
Transparent Automatic Migration of
Interactive Resource-Intensive Applications

H. Andrés Lagar-Cavilla†, Niraj Tolia∗,
Eyal de Lara†, M. Satyanarayanan, David O’Hallaron

January 2007
CMU-CS-07-101

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
†University of Toronto, Toronto, Canada

This research was supported by the National Science Foundation (NSF) under grant numbers CNS-0509004 and
CCR-0205266, the National Science and Engineering Research Council (NSERC) of Canada under grant number
261545-3 and a Canada Graduate Scholarship, by the Canadian Foundation for Innovation (CFI), and the Ontario
Innovation Trust OIT) under grant number 7739. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the NSF, NSERC, CFI, OIT, Carnegie
Mellon University, or the University of Toronto. All unidentified trademarks mentioned in the paper are properties of
their respective owners.

Keywords: Bimodal applications, Interactive, Resource-intensive, Crunch, Cognitive, Virtual
Machine, VM Migration, Code Mobility, Application Partitioning

Abstract

Snowbird is a system that simplifies the development and use of applications that alternate between
phases with heavy computational-resource needs and phases rich in user interaction. Examples of
these applications include video editing and animation, as well as scientific, medical, and engi-
neering diagnostic and design tools. Traditionally, these applications have been implemented as
distributed programs. Snowbird, however, lets developers design their applications as monolithic
units, and automatically migrates the application to the optimal execution site to achieve short
completion time and crisp interactive performance. Snowbird augments VM migration with an
automatic migration manager, graphics hardware acceleration, and a peer-to-peer storage system
to accomplish these goals while avoiding the shortcomings that have limited the adoption of previ-
ous code mobility prototypes. Snowbird does not require that applications be written in a specific
language, or use specific libraries, and can be used with existing applications. We present experi-
mental results including some with closed-source commercial applications that validate Snowbird’s
approach to automatic migration.

1 Introduction
A growing number of applications alternate between resource-intensive crunch phases and in-
tensely interactive cognitive phases. For example, character modeling using a 3D graphics anima-
tion package involves a cognitive phase in which the animator tweaks the character’s skeleton to
obtain desired intermediate positions and visualizes low-fidelity previews of the animation. This is
followed by a crunch phase that generates a production-quality rendering of photo-realistic frames
of the character’s movements. Other examples include video editing in amateur and professional
movie production, simulation and visualization of phenomena in scientific computing, computer
assisted design in engineering and architecture, protein modeling for drug discovery in the pharma-
ceutical industry, and computer-aided diagnosis in medicine. We refer to this class of applications
as bimodal applications.

Simultaneously optimizing performance for both phases of these applications is difficult. The
crunch phase may be CPU-intensive, memory-intensive, data-intensive, or some combination of
all three. This often leads to execution on a remote supercomputer. In some cases, the resource-
intensive operations are performed on huge datasets that are too large to cache or mirror locally,
or are constrained by organizational or regulatory policies that forbid the data copying implicit in
caching and mirroring. The only option in that case is to execute the application at the dataset,
perhaps located halfway across the world. Unfortunately, remote execution hurts interactive per-
formance because of the harmful effects of Internet latency and jitter. Local execution is preferable
in the cognitive phase for two reasons. First, it provides low-latency interaction that is unaffected
by Internet load and congestion. Second, it enables use of local hardware for graphics performance
acceleration.

These challenges complicate application development and slow the emergence of new appli-
cations. Today, developers address the very different demands of the crunch and cognitive phases
by manually splitting the application into a distributed set of components [1, 5, 13, 31]. This
approach requires developers to manage communication and coordination between the various ap-
plication components, and forces them to be aware at all times of whether a particular component
will be executed locally or remotely. This adds software complexity above and beyond the intrinsic
complexity of the application being developed.

We have created a system called Snowbird that cleanly isolates intrinsic application complexity
from the distractions of remote and local execution. Using Snowbird, a developer can focus on
creating a bimodal application as a monolithic unit. At runtime, Snowbird automatically detects
phase transitions and migrates the application to the optimal execution site. This achieves short
completion time for crunch phases and crisp interactive performance during cognitive phases.

Snowbird exploits Virtual Machine (VM) technology to accomplish these goals. It wraps the
application, including all its executables, scripts, libraries and configuration files into a migrat-
able VM that we refer to as an agent. To support agents, we extended existing VM technology
with three novel mechanisms: a migration manager to automatically trigger application reloca-
tions; support for the use of hardware-accelerated graphics by VM applications; and a peer-to-peer
storage subsystem for the optimized transfer of persistent agent state.

To the best of our knowledge, Snowbird is the first system that exploits VM technology for the
purpose of simplifying the development of bimodal applications. While Snowbird’s functionality

1

is conceptually similar to process migration, the use of VM technology provides critical advan-
tages in software deployment and maintenance. Although process migration has been extensively
investigated for over two decades [4, 9, 28, 30, 33, 44, 48], no operating system in widespread
use today (proprietary or open source) supports it as a standard facility. We conjecture that this
is because process migration is a brittle abstraction: a typical implementation involves so many
external interfaces that it is easily rendered incompatible by a modest external change. Snowbird
implements a more resilient abstraction because the code and state implementing these interfaces
is part of the guest OS that is transported with the application. Snowbird also offers two additional
advantages over previous approaches to mobile code. First, the application does not have to be
written in a specific language (such as Java), nor does it need to be built using specific libraries.
Second, existing closed-source applications can use Snowbird without recoding, recompilation, or
relinking.

Experiments conducted with a number of real-world applications, including some that are com-
mercial and closed-source, show that applications running under Snowbird typically come within
10% of optimal crunch completion times without compromising crisp interactive performance.

2 Background and Related Work
Closest in spirit to Snowbird is the large body of process migration research mentioned earlier.
Unlike that body of work, Snowbird requires no host operating system changes. Rather than ex-
posing numerous software interfaces that must be precisely matched, Snowbird builds on a very
stable and rarely-changing interface to hardware.

Language-based code mobility is another well-explored approach to moving computation. The
best early example of work in this genre is Emerald [20]. A more recent example is one.world [14].
The growth in popularity of Java and its support for remote method invocation [32] has made
this approach feasible and relevant to a wide range of computing environments. Unfortunately,
many established application domains are not Java-based; work in those domains involves legacy
libraries and tool chains. In contrast, Snowbird does not require any modifications for legacy
applications. Further, it does not require applications to be written in any particular language, and
even the internal structure of the application is unconstrained. For example, the application can be
a single monolithic process, or it can be a tool chain with scripts that glue the chain together. The
crunch phase can have a finer structure, such as the use of multiple large datasets each of which is
located at a different Internet site.

Snowbird can function as a complement to Grid computing toolkits such as Globus [12] and
Condor [43], that are widely used by the scientific computing community today. While there is con-
siderable variation in the functionality provided by each toolkit, a representative sample includes
finding idle machines, authenticating users, remotely executing an application on a machine, trans-
ferring results from one machine to another, checkpointing and restarting applications, and so on.
A developer typically constructs a script or wrapper application that uses one of the above toolkits
to chain together a sequence of individual computations and data transfers across a collection of
machines. Snowbird complements the functionality provided by these toolkits by transforming a
single monolithic application into an entity that can be easily migrated under toolkit control. More

2

Internet

Compute Cluster

Improved
Data Access

Improved
Interactivity

Improved
Compute Power

Agent

Agent

Data Repository

User’s Desktop

Agent

This figure shows an example application that transitions through data- and compute-intensive phases
before returning to the user for interaction-intensive usage.

Figure 1: Example of a Migrating Agent

recently, the use of VMs has also been advocated for the Grid [11, 21, 25, 41]. To simplify deploy-
ment, the complex middleware necessary for grid functionality can be easily packaged, configured
and distributed as a VM.

Researchers have also developed toolkits for distributed visualization of large remote datasets.
Examples include Dv [26], GVU [8], Visapult [5], SciRun [31], and Cactus [13]. Unlike Snowbird,
these tools require their applications to be written to a particular interface and are therefore useful
only when application source code is available.

From a broader perspective, Snowbird was inspired by the substantial body of recent work on
applying VM technology to a wide range of systems problems, including security [10], mobile
computing [23, 39], and software maintenance [38]. Snowbird, however, is the first system to
leverage VM functionality to simplify the development of bimodal applications.

3 Design and Implementation
Snowbird implements the notion of an agent, a migratable embodiment of an application that trans-
parently and seamlessly relocates itself to achieve optimal performance. While an agent contains a
single logical application, this application can be a tool chain made up of several processes execut-
ing simultaneously or sequentially in a pipeline fashion. Figure 1 shows the example of an agent
that starts at the user’s desktop, where execution of interactive cognitive phases is optimal. It then
migrates to several remote sites to favor CPU performance or I/O performance, and then returns to
the desktop for the next cognitive phase.

The figure also illustrates Snowbird’s peer-to-peer (P2P) nature: agents execute on several
hosts, each providing a desirable resource and separated by WAN links of potentially high latency.

3

Life Cycle Commands Migration Commands Administration Commands
createagent agentname suspend agentname addhost agentname hostname
launch agentname resume agentname hostname sync agentname hostname
kill agentname suspend-resume agentname hostname movehome agentname newhome
purge agentname hostname listhosts agentname

Table 1: Snowbird Commands

Despite the symmetry of this setup, every agent has a unique home host, which acts as the au-
thoritative machine on which commands used to modify agent state are issued. The home host is
typically the user’s local desktop or some other nearby computer where the user spends most of her
time interacting with the agent. SSH access credentials are a necessary prerequisite for an agent to
execute on other hosts; these SSH credentials are also used to encrypt all communications.

Table 1 shows the command line interface for Snowbird. It includes commands for managing
an agent’s life cycle, for controlling agent migration, and for system administration. Migration
control commands are typically used by the migration manager described in Section 3.2. However,
they are available for explicit user or application control, if desired.

Snowbird offers four key advantages over existing approaches to code mobility. The rest of
this section describes the implementation effort necessary to realize these advantages.

• First, applications do not have to be written in a specific language, nor do they need to be
built using specific libraries.

• Second, legacy applications do not have to be modified, recompiled, or relinked to use Snow-
bird. This greatly simplifies real-world deployments that use proprietary rather than open-
source applications.

• Third, migration is transparent and seamless to the user, beyond the obviously desirable
effects of improved interactive or computational performance.

• Fourth, there is a clear separation between migration policy and mechanism. The code to
decide when to trigger a migration is independent of the code that implements the migration.

3.1 Use of Virtual Machine Technology
Snowbird uses a Virtual Machine Monitor (VMM) to isolate each agent in its own VM. An agent
can thus be any application binary, written in any programming language, running on any ma-
jor OS. The current version of Snowbird is based on the Xen 3.0.1 VMM. We chose Xen be-
cause its open-source nature makes it attractive for experimentation. However, our design is suffi-
ciently modular that using a different VMM such as VMware Workstation will only require modest
changes.

Snowbird uses VM migration [23, 38] to dynamically relocate the agent from a source to a
target host. To migrate an agent, its VM is first suspended on the source. The suspended VM

4

image, typically a few hundred MBs of metadata and serialized memory contents, is then trans-
ferred to the target, where VM execution is resumed. Snowbird uses live-migration [7] to allow a
user to continue interacting with the application during agent relocation. This mechanism makes
migration appear seamless, by iteratively prefetching the VM’s memory to the target while the VM
continues to execute on the source host. When the amount of prefetched VM memory reaches a
critical threshold, a brief pause is sufficient to transfer control.

In building Snowbird, our goal was to leverage existing VM technology as much as possible.
In spite of this goal of minimalism, we found that the implementation effort was substantial. We
had to add three new mechanisms to implement the agent abstraction: a migration manager that
automatically triggers relocation; support for use of hardware-accelerated graphics by VM appli-
cations; and a peer-to-peer storage subsystem for persistent VM state. We discuss these in detail
in the next three sections.

3.2 Sensor-Driven Migration Manager
While applications can explicitly control migration decisions using the directives from Table 1,
Snowbird provides system-controlled agent relocation as one of its key features. In other words,
the decision to migrate, the choice of migration site, and the collection of information upon which
to base these decisions can all happen under the covers in a manner that is transparent to the user
and to the agent. Our solution uses a migration manager module. This module bases its migration
decisions on performance sensors that extract relevant data from the VMM and the Snowbird user
interface, and migration profiles that express the migration policy as transitions of a finite state
machine triggered by sensor readings. Snowbird’s clean separation between policy and mechanism
simplifies the use of different profiles and sensors. It also enables the use of migration managers
based on entirely different principles.

3.2.1 Performance Sensors

Our implementation currently provides performance sensors for CPU utilization, network utiliza-
tion, interaction intensity, and interaction smoothness. The CPU and network sensors periodically
poll the VMM for CPU and network usage by a particular agent. The poll interval is configurable
and has a default value of one second.

The interaction sensor is built into Snowbird’s agent graphical user interface, described in the
next section. As shown in Figure 2, the interaction sensor collects a stream of time-stamped events
corresponding to keyboard/mouse inputs and screen updates. The intensity of the user’s interactive
demand and the smoothness of the agent’s response can both be inferred from this stream.

Our measure of interaction intensity is the number of input events per unit of time. Our measure
of interaction smoothness is the number of frames per second triggered by an input event. This
metric can be derived by assuming that all screen updates are causally related to the most recent
input event. The frames per second (FPS) triggered by that input event is thus the number of
related screen updates divided by the time from the event to the last of those updates. The FPS
metric reflects the smoothness of an interactive response. Remote interaction usually relies on non-
work-conserving thin-client algorithms such as VNC [36] that under adverse network conditions

5

t 1

Update 1 Update 3Update 2i i+1

t 2 t 3

Total Response Time (T)

This timeline shows the raw output of the interactivity sensor. Screen updates 1–3 are assumed to be
causally related to the mouse input event Inputi. The resulting FPS is 3/T .

Figure 2: Interaction Intensity and Smoothness

skip frames to “catch up” with the output. These low-FPS responses result in jerky on-screen
tracking of mouse and keyboard inputs that can be annoying and distracting. We thus quantify the
interaction smoothness of an event window as the average FPS yielded by all the inputs in that
window. High interaction intensity combined with low interaction smoothness is the cue used by
the migration manager to trigger a remote-to-local transition.

3.2.2 Migration Profiles

A migration profile defines a finite state machine (FSM) that is used to model the agent’s behavior.
As shown in Figure 3, each state in this machine characterizes a particular level of resource demand
and/or interaction. The state transition rules define when and how sensor readings should trigger
state transitions. The profile also specifies the amount of past sensor information that should be
used to evaluate the rules. Each state defines an optimal execution site. While the figure exemplifies
the typical FSM derived from the three sensors we implemented, profile writers are free to generate
more complex FSMs using more sensors or making decisions at a finer granularity.

Profile creation involves a characterization of an agent’s resource usage and may be done by
application developers or by third-parties such as user groups, administrators, or technically adept
users. In the absence of an application-specific profile, the migration manager uses a generic profile
that identifies typical crunch and cognitive phases. Throughout the experiments in Section 5, we
were able to use this generic application profile for all of our experiments. In less straightforward
cases, machine learning techniques could be used to derive migration profiles.

A relevant concern is the handling of applications with overlapping crunch and cognitive
phases, that could compromise the agent’s stability by “thrashing” between the two states. The
straightforward solution we have implemented is to specify a priority favoring interactive perfor-
mance when conflicting migration rules are simultaneously triggered. Another solution would be
to invoke traditional hysteresis mechanisms [33], to shield the migration manager from adopting
this erratic behavior.

6

CPU
Intensive
cycles.org

Network
Intensive
 data.edu

Interaction
Intensive
usr.home

Net > 4 Mbit/s

CPU > 90%

FPS < 10 & Input > 15

Net > 4 Mbit/s

FPS < 10
&

Input > 15

Partial diagram of agent states and transitions. Each state includes its matching migration target (in
boldface).

Figure 3: Example FSM of Agent States

3.3 Hardware-Accelerated Graphical Interface
The graphical user interface for an agent has to comply with two requirements. First, a user should
be able to interact seamlessly with an agent, whether the agent is running on the user’s desktop
or on a remote host. Second, many of the applications targeted by Snowbird (such as scientific
visualization and digital animation), require the use of 3D graphics acceleration hardware, a feature
absent from most virtualized execution environments.

To meet these requirements Snowbird provides an enhanced thin client interface based on
VNC [36]. When the agent is running on a remote host, the thin client protocol is used to commu-
nicate screen updates and user input events (i.e., keystrokes and mouse) over the network. When
the agent is running on the user’s desktop, the network becomes a loopback connection. Inter-
action is never interrupted as the agent is relocated because network connections persist through
live-migrations: if the agent is relocated within the same subnet, a gratuitous ARP-reply binds
the agent’s IP address to the new physical host. Relocations across subnets are supported with
VNETs [41], a Layer-2 proxy.

As efficient virtualization of graphics hardware requires manufacturer support, we instead vir-
tualize the OpenGL API. This ubiquitous standard is supported by all major graphics hardware
vendors and is the only pervasive cross-platform API for 3D applications. We use library preload-
ing to masquerade as the system’s native GL driver and intercept all GL calls made by an appli-
cation. GL primitives are then forwarded over the network to a remote rendering module, where
they are rendered directly by 3D graphics acceleration hardware. Although this setup allows com-
plete flexibility, we expect the rendering module to execute in the user desktop’s administrative
VM, physically co-located with the agent VM during cognitive phases. Unlike other OpenGL API
virtualization systems [15], ours does not require application or kernel modifications, and supports
agent migration.

7

VNC Server
Standard AppChromium

GL App

VNC Updates
Network GL Commands

Network

User
Input

Agent User’s Desktop

Direct Rendering
Combined VNC Viewer

Using VNC as an example, this figure shows how 3D-intensive applications running within an agent
can benefit from hardware acceleration found on a user’s desktop.

Figure 4: Snowbird Extensions for 3D Support

The architecture of our OpenGL virtualization system is shown in Figure 4. We use Chromium [18],
a framework that was originally designed for distributed rendering on clusters, as our OpenGL
transport protocol. GL primitives bypass the VNC server and are rendered using 3D hardware
on the user’s desktop. Updates from non-3D APIs (e.g. Xlib) used by standard applications are
rendered by the VNC server on its virtual framebuffer and shipped to the viewer. A modified VNC
viewer composes both streams and offers a combined image to the user. Input events are handled
entirely by the thin client protocol.

3.4 The WANDisk Storage System
VM migration mechanisms only transfer memory and processor state; they do not transfer VM disk
state, which is typically one to three orders of magnitude larger (many GBs). Therefore, each VM
disk operation after migration usually involves network access to the source host. While this may
be acceptable on the LAN environments that are typical of most VM deployments in data centers,
it is unacceptable for the high-latency WAN environments in which we envision Snowbird being
used. A distributed storage mechanism is needed to take advantage of read and update locality in
disk references.

Distributed file systems are a mature technology today, with many systems in production use.
Examples include NFS [37], AFS [17], Coda [40], and Lustre [6]. Storage Area Networks (SANs)
have gained widespread popularity. Parallax [47] has been proposed as a storage subsystem for
clusters of VMs. Unfortunately, most of these systems are designed for a LAN environment and
perform poorly on WANs. Furthermore, client-server solutions that centralize all data transfers or
support a single replica are inefficient given Snowbird’s P2P usage model involving several hosts.
These include file systems that perform acceptably on WANs, such as AFS and Coda, existing VM
disk transfer mechanisms [39], and distributed block stores such as DRBD [35].

We have therefore implemented a distributed storage system called WANDisk, that provides
efficient WAN access to multiple replicas of an agent’s virtual disk. To provide flexibility in the
choice of migration site, WANDisk follows a P2P approach where any Internet host can maintain a
persistent replica of the agent’s state. To reduce data transfers, WANDisk relies on the persistence
of the replicas, which are created on demand as new migration sites are identified. WANDisk’s
replica control mechanism uses two techniques for optimizing the efficiency of agent migration.

8

Agent Admin VM

Local
Chunk Store

Remote
Chunk Store

Remote
Chunk Store

Figure 5: WANDisk Storage System Architecture

First, lazy synchronization is used to avoid unnecessary data transfers to inactive migration sites or
for unused parts of a virtual disk. Second, differential transfers are used between replicas to reduce
synchronization overhead.

Figure 5 shows the two-tiered WANDisk architecture, which consists of a kernel module and
a user-space disk manager, both operating within Xen’s administrative VM. The kernel mod-
ule presents a pseudo block device that is mapped to an agent’s virtual block device. All agent-
originated block requests are handled by the pseudo block device and redirected into the user-space
disk manager.

The disk manager partitions the agent’s virtual disk into chunks and uses a chunk table to
keep track of versioning and ownership information. Chunk size is configurable at agent creation
time; we use a chunk size of 128 KB in our experiments, which we have found to work well in
practice. As the agent modifies blocks in its virtual block device, the mapped chunk’s version
number is incremented, and its ownership transferred to the host where the agent is executing.
Each host thus “owns” the chunks which the agent modified while executing there. Before the
agent accesses any of those chunks at a different host, the chunk table will point WANDisk to the
location of the freshest copy. The chunk table is thus the only piece of metadata necessary for
the correct execution of WANDisk, and becomes a crucial addition to an agent’s migratable state.
To account for this, we have modified live migration in Xen to include the chunk table; however,
actual chunk transfers are not involved in the critical path of agent migration. WANDisk fetches
chunks exclusively on-demand, using the rsync algorithm [45] to perform efficient differential data
transfer.

The heavyweight sync command shown in Table 1 is available for bringing any replica up to
date under explicit user control. This command may be used for performance or reliability reasons.
The command blocks until the replica at the specified migration site is both complete and up to

9

date. At this point, agent execution can continue at that site even if it is disconnected from other
replicas.

3.5 Implementation Limitations
While the use of VM technology coupled with the additions described above enables seamless and
transparent relocation of bimodal applications, Snowbird currently has some limitations that are
the focus of our ongoing research.

The most relevant restriction is that Snowbird uses a shared memory model in which applica-
tions have to execute in a single SMP virtual machine. While Xen, our current choice of VMM,
supports up to 32 processors, some highly parallel applications might require the use of multi-
ple machines in a large cluster. As VMs running on cluster nodes are likely to be homogeneous,
with the same kernel, loaded libraries, and running processes, we plan on exploiting this similarity
among hosts to enable the concept of “gang migration,” greatly amortizing the cost of migrating a
large set of VMs.

The second restriction affects all systems that use VM migration techniques, and indeed all
code migration prototypes that do not use interpreted languages. Vendor extensions to the x86
instructions set architecture, such as Intel’s SSE and AMD’s 3DNow!, can be problematic. At
startup, an application might configure itself to take advantage of extensions available on one ma-
chine, and then crash upon migrating to another machine lacking those extensions. While dynamic
binary rewriting could be employed, it could lead to a significant impact on performance. Instead,
we propose extending the migration mechanism to check that all extensions available at the source
are also available at the destination (i.e. only migrate to a superset). Given the ongoing efforts
from vendors to support competing extensions, this is not an onerous restriction. For example,
AMD has started supporting Intel’s SSE3 extensions since the release of Athlon 64 chips in 2004.

Finally, an intrinsic limitation of our work is that it implicitly assumes a distinct separation
of the crunch and cognitive phases. Applications that consistently overlap crunch and cognitive
phases are not amenable to Snowbird.

4 Experimental Validation
Our experimental evaluation has two objectives. First, to determine the benefit of automatic mi-
gration compared to an static approach that runs both crunch and cognitive phases on the same
location. This benefit is measured in terms of reduced completion time for the crunch phase and
improved interactive performance for the cognitive phase. Second, to determine Snowbird’s over-
head compared to an ideal application partitioning that optimizes both the crunch and cognitive
phases of the application.

In the rest of this section, we first describe our applications and the corresponding benchmarks
we developed. This is followed by a description of the experimental testbed, and methodology.
Finally, we describe VNC-Redux, a tool we implemented to enable consistent and repeatable replay
of interactive user sessions.

10

Application Domain Source
Maya Digital Animation Closed

QuakeViz Simulation Visualization Open
ADF Quantum Chemistry Closed

Kmenc15 Video Editing Open

Table 2: Application Characteristics

4.1 Application Benchmarks
To demonstrate Snowbird’s broad applicability, we experimented with applications that are repre-
sentative of the domains of professional 3D animation, amateur video production, and scientific
computing, and include both open source as well as commercial closed source products. For each
application, we designed a representative benchmark that consists of a crunch and a cognitive
phase. Table 2 summarizes the main characteristics of our applications.

4.1.1 Maya: Digital Animation

Maya [27] is a commercial closed source high-end 3D graphics animation package used for charac-
ter modeling, animation, digital effects, and production-quality rendering. It is an industry standard
and has been employed in several major motion pictures, such as “Lord of the Rings,” “War of the
Worlds,” and “The Chronicles of Narnia.”

Our benchmark consists of a user loading a partially-complete animation project and com-
pleting it. The cognitive phase, which lasts for approximately 29 minutes, consists of specifying
the degrees of freedom and motion bounds for the joints of a digital cowboy character (see Fig-
ure 6(a)), tweaking the character’s skeleton to obtain desired intermediate positions, and scripting
so that patterns of movement are rhythmically repeated. As part of this phase, the user periodically
visualizes a low-fidelity preview of the animation. Maya leverages local graphics hardware for
low-fidelity previews.

When the animation design is complete, the user initiates a production-quality rendering, i.e.,
the crunch phase. This is a parallelizable CPU-intensive task in which each photo-realistic frame
is rendered with a number of lighting effects. Maya does not use any graphics hardware in this
phase. The end-result is a collection of frames that can be encoded in any movie format.

4.1.2 QuakeViz: Simulation Visualization

QuakeViz is an interactive earthquake simulation visualizer, and the only benchmark that accesses
a remote dataset. Our benchmark consists of the visualization of a 1.9 GB volumetric dataset
depicting 12 seconds of ground motion around a seismic source in the Los Angeles Basin [3].
During a computationally intense crunch phase, QuakeViz mines the dataset to extract ground mo-
tion isosurfaces. These are surfaces inside the volume for which all points are moving in the same
direction and at the same speed. The result is a set of triangular meshes representing an isosurface
at successive points in time. A series of transformations including decimation, smoothing, and
normals calculation, are then applied to generate a more visually appealing result.

11

(a) Maya: Character modeling (b) QuakeViz: Ground motion isosurface

(d) ADF: Energy density for an amino acid molecule (c) Kmenc15: Video Editing

Figure 6: Application Screenshots

In the ensuing cognitive phase, the scene is synthesized and the meshes are rendered on the
screen (see Figure 6(b)). During this phase, the user examines the rendered isosurfaces by zoom-
ing, rotating, panning, or moving forwards or backwards in time. The cognitive phase of the
benchmark lasts for approximately 23 minutes, and involves exploration of the seismic reaction
isosurfaces at 30 different time-steps.

4.1.3 ADF: Quantum Chemistry

Amsterdam Density Functional (ADF) [42] is a commercial closed-source tool, used by scientists
and engineers to model and explore properties of molecular structures. In the ADF benchmark,
the crunch phase consists of performing a geometry optimization of the threonine amino-acid
molecule, using the Self-Consistent Field (SCF) calculation method.

The CPU intensive SCF calculation generates results that are visualized in a subsequent cog-
nitive phase, such as isosurfaces for the Coulomb potential, occupied electron orbitals, and cut-
planes of kinetic energy density and other properties (see Figure 6(c)). Analysis of these proper-
ties through rotation, zooming, or panning, are examples of the actions performed during the 26
minute-long cognitive phase.

12

Compute
Server

Storage
Server User Desktop

LAN
Emulated

WAN

Figure 7: Experimental Testbed

4.1.4 Kmenc15: Video Editing

Kmenc15 (KDE Media Encoder) [22] is an open-source digital editor for amateur video post pro-
duction. Users can cut and paste portions of video and audio, and apply artistic effects such as
blurring or fadeouts. Kmenc15 can process AVI/MPEG-1 encoded video, and can export com-
posite movies to a number of formats. This is the only benchmark that does not exploit graphics
acceleration hardware.

In the cognitive phase of our benchmark, we load a 210 MB video of a group picnic and split it
into four episodes (see Figure 6(d)). We then edit each episode by cropping and re-arranging por-
tions of the recording and adding filters and effects. In all, the cognitive phase takes approximately
15 minutes. The user then starts the crunch phase by converting to MPEG-4 format all four edited
episodes. As Kmenc15 can convert the four episodes in parallel, significant gains can be obtained
from executing at a multiprocessor.

4.2 Experimental Testbed
Figure 7 shows our experimental testbed, which consists of a user desktop, a compute server, and
a storage server. The user desktop is a 3.6 GHz Intel Pentium IV equipped with an ATI Radeon
X600 Graphics Processor Unit (GPU). The compute server is a four-way SMP (two dual-threaded
cores) 3.6 GHz Intel Xeon. The storage server is a PC that serves QuakeViz’s dataset through a
NFS share. Note that QuakeViz uses NFS only for its dataset: our policy was to serve external
public datasets through well-known shared storage mechanisms, while using WANDisk for the
virtual disk containing all the VM internal state, intermediate files generated by the applications,
and final results.

We use a paravirtualized 2.6.12 Linux kernel for the Snowbird experiments and Fedora’s 2.6.12
Linux kernel for the non-Snowbird experiments. Both kernels are configured with 512 MB of
RAM. Snowbird uses HPN-SSH [34], a WAN-optimized SSH variant, for all of its data transfers.

The user desktop communicates with the storage and compute servers through a WAN link
emulated using NetEm [16]. Based on recent Internet bandwidth measurements on Planetlab [24]
we configure the WAN link with a bandwidth of 100 Mbit/s. Table 3 shows NLANR [29] mea-
surements of representative RTT latencies between Internet2 hosts in different cities in the US and
Europe, leading to our choice of RTTs of 33, 66, and 100 ms. The storage and compute servers are
connected via a Gigabit LAN.

13

RTTs (ms)End Points
Min Mean Max c

Berkeley – Canberra 174.0 174.7 176.0 79.9
Berkeley – New York 85.0 85.0 85.0 27.4
Berkeley – Trondheim 197.0 197.0 197.0 55.6
Pittsburgh – Ottawa 44.0 44.1 62.0 4.3
Pittsburgh – Hong-Kong 217.0 223.1 393.0 85.9
Pittsburgh – Dublin 115.0 115.7 116.0 42.0
Pittsburgh – Seattle 83.0 83.9 84.0 22.9

These RTT measurements were obtained from NLANR [29]. The end hosts were all connected using
high-bandwidth Internet2 links. The c column gives the lower bound RTT between the two endpoints
at the speed of light.

Table 3: Internet2 Round Trip Times

4.3 Experimental Configurations
We investigate three configurations:

• Local Execution: The application executes exclusively in an unvirtualized environment
on the user’s desktop. During interactive phases, 3D graphics are rendered using locally
available hardware acceleration. This represents the best scenario for the cognitive phase,
but the worst case for the crunch phase.

• Remote Execution: The application executes exclusively in an unvirtualized environment
on the SMP compute server. As all user interaction takes place over a standard VNC thin
client, 3D rendering on the remote server is software based. This represents the best scenario
for the crunch phase, but the worst case for the cognitive phase.

• Snowbird: Snowbird is used to dynamically switch between local and remote execution
modes. Both the user’s desktop and remote compute server run the Snowbird infrastructure:
Xen VMM, WANDisk, the hardware-accelerated agent GUI, and the migration manager. All
benchmarks are initiated in an agent running at the user’s desktop, with the WANDisk state
at all hosts initially synchronized. A single generic application profile is used for all of our
experiments.

By running the complete benchmark in each of the Remote and Local modes, we obtain two
sets of results. First, a measure of what is clearly undesirable: running the crunch phase on an
underpowered configuration (Local), and interacting with an application executing behind a WAN
link (Remote). By comparing against these results we quantify the benefits of Snowbird in terms
of reduced completion time for the crunch phase and improved interactive performance for the
cognitive phase .

14

Conversely, we quantify Snowbird’s overhead by comparing it to the execution of the crunch
and cognitive phases on the Remote and Local configurations, respectively. This second combina-
tion represents the ideal application partitioning, and provides an upper bound on the performance
of any manual partitioning, as it does not include communication overhead or added computational
complexity.

4.4 Interactive Session Replay
One of the challenges in evaluating interactive performance is the reliable replay of user sessions.
To address this problem, we developed VNC-Redux, a tool based on the VNC protocol that records
and replays interactive user sessions. During the session record phase, VNC-Redux generates a
timestamped trace of all user keyboard and mouse input. In addition, before every mouse button
click or release, VNC-Redux also records a snapshot of the screen area around the mouse pointer.
During replay, the events in the trace are replayed at the appropriate times. To ensure consistent
replay, before replaying mouse button events the screen state is compared against the previously
captured screen snapshot: if sufficient discrepancies are detected, the session must be reinitialized
and replay restarted. Screen synchronization succeeds because VNC, like most other thin client
protocols, is non work-conserving and can skip intermediate frame updates on slow connections.
This results in the client always reaching a stable and similar (albeit not always identical) state for
a given input. Therefore, given an identical initial application state, the entire recorded interactive
session can be reliably replayed.

Unfortunately, the simple screen synchronization algorithms used by other replay tools [49] do
not work well in high-latency environments. This algorithm performs a strict per-pixel comparison
with a threshold that specifies the maximum number of pixel mismatches allowed. Something as
simple as a mouse button release being delayed by a few milliseconds due to network jitter can
cause a 3D object’s position to be offset by a small amount. This offset causes the algorithm to
detect a large number of pixel mismatches, stalling replay.

To address this problem, we developed an algorithm based on Manhattan distances to estimate
image “closeness”. For two pixels in the RGB space, the Manhattan distance is the sum of the
absolute differences of the corresponding R, G, and B values. If a pixel’s Manhattan distance from
the original pixel captured during record is greater than a given distance threshold, it is classified
as a pixel mismatch. If the total number of pixel mismatches are greater than a pixel difference
threshold, the screenshots being compared are declared to be different. Our experiments confirm
that this improved matching algorithm works well over high latency networks.

5 Results
This section present the results of our experiments with the four benchmarks introduced in Sec-
tion 4.1. All benchmarks include a cognitive and a crunch phase. In Maya and Kmenc15, the
cognitive phase precedes the crunch phase, whereas in QuakeViz and ADF, the cognitive phase
follows the crunch phase.

15

45 46

67

22

97

10
7

12
6

43

50

59

75

24

51

61

77

24

52

63

80

24

0

20

40

60

80

100

120

140

Maya QuakeViz ADF Kmenc15

Application

Ti
m

e
(M

in
ut

es
)

Remote
Local
Snowbird.33
Snowbird.66
Snowbird.100

This figure shows the crunch completion time for Local, Remote, and Snowbird experiments. Snow-
bird was evaluated at the 3 different WAN latencies. Results are the mean of three trials; maximum
standard deviation was 2% of the corresponding mean.

Figure 8: Total Completion Time - Crunch Phase

Time (seconds)
Best Latency = 33 ms Latency = 66 ms Latency = 100 ms

Application Snowbird Detect Migrate Suspend Detect Migrate Suspend Detect Migrate Suspend
Maya 2977 10.8 61.2 5.1 10.8 62.2 5.4 11.5 67.0 6.1

QuakeViz 3565 8.1 64.2 5.6 8.1 64.9 5.9 8.1 68.1 6.4
ADF 4478 12.5 63.3 5.5 11.5 61.0 5.4 13.1 65.2 6.8

Kmenc15 1424 8.1 51.8 4.7 9.1 54.0 5.7 8.4 59.5 6.7

The Detect, Migrate, and Suspend columns measure the time taken by the migration manager to
detect the transition to a crunch phase, time spent in live migration, and the time the agent was sus-
pended for migration to complete. Results are the mean of three trials; maximum standard deviation
for Detect, Migrate, and Suspend was 22%, 3%, and 11% of the corresponding means. For magnitude
comparison, the Best Snowbird column shows the best observed crunch time for Snowbird.

Table 4: Crunch Phase Migration Times

5.1 Crunch Phase
Figure 8 shows the total completion time of the crunch phase for the four benchmarks under three
configurations: local, remote and Snowbird. We only show results for different network round
trip latencies for Snowbird, as the performance of the crunch phase for the local and remote con-
figurations was unaffected by RTT. This was expected for Maya, ADF, and Kmenc15, which do
not access external data. Since QuakeViz reads a large (1.9 GB) file over NFS, we expected that
differences in network latency would affect its performance. However, it appears that readahead at
the NFS client effectively masks the latency.

By migrating to the remote compute server, Snowbird is able to significantly outperform the
local configuration. Specifically, at 33 ms, Snowbird approximately halved the length of the crunch
phase for all applications, and came within 10 to 30% of the ideal performance of the remote
configuration. The crunch phases of all the benchmarks are CPU intensive and benefit from the
increased computational power of the multiprocessor server. QuakeViz also takes advantage of the

16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

C
D

F

Smoothness (Frames Per Second)

Remote

Snowbird Local

Remote - 100ms
Remote - 66ms
Remote - 33ms

Snowbird
Local

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

C
D

F

Smoothness (Frames per second)

Remote Snowbird Local

Remote - 100ms
Remote - 66ms
Remote - 33ms

Snowbird - 100ms
Snowbird - 66ms
Snowbird - 33ms

Local

(a) Maya (b) Quake

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

C
D

F

Smoothness (Frames Per Second)

Remote Snowbird Local

Remote - 100ms
Remote - 66ms
Remote - 33ms

Snowbird - 100ms
Snowbird - 66ms
Snowbird - 33ms

Local
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

C
D

F

Smoothness (Frames Per Second)

Remote

Snowbird

Local

Remote - 100ms
Remote - 66ms
Remote - 33ms

Snowbird
Local

(c) ADF (d) Kmenc15

This figure shows the distribution of interactive responses for the cognitive phases of Maya, Quake,
ADF, and Kmenc15. Snowbird results for Maya and Kmenc15 are independent of latency as they
begin interaction in local execution mode and do not need to migrate.

Figure 9: Interactive Response

lower latency and increased bandwidth to the data server.
Table 4 shows the time it takes the migration manager to detect the transition into the crunch

phase, and the time it takes to migrate the agent over to the remote compute server. The maximum
time taken by the migration manager was 14 seconds. Further, even with the worst-case latency of
100 ms, agent migration never took more than 70 seconds to complete. In all cases, the agent spent
less than 1.5 minutes on the user’s desktop after it entered a crunch phase, less than 5% of the total
benchmark time. The table also shows that the maximum time for which an agent would appear to
be unresponsive to user input during migration was seven seconds or less, an order of magnitude
smaller than what an optimal non-live migration would entail (512MB/100Mbit/s = 41seconds).

17

Time (seconds)
Latency = 33 ms Latency = 66 ms Latency = 100 ms

Application Detect Migrate Suspend Detect Migrate Suspend Detect Migrate Suspend
Maya Not Relevant

QuakeViz 10.8 52.9 4.2 11.5 55.6 5.2 11.5 57.2 7.0
ADF 16.3 58.2 4.6 10.2 63.8 6.0 10.2 62.4 7.2

Kmenc15 Not Relevant

The Detect, Migrate, and Suspend columns measure the time taken by the migration manager to
detect the transition to a cognitive phase, time spent in live migration, and the time the agent was
suspended for migration to complete. Maya and Kmenc15 results are not relevant as the workload
does not include a cognitive phase after the crunch phase finishes at the remote server. Results are
the mean of three trials; maximum standard deviation for Detect, Migrate and Suspend was 2%, 1%,
and 12% of the corresponding means.

Table 5: Cognitive Phase Migration Times

5.2 Cognitive Phase
Figure 9 shows the Cumulative Distribution Functions (CDFs) of the number of frames per second
(FPS) for each of our four benchmarks under three configurations: local, remote, and Snowbird.
We show results for different network RTTs for the remote and Snowbird configurations. The
cognitive phases for QuakeViz and ADF start on the remote compute server soon after the crunch
phase terminates. The migration manager detects this transition and migrates back to the user’s
desktop. On the other hand, the cognitive phase of Maya and Kmenc15 start with the agent already
running on the user’s desktop.

Our results show that Snowbird delivers a much better cognitive performance than remote
interaction. More importantly, the median number of FPS delivered by Snowbird is above the
long established 20 FPS threshold needed for crisp interactivity [2]. For example, results from the
QuakeViz benchmark, seen in Figure 9 (b), show that in the median case, Snowbird delivers 2.7
to 4.3 times more FPS for the 33 and 100 ms latency cases respectively. In the 95th percentile
case, it delivers 3.0 to 4.8 times more FPS for the 33 and 100 ms latency cases respectively. Even
though the agent has to migrate from the compute server to the user’s desktop, Snowbird’s cognitive
performance tends to be independent of the WAN latency. As Table 5 indicates, this occurs because
the network latency has a negligible impact on both the time taken before the decision to migrate
is made and the time required to migrate the agent.

However, the results also show the FPS delivered are not as high as those in unvirtualized
local interaction. Local execution experiments delivered anywhere between 1.1 to 2.6 times more
FPS in the median case and between 1.3 to 2.2 times more FPS in the 95th percentile case. This
difference between Snowbird and local execution is not a fundamental limitation of our design but
is an artifact of the OpenGL virtualization described in Section 3.3. Chromium, the software used
to intercept OpenGL calls, proved to be very CPU intensive. Adding another CPU core to the
user’s desktop or optimizing Chromium’s implementation would bring Snowbird’s performance
much closer to that of unvirtualized local interaction.

18

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p
 o

f
c
ru

n
c
h
 p

h
a
s
e

Migration Time (minutes)

C=2 min C=5 min C=10 min

This figure plots Snowbird’s migration cost vs. application speedup, for the duration of the crunch
phase (C) of three hypothetical applications. The parameter space above of each curve indicates
where Snowbird is beneficial.

Figure 10: When Is Snowbird Useful?

6 Discussion and Improvements
The results presented in Section 5 demonstrate the feasibility and value of Snowbird for some real-
world applications. It is important to note that none of these applications were written by us, or
modified for use with Snowbird. Two of the applications (Maya and ADF) are commercial products
whose success in the marketplace confirms their importance. The other two applications (QuakeViz
and Kmenc15) have substantial open source user communities. All four are representative of
a growing class of applications that embody distinct crunch and cognitive phases. To expand
Snowbird’s applicability to yet more applications, it is crucial to understand the tradeoffs inherent
to its behavior.

Figure 10 illustrates the application space where Snowbird is applicable. The horizontal axis
shows migration time in minutes, which depends on the quality of the Snowbird implementation.
This measure of system agility includes both the swiftness with which migration can be triggered,
and the efficiency with which it can be completed. The vertical axis shows the crunch speedup
when executing remotely, which depends on the application and the available remote resources.
The rationale is that an agent executes locally at the user’s desktop to provide the best possible
interactive response, and when the application enters the crunch phase the agent migrates to a
remote site if the expected performance gain exceeds the switching cost. Each curve in Figure 10
plots the relation speedup < C/(C − migration time) for three hypothetical applications with
crunch phases of different lengths C. This relation formalizes the behavior of Snowbird and splits
the parameter space of the figure in two parts. Above each curve, Snowbird is beneficial; bellow
the curve, it is harmful.

This simple model illustrates how improving migration time broadens the set of applications

19

for which Snowbird is applicable. For a given speedup, workloads with smaller crunch time benefit
as migration time decreases. And for a given crunch time, swifter migration reduces the constraints
on the quality of the remote resources needed. Conversely, high migration times limit the appli-
cability of Snowbird to applications with long crunch phases, or to remote platforms capable of
yielding very high speedups. A combination of short crunch time and modest crunch speedup
defines a particularly challenging workload for Snowbird. In the current prototype, detection and
change of modality occur in roughly 10 seconds, while the migration that follows typically takes
about 60 seconds plus lazy WANDisk chunk fetches. Mapping these values to Figure 10 indicates
that crunch phases below ten minutes and speedups below 2 are the approximate limits of appli-
cability for Snowbird. We explore in the next section the most straightforward means to improve
Snowbird’s migration costs: attacking the WANDisk bottleneck.

It should be noted that a complementary attribute of agility is stability, which characterizes
the ability of the implementation to avoid frivolous migrations that may lead to thrashing. It is
well known from control theory that agility and stability are two sides of the same coin, and
have to be considered together in the design of an adaptive system. Our current implementation
has reasonable agility. While simple provisions have been adopted to deal with thrashing (see
Section 3.2.2), we have not needed to use them throughout our experiments. We infer that the
stability of our prototype is reasonable for the tested applications.

While harder to formalize, we can reasonably conclude that Snowbird’s agility for cognitive
phases is already beneficial for many applications. Even under challenging networking conditions
in which a thin client would be painful for interactive use, a user can be confident that the agent
will revert to local execution within roughly a minute. As mentioned in Section 5.2, there is still
room for improvement when compared to an unvirtualized configuration. We plan to address this
by streamlining the combined Chromium-VNC stack to significantly reduce processing overhead
and latency.

6.1 Improving WANDisk Performance
Snowbird’s performance is significantly affected by that of its storage subsystem, WANDisk. Our
initial implementation, upon which the results of Section 5 are based, had many areas of ineffi-
ciency. First, the kernel module did not support concurrent requests. Second, there was significant
overhead arising from the kernel module duplicating part of the functionality of Xen’s virtual I/O
subsystem. Third, a separate rsync process was forked for each chunk miss. Fourth, there was no
prefetching or readahead within WANDisk.

We have recently implemented a new version, WANDisk2, that has a number of performance
improvements. First, WANDisk2 uses asynchronous I/O to the local disk. Second, the kernel
module now uses the blocktap [46] interface. Third, WANDisk2 opens persistent TCP connections
to remote hosts, and fetches all chunks from a host using the same connection, without forking
additional processes. Both rsync and raw byte copying can be used to transfer data. We have left
prefetching for future work.

To quantify the effect of these improvements, we conducted a number of experiments using
the synthetic IOZone benchmark [19]. We run four IOZone throughput benchmarks inside a Xen
Linux VM for a 2 GB WANDisk block device: sequential read, sequential write, random read,

20

Sequential Random
Test Read Write Read Write

No miss
WANDisk1 (KB/s) 25194 8997 1864 1014
WANDisk2 (KB/s) 50063 43261 1977 8837

Speedup 1.9 4.8 1.1 8.9
5% miss

WANDisk1 (KB/s) 1072 1123 673 433
WANDisk2 (KB/s) 10146 10501 1607 5936

Speedup 9.5 9.3 2.4 13.7
10% miss

WANDisk1 (KB/s) 550 612 381 369
WANDisk2 (KB/s) 5447 5742 1437 4040

Speedup 9.9 9.4 3.8 10.9
20% miss

WANDisk1 (KB/s) 291 307 241 273
WANDisk2 (KB/s) 2752 2897 1160 2401

Speedup 9.5 9.4 4.8 8.8
50% miss

WANDisk1 (KB/s) 148 162 137 132
WANDisk2 (KB/s) 1097 1162 716 1047

Speedup 7.4 7.2 5.4 7.9
100% miss

WANDisk1 (KB/s) 81 74 70 71
WANDisk2 (KB/s) 554 585 432 539

Speedup 6.8 7.9 6.2 7.6

Throughput comparison of WANDisk2 against the original WANDisk1. Speedup is the ratio of WAN-
Disk2 performance to that of WANDisk1. Test size was 2GB and remote fetches happened through a
100 Mbit/s 66 ms RTT link. Each result is the mean of 3 trails. The maximum standard deviation for
WANDisk1 and WANDisk2 was 5% and 3% of the corresponding mean, respectively.

Table 6: WANDisk Throughput Benchmark

and random write. While WANDisk uses the default 128 KB chunk size, IOZone performs I/O in
units of 16 KBs. For each benchmark, we evaluate WANDisk with different hit ratios for its local
chunk cache. On a chunk miss, WANDisk fetches the entire chunk from a remote cache through a
100 Mbit/s 66 ms RTT link.

Table 6 presents the results of the benchmark for both versions of WANDisk. WANDisk2
performance improvements are encouraging, as it consistently outperforms its predecessor by up
to an order of magnitude. We expect that the good results of Section 5 will be even better with
WANDisk2.

21

7 Conclusion
In this paper, we focus on a growing class of bimodal applications that alternate between resource-
intensive (crunch) and interactive-intensive (cognitive) phases. We describe Snowbird, a system
that simplifies the creation and use of bimodal applications by combining VM migration with
support for VM 3D graphics hardware acceleration, a wide-area peer-to-peer storage system and
an automatic migration manager. Snowbird lets the programmer focus on the application logic
and develop a monolithic unit. During execution, Snowbird seamlessly and transparently relocates
application execution. This allows easy and efficient use of remote resources such as compute
servers and scientific datasets during crunch phases. It also provides crisp interactive performance
during cognitive phases.

In experiments including closed-source commercial applications, Snowbird’s interactive per-
formance far exceeds that achievable through remote execution, while its crunch phase perfor-
mance is significantly improved through the use of remote resources. Snowbird promptly detects
application transitions between crunch and cognitive phases, and automatically migrates the appli-
cation to the most appropriate execution site.

With the emergence of fields like computational biology, we expect the number, importance,
and breadth of bimodal applications to grow substantially. Simultaneously, trends that promote
the use of distant supercomputing centers are steadily increasing, along with the creation of large
scientific datasets, all spread across the globe and connected by high-bandwidth high-latency links.
It is in this challenging combination of circumstances that Snowbird’s enabling role will find fertile
ground.

Acknowledgments
We would like to thank Rajesh Balan for his involvement with earlier versions of this work. We
would also like to thank Nilton Bila, Angela Demke Brown, Debabrata Dash, Jan Harkes, Jing
Su, and Alex Varshavsky for their feedback on early versions of this paper. We would also like to
thank Beatriz Irigoyen for her help with ADF, Julio Lopez for his help with QuakeViz, Brian Paul
for his help with Chromium, and Karan Singh for his help with Maya.

References
[1] Asmara Afework, Michael D. Beynon, Fabian Bustamante, Angelo Demarzo, Renato Fer-

reira, Robert Miller, Mark Silberman, Joel Saltz, Alan Sussman, and Hubert Tsang. Digital
dynamic telepathology - the virtual microscope. In Proc. American Medical Informatics As-
sociation (AMIA) Annual Fall Symposium, Lake Buena Vista, FL, November 1998.

[2] John M. Airey, John H. Rohlf, and Jr. Frederick P. Brooks. Towards image realism with
interactive update rates in complex virtual building environments. In SI3D ’90: Proc. 1990
Symposium on Interactive 3D Graphics, pages 41–50, Snowbird, UT, 1990.

22

[3] Volkan Akcelik, Jacobo Bielak, George Biros, Ioannis Epanomeritakis, Antonio Fernandez,
Omar Ghattas, Eui Joong Kim, Julio Lopez, David O’Hallaron, Tiankai Tu, and John Urbanic.
High resolution forward and inverse earthquake modeling on terasacale computers. In Proc.
ACM/IEEE conference on Supercomputing, Phoenix, AZ, November 2003.

[4] Artsy, Y., Finkel, R. Designing a Process Migration Facility: The Charlotte Experience. IEEE
Computer, 22(9):47–56, 1989.

[5] W. Bethel. Visapult: A prototype remote and distributed visualization application and frame-
work. In Proc. SIGGRAPH Annual Conference, New Orleans, LA, July 2000.

[6] Peter J. Braam. The lustre storage architecture, November 2002. http://www.lustre.
org/docs/lustre.pdf.

[7] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proc.
2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI), Boston,
MA, May 2005.

[8] K. Czajkowski, M. Thiebaux, and C. Kesselman. Practical resource management for grid-
based visual exploration. In Proc. IEEE International Symposium on High-Performance Dis-
tributed Computing (HPDC), San Francisco, August 2001.

[9] F. Douglis and J.K. Ousterhout. Transparent Process Migration: Design Alternatives and the
Sprite Implementation. Software Practice and Experience, 21(8):1–27, 1991.

[10] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
Revirt: enabling intrusion analysis through virtual-machine logging and replay. In Proc. 5th
Symposium on Operating Systems Design and Implementation (OSDI), Boston, MA, Decem-
ber 2002.

[11] Renato J. Figueiredo, Peter A. Dinda, and José A. B. Fortes. A case for grid computing on
virtual machines. In Proc. 23rd International Conference on Distributed Computing Systems
(ICDCS ’03), page 550, Providence, RI, 2003.

[12] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The Inter-
national Journal of Supercomputer Applications and High Performance Computing, 11(2):
115–128, Summer 1997.

[13] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf. The cactus
framework and toolkit: Design and applications. In Vector and Parallel Processing - VECPAR
’2002, 5th International Conference. Springer, 2003.

[14] Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Anderson, T., Bershad, B.,
Borriello, G., Gribble, S., Wetherall, D. System Support for Pervasive Applications. ACM
Transactions on Computer Systems, 22(4):421–486, 2004.

23

http://www.lustre.org/docs/lustre.pdf
http://www.lustre.org/docs/lustre.pdf

[15] Jacob Gorm Hansen. Blink: 3d multiplexing for virtualized applications. Technical Report
06-06, Dept. of Computer Science, University of Copenhagen, April 2006.

[16] Stephen Hemminger. Netem - emulating real networks in the lab. In Proc. Linux Conference
Australia, Canberra, Australia, April 2005.

[17] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan, R.N. Sidebotham,
and M.J. West. Scale and performance in a distributed file system. ACM Transactions on
Computer Systems, 6(1), February 1988.

[18] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner, and
James T. Klosowski. Chromium: a stream-processing framework for interactive rendering on
clusters. In Proc. 29th Annual Conference on Computer Graphics and Interactive Techniques,
pages 693–702, New York, NY, 2002.

[19] IOZone Filesystem Benchmark. IOZone. http://www.iozone.org/.

[20] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in the
emerald system. ACM Transactions on Computer Systems, 6(1):109–133, 1988.

[21] Katarzyna Keahey, Ian Foster, Timothy Freeman, Xuehai Zhang, and Daniel Galron. Virtual
workspaces in the grid. Lecture Notes in Computer Science, 3648:421–431, August 2005.

[22] Kmenc15. http://kmenc15.sourceforge.net/.

[23] Michael Kozuch and Mahadev Satyanarayanan. Internet suspend/resume. In Proc. Fourth
IEEE Workshop on Mobile Computing Systems and Applications, Callicoon, New York, June
2002.

[24] Sung-Ju Lee, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Rodrigo Fonseca. Measuring
bandwidth between planetlab host. In Proc. 6th Passive and Active Measurement Workshop
(PAM), Boston, MA, March 2005.

[25] Bin Lin and Peter Dinda. Vsched: Mixing batch and interactive virtual machines using peri-
odic real-time scheduling. In Proc. ACM/IEEE Conference on High Performance Networking
and Computing (SC 2005), Seattle, WA, November 2005.

[26] Julio López and David O’Hallaron. Evaluation of a resource selection mechanism for com-
plex network services. In Proc. IEEE International Symposium on High-Performance Dis-
tributed Computing (HPDC), San Francisco, CA, August 2001.

[27] Maya. Maya. http://www.autodesk.com/maya.

[28] Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou.
Process migration. ACM Computing Surveys, 32(3):241–299, 2000. ISSN 0360-0300. doi:
http://doi.acm.org/10.1145/367701.367728.

24

http://www.iozone.org/
http://kmenc15.sourceforge.net/
http://www.autodesk.com/maya

[29] RTT And Loss Measurements. National Laboratory for Applied Network Research (NLANR),
August 2006. http://watt.nlanr.net/active/maps/ampmap_active.php.

[30] Osman, S., Subhravati, D., Su., G., Nieh, J. The Design and Implementation of Zap: A
System for Migrating Computing Environments. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, Boston, MA, December 2002.

[31] S. Parker and C. Johnson. Scirun: A scientific programming environment for computational
steering. In Proc. ACM/IEEE conference on Supercomputing, San Diego, CA, December
1995.

[32] Pitt, E., McNiff, K. java.rmi: The Remote Method Invocation Guide. Addison-Wesley Pro-
fessional, 2001.

[33] Michael L. Powell and Barton P. Miller. Process migration in demos/mp. In Proc. 9th ACM
Symposium on Operating Systems Principles (SOSP), October 1983.

[34] Chris Rapier and Michael Stevens. High Performance SSH/SCP - HPN-SSH, http://
www.psc.edu/networking/projects/hpn-ssh/.

[35] Philipp Reisner. DRBD - Distributed replicated block device. In Proc. 9th International
Linux System Technology Conference, Cologne, Germany, September 2002.

[36] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper. Virtual
network computing. IEEE Internet Computing, 2(1):33–38, Jan/Feb 1998.

[37] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B. Design and Implementation of
the Sun Network File System. In Summer Usenix Conference, Portland, OR, June 1985.

[38] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam, and
Mendel Rosenblum. Optimizing the migration of virtual computers. In Proc. 5th Symposium
on Operating Systems Design and Implementation (OSDI), December 2002.

[39] M. Satyanarayanan, Michael A. Kozuch, Casey J. Helfrich, and David R. O’Hallaron. To-
wards seamless mobility on pervasive hardware. Pervasive and Mobile Computing, 1(2):
157–189, 2005.

[40] Satyanarayanan, M. The evolution of coda. ACM Transactions on Computer Systems, 20(2),
May 2002.

[41] Ananth I. Sundararaj and Peter A. Dinda. Towards virtual networks for virtual machine grid
computing. In Proc. 3rd Virtual Machine Research and Technology Symposium, pages 177–
190, San Jose, CA, May 2004.

[42] G. te Velde, F. Matthias Bickelhaupt, Evert Jan Baerends, Célia Fonseca Guerra, Stan J. A.
van Gisbergen, Jaap G. Snijders, and T. Ziegler. Chemistry with ADF. Journal of Computa-
tional Chemistry, 22(9):931–967, 2001.

25

http://watt.nlanr.net/active/maps/ampmap_active.php
http://www.psc.edu/networking/projects/hpn-ssh/
http://www.psc.edu/networking/projects/hpn-ssh/

[43] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice: The
condor experience. Concurrency and Computation: Practice and Experience, 17:323–356,
February-April 2005.

[44] Theimer, M., Lantz, K., Cheriton, D. Preemptable Remote Execution Facilities for the V-
System. In Proc. 10th Symposium on Operating System Principles (SOSP), Orcas Island,
WA, December 1985.

[45] A. Tridgell and P. Mackerras. The rsync algorithm. Technical Report TR-CS-96-05, Depart-
ment of Computer Science, The Australian National University, Canberra, Australia, 1996.

[46] Andrew Warfield, Steven Hand, Keir Fraser, and Tim Deegan. Facilitating the development
of soft devices. In Proc. USENIX Annual Technical Conference, pages 379–382, Anaheim,
CA, April 2005.

[47] Andrew Warfield, Russ Ross, Keir Fraser, Christian Limpach, and Steven Hand. Parallax:
Managing storage for a million machines. In Proc. 10th Workshop on Hot Topics in Operating
Systems (HotOS), Santa Fe, NM, June 2005.

[48] Zandy, V.C., Miller, B.P., Livny, M. Process Hijacking. In Proc. 8th International Symposium
on High Performance Distributed Computing (HPDC), Redondo Beach, CA, August 1999.

[49] Nickolai Zeldovich and Ramesh Chandra. Interactive performance measurement with vnc-
play. In Proc. USENIX Annual Technical Conference, FREENIX Track, Anaheim, CA, April
2005.

26

	1 Introduction
	2 Background and Related Work
	3 Design and Implementation
	3.1 Use of Virtual Machine Technology
	3.2 Sensor-Driven Migration Manager
	3.2.1 Performance Sensors
	3.2.2 Migration Profiles

	3.3 Hardware-Accelerated Graphical Interface
	3.4 The WANDisk Storage System
	3.5 Implementation Limitations

	4 Experimental Validation
	4.1 Application Benchmarks
	4.1.1 Maya: Digital Animation
	4.1.2 QuakeViz: Simulation Visualization
	4.1.3 ADF: Quantum Chemistry
	4.1.4 Kmenc15: Video Editing

	4.2 Experimental Testbed
	4.3 Experimental Configurations
	4.4 Interactive Session Replay

	5 Results
	5.1 Crunch Phase
	5.2 Cognitive Phase

	6 Discussion and Improvements
	6.1 Improving WANDisk Performance

	7 Conclusion

