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Abstract

In this thesis, we introduce a new binary search tree data structure called
multi-splay tree and prove that multi-splay trees have most of the useful prop-
erties different binary search trees (BSTs) have. First, we demonstrate a close
variant of the splay tree access lemma [ST85] for multi-splay trees, a lemma
that implies multi-splay trees have tliglogn) runtime property, the static
finger property, and the static optimality property. Then, we extend the access
lemma by showing the remassing lemma, which is similar to the reweighting
lemma for splay trees [Geo04]. The remassing lemma shows that multi-splay
trees satisfy the working set property and key-independent optimality, and
multi-splay trees are competitive to parametrically balanced trees, as defined
in [Geo04]. Furthermore, we also prove that multi-splay trees achieve the
O(log log n)-competitiveness and that sequential access in multi-splay trees
costsO(n).

Then we naturally extend the static model to allow insertions and deletions
and show how to carry out these operations in multi-splay trees to achieve
O(log log n)-competitiveness, a result no other BST scheme has been proved
to have. In addition, we prove that multi-splay trees satisfy the deque prop-
erty, which is still an open problem for splay trees since it was conjectured in
1985 [Tar85]. While it is easy to construct a BST that satisfies the deque prop-
erty trivially, no other BST scheme satisfying other useful properties has been
proved to have deque property. In summary, these results show that multi-
splay trees have most of the important properties satisfied by different binary
search trees.
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Chapter 1

Introduction

Efficiently maintaining and manipulating totally ordered sets is a fundamental problem in
computer science. Specifically, many algorithms need a data structure that can efficiently
support at least the following operations: insert, delete, predecessor, and successor, as
well as membership testing. A standard data structure that maintains a totally ordered set
and supports these operations is a binary search tree (BST). Various types of BSTs were
independently developed by a number of researchers in the early 1960s [Knu73]. Over
the years, many types BSTs achieved the theoretical minimum numléefi@sn) key
comparisons needed per operation. Hence, many BST algorithms are optimal (up to a
constant factor) using worst-case analysis.

However, for many sequencesof m operations, the optimal cost for executing the
sequence i®(mlogn), lower than the theoretical minimum that uses worst-case, per-
operation bounds. To exploit the patterns of query sequences from specific applications,
such as randomly and independently drawn queries from a fixed distribufioger
searcR, and sequential querigsresearchers have designed specialized BST algorithms
that efficiently support various types of access patterns.

In 1985, Sleator and Tarjan [ST85, Tar85] showed that it is possible to efficiently han-
dle all of the query patterns mentioned above (and many more) in a single BST data struc-
ture called asplay tree A splay tree is a self-adjusting form of BST such that each time a
node in the tree is accessed, that node is moved to the root according to an algorithm called
splaying Splay trees have a number of remarkable properties including the Balance Theo-

1See [Knu71, Fre75, Meh75, Meh79, GW77, HT71, HKT79, Unt79, Hu82, Kor81, KV81, BST85]

2See [BY76, GMPR77, Tsa86, TvW88, HL79, Har80, HM82, Fle93, SA96, BB, Pug89, Pug90,
lacO1lb, Bro05]

3See [Tar85, Sun89a, Sun92, EIm04]



rem [ST85], the Static Optimality Theorem [ST85], the Static Finger Theorem [ST85], the
Working Set Theorem [ST85], the Scanning Theorem [Sun89a, Tar85, Sun92, EIm04], the
Reweighting Lemma [Ge004], the Dynamic Finger Theorem [CMSSO00, Col00], the Key
Independence properties [lac02], and competitiveness to parametrically balanced trees
[Geo04]. Because splay trees satisfied so many such properties, they were conjectured
to bedynamically optimaby Sleator and Tarjan [ST85], meaning that splay trees were
conjectured to bé(1)-competitive to the optimal off-line BST. After more than 20 years,

the Dynamic Optimality Conjecture remains an open problem.

Since no one has shown that any BSTigl )-competitive, Demainet al. suggested
searching for alternative BST algorithms that have small but non-constant competitive
factors [DHIP04]. They proposddngqg a BST algorithm that achieves a competitive ratio
of O(loglogn). Tango is the first data structure proved to achieve a nontrivial competitive
factor. Unfortunately, tango does not satisfy many of the necessary conditions of a constant
competitive BST, including some that splay trees are known to satisfy. For example, it does
not satisfy the Scanning Theorem.

In this thesis, we introduce a new data structure called multi-splay trees. We prove that
multi-splay trees can efficiently execute most (if not all) query sequences proven to execute
efficiently on other binary search trees. In Chapter 2, we define the static BST model and
explain competitive analysis on BST. Then we describe a lower bound and enumerate
many of the necessary properties of a constant competitive BST. In Chapter 3, we proceed
to prove that multi-splay trees have almost all of the properties mentioned in Chapter 2.
In Chapter 4, we generalize the BST model to support insertions and deletions. Since this
is a new model, we prove a new lower bound and describe a few desirable properties in
our new model. In Chapter 5, we prove that multi-splay treesHteg log n) dynamic
competitive and satisfy deque property. No other dynamic binary search trees are proven
to beO(log log n) competitive. Moreover, the deque property is a long-standing unproven
conjecture for splay trees.

1.1 Related Works

1.1.1 Splay Trees

Sleator and Tarjan [ST85] proved that the amortized cost of splaying a node is bounded
by O(logn) in a tree ofn nodes. By the use of the flexible potential described below,
they proved tighter bounds on the amortized cost of splaying for access sequences that are
non-uniform (e.g., the Static Optimality Theorem). This framework is essential for the
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analysis of multi-splay trees.

For an arbitrary positive weight functian over the nodes of a splay tree, they defined
the sizes(v) of nodev to be} -, . 1) w(v), the sum of the weights of all nodesifs
subtree. They defined the potential of the tree tdbe,, 1g s(v), whereV is the set of
nodes in the splay tree.

As a measure of the cost (running time) of a splaying operation, they used the distance
from the node being splayed to the root plus 1. With these definitions, Sleator and Tarjan
proved the following theorem about the amortized cost of splaying.

Theorem 1 (Access Lemma)[ST85] The amortized time to splay a noden a tree
currently rooted at- is at mostc, x lg(s(r)/s(v)) + csa, Wherec,, = 1 andc, = 3.

Theorem 2 (Generalized Access Lemmapiven a pointer to an ancestor node the
amortized time to splay a nodewith respect to an ancestarin the same splay tree is at
moste; * lg(s(a)/s(v)) + csq-

The main difference between this and the original access lemma is that we are allowed
to stop at any ancestar In other words, splay in the subtree rooted at Its truth follows
from the proof of the original access lemma because that proof does not require splaying
to go all the way to the root.

Theorem 3(Reweighting Lemma)[Geo04] For any sequence of interleaving splays and
reweights, the amortized time to splay a ned@ a tree currently rooted at is at most

cs ¥ 1g(s(r) /w(v)) + csq, and* the amortized time to reweight a nodéromw(v) to w'(v)
ismaz(0, ¢, x log(w'(v) /w(v))), wherec, = ¢s + 1 = 4.

While this theorem is proved in [Geo04], the theorem is not very well-known. For
completeness, here is an informal proof.

Proof. Consider an extended version of the Splay Tree Access Lemma, modified as fol-
lows. Using the same potential function as used in the access lemma proof, change the
amortized cost of a splay tQ * Ig(s(r) /w(v)) + ¢, (Changing the denominator inside the

log from s(v) to w(v)). Becauses(v) > w(v) for all v, the Splay Tree Access Lemma
shows this expression is a valid upper-bound on the amortized cost of a splay.

Additionally, allow two operations, DecW(x), w'(x)) and IncRootWuw(r), w'(r)).
The operation Dec\\v(z), w'(x)), which decreases the weight of noddérom w(z) to
w'(x) can only decrease the potential, so its amortized cost is at inoBbe operation

4The denominator inside the logis(v), which is different from the access lemma.
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IncRootWw(r), w'(r)), which increases the weight of the rootrom w(r) to w’(r) only
changes the potential of the root, which it increases. To account for this increase in poten-
tial, it suffices to pay the following amortized cost:

Change in potential= log s'(r) — log s(r)
s(r) +w'(r) —w(r)
s(r)

= log

w'(r)

w(r)

< log

Note that reweighting an element does not change the actual cost, and the amortized
cost derived from the extended access lemma is an upper bound on the actual cost. Thus,
if the total cost computed using the reweighting lemma is at least as much as the total
cost computed using the extended access lemma, then the total cost from the reweighting
lemma is an upper bound on the actual cost. Hence, we only need to assign a cost to each
of the reweight operations so that the cost according to the reweighting lemma is always
at least the cost according to the extended access lemma.

To match the cost of reweighting lemma to that of the extended access lemma, we
use the same potential function as the access lemma, and use the same splay cost and
decrease weight cost bounds as used in the extended access lemma. That (s) Splay
costse; * 1g(s(r) /w(v)) + ¢sq, and DecWw(z), w'(z)) costs0.

As for the IncWw(z), w'(x)) operation, (which increases the weightsofo w'(z)),
the reweighting lemma will reweight immediately instead of waiting until is splayed
to the root, which the extended access lemma has to do since the weight increase can only
be performed at the root. Note that since decreases in weight always occur immediately,
while increases in weight are delayed in the extended access lerma the extended
access lemma is always less than or equal(t9 in the reweighting lemma. To avoid
confusion, we use(r) to denote the total weight in extended access lemmag@nd to
denote the total weight in the reweighting lemma.

Moreover, for a particular node there is no reason to increase the weight ahless
we are about to splay it because if we are not planning to spliagreasing its weight only
increases the total weight without making any other operations cheaper. Once we, splay
its weight will be the same in both the extended access lemma and the reweighting lemma.
Thus, for a fixed node, the reweighting lemma pays less than the extended access lemma
paysonly on thefirst splay ofv afterv’s weight increases. Thus, we can figure out the
cost of IncWw(v), w'(v)) so reweight always pay more than the extended access lemma
as follows:



(Amortized cost of extended access lemma) (Total cost of reweighting lemma)
Splay, ... (v) + INcRootWw (v),w'(v)) < INCW(w(v), w'(v)) + Splay.cyeign(v)

ﬂ c w(v) w(v),w (v c s(r)” c

cslgw(v) + Coa +1g e < IncW(w(v), w'(v)) + ¢ 1g W (0) + Csa
cslgiiz))il:(gl—i—lg?;((;)) < IneW(w(v), w'(v))
(cs—l—l)*lgz}]((:)) < INeW(w(v), w' ().

Thus, if we assign a cost ¢f; + 1) x lg(w'(v) /w(v)) to IncW(w(v), w'(v)), the total
cost computed using the reweighting lemma will always be at least the cost using the
extended access lemma and, hence, it is at least the cost computed using the original Splay
Tree Access Lemma. [

1.1.2 Tango

Proposed by Demaiat al, Tango was the firsb(log log n)-competitive BST. Currently,

the best and the only non-trivial competitive factor for BSDidog log n). Unfortunately,

tango does not satisfy many of the necessary conditions of a constant competitive BST,
including some that splay trees are known to satisfy. Inspired by tango, we invented multi-
splay trees in attempt to alleviate some of the theoretical shortcomings of tango while
maintaining itsO(log log n)-competitiveness property. A multi-splay tree is essentially
the same as tango, except the multi-splay tree is a collection of splay trees while tango is a
collection of red-black trees. Another minor difference is that tango searches for different
nodes during a simulated switch of the reference tree. This differences are elucidated in
the description of multi-splaying algorithm in Section 3.2.

1.1.3 Chain Splay

Based on tango, Georgakopoulos [Geo05] modified the splay algorithm [ST85] to achieve
O(log log n)-competitiveness an@(log n) amortized running time. His algorithm, called
chain splaying, exhibits none of the other necessary conditions of a constant competi-
tive BST. Although it is quite similar to multi-splay tree (without insertion and deletion),
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Georgakopoulos independently discovered his data structure. These two data structures
only differs on the locations of the partial splays during a series of the switches. Because
of those differences, Georgakopoulos managed tdgise: less bits per node. Unfor-
tunately, these small differences make it so that most of the techniques we developed to
analyze multi-splay tree do not apply to chain splaying. The effect of these small differ-
ences is discussed in Section 3.5.



Chapter 2

Binary Search Trees (BSTs)

2.1 BST Model

In order to discuss the optimality of BST algorithms, we need to give a precise definition
of this class of algorithms and their costs. The model we use is implied by Sleator and
Tarjan [ST85] and developed in detail by Wilber [Wil89]. A static setdeys is stored

in the nodes of a binary tree. The keys are from a totally ordered universe, and they are
stored in symmetric (left to right) order. Each node has a pointer to its left child, to its right
child, and to its parent. Also, each node may ke@pg n) bits of additional information

but no additional pointers.

A BST algorithm is required to process a sequence of queries, o, . . ., 0,,. Each
access; is a query to a key; in the treé, and the requested nodes must be accessed in
the specified order. Each access starts from the root and follows pointers until the desired
node (the one with key;) is reached. The algorithm is allowed to update the fields in
any node or rotate any edges that it touches along thé.vildye cost of the algorithm to
execute a query sequence is defined to be the number of nodes touched plus the number of
rotations.

Finally, we do not allow any information to be preserved from one access to the next,
other than the nodes’ fields and a pointer to the root of the tree. It is easy to see that this
definition is satisfied by all of the standard BST algorithms, such as red-black trees and
splay trees.

IWLOG, this model is only concerned with successful searches [AW98].
2A definition of rotation can be found in [CSRLO01]
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2.2 Competitive Analysis on BST

Given any initial tre€l, and anym-element access sequencefor any BST algorithm
satisfying these requests, the cost can be defined using the model in Section 2.1. Thus, we
can define OP{l7}, o) to be the minimum cost of any BST algorithm for satisfying these
requests starting with initial tre€,. Furthermore, since the number of rotations needed
to change any binary search treerohodes into another one is at mastn) [Cra72,
CW82, STT86, Mik88, LP89], it follows that OP{y, o) differs from OPTTY, o) by at
mostO(n). Thus, as long as» = 2(n), the initial tree is irrelevant. We denote the
off-line optimal cost starting from theestpossible initial tree as OR®). Similarly, for

any on-line binary search algorithm A(4) denotes the on-line cost to executstarting
from theworstinitial tree. Because the initial tree of a BST algorithm could be a very
unbalanced binary search tree, we assume the number of operatiprssgreater than

n logn to avoid unfairly penalizing the on-line BST algorithm.

An on-line binary search tree algorithm Aliscompetitive if

VoA(o) < T x OPT(o) + O(m).

This framework in which the)(log log n)-competitive bounds for the best competi-
tive on-line binary search trees [DHIP04, SW04, Geo05, WDSO06] are proven does not
allow for insertions or deletions. We generalize this framework to include these update
operations, and extend the lower bound appropriately in Chapter 4. We also show how
to modify the multi-splay tree data structure to handle insertions and deletions, and prove
that it remaing)(log log n)-competitive.

2.3 Interleave Lower Bound

Given an initial tre€l; and ann-element access sequencdor any BST algorithm satis-

fying these requests there is a cost, as defined above. Wilber [Wil89] derived a lower bound
on OPTTy, o) which was later modified and name timéerleave boundy Demaineet

al. [DHIPO4].

Let IB(P, o) denote the interleave lower bound on the cost of accessing the sequence
o, whereP is a BST (later called eeference trepover the same set of keys &s Define
IB(P,0) = > ,cp|B(P,0,v), where for each node, IB(P,o,v) is defined as follows.
First, restricto to the set of nodes in the subtree Bfrooted atv (including v). Next,
label each access in this restricteds either “left” (or “right”) depending on whether the

8



accessed element is in the left subtree (includingr right subtree of. Now, IB(P, o, v)
is the number of times the labels switch.

Theorem 4 (Interleave Lower Bound)[Wil89, DHIP04, DSWO05]

OPT(Ty, o) > IB(P,5)/2 — O(n) + m

Since the number of rotations needed to change any binary treearfes into another
one is at mosen — 6 [Cra72, CW82, STT86, k88, LP89]. It follows that OP{}, o)
differs from OPT1}{, o) by at mostn — 6. Thus, as long as: = §2(n), the initial tree is
irrelevant.

Using the Interleave Lower Bound, the smallest competitive ratio proved for on-line
binary search trees [DHIP04, SW04, Geo05, WDS06)&feg log n)-competitive. Cur-
rently, we still do not know if it is possible to have a smaller competitive ratio. In partic-
ular, we do not know if it is possible to have &1 1)-competitive BST, but we know an
extensive list of properties that afy(1)-competitive BST must satisfy.

2.4 Properties of anO(1)-competitive BST

Before we move on to discuss the properties identified as necessary for(lgn
competitive BST, let us first discuss the assumptions of this section. In this section, all
sequences of operations are assumed to involve only queries. We call a sequence without
insertions and deletions@uery sequenceSince the set of keys do not change, we can
assume WLOG that there anekeys numbered from, 2, ..., n.

Now we are ready for a complete list of the useful binary search tree properties.

Property. A binary search tree structure has th8ogn) runtimeproperty if it executes
everyo in time O(mlogn)

In the worst case, some query sequences will rfeed logn) time [Wil89]. Thus,
having this property implies the data structure is theoretically optimal under worst-case
analysis. Almost every binary search tree hasileg n) runtime property.

Property. [ST85] A binary search tree structure has sketic fingerproperty if it executes
everyo intime O(m + Y, log(|f — o;| + 1)) for every integel < f < n, wheref is
called a finger.



There exists a specialized data structure [GMPR77, Bro98] which is tuned for a spe-
cific value of f, and has this property for that specific finger. However, for a data structure
to have the static finger property, it must have the finger search running time for all possible
fingersyf.

Property. [AW98] A binary search tree structuréis O(1)-distribution-competitivéf for
all n, all distributionsD onn elements and all initial tre€g,, the expected cost fod to
serve a request is less than a constant times the optimal static tree for distribution

An example of a binary search tree that satisfiely the O(1)-distribution-competitive
property is themove-to-rootbinary search tree [AM78]. This binary search tree always
rotates the queried noderepeatedly until: become the root. Because the optimal static
tree for a fixed distributiorD is a static tree, th&(1)-distribution-competitive property is
implied by thestatic optimalityproperty described below.

Property. [ST85] A binary search tree structure has #tatic optimalityproperty if the
time to executer isO(m+ ).~ f(:)log(m/ f(i)), wheref(:) is the number of times key
1 is queried.

BecauseQ(> ", f(i)log(m/f(i))) [Abr6é3] is an informational theoretical lower
bound on a static BST for a sequence of queries with frequg(y the binary search
trees with static optimality is constant competitive to any static binary search tree, in-
cluding the optimal static tree for distributidn. Several data structures [Knu71, Fre75,
Meh75, Meh79, GW77, HT71, HKT79, Unt79, Hu82, Kor81, KV81, BST85] have the
static optimality, but they need to knof{7) during initialization. On the other hand, splay
trees have the static optimality property without knowing the frequegficyin advance.

Any data structure with the static optimality property also has the static finger property
[lacOla].

Property. [ST85] A binary search tree structure has Warking setproperty if the time
to executer is O(m + 3" logd(l(i),4)), whered(i, j) is the number of distinct keys
accessed in the subsequence ;. ... o;, andl(i) is the index of the last accessdpin
the subsequencs, o, ...0;_1. (I(i) = 1 if o; does not appear in the subsequence.)

The working set property implies both static finger and static optimality. It also implies
that if all queries are in a small subset of keys of siz¢hen the query sequence can be
executed ir0(mlog k). In many applications, such as compression [Jon88, GRVW95], a
recently queried element is likely to be queried again. These recent queries are exactly the
element with low amortized cost in the working set property.

10



Property. [lac02] A binary search tree structure has Kag-independeryroperty if the
time to execute is O(E[OPT(b(c))]), whereb is random bijection of the keys fromto
n.

lacono [lac02] introduced the key-independent optimality as another necessary condi-
tion for anO(1)-competitive binary search tree, and he proved that the key independent
property is equivalent to the working set property up to a multiplicative constant factor.

Property. [ST85] A binary search tree structure has siteesgroperty if for any positive
weight assignment(x) for each element, the time to executes O(m + ;" log %),

whereW = """  w(i), s(o;) must be greater tham(c;) (ands(z) can depend on the
structure of the binary search tree).

With a simple weight assignment, this property implies the static finger and the static
optimality properties [ST85]. Because of the flexibility in assigning weights, the access
property can be used to combine and generalize properties proved with weight assignment.
For instance, the access property implies that for any constant number of finger. f3.,
the amortized cost to execute a sequence is summation of the log of the distance to the
closest finger. Thatig)(m + > min; log(|f; — a;| + 1)).

Property. [Geo04] Letw;(x) be any positive weight assignment ofright beforei'"
query. A binary search tree structure hasreeightproperty if the time to execute is
O(m+ 3", log L) + Dy 25— log max(0 wil) ), wherelV; = > wilj)-

wi(os T wi-1(4)

This property is almost the same as the access property with an additional reweight
operation, and the cost to increase the weight of element fioirio newis roughly
O(log 337°)- The reweight operation is not an operation in the data structure, it is merely
used in the analysis. The reweight operation enables the analysis to adapt to the query
patterns and prove tighter bounds [Geo04].

Property. A binary search tree structure has tiyamic fingemproperty if the time to
executer isO(m + Y1, log(d(i) + 1)), whered(i) is the difference in rank between the
ith query and thé; — 1)th query.

Brodal [BroO5] wrote a chapter on finger search trees and some of the common data
structures with the dynamic finger property. Several search trees [BY76, GMPR77, Tsa86,
TvW88, HL79, Har80, HM82, Fle93, SA96, BLM3] have this property, but many vi-
olate the definition of Binary Search Tree. For instance, the level linked (2, 4)-tree of
Huddleston and Mehlhorn [HM82] and unified data structure of lacono [lacOlb, BD04]
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use extra pointers that are not valid in the BST model; randomized skip lists of Pugh
[Pug89, Pug90] duplicates the same key multiple times, which is a violation of the BST
model; or the auxilianhanddata structure of Blelloch, Maggs and Woo [BMWO03] main-
tains extra pointers into a degree balanced binary search tree. Splay tree [ST85] is one
of the few data structure that satisfies the binary search tree model and has the dynamic
finger property [CMSSO00, Col00].

Property. [Tar85, ST85] A binary search tree structure hasdbanningproperty if the
time to executer = 1,2, 3,...,nis O(n) starting at any valid initial tree.

Property. [ST85] A binary search tree data structure hasttheersalproperty if given
any initial tree7y and a input tred’;, the cost of sequentially querying elements in the
order they appear in preorder6fis O(n).

WhenT; is a right path, the elements in preorderiofis 1,2, ... n, which is exactly
the query sequence in the scanning property. Thus, any data structure that satisfies this
property also satisfies the scanning property. While @ay)-competitive binary search
tree must have the traversal property, no binary search tree is known to have the traversal
property. However, special case of the traversal property (Whena 7; [CH93], or when
T; is a right path [Sun89a, Tar85, Sun92, EIm04]) was proved for splay trees.

Property. A binary search tree data structure has@i&g log n)-competitiveproperty if
it executesr in time O(loglogn) * OPT (o).

TheO(loglog n)-competitive property is currently the best competitive (and only non-
trivial) bound proved for a binary search tree [DHIP04, SW04, Geo05, WDSO06].

Property. A binary search tree structure gempetitive to parametrically balanced trees
if the data structure i®(1)-competitive to parametrically balanced trees.

Parametrically balanced trees is a large class of balance search trees introduced by
Georgakopoulos [Geo04]. The class includes most balanced trees, such@gsti@B$
[NR73, BM80], AVL-trees [AVL62], half-balanced trees [Oli82, Ove83], B-tree [RB72].
These parametrically balanced trees are allowed to restructure based on future queries
and pay a small cost proportional to the number of local changes in the structure. Since
Georgakopoulos [Geo04] has a detailed description on this class of balanced trees, we
omit the details here.

12



2.4.1 Implications between the Properties

In this section, we show or cite the proof for each implication. All the implications are
shown in Figure 2.2.

Lemma 1. [ST85] If a BST satisfies the access property, then it also satisfies the static
optimality property.

Lemma 2. [ST85] If a BST satisfies the access property, then it also satisfies the static
finger property.

Lemma 3. [lac02] A BST satisfies the working set property if and only if it also satisfies
the key-independent property.

Lemma 4. [Geo04] If a BST satisfies the reweight property, then is also satisfies the
working set property.

Lemma 5. [Geo04] If a BST satisfies the reweight property, then it is competitive to para-
metrically balanced trees.

Lemma 6. [lac00] If a BST satisfies the working set property, then it also satisfies the
static optimality property.

Lemma 7. If a BST satisfies the static optimality property, then it also satisfie©thé-
distribution-competitive property.

Proof. Since the optimal BST for a fix distribution is defined as a static tree, and a stat-
ically optimal BST isO(1)-competitive to every static tree, a BST with static optimality
property also satisfie9(1)-distribution-competitive property. O

Lemma 8. If a BST satisfies the static optimality property, then it also satisfies the static
finger property.

Lemma 9. If a BST satisfies the static finger property, then it also satisfie®)hes n)
runtime property.

Proof. This s trivially true because the distance of a node to a finger can be atnost

Proof. As shown in Figure 2.1, for every fix finggt, we can create a static tréewhose
left spine and right spinearg f — 1,f —2,f —4,....f =2 andf, f+ 1, f+2,f +
4,..., f + 2% respectively, wherg¢ = max{i|f — 2° > 1} andk = min{i|f + 2¢ < n}.
Then we construct a balanced tree for each set of nodes hanging off the nodes on the

13



Q Node

A balanced BST
A with nodes in the
XY range [x, y]

[16, 22]

[-37, -17] [F+17, 1#31] [24, 48]

ﬁ A balanced BST with nodes in the range [a, b]

Figure 2.1: The construction of a static BST for a fix fingeis shown on the left. An
example of &0 nodes BST with finger &t is shown on the right.

left and right spines. Base on our construction, the depth of a node with vahas
O(log |f — v|) depth. Since we can construct a static tree for each finger, and statically
optimal tree isO(1)-competitive to all static tree, a BST with static optimality property
also satisfies static finger property.

]

Lemma 10. [Geo04] If a BST is competitive to parametrically balanced trees, then it also
satisfies the static finger property.

Proof. For every fix fingerf, the construction shown in Figure 2.1 is a parametrically
balanced treé.Thus, the same argument in Lemma 8 applies. O

Lemma 11 (private conversation with Jonathan Derryberry and Marverick W@ BST
satisfies the dynamic finger property, then it also satisfies the static finger property.

3For those who are familiar with [Geo04], every static tree is a parametrically balanced tree because we

can seb(z) = 1/34*). Moreover, if the static tree hag(log ) height, then the difference between initial
and final potential is bounded ly(n log n).
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Proof. When the last the last queryis and the next query ig, it suffices to show that if
the amortized dynamic finger cost to querns clg(|z —y| + 1), then the amortized cost is
also at moskclg(| f — x|+ 1) for any finger. Let the potential function bég(|f — x|+ 1),
then the amortized dynamic finger cost is,

(log of the distance to the last query) + (initial potential) - (final potential)

For any query, the last query and the next query is either on the same side of the finger, or
difference sides (case 1). When the queries are on the same side, it either moves closer to
the finger (case 2) or further from the finger (case 3). Using the property that fopall

andb > 1,1g(a + b) < lga + lgb, we bound the amortized cost ok lg(|z — y| + 1) +

cxlg(|f —yl+1) —exlg(]f — 2| + 1) for each case as follow:

DIf e<f<y lgly—z+1)+lgly—f+1) —lg(f—z+1)
<lgly—f+f-a+2)+lgly—f+1) —lg(f —z+1)
<lly—f+D+g(f—z+)+1gly—f+1) —lg(f—x+1)
<2xlg(y—f+1)

QI z2<y<f, lgly—z+1)+lg(f—y+1) —lg(f —z+1)
=(lgly—2z+1)—1g(f—z+1) +1g(f -y +1)
<lg(f-y+1)

If y<a<f, lglz—y+1)+lg(f—y+1)—lg(f —z+1)
<lglx —y+1)+1g(f—y+1)
<2xlg(f-y+1)

Since we did not make any assumption on the location of the fifigehis proof
applies for all possible fingers. Moreover, this proof is tight when the queries are

Lo fox fo, .. O

Lemma 12.[ST85] If a BST satisfies the traversal property, then it also satisfies the scan-
ning property.

Lemma 13. [ST85] If a BST satisfies the dynamic finger property, then it also satisfies the
scanning property.
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- and Deletion

Key-Independent Working Set

Competitive to
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»| Static Optimality

- (O(1)-Competitive

Dynamic Finger
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O(log log n)-
Competitive

: .‘: Legend BST* is all BSTs except MST

O(1)-Dynamic-
Competitive

Property Aimplies B Prove on MST in
this thesis

Property
Pro;;irrtnyepé%/_?fi on not proved on
any BST*

Figure 2.2: This figure shows the implication relationships for the list of properties in
Section 2.4 and Section 4.4. The minimum set of edges are shown so that the transitive
closure of the above graph includes all the implications. (MST stands for multi-splay tree

in the legend.)

Output
Restricted
Deque

 With Insertion
. and Deletion
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Chapter 3

Multi-Splay Trees

3.1 The Multi-Splay Tree Data Structure

Consider aalanced BST P made up of: nodes, which we will refer to as theference

tree BecauseP is balanced, the depth of any nodeftris at most Ig(n + 1). (The depth

of the root is defined to be 1.) Each node in the reference tree pedeared child The
structure of the reference tree is static (but we will generalize it to support insert and delete
in Chapter 5), except that the preferred children will change over time, as explained below.
We call a maximal chain of preferred childrepi@ferred path The nodes of the reference
tree are partitioned into approximately?2 sets, one for each preferred path. The reference
tree is not explicitly part of our data structure, but is useful in understanding how it works.

A multi-splay tree is a BST' (over the same set of keys contained in the reference
tree P) that evolves over time, and preserves a tight relationship to the reference tree.
Each edge of a multi-splay tree is eittsadid or dashed We call a maximal set of vertices
connected by solid edgessalay tree There is a one-to-one correspondence between the
splay trees of a multi-splay tree and the preferred paths of its reference tree. The set of
nodes in a splay tree is exactly the same as the set of nodes in its corresponding preferred
path. In other words, at any point in time a multi-splay tree can be obtained from its
reference tree by viewing each preferred edge as solid, and executing a series of rotations
on only the solid edges.

Each node of a multi-splay trég has several fields in it, which we enumerate here.
First of all, it has the usudteyfield, and pointerseftChild, rightChild, andparent Al-

1By “balanced” we mean that every subtrelgas height at mostlg(|t|)
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isRoot Bit

refDepth

minRefDepth

fey\
v N

Figure 3.1: The fields of a node in a multi-splay tree.

though the reference tre is not explicitly represented ifi’, each node stores infor-
mation related taP. In each node’sefDepth field, we keep its depth i®.2 Note that

every node in the same splay tree has a different depfh. iin addition, each node

stores the minimum depth of all of the nodessiraySubtree(v) in its minRefDepth field
(splaySubtree(v) contains all of the nodes in the same splay tree #sat havev as an
ancestor, including). Finally, to represent the solid and dashed edges, each node has
anisRoot boolean variable that indicates if the edge to its parent is dashed. Because the
reference tree is a balanced tfeeve only use)(log log n) extra bits per node to store the
additional informations.

3.1.1 Simplified Drawing of a Multi-Splay Tree

Throughout this thesis, we show many figures of multi-splay trees. For the sake of clarity,
rather than showing the entire multi-splay trees with all the fields, we will simplify the
drawing as shown in Figure 3.2. First, we will draw each multi-splay tree with its corre-
sponding reference tree. We will always draw rectangular shapes for nodes of a multi-splay
tree and circular shapes for nodes of a reference tree. Second, we will label each node with
its key value, and mark each whos&oot bit is true with a thicker border. Third, because

it is easy to derive theefDepth, and theminRefDepth fields from the reference tree, we
ignore those fields in the simplified drawing. Fourth, we will only draw the left and right

2Note that this quantity is static in our initial description of multi-splay trees, but becomes dynamic in
Chapter 5 when we extend multi-splay trees to support insert and delete.

3In the Chapter 5, we generalize multi-splay tree to support insertions and deletions. We use red black
tree as a reference tree, so we will also need an additional bit to store if a node is red or black.
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isRoot = true
refDepth =3

minRefDepth = 1

key = 4
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refDepth =3
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key =1 key =6
t [« K
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refDepth = 2
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!
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Solid edge / preferred child

Dashed edge / unpreferred child

Figure 3.2: This figure shows a multi-splay tree with fields (left), and its simplified version
(right). The simplification steps are described in Section 3.1.1
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children pointers, and we ignore parent and nil pointers. Lastly, we use dashed arrows
for pointers connecting nodes in two different splay trees, and solid arrows for the other
pointers, even thought the types of pointers are already deducible froiz¥ite bit.

While it is easy to derive if a pointer connects nodes in two different splay trees using
the isRoot bit, for clarity, we use dashed arrows for pointers connecting nodes in two
different splay trees, and solid arrows for other pointers. Using the simplified drawing, it
is easy to derive the actual multi-splay tree. In this thesis, we will always use the simplified
drawing.

3.1.2 Recursive Definition of a Multi-Splay Tree

This is an alternative recursive definition of multi-splay trees. First, we start with a fixed
balanced tred” called thereference tree Second, we pick a root-to-leaf path and call it

a preferred path Each node on the path hageeferred childdefined by the preferred

path, and we call the other child tm®n-preferred child Third, we rotate the nodes on

this preferred path to create a splay trég,and we mark the topmost node ihas a

root. Fourth, we recurse the first step on the tree rooted at each non-preferred child of the
preferred path. Each recursion returns a multi-splay tree. Fifth, to produce a single multi-
splay tree, we connect the multi-splay treesSte leaves in the symmetric order. Since
each missing child of a binary search tree corresponds to an interval of keys, and the splay
treeS has the same set of keys as the preferred path, each missing chilcbofesponds

to a non-preferred child’s subtree.

3.2 The Multi-Splaying Algorithm

Like splay tree, there is a self-adjusting update algorithm that rotates a key to the root.
This algorithm is called the multi-splay algorithm. In this section, we first explain the
algorithm assuming we have the reference tPe¢hen we explain how to implement the
corresponding operations in our actual representdtion

As stated above, the preferred edges’ievolve over time. Aswitchat a node just
swaps which child is the preferred one. For each access, switches are carried out from the
bottom up, so that the accessed nods on the same preferred path as the rooPofln
addition, one last switch is carried out on the node that is accessed.

In other words, traverse the path franto the root doing a switch at each parent of
a non-preferred child on the path, and then finally swiicihat is the whole algorithm

20



Representation in P - A balanced reference tree

Reference Tree
Node

—» Preferred child

.. » Not preferred child

® @ e @ @ @ .

A Possible Representation -
16 interconnected splay trees
that form a single BST

D MST Node
D Root

—» Solid Edge
..» Dashed Edge

Figure 3.3: An example of a multi-splay tree and its corresponding reference tree.
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from the point of view of the reference tree. The tricky partis to do it without the reference
tree. Note that if the multi-splaying algorithm did not make the final switch on the queried
node, the number of switches caused by single query would equal the increase in interleave
bound. With the extra switch, the amortized number of switches only increases by at most
2 per query.

Unfortunately, the reference trge is not our representation, the multi-splay tfEe
is. To achieveO(log log n)-competitiveness, we can only afford to spefidog logn)
amortized time per switch. To simulate the series of switches in the referende, tvee
first traverse the multi-splay tree to find the queried node. While we traverse, we remember
all the switches we need to perform. Then we perform those switches from bottom up. As
shown below, we can simulate a switch/rwith at most three splay operations, and two
changes otsRoot bits inT.

More specifically, suppose we want to switgls preferred child from left to right.
To understand the effect of this, temporarily make both childrep pfeferred. Now,
consider the sef of nodes inP reachable frony using only preferred edges. This set can
be partitioned into four parts., those nodes in the left subtreewin P; R, those nodes
in the right subtree of in P; U those nodes abovein P; andy. When setS is sorted by
key, L and R form contiguous regions of keyspace, separated (8ee Figure 3.4).

Let us see what this means in a multi-splay tfée The splay tree iri’ containing
y consists of noded U U U {y}. After the switch it consists oR U U U {y}. To do
this transformation we need to remokeand add ink. Becausd. and R are contiguous
regions in the symmetric ordering, we can use splaying to efficiently split off the tree
containingL and join in the tree containing. We first splayy. Then we first finde, the
predecessor ok in S, using theminRefDepth field. (Note thatr is the largest node less
thany with depth less thap, andxz must be a member df. Thus, to findx, we start
from y’s left child and) Then, we splay until - becomes the left child af. This ensures
that the set of nodes in the right subtreexos L. Thus, we mark the right child of
as a root in order to remove from y’s splay tree. As for joining ink, we simply splay
the successor aof (calledz) in U until z becomes the right child af, so that unmarking
the isRoot bit of the left child of z joins in R. As a detall, to prove multi-splay trees
use onlyO(logn) amortized cost per query, we can only afford to splay nodes that are in
{y} UU. As a result, we cannot split by splayingy and then splaying, the leftmost
node inL (stopping at the left child of). This technique would have been analogous to
the technique used in [DHIP04].

However, an access is not just a single switckjiit is a sequence of switches. For the
purposes of our running time analysis, we do these from bottom to top. Also, we perform a
final switch on the accessed node to pay for the traversal from the r@atiothe accessed
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*_ —S— _* A set of nodes On a number line:

A Subtree O Reference Tree Node I I
Preferred child /
MST Node —  50lid Edge | l—a —— R |
Not preferred child / I I : I
Root “"®™ Dashed Edge vy
Y :
In Reference Tree P: In Multi-Splay Tree T:
After 3 splays

Figure 3.4: During a single left-to-right switch gnthis figure shows the graphical repre-
sentations ob, U, L, R, x, y, andz immediately after the 3 splays.
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node. Notice that this final switch brings the accessed node to the r@ot of

This description has glossed over a number of subtle details, like how to determine if
the switch is from left to right or from right to left. In addition, we have not discussed the
boundary cases such as whear =z does not exist.

3.3 Details of Multi-Splaying Algorithm

3.3.1 Determining the Direction of a Switch

When serving a query; for key g;, we traverse the multi-splay trgéto find ;. After we

traverse, we perform a switch for each nodehoseisRoot bit is true (from bottom up).
Because the reference tree is static, the switches on the same node must alternate between
left-to-right switch and right-to-left switch. To determine the direction of a switch, we can
store an extra bit to encode the direction of the last switch for eqdathoseisRoot bit is

true). Thus, when we touch we can deduce the direction of a switch from the extra bit.

However, this extra bit is unnecessary, because we can also deduce the direction of a
switch as follows. As we traverse down the multi-splay tfe® find 5;, we maintairv; =
predg;) andw; = sucdg;) for the jth splay tree encountered, wheyeed(s;) denotes
the predecessor of, andsucds;) denotes the successor@f Notice that the switch in
thejth splay tree must occur at the deeperpandw; in the reference tree (this is where
the access path in the reference tree diverges from the preferred path corresponding to the
jth splay tree). Lety; be the node we switch, angj be the other node. To decide the
direction of the switch, observe thatdf; < 3;, we switch from left to right. Otherwise,
we switch from right to left.

3.3.2 Switch on a Node with Missing Children

In this section, we describe how to switch a node in the reference tree with zero or one
child. This type of switch only occurs at the final switch on the accessed node. Specifically,
if the accessed nod& has zero or one child in the reference tree, then the final switch on
g; stillinduces the corresponding splays, but no root marking will occur. In more detalil, let
A(y) be the set of proper ancestorgsah the reference treB. LetrefLeftParent(y) be the
predecessor af in A(y), and defineefRight Parent(y) analogously. When we perform a
left-to-right (right-to-left) switch on a nodg with missing children in the reference tree,

we splay therefLeft Parent(y), y, andrefRightParent(y) as usual. (During a switch, we
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Not preferred child / | I
Root "*®™ Dashed Edge X y
In Reference Tree P: In Multi-Splay Tree T:
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| . —

Figure 3.5: During a single left-to-right switch grnwith a missing right child, this figure
shows the graphical representationsot/, L, x, y, andz immediately after the 3 splays.

typically usez to denote theefLeftParent(y), andz to denote theefRight Parent(y).)

If y has no left child in the reference tree, then the right child ofiféeft Parent(y)
does not exist iny’s splay tree. So we skip the marking (unmarking) of thBoot bit

on that node. Similarly, ify has no right child in the reference tree, then the left child of
the refRightParent(y) does not exist. So we skip the unmarking (marking) of ot

bit on that node. An example of a left-to-right switch with missing children is shown in
Figure 3.5.

3.3.3 Switch withoutrefLeftParent or refRightParent

Sincey’s refLeftParent andrefRightParent iS not necessarily ig’s splay tree, when we
switch on a nodeg, we might not be able to fineefLeft Parent(y) or refRight Parent(y).
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Let = be refLeftParent(y) andz be refRightParent(y). For the proof of the multi-splay
access lemma in Section 3.4.2, we can not afford to searchdodz if they do not exist.
Specifically, we pay all the pointer traversal with rotations, so if we traversed to search for
x or z and fail, we must splay the last node we touched as we traversed. We can not afford
to pay the amortized cost of this splay in the analysis of the multi-splay access lemma.
Fortunately, we can deduceiifandz exist by using theninRefDepth field after we splay

y. SincerefDepth(x) < refDepth(y), if minRefDepth(leftChild(y)) > refDepth(y),

thenz does not exist iny’s splay tree. Similarly, becausefDepth(z) < refDepth(y), if
minRefDepth(rightChild(y)) > refDepth(y), thenz does not exist iny's splay tree.

If both z and z exist, then we proceed to mark and unmark as described in 3.2. If
x does not exist, then the lefplaySubtree of y after splayingy is exactlyL. (L andR
are defined in Section 3.2.) Thus, during a left-to-right (right-to-left) switch, we mark
(unmark)leftChild(y)’s isRoot bit. If =z does not exist, then the righplaySubtree of y
after splayingy is exactly R. Thus, during a left-to-right (right-to-left) switch, we un-
mark (mark)rightChild(y)’s isRoot bit. An example of a left-to-right switch with missing
children is shown in Figure 3.6.

3.4 Running Time Analysis

Theorem 5. For any query in a multi-splay tree, the worst-case cosb {&g” n).

Proof. This follows from the fact that to query a node, we visit at mOsteight(P))
splay trees. Because the size of each splay tréglig; n), the total number of nodes we
can possibly touch i®(log® n). O

3.4.1 Multi-Splay Tree SatisfiesD(log log n)-Competitive Property

For the purpose of this analysis, we define the potential of a multi-splayf tessgfollows.

If each node has an arbitrary positiveeightw(v) = 1, define thesizes(v) of nodev to

be >, piaysubiree(y W(v) (i-€., the sum of the weights of all descendants af 7" reach-

able by traversing only solid edges). Define the potential of the tree Yo he. lg s(v).

In other words, the weight of each node in each splay tree is 1, and the potential of the
multi-splay tree is the sum of the potentials of the splay trees.

Theorem 6. For an arbitrary access sequenee= o, - - - 0, in @ multi-splay tree wit
elements, the cost ofis O(OPT(c) * loglogn).
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Figure 3.6: During a single left-to-right switch gnwith a missingrefRightParent, this
figure shows the graphical representation$'pot/, L, R, x, andy immediately after the

two splays.
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Proof. The total number of switches in a multi-splay tree durnig at most/ B(P, o) +

2m [DHIPO04] (the extra&2m term results from the additional switch en which may need

to be undone later in the access sequence), so it suffices to show that the amortized cost of
each switch i$)(log logn).

In this proof, we usey; to denote the™ node we switchy; to denote a node whose
child will be unmarked as a root during ti#& switch of an access, angto denote a node
whose child will be marked as a root during tife switch of an access. If we omit the
subscript, then we are referring to any switch. Each switch at an arbitrary pegasists
of up to 3 splays followed by up to 2 changes4Boot bits. To analyze the amortized cost
of each of these operations, we invoke the access lemma for splay trees, and recall that it
uses the following potential function for a splay tfBe: > ;. log s(v). The analysis in
this sub-section assumes uniform constant weights are used for all nodes in all splay trees
comprising a multi-splay tree.

The amortized cost of each of the 3 splay®)idog s(r;)), wherer; is the root of the
splay tree corresponding tg's preferred path in the reference tree. Because) =
O(log n), the amortized cost of the 3 splaysilog logn).

The amortized cost of markirghild(z) is O(1) because it does not increase the size of
any subtrees in any splay trees, so the overall potential does not increase. The amortized
cost of unmarkinghild(z) (if it exists) isO(log log n) because the only nodes whose size
increase are andy, and the increase in each of their sizes is bounded by the size of the
splay tree rooted athild(z), which isO(logn).

To summarize, the amortized cost of each switch is:

Amortized cost = cost of splays
+ root marking cost
+ root unmarking cost
= O(loglogn + 1+ loglogn)
= O(loglogn).

3.4.2 Multi-Splay Tree Satisfies Access Property

In this section, we show that multi-splay trees, satisfy a property similar to the access
lemma for splay trees. Using this lemma, we can easily prove the static finger theorem,
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static optimality theorem, and many other properties of splay trees proved using the access
lemma. In particular, we prove the following theorem.

Theorem 7 (Multi-Splay Tree Access Lemma)n a multi-splay tre€l’ with an arbitrary

(not necessarily balanced) reference tigdet mass(x) be any positive weight assignment
on the nodes, and let = o, - - - 0,,, be a sequence of elements to query. The amortized
cost of multi-splayings; is ¢,,s(lg %) + Cimsa, WherelW = Zy mass(y), Cms aNd Cppsq

are constants.

Our overall approach to proving Theorem 7 will be to assign a set of weights to the ele-
ments of the BST roughly based on mass assignment and repeatedly use the Reweighting
Lemma of [Geo04]. The amortized cost of each switch will be bounded by the cost of the
3 splays according to the access lemma for splay trees, plus the change in potential due to
adding/removing weight from the tree due to root markings (for the purposes of analysis,
T is assumed to be broken into multiple splay trees which are linked together to form one
larger BST), plus the cost of reweighting some node€s as will be described later. The
total amortized cost of all of the switches will form a telescoping sum and give us the
required bound.

Before we can define the weight of each element in the splay trees that constitute
a multi-splay treel’ with reference tree”, we need the following definitions. Let
uchild(x) be the unpreferred child of in P. Let A(x) be the set of proper ancestors
of z in P. Let refLeftParent(x) be the predecessor ofin A(z), if it exists, and define
refRight Parent(x) analogously. Letip(x) be the set of nodes in's left inner path inP,
the set of nodes reachable starting:atleft child in P and following right child pointers
in P, and letrip(x) be defined analogously. LetfSubtree(z) be the set of nodes in's
subtree inP. In addition, to help define the node-weights we will use when we prove the
Multi-Splay Tree Access Lemma, we will use the following notation:

U(x) = refSubtree(uchild(x))
w(x) = mass(z) + Z mass(y)
yeU(z) (31)
Oz) = lip(z) U rip(x) U {}
w(z) = Jnax w(y).

We assign a weight ofo(x) to each element in a multi-splay tree for the purposes

of our analysis. The sizes(z), of nodexz is equal t0Y_ 1. supiree(r) W(2), Where
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<« - — — — refSubtree(y) — — —

Figure 3.7: Notations in reference tree

splaySubtree(z) is the subtree rooted at of the splay tree containing. The potential
of T'is ) _rlog(s(x)). If we were to usei(x) as the weight assignment, then this would
essentially be the same weight assignment as used in link-cut tree analysis [ST85].

However, each time we switchin a multi-splay tree, in addition to splaying we
also splayrefLeftParent(x) andrefRight Parent(z). On the other hand, in link-cut trees,
we would only splayr. To pay for the cost of the extra two splays, we choose the weight
assignment carefully so that the extra two splays will be relatively cheap. Our definition
of w(z) above gives us the following invariant.

Invariant 1. For all nodesz, w(refLeftParent(x)) > w(x), w(refRightParent(z)) >
w(x), andw(z) > w(x) wheneverefLeft Parent(z) or refRightParent(x) exists.

Note that for a fixed reference tree and mass assignment, different choices of pre-
ferred children can result in different weight assignments. Thus, as the algorithm per-
forms switches to change the preferred children, the weights of the switched nodes may
change. Such a change in weight will be accounted for by using the Reweighting Lemma
(Theorem 3).

Lemma 14. In a multi-splay tre€l” with reference treeP, let refPath(z) be the set of
nodes inz’s preferred path that are at least as deep:a® P. For everyx € P,

Z w(y) < ¢ * Z mass(u) < cw(x).

yErefPath(uchild(x)) uel(x)
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wherec; = 3.

Proof. First, itis clear tha8«+}_, ;. mass(u) < 3w(x) by the definition ofio(z), so we
only need to show that_, ... pusm(uchita()) W(Y) < 3 * Xucp () Mass(u). In order to see
this, we will showthad .. poinuchita(ey) (DY) +0(Y) +0(Yr)) < 3532, cp () mass(u),
wherey; = argmax,, ) w(z) andyg is defined analogouslyf and/oryz may not
exist, in which case we assunigy;,) = 0 and/orw(yg) = 0).

Notice that}_ . ram(uehitaiey @) = Ducv) mass(u) by definition, so it suf-
fices to show thatzyerefPath(uchild(x))uA)(yL> < ZyErefPath(uchild(a?)) w(y) The YR
case is symmetrical. To demonstrate this, forc refPath(uchild(z)), let a, =
ATGMAX, ¢ e fPath (uchild(x))N(A(yr)uyr) TefDepth(2), whererefDepth(z) is depth ofz in P.
Notice thata; € lip(y) if it exists so thatrefRightParent(ar) = y. Thus, eachu, that

exists is distinct S(Zy@efp.ath(uchdd(x))w(aL) < D yerefPath(uchila(xy) W (Y). Furthermore,
w(yr) < w(ay) because eithey, = ay ory;, € U(ar). Thus, we have

Yoo aw)< Y, )< ) dy).

yErefPath(uchild(z)) y€ErefPath(uchild(x)) yErefPath(uchild(z))

O
With Lemma 14 in hand we are ready to prove the Multi-Splay Access Lemma.

Proof. Each query consists of a sequencé afwitches, and a final switch on the queried
element. Each switch consists of at most 3 splays, and at most 2 chang&sdbbits.
Let y; be thei node being switched going uP's access path towarfl’s root andr; be
the root of the splay tre€; containingy; (y; is the first node switched, and by convention
the splay tree rooted at, contains the queried elemenf = o). Letz; andz; denote
refLeftParent(y;) andrefRightParent(y;), respectively (if these nodes exist), and lgt
and R; denote the elements of the (possibly empty) subtregs ajntaining the intervals
(z;,v;) and (y;, 2;), respectively. The amortized cost of a switch consists of three parts
(here we assume the switch is from left to right): splayjngp tor;’s location,z; until it

is the left child ofy; (if z; € T;), andz; until it is the right child ofy; (if z; € T;); marking
the isRoot bit of the least common ancestor (LCA) bf if L; # () (i.e., marking the right
child of x; if x; exists and is irff;) and unmarking thésRoot bit of the LCA of R;; and
reweightingz;, y;, andz; if they exist so as to restore Invariant 1 (evemifandz; exist
but are not irl;). We bound each of these costs in the following few paragraphs.
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First, by Invariant 1 and the Reweighting Lemma (Theorem 3), the amortized cost of
the three splays is at most,

o () (2 (2 5o ()

Second, itis free to mark the LCA @f; as a root because this decreases potentiél of
As for unmarking the LCA of?;, by Lemma 14, the increase é(y;) ands(z;) is bounded
by ¢, x w(y;) and by Invariant 1y0(y;) < w(z;). Hence, the increase in potential resulting
from the increased sizes gfandz; is bounded by lg(c; + 1).

Third, after a switch om;, w(y;) could have increased or decreased. For all other nodes
x, w(x) remains the same. This changeiify;) can only affect the weights of;, y;, and
z; (even ifz; or y; is not inT;). If w(y;) decreases, them(z;), w(y;) andw(z;) cannot
increase. So we can apply the Reweighting Lemma and pay a dasDofthe other hand,
if w(y;) increases, we have to bound the changes in weights. To account for the amortized
cost of the changes in weights, we lower-bound the weights before reweighting occurs and
we upper-bound the weights after reweighting occurs.

By invariant 1, before reweighting;, y;, andz;,
w(z;) = w(y;)
w(y:) > W (yi) (3.2)
w(zi) = w(y:)

After reweighting, wheni(y;) has its new valuet'(y;), if w(z;), w(y;), or w(z;)

increases (ta’(x;), w'(y;), orw'(z;)), it must increase t@’(y;). Becausey; is in 7, it is
true that'(y;) < s(r;). Thus, for allv € {x;,y;, z;} for whichw'(v) > w(v)

w'(v) < s(r). (3.3)

\/

\/

Thus, by the Reweighting Lemma, Equation 3.2, and Equation 3.3, the amortized cost
of reweighting is at mostc, 1g(s(r;)/w(y;)), which is the same (up to a constant) as the
upper bound on the amortized cost of the splays.

We still need to account for the amortized cost of the series of switchgson. . ., yx
and the amortized cost of the final switch on the queried element. By Lemm&-14<
(Y41 ), the series ok switches costs at most

k
s(ri)) ) (ct*s ; )
Cow ¥ 1g | — + Cswa | < Cow ¥ Ig + Cswak
2 ( g (w@m Z s(ri)

: S(re)

w(Yo)

S Csw * lg ( > + (Csw lg Ct + Cswa)ka
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where

Cow = 3Cs+ 3¢,
Cswa = 3Csa +2 lg(ct + ]-)

Sincek is smaller than the number of rotations needed for splayiribe final switch,
(cswlg e + csuwa) €an be charged to the last switch if each splaying step pays for an addi-
tional (¢, g ¢; + csuq) UNits of work. The amortized cost of the final switch is

(csw «lg (M> n cSwitchAdd)

w(yo)
s(splayRoot) .
(o) ) ! )
s(rx)
w(yo)

+(csw * lg Ct + Cswa) (cs * lg <

= (Csw + CsCsyp lg Ct + Cscswa) lg <

[ t
_ g <s(sp ayRoo )) T e

> + (Cswa + CsaCsw lg Ct + Csacswa)

w(yo)
where
Cr = Csy + CsCsw lg Ct + CsCsua
Cfa = Csuwa + CsaCsw lg Ct + CsaCswa-

A multi-splay operation consists of a sequences of switches and a final switch. Thus,
the total amortized cost of a multi-splay enis

Cow 18 (j{;’f))) + Cowa + Crlg (%) + Cfa

(Cow + ¢5) *1 WY e te
sw f g w(ol) fa swa

IN

= (Csw+cf)*lg( ) +(csw+cf)lgct+cfa+cswa

w(o;)
= Cmslg (%) + Cimsa
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where

Cms = Cow Tt Cr

Cmsa — (Csw + Cf) 1g Ct + Cfa + Cswa

W = Zmass(y)

O

We did not make any assumption on the reference tree in this proof. Thus, the proof
works on any reference tree. (However, for a multi-splay tree to be proglbg log n)-
competitive, it is still important to have a balanced reference tree.) Moreover, we did not
account for the initial and final potential, which needs to be accounted for when we apply
this lemma. We note that if the ratio of the maximum and the minimum masses is bounded
by O(poly(n)), then the maximum difference in potential is boundedidjog n) for each
node, so the difference between initial and final potential is boundé hyog n).

Corollary 1. [ST85] Multi-splay trees satisfy the static finger property.

Proof. The access lemma implies static finger property [ST85]. O

Corollary 2. [ST85] Multi-splay trees satisfy the static optimality property.

Proof. The access lemma implies static optimality property [ST85]. O

Corollary 3. Multi-splay trees satisfy the working set property.

Proof. The techniques used in this proof are identical to the proof of Working Set Theorem
for splay trees. For the purpose of mass assignment, we maintain a linked list of all the
keys. Whenever a key is queried, we move the key to the front of the list. This is essentially
a move-to-front list of all the keys. Letv) denote the position of key in the move-to-

front list. We assignnass(v) to 1/p(v)?. Note thatV = Y~ mass(v) = O(1).

Whenever we query, the cost of the query i©(log(M /mass(v))+1) = O(p(v)+1)
by the access lemma. After we query we increasenass(v) to 1, and decrease the
mass of all other nodes. Because of this change in mass, we increase the weight of 3
nodes, specificallyw(refLeftParent(v)), w(v), w(refRightParent(v)). By Invariant 1,
the weight of each of these three nodes is at leasts(v). Thus, the cost of reweighting
each node up td is at mostO(1/mass(v)) = O(p(v)). O
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Corollary 4. [lac02] Multi-splay trees satisfy the key independent optimality property.

Proof. The working set property implies the key-independent optimality property [lac02].
O

3.4.3 Multi-Splay Tree Satisfies Reweight Property

In this section, we extend the multi-splay tree access lemma to allow nodes to be “re-
massed” arbitrarily to any positive number, giving a result that is similar to the reweighting
lemma for splay trees [Geo04]. As a simple corollary, it will follow that multi-splay trees
satisfy the working set theorem.

Theorem 8 (Remassing Lemma)n a multi-splay tre€l’ (whereT also denotes the set
of keys stored in the tree), letass,, . .., mass,, be a sequence of mass functions where
massg = mass; such thatmass; : T'— R.o foreachi € {1,... ,m}. Letoc =oy,...,04

be a sequence of accessedinThe cost of accessingis at most

By — Oy + i:; <10g (%(JO + ;max (O,IOg (%))) )

whereW; = > .. mass;(v) and ®; represents the potential af, as described in Sec-
tion 3.4.2, after the'" access @, is the potential before the first access).

Before proving the remassing lemma, we need to extend the multi-splay tree access
lemma to prove a “lazy” version of the remassing lemma. By lazy, we mean that the
changes in weight betweemass; and mass;,; are not applied for each node whose
massincreasesuntil that node is a member afefPath(refRoot) (decreases in mass
are still applied immediately, just as in Theorem 8), even though we charge a price of
max(O,log(%)) immediately whenevev is tagged to be remassed #uss’(v) at
a later time when its current massrisiss(v). (Note that when's actual remassing fi-
nally occurs when it becomes a member¢fPath(refRoot), say at timej, we remass it
to mass;(v), its most recently assigned mass.) ketss;(v) denote the mass of node

during thei'" access using lazy remassing.

Informally, we can prove this lazy version of the remassing lemma simply by show-
ing that the increase iff’s potential due to an increase in mass at any one par-
ticular nodev when v’s remassing is finally applied after thg® access is upper-

bounded bylog(7%+1")) * This will suffice to prove the lazy remassing lemma be-

mass’; (v)

cause we have collecte}’

it max(0, log(2e2:£1))y ynits of potential from each

mass (v)
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|nd|V|duaI step since time, the last timev was a member ofefPath(refRoot), and
L max(0, log(Zeskn®yy > g (m“ssﬂ—“v) by the concavity of the log function.

k=l+ mass} (v) = mass

We can show that the increase in the potentidl after the;j'" access is upper-bounded
by 3¢, * log(]—“()) as follows. Afterv becomes a member otfPath(refRoot) at

mass](v)
time j, at most 3 nodes’ weights will increase whels mass increases fromass’;(v)
to mass’,,(v) (recall the definition of weight in Equation 3.1), and the ratio of the new

weights of each of these nodes to its old weight is easily bound m:'s(llf;’) Hence,
J

by the eager version Georgakopoulos’s reweighting lemma, the cost of remagsicg
counted for by 3 eager splay tree reweighting operations performed in the splay tree

refPath(refRoot)) is 3¢, * log(w)), as suffices.

mass’; (v)

Note that we have ignored the initial and final potential of the tree, however this does
not matter because the potential of the tree with eager remassing is always higher than
the potential of the tree with lazy remassing. Also, for notational convenience, we do not
perform lazy remassing after the'" access on nodes who joid as a result of then'"
access.

Finally, we can prove the eager version of the multi-splay tree remassing lemma, as
stated in Theorem 8, by arguing that the cost of eager remassing is at least as high as the
cost of lazy remassing.

Proof. Rather than concern ourselves with all nodes whose mass change at a particular
point in time, let us restrict our attention to a single nadehose mass changes from
mass;(v) t0 mass;,1(v) after thei'" access. To prove Theorem 8, it suffices to show that
the amortized cost of this remassing operatiOfinax (0, log(%;l_(”)))), is enough to

pay for the cost of lazy reweighting. Then, we can simply apply this analysis to each node
whose mass changes.

If mass;11(v) < mass;(v), then the lazy and eager versions of the remassing lemma
coincide — both immediately remass On the other hand, consider the case in which
mass;y1(v) > mass;(v). Let W denote the total weight df’ defined asy ., w(v)
assuming we eagerly remass nodes as per the theorem statemémt. destote the total
weight of T" if remassing is performed lazily. Notice thHt > W’ at all times, so the
amortized cost of each splay at a node other th&ias not decreased using the analysis
from the access lemma. On the other hand, when a splay is inducediotime j, the
cost according to the access lemma could be lower with eager remassing than with lazy
remassing, but after this access is completejll be a member ofrefPath(refRoot) SO
the lazy version of remassing resynchronizes with the eager version sedhgt ; (v) =
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massy, 1 (v).

Thus, it suffices to show that we can pay for this discrepancy merely by increasing the
constant in front oﬁog(%jj’f) in the amortized cost per remass with eager remassing.
In particular, we show that payingc, + c,s) * lg(#‘f@)) is enough.

In the lazy version of the remass lemma, the cost of splayimgd increasing the mass
Of v iS (s 1Ig(W] /massv)) + cmsa + 3¢, 1g(m' /mass(v))). In the eager version, the cost
of splayingv and increasing the massofs (¢, lg((W — mass(v) +m’)/m’) + csa +
(3¢, + cms) x 1g(m//mass(v))). Itis easy to see that we always pay at least as much as
the lazy version for each remass operation. He(®e,+ ¢,,s) * 1lg(m’/mass(v)) suffice

to pay for each remass operation. H

Corollary 5. [Geo04] Multi-splay trees aré)(1)-competitive to parametrically balanced
binary search trees.

Proof. The remass property implies that multi-splay trees@¢¢)-competitive to para-
metrically balanced binary search trees. Il

3.4.4 Multi-Splay Tree Satisfies Scanning Property
We begin with several simple lemmas.

Lemma 15. (Worst Switch Cost Lemma) The cost of a switof (B¢ n) worst-casenot
amortized.

Proof. Each switch consists of 3 splays and up to 2 root markings/unmarkings. Because
the size of each splay tree@¥ height(P)) = O(logn), the worst-case cost of the splays
is O(logn), and clearly the root markings cas{1) worst-case. O

Lemma 16. During a sequential access of all nodesigfwhen a node with a left child
(in P) is accessed, exactly one switch occurs.

Proof. Within a sequential access, a query to a nodgth a left child immediately follows

a query to a node in its left ref-subtree, so the preferred path from the root inclu@be

one switch occurs because the multi-splaying algorithm always switches the node that is
accessed. Il
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Lemma 17. (Touch Lemma) In a splay tréde; with rootr (r changes as the root changes),
if all splay operations are performed on a connected set of ndesl’s , andr € S, then
the splay algorithm will never rotate any node outsidé&o{This allows us to analyze the
cost of splaying assuming all nodes(ifi; \ .S) do not exist.)

Proof. Observe that if all the rotations are performed on nodes ithen the set of nodes
S will always be a connected set of nodes that includes the rof§.oA splay operation
onv € S will rotate nodes on the path from to the root. Becausé& consists of a
connected set of nodes, all of these rotated nodes must$ieTihus, the invariant that
is a connected set ande S is maintained. O

Lemma 18. During a sequential access sequence, when accessing nodes from the right
ref-subtreeR of y, the multi-splaying algorithm touches at most 2 nodes outside of

Proof. After y is accessedy is the root of the multi-splay tree, its right childis the
successor of?, and all the nodes aR are inz’s left splay subtree (See Figure 3.4). The
following splays induced by querying can only touchy, R, andz by lemma 17. H

Lemma 19. In a red-black treél 'z 5 of n nodes,) | lg |subtree(v)| = O(n).

UETRB

Proof. Suppose we merge all the red nodes with their parents. For instance, if a black node
originally has two red children and each red child has two black children, then we are left
with a black node with 4 black children after the merge. (Essentially, we are converting
the red-black tree into its corresponding 2-3-4 tree.)

Since every root-to-leaf path in a red black tree has the same number of black nodes,
each black node can have at most two red children, and each red node has two black
children, the merge process reduces the number of nodes in the subtree of every black
node by at most a factor of 3.

Definebh(v) to be the number of black nodes franto a leaf, excluding. Observe
that the number of black nodes @t(v) is at most;7—. Also, note that the number of

2bh(v) *
nodes in a black nod@s subtree is at most® ().
Hence,
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Z lg |subtree(v)] < 3% Z lg | subtree(v)|
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Theorem 9. In any multi-splay tre€l” of n nodes, the cost of the access sequence
o1, ,0n, Whereo; < g,411SO(n).

Proof. In this proof, we assume thatis a full red-black tree [GS78]. Using the previous
lemmas, we can develop a recurrence for the cost of sequential access. First, we define
rightParen{v) to bep if the left child of p is v. Also, we define theight ascending path

of v to be the set of nodes such thatightParent (v) = u. Finally, we defined(v) to be

the size of the right ascending patmof\We analyze the cost of sequentially accessing all

of the nodes of a multi-splay tréein terms of the cost of sequentially accessing subtrees

of P. More specifically, we recursively account for the cost as follows:

Time(t) = Time(leftRefSubtree+ Time(root(t))
+ Time(rightRefSubtreg

wheret is some subtree aP, and Timét) is the amortized time used when sequentially
accessing the nodes oWwithin the context of sequential accessatbnodes off’, not just
the ones in.

However, to tightly bound the time for accessing the roat, efe need to incorporate
A(root(t)). Hence, we define

Time(t,a) = Time to sequentially access all nodes
in ¢, whereA(root(t)) = a,
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wheret is a subtree ofP (taken within the context of 's full reference tree, so thats
root may have a non-trivial right ascending path). With this expanded accounting method,
the cost of sequentially accessing all of the nodeg of Time( P, 1).

In general, we can write
Time(t,a) = Time(t,,a + 1) + Time(tg, 1) + O(a + log |t]),

for the case in whicloot(¢) is an internal node becausmt(t;,) has a right ascending path
with one more node than the pathrobt(¢), root(¢z) has a right ascending path including
just itself, and accessingot(¢) causes at most one switch by Lemma 16, whose running
time isO(a+ 1+ log |t|) worst-case because the number of nodes touched during a switch
atnodeoot(t) is O(2+ A(root(t))+log |t|) = O(A(root(t))+log |t|). TheO(A(root(t))+

log |t|) bound is true because at most 2 nodes highd? thanroot(t)’s right ascending

path are touched as seen by Lemma 18, and the number of nodes(i)’s splay tree
including root(¢)’s right ascending path and below iroot(t)) + height(t), which is
O(A(root(t)) + log |t]).

For the base case in whiehot(t) is a leaf inP, we have
Time(t,a) = O(a?)

because at mostswitches occur during the accessrabt(¢)*, each of which costé(a)
using similar logic to above, for a total 6f(a?).

To see that this recurrence solves@¢n), we show how to account for all of the
O(a+log |t|) terms and all of th€©(a?) terms so that their costs totaln). For each such
thatroot(t) is not a leaf, note that if we spread thga) = O(A(root(t))) portion of the
cost evenly among the nodesrobt(t)’s right ascending path, each nodin the reference
tree is charged at mos$?(height(v)) = O(log |subtree(v)|). Similarly, to account for
the O(a?) cost for each leaf, we charged(k + 1) to rightParent(I) so that each node
is charged at mosD(height(v)) = O(log|subtree(v)|). Thus, it suffices to show that
> vep Ollog |subtree(v)|) = O(n), which is true by Lemma 19. O

3.5 Comment on the Fields of the Multi-Splay Tree Nodes

To proof that multi-splay trees have tlilog log n)-competitive property, we only need
to store theisRoot field and therefDepth field for each multi-splay tree node. In the de-
scription of multi-splay tree algorithm in Section 3.2 and Section 3.3.3, we only use the

4Because the deepest left ancestof root(t) was just queried, there is always a preferred path from the
root of P to v, and the number of nodes betweeandroot(t) is at mosta.
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minRefDepth field to find therefLeft Parent(y) (refRight Parent(y)) during a left-to-right
(right-to-left) switch ony. After we splayy during a left-to-right (right-to-left) switch on
y, we can find theefLeftParent(y) (refRight Parent(y)) using Georgakopoulos's obser-
vation for the chain splaying algorithm in [Geo05]. LetenotesrefLeftParent(y) and
z denotesrefRightParent(y). Observe that for all the nodesin y’s left (right) subtree,
if refDepth(u) < refDepth(y), thenu < x (u > z), and if refDepth(u) > refDepth(y),
thenu > = (u < z). When we search for (z) starting iny’s left (right) child «, we setu
to the right (left) child ofu if refDepth(u) < refDepth(y), and we set: to the left (right)
child of u if refDepth(u) > refDepth(y). We stop just before we setto nil or leavey’s
splay tree, and must be either: (z) or succx) (pred(2)). If refDepth(u) > refDepth(y),
thenw is x (2). If refDepth(u) < refDepth(y), then we splay. andsucdu) (predu)) to
find x (z). Thus, we can find thecfLeft Parent(y) (refRight Parent(y)) without using the
minRefDepth field.

However, the above modification breaks our analysis of multi-splay tree access lemma.
To proof the multi-splay tree access lemma in Section 3.4.2, we can only afford to splay
nodesu such thatrefDepth(u) > refDepth(y) during a switch ory. Because shallower
nodes in the reference tree generally have larger weight, we charge the cost of all the
splays during a switch onto the cost of splaying. If we splaysucqrefLeftParent(y)) or
pred refRight Parent(y)) during a switch ony, then the charging argument breaks because
sucqrefLeftParent(y)) andpred refRightParent(y)) are deeper tham.
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Chapter 4

Dynamic Binary Search Trees

4.1 Dynamic BST Model

Before we can reason about the properties and competitiveness of dynamic binary search
trees, we must introduce an intuitive definition of what it means for a dynamic BST to be
competitive. We assume an arbitrary dynamic BST algorithmust start from an empty

tree and execute a sequence of operations oy, ..., 0, each of which iqquerys;),
insert(d;), ordeletés;). For eaclv;, we assumel must pay the following costs:

e To executguery(d;), it must pay for touching each node on the path from the root
to g;.

e To executdnserts;), it must pay for inserting the node at a leaf in addition to the
traversal to get there. This is reasonable becaluseist search fo#; to realize its
BST does not contaid;.

e To executaleletéq;), it must pay for accessing and for performing rotations until
g; has no children (at which point, the node can be removed).

During (or after) each operation, a BST algorithm may perform any rotations it wishes
at the cost of one per rotation. The cost of an operation is simply the total number of nodes
touched, plus the number of rotations. Without insertions and deletions, this definition
would be identical to the one in Section 2.1.

In this model, we do not allow BSTs to swap nodes and contract edges during deletion.
This implies that it must also pay for accessing bpitid 5;) andsucdg;) while deleting
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0;. Because of this restriction, small modifications are necessary to include many standard
binary search trees in this model.

4.2 Competitive Analysis on Dyanmic BST

In the standard BST model defined in Section 2.1, BST algorithms can not change the
set of elements, so algorithms must start with a non-empty initial tree. Since there are
many possible initial trees, we defined QBT to start with the best possible initial tree.
However, the definition of optimal dynamic BST model is simpler, because every dynamic
binary search tree algorithm starts with an empty tree. Since there is only one choice of
initial tree, we use DOP(F) to refer to the cost of an optimal off-line dynamic BST
algorithm executing .

An on-line binary search tree algorithrhis 7-dynamic-competitive if

VoA(o) < T DOPT(c) 4+ O(m)

Before we make multi-splay tree dynamic and prove that dynamic multi-splay tree
is O(log log n)-dynamic-competitive in Chapter 5, we first prove a lower bound on the
dynamic BST model.

4.3 Dynamic Interleave Lower Bound

With our new definitions, we must prove a new lower bound for DOPT Fortunately,
techniques similar to those in [Wil89] suffice. Our new lower bound is a generalization of
the one in [DHIP04], which is a variant of Wilber’s first lower bound. Our lower bound
generalize the interleave lower bound by allowing rotations in the reference tree. Allowing
rotations is essential, without rotations, it is impossible to delete some of the nodes from
the reference tree.

As in the original definition of the interleave bound, for each nedm the ini-
tial reference treeP,, we track if the last query inefSubtree(v) is in either LV =
leftRefSubtre@) U {v} or R’ = rightRefSubtre@). Whenever the tracking for a node
changes, we increment the dynamic interleave bound(®H), by one. p is a sequence
of changes to the reference tree, and it is carefully defined in the proof.) For an insert of
v, we add the cost of queryinged(v) followed bysucdv) (because both of these nodes
must be touched to insettat a leaf). For a delete af, we add the cost of querying
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predv), v, andsucdv) in succession because all three of these nodes must be touched in
order to rotate to a leaf of the BST. Whenever we rotate a nedeve reset the tracking

of v andrefParent(v) to L¥ but do not increase the interleave bound. Without insertions,
deletions, and rotations, this definition would be identical to the original interleave bound.
With rotations, this is a generalization of the original interleave bound even in the static
BST model.

We will proof the theorem below.

Theorem 10(Dynamic Interleave Bound)For a sequence of operations= o, ..., 0,
where eacly; is a query, insert, or delete, the cost of an arbitrary BST algorithmon o
is at leastQ(DIB(p,0)/2 — n — 2k + ¢m), wheren is the number of nodes iR,,, p =
p1,-- -, Pm IS @ sequence of changes /) where eaclp; contains asequencef rotation
operations to be performed dn (insertions and deletions iR correspond to those in),
andk is the number of rotate operations in(i.e.,k = > (# of rotations inp;)).

In the Dynamic Interleave Bound reference tree, we assume deletion ofnsde-
complished as in [Tar83], by “splicing out’unless it has two non-null children, in which
casev is swapped with its predecessor and then spliced out.

The operationg; are the changes B that occur between successive operations. of
(For multi-splay treesp; represents the rebalancing rotations performed on its reference
tree following an insert or a delete.) Differemsequences give different lower bounds on
the cost of executing.

4.3.1 Proof of the Dynamic Interleave Bound

Here we present an extended version of Wilber’s first lower bound [Wil89]. Our presenta-
tion is similar to Demainet al.’s, with modifications to permit the lower bound tree to be
dynamic.

In our description of the bound, there are two treeégndT’, which are both dynamic
BSTs over the same keys. The trBeas areference treghat the lower bound will useq
does not really exist), and each internal node always has exactly one preferred child (like
the reference tree for a multi-splay tree). The tféeefers to the tree maintained by an
arbitrary BST algorithmA adhering to the model described in Section 4.1.

Leto = o4,...,0, be a sequence of operations ‘brfor which eacho; is either a
query, an insert, or a delete, adds responsible for executing these operations in order.

LAlthough our model for BST deletion does not allow such swapping/splicing, multi-splay trees will only
be simulatingthem while adhering to our dynamic BST model.

45



Because botl® andT are dynamic, we often refer to them by their time index. By
andT7;, we mean the state @t and7 right beforeo; is executed. For notational simplicity,
both P andT are assumed to be empty initially (i.¢%, and7;, are empty).

Further, becaus@ is dynamic, we need a way to describe changes to it. pLet
o, - -, pm bE asequence of changesilpwhere each; contains asequencef rotations
to be performed orP. Insertions and deletions in the reference tree correspond to the
operations ino and follow the standard BST insert and delete procedures. That is, an
insertion occurs at the relevant leaf, and a deletion typically swaps thevrtodee deleted
with predv) and splices out. The change in; is performed immediately beforeg, is
executed by (i.e., aftero;_; is executed fof > 1). Note thatp; andp, are always empty
because there is at most one nodé’iprior to o,. Whenever a node i is involved in
a rotation (i.e., it is eithev or p for a rotation ofv overp), its preferred child is set to its
leftmost child, if it has a child. This child settingm®tconsidered a switch for accounting
purposes (e.g., in DIB, o) as described below).

If o; queriess;, P, switchesits nodes’ preferred children as necessary so as to cre-
ate a path consisting only of preferred child edge# tatarting from the root. In the
case of insert, the switches connect both the predecessor and successtr tbie root
in succession. For deletpreds;), sucdd;), andg; are connected to the root in arbi-
trary order (note that the order only affects the lower bound by a constant additive term
per deletion). Let DIB(p, o,v) be the number of switches of nodés preferred child
that are made P, to accommodate;. Let DIB(p,0,v) = >, DIB;(p,0,v), and let
DIB(p,0) = Y _,cv DIB(p,0,v), whereV is the set of all nodes that are inserted ifto
(andT) at some point.

Our lower-bound proof runs parallel to the proof for a static reference tree in [DHIP04],
with some changes to allow to be dynamic. We defing? = leftRefSubtrefg/) U y and
RY = rightRefSubtre@)) (LY and RY can be indexed by time as well). For a nagdelefine
the transition pointof y to be the highest nodein 7" such that the path from to the
root contains at least one node from bdthand RY. Observe that is either the lowest
common ancestor df? or of RY.

We restate a few useful lemmas from [DHIP04]. Lemma 21 has been modified to
account forP’s being dynamic. The proofs of Lemmas 20 and 22 are the same as
in [DHIP04] because these lemmas refer to a snapshst of

Lemma 20. [DHIP04] The transition pointz in 7; for a nodey in P; is unique.

Lemma 21. Suppose a BST access algorithm does not touch a naud” for the time
interval: € [j, k|, andz is the transition point irf; for a nodey in P;. Further, suppose
that y is not rotated in the reference tree by the executiop;qf, ... p; (i.e., there is no
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rotation in p, 41, ... py Of v over its parentp wherey = v or y = p). It follows thatz
remains the transition point of for the entire time intervalj, &].

Proof. Suppose, without loss of generality, that R?j.. Notice that all of?¥ is in the
subtree rooted atin 7; because is the lowest common ancestor Bf in 7;. Because:

is not touched; remains the lowest common ancestorffor all i € [j, k].> Moreover,
at time; the predecessarof the nodes in the s@ubtree(z) N (L4 U RY) isin LY because
LYU RY forms a contiguous region of keyspace. Notice thigtthe deepest left-ancestor of
zin T2 Thus, no rotation ip;. 1, . . . , px changes the fact thatis the deepest left-ancestor
of z, anda cannot be deleted froffi during[j, k| because it has a right child. H

Lemma 22. [DHIP04] At any time:, no node inT; is the transition point for multiple
nodes inP;.

The following theorem relates DIB, o) to a lower bound on DORF ):

Theorem 10. (Dynamic Interleave Bound) For a sequence of operatiors oy, ..., 0,,
where eacly; is a query, insert, or delete, the cost of an arbitrary BST algorithion o
isQ(DIB(p,0)/2 —n — 2k + cm), wheren is the number of nodes iR,,, p = p1, ..., pm
is a sequence of changes B where eactp; contains asequencef rotation operations
to be performed orP (insertions and deletions i# correspond to those in), andk is
the number of rotate operations jn(i.e.,k = >_." , (# of rotations inp,)).

Proof. First, note that them term in the lower bound appears because each operation
costs at least a constant

Following [DHIP04], suppose every time a nogléen P is switched from left to right
the lower bound places a marble on the transition poinj of 7. Moreover, whenever
the lower bound rotates overp in P, it removes any marbles from the transition point
of v and ofp in T. On the other hand, whenevdrtouches a node, it discards all of the
marbles at that node, and whdndeletes a nodeg the lower bound removes the marble
from y’s transition point: if z exists and still has a marble aftérdeleteg;. Clearly, if the
number of marbles sitting on a node never exceeds 1 then the number of marbles removed
is at mostA’s cost foro.

Moreover, to prove the theorem it suffices to show that no node can ever have more
than one marble. Because the number of marbles placed is at least half the number of

2 Notice thatz remains a member d®? because if it needs to be swapped as a result of its successor’s
being deleted, our model dictates that the BST algorithm must aedasg, contradicting our assumption
that the algorithm does not touehin T'.

3 By “deepest left-ancestor af, we mean the parent of the highest nodemright ascending path.
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total switches (because there are at least as many left-to-right switches as right-to-left
switched) and A must remove all of the marbles that are placed/bexcept those that
either remain ori;,, at the end (up to) or are removed by the lower bound (up2b
removed for rotations and up i@ removed for deletions).

To see that no node can ever have more than one marble, notice that by Lemma 22 no

two nodes inP; ever have the same transition pointfin As argued in [DHIP04], when

a left-to-right switch is made at at times; andj (: < j), the transition point foy in T;

must be touched at some time during the intefval], assuming that the transition point
remains constant during that interval. By Lemma 2%, transition pointz during this
interval remains constant unledstouches: in 7', in which caseA removed its marbles,

or the lower bound executed a rotation involvingn which case the lower bound removed

the marbles ot. O

4.4 Properties of anO(1)-dynamic-competitive BST

Partly because competitive analysis in standard BST model is already difficult, there are
few results on the dynamic BST model. Below is a list of properties researchers have
considered or mentioned. In this thesis, | will prove that multi-splay trees satisfy all of the
following properties. Of the properties below, only multi-splay trees are known to satisfy
both theO (log log n)-dynamic-competitive property and the deque property.

Property. A dynamic binary search tree has th€logn) dynamic runtimeproperty if a
sequence ofn operation is executed in tim@(m logn).

In the worst case, some sequences will néah log n) time using the sorting lower
bound. Thus, having this property implies the data structure is theoretically optimal under
worst-case analysis. Almost every dynamic binary search tree ha&g(tbgn) runtime

property.
Property. [Tar85] A dynamic binary search tree has thexjueproperty if a sequence of
m push, pop, inject and eject operation is executed in tinw + n).

Splay trees are conjectured to satisfy the deque property [Tar85]. Lucas [Luc88]
showed that the total cost of a sequence of ejects and papsénis(n,n)) if the ini-
tial tree is a simple path of nodes. Currently, the best bound is proved by Sundar

4 This is true if we do not count the at mostright-to-left switches following the insertion of a node as
a left child of a node that has a right child.
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[Sun89a, Sun89b, Sun92]. He showed that splay trees can execute a sequensgat
operations om nodes inNO((m + n)a(m + n,n + n)).

Tarjan [Tar85] proved that splay tree satisfy a special case of the deque property - the
output restricted deque property.

Property. A dynamic binary search tree has thetput restricted dequproperty if a se-
quence ofn push, pop and inject operation is execute in tithen + n)

Property. A dynamic binary search tree has t¢log log n)-dynamic-competitiverop-
erty if it execute every sequeneeof queries, inserts and deletes in tifélog log n *
DOPT(0)).

Multi-splay tree is the only data structure proved to satisfy this property. However, it

may be possible to prove this property on ottétog log n)-competitive BSTs with some
small modifications.
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Chapter 5

Dynamic Multi-Splay Trees

5.1 Making Multi-Splay Tree Dynamic

With some modifications, our data structure can support insertions and deletions while
maintaining the competitiveness and the runtime property. To think about what is neces-
sary for supporting insert and delete, it is illustrative to think about the effect of insert and
delete on the reference tree. When nodes are inserted into and deleted from the reference
tree we need to maintain the invariants that the tree is balanced and that every internal node
has exactly one preferred child. We meet the balance requirement by allowing rotations on
the reference tre@ (after insertion and deletion), and makifga dynamic red-black tree.

We meet the single preferred child requirement by making a constant number of switches
prior to each rotation. Because the reference tree is implicitly maintained, we need to
be able to simulate the update operations on the reference tree (e.g., rotations, pointer
traversals) efficiently. Simulating each of these operations turns out t@bstlog n)
amortized time in a multi-splay tree so it is important that the corresponding reference
tree requires only)(m) reference tree traversals and reference tree rotations during a se-
guence ofm operations. (Finding thecation of the update doesot involve reference

tree traversals.) To emphasize that the reference tree is not explicitly maintained, we call
each reference tree traversaligual traversal and each reference tree rotatiomidual

rotation. Red-black trees meet this requirement because they requir@©¢hjyamortized

time to rebalance after an insert or delete [Tar83]. Because the reference tree is a red black
tree, we also need an additional bit to store if a node is red or black.
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5.2 Simulating Pointer Traversal in the Reference Tree —
Virtual Traversal

To simulate a pointer traversal in the reference tree from nddea multi-splay tree, we
need to locateefParent(v), refLeftChild(v), andrefRightChild(v). In this section, we
show how to find these nodes with a constant number of switéhes.

5.2.1 Locating Child in the Reference Tree

To find the refLeftChild(v), we perform four switches. First, we switch so the
set of nodes in therefSubtree(refLeftChild(v)) is identical to the set of nodes in
splaySubtree(rightChild(leftChild(v))), which we will refer to asl;. If refLeftParent(v))

is notinv’s splay tree, thefi; = splaySubtree(leftChild(v)). Then we search in thg for
the nodel with minimum refDepth in T; using theminRefDepth field. The nodd must
be therefLeftChild of v. Finally, we switch/ twice and switchy again.

In our design, we switchso the cost of searching foirs dominated by the switch cost,
so we only need to account for the switch cost in our analysis. We swdallv twice
so the virtual traversal does not change the preferred path. Note that while the second
switches onl andv are not necessary, they simplify some of the running time analysis.

Likewise, to find therefRightChild(v) in four switches, we first switchv so the
set of nodes in theefSubtree(refRightChild(v)) is identical to the set of nodes in
splaySubtree(leftChild(rightChild(v))), which we will call ... (If refRightParent(v)) is
notinv’s splay tree, theff, = splaySubtree(rightChild(v)).) Then we search for the node
r with minimum refDepth in T,. usingminRefDepth field in T,.. The node- must be the
refRightChild of v. Finally, we switchr twice and switchy again. Thus, ifrefLeft Child
of v andrefRightChild of v do exist, then we can find them in four switches.

If refLeftChild of v does not exist, then after we switchthe left splaySubtree of v
will be empty. Similarly, ifrefRightChild of v does not exist, then the righplaySubtree
of v will be empty after we switchv. Thus, we can determine tkfLeftChild of v or
refRightChild of v exist with a single switch.

In fact, the second switch an [, andr only consists of root marking, and the amount
of potential change due to the marking and unmarking is the same as the first switch on
[, andr. Thus, the second switches are free, and we only need to pay for two switches to

Y In our original paper [WDS06], we added 3 new fields to store the values oéfRerent, refLeft Child
andrefRightChild of each node. While it is a simpler solution, it uSeslog n extra bits.
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find eitherrefLeft Child or refRightChild.

5.2.2 Locating Parent in the Reference Tree

Observe thatefParent(v) must be eitherefLeftParent(v) or refRightParent(v), and
(refDepth(refParent(v)) = refDepth(v) — 1). To find refParent of v, we first switchu

twice. If refParent(v) is in v’s splay tree, then it must be splayed to eithisrleftChild

or rightChild. Because each splay tree is a preferred path, there are at most one node of
eachrefDepth in a single splay tree. Thus, if thefDepth of leftChild(v) or rightChild(v)

equals torefDepth(v) — 1, then that node i8’s refParent.

If refParent(v) is not inv’s splay tree, thew is refParent(v)’s non-preferred child.
If we let 7), be the splay tree containingarentv), thenrefParent(v) must be either the
sucqv) or predv) in 7,. Now we could simply search fars key in 7, and stop when
we find a node whose:fDepth equals torefDepth(v) — 1. In fact, whenrefParent(v) is
not inv’s splay tree, we do not even have to search for it, because of the following lemma.

Lemma 23. If v is a non-preferred child, therefParent(v) must appear on the path from
splayRoot to v in multi-splay tree. Moreover, if we letbe the root of splay tree containing
v, thenrefParent(v) must be either pre@dubtree(r)) or sucd subtree(r)).

Proof. Sincev is a non-preferred child, the set of nodesidfiSubtree(v) is identical to the
set of nodes inubtree(r). Hence,

refLeftParent(v) = predrefSubtree(v)) = pred subtree(r))
refRightParent(v) = sucqrefSubtree(v)) = sucqsubtree(r)).

Observe that for every node in every binary search treed subtree(z)) and
sucd subtree(x)) must be ancestors af Thus,refLeftParent(v) andrefRight Parent(v)
are ancestors of which is an ancestor of.

]

In this section, we have shown how to find thgParent, the refLeftChild, and the
refRightChild of any node. Moreover, all the pointer traversals in multi-splay tree can
be paid by the cost of the switches, and we only need to pay for two switches per virtual
traversal at most.
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Rotate(v)

CAEA

Figure 5.1. Before a right (left) rotation anin the reference tree, we must make sure
v's preferred child is right (left), angd's preferred child is). Note that the partition of the
nodes by the preferred paths remains the same before and after the rotation.

5.3 Simulating Rotations in the Reference Tree — Virtual
Rotation

To simulate a right rotation of a nodeover its parent in the reference tree, a multi-splay
tree first ensures thats preferred child is its right child, ands parent’s preferred child

is its left child by performing either 1 or 2 switches oandv’s parent. By meeting these
requirementd’ ensures that the partition of preferred paths in the reference tree remains
the same before and after the rotation,, as seen in Figure 5.1.

Similarly, to simulate a left rotation of a nodeover its parenp in the reference tree,
a multi-splay tree first ensures thels preferred child is its left child, and’s parent’s
preferred child is its right by performing either 1 or 2 switchesv@andv’s parent. After
the rotationp’s preferred child is set to the left child (whichp$, andp’s preferred child
is set to right child. Thus, the set of nodes on each preferred path remains the same before
and after the rotation.

We also need to be able to quickly update the fields in each'®hodesv when
a virtual rotation is performed i®. Recall that we storeefDepth (the depth ofv in
the reference tree), andinRefDepth (the minimumrefDepth of all the nodes inv’s
splay subtree). To update these values efficiently, we do not store the values explic-
itly. Instead, inv we storerefDepth(v) — refDepth(parent{v)), andminRefDepth(v) —
minRefDepth(paren{v)), except ifv is the root of 7', in which case it simply stores
its refDepth, and minRefDepth. This is analogous to the technique used in link-cut
trees [ST85].

Let v be the node we rotate in the reference tfe@nd the corresponding node in the
multi-splay tre€el’). Let p be the parent of in P. Without loss of generality, we assume
v is the left child ofp. At first glance, a rotation of overp in P changes theefDepth
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Reference Tree:

Switch(v)
Switch(p)

Switch(p)

X

—» - |
AN

Figure 5.2: Observe that after we callitch(v) andswitchp), the sets of nodes in,
and R, form two subtrees in a multi-splay tree. A rotationwbverp in the reference
tree decreases the depth value of each of the nodkg lny one, and increases the depth
value of each of the nodes iR, by one (Shown in Figure 5.1). Becausg and R, are
grouped together by the switches, the updates in depth value® tbsafter performing
the switches.

55



value for many nodes, so it would be difficult to update. However, the sets of nodes whose
depths change constitute two subtrees in the reference tree. More specificalyDiyeh

of each node ineftRefSubtre@), L,, decreases by one, while thefDepth of each node

in rightRefSubtre@), R,, increases by one. Using this observation, we can decrease the
depth value of all of the nodes iris ref-subtree by executingwitch(v) andswitch(p) in

T, which isolated., and lz, as shown in Figure 5.2 so we can change the difference value
at a single node to decrease (or increase) the steféwpth of each node irL, (or R,)

by one. This method can be used for thénRefDepth field as well.

Hence, a rotation iP can be simulated ifi’ using a constant number of switches and
field updates, so its amortized costiglog log n) if the reference tree is balanced.

5.4 Implementing Insertion

To insertsg;, we query its successor or predecessor, then we perform a normal BST insert,
and we set the appropriate fields @fand its (constant number of) ancestors. We can
find refParent(c;) as we search fo#; in the multi-splay tree, becausefParent(s;) is

the node of maximumefDepth on the access path. Then we rebalance the reference tree
using amortized (1) simulated rotations and pointer traversals. Finally, we gdeagain

to bring it to the root of the multi-splay tree.

To elaborate on the above summary,ddte thepredc;) andz be thesucdo;). Be-
causes; is not in the multi-splay tree, when we search #¢r we must touch both and
z. Then we query or z depending on itsefDepth. Note that becauseis pred =) before
the insertion,refDepth(x) # refDepth(z). If refDepth(x) > refDepth(z), we queryz.
(Because botlr and z are splayed during this query, so the cost of pointer traversals are
dominated by rotations.) After querying = becomes the root of the multi-splay tree and
z becomes the right child of as shown in Figure 5.3. Then we insérts the left child of
z. On the other hand, ifefDepth(x) < refDepth(z), we queryz instead. After querying
z, z becomes the root of the multi-splay tree anblecomes the left child of as shown in
Figure 5.3. Then we inse#t as the right child of:.

Sinceg; must be the child of the deeper ofand z in the reference tree, we set the
refDepth(d;) = max(refDepth(x), refDepth(z))+ 1. Since onlyz andz are the ancestors
of g;, only the fields ofr andz can change after inserting. Thus, we can update all the
field changes due to this insertiondr1) time.

After the insertion, we might need to virtually rebalance the reference tree. Since
the deeper of the twoy and z, is refParent(d;), we already know the location of this
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refDepth(x) < refDepth(z) refDepth(x) > refDepth(z)

Figure 5.3: After querying or z during an insertion.
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insertion in the reference tree. In a red-black tree, we only need amogigzedpointer
traversal and rotations for rebalancing. We can perform each of those virtual traversals
and virtual rotations in a constant number of switches as shown in Section 5.3 and Section
5.2. Finally, we queryefParent(d;) again to bring it to the root of multi-splay tree.

The above discussion omits a few trivial details, such as the first insertion, and the
insertion of the smallest or the largest element; i the first insertion, we can just create
the node inD(1) time. If g, is smaller than all the existing elements, thetloes not exist.

In this case, we query and inseris; as the left child of:. Then we setefDepth(s;) to
refDepth(z) + 1 and proceed to virtually rebalance the reference tree as usual. Similarly,
if g; is larger than all the existing elements, thedoes not exist. We query, inserts; as

the right child ofz, setrefDepth(c;) to refDepth(x) + 1, and proceed as usual.

5.5 Implementing Deletion

In the reference tree (or the standard red-black tree), a npth@as zero, one, or two
children. To delet&; when it has no children, we can simply remove it because itis a leaf.
Wheng; has one children, we can contract it in the red-black treé; ifas two children,
then we first swa; with its predecessor, then contragt In the following paragraphs,
we describe how to simulate each of the above steps in the multi-splay trees.

To deletes; in the multi-splay tree, we first quew; If ¢; has no children in the ref-
erence tree, then we switehfParent(d;) sog; becomes a leaf in multi-splay tree. Then
we switchrefParent(d;) Sod; is the only element in its splay tree. Onégis a leaf and
the only element in its tree, we could simply remove it without affecting the fields of any
other nodes.

If 6; has exactly one child in the reference tree, then we querand switch
refParent(c;) so thats; becomes the non-preferred child. Then we swit¢hso that
its only child is a non-preferred child, arg becomes the only element in its splay tree.
Let c be the (only) child of7; in the multi-splay tree. We proceed to rotateos; becomes
a leaf, and remove;. (We have to rotate before we delet&; because our dynamic BST
model does not allow contraction. We only allow deletion at the leaf.) Due to the removal
of 4;, for each node in refSubtree(a;), refDepth(v) is reduced by one. Note that the set
of nodes inrefSubtree(d;) are identical tosubtree(c). So we only need to update the fields
of c to reflect all that changes irefDepth andminRefDepth.

Finally, we consider the case in whieh has two children in the reference tree. Be-
fore rebalancing the reference tree using amorti2ét) simulated rotations and pointer
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Reference
Tree:

Multi-Splay
Tree:

Figure 5.4: An example of what a multi-splay tree looks like during deletion of node
g; with two children in the reference tree, whare= 4;, p = preds;), s = sucdq;),

rp = refParent(pred;)) after the sequencguery(p), switchrp), queryp), query.s),
andquery(v). Here we show the case in which < p.

traversals, we must first swafy with preds;) and splice out; using a constant num-

ber of switches, rotations, and field updates in addition to a constant number of ac-
cesses teredd;), d;, andsucda;), which will be justified in Section 5.6. To accom-
plish this, we first perform the sequenaguery(preds;)), switch refParent(pred(d;))),
querypredd;)), querysucda;)), andquerys;). Notice that this sequence adheres to our
cost specification, and results in a multi-splay tree that looks like the one in Figure 5.4.

There are two important aspects of this multi-splay tree. Fpeds;), ;, and
sucdg;) are located close together. Secoped(4;)’s subtree is isolated in its own sub-
tree of the multi-splay tree (the subtré® in Figure 5.4). Thus, after we performed
the sequence of queries and switches, we can déjets follows. We first swap; and
pred(d;), then contract; to delete it. However, since we do not allow swap and contrac-
tion in our dynamic BST model, the operation is implemented by rotatjrg the leaf,
removing it, and rotatingred(d;) to takegs;’s place. Becauspreds;), 5;, andsucds;)
are located close togethé&p(1) rotations suffice. Then we change the field of the root of
PS to decrement theefDepth andminRefDepth fields of every node iPS by one.
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After the deletion, we might need to virtually rebalance the reference tree. In a red-
black tree, we only need amortizé{ 1) pointer traversal and rotations for rebalancing.
We can perform each of those virtual traversals and virtual rotations in a constant number
of switches as shown in Section 5.3 and Section 5.2.

5.6 Running Time Analysis

5.6.1 Proof ofO(logn) amortized time per operation

Theorem 11. The amortized cost of insertion, deletion or query on the multi-splay tree is
O(log n), wheren is the maximum number of elements exists in the multi-splay tree at any
time.

Proof. In this proof, we will use the multi-splay tree access lemma in Section 3.4.2 with
mass(v) = 1 for all v. We first account for the cost of each virtual traversal and virtual
rotation, then we bound the cost of each query, each insertion and each deletion.

Each virtual traversal and rotation is implemented with a constant number of switches.
We apply the multi-splay tree access lemma to show that each switch has an amortized
cost of at mos©(logn).? In addition, because virtual rotation ofover p changes)(v)
and {(p), we need to account for the difference in potential due to the virtual rotation.
Since themass of every node id, thew of each node is proportional to itsfSubtree. In
a red-black tree, the size ofandp’s refSubtree can only change by a constant factor due
to the rotation. Thus, the potential @andp only changes by a constant after the rotation.
Since bothp and v’'s depths are less than or equal3an their splay trees (as shown
in Figure 5.2), the total potential changes per virtual rotation (excluding the switches) is
bounded byO(1). Hence, the total amortized cost of all the virtual traversal and virtual
rotations is at mosb(mlogn).

Because we have already accounted for the cost of virtual traversal and rotation, we
can assume there are no virtual traversal and rotation while bounding the cost of query,
insertion and deletion.

By the multi-splay tree access lemma, the amortized cost of each queioisn).
2In the proof of multi-splay tree access lemma in Section 3.4.2, we bound the amortized cost of a query
by upper bounding the amortized cost of each switch. Thus, while the amortized cost of a query might be

smallerthan the amortized cost of a switch, aypper boundon the amortized cost of a query is always
larger than the amortized cost of a switch.
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When we insert an element at the leaf, there are at ¢kign) elements in the
inserted splay tree. The potential of each node in that splay tree can increase by at most
1, and the potential of the inserted node is at m@8bg n). Thus, an insertion can only
increases the potential by at ma@stlogn). The final query on the inserted element also
has an amortized cost 6f(log n), and this final query pays for the time to traverse to the
location of insertion. Thus, the amortized cost of an insertian(isg n).

When we delete an element we first perform a constant number of queries and
switches s, predv) andsucgv) have constant depths in multi-splay tree. By the multi-
splay tree access lemma, each query and each switch have an amortized tosg of .
Then we swap with predv) (through a constant number of rotations) and defef€his
swap and delete only increase the potentigpi&dv), the potential for all other nodes
decreases. Sinaewas the root of multi-splay tree, the potential@&dv) is no more
than the potential of before the deletion. Hence, the increase in potential dpectdv)
is accounted for by the reduction in potential wheis removed. Thus, the amortized cost
of a deletion is als@®(log n). O

Corollary 6. Multi-splay trees satisfy th@(log n) dynamic runtime property.

Proof. Since the initial potential i9, and the final potential is greater than or equal to
0, by Theorem 11, a sequencerofoperations uses at moSm logn), wheren is the
maximum number of elements exists in the multi-splay tree at any time. H

5.6.2 Proof ofO(log log n)-dynamic-competitiveness

For the purpose of this analysis, we define the potential of a multi-splay/ teessfollows.

If each nodev has an arbitrary positivereightw(v) = 1, define thesizes(v) of node
vitobed o subiree W) (i-€., the sum of the weights of all descendants ah 7'
reachable by traversing only solid edges). Define the potential of the multi-splay tree to
be)  .rlgs(v). In other words, the weight of each node in each splay tree is 1, and the
potential of the multi-splay tree is the sum of the potentials of the splay trees.

Because we used the same potential function to prove that multi-splay tree is
O(loglog n)-competitive, by the analysis in Theorem 6, the amortized cost for each switch
is O(log logn).

Theorem 12. For an arbitrary sequence = o, - - - 0, in @ multi-splay tree, the cost of
is O(DOPT(co) *log log n), wheren is the maximum number of elements in the multi-splay
tree.
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Proof. For each query, the number of switches is exactly the increase in the Dynamic
Interleave Bound plu®)(1). Each switch costs amortiz&d(log log n) in the multi-splay
tree.

For eachinserts;), the number of switches caused by queries, which each cost amor-
tized O(log log n), performed during the insert’s query is equal to the increase in the Dy-
namic Interleave Bound. After we accounts for the switches from queries, there are only
O(1) switches left, and each switch c@3tloglogn). (TheO(1) switches consist of the
extra switches ow; andrefParent(d;) and the amortized (1) switches from virtual re-
balancing®) We charge these unaccount@dlog log n) amortized cost to the minimum
cost of 1 per operation in any BST algorithm.

For each delete operation, the number of switches performed during the queries to
pred(d;), d;, andsucda;) is bounded by 3 times the maximum number of switches caused
by queries to these 3 nodes plus a constant number to account for the extra switches per-
formed on the queried nodes and the lowest common ancestors between pairs of these 3
nodes in the reference tree (and additionally, in our case, a switcffBament (pred d;))).

The constant number of extra switches and the rest of the additiofied log n) amor-

tized cost (consisting of the field updates, the virtual traversals, the virtual rotations, the
extra rotations to move the deleted element to the leaf, and the actual deletion) is charged
to the minimum cost of 1 per operation in any BST algorithm. Finally, because the number
of rotations performed on the reference tre€{d) worst-case per operation, we can af-
ford to pay for the-2k term in the lower bound with the cm term (for a suitable constant

c), it follows that dynamic multi-splay trees afglog log n)-competitive.

]

5.6.3 Proof of Deque Theorem

Before we prove the deque theorem, we give a brief description of what happens during
a deque operation (e.g., push, pop, inject, or eject) on a multi-splay tvath reference
tree P, whereP is a red-black tree. Because of the similarity between push and inject, and
between pop and eject, this description will focus only on push and pop.

To performpush(z), we first do a standard BST insert irifg and then query in T
(we do not need the fields afto perform this operation). Next, we virtually inserinto
P by setting therefDepth andminRefDepth. Nodes on the current access pathrohay

3Because our weight assignments do not depend on the non-preferred subtree, and the set of nodes in
each splay tree is identical before and after the rotation, virtual rotationrdebange the potential.
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have theirminRefDepth values affected, but there are only a constant number of these, so
updating these takes only constant time. Finalys virtually rebalanced, which includes
performing a series of virtual pointer traversals followed by a constant number of virtual
rotations and a switch an

During a pop, we query the smallest elemerdf 7', then the successor of then we
virtually deleter, which is now a leaf of ", from 7" and fromP, which includes performing
a constant number of field updates and performing virtual rebalancing similarly to what is
done in push. Thus, we have the following invariant.

Invariant 2. After a push or pop (inject or eject), the left (right) path@fs a preferred
path, and the right (left) path aP, excludingrefRoot, is a preferred path.

The following property of red-black trees will be useful in our proof.

Lemma 24. During any sequence of rebalancing operations following an insertion or
a deletion at a node of height 0 or 1 in a red black tree, the number of times we touch a
node at height, is at mostc; * m/2("/¢2) + 3, wherecy, c,, andc; are fixed constants.

Proof. See [HM82]. [

Our proof of the deque theorem will use a potential function, which we will now define.
First, define theuter shellof P to be the union of the left and right paths Bf For each
nodex on the outer shell oP, theblack heighof z, denoted byh(z), is defined to be the
number of black nodes on any path franto a leaf. We assign weights(z) = 1/2°(®)
to each node on the outer shell with the exception of the root, which is given weight 1.
All other nodes are assigned weight 0. The size of noddenoted by (z) is defined as
usual as the sum of the weights of nodes®msubtree inl" (ignoring the root markings
that partitionT’). The rank of node:, denoted by-(x) and defined only for nodes on the
outer shell ofP, is equal tolg s(x). The potential of a multi-splay tree is the sum of the
ranks of nodes on the outer shell Bf Because we will always be performing splay steps
on nodes with strictly positive weight during a sequence of deque operations with using
this weighting scheme, so we can apply the Reweighting Lemma for splay trees [Geo04]
to all splays or partial splays on nodes of the outer shell.

Notice that we will need to change the weights of some nodes as their black heights
change so as to conform to our weighting scheme. This is why we use the Reweighting
Lemma instead of the Access Lemma. Also, we will need to assign and remove weights
to and from nodes as they enter and leave the outer shell of

Invariant 2 implies that the outer shell #f forms a connected componentihand
all children of leaves of this component are marked as roots, which implies that splay
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steps executed on nodes outside the outer shell of the multi-splay tree will not change the
potential ofT" so their costs can be accounted for separately. However, whenever a node
enters or leaves the outer shell®fdue to a virtual rotation irP, we need to account for

the change in potential.

Lemma 25. In a sequence of deque operations, the amortized cost of a switch at height
in P is O(h) and each switch ofefRoot costsO(1).

Proof. Only nodes on the outer shell &f, or children of the nodes of the outer shell are
switched during a sequence of deque operations. When we switch a mbtieight’, not

on the outer shell oP, the number of nodes in's splay tree is at most by Invariant 2.
Thus, theworst-casecost of such a switch i©(h). Moreover, since: is not in a splay tree
that contains any nodes on the outer shell, such switch does not change the poté&ntial of

A switch of a noder at heighth on the outer shell consists of two splay operations in
T (onz andrefParent(x)) in addition to a constant number of field updates. Because the
weight of z is 27%*(*) andh < 1 + 2bh(z), it follows that the amortized cost of switching
x is O(bh(z)) = O(h) using the Reweighting Lemma. (We are not reweighting here, but
must invoke the Reweighting Lemma because we will be reweighting elsewhere.) Finally,
the amortized cost of switchingfRoot is O(1) because switchingefRoot consists only
of performing a constant amount of field updates in addition to one splay/8bot,
whose weight is 1, a constant fraction of the total weighf'of O

Lemma 26. Letz be the highest node iR that is virtually traversed or involved in a vir-
tual rotation during a virtual rebalancing operation. The amortized cost of a reweighting
due to this operation i®(refHeight(x)).

Proof. The black height of a node in a red-black tree can only changerifis touched
during the rebalancing operation. Therefore, if the highest node touched is at height
then onlyO(h) nodes’ black height can change because only a constant number of nodes
of any particular black height are touched during rebalancing.

Moreover, ifz’s black height changes fro(x) to bh'(x) during a rebalancing op-
eration, thenbh'(x) — bh(z)| < 1. Hence, the cost of reweighting each node whose
black height changes 9(log TUT“’((;))) = O(log %) = O(1) in the case in which the

reweighted node is noiefRoot andO(log 3—im;) = O(bh(refRoot)) wheny is rotated
overrefRoot.

For each virtual rotation i, a node may join or leave the outer shellfof When a
node leaves the outer shell, the potential oflecreases when its weight is removed. On
the other hand, when a nodgoins outer shell at heiglitin P, = has at most 2 ancestors in
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T because the virtual rotation that placenh the outer shell switched andrefParent(x),
which are in the same splay treeragRoot. Thus, updating all of the necessary fields has a
worst-case cost @?(1). Additionally, z's newly added weight only increases the potential
of a constant number of nodes. Finally, notice that for each ancestior, it is the case
thatrefHeight(a) < refHeight(x) + 1. Therefore, the increase in rank at each ancestor is
bounded navely by lg 3 so that the total increase in potential caused by a virtual rotation
of z onto the outer shell oP is O(1). O

Theorem 13(Deque Theorem)in a multi-splay tree, a sequenceafdeque operations
(push, pop, inject, and eject) starting from an empty tree q0$ts).

Proof. In addition, to the work to perform the actual insertion or deletion, which can be
paid for by the query executed during a deque operation, the cost of each operation can
be broken down into two parts: the cost of the initial query that is performed, the cost
of virtual rebalancing, and the cost of reweighting the node¥ afs a result of virtual
rebalancing.

The cost of the initial query i©(1) because it involves at most 2 switches, one at the
root and one at the queried node (of black height 0), both of whichigdgtby Lemma 25.

During virtual rebalancing, the nodes that we virtually traverse and rotategire the
same as nodes we would actually traversgiiit existed, and each such virtual traversal
or operation consists of, in addition a constant amount of bookkeeping, a constant number
of switches to nodes whose black heights are at most one larger than the highest node
touched during that particular node or rotation. This, along with Lemma 25, shows that
the amortized cost of traversing or rotating a neds O(bh(z)). Similarly, by Lemma 26
the cost of reweighting due to a virtual traversal or rotation of nodeO (bh(x)). Thus,
by Lemma 24, the total cost of switches due to virtual rebalancing is

@) (i hos (cp xmj20/e2) 4 03)> = O(m).

h=0

Finally, notice that the potential &f is O initially, and aftern operations, we can pop
all elements in at most, additional operations while bringing the potential back to 0l

Intuitively, it is easier to argue that multi-splay trees support efficient deque operations
than to argue for splay trees because the left and right paths of the reference tree of a multi-
splay tree do not interfere with one another. To see this, consider what happens when we
are trying to find the queried element. If the search does not cayiBeot to switch,
then finding the queried element takes constant time because it is always at the root of the
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multi-splay tree. If an operation causegRoot to switch, after we perform one switch at
refRoot, the element being queried must have depth 2 or 3 unless a large number of injects
have been performed. In other wordsfRoot essentially acts as a “divider” ifi, which,

helps insure that restructuring due to pushes and pops does not interfere with restructuring
due to injects and ejects.
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Chapter 6

Conclusion

In this thesis, we have introduced multi-splay trees, and proved several results demonstrat-
ing that multi-splay trees have many desirable properties. First, we proved a close variant
of the splay tree access lemma [ST85] for multi-splay trees that is sufficient to show that
multi-splay trees have th@(log n) runtime property, the static finger property, and static
optimality. Then, we extended the access lemma by proving the remassing lemma, which
is similar to the reweighting lemma for splay trees [Geo04]. The remassing lemma shows
that multi-splay trees satisfy the working set property, key-independent optimality, and
are competitive to parametrically balanced trees, as defined in [Geo04]. We also proved
that multi-splay trees achievg(log log n)-competitiveness and we showed that sequential
access in multi-splay trees cosi$n).

We extended the interleave lower bound to allow insertions and deletions, and showed
how to carry out these operations in multi-splay trees. We proved that the runtime and
competitiveness bounds for query-only case apply when insertions and deletions are also
allowed. Then, we proved that multi-splay trees satisfy the deque property, which is still an
open problem for splay trees since it was conjectured in 1985 [Tar85]. While it is easy to
construct a BST that trivially satisfies the deque property, no other BST scheme satisfying
other useful properties has been proved to have deque property.
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6.1 Comparisons between Multi-Splay Tree and Splay
Tree

The multi-splaying algorithm is similar to splaying, but differs in a few important ways.
Consider modifying the algorithm so that it does not splay the left parent during a left-to-
right switch and right parent during a right-to-left switch. In this modified algorithm, an
access to a nodeis then a series of partial splays (ones that stop before getting all the way
to the root) of nodes on's path to the root. The pattern is that starting at an ancestar of

we splay for a while, stop, then move to an ancestor, then splay for a while, then stop, then
move to an ancestor, etc. Finally we switclso that it moves to the root. These partial
splays do not keep multi-splay trees balanced. However, with the additional splays (not on
the path between the queried element and the root), multi-splay trees become somewhat
balanced (i.e., their maximum depth becomes bounded(by” n)).

Moreover, one way of thinking about the marking of root bits is that it effectively
“removes” from the tree a large amount of weight. In other words, the root markings
allow us to temporarily split and join splay trees. Basically, if we do not expect future
access in a subtrek of the splay treel’, we split off L. As a result, when we access
elements ir’, we do not have to pay for anything in But when we need to accesswe
pay an extra cost to re-attac¢hinto 7". This technique allows us to prove tighter bounds
on multi-splay trees. However, it is difficult to apply this technique to splay trees, partly
because there are significantly less structure in splay trees.

Given the similarities between multi-splay trees and classical splay trees, it is natural to
ask whether splay trees are at3¢log log n)-competitive. Proving this would be a major
contribution toward proving the dynamic optimality of splay trees.

6.2 Lower Bounds

As far as we know, multi-splay trees may be dynamically optimal. Is this true? One
big difficulty in addressing this problem is the lack of tight lower bounds on the cost of
accessing a sequence. The static interleave bound is insufficient, because it is known to be
off by a factor oflog log n for some sequences. While the static and the dynamic interleave
lower bounds are very similar, we do not know if the new dynamic interleave lower bound

is tight.

Another open problem regarding the dynamic interleave lower bound is whether the
best bound can be computed in polynomial time. If not, another interesting problem
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is whether it can be approximated to within a constant factor, or some factor that is
o(loglogn).

Lower bounds sometimes lead to new algorithms. Examples of this are the de-
velopment of new algorithms for binary search trees based on Wilber’'s first lower
bound [Wil89, DHIP04, WDSO06]. There is the possibility that our lower bound formu-
lation could be used in this fashion.

6.3 More Open Problems

Returning to the original motivation for this research, the problem of findir{¢pg log n)-
competitive on-line BST remains open. Even in the off-line model, the problem of finding
anO(1)-competitive BST is difficult. The best known off-line constant competitive algo-
rithm use dynamical programming. The algorithm not only requires exponential time to
compute what rotations to do, but also provides little insight.

Another problem is devising an on-line comparison-based data structure (that does not
necessarily adhere to the BST model) that is within a factelo log n) of the optimal
off-line BST. For example, lacono devised a non-BST comparison-based data structure
called theunified structurethat exploits temporal and spatial locality of accesses with
better bounds than have been proven for most BSTs [lacO1b], but his data structure is only
O(log n)-competitive!

! Consider the sequencemficcesses, \/n,2\/n, ..., (vVn—1)y/n,0,/n,2v/n, ..., (vV/n—1)y/n, ...

The unified structure requiré¥(log n) time per access while splay trees require anlyt) time per access.

To see that splay trees require odly1) time per access for this sequence, notice that this first rougéhof
accesses cost¥(n) by the Dynamic Finger Theorem. After the first round, at n2ggt nodes remain on the

left spine and the nodés v/n,2\/n, ..., (y/n — 1)y/n are all among them. Thus, all following rounds will

not touch any nodes that were not on the left spine at the end of first round. Applying the Dynamic Finger
Theorem on this smaller tree with at mas¢n nodes shows that successive rounds cost Oxlyn).
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Appendix A

Lists of Notations and Symbols

Symbols

n the number of nodes in the multi-splay tree

m the length of the sequence of requests

P a reference tree

T root(¢;) = the root of the™ splay tree

o the sequence of queries (we generadize include insertions and deletions
after Chapter 4)

g; the:™" operation
a; the key or node of;

T multi-splay tree

|t] the number of nodes isubtree(t), includingroot(t)

t; the splay tree involved iff" switch during an operation

T; the state ofl’ wheng; is executed

Yy (usually) the node that the multi-splaying algorithm switche¥ in
Yi the:™ node switched during an operation

z;, z; the two additional nodes we splay during tHe switch

Table A.1: The symbols that are used throughout the thesis.
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Notation

DOPT(0) the minimum cost BST to serve the dynamic sequence

B static interleave bound

isRoot(v) a bitto store if node in multi-splay tree is the root of a splay
tree

leftChild(v) the left child ofv (this is independent of the preferred chil-

dren relationships)
leftRefSubtref@)  the left subtree of in the reference tree

OPT(0) the minimum cost BST to serve the query sequence

predv) the largest node smaller than

minRefDepth(v)  the minimumrefDepth of all the nodes irsplaySubtree(v)

refDepth(v) the depth of node in the reference tree (root has depth 1) in
the reference tree

refRoot the root of the reference tree

refSubtree(v) the subtree rooted atin the reference tree (this tree is the
same regardless of the preferred children relationships)

rightChild(v) the right child ofv (this is independent of the preferred chil-

dren relationships)
rightRefSubtre@) the right subtree of in the reference tree

root(t) the root of tree/subtree (either a splay tree, a multi-splay
tree, or a reference tree)

splayRoot the root of the multi-splay tree

splaySubtree(v) the subtree rooted at in multi-splay tree restricted to’s
splay tree

subtree(v) all the descendants of(this is independent of the preferred
children relationships)

sucqv) the smallest node larger tharin ¢

switch(v) swaps which child is the preferred one in reference tree; (de-
tails on how to simulate a switch in multi-splay trees are in
Section 3.2)

S(U) size ofv = ZuEsplaySubtree(v) w(u)

w(v) weight ofv (usually in a splay tree)

Table A.2: The notation used throughout the thesis.
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Terminology

BST binary search tree

dashed edge

an edge that connects different splay trees

preferred child the child that is more recently touched if we were to perform
all the operations on reference tree

preferred path

a path formed by a maximal chain of preferred child relations

in the reference tree. Specifically, if a nades in a preferred
path, then’s preferred child is also in the preferred path.

multi-splay an algorithm (defined in Section 3.2 that moves a node to the
root in multi-splay tree using a series of switches
solid edge the edges inside a single splay tree

Table A.3: The terminology used throughout the thesis.

Notation for the Multi-Splay Tree Access Lemma and Remass Lemma

O(x)
;
lip()

mass(x)
refLeftParent(x)

refRightParent(x)

rip(x)

refPath(z)

uchild(x)
U(x)
w(z)

lip(z) U rip(x) U {x}

the potential of the multi-splay tree after tiitaccess

the set of nodes in’s left inner path in the reference tree
(i.e. the set of nodes reachable starting’atleft child and
following right child pointers)

mass ofr (analogous to the weight of a node in splay tree)
the predecessor afin the proper ancestors ofin the refer-
ence tree

the successor of in the proper ancestors afin the refer-
ence tree

the set of nodes in’s right inner path in the reference tree
(i.e. the set of nodes reachable starting’atright child and
following left child pointers)

the set of nodes in’s preferred path that are at least as deep
asz

the non-preferred child of in the reference tree
refSubtree(uchild(x))

maxyeo(x) W(Y)

mass(x) + 32, cp(x) mass(y)

Table A.4: The notation used in Section 3.4.2 and 3.4.3.
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Notation for the Scanning Theorem

A(v) the size of theight ascending patlof v
right ascending path af the set of nodes, such thatightParent (v) = u
rightParentof a nodev  pif p’s left child isv

tr the left subtree of treg
tr the right subtree of tree
TrB ared black tree

Ty a splay tree

Table A.5: The notation used in Section 3.4.4.

Notations for Dynamic Interleave Lower Bound

DIB new dynamic interleave bound

DIB; the number of switches that must be madePin(which is
implicit from p)

LY leftRefSubtre@) U {y} during the execution aof;

P, the state of? aftero; is executed

p a sequences of changes to the referencefree

Pi thei" change to the reference trée

R?  rightRefSubtreg)) during the execution of;

Table A.6: The notation used for Section 4.3.
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Appendix B

Table of Constants

Constant Name Symbol Definition Value
multiplicative splay Cs =3

addictive splay Csa =1
multiplicative reweight ¢, =cs+1 =4
multiplicative telescope ¢ =3
multiplicative switch Cow = 3¢5 + 3¢, =21

additive switch Cowa = 3¢sq +21g(cs + 1) =7
multiplicative final switch ¢, = Cow + CsCou 18 ¢t + CsCoa =42 +631g3
addictive final switch Cfa = Cswa + CsaCsw 18 Ct + CsaCswa = 14+ 211g 3
multiplicative multi-splay ¢, = Csu + Cf =634+631g3
additive multi-splay Crmsa = (Cow +cp)lge + cro + Cowa  ~ 3124

Table B.1: Table of constants.
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