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Abstract

Comparison of the spatial organization of related genomes reveals a wéatdoroa-
tion about how complex biological systems evolve and function. A fundariastain spatial
comparative genomics is identification of homologous genomic regions, retiahbave de-
scended from a common region in an ancestral genome. While closely redgteds are char-
acterized by conserved gene content and order, in more distantly rgitedes homologous
regions will be apparent only as gene clusters, pairs of regions with sjrilanot identical,
gene content and scrambled gene order. As gene content and melged statistical tests to
reject the null hypothesis that these regions share genes by charmredessential.

In this thesis, | provide statistical tests to assess the significance of geterslior a variety
of biological questions and search scenarios. | present the firstafastatistical framework
for the max-gap cluster, the most widely used cluster definition in genomic sesalyThis
framework provides statistical tests for two common search scenarioseitithtes principled
selection of parameter values prior to conducting a search for genersluste

Second, | propose novel statistical tests for clusters spanning thmeengeregions, for two
comparative genomics applications: analysis of conserved linkage within mdfiplges and
identification of large-scale duplications. Multi-genome clusters are of &sang importance,
yet existing tests focus almost exclusively on pairwise comparisons. Btsedemonstrate
that simultaneously considering information from more than two regions draaiigtimproves
sensitivity over pairwise methods.

Third, | demonstrate the importance of incorporating cluster statistics in algwitbr spa-
tial comparative genomics. Orthologs, genes that descended from a coamoestor through
speciation, are the fundamental unit of comparison in many comparativemies applica-
tions. Using my statistical framework for evaluating max-gap clusters, lldgxeenew method
for ortholog prediction based on conserved spatial organization. Usaigptical significance
to rank conserved patterns makes it possible to accommodate a varietytiaf fggures in a
single framework, yielding a method that can be applied to a broad rangmofgc data sets.
This flexible framework outperforms current spatial ortholog predictiothods, especially on
highly diverged genomes.
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Chapter 1

Introduction

Comparative genomics, the analysis and comparison of genomes front refegeies, is a powerful tech-

nique for understanding how complex biological systems evolve and fuingBenomes can be compared
on a range of scales to ask a variety of questions. Features that Favedmapared include gene comple-
ment, gene order, sequence similarity of both coding and non-coding Binkthe intron and exon structure
of related genes. In this work, | focus on the spatial arrangementredsyeithin a genome, and use the
term spatial comparative genomics to refer to this particular aspect of tte Tibe analysis of conserved

spatial organization can further our understanding of protein functioiregulation, functional constraints

on genome organization, the rates and patterns of chromosomal evolutidogenetic relationships, and

how evolutionary processes lead to functional innovation.

Spatial comparative genomics is used to identify homoloydestures in related genomes, facilitat-
ing the transfer of knowledge between organisms [113, 119]. Althougteasing numbers of genome
sequences are becoming available, most experimental studies are sétl carron a small set of model or-
ganisms. By determining how genes and genomic regions of poorly-studjadisms correspond to those
of well-studied organisms, knowledge about one species can improeestanding of others. In particular,
although humans are among the most well-studied organisms, many typeseofvexqtation cannot be
carried out on humans. Thus, transfer of knowledge from modeinisges is essential for understanding
human biological processes, and developing new disease treatments.

Conserved patterns in spatial organization can also help elucidate proteitioh and regulation. In
bacteria, functionally related genes tend to be spatially clustered on thmabome. Comparisons of gene
order can identify sets of genes whose spatial arrangement is cedsand that are likely to be functionally
related. Unlike sequence or structural homology methods, which primadbyjige insight on the biochemi-
cal function of a protein, spatial clustering offers evidence of assonmbetween proteins, such as physical
interactions, or participation in the same pathway. These types of assosiagipridentify the physiological
or cellular role of a protein, complementing information derived from seqe@omparisons. In bacteria,
conserved gene order and content have been used for predictpemins [37, 57, 130, 135, 177, 179, 181],
horizontal transfers [97], and more generally to investigate the relaijpbgiween spatial organization and
functional selection [86, 87, 95, 124, 159, 162, 163].

Finally, analyses of spatial organization serve an invaluable role in evoariidiology. A great deal of
spatial comparative genomics methodology has been developed for thefantient large-scale or whole

'Homology and other biological terms are defined in Appendix A

1



genome duplication events [4, 53, 54, 110, 148, 150, 174, 175, C&bfserved segments between different
genomes have been used extensively to reconstruct the history oh@esomal rearrangements and infer
an ancestral genetic map for a diverse group of species [18, 42151116, 129, 142, 149], as well as to
provide novel features for new phylogenetic approaches [12,44,40, 141, 164].

All of the evolutionary and functional questions described above redh# identification of homolo-
gous chromosomal segments, chromosomal regions that have desfrenddte same chromosomal region
in an ancestral genome. When comparing two genomes, researchgenarally interested in findingr-
thologoussegments, regions that have descended from the same chromosonmaimagi® genome of the
most recent common ancestor (MRCA) of the two species. In other cagespme self-comparison is con-
ducted to identify evidence of whole genome or large scale duplication. ledkes chromosomes within a
single genome are compared in order to find duplicate@acslogous segments that derive from the same
region in the pre-duplication genome.

Immediately following speciation, offspring genomes have very similar gentenband order. Simi-
larly, a whole genome duplication yields two very similar copies of the ancegtradme, both embedded
within a single genome. In both cases, the two genome copies will divergdimesdue to a wide range
of evolutionary processes acting on the genome at different scalesefrocesses can radically alter ge-
nomic sequence, gene complement, and gene order. On a local scalmigerquence evolves through
point mutations and small insertions and deletions. Larger ggmleme rearrangementsuch as translo-
cations, transpositions, and successive inversions of large regi@anshtwomosome, shuffle genes within
and between chromosomes, and scramble gene order with respect ted¢se@rgenome. In addition, the
gene complementhe set of genes that appear in the genome, will be altered by domairrghuféirizontal
transfer, gene loss, and gene duplication.

As gene content and order diverge, homology can be significantlyuoddclt is essential to not only
design sensitive search algorithms to identify homologous regions, buply statistical tests to show that
local similarities in gene content could not have occurred by chance. Ajththere is a long history of
searching for conserved chromosomal regions, there has beelittleryork on formal statistical models
for assessing their significance. This is the problem | address in this.thesis

1.1 Background

In closely related genomes, homologous segments will be characterizeshbgreed gene order and con-
tent, as well as similarity in non-coding regions, allowing them to be identifiedigirdirect sequence com-
parison. However, for more diverged genomes, sequence similarity nijliee detectable in regions under
selection, such as protein coding regions. Furthermore, over time, ssieeeearrangements will cause
the scrambling of gene order. For comparisons of such divergechyesiagenes are frequently treated as
markers, and homologous chromosomal regions are detected by sgdmtgane clustergairs of regions
with similar but not identical gene content, and possibly scrambled gene orde

To detect distantly related homologous chromosomal segments, it is common daomege-based ap-
proach, in which clusters are detected based on the locations of genwrkers rather than direct com-
parison of the primary sequence. A marker-based approach to the icktiifi of homologous segments
typically involves the following steps:

1. Markers must be mapped to their location in the genome. When the markegsrags and the data
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are genomic sequences, this reduces to the problem of gene finding.
2. Homology between markers must be established.

3. A precise cluster definition must be selected, to specify the types of dissteght, and an algorithm
must be developed, to identify such clusters via genome comparisons.

4. Statistical tests must be applied, to ensure that the clusters obtained dve no chance similarities.

The focus of this thesis is the last step, the development of statistical testess dise significance of
gene clusters. The design of statistical tests will depend on decisions mtmegrevious three steps. In
the next three sections, | give a brief introduction to existing approaidnte=ach of the first three tasks.
Then, at the end of this chapter, | will discuss the implications of all of thesies for the development of
formal tests to assess cluster significance.

1.1.1 Marker Identification

Map-based approaches to genome comparison require as input arsatkafrs, sequences with unigue
locations in the genome. Frequently, genes are used as markers sineethuginces tend to be conserved
over long periods of evolutionary time. Also, in many genomic studies, it isg#a are the unit of interest.
More recently, other types of markers have also been considered]226145]. In this thesis | assume that
genes are used as markers, but all of the methods discussed heemeral gnough to be applied to other
types of markers as well.

Maps derived from whole genome data provide a close to complete listing tddaton of all genes,
although errors in gene finding may occasionally result in markers thadtlconrespond to protein coding
regions. Sequence data also allows the precise order and physicatdsteetween genes to be determined,
as well as gene orientation.

Until recently, maps were constructed from genetic linkage data, defrigadthe statistical analysis of
co-occurrence of traits. Unlike markers identified from genomic sequéata, markers in linkage maps
represent well-studied genes, for which the existence of corregmpirdnscripts has been verified. How-
ever, linkage maps can be quite sparse, with markers representing amget ®f all genes. Also, linkage
maps have low resolution: distances are approximate, gene orientatiomwumland the respective order-
ing of nearby genes can not always be determined with certainty. Otentwiews of comparative spatial
genomics, as well as much of the existing models and methodology, are infognbid history. There are
many organisms where linkage maps are currently the only type of spatiahdatable. Thus, the basic
genome model used in this thesis is general enough to be applied to both Imkpgeind modern genomic
datasets.

We assume a genome consists of a single linear unbroken chromosoneserdpd as a sequence of
n genes:G = (¢1,...,9»). The orientation of each gene is ignored. This model assumes that gemes d
overlap, and disregards the physical distance between genes. Tdrecdibetween genes is defined to be
equal to the number of genes between them. This model can be advarstdgeganomic comparisons
because physical distances often differ substantially between orgariisaddition, it eliminates the need
to model the variation in gene density that can lead to gene-rich and geneeg@mns of chromosomes. A
model based on physical distances would have to take into account thikdgaa cluster that is unlikely to
appear in a gene-poor region might easily occur by chance in a gdnegon.
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Figure 1.1: A hypothetical gene tree showing the evolution ofdtgene family. An ancestral gene
undergoes a gene duplication, giving rise to geheA speciation event occurs, giving rise to human and
mouse. Each lineage contains a copy of thenda’ genes. The: gene in human is orthologous to the
a in mouse. The! genes are orthologs as well. All pairs consisting of angene and one’ gene are
paralogous. All four genes are homologous, as they arose from l& singestral gene. Together, they form
a gene family.

1.1.2 Homology Detection

For genome comparison, once a set of markers is determined for eaosimgetineir homologous counter-
parts in the other genome must be located. Two genes are homologous ifdkseyfrmam a single gene in
an ancestral genome. Homologous genes are either orthologs or gardileg genes in different species
are orthologous if they arose from a single gene in the MRCA of the twoiepeand paralogous if they
arose through a duplication event that preceded the divergence sihdloges [59, 61]. These relationships
are illustrated in Figure 1.1.

In general, common ancestry is inferred from sequence similarity. Hawbwenology identification
based on sequence comparison of genes is still an imprecise scienceprdiiiism is especially diffi-
cult for distantly related proteins, since distinguishing significant sequeimgilarity in the twilight zone
is particularly problematic [86]. Other factors that complicate homology ideatifio include the pres-
ence of large families of multi-domain proteins [156], and the difficulty of distiakging orthologs from
paralogs [134, 165, 59, 61]. As a consequence, gene homologtificktion is an area of active re-
search [21, 26, 33, 40, 92, 147, 176].

For the purposes of this thesis, | assume that homology relationships headyabeen established,
and treat the set of homologous gene pairs as fixed input data. Theateatl similarity scores are dis-
carded, and matches are considered biriayeach pair of genes is either considered homologous or non-
homologous. The biological definition of homology implies that it should be anvakgnce relation. In
practice, however, althougtietectablehomology relations are generally symmetric, they are rarely tran-
sitive. That is, although gene maybe be similar to geng, andy is similar to genez, there may be no
detectable similarity betweenandz. In general, homology is a many-to-many relationship, but often the
data we are given is one-to-one. This is a computational not a biologgaireenent—many algorithms
for finding gene clusters assume a one-to-one mapping between geragklition, this restriction is often
enforced when the goal is to identify orthologous segments, as allowingaag-to-one mapping signifi-
cantly reduces noise in the comparative map [183]. Thus, | assume a medgth a gene has at most one
homolog, except in Chapter 4, in which | present a new method for gemgeaone-to-one mapping from
a many-to-many dataset.
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Figure 1.2: Three ways to visualize the comparison of marker order in thatere genomes. Integers
and stars denote genes, with stars denoting singletons. (a) A companaipveLines show the mapping
between homologous genes. (b) A dot plot showing the same information iririx floamat. Columns
represent genes i¥; and rows represent genes@?y. A matrix element is 1 (black circles) if the genes
are homologous, and 0 (empty) otherwise. (c) A graph in which vertiggesent homologous gene pairs,
and edges connect vertices if the corresponding genes are closieetoigeboth genomes. In this example,
edges connect genes if the sum of the distances between the genesgeiaties is no greater than two.

1.1.3 Cluster Detection

Given the set of genes, their locations, and the homology mapping, thetepxs to formally characterize
homologous segments. We have an informal notion of the signature of esters: pairs of regions with
similar but not identical gene content, and scrambled gene order. Intordenstruct algorithms to find
such clusters, this informal notion of a gene cluster must be defined moreugly.

The formal characterization of a gene cluster is critical to sensitive deteatiancient homology with-
out inclusion of false positives. Cluster definitions are based on simplifiedelm@f real biological pro-
cesses. In order to be useful, these models must abstract away muehunfdirlying biology and focus
on only a few features of interest. Researchers represent a germonp&igson in a number of ways. For
example, consider two genom@s = 1* 2* 34 56789 andGs = * 3* 14* 2567 » 98, where the integers
correspond to homologous gene pairs, and the stars inditagietonsgenes with no homolog in the other
genome. Three ways of visualizing the ordering of genes in the two genaraeshown in Figure 1.2.
Figure 1.2(a) shows eomparative mapepresentation, in which homologous pairs are connected by a line.
Alternatively, in adot plot(shown in Figure 1.2(b)), the horizontal axis represénisthe vertical axis rep-
resentd7s, and homologous pairs are represented as dots in the matrix. Finally, thisacele converted
into anundirected graph{shown in Figure 1.2(c)), where each vertexorresponds to a homologous gene
pair. Two vertices are connected by an edge if the corresponding geeelose together in both genomes,
where “close” is determined based on a user-defined distance funaticth@shold.
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Cluster Definitions and Algorithms

Deciding how exactly to define the structures of interest is one of the mad#ienbing tasks in cluster
identification. Cluster definitions can be declarative, specifying precisditions that allow one to identify
a cluster, or they can be constructive, in which an algorithm to find clugegiven, but explicit cluster
criteria are not specified. Although a constructive definition makes it tlearto find clusters, it does not
necessarily provide information about what the resulting clusters will loak lifinless a formal definition
can be abstracted from the algorithm, it can be difficult to reason abaé thipes of models, or to develop
formal statistical test for them. A declarative definition, on the other haraftés easier to reason about,
but it requires an additional search procedure to find clusters thatysditesformal definition. Whether a
declarative or constructive definition is used, in both cases, it is negetssverify that the constructive and
formal definitions are equivalent. Recently there has been a movemenmbtalifce cluster definitions, and
to develop precisely formulated search algorithms, so that correctnésffamency of these algorithms can
both be analyzed.

The most conservative approach defines conserved segmemamn substringgontiguous regions
that contain the same genes in the same order, and sometimes orientatiom|1614,1120]. For example,
two common substrings can be found in the example genome in Figure 1{@(B)} and{8,9 }. However,
such a stringent definition will invariably lead to the exclusion of many rediatsdid indeed descend from
a single ancestral region but have since undergone small rearranggeme

A slightly more liberal approach defines a conserved segmentcasnanon intervala set of genes
occurring contiguously in each genome. The order of genes within theecinay differ from genome to
genome. For example, two common intervals can be found in the example geindfigase 1.2:{5,6,7 }
and{8,9 }. A number of researchers have developed search algorithms to dffidiad common intervals
in genomic data [48, 77, 169]. However, this definition is still generally tootssince gene duplication
and loss are common when comparing distantly related genomes, and a simgleggrtion or deletion in
one genome will destroy a common interval.

The r-window definition generalizes a common interval, allowing rearrangemesntseh as a limited
number of insertions and deletions. Arwindowcluster is defined as a pair of windows, each contaiming
genes, in which at leagtgenes are shared [34, 50, 62]. Note thdt i r, then an--window reduces to a
common interval of siz&é. An r-window corresponds to a square in the dot plot with sides of lengilhich
contains at least homologs. For example, wher=5 andk =4, two clusters can be found in the example
genome in Figure 1.2(b)¥5,6,7,9 } and{6,7,8,9 }. We distinguish between the genes that appear in
both regions that make up the cluster (the “marked” genes) and the integvemmarked” genes that occur
in only one of the two regions, although they may have a homolog elsewhere gettome. One limitation
of ther-window definition is that it is unclear how to best choose the window sizéelfvindow size is too
small, then a cluster may be missed, since it does not fit within the window. Ifitiebow size is too large,
however, then even if it contains a cluster the window may not be denspbjgted with homologs, and the
cluster may not appear significant. Rather than fixing the window size imadyae would prefer to allow
the window to grow to its “natural size.” In other words, we would like to kegfending the window as
long as we continue to find homologs nearby in both genomes.

To gain extensibility, the more generabx-gapcluster definition has been proposed [10]. It also ignores
gene order and allows insertions and deletions, but does not conseamatiimum length of the cluster to
r genes. Instead, a max-gap cluster is described by a single pargmaietis defined as a set of marked
genes where the distance (@ap) between adjacent marked genes in each genome is never larger than a
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given distance threshold, Note that whery = 0, max-gap clusters reduce tommon intervals When

the maximum gap allowed ig = 1, two maximal max-gap clusters are found in the example genome in
Figure 1.2(b):{1,2,3,4 }and{5,6,7,8,9 }. A max-gap cluster ismaximalif it is not contained within

any larger max-gap cluster. Correct search algorithms for this defingiguire some sophistication. Many
groups design heuristics to find max-gap clusters, but such methodetagaaranteed to find all maximal
max-gap clusters. The implications of using these search methods is diddudgber in Section 2.3.3.
Bergeroret al. originally developed a divide-and-conquer algorithm (called GeneTe@mneenduct a whole
genome comparison, and efficiently detect all maximal max-gap clusters Tt0$ algorithm was later
extended by He and Goldwasser [75]. Their HomologyTeams algoritheliégparalogs, and is one of the
few algorithms for finding gene clusters in which it is not assumed that the logmmapping is one-to-one.

Other cluster definitions include that of Calabresel. [30], in which the distance between each pair
of homologs is evaluated as a function of the gap sizkath genomes. Unlike the max-gap definition,
which only requires the distance in each genomedmeother marked gene in the cluster be small, this
method requires that all marked genes that are adjacent in gefigralsobe close in genomé&'s, but not
vice versa. A very different approach by Sankeffal. [143] explicitly evaluates a cluster (or segment) by
a weighted measure of three properties: compactness, density, andtyntégey seek a global partition
of the genome into segments such that the sum of segment scores is minimizetkérChave also been
defined in terms of graph-theoretic structuresg(Figure 1.2(c)), such as connected components [128]
or high-scoring paths [71, 175]. Finally, a variety of heuristics havenbgroposed to search for gene
clusters [6, 30, 32, 72, 73, 171, 175, 179], the majority of which aszifipally designed to find sets of
genes in approximately collinear ordere( forming a rough diagonal on the dot plot). Many constructive
definitions give only a vague description of the clustering procedurenEvose that are more precisely
specified cannot be easily summarized without describing the full heurfst@ob procedure.

Search Strategies

The significance of a gene cluster depends not only on the characseaftie cluster, but also on how the
cluster was found. The larger the search space, the less significahisher. Unfortunately, however, most
statistical tests do not consider the size of the search space, and mestnexpal studies present clusters
without providing the details of the search procedure that are neededéxtly assess significance. Durand
and Sankoff [50] characterized the following three most common setategies:

1. Reference set:Given a set of genes of interest, the goal is to identify subsets of thess tjeat are
located in close proximity in the genome. In this case, the search space istiteegenome. For
example, the genes of interest may be located in a particular genomic regdnefifrence region”),
and homologous regions, which will presumably contain many of the sams,gaeesought. In other
cases, the genes of interest share a particular functional or regupatiperty, and the goal is to find
evidence of functional constraints on spatial organization.

2. Window sampling: Given two chromosomal regions, the goal is to determine whether the regions
share a significant number of homologs, in order to obtain evidence thlyadéseended from a single
region in an ancestral genome. In many cases, these windows aredélecaeise they contain a pair
of known homologs of particular interest. This search scenario may log iss@xample, to determine
whether a particular set of paralogs were duplicated through a larieeesgant, or to assess whether
the gene order around a pair of orthologs has been conserved. dowisampling, the search space
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is confined to the two regions of interest.

3. Whole genome comparison:Given two genomes, the goal is to identify all clusters of genes that
appear in proximity in both genomes. When assessing the significance waflirali gene clusters
found through whole genome scans, the much larger search spaceenalséb into account to avoid
overestimating cluster significance.

Note that in the reference set search scenario, only a single genomaygexh Although the set of
genes may have been selected based on their location in a second gereosagrdn problem is defined
with respect to a single genome. In the window sampling and whole genome gsompscenarios, on the
other hand, the search problem is defined with respect to two genomes.

1.1.4 Statistical Tests for Gene Clusters

The previous section introduced the basic steps involved in identifying daseers, from determining the
position of markers in the genome to designing cluster definitions and algoritArfinal critical step in
the identification of ancient segmental homologies is significance testing.tidwerprocesses of genome
mutation and rearrangement cause the properties of homologous segnierusrtee more and more similar
to the statistical background. Thus, to evaluate putative homologous sejiihénimperative to test and
reject the hypothesis that the observed similarities could have occurrgtbioge.

In general, it is not possible to estimate a clustering algorithm’s accuratsitiséy or specificity, since
in the vast majority of cases the true evolutionary relationships are notrknBynthetic data can be used
to evaluate cluster-finding algorithms, but the rates of mutation and reamseyg events are also unknown,
and so evaluations based on simulated data are only informative to a limitectdddmes, statistical tests
of cluster significance are critical for accurate identification of anciegtrental homologies.

Statistical models also enable the principled selection of search parameteny. diister definitions
are based on user-defined parameters. For examplewhedow cluster definition requires the user to
specify the window size. If parameters are selected too conservatively, many significant gusiknot
be detected. On the other hand, very liberal parameter values may leadiogidatdly meaningful clusters
being detected but discarded as not statistically significant. A statistical roadéle used to determine the
range of parameter values within which a cluster will still be significant.

Lastly, formal statistical models allow us to investigate statistical trends for pkaticluster models,
and ensure that the statistical behavior meets our expectations. For exampglerous statistical analysis
can show that a cluster definition is inappropriate for certain types of datir certain regions of the
parameter space. A statistical model is also useful for comparing the pdakernative clustering models
under different models of genome evolution.

Related Work

The development of statistical models for gene clusters is largely an uedreea. The significance of
a cluster depends on a broad range of factors, including characte$tine data and model, the cluster
definition, the search procedure, and the biological question of intedgspresent, the significance of
putative clusters is often not evaluated at all, or only informally. Thereraes basic approaches to testing
the significance of gene clusters: combinatorial analysis, statistical &)algpg analysis by randomization.
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These approaches are often complementary, such that improvementsuracgcand efficiency may be
obtained when they are used in combination. For the most part, howevaingsignificance tests are
based on data randomization, or on very simple combinatorial models that@reable to only a limited
set of conditions and cluster definitions.

The most common approach is to assess cluster significance with randomigatgrObserved clusters
with properties that are rare in randomized data are assumed to corgegploomologous segments. Tests
based on randomization are simple to implement for null models of random gdae since sampling
permutations uniformly is quite straightforward. For more complicated null thgses, however, random-
ization tests may be more difficult to design. Furthermore, randomization testeecaomputationally
expensive. Combinatorial approaches for calculating cluster statistichetiayo reduce this running time
by specifying a biased distribution for importance sampling [25]. Althougtstraple space (all possible
gene permutations) is very large, only a small fraction of random samplesamithin any clusters at all.
Combinatorial analysis can be used to devise a sampling strategy that sataptesonly from the small
fraction of permutations for which the probability of a cluster is high. Finabyydomization studies re-
quire complete knowledge of all markers and homologs in the data. When artiglplata is available,
randomization tests are not feasible.

The only purely statistical approach to assessing cluster significaneghioli | am aware, is that of
Calabreset al.[30]. The authors present a search algorithm and a statistical modet futative clusters
detected by their algorithm. They define a random varighlefor each pair of geneg, j), whereX;; is one
when the genes are homologous, and zero when the pair is unrelatedstatistical tests are based on an
assumption that th&(;;'s are independently distributed, Bernoulli random variables. Undentbidel, the
number of homologs for any given genean be described by a random variable= Zj Xi;. This model
implicitly assumes that gene family sizes are binomially distributed (sijds the sum of independent
Bernoulli random variables). However, this assumption is not suppbstatie data. Rather, gene family
sizes typically follow a power law: small gene families are most common and lange families are rare.
Thus, it is unclear to what extent this approach allows accurate estimatanstér significance.

A number of significance tests based on simple combinatorial arguments éanerttroduced within
the methods sections in various papers focusing on the analysis of partjenlamic datasets [46, 51, 123,
167, 174, 177]. These tests provide a good starting point, but make sosmaplifying assumptions that
their descriptive power is limited.

A few more rigorous combinatorial analyses have been made in conjunciibrthe development of
algorithms for cluster identification. In this work the mathematical quantity that i testimated is care-
fully defined, but the connection to the biological question of interest isaddtessed, and overly strict
simplifying assumptions are made.g.that the two genomes have identical gene complements [43, 169].
Furthermore, these attempts are generally based on very consenlasiter definitions, such as common
intervals and max-gap clusters in which the maximum gap is is at most one B3,Ti#& one combinatorial
approach that provides significance tests for a broad range ofetitfbiological scenarios was introduced
by Durand and Sankoff [50], and later extended by Raghupathy anand [132]. While this was the first
statistical work in this area to clearly describe both the biological and matheimatiddem of interest, a
number of open problems remain. In particular, this work is not applicablestmtist commonly used clus-
ter definition, the max-gap cluster. Furthermore, the tests are designed akohsively for comparisons
of two genomic genomes. Designing general statistical tests for clustemsisganultiple regions remains
an unsolved problem.



The Design of Statistical Tests for Gene Clusters

Formal statistical models are needed to test the significance of gene clasterange of different biological
guestions of interest. However, translating from a biological questionamaal mathematical statement of
the problem is not trivial. In particular, selecting appropriate null and réiter hypotheses, as well as a test
statistic, is challenging.

For many of the problems in spatial comparative genomics, how to specifg@jmgte null and alternate
hypotheses is not always obvious. Given a biological question, ssthether local conservation of spatial
organization in the genome provides evidence either of shared ancedupational selection on gene
order, the goal is to show that a cluster with particular characteristics isalyli& be observed by chance.
However, the meaning of “by chance” depends on the particular biollogiestion.

For example, to show evidence that a particular set of genes were daeglicaone large-scale dupli-
cation event, it is necessary to demonstrate that the observed cluster eywtdike the result of multiple,
independent, gene duplications. In this case, if we assume that a dupljeateds located anywhere in
the genome with equal probability, then an obvious null hypothesis is thahdbm gene order. Although
there is some empirical evidence that the destination of single gene duplicegiwssto be closer to the
source than would be expected by chance [175], this process is pouthrstood. Furthermore, subse-
guent rearrangements complicate the picture. Thus, tests of large-gptitmtions are generally conducted
against the simple null hypothesis of random gene order. If the nullthgs of random gene order cannot
be rejected, no more complex, biologically motivated null hypothesis needrsidered. Similarly, when
testing for segmental orthology, tests are typically conducted againstiapalthesis of random gene order.

A test statistic should summarize all the properties of the sample that are tatettag hypothesis being
tested; the value of the statistic is then used to decide whether or not the pothlegis can be rejected. Itis
difficult to devise a test statistic for gene clusters that captures all grepef interest. Ideally, the number
of shared genes, the number of insertions and deletions, and the dédiserder would all be captured by
the test statistic. With clusters that span multiple regions, it is important to corthigl@umber of genes
shared by all the regions, as well as the number of genes shareddys/anbsets of the regions. Given this
complexity, selecting an appropriate test statistic is not always straightithrwa

Finally, tests of cluster significance need to consider not only the chastict of the cluster being
evaluated, but also the characteristics of the marker and homology ddtheasize of the search space.
The specific properties of the genomic data, such as the number of gathéseanumber of homologous
gene pairs, must be factored into any model of cluster significance.rticydar, as the number of matches
between genes increases, so do chance occurrences of genesclikesignificance of a cluster also de-
pends on the number of possibilities considered during the search. dtuh space i6)(n) for a reference
set scenario, but a whole genome comparison, on the other hand,valeqtito comparing)(n?) pairs of
regions.
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Section| Cluster Definition Sampling strategy Number of regions  Null Hypothesis
2.2 Max-gap Reference set One Random Gene Order
2.3 Max-gap Whole genome comparison Two Random Gene Order

3 r-window Window sampling Three Random Gene Order

Table 1.1: Overview of statistical tests presented in this thesis.

1.2 Thesis Overview

In this thesis | present statistical tests for two commonly used cluster definitroag-gap clusters and
r-windows. These tests take the number of shared genes into accouwdtplwinsertions, deletions and re-
arrangements of genes within a cluster. They include models for compafisen regions and comparison
of three regions, and consider several different sampling strateljiese tests are summarized in Table 1.1.

In Chapter 2, | present the first formal statistical model for max-gapeilsis Tests for a reference set
scenario are presented in Section 2.2, and probabilities for clusters florgugh whole genome comparison
are derived in Section 2.3. | use the probability expressions deriveegitidd 2.3 to analyze the significance
of clusters found in a whole genome comparisorEotoli andB. subtilis | also investigate the impact of
the search procedure on the set of max-gap clusters identified on dasetsE. colicompared withB.
subtilis human compared with mouse and human compared with chicken.

In Chapter 3, | propose novel statistical tests/favindows sampled from three distinct genomic regions,
including comparisons of three regions selected from three distinct gen@nd comparison of a pair of
regions duplicated by whole genome duplication with a reference regiootegl&om a pre-duplication
genome. | use the analytical expressions | derive to investigate the infghetfoaction of singletons genes
on cluster significance, and to evaluate alternative test statistics. | als@aoothp sensitivity of these tests
with that of existing approaches.

In Chapter 4, | develop a novel method for ortholog prediction based ofgap statistics. In Sec-
tions 4.2 and 4.3 | review existing methods for identifying orthologs, basedeguence and/or spatial
information. In Section 4.4, | present my method for ortholog prediction, wiricludes a new algorithm
for finding a particular sub-type of max-gap gene clusters, and a methadtistically validating gene
clusters when the homology mapping is many-to-many. In Section 4.6, | pressgrirical results on a set
of y-proteobacteria, and compare the performance of my method with previsuitsren this dataset.

Finally, in Chapter 5, | discuss a number of insights that have developettioy course of work, on
how to improve upon existing cluster definitions and statistical tests. A numlimpaofrtant open problems
raised by this thesis are also described.

Appendix A contains a glossary of technical and biological terms. AppeBdrovides a detailed
catalog of cluster properties upon which many existing gene cluster defmitidgorithms, and statistical
tests are explicitly or implicitly based. Appendix C gives detailed derivatiomsafy of the combinatorial
expressions used in Chapter 2.
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Chapter 2

Max-Gap Cluster Statistics

In this chapter, | present the first formal, rigorous mathematical model afgap gene cluster probabil-
ities [81, 80]. The max-gap definition has been proposed independentyas times, and has also been
referred to aggene team$10], 5-teams[76], and~-intervals[43]. Although the max-gap definition has
emerged as perhaps the most popular in empirical studies [11, 20, 30A2,10, 124, 151, 162, 171, 175],
no formal statistical tests have been developed for max-gap clustersesShasged on max-gap criteria cur-
rently use randomization to estimate the significance of clusters [11, 1101324171, 175]. Analytical
statistical models in the literature are designed for other definitions of gestedy30, 46, 50, 51, 167, 174].
It is not obvious how to extend them to apply to this commonly used cluster model.

Before presenting the main results of this chapter, | first present socessery technical preliminaries.
After stating formal definitions for a max-gap chain in one genome, and agapcluster in two genomes,
| present some general combinatorial expressions that are usefiéfiging the results in the following
sections. Next | present the first statistical tests for max-gap clustetadoof the basic search scenarios
presented in Section 1.1.3.

In the first scenario, we wish to find clusters of a subset of genes tbagtra-specified, omarked
In the second scenario, we are given two genomes, and a mapping behegehomologs, and we wish
to identify all sets of genes that are found in spatial proximity in both genorireshis whole genome
comparison problem, the set of genes in a cluster emerges from the coompafrtsvo whole genomes. The
window sampling search scenario is not addressed in this section, as itdsmpatible with the max-gap
cluster definition, which allows the length of a cluster to be arbitrarily large.

For all tests, the null hypothesis is that the genes are randomly distributeel getftomei.e. that each
permutation of the: genes is equally likely to occur.

2.1 Technical Preliminaries

As we stated in Chapter 1.1, we model a genome as a sequenageoks. It is assumed that genes do not
overlap, and gene orientation and physical distance between geneggadited. This model assumes that
the genome consists of a single linear, unbroken chromosome. If a geootaéns multiple chromosomes,
then we assume they have been concatenated in an arbitrary ordert® amedong sequence of genes.
In this case, our model may slightly overestimate the probability of a cluster gimemuld erroneously
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enumerate clusters that span chromosome boundaries. This effelct sB@nall however, as the number of
chromosome boundaries is very small compared to the number of genesrelfife circular chromosomes,
they can be broken at their origin or terminus. In this case, our model maytlglignderestimate the
probability of a cluster since it would fail to enumerate clusters that spanrigm @r terminus. Again,
this effect should be small. Our model also assumes that each gene hast ane@omolog in the other
genome, as discussed in Section 1.1.2.

2.1.1 Max-Gap Terminology

Definition 2.1.1. A genome&~ = {1, ...,n} is a sequence of genes, ordered by their position in the genome.
We defineA(i, j), the gap between the!” and j'* genes, as the number of genes between thiem,
A(gi,g5) = |i — j| — 1, if the genes are on the same chromosome, Afd j) = oo if the genes are

on different chromosomes.

We are interested in identifying sets of genes that appear in proximity in themggrsuch that each
gene in the set is close to at least one other gene in theeséthe maximum gap, omax-gap between the
genes is small.

Definition 2.1.2. Let X = {1, ..., 2, } be a set oin genes in genom@, such that gene; precedes:; in
the genome iff < j. Note thatX is not required to be a contiguous set of genes, so genes that aresatljac
in X are not necessarily adjacent in the genome. We de&fin€ ), themax-gap of a set of gened, as the
maximum gap between adjacent geneXin.e. A(X) = max Az, ig1)-

In the reference set scenario, we are given a set of genes ofdah{dre marked genes), and we wish
to determine whether any subset appears in proximity in the genome. We usenttehainto describe a
subset of genes that are located close together in one genome.

Definition 2.1.3. We say thatX forms ag-chain of G if A(X) < g. A g-chain X is maximal if it is not
contained within a larger chain,e. there is nog-chain X’ > X.

For example, consider the genoiiie= abc * d*++ ef *, where stars indicate unmarked geneg. # 2,
then{a, b, d} forms ag-chain, since neithefa, b) nor (b, d) is separated by more than two genes. However,
{a, b,d} is not a maximaR-chain since it is contained within the larg&chain{a, b, ¢, d}. The set{e, f},
on the other hand, is a maximzichain.

Definition 2.1.4. Thesize of a chainX = {zy, ..., z,,} is the total number of genes it containsX'| = m.
Thelength of X is the total number of genes spanned by the chaifiy, z,,,) + 2.

In the example above, the chdfin, b, d} is of size three, and length five, whereas the cHairr} is of size
two and length three.

Now that we have introduced the texhainto describe a set of genes that are located close together in
one genome, we introduce a formal definition aflaster, a set of genes that are located close together in
two genomes.

Definition 2.1.5. A set of genesX, forms ag-cluster in genomes~; and G, if X forms ag-chain inGy,
each gene inX has a homolog G2, and X’s homologs form g-chain inGs. A g-cluster X is maximal
if it is not contained within a larger clusteire. there is nog-clusterX’ > X.
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maximalg-clusters
{a, b}, {c} {d},{e}, {f}
{a, b}, {c}, {d},{e}, {/}
{a,b,d},{c},{e}, {f}
{a,b,c,d,e, f}

Table 2.1: The max-gap clusters@f = abc*d++ ef x andG = abfd = cxde, for values ofg from
Oto 3.

W N PP Ol

For example, consider the genonig&s = abc = d+*+ ef * andG5 = abfd *+ c*de, where each letter
corresponds to a homologous gene pair, and the stars indicate singléftans-: 2, then{a, b} forms a
g-cluster, since: andb are within two genes of each other in both genomes. Théwsét is not a maximal
g-cluster, however, since it is contained within greluster{a, b, d}. The setb, ¢} does not form g-cluster
since it does not form g-chain inGs. The complete list of maximaj-clusters ofG; andGs is given in
Table 2.1, for all values of.

In this chapter we often assume thas given, and fixed. In this case, we use the tenax-gap chain
or even justchain as shorthand for a maximgtchain, andnax-gap clusteas shorthand for a maximal
g-Cluster.

2.1.2 Generalized Dice Equation

Here | introduce several related combinatorial expressions that ederepeatedly in subsequent sections to
compute cluster probabilities under a number of different search soen&ssume we are given marked
genes, and that these genes are all located within a winddvgeies. In the following sections we are
interested in three related quantities:

1. the probability of finding alln genes in a max-gap chain of length exaétly

2. the probability of finding alln genes in a max-gap chain of length no greater thayiven that the
first gene in the chain is the first gene in the window, and

3. the probability of finding alln genes in a max-gap chain anywhere within a window of legth

The number of ways to place the genes so they form a max-gap chain of length exddadyequivalent to
the number of ways to place genes in a window of sizg such that they form a max-gap chain, and both
the first and last positions contain a marked gene (exemplified in Figur@.(&his case, alin — 1 gap
sizes are constrained to be no more thaand the gaps must sum#&e- m. The second problem is similar,
except that only the first position must contain a marked gene (Figure)R.1fbthis case, in addition to
them — 1 constrained gaps, there is also one unconstrained gap after the lasidngame, which can be
larger thary. In the third problem, neither endpoint is required to contain a marked dgegeré 2.1(c)). In
this case, there are two unconstrained gaps, one at each end of ithel¢teonly difference between these
three problems is the number of unconstrained gaps.
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Figure 2.1: Three max-gap 4-chains of size= 8, located in a window of = 24 genes. The window is
shown as a rectangle. Genes in the chain ftlagkedgenes) are shown as black circles, and all other genes
are shown as unfilled circles. The size of each constrained gapthe chain is labeled. The size of each
unconstrained gap; is also labeled. (a) A max-gap 4-chain of length exa2#lyin which both endpoints

of the window contain a marked gene. All gaps are constrained. (b) Agapx4-chain of lengtR23, in
which only the leftmost endpoint of the window contains a marked gene.eTik@ne unconstrained gap,
after the rightmost marked gene. (c) A max-gap 4-chain of length 18, innweither endpoint contains a
marked gene. There are two unconstrained gaps, one at each eed:béth.

We can formulate all three problems as instances of a more general profiem:given, non-zero
integers, find the number of solutions to the following equation

C u
Z”i + ij — s, suchthatd < v; < g,Vi € 1.c and w; > 0,Vj € 1..u, (2.1)
i—1 j=

wherec is the number of constrained gaps, ant the number of unconstrained gaps. This problem is a
more general version of a well-known problem [170]: determining the rerbways of rollingc dice,
each with faces numberé@do g, such that the sum of their faces is equas tdn this generalized version, in
addition to having: dice with faces front) to g, we also have: “infinite” sided dice, and we wish to know
the number of ways of rolling the dice to get a sunsof

Letd,(d, u, s) be the number of solutions to Equation 2.1. An expressioldf¢f, v, s) can be derived
using recurrence equations (see Appendix C.1):

Ls/(g+1)] )
dyleus)= > <—1>Z’<§T’> <8 ot j)j_ﬂ* ‘T 1). (2.2)
=0

Using this equation, we can now give an expression for each of thephobabilities described above.
The probability ofm marked genes forming a chain of exactly lengi$id, (m — 1,0, —m)/( ), since the

!
number of constrained gapsns — 1, the number of unconstrained gap®jghe gaps mustzum fo— m,
and( ) is the number of ways of placing genes anywhere withing a window bfienes. The probability

!
that a?ﬁm marked genes will form a chain of length no greater thagiven that the first gene in the chain is
the first gene in the window, ié,(m — 1,1,1 — m)/( ) The probability that the genes will form a chain

l
m

anywhere within a window of sizkis d,(m — 1,2,1 —m)/(!).
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Figure 2.2: A sample genome £ 24), with m =9 marked genes shown in black. Three maximal max-gap
chains are found when the maximum gap allowed4s2. The first has size three and length four, and the
second has size five and length ten. The rightmost marked gene formiskctnain of size one.

Note thatd, (m — 1,1,1 — m) should equab’._, d,(m — 1,0, — m), since the number of ways of
getting a chain of no greater than lendtis simply the number of ways of getting a chain of length exactly
r, summed over all possible valuesiofrom m to . It is easy to verify that this equivalence holds (see
Appendix C.2 for a proof). Similarly, we can show thit(m —1,2,1 —m) = S dg(m—1,1,r —m).

For certain chain lengthg,(m — 1,u,l — m) can be reduced to a simpler expression. The maximum
possible length of a max-gapchain of sizen is L,,, = m + g(m — 1), which occurs when al: — 1 gaps
are of sizey. In the case where there are no unconstrained gaps; if.,,, thend,(m — 1,0,1 — m) is zero,
since there is no way to get a chain of length greater than In the case when there is one unconstrained
gap, there is a special case whien L,,. In this case, the constraint on the length of the chain is irrelevant,
and the problem is much simpler. The number of ways of getting a chain of laoggheater thath > L,,
isdy(m — 1,1, Ly, —m) = dg(m — 1,1, (m — 1)g), which can be shown to be equal(tp+ 1)~ 1. This
is simply the number of ways of choosing — 1 gaps so that the length of each gap is between Qyand

It is also useful to observe thdf(m — 1,0,! —m) is symmetric around = m + (L,, —m)/2, in other
wordsd,(m — 1,0,4) = dg(m — 1,0, L,,, — m —i),Vi € {m..L,,, — m)} (see Appendix C.3 for a proof).
This symmetry can be exploited to compuigm — 1,0,1 — m) more efficiently wheri is large. A similar
symmetry can be exploited to reduce the time required to comfygte — 1, 1,1 — m) by half, for large
values ofl. dy(m — 1,1, L, — i — m) is the number of ways to generate a max-gap chain ofrsiznd
length no greater thah,,, — i. It can be shown that this is equivalent(tp+ 1)~ — dy(m — 1,1,4). This
is the number of ways to generate a chain of sizeith any length, minus the number of ways to generate
a chain of sizen and length no greater than + 1.

These expressions will be used in the subsequent sections in variou®siua which the length of
a chain is constrained. In addition, we will use the generalized dice equatismumerate arrangements
in which there are more than two constrained gaps. Whexnfixed, | will used(c, u, s) as shorthand for
dg(c,u,s).

2.2 Reference Set

In the reference set scenario, the task is to assess whether it is signifidand a particular set of genes
clustered together in the genome. We wish to find clusters of a subsetgeines that are pre-specified,

or marked These genes may be of interest, for example, because their homolagm#geious in another
region or genome (a “reference region”) or because they sharefsmci@nal properties. We are interested

in the probability that alln marked genes, or a sizable subset, appear in close proximity within the genome
of interest.

There are many possible tests that could be considered for this probleeednthis problem is very
similar to a standard one-dimensional, discrete scan statistic problem, for wilaich tests have been de-
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vised [66, 67]. Since the focus of this chapter is statistical tests for mpoggae clusters, our tests are
based on the maximum gap observed between marked genes. Theiexgrédssived in this Section will
also be useful for computing cluster probabilities for the whole genome atsopgoroblem presented in
Section 2.3.

We provide two tests of spatial clustering of the reference set of gémé®e first test, the test statistic is
the largest gap observed between the marked geaehe smallest value af for which allm genes form a
singleg-chain. For example, in Figure 2.2, all = 9 genes form a 4-chain. If the probability of observing
a complete 4-chain is small, we will be able to reject the null hypothesis of ramggme order. Even if the
probability is large, however, there still may be a high degree of clustefiagsab-set of the genes. Thus,
we propose a second test in whiglis not an observed property of the data, but a parameter selected by the
user. With this approach, all maximglchains are identified, and the size of the largest maxireiain
is the test statistic. For example, in Figure 2.2, with a max-gap-6f2, the largest maximaj-chain is of
size five. This test may give different results depending on what vdlydasselected by the user. If tests
are conducted with multiple values gfthen a correction must be applied to fh®alues to account for the
potential increase in Type | errors.

2.2.1 Exact Probabilities for Complete Chains

In this section, | consider the significance of@mpletechain, containing alin genes of interest. The test
statisticY” in this scenario is the maximum gap between the marked genesp-Vélee is the probability
of observing a gap between marked genes of no more ghara random genomel,; = Py(Y < g). If
Py < a, the null hypothesis of random gene order can be rejected at a sigogidavel ofa.

Given a random permutation efgenes, we wish to determine the probability of observingatharked
genes (in any order) in g-chain. The probability is

Prr(m, g,n) = Nag(m, g,n) /(77;) (2.3)

where Nj;(m, g,n) denotes the number of ways to placemarked genes in a genome of sizeso that
they form ag-chain. Notice thatV,,(m, g,n) is precisely the quantity,(m — 1,2,n — m) derived in the
previous section.

Whenm andg are not too largeife. (m — 1)g + m < n + 1), we can expresd/;(m, g, n) in closed
form. Our approach is to enumerate all possible chains by the position offthre&t marked gene in the
chain. Given the position of the first marked gene, therd @arel)™ ! ways to place the remaining marked
genes so that they form a max-gap chain of any length. Thene possible starting positions for the chain.
However,m — 1 of these starting positions are so close to the end of the genome that there nalrbom
for the remainingn — 1 marked genes. In additiofy: — 1)g of these positions are close enough to the end
of the genome so that they can fit only a subset of @l 1)™ ! possible chains. Cumulatively, half of the
chains starting at thegen — 1)g positions will extend beyond the end of the genome (a proof of this claim
is given in Appendix C.3). Combining these terms, the total number of chains is

{n—(m—l)—% (g+1)mt i Ly, <n 41,
dg(m —1,2,n —m), otherwise.

Nyr(m,g,n) = { (2.4)

For typical reference set problems, valueg @indm are small compared to, andL,,, will be much smaller
than the size of the genome, so the closed form expression can be used.
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In some cases we may wish to constrain the total length of the chain, by addingstriction that all
m genes must appear in a window of size at mosthe limit on window size ensures a minimum cluster
density, while the max-gap property prevents the gaps between marked fyfem becoming too large.
More formally, given a genome of size the probability of finding alln marked genes (in any order) in a
window of size at most, such that the gap between adjacent marked genes is never motg than

r—1
PR(m,g,r,n) - (7n> (TL—T—|- 1) 'dg(m_ 1717T_m) + ng(m_ 1717i _m>
m i=m (2.5)

1
= m[(n—r—i—l)-dg(m—1,1,r—m)—|—dg(m—1,2,r—1—m)].
m
There aren — r + 1 positions starting a window of at leastand one window at the end of the genome of
each size fromm tor — 1.

2.2.2 Exact Probabilities for Incomplete Chains

Requiring allm genes of interest to appear in a single chain is often too strict a requirefetuently,
only a subset of the: genes of interest are found in close proximity in the genome [2, 45, 58330,
91, 101, 103, 127, 136, 154, 157, 167]. For example, in Figure Zhenw = 2, the marked genes form
three maximal-chains: the first of sizé = 3, the second of sizk = 5, and the last of sizé = 1.

Thus, in this section | provide a statistical test flocompletemax-gap chains: maximaj-chains of
sizeh < m. In this case, the maximum gap valyas fixed in advance. We search the genome for all
maximal chains of marked genes. The test stattgy represents the size of the largest chain, where the
largest chain is the one that contains the most marked genesp-\idlae is the probability under the null
hypothesis that the largest chain will be of sizer greater: Py = Py(Hmax > h). This is simply the
probability of observingt leastone chain of sizé or greater in a random genome.

Dynamic program to compute exact probabilities for incomplete chails whenh < =3 Unlike com-
plete chains, there can be more than one incomplete chain dfi sizgreater in the same genome. A simple
extension of Equation 2.4 to incomplete chains would therefore over-gaurniutations containing more
than one chain. Instead, | present a simple dynamic programming algorithoutd those permutations
which do notcontain a chain of sizé or greater, and subtract to obtain the probability of observing at least
one incomplete chain. The algorithm moves along the genome, adding a makecharked gene at each
step. It keeps track of runs of marked genes that satisfy the max-gap atiterion and avoids creating a
chain of sizeh or greater by judicious placement of unmarked genes.

The quantityN z[n, m, j, q] represents the number of ways to plagenarked genes in slots without
creating a max-gap chain of sizeor greater, wherg is the distance to the previous marked gene @isd
the size of any chain created so far. It is defined recursively as fsilow

0, ifg=horn<m
N L 1, elseifm =0
i n7 m’ ) = .
H 4 Ngn—1,m,j+1,q] + Ngn—1,m—1,0,¢+1], elseifj <g
Ngn—1,m,j+1,q] + Ng[n—1,m—1,0, 1], otherwise.
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Figure 2.3: An incomplet@-chain of sizeh = 5 (in a rectangle), located in a genomeof 24 genes, with
m = 7 marked genes. There ake— 1 = 4 constrained gapsp — h +2 = 7 — 5 4+ 2 = 4 unconstrained
gaps, and one gap of size exagjly- 1 (shown by the straight arrow).

The probability of observing at least one incomplete chain of size at le&sthen just one minus the
probability that the genome contains no incomplete chains:

Ngln,m,g+ 1,0]
()

The complexity of computing?s; is O(nmgh). Sinceh < m, this is bounded above &y(nm?g). However,

in practicem will be significantly smaller than. For example, the size of typical bacterial genomes ranges
from 500 to 5000 [153], whereas the average number of genes ineanrofs predicted to be between two
and four, and the large majority of operons contain fewer than fifteee)E86]. Vertebrate genomes
can be much larger. For example, the estimated size of the human genomenid 20200 genes [88],

but duplicated or conserved regions reported in the literature tend to andoly five to thirty genes in a
window containing a hundred genes at most [2, 45, 55, 65, 83, 90,041,103, 127, 136, 154, 157, 167].

If we make the conservative assumption thak /n and thaty is a small constant, then the running time
will be bounded above b§(n?).

Exact probabilities for incomplete chains whenh > 3 Whenm > h > 7, the probability can be
computed directly because there can be at most one chain o sizgreater, so we do not have to worry
about over-counting permutations containing more than one chain. Tigere-ah marked genes that are not
in the chain. These genes can appear to the left or to the right of the dtaenumerate permutations based
on the number of marked genes that appear to the left of the chain. To deetdiside the permutations that
contain a chain of sizk or greater intan — h disjoint sets. Lef; represent the permutations containing a
chain of sizeh or greater, such that exactlynarked genes are to the left of the chain, where i < m — h.

The cardinality| ;| can be computed easily using the generalized dice equation presented-in Sec
tion 2.1.2. There aré — 1 gaps in the chain, each constrained to be no more ghaoc = h — 1.
The total number of gaps s + 1 (m — 1 between the marked genes, one left of the leftmost marked
gene, and one right of the rightmost marked gene). Thus, there arten + 1 — (h—1) = m — h + 2
unconstrained gaps. When= 0, the constrained and unconstrained gaps together must sum ta, so
|Ep| = d(h—1, m—h+2,n—m). Wheni > 0 we have to ensure that there is a gap of at lgastl between
the chain and the marked gene immediately left of it, as shown in Figure 2.3.dalisgo enumerate the
permutations withi genes to the left of the chain. If there was a marked gene withto the left of the
chain, then that gene would be part of the chain, and there would orily-hegenes to the left of the chain.
Thus, wheni > 0 it is necessary to include a gap of siEleastg + 1 immediately left of the chain. The
generalized dice equation was only designed to handle gaps with a maximymaizaeminimum size. A
gap with a minimum size of + 1 can just be represented as two gaps—one of size exaetly, and one
unconstrained. Thus, the unconstrained and constrained gaps indéisoat sum ta —m — (g + 1), and
wheni > 0, |E;| =d(h—1,m—h+2,n—m—g—1).
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Figure 2.4: Probability of a complete max-gap chaimofarked genes in a genome of size= 500 (a) as
a function ofg and (b) as a function oh.

The probability of observing at least one maximal chain of &ize larger is:

—h
Do |Ei

(m) 2.7)
_ [d(h—1,m—h+2,n—m) + (m —h)d(h—1,m—h+2,n—m—g—1)]

(m)

This test is based only on the size of the largest chain, and thus may sometguksran error of the
second kindj.e. it may not reject the null hypothesis of random gene order even thowge ik significant
clustering of the marked genes. For instance, in some cases the probdluligeoving at least one chain of
sizeh may be too large to reject the null hypothesis, yet the total number of chdlfsewnuch higher than
expected by chance. It is possible that an alternative test statistic, stich aumber of-chains of size at
leasth, or the number of marked genes in chains of at least/sizeay provide a test of higher power. This
is left for future work.

PH(n7m7hag> =

2.2.3 Experiments

The behavior of max-gap cluster statistics for a marked gene scenariinvwestigated by plotting the
probabilities computed by Equations 2.4, 2.6, and 2.7 graphically. | seleatathpter values corresponding
to the range of values seen in real analyses. For example, | selected wéjuranging from0 to 50, since
typical values of this parameter used in genomic analyses range fromnhraeteria [162] to about thirty
in human [110]. | calculated probabilities for genomes sizes 5K, 1K, 5K, 20K, and25K, corresponding
to typical gene sets for bacteria, yeast, worm, and higher eukaryotdsuikan andirabidopsis

Complete chains The probability of finding a complete chain for varying valuesmofm, andg was
calculated from Equation 2.4. For complete chains | computed cluster plitibalfor all values ofm
ranging from two to the genome size
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Figure 2.5: Region of the parameter space that is statistically significantishdolack) at thex = 0.0001
level for a complete chain in a genome of size= 500. (a) Complete parameter space whetganges
from 1 to 500. (b) Detail form < 50.

Figure 2.4 shows the probability of observing a complete chain containing aflarked genes in a
genome of size. = 500, asm ranges frond to 250 andg increases from 0 to 50. The probability of finding
a complete chain increases monotonically wjithWe might also expect that this probability will increase
monotonically withm, or equivalently, that larger chains will always be more significant, Hatignot the
case. As Figure 2.4(b) shows, msincreases, the probabilities first decrease and then increase. This make
sense intuitively if ones considers the extreme cases: when 1 or m = n the probability of finding a
complete chain will clearly be one, and the valuesgh between these two extremes will have probabilities
of less than one. Calculations with larger genome sizes show thaireseases the probabilities decrease
but the general trends seen in Figure 2.4(b) remain the same. not shown)

Another question of interest is the range of valuesiofand g for which it is possible to obtain a
significant chain. Figure 2.5 shows the parameter values for which thalpitdy of observing a complete
chain in a genome of size00 is no more than 0.0001. The significant region of the parameter space is
shown in black, indicating that as gap size increases, the range of vdluwedgor which it is possible to
obtain a significant chain becomes more and more restricted.

Incomplete chains | calculated the probability of finding an incomplete chain from Equations 2&an

for the values of» andg as stated above. | chose to examine values:aiinging from3 to 250, which
covers the range of gene numbers found in typical reference regfonterest (cited above), and values of

h ranging from3 to m /2. Figure 2.6(a) shows that as the maximum gap size allowed increasegsthdo
probability of finding an incomplete chain. Increasing the required giyef(the chain, on the other hand,
decreases its probability of occurring by chance. Figure 2.6(b) stimevsrobability of max-gap chains for
varying values ofn, whereh = 3. As in the case of complete chains, the probabilities first decrease then
increase withm. Probabilities were also calculated for larger genome sizes. Again,iasreases chain
probabilities decrease but the general trends are similar (data not shown

Finally, Figure 2.6(c) shows the parameter values for which the probabilip®erving an incomplete
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chain in a genome of size = 1000 with m = 100 marked gene is no more than 0.0001. For example, with
a maximum gap size gf = 5, a chain is not significant until it contains at le@8tmarked genes.

2.3 Whole Genome Comparison

In awhole genome comparisame are given two genomes&;; andGs, of lengthn; andny respectively,
and a mapping between the homologs shared betwee&rn andGs. We are interested in assessing the
significance of a cluster composed of a set of homologs found in proximityardifferent genomes, under
the assumption that both the homologs and the singletons are randomly distthroteghout the genome.

Recall that we say a set of genes forms a max-gap cluster only if theydarmax-gap chain in both
genomes of interest, and the clustemiaximal in other words the set of genes is not included within any
larger max-gap cluster. The span of two max-gap clusters can ovedgihdir gene content will always be
disjoint,i.e. a gene can be contained in only one maximal cluster.

Whenh = m, the probability of finding a complete max-gap cluster when comparing tworgesof
sizeny andny is P(ny,m, g) - P(n2, m,g) where P(n,m, g), defined in Equation 2.4, is the probability
of observing a complete chain of marked genes in a single genome. For whole genome comparison,
is the number of shared homologs. Figure 2.4(b) shows Row, m, g) varies asn ranges fron2 to n.
Recall that for whole genome comparison the percentage of homolognas gkared between two closely
related genomes may be quite high. Thus, squaring the probabilities in Figi{d @ould result in many
parameter values for which the probability of a complete cluster will approaeh

To understand this, first consider the simpler case in which the gene sdédeatical; e.gm =n. In this
caseP(n,m, g) equals one; under a simple model of identical gene content, there will alveag max-gap
cluster of sizen, since a window that spans the entire genome will contagienes with no gaps, and the
genes will be identical in both genomes. Even without assuming identicalagenent, whenng is large
with respect ta, we will still be likely to observe extremely large clusters. Indeed, a complettazican be
found whenevey is greater than the longest contiguous run of singletons. This obsertatsamplications
for the design of statistical tests.

Recall that for testing the significance of incomplete chains of marked gérees-value is equal to
the probability of observing a chain of siZzeor greater. This conforms to the traditional approach in
hypothesis testing of determining the probability under the null hypothesibtafring a value of the test
statistic that ianore extremée.g. less likely) than the observed value. However, the probability oiignd
a cluster by whole genome comparison may actually increase with the size dfishercFor example, as
Figure 2.4 shows, the probability of a complete cluster is often greateithaiVhenever this is the case,
the probability of observing a cluster of size—1 must beless than0.5. Thus, there is no guarantee that
a larger cluster will be less likely to occur by chance, and so a larger clisgst®t more “extreme” from a
statistical viewpoint. Thus, for whole genome comparison, rather thanlatddine probability of finding
a cluster of size greater than or equaltd determine the probability of emaximalcluster ofexactlysize
h. | calculate this probability by counting the number of permutations ofithandn. genes that result
in a max-gap cluster containing exactlyhomologs, then divide that by the total number of permutations
possible.
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Figure 2.7: A dot plot comparing two genomes+on the vertical and~» on the horizontal axis—that
sharem =7 homologous gene pairs. Singletons are drawn on the axes as circlestshown in the dot
plot.

2.3.1 Bounds on Cluster Probabilities

One strategy for counting all permutations that contain a cluster of sizélyxais to first count the ways

of creating a cluster of homologs and then count the number of ways of judiciously placing the rergainin
m—h homologs so that they cannot extend the cluster to make it larger. The geiteio determine which
regions are “safe” for these—h outergenes.

To determine which regions are “safe” it can be useful to think about stealin a two-dimensional
space, such as the dot plot in Figure 2.7, wh@teis on the horizontal axis(z, is on the vertical axis,
and the cluster is represented in the center. In this example, a non-maxistal dtisize three{(L24}) is
contained within a cluster of size fiv¢{2456). For a gap size of = 1, how many configurations of the
remaining four outer genes are “safe,” i.e. do not extend the clustezeofrgee? Clearly the black rectangle
defined by the cluster itself is unsafe, as is the dark gray “moat” of wjdttound its border, since any gene
that lies in these regions will increase the size of the cluster bejioad3. What about locating a gene
within g positions from the cluster in only one of the genomes (e.g. the regions detirtpatidtted lines in
Figure 2.7)? This region is not necessarily unsafe. For example,gisngithin a distance of the cluster
in G4 yet does not extend the cluster since it is far from the clustéhinOn the other hand, though neither
geness nor 6 can independently extend the cluster (since each is furtherdlaavay from the cluster on
one of the genomes), together they successfully extend the cluster dfigeeto one of size five. Thus it
is not clear how to exactly specify the unsafe regions so that we couvalalpermutations while at the
same timenot counting those permutations in which the cluster can be extended. Instesalihe above
intuition to devise an upper bound for the probability of finding a sharederas size exactly.. The key
observation is that an outer gene may be within a distangefr@im the cluster in7; (like genes3 and5),
only if its homolog is located at leagtgenes from the cluster as.

Upper Bound for Incomplete Clusters My upper bound counts the number of ensembles ofthigo-
mologs on both genomes which satisfy the following criteria: there éxigimologs that form a chain on
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both genomes, and there does not exist any other homolog that is within acedigtaf the chain orboth
genomes. The key observation is that an outer gene is permitted within a distfanitom the chain inG;
only if its homolog is located at leagt+ 1 genes from the chain ofi; (like genes3 and5). This strategy
is guaranteed to count all permutations that contain a max-gap cluster df, 9z because of its limited
look-ahead (as discussed in Section 2.3) it will also incorrectly count gmmautations which contain a
cluster of sizeh, but for which that cluster is not maximal (such as the cluster of size thrEmine 2.7).
Thus, this approach provides an upper bound on the probability ofwibgea max-gap cluster df genes.

Let M be the set of alln homologs shared between the genomes. As stated previously, no gene is
permitted in the dark gray region, since any gene in this region will extenduiséec. Thus, the se¥/ can
be divided into three subsets corresponding to the three legal regianateulin Figure 2.7:

1. H C M is the set ofh homologs that form a chain in both genomes (e.g. the black region in Fig-
ure 2.7),

2. T C M—H is the (possibly empty) set afhomologs that are located within a distanc&om the
cluster onGG; but notG, (e.g. the light gray regions), and

3. R = M—H-T is the set ofr=m—h—t genes that araot within a distancey from the cluster orG;
(e.g., the unshaded regions).

The upper bound is the number of ways of placing these three subsetses gn both genomes so that
all constraints are satisfied, divided by the total number of ways to place themologs. To compute the
upper bound on the probability of observing a cluster of gizere must sum over all possible valuestpf

which yields
min(m—h,(h+1)g+2)

1 hlt!r!
wheregq; is the number of ways of “safely” placing the genes (according to thetints on each set) in
(G1 andgs is the number of ways of “safely” placing the gene&in The factorials account for the different
number of ways of ordering the genes within each subBetT, and R) versus the unrestricted case in
which allm homologs can be permuted indistinguishably. Note that the upper bound surthis typically
(h + 1)g + 2 rather thann — h, because wheh> (h — 1)g + 2(g + 1) (the maximum number of positions
within g of a chain of sizé), ¢; will be zero.

“q1 - G2, (2.8)

Pup(h,g,nl,ng,m) =

Both ¢, andg, can be formulated as instances of a more general problem: the numberobiyaacing
m = h+y+ f+ a genes in a genome of genes, such thdt genes form g-chain,y genes are close
to the chain i(e., within g genes),f genes are far from the chaind. more thang genes away), and the
remaininga genes are anywhere. Lefh,y, f, a,n] represent this number, then = q[h,t,r,0,n,] and
g2 = q|h,0,t,7,ns]. To computey|h,y, f,a,n] we enumerate over all possible valued ofvherel is the
length of the chain:

min(Lp,n)

glh,y, fra,m] = ) max(0,n—1-2g—1) dg(h — 1,0,1 — h) <b ; h> <” - b) (" —h-y- f>

a
I=h f
min(g,n—1)

+ > E~dg(h—1,0,l—h)<b/;h>(n;b/>(“_h;y—f)

1=0
(2.9)
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where the length of the chain plus its bounding moats (as shown in Figure Bivgisbyb=1+ 2(g + 1),
and E' is defined below. The last term counts chains within a distancey of either end of the genome.

In this case, the size of the chain plus its bounding moais 4s min(n, [+i+g+1). Generally, there are
two possible chains of lengthwithin i of either end of the genome: one near the beginning of the genome
and one near the end. In this case-2. However, wheri > n — i — g, the chain spans almost the entire
genome, and will be simultaneously close to both endg; sal.

Wheny = 0, ¢ can be computed more efficiently, since we do not have to ensure thatapg gre
close to the chain. We first consider the number of ways of placing tpenes in a chain, and thfegenes
far away, then multiply this number b@F’Z’f), the number of ways of placing the remainiagenes in
any of the remaining positions.

The computation is very similar to that for Equation 2.7, except that we areesigst in a chain of size
exactlyh, rather tharat leasth. We must ensure that when any of théar genes are to the right side of the
chain, then there is a moat gf+ 1 genes to the right of the chain. We divide the ensembles that contain a
chain of sizeh into f + 1 disjoint sets. Let; represent the permutations containing a chain of sjzich
that exactlyi of the f homologs are to the left of the chain, and the remainfing ¢ homologs are to the
right of the chain, and none of thegenes are withig genes of the chain. Again, the cardinalify;| can
be computed easily using the generalized dice equation presented in SetttinThere ard — 1 gaps
in the chain, each constrained to be no more thasoc = h — 1. The total number of gaps is+ f + 1
(h + f — 1 between thér + f genes, one left of the leftmost gene, and one right of the rightmost gene)
Thus, there are = f + 2 unconstrained gaps. When= 0, all the far genes are to the right of the chain. In
this case we have to ensure that there is a gap of atdeadt between the chain and the gene immediately
right of it. In other words, the constrained and unconstrained gapth@gaust sumta —h— f — (g + 1),
So|Fy| = d(h—1, f+2,n—h — f — (¢ + 1)). Wheni = f, the calculation is identical. Wheh< i < f
we have to ensure that there is a gap of at lgastl to the left of the chainandto the right of the chain.

In this case, the unconstrained and constrained gaps in this case must sumh — f — 2(g + 1), and
|Ei| =d(h—1, f4+2,n— h— f —2(g — 1)). Putting these terms together, yields:

(Y 01220+ )4 20042+ 1)
(2.10)

Pyp(h, g,n1,n2, m) can then be computed using Equations 2.9 and 2.10.

Lower Bound for Incomplete Clusters A similar approach can be used to calculate a lower bound on
the probability of observing a max-gap cluster of slzefor all . > %. To compute the upper bound, an
outer gene was permitted within a distargcef the chain on7; or G5 but notboth However, as explained
previously, this constraint on the location of the outer genes is not sulffimeguarantee that the cluster is
maximal. For example, both genes 5 and 6 in Figure 2.7 are individually “shifetogether they extend
the cluster. Consequently, the constraint leads to over-counting, asithinupper bound.

To compute the lower bound we strengthen the constraint satr@itsider is allowed within a distance
g of the cluster or71, regardless of where it is locatedd¥y. This is unnecessarily restrictive but guarantees
that a cluster is maximal. The choice @Gf, however, is arbitrary. A constraint thab outsider is allowed
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within a distancey of the cluster onG, regardless of where it is located {#; would also guarantee a
maximal cluster. My lower bound is the probability of an ensemble that satistiie=s ef the two constraints
above, e.g. the union of the two constraints. By the inclusion-exclusionthdeinion is simply the sum of
the probability that each constraint is satisfied minus the probability that bostreints are satisfied.

Assuming equal genome sizes, the first and second scenarios are sigremetconsequently the prob-
abilities are equal. The probability can be computed by Equation 2.8, replecinigh g3, defined below.
The intersection of the two constraints is not empty, i.e. the two scenariostireependent; in enumerat-
ing all permutations that obey either constraint we will have double countse termutations in whiamo
homolog is within a distance of the chain ineithergenome. Thus we must subtract out the probability of
observing a cluster of sizewhere there is no homolog within a distangef the cluster in either genome.
This probability can also be computed from Equation 2.8, except we agalsces;; with g3, andgs is
replaced by, also defined below. Combining these two applications of Equation 2.8 yieldgea bmund
on the probability of observing a cluster of exactly size

1
Gy
The expression fog; i§ similar to that forg;, except the close genes can no longer appear in the moat on
G1, so the(”;") and(*;") in Equation 2.9 are both replaced By,"):

L it
Piow(h, g, 11, n2,m > o 2 -aw). (2.11)
=0

min(Lp,n)

I—h\[n—0»
= 0,n—1—2g—1)d,(h —1,0,l — h
q3 ; max( y g ) g( s Uy )< t >< r )

min(g,n—1)
l—h -
E.dg(h—l,O,l—h)< ) )(”T )

The expression fog, is similar to that forg,. However, the: genes, rather than allowed anywhere at
all, can be anywherbut the moat

(2.12)

+
=0

n—h—t—2(g+1)
T

q4:(t+1)( )dg(hl,t+2,nht2(g+1))

, . (2.13)
+22(n—h—t—(9+1+2)>dg(h_1,t+2,n—h—t—(g+1+i))

X T
=0

In the general case, the moat is of sk&£e + 1) so we just subtract this in the first binomial. In the two edge
cases, in which all thefar genes are on one side of the chain, we now need to know how largeoiies

in each case to know how many ways there are to place femes so that none falls in the moat. Thus, we
sum overi = 0..g, wherei is the size of the moat left of the chain.

Equation 2.11 is guaranteed to give a lower bound on the probability ofwbgea cluster of sizé for
all h > m/2. However, wherh < m/2, a permutation may contain more than one cluster of &iz€he
strategy described above enumerates clusters according to their positi@ dgenome, so a permutation
with two clusters of sizex at different locations will be double counted. Asdecreases, the percent of
random genomes that contain multiple clusters will increase, and the probatillitye correspondingly
overestimated. For small values bf it is possible that the probability computed by Equation 2.11 will
actually exceed the true probability.
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Figure 2.8 Comparison of simulation results (solid lines) to upper boundhédaimes) and lower bound
(dotted lines). Probability of finding max-gap clusters of siaghen (a)n =1000, m =250, andg=10, (b)
n=1000, m =250, andg =20, and (c)n=>500, m =166, andg=15.

2.3.2 Experiments

In order to investigate the accuracy of the bounds in different regibtiseogparameter space, | compared
them to the probability of finding max-gap clusters in randomly permuted genoasémated through
simulation. A number of different parameter values and genome sizes walgzad. For each set of
parameter values, | generated one million random permutations of two genantessed the GeneTeams
software [10] to find all max-gap clusters. In Figure 2.8, the upper dddashed line) and lower bound
(dotted line) are compared to the probabilities estimated from the simulations (s&)d Nwotice that in
Figure 2.8(a) the simulated probabilities are only shown/fo£ 10 since only one million random trials
were generated, and that is the cluster size at which the probabilities eliapg 5.

First, | considered how the ratio of gap size to genome size affects theaagcof the bound. As
Figure 2.8(a) illustrates, when the maximum gap size is small with resped#tioout 1%), the upper bound
is extremely accurate for all values bf However, when the maximum gap size is larger with respegt to
(2% or 3%), then the bounds are only exact when estimating the probabilitiacde or complete max-gap
cluster. This is illustrated in Figure 2.8(c), which shows the behavior of thieds whem =500, m =166,
andg = 15. For these parameter values, the bounds are extremely accurate éovddugs ofh, but begin
to diverge significantly aé drops belowl 00. To what extent does the divergence of the upper bound affect
the conclusions we may draw about cluster significance? At a signifidemeleof 0.01, for example, the
error in the upper bound would lead to the unnecessary elimination of semtittusters of siz& to 15. At
a significance level of 0.001, however, the upper bound could betaosamirectly determine that no matter
how large the cluster size, the null hypothesis cannot be rejected.

In addition to accuracy, | also considered the monotonicity of the probabiitigsrespect to cluster
size. My analysis shows that, under a null hypothesis of random gelee tiie probabilities of observing a
max-gap cluster are not always monotonic with respect to cluster sizeftbutdecrease initially and then
increase a& approachesn. For example, when = 1000, m = 250, andg = 20, Figure 2.8(b) shows that
the chance probability of observing a cluster of fifty genes is actually sniaferthe chance probability of
observing a cluster of 100 genes. This non-monotonic behavior candssiood intuitively by observing
that, as the size of the cluster increases, the max-gap criterion implicitly iesrdas maximum allowed
window size. As a result, as the size of the cluster sought increasestaibabpity of observing such a
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Cluster Size
gap| 2-3 4-10 11-26 27-60 > 60
1 (108 21 1 0 0
5 | 112 26 1 0 0
15 | 144 32 2 0 0
50 | 165 50 6 2 1
100| O 0 0 0 2

Table 2.2: Number of max-gap clusters of varying sizes shared bet#emi andB. subtilisfor a range of
gap values.

cluster may grow substantially as well.

In order to demonstrate the utility of these statistical tests, | conducted a wiraderge comparison of
theE. coliandB. subtilisgenomes. A mapping of homologs between the two genomes was obtained from a
websité maintained by A. K. Bansal [6]. ThE. coligenome has =4108 known genes and tH&. subtilis
genome has = 4245 known genes. After eliminating ambiguous orthologs, the map yields 1315
homologous pairs. Using the GeneTeams software [10], | identified allgapxclusters shared between the
two genomes, for values g@f ranging from0 to 110. Wheng = 110, all homologs formed one complete
cluster.

A subset of the results selected to show the general trends is shownlé2labln addition, Figure 2.9
shows the sizes of the clusters found with a range of different gap. Sibesresults fall into three regimes.
Wheng =0...40, cluster sizes range from two to twelve, except for one larger clustsizef20 to 30.
Wheng = 40...70, clusters sizes have a larger range, from two to al6oat Finally, for gap sizes of
g > 70, the homologs form only one or two large clusters.

To assess the accuracy of my upper bound for this bacterial datageinl@mpared it with estimates
of the probability of finding max-gap clusters in randomly permuted genomésecfame size, obtained
through simulation. | generated one million random permutations of two genoiitiesw= 4108 genes
andm = 1315 homologs, and again used the GeneTeams software [10] to find all macltgsers with
gap sizes ranging from = 0 to 100. Figure 2.10 compares my upper bound, calculated from Equation 2.8
(dashed lines), with the probabilities estimated from simulations (solid lines).adtwracy of the bound
depends on both andg. The bound appears to be quite accurate wh&nbetween one and fifteen, but
asg becomes larger the bound diverges from the estimated probabilities forahads ofh. However, as
h approachesn, the bound provides a very accurate estimate of the probability even fgrdalNote that
although one million random permutations were carried out to estimate the clustehgities, clusters
of size20 < h < 1314 occurred only infrequently, and thus fgr= 15 the probability estimates from
randomized genomes still have high variance in this region. Although ther inoped appears to drop
below the simulated probability fdr = 1312 andh = 1306, this is due to the fact that one million iterates
are insufficient to obtain a precise probability estimate in this region of thenmea space.

Since the upper bound is highly accurate foK g < 15, it can be used to evaluate the significance
of clusters detected through whole genome comparison. If we considgnificance threshold of 0.001,
then Figure 2.10 shows that clusters of size three and larger are unliked¢ydbserved given random gene
order wheng = 0. Wheng = 15, however, only clusters of size seven or larger appear to be sigrifican

http:/www.cs.kent.edu/ arvind/intellibio/database/ orthologs
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Using these statistics, we find a totall® homologs in some significant cluster wheg= 0, wheread 91
homologs are in a significant cluster whee= 1, and only82 are in a significant cluster when= 15. This
suggests that using a gap valueggef 1 provides more discriminatory power than eitlyer 0 or g =15 for
this dataset.

For g < 40, most max-gap clusters contain two to ten genes, which corresponds tantpe of sizes
for typical operons [186]. | compared the clusters to the RegulonDBdataof experimentally determined
operons irk. coli[137], and verified that for gap sizes of zero to ten, over 90% of theteta are comprised
entirely of genes from a single operon. The single large cluster of ovamtingenes is composed entirely
of ribosomal proteins, which together form the ribosomal “super-aperoE. coli.

An intriguing observation is that the number of large clusters seems to be feare expected under
the null model. Whery > 25, the model predicts that the probability that all genes will form a complete
cluster is close to one. However, a gap sizegyaf 100 is required to obtain a complete max-gap cluster
in the bacterial dataset. This discrepancy can be explained by the peesieoperons. Since the genes in
operons are densely clustered [37], the singletons will be clustered deoely as well. These runs of
singletons form large gaps and prevent large clusters from forminfiers as they would under a model of
random gene order. This is one piece of evidence that the max-gap daétetion is a good discriminator,
since the frequency of both small and large clusters is clearly differamt tihat expected under the null
hypothesis, at least for this dataset. In eukaryotes, clusters will glgnbe due to shared ancestry rather
than conserved operons, and so the difference between the absed@redicted cluster sizes may not be
SO extreme.

The tests developed in this section follow the common practice of using clusteaisihe test statistic.
Size is the most commonly selected test statistic for a variety of cluster definifidris.choice is based
on the natural intuition that the more homologs in a cluster, the lower the probabiityit could have
occurred by chance, and thus the more confidence we can have thatdtes is truly indicative of common
ancestry. For example, thewindow definition constrains the maximum length of a cluster, then evaluates
the significance of a cluster according to its size. Farindows, since the length is constrained, an increase
in size corresponds to an increase in global density, which, as shownraem® and Sankoff [50], does
indeed correspond to a reduced probability that such a cluster wouldl bgachance in randomly ordered
genomes.

For max-gap clusters, however, we have demonstrated that the probabitityserving a cluster by
chance may actually increase with the size of the cluster. Unlike-fesindows, the max-gap definition
does not constrain the length of the cluster. This is considered one okthstiengths of the max-gap
definition, but it is also a weakness. As the size of the cluster grows, ththlefhthe window containing it
is also allowed to grow. Consequently, the probability of observing a mpxclyster in randomly ordered
genomes will often increase as the cluster size increases. We showeldetlwdiister probabilities under
the null hypothesis are not even guaranteed to be monotonic with respgigetothe probabilities may
first decrease with size, then eventually begin to increase. Althoughithemidespread belief that cluster
significance grows with the number of homologs in the cluster, it is critical togeize that for some cluster
definitions, larger clusters do not always imply greater significance. digervation has implications for
the design of statistical tests, in particular the choice of test statistic.

In a standard hypothesis test, fltgalue is the probability, under the null hypothesis, of obtaining a value
of the test statistic that is as extreme or more extreeng. less likely) than the observed value. However,
if a larger cluster is actually more likely to occur by chance, then a largeevaiuhe test statistic is not
more “extreme” from a statistical viewpoint, and such a test is not well-fedn¥ore generally, any model
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G1 G2 ni no m
E. coli | B. subtilis| 4,108 | 4,245 | 1,315
Human| Mouse | 22,216 | 25,383 | 14,768
Human| Chicken | 22,216 | 17,709 | 10,338

Table 2.3: The genomes compared,; (and GG2), the total number of genes in each genome &ndn.o,
respectively), and the number of orthologs identified, excluding ambiyadbologs {n).

for which the pdf of the test statistic is not unimodal poses difficulties foiottygsis testing. This is not
merely an abstract statistical issue, but suggests a failure to accurgtalyecthe full interaction between
cluster properties and cluster significance [79]. Thus, before setttirgtest statistic, its distribution under
the null hypothesis should be investigated. For many of the cluster definttiabdave been proposed,
there has been little statistical scrutiny. Rarely is the null hypothesis or thettistic formally stated,
and thus it remains to be investigated whether the significance tests beingctingare in fact statistically
well-founded.

2.3.3 Are Max-Gap Clusters in Genomic Data Nested?

Cluster definitions that constrain the gap size between marked genes ahg ugdd in genomic studies [6,
11, 20, 37, 102, 110, 124, 151, 162, 171, 175]. An efficient agor for finding max-gap clusters (as
defined above) via whole genome comparison has been presenteddeydwst al. [10]. However, other
groups [7, 11, 30, 32, 37, 73, 82, 110, 124] use a greedy, botfphreuristic in which larger clusters are
built iteratively from smaller clusters. Each homologous gene pair ses/aschister seed, and a cluster is
extended by looking in its immediate neighborhood for another homologowsginclose to the cluster
on both genomes. In each step, the heuristic “looks ahead” a certain nahgmsitions to see if additional
homologs may be added to the clusters without violating the max-gap constiagatn easily be shown
that a simple greedy approach with a look-ahead in either direction ofjsizé will not find all max-gap
clusters [10]. For example, given genon@s = 12* 34* and Gy = 31* 4+ 2, regardless of the starting
point, a greedy approach using a gap sizgefl will not find the (valid) max-gap clustel,2,3,4 }. In
fact, unless the algorithm “looks-ahead” all the way to the end of the geribrm@ot guaranteed to find all
max-gap clusters [10].

It is instructive to compare the properties of clusters found by suchidtimsr with those ofgeneral
max-gap clusters (all clusters that satisfy Definition 2.1.5). Greedy lsedgorithms implicitly limit the
results to nested clusters, where a cluster of sienestedf, for eachh € 1...k — 1, it contains a valid
cluster of sizeh. Intuitively, it may seem that any reasonable cluster definition should thés'@roperty.
In fact, clusters with no ordering constraints are not necessarily nestelfustrated in the example above.
Nested max-gap clusters comprise only a subset of general max-gsrsliesind through whole genome
comparison. It can be shown that any greedy search algorithm thafrgots max-gap clusters iteratively,
i.e. by constructing a cluster of sizeby adding a gene to a cluster of size- 1, will find exactlythe set
of all maximal nested max-gap clusters, as long as it considers each hauslggne pair as a seed for a
potential cluster. In such cases, although order is not explicitly constitathe search algorithm enforces
implicit constraints on gene order: nested clusters can only get disdrtieadimited degree. In most cases,
however, such constraints are not acknowledged, and perhapserotecognized.

Such implicit constraints may be particularly problematic when the goal is to cliesize the properties
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Algorithm 1 A greedy, bottom-up algorithm to find nested max-gap clusters.
1: clusters— {}

2: fori=1tondo /i iterates through all genes q

3 C+{i} /I C is the cluster being constructed

4: Ly < Ry « ¢ /I L; andR; are the left/rightmost positions ¢fon G;

5. Ly« Ry « p(i); Il p(7) indicates the position of geriss homolog inGs

6: j«—L—g—1, /I j iterates through all genes closeton G;

7. whileL;-g-1<j <Ry+g+ldo

8: if j ¢ Candp(j) € {Le—g—1,...,Re+ ¢+ 1} then Il'if jis close taC in Gy
o: c=cu{j}; // add the gene to cluster
10: L; = min(Ly, 7); Lo = min(La, p(5));

11 R; = max(Rq,7); R2 = max(Rg, p(j));

12: j=Li—g—1; /Il start the search over
13: else

14: j++

15: end if

16: end while
17:  clusters— clustersuU {C}
18: end for

of homologous regions. For example, although the CloseUp algorithm wessitdy designed to identify
chromosomal homology using “shared-gene density alone” [73], thedgneature of the search algorithm
means that all clusters with a minimum gene density may not actually be detectadhlan approach was
used to evaluate the extent to which order is conserved in homologoussemiocorrect inferences could be
made. If clusters with highly scrambled gene order were not found, onletmigoneously conclude that no
such clusters exist, rather than that the clustering algorithm was simply pablesof finding them. Without
a clear understanding of which properties are constrained by the methdayhich properties are inherent
in the data, it can be difficult to interpret such results.

In this section, we investigate the practical consequences of choosingeanch procedure over the
other. We compare three pairs of genomes to determine the proportion ajapesiusters in real genomes
that are actually nested. Whole genome comparisons of three pairs ahgsrm varying evolutionary dis-
tances were conducted. The first comparison wds. @bli andB. subtilis with a mapping of orthologs be-
tween the two genomes obtained from the GOLDIE database [6]. The otheotwparisons were of human
and mouse, and human and chicken, with ortholog mappings obtained frdnPé@noid database [118].
The total number of genes in each genome, and the number of ortholog&eders given in Table 2.3.

The GeneTeams software, an implementation of the top-down algorithm oéideret al. [10], was
used to identify all maximal max-gap clusters shared between the two gerfomes, {1, 5, 10, 15, 20, 30, 50}.
In addition, we designed a simple bottom-up, greedy algorithm to identify all m&xiestednax-gap clus-
ters (Algorithm 1). This algorithm considers each pair of orthologs in ttreating each as a cluster seed
from which a greedy search for additional orthologs is initiated. Occaflipdifferent seeds may yield
identical clusters. Any such duplicate clusters are filtered out, as arenagimal nested clusters (clusters
strictly contained within another nested cluster). However, overlappirgiarti €.g. properly intersecting
sets) are not merged together, since the resulting merged clusters woble mested.

2It is unclear whether those who employ a greedy heuristic merge allapygéng clusters or not, since such heuristics are
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Figure 2.11: Comparison of the set of nested clusters to the set of genes,tefar ¢ €
{1,5,10,15,20,30,50}. (a) The fraction of gene teams that aret nested. (b) The fraction of maximal
nested clusters that an®tgene teams.

For the bacterial comparison, for all gap values exgept 50, both methods found the same set of
clusters,i.e. all gene teams were nested. In all eukaryotic comparisons, howevegsatone non-nested
gene team was identified. Nonetheless, the percentage of teams thatovexested remained low for
all comparisons, ranging from close to 0% to about 2% as the gap size wassed (Figure 2.11(a)).
The percentage of nested clusters that were not gene teams (in othisy, wioisters that could have been
extended further if a greedy algorithm had not been used), was alse wazero for small gap sizes, but
increased more quickly, peaking at almost 15% for a gap size-e60 (Figure 2.11(b)). In contrast, in
randomly ordered genomes, although large gene-teams are much ramechahigher percentage are not
nested (data not shown).

Another quantity of interest is the numbergégneghat would be missed altogether if a greedy approach
is used rather than a top-down algorithm; that is, the number of genesdHauad in a large gene team but
not in a large nested cluster. For a minimum cluster size of two, very fewsganeemissed: the number of
genes missed remains under 20 for both eukaryotic datasets, no mattergp@thkagap size (Figure 2.3.3,
circles). For a more realistic minimum cluster size of seven, however, the euofilmissed genes rises
more quickly, peaking near 80 for the human/chicken comparison (Fig8rg, Zriangles), and near 120 for
the bacterial comparison (data not shown).

The gene teams that are not nested tend to be the larger clusters. Foteex@Eiqyre 2.13 compares the
distribution of gene teams sizes to the distribution of non-nested gene teamsisfaizhe human/chicken
comparison, for the complete set of clusters identified at any gap sizeyefleeteam size distribution peaks
very quickly: over 80% of gene teams contain fewer than ten genes. iZé®& & non-nested gene teams,
however, peak much more slowly: only about 10% of non-nested gemsteantain fewer than ten genes.
It is not until the size reaches 270 genes that the CDF reaches 0.8.

generally specified quite vaguely, if at all. In our datasets, only a smaleptage of clusters detected with the greedy algorithm
overlapped€.g.2% in the human/chicken comparison).
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Figure 2.12: The number of genes in a gene team of

sizek > 2, that are not irany nested max-gap clus- Figure 2.13: A CDF comparing the distribution of
ter of sizek > 2 (circles). The triangles show thegene team sizes to the distribution of nested gene

number of genes that would be missed by a nestashm sizes, for human vs chicken, for all gap sizes
search whert > 7. tested.

In summary, when comparirig. coliwith B. subtiliswith reasonable gap sizes, the nestedness assump-
tion does not exclude any clusters from the data. For the eukaryoticetigtaisese results also suggest
that for smaller gap sizes few clusters are missed when using a greedkl stategy. For larger gap val-
ues, the nestedness assumption does appear to lead to some loss of gigeé]lg in the human/chicken
comparison: large clusters are identified only in fragments, and the spas#ting of many genes is not
detected at all. For more diverged genome pairs, as clusters becomeismderkd, this loss of signal may
be exacerbated. Furthermore, a higher fraction of non-nested custgr be found when the homology
mapping is many-to-many. These questions remains to be investigated, aspiladtieal implications of
the nestedness assumption on the detection of duplicated segments thnooigie gelf-comparison.

In Section 2, | presented a statistical model f@meralmax-gap clusters identified through whole
genome comparison. The results presented there are not applicabletéoscloand with a greedy heuristic
or for studies in which only nested clusters are of interest. In particutare s1ested max-gap clusters are
a subset of general max-gap clusters, we expect to find fewer nestgdrs than general clusters under
the null hypothesis. This is especially true for large clusters. In additienettumeration strategy | use to
derive statistics relies on the fact that max-gap clusters are disjoint aingith@ order is irrelevant. Neither
of these properties holds for nested clusters [79]. Statistics for nestedyapaclusters remain an open
problem.

The significance of the results reported here goes beyond the vagitigs competing methods for
finding clusters with gaps. Our results also show that, for the datasetsleet here, a greedy search
strategy for max-gap clusters may actually improve statistical power, atftgesmnall gap sizes. A test of
cluster significance will have increased powee.(a reduced number of false negatives) when the cluster
definition is as narrow as possible, while still capturing the properties exhibitetiverged homologous
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regions. These properties, however, are generally not knowng sivese is little data about evolutionary
histories or processes. In some cases, however, the appropriatégsarticular property can be evaluated
even without full knowledge of evolutionary histories [49, 79]. Forrapée, if adding an additional con-
straint to the cluster definition does not eliminate any of the clusters identified ofetia, then | argue that it

is not only acceptable to include such a property in the cluster definitiordsitable, in order to increase
statistical power. Thus, when compariggcoli with B. subtiliswith reasonable gap sizes, a nested cluster
definition appears to be a good choice: the nestedness assumption tiegslade any clusters from the
data, but substantially reduces the probability of observing a cluster doyceh thereby strengthening the
statistical significance of detected clusters.

It may be that considering order more explicitly, either in the cluster definivonn the test, results
in additional discriminatory power. Nestedness implicitly enforces ordestcaimts on a cluster, but it is
a binary constraint. It may be that this constraint is unnecessarily wealgrecessarily strong. Thus,
explicitly considering order in the statistical test may be preferable to reguitirsters to be nested. More
guantitative measures of order conservation may be found that inedistical power still further. How to
best quantify the degree to which order is conserved, however, reraaiopen question. A first step in this
direction has been taken by Sankeffal. [144], who proposed a number of quantitative measures of gene
order. However, analyses comparing the discriminative power of theasures in genomic data have not
yet been carried out. How to best quantify and/or constrain the degkekitt order is conserved remains
an open question.

The use of search heuristics can be particularly dangerous when attgrtgptiraw conclusions about
the degree of disorder observed in homologous regions. Researohgrthink that they have searched for
all max-gap clusters, but by using a greedy heuristic they have implicitly dbiasér search toward partially
ordered clusters, invalidating any conclusions they may draw abouéna@i®n of order.
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Chapter 3

Cluster Statistics for Three Windows

Existing statistical tests for gene clusters are designed almost exclusivadgrhparisons of only two ge-
nomic regions. With the rapid rate of whole genome sequencing, analysenefausters that span three
or more chromosomal regions is of increasing interest. Studies investigaégléhof two or more suc-
cessive rounds of whole genome duplications have searched for mulbipielbgous regions in the same
genome [110, 11, 47]. In addition, a number of methods have been gedddor finding sets of clustered
genes across multiple genomes [30, 64, 122, 102, 125, 75, 109].

Even when only a pair of regions is under consideration, comparison 9itli@nal regions may in-
crease statistical power. In particular, to identify regions duplicated ina@exgenome duplication (WGD),
comparisons with related genomes may be necessary. Although some evadaN&D can be found by
comparing a genome with itself and looking for pairwise clusters, in many cagsgated regions may not
be identifiable by direct comparison duedomplementary gene las®llowing a WGD, there is no imme-
diate selective advantage for retaining the majority of genes in duplicateesoopy of most duplicates is
lost. As a result, the gene content of duplicated regions is often disjoingawhynso.

A solution to this problem is comparison with the genome of a closely related spibeiediverged
shortly before the WGD (are-duplicationspecies). If two regions in the genome of fhest-duplication
species each have significant similarity to a single region in the genome ofgttuplication species, they
are likely to be homologous even if they share few or no homologous gdnethe example shown in
Figure 3.1, thepost-duplicatiorregionsiV,,s;1 andW,.s:2 have only one gene in common. However, they
share three and four genes, respectively, with the pre-duplicatioonr@y,,... The strategy of comparison
with a pre-duplication genome enables the identification of duplicated regionag, when they share no
genes. It has been successfully employed to analyze duplications i83isiplants [96, 172, 173] and sev-
eral yeast species [93, 146]. However, statistical analyses forghi®ach have relied solely on sequential
pairwise tests. Statistical tests designed for three regions have the padieliéaéct more highly diverged
duplicated regions, but are also more difficult to design.

In this chapter, | present statistical tests for three regions, developeall@boration with Narayanan
Raghupathy [133]. These tests are based ontwendows model introduced in Section 1.1.3 and assume
a window sampling search strategy. This approach is exemplified in Figus 8vBich shows comparison
of two chromosomal regions, eindowsof adjacent genesii(; andW,). The number of shared homologs
(y12, shown in Figure 3.2(b)) is typically used as the measure of similarity. Hawtiie pairwise approach
cannot be directly extended for tests of clusters composed of more thavimdows. When comparing three
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Figure 3.1: A gene cluster spanning three regions with complementary gesne@enes are represented
as circles. Homologous gene pairs are connected by dotted lines. hitengenes with no homologous
match within the regions are indicated by black circles. The wintigy. is sampled from a pre-duplicated
genomeG,,.. and the two region$V,,,.;1 and W,,s2 are sampled from a post-duplicated genofg,;.
Only the white gene has been retained in duplicate. The remaining geliésdoccur only once irG ,os;.

W] W2

() (b)

Figure 3.2: A pairwise gene cluster and its Venn diagram representatipA.gene cluster of two windows,

Wy andWs, of sizer; = ro = 5, which sharey;o =3 homologous genes. Genes are represented as circles.
Homologous gene pairs are connected by dotted lines. Intervening wéhes homologous match within

the regions are indicated by black circles. (b) The Venn diagram reptatson of the pairwise comparison

of Wy andW,, which share;;» homologous genes.

@ (b)

Figure 3.3: A three region gene cluster and its Venn diagram representgtp A gene cluster of three
windows Wy, W5, andWs, in whichx193 =1, 212 =2, 213 = 1 andzs3 = 1 homologs are shared between
the three windows. Genes are represented as circles. Homologougajenare connected by dotted lines.
Intervening genes with no homologous match within the windows are indicatétbbly circles. (b) The
Venn diagram representation of the three-way comparisogfW,, andWs, in which x123 homologs
appear in all three windows. The variableg represent the number of genes that only appea¥jrand
W;, andz; represents the number of genes that only appear in a single wiftdpw,
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windows (V1, Ws, andWs in Figure 3.3(a)), there are many more quantities to consider (Figure B.3(b)
the number of homologs observed in all three windowg), the number of homologs observed in each
pair of windows 12, 13 andzes), and the number of genes observed only in a single windgwa(;, and
x3). Evidence for homology comes not only from the set:gf;s homologs that appear &l the windows
being compared, but also from the number of homologs that are sharadsblyset of the windows (the
z;;'s, which we refer to collectively as thgairwise overlaps How best to combine evidence from different
subsets of windows remains an unsolved problem.

In the first attempt to address this issue, we consider the problem of slisgianning exactly three
regions. Given a set of three windows sampled from three genomdsceatainingr consecutive genes,
we wish to determine whether the windows share more homologous genesxfieniesl by chance. (If
duplications are under consideration, the windows may be sampled froroveotapping regions of a single
genome.) This problem, while restricted to three windows, exhibits the badiemntes that arise in the
more general problem of clusters spanning 3 windows.

In this chapter, we develop the first statistical tests that considerestandthe z;;'s simultaneously.
We obtain expressions for the probability—under the null hypothesislima gene order—that the number
of shared genes is at least as large as the number observed. Tpesgsins are derived for genome
models that are appropriate for two common comparative genomics probléinanglyses of conserved
linkage groups in three regions from three genomes, and (2) identificatisegments duplicated by a
whole genome duplication, via comparison with the genome of a related, pteation species. We show
through simulations that our tests for comparing three regions are morigiveetisan existing approaches,
and have the potential to detect more diverged homologous regions.

3.1 Related Work

Durand and Sankoff [50] were the first to formally characterize thébglodity of a cluster in multiple
genomes. They derived an expression for the probability that in at léastf N’ genomes there is a
window of sizer containing at least of m genes of interest. In this scenario, thegenes of interested are
pre-specified. The subset of that appears in each window can differ, but the subset of genesppbaaa
in more than one window, or even all the windows, is not given additionajhwe

Here we consider the following more general: Given three distinct genagioms of interest, possibly
from multiple genomes, devise a test that considers all evidence that éiggsesare homologous. There are
three existing approaches for determining whether the number of gesresidly three regions is statistically
significant. Our Venn diagram model (Figure 3.3) can be used to compese #pproaches and succinctly
illustrate the differences between them. We first introduce some notatiosideothree windowsi’;, s,
andWs, of lengthry, ro, andrs, sampled from three non-overlapping genomic regionsyket r123+ 12
be the total number of genes shared between windgvand¥,. Note thaty,, includes the genes that are
shared byall three windows. Similarlyy1s = z123 + 213, andyss = x123 + x23. The random variable
Y1 represents the number of homologs shared between two windows of,semed 2, under the null
hypothesisYis andYs3 are defined analogously.

In order to determine the significance of gene clusters, the goal is to seflest statistic that captures
the essential properties of the clusters of interest. For example, wheradognpwo windows of size; and
ro, the test statistic is typically; 2, the number of homologs shared between the two windows. Significance
is demonstrated by showing th&(Y12 > y12) is small, under the null hypothesis. In contrast, when
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comparing three windows it is less obvious how to choose an appropriatatstic.

The most common strategy for testing significance of multiple regions is to conuuitiple pairwise
comparisons (reviewed by Similliogt al. [152]). A cluster is considered significant if regi®¥,; is signifi-
cantly similar tolW,, andWj is significantly similar to regioVs. In this case, homology between all three
regions is inferred, even ifi; andW; share few genes. Using the notation from our Venn diagram model,
we can express this formally: a cluster is significant attHevel when

P(Yi2 > (123 + 712)) < aandP(Yiz > (z123 + x13)) < . (3.1)

Here the test statistics aFg, andYi3. This approach allows the use of existing statistical methods designed
for comparing two regions. However, this strategy is conservative afl imly identify a three-way cluster
if at least two of the three pairwise comparisons are independently sigrifica

In a second approach, once a significantly similar pair of regitifisgnd¥,) is identified, the genes in
these regions are merged to approximate their common ancestral regignTh&h a second pairwise test
is conducted, in which the third region of interest is compared to this infemedstral segment. With this
approach, a cluster is significant when

P(Y12 > (z123 + 212)) < aandP(Yiy23 > (z123 + 213 + 223)) < ¢, (3.2)

whereY; 2 3 is a random variable representing the number of genes shared betweearinsows of size

r1 + r9 — x123 — x12 andrs, under the null hypothesis. This approach still allows the use of pairwise
statistical tests, but is more powerful than the above approach, sincediwdsstep considers the genes that
occur inW, as well as those that occur i}, when comparing to a third homologous region. Nevertheless,
it still requires that at least one pair of regions be independently significa

A third approach also merges two of the three regid#is andi¥s), but does not require that the regions
are significantly similar [123]. Rather, the only requirement is that the ma®ggedn be significantly similar
to the third regioniVs:

P(Y1u23 > (2123 + 213 + 223)) < . (3.3)

When constructing the merged regidiy, U 15, neither of these two methods (Equation 3.2 and Equa-
tion 3.3) distinguish between genes that appear in dyor W5, and genes that appear in bdthy and

Ws,. Thus, all three approaches fail to explicitly recognize the additionalfgignce of genes that occur in
all three regionsi;23). Also, the first and the third methods do not consider evidence fromrak {pairwise
overlaps. No existing test considers both the three-way and pairwiskpsesimultaneously.

3.2 Overview

In this chapter we develop statistical tests for three windows, sampled indepiy from distinct chromo-
somal regions. This sampling approach is used when a researcher ésiatein the region surrounding a
particular gene, then compares the regions containing this gene in threedif§enomes for evidence of
common ancestry. As long as the gene of interest is discarded from th&échtismputation, our proposed
tests are applicable to clusters found by this sampling approach. It is imptortaote, however, that these
tests are not applicable if the windows were selected by a whole genomersga@approach in which all
sets of three windows with genes in common are identified. In this case, thahplity of observing the
cluster by chance will be greater, since the search space is largeqg tbsitests proposed here to evaluate
the significance of clusters found by whole genome comparison will leads® f@sitives.
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(b)

Figure 3.4: Gene content overlap models. The set of genes in eacmgénoepresented as a circle. (a)
Orthology model:ni23 genes are shared between all three genomes. The remaining genieg)laterss,
i.e.they appear in only one genome . (b) Duplication modg}.. is the union of two ancestral, duplicated
genomes embedded within it. The » genes that are retained in duplicate appear twicg,js; (once in
each embedded genome) and oncé&'jp.. The light gray regions correspond to the; genes that appear
once inGj,. and once inG,.s;. These genes were preferentially lost. The dark gray regions pamesto
theng 1 genes that appear oncedi,.s;, but do not appear itv,... These genes are retained in singleton in
Gpost but lostinG,.c.

The significance of a cluster depends not only on the search stratedyaislentify the cluster, and the
properties of the windows (Figures 3.2(b) and 3.3(b)), but also onrtipepties of the genomes (Figure 3.4).
The relevant properties of the genomes are the total number of geneshige@ome and thgene content
overlap— the fraction of genes shared among the three genomes. Dependindabrbidiogical questions
are being investigated, an appropriate model of gene content overlaplsalldiffer. Here, we develop
statistical tests for two different models of gene content overlap. ThethiesOrthology Modelis designed
for comparisons of three regions selected from three distinct genorhesseécond, thBuplication Mode)
is for comparison of a pair of regions duplicated by WGD with a refereeggon selected from a pre-
duplication genome. Note that we use Venn diagrams to represent geteatcoverlap (Figure 3.4), but
these differ from the Venn diagrams of gene clusters (Figure 3.3). Ifotheer case, each circle represents
the complete set of genes in the genome, whereas in the latter case eachepiresents only the set of
genes sampled from a specific region of the genome.

For each genome content overlap model we give analytical expredsiotisee-way statistical tests,
and compute cluster probabilities for representative parameter valugs Msithematica. We investigate
the impact of different gene content overlap models and alternativaaistiss on cluster significance, and
compare the sensitivity of our tests with that of existing approaches.

3.3 Exact Probabilities for the Orthology Model

We model a genomé; as an ordered set &¥; genes(7; =1, 2, ... N;. We ignore chromosome breaks and
physical distance between genes, and assume that genes do nqi.onéfirst consider a simpler version
of this model, where each genome containglentical genesi.e. Ny=No=N3 = n. Here, each gene in
genome(; is assumed to have exactly one homolog eadt jndGy,.

43



3.3.1 Genomes with Identical Gene Content

We compute the probability of observing a cluster under the null hypothsisig & combinatorial approach.
We first illustrate this approach for the simpler case of a pairwise clusterpttesent analytical expressions
for the probabilities of three-region clusters under the null hypothestsalRthat the goal is to determine
the probability under the null hypothesis that the test statistic would havesattteaobserved value. The
probability P(Y12 > y12) can be computed by counting the number of ways the two windows can be filled
with genes, such that they share at leastgenes, and normalizing by the number of ways of filling the
windows without restrictions.

Given two windows W, andW, of sizer; andr,, sampled from two genomes containingdentical
genes, the number of ways the windows can skaeztlyy;, genes is(y?Q) (ﬁjﬁ) (é‘:;g) [50]. The first
binomial is the number of ways of choosing the shared genes, and the remaining two binomials give the
number of ways of choosing two sets of genes to fill the remainder of eawtow, such that the sets are
disjoint. We normalize by the total number of ways of choosing genes to fill timdews of sizer; andrs.

Thus, the probability that these windows shaxactlyy,, genes is

GGG ()
r — T9 — 7’[”‘ — 77" —
Py(Yig=1y12) = Y12 1 — Y12 2 Y2/ _ \Y12,71 — Y12,72 — Y12 (3.4)

n n n n ’
() () () (%)
where we defink

k—1 i .
< n ) _ <n> H (n— >4 zl> B n!
il,ig,...,ik N il ij+1 21'22'(n—21—22—zk)‘

j=1

From this, we can obtain the probability that two windows slateasty,, genes,

min(ry,r2)

Py(Yip > y12) = Z Py(Yia=h). (3.5)
h=y12

We use an analogous approach and notation for computing the probabditiesrhparisons of three
regions. In a comparison of three windows, the random varihlerepresents the number of homologs
shared between two windows of sizeandrs, thatdo notappear in a third window of size;. The random
variablesX3 and X3 are defined analogously. The random variakiles represents the number of genes
shared between three windows of sigzer,, andrs, under the null hypothesis. For notational convenience,
we definer = (I123, 12,13, x23) and USEX:Z Z as shorthand foX93 =193, X192 =212, X13 =213, and
Xo3=193. Similarly, we use?ij =1j;; as shorthand fo¥Y12 =y12, Y13 =113, andYa3 = ya3.

To computeP(X' > 7)), the probability of observing at leagtgenes shared among three regions, we
first derive an expression for the probability of observing exagtiyenes, then sum over this expression. In
the above pairwise comparison, we counted the number of ways to forendiiferent sets: thg;» shared
genes, the; — y12 genes unique td;, and thery — y12 genes unique tdl,. Computing the probability

!Note that this is a non-standard use of the multinomial notation since we deqote thatn =11 + iz + . . . ik.

44



of three windows containingxactlythe observed number of shared genes is a direct extension of the two-
window problem, except there are seven sets to be selected (Figur$:3.3(b

— 1 n
P(X=%) = my ey oy : 3.6
( x) (n)(n)(n) (36123, T12, 13, 23, L1, T2, x3> (3.6)

T1 T2/ \T3

The probability of observingt least® shared genes is obtained by summing over all possible values of
X123 andXij,

U123 u12 u13 u23

PXzd)= > Y > > PX=v), (3.7)

V123=2123 V12=x12 V13=T13 V23=T23

whereuj93 = min(ry, 79, 73), w12 = min(ry, r2) — vi23, 13 = min(ry —vi2, r3) — V123, Uz = min(ry —
V12,73 —V13) — V123, andT = (v123, v12, V13, v23). In the worst case, evaluating this expression taRes')
time. In practice, the computation time can be substantially reduced, becasserthrand decreases expo-
nentially asz123 and thex;;’s increase. Only the smallest values will contribute to the final probability, and
most of the terms can be disregarded.

3.3.2 Genomes with Non-ldentical Gene Content

In contrast to the assumptions of the identical gene content model, in mest, @genome will have
singletongenes that do not have a detectable homolog in related genomes. The tdreatember of
singletons, the fewer genes available to populate the windows such thatrtbe gre shared between the
windows. Here, we develop a statistical test for three-window clusterthégeneral orthology model in
which the gene content of each genome may differ.

In this model, we assume the genomes share a commonsgiof min(N;, No, N3) homologs (Fig-
ure 3.4(a)). In addition, each genorfig containsn; = N; —n123 Singleton genes. Homology between gene
pairs that have no homolog in the third genome is disregarded, with such beimg treated as singletons.
This models the situation that would result if homologs were identified accotditige triangle method
used in COGs [166].

To compute the probability of observing exacifyshared genes, we must count the number of ways
of choosing ther shared genes, as well as the genes that are unique to each window.thssdase of
identical gene content, the shared genes must be selected framy$fgenes common to the three genomes.
However, ther; genes that are unique to each windidlycan be selected either from the remaining common
genes, or from the, singletons in genomé’;. In the former case, care must be taken to ensure that a gene
is only assigned to one window. As a result, two additional summations aregadgsince the number of
ways to choose the; genes unique tl’s depends on how many genes from thgs common genes were
used to filllW; andW,. The probability is:

p ()?::E’) _ N\ N\ TN\ n123
5 1 T2 3 T123, 12, T13, L23
r1 X2 . .
Sy () ) ()
par S ANV r1—1) \x2—] 3 ’

wheres=x123 + x12 + 213 + x23 iS the total number of shared genes.

(3.8)
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Figure 3.5: Cluster significance as a functionogfr, the fraction of singleton genes in each genome. (a)
The probabilityPs(X > (1,1,1,1)), whenn = Ny = N = N3 = 5000, andr = 100. (b) The probability
Pg(X > (0,1,1,1)), whenn= N; = Ny = N3=25000, andr = 100.

The probability of observingt leastas many shared genes under this model, can be computed from
Equation 3.8 by summings (X =Z) over all possible values of ;23 and.X;;:

U123 u12 u13 u23

Ps(X>m)= > > > > Ps(X=7), (3.9)

V123=T123 V12=x12 V13=T13 V23=T23

whereu23 = min(ry,72,73), w12 = min(ry, 7o) — v123, U3 = min(ry —vi2,73) — V123, g3z = min(ry —
V12, "3 —U13) — V123, andv= (vi23, V12, V13, V23).

3.3.3 Properties that Influence Cluster Significance

We use Equation 3.7 and Equation 3.9 to investigate how properties of themgenthe cluster, and the test
itself affect significance. First, we analyze how the proportion of singlgemes affects cluster significance.
Next, we investigate how the distribution of the total number of shared geneagthe three-way and
pairwise overlaps affects significance. Finally, we compare the vallmfﬁf > 7) for clusters with similar
numbers of shared genes, but where the shared genes are distdifigienhtly in the Venn diagram.

How does the proportion of singletons affect cluster significance?

To study how cluster significance depends on the extent of gene cavertap among the genomes, we
computedPg(X' > ¥), as a function o#, the proportion of genes that are singletons. Note that givand

o, ni23 is defined byn(1 — o). As o increases, the probability of observing a cluster drops precipitously
(Figure 3.5) for bothn = 5000 andn = 25000. Figure 3.5(a) shows whem = 5000 andr = 100 the
probability of a cluster withr193 = 1 andzjo = x93 = 213 = 1 drops from0.01 to 10~° as the proportion

of singleton genes in the genomes increases fidimo 0.9. Similarly, whenn = 25000 andr = 100 the
probability of a cluster withr1o3 = 0 andz12 = x93 = 213 = 1 drops sharply as shown in Figure 3.5(b).
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Figure 3.6: Two gene clusters with the same number of geesopiserved between each pair of regions.
(a) A gene cluster in which two genes are shared by all three regigps=€ 2, 19 =13 =223 =0) (b) A
gene cluster in which two distinct genes are shared by each pair of B2@ign =0, x1o =213 =223 =2).

This is because as fewer homologs are shared between the genomespiebeanuch more surprising to
find them clustered together. These examples underscore the imporfaswesiering the extent of gene
content overlap among the genomes when evaluating cluster significance.

How much more does a gene shared by all three windows contribut®tsignificance?

To answer this question, we compare the significance of clusters in vihjigmes are shared la}l three
windows (as shown in Figure 3.6(a)), with clusters in which therehadistinct genes shared between each
pair of windows (as shown in Figure 3.6(b)). Notice that in both examples shiowigure 3.6 each pair

of windows shareg& = 2 genes. However, in the first case each region only confaias2 shared genes,
whereas in the second case each region shdres 4 genes with the other regions. Although the total
number of shared genes is larger in the second scenario, Figure $ho@3 that the first scenario is much
more significant. Even a small increasexifps results in a large increase in significance—much more so
than an increase of an equivalent number of homologous matches bgtmiesaf regions. For larger values
of n (Figure 3.7(b)), although the difference between the two scenariog &srgreat, the second scenario
is still more significant than the first.

How does the distribution of shared homologs among the pairwise ovlaps influence significance?

We consider how an unequal distribution of the pairwise conserveddéree;;'s) affects significance. We
compare all possible distributions, ranging from a scenario in which onigglespair of windows shares
genes, to a scenario in which the genes are distributed evenly among thethdews {15 = 13 = 23).
Lett = ) x;; be the total number of genes that appear in exactly two of the three regibose extreme,
the¢ genes can be uniformly distributed;» = z13 = 293 =t/3. In this case, the variance of thg;’s will
be zero. The distribution could be skewed, on the other hand, with the xtosine skew occurring when
all ¢t genes appear are shared between exactly one pair of regians:» =t andz13 = x23 = 0. In this
case the variance will b€ /3. Figure 3.8 compares cluster probabilities for all possible distributions of the
x;;'s, as a function of the variance of thg;’s. It shows that the greater the variancexgf’s, the lower the
probability of observing the cluster by chance. In other words, a s#teditribution of thez;;’s is more
significant than a uniform distribution. This illustrates why it is preferabledosider the value of each of
the three pairwise overlaps independently, rather than considering @ifysthm.
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Figure 3.7: A comparison aP(X > (h,0,0,0)) andP(X > (0, h, , h)), showing the impact af 23 and
z;;'s on cluster significance, (a) when=5000, =100, (b) whenn = 25000, = 100.

3.3.4 Comparisons with Alternative Tests

In this section, to understand which aspects of our test are most importoster significance, we derive
three alternative tests, and compare them vﬁl@f > 7). We consider the following alternative tests:
P(X123 > y123), to determine when it is necessary to considerat}yés; P(Y;j > %i;), to determine how
much information is lost by not explicitly considering the valueag$s; and P(X' = 7), to see whether
it is sufficient to consider only the probability of observing an identicalteluor whether more extreme
ensembles must be considered as well. Finally, we compare our threestagttetwo of the pairwise tests
reviewed in Section 3.1.

Is a test based only orx; 23 sufficient, or is it necessary to consider pairwise overlaps as well?

In order to assess the additional sensitivity gained by also considerives gdared between only two of
three regions, we compadé()? > Z) with P(Xj93 > x123), the probability of observing at least s
homologs shared between all three windows. To enumerate all triples obwinthat sharexactlyzs3
genes with no restrictions on the;’s, it is necessary to seleets, 13 andz3 so that they have no homologs
in common. OtherwiseX;23 would be greater than rather than equaktes. This can be achieved using
the following expression for the number of windows that stex&ctlyz23 genes:

"SEn n—r n—T123 — T12
q(X123 = 7123) = E ( ) ( > ( ), (3.10)
2123, 12 o —X123 —T12 3 — 123

x12=0

where the second term ensures tHat and W, share exactlys1o genes, and the third term ensures that
exactlyz123 genes are shared in all three windows. We then obtain the probability efdbgat leastz23
genes in common by summing ovgrX 23 = x123) as follows:

P(X123 > w123) = <”>_1<”>_1 f ¢(X1a3=k). (3.11)

T T
2 3 k=x123
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Figure 3.8: The probability of observing a cluster whea 5000, » =100, 2123 =0, andzio+x13+x23 = t,
as a function of the variance of thé[js, where higher variance indicates more skew. (a) Whers, the
variance of ther;;'s ranges from0 when thex;;’s are uniformly distributed«;2 = z13 = x93 = 2) to 12
when thez;;’s are maximally skewedr(s = 6, 213 = z23 = 0). (b) Whent = 9, the variance of the;;’s
ranges fromD (1‘12 =X13=T23= 3) to 27 (.7}12 = 97 X13=T23= 0).

We analyzed the impact of disregarding th¢'s, by comparing Equation 3.11 with Equation 3.7 when
n € {5000,25000} andzio = 213 = w23 € {2, 3}, for a range of values of;23 (Figure 3.9). P(X123 >
x123) IS consistently two orders of magnitude greater tlﬁ%(ﬂf > 7). This is because a test based only on
x103 fails to capture evidence of homology from genes that occur in only aeswbshe windowsi(e. the
zi;'s), and will severely overestimate the probability of observing a cluster bypoh For example, given a
significance threshold af =.01 and the parameters used in Figure 3.9(b), a clusterwith- z13 =x93=3
andx123 =1 would not be considered significant using a test based, gyalone, even though the three-way
test shows that such a cluster is unlikely to arise by chance. Clearly,tha¢sonsiders only:;23 is overly
conservative, and will lead to many false negatives.

Is it necessary to consider explicitly the number of genes that apjge in all three windows?

Our test statistict distinguishes between »3 and each of the three pairwise overlaps. A simpler alternative
would be to consider both;»3 and thex;;’s, but to not distinguish between the two. To investigate whether
it is necessary to considefi»; explicitly, we compareP(X > &) with P(Y;; > ;). Recall thaty;; =

xijk + x5, 1.€.itis defined as théotal number of genes shared between windd¥Wsand 1V}, including
those genes that are also containedlip. Note thatﬁ-j > yj; is strictly a weaker constraint thak > 7.

In addition to all the ensembles in which > 7, two additional sets of ensembles will be counted when
computingP(ﬁ-j > ;) that would not be counted when computiﬁ’g)_(' > Z):

1. Xi23 > max(y12, y23, v13), andXq2 + Xj23 < y12 0r X135 + Xi23 < y13 Or Xog + Xi23 < yo23.

2. X123 < max(yi12, Y23, ¥13), and Xz + Xi23 > y12 and X3 + X123 > y13 andXo3 + X123 > yo3.

For example, if we observe a cluster withiss = 2, 120 = x13 = 1, andxes = 0, then to compute
P(X > X) we count the number of ensembles in whiehs > 2, 12 > 1, andzy3 > 1. To compute
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and$12:$13:x23:2. (d) n=25000, »=100, andx12:x13:x23:3.

50




P(ﬁj > ), we will also enumerate the number of ensembles in whigh = 0, 12 > 3, andz3 > 3,
and the number of ensembles in whichs = 1, z12 > 2, andxq3 > 2.

ThusP(ﬁ-j > ;) will always be an upper bound oﬁ()? > 7). In particular, with Equation 3.12,
the significance of a cluster in whighgenes are shared by all three windows (as shown in Figure 3.6(a))
will be the same as that of a cluster in whikhlistinct genes are shared between gaain of windows (as
shown in Figure 3.6(b)).

—

To computeP( ij > Uij) we simply sumP(X > %) over all possible values of23:

U123 u12 u13 u23

PYy>G)= Y, Y, > > PV =19

v123=0 v12=6(y12) v13=06(y13) v23—6(y23)

(3.12)
Ymax — u12 u13 u23 .
= P(X123 > Ymax) Z Sy Y Pi=9
v123=0 v12=6(y12) v13=6(y13) v23=06(y23)

whered(x) = max(0, z — v123) aNdYmax = max(y12, Y13, Y23)-

We comparedP(Y;; > ;) with P(X > &), whenz193 € {0,2}, for a range of values af;;'s
(Figure 3.10). When13 = 0 andh is small,P(Y;; > ;) is very close taP(X > 7). Whenz;»3 = 0 and
his Iarge,P(ﬁj > ;) diverges slightly fromP()f > ), but in this region a cluster would be significant
according to either test. In short, whem,s =0, P(Y;j > 7i;) is a accurate test. On the other hand, when
T193 =2 andzio = x93 =113 = 0, P(Y;; > 7;;) overestimate$®(X > Z), as shown in Figure 3.10(b) and
Figure 3.10(d). In this case, the approximation could lead to false neg,a&;iivmeP(?Z-j > 7j;;) does not
recognize the greater significance of genes that appear in all thieaseg

Is P(X =) a suitable measure of significance?

It might seem natural to use the probability of observinggkactnumber of shared homologs directly to test
cluster significance. To investigate this, we compaPéd = z) with P(X > &) whenn = {5000, 25000},
x123 = {0,1}, andz19 = z13 = w23 = h, fora range of values of (see Figure 3.11). Using(X =7) is
risky: Whenn = 5000 and for small values of;;, P(X =) underestimate®(X > ) by several orders of
magnitude. For example, given the parametersin Flgure 3.11(a), evertidthree regions shane genes
(r123 = x12 = 113 = 123 = 0), the probabilityP(X = ) is significantly less than one! Therefore, this test
will lead to false positives when;;’s are small. Ash increases, the probabilities converge an =7) is

a good approximation faP(X > #). In contrast, whem = 25,000 (Figs. 3.11(c) and 3.11(d)p(X =)

is a closer approximation tB(X > Z) even for small values af;;. In general,P(X =) is a lower bound
on P(X > 7), and can be computed more efficientl( X = 7) is a useful first test because if we cannot
reject the null hypothesis usin@()? = &), then we will not be able to reject usid@(X > 7). However,
whenP (X =7) is small, then a second test will be required.

How does our three-way test compare to existing pairwise tests?

To assess the difference between existing pairwise tests reviewed ir3.3eand our joint three-region
statistical tests, we compare our Equation 37{X > )) with Equation 3.1 and Equation 3.3, for a range
of representative parameter values. (We did not plot Equation 3.2 as ilwalys lie between the curves
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Figure 3.10: A comparison dﬂP(X' > Z) with P(ﬁ;j > 4i;), as a function of, wherezs =z13=x23="
and (a)n = 5000, 7 = 100, z123 =0, (b) n.=5000, 7 = 100, 2123 = 2, (C) n = 25000, r = 100, 2193 = 0 (d)

n=25000, r=100, x123="2.
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Figure 3.11: A comparison aP(X > &) with P(X = Z) as a function ofi, wherez s = 213 = w25 = h
and (a)n = 5000, r = 100, 2125 = 0, (b) n.= 5000, r = 100, 2195 = 1 (C) 7 = 25000, r = 100, 2125 = 0 (d)
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for Equation 3.1 and Equation 3.3.) In Figure 3.12 we plot the significaned &wvhich a null model of
random gene order would be rejected by each test, wher5000, x123=1{0,2, 3,5}, 212 =213=x23=h,
andh ranges from zero to twelve. We consider a uniform distribution ofath)&, in order to focus on the
effect of 2123 on cluster significance. There are two regions of the parameter spaegticular interest.

The first case of interest is whenss = 0, but the pairwise overlaps are relatively large. In this case,
we can see the importance of considering all pairwise overlaps in the @bsémenes conserved in all
three regions. Whemn,3 =0, both Equation 3.1 and Equation 3.3 overestimate the probability of a cluster
(Figure 3.12(a)). Recall that Equation 3.1 conducts two independémiiga tests ofi¥; with W5, and
thenWsy with W3, whereas Equation 3.3 compares the merged regipru W, with 3. Equation 3.1 is
a conservative test because it requires two of the three pairwise testsinddpendently significant, and
ignores the overlap between the windoWs and W3, whereas our approach considers the three regions
jointly. Equation 3.3 is a better approximation, but is still overly conservaligeause it does not consider
the overlap between window®; andWW,. As a result, both tests may miss significant clusters. For example,
in Figure 3.12(a), given a significance thresholdwef 0.001, for apair of regions to be significantly similar
(Equation 3.1), they must share at least eight genes. In other worfisdta three-way cluster with a
sequential pairwise approadi; must share eight genes each with andWs. With the pairwise merging
approachJ¥; andW, must together share at least six genes With In contrast, using our teﬂ()? > 7),

a cluster is significant in both the above cases, but also in the case veudr@ar of regions shares only
four genes.even when none of these genes appear in all three regidhss example demonstrates the
importance of considering all pairwise overlaps in the absence of genssiwed in all three regions.

The second case of interest is wheps is non-zero, and the pairwise overlaps are small. In this case,
tests which consider only the pairwise overlaps may fail to reject the nulbthgsis, even though it is
highly unlikely that such a cluster would occur given random gene or@er the other hand, our test,
which considers:123, does not make this error. When,s is non-zero (Figs. 3.12(b), 3.12(c) and 3.12(d)),
and the pairwise overlaps are small, both Equation 3.1 and Equation 3.3twete the probability of a
cluster, and would result in false negatives. Given a significancehbliee®f o = 0.001, whenz3 = 2,
both Equation 3.1 and Equation 3.3 would fail to reject the null hypothesislésters in which, < 5
(Figure 3.12(b)), and whem 23 =3, they would fail to reject the null hypothesis for clusters in whick: 4
(Figure 3.12(c)). Even whem; o3 =5, and the cluster is undoubtedly significant, the pairwise approaches
would still fail to reject the null hypothesis wheén< 3.

In summary, our three-way test is more sensitive than existing tests baseairanse comparison.
Those tests are overly conservative, and as a result may fail to regactitbhhypothesis even when a cluster
is highly unlikely to occur by chance.

3.4 Exact Probabilities for the Duplication Model

Following a WGD, in many cases there is no immediate selective advantageaioing a gene in duplicate,

so one of the duplicates is often lost. Since duplicated regions may shapafal®egous genes, they are
often detected by comparison with a related pre-duplication genome. Fompéxain the species tree
shown in Figure 3.14, WGD occurred after the divergencK efaltii and before the speciation event that
producedS. bayanusndsS. cerevisiaeDuplicated regions its. cerevisiaga post-duplication species, can

be detected by comparison wilh waltii, a pre-duplication species. We propose a second genome overlap
model specifically for analyzing such duplications. Lgf,,; be a genome that has undergone a WGD and
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Figure 3.12: A comparison of our three-region té’s{t)f > 7) (Equation 3.7) with two existing tests based
on pairwise comparisons (Equation 3.1 and Equation 3.3). The signifiteweleat which a null model of
random gene order would be rejected by each test, when000, » =100, 215 =x13 =23 = h, Whereh is
the independent variable, and @»3 =0, (b) z123=2, (C) x123 =3, (d) 123 =05.
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Figure 3.13: Pre-post gene cluster examples with different gene lesarsas, in which two region$V,.s:1

and W52, from the genome of a post duplication species are compared with a régienfrom a pre-
duplication species. (a) A pre-post gene cluster whepge. share three genes each with,,s;1 andWp,s2
(z13 = w23 = 3). Wiost1 andW,es0 do not share any genes g = 0, x123 = 0). (b) A cluster in which
Wost1 @andW,s0 share two genes witi/,.. and have a single gene in commany = 1, 2123 = 0). (c)

A cluster in whichW,,,s1 andW,,s2 share two genes witi?,,. and there is an additional gene shared by
all three regions®i2 = 0, x123 = 1).

Gpre be a genome that diverged prior to the WGD (Figure 3.4(b)). 1Ligtbe the number of genes that
appear: times inG),. andj times inGp,s:, Where: < 1,5 < 2. This model only recognizes paralogs
that arose through WGD, ignoring lineage specific duplications. Thussitraes that each genedh,,:
has at most one paralog and that gene§in. have no paralogs;e. ny g = no1 = ng 2 = 0. Furthermore,
this model assumes that every gene that appears twice in the post-duplgatiame also has a homolog
in the pre-duplication genomee. ng 2 =0. This assumption is based on the rationale that genes retained in
duplicate are functionally important and, hence, are retain€d,jn as well. This assumption is supported
by empirical observation. For example, in post-WGD yeast species 6% genes retained in duplicate
are also present in each pre-WGD yeast genome [29]. Similarly, in this nevdey gene inG,,.. has at
least one homolog iK7,s: (11,0 =0). We use the convention théits is the window sampled frordr),.,
andW; andW; are sampled from distinct chromosomal regions:if,;.

To compute the probability of observimxactlyz shared homologs under the null hypothesis, we make
the additional assumption that at most one copy of a duplicated gene sjppaagiven window. Given this
condition,

< ni2 > <Npre — X123 — l‘12> <Npre - 3) <Npost —MNn12 —8S— .’,(33)
Pp(% = 7) = ")\ s, ry .
b min(ry,r2) )
Npre Z niz2 Npre + 1,1 — 1 Npre + 10,1 —T1
r3 : i T —1 Ty — 1
=0

whereNp,. = n12 + ni1 andNposr = 2n12 + 111 + no1- PD()? > ), the probability of observingt

least# shared homologs under the null hypothesis, is then obtained as befsuenoying ove, (X = 7)

)

How do Retained Duplicates after WGD Affect Cluster Significance? To investigate the importance
of the genes conserved in duplicates, we caIcuI&tng’ > Z) with parameter values based on recent
studies of pre- and post-duplication species in the yeast [29, 146]amndfish [89] lineages. We compare
the significance of clusters for three reciprocal gene loss scenavtten no genes are shared by the post-
duplication windowsi¥; and Wy (z123 = 0,212 = 0, as shown in Figure 3.13(a)), when a single gene is
shared by, andWWs, but none are shared by all three regiong,§ =0, z12 =1, as shown in Figure 3.13(b)),
and when a single gene is shared among all three regigas=£1, 212 =0, as shown in Figure 3.13(c)).
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WGD

K. waltii S. bayanus S. cerevisiae

Figure 3.14: A species tree containing three yeast species. A wholengathaplication (indicated by a star)
occurred afteK. waltii diverged from the lineage leading & bayanusndS. cerevisiae

In our simulations based on yeast, we udggd,; = 5000 andn » =450. These parameters are consistent
with the observation that onli6% of genes irS. cerevisia@are duplicate genes that arose during the WGD.
Figure 3.15(a) shows the probabilities for these cluster scenarios wiien z23 = h, andh ranges from
0 to 5. The shape of the three curves is similar, but the probabilities drop bydar of magnitude from
one to the next. Genes retained in duplicate have a large impact on clusiéicaige. For example, in
Figure 3.15(a), given a significance thresholdaof 0.001, if only overlaps between the pre- and post-
duplication windows are considered, each pair of windows much share gienes in order to reject the null
hypothesis. However, if there is a single gene retained in all three windbers random gene order can be
rejected regardless of how many other genes are shared by the gneestrduplication regions.

In our simulations based on bony fish, we selected parameter values femara study of WGD in the
bony fish lineage, in which duplications in tAHetraodongenome were identified by comparison with the
human genome [89]. In these simulations we usggl= 3500, n; 1 = 19500, andng ; = 1500. Although the
Tetraodonand human genomes are much larger than yeast genomes, the statisticeibastadws similar
trends (Figure 3.15(b)): again, even the addition of a single gene rdtaimkiplicate has a large effect on
significance!

Retained duplicates have such a large impact on cluster significancesbébaunumber of genes that
occur twice inG),s: is small. This is equivalent to having a very small valuengis in the Orthology
model. In the Duplication model, the gene content overlap between the thmeeptoal genomes in the
Venn diagram will always be quite small, and so even small valuesgfandxss lead to highly signif-
icant clusters. This is particularly noteworthy because most current meitmmpare the pre-duplication
region independently with each of the post-duplication regions, and thoseighe values of 12 andxia3
entirely [89, 93, 96, 146, 172, 173]. Our results show that existing nastlvould fail to detect clearly
significant clusters, and that by using a multi-region test additional dupiicatgons may be uncovered.
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Figure 3.15: The effect of reciprocal loss on cluster significance mpaying pre- and post-duplication
genomes, when= 50, x12 = z13 = h, ash ranges from 0 to 5, and (@) » = 450, n1,; = 3600, ng,; = 500
(b) ni2= 3500, ni1= 19500, no,1= 1500.

3.5 Discussion and Open Problems

In this paper, we presented a simple framework that allows us to undeestdrmbmpare existing statistical

tests for clusters spanning more than two regions. We proposed twediffeodels of gene content overlap
suitable for common comparative genomics problems. Based on these moelelsy@oped novel statis-

tical tests for evaluating the significance of gene clusters spanning ggems. Here, we have presented
initial results for the design of tests for multi-region clusters, and shownntindti-region tests are able to

validate distantly related homologous regions that will be dismissed by pairvgitse ¢e by a test based on

123 alone.

Our three-way tests are the first to combine evidence from genes stiau@ay all three regions and
genes shared only between pairs of regions. Unlike tests that consilger03, our three-way tests also
considerz;;'s, and thus can detect significant clusters even whegis small (Figure 3.9(a)). In addition,
our tests outperform current approaches based on sequentialgeatests, as shown in Sec. 3.3.4. These
approaches disregard two important pieces of information. They dolways consider evidence from all
three pairs of regions. Even more importantly, they do not explicitly considenumber of genes shared
among all three regions. Our results show that even a few genes eedserll three regions dramatically
increases the statistical significance of gene clusters (Figure 3.7@3)effect is particularly strong when
the shared gene content of the genomes is small (Figure 3.5(a)). Tiks, pairwise tests, our approach
can detect related regions where each pair of regions share onlygefes i(e. z;;'s are small), but where
a few genes are also shared among all the regiomse(23 is non-zero but small).

The difference between our tests and sequential pairwise tests is evestniiking in the duplication
model. We showed that even the addition of a single gene retained in duplsagelfrge effect on signifi-
cance (Figure 3.15(a)). However, current tests compare the piléeation region independently with each
of the post-duplication regions, and thus ignore these retained duplicatesequently, there could be a
large number of highly significant gene clusters for which sequentialvsertests would fail to reject the
null hypothesis of random gene order, but a three-way test wouldd@®strong evidence that the regions
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Figure 3.16: Examples of potentially misleading gene clusters. (a) WinddwandW, share many genes,
but W3 shares only a single gene with each. Even if this cluster is highly unlikely tardme chance,

concluding that all three regions are homologous would be a mistake in this @@sThe leftmost three
genes in¥, appear in the leftmost half d¥/1, and the rightmost three geneslir, appear in the rightmost
half of W3. Even if this cluster is highly unlikely to occur by chance, it may be incontrecionclude that

all three regions arose from a single region.

arose through duplication.

It is important to be precise about the conclusions that can be drawn tasiseof these tests. A small
p-value does not guarantee that all three regions descended frogiarsigion in the genome of a common
ancestor. Even if only two of the windows descended from a common refji@quite likely that we
will be able to reject the null hypothesis of random gene order. Figu®&@&) Ehows an example in which
windowsW; and W, share many genes, blt; shares only a single gene with each. Concluding that all
three regions are homologous would be a mistake in this case. Furthermaméf #he cluster is significant,
this does not mean that the regions arose from a common ancestor spidwenemgirety of all three regions.

It could be that only a small portion of each region is homologous, but timalsigom this sub-region is still
strong enough to reject the null hypothesis that the regions are completehated. Figure 3.16(b) shows
an example in which the leftmost three geneBlinalso appear in the leftmost half @if;, and the rightmost
three genes i, also appear in the rightmost half Bf;. Given this scenario, it may in fact be the case that
the region ofl1/; that is homologous t&Vs is distinct from the region ofV; that is homologous withVs.

In this case it may be incorrect to conclude that all three regions arosedrsingle region. One possibility
would be to flag such clusters, or screen them out entirely, in a poségsing step.

The work presented here can be extended in many ways. Our genom&povedels make certain
assumptions that may not always hold. For example, in the orthology modassuene that there are no
genes that appear in only two of the three genomes. In our duplication modelssume there are no
genes that appear i, but notG),.. In our orthology models we disregard paralogs entirely, and in our
duplication model, we consider only those paralogs that arose via WGD, dstest for duplicated regions
assumes that there will never be two copies of a gene in a window seleoted-ff,.;. A more general
test would loosen these restrictions, and take all paralogs into accouathe&nmportant extension is the
modification of these tests for clusters found via a whole genome scanrpngaap. Finally, to investigate
hypotheses of multiple WGDs within the same lineage, tests for more than thieesegmpled from the
same genome are required.
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Chapter 4

Ortholog Detection

In this chapter, | use gene cluster statistics to develop a new method for yitegtifrthologs, motivated
by the idea that orthologs will appear in similar genomic contexts more often ethogs. Recall that
two genes in different species are orthologous if they arose from segjege in the most recent common
ancestor (MRCA) of the two species, and paralogous if they aroseghr@duplication event that preceded
the divergence of the species [59, 61]. These relationships are itegsiraFigures 4.1(a) and 4.1(b).

Orthologs are thought of as direct evolutionary counterparts: wherefgeto 'the same gene in differ-
ent species’, we typically mean orthologs. Thus, orthologs are the fiugt@l unit of comparison in many
comparative genomics studies, and there are a variety of applicationgdjiter high-throughput methods
for accurately identifying orthologs in genome-scale datasets. Traditmetlods for ortholog identifica-
tion are based on comparison of gene sequences. However, manyralditarces of information can be
used in addition to sequence comparison. Comparisons of genomic spgdiaizattion have recently been
used to augment sequence information, and improve ortholog prediction.

In this chapter, we combine our previous statistical work on testing the sigmifecof max-gap clusters
with a new algorithmic approach for finding max-gap clusters. By joining theseeomponents, we design
a novel method for orthology prediction based on both sequence comparis spatial organization. We
show that the use of the flexible max-gap cluster definition combined with dist&tal approach for rank-
ing gene clusters consistently reduces the number of orthologs missedréglatives), without increasing
the number of paralogs identified as orthologs (false positives), coshpapmrevious approaches based on
spatial analysis.

The rest of this chapter is organized as follows. In Section 4.1, | dessoime of the applications that re-
quire genome-wide ortholog detection, and review the approaches tlehban developed for this problem.
In Section 4.2, | introduce a general graph-based framework thaet insthe majority of context-based
orthology detection methods. In Section 4.3, | describe existing methodsotfisitler spatial organization
in order to improve ortholog identification, and discuss the limitations of these uiethgive an overview
of my approach in Section 4.4, then discuss each of the main contributionsih teSection 4.6, | present
empirical results on a set of alpha-bacterial genomes, and compare myd'sgtedormance with previous
results on this dataset. Finally, in Section 4.7, | end by outlining possible immews to this approach.
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Figure 4.1: (a) A gene tree showing the evolution of the hypothetiggne family. Gene in genomeGG
undergoes a gene duplication, giving rise to its paralogA speciation event occurs, which gives rise to
genes:, ¢}, co, andd,. Genes:; andc, are orthologs that arose from gena the MRCA, whereas genes
¢, andd, are orthologs that arose from getrfen the MRCA. The remaining gene pairs are paralogs. (b) A
gene tree showing the evolution of the hypothetitgene family. A single copy of thé gene family exists

in genomed. A speciation event occurs, which gives risedioandd,. A subsequent duplication of gene
d; in G gives rise tal}. Genesl; andd are paralogs, and are both orthologous to géne

4.1 Background

Identification of orthologs is a prerequisite for a wide range of functi@mal evolutionary problems that
can be approached through comparative genomics.

One application is predicting the functions of genes in newly sequencemimgs=n The number of
sequenced genomes is growing rapidly, too quickly for gene functione tebermined experimentally.
Given a newly sequenced genome, we would like to infer the function of iieggéom the function of
related genes in well-studied model organisms. Since orthologs sharecaalicdutionary relationship,
they often have similar functions [56, 100, 111, 147]. Distinguishing ¢otiefrom paralogs is considered
an essential step for accurate transfer of experimental knowledge®etspecies [119].

Other types of functional investigations also rely on orthologs. In phyletie foot-printing, transcrip-
tion factor binding sites and other functionally important non-coding sempseare identified by searching
for conserved sequences near orthologous genes. In additieaychsrs often find it useful to distinguish
orthologs from paralogs when studying the evolution of gene expressioow protein interaction networks
differ among related organisms.

Finally, since orthologs arise through speciation, they play a key role irrimfeevolutionary histories.
To infer phylogenetic relationships among species, it is essential that dhigiagyous genes are analyzed.
In addition, in comparisons of genome organization and genome reamang®, orthologs are often used
as markers, in order to identify orthologous chromosomal segments.

Existing Methods for Orthology Detection

Most methods for assigning orthologs start by constructing a set ofloglandidates via sequence com-
parison. An all-against-all comparison of genoGigand genomés is conducted to identify homologous

gene pairs. For each gene, a set of homologs is selected, which seraadidate orthologs. Frequently,
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Figure 4.2: (a) Two hypothetical modern-day genomes, and the genotheiomost recent common an-
cestor (MRCA). Genomé& is in speciess;, genome&ss is in speciesS;, and genomé; is in the ancestral
speciesS. Rearrangement events are shown to illustrate the evolution of spatializagan. (b) A map
comparison of genomes; andGs, represented as a bipartite graph. (c) A matching of the gen@s and
G-. (d) The conserved blocks shared betwégrandGs, according to three different definitions: common
substrings, common intervals, and max-gap clustges ().
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any pair of genes with sequence similarity above a set threshold is caidemologous. In other cases
the requirement is more stringent: a gene must not only be similar to the quesy lyet must score within

a fixed percentage of the highest scoring match, or be one df tiighest scoring matches. Sometimes no
fixed similarity threshold is applied—for each query gene th@ost similar genes are kept as candidate
orthologs. Many more variants have been proposed, but regardiéise details of the method, the end
result is a set of homologous gene pairs. The problem is then to determicke efthese homologous pairs
are orthologs, and which are paralogs.

One way to distinguish orthologs from paralogs is to construct a gene farady then reconcile it
with the corresponding species tree to infer speciation and duplicationseld) 60, 68, 187, 158]. This
approach is challenging to apply on a genome-wide scale, howevendgeias resource-intensive and
error-prone [22]. With this method, the accuracy of ortholog assignnaaygends on the accuracy and in-
formation content of the multiple sequence alignment (MSA), and the agcafaiee estimated phylogeny.
However, current methods for automatically generating MSAs yield alignnmisor quality when se-
guences are not highly similar, and so MSAs often require hand-curdiign with the best possible MSA,
there is often not sufficient information in the MSA to infer an accurate ge®e Furthermore, this method
requires building a new tree for each family of interest. Building gene trdéBikhard; even the best heuris-
tics are time-consuming, and are not guaranteed to find the correct tr@edgpparticularly when gene
sequences are highly divergent. Although accuracy of the inferesddan be assessed through bootstrap
analysis, this type of analysis is impractical for genome-scale datasets.

Thus, many orthology predictions methods do not try to explicitly build a tretanistead consider only
pairwise sequence similarity. The simplest approach assumes genethategy if they form reciprocal
best hits, obi-directional best hit§BBHs) [112, 158, 86, 166]. However, this method assumes that protein
similarity accurately reflects evolutionary distance, that all genes within a faawiljve at equal rates, and
that gene predictions are correct and complete. As a result, domainrsipuffised proteins, high sequence
diversity within a family, incomplete genome sequencing, and errors in gedkcgon can all lead to errors.
For example, in Figure 4.1(b), if the best hit of gefeis d’, then the orthology ofl; andds will not be
detected. Furthermore, df, was later duplicated, giving rise t}, then the BBH method may identify only
a single pair of orthologs. Sine& andd,, were duplicated recently, they will have very similar sequences,
and it could easily be the case that the best hit of génie gened,, the best hit o}, is d;, and the best
hit of d; is d5. In this case, onlyd],d2) would be returned as an orthologous pair. Gene loss also leads to
errors. For example, in Figure 4.1(a),df andc), are lost, therj andc, would be BBHs, and would be
incorrectly classified as orthologs.

More complex approaches have been designed to overcome some ofithiégions. The COGs
method [165] tries to reduce false positives by identifying orthologs onlyey tlorm triangles of BBHs
shared between three distantly related species. Triangles that shaee axesithen merged into a single
orthologous group. This merging step is designed to decrease falsévasday allowing many-to-many
orthology relationships. Given a particular pair of species of interestelier, the COG groupings are often
too coarse. Orthology sets are often very large, and contain genalivbaged prior to the speciation event
of interest. OrthoMCL [99] and InParanoid [134] attempt to reduce faésgatives by using clustering al-
gorithms that group together similar sequences even if they do not formsBBHaddition, the OrthoMCL
algorithm attempts to eliminate spurious matches due to shared domains and prsies.f Even these
more sophisticated approaches are limited by their reliance on sequentétitm alone.

Other approaches have been developed that augment sequencitdatthegonal information sources,
such as functional or regulatory data. For example, Bandyopadttyaly[5] infer orthologs based on the
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gene interaction network. They assume that genes whose network aeighrte orthologs are more likely
to be orthologs. A Markov Random Field is created that models the orthoédgtyan between each pair of
proteins as a probabilistic function of the orthology relations of their immedidteank neighbors. Gibbs
sampling is used to compute the probability of orthology for each gene pag&.eCél. [36] supplement
sequence data with operon boundaries. The assumption is that if two geniesthe same operon, then
their orthologs are likely to also be in the same operon. Ztetrag. [185] identify BBHSs, but then filter
these predictions based on functional annotations: if the pair of proteirdassified in different functional
subfamilies, then they are not considered orthologs. These methodstaappiicable to most newly se-
guenced genomes in which little functional, transcriptional, or regulatory idaeailable, however, or if
orthologs are being identified in order to infer gene function.

Comparisons of spatial organization also contribute evidence of orthtithagys orthogonal to evidence
provided by gene sequence comparisons. Figure 4.2(a) shows thagipal genomes that is replicated
by speciation, yielding genomef and.S,, that subsequently diverge through small-scale and large-scale
evolutionary changes. Shared genomic context combined with sequerileity is thought to be a better
indicator of orthology than sequence similarity alone. For example, considanembers of gene family
c in Figure 4.2(a). Genesandc are paralogs that arose through a single gene duplication prior to the
separation of species; andS,. They are located in distinct chromosomal region&:irthe genome of the
MRCA of speciesS; andS,. A speciation event results in two copiesadindc’, one inG; and the other
in G2. Immediately following the speciation, the ortholagsandcs appear in identical contextse. they
have the same neighboring genes in the same order. The same is tfuarafc,. The paralogs; and
¢y, andce andd}, on the other hand, appear in very different genomic contexts. Thuspiparing gene
neighborhoods, it is possible to determine thais orthologous t@, and not toc,. Over time, the genomic
context of the orthologs will diverge due to genomic rearrangements.eMenvin many cases the regions
will remain similar enough to detect orthology. For example, in the genomés ahd Ss, ¢; andc, are
both within two genes of, b, d, ande. Similarly, ¢; andc), are both within three genes of v, w, andz. In
contrast, there are no shared genes in the local neighborhoedsioé .

4.2 A Graph-Based Framework for Orthology Detection

Before we review existing methods for incorporating spatial organizatimnartholog prediction, we intro-
duce the graph-based representation of the data used by many ofppesaches, and describe the various
types of output they generate.

4.2.1 Input

Given a set of homologous gene pairs, a bipartite homology dgtaph(V; UVa, E) is constructed. Vertices
in V1 andV; represent genes i@, and G, respectively. Giver; from V4 andwv, from Vs, (v1,02) is an
edge inE if v; andv, are homologous. Most oftefi{ is an undirectet] unweighted graph. In a few cases,
edge weights are assigned based on sequence similarity scores, aigtitedvgraph is constructed.

If true homology relationships were known, genes would fgeme familiesin which every gene in
'Depending on the strategy for identifying homologous pairs, the inféreedology relationship may not be symmetiiie.

genea’s list of homologs may contain gerie but not vice versa. In this case, an additional pre-processing steguged to
enforce symmetry.
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the family is homologous to every other gene in the family since each gene in a faimdg from a single
ancestral gene. However, due to noise, limitations of sequence comparetbods, or a stringent similarity
threshold, not all homologous pairs will be identified, and the inferred hagyorelationship may not
always be transitivee.g.in the bipartite homology graph there may be a gerthat is homologous té
and ¢, and another gené that is homologous to gerfebut not genec. Since many of the algorithms
designed for this problem require gene families as input, the transitiverefosti?{ is often used as the
input graph (omitting edges between genes in the same genome). We call thasnihegraph, 7. An
example is shown in Figure 4.2(b). There is an edge between two getfésfiand only if they are in
different genomes, and they are in the same connected comporfénfline graph’ is composed of a set
of connected components, each corresponding to a family. Gengaid to be in the same family as géne
iff « andb are in the same connected componenfin

Applying the transitive closure has the effect of adding edges to the hgymgi@aph. In some cases,
these edges will correspond to homologs that were not identified due tosegaence similarity. In other
cases, these edges may be false predictions ddertmin chainingin which genes are erroneously con-
sidered homologous because they share an inserted domain. For oytidgatfication, it is critical that
all orthologs be identified as homologs, but it is not important that all homdiegepresented in the input
graph. In fact, ideally, the input graph would contain #meallestset of homologous genes that is likely to
contain the true ortholog. For ortholog identification, adding edges may justlilce noise, and decrease
performance. That said, taking the transitive closure is still a common peantarthology-detection meth-
ods, because it is the norm in other applications in which a homology gragingracted, and because
gene families often simplify algorithms.

4.2.2 Output

Given the grapl# as input, the typical output is a gragh called the orthology graph, that is a sub-graph
of F that forms a matching,e. each vertex is incident to at most one edge. Genes connected by edges in
are considered orthologs. Genes in the same family that are not conhgciededge irO are considered
paralogs. The orthology graph may take one of three forms, as follows.

In the exemplarapproach, a single exemplar gene is selected from each family. In otmds vexiges
are pruned froni until each connected component representing a family contains exactlyetvas gone
from each genome. Thexemplarof each family (also called theain ortholog[63], or the positional
ortholog[27]) is thought to represent the gene that best reflects the origis#iqroof the ancestral gene
family progenitor [138]. One motivation for seeking exemplars is that theyrmore likely to be functional
counterparts since they are both evolutionary and positional countefé8]. The assumption underlying
this approach is that the MRCA& had only a single gene in each gene family, alidiuplications occurred
after speciation, by separate lineage specific expansions in the lineadegl®S; and.S,. If the ancestral
genome contained paralogs, then there may be more than one pair of cstatbgn a family, and this
approach will identify only a subset of the orthologs.

A second approach seeks a maximal matching o this case more than one orthologous pair can be
identified per family. This approach assumes that all copies of a gene famity prvesent in the MRCA,
andno duplications occurred after speciation. With this approach, when calogh are present, only one
will be identified. For example, in Figure 4.2(b), gediecan only be matched with gemkg or d’, but not

2The transitive closure of a graghi = (V, E) is a graphG+ = (V, E+) such thatE+ contains an edgé, w) iff G contains
a non-null path from to w.
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both. Note that this method generates a maximal matching, but it is not guarémtse gperfectmatching.
When the number of representatives of each gene family is not be the sdthigenomes, some genes
will not be assigned an ortholog. This is illustrated in the maximum matching showigime 4.2(c), in
which d} is not assigned an ortholog.

In the most general approach, edges are pruned ffgrbut a one-to-one matching is not required.
The output may include one-to-many or even many-to-many mappings betyep@s. These genes are
consideredco-orthologs genes that arose by duplication subsequent to the speciation. Forlexamp
Figure 4.2(a)d;, andd) are co-orthologs ta@, since the duplication of gen& occurred subsequent to
the speciation of; andS>. This model makes no assumptions about the relative timing of speciation and
duplication events.

4.3 Related Work

The use of genomic context to augment sequence data in orthology deteataeceived considerable
attention in recent years, both in practical efforts to build orthology datyaand in theoretical work on
genome rearrangements.

A number of software tools for identifying orthologs use genomic contexduxdiary information to
improve ortholog predictions based on sequence similarity. Typically, treséstics identify unambiguous
orthologs (often BBHSs) that form collinear blockse. regions with perfectly conserved gene order. Gene
pairs with sufficiently strong sequence similarity are matched if they appedanwitimear a collinear block,
even if they have a better sequence match elsewhere in the genome [2%, 28, 94, 27, 178, 185]. In
addition, such methods sometimes feature a post-processing step in whashngdnextremely low or even
no detectable similarity are assigned as orthologs if they appear in a collioghr And no other potential
ortholog was identified [29].

The use of multiple genome comparisons can increase the accuracy ohibts®ds since a gene is
likely to be in a collinear block in at least a subset of the genomes. Oncesataftihe orthologs have been
identified, additional orthologs may be assigned by comparison with a thimhgenFor example, if genes
bede are adjacent in genom@,;, genesibe are adjacent ild/, and genesde f are adjacent i, it can be
inferred that gene in G5 is orthologous to genein G5, even though they share no genomic context.

Methods based on collinear blocks of unambiguous orthologs have bheeassful when comparing
genomes in which local gene order is well-conserved, such as asctenfyogi [94, 29, 28]. However, in
more diverged genomes such an approach may be less successukdtmver orthologs will be immedi-
ately unambiguous, and order within orthologous segments will be more sie@dniliore complex methods
based on the family graph presented in Section 4.2 have been develogettite these cases.

Perhaps the earliest attempt to solve this problem within a graph-basedvoakrie that of Bansaét
al. [7]. They propose a heuristic consisting of two steps. In the first stepltimgarian method [17] is used
to find a maximal matching in the weighted bipartite graph. Based on these maitthies,second step
max-gap gene clusters are identified. The weights of edges betweenigeatidarge clusters are increased,
and the remaining edge weights are decreased. The algorithm iterategh¢iwse two steps, but does not
converge. This method has no statistical basis, nor explicit optimization criteria

Many of the recent methods for orthology identification based on genomiexiocan be classified into
one of two basic approaches. The first seeks to select orthologs thatim@rsome measure of distance
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between the two genomes, and the second strives to selects orthologs to reacanservation of spatial
organization. Unlike the methods discussed above, all of these appsdidtard sequence similarity
scores, and use an unweighted family graph.

4.3.1 Minimizing Rearrangement Distance

The first exemplar approach to the problem of orthology identificationdasegenomic context sought a
set of orthologs that minimized the numberlw&akpoints the number of pairs of genes that are adjacent
in one genome but not in the other [138]. When local order is consemadmizing breakpoints may be
helpful for orthology detection. When local order is scrambled, howeie breakpoint distance will be
less useful, since it only considers adjacent genes, not local nelgitmts. For example, the breakpoint
distance does not help us choose between the two possible assignmeatsgsrtle family in the genomes
shown in Figure 4.2(a). kf; is matched withe,, then it creates two breakpoints, butifis matched with?,

it also creates two breakpoints. Similarly, regardless of whethirmatched witht, or c2, two breakpoints
result.

More recent approaches define the distance between two genomes irofearspecified set of rear-
rangement operations. Given this set of rearrangement operatioretching that corresponds to the most
parsimonious evolutionary history of rearrangements is sought. Orthekigranent is then formulated as
the problem of transforming one genome into the other with the smallest numbeairoingement events.
Within both the exemplar and matching framework, different sets of regeraent operations have been ap-
plied to this problem, including reversals [38, 138, 160], reversals amslwcations [63], or duplications,
transpositions, and reversals [52]. This approach is challengingibedar even a simple set of operations,
finding the most parsimonious scenario is NP-hard [38]. In addition, thisoagh is based on the assump-
tion that the underlying evolutionary model can be explained by a small sehafangement operations.
Finally, relative costs must be assigned to each operation to reflect tkedyind frequency of such events,
but such frequencies are often genome-dependent, and typicallypownk

4.3.2 Maximizing Spatial Conservation

Another common approach is to select an ortholog assignment that maximizesneation of spatial or-
ganization. These approaches are typically based on some notionaoisarved block The underlying
assumption is that chromosomal segments that form a conserved bloekfammsa single chromosomal
segment in the MRCAI,e. the regions are orthologous. Thus, the genes within the block are also likely
to be orthologous. Each conserved block can be thought of as spec#fyocal ortholog assignment. A
global mapping can then be constructed based on these local mappingsvdidf a gene appears in more
than one conserved block, these blocks may imply different orthologgraments, in which case they are
inconsistent

With this approach, the goal is to select a consistent subset of the vedd#ocks, such that every gene
appears in at least one conserved black,the blockscoverboth genomes. Typically, a greedy heuristic
is used [15, 14, 161]. The set of all maxirhabnserved blocks is identified in a pre-processing step. The
procedure repeatedly selects the longest maximal conserved blockHi®met, assigns orthologs within
the block, and then removes all remaining blocks that are inconsistent witteth@artial assignment [15,
14, 161].

3A conserved block is considered maximal if it is not included within anydaopnserved block.
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A number of methods based on this framework have been proposed. Tihodsdliffer in two main
ways: the precise definition of conserved block and the optimization critersed to select the set of
blocks that specify the matching. Two definitions of a conserved block heen investigated within this
framework. The most constrained definition equates a conserved blakdmmon substringtwo sets
of contiguous genes in identical (or reversed) order, with identica¢ gemtent [161, 14]. This definition
is very stringent, as it does not allow a single insertion, deletion, or invetsi@ccur within a conserved
block. Like the breakpoint distance, this measure of conservation is raeiilwhen gene order is highly
conserved. For example, in Figure 4.2(d), the only common substring wigkhgmeater than one igv, so
identifying common substrings will not help determine orthology relationshipgh®genes in family.

The common interval another block definition that has been used, is less constrained. A common
interval is defined to be two sets of contiguous genes, representingntteesed of gene families, in any or-
der[19, 14, 13]. In other words, the set of gene families contained wiitieillock must be identical in both
genomes, although the number of representatives of each family may &iffieexample, in Figure 4.2(d),
the common intervals ar€{u;, wy,v1}, {ua, v2, we}) and ({dy, d} }, {d2}). Common intervals are much
more inclusive than common substrings. They allow rearrangements, aasvelhny-to-one or many-to-
many relationships within the interval. This means there can be local duplicatiotsletions after the
speciation, as long as at least one representative gene for each famdins in the interval. However, in-
sertions of unrelated genes are still not allowed, nor is the deletion of e gingy gene. As a consequence,
this definition of conserved block is still not general enough to identify the ¢anserved, but scram-
blE.‘d, regions({al, bl, c1, dl, dll, 61}, {ag, bg, Cc2, d2, 62}) and ({Cll, uy, V1, W1, Zl}, {CIQ, U2, V2, W, ZQ}), in
Figure 4.2(d).

Different optimization criteria have been proposed for determining whiblsetuof conserved blocks is
best. One approach is to select a set of consistent, maximal consergkg, lsoch that the the total number
of conserved blocks iminimized[161, 14, 13]. This is based on the assumption that genes that appear in
longer conserved blocks are more likely to be orthologs. Whether or isa$sumption is justified has never
been investigated. Since these optimization problems have been shown teaedNP3, 16, 15, 19, 24, 35],
existing methods rely on greedy heuristics.

A somewhat different approach is used by Bourqtal. [19], who seek anaximumcardinality subset
of consistent blocks. These blocks need not be maximal however;tintfi@y may even be nested, such
that one block completely contains another. The motivation for maximizing the ewailblocks is that
genomes with similar gene order will have many conserved blocks, whemademly ordered genomes
will have few. Bourqueet al. [19] reduce the problem of finding the maximum number of compatible
blocks to a MAX-SAT problem. They design their own MAX-SAT heuristic girtbeir clauses are not in
conjunctive normal form, and so no direct MAX-SAT solver can be used

There is a close relationship between maximizing spatial conservation and mirmgmezimrangement
distances. For certain block definitions it has been proven that minimizingutneer of maximal blocks is
equivalent to minimizing the rearrangement distance. For example, the gtasdéignment corresponding
to the smallest set of common substrings that cover both genomes will also dhbkeg assignment that
requires the fewest inversions to transform one genome into the oth&}. [Mbre generally, choosing a
definition of a conserved block is comparable to choosing a set of regamaent operations. For example,
allowing gaps in a conserved block definition is similar to adding insertion otidel® a set of rearrange-
ment operations.
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4.4 Our Approach

Previous methods based on maximization of spatial conservation rely orrasdrictive definitions of a
conserved block. Neither the common substring, nor the common intervaitiefiallows gaps within the
block. When comparing more distantly related genomes, these consemetingions may fail to detect
orthologous regions in which neither gene order nor gene contenteméddl. To address this, we present
a new orthology detection algorithm on a more general definition of a cesdéiock, the max-gap cluster
presented in Section 2. The max-gap cluster is the most general definigoroofserved block that is used
in practice, and for which efficient search algorithms have been deselophis cluster definition allows
for scrambled gene order, gene loss, gene insertions, as well asitaugdications. In addition, unlike the
methods described in Section 4.3.2, our method also accepts a weighted hogralolgyand we propose a
number of ways to integrate sequence similarity scores into our framework.

Allowing a conserved block to contain gaps poses a number of new chediehgt do not arise with
more conservative block definitions. Since conserved blocks may peparse, and gene order scrambled,
truly orthologous chromosomal regions are more easily confused withneghat share a few genes just by
chance. Although using a more flexible definition should decrease the maitadse negatives that arise
due to failure to detect spatial conservation, this is offset by the risk mérg¢éing more false positives due
to incorrectly identifying regions that simply share a few genes by chasoetlaologous regions.

A second, related challenge arises with the introduction of gaps. If a @epears in two distinct,
but inconsistent, clusters, we must decide which cluster is more likely tosepra pair of orthologous
chromosomal segments. With previous definitions of conserved blockstheshcommon substrings or
conserved intervals, larger blocks were always preferred oveltesniidocks. This reflects the intuition that
larger blocks are less likely to occur by chance, and thus are more likelglitaiie orthology of the entire
region. This assumption has never been tested, however. Although shisgison seems reasonable with
the common substring definition, in which gene content and order are ideotica duplicates are allowed
within the cluster, such as with common intervals, it is more speculative. Fortiier once gaps are allowed
this assumption clearly no longer holds—a longer block with more genes butaxith gaps may be less
indicative of common ancestry of a region than a smaller block with fewer. gapsey challenge of this
more general framework is therefore how to compare two conserveédbtfaifferent sizes and lengths,
and determine which one is more likely to represent a pair of orthologowsndsomal segments.

We address the two challenges above by using statistical significancdusiter@s a measure of con-
servation. The key idea of this approach is to rank clusters based optbkability of occurring by chance
under a null model of random gene order. The underlying assumptioatithta smaller the probability that
a cluster would occur by chance, the more likely the cluster indicates ortholothe entire region, and
thus the more likely the genes within the cluster are orthologous. This appcaade used for any cluster
definition, including one with gaps. The only requirement is that a test statistiekected, such that the
probability of a cluster decreases as the value of the test statistic increases

A third challenge that arises when gaps are introduced is it becomes mficalttb determine when
blocks conflict. Maximal common substrings conflict whenever the genedpane substring overlaps the
gene span of another. In this case, all conflicting blocks can be iderdifiddemoved in time proportional
to the length of the block. Once gaps are introduced, however, identiflirdjusters that conflict with a
selected cluster is more difficult. Even if the gene spans of two clustertapyéhe clusters may still be
compatible. To address this issue, rather than removing all conflicting dustarediately upon selecting
a lowest-cost cluster, we take a lazy approach: we check whethertardkimvalid only when it is selected
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as the current lowest-cost cluster.

One last challenge is that our approach requires an algorithm for firadingghly significant max-
gap clusters. Existing algorithms only find maximal max-gap clusters. Sincertesbluster with fewer
gaps may be more significant than a longer cluster with more gaps, it is degwwapnsider non-maximal
clusters, as well as maximal ones, when assigning orthologs. To this eod; e will define a new type
of max-gap cluster, called@minantmax-gap cluster, which can be proven to always be more significant
than any of the sub-clusters it dominates, in the case of clusters witholitatap.

We design a general ortholog detection approach by combining our peestatistical work on max-
gap gene clusters with an extension of the max-gap cluster search algdetigned by He and Gold-
wasser [76], to find dominant max-gap clusters. Before presentinglgarithm, we first introduce some
technical preliminaries. We then give a high-level overview of our algarjtivhich is followed by detailed
presentations of our main contributions.

Technical Preliminaries

In this chapter, unlike previous chapters, we assume genes are padtitiboequivalence classdés. gene
families. In this case, the homology graph will have many-to-many homologtiaesdips. In this section
we revisit the definitions of a max-gap chain and cluster given in Section, 2addlextend them to allow
for a many-to-many homology mapping. In addition, in this chapter we requienenotion of adominant
cluster, which is also defined below.

As before, we model a genome as an ordered list of genes, ignorirgogiemtation, physical distances
between genes, and overlapping genes. If a genome contains multiplecsmmes, we assume they are
concatenated in a fixed (but arbitrary) order. Each gene is nowiassdavith a gene family in addition to
its position on the genome.

Definition 4.4.1. A genome is a tripl&7 = (X, X, F'), whereX is a set of gene familiesy = {1,..,n} is
a sequence of genes, ordered by their position in the genomef’and ..,n — X is a function mapping
genes to gene families ! ( f) denotes the subset of genes assigned to fafmily

From a pairs of genomes we can construct the corresponding familia.grap

Definition 4.4.2. Given two genome§; = (X1, X, F1) andGse = (X9,Y, Fy), F = (V1 UV, E)is a
bipartite graph, where a vertex; € V; represents a gene if¥|, a vertexv, € V5 represents a gene iz,
and(’Ul,’Ug) c FEiff v1 € V1,09 € Vo, andF(vl) = F(?}Q).

A maximum matching ofF is of sizer = Z min(|F7 (A 1 Fy L (F)))
fEXIUS,
In order to define a max-gap cluster in the presence of gene families,sweefiall from Section 2.1.1
the definitions of the max-gap of a set of genes on a single chromosomef, agechain:

Definition 4.4.3. Given genomé& = (X, X, F) containing two genesand j, thegap between andj is
defined as\(i, j) = |i — j| — 1, if the genes are on the same chromosome,Afid;) = o if the genes are
on different chromosomes. Given a (not necessarily contiguousgsabgenex’’ C X, we defineA(X'),
the max-gap of X', as the maximum gap over all pairs of adjacent geneX¥inWe say thatX’ C X is a
g-chain of C'if A(X’) < g. The set of families occurring iX’ is denoted>(X') = {F(i) | i € X'}.
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For example, consider the two genomes shown in Figure 4.2(b):

G1 = ardidycibrer * * * uywi vy * ¢ 21

G2 = b2a262 * d2€2 *k >k sk UQ’UQ'[UQCIQ * 29

where genes in the same family are assigned the same letter, and stars ingliegteviih no homolog in
the other genome. In this example, the gap between gerand gene?, is zero, and the gap between
andz; is two. The sefc,, we, 22} forms a 1-chain inGs, as doequs, ve, wo }, which also forms a 0-chain.

Definition 4.4.4. Given two genome§&; = (X1, X, F1) and Gy = (X9,Y, F»), and two sets of genes,
X' € XandY’ C Y, the pair(X’,Y’) forms acluster if X andY contain the same gene familiesg.
Y(X') = X(Y’). Acluster(X’,Y") is asub-cluster of (X*,Y*) if X’ C X* andY’ C Y*. Themax-gap
of a cluster( X', Y') is A(X',Y') = max(A(X"), A(Y")).

Definition 4.4.5. A cluster(X’,Y") forms ag-cluster if its max-gapA(X’,Y’) < g. A g-cluster X is
maximal if it is not contained within a largey-cluster,i.e. there is nog-cluster(X*, Y*) such thatX* D
X, Y* 2DV and(X',Y') # (X*, V™).

This definition of a cluster requires that the set of gene families be the samelinchain, but the
number of representatives of each family in the two chains may differ. Tder of the genes within the two
chains may also differ, but the number of gaps between any pair of atljgeres in a chain is constrained.

For the purpose of identifying orthologs, if there is a sub-cluster with a sngdie, it may be useful
to distinguish it from the larger cluster that contains it. For exam@le, ({u1, v1, w1}, {ug, vo, wo})isa 1-
cluster, butitis not a maximal 1-cluster because it is contained in the ladaster?” = ({c}, u1, v1, w1, 21},
{ch, ua,v2, w2, z2}). However, the max-gap df is actually smaller than the max-gap®f sincesS is also
a O-cluster. To address this issue, it is convenient to define the following:

Definition 4.4.6. A g-clusterC; = (X*,Y™*) dominatesa g-clusterCy = (X", Y")if X* D X', Y* D Y",
andthe maximum gap af’ is at least as small as the maximum gaglef i.e. A(X*, Y*) < A(X')Y").
A g-cluster isdominant if there is no cluster that dominates it.

For example,U = ({c},u1,v1,w1},{ch, uz,v2,ws}) is dominated by’ = ({c},u1,v1,w1,21},
{ch, ug,v2, wa, z2}) since both have a max-gap@f= 1, andT containd’. The clustery = ({uy,v1, w1, 21},
{ug,ve,ws, 22}) is also dominated by sinceT” has a smaller max-gap and containsHowever, although
S = ({u1,v1, w1}, {ua,va, wa}) is contained byr, it is not dominated by", sinceS has a smaller max-
gap. In fact, boths andT are dominant clusters. The list of all dominant cluster&inand Gy is given in
Table 4.1.

Recall that a key idea of this approach is that to find a global matching oféworges we identify signif-
icant gene clusters, which can be used to select a local matching. Hpagdefined above,@cluster does
not necessarily specify a local matching. Note that a clystérY”’) is in essence a sub-graph®fwith ver-
tices corresponding to the subset of geneXfrandY”, and all edges whose endpoints are in these subsets.
We call this the subgraph of induced by (X', Y”). In many cases this sub-graph will be a matching. For
example, each vertex in the sub-graph induced{ay , v1, w1 }, {ug, v2, w2 }) has degree exactly one. In
other cases, the induced sub-graph will not be a matching since the timg ohay contaimifferentnumbers
of genes from a gene family. For example, the sub-graph inducdddayb, c1,d1,d; }, {aa, ba, ca2,d2})
(shown in Figure 4.2(b)) contains two edges incidenisfoone tod; and one tal;. Given such a cluster, in
order to assign a unique ortholog from within the cluster to each gene, dbéepr is to select a maximum
matching associated with the cluster.
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g Dominantg-clusters

0| ({ur,vi,wi}, {ug, v, wa}), ({er}{ea}), ({er}, {ea}), ({ch},{e2})s ({}, {e5})
({aa}, {a2}), ({01}, {be}), ({da, di},{da}), ({er},{ea}), ({z1},{22})

1 ({a1,b1,c1,d1,d/1€1},{CLQ,bQ,CQ,dQ,GQ}), ({c’l,ul,vl,wl,zl},{c&,uz,vg,wg,zg})
2 none

3 ({al,bl,cl,cll,dl,d’lel,ul,vl,wl,zl},{ag,bg,CQ,c’Q,dg,BQ,uQ,Ug,wQ,ZQ})

Table 4.1: The set of max-clusters@f = a1did|c1bieq * % x uywiv1 * )21 andGa = baagces * daeg * * x
UV2WaCh * Z2.

Definition 4.4.7. We say that the cluste$,, = (X,,, Y:,) is anassociated matching of the clusterS =
(X',Y"), if S,, is a sub-cluster of5, and the sub-graph of induced bys,,, forms a matching. Theize
of a matching is the number of edges in the sub-graph it induces, whicjuigagdent to| X,,,| = |Y,,,|. An
associated matching ¢ is a maximum matching associated witht if there is no associated matching of
greater cardinality.

There may be more than one maximum matching associated with the same clusetarRpie, there
are two maximum matchings associated with cluster= ({a1, b1, c1,d1,d}}, {as, ba, c2,d2}) depending
on Whethed1 Ol’dll is matched Withb: ({al, bl, c1, dl}, {az, bg, Cc2, dQ}) and({al, bl, c1, d/l}v {a2, bQ, Cco, dg})
Both matchings have size four. The sub-clusten , b1, c1 }, {a2, b, c2}) is also a matching associated with
W, but it is not maximum since it is only of size three.

Finally, given a clustefX’, Y’) whose associated matchitg.,,,, Y;,,) has sizeh = | X,,| and max-gap
g = A(Xp, i), we introduce the notatiof(h, g) to denote thecostof the cluster. Our implementation
will allow any non-negative cost function to be used, but ideally, the ebatcluster should be inversely
related to the probability of observing such a cluster by chance.

4.5 The Algorithm

An overview of our ortholog detection algorithm is given in Algorithm 2. THigogithm takes as input two
genomes of size; andns, and a family assignment for each gene. In addition, the user must specify
maximum gap parameter,.x. Although in theory the algorithm could identify all dominaptlusters, for

any value ofg, for efficiency we restrict the search to only those dominant clusters wiihgap no greater
thangmax. Algorithm 2 follows the general framework described in Section 4.3.2iff#rd from previous
approaches in two ways. First, the max-gap definition is used to specifyotiseiwved blocks. Second,
rather than selecting tHargestremaining cluster at each step, Algorithm 2 selects the lowest cost cluster,
where the cost of a cluster is based on its probability of occurring byashana random genome. This
strategy is designed to find a matching such that genes within clusters tmabsirgignificant are assigned

as orthologs preferentially.

There are four main components: pre-computing matching costs, findingrduscoring clusters, and
assigning orthologs. In the first step, we pre-compute matching dgétsy), for all possible values of
h > 0andg € 0..gmq- Costs are either computed analytically, based on the equations presented in
Section 2.3, or computed empirically, by randomly permuting gene order antting how many clusters
of different sizes and gaps are observed.
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Algorithm 2  Ortholog Detection Algorithm
: Compute the cost of a matching of sizend max-gag, forall 1 < h < H and0 < g < gmax

[EnY

2: Identify all dominanty-clusters, for ally € {0..¢max }
3: for eachdominant clustedo
4:  Select a maximum matching
5. Compute the cost of the matching.
6: Insert the cluster into a priority queue, with priority equal to the cost of #s@eiated matching
7. end for
8: while queue is not emptglo
9:  Remove the lowest cost cluster from the queue.
10: if the cluster is no longer valithen
11: Add to the queue any sub-clusters that are now dominant.
12: else
13: Assign orthologs within the cluster, as specified by the associated matching.
14:  endif
15: end while

In the second step we identify all dominaptlusters, whergy € {0..gmax}. Next, for each cluster
that we identified, we select an associated matching, based either onrdenercsequence similarity. We
compute the size and max-gap of the matching, and from those quantities Itiud eqost of the cluster. We
then insert the cluster into a priority queue, with priority equal to the costeffsociated matching. Note
that it is possible that the max-gap of a cluster containing duplicates may be isthaliethe max-gap of
its maximum associated matching. As a result, in rare cases, the gap size sédloeated matching might
actually be larger than,,..... In this case the cluster is not inserted into the priority queue.

Finally, in the last step we construct a genome matching. We iteratively remeveviiest cost cluster
from the priority queue. If any of the genes in the cluster have already hssigned an ortholog, then the
cluster is no longer valid, and is discarded. In this case, sub-clusténseha previously dominated by the
cluster may now be dominant. We identify any newly dominant sub-clusteisa@ehthem to the queue. If
the cluster is valid, then we assign all the gene pairs in its associated matchiribasgs. We continue
this procedure until the queue is empty, and a global maximum matching hasddeeted.

Below we discuss in more detail our solution to the four main components oflgaritam: finding
dominant clusters, finding an associated matching of a cluster, scoringrsluand keeping the list of
dominant clusters up to date.

4.5.1 Finding all dominant g-clusters

Line 2 of Algorithm 2 requires a method to identify all dominantlusters, for all values of in 0..gmax-
Given a fixed value of;, and a one-to-one homology mapping, the GeneTeams algorithm [8] haslbee
signed for finding all maximaj-clusters in two genomes. He and Goldwasser [76] extended this approac
to handle gene families, in a software tool called HomologyTehmdswever, the HomologyTeams algo-
rithm identifies only maximad-clusters, for a fixed value gf. For example, givelg = 3, of the fourteen

“4Although the software is entitled HomologyTeams, note that it cannot bieedpp the general homology gragh, but only
the family graph?.
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dominant clusters shown in Table 4.1, HomologyTeams would return only thkedarge cluster shown
in row g = 3. What we seek to determine, rather, is all domingwtusters, for all values of in 0..gmax.
There is a close relationship between maximal and dominant clusters, hptiratsuggests a modified ver-
sion of the HomologyTeams algorithm for finding dominant clusters. In daldescribe the algorithm, we
first review the He and Goldwasser algorithm, then explain how we modify ihtbdominant clusters. The
HomologyTeams algorithm handles only single-chromosome genomes. Wanloafed their algorithm
to compare multi-chromosomal genomes as well, but in order to simplify the exppsitithis section |
assume each genome contains only one chromosome.

Both GeneTeams and HomologyTeams use a divide-and-conquer algeritium begins by breaking
one genome into runs of genes separated by a gap greatey.thaor example, consider again the two
genomes shown in Figure 4.2(b):

G = aldldllclblel * ok % U WLV * c’lzl

G = baage * daeg * * * Uguawach * 22

Giveng = 2, genome&Z; would be split into two runsX; = a1did|c1bie; and Xo = ujwy vy * ¢} 21, since
they are separated by a gap greater thain GeneTeams, each division Gf, specifies a unique division
of G5 into disjoint subsequences. In HomologyTeams, however, a gene mayrtare than one homolog,
and so each run i7; is compared with the subsequence®f formed by taking all genes with homologs
in the run onG;. For example X; would be recursively compared withh = baagca * doeg * * x * * xch,
and X, would be compared withs = ¢ * * * * x xugvawach * zo. Notice that the subsequencgsandY,
are not disjoint since both contain the gengandc;.

The HomologyTeams algorithm alternates between splitting genémeasdGs, on gaps greater thay
recursively breaking each one down into runs, and updating thertweeof shared families (trephabe},
until two subsequences with no gap greater thame reached. For example, in the comparisoXfand
Y1, Y1 would be broken into two runsty; = baagcs * daez andYia = ¢. At this pointX; has the same
alphabet a%11, and since neither have a gap greater thana 2, the recursion would halt, andX, Y11)
would be returned as a maximaicluster. Y15 would be compared with the subsequenceXefwith the
same alphabetX; = ¢;. Since neithetX;; nor Y12 has a gap greater than= 2, (X1, Y12) would be
returned as a maximatcluster.

In order to modify this algorithm to identify dominant clusters, we note the relghipnbetween maxi-
mal and dominant clusters:

Proposition 4.5.1. Every maximab-cluster is a dominang-cluster.

Proof. Let (X', Y”) be ag-cluster withA(X'Y') = ¢’ < g. If (X', Y”) is maximal then every cluster that
contains it has gap greater thanTherefore, there exists no cluster with a max-gap less than or eqyal to
that containg X’, Y”). O

Proposition 4.5.2. Every dominang-cluster is a maximad’-cluster, for some’ < g.

Proof. Let (X', Y”’) be a dominang-cluster withA(X’,Y”’) = ¢’ < g. Since it is dominant, there is no
cluster with max-gap* < ¢’ than contains it. Thus it is a maximélcluster. O

These two propositions suggest a possible algorithm: run the Homology Bégonghm multiple times,
for each value ofy in 0..gimax- Proposition 4.5.1 guarantees that only dominant clusters will be returned,
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and Proposition 4.5.2 guarantees that all dominant clusters will be fouodevér, this naive approach is
inefficient, since for small values gfmuch of the work of the algorithm is the same as for larger values of
¢g. In addition, the same clusters could be output multiple times, since a dominater chas/ be a maximal
g-cluster for many values of. Thus, an additional post-processing step would be required to filter out
the many redundant clusters returned. We present a more efficiemithgdased on the the following
observations.

Lemma4.5.1. (Beaktal. [8]) If X; and X, are twog-chains of genomé, and X; N X5 # ), thenX; U X5
is also ag-chain.

Proof. The proof is given in the GeneTeams paper, as proof of Lemma 1. Theemsgsof gene families
does not alter this lemma. O

Lemma 4.5.2.1f (X1,Y7) and (X»,Y>) are twog-clusters,X; N Xy # 0, andY; NYs # (), then(X; U
Xo,Y1 UY>) is also ag-cluster.

Proof. Since(X1, Y1) is a clusterX(X;) = 3(Y7). Similarly, £(X32) = X(Y2). Thus,X(X; U Xa) =
Y(Y1UYs), and(X; U Xo,Y; UY3) is a cluster. By Lemma 4.5.1¥; U X3 is ag-chain, as isY; U Ya.
Hence A(X; U Xy, Y1 UY) < g,and(X; U X», Y UY3) is ag-cluster. O

Proposition 4.5.3. Either ag-cluster is a maximad-cluster, or there exists a uniqgue maxingatluster that
contains it.

Proof. Let (X', Y’) be a non-maximag-cluster withA(X’,Y’) = ¢’ < g. Since it is non-maximal, there
is some maximaj-cluster(X, Y1) that contains it. Assume there is another maxigaluster(Xs, Ys)
that also containgX’,Y”’). Clearly, X; N Xy # 0 andY; N Y2 # () since bothX; and X, containX’, and
bothY; andY; containY’. By Lemma 4.5.2(X; U X5,Y; UY3) is also ag-cluster. However(X,Y7) is
maximal, so there is no largercluster that contains it. Thus\y, Y1) = (Xo, Y2). O

These propositions guarantee that the following modification of the He alti@sser algorithm effi-
ciently identifies all dominant clusters. The existing HomologyTeams algorithiseid to find all maximal
gmax-Clusters (which are guaranteed to be domingni.-clusters by Proposition 4.5.1). When a maximal
gmax-Cluster(X’, Y") with max-gapg < gmax is found, rather than outputting it and halting, we reduce the
maximum allowed gap fromy,.x to g — 1, and recursively identify all the sub-clusters(af’, Y') that form
maximalg — 1-clusters. Only when two subsequences with no gaps () are reached does the algorithm
halt.

Since only maximag-clusters are output, far < gmax, Proposition 4.5.1 guarantees that only dominant
clusters will be output. Proposition 4.5.2 guarantees that this strategy witifilaii dominantg-clusters.
Proposition 4.5.3 guarantees that no duplicates will be produced, sinmmiaaht cluster will never be a
sub-cluster of more than one maximal cluster.

The main FindDominantClusters function is shown in pseudo-code in Algoritham@® the recursive
procedure is shown in Algorithm 4. The GetSharedFamilies and SplitintoRaotons are not given here,
but are implemented identically to the HomologyTeams implementation, except thajribey genes which
have already been assigned orthologs, and treat them as gaps. fline8ms rely on the key innovation
of the HomologyTeams approach: a succinct representation of subprelthat maintains an overall space
bound proportional to the size of the genome. Our modified algorithm alsothiserepresentation.
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Algorithm 3 FindDominantClusters( A, Bgmax )

1. Q «— emptyset
sharedfamilies «— GetSharedFamilies(A, B)
runsin_A « SplitintoRuns(A, sharedamilies, gax )
for each A_runin runsin_A do

Q < QU FindDominantClusters’(B, Aun, gmax)

end for
return Q

No aRAwN

Algorithm 4 FindDominantClusters’( A, By )
1. Q «— emptyset

2: sharedfamilies«— GetSharedFamilies(A, B)

3: runsin_A < SplitintoRuns(A, sharedamilies, g)
4: if [runsin_A| = 1 then

5 g+« max(A(A), A(B)) —1

6: Q+— QU(AB)

7: end if

8: if g > 0then

9: foreachA_runin runsin_A do

10: Q < Q U FindDominantClusters(B, Aun, g)
11:  end for

12: end if

13: return Q

4.5.2 Selecting a Maximum Matching Associated with each Ckier

A maximum associated matching must be selected for each dominant clustgoioline 4 of Algorithm 2.
We designed two methods for selecting a maximum matching associated with esteh. cline first relies
only on gene order within the cluster, and the second also considemrasgsimilarity.

The first method uses a simple left-to-right strategy for choosing a locahinatof a cluste X', Y”).
Starting with the leftmost gene in the chait, we match each gene X’ with the leftmost gene ify”’, such
that the gene is in the same family, and the gene has not yet been matchedarmpie, given the cluster
shown in Figure 4.3); would be matched withs, b; would be matched with/,, ande; would be matched
with es. When order is preserved this strategy will perform well. If there hanlza inversion or additional
scrambling of gene order, this strategy may match genes quite poorly.

The second method uses a greedy strategy to select gene pairs thsinfitaresequences.e. with the
lowest E-values. Starting with the leftmost gene in the ché&inwe match each gene ik’ with the most
similar gene inY”’, such that the gene is in the same family, and the gene has not yet beendnaohe
example, given the cluster shown in Figure 4;3would be matched with, b} would be matched with,,
ande; would be matched withy,.

77



a|1 bl:c';j’%gl\

az by 2 dy €2 by e

Figure 4.3: An example gene cluster with many possible maximum associated rgatcfiine e-values
are: e-valby,b) = 1071, e-valltf, by) = 10, evalbi,by) = 107, evalby,th) = 1072, e-
val(er, e2) = .0001, e-valey, €5) = 0.

4.5.3 Computing cluster costs: Estimating the Expected Numbef Clusters

A cost must be assigned to each dominant cluster found on line 1 of Algo8thithe cost of a cluster
depends on the statistical significance of its associated matching. The pensathat we use to determine
the significance of a matching are its sizeand max-gap;. Note that although all maximal matchings
associated with a cluster will have the same size, the max-gap will dependicm nvhtching is selected,
which may differ depending on which of the two matching algorithms is used.

More precisely, the cost is based on the number of matchings ofisimel max-gap we expect to
observe when comparing two genomes that contain the same genes, in trgesafamilies, if all possible
permutations of genes were equally likely. gt , be arandom variable representing the number of clusters
with matchings of sizé and gaypy, in a comparison of two genomes. We defifié, g) = E[X}, 4] as the
expected value ok, ; under the null hypothesis. The casth, g) of a cluster is then the expected number
of clusters with size> h and maximum gagt g:

(I)(ha g) = Z Z Qb(k;’ d),

k=h d=0

wherevr, the size of the maximum matching, is the largest possible valie Bbr reasonably small values
of g, ash increases the probability of observing a cluster decreases rapidlg, Tdrnsome sufficiently large

value of H
H g
O(h,g) =Y > ¢(k,d).
k=h d=0
Thus, rather than summing froln= h..r, we sum only fronk = h..H, whereH is relatively small, and is
set by the user.

For genomes with arbitrary gene family sizes, an exact expressioR|[f&¥, ;] is not known. Thus,
we propose two methods for estimating the expected number of clusters with himgatd sizeh and
gapg. The first method estimates the number of clusters that would be obsergedthe null hypothesis
through a Monte-Carlo procedure in which random permutations of thesgereach genome are selected
at each iteration. With this procedure the number of genes assigned tée@aibhremains the same, but
the locations of each family within the genome are randomized. The number diinggof each size and
gap are tabulated at each iteration. This procedure is repeatedtéoations. Letz;(h, g) be the number of
clusters with associated matching of sizand gapy observed in thet" iteration. The average number of
clusters observed provides an estimate of the expected number undel tmgpothesis:

Blhg) = - S wilhg). (4.)
=1
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This approach will provide very accurate estimates for clusters that demuently. However, it will not
provide accurate estimates for clusters that have only a very small pligbaboccurring by chance. In the
most extreme case, any cluster that is not observed in any random peomugsassigned a cost of zero.
Given two zero cost clusters, this method cannot determine which is moretidkedpresent the orthologous
region.

Our second estimate is based on the upper baddpdh, g, n1,n2, m) derived in Section 2.3. Recall
that P,,,(h, g, n1,n2, m) is an upper bound on the probability of observing a maximal max-gap cluster o
sizeh and gap no greater thanin a comparison of randomly ordered genomes containingndn, genes
respectively, andn shared gene families, each of size exactly two. We estimate the expectedrrafmbe
clusters of sizé, and max-gagxactlyg as:

é(h, g) = Pyp(h, g,n1,n2, min(ni, n2)) — Pyp(h, g —1,n1, n2, min(ny, n2)). (4.2)

This will only be a rough approximation for a number of reasons. It is ggeupound on the probability

of observing at least one cluster, rather than the expected numbersbérslu In addition, chromosome
boundaries are disregarded, which will cause the number of clusteessiightly overestimated. Most im-

portantly, however, it assumes that all gene families are of size at mosddvitanay severely underestimate
the number of clusters. Unlike the randomization approach, however, vistanhlytical method even very
small probabilities can be computed.

We experimented with two different strategies for prioritizing clusters. Tis¢ $trategy ranks clusters
according to their cosp, which is based solely on the spatial characteristics of the cluster. Ofierver,
there will be multiple clusters in the queue with the same cost. With the first stratexpg clusters are
ranked randomly. Our second strategy first ranks clusters accotdititeir cost®, but uses sequence
similarity to break ties. Given two clusters of equal cost, we can sort theneipribrity queue by their
minimum E-value. More precisely, the secondary sorting criterion is the minimwalle of the associated
matching, where the minimum E-value of a matchig,,, Y;,) is defined to be

min{e-vaz,y) |z € X,,,y € Yy, F(z) = F(y)},

where e-va(z, y) is the E-value of gene and gengy, and is computed as described in Section 4.6.2.

This secondary sorting criterion is most important for selecting betweetectusith associated match-
ings of size one,e. clusters containing only a single gene, that provide no spatial evideraéhofogy. In
this case, sequence similarity is the only information available.

4.5.4 Updating the queue of dominant clusters

Algorithm 2 starts by computing the set of all domingntlusters in the original homology grapt. As
orthologs are assigned, however, the homology graph may changé¢hwnthe set of dominant clusters
may change. On line 13 of Algorithm 2, genes are assigned as ortholdgsn ®pair of gene§y,, g2) is
determined to be an orthologous pair, all other edges tmdg. must be pruned from the graph. Thus, after
thet!” iteration of line 13 of Algorithm 2, there will be a new homology grakih SinceH, contains fewer
edges thert;_1, it may also contain a different set of domingntlusters. After removing edges the size of
gaps may have increased, angteluster(.X, Y') that was dominant at timemay have gap greater thag .

in H:11. In this case, the clustéiX,Y") is considered invalid at time+ 1, and should be removed from
the priority queue. In addition, a clusteK’, Y') that was previously dominated 9y, Y') could become a
dominant cluster, and thus should be added to the priority queue at timie
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We use a lazy strategy to handle these deletions and insertions. We waitlustgir¢X, Y') reaches
the front of the queue to remove it. We check whether the cluster if invalid,oaty then do we insert
its newly dominant sub-clusters into the priority queue. Since the functiorDeindnantClusters treats
matched genes as gaps, we can re-use this function to identify the newlyaddraub-clusters of cluster
(X,Y), by passingX andY as the input gene sequences rather than the entire genome.

Even with this lazy insertion strategy, in most cases the lowest-cost valid rcatgbaet will in fact be
in the queue at time This is because if a clustél is valid at timet, but is not yet in the queue, it must be
dominated by some invalid clustér that is associated with a graph from a previous time step, but has not
yet been removed from the queue. However, the fact@hiatstill in the queue means that there are clusters
with smaller cost. These clusters most likely have a smaller costihas well, since”’ is a sub-cluster of
C. Infact, if a clusteiC has no duplicates, then any sub-clugtéit dominatescannothave a smaller cost.

Theorem 4.5.3.Let (X, Y') be ag-cluster that contains no duplicatds.if z; € X, 22 € X, andF(z1) =
F(xz9) thenzy = z9, and ify; € Y,yo € Y, and F(y;) = F(y2) theny; = y,. Any sub-clustetX’,Y”)
dominated by X, Y) must have equal or higher cost.

Proof. Let h andg be the size and max-gap @K, Y"), respectively and’ andg’ be the size and max-gap
of (X', Y"). SinceX’' C X andY’ CY,h > 1. Since(X,Y) dominatef X', Y’), g < ¢'. By definition,

H H g
O, g) = ®(hg) =D > (k,d) =D Y b(k,d)

k=h' d=0 k=h d=0

h—1 ¢’ H ¢
=Y qﬁkd+zz¢kd > ok, d)

k=h' d=0 k=h d=0 k=h d=0

h—1 ¢ H g’ H (4'3)
=Y ¢kd+zz¢kd+z > blkd) =D bk, d)

k=h' d=0 k=h d=0 k=h d=g+1 k=h d=0

h—1 ¢’
= o(k,d) + Z Z o(k,d)

k=h' d=0 k=h' d=g+1

Regardless of the method used to estingdie d), it is always non-negative. The sum of non-negative terms
is non-negative, therefo®@(1’, ') > ®(h, g). O

Even when a cluster contains duplicates, it is typically the case that all itslgsters have a higher
cost. This is because a sub-cluster will generally be smaller, and ha\geadmp. In rare circumstances, it
is possible that a sub-cluster will have a lower cost. For example, corthidafery simple example:

Gy =ay *a) ** b

Go = by * * ag.

The clusterC = ({aq,d),b1},{az2,b2}) is a dominant 2-cluster. If we select the associated maximum
matching ({a1, b1}, {az2, b2}) then the matching has size = 2 and max-gapy = 4. The sub-cluster

C" = ({da},b1},{az2,b2}) is also a 2-cluster, but it is contained withi, so it is not dominant. 1t

is assigned an ortholod@; becomes invalid and” becomes a dominant cluster. However, the maximum
matching associated with’ has sizeh = 2 and max-gag = 2, so it will be assigned a lower cost théh
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This scenario occurs as a result of selecting a poor matching'fdn the majority of cases, however, the
cost of a sub-cluster will never be less than the cost of its dominating cli$tes, it is reasonable to use a
lazy strategy for adding newly dominant clusters to the queue.

4.6 Experiments

Evaluating ortholog prediction methods is challenging. Although there are matapases of predicted
orthologs, there is no clear gold standard. A wide variety of evaluatiotegies have been used. Meth-
ods that do not consider genomic context often use spatial organizatevalizate their predictions [68],
but clearly that is not appropriate for a method based on genomic contextthér approach is to use
functional genomics data [85], since orthologs are believed to have simiatibns. Experimentally deter-
mined functions are known for only a small fraction of genes, so more icidineasures must be used, such
as expression profiles, protein-protein interactions, and participation tabwiec pathways. Methods that
consider spatial organization are often evaluated on synthetic data8e@&3]1but these datasets are typi-
cally generated so as to conform to the method’s underlying evolutionarylmaueh is often not realistic.
Ortholog predictions can also be evaluated by comparing gene namesrantdtaoms, under the assumption
that genes with similar names and annotations are more likely to be orthologstiesgith distinct names
and no shared annotations [63, 14, 13]. Obviously, this assumption Wdlitbaarying degrees depending
on the genes under consideration, and how they were annotated.

4.6.1 Data and Evaluation Metrics

Our main goal in this evaluation is to test whether by relaxing the conservetl t&finition and incorpo-
rating sequence similarity scores we are able to improve ortholog predictiopared to previous methods
that try to maximize spatial conservation. Thus, in order to compare ouitsesith two previous spatial
methods, we use the same evaluation approach as LCS [14] and CIGAIW1ii8h were tested on &-
proteobacteria dataset. The resulting predictions were evaluated usiaghgme annotations, as described
below.

The dataset consists of eight single-chromosome species (listed in TaplthdtZpan the phylogeny
of ~v-proteobacteria (Figure 4.5). The MRCA of these species is thoughtiolivad at least 300 million
years ago [98]. Table 4.2 gives the number of genes in each genomgehbme sizes range from only 598
genes, in the aphid endosymbiddtichnera aphidocolato 5642 genes, in the environmentally versatile,
opportunistic pathogeRseudomonas aeruginasa

For consistency, we used the gene families constructed byeBlh [14]. They place an edge between
two genes in the homology graph if the sequences have at least 25% idanbutl{ directions), and the
BLAST alignment covers at least 65% of both sequences. Then, theyttakransitive closure to generate
the family graph. Figure 4.4 shows the distribution of the number of genefapélly per genomePseu-
domonas aeruginoseontains two families with more than forty genes. All other families are repteden
by fewer than 35 genes in each genome. The majority of families are repeddey fewer than ten genes
in each genome. These gene families determine the maximum matching size fqraiaohgenomes
(Table 4.2).

We compared our method with three previous methods. In the BBH method, gthaie assumed to
be those gene pairs that form bi-directional best Blast hits. LCS andIC#Ssign orthologs greedily based
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Ec Hi Pa | Pm St Xf Yp

4345 | 1732 | 5642 | 2015 | 4532 | 2821 | 3954
Ba | 598 | 564 | 466 | 521 | 450 | 563 | 464 | 557
Ec | 4345 1319| 2209 | 1460 | 3348 | 1104 | 2325
Hi | 1732 1131| 1329| 1320| 820 | 1270
Pa | 5642 1220| 2231 | 1222 | 2035
Pm| 2015 1459 | 829 | 1422
St | 4532 1123| 2543
Xf | 2821 1072

Table 4.2: Number of genes in each bacterial genome (first row anaditstnn), and maximal matching
sizev. Abbreviations: BaBuchnera aphidicolaEc, Escherichia coti Hi, Haemophilus influenzada,
Pseudomonas aerugingsam, Pasteurella multocidaSt, Salmonella typhimuriumXf, Xylella fastidiosa

Yp, Yersinia pestis C2.

10000

Number of Families

Figure 4.4: The distribution of family sizes, over all eight genomes.

Figure 4.5: Phylogenetic tree showing the estimated branching order afjfiiteyebacteria species used in
the evaluation. [98]. Branch lengths are not representative. Alztiens are given in Table 4.2.
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Measure Formula Intuitive Meaning
Precision TPT+7PFP The percentage of predicted orthologs that are correct.
Recall / Sensitivity TP’*Z% The percentage of orthologs predicted to be orthologs.
Specificity % The percentage of paralogs predicted to be paralags.
Accuracy TP ER The percentage of predictions that are correct.
F1 measure TP TET The harmonic mean of precision and recall.

Table 4.3: Common evaluation metrics for binary classification tasks.

on longest common substrings [14], and largest common intervals [Epgcévely. We applied BBH, LCS,
CIGAL, and our new algorithm to all 28 pairs of genomes and evaluatecethdts using a “ground truth”
dataset constructed as follow. Each gene is associated with a (possilily) distpf UniProt [3] names,
including the gene name field and the synonyms field. We consider two gebesttoe (T) orthologs if
they share a name. If both genes have UniProt names, but no commomnvmagasider them paralogs, or
a false ortholog pair (F). Otherwise, if one or both of the genes in the painb UniProt name, we consider
the pair to be unknown (U). Note that this approach does not guararatieg gene will be assigned only one
ortholog. In fact, a number of genes have two or more matches in a singbengen

We ran each method on all 28 pairs of genomes. Note that with the except®BBHyfthese methods
are guaranteed to be symmetric. In other words, it is possible that switctaraydier of the input genomes
will yield a slightly different set of orthologs. We always order the gengraies alphabetically. For each
pair of genomes, the output of each method is a matching, a set of predittielbgous pairs. These are the
set of positive predictions (P). All gene pairs that were not matchedargidered paralogs, and are labeled
negative ortholog predictions (N). Combining the known labels with the predii@bels, each gene pair is
classified as a true negative (TN), true positive (TP), true unknowd),(felse negative (FN), false positive
(FP), or false unknown (FU).

Table 4.3 summarizes the five metrics typically used in evaluating prediction systemsrthology
prediction, the majority of the examples are negative paralogs), and thus specificity and accuracy will
always be high as long as the classifier does not predict too many pssitfee this reason, we selected
precision, recall, and thé'l measure as our evaluation metrics. For each method we report the precision
and recall for all 28 genome pairs, as well as siverageprecision and recall and thaverall precision and
recall. The averageprecision is simply the average of the 28 precision measurements, whezemastall
precision reports the percentage of all predicted orthologs in all 28 etatttat are correct. The average
and overall precision anf'l measure are defined similarly. The average precision weighgeatimepairs
equally. The overall precision weights génepairs equally, and thus is influenced more by pairs of large
genomes with many true orthologs than by pairs of small genomes with only atiealays.

SOften, the average precision is referred to asrttaero-averageand what we call the overall precision is referred to as the
micro-average
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4.6.2 Methods

The gene sequences, gene orderings, and UniProt annotatiorlk dighé species were obtained from a
websité maintained by Cedric Chauve.

We implemented Algorithm 2 and the Monte Carlo method described in Section 4.5.3meGmple-
mentation of Algorithm 2 re-uses much of the code from the HomologyTéaufsware. The analytical
cluster probabilities were computed using Mathematica.

The cluster costb(h, g) was computed separately for each pair of genomes. As described in Sec-
tion 4.5.3,¢(h, g), the expected number of clusters with associated matching ofhsared max-gapy,
was estimated in two ways, by Monte Carlo sampling and using an analytical methedvionte Carlo
sampling procedure was conducted as follows. For each genome]l, 000,000 random permutations
of gene order were generated. For each pair of randomized genathdsminant max-gap clusters with
1 < h <50and0 < g < 20 were identified. The order-based strategy described in Section 4.5.@seds
to select a matching, and the size and max-gap of the associated matchinglwéated, yielding a table of
cluster frequencies for all values gfandh. These frequencies were used to estimdte g), as specified
in Equation 4.1. In the analytical methogl ., g) was computed from Equation 4.2, for all matchings of
sizel < h < 50 and max-gap < g < 20.

E-values were calculated using an all-against-all BLAST [1] comparisargulefault parameters on a
combined FASTA file with the list of gene sequences from all eight genoBEeslues are not, in general,
symmetric because Blast statistics are length dependent. If sequenod® are of different lengths, e-
val(a, b) will differ from e-val(b, a). In this case, we set both e-valp) and e-valp, a) to be the smaller of
the two E-values. These E-values were used to compute BBHs for eidf ganomegd7; andGs. Given
sequence in G; andb in G, the pair(a, b) is a BBH iff there is no paifa, ') such that/ is in G» and
e-vala,b') < e-vala,b), and there is no paif’, b) such that' is in G; and e-vala’, b) < e-vala, b).

4.6.3 Results

In this section, we compare nine different variants of our method, summddriZeble 4.4. These strategies
differ in terms of four factors: the method used to compute cluster costs, tthedfor selecting an asso-
ciated matching, whether E-values were used to rank clusters with ectal end the value gf,.x. By
comparing different strategies, we investigate the affect of allowing,gaqmkthe importance of incorporat-
ing sequence information along with spatial information. We also compare dhodgewith three existing
methods for ortholog predictions: CIGAL, LCS, and BBHs.

In all the graphs below, the genome pairs are ordered by the value @fithmeasure achieved when
using BBHSs to assign orthologs. In other words, gene pairs on the éefeasy”: orthologs can be identified
accurately using gene sequences alone. Gene pairs on the righted& “fequence-based methods have
lower precision and recall on these datasets.

SAvailable athttp:/arnt.bioinfo.ugam.ca/"genoc/CG06
"Available athttp://euler.slu.edu/"goldwasser/homologyteams/
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Computing ¢(h, g) | Selecting a Local Matching| Ranking clusters | gmax
MGO Monte Carlo Order ) 5
MG1 Analytical Order i) 5
MG2 Analytical Order i) 0
MG3 Analytical Order i) 10
MG4 Analytical E-values i) 5
MG5 Analytical Order ® + E-values 5
MG6 Analytical E-values ® + E-values 5
MG7 Analytical E-values ® + E-values 10
MG8 Analytical E-values ® + E-values 0

Table 4.4: Summary of prediction methods evaluated.

Analytical versus Monte Carlo

In Section 4.5.3 we proposed two methods for estimating the significance obtrclla Monte Carlo
method and an estimate based on the analytical equations presented in S&ctidhe?'1 measure for
these two methods are compared in Figure 4.6, wjigrr = 5. Although there are a few datasets for
which the Monte Carlo method yields a largét measure, the overall performance is slightly better with
the analytical estimates. This difference occurs because, even with onenraiioples, the Monte Carlo
method is not able to estimate very small probabilities accurately. Hence, the ppitgally contains a large
number of clusters that are all assigned a cost of zero. The analytitiabdhean rank these clusters more
accurately, giving preference to those with smaller gaps and larger Isizéigure 4.6, E-values were not
used to select a local matching, nor to rank clusters. When local matchimgslacted based on E-values,
the trends are very similar. If E-values are also used to rank clusterstibealifference between the two
methods is reduced, since the inability of the Monte Carlo method to rank highiyfisant clusters is
mitigated by the use of E-values to rank these clusters.

Figure 4.6 also illustrates that the average (macro-average) perfogrisnetter than the overall (micro-
average) performance. This trend is observed regardless of theangdbd to predict orthologs, since the
genome pairs with more orthologs tend to be the more difficult datasets.

Allowing Gaps

A central tenet of our approach is that ortholog prediction can be imdrbyausing a more flexible cluster
definition that allows insertions and deletions. We also claim that our statispiped@ch to scoring clusters
enables us to identify more true positives without increasing the numbelsef fasitives. In order to test
these assumptions, we examined how the performance of our method slesggg. is increased frond

to 20. No sequence information is considered in this analysis, because weonangstigate the effect of
allowing gaps when using a purely spatial approach. Figure 4.7 shonassifg. is increased frond to 5,
both precision and recall increase. As expected, the improvement tbissleager than to precision. The
largest improvements are achieved on the hardest datasets. Althouggrtiin datasets, such as Pm-Yp,
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allowing gaps larger than five does improve precision and/or recall, isitig@a.,.x above five does not
yield an increase in overall performance. However, neither doesstautially decrease performance. Even
allowing gaps as large as ten or twenty, the performance decreasegonglightly or not at all. This shows
that our use of cluster statistics is effective in eliminating clusters that afeiologically meaningful.

Figure 4.7 also compares our method to CIGAL. Recall that CIGAL is basecbmmon intervals,
which are max-gap clusters with= 0. By allowing gaps in conserved blocks, our method obtains a sub-
stantial performance improvement over CIGAL. This difference is due alewtirely to the more liberal
cluster definition, since wheg,.x = 0, the overall performance of the two methods, as expected, is very
similar. Max-gap withy,.x = 0 performs slightly better than CIGAL on the easiest datasets, which is prob-
ably due to differences in how a local matching is selected. Unlike CIGALp@iching strategy explicitly
tries to preserve gene order, which appears to work better than CE3Ahtching strategy, especially for
the easier datasets. This small difference is not sufficient to explain thevemsmt over CIGAL when
gmax = 9. Thus, the majority of the improvement must be due to using a more liberal ctiefiaition.

The advantage of a cluster definition that includes gaps is exemplified biudterdn Figure 4.8, which
shows a dot plot of regions in the. coliandB. aphidocolagenomes. This region contains a gene cluster
characterized by numerous insertions and deletions. A method that dbescognize conserved blocks
that contain gaps would fail to detect this cluster, and thus would be unlikelgrtectly identify orthologs
for the genes in these regions.

Considering Gene Order

To evaluate the relative importance of gaps versus gene order, we mthpamax gap method, based on
spatial information alone and disregarding sequence information, with B@&thod based on common
substrings. For the-proteobacteria considered in this evaluation, order tends to be vesgw@d. Con-
sequently, LCS achieves better performance than CIGAL (Figure 4.8).oNy does CIGAL have lower
precision than LCS, but it improves recall for only one of the 28 genonis gaot shown). This poor
performance occurs because only a small fraction of the additional idubie CIGAL identifies are bio-
logically meaningful—more often they are just chance clusters, and thénelsase the number of false
positives. This illustrates that for this dataset, relaxing the gene ordstratt was not helpful for ortholog
prediction.

If rearrangementandgaps are allowedy(,.x = 5), then our method performs similarly to LCS overall.
It performs slightly better on roughly a third of the datasets and slightly wansée remaining datasets.

For these eigh{-proteobacteria, even when clusters contain gaps, gene order tedrelsdaserved. For
example, the cluster shown in Figure 4.8 contains many gaps, but order istgdertectly preserved within
the cluster—it contains only a single inversion. This suggests that a methombtigaders both gene order
and gaps would yield more accurate predictions. One approach woulddeéetd a cluster definition that
requires identical gene order but allows gaps. Such a stringent defimitight not work well, however,
when analyzing more rearranged genomes. We discuss alternativefvagsrporating gene order into our
approach in Section 4.7.1.
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Figure 4.7: Comparison of (a) precision and (b) recall for CIGAL anaxMjap whery,ax
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Figure 4.8: A dot plot showing a region &uchnera aphidicolasompared with a region d&. coli. Each
box indicates a pair of genes in the same family, one from Ba and one froifr&e orthologs are shown in
green, false orthologs in red, and unknown pairs in black.
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Figure 4.10: Performance comparison of different ways of incotpmgasequence similarity. In the first
method (Max-gap no-evals, MG1), sequence information is disregaasieda local matching is selected
based on gene order. In the second method (Max-gap eval-match, El®&4al matching is selected based
on E-values. In the third method (Max-gap eval-ties, MG5), a local matdkisglected based on gene
order; E values are used to rank clusters of equal cost. In the last dh@ifax-gap eval-match-ties, MG6),

E-values are used both to select a local matching and to rank clusters.
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a matching and ranking clusterg;.x = 0 (MG8), gmax = 5 (MG6), andg.x = 10 (MG7).

Incorporating Sequence Information

We proposed two ways to incorporate sequence information within a spaiméfvork. In the first case,
E-values are used to select a local matching, once a cluster has bemedthitam the priority queue. In
the second case, E-values are used to break ties in the cluster ranlengwahne than one cluster has the
same cost. Here we evaluate the effectiveness of these two methode #iishows that our method for
using E-values to select a local matching is preferable to our method fatisgla matching based on gene
order alone. Itis possible, however, that a method that considers enyayder, but recognizes inversions,
would perform as well or better than our sequence-based method.

Using E-values to rank clusters with the same cost also results in a largasedreperformance (Fig-
ure 4.10). This improvement is much larger than that obtained when usirduEsvonly to assign a local
matching. This is because the majority of gene clusters have only one @sdamiatching. Even when
there is a choice of matching, for this data, gene order is highly conseritleith clusters (as illustrated by
Figure 4.8), so the order-based matching strategy performs reasomallyHowever, there are a number
of genome pairs in which there are large numbers of orthologs that ddvacg any gene neighbors at all.
Without using E-values to break ties, thesggletonsare ranked randomly, which is equivalent to picking an
arbitrary family member as the ortholog. Not surprisingly, choosing the gathehe most similar sequence
as the ortholog yields much better results. These two uses of sequenceatiém are orthogonal, so by
using E-values both to select a local matching and to break ties, perfoersafurther increased.
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Incorporating sequence into a context-based approach consistentlyvespgrerformance, over all 28
genome pairs. However, when both methods of incorporating sequenitarity are used, allowing gaps
no longer improves performance, as shown in Figure 4.11; in fact, thepbeermance is obtained when
gmax = 0. It is not completely clear why larger gap sizes lead to slightly worse predgtidt could
be that sequence is just a better predictor than spatial context for thsetladad so by using a smaller
gap we are relying on sequence for a larger portion of the genes. é@nptissible explanation is that,
with larger gaps, there are more “innocent bystanders” that getestahy pulled into a highly significant,
neighboring cluster. When a conserved block is very large and démsegyrobability of it occurring by
chance is extremely small, and so if there are neighboring genes, evematdistance, they may get
included in the cluster, without substantially affecting the probability. A smalbability of occurring by
chance is a good indicator that a part of the cluster indicates an orthadgock, but it is not a good
indicator that the entire cluster represents an orthologous block.

Comparison to Existing Approaches

Here we compare our method, based on a combination of sequence &atlisflamation, with existing
approaches based on only spatial context, or only sequence conmpdfigare 4.12 compares our method
with CIGAL, LCS, and BBHs. As shown in Figure 4.7, even without usinguesce information, our
method is a better predictor or orthologs than CIGAL. Allowing gaps and ussggience information, to-
gether, results in an even larger improvement over CIGAL (Figure 4\W#hout sequence information, our
method performed similarly to LCS, but our combined method achieves subByahitgner precision and
recall than LCS on all 28 genome pairs. Incorporating sequence intotextébased approach consistently
improves performance.

Although BBH is the most common method for assigning orthologs, previougstatispatial methods
have not compared their results with BBHs. We address that omissiondoenparing CIGAL, LCS, and
our max-gap method with BBHs (Figure 4.12). Surprisingly, both CIGAL la@& have significantly worse
results than BBH. Compared to our method, BBH has higher precisionlidatiy lower recall overall. For
the easier datasets, BBH tends to do better, particularly on recall. For thertdatasets, however, our
method gets consistently higher recall.

The small magnitude of the improvement over BBHs could be due to a numbectofs. First, our
evaluation metric is based on gene names, which are assigned primarilydraseduence similarity. In-
deed, there are many cases of clearly conserved clusters, with idaygivalorder and content, in which
the genes were not assigned the same names. It is highly unlikely that thsteescoccurred by chance.
Second, our method assumes that all orthologs are assigned to the safangign We observed numerous
cases where orthologous pairs were assigned to two different famitighe$e cases, our method can not
possibly make the correct prediction. To address this issue, one possiulitg be to use a more liberal
sequence threshold when identifying homologous genes. Howevertrtitisgy would add many extrane-
ous edges to the homology graph. We discuss an alternative solution todhlerprin the next section. A
third factor may be the close relationship between-Hgacteria considered in this evaluation. It may be
that these eight species are so similar that a simple approach like BBHs gquotksvell. When comparing
more highly diverged species, however, our approach may yield larggovements. Finally, there are a
number of ways to improve our methods, both in how it utilizes spatial and sequeformation. These
extensions are discussed in the next section.
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Figure 4.12: A comparison of (a) precision and (b) recall, for BBH, |.CE5AL, and max-gap (MG8).
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4.7 Discussion and Future Work

In this chapter we presented a new method that predicts orthologs baaamborbination of spatial context
and sequence information. This method makes two main contributions. This #stefficient algorithm
that, given a bipartite family grapf, identifies all dominant max-gap clusters. As orthologs are assigned,
and edges are removed from the graph, our algorithm efficiently uptteeset of dominant max-gap clus-
ters. The second contribution is a statistical method that, given two max-getprslof different sizes and
gaps, estimates which cluster is least likely to have occurred by chancert®alog identification method
improves over existing methods based on spatial context, which rely on rapsemwative cluster defini-
tions, and disregard sequence information. Assessing gene clustésscstly allows us to use a more
flexible cluster definition, increasing true positives without increasing fatssitives. In fact, by identifying
conserved blocks that contain gaps, we increase both precision @il cempared to existing spatial ap-
proaches. Furthermore, unlike previous methods, our statistical agfpadiaws us to not only return a set
of predicted ortholog pairs, but also to rank those pairs by the strengdtie @vidence.

On the datasets tested, our combination approach results in slightly lowésigneand slightly higher
recall than BBHs. However, even with equivalent performance toesszptbased approaches, our approach
has the advantage that in addition to identifying orthologous genes, it idemifl@ologous regions, which
are the required input to many comparative genomics applications.

Aside from ortholog prediction, our framework is useful as a platfornctamparing clusters definitions
and/or test statistics. Although many different definitions of a conserl@tk thave been used for this
problem, it is not yet clear which characteristics of a conserved blaknast important. Although it might
seem preferable to choose the most liberal possible definition of a eealdaock, we demonstrated that this
is not necessarily the optimal approach. The appropriate definition aiseceed block will depend closely
on the rates and patterns of large-scale chromosomal changes, andffierafyain organism to organism.
In order to determine which properties are most important, we need an afgarittamework in which all
of these properties can be considered. Since our approach is diéigraevery general cluster definition,
it can easily be modified to use more constrained definitions: we can set thgapaw zero (yielding
conserved intervals), disregard scrambled clusters and those withatepliyielding common substrings),
restrict the minimum size of a cluster, or allow only partially scrambled clustersfAeMonte Carlo method
can be used to estimate cluster significance based on a wide range oftiststadence, our framework
is useful for conducting unbiased comparisons of the performancéfefeit cluster definitions and test
statistics. For example, we showed that for thproteobacteria considered here, it is more important to
consider insertions/deletions then local rearrangements.

Finally, we demonstrated that it is critical to consider sequence informatiaiditien to spatial context.
Although spatial context is often useful, there are often large numberstuflogs that share no neighboring
genes. Thus, since LCS and CIGAL disregard sequence informatayngdthnot perform as well as BBHSs. It
is possible that spatial methods based on other principles might provide nwnate ortholog predictions.
On the other hand, it has been demonstrated that CIGAL achieves similampance on a mouse/human
dataset as MSOAR, a state-of-the-art approach that seeks to minimizgngeament distances [13]. This
suggests that other methods based only on spatial data also suffer &cantie limitations.
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4.7.1 Directions for Future Work
Evaluation

Comparisons of gene names are not ideal for constructing a gold stanlaalternate strategy could be
to use a phylogenetic test to assess ortholog predictions. Phylogemstemtion is NP complete and
hence computationally prohibitive for predicting orthologs in large gene fasnilia contrast, the use of
phylogenetic methods for testing ortholog predictions is less computationallyrdiéngabecause only a
restricted search space must be considered. Since only the phylogestion of the predicted orthologs
is in question, it is unnecessary to build gene trees for all the genes irea fgimily. Rather, trees could
be constructed for all subsets of four genes (quartets) that inclugeddested ortholog pair and two other
family members. A prediction is validated if the majority of the quartet trees confinaisthe predicted

pair is indeed orthologous. A confidence score for each predictiold @so be derived from the fraction
of quartet trees that support the prediction.

In addition to better evaluation strategies, it would also be interesting to testettnod on a more di-
verse set of species, with more distantly related pairs. A larger, moresdidataset may help us understand
why ortholog prediction is easier in some genomes than in others, and hohdteeteristics of the genome
determine which cluster definition is most appropriate. Finally, we plan to cartparperformance of our
method with a broader range of competing approaches. In this thesis, thedwedls compared with two
existing methods based on spatial context. Other methods have been ddydloiptheir data and/or code
is not publicly available. Creation of a standard, publicly available bendhmdlrallow more thorough
comparison of all the existing methods.

More effective use of sequence information

Our results demonstrate that incorporating sequence information in a sggir@ach yields a marked per-
formance improvement. Additional use of sequence information is likely to yiaithér improvements.
For example, our method continues to select clusters based on their shat@tteristics, even when the
cost of the cluster is extremely highe. there is no evidence that the clusters represent homologous re-
gions. An alternative strategy would be to switch from a combined spatiakseguapproach to a purely
sequence-based approach, once the spatial organization no loagelep sufficient evidence to reject the
null hypothesis. One possibility is to compare the observed number of dusidr size> h and max-gap

< ¢ with the expected number of clusters. If the difference is small, then the chlweld be discarded.
A significance threshold could be selected based gA test with one degree of freedom. Only clusters
with scores above the significance threshold would be consideredtfmlog assignment. To assign the
remaining unmatched genes, a purely sequence-based method coulketibeAlternatively, when a high
precision dataset is desired, no additional orthologs could be assigned.

Sequence information could be better utilized in our our method for choosiragsociated matching
based on E-values. Currently a greedy heuristic is used. Other possibiiitlade identifying the maximum
weight, maximum cardinality matchinge. the maximum matching such that the sum of the edge weights
is largest. (In this case it is appropriate to use bit scores rather thatugsva Alternatively, we could
select a stable matching. Even better than either of these approachesbe@daldesign an algorithm that
considers both gene order and sequence similarity. An algorithm sudiuéf$eS agan [23] could be used
to create aylocal alignment of the gene sequences in the cluster: an alignment in which eaclofetie
sequence is aligned to only one letter of the other sequence, but whicls &lorearrangement events such

96



as inversions, translocations, and duplications.

Another modification that would allow us to make better use of sequence datansittithe transitive
closure step when creating the input graph. As discussed in Sectioro#d &ttiolog identification, it is
not necessary to identify all homologs of a gene, but only a small set thikelg to contain the true
orthologs. Requiring gene families defined as equivalence classes adlyadgtrimental, since to create
families we have to either remove strong edges between gerfésanadd weak edges. Removing strong
edges may remove orthologs, whereas adding weak edges mostly adgs Ingiead, our method could
be modified to work on the homology grap, rather than the family grap#. This introduces some
algorithmic challenges, but they are not insurmountable. My approachoisgiyrbased on the fact that
the the homology relation is reflexived. the graph is undirected), but only a few details of the algorithm
require transitivity.

More effective use of spatial information

Estimating probabilities is currently the most time-consuming step of our algorithran &ith a million
random iterations, the Monte Carlo method does not estimate small probabilitiestety, and the ana-
lytical approach is only approximate since it does not consider the affeptne families. Faster, more
accurate statistics could be obtained by combining the two approachesndlyécal equations could be
used to generate a biased distribution of permutations for importance sang#ijpgAlthough the sample
space of all possible gene permutations is very large, only a small fradtiamdom samples will contain
non-trivial gene clusters. Our combinatorial analysis can be used teedawsampling strategy that selects
samples only from the small fraction of permutations for which the probabilitydfister is high.

Another way to use spatial information in the absence of sequence similaritlgl Wwe to add a post-
processing step in which pairs of genes with weak or even no detectablergingite assigned as orthologs
if they appear in a gene cluster, and no other potential ortholog was iddritfieither gene.

One of the strengths of the max-gap cluster definition is it allows homologouakdibat have sustained
local rearrangement to be identified. Nonetheless, homologous bloaks$adre more ordered than gene
clusters found in randomly ordered genomes. Requiring identical gelee isrtoo strict, and designing an
algorithm to find only partially disordered clusters is challenging. A simpler t@agonsider order, while
still allowing rearrangements, is to incorporate the degree of rearrangénie the test statistic. Several
such test statistics have been proposed [144]. An order-basethtisticscould be included as a secondary
sorting criteria, to rank clusters with identical size and max-gap. Alterrigtimecompound test statistic
could be designed that considers size, max-gap, and order simultineous
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Chapter 5

Discussion

In this thesis, | provide statistical tests to assess the significance of gestersltor a variety of biolog-

ical questions and search scenarios. | developed the first formatisttfsamework for max-gap gene
clusters [80], the most widely used cluster definition in genomic analyses.flflimework provides statis-
tical tests for two common search scenarios: a reference set scenarucim the goal is to find clusters
comprising a set of genes of interest, and a whole genome comparison tifyitt@mologous segments.
In addition to assessing significance of gene clusters after they ardedkt®ca search algorithm, this
framework facilitates principled selection of parameter values prior to atiimdpa search for gene clusters.

In the development of statistical tests for the max-gap cluster definition,dredd two troubling is-
sues regarding the use of this definition. First, my statistical results demientted cluster probabilities
under the null hypothesis are not monotonic with respect to cluster sizehwehcommonly used as a test
statistic for gene clusters. Although there is a widespread belief that ckigt@ficance grows with the
number of homologs in the cluster, it is critical to recognize that for some cldstaitions, larger clusters
do not always imply greater significance. In the design of future stubefsye selecting a test statistic its
distribution under the null hypothesis should be analyzed to ensure thdisthibution is monotonic. Sec-
ond, | observed that the majority of studies based on the max-gap definstiom greedy, bottom-up search
strategy that implicitly enforces order constraints, yet these biasesratg racognized. The use of such
heuristics can be particularly dangerous when attempting to draw condusiimut the degree of disorder
observed in homologous regions [79].

| also proposed a novel statistical framework for evaluating the signdeafclusters spanning three ge-
nomic regions, based on arwindow cluster definition and a window sampling search scenario. | degign
statistical tests for clusters spanning exactly three regions [133] basgdrmme models for two typical
comparative genomics problems: analysis of conserved linkage within mulgiptdes and identification
of large-scale duplications. My statistical tests for three genomic regi@harfirst to combine evidence
from genes shared among all three regions and genes shared be@weseof regions. My results demon-
strate that these tests are more sensitive than existing pairwise methodsgvanithér potential to detect
more diverged homologous regions. Recent studies of whole genonlieadigm have compared a dupli-
cated genome with a related genome that diverged prior to the duplicatioh &ga approach has been
shown to detect more paralogous regions than can be identified throngimgeself-comparison. However,
my statistical analysis demonstrates that there may be many additional duplitcatksl that these studies
are failing to detect, due to their reliance on pairwise tests. The promise elsed statistical power is
intriguing in light of the continuing debate concerning the history and tempdofengenome duplications
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in the evolution of species such as human Anabidopsis

Finally, | demonstrated the importance of statistical analysis of gene clusteygpying my max-gap
cluster statistics to a key problem in comparative genomics: ortholog predittieweloped a new method
for ortholog prediction, based on a simple greedy strategy which repgaelcts the most significant
max-gap gene cluster, and assigns orthologs within the cluster. Thenfendal idea of this approach is
to rank clusters based on statistical significance; this strategy was kephorapthis greedy strategy to
the max-gap cluster definition. Another important innovation was the design efficient algorithm for
finding all highly significant max-gap clusters, falt values ofg. This algorithm extends on previous work
that finds only maximal max-gap clusters for one particular choigg ahd hence could miss many highly
significant clusters.

My method for otholog prediction improves over other methods based or@tsspatial organization,
by allowing a more flexible cluster definition to be used, by employing a moreiphatcranking criterion,
and by relying on sequence information in the absence of any signifipatiaksignal. In addition, rather
than just returning a binary classification of each gene pair as an ortbolagparalog, the statistical ap-
proach makes it possible to assign a confidence score to each pairdmaesistrength of the associated
spatial evidence. Lastly, by disentangling the ranking criterion from thsteldefinition, my statistical
approach to ranking clusters allows the same basic framework to be appfiaditdimited range of cluster
definitions and test statistics, making it an effective framework for comgdhia performance of different
algorithmic and statistical approaches to detecting homologous chromosgjicgise

5.1 Designing Improved Gene Cluster Definitions

In addition to developing new statistical and algorithmic tools for key problemgpétiad comparative
genomics, this thesis has led to a number of observations about the cchidleinges in analyzing the
spatial organization of genomes, as well as insights into the most promisingatiefor new methods in
spatial comparative genomics.

Identification of distantly related homologous chromosomal regions has traaliiidoeen broken down
into two independent steps. The first is to define the spatial patternsstivggef common ancestry, then
search for “gene clusters,” pairs of regions that exhibit these pattéFhe second step is to select a test
statistic and design a statistical test to determine the significance of an abskrster. Ideally a cluster
definition would be based on all properties of interest, and search pa@Emweuld be selected to ensure that
only significant clusters are identified. In practice, a cluster definitiomaftstrains only one property,
such as the maximum gap size or cluster length. A significance test, basaddh@gonal property such
as cluster size or density, filters the clusters identified by the algorithm toeetisat they are statistically
significant. Both steps are critical for ensuring sensitive detection aéahbomologous regions without
inclusion of false positives.

Formal characterization of a gene cluster is one of the most challengingitasluster identification.
Many definitions have been proposed, but there is little understanding tiihe-offs between them, or con-
sensus on which criteria best reflect biologically important featuresrod giisters. Nor has any consensus
been reached about how to compare or evaluate different gene des$igtions. This lack of consensus
reflects the difficulty in characterizing what homologous blocks will look Igiace in most cases evolution-
ary histories are not known. Most often, when designing cluster defisitiois issue is ignored altogether.
Formal definitions of gene clusters are typically geared toward the desigfficent search algorithms,
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rather than on selecting a definition that reflects the underlying biologioakpses.

Even when the explicit goal is to select a definition that reflects the undgrbiogical processes,
definitions are generally based upon intuitive notions, often derived small, well-studied examples.@.
such as the MHC region [55, 154, 167]). However, these regiong vwdemtified precisely because of
their distinctiveness, and so they may not be appropriate represestafivgpical homologous regions.
Inferences drawn from larger sets of predicted homologous regiogsmbiased as well, since only those
regions that match existing cluster definitions are detected. Confusing tlweepstill further, inferences
about properties of homologous blocks may be unreliable, due to implicitreamts enforced by search
algorithms, as described in Section 2.3.3.

Cluster definitions should reflect the patterns of spatial conservation idatae but these patterns, in
turn, will depend on which rearrangement processes dominate in thedinéagerest. The most common
large-scale rearrangement events are inversions, translocatioirmrtial gene transfer, duplications, and
loss. All of these processes will result in different characteristic padtbehind in the genome. In order to
design appropriate cluster definitions, it is important to understand nowdrih rearrangement processes
occur, but how often they occur, and how they influence cluster piiepe

Inversions can arise as a result of recombination between invertedtsead are seen frequently in
both eukaryotic and prokaryotic genomes. In fact, inversions appdse tioe most frequent rearrangement
events in closely related bacteria [9, 84]. The size and spatial distributiotversions will affect both
cluster size and order. If inversions span many genes, and are loeai@oimly throughout the genome,
then although the global organization of two genomes may look very diffegeme order will be well-
conserved within homologous blocks. If inversions are short, on the btred, conserved regions will be
quite small, and gene order in homologous regions may differ substantiallyadteria, inversions occur
most often in a symmetric fashion around the origin or terminus of replicatioh [84 a results, genes
located together in the ancestral genome will tend to maintain similar distances tadimeand terminus,
but may appear on opposite sides of the genome. For this situation, it may beappospriate to use
a cluster definition in which the location relative to the axis of replication is censd but the absolute
genomic location is not. However, note that this pattern is not predictivetoblogy per se. Paralogs that
arose through tandem duplication could be separated by an inversibthsialso end up on opposite sides
of the origin of replication.

The rate of inversion depends on genome characteristics such as themofnmepeats, as well as
characteristics of a species’ lifestyle, such as level of selectiveymeasd effective population size. For
example Saccharomyce'sensu stricto” species exhibit protein divergence levels similar to mammals, an
yet only a few large inversions have been identified within this group, cosdga much higher numbers in
mammalian genomes [58]. Even within yeasts, inversion rates vary substamiagpsyppiandK. lactis
have fewer inversions, and smaller inversions tRarterevisia@nd C. glabratg which are more closely
related. D. hanseij has been shown to have an inversion rate more than twice as high as tk&dtedl
yeasts, whereas the rate Ynlipolyticais at least twice as small [58]. In bacteria, there is some evidence
that short inversions are generally more common than longer ones [i&9or the most part, the length
distribution of inversions in different lineages is unknown.

Multi-gene insertions can occur as a results of translocations and—irridaetborizontal gene trans-
fer (HGT). Both translocations and HGT can lead to rearrangementragchéntation of clusters within
the genome, but neither will cause substantial shuffling of gene ordeinvalixsters. However, HGT in
particular may confound ortholog identification: clusters inserted by HGT beaynore conserved than
orthologous clusters, and could lead to errors predicting orthologs. ihilezsion rates, translocation rates
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may be affected by repeat frequency. Translocations can occur dinect repeats lead to deletions, and
these deleted fragments are reinserted at another location in the genortes. oOREGT also differ be-
tween species [121]. Some of these differences have been attributeddtm against disruption of short
sequences used by the cell for orientation purposes during preddsseesplication and segregation [78].

The mechanisms and rates of gene duplication and loss will also influencéahecteristics of ho-
mologous blocks [49]. Gene duplication can occur by retrotranspost#maem duplication, segmental
duplication, and whole genome duplication. The characteristics of generdwsill depend on which du-
plication mechanisms dominate in the genomes of interest. Whole genome duplittatexample, is often
followed by massive gene loss, and thus results in clusters with large nsiwfigaps, but often highly con-
served gene order [89, 93, 146]. The effect of gene loss on clpsiperties will depend on whether genes
are lost gradually, one at a time, or abruptly, in large blocks. If genedosgrs in large contiguous blocks,
such as might occur following whole genome duplication, or a lifestyle ch&ogea free-living organism
to a symbiont, then the retained genes will occur in large, dense condado@da. If single genes are lost
independently, on the other hand, conserved regions may still be largeotvery dense.

It has been shown that both duplication and loss rates vary substantialigdrespecies and over evolu-
tionary time [104, 105, 108]. Tandem duplication rates may be affectecebyumber of repeated elements,
since recombination between direct repeats can lead to tandem duplic&dng e little that is known
regarding susceptibility to whole genome duplications, on the other hangestsghat it is related more to
species lifestyle than genome characteristics [106, 107, 155].

Functional constraints could also influence the local rate of rearrangearel thus the local characteris-
tics of a conserved block. If two genes are in the same operon, thenitidoe selection against insertions
or inversions with endpoints between the genes. Consequently, thewgdmaaintain the same orientation,
and the physical distance between them will be constrained. Hencepdengtion and physical distances
between genes may be very informative for identifying functional clustelbacterial genomes.

In addition to theories about which genomic and lifestyle factors affecifspéypes of rearrangements,
a few hypotheses have been proposed concerning the factors ghhs i@ high or low overall levels of
rearrangements. For example, symbiotic or pathogenic species oftehighavearrangement rates [58, 84].
This has been attributed to a number of factors, including smaller populaties) sizd selective pressure to
escape immune recognition. However, these associations tend to be edtt@iatipe, or weak.

In summary, little is currently known about the rates at which different dianary processes occur.
The relative frequency of these processes and the degree to whaghftequencies are consistent across
lineages, remain open questions. Thus, we cannot yet carry oubdesimulations to investigate what gene
clusters would look like under characteristic rearrangement regimes dohisnot mean it is impossible to
compare the performance of two potential cluster definitions on a particalaset, however.

| argue that a cluster definition should be selected that is precisely amajasaeeded to include the
set of homologous blocks, but no more general, in order to capturevachi@nce clusters as possible [79].
Of course, we do not know which are the homologous regions. In thesfulee may be able to construct
accurate generative models, then use these models to evaluate the discrinpoater of different cluster
definitions and statistical tests. An innovation we can implement immediately is to aelester definition
that maximizes the difference between the number of clusters observed getioeic data of interest,
compared to random data, as discussed in Section 2.3.3.

It is essential that new cluster definitions be designed specifically to disatentruly homologous
regions from background noise (clusters of genes that occur bycehaThis requires statistical techniques
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for quantifying the discriminatory power of different combinations of diéfns and test statistics, as well
as software tools that, given a dataset of interest, and a suite of podagikr cefinitions, selects the most
appropriate one. In Appendix B, | present a detailed catalog of clustgrepies that can be considered
in designing new definitions. Analyses of desirable cluster properties &g/ the way for new, possibly

more powerful cluster definitions.

5.2 Open Problems

In addition to the open problems discussed in previous chapters, anddtdaramproved gene cluster
definitions, my thesis raises a number of other important problems:

Multi-region clusters: Additional statistical tests for comparison of multiple regions is an important
area for future work. Tests for more than three regions are neededgeh as tests for whole genome
comparison. Such tests will be particularly useful for detecting evideho®oee than one round of WGD,
and for designing ortholog prediction methods that consider spatial danterore than two genomes.

Combining sequence, spatial, and phylogenetic evidence for orthaaetection: Ortholog detection
based on spatial data is a hot topic, that has received considerablgatirrecent years. Most existing
methods either assume very conservative cluster definitions, or ignquersee information entirely. How-
ever, spatial approaches have limitations. Ideally, methods would be geddio effectively exploit spatial
information while at the same time making optimal use of sequence and phylogeatatasdvell. Sequence
similarities and spatial context could be analyzed simultaneously within a combtiagstical framework.
This problem seems to fit naturally within an expectation maximization framewioite & the orthologous
blocks were known the orthologous genes could be identified, and visa.ve

Gene families: Exact cluster statistics that take gene families into account remains an impamgant
challenging problem. Virtually all genomic data sets require models that comsatgy-to-many homology
relationships. The model upon which | based my statistical tests in Chaptsuas that each gene has at
most one homolog. In Chapter 3 this assumption was relaxed slightly to allowdardpies of a gene that
was duplicated via WGD. In Chapter 4, arbitrary sized gene families wereveedd, but | approximated the
probability of gene clusters in this case by assuming a one-to-one homolgqapingaand then adjusting
the number of homologous gene pairs upward. This approximation woskeekhfor ortholog prediction
as estimating probabilities using a Monte Carlo approach. Even better estimatdseroatained by an
approach combining analytical and Monte Carlo methods, as describedtiors4.7.1.

Statistics for clusters found by whole genome comparisonthere are a number of unresolved statisti-
cal questions regarding evaluating the significance of clusters identifiaaigh whole genome comparison.
Whole genome comparisons can lead to questions about the degree afrojuistéhe genome overall, or
about individual clusters. For example, a researcher might want to engksbal statement about processes
in the evolution of the genomes, such as whether an ancestral genomeveinda whole genome dupli-
cation. In this case the focus is not on a single homologous region, buedevil of clustering overall.
In other cases, we may want to ascribe meaning to individual clugter$o argue that a particular cluster
was a result of a whole genome duplication. In this search scenario,rslasgenot independent. The pres-
ence of one cluster affects the probability of finding additional clustehe. gaps in a cluster will typically
be smaller than the expected gap size, and so the expected gap size ohdldng gaps will be larger
than expected in a random genome. For example, if a large conservexhapeletected, then to evaluate
the degree of clustering of the next largest cluster we might need to talexigtence of the first cluster
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into account, since it will effectively reduce the size of the genome andgehthe distribution of the test
statistics. With many large clusters, the probability of finding small clusters mghbhhnged significantly.
Thus, what can be said about the significance of any individual clidgetified through whole genome
comparison is unclear.

Statistical tests for selective pressure on spatial organizationin this thesis | attribute similarities
in spatial organization of genes to common ancestry, either through speomatduplication events. If
our goal is merely to detect homologous regions, we need not considethetregions are conserved,
or why some regions are more conserved than others. However, olgstédrgenes may indicate more
than recent shared ancestry. Conservation of spatial organizatiossdarge phylogenetic distances often
indicates selective pressure on gene order, especially in bacteria. \&fifaging evolutionary divergence,
ongoing rearrangement processes lead to randomization of genérotideabsence of functional selection.
In distantly related genomes, conservation of genomic organization daggestional selection, while
in more closely related species similarities in gene order may be due only tadstracestry. Thus, to
identify functional selection on spatial organization, the phylogenetic distbetween the species must
be incorporated into the null hypothesis. One possible direction would béecataapproach analogous
to the approach that is used to detect selective pressure at indivitkgbong specific lineages [182].
Sequence data could be used to infer a phylogenetic tree topology. Withpthledy fixed, branch-specific
rearrangements rates could be learned that maximize the overall likelihtioel @éita. This likelihood could
be compared to that achieved when allowing rearrangement rates toargrgttdifferent spatial portions of
the genome. If the latter likelihood is significantly higher, then selective press these regions can be
inferred. The main challenge would be to devise a statistical model that alfbeisr@ computation of the
likelihood of observing a particular spatial organization given the inferearrangement rates.

Identifying precise boundaries of homologous regions:The statistical tests presented here reject
the null hypothesis of random gene order if there is any evidence oédlzancestry in the regions being
compared. In the three-window tests in Chapter 3, this means that a clustdvarsgnificant even if
only two of the three regions share a common ancestor, or if two regiome sba-overlapping regions
of homology with the third. In Chapter 4, we observed that highly significame clusters may attract
spurious neighboring genes by chance. Large gene families exsedhimproblem, since if a cluster is
large, there is a good chance that there will be two genes from the sareefdaniy in proximity to the
cluster in both genomes. More work must be done to identify such “inndpestanders.” Given the gene
family distribution, and the size and length of a gene cluster, it may be possibititoate the number of
unrelated genes that will be near the cluster in both genomes simply by clidraethe size of the cluster
could be corrected before evaluating it statistically. Alternatively, we mighalile to identify outliers by
comparing density in the periphery of the cluster with density in the center aidiséer.

Statistical tests that consider cluster density and order:The results in this thesis have shown that

for many datasets the max-gap definition is too liberal since gene orderé®nsidered. In Section 2.3.3,
in an empirical study of three genomic datasets, | demonstrated that the majarigxefap gene clusters
are nested. In Section 4.6.3, | showed that for identifying orthologs irt afsgproteobacteria, a cluster
definition that requires identical gene order performed better than aitaefithat allows rearrangements,
but not gaps. It is likely that a definition that allows small differences inegemer would perform even
better. Rather than trying to define a search algorithm to find only partiallgreddclusters, order could
be considered in a test statistic. How to choose such a test, and how to camhitietests of density,

is unclear, however. A first step in this direction has been taken by Haekal. [144], who proposed a
number of quantitative measures of gene order. However, analysgsacng the discriminative power of
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these measures in genomic data have not yet been carried out. How tubasty the degree to which
order is conserved remains an open question.

105



106



Appendix A

Glossary

Conserved Derived from a common ancestor and retained in contemporary relagetesp Conserved
features may or may not be under selection.

Chromosome a single DNA molecule. Typically, bacterial chromosomes are circular, wdribdic
chromosomes are linear.

Gene a unit of inheritance that consists of a segment of DNA that, typically, @es@ protein or
structural or functional RNA. Alternately spliced genes can encode thareone product.

Gene orientation gene orientation is dictated by the strand from which the gene is transc@mtes
in a cluster have the same orientation if they are transcribed from the same. stra

Genome The total genetic material of an individual or species, consisting of oneoe chromosomes.

Homologs Genes or features that share common ancestry.
Homologous Related through common ancestry.
Homology. Similarity due to shared ancestry.

MRCA : Most recent common ancestor.

Negative selectionThe removal of deleterious mutations from a population; also referresi pod@ying
selection.

Orthologs: Homologs that arose through speciation. They are descendants afiteegene in their most
recent common ancestor.

Paralogs Homologs that arose through duplication.

Phylogenetic distancesMeasures of the degree of separation between two organisms or theings,
expressed in various terms such as number of accumulated sequeaicges;mumber of years, or num-
ber of generations.

Positive selection The retention of mutations that benefit an organism; also referred to @grian
selection.

WGD: whole genome duplication.
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Appendix B

Catalog of Cluster Properties

The properties underlying existing cluster definitions are generally nt#dstand the dimensions along
which they differ have been analyzed in only a cursory manner. Asudtydise formal trade-offs between
different models have been difficult to understand or compare in a tigor@y. Here we attempt to char-
acterize desirable properties of clusters and cluster definitions, in tordkavelop a more rigorous under-
standing of how modeling choices determine the types of clusters we are dipleé, nd how such choices
influence the statistical power of tests of segmental homology. We presentod properties upon which
many existing gene cluster definitions, algorithms, and statistical tests ardtixpliamplicitly based [79].
We also propose additional properties that we believe are desirablaebtdrely stated explicitly.

Many of the cluster properties underlying existing definitions derive ftbm processes that lead to
genome rearrangements. As genomes diverge, large-scale reamamg break apart homologous regions,
reducing the size and length of clusters. Gene duplications and lossss tb@ugene complement of ho-
mologous regions to drift apart, so that many genes will not have a homolbg iother region, and gene
clusters will appear less dense. Smaller rearrangements will disrupt tieeagder and orientation within
homologous regions. Thus, clusters are often characterized acgaodiheir size, length, density, and the
extent to which order and orientation are conserved. We discuss theserfies in more detail below, as
well as a number of additional properties that are rarely stated explicitifhbtiwe argue are nonetheless
desirable.

Size: Almost all methods to evaluate clusters consider the size of a cliustdhe number of homol-
ogous gene pairs contained within it. In general it is assumed that the morddgsnio a cluster, the
more likely it is to indicate common ancestry rather than chance similarities. Alppaie minimum size
threshold will depend, however, on the specific cluster definition. Famge, a cluster of four homologs in
which order is conserved may be less likely to occur by chance, and thssigaificant than an unordered
cluster of size four.

Length: The length of a cluster, defined with respect to a particular genome, is tHentwtdoer of
genes spanned by the cluster. For example, in Figure 1.2(b), the ufipgtuster is of size four, and spans
two singletons, so is of total length six. In a whole genome comparison, thearushibon-homologous
genes spanned by the cluster in each genome may differ. However, itibesges that degrade a cluster are
operating uniformly, then the length of the cluster in both genomes should bersi8iialarity of lengths
is implicitly sought by the length constraint efwindows, and explicitly sought in a clustering method
proposed by Hampsaeat al.[73].
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Density: Although over time gene insertions and losses will cause the gene contbotrafiogous
regions to diverge, in most cases we expect that significant similarity ia gentent will be preserved.
Thus, the majority of existing approaches attempt to find regions that aselgegyopulated with homologs.
We define theylobal densityof a cluster as its size divided by its length. For a fixed valug tfie minimum
global density of am-window is set by choosing the paramekerThe only way to set a constraint on the
global density of a max-gap cluster, on the other hand, is to regusbich will also reduce the maximum
length of a cluster.

Even when a minimum global density is required, regions of a cluster mayentitdally dense: a
cluster could be composed of two very dense regions separated byearégign with no homologs. In
this case, it might seem more natural to break the cluster into two separatersluBensity as we have
defined it here reflects the average gap size, but does not reflaaribacein gap sizes. The gap between
adjacent marked genes in aiwindow can be as large as-k, whereas max-gap clusters guarantee that the
maximum gap will be no more than Note that the two definitions have switched roles: the local density is
easily controlled by the parametgifor max-gap clusters but there is no way to constrain the local density
of r-window clusters without also further constraining the maximum cluster lefigtis. trade-off between
global and local density gives a simple illustration of how it can be difficultasigh a cluster definition
that satisfies our basic intuitions about cluster properties.

Order: For whole genome comparison, a cluster is considered ordered if the hgsrialthe second
genome are in the identical or opposite order of the homologs in the firshgenBor example, consider
the two genomes shown in Figure 1.2. The clust@¥ } and {8,9 } are ordered, bu{5,6,7 } and
{1,2,3,4 } are not. Many cluster definitions require a strictly conserved gene @tdeB2, 179]. Over
time, however, inversions will cause rearrangements, and thus cedsgene order is often considered too
strict a requirement. In order to allow some short inversions, Hampsaih [72] explicitly parameterize
the number of order violations that are allowed in a cluster. A number ofpgrase heuristic, constructive
methods that either implicitly enforce certain constraints on gene order, gicitly bias their method
to prefer clusters that form near-diagonals in the dot plot [30, 173, 1¥0]. The remainder, including
windows and max-gap clusters, completely disregard gene order. leaveswe explained in Section 2.3.3,
though a number of groupsatethat they ignore gene order, constraints on gene order are often nahirate
consequences of algorithmic choices.

Orientation: Conserved spatial organization in bacterial genomes often points to foakéissociations
between genes. In particular, clusters of genes in close proximity, withathe srientation, often indicate
operons. In whole genome comparison of eukaryotes, similarities in gérgaiion can provide additional
evidence that two regions share a common ancestor. To the best ofawlekige, however, except for the
method of Visionret al.[175], in which changes in orientation decrease the cluster score, exfinitions
either require all genes in a cluster to have the same orientation, or ddi@gemtation altogether.

Temporal Coherence: Temporal information can be used to evaluate the significance of a putative
homologous region identified through whole genome comparison. If a $esrblogous genes all arose
through the same speciation or duplication event, then the points in time at whcthemolog pair di-
verged will be similar, and consequently we would expect our estimates &4 tiigergence times group
close together. However, all existing methods to find clusters are bakey so spatial information, and
divergence times have been used only to estimate the age of a duplicateddelotitied based on spatial
organization [11, 131], but not to assess the statistical significancelo$ter. In theory, combined analysis
of temporal and spatial information could be used, for example, to incmaseonfidence that a region
is the result of a single large-scale duplication event. However, due tortheedaror bounds that must be
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associated with any sequence-based estimate of divergence times{7084], the practicality of such an
approach is as yet unclear.

Nestedness:For whole genome comparison, one cluster property that is generallyonstdered ex-
plicitly, but may be assumed implicitly, is nestedness. A cluster ofisizeestedf foreachh € 1... k—1
it contains a valid cluster of sizk. Intuitively it may seem that any reasonable cluster definition should
have this property. In fact, clusters with no ordering constraints areectssarily nested. For example,
Bergeroret al.[10] state a formal definition of max-gap clusters, and prove that thermakimal max-gap
clusters of sizé: which do not contain any valid sub-cluster of sizek—1. For example, wheg =0 they
present a non-nested max-gap cluster with only four genes. Thersmxjaégened4234 on one genome
and3142 on the other form a max-gap cluster of size four which does not contgimax-gap cluster of
size two or three. Thus, nested max-gap clusters comprise only a stigesteval max-gap clusters found
through whole genome comparison.

There are no definitions that explicitly require that clusters be nestedrrafieedy search algorithms
implicitly limit the results to nested clusters. Greedy algorithms use a bottom-upagbpreach homolo-
gous gene pair serves as a cluster seed, and a cluster is extendekity ioits chromosomal neighborhood
for another homologous gene pair close to the cluster on both genome®2[303, 82]. It can be shown
that any greedy search algorithm that constructs max-gap clustersviédéyaitie. by constructing a cluster
of sizek by adding a gene to a cluster of size- 1, will find exactlythe set of all maximal nested max-gap
clusters, as long as it considers each homologous gene pair as a saqubfential cluster. In such cases,
although order is not explicitly constrained, the search algorithm ergangglicit constraints on gene order:
nested clusters can only get disordered to a limited degree. In most basever, such constraints are not
acknowledged, and perhaps not even recognized.

Disjointness: If two clusters are not disjoini,e. the intersection of the marked genes they contain is
not empty, our intuitive notion of a cluster may correspond more closely to the singledisiboverlapping
windows than to the individual clusters. For example, in Figure 1.2, wher, andk = 4 there are two
r-windows: {5,6,7,9 } and{6,7,8,9 }. Although both clusters contain gengs7, and9, there is no
window of length five that contains all five of the genes. Thusindows are not always disjoint. Indeed, it
is surprisingly hard to find a cluster definition that guarantees that all ctusiét be disjoint. The majority
of definitions lead to overlapping clusters that must be merged or sepanadedad-hoc post-processing
step for use by algorithms that require a unique tiling of regions. The orflyitien for which maximal
clusters have been shown to be disjoint is the max-gap cluster [10], hutvblen homology relationships
are one-to-one. When a gene may be matched with multiple genes, or whigioredicconstraints are
enforced (in addition to the maximum gap size), disjointness is quickly forfeifed example, consider
the consequences of requiring conserved order when looking forgapxclusters in Figure 1.2. With
a maximum gap ofy = 2, five maximalg-clusters with conserved order are identifiedt,2 }, {2,4 },
{3,45,6,9 },{3,45,78 },and{3,4,5,7,9 }. Although the last three clusters overlap, they cannot
be merged without breaking the ordering constraint (due to the inversidhe segments containing genes
6 and7 and gene8 and9).

More generally, a lack of disjointness strongly suggests that the cludtritida is too constrained. In
the r-window example, these clusters are not disjpirgciselybecause the definition artificially constrains
the length of a cluster. In the second example, the clusters were not disgoisntise a definition with a strict
ordering constraint was not able to capture the types of processbsasinversions, that created the cluster.

INote that it is possible, however, for two disjoint clusters to have oveitgpgpans in one of the genomes, as long as they do
not share any homologs.
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Isolation: If we observe a cluster with some additional homologous pairs in close proximiitg
borders we might feel that the cluster border was arbitrary, and stexd&hd to cover the neighboring
island of genes. Thus, we propose that cluster definitions shouldrgaarthat clusters will besolated
that is: the maximum distance between marked genes in a cluster should akvigs than the minimum
distance between two clusters. A maximum-gap constraint guarantees #gtathill be isolated, but only
barely—the gap within a cluster may be as larggyashereas the gap separating two clusters may be just
g+1.

Symmetry: For whole genome comparison, a desirable property that is rarely coedidgplicitly is
whether the definition is symmetric with respect to genome. In some casesstiwhdefinition proposed
by Calabreset al.[30], a cluster is defined in such a way that whether a set of genesafeatid cluster may
depend on whether genorif or genome, is represented by the vertical axis in the dot plot. Put another
way, the set of clusters identified will differ depending on which genomeesggthated as the reference
genome. A surprisingly large proportion of constructive definitions aresgmmetric. These clustering
algorithms require the selection of a reference genome even when thaveclisan biological motivation
for this choice. Definitions that are symmetric with respect to genome includimdows and max-gap
cluster definitions, as well as algorithms that represent the dot plot agph gnd use a symmetric distance
function [128, 175].

The detailed catalog of cluster properties presented here will be usefag$essing whether definitions
satisfy the intuitive notions upon which they are implicitly based, and whethsethetions actually corre-
spond to the types of structures present in real genomic data. Analyslissbér properties can be useful
for determining which characteristics actually reflect the types of strusfortend in real genomes, and thus
which will best discriminate truly homologous regions from backgrounden@kisters of genes that occur
by chance). Analyses of desirable cluster properties may also pavethi®mnnew, possibly more powerful
cluster definitions.

Itis important to note that the importance of a property may depend on theafdhtsstudy. For exam-
ple, when clusters are being identified as a pre-processing step forsteacting rearrangement histories,
the exact boundaries and sizes of the cluster may be quite important [l68}her cases, a researcher
may wish to test a global hypothesis (such as finding evidence for oneooronnds of whole genome
duplication), and may not necessarily care about the significance adbaes of any specific cluster.

Even if it were known which properties reflect biologically and methodokityiaelevant features, de-
signing a definition to satisfy those properties may not be straightforwaialise, in many cases, properties
are not independent. Properties may interact in subtle ways—a definitibigubeantees one desirable
property will often fail to satisfy another. For example, one of the nicgerties of the max-gap definition
is that clusters are always disjoint. However, as shown above, additiomal constraints on order or
length results in clusters that are no longer guaranteed to be disjoint. Btie anod sometimes undesirable
interplay of some of these properties makes it difficult to devise a definitidrstisfies them all. In fact,
many of the most important properties are difficult to satisfy with the same definitibus, it remains an
open question to what extent a single definition can capture all of thepenties simultaneously.
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Appendix C

Derivations of Max-Gap Expressions

C.1 Derivation of d,(c,u, s)

For a given, non-zero integer dy(c, u, s) is the number of solutions to the following equation

(& u
E v; + E w; =8,
i=1 j=1

such thab < v; < g,Vi € 1..cand0 < w;,Vj € 1..u. The number of ways in whick can be obtained is
the coefficient ofc*® in the generating function

f@)=0+z+22+.. +29° 14242+ .)%

Sincef(z) is the product of finite and infinite geometric series, it can be written as follows

o (£ () (22 () =0ora e

Expanding by application of the binomial theorem, we obtain:

c

flz) = Z(_l)z‘ <‘;)mi(g+1)g <c+ u ;Ll — 1)xl.

=0

In order to get the coefficient af*, we must include all terms whei¢g + 1) + [ = s, which means that
Il =s—1i(g+1). Therefore,

- (c\ (s—i(g+1)+c+u—1
d = E —1)° .
However,s — i(g + 1) > 0 only wheni < s/(g + 1), so the other terms do not contribute to the sum.

Furthermore,
s—i(lg+1)+ctu—-1\ (s—i(g+1)+ct+u—1
s—i(g+1) N ct+u—1 ’
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yielding the final expression

dg(c,u, s) = Miém(_l)i <C> <S —i(g+1)+ectu— 1>'

P ) ct+u—1

C.2 Derivation of d,(m —1,1,l —m) from d,(m — 1,0,1 —m)

In Section 2.1.2 we gave an expressikirm — 1, 0,1 — m) for the number of ways of arranging marked
genes in a max-gap-chain of lengtrexactlyl. We obtain an expression fdy(m — 1, 1,1 —m), the number
of ways of arrangingn black genes in a max-gap chain of lengthgreaterthanl, as follows:

l 1 r—m)/(g+1)] .
,(m—1\ [r—i(g+1)—2
S dy(m1,0.rm) = 3 co (TN ()T,

r=m r=m =0

Ther in the upper bound of the second summation can be replacEddmause when> |(I—m)/(g+1)]
the final binomial will be zero, which gives

zl: L(lm)/(gH)J(l)i mo1\ [r—i(g41) 2
~ i m— 2 '

r= =0

Now that the upper bound of the second summation is no longer dependenth@ outer summation can

be moved inward:
L(z—mﬁ/fgﬂn(_l)i m—1 El: r—i(g+1)—2
i m=2 /)

1=0 r=m

Rewriting the bounds of the inner summation gives:

I—i(g+1)—2

() 56

1=0 r=m—i(g+1)—2

Decreasing the lower bound to = 0 does not affect the probability because wher< r < m — 2
the binomial is zero. We apply the upper summation identity (see Appendix C.B)rtimate the inner
summation, which yields

L(l—m)/(g+1)J(_1)i <m - 1) (z —i(g+1) — 1),

, 1 m—1
1=0
which is exactlyd,(m — 1,1,1 —m). The derivation ofl,(m — 1,2,1 —m) from dy(m — 1,1,1 —m) is

identical.

C.3 A closed-form expression ford,(m — 1,2, L,,—m—1)

The following three lemmas are needed to obtain a closed-form expressidp(fn—1, g, (m — 1)g—1).
Recall that the maximum possible length aof-ahain of sizen is L,, = m + g(m — 1).
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Lemma C.3.1. Forall [ such thatm <1 < L,,, dy(m —1,0,l —m) = dg(m — 1,0, L,—1).

Proof. Let S(m, g,1) be the set ofj-chains of sizen and length/, with no gap greater thag. Clearly,
|S(m,g,1)| = dg(m —1,0,1 —m). Let(gi,...,gm—1), Where0 < g; < g, denote a member of this set,
i.e. a g-chain of sizem and lengthl = m + Z?Zlgi’ with gap sizes, ...,gm—1. Define a function
g1,y gm=1)) = (Y1, .-, Ym—1), Wherey; = g — g;. We claimf mapsS(m, g,1) to S(m, g, Ly, +m—1).
To see this, observe that< y; < g, and the length of the chaify, ..., ym—1) IS

m—1
m+z Yi = m+z g—gi = m+(m—1)g— E gi = m+(m—1)g—(l—m) = 2m+(m—1)g—1 = Lp,+m—I
‘ ‘ i=1

Since f is a bijection,|S(m, g,1)| = |S(m, g, Lm+m — )|, and thusdy(m — 1,0,1 — m) = dg(m —
1,0, Ly, — 1). O

Lemma C.3.2. For all [ such thatm < | < L,,, ds(m —1,1,1 — m) + dy(m — 1,1, L,,,—l—1) =
dg(m — 1,1, Ly, —m).

Proof. By definition,

l Lpy+m—I-1
dg(m —1,1,1=m) +dg(m — 1,1, Lp—1-1) = 3 " dg(m —1,0,i—=m) + Y dg(m—1,0,j—m),
i=m j=m
Lemma C.3.1 can be used to simplify the second term, yielding
l Lm
Z dg(m —1,0,i —m)+ Z dg(m —1,0,7 —m)
i=m Jj=l+1
Lm
= dy(m —1,0,j —m) =dg(m — 1,1, Ly, — m) O
j=m

Lemma C.3.3.1f m > 1+1and(L,,+m—1)iseven, thed,(m—1,1, 5 (Ly+m—1)—m) = dg(m—1,1, Ly,—m)

Proof.
Lo ng—&-m—l) Lo

dg(m=1,1,Lyy—m) = > dg(m=1,0,i-m) = > dg(m=1,0,i—m)+ > dg(m—1,0,j-m)
i=m i=m =1 (Lantm+1)

which by Lemma C.3.1 is equal to

L(Lmtm—1) m 3 (Lm+m—1)
> dg(m—1,0,i—m)+ Yo dgm—1,0,j—m)= > 2dg(m—1,0,i—m)
] — -1 =
=m ]—E(Lm"l‘m_l) t=m

1
:2dg(m71,1,§(Lm+mfl)fm) O
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Ly, —m

1m—1
5 (g+1)

Theorem C.3.4. dy(m — 1,2, Ly,—m—1) =

Proof. EitherL,, + m is even or it is odd. When it is evefy(m — 1,2, L,,—m~—1) is equivalent to

Lm—1 3 (Lm+m)—1 Lim—1
d dgm—11Li-m)= > dgm—11i-m)+ Y  dg(m—1,1,j—m).
i=m i=m j= 4 (Lm—+m)
Rewriting the summation index on the second term yields
%(LmJFm)*l m
> dgim—1,1i-m) + > dg(m—1,1,Lp —j—1)
i=m j=2(Lm+m)—1
L(Lp4m)—1
= Y dg(m—1,1,i—m)+dg(m—1,1,Ly —i—1).
=m

By Lemma C.3.2, this simplifies to

%(Lerm)fl I
> dym =11, Ly —m) = = Dg+1ymt,

i=m

as desired.
Otherwise, ifL,, + m is odd, theni,(m — 1,2, L,,—m—1) is equivalent to

L(Lm+m-3) 1 Lon—1
S dy(m—1,1,i—m) + dg(m = 1,1, 5 (L +m = 1) —=m) + Y7 dg(m—1,1,5—m).
i=m j:%(Lm+m+1)

The second term can be simplified by Lemma C.3.3, yielding

1 3 (Lm+m—3) Lim—1
5da(m = 1,1, Ly —m) + Y dgm—1,1i-m) + > dy(m—1,1,j—m).
i=m J=31(Lm+m+1)

As in the even case, the last two terms can be combined and simplified by Lemma C.3.2

(L —m —1)
2

Ly,—m

1 m—1

1
idg(m—l,l,Lm—m)—{— dg(m —1,1,Ly, —m) =

as desired. O
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C.4 Expected length and gap of a chain ofn» marked genes

Expected length The expected lengthy[l] of a complete chain of marked genes (with no restriction
on the gap sizes.e. g = n), placed randomly in a genome containimgenes is:

=2\ 1 (m=1)(n+1)
Zl prob(l) Zl <m—2)_(:1).M_1+m+1

n

MZZ(”—lJrl)‘(l—l)(?;_QQ) - n (n—z+1).<7;_22)

= I=m

= (m—-1) l:im(n —1+1) (rln_—11> + l:m(n —1+1)- (Tln__22>

= (m=1)(n + 1)127; <fn__11> —(m—l)lnml' (fn__ll) t o 1);: <Tfl—_22>_lz:z. (Til_—é)
—A-B+C-D

) o szt e

::<;>.<L+0”;?fg+ﬂ>,

whereA, B, C, andD are defined below, and simplified using the identities given in Appendix C.5.

A=(m-1)(n+1) l:im (fn__ll> =(m—1)(n+1) (Z)

:<ml>iz-(;;_i)=m 93 (1) mtm-0 2L (1)

=m

< 37: o)

_Elll-m 1 (m—1)(n+1) m
Bl == o = aa Y s ) mei
:m+1+(m—1)(n+1)—m(m+1) _ (m—1)(n —m) _n—m
(m+1)(m—1) (m—1)(m+1) m+1
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C.5 Useful combinatorial identities

The following three simple identities are used in the above proofs. Foradienms see Grahaet al. [69].

-1\ S w n _
> (m_1> :; (m_l) = <m> by upper summation

l=m —0

Z ( - ) - <n _ 1) -z <n> by an absorption identity
- (! n+l n+1/n o _

; <m> a <m + 1> T+l <m) by an absorption identity
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