8
dynamic, 44–48

splay tree, 2–5
access lemma, 3
generalized access lemma, 3
reweighting lemma, 3
touch lemma, 38

switch, 9, 20–24
direction, 24
missing children, 24, 25
missing parent, 25, 27
worst-case, 37

tango, 2, 5

84

	1 Introduction
	1.1 Related Works
	1.1.1 Splay Trees
	1.1.2 Tango
	1.1.3 Chain Splay

	2 Binary Search Trees (BSTs)
	2.1 BST Model
	2.2 Competitive Analysis on BST
	2.3 Interleave Lower Bound
	2.4 Properties of an O(1)-competitive BST
	2.4.1 Implications between the Properties

	3 Multi-Splay Trees
	3.1 The Multi-Splay Tree Data Structure
	3.1.1 Simplified Drawing of a Multi-Splay Tree
	3.1.2 Recursive Definition of a Multi-Splay Tree

	3.2 The Multi-Splaying Algorithm
	3.3 Details of Multi-Splaying Algorithm
	3.3.1 Determining the Direction of a Switch
	3.3.2 Switch on a Node with Missing Children
	3.3.3 Switch without refLeftParent or refRightParent

	3.4 Running Time Analysis
	3.4.1 Multi-Splay Tree Satisfies O(loglogn)-Competitive Property
	3.4.2 Multi-Splay Tree Satisfies Access Property
	3.4.3 Multi-Splay Tree Satisfies Reweight Property
	3.4.4 Multi-Splay Tree Satisfies Scanning Property

	3.5 Comment on the Fields of the Multi-Splay Tree Nodes

	4 Dynamic Binary Search Trees
	4.1 Dynamic BST Model
	4.2 Competitive Analysis on Dyanmic BST
	4.3 Dynamic Interleave Lower Bound
	4.3.1 Proof of the Dynamic Interleave Bound

	4.4 Properties of an O(1)-dynamic-competitive BST

	5 Dynamic Multi-Splay Trees
	5.1 Making Multi-Splay Tree Dynamic
	5.2 Simulating Pointer Traversal in the Reference Tree -- Virtual Traversal
	5.2.1 Locating Child in the Reference Tree
	5.2.2 Locating Parent in the Reference Tree

	5.3 Simulating Rotations in the Reference Tree -- Virtual Rotation
	5.4 Implementing Insertion
	5.5 Implementing Deletion
	5.6 Running Time Analysis
	5.6.1 Proof of O(logn) amortized time per operation
	5.6.2 Proof of O(loglogn)-dynamic-competitiveness
	5.6.3 Proof of Deque Theorem

	6 Conclusion
	6.1 Comparisons between Multi-Splay Tree and Splay Tree
	6.2 Lower Bounds
	6.3 More Open Problems

	A Lists of Notations and Symbols
	B Table of Constants
	Bibliography

