
Real-time Reduced Large-Deformation
Models and Distributed Contact

for Computer Graphics and Haptics

Jernej Barbič

CMU-CS-07-145

August 2007

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Doug L. James, CMU, Chair

Ralph L. Hollis, CMU
Nancy S. Pollard, CMU

Dinesh K. Pai, University of British Columbia

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2007 Jernej Barbič

This research was sponsored by the National Science Foundation (CAREER-0430528), the Link Foundation, the
Boeing Corporation, and by generous donations from Pixar, Nvidia, Intel, and Maya licenses donated by Autodesk.

The views and conclusions contained in this document are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.



Keywords: real-time, deformations, model reduction, finite element method, subspace inte-
gration, distributed contact, haptics, distance fields, multi-resolution, interruptible, time-critical,
simulation, precomputation, computer graphics



I thank my family for love and encouragement,
Daylian Cain, Vahe Poladian and Lucian Lita for friendship,

Carnegie Mellon graphics lab for camaraderie and paper discussions,
committee members for reading and improving the thesis,

and my advisor Prof Doug James for inspiration, support, and the beautiful research problems.



Abstract

This thesis presents novel algorithms for deformable dynamics, collision detec-
tion and contact resolution between reduced nonlinear 3D deformable objects, for
use in interactive computer graphics and haptics. The deformable models investi-
gated are elastic, volumetric, and capable of undergoing large deformations. Each
mesh vertex of a general 3D deformable object has three degrees of freedom. Non-
interactive computation times result when simulating large-deformation dynamics
of such unreduced systems (assuming non-trivial geometry). Reduced deformable
objects are obtained by substituting these general degrees of freedom for a much
smaller appropriately defined set of reduced degrees of freedom. This dimension-
ality reduction can enable much faster simulation times, with some loss of simu-
lation accuracy. Many interesting objects can be well approximated by reduced
deformations: swaying bridges, plants, tall buildings, mechanical components
(hoses, wires), and human tissue (thigh passively deforming after a jump). The
reduced deformable degrees of freedom need to be defined carefully so that they
support “typical” large deformations. We present an automatic degree-of-freedom
selection algorithm, and an algorithm for fast runtime simulation of the resulting
reduced nonlinear dynamics for geometrically nonlinear deformable models.

Real-time deformable objects can be used to provide multi-sensory feedback
in emerging real-time applications, such as 6-DOF (force and torque) haptic ren-
dering. It is challenging to perform collision detection and compute contact forces
and torques between geometrically complex objects at haptic rates. This thesis
presents a CPU-based approach to simulate distributed contact between two (rigid
or reduced-deformable) objects with complex geometry. Penalty-based contact
forces are resolved using a multi-resolution point-based representation for one ob-
ject, and a signed-distance field for the other. Our algorithm can adapt the contact
force accuracy to both the difficulty of the current contact configuration and the
speed of the particular computer. Reduced-deformed distance fields are proposed
to support contact between reduced deformable objects. We also expose several
important algorithmic details essential for stable and robust 6-DOF haptic render-
ing. Applications of our work include computer animation and games (including
game haptics), CAD/CAM (virtual prototyping), and interactive virtual medicine.

4



Contents

1 Introduction 21
1.1 Fast deformable models using model reduction . . . . . . . . . . . . . . . . . . . 23
1.2 Real-time deformable contact and haptic rendering . . . . . . . . . . . . . . . . . 26
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Real-time geometrically nonlinear deformable models using model reduction 33
2.1 Background: Nonlinear deformable object modeling . . . . . . . . . . . . . . . . 33

2.1.1 The finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Strain and stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.3 Elastic and hyperelastic deformable models . . . . . . . . . . . . . . . . . 37
2.1.4 Linear materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.5 Nonlinear material models . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.6 Why the simulation is nonlinear . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.7 The equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.8 Cubic polynomials for linear materials . . . . . . . . . . . . . . . . . . . . 42
2.1.9 Offline simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1.10 Static simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Related work: Real-time deformable objects . . . . . . . . . . . . . . . . . . . . . 47
2.3 Related work: Dimensional model reduction in solid mechanics . . . . . . . . . . 51
2.4 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.1 Choice of elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.2 Free-form deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 The reduced equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.1 Reduced internal forces are cubic polynomials . . . . . . . . . . . . . . . 58
2.6.2 Reduced tangent stiffness matrix entries are quadratic polynomials . . . . . 59
2.6.3 Precomputing polynomial coefficients . . . . . . . . . . . . . . . . . . . . 59
2.6.4 Runtime polynomial evaluation . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.8 Low-dimensional basis selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5



2.8.1 Mass PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.8.2 Sketch-based basis generation . . . . . . . . . . . . . . . . . . . . . . . . 64
2.8.3 Basis from modal derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.8.4 Alternative view on modal derivatives . . . . . . . . . . . . . . . . . . . . 70
2.8.5 Modal derivatives generalization to second-order ODEs . . . . . . . . . . 71
2.8.6 Comparison: modal derivatives vs sketch basis . . . . . . . . . . . . . . . 72
2.8.7 Basis for unconstrained models . . . . . . . . . . . . . . . . . . . . . . . 73

2.9 The implicit Newmark (subspace) integrator . . . . . . . . . . . . . . . . . . . . . 74
2.9.1 Why not explicit subspace integration? . . . . . . . . . . . . . . . . . . . 77
2.9.2 Numerical damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.9.3 Choice of timestep for implicit Newmark . . . . . . . . . . . . . . . . . . 79

2.10 External forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.11 Runtime modification of material parameters . . . . . . . . . . . . . . . . . . . . 80
2.12 Graphical rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.12.1 Computing u=Uq on the GPU . . . . . . . . . . . . . . . . . . . . . . . . 81
2.12.2 Adaptive u = Uq computation for collision detection . . . . . . . . . . . . 82

2.13 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.13.1 Re-simulation, modal derivatives, sketch . . . . . . . . . . . . . . . . . . 83
2.13.2 Modal derivative basis under progressive r . . . . . . . . . . . . . . . . . 83

2.14 Real-time interactive demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.15 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Time-critical distributed deformable contact 93
3.1 Background: The Voxmap-PointShell (VPS) method . . . . . . . . . . . . . . . . 95

3.1.1 Virtual coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3 Related work: Multi-resolution rendering . . . . . . . . . . . . . . . . . . . . . . 103
3.4 Related work: Haptic rendering of deformable objects . . . . . . . . . . . . . . . . 104
3.5 Penalty-based point-contact model . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5.1 Contact force convergence under pointshell refinement . . . . . . . . . . . 107
3.5.2 Our contact model as a volume integral . . . . . . . . . . . . . . . . . . . 108

3.6 Sampling reduced deformable models . . . . . . . . . . . . . . . . . . . . . . . . 109
3.6.1 Computing deformed point positions . . . . . . . . . . . . . . . . . . . . 109
3.6.2 Computing deformed pointshell normals . . . . . . . . . . . . . . . . . . 110
3.6.3 Alternative approaches to determining the contact normal . . . . . . . . . 112

3.7 Point-based BD-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.8 Multi-resolution nested pointshell . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.8.1 Multi-resolution pointshell via particle repulsion . . . . . . . . . . . . . . 118
3.8.2 Pointshell generation alternatives . . . . . . . . . . . . . . . . . . . . . . 121

3.9 Nested point-tree construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.9.1 Nested point-tree construction for alternative pointshell generation approaches125

6



3.10 Time-critical progressive contact forces . . . . . . . . . . . . . . . . . . . . . . . 125
3.10.1 Runtime tree traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.10.2 Temporal coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.10.3 Graceful degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.11 Rigid distance field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.11.1 Analytical implicit functions instead of a distance field . . . . . . . . . . . 132

3.12 Deformed distance field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.12.1 Multiple domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.13 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.14 6-DOF haptic demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.15 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4 Haptic display of distributed contact 147
4.1 The contact force and torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2 The contact force and torque gradients . . . . . . . . . . . . . . . . . . . . . . . . 152
4.3 The virtual coupling force and torque . . . . . . . . . . . . . . . . . . . . . . . . 154
4.4 The virtual coupling force and torque gradients . . . . . . . . . . . . . . . . . . . 156
4.5 Separating the simulation from haptics . . . . . . . . . . . . . . . . . . . . . . . . 158
4.6 Limiting maximum speed of the haptic object . . . . . . . . . . . . . . . . . . . . 159
4.7 Controlling maximum stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.8 Static damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.9 Virtual coupling saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.10 How to handle degenerate virtual coupling gradients . . . . . . . . . . . . . . . . 167

Conclusion 171

Bibliography 173

7



8



List of Figures

1.1 Deformable contact at high update rates: Left: the two objects with complex
geometry: a bridge (59,630 triangles), and a dinosaur (56,192 triangles). Bridge is
deformable. Right: the user manipulates the dinosaur with a haptic device, feeling
the contact forces and torques as the dinosaur enters contact with the bridge. The
simulation computes deformations, detects collision and computes contact forces
and torques in one loop running at 1000 frames per second. . . . . . . . . . . . . . 21

1.2 Large-deformation dynamics at kilohertz rates are a key ingredient of deformable
haptic simulations. Note the large bridge deformation resulting from contact with
a user-controlled ball. Bridge is simulated in a 15-dimensional basis of deforma-
tions. Each timestep of the deformable object simulation took 65 microseconds
to compute on a 3.0 Ghz Intel Pentium Xeon workstation with 2Gb of memory
(manufactured in 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Distributed contact: Left: Deformable dragon (deformable pointshell) in contact
with a deformable dinosaur (deformable distance field). Right: haptic gaming:
attacking the detailed rigid knight with a rigid axe. . . . . . . . . . . . . . . . . . 28

1.4 Real-time 6-DOF haptic rendering of detailed deformable and rigid objects in
contact. The operator is navigating the green rigid part in between two deformable
hoses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Reduced simulations: Left: Model reduction enables interactive simulations of
nonlinear deformable models. Right: reduction also enables non-interactive large-
scale multibody dynamics simulations, with nonlinear deformable objects under-
going free flight motion. The simulation is significantly faster than any other
known approach to simulate such systems. Collision detection among the 512 bas-
kets was resolved using BD-Trees [JP04]. Full video is available on the “StVK”
project webpage [JJ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 A deflected cantilever beam: Left: the deformed shape, Middle: strain, Right:
stress. Both strain and stress are rank-2 tensors (3x3 matrices for all practical
purposes in this thesis); the plotted color gives the maximum eigenvalue of the 3x3
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9



2.2 Nonlinear FEM simulation of a voxelized elastic spoon: The spoon consists of
2005 elements (voxels in this case) and has 11,094 degrees of freedom. Motion
was computed using an unreduced approach: direct internal force and stiffness
matrix evaluation, combined with the implicit Newmark timestepping scheme and
a conjugate gradient solver. Spoon is constrained at the far end (blue), and the
motion is induced by a short initial vertical impulse (green). Left-most picture is
the rest pose, followed by three representative frames of the dynamic simulation
(free vibration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Accuracy experiment: Vertical displacement of a spoon simulation mesh vertex,
located centrally at the tip of the spoon. Some deformations from this experiment
were previously shown in Figure 2.2; the plotted simulation mesh vertex is colored
green in Figure 2.2. Length of spoon is about 2.5 units. Triangle mesh poses are
shown for reference. In all cases, motion is excited by the same identical initial
short vertical impulse. The “basis from full motion” curve is obtained by per-
forming Principal Component Analysis (PCA) on the motion computed by the full
unreduced 11, 094-dimensional simulation, and then re-simulating the system in
this basis. Note that in this case the basis is close to optimal for the simulation, and
as such the curve almost aligns with the full simulation curve. This basis, how-
ever, wouldn’t generalize well to other force loadings. “Modal derivatives” and
“sketching” are two novel methods to generate the motion subspace, presented in
our paper [BJ05]. The method of modal derivatives is automatic and makes no as-
sumptions on the particular force loadings of the structure. All the reduced spaces
are 12-dimensional. Our webpage [JJ] contains a video comparison corresponding
to this Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Multi-resolution approaches to simulating deformable objects: Left: an non-
nested multiresolution hierarchy approach of [DDCB01], Right: and a subdivision
basis approach of [CGC+02a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Subspace integration of Eiffel tower and heart models . . . . . . . . . . . . . . 54

2.6 Simulation Meshes: Blue vertices are constrained. . . . . . . . . . . . . . . . . . 56

2.7 Geometric parameters of models from Figure 2.6. . . . . . . . . . . . . . . . . 56

2.8 Precomputing polynomial coefficients: Reported numbers are totals for both re-
duced force and reduced stiffness matrix, and refer to single-processor computa-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.9 Runtime Computation Performance: Integration times refer to one integration
step. The number of integration steps per graphics frame is N. Timings for the
heart and tower models are almost identical due to equal r. Machine used: Intel
Pentium 3.0 Ghz processor (manufactured in 2004) with 2Gb RAM. . . . . . . . . 60

10



2.10 Mass matrix Cholesky decomposition (bridge model, 11,829 simulation ver-
tices): Top-left: non-zero entries in the original mass matrix M (mesh generated
via squashing cubes); Top-right: Cholesky factor of M ; Bottom-Left: Permuted
mass matrix (minimum degree ordering permutation); Bottom-Right: Cholesky
factor of the permuted mass matrix. . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.11 Basis from Sketch: Left: User interacts with a linear model. Resulting shape is
distorted. Center: Applied force is recorded and sent to an unreduced offline static
solver to solve for the corresponding nonlinear shape. Several such shapes are
then processed by mass-PCA to obtain a basis of motion. Right: If same force is
re-applied during the reduced runtime simulation, a shape which is visually almost
indistinguishable from the center image emerges. . . . . . . . . . . . . . . . . . . 66

2.12 Precomputation Timings for the Basis from Sketch. . . . . . . . . . . . . . . . 66
2.13 Dominant linear modes and modal derivatives: We exploit the statistical redun-

dancy of these modes using mass-PCA of suitably scaled modes. All vectors are
shown mass-normalized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.14 Extreme shapes captured by modal derivatives: Although modal derivative are
computed about the rest pose, their deformation subspace contains sufficient non-
linear content to describe large deformations. Left: Spoon (k = 6, r = 15) is con-
strained at far end. Right: Beam (r = 5, twist angle=270◦) is simulated in a sub-
space spanned by “twist” linear modes and their derivatives Ψ4,Ψ9,Φ44,Φ49,Φ99.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.15 Computation of Modal Derivatives: All performance data is given for a single

3.0 Ghz Pentium workstation with 2Gb of memory (manufactured in 2004). Mass-
normalization and mass-PCA times were only a few seconds. . . . . . . . . . . . 70

2.16 Multibody dynamics simulation with large deformations: In this simulation,
we dropped 512 flexible baskets to the ground. The baskets started from zero ve-
locity, horizontally separated (but in close proximity) at a certain height. Collision
detection was performed using a BD-Tree [JP04]. Penalty forces were applied be-
tween leaf spheres to resolve contact. Motion basis (r = 40) used linear modes
Ψ7, . . .Ψ26 and their derivatives. The rigid body motion was not coupled with
deformations, although this would not be a difficult extension [Sha05]. It took
1.2 sec total to perform the 512 implicit Newmark steps to advance the reduced
deformations to the next graphical frame. . . . . . . . . . . . . . . . . . . . . . . 75

2.17 The dragon model: Left: the rendered dragon model in the rest configuration.
Right: simulation voxel mesh. Bottom vertices are fixed rigidly. . . . . . . . . . . 84

2.18 Dragon “head” force load: Dragon dynamic deformations, originating from a
short vertical force on a central vertex at the tip of dragon’s head. Each row
gives deformations under one method, with columns corresponding to timesteps
0, 5, 10, 15, 20, with a timestep of 1/300s (see Figure 2.19). All reduced simula-
tions use k = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11



2.19 Trajectory of a selected vertex: Vertical displacement of simulation vertex where
the force load was applied in the “head” sequence (Figure 2.18). . . . . . . . . . . 86

2.20 Dragon “back” force load: Dragon dynamic deformations, originating from a
short force (horizontal, perpendicular to dragon’s main axis) on a central vertex
at the top of dragon’s back. Each row gives deformation under one method, with
columns corresponding to timesteps 0, 20, 40, 60 (see Figure 2.21). All reduced
simulations use k = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.21 Trajectory of a selected vertex: Z-displacement (i.e., horizontal and perpendicu-
lar to main dragon axis) of simulation vertex where force load was applied in the
“back” sequence (Figure 2.20). . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1 Distributed deformable contact: Top Left: contact configuration between a non-
linear reduced deformable bridge and a rigid dinosaur, with 12 separate contact
sites. Other images: contact sites viewed from three different camera angles. A
total of 5200 points were traversed, resulting in 426 points (in red) in contact.
Points traversed but not in contact are shown in blue. Note: temporal coherence
was disabled for this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 VPS pointshell: Left: the pointshell points for the teapot model. Right: a schematic
representation of the pointshell, with inward normals. Both images are from [MPT99].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3 VPS voxmap: Left: a VPS environment (a scene from the interior of an airplane,
serving as source data for voxmap). Right: a schematic illustration of the voxmap,
also showing the voxmap octree. Both images are from [MPT99]. . . . . . . . . . 96

3.4 VPS in action: Left: the user manipulates the teapot in the virtual environment.
Right: the virtual coupling between the haptic device and the manipulated simula-
tion object in contact. Both images are from [MPT99]. . . . . . . . . . . . . . . . 97

3.5 Virtual coupling: Left: the green mechanical component (distance field haptic ob-
ject) and the deformable hose scene (pointshell, with points shown in red). Wire-
frame shows the manipulandum position, solid green color shows the simulation
object position. Right: a schematic representation of the manipulandum position
(stippled black line) and simulation position (solid green line), together with the
two coordinate systems which virtual coupling tries to align. . . . . . . . . . . . . 99

3.6 Point-contact model: Left: Pointshell with inward normals. Middle: the signed
distance field. Right: deformable contact and contact forces. . . . . . . . . . . . . 106

3.7 Dynamic normals (computed using our method): Left: undeformed. Middle,
Right: deformed, viewed from two camera angles. In practice, normals need only
be computed for pointshell points in contact. Maximum deviation from the correct
surface normal is 5.2 degrees in this example; and less than 3.6 degrees for all but
five points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12



3.8 (Inward) normals deformed with deformation gradients: Left: undeformed
configuration. Right: deformed configuration. Our pointshell surfaces are em-
bedded into FEM volumetric meshes (voxel volumetric mesh is shown in gray).
Volumetric mesh deformations drive the pointshell point positions and normals. . . 111

3.9 Normals obtained only from the chair geometry will give contact forces in the
wrong direction for one of the two chair orientations. . . . . . . . . . . . . . . . . 114

3.10 BD-Tree: Left: The BD-Tree for the green arc geometry in the rest pose. Center:
BD-Tree refitted under deformation. Right: the tree topology (which is never up-
dated in the BD-Tree method). In our work, the geometry covered by the spheres
are not arcs (as in this illustrative example), but pointshell points. . . . . . . . . . 115

3.11 Point-based BD-Tree: Top row: the rest configuration. Bottom row: tree during
contact. Right column shows the deepest bounding spheres that were traversed dur-
ing this particular haptic cycle (i.e., each rendered sphere is free of contact). Note
how the tree is traversed to different depths depending on proximity to contact. We
typically use many spheres (320 in this example) on the first level, followed by 4x
more spheres on consecutive levels. First-level spheres are always traversed (there-
fore they appear in top-right image) if temporal coherence is off; however, when
temporal coherence is enabled most of them need not actually be checked during
most haptic cycles. There are 4 hierarchy levels in this example. The small spheres
next to the green metallic part in the bottom-right image are level 3 spheres. Level
4 spheres have zero radius, as they correspond to leaf points. . . . . . . . . . . . . 116

3.12 Point-based BD-Tree performance under large deformations: The sphere radii
do grow under large deformations (see, e.g., two level-1 spheres at the tip of the
upper u-shaped hose), however tree traversal is still very efficient. The upper hose
is bent at an angle of approximately 25 degrees. If the green part is lowered (but
kept inserted in between hoses) such that the upper hose returns to (almost) rest
configuration, the performance changes from 220µs to 210µs. To the best of our
knowledge, while limited to reduced deformations (as in our case), BD-Tree is
the only deformable bounding volume hierarchy update method that can reach
haptic update rates (1000 Hz) with example complexity similar to ours. In general,
the BD-Tree performs especially well when large deformations are localized to
a part of the scene; also, BD-Tree could be augmented by computing bounds at
configurations other than the rest configuration. . . . . . . . . . . . . . . . . . . . 117

3.13 Unstable pointshell: This “nightmare” pointshell will result in a very unstable
(chaotic) haptic signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.14 Multi-resolution oriented pointshell from particle repulsion: Left: The first
two levels of a part of the hose scene. Right: detail with four levels shown. Points
are fitted on a small-distance offset oriented manifold surface to support “polygon
soup” input geometry, and provide oriented surface normals for contact. . . . . . . 120

13



3.15 Pointshell for thin structures (e.g., cables): First and third image from left: the
bridge geometry, viewed from two camera angles. Second and fourth image: the
pointshell. Each red dot is one point. Points are fitted onto a level set (offset
surface) of an unsigned distance field to the bridge geometry. Distance field reso-
lution was 256x256x256 for this pointshell, and offset distance was 1.4x the size
of a distance field voxel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.16 Pointshell for thin structures with a smaller offset: Left: pointshell (four levels,
85,000 points) fitted using a 256x256x256 unsigned distance field (same pointshell
as in Figure 3.15). Right: pointshell (five levels, 256,000 points) fitted using a
512x512x512 unsigned distance field, and with a 2x smaller offset distance as
pointshell on the left. Both pointshells use an offset of 1.4x the size of the dis-
tance field voxel. Note that the finer pointshell resolves all twelve central vertical
cables on the bridge, whereas the coarser pointshell merges groups of three ca-
bles together. Simulation with the finer pointshell is more permissive (accurate) in
that thicker objects can be inserted through holes in pointshell geometry, such as
the holes in the bridge’s upper shelf. In general, higher resolution unsigned dis-
tance fields are required for smaller offsets, otherwise the offset surface becomes
progressively non-smooth (noisy). . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.17 A point cloud generated using the Layered Depth Cube algorithm. . . . . . . . . . 123
3.18 Nested point-tree: Left: The pointshell. Right: the hierarchy, the traversal order

and tree levels Li. Particle-repulsion levels are 0-1, 2-5, and 6-19 in this case. . . . 124
3.19 Tree traversal: Left: The bounding sphere of node 0 intersects the environment

and all the children are queued for traversal (indicated by the symbol ’Q’). Right:
Node 1 is sufficiently far from contact that its bounding sphere does not intersect
the environment, and as such, the subtree need not be traversed further. This com-
pletes the traversal of Level 1. The traversal list for Level 2 is {0, 4, 5}, where 0
is in this case the copy on level 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.20 Graceful degradation: Left, Middle: With involved contact scenarios, many tree
nodes need to be traversed during a complete hierarchy traversal. Right: Under
graceful degradation, tree is traversed only up to a shallow depth, as permitted by
available CPU power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.21 The proof of Inequality 3.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.22 Haptic contact between reduced deformable objects and rigid objects mod-

eled by simple analytical functions: Left: The user-manipulated deformable
chair is a deformable pointshell with about 26,000 vertices, rendered against an
analytical implicit function of two perpendicular walls. Right: The deformable
bridge is a deformable pointshell of about 41,000 vertices, rendered against a
user-manipulated sphere. The chair is a linear reduced deformable model (linear
modal analysis deformations). The bridge is a nonlinear StVK reduced deformable
model, as described in the first part of the thesis. . . . . . . . . . . . . . . . . . . 133

14



3.23 Deformed distance field approximation: Left: Proxies (squares), the query pointshell
point at x. Middle: 3-nearest neighbors and their weights. Right: material config-
uration pull-backs Xi of x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.24 Isocontours of the exact and approximate deformed distance field: Left: Pose
1, single-domain approximation. Middle: Pose 2, single-domain approximation
with the two legs mirroring. Right: Pose 2, multiple domain approximation with-
out mirroring. Green denotes the interior of the object, with respect to the approx-
imated field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.25 6-DOF haptic rendering: Left: the user is manipulating a rigid Buddha (distance
field object) against the deformable dragon (pointshell object). Right: the user
is solving the alpha puzzle, while the device provides contact force and torque
feedback (see also Figure 3.31). The device in the images is a Phantom Premium
1.5 6-DOF device from Sensable Technologies. . . . . . . . . . . . . . . . . . . . 138

3.26 Our method can render small features: Left (top and bottom): resolution in our
method is high enough for the user to feel the bumps on the back of the rigid di-
nosaur (distance field object, 256x256x256), by sliding the back of the dinosaur
against the upper shelf of the bridge (pointshell object). The red arrows are indicat-
ing the direction of the dinosaur’s sliding. Both objects are rigid in this experiment.
Bridge pointshell has five levels of detail with 256,000 points (same L5 pointshell
as in Figure 3.16, Right, on page 122). Right: the force magnitude rendered to
the user, under progressively finer pointshells and a pre-recorded manipulandum
trajectory. Sampling rate is 1000 frames per second. The user caused six bumps
total to touch the bridge (one after another, in tangential motion). The impact of
each individual bump can be clearly seen in the haptic signal, and felt in the haptic
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.27 Illustration of graceful degradation (GD): Simulation data for a pre-recorded
manipulandum trajectory is rendered in two ways: using GD (in red) with warm
threshold at 600 nodes; without GD (in black) with all four tree levels. The
pointshell has 85, 018 points total (same L4 pointshell as in Figure 3.15 on page 121).
The common x-axis corresponds to haptic frames. This data was recorded on a
three-year-old 3.0 GHz dual Intel Xeon processor with 2.75 Gb of memory, il-
lustrating algorithm’s adaptivity to different computer speeds. On the machine of
Table 3.1, the black timing curve reaches a maximum of ∼800 µs. . . . . . . . . . 140

15



3.28 Graceful degradation supports large conforming contacts to allow time-critical
approximation of very difficult contact configurations (here under 1 millisecond).
Top Left: A dragon “peg” inserting into a matching dragon “hole” obtained via
CSG difference. Top Middle: dragon manipulated haptically into the hole. Top
Right: Large contact area with traversed points in blue (43% of all L2 points), and
contacting points in red (21% of all L2 points). (Bottom Graphs) Simulation data
for a pre-recorded manipulandum trajectory is rendered in two ways: using GD (in
red) with warm threshold at 2000 nodes; without GD (in black) with all five tree
levels. Same machine as in Table 3.1. The common x-axis corresponds to haptic
frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.29 Asymmetric contact model: The contact force changes under role reversal, how-
ever the error is quite reasonable. The first contact case (green dragon=pointshell,
brown dragon=signed distance field) is depicted with a solid red line, the reverse
case (green dragon=signed distance field, brown dragon=pointshell) is shown in
dashed blue. Both lines show the raw contact force on the green (i.e., moving)
dragon. The top-right image shows the configurations at samples 900 and 1800,
respectively. The bottom-right images depict points in contact (red=in contact,
blue=traversed by tree, but not in contact). Note that the z-axis is aligned with the
direction of motion, and is (about) normal to the contact areas; z-force is therefore
the normal contact force and is as such substantially larger than tangential forces.
Penetration depths are large in this experiment; in our simulations, virtual cou-
pling coupling saturation would prevent penetrations deeper than about 1 voxel.
The vertical green line denotes the sample index where penetration reaches 1 voxel. 145

3.30 Asymmetric contact (detailed plot for shallow penetrations): the contact forces
are not symmetric, however the difference is small for shallow penetrations. Same
notation as in Figure 3.29. X-axis corresponds to sample indices. . . . . . . . . . . 146

3.31 Interactive path planning with 6-DOF haptics (Alpha puzzle): The goal is to
position the rigid blue alpha-shaped tube inside the loop of the rigid red alpha-
shaped tube. The red and blue tubes have identical shapes. The red tube (pointshell
object, 5571 points, 4 levels total) is fixed in space, and the blue tube (distance
field, 128x128x128) is the haptic object. The gap between the two sides of each
alpha (best seen with the blue alpha in the middle image) is too small for trivial
attempts to succeed, both in the real-world and in our haptic simulation. With
careful manipulation, the two solutions to the puzzle can be discovered. Left:
initial configuration (106µs of computation per haptic cycle, 2 tree nodes traversed,
0 points in contact). Middle: a configuration in the middle of one of the two
solution paths (156µs, 233, 5). Right: puzzle solved (108µs, 16, 0). Path planning
is accurate up to the penetrations permitted by maximum contact forces under
virtual coupling saturation, e.g. typically one half of a distance field voxel. Also
note that we could make this example deformable, but then the solution would be
very easy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

16



4.1 Grasping location affects virtual coupling forces and torques: The user is ma-
nipulating this long pole against a rigid obstacle (a cylinder viewed from top), and
will feel different forces and torques depending on the choice of Xgrasp (Left: at
pole center, Right: at pole far end). Stippled line denotes the manipulandum and
solid line denotes the simulation object. Virtual coupling tries to align the two
coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2 Block diagram of one haptic cycle: SPO=Simulation object Position and Orien-
tation, MPO=Manipulandum Position and Orientation. . . . . . . . . . . . . . . . 150

4.3 The contact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.4 Multiplane penalty contact (` = 3). . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5 Virtual coupling torque saturation: Left: without torque saturation, the user can

squeeze the blue alpha in between the other (red) alpha’s gap, by using the blue
alpha’s long end as a lever. Right: A fixed torque saturation limit will overpower
contact penalty forces for long objects, such as for this manipulated long (hori-
zontally positioned) rod in contact with a static vertical cylinder (view from top).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

17



18



List of Tables

2.1 Reduced systems have high frequency spectra: Linear spectrum row gives the
range of the first 20 natural linear modal frequencies of the structure. For both the
Eiffel tower and the heart model, the Young’s modulus was chosen such that the
lowest frequency is 1 Hz, so that frequencies are in an interesting range for com-
puter graphics; but the same properties carry over to stiffer structures with higher
frequency ranges. The reduced spectrum row gives the range of the frequencies
of the linearized reduced system, i.e., the range of

√
λ/(2π), where λ traverses

the eigenvalues of the reduced tangent stiffness matrix K̃ at the origin. The re-
duced system was obtained by augmenting the first k = 20 linear modes with their
derivatives, and mass-PCAing this assembly of vectors to a r = 30 dimensional
basis. For comparison, we also give the spectrum of the unreduced FEM model
(last row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Model statistics for selected contact configurations, timed on an Intel Core 2 Duo
2.66 GHz processor with 2 Gb RAM; r=rigid, d=deformable, VC=virtual coupling
and manipulandum transformations, StVK=deformable FEM dynamics, TT=tree
traversal, TC=temporal coherence, LOD=level of detail rendered (in the particu-
lar configuration), TL=time under a tree-less pointshell traversal. All deformable
models use r = 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

19



20



Chapter 1

Introduction

This thesis is about real-time simulation, an interesting inter-disciplinary area spanning computer
graphics, applied mathematics and physics. The problem investigated is the following: given two
(or several) 3D objects, specified, say, by providing surface triangle meshes for each object (see
Figure 1.1, left), how can we build a real-time computer simulation where the user can interactively
manipulate one of the objects (dinosaur in Figure 1.1), potentially entering contact with the other
object (bridge in Figure 1.1). The simulation has to check for collisions between objects at real-
time rates, and compute and apply appropriate contact forces to push them apart if in contact.
Furthermore, the simulation should support objects deforming due to contact forces.

Figure 1.1: Deformable contact at high update rates: Left: the two objects with complex geom-
etry: a bridge (59,630 triangles), and a dinosaur (56,192 triangles). Bridge is deformable. Right:
the user manipulates the dinosaur with a haptic device, feeling the contact forces and torques as the
dinosaur enters contact with the bridge. The simulation computes deformations, detects collision
and computes contact forces and torques in one loop running at 1000 frames per second.

Interactive simulations are not convincing to the user unless they are performed at sufficiently
high rates. If the positions, orientations and deformations of objects on the screen are updated with

21



less than about 30 times per second, users will no longer perceive the simulation as continuous
motion. The requirements are even more stringent if the simulation also displays the contact forces
and torques using a force-feedback device (see Figure 1.1, right). Typically, 1000 steps per second
are required in order to keep the haptic controller stable and maintain the illusion of virtual touch.

For complex geometry (especially if deformable), collision detection and contact handling are
computationally intensive operations, which makes it difficult to maintain such high real-time up-
date rates. Two 3D objects can enter contact in a variety of contact configurations: single point-like
contact, a single contact with a wide contact area, or there can be several simultaneous contact sites,
each distributed over a certain surface area. The contact force algorithm has to be both fast and
robust, producing stable contact forces for all contact configurations. Furthermore, if objects are
deformable, it is also necessary to simultaneously compute the deformations of the objects, which
is a computationally intensive operation on its own (for objects with complex geometry). Collision
detection also becomes more difficult in the presence of deformations. This thesis presents a set of
algorithms which enable such interactive simulations of general 3D objects, in a way that scales to
complex geometry. We make certain assumptions that make the problem tractable, such as assum-
ing a penalty contact model and simplifying deformable object simulation using model reduction.
Our deformable objects are therefore not fully general; they are, however, fast and support large
deformation dynamics. To the best of our knowledge, this thesis is first to present deformable
contact at haptic rates (1000 simulation steps per second) between two objects, in a way that scales
to both objects having complex geometry.

The first part of the thesis is about fast deformable object simulation. We present a class of
dimensionally reduced nonlinear deformable objects which can be timestepped at very high rates,
trading simulation accuracy for speed. In physics, deformations of solid objects are governed by
the partial differential equations of continuum mechanics. These equations do not have tractable
analytical solutions for all but the simplest geometries. For complex geometries, equations can
be solved numerically, such as, for example, by using the Finite Element Method (FEM). FEM
is the most commonly used discretization approach for deformable object simulation (with com-
plex geometry) in applied mathematics and engineering, and it is widely considered to give good
quality simulations with sufficiently fine meshes. Fine meshes, however, result in a large number
of deformable degrees of freedom. Furthermore, the partial differential equations that describe
large deformations of objects are nonlinear. FEM therefore produces high-dimensional nonlin-
ear equations of motion which describe the deformations very accurately, but require too much
computational effort for simulations on commodity hardware at high update rates. Instead, we
simplify these general FEM models using dimensional model reduction, obtaining reduced de-
formable models. These models are nonlinear and support large deformations and deformable
dynamics, both of which play an important part of computer graphics and animation. Reduced
deformable models can be timestepped with little computational effort, but are not as accurate as
the general FEM models. The deformable objects in this thesis are three-dimensional, volumetric,
and assumed to be elastic: they return to the original rest shape if external forces (loadings) are
removed. We do not investigate plastic deformations and fracture.

In the second part of the thesis, we present an algorithm to simulate two 3D reduced-deformable

22



(or rigid) objects in contact. We address three contact cases: rigid vs rigid, reduced-deformable vs
rigid, and reduced-deformable vs reduced-deformable contact. We combine this contact algorithm
with the reduced deformable model from the first part of the thesis to build 6-DOF haptic simu-
lations of contact between two 3D reduced-deformable objects. Our algorithms scale to complex
geometry. We simulate distributed contact, i.e., contact with (potentially) several simultaneous
contact sites, each distributed over a non-zero surface area. Note that distributed contact is the
most general contact between two 3D objects. We resolve distributed contact using a CPU-based
algorithm which uses a (deformable) multi-resolution point cloud (the pointshell) for one object
and a (deformable) signed distance field for the other object. Reduced-deformed distance fields are
proposed to support contact between reduced-deformable objects. We resolve contact by applying
penalty forces and torques to points which penetrated the zero isocontour of the signed distance
field of the other object. We investigated several possibilities for the particular contact model, and
eventually selected a contact model novel to haptic rendering which is (1) simple to evaluate, (2)
gives stable haptic contact forces, and (3) converges to a well-defined limit under progressively
finer pointshells. Furthermore, we organize the pointshell into a nested point-tree, a novel nested
multi-resolution datastructure which can be used to interrupt the contact force computation in order
to maintain haptic update rates. Nested point-tree supports graceful degradation through a progres-
sive multi-resolution construction of contact forces. The accuracy of the contact forces computed
within the 1 msec haptic frame is adapted to both the speed of the particular computer, and the
difficulty of the current contact configuration. We also demonstrate how to exploit temporal co-
herence to accelerate the simulation. We present several examples of 6-DOF haptic rendering of
geometrically complex rigid and/or deformable objects in contact, including simulation of aircraft
geometry, interactive path planning and game haptics.

1.1 Fast deformable models using model reduction

Researchers in computational physics, mechanics, and applied mathematics have been developing
numerical algorithms for simulations of deformable objects for over 50 years. However, partial
differential equations of solid continuum mechanics are demanding and permit few computational
shortcuts. This effectively prohibits fully general interactive simulations of deformable objects
with detailed geometry and non-trivial material properties. Namely, in such simulations it is nec-
essary to update the state of the system at very fast rates, such as (for example) 30 times per second
for quality visual feedback and 1000 times per second for force feedback. In the year 2007, it typ-
ically takes at least one second for a fully general deformable method to compute one timestep
of a nonlinear FEM simulation of a detailed model, such as a liver model with 15,000 hexahedral
elements. A nonlinear FEM multigrid algorithm can simulate meshes with about 1500 tetrahe-
dra at update rates of about 20 times per second on commodity PC hardware [GW06]. Also, in
2004 we have personally implemented the corotational deformable object approach of [MG04],
and achieved a performance of about 30 frames per second for meshes with about 1000 tetrahedra.

Objects undergoing physically based large deformations play an important part of computer

23



graphics and animation. For real-time applications low-latency solutions are required, and a trade-
off is typically made between physical accuracy and speed. For example, the high update rates of
force-feedback haptic rendering make it difficult to simulate large deformations accurately, espe-
cially with complex geometry and distributed contact interactions (see Figure 1.2). Many inter-
active and offline simulations, such as those used in the computer animation industry, might also
benefit from having highly interactive large-deformation models.

Figure 1.2: Large-deformation dynamics at kilohertz rates are a key ingredient of deformable
haptic simulations. Note the large bridge deformation resulting from contact with a user-controlled
ball. Bridge is simulated in a 15-dimensional basis of deformations. Each timestep of the de-
formable object simulation took 65 microseconds to compute on a 3.0 Ghz Intel Pentium Xeon
workstation with 2Gb of memory (manufactured in 2004).

The interactive deformable object problem has been a subject of much research in computer
graphics. Obviously, to be able to reach high update rates, the methods cannot achieve the same ac-
curacy as offline solid mechanics solvers. To gain speed, one simplification has been to use some
variant of the linearized equations of motion [BNC96, CDA99, JP99, JP03]. Existing interac-
tive nonlinear FEM approaches include “stiffness warping” corotational approaches [MDM+02,
MG04], and multi-resolution techniques [DDCB01, CGC+02a, GKS02]. The latter adaptively
change the simulation basis to accommodate runtime detail.

We propose an alternative approach: interactive nonlinear deformable object simulation us-
ing model reduction. These deformable models give a compact representation for large global

24



structural vibrations of deformable objects, resulting in very fast update rates. Nonlinear reduced
deformable models are a previously unexplored area of interactive computer graphics, and the re-
sulting algorithms are faster than any other known method for a significant class of objects. For
example, large structural vibrations of buildings, bridges, trees, airplane mechanical components,
can be efficiently modeled by a small set of reduced degrees of freedom. Applications are pos-
sible in interactive virtual medicine to model large-scale human tissue deformations. Inexpensive
deformable objects are also useful in computer games, where only a small fraction of the CPU can
be devoted to deformations, as several subsystems must all run together at real-time rates: artificial
intelligence, rendering, sound, game physics, network protocol if a multiplayer game, etc. For
example, reduced deformations could be used to model the motion of plants in the wind, or a rope
bridge interactively swaying under the feet of a game character.

The reduced nonlinear deformable approach presented in this thesis works as follows. During
pre-process, model reduction is used to automatically identify a quality low-dimensional space of
“typical” deformations. The equations of motion are then projected onto this motion space. At
runtime, a reduced ODE solver can timestep the solution much faster (with some loss of accuracy)
compared to a fully general unreduced deformable solver. Such fast simulations are possible espe-
cially in the case of linear stress-strain material laws (note that the overall simulation is still non-
linear due to nonlinear strain), because in this case, the reduced internal forces turn out to be cubic
polynomials in the reduced coordinates, and can be precomputed. This makes it possible to build
hard real-time reduced simulations of large-deformation dynamics. For example, the simulation
speedup (of course, with some loss of simulation accuracy) was about 50,000x when we reduced
an elastic spoon with 11094 DOFs to r = 12 reduced degrees of freedom. With r = 30 reduced
degrees of freedom the speedups in our examples were on the order of 10,000x. Reduced static
simulations are also possible if desired; simply discard the mass-inertia and damping terms in the
reduced equations of motion. Linear material laws are anisotropic in general, meaning that the ma-
terial is more compliant (“stretchable”) in certain directions than others; but an important special
case is the well-known isotropic Saint-Venant Kirchhoff (StVK) material model, parameterized
by the familiar parameters of Young’s modulus and Poisson ratio. This material is very common
in graphics: it is the simulation model in several important papers on (real-time) deformations
in computer graphics (it is usually referred to as a geometrically nonlinear or large-deformation
model). Under our reduction approach, all linear material laws are equally fast at runtime, so a gen-
eral linear material model could be used, for example, to model anisotropic properties of human
tissue.

Dimensional model reduction for nonlinear deformable object modeling has appeared in the
mechanics literature before [KLM01], and this thesis extends it by providing an automatic motion
subspace selection technique, and a fast reduced internal force evaluation algorithm for linear ma-
terial models. Model reduction is possible because of the following observation: when complex
objects deform, different parts of the model deform coherently. Think of a large bridge swaying
in the wind. It usually does not just deform arbitrarily - there are some typical key shapes that
it tends to deform into. When deformable body motion contains only a small amount of infor-
mation, this presents an opportunity for fast numerical simulation. Individual vertices move in a

25



coherent way, and hence, statistically, the deformations lie in some characteristic low-dimensional
linear subspace of all possible deformations. This makes it possible to substitute the full set of
body’s degrees of freedom with a much smaller set of degrees of freedom, which can be integrated
much faster. In this thesis, we present an automatic process that can identify such typical shapes
directly from the principles of continuum mechanics (a priori model reduction). Alternatively, it
is also possible to use pre-existing simulation data to identify typical shapes using dimensionality
reduction techniques, such as Principal Component Analysis (PCA) (a posteriori model reduc-
tion). Note that the problem of identifying typical deformations has already been addressed in the
literature for the case of small deformations (this is linear modal analysis), where linear physics
is sufficient. Our approach can extract a space of typical deformations for the more general case
where deformations are allowed to be large, and where the nonlinear terms in the equations of
motion are significant (see Figure 2.14). The automatic motion subspace selection technique can
construct a meaningful motion basis for arbitrary 3D meshes and arbitrary physical material pa-
rameters (mass density, Young’s modulus, Poisson ratio, or general linear material laws in case of
anisotropy, or even nonlinear material properties). The material parameters can be inhomogeneous
(vary across the object).

1.2 Real-time deformable contact and haptic rendering

The computation of deformations is just one of the challenges with interactive simulations of de-
formable objects. Collision detection and contact handling for deformable objects are crucial as-
pects of the problem too. This thesis presents a novel algorithm for haptic rendering of deformable
objects, which can simulate contact between rigid and reduced deformable objects with complex
geometry (including reduced-deformable vs reduced-deformable contact). The contact simulated
is distributed (also sometimes called multi-point): this is contact between 3D objects with poten-
tially several simultaneous contact sites, each distributed over a non-zero surface area. Distributed
contact is the most general kind of a contact between two 3D objects, and represents an important
component of interactive physically based virtual environments. Distributed contact simulations
are challenging due to two competing demands: (1) having interesting geometrically complex rigid
and (more notoriously) deformable objects, as well as (2) high real-time contact force calculations
rates, e.g., 1 kHz to support haptic force-feedback rendering. A recent survey of haptics research
laments: “In the simulation of real environments, interactive geometric computations on complex
models are a fundamental problem” [Hol00a].

This thesis proposes an efficient CPU-based algorithm suitable for hard real-time evaluation
of distributed contact forces between geometrically complex models. These real-time forces can
be used in a variety of applications, however, we focus on the challenging (6-DOF) haptic ren-
dering of deformable models. Our approach was motivated by the Voxmap-PointShell method
(VPS) [MPT99], a 6-DOF haptic rendering algorithm capable of simulating distributed geometri-
cally detailed contact between a rigid environment and a rigid point-sampled object (pointshell).
The pointshell is a collection of points (with normals) positioned near-regularly on the surface of

26



the object, similar to surfels in point-based rendering [PZvBG00]. The VPS environment is mod-
eled as a voxmap datastructure, a voxelization of the polygonal environment geometry where each
voxel contains a fixed-width (e.g. 2-bit) value depending on its distance to the geometry. At every
haptic cycle, pointshell points are queried against the voxmap to determine contact forces.

Unfortunately, objects modeled by VPS and notable recent works on 6-DOF haptic rendering
are entirely rigid, and for good reason: nonlinear deformable objects are computationally expen-
sive, and general FEM solid mechanics deformable object simulations do not even run at haptic
rates (1000 Hz) for geometrically interesting models. Also, collision detection is much more
expensive in the presence of deformations. Therefore it is difficult to build haptic simulations
of detailed deformable models in detailed environments, and this situation severely limits many
emerging applications. For example, haptic simulations are useful for virtual prototyping: airplane
designers need to check if a certain mechanical part can be positioned into (or dismounted from)
its designated location, to avoid design flaws without actually manufacturing the structure (e.g.,
fire detector removal from an aircraft engine during servicing [WM03]). Simulating deformable
geometry is important: airplane geometry is often rigid, but hoses, wires, tubes, etc., are com-
pliant. When rigid simulations are used to check for mechanical part removability, they can be
unnecessarily restrictive and may report that a part cannot be (dis)assembled when in reality it can
be. For example, wires and hoses may be deformed to let an object through a narrow passage
(see Figure 1.4). Supporting deformations is therefore crucial in building such simulations, and
we found the geometrically nonlinear reduced deformable models of this thesis to be a natural
choice because of the balance between accuracy and speed. We also make extensive use of the
low-dimensional reduced shape parameterization for time-critical collision and force processing.

We use a floating-point signed distance field instead of a voxmap. This will make the contact
force continuous across voxel boundaries (improving stability), and also allows us to benefit from
temporal coherence. A rigid distance field and a deformable pointshell make it possible to simulate
haptic contact between a detailed rigid and geometrically detailed (reduced) deformable model for
the first time. In addition, we present a novel extension that permits approximate evaluation of de-
forming distance fields for reduced deformable models, which ultimately enables haptic rendering
of two detailed deformable objects in contact (see Figure 1.3).

To support real-time haptic display of geometrically detailed models, e.g., involving a million
pointshell points, we resolve distributed contact hierarchically. We organize the point shell into a
multi-resolution hierarchy, by sampling points and normals from an appropriately defined smooth
manifold surface. Near uniform sampling also provides more economic pointshells with improved
haptic stability. For rigid pointshells, a precomputed sphere-tree hierarchy is used to bound the
locations of points in a subtree. For deformable models we introduce a point-based modification
of the Bounded Deformation Tree (BD-Tree) [JP04] wherein sphere centers correspond to suitable
pointshell points to enable time-critical evaluation of contact forces. Multi-resolution approaches
permit large pointshells, bigger than what could be examined point by point during one haptic
cycle: if a point on some coarse hierarchical level is sufficiently far from contact, none of the
points in the subtree can be in contact, and then those points need not be checked. In contrast,
if a large part of the pointshell is in contact or close to contact, few subtrees will be culled and a

27



Figure 1.3: Distributed contact: Left: Deformable dragon (deformable pointshell) in contact with
a deformable dinosaur (deformable distance field). Right: haptic gaming: attacking the detailed
rigid knight with a rigid axe.

large part of the pointshell will need to be examined point by point. We address this problem by
providing graceful degradation of contact: if there is not enough computation time to fully com-
plete the tree traversal, the algorithm still returns a reasonable answer, with accuracy dependent on
contact-configuration difficulty and available processing power. Graceful degradation is achieved
by traversing the hierarchy in a breadth-first order, rendering deeper and deeper tree levels until
out of computation time. We use two separate activation thresholds to avoid abrupt changes in the
rendered depth during consecutive haptic cycles. We also use temporal coherence to accelerate the
simulation.

We achieve haptic display of distributed contact forces and torques using a novel first-order
quasi-dynamic virtual coupling method that uses both forces and torques, and related rigid-motion
derivatives. In haptics, higher update rates generally enable stable rendering of stiffer forces and
torques; but reaching such high rates is challenging for models with detailed geometry. In our
system, the deformations, collision detection and contact force computations run together in one
loop at haptic rates (1000 Hz or greater). We do not need to extrapolate from lower-rate signals,
although this could further increase example complexity [OL06].

1.3 Thesis overview
Chapter 2 is devoted to fast deformable models via model reduction. In Chapter 3, we describe our
algorithm to compute contact forces and torques at high update rates. Chapter 2 stands on its own as
a fast deformable object algorithm for use in computer animation. The algorithm of Chapter 3 uses

28



Figure 1.4: Real-time 6-DOF haptic rendering of detailed deformable and rigid objects in con-
tact. The operator is navigating the green rigid part in between two deformable hoses.

the deformable models of Chapter 2. Other types of reduced models could be used instead, such
as linear vibrational models, FFD models where a coarse mesh drives the deformations of a finer
mesh, articulated models, or even multi-resolution models. Several research results of Chapter 3
apply both to rigid simulations and deformable simulations, such as our nested point-tree and
graceful degradation algorithm. Chapter 3.4 describes all the necessary components to build a 6-
DOF haptic rendering system. We demonstrate how to integrate the algorithms of Chapters 2 and 3
to achieve stable haptic rendering of contact between objects with complex (reduced-deformable)
geometry. We give description of several subtle, but important details which make 6-DOF haptic
rendering possible, and which were previously either not documented or only partially documented
in haptic rendering literature.

1.4 Thesis contributions
The thesis has contributions to computer graphics, mechanics, and haptics.

Contributions to computer graphics: We give a new algorithm to simulate deformable objects
at very high rates. The algorithm can be seen as an extension of linear modal analysis to large
deformations. We show how modal derivatives form a natural correction to the artifacts of linear

29



modal analysis for large deformations. More broadly, the thesis introduces dimensional model
reduction to physically based modeling: a fluid simulation based on model reduction has been
designed following our solid mechanics approach [TLP06]. We also give a GPU implementation
to synthesize modal deformations in the pixel shader, where the number of reduced coordinates
supported is limited only by the size of texture memory.

Figure 1.5: Reduced simulations: Left: Model reduction enables interactive simulations of non-
linear deformable models. Right: reduction also enables non-interactive large-scale multibody
dynamics simulations, with nonlinear deformable objects undergoing free flight motion. The sim-
ulation is significantly faster than any other known approach to simulate such systems. Collision
detection among the 512 baskets was resolved using BD-Trees [JP04]. Full video is available on
the “StVK” project webpage [JJ].

Contributions to mechanics: The first work in solid mechanics community to perform model
reduction statistically was [KLM01]. These “empirical eigenvectors” were found by applying PCA
on pre-existing deformation trajectories. This thesis goes beyond [KLM01] as follows:

• The “empirical eigenvectors” of [KLM01] require pre-simulation to obtain deformation data
on which to perform model reduction. We provide an automatic basis generation technique,
by performing PCA model reduction on linear modes and modal derivatives [IC85b] (a priori
modal reduction). This requires no pre-existing simulation trajectories or advance specifica-
tions of force loads.

• For the important special case of geometric nonlinearities, we identify reduced internal
forces as cubic polynomials, and give an algorithm to precompute their coefficients. This
enables fast runtime evaluation of reduced internal forces and tangent stiffness matrices.

30



• If pre-simulation is desired, we show how it can be guided via a user’s sketch using a linear
model; this means that the user can essentially bootstrap from a linear model to a nonlinear
model.

• We can also handle unconstrained objects, where large deformations are superimposed on
top of rigid body motion (see the baskets in Figure 1.5). Such an extension is not obvious
due to singular stiffness and other matrices that arise with deformable models possessing
rigid degrees of freedom.

• We argue that using standard PCA (as in [KLM01]) for model reduction is not optimal. We
introduce mass-scaled PCA, which, within the family of PCA-like algorithms, we claim to
be the natural dimensionality reduction algorithm for solid mechanics problems.

Contributions to haptics: We demonstrate a system to perform (6-DOF) haptic rendering of dis-
tributed contact (i.e., potentially several contact sites with varying surface areas) between objects
with rigid or reduced-deformable geometry. Our approach scales to allow both contacting objects
to have complex geometry. To the best of our knowledge, the geometric complexity of our models
exceeds anything previously demonstrated for haptic rendering of deformable objects. We can also
address the especially challenging haptic contact between two (reduced) deformable objects; we
do so using a novel fast approximation of signed distance fields for reduced deformable objects.
The approximation runs at haptic rates for several hundred signed distance field evaluations per
each haptic cycle.

We achieve these haptic rendering results by presenting the following ideas, novel with respect
to the state of the art of the Voxmap Pointshell method (VPS) at the time of writing this thesis (July
2007). We suggest using hierarchical particle repulsion to improve the VPS pointshell sampling,
and using a signed distance field instead of a voxmap for smooth and stable contact forces. We
are the first to propose this particular contact model for haptic rendering. We claim this model has
good approximation properties for haptics. Furthermore, the model converges to a well-defined
limit with progressively finer pointshells, and this limit has a very intuitive volume integral inter-
pretation. We show how to evaluate pointshell contact normals under large deformations at haptic
rates. We introduce a multi-resolution nested haptic pointshell, and give a deterministic algorithm
for graceful degradation of contact; i.e., an upper limit on the computation time of a haptic cycle
can be guaranteed. Our algorithm is able to adapt the contact force accuracy to both the difficulty
of the current contact configuration (such as the number and sizes of the current contact areas)
and the speed of the particular computer. We improve static virtual coupling by handling large
rotational differences between the manipulandum and the simulated object. We also suggest static
damping to improve simulation stability, and demonstrate how to handle virtual coupling gradient
singularities with the saturated virtual coupling model. We give detailed descriptions of several
important aspects of a 6-DOF haptic simulation, such as virtual coupling saturation, limiting sim-
ulation velocities and handling degenerate virtual coupling gradients. Our description is complete
and enables one to build high-quality 6-DOF haptic simulations of (reduced-deformable) objects
with complex geometry in contact.

31



32



Chapter 2

Real-time geometrically nonlinear
deformable models using model reduction

2.1 Background: Nonlinear deformable object modeling
Deformable objects have been studied by the solid mechanics community for decades. This com-
munity has researched the problem primarily in an offline, non-interactive setting. Interactive
simulations of deformable models, however, present certain specific challenges. Fast update rates
are required since the amount of computation time to compute the solution at the next time step
is limited: it is not possible to spend more computation time with certain selected timesteps, such
as for example when updating preconditioners. In interactive computer graphics and haptics, the
goal is to develop robust methods running at fast update rates, suitable for real-time computer
simulation. The fields of solid mechanics and interactive computer graphics obviously overlap,
addressing two facets of the same problem. This thesis makes significant use of solid mechanics
to address computer graphics problems. It also presents certain contributions to solid mechanics
deformable object modeling. We now give a tutorial on deformable object modeling with FEM.

2.1.1 The finite element method
The partial differential equations (PDEs) of continuum mechanics describe how physical objects
deform under the presence of external forces. These equations can model both static response
and deformable model dynamics. Static simulations only give the rest deformation under given
external forces, while deformable dynamic simulations include the effects of deformable object
mass inertia and damping, and can as such simulate the transient response: vibrations resulting
from a given time-evolution of external forces. In both cases, the equations are nonlinear, and
analytical solutions do not exist except in a few basic cases with simple geometry (sphere, cylin-
der, etc.). There exist a variety of approaches to convert the continuum PDEs to a discretized
system of ordinary differential equations (ODEs), which can then be time-stepped numerically.
Common discretization approaches include the Finite Element Method (FEM), Finite Difference

33



Method and Finite Volume Method. Also, in cases where larger errors in the simulation can be
tolerated, approximations such as mass-spring systems have been used to approximate interactive
deformable objects [GM97]. FEM is widely considered a reliable and accurate (assuming the
mesh is fine enough) method to simulate deformable objects, and its main shortcoming is that it
is computationally demanding. It also requires knowledge of solid mechanics, and as such, FEM
deformable objects are often considered nontrivial to implement. The methods of this thesis are
designed, tested and implemented for FEM, but the reduction ideas can also be applied to other
discretizations methods.

In the Finite Element Method, the object to be simulated is represented as a 3D volumetric
mesh, by dividing the object into a large number of elements. The deformation is prescribed (con-
trolled) by the displacements of the vertices of the mesh. Displacement at an arbitrary position in
the 3D solid continuum is then defined via interpolation. Such an approximation will of course only
be accurate if elements are sufficiently small that the interpolation is able to sufficiently describe
the deformations within each element. There exist several different types of elements (tetrahedral,
hexahedral, etc.) with various interpolation schemes (first order, higher order). Also, elements can
have higher-order shapes (Bézier patches, splines, etc.). There are specific benefits and disadvan-
tages to choosing a specific element type/interpolation scheme, but this choice is not relevant to
this thesis: the model reduction applies regardless of the particular choice of the element type. We
use the first-order hexahedral 3D “brick” element (with first-order shape, i.e., faces are flat) in our
experiments.

By inserting the interpolation functions (also called shape functions) into the partial differential
equation of motion, one obtains a system of ODEs, where the unknowns are now the displacements
of the vertices of the mesh. This system is in general coupled, nonlinear, sparse, numerically stiff,
and high-dimensional for 3D meshes with many vertices. Solution methods for these systems are
obviously of great practical importance and have been studied thoroughly in the solid mechanics
literature. There exists freeware (CalculiX) and commercial computer software (Abaqus, Nastran)
to solve such systems. The solid mechanics literature addresses the problem in an offline setting:
the solution algorithm is not constrained to produce the values for the next timestep within a fixed
computation time window, as is the case with interactive applications. Also, these methods are
often designed to run on supercomputers, where network latency would present a challenge for an
interactive application. Another difference to interactive simulations is that offline methods often
see the whole time-evolution of external forces at the beginning of the simulation (an exception
would be an offline contact simulation). In an interactive application, external forces are not known
in advance, since they depend on user interaction. In general, the motion of a deformable body
depends on several factors:

• the initial conditions (initial position and velocity of every individual material point within
the deformable object),

• the time-evolution of applied external forces (if any),

• the geometry of the object (the mesh),

34



• the material properties of the object: mass density, particular material deformation law. Ma-
terial properties can vary spatially within the object (heterogeneous material properties).

Another important distinction is whether the deformable model possesses rigid degrees of freedom.
If such degrees of freedom are present (typically 6 for 3D simulations), the object can undergo both
rigid body motion and deformations simultaneously [Sha05]. If enough vertices of the model are
constrained to fixed spatial positions, the model loses its rigid degrees of freedom and becomes
a purely deformable model. This case is computationally easier and is commonly referred to as
structural dynamics. Our reduced deformable method is designed for structural dynamics, but we
also provide an extension to nonlinear deformable models undergoing rigid body motion.

Short literature guide

An introduction to continuum mechanics for deformable objects can be found in [Sha90] and [Fun77].
Background on nonlinear solid mechanics can be found in [Bel01, BW97, Hol00b]. Personally, I
used [Sha90] and [BW97] most. I also consulted [Hol00b] when I ran into difficulties with fol-
lowing [BW97]. For a computer graphics person interested in learning about FEM deformable
objects, I recommend starting by reading the following papers: [PDA01, OH99, CGC+02a].

2.1.2 Strain and stress
When objects deform, internal elastic forces appear in the material, typically trying to restore the
object back to its rest shape. Clearly, these internal forces depend on how the object is deformed.
The first assumption (a rather trivial one and often not even explicitly stated) made virtually every-
where in solid mechanics literature is that the internal forces at material location X depend only
on the deformations (including their time history) in some arbitrarily small neighborhood of X.
That is, for forces at X, it does not matter how the material is deforming or previously deformed in
the vicinity of some other material point Y 6= X. Internal forces are therefore a local phenomenon,
which naturally leads to investigation of local quantities such as spatial derivatives of deformation.

One of the important goals of computational solid mechanics is to predict (compute) the inter-
nal elastic forces for any given deformation configuration. To build such models, it is necessary to
define some measure of the “local amount of deformation”, as applied to any infinitesimal piece
of solid continuum inside the object. The deformation vector u = u(X) ∈ R3, which measures
the current 3D displacement of the material point X, is not a good measure as its components can
become arbitrarily large under rigid translations, which are free of deformation. A better defor-
mation measure is the gradient of the deformation vector, F = I + ∂u

∂X
, which is invariant under

rigid translations. It is however, not invariant under rigid rotations. For example, for a pure rota-
tion R, we have F = R. One commonly used measure which is invariant under any rigid body
motion is the strain tensor, defined as E = 1

2
(F TF − I). Both F and E appear in solid mechanics

and computer graphic literature when defining stresses/internal forces. Observe that E is a non-
linear (quadratic) function of u. This strain tensor is sometimes also called the Green-Lagrange
strain tensor, to distinguish it from the linearized version of strain (Cauchy strain tensor) which

35



is sometimes used for computational speed. Also note that E is called a “tensor”, even though in
practice it is often viewed just as a 3× 3 symmetric matrix, expressed with respect to the standard
basis of R3. In this thesis, we use the Green-Lagrange strain tensor to measure the local amount of
deformation; there are also approaches where F is used directly [BW97, ITF04].

Figure 2.1: A deflected cantilever beam: Left: the deformed shape, Middle: strain, Right: stress.
Both strain and stress are rank-2 tensors (3x3 matrices for all practical purposes in this thesis); the
plotted color gives the maximum eigenvalue of the 3x3 matrix.

Note that both F and E are defined uniquely based on the local deformation field u in the vicin-
ity of X. They are purely geometric measures, that is, they do not depend on material properties of
the mesh such as moduli of elasticity, compressibility, or similar. So, in order to go from geometric
deformations to actual forces, we need to choose a particular material deformation law (also called
the “constitutive equation”). This law will encode physical properties such as material elasticity,
compressibility, plasticity, etc. In particular, a material law relates the strain tensor of an infinites-
imal piece of solid continuum to its stress tensor. Just like strain, the stress tensor can be seen as
a 3 × 3 matrix. It is closely related to the internal forces acting on the material: imagine a small
infinitesimal piece of material of volume dV, and imagine the (imaginary) boundary separating it
from the rest of the material. Then, due to deformation, the rest of the material is pulling on this in-
finitesimal piece, with some net force finternaldV. This internal force equals finternal = divσ, where
σ is the stress tensor. Actually, there are three related commonly encountered formulations of
stress: the Cauchy stress tensor σ (a very commonly used form of stress), the first Piola-Kirchhoff
stress tensor P, and the second Piola-Kirchhoff stress tensor S. The three tensors differ in whether
they refer to forces and surface areas in the deformed or undeformed configuration; there are sim-

36



ple formulas to convert from one to another, see, for example [BW97]. For small deformations,
where quadratic terms in the strain tensor can be neglected, all three stresses are equal.

The particular material law chosen defines the behavior of the object under deformation. It can
take many different forms, and can in general varies both spatially and temporally, both of which
are cases beyond the scope of this thesis. In the next section, we discuss some common families
of material laws.

2.1.3 Elastic and hyperelastic deformable models
In a general material, stresses depend not only on the current value of strain, but also on the entire
history of strain. That is, the internal forces depend not only on the current deformation, but also
on how the deformable object reached a particular deformed configuration. Also note that as the
external forces deform the object, they perform mechanical work on the object. Some of this work
is dissipated as heat through material damping, some is converted into deformable kinetic energy
and the rest is stored in the object as internal strain energy.

Elastic materials are materials for which the stress tensor is memoryless: at any given material
point X, the stress tensor is a unique function of the current deformation gradient F. The stress-
strain law is constant in time for every material position X, but can vary spatially with X (non-
homogeneous material laws). It does not matter along what trajectory the material deformed in
order to reach the current state, the internal forces will be the same either way. An example of an
inelastic material is material that underwent a plastic deformation: if you push the material back
toward its original rest shape, it will resist and internal forces will point (roughly) in the opposite
direction to the direction during the original deformation; therefore stresses before and after plastic
deformation are different, for the same shape (and hence same F ). Another inelastic example is
human muscle undergoing activation, where the longitudinal stiffness changes with time.

Elastic materials can undergo hysteresis effects: if the deformable body makes a loop in the
deformation space, the net strain energy gain will not necessarily be zero. Of course, energy con-
servation laws must be obeyed. For example, if the net strain energy gain over a loop is negative,
this has to manifest as heat, or as increase in deformable object kinetic energy, or as mechanical
work performed to the environment. Hyperelastic materials are a subset of elastic materials for
which also the elastic strain energy is memoryless: it is a unique function of body deformation
only, and not of the particular deformation path that was followed to reach this deformation. This
therefore excludes hysteresis effects. For hyperelastic materials, the internal strain energy equals∫

Ω

S : EdV, (2.1)

where integration is performed over the reference (i.e., undeformed) configuration Ω. Here, S is
the second Piola stress tensor, E is the Green-Lagrange strain tensor, and colon denotes tensor
contraction, i.e., element-wise dot product S : E =

∑3
i=1

∑3
j=1 SijEij. Equation 2.1 follows

from the fact that the second Piola stress tensor is work-conjugate to Ė [BW97], and the path-
independence of internal strain energy for hyperelastic materials.

37



A hyperelastic material is isotropic if at any position in the body material properties are invari-
ant to local rotations. That is, if the internal forces under a deformation gradient F equal f, they
still equal f under a deformation gradient F · R, where R is a local material rotation. Anisotropic
materials are more “stretchable” in some directions than in others. For example, human muscles
are typically stiffer along their axis than in the plane of their cross-section.

2.1.4 Linear materials
In a linear material, the relationship between strain and stress is assumed to be linear. More pre-
cisely, the second Piola stress tensor is assumed to be a linear function of the Green-Lagrange strain
tensor (note that the first Piola stress tensor and the Cauchy stress tensor are not linear functions
of strain, even for linear materials). Since both stress and strain essentially have 6 undetermined
components (not 9; they are symmetric matrices), a general linear material can be parameterized
as a 6 × 6 matrix of coefficients relating strain to stress. It can be shown that a linear material is
always hyperelastic. Its strain energy function always takes the shape of a forth-order polynomial
in the components of u. This can be seen as follows: the deformation gradient F is always lin-
ear in u, therefore the Green-Lagrange strain tensor E = (F TF − I)/2 is always quadratic in u.
For linear materials, the second Piola stress tensor S is a linear function of E, therefore S is also
quadratic in u. The contraction S : E from Equation 2.1 is therefore forth-order in u, and therefore
the internal strain energy is also forth-order in u.

If one further assumes an isotropic linear material, it turns out that only two parameters out
of the original 36 remain. This material is called the St.Venant Kirchhoff (StVK) material. It is
commonly used in computer graphics for its simplicity. For example, the following papers all use
StVK: [DDCB01, CGC+02a, OH99] (they use an alternative name for it, but mathematically, they
use the same model (StVK)). StVK is defined by a linear stress-strain relationship as follows:

S = λ(tr E)I3 + 2µE, (2.2)

where S is the second Piola-Kirchhoff stress tensor, E is the Green-Lagrange strain tensor, I3 is
the 3 × 3 identity matrix, and λ, µ are (possibly spatially varying) Lamé constants. The Lamé
constants can be expressed in terms of the perhaps more familiar parameters of Young’s modulus
E > 0 and Poisson ratio ν ∈ (0, 1/2) as follows:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.3)

The representations (λ, µ) and (E, ν) are equivalent. Equation 2.3 can be used to convert from
(E, ν) to (λ, µ), and it is easy to derive formulas for conversion in the other direction.

The disadvantage of StVK material is that it is not suitable for applications involving large
compression [BW97]. For example, if a cube (a single FEM element) of unit length is fixed on
one face, with the opposite four vertices free, and a compressive load is (slowly; only interested
in static response for this mental experiment) applied to face containing the four free vertices, the

38



reactive elastic force initially grows (as expected), but peaks when the cube is squashed to about
57% of its initial length. If one continues to compress the cube, the reactive elastic force, while
still pointing in the right direction, grows weaker, until it completely vanishes when the cube is
completely squashed down to a rectangle. If one then continues increasing the force load, the cube
will invert. This is an extreme compression example of course. In many applications in computer
graphics volume compression is not large and large deformations under this material law typically
look visually plausible. Also, StVK does not suffer from a similar problem under extension; if
the cube is stretched, the responsive force grows arbitrarily large (as a cubic polynomial). In
summary, StVK is a hyperelastic linear isotropic material: elastic strain energy is a unique function
of body deformation only (and not of deformation history), and at any location, material is equally
stretchable in all directions.

A general (potentially anisotropic) simulation with linear materials is sometimes referred to as
geometrically nonlinear simulation. This is a term commonly encountered in solid mechanics lit-
erature (and also in computer graphics). Anisotropic linear simulations are useful when a material
allows more stretching/compression in one direction than in others. Various human tissues or fiber
composites are typical examples.

The methods in this thesis apply to general linear materials, not just to StVK. Our runtime
simulations are equally fast regardless of whether the isotropic model is used, or a general linear
model. We however, use StVK in all of our examples. With anisotropic models, precomputation
would take (a constant factor) longer, since more terms need to be assembled when constructing
the coefficients of the the internal force, or tangent stiffness matrix polynomials (or also strain
energy).

2.1.5 Nonlinear material models

Numerous nonlinear material laws have been presented in the solid mechanics literature. For
example, the neo-Hookean material has been used to model large deformations of plastic and
rubber substances. In computer graphics, [TBHF03] used an anisotropic nonlinear material model
to simulate human muscle tissue. We do not present real-time simulations of non-linear materials in
this thesis. Model reduction does apply to non-linear materials [KLM01], but the reduced internal
forces no longer have a simple polynomial form and as such cannot be evaluated at interactive rates
for detailed models.

2.1.6 Why the simulation is nonlinear

There are several sources of nonlinearity in the equations of motion of a deformable object:

• Geometric nonlinearity: The Green-Lagrange strain tensor is a quadratic (hence nonlinear)
function of displacements. If strain is approximated by a linear function, one obtains a
purely geometrically linear model, which is inaccurate for large deformations. Simulating

39



geometric nonlinearities produces plausible large deformations, and as such this was the ap-
proach adopted by many large-deformation papers in computer graphics [OH99, DDCB01,
CGC+02a], including our paper on reduced StVK simulations [BJ05].

• Material nonlinearity: The material law relating strains to internal forces can be nonlinear.
This thesis does not address this case directly.

• External forces are usually a very unpredictable time-signal, and as such a very nonlinear
function of time.

• Boundary conditions can be a nonlinear function of time. For example, the user could be
prescribing positions of certain vertices interactively at runtime, which is a nonlinear con-
straint. A more difficult case is that of a deformable object colliding with another (say rigid)
object, where the contact handling algorithm needs to apply appropriate non-penetration and
non-stick boundary conditions to the deformable body. This is a severe nonlinearity, and
approximations such as penalty forces are often used as a computationally simpler substi-
tute. Penalty forces avoid the need for any kind of explicit boundary conditions, since they
“convert” boundary conditions into external forces. We use penalty forces in our contact
algorithm presented in Chapter 3.

Geometrically linear models (that is, using linear strain) can model only small deformations
accurately. They are sufficient for certain engineering applications, especially when the deforma-
tions are small compared to the size of the elements (such as with earthquake simulations). Ge-
ometrically linear models are also popular because linear equations of solid mechanics are more
easily solvable than the more accurate nonlinear equations. Also, certain materials (brittle materi-
als) behave elastically only for small deformations anyway (and fracture otherwise). In computer
graphics, however, one is often interested in deformations that are large, visible, and exhibit inter-
esting dynamics. Think of tissue deforming during surgery, bridges swaying in the wind, plants
deforming in a computer animation. In this case, one cannot neglect the nonlinear terms in the
equations of motion without introducing very visible artifacts.

Each of these nonlinearities adds additional complexity to the equations that need to be simu-
lated. Model reduction in this thesis applies to the first three sources of nonlinearities. Prescribing
positions of vertices at runtime (nonlinearity in boundary conditions) could be addressed using
Lagrange multipliers, in a way similar to [CGC+02a]. Of course, since the number of deformable
degrees of freedom is limited, one cannot simultaneously constrain a large number of vertices. I
believe one day hardware and algorithms will progress to the point where it will be possible to
simulate all four sources of nonlinearity at haptic rates. Such a simulation is, however, beyond
reach with current algorithms and hardware.

It is difficult to accelerate the process of simulating nonlinear deformable objects, because the
computations are extensive, nonlinear, and appear to permit no shortcuts. This is especially the
case when using a single CPU, and when accurate results are sought (modulo numerics). Fig-
ure 2.2 shows the result of one such unreduced simulation. The solution is accurate (modulo the

40



Figure 2.2: Nonlinear FEM simulation of a voxelized elastic spoon: The spoon consists of
2005 elements (voxels in this case) and has 11,094 degrees of freedom. Motion was computed
using an unreduced approach: direct internal force and stiffness matrix evaluation, combined with
the implicit Newmark timestepping scheme and a conjugate gradient solver. Spoon is constrained
at the far end (blue), and the motion is induced by a short initial vertical impulse (green). Left-most
picture is the rest pose, followed by three representative frames of the dynamic simulation (free
vibration).

FEM discretization error, and error due to floating point arithmetic and numerically solving linear
systems of equations), but the amount of computation is significant, prohibiting interactive applica-
tions for models with more than about one thousand elements. For comparison (see Figure 2.3), a
reduced simulation of the spoon model under the same initial impulse, with 12 degrees of freedom,
and automatic basis selection, achieved a speedup of 50,000x, albeit with some loss of accuracy.

2.1.7 The equations of motion
The unreduced equations of motion for structural vibrations of a volumetric 3D deformable object,
under the FEM discretization, can be derived from the principle of virtual work of Lagrangian
mechanics. These equations of motion (called the Euler-Lagrange equation) are a second-order
system of ordinary differential equations

Mü+D(u, u̇) +R(u) = f. (2.4)

Here, u ∈ R3n is the displacement vector (the unknown), M ∈ R3n,3n is the mass matrix,
D(u, u̇) ∈ R3n are damping forces, R(u) ∈ R3n are internal deformation forces, and f ∈ R3n are
any externally applied forces. The mass matrix is constant in time and depends only on the object’s
mesh and mass density distribution in the rest configuration. In general, it is a sparse non-diagonal
matrix, however for algorithmic convenience, it is often simplified into a diagonal matrix by accu-
mulating all the row entries onto the diagonal element (mass lumping). Such lumping essentially
means that all elements re-assign their volumetrically distributed mass to their vertices: it is as if

41



the model consisted of a point-like mass at every simulation vertex, with zero mass anywhere else
inside the elements. Such a construction of course means losing some simulation accuracy; the
accuracy loss is smaller with finer meshes, and is generally not considered a serious problem in
computer graphics. Our approach can handle both lumped and non-lumped versions of the mass
matrix. Internal forces corresponding to the displacement u are given by the vector R(u) ∈ R3n.
The mapping R is nonlinear due to the nonlinearity of the Green-Lagrange strain tensor, and (in
general) due to any material nonlinearities. The mapping R is independent of time for elastic ma-
terials, likewise the damping mapping D is independent of time for materials with memoryless
damping. For elastic materials, apart from u, the only time-dependent term in the equation is the
vector of external forces f , used to model, e.g., user interactions or collision response.

LetK(u) ∈ R3n,3n denote the Jacobian matrix (the gradient) of the internal forcesR, evaluated
at u. This matrix is called the tangent stiffness matrix. The tangent stiffness matrix at the origin
K = K(03n) is often called simply the stiffness matrix (here 03n denotes the 3n−dimensional zero
vector).

2.1.8 Cubic polynomials for linear materials

For hyperelastic materials, the internal elastic forces R(u) equal the gradient of the strain energy
with respect to the components of the deformation vector. This follows from the principles of
Lagrange mechanics. As derived in Section 2.1.4 (page 38), the strain energy of a linear material
(i.e., a geometrically nonlinear simulation) is a forth-order multi-variate polynomial in the com-
ponents of the deformation vector u. The terms of this polynomial are sparse: displacements of
two vertices can only appear together in a polynomial term if the two vertices are the same vertex
or immediate neighbors in the mesh. Consequently, each component of the unreduced force is a
third-order multivariate polynomial function in the displacements of the vertex and all its immedi-
ate mesh neighbors.

For the StVK material, these polynomials are given as follows [CGC+02b]. Let e be a mesh
element and c one of its vertices. Let ua ∈ R3 denote the deformation of a mesh vertex a. Then,
the unreduced StVK force on c, under the deformation vector u ∈ R3n, as per arising from material

42



within element e, is

fc(u) = (Aca
1 + Aac

2 +Bac
1 I)ua + (2.5)

(
1

2
Ccab

1 + Cabc
2 )(ua · ub) + (ub ⊗ ua)(C

abc
1 + Ccab

2 + Cbac
2 ) + (2.6)

(
1

2
Dabcd

1 +Dacbd
2 )(ua · ub)ud (2.7)

Aab =

∫
e

∇φa ⊗∇φb dV ∈ R3,3 (2.8)

Bab =

∫
e

∇φa · ∇φb dV ∈ R (2.9)

Cabc =

∫
e

∇φa(∇φb · ∇φc) dV ∈ R3 (2.10)

Dabcd =

∫
e

(∇φa · ∇φb)(∇φc · ∇φd) dV ∈ R (2.11)

Aab
1 = λAab, Aab

2 = µAab, Bab
1 = µBab, Cabc

1 = λCabc,

Cabc
2 = µCabc, Dabcd

1 = λDabcd, Dabcd
2 = µDabcd. (2.12)

Here, φa = φa(X) denotes the FEM shape function corresponding to vertex a, i.e. φa(a) = 1 and
φa(b) = 0 for a 6= b. Einstein summation convention was used; summation runs over all vertices,
all pairs of vertices, or all triples of vertices of element e. Most vertices in the mesh are vertices
in several elements (the 1-neighborhood of a vertex); the total force on such a vertex is obtained
by summing the contributions of all the neighboring elements. Lamé constants λ and µ relate to
Young’s modulus E and Poisson ratio ν as follows:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.13)

The coefficients A,B,C,D and parameters λ, µ, ρ can in general vary from element to element
(i.e. to support non-homogeneous StVK). If implementing the above equations on a computer, be
careful if you need to evaluate the above integrals using a substitution, such as, for example, if you
need to integrate over a scaled version of an element. Namely, such a substitution will give a cubic
scaling factor with the differential dV, and it will also introduce scaling factors into the gradients
∇Φ. Forgetting to appropriately modify the gradients will result in a difficult implementation bug,
as the simulation will still somewhat work, but not very well for large deformations.

Also note that the above equations for internal forces can be generalized beyond FEM shape
functions to arbitrary deformation fields φ = φ(X). All that is required is to write λ = λ(X) and
µ = µ(X) (for non-homogeneous materials that can spatially vary even within elements), then
carry the scalars λ and µ into the integrals for A1, A2, B1, C1, C2, D1, D2, and integrate over the
entire mesh as opposed to just a single element.

43



General linear materials: In this case, the second Piola-Kirchhoff stress tensor S is modeled as
a linear function of Green-Lagrange strain E:

Sij = CijklEkl, (2.14)

where Sij is the component of S at location (i, j), for i, j = 1, 2, 3. Ekl is the component of E at
location (k, l), for k, l = 1, 2, 3, and Cijkl = Cklij = Cjikl = Cijlk is the rank-4 elasticity tensor.
There are 36 free degrees of freedom in C. We derived the unreduced internal force on c, under the
deformation vector u ∈ R3n, as per arising from material within element e, to be

fc(u) =
(1

2
(Cijkl + Cijlk)P

ac
lj ei ⊗ ek

)
ua +

1

2

(
CijklQ

abc
kljei

)
(ua · ub) + (2.15)

(ud ⊗ ua)
(1

2
(Cmjkl + Cmjlk)Q

adc
lmjek

)
+

1

2
CmjklR

abcd
kljm(ua · ub)ud (2.16)

P ab
ij =

∫
e

∇φai∇φbjdV ∈ R (2.17)

Qabc
ijk =

∫
e

∇φai∇φbj∇φckdV ∈ R (2.18)

Rabcd
ijkl =

∫
e

∇φai∇φbj∇φck∇φdldV ∈ R. (2.19)

Here, ∇φai denotes the i-th component of ∇φa = ∇φa(X), for i = 1, 2, 3. Note that StVK is
obtained for Cijkl = λδijδkl + 2µδikδjl.

How were these formulas derived: First, we expressed E = E(X) (at any location X inside
the material) as a quadratic function of mesh vertex deformations. Then, we applied the material
law to express S = S(X) as a (still quadratic due to material law linearity) function of mesh vertex
deformations. Next, we used the formula P = F ·S to express the first Piola-Kirchhoff stress tensor
as a cubic polynomial in mesh vertex deformation. Finally, we used the Rayleigh-Ritz virtual work
formulation from Lagrange mechanics which states that the generalized force corresponding to the
shape function φ = φ(X) equals

f = −
∫

Ω

P : ∇φ(X)dV +

∫
Ω

fext(X) · φ(X)dV +

∫
∂Ω

P Tφ(X)ndS, (2.20)

where Ω denotes the 3D object in the rest configuration. If this principle is applied to the FEM
shape function φc of mesh vertex c, the first term of the above Equation 2.20 gives the formula in
Equation 2.15. The second term corresponds to external forces, distributed volumetrically across
the object. The last term are the surface tractions applied to the object; we assume that the object
boundary is stress-free; therefore, this term is zero. Note that boundary conditions such as vertices
with fixed locations are still correctly supported, by removing the appropriate rows and columns
from the stiffness matrices and internal force vectors. This construction is not limited just to FEM
shape functions: functions φ = φ(X) can be arbitrary (potentially non-localized) displacement
fields. They could be, for example, polynomial global shape functions used in [PW89, MHTG05].

44



2.1.9 Offline simulation

When solving the Euler-Lagrange equation, the conventional FEM approaches to solid mechanics
(such as those without model reduction) typically perform two distinctive computations in a sin-
gle timestep. In the first part, given the current model deformation, the algorithm evaluates the
internal elastic forces R(u) and potentially (depending on the particular choice of the numerical
integrator) also tangent stiffness matrix K(u). To construct R(u) and K(u) essentially the same
relatively simple nonlinear computation is performed for every element, with deformations of the
vertices of this element as input. The inputs to each such “computational kernel” therefore vary
from element to element, but the kernel is the same for all the elements. Each element can be pro-
cessed independently, and the total computation runs in time O(n) for a mesh with n vertices, with
the asymptotic constant depending on the particular mesh topology and the type of element used.
Despite the seemingly favorable linear running time, the computation of internal forces is time-
consuming and easily makes the simulation non-interactive for large models. The second part of a
timestep involves solving a large sparse linear system of equations; typically this is only necessary
with implicit integration (another case is if non-lumped mass matrix is used for explicit integra-
tion). Again, for detailed deformable models, this task is computationally non-trivial. Typically
the system is solved with an iterative solver, such as a conjugate gradient solver, where the cost of
each iteration is O(n), with many iterations required for large meshes. It is possible to use precon-
ditioning such as the incomplete Cholesky factorization, however the system matrix changes with
deformation (since the tangent stiffness matrix changes), and as such the preconditioner needs to
be updated often. The timesteps when such a preconditioner update occurs will require a signif-
icantly longer amount of computation than the non-update timesteps, which is incompatible with
interactivity. In practice, the internal force/tangent stiffness matrix construction times dominate
the computation for small to medium size meshes (e.g. 20,000 elements), whereas the system
solve becomes a bottleneck for large meshes, such as meshes with 1,000,000 elements. This is to
be expected, since the cost of constructing the internal forces grows linearly, whereas the system
solve time scales superlinearly. As mentioned, the system solve can be avoided with explicit inte-
gration when the mass matrix is lumped; this is sometimes called explicit finite elements [OH99].
It requires small timestep to maintain stability. The advantage is that a linear system solve is not
required, and that fast high-frequency phenomena are representable due to small timesteps. For ex-
ample, this method could simulate localized impact with the subsequent shock waves propagating
across the deformable model.

A standard deformable object algorithm will perform such a two-stage computation for ev-
ery timestep. This is the approach used by most commercial/freeware solid mechanics software
packages available today. Figure 2.2 shows the result of one such simulation. The solution is
very accurate, but the amount of computation is significant, prohibiting interactive applications for
models with more than a couple of hundred elements. For comparison (see Figure 2.3), a reduced
simulation of the spoon model under the same initial impulse, with 12 degrees of freedom, and
automatic basis selection, achieved a speedup of 50,000x, with a modest loss of accuracy.

45



Figure 2.3: Accuracy experiment: Vertical displacement of a spoon simulation mesh vertex,
located centrally at the tip of the spoon. Some deformations from this experiment were previously
shown in Figure 2.2; the plotted simulation mesh vertex is colored green in Figure 2.2. Length
of spoon is about 2.5 units. Triangle mesh poses are shown for reference. In all cases, motion
is excited by the same identical initial short vertical impulse. The “basis from full motion” curve
is obtained by performing Principal Component Analysis (PCA) on the motion computed by the
full unreduced 11, 094-dimensional simulation, and then re-simulating the system in this basis.
Note that in this case the basis is close to optimal for the simulation, and as such the curve almost
aligns with the full simulation curve. This basis, however, wouldn’t generalize well to other force
loadings. “Modal derivatives” and “sketching” are two novel methods to generate the motion
subspace, presented in our paper [BJ05]. The method of modal derivatives is automatic and makes
no assumptions on the particular force loadings of the structure. All the reduced spaces are 12-
dimensional. Our webpage [JJ] contains a video comparison corresponding to this Figure.

2.1.10 Static simulations
Sometimes, one is interested only in the deformations assumed under a certain fixed static load, as
opposed to the dynamics of deformations. Such static simulations are useful, for example, when
determining how structures (bridges, buildings) are able to sustain applied loads.

It is easy to convert the Euler-Lagrange equation into a form that supports static simulations:
simply discard all terms except R(u) and f. Given an external static load f, the problem then
becomes solving the nonlinear equationR(u) = f for u. This is commonly done by the application

46



of a Newton-Raphson procedure, which is a generalization of the familiar 1D method to solve for
the roots of a 1D nonlinear equation. Newton-Raphson involves repeated iterations consisting of
evaluating the internal forces R = R(u) and the tangent stiffness matrix K = K(u), followed by
a linear system solve K∆u = f −R to obtain the next solution approximation u+ ∆u.

The model reduction presented in this thesis applies equally well to static simulations as to
dynamic simulations. In the case of a static simulation, reduction gives us a reduced static simu-
lation. Such simulations can be easily generated using the reduced implicit Newmark integrator
(described in Section 2.9): simply discard the reduced mass matrix and damping terms from the
reduced equations of motion.

2.2 Related work: Real-time deformable objects

Large deformation models are subject of interest in both interactive computer graphics and offline
solid mechanics. Physics-based large-deformation models have been used successfully in graphics
for almost two decades [TPBF87, BW92, MT92], and enjoy widespread application in mature
graphics areas, such as cloth simulation [BW98, BFA02].

Saint-Venant Kirchhoff (StVK) and (anisotropic) linear materials are often sufficient for the
purposes of computer animation. For example, linear materials have been exploited for fast large-
deformation kinematics of Cosserat rods [Pai02]. StVK is very common in computer graphics
papers: the following papers all use StVK (another term is usually used; e.g., nonlinear simulation
or geometric nonlinearities): [ZC00, OH99, PDA01, DDCB01, CGC+02a]. These simulations
include geometric nonlinearities and are accurate modulo the FEM discretization, the timestepping
discretization and the material linearity assumption. The time complexity, however, is at leastO(n)
to construct the internal forces (and any required stiffness matrices), since all the mesh elements
need to be traversed (n is the number of vertices in the model). As such, simulation costs are
proportional to mesh geometric complexity. For example, the runtime assembly of all the cubic
force terms for every element limits the interactivity to only about a thousand elements [ZC00,
PDA01]. If an implicit solver is used, an additional cost of several O(n) CG iterations will be
incurred to solve the large sparse linear system. If the mass matrix is lumped, an explicit solver
can be used instead; but this requires small timesteps to maintain stability, and the O(n) cost of
computing the internal forces cannot be avoided anyway. In contrast, the reduction approach from
this thesis gives runtime costs dependent only on the number of reduced degrees retained, and
independent of n.

Local frames of reference can serve as a useful tool to simplify/approximate/accelerate nonlin-
ear simulations. For example, a deformable object undergoing free flight can be approximated by
superimposing (small) deformations (timestepped in the local frame of reference) on top of large
rigid body motion [TW88, MT92, Sha90]. Closely related to this are so-called “stiffness warping”

47



methods (c.f. corotational formulations) [MDM+02, MG04, ITF04]. Here, large deformation sim-
ulation is achieved by using polar decomposition to extract the rotation that most closely matches
the current large deformation of each element. Each element is then (conceptually) “unrotated”
to the rest frame of reference, where some amount of deformation will persist due to the non-
rigidness of the simulation. Linear forces are calculated with respect to this “deformation on top
of rigid body motion”, and then rotated forward to the current configuration. The resulting sim-
ulation is similar (but different) to a geometrically nonlinear simulation; one difference is that if
there is no rotation but only deformation (such as in stretching), stiffness warping gives a purely
linear model and will experience volume growth with large deformations. This, however, is not a
significant practical problem for many applications: simulations with large rotations plus a small
amount of superimposed deformation represent a common class of deformable objects in practice.
In a similar manner, polar decomposition can be used to determine particle goal positions in the
non-FEM, but very fast models of [MHTG05, RJ07].

All of these local frame of reference approaches, however, require traversing all the elements
(or particles) at every timestep to extract the per-element rotations from the deformation gradient
(or performing singular value decomposition on the deformation gradient), again incurring at least
a cost of O(n) per timestep to construct the internal forces, plus the integration cost.

Multi-resolution methods use hierarchical deformation bases to adaptively refine the analysis
based on deformation activity of the model [DDCB01, CGC+02a, GKS02] (see Figure 2.4). The
multi-resolution approach is in a sense complementary to the reduced deformation approach. It
works by constructing a (spatially) multi-resolution deformation basis, where the basis dynami-
cally grows/shrinks depending on what part of the model currently experiences interesting defor-
mation activity. However, the multi-resolution basis is defined purely based on geometry: it does
not use the information on the spatial distribution of material parameters. In contrast, an optimally
chosen reduced basis can capture the “typical nonlinear response” of the system, and as such al-
lows the object to deform precisely into the “typical” shapes. Other degrees of freedom need not
be included, which can make the basis small and fast. In this sense, a reduced basis is adapted to
the equations of motion.

One additional feature/problem with multi-resolution methods comes from the fact that the
model is simulated with respect to a coarse mesh everywhere it is not currently refined. At any
given moment of time, a significant (large) part of the model will be simulated at a coarse level;
if the model were resolved to the finest level everywhere, there would be no benefit of running a
multi-resolution simulation, as the simulation would be no different than a standard FEM simu-
lation. Coarser shape functions, however, do not resolve the geometry as fine as the finer shape
functions; essentially, they can behave as if all geometry below the current level of detail is filled
up with “virtual” material (including gaps of free space). This means that, at any given moment
of time during the simulation, the contributions of fine geometric detail (and also any fine-scale
material law variation) is lost, for a significant (large) part of the model. In contrast, our method
performs the pre-process on the (fine) geometric mesh and the intricacies of fine geometry (and
material law distribution) get “baked” into our pre-processed data. While the distinction might not

48



be as important in several practical cases, consider for example, simulation of fractal geometry,
such as a 3D Sierpinski cube: clearly, deformable dynamics will be compromised if parts of the
model are filled up with “virtual” material as in a multi-resolution method. Multi-resolution ap-
proaches, however, are able to simulate local deformations, and could, in principle, be combined
with our reduced deformable models.

Figure 2.4: Multi-resolution approaches to simulating deformable objects: Left: an non-
nested multiresolution hierarchy approach of [DDCB01], Right: and a subdivision basis approach
of [CGC+02a].

Assumed-shape (low-dimensional) approaches are commonly used in (interactive) computer
graphics. For example, high resolution meshes can be deformed using coarse deformable mod-
els [PW89, FvdPT97, MG04]. Subspace integration is related to discretizations using global dis-
placement bases that are commonly used in graphics to avoid solving large systems (e.g., during
semi-implicit integration), and reducing numerical stiffness (for explicit timestepping), e.g., global
polynomial shape functions [WW90, BW92], deformable super-quadrics [MT92], free-form de-
formation basis functions [FvdPT97]. Multiresolution discretizations also project dynamical equa-
tions using multiresolution scaling functions [GKS02].

Linear modal analysis: Every solid object, whether a string, a shell membrane or a volumet-
ric 3D object, possesses natural “eigendeformation” shapes (called modes, or linear vibrational
modes), with a certain natural frequency for each shape. These shapes of course depend on the ob-
ject geometry, boundary conditions (such as what parts of the object are fixed), and material prop-
erties of the object. For example, the first mode of a guitar string rigidly attached on both ends, and
undergoing small transverse deformation, is a half-sine wave; higher modes are sine waves with
higher spatial frequencies. The frequency spectrum is in general discrete and countably infinite
for true continuum objects, and finite for discretized models, such as those obtained using FEM.
The FEM spectrum of course converges to the true spectrum of the continuum object with finer

49



meshes. In many applications, the lowest natural frequencies and their corresponding shapes give
a reasonable description of the deformations of the object. The approximation is convergent in
the sense that if more modes are added, progressively better and better accuracy is obtained; if all
modes are used, one obtains the same accuracy as under a full model. The technique of computing
the first few modal shapes and frequencies of an object, and then using them for (interactive) sim-
ulation of deformable objects, is called linear modal analysis. In graphics, this technique was first
mentioned in [PW89] (but the modes used were polynomial functions up to a given degree, not the
actual physical modes), and later popularized by several researchers [OSG02, JP02, HSO03]. Lin-
ear modal simulations are fast and easily interactive, even for more than a hundred linear modes.
The main drawback is that large deformations look very obviously incorrect: the usage of linear
strain causes very visible spurious volume growth under large deformations.

Modal warping was introduced by [CK05a], and it is an approach to extend linear modal anal-
ysis to large deformations. As such, it addresses a similar problem to our work. Modal warping
starts by precomputing the modes of linear modal analysis (which assumes linear strain and lin-
ear materials). At run time, per-element rotations of modal analysis are quickly extrapolated to
produce a fast parametric nonlinear shape model. This approach is useful for eliminating gross
distortions associated with linear modal analysis. In modal warping, the equations of motion are
treated separately from the nonlinear shape: the modes of linear modal analysis are driven by inde-
pendent simple harmonic oscillators, just like in the small deformation case; but a nonlinear shape
is displayed and used for collision detection. An initial condition exciting only one of the modes
will generate single-mode motion (regardless of amplitude), and hence the well-known nonlinear
coupling of modes cannot be captured. In our work, the modes are coupled via an analytic reduc-
tion of the StVK finite element model. Our approach uses a reduced displacement basis produced
from actual nonlinear shape statistics. Another difference is illustrated by deformations in which
no element rotations occur, such as a beam’s axial extension mode. Modal warping gives a simula-
tion identical to linear modal analysis in such cases; the volume grows linearly as the beam extends.
In our model, forces are cubic polynomials and structure becomes stiffer with extension; modes
couple to counteract volume growth. One other benefit of our model is that the displacements are
a simple linear function of the reduced coordinates, whereas in modal warping, the relationship is
nonlinear, and cannot be evaluated as quickly. Our linear shape model also enables us to accelerate
collision detection [JP04], which we use extensively in our haptic simulations (Chapter 3).

Element inversion: StVK models are perhaps the simplest kind of physical large-deformation
model, and one well-known deficiency is that forces are inaccurate under larger compressions
(see [ITF04] for a discussion). In the worst case, elements may actually invert without proper
restoring forces, and suitable steps must be taken to address element inversion. Such an approach
has been demonstrated in [ITF04]: the deformation gradient of each element is decomposed using
singular value decomposition, and then the stress tensor is computed based on the singular values,
such that it gives internal forces restoring the deformations back to the rest shape. We note that an
alternative strategy to such element inversion prevention is to remesh the simulation domain when

50



the aspect ratio of the elements falls below some acceptable threshold; this, however, requires good
remeshing strategies, which is a difficult problem on its own. Although the approach of this thesis
is not suitable for simulating the general and complex deformations found in Irving et al. [ITF04], it
is designed to be substantially faster for interactive applications. Also, the concerns about element
inversion are constrained to our precomputation phase, and are not a major concern for runtime
subspace integration, since the shape subspace greatly restricts the likelihood of element inversion
(but does not preclude it).

Precomputation is used extensively in our method. Appropriate quantities (the motion basis
and reduced force polynomial coefficients) are computed in a pre-processing stage, before the ac-
tual simulation. The results are cached on disk and then used by the runtime simulation to quickly
timestep the solution. To this date, most precomputation-based approaches for real-time simulation
have considered geometrically (and materially) linear models. For fast elastostatics, condensation
approaches have been used to obtain boundary responses [BNC96], as well as precomputation of
boundary Green’s function responses [CDA99, JP99]. James and Fatahalian [JF03] precompute
nonlinear deformation responses to a finite set of user impulses, and apply dimensional reduction
using PCA. Although their approach handles self-collisions, it restricts the range of possible run-
time interactions to a small discrete set of pre-selected impulses. On the other hand, our approach
allows general runtime forcing within the reduced-dimensional subspace (two force loads with
equal subspace projection generate same deformations under our method).

2.3 Related work: Dimensional model reduction in solid me-
chanics

Dimensional model reduction is a technique to simplify simulation of dynamical systems described
by differential equations. Complex systems can be simulated by reducing the dimensionality of the
problem, yielding systems of differential equations involving fewer equations and fewer unknown
variables. These equations can be solved much more quickly than the original problem, with some
accuracy cost to the solution. This method also appears in literature under the names of Principal
Orthogonal Directions Method, and Subspace Integration Method, and it has a long history in the
engineering and applied mathematics literature [Lum67]. Static simulations, where dynamic terms
in the equation of motion are neglected, were also addressed [NP80, Noo81].

In nonlinear solid mechanics, early methods extended the principle of mode superposition for
linear vibration analysis by using local tangent mode superposition [Nic76], and later the deriva-
tives of tangent eigenmode vectors were also included [IC85b]. Explicit computation of the coef-
ficients of reduced force polynomials for a time-varying basis of motion is suggested in [ASB78].
These techniques are not suitable for interactive applications because they periodically involve
timesteps with a large amount of computation, such as when the local basis is updated, and
the number of derivative modes required for accuracy can grow too quickly to be efficient. Re-
cently, a statistical approach to basis generation for finite element models was presented by Krysl

51



et al. [KLM01], wherein a full-degree of freedom system is first simulated, and then standard
PCA is applied to the resulting deformations to obtain a typical deformation basis. This is a non-
interactive technique with external forces known and fixed in advance, and the simulated nonlinear
deformations were relatively small compared to deformations in our method. Also, reduced inter-
nal forces and reduced stiffness matrices were assembled by first constructing unreduced quantities
(followed by subspace projection), which is prohibitively expensive for interactive simulation of
complex models.

Model reduction beyond solid mechanics: Model reduction has been used extensively in the
fields of control theory, electrical circuit simulation, computational electromagnetics and micro-
electromechanical systems [LB05]. Applications of model reduction to fluid simulation can be
found, for example, in [KKR00, TLP06]. The common theme is to project the original state-space
onto a low-dimensional subspace to arrive at a (much) smaller system having properties similar to
the original system. Many powerful reduction techniques have been designed, in particular for lin-
ear time-invariant systems. Despite this progress, order reduction of large-scale nonlinear systems
is still in its infancy [BFSV06].

2.4 Overview of our approach
In the remainder of this chapter we will show how dimensional model reduction on large geomet-
rically nonlinear deformation models with linear materials, as commonly used in graphics (for
example, the St. Venant-Kirchhoff model, or StVK), can lead to extremely fast and precomputable
approximations for real-time applications.

In Section 2.5, we discuss how to generate 3D simulation meshes for “polygonal soup” models
of computer graphics. These meshes and the (potentially spatially varying) material parameters
form the input to our FEM model reduction algorithm. Assuming a motion basis is known, the
Euler-Lagrange equations of motion can be projected on the subspace, as demonstrated in Sec-
tion 2.6. Dimensional model reduction for linear materials (such as StVK) results in internal force
models that are simply cubic polynomials in reduced coordinates. Coefficients of these reduced
force polynomials can be precomputed for efficient runtime evaluation of exact internal forces and
stiffness matrices (Section 2.1.8).

A key challenge is to construct a good reduced deformation basis for describing general large
deformation problems; we discuss this in Section 2.8. To this end, we present two approaches
to good quality basis motion generation: modal derivatives and a sketch interface. Modal deriva-
tives provide an automatic approach (requiring no prior simulation data) where the standard linear
modal analysis basis is augmented by the derivatives of the linear modal basis vectors. In the
sketch-based interface, the user is presented a linear modal analysis model and interacts with it.
The imposed forces are recorded, and then an offline FEM solver generates the deformation sam-
ples. Both the modal derivatives approach and the sketch approach produce a certain number of
deformation fields: the modes and their derivatives for the modal derivatives approach, and the

52



deformation samples for the sketch approach. We process these deformation fields with a statis-
tical model reduction technique, giving us the nonlinear modal shape basis functions (the empir-
ical eigenvectors). The obvious candidate for model reduction is Principal Component Analysis
(PCA); however this would overemphasize deformations in mesh regions where the mesh is very
dense (for meshes that do not have regular or near-regular distributions of vertices). Instead, we in-
troduce mass PCA, a variant of the PCA data-reduction method which appropriately decomposes
the mass matrix and as such effectively correctly weights the different simulation mesh vertices
when performing PCA.

The subspace integration costs are independent of geometric complexity. Consequently, large
deformation physics can be integrated at extremely fast rates using trusted subspace integrators,
e.g., implicit Newmark, while graphical rendering is done at slower rates. We describe the implicit
Newmark integrator in Section 2.9. For example, the large bridge example shown in Figure 1.2
can only be dynamically rendered at about 40 Hz, but its dynamics can be integrated at more than
a kilohertz, thus enabling haptic simulations of complex large-deformation models. In general,
the integration speed is proportional to the number of subspace dimensions employed, e.g., with 4
dimensions the bridge dynamics can be integrated at over 200 kHz. We demonstrate our method
on a variety of examples and compare the method accuracy under progressively larger basis sizes
(Section 2.13).

2.5 Mesh generation
The deformable body is represented as a volumetric mesh consisting of 3D polyhedra called el-
ements. A particular body deformation is specified by the displacements of the volumetric mesh
vertices. For a volumetric mesh consisting of n vertices, the displacement vector u ∈ R3n contains
the x, y, z world-coordinate displacements of model vertices. If the deformation vector is known,
it is possible to render the deformable object, and perform collision detection. Typically, a small
set of vertices are constrained to have zero displacements, which removes the rigid body degrees
of freedom (this is the so-called “structural dynamics”). However, we also support unconstrained
meshes, through our extension of modal derivatives to free-flying objects (Section 2.8.3).

2.5.1 Choice of elements

We use the first-order hexahedral “brick” element in all of our experiments. This element is a poly-
hedron with 6 faces (a hexahedron), and the shape functions correspond to trilinear interpolations
of the data from the element vertices into the interior of the element. In particular, our bricks are
uniform size voxels as described in Section 2.5.2.

Of course, the Finite Element Method provides several other different types of elements. Prob-
ably the most common element type used in computer graphics is the first-order tetrahedron el-
ement. This is the simplest kind of a FEM element, with a constant value of strain inside each
tetrahedron, and engineering references often cite that very fine tetrahedron meshes are necessary

53



Figure 2.5: Subspace integration of Eiffel tower and heart models

to achieve sufficient solution accuracy. Elements also differ in the interpolation order of the shape
functions. A standard way to improve the accuracy of the first-order tetrahedron is to add one
extra degree of freedom at the midpoint of every tetrahedron edge, resulting in a second-order

54



tetrahedral element. There are specific benefits/losses/trade-offs to choosing a specific element
type/interpolation scheme. In general, choosing a higher-order scheme results in more computa-
tion to determine the internal forces/tangent stiffness matrix, however the convergence is faster.
An engineering rule of thumb is that computation costs grow linearly with the order of shape func-
tions, but convergence grows exponentially. However, this convergence is impeded in cases where
the volumetric mesh is undergoing contact because in such cases, there is a lot of non-smoothness
(derivative discontinuities, etc.) in the solution. In such cases, the power of higher-order elements
to represent smooth deformation fields is less of an asset. For this reason (and simplicity of pro-
gramming), first-order elements are still very common in graphics. Another design parameters of
a FEM element is the order of its geometric shape; this thesis only uses first-order shape elements
(faces are flat), however higher shape order elements, such as those where the faces are cubic
Bézier patches would also be possible.

In any case, the element choice is not relevant to this thesis: the model reduction applies
regardless of the particular choice of the element type. That is, our basis selection techniques take
the initial degrees of freedom of the system, and appropriately reduce them to a low number of
reduced degrees of freedom. The particular element shape of course plays the appropriate role in
this reduction, as it affects how stresses depend on the original degrees of freedom. However, the
process itself is the same for all element types.

2.5.2 Free-form deformations

In computer graphics, it is often useful to simulate models which are essentially “polygon soups,”
i.e., unorganized, potentially non-manifold surface triangle meshes. However, a good quality vol-
umetric mesh is necessary for simulation. Of course, sometimes the volumetric mesh is already
given, in which case we can simply use it for simulation; one can then render the surface of the
mesh for visualization. If we are, however, given an input “polygon soup” triangle mesh of an
object that we wish to animate, how can we create the corresponding volumetric mesh for simula-
tion?

We follow a common approach in graphics, wherein a 3D volumetric simulation mesh drives
the deformations of an embedded triangle mesh. In our implementation, the volumetric mesh
is obtained by voxelizing the triangle mesh into tiny elastic cubes (8-node first order brick ele-
ments) [JBT04, MTG04]. This is performed by fitting a bounding box to the polygon soup geome-
try (all sides equal; centered on the model, and enlarged by some factor, e.g. 1.2x), then uniformly
dividing the cube (in all three dimensions) into a regular grid of voxels, and storing the voxels
that intersect the geometry. While this gives volumetric meshes with a lot of 90 degree angles
(“staircase meshes”), these meshes performed well for our purposes. If necessary, inhomogeneous
material parameters can be assigned to the cubes, for example to make the cables on a bridge stiffer
or leaves on a tree softer than the branches. We do this manually, by visualizing the voxel mesh,
selecting appropriate regions, and generating appropriate material files.

Of course, only the original triangle input mesh (call it the rendering mesh) is actually displayed
on the screen during the simulation. The volumetric mesh is only there for internal calculations.

55



External forces applied to the system typically come from user interaction, such as the user pulling
on a vertex, or they are contact forces from a collision detection/contact algorithm. These forces are
usually given with respect to the rendering mesh, not the simulation mesh. It is therefore necessary
to transfer these forces appropriately to the simulation mesh. This can be achieved as follows: a
force acting on a rendering mesh vertex is distributed barycentrically to the eight simulation nodes
of the voxel containing this vertex. In a similar manner, displacements of the volumetric mesh are
transfered back to the triangle mesh, so that the deformed triangle mesh can be rendered on the
screen. We found such free-form discretization convenient during precomputation, but of course
other kinds of free-form deformation schemes could be used too, such as embedding the rendering
mesh into an appropriately defined tetrahedral mesh [MBTF03].

Figure 2.6: Simulation Meshes: Blue vertices are constrained.

rendering voxel simulation
vertices triangles resolution vertices elements

spoon 3321 6638 100 3698 2005
bridge 41361 59630 128 11829 5854
tower 45882 105788 140 20713 11304
heart 12186 23616 80 28041 14444

Figure 2.7: Geometric parameters of models from Figure 2.6.

56



2.6 The reduced equations of motion

In a reduced model, the displacement vector is expressed as u = Uq, where U ∈ R3n,r is some
displacement basis matrix, and q ∈ Rr is the vector of reduced coordinates. Here, U is a time-
independent matrix specifying a basis of some r-dimensional (r � 3n) linear subspace of R3n.
There is an infinite number of possible choices for this linear subspace and for its basis. Good
subspaces are low-dimensional spaces which well-approximate the space of typical nonlinear de-
formations. The choice of subspace depends on geometry, boundary conditions and material prop-
erties. Selection of a good subspace is a non-trivial problem and we will discuss it in Section 2.8.
For now, simply assume that a good subspace is available, and specified explicitly by some defor-
mation basis matrix U.

For a given r−dimensional subspace of the full deformation space R3n, there are many choices
for a specific basis for this subspace, and this choice can impact numerical stability. One choice
would be to pick an orthogonal basis, however, it is more natural to make columns of U mass-
orthonormal (see Section 2.8.1), i.e., impose UTMU = Ir, where Ir is the r × r identity matrix.
Note that this still does not fully specify U because the columns of U can be rotated with an
arbitrary r × r rotation matrix: if U is mass-orthonormal, so is UQ, where Q is a r−dim rotation.
We do not select any particular rotations in this thesis. One option would be to pick Q such that
the reduced tangent stiffness matrix diagonalizes in the rest configuration; this, however, would
not impact execution speed or simulation accuracy.

By inserting u = Uq into Equation 2.4, and premultiplying by UT , one obtains the reduced
equations of motion. These equations determine the dynamics of the reduced coordinates q =
q(t) ∈ Rr, and therefore also the dynamics of u(t) = Uq(t) :

q̈ + D̃(q, q̇) + R̃(q) = f̃ (2.21)

where D̃, R̃ and f̃ are r-dimensional reduced forces,

D̃ = UTD(Uq, Uq̇), (2.22)
R̃(q) = UTR(Uq), (2.23)

f̃ = UTf. (2.24)

Similarly, one can form the reduced tangent stiffness matrix,

K̃(q) = UTK(Uq)U ∈ Rr,r. (2.25)

The existence theorem for systems of ordinary differential equations (ODEs) [HW04a] assures that
the system of ODEs in Equation 2.21 has a well-defined unique solution, given a specific instance
of initial conditions and time-dependent external forces. Since r � 3n, the integration of (2.21) is
much faster than the integration of the unreduced system (2.4), albeit with some accuracy loss.

57



2.6.1 Reduced internal forces are cubic polynomials
In order to integrate Equation 2.21 quickly, it is necessary to evaluate R̃(q) and K̃(q) quickly,
for arbitrary runtime configurations q. For general hyperelastic materials, R̃(q) and K̃(q) can be
evaluated directly by following Equations 2.23 and 2.25, as was done in [KLM01]. Assuming that
unreduced internal forces and the tangent stiffness matrix can be evaluated in time Θ(n) (which is
true as long as the stress-strain relationship can be evaluated in constant time; true for all hyper-
elastic material models that the author is aware of), the cost to evaluate R̃(q) and K̃(q) becomes
Θ(nr) and Θ(nr2), respectively.

This cost still has a dependency on n (number of vertices in the simulation mesh). For linear
materials, we make the cost dependent on r only, by observing that internal forces are in this case
cubic polynomials in reduced coordinates. This follows from Equation 2.23 and the fact that R(u)
is a cubic polynomial in components of u, as discussed in Section 2.1.8 (page 42). Each of the r
components of R̃(q) is a third-order multivariate polynomial function in the reduced coordinates
q, and can be expressed as

R̃(q) = UTR(Uq) = (2.26)

=
∑

i

P iqi +
∑
j≥i

Qijqiqj +
∑

k≥j≥i

Sijkqiqjqk, (2.27)

where P i, Qij, Sijk ∈ Rr are some constant vector coefficients. If the motion basis vectors
(columns of U ) have global support (i.e., are non-zero everywhere on the mesh), all polynomial
coefficients P i, Qij, Sijk are (in general) non-zero, i.e., polynomials are dense. All the models in
this thesis have this property (sparse bases would be a natural area of further exploration). Coef-
ficients P i, Qij, Sijk can be precomputed, for efficient runtime evaluation. This allows for a fast
runtime evaluation of reduced internal elastic forces and the reduced tangent stiffness matrix. We
can then simulate the system with a standard reduced implicit Newmark integrator, which results
in fast simulations of nonlinear dynamics. Simulation costs only depend on the dimensionality of
the shape vector space and are as such independent of geometric complexity.

In particular, the coefficients of cubic polynomials of Equation 2.26 can be precomputed as
follows. Let e be a mesh element and c one of its vertices. Let ui

a ∈ R3 denote the deformation
of vertex a under deformation mode i, for i = 1, . . . , r. Denote the contribution of element e to
the global reduced internal force polynomial coefficients by P i

e , Q
ij
e , S

ijk
e ∈ Rr These contribu-

tions can be obtained by inserting the formulas for StVK unreduced internal forces (Equation 2.5,
page 43) into Equation 2.23 (Einstein summation convention is used; summation is over all ver-
tices, pairs of vertices, or triples of vertices of e):

P i
e = UT

c

(
Aca

1 u
i
a + Aac

2 u
i
a +Bac

1 u
i
a

)
(2.28)

Qij
e = UT

c

(
(
1

2
Ccab

1 + Cabc
2 )(ui

a · u
j
b) + (ui

b ⊗ uj
a)(C

abc
1 + Ccab

2 + Cbac
2 )

)
(2.29)

Sijk
e = UT

c

(
(
1

2
Dabcd

1 +Dacbd
2 )(ui

a · u
j
b)u

k
d

)
. (2.30)

58



To obtain the global coefficients P i, Qij, Sijk, sum the contributions of all the elements:

P i =
∑

e over all
elements

P i
e , Qij =

∑
e over all
elements

Qij
e , Sijk =

∑
e over all
elements

Qijk
e . (2.31)

2.6.2 Reduced tangent stiffness matrix entries are quadratic polynomials
The reduced tangent stiffness matrix K̃(q) ∈ Rr,r is just the gradient of the internal force vector
R̃(q), and therefore, each component of K̃(q) is a multivariate quadratic polynomial in q. Specifi-
cally, column ` of K̃ equals

∂R̃(q)

∂q`
= P ` + (Q`i +Qi`)qi + (S`ij + Si`j + Sij`)qiqj. (2.32)

2.6.3 Precomputing polynomial coefficients
The coefficients of the cubic and quadratic polynomials from the previous subsections 2.6.1, 2.6.2
can be precomputed as follows. Note that there is one cubic polynomial per reduced force dimen-
sion (r cubic polynomials total), and one quadratic polynomial per entry of the reduced tangent
stiffness matrix (r(r + 1)/2 quadratic polynomials total due to symmetry of the stiffness matrix).
Precomputation proceeds by first computing all the coefficients of the reduced force polynomials.
This can be done in O(n · r4) time, as indicated by Equations 2.28, 2.29, 2.30, 2.31. It is possible
to compute the contributions of each element independently, which makes it possible to compute
the polynomial coefficients in parallel on several processors. We routinely used a cluster of 15
machines, for a 15x speedup of the polynomial coefficient precomputation. This was especially
useful with larger values of r, e.g., r ≥ 15. Once the reduced force coefficients have been precom-
puted, the coefficients of the reduced tangent stiffness matrix polynomials can be obtained easily
(Equation 2.32).

Model r num precomputation size of
elements time (single CPU) coefficients

spoon 12 2005 60 sec 98 Kb
bridge 15 5854 186 sec 223 Kb
tower 30 11304 79.2 min 3.0 Mb
heart 30 14444 97.4 min 3.0 Mb

Figure 2.8: Precomputing polynomial coefficients: Reported numbers are totals for both reduced
force and reduced stiffness matrix, and refer to single-processor computation.

2.6.4 Runtime polynomial evaluation
At runtime, we obtain the exact reduced internal forces by evaluating the precomputed internal
force cubic polynomials in the current reduced coordinates q. Likewise, we obtain the exact cur-

59



rent reduced tangent stiffness matrix by evaluating the precomputed tangent stiffness quadratic
polynomials in the current reduced coordinates q. Since the polynomials are of low degree, dense,
and involve many variables (=r), we found no gain in using schemes such as multivariate Horner’s
polynomial evaluation scheme. Instead, we evaluate the polynomials directly, by assembling qiqj ,
and summing the terms together. Even though polynomials involve all possible terms, evaluation
order does matter for speed (a speed gain of constant factor), as described next. During pre-process,
we organize all the precomputed coefficients of the quadratic terms of the reduced stiffness matrix
K̃(q) into a constant matrix S ∈ Rr(r+1)/2×r. Each row of this matrix corresponds to one entry
of K̃(q) : it contains all the quadratic coefficients of the entry. Note that we are exploiting the
symmetry of the reduced tangent stiffness matrix here: the number of rows of S is r(r + 1)/2
and not r2. Then, to evaluate the quadratic terms of K̃(q) at runtime, we first assemble qiqj for
all i ≤ j into a vector q, and multiply S by q. This dense matrix-vector multiplication can be
performed efficiently using Level-2 BLAS matrix multiplication routines. A similar scheme was
used to quickly evaluate the cubic terms of R̃(q).

The number of non-highest-order polynomial terms is smaller and their evaluation is faster.
We used lower-order schemes analogous to those from the previous paragraph to evaluate these
terms. Alternatively, all terms (both highest order and lower orders) could be evaluated in one
formula, by augmenting the reduced coordinates vector q to (q, 1) (homogenization). Evaluation
of each component of R̃(q) involves Θ(r3) operations, and evaluation of each component of the
reduced tangent stiffness matrix involves Θ(r2) operations, so both evaluations can be performed
in Θ(r4) time. Note that evaluation time is independent of the number of vertices and elements in
the model. When we discuss the implicit Newmark integrator in Section 2.9, we shall see that one
integration step takes Θ(r3) time (due to a linear system dense solve with a r × r matrix), so the
time to assemble R̃(q) and K̃(q) dominates the timestep, especially for larger values of r.

Model r evaluate [µs] solve linear integration N time for graphics frame rate
force stiffness matrix system [µs] total [µs] u = Uq [µs] standard impl. GPU-accelerated

spoon 12 8.2 9.5 12.5 30.2 25 565 275 Hz 470 Hz
bridge 15 22.0 25.0 18.4 65.4 10 14500 38 Hz 84 Hz
tower 30 550 770 75 1395 15 25500 17 Hz 40 Hz
heart 30 550 770 75 1395 15 6500 31 Hz 45 Hz

Figure 2.9: Runtime Computation Performance: Integration times refer to one integration step.
The number of integration steps per graphics frame is N. Timings for the heart and tower models
are almost identical due to equal r. Machine used: Intel Pentium 3.0 Ghz processor (manufactured
in 2004) with 2Gb RAM.

2.7 Damping
In this thesis, we use a local Rayleigh damping model of the form

D(u, u̇) =
(
αM + βK(u)

)
u̇. (2.33)

60



This damping model is controlled by two positive real-valued parameters, α and β,which, roughly,
have the effect of damping low and high time-frequency components of deformations, respectively.
This damping model is a generalization of the more familiar linear Rayleigh damping model, which
would be obtained if K(u) were replaced by K.

Strain-rate damping (see [DDCB01]) could be used instead of local Rayleigh damping. Such a
damping model allows damping material properties to vary arbitrarily across the model, irrespec-
tive of the elastic material properties or distribution of mass density. In contrast, the local Rayleigh
damping model depends on K and M, so damping cannot behave independently of the elastic
properties. Under the linear strain rate damping model, the damping second Piola-Kirchhoff stress
is a linear function of the strain rate (the time-derivative of the Green-Lagrange strain tensor):

SD = φ(trĖ)I3 + 2ψĖ, (2.34)

where quantities φ and ψ are (potentially spatially varying) strain-rate constants, analogous to λ
and µ. We derived the following formula for the damping force on a mesh vertex c, analogous to
Equation 2.5:

fc(u) = (A1
ca

+ A2
ac

+B1
ac
I)u̇a + (2.35)

(
1

2
C1

cab
+ C2

abc
)(u̇a · ub + ua · u̇b) + (ub ⊗ u̇a)(C1

abc
+ C2

cab
+ C2

bac
) + (2.36)

(
1

2
D1

abcd
+D2

acbd
)(u̇a · ub + ua · u̇b)ud, (2.37)

A1
ab

= φAab, A2
ab

= ψAab, B1
ab

= ψBab, C1
abc

= φCabc, (2.38)

C2
abc

= ψCabc, D1
abcd

= φDabcd, D2
abcd

= ψDabcd.

Here, quantities Aab, Bab, Cabc, Dabcd are identically the same as in Equations 2.8- 2.11 (page 43).
Reduced strain-rate damping forces are therefore polynomials in q and q̇. The polynomials are
linear in q̇, and the total degree of each polynomial (maximum sum of degrees of q and q̇) is
again three. The coefficients could be precomputed, again with O(r4) storage and evaluation time.
However, we found local Rayleigh damping model sufficient for our applications.

2.8 Low-dimensional basis selection
The problem addressed in this section is how to select the vector space of shapes that best captures
typical nonlinear deformations. But, what are typical nonlinear deformations? In the dimensional
model reduction solid mechanics approach of [KLM01] they approach the problem statistically:
typical nonlinear deformations are taken to be the statistical principal eigenvectors of some pre-
existing simulation data. In particular, they first apply some realistic (typically short-lasting) force

61



to some vertex or set of vertices, and perform (slow offline) unreduced simulation. Next, they pro-
cess the resulting unreduced deformations using Principal Component Analysis (PCA) to extract
a low-dimensional motion basis U, i.e., the “empirical eigenvectors.” This allows them to quickly
simulate new deformations, within the subspace spanned by U , under force loads similar to those
used to obtain U. Such resimulation with loads similar to some previously used loads is known as
re-analysis in the mechanics literature. Of course, the motion basis is only good for deformations
similar to the ones that that were used to generate the basis. One problem with this approach is that
for interactive applications, it is unclear what example motion would best describe the essential
deformation behavior of future uses. The approach is not automatic, since we cannot simply press
a button and build a general purpose model. In this thesis, we suggest two approaches for basis
selection: modal derivatives (which is automatic in the sense that it requires no selection of forces
and no pre-simulation), and an interactive sketching technique.

The sketching technique is similar to Krysl’s re-analysis, with the addition that we make the
force selection process more user-friendly by providing immediate deformation feedback from a
fast geometrically linear model. Modal derivatives have been demonstrated as a natural correction
to linear modal analysis vectors [IC85b]. We therefore construct a reduced motion basis from linear
modal analysis vectors and their derivatives (appropriately scaled and processed by PCA). Since
the linear modal analysis basis forms a natural basis for global small vibrations, the combined
linear modes and modal derivatives form a good basis for natural global large deformations.

In both cases, we suggest mass-scaled principal component analysis (mass-PCA) for dimen-
sionality reduction. PCA is not strictly necessary with the modal derivative basis, as the linear
modes and their derivatives could simply be concatenated together into a motion basis (followed
by mass-orthogonalization, for example using mass-Gramm-Schmidt). However, the total number
of derivatives grows quadratic in the number of linear modes, and as such a basis of linear modes
and all of their derivatives easily exceeds practical basis sizes. We exploit statistical redundancy
between the various modal derivatives and linear modes, by applying mass-PCA onto the set of the
first k linear modes and all of their k(k+1)/2 derivatives. For example, we would often reduce the
first 10 linear modes and their 55 derivatives to a motion basis of, say, 15 basis vectors. Both basis
generation techniques apply to general nonlinear materials and are not limited to linear materials.

2.8.1 Mass PCA

The goal of this chapter is to define a modification of PCA that fits naturally with our domain data,
namely deformations of volumetric meshes. It is possible to simply apply standard PCA, however,
for volumetric meshes with varying vertex densities, this will introduce bias into PCA: the defor-
mations in regions with high vertex density will have a higher “vote” in PCA than the deformations
in the rest of the mesh. Furthermore, the “proper” metric in the deformation space is not the stan-
dard Euclidean metric, but rather the mass-weighted metric; this is the metric that makes standard
linear modes orthogonal. Namely, these modes are the eigenvectors of the generalized eigenvalue
problemKψ = λMψ.As is well-known in algebra, eigenvectors of a standard eigenvalue problem
Ax = λx are orthogonal, whereas eigenvectors of a generalized eigenproblem Kψ = λMψ are

62



M -orthogonal (M is the mass matrix),i.e., the linear modes satisfy ψjTMψi = δij. In general, they
are not orthogonal: ψjTψi 6= δij.

Therefore, we need to modify PCA to operate with respect to the mass-weighted inner product,
as opposed to the standard Euclidean inner product. First, let us define a mass-based similarity
metric between two deformation vectors u and v. The standard Euclidean metric is ||u − v||2 =√

(u− v)T (u− v), which results in the standard PCA algorithm. Note that this metric essentially
originates from the standard Euclidean inner product (x, y) 7→ xTy. It is not difficult to show that

(x, y) 7→ yTMx (2.39)

defines a mathematically valid inner product on R3n. The resulting metric

||u− v||M :=
√

(u− v)TM(u− v) (2.40)

is called the mass-based metric. The mass-weighted metric will, loosely speaking, weight vertices
by the local amount of mass belonging to a vertex. It essentially measures “how much mass needed
to be moved” to go from deformation u to v. As mentioned previously, mass-based inner product
and metric are very natural in linear modal analysis, since they make the linear modal matrix
orthonormal:

U
(j)T
lin MU

(i)
lin = δij, (2.41)

i.e.,
UT

linMUlin = I3n. (2.42)

Given a set of deformations u(1), u(2), . . . , u(N), dimensionality r, and a mass matrixM, the goal of
mass-PCA is to find the r-dimensional hyperplane for which the sum of squared mass-projection
errors in the mass metric is minimized. Note that we assume here that the hyperplane passes
through the origin, since we want the zero deformation to be representable in the model. The
projection with respect to mass differs from the standard orthogonal projection in R3n: if matrix U
specifies some mass-orthonormal basis of some r-dimensional subspace of R3n, then the projection
of a vector x ∈ R3n onto the linear subspace spanned by U equals UUTMx. The total mass-
projection error is then

N∑
i=1

||u(i) − UUTMu(i)||2M .

The mass matrix of a deformable solid mechanics model is always symmetric and positive definite.
Using Cholesky decomposition M = LLT , it can be shown that substitution z(i) = LTu(i) trans-
lates the problem to a standard Euclidean PCA problem for the dataset Z = {z(i) | i = 1, . . . , N}.
Also, the resulting best Euclidean-orthonormal basis V for Z satisfies V = LTU, where U is the
optimal mass-scaled basis. To perform mass-scaled PCA, we explicitly form the z(i), and per-
form standard PCA on Z. Mass-orthonormal basis U is then obtained by solving linear systems
LTU = V. Note that for models of constant mass density mass-scaled PCA becomes volume-
scaled PCA. Overall, mass-PCA computation times were short for our simulations: on the order of

63



a few seconds for all of our models. As such, they do not represent a computational bottleneck of
our precomputation; modal derivative and reduced polynomial coefficient computation times were
significantly longer (on the order of two hours for models with say 20, 000 elements).

Cholesky decomposition of the mass matrix: Mass-PCA requires computing the Cholesky de-
composition of the mass matrix, which is typically a large sparse matrix. The most obvious ap-
proach to do this is to use the standard complete Cholesky decomposition of the mass matrix.
However, this can lead to fill-in of the Cholesky factor. The lower-diagonal Cholesky factor L will
have non-zero entries everywhere that M does, plus at a certain number of fill-in locations. This
number could potentially be large, potentially exceeding memory storage, or causing slow-downs
when the L factor is used in the mass-PCA algorithm. One solution is to lump the mass matrix into
a diagonal matrix, causing L to also be diagonal (often done in graphics). Another approach to
decomposing the mass matrix is to first appropriately permute the vertices of the model, and then
perform Cholesky decomposition on the permuted mass matrix. This approach avoids lumping and
is just as accurate as the non-permuted Cholesky decomposition. We note that such permutations
are standard, and have also been used to minimize memory requirements when timestepping the
equations of motion using direct solvers. Figure 2.10 gives comparison of fill-in in the Cholesky
factor of the non-lumped mass matrix for the bridge model (11,829 simulation vertices). Two
strategies are compared: no permutation of the non-lumped mass matrix and permuting vertices
using minimum degree ordering.

We also tried repeating the same experiment for larger models (Eiffel tower, heart, dragon),
but the unpermuted Cholesky decomposition ran out of memory (2 Gb). Using minimum degree
ordering, however, we were able to compute Cholesky factors for all these models. The num-
ber of non-zero entries in the mass matrix/Cholesky factor under minimum degree ordering was
0.031%/0.140%, 0.022%/0.147%, 0.011%/0.059%, for the Eiffel tower (20,713 vertices), heart
(28,041 vertices), and dragon model (53,449 vertices), respectively. Cholesky decomposition com-
putation times were less than 1 minute in Matlab in all the cases. Minimum degree ordering times
are fast (on the order of a few seconds). We also tried other permutation strategies, such as Re-
verse Cuthill-McKee [CM69, LS76], and a simple Column Count strategy (which sorts the rows
and columns according to the number on nonzero elements), and found minimum degree order-
ing to give the smallest Cholesky factors. For more information on minimum degree ordering,
see [GL89]. Another useful reference for the various permutation strategies is Matlab’s help on
sparse matrices.

2.8.2 Sketch-based basis generation
The idea here is to first construct an interactive geometrically linear model, such as a linear modal
analysis model, and then introduce a human user into the loop, effectively using the linear model
as a bootstrapping mechanism to obtain a basis of nonlinear deformations. The user first interacts
with a linear vibration model [Sha90, JP02]. We use a static model to avoid displaying the dynamic
deformation effects as those can sometimes provide more confusion than guidance to the user.

64



Figure 2.10: Mass matrix Cholesky decomposition (bridge model, 11,829 simulation vertices):
Top-left: non-zero entries in the original mass matrix M (mesh generated via squashing cubes);
Top-right: Cholesky factor of M ; Bottom-Left: Permuted mass matrix (minimum degree ordering
permutation); Bottom-Right: Cholesky factor of the permuted mass matrix.

Due to linearity, the model distorts badly for large deformations, but still provides a clue to the
deformation involved. The forces imposed by the user are recorded to disk. A subset of these forces
is automatically selected so that a certain separation distance is maintained among consecutive
forces. This can be done with a greedy approach that iteratively removes force samples which
are too close to other samples, with the removal prioritized based on local density of the samples

65



as defined under some radial kernel. The retained force samples are then sent as input to a full
unreduced offline static solver. For every imposed load f, the static solver computes the static rest
configuration u. Again, a subset of all deformations is automatically selected to maintain a certain
separation mass-distance. Mass-PCA is then applied on the resulting shapes to extract the basis
of motion U. When this basis is later used for an interactive nonlinear simulation, the model will
be able to simulate nonlinear deformations similar to those sketched. Additional sketches can be
used to refine the motion basis as desired. This approach can be seen as utilizing human intuitive
ability to identify the “important” deformations, which a computer algorithm would have a very
hard time identifying.

Figure 2.11: Basis from Sketch: Left: User interacts with a linear model. Resulting shape is
distorted. Center: Applied force is recorded and sent to an unreduced offline static solver to solve
for the corresponding nonlinear shape. Several such shapes are then processed by mass-PCA to
obtain a basis of motion. Right: If same force is re-applied during the reduced runtime simulation,
a shape which is visually almost indistinguishable from the center image emerges.

Model num selected num selected static
force loads deformations solve

spoon 353 45 45 min
bridge 326 142 2.4 hours

Figure 2.12: Precomputation Timings for the Basis from Sketch.

2.8.3 Basis from modal derivatives
Linear modal analysis [Sha90] provides a quality deformation basis for small deformations away
from the rest pose. Intuitively, modal basis vectors are orthogonal directions into which the model
can be pushed with the smallest possible increase in elastic strain energy. A generalization is
possible: for any deformation u0 ∈ R3n, tangent linear vibration modes give the best basis for

66



small deformations away from the deformation pose u0. The first k ≥ 1 tangent linear vibration
modes at u0 (denoted by Ψi(u0), i = 1, . . . , k) are the mass-normalized eigenvectors corresponding
to the k smallest eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λk of the symmetric generalized eigenproblem

(K(u0))x = λMx. (2.43)

Note that K(u0) and M are symmetric, M is always positive-definite and K(u0) is typically
positive-definite for u0 from some reasonably large neighborhood of the origin. Tangent linear
modes coincide with linear modal analysis modes at the origin (define Ψi := Ψi(0

3n)). Standard
linear modal analysis simulation uses linear modes with linear forces and suffers from very visi-
ble errors for large deformations. A small improvement can be achieved by using U = {Ψi | i =
1, . . . , k} as a deformation basis in a reduced subspace integrator (i.e. with nonlinear reduced
internal forces). In our experiments, we clearly detected a modest improvement over a linear
simulation with linear modes. However, the linear modes are not really a good basis for large de-
formations, and the simulation tends to “lock” already for relatively small deformations. Locking
(artificial stiffening) is discussed in Section 2.13.2.

In order to create a better basis, one can investigate how tangent linear vibration modes Ψi(u0)
change with u0. In [Nic76], they recompute the tangent linear vibration modes every certain num-
ber of timesteps along the solution path, which would result in periodically very slow frames if
used interactively. Instead, we evaluate the directional derivative of Ψi(u0), at the origin, for the
linear modal deformations of the form

u0(p) =
k∑

`=1

Ψ`p`, (2.44)

as shown in [IC85b]. We then use mass-PCA to generate the deformation basis U.Here, parameter
p = [p1 p2 . . .]T is the vector of modal participation factors. Linear modes Ψi(u0) can now be
seen as a function of p (since u0 is a function of p via Equation 2.44). The unnormalized modal
derivatives can be defined as

Φij =
∂

∂pj

(
Ψi

( k∑
`=1

Ψ`p`

))
|p=0k

. (2.45)

As in [IC85a], one can differentiate Equation 2.43 with respect to u0, to show that Φij are a solution
to the following equation:(

K − λiM
)
Φij =

(
MΨi(Ψi)T − I3n

)(
(H : Ψj)Ψi

)
. (2.46)

If the inertia terms are neglected, derivatives are symmetric (Φij = Φji), and can be precomputed
by solving the linear systems

KΦij = −(H : Ψj)Ψi, (2.47)

67



where
Hij` =

∂

∂u`

(
Kij(u)

)
|u=03n

, i, j, ` = 1, . . . , 3n (2.48)

denotes the Hessian stiffness tensor. This third-rank tensor is the derivative of the stiffness matrix
at the origin. It can be easily determined through analytical differentiation of formulas for the
unreduced tangent stiffness matrix. The contribution of element e to blocks corresponding to
vertices a, b, c of the full unreduced stiffness matrix and Hessian tensor at the origin, and the mass
matrix (ρ is mass density) are:

Mab
e =

(∫
e

ρφa · φbdV
)
I3 ∈ R3,3, Kab

e = Aab
1 +Bba

1 + Aba
2 ∈ R3,3, (2.49)

Habc
e = (Cabc

1 + Cbca
2 + Ccba

2 )⊗ I3 + I3 ⊗ (Ccba
1 + Cacb

2 + Cbca
2 ) +

+
∑3

i=1

(
ei ⊗ (Cbca

1 + Cabc
2 + Ccba

2 )⊗ ei

)
∈ R3,3,3.

(2.50)

The contraction H : a (for a vector a =
∑k

`=1 a
`e`) denotes the matrix where element (i, j) equals∑k

`=1Hij`a
`, for i, j = 1, . . . , 3n. The system given by Equation 2.47 is a large sparse linear sys-

tem of equations, with multiple right-hand sides to solve for. Therefore, we decompose K by the
incomplete Cholesky factorization and then use the incomplete factors L,LT as a preconditioner
to solve the linear systems of Equation 2.47. As expected, preconditioning resulted in dramatic re-
ductions in computation time; for example, the computation time of the heart model’s derivatives
was reduced from ten hours to twenty-five minutes. Normalized modal derivatives Φ

ij
are then

obtained easily by mass-normalizing Φij.
Intuitively, adding modal derivatives to the linear basis can be seen as adding quadratic terms

to extend the linear modal analysis linear vector space into a k−dimensional paraboloid:

u(p) =
k∑

i=1

Ψipi +
1

2

k∑
i=1

k∑
j=1

Φijpipj +O(p3). (2.51)

We will derive (and discuss) this relationship more in Section 2.8.4. Equation 2.51 suggests that the
linear space spanned by all vectors Ψi and Φij is a natural candidate for a motion subspace. It could
be processed with mass-Gramm-Schmidt to obtain a mass-orthonormal basis [IC85b]. However,
its dimension k + k(k + 1)/2 quickly becomes prohibitive. Instead, we scale the derivatives
according to the eigenvalues of the corresponding linear modes, i.e., we obtain the low-dimensional
deformation basis by applying mass-PCA on{λ1

λj

Ψj | j = 1, . . . , k
}
∪

{ λ2
1

λiλj

Φ
ij | i ≤ j; i, j = 1, . . . , k

}
. (2.52)

Scaling is necessary to put greater weight on dominant low-frequency modes and their derivatives,
which could otherwise be masked by high-frequency modes and derivatives. Note that if mass-
PCA was applied to linear modes only under this scaling, it would re-create the linear modal

68



Figure 2.13: Dominant linear modes and modal derivatives: We exploit the statistical redun-
dancy of these modes using mass-PCA of suitably scaled modes. All vectors are shown mass-
normalized.

vectors with correct eigenvalues. The assignment of analogous weights to derivatives seems a
natural generalization of the scaling. Note that K is a sparse symmetric matrix, and that different
modal derivatives can be computed in parallel.

69



Figure 2.14: Extreme shapes captured by modal derivatives: Although modal derivative are
computed about the rest pose, their deformation subspace contains sufficient nonlinear content to
describe large deformations. Left: Spoon (k = 6, r = 15) is constrained at far end. Right: Beam
(r = 5, twist angle=270◦) is simulated in a subspace spanned by “twist” linear modes and their
derivatives Ψ4,Ψ9,Φ44,Φ49,Φ99.

2.8.4 Alternative view on modal derivatives

Modal derivatives present one of the key concepts in this thesis. In this section, we give our
alternative explanation of modal derivatives, different from the one in [IC85b]. This material
is mathematically equivalent to material presented in Section 2.8.3. We provide this alternative
interpretation to give more intuition about the derivatives.

Consider a deformable object which is sufficiently constrained so that it does not possess rigid
degrees of freedom. For a static load f, the system will deform statically into deformation u,
where u satisfies the unreduced static equation R(u) = f (compare to Equation 2.4 on page 41).
Because the gradient of R with respect to u, evaluated at the origin u = 0 (the stiffness matrix)
is nonsingular, it follows from the implicit function theorem that the function R has an inverse
in some sufficiently small neighborhood of the origin. That is, there exists a neighborhood O
around the origin in the force space, such that for any force load f ∈ O, there exists a unique
deformation u such that R(u) = f. Consider what happens if we statically load the system into
the direction of linear modes. In particular, suppose we apply a static force load MUlinΛp, where

Model k Compute Build right-hand Solve
linear modes sides of Eq. 2.47 Eq. 2.47

spoon 6 24 sec 6.5 sec 33 sec
tower 20 65 sec 226 sec 26 min
heart 20 111 sec 291 sec 28 min

Figure 2.15: Computation of Modal Derivatives: All performance data is given for a single 3.0
Ghz Pentium workstation with 2Gb of memory (manufactured in 2004). Mass-normalization and
mass-PCA times were only a few seconds.

70



M is the mass matrix, Ulin = [Ψ1, . . . ,Ψk] is the matrix of mass-orthonormal linear modes, Λ is
the diagonal matrix diag(λ1, . . . , λk), and p ∈ Rk is some parameter that controls the strength of
each mode in the load. In other words, these are the force loads which, for small deformations,
produce deformations within the space spanned by the linear modes. Every value of p (from some
sufficiently small neighborhood around the origin in Rk) gives a loadMUlinΛp ∈ O, and therefore,
there exists a unique deformation u = u(p), such that

R(u(p)) = MUlinΛp. (2.53)

Therefore, u is a well-defined function of p in some sufficiently small neighborhood of the origin.
It is also C∞ differentiable since R = R(u) is C∞ differentiable; therefore there exists a Taylor
series expansion for u in terms of p. Can we compute (low-order) terms of this expansion? By
differentiating Equation 2.53 with respect to p, one obtains

∂R

∂u

∂u

∂p
= MUlinΛ, (2.54)

which is valid for all p in the small neighborhood of the origin of Rk. In particular, for p = 0k,
we get K ∂u

∂p
= MUlinΛ which is the expected linear modal response, ∂u

∂p
= Ulin. To compute the

second order derivatives of u, we differentiate Equation 2.54 one order further by p, which, when
we set p = 0k, gives us

K
∂2u

∂pi∂pj

= −(H : Ψj)Ψi. (2.55)

Here, H is the Hessian tensor from Equation 2.48. By comparing Equations 2.47 and 2.55, it fol-
lows that ∂2u

∂pi∂pj
= Φij, i.e., the second derivatives of u = u(p) are precisely the modal derivatives.

The second-order Taylor series expansion is therefore

u(p) =
k∑

i=1

Ψipi +
1

2

k∑
i=1

k∑
j=1

Φijpipj +O(p3). (2.56)

The modal derivatives therefore span the natural second-order system response, for (large) defor-
mations around the origin.

2.8.5 Modal derivatives generalization to second-order ODEs
The idea from the previous section is not limited just to ODEs originating from structural mechan-
ics. It can be applied to general second-order systems on n ODEs of the form

Aẍ+Bẋ+ C(x) = f(t), (2.57)

where C = C(x) is a nonlinear function of x ∈ Rn, A and B are some n × n matrices, and
f(t) ∈ Rn is some time-dependent load. We assume A and

K =
∂C

∂x |x=0
(2.58)

71



to be symmetric positive-definite. One can define the linear modes just like in structural dynamics,
by solving the generalized eigenvalue problem

Kψ = λAψ. (2.59)

Note that this modal computation ignores the damping matrix B, which is a commonly used
approximation [JP02, HSO03]; for greater accuracy, we could limit Equation 2.57 to B = 0.
Next, one can define and compute the modal derivatives just like in the case of structural dynam-
ics (Equations 2.47 and 2.48), using the Hessian (second derivative) of C. The interpretation of
modal derivatives from Section 2.8.4 is still valid even in this generalized case. The linear modes
and derivatives form a natural solution basis for the system of ODEs, since they give the natu-
ral second-order response to the system, under the natural (low-frequency) loadings of the system.
This procedure can be seen as a priori model reduction for the system of ODEs from Equation 2.57,
and is most suitable for ODEs where the solution exhibits oscillatory behavior around some rest
configuration.

2.8.6 Comparison: modal derivatives vs sketch basis
The two bases essentially aim at different goals: modal derivatives try to correct the artifacts
of linear modal analysis to produce a quality basis for global large deformations (without any
presimulation data; a priori model reduction), whereas the sketch basis extracts a low-dimensional
basis from given deformation data (a posteriori model reduction), so that similar deformations can
be simulated in the future.

In practice, the modal derivative basis significantly extends the range of deformations that
can be simulated as compared to the linear modal analysis basis, enabling simulations of much
larger deformations. At the limit of this range, the deformations typically “lock”: even if an even
greater force is applied, the deformations do not change much. If the force load is removed, the
model returns to the rest shape. For the cantilever beam model, for example, modal derivatives
permit the beam to bend 90 degrees sideways, or twist up to about 270 degrees around its longi-
tudinal axis. In the case of the bridge model, we found that the modal derivative basis “locks”
when one of the masts is bent sideways to an angle of about 30 degrees from its original vertical
location. The reason why the derivative basis eventually stops being a good basis under suffi-
ciently large deformations is that the derivatives are a quantity computed around the origin (the
zero deformation u = 03n): their computation involves the stiffness matrix at the origin and the
gradient of the stiffness matrix at the origin. As such, the derivatives “do not know” how R(u)
and K(u) behave under large deformations, except from what they can deduce from the knowl-
edge of R(03n), K(03n), (dK/du)(03n). Of course, given some large deformation u, one could
compute the linear modes and derivatives at u, and combine this basis with the basis at the origin.
This could be done for a set of (appropriately chosen) samples u(1), u(2), . . . , u(N), but we did not
pursue this extension in this thesis, mainly since it is not obvious how to automatically select the
samples and due to additional coding complexity. One possibility is that the samples could be
specified (sketched) by the artist, by using a large deformation modal derivative basis (computed

72



at the origin, just as in Section 2.8.3) as a boot-strapping mechanism. Another possibility for basis
extension would be to use a third-order model in Equation 2.56, leading to O(k3) modal Hessians.
In addition to K(03n) and (dK/du)(03n), their computation would also involve (d2K/du2)(03n).
However, note that if these bases are to be used for interactive simulation, the basis size must be
kept moderate (up to about r = 40 on our hardware), because the evaluation of reduced internal
forces becomes progressively expensive with larger basis sizes.

In this thesis we used a sketching basis when we wanted to go beyond the range of deformations
supported by the modal derivatives at the origin. For example, a sketched bridge basis specialized
to mast deflection was able to bend the mast to an extreme deformation of 90 degrees, making the
top of the mast touch the ground. This example demonstrates than the sketch basis can sometimes
achieve effects not captured by the modal derivative basis, provided that the user appropriately
guides the force load selection to include the desired deformations into the basis.

The two bases in practice often overlap to some extent. For example, if the data presented to
the sketch was generated under force loads similar to those causing linear mode excitation, then
the sketch method will give a subspace similar to the derivative basis. Furthermore, such linear
mode excitations tend to occur naturally, even if the user, say, just pulls on one vertex. The low-
dimensional linear modes will get excited, together with some high-frequency deformations in the
region of the application of the force. Such behavior is not surprising since the linear modes are
the natural modes of the structure.

2.8.7 Basis for unconstrained models
Section 2.8.3 demonstrated how to determine modal derivatives for anchored meshes. However,
models with no constrained vertices (unconstrained models) are very useful in computer graphics;
many such objects can be, for example, combined into a flexible multibody dynamics simula-
tion [Sha05] (see Figure 2.16). Models without constrained vertices require special care as the first
six eigenvalues λ1, . . . , λ6 are zero with the eigenvectors spanning the space of translations and in-
finitesimal rotations. Nevertheless, derivatives are still defined via Equation 2.45. To form a motion
basis, we combine linear modes Ψi, i ≥ 7 with derivatives Φ

ij
, i, j ≥ 7 (appropriately scaled, fol-

lowed by mass-PCA). Rigid body motion can then be coupled with deformations [TW88, Sha05].
Note that this procedure does not guarantee deformations caused by inertia forces to be included in
the motion basis (such deformations could be added explicitly; also, the first few non-rigid linear
modes are sometimes similar to inertia-induced deformation shapes).

To compute the derivatives, first note that the approach from Equation 2.47 (page 67) is not
directly applicable: stiffness matrix K is now singular (nullspace dimension is six), and there is
no guarantee that Equation 2.47 has a solution. One approach to determine Φij, i, j ≥ 7 is to use
the derivative formulation of Equation 2.46, that is, the formulation where the mass terms were not
neglected: (

K − λiM
)
Φij =

(
MΨi(Ψi)T − I3n

)(
(H : Ψj)Ψi

)
. (2.60)

Note that this causes modal derivatives to no longer be symmetric: Φij 6= Φji. The matrixK−λiM

73



is singular (its nullspace consists of multiples of Ψi), but the equation still has a solution (it was
obtained by taking gradients of K(p)Ψi(p) = λi(p)MΨi(p) with respect to p, so by construction
there always is a solution). To find a solution, one can solve the regularized version of the system,
obtained by replacingK−λiM withK := K−λiM+Ψi(Ψi)T .Note thatK−λiM is symmetric,
and hence

im
(
K − λiM

)
=

(
ker(K − λiM)

)⊥
=

(
Lin({Ψi})

)⊥
, (2.61)

where im( ) and ker( ) denote the range and nullspace of a matrix, respectively. Then, if x =
y + αΨi solves Kx = b (assuming b ∈ im(K − λiM), yT Ψi = 0, and α ∈ R), it follows that
α = 0 and (K − λiM)x = b.

Any multiple of Ψi can be added to any solution of Equation 2.46. A particular solution Φij can
be chosen by imposing (Ψi)TMΦij = 0, i.e., the derivative is made mass-orthogonal to its linear
mode. The matrixK is not sparse and will often have negative eigenvalues 1. However, the “black-
box” multiplication x 7→ Kx can be performed efficiently (by computingKx−λiMx+Ψi(Ψ

T
i x)),

and used in a fast sparse symmetric (since K
T

= K) solver, such as MINRES.

2.9 The implicit Newmark (subspace) integrator
To timestep the simulation at runtime, we numerically integrate the system from Equation 2.21,
which is a nonlinear system of r coupled second-order differential equations. Nonlinearity occurs
due to the forcing and damping terms. We use the implicit Newmark integrator (see [KLM01,
Wri02]), which is popular in structural dynamics. It is second-order accurate in terms of local
error: so if the timestep is h, the error of a single step is on the order of O(h2).

One implicit Newmark timestep essentially consists of solving the current dynamic equilibrium
equations of motion, so that the sum of mass inertia forces, damping forces, and internal forces
balance the currently applied external forces. This equilibrium is found by solving a nonlinear
r-dimensional equation of the form F (q + ∆q) = 0r, where q are the reduced coordinates before
the timestep, and ∆q is the change in reduced coordinates during this timestep (the unknown).
The nonlinear r−dim vector function F changes from timestep to timestep. The equation F (q +
∆q) = 0r is solved by performing a series of Newton-Raphson iterations [Wri02], constructing
consecutive approximations q + (∆q)(1), q + (∆q)(2), . . . , analogous to a Newton solver to solve
a 1D nonlinear equation. Each of these iterations requires constructing a certain system matrix A
of a dense r × r linear system, constructing a certain r-dim dimensional right-hand side vector b,
and then solving Ax = b. Both A and b of course change from iteration to iteration. The solution
approximation is then updated as (∆q)(j+1) = (∆q)(j) + x. The linear system to be solved is
a dense r × r symmetric linear system, and we solve it using a direct symmetric matrix solver.
Note that iterative solvers are not as attractive in our case due to relatively small r and dense

1 There is no simple formula for its eigenvalues; however, the spectrum of the generalized eigenvalue problem
Kx = λMx equals the spectrum of Kx = λMx, shifted by −λi, and with the resulting zero eigenvalue changed to
1.

74



Figure 2.16: Multibody dynamics simulation with large deformations: In this simulation, we
dropped 512 flexible baskets to the ground. The baskets started from zero velocity, horizontally
separated (but in close proximity) at a certain height. Collision detection was performed using
a BD-Tree [JP04]. Penalty forces were applied between leaf spheres to resolve contact. Motion
basis (r = 40) used linear modes Ψ7, . . .Ψ26 and their derivatives. The rigid body motion was not
coupled with deformations, although this would not be a difficult extension [Sha05]. It took 1.2
sec total to perform the 512 implicit Newmark steps to advance the reduced deformations to the
next graphical frame.

matrices. Constructing A and b requires evaluating the reduced tangent stiffness matrix K̃ and
reduced internal forces R̃ in configuration q + (∆q)(j). The implicit Newmark integrator is given
as follows.

Algorithm One step of implicit Newmark subspace integration
Input: values of q, q̇, q̈ at timestep i, reduced external force f̃i+1 at timestep i+ 1; max number of

Newton-Raphson iterations per step jmax (semi-implicit solver: jmax = 1); tolerance TOL to
avoid unnecessary Newton-Raphson steps; timestep size ∆t.

Output: values of q, q̇, q̈ at timestep i+ 1
1. qi+1 ← qi;
2. for j = 1 to jmax // perform a Newton-Raphson iteration:

75



3. Evaluate reduced internal forces R̃(qi+1);
4. Evaluate reduced stiffness matrix K̃(qi+1);
5. Form the local damping matrix
6. C̃ = αM̃ + βK̃(qi+1); // in our work M̃ = Ir
7. Form the system matrix A = α1M̃ + α4C̃ + K̃(qi+1);
8. residual← M̃(α1(qi+1 − qi)− α2q̇i − α3q̈i)+
9. +C̃(α4(qi+1 − qi) + α5q̇i + α6q̈i) + R̃(qi+1)− f̃i+1;
10. if (||residual||2 < TOL)
11. break out of for loop;
12. Solve the r × r dense symmetric linear system:
13. A

(
∆qi+1

)
= −residual

14. qi+1 ← qi+1 + ∆qi+1;
15. q̇i+1 ← α4(qi+1 − qi) + α5q̇i + α6q̈i ; // update velocities
16. q̈i+1 ← α1(qi+1 − qi)− α2q̇i − α3q̈i ; // update accelerations
17. Return qi+1, q̇i+1, q̈i+1;

Integrator uses parameters 0 ≤ β̃ ≤ 0.5, 0 ≤ γ̃ ≤ 1, and constants

α1 =
1

β̃(∆t)2
, α2 =

1
β̃∆t

, α3 =
1− 2β̃

2β̃
, α4 =

γ̃

β̃∆t
, α5 = 1− γ̃

β̃
, α6 =

(
1− γ̃

2β̃

)
∆t.

We chose β̃ = 0.25, γ̃ = 0.5, which is a common setting for many applications. Explicit cen-
tral differences integration is defined by β̃ = 0, γ̃ = 0.5. Constants α, β are Rayleigh damping
constants. Parameter β (stiffness-proportional damping) improves the stability of the stimulation
as it has the effect of damping high frequencies of motion, which are often just numerical noise.
Parameter α (mass-proportional damping) controls the “under-water” damping effect. In some
cases we set α to zero, as stiffness-proportional damping is sufficient.

We note that for a general nonlinear material, R̃(q) is a complicated function. For a general
(i.e., nonlinear) isotropic hyperelastic material, it is a large sum of rational functions involving
logarithmic terms. In general, it has several poles, and does not possess an immediate compact
and simple analytical expression. Hence, direct evaluation of such functions is non-trivial. One
could proceed by evaluating full unreduced forces R(Uq) ∈ R3n and forming its explicit projec-
tion R̃(q) = UTR(Uq) (and similarly for the reduced tangent stiffness matrix), however such an
approach is currently not real-time for large models.

As common in computer graphics, we found it sufficient to perform a single Newton-Raphson
iteration per timestep (jmax = 1). This is a speed-accuracy tradeoff, and if necessary, multiple
Newton-Raphson iterations can be performed per timestep. If the timestep is set too large, a single
Newton-Raphson iteration will not be sufficient to maintain a convergent solution, and can lead to
the solution “blowing up”. Also note that even if an arbitrary number (that is, as many as necessary
to reach convergence) of Newton-Raphson iterations is performed per timestep, convergence is not
guaranteed: large timesteps or drastic changes in external forces can cause the iteration to start too
far away from the solution, and then the iteration procedure will not converge. This is similar to

76



how a 1D Newton solve is not guaranteed to always find a root of a non-convex 1D function. In
practice, however, we were always able to pick timestep values that were stable and were at the
same time large enough to reach real-time performance.

2.9.1 Why not explicit subspace integration?

When developing this research, we first tried using the central differences integrator, which is an
explicit integrator from the Newmark family, commonly used in explicit finite element commercial
codes such as Abaqus Explicit. Explicit integration has the convenient advantage that it is no longer
necessary to solve any dense r × r linear systems per timestep. Only the reduced internal forces
are necessary to progress the solution to the next timestep. The reduced tangential stiffness matrix
is no longer required for the integrator; it is, however, still required for the tangential Rayleigh
damping. Unfortunately, the explicit simulations turned out to be extremely unstable with the
typical timesteps in our simulations, and it wasn’t until we switched to the implicit Newmark
integrator that we were able to produce useful results. In this section, we will explain why this was
the case.

First, note that linear modal analysis essentially band-limits the solution to low frequencies.
High-frequency content is removed from the solution, and as such, it is readily possible to timestep
linear modal analysis simulations with an explicit integrator. This property, however, does not carry
over to our nonlinear reduced simulations in a large-deformation motion basis. The reason for this
is the presence of high frequency components in reduced simulations (see Table 2.1). Namely, if
one deflects an object into its first linear mode, its modal derivative will enter the solution via non-
linear coupling of the basis vectors. This derivative is some very stiff shape, and as such its natural
oscillation frequency is very high. Therefore, if the system were simulated in a basis consisting of
the linear mode and its derivative, the resulting system will have a very high frequency for small
oscillations around the origin. The situation is similar if a basis consists of several linear modes
and their derivatives, or even if the motion basis is obtained from a sketch (see reduced spectra
in Table 2.1). If an explicit integrator is used, the timestep must be sufficiently small to resolve
the period of the highest frequency present in the system, which typically forces the timestep to
be very small. In contrast, if an implicit solver is used, then the oscillations corresponding to fre-
quencies higher than the Nyquist frequency of the timestep will be numerically damped. The stiff
high-frequency shapes will appear in the solution (counteracting the artifacts of linear modes), but
their own inherent oscillatory dynamics will be suppressed.

If explicit integration is to be used nonetheless, how to pick a timestep that will be stable? Sta-
bility for small deformations can be determined by solving the dense r× r generalized eigenvalue
problem M̃x = λK̃(0r)x (typically, M̃ is identity in our simulations due to mass-normalization
of modes, giving a standard eigenvalue problem). The square root of the largest eigenvalue of this
system is the largest natural frequency (in radians/sec) of the reduced system (call it ω.) If the
explicit timestep is chosen to be less than 2π/ω (Courant-Friedrichs-Lewy (CFL) condition), the
simulation will be stable in the vicinity of the rest pose. Stability of the nonlinear system at the
origin of course does not guarantee global stability. As the simulation moves toward large defor-

77



Eiffel tower Heart
Spectrum case min max min max
linear spectrum (k = 20), in Hz 1.0 15.5 1.0 5.6
spectrum of the reduced system (k = 20, r = 30), in Hz 1.0 517.0 1.0 70.8
spectrum of the unreduced system, in Hz 1.0 11811 1.0 21986

Table 2.1: Reduced systems have high frequency spectra: Linear spectrum row gives the range
of the first 20 natural linear modal frequencies of the structure. For both the Eiffel tower and
the heart model, the Young’s modulus was chosen such that the lowest frequency is 1 Hz, so that
frequencies are in an interesting range for computer graphics; but the same properties carry over
to stiffer structures with higher frequency ranges. The reduced spectrum row gives the range of
the frequencies of the linearized reduced system, i.e., the range of

√
λ/(2π), where λ traverses

the eigenvalues of the reduced tangent stiffness matrix K̃ at the origin. The reduced system was
obtained by augmenting the first k = 20 linear modes with their derivatives, and mass-PCAing this
assembly of vectors to a r = 30 dimensional basis. For comparison, we also give the spectrum of
the unreduced FEM model (last row).

mations, the spectrum of K̃(q) changes. Typically, the structure becomes stiffer and the maximum
eigenvalue typically increases; therefore, smaller explicit timesteps will be required.

Because stability is very important for interactive applications, and because local Rayleigh
damping model requires the assembly of the reduced tangent stiffness matrix anyway, we use the
implicit integrator in all of our simulations. The simulations are stable and fast. With bigger
values of r (e.g., r ≥ 15), the majority of the simulation time is spent evaluating the reduced
internal forces and the reduced tangential stiffness matrix, both an O(r4) operation, in contrast to
the O(r3) dense system solve. For this reason, avoiding a system solve via an explicit method does
not accelerate the simulation significantly. Also, performing many very small explicit timesteps is
impractical, due to the O(r4) reduce force evaluation cost for each timestep.

2.9.2 Numerical damping

Unfortunately, the process of removing the unwanted frequencies (i.e., frequencies larger than
what the timestep can represent) is not perfect with the implicit integrator. Inevitably, the process
“spills over” to the frequency range which we do want to preserve in the simulation, resulting in a
(visible) loss of energy in the system called numerical damping. Essentially, numerical damping
is a form of error in the solution to the system of ODEs, and occurs even if Rayleigh damping is
turned off. The true analytical solution to the reduced system of ODEs (without Rayleigh damping)
exhibits no energy loss. The problem of numerical damping is well known [HW04b] and intrinsic
to implicit integration. It is not specific to reduced models; for example, similar issues occur with
implicit cloth solvers [BW98].

So what can be done to prevent numerical damping? First, the issue applies mostly to systems
which are meant to be underdamped or not damped at all. In many engineering applications,

78



numerical damping is tolerated, since real structures always exhibit some amount of damping. If
undamped systems are to be simulated, the solution is to make the timestep smaller. In this way,
the reduced system of ODEs is solved more accurately, resulting in less numerical damping.

2.9.3 Choice of timestep for implicit Newmark

The quality of the chosen timestep is not an absolute quantity on the time scale. It depends on
the ratio of the timestep to the periods of the fundamental frequencies of the system. Namely, the
natural frequency spectrum of every FEM deformable object can be scaled by a constant simply by
scaling the internal forces by an appropriate constant. In our simulations, if the Young’s modulus
is uniformly scaled by a constant γ > 0, all internal forces get multiplied by γ, and as a result,
all natural frequencies are scaled by

√
γ. Effectively, this means that time is rescaled by 1/

√
γ. It

can be shown mathematically that if one introduces a substitution τ = (1/
√
γ)t into the equations

of motion, one obtains an ODE that is the equations of motion in τ for a deformable object that
differs from the original one only by a linear scaling of Young’s modulus, Rayleigh damping
parameters, and mass density. A Newmark discretization with a timestep ∆t for the original system
is equivalent to a timestep ∆τ = (1/

√
γ)∆t for the new system. Note that the ratio of timestep

versus the natural frequencies of the system is preserved.

Therefore, the accuracy of the integrator depends on the number of timesteps relative to the
natural frequency spectrum of the system, such as, for example, the ratio of the timestep to the the
lowest natural (linear) period of oscillation. The larger the number of these timesteps, the more
accurate the solution to the reduced ODE. If the number of timesteps per period of a natural system
frequency is too small, excessive numerical damping results: the frequency in question is damped
quickly and is lost from the solution. Consequently, smaller timesteps are necessary to accurately
simulate stiff structures with high natural frequencies .

For interactive simulation, the simulation time is often synchronized with the real time, such
that if 1 second of real simulation time elapses, the numerical integrator will have progressed the
solution forward by 1 second of simulation time. If a graphic frame rate of 30 Hz is maintained,
at least 30 timesteps will be performed per second. In our experiments, this sufficiently avoided
numerical damping for frequencies in the 1 Hz range (up to a few Hz). Performing more timesteps
per second is of course beneficial to higher frequencies. For example, in our haptic simulation we
perform 1000 timesteps per second, which adequately resolved frequencies up to several tens of
periods per second, such as 10-30 Hz. Note that these are frequencies that are already very difficult
to see visually, both due to the imperfections of the human visual system and due to a limited
graphics update rate. For example, 30 Hz is the highest frequency that is not visually aliased on a
60 Hz graphical display.

79



2.10 External forces

The external forces in our simulation originate either from a user pulling interactively on a certain
vertex (or a set of vertices) with a mouse, or from collision detection and contact force computa-
tions described in the second part of the thesis. The external forces can be conceptually organized
into a 3n-dimensional vector f, similar to the deformation vector u. The external forces are pro-
jected into the basis U by equation f̃ = UTf. The user interaction vector f is typically sparse,
so this basis projection will typically be a sparse matrix-vector multiplication. Even if it were a
dense multiplication, the execution time would be O(nr), on par with the O(nr) time necessary to
evaluate u=Uq to display the object on the screen.

2.11 Runtime modification of material parameters

Our method allows for runtime modification of mesh material parameters. Exact polynomials for
the new values of material parameters can be generated interactively, since Lamé coefficients λ, µ
and mass density appear linearly in the formulas for internal forces and the mass matrix. The mesh
needs to be divided into separate groups, with constant material parameters over each group. Two
polynomials are precomputed for each group, one collecting only the λ-terms (and setting λ=1),
and one involving only the µ-terms (and setting µ=1). To edit parameters, polynomials for each
group are weighted by current group values of λ, µ, and all the group polynomials are summed
together to produce the exact global polynomials. Changing mass density for different parts of
the mesh can be done in a similar fashion. Also, the scheme could be extended to support a fixed
material parameter distribution λ = λ(X), ν = ν(X) over each group (as opposed to constant).
Distributions can then be easily scaled to αλ(X), βν(X) by modifying per-group scaling constants
α and β. Note that the precomputed basis will become less optimal if material parameters deviate
too far from those used for precomputation. It can however be shown that the modal derivative
basis is invariant under uniform global scaling of Young’s modulus and/or mass density. Also,
it is possible to omit any subset of basis vectors from the basis before each individual runtime
invocation: the terms corresponding to omitted dimensions simply need to be dropped from the
polynomials. In particular, any first r′ ≤ r basis vectors can be used for a particular runtime
invocation.

2.12 Graphical rendering

Although reduced dynamics can be integrated entirely in the subspace, we must reconstruct the
full 3n-dimensional displacement vector u before each rendering step (say at 30 Hz or 60 Hz), by
performing matrix-vector multiply u=Uq. This multiplication can be easily performed on CPU.
We have also implemented it in graphics hardware, which leaves more room on CPU for other
computations (such as Newmark integration). One additional benefit of the GPU simulation is that

80



the model geometry is now effectively static and can be efficiently cached in a display list, which
avoids bus-bandwidth bottlenecks of rendering dynamic deformable geometry.

2.12.1 Computing u=Uq on the GPU

Our GPU u = Uq computation is an example of a GP-GPU (General Purpose GPU) simulation. It
uses pixel buffers (usually referred to as “pbuffers”), render-to-texture, and vertex texture fetch ca-
pabilities of modern graphics cards to perform the computation. Previously, GPU implementations
were already demonstrated in [JP02], but were performed by passing vertex modal displacements
as vertex parameters to the vertex shader, which then assembled the vertex deformation. Since the
number of vertex parameters is limited on modern GPUs, this in practice previously limited r to
about 16, at least with the current generation of graphics cards. In our new approach, there are no
explicit limitations on r; the only limitation is the size of texture memory which needs to store the
basis matrix U.

Pbuffer is essentially a non-visible rendering buffer which resides in non-visible framebuffer
memory. It can be used, for example, for off-screen OpenGL rendering, such as to render a large
poster at a resolution higher than what supported by the monitor. Render to texture refers to
rendering the scene into a texture, as opposed to into the visible part of the framebuffer. This
texture can then be used in the next rendering passes/frames just like any other texture. Modern
GPU cards support render to texture by rendering the scene into an appropriate pbuffer. Vertex
texture fetch refers to fetching vertex-specific information from the GPU in the vertex shader, as
opposed to the fragment shader. Traditionally, GPU texture memory access was only possible in
fragment shaders; vertex texture fetches have been available (on Nvidia graphics cards) since 2005.
Similar capabilities also exist on ATI’s hardware; we used Nvidia’s graphics cards in our work.

Our rendering algorithm works as follows. Matrix U is stored in texture memory. We found
16-bit floating point format to be sufficient. In pass 1, the vertex shader does nothing, while
a fragment shader multiplies u = Uq and renders the resulting deformation vector u to texture.
Pass 1 is invoked by rendering a full-screen quad. Each pixel corresponds to one vertex of the
model: the fragment shader fetches the corresponding 3× r subblock of U from texture memory,
and then uses q (stored in a global parameter array) to compute the deformation of the vertex.
The computed 3D deformation is the computed pixel’s “color”; normally this color gets stored
into the visible part of the framebuffer; but it in this case, the render target has been changed
to a pbuffer texture, so effectively the “color” gets stored into a texture. Pass 2 is similar to a
standard rendering pass, except each vertex’s position is deformed in the vertex shader (in addition
to projection/modelview matrix transformations), by fetching the vertex deformation from texture
memory, and displacing the position of the vertex accordingly. This procedure is similar to how
displacement maps could be applied (in general, not in our thesis) with vertex texture fetches in
the vertex stage of the pipeline. A standard rendering pipeline follows: the vertex is lit, following
by a potential application of a standard texture map in another fragment shader in pass 2.

With the most recent GPU cards that support framebuffer objects, the pbuffer and render-to-
texture extensions are no longer necessary, as framebuffer objects can perform the same render-

81



to-texture functionality faster and with a cleaner user interface. However, this solution is not
portable to graphics cards that predate (approximately) mid-2006. We note that another approach
for accelerating the reconstruction of u would be to compress the basis shape vectors (columns of
U ), similarly to how Green’s functions were compressed in [JP03].

Dynamic normals on the GPU

One issue with the GPU approach as presented this far is that the vertex normals are not updated
with the deformation, which leads, for example, to incorrect (static) specular highlights when
the object is deforming. Normals can be updated in graphics hardware, in a manner similar to
deforming vertex positions. This is performed by pushing the original normals forward by the
current local deformation gradient. Such a normal correction amounts to multiplying a certain
vertex-dependent constant 3×r matrix with q, followed by a normalization of the corrected normal.
These matrices can be assembled into a constant matrix UN , which is stored in texture memory
just like U. This same normal correction approach is also used to provide dynamic contact normals
in our contact computation algorithm (second part of thesis). We discuss the approach and give
exact formulas in Section 3.6.2. This procedure gives good approximations to the true normals
when deformations consist of large rotation and small strain; it is, for example, not accurate in the
presence of shear. Normals can be improved using the alternative approach of [RJ07].

2.12.2 Adaptive u = Uq computation for collision detection
The deformation vector u is necessary if the simulation is to perform any collision detection.
If a general collision detection scheme is used, and a CPU computation is not desirable, u can
be obtained by a GPU computation followed by a GPU read-back operation. GPU read-backs
are known to be slow and are often reported as a bottleneck in interactive simulations. In our
approach, we use reduce-coordinate collision detection, which only requires knowledge of the
reduced deformation vector q, and not of the unreduced deformation vector u. More precisely,
the actual displacements of a certain set of vertices will still be required (e.g. in the case of
a BD-Tree, vertices at the coarse hierarchical levels, and those close to contact), but this set is
typically very small (and changes from timestep to timestep). Deformations for these vertices
can be simply synthesized on the CPU. As such, we can run the deformable object dynamics and
collision detection at haptic rates on the CPU, and only reconstruct u = Uq at graphic rates for
rendering, in the GPU pixel shader, without any need for GPU read-backs. We will describe this
process in detail in the second part of the thesis.

2.13 Experiments
We present two experiments: one that compares different basis generation methods with the same
basis size (r = 12), and one that investigates the modal derivative basis under progressively larger
values of r. Our webpage gives video clips for all the experiments in this section [JJ].

82



2.13.1 Re-simulation, modal derivatives, sketch

In Figure 2.3 on page 46 we compared reduced simulations to an unreduced implicit Newmark
simulation with full internal force and stiffness matrix computation. Same simulation parameters
were used in all cases. Using a reduced interactive model, we recorded a short user-exerted vertical
external force impulse, applied at the end of the spoon. This impulse was used to generate all the
simulations, and was strong enough to push the spoon deeply into the nonlinear region. We sim-
ulated the reduced spoon in three r=12 dimensional bases: a modal derivative basis (originating
from k=6 linear modes), a sketch basis (the user sketched upward motion of the spoon and some
sideways motion), and a basis obtained by applying mass-PCA on the deformation trajectory of the
unreduced simulation. As expected, in this last case (“re-simulation”), the resulting basis is close
to optimal and the resulting reduced trajectory lies very close to the original motion. Of course, the
basis is not available until after we have invested the time in performing the unreduced simulation,
so the utility of such a basis is limited to re-simulation with small changes in applied force loads
or mesh material parameters.

At around the first deformation maximum, a short transient wave motion occurs in the full solu-
tion and such traveling localized deformations are difficult to capture by subspace dynamics. The
modal derivatives and sketching bases produce almost correct amplitudes and 4.6%, 10.1% smaller
nonlinear frequencies, respectively. The modal derivative basis lacks high-spatial-frequency local-
ized deformation, so it cannot capture (non-standing) deformation waves. The sketch basis was
obtained under force loads less severe as the one used for the experiment, which we speculate to
be an important source of error for the simulation in the sketched basis.

2.13.2 Modal derivative basis under progressive r

We performed this experiment on the voxelized dragon model (see Figure 2.17), with voxelization
resolution of 120 x 120 x 120, yielding the most detailed model in this thesis (number of voxels =
27,314, number of voxel vertices = 53,449). The dragon is anchored to the ground at the bottom.
The interior is hollow; if we had flood-filled the interior with voxels, this would result in 76,288
voxels and 91,261 voxel vertices, respectively. The stiffness matrix (in double precision) could
then no longer be factored within the memory constraints of our system; adaptive (say, tetrahedral)
meshing techniques could help [LS07].

We manually generated two concentrated force loads, one acting at the tip of the dragon’s
mouth, and one on top of the dragon’s back. The force loads were distributed over a short time
interval: 10 timesteps for the dragon’s mouth and 30 timesteps for the dragon’s back. We then
computed the dynamic deformations under the unreduced nonlinear simulation, a fully linear sim-
ulation, and reduced nonlinear simulations in derivative bases with progressive values of r (see
Figures 2.18, 2.19, 2.20, 2.21). The fully linear simulation gives the solution to the linear system of
ODEs Mü+Du̇+Ku = f, and can capture local detail, but exhibits well-known volume-growth
artifacts under large deformation. Note that a linear modal analysis simulation with the first k
modes (not shown in this experiment) is an approximation to this linear model. Such a simulation

83



Figure 2.17: The dragon model: Left: the rendered dragon model in the rest configuration. Right:
simulation voxel mesh. Bottom vertices are fixed rigidly.

would exhibit similar levels of volume growth, and would additionally be unable to simulate local
deformation detail. Most reduced simulations use derivatives obtained from a basis with k = 20
linear modes. Maximum basis size is r = 20+210 = 230 in this case (linear modes and all deriva-
tives concatenated into a basis, followed by a Gramm-Schmidt mass-orthogonalization). Bases for
lower values of r were obtained using mass PCA, as described in Section 2.8.3.

All simulations use the same timestep of 1 / 300 sec, and identical implicit Newmark integration
parameters. Video playback is 15x slower than actual time, and the entire simulation consisted of
90 (“head” force load) or 180 (“back” force load) implicit Newmark timesteps. As argued in
Section 2.9.3, time re-scaling does not affect simulation accuracy. What matters is the number
of timesteps per typical simulated nonlinear period of motion: dragon’s head progresses through
about 70% of a (nonlinear) period in 90 steps (about 129 steps per complete period), so the chosen
timestep resolves the motion (ODE) reasonably well.

The simulation in this experiment was offline; reduced internal forces were computed using the
direct formulas from Equation 2.23, as in [KLM01]. Such evaluation is currently the only practical
approach to evaluate reduced forces for r > 50 on our hardware; computing the reduced cubic
polynomial coefficients would in such cases result in too large memory footprints and evaluation
times slower than the direct approach (appropriately sparsening the polynomials is a natural area
of future research). Figures 2.18 and 2.20 show a sequence of animation poses computed under
the different simulation methods, and Figures 2.19 and 2.21 give the deformation of one particular
simulation mesh vertex, namely the vertex where the force load is applied.

Analysis of the results: Unreduced simulations exhibit very rich nonlinear dynamics which is
difficult to capture with a subspace basis of limited dimensionality. The r = 230 and r = 60 bases
perform reasonably well. The similarity of results for r = 230 and r = 60 suggests that there
is a lot of statistical redundancy between the different derivatives: a 60-dimensional mass-PCA
subspace already captures much of the “essence” of the full derivative 230-dimensional space.

84



Figure 2.18: Dragon “head” force load: Dragon dynamic deformations, originating from a short
vertical force on a central vertex at the tip of dragon’s head. Each row gives deformations under
one method, with columns corresponding to timesteps 0, 5, 10, 15, 20, with a timestep of 1/300s
(see Figure 2.19). All reduced simulations use k = 20.

Linear modes are essentially standing waves, and their spatial frequency typically increases with
the mode index. The number of retained linear modes k therefore controls the range of spatial
frequencies simulated, i.e., it controls how much local response the basis will be able to simulate.
The parameter r controls to what extent the nonlinear correction to the first k linear modes will be
available in the basis (lower modes are given priority through appropriate weighting, as described
in Section 2.8.3). If r is only marginally larger than k,many derivatives (and also linear modes with

85



0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5

simulation step (1 step = 1/300 s)

y
−

d
is

p
la

c
e
m

e
n
t 
(i
.e

.,
 v

e
rt

ic
a
l)
 o

f 
s
im

u
la

ti
o
n
 v

e
rt

e
x
 1

4
4
0

 

 

unreduced

linear

k=20, r=230

k=20, r=60

k=20, r=30

k=20, r=15

k=10, r=15

Figure 2.19: Trajectory of a selected vertex: Vertical displacement of simulation vertex where
the force load was applied in the “head” sequence (Figure 2.18).

high indices) will not be included in the basis. Therefore only small deformation of these modes
can be simulated. The bigger the r, the more complete the correction; if all k(k + 1)/2 modes
are added, one obtains a nonlinear reduced system capable of simulating moderate deformations
away from the rest pose, up to the spatial frequency permitted by the retained k linear modes.
The r = 60 curve suggests that a value of r = 3k might suffice in many cases, i.e., it is not
necessary to use the complete basis of dimensionality r = k + k(k + 1)/2. Both Figures 2.18
and 2.20 plot the trajectory of the same vertex on which the force load was applied; this explains
why the reduced simulation curves deviate from the unreduced curve already from the start: a very
localized deformation occurs in the immediate vicinity of the pulled vertex, which is not captured
in the reduced bases.

Artificial stiffening refers to the (erroneous) stiffening of the structure due to the simulation in
a subspace (we also call it locking). Note, that “locking” is not to be understood as instantaneous

86



stiffening; our stiffening happens over finite time intervals, albeit possibly with a steep rate. Ar-
tificial stiffening is important for understanding subspace simulations. It explains, for example,
why the subspace simulations tend to exhibit smaller extreme deformations than the unreduced
simulations.

Artificial stiffening happens whenever the deformation into which the system wants to de-
form from the current configuration, given current deformation velocity and external forces, is not
available in the basis. While in such cases an unreduced simulation would deform naturally by
modifying the deformations of all vertices appropriately, a reduced simulation is forced to stay
within a subspace, and therefore has to compromise by deforming into some less natural shape.
Consequently, the strain energy grows much more quickly for the same amount of visual deforma-
tion, resulting in smaller deformation changes for the same increase in strain energy. In the absence
of external forces the ODE’s total system energy is invariant over time, regardless of whether the
simulation is reduced or unreduced. Therefore, for the same initial kinetic energy, the extreme
deformations tend to be smaller with reduced simulations, even though the extreme strain energy
is the same. Artificial stiffening happens at the level of the ODE and is not specific to any partic-
ular numerical integration scheme. It represents the error due to simulation in a subspace. Some
artificial stiffness is always present with reduced simulations, because unreduced solutions to the
ODE never lie exactly in some low-dimensional space. Numerical solutions to the ODE introduce
additional errors (e.g., numerical damping).

For example, artificial stiffening occurs if one performs a nonlinear StVK simulation in a basis
consisting only of linear modes: the structure stiffens already for small deformations, since the
derivative shapes are not available. It deforms very little beyond small deformations, even if larger
force loads are applied. Another example is a structure that has already deformed to a moder-
ate deformation within, say, the modal derivative basis, but the subsequent “natural” deformation
deltas are no longer available in the basis (because the basis was computed around the origin). In
practice, with a modal derivative basis, stiffening is not noticeable for small to moderate defor-
mations (of course, this depends on k and r). In most cases, when stiffening occurs, it does not
lead to visually implausible deformations but rather the system “locks” and can no longer continue
to larger deformations. Of course, if force loads are removed, the system returns back to the rest
pose.

Artificial stiffening due to the lack of a derivative in the basis can be observed with the “back”
sequence (Figure 2.20, page 90, r = 15, 30). The sideways deflection linear mode is available in
the basis, and the dragon does deflect, but very little (see right-most columns of Figure 2.20). In
the r = 60 “back” sequence, deflection is larger as the derivative now is available in the basis.
The r = 230 basis in addition enables the back of the dragon to curve sideways more interestingly
(see third column of Figure 2.20). This is akin to simulating a cantilever beam using just the first
deflection linear mode and its derivative, versus also including higher modes and derivatives.

Similarly, artificial stiffening is visible, say, in the r = 15 sequence of the “head” force load
(Figure 2.18). The linear mode that tilts the head’s pitch (almost rigidly) up and down is linear
mode number 2. The linear mode that opens and closes the mouth is linear mode 5. These two
modes are key shapes for capturing the deformations resulting from the “head” force load. With

87



r = 15, not all of the corresponding derivatives are in the basis, so we get artificial stiffening as
the upper part of the mouth is pulled up (see right-most columns of Figure 2.18). In addition, in
the unreduced simulation, the mouth not only opens, but the upper part of the mouth also bends
(similar to a cantilever beam), as the external force is applied at the end of the mouth. The linear
mode that would support such mouth-beam-bending does not appear within k = 20. This partially
explains why the k = 20, r = 230 curve does not match the unreduced curve to a greater degree.

2.14 Real-time interactive demo
We made several of our pre-processed models available on the web, together with a demo exe-
cutable where the user can interact with the models in real-time (by deforming the models with the
mouse). We already performed all the precomputation (model reduction) for the provided models.
We provide all the necessary data for runtime simulation.
Our demos are at: http://graphics.cs.cmu.edu/projects/stvk/index.html
Note that URLs are rarely permanent due to system maintenance issues and website migrations. Also, we
cannot promise to keep the demos up-to-date if hardware, operating systems, etc., change in the future.

2.15 Discussion and future work
The deformable models presented in this thesis have a limited number of deformable degrees of
freedom, and are as such not fully general deformable models. Obviously, the choice of the defor-
mation subspace impacts the quality of the simulation. The algorithms in this thesis are designed
to optimize the selection of the subspace to be as general as possible, without making any as-
sumptions on the particular external forces imposed to the model at runtime. This is a difficult
problem because there is no clear definition of “typical nonlinear deformations”. The automatic
basis selection approach that we developed selects a basis such that “natural” global large defor-
mations of the model can be simulated. Global deformations are defined to be deformations with
global support: (almost) every vertex of the mesh is deformed to some new position. Typically, the
number of our global modes is too small to represent deformations involving high spatial frequen-
cies. Local deformations therefore cannot be simulated without excessive computational effort: it
would be necessary to add appropriate localized deformations into the basis, and doing so for all
localities on the model results in bases with so many elements (too high r) that the model is no
longer interactive.

Another limitation is the O(r4) run-time complexity of evaluating the StVK reduced internal
forces and stiffness matrices. For small values of r this is not a major issue: we have demonstrated
real-time performance for values as large as r = 30, and the largest value of r ever used for a
simulation in our experiments was r = 60. However, the quartic O(r4) complexity prevents the
method from reaching even higher values of r. If the motion basis is spatially sparse (not the case
with motion bases in this thesis), then a lot of the terms in the cubic polynomials become zero.
A spatially adaptive method could therefore avoid the O(r4) complexity; the challenge is how to

88



(simultaneously) construct a multi-resolution hierarchy of domains adapted to the object geometry
and material distribution, together with appropriate basis functions on each domain.

During contact, the boundary conditions of the model effectively change in the contact region.
This makes the precomputed motion basis less optimal, since this basis was determined under the
contact-free boundary conditions. Deformations in our thesis are large and self-collisions can oc-
cur in extreme poses. Self-collisions were not a focus of this thesis, but could be addressed in the
future, for example by augmenting the Bounded Deformation Tree [JP04] method to detect self-
collisions efficiently. During self-contact, basis refinement may be required due to the changed
boundary conditions. Precomputation “bakes in” the topology of the mesh, and as such, interac-
tive cutting is not possible. The StVK material also does not work well under extreme element
compression (see comments on element inversion in the Related work section). All of these issues
are topics of future work.

A modal derivative basis for unconstrained models (Section 2.8.7) can accommodate multi-
body dynamics where objects are in free flight. In the equations of motion for such a system,
the rigid part is coupled with the deformations, accounting for effects such as the inertia tensor
changing under deformation, or the elongation of the object under centrifugal forces arising from
large angular velocities [Sha05]. For low velocities, however, one can use the approximation of
integrating the rigid body motion separately from the deformations. We use this approximation for
all the unanchored large deformation simulations in this thesis. Under this simplified model, the
external forces excite the deformations, plus they also applied to the rigid body motion part of the
simulation. Each of the two parts is then integrated separately.

The reduced forces only take the form of a cubic polynomial for linear materials. While di-
mensional model reduction is possible with arbitrary materials, the reduced forces are in general
not easy to evaluate directly from the reduced coordinates. Instead, they must be constructed by
first evaluating full unreduced forces, followed by a subspace projection. However, even in this
general nonlinear case the reduction approach has the benefit of replacing the expensive solution
to a large sparse linear system by that of a small dense r × r linear system.

For certain isolated extreme deformation poses, and for extremely low values of r (e.g. r = 2
for the bridge), the reduced internal force field can contain spurious stable equilibriums. This is a
manifestation of the fact that the chosen value of r is simply too small to represent the problem. In
our experience, this problem can always be solved by increasing r.

89



Figure 2.20: Dragon “back” force load: Dragon dynamic deformations, originating from a short
force (horizontal, perpendicular to dragon’s main axis) on a central vertex at the top of dragon’s
back. Each row gives deformation under one method, with columns corresponding to timesteps
0, 20, 40, 60 (see Figure 2.21). All reduced simulations use k = 20.

90



0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

2

2.5

simulation step (1 step = 1/300 s)

z
−

d
is

p
la

c
e
m

e
n
t 
o
f 
s
im

u
la

ti
o
n
 v

e
rt

e
x
 3

7
0
4
5
 

(h
o
ri
z
o
n
ta

l 
a
n
d
 p

e
rp

e
n
d
ic

u
la

r 
to

 d
ra

g
o
n
 a

x
is

)

 

 

unreduced

linear

k=20, r=230

k=20, r=60

k=20, r=30

k=20, r=15

k=10, r=15

Figure 2.21: Trajectory of a selected vertex: Z-displacement (i.e., horizontal and perpendicular
to main dragon axis) of simulation vertex where force load was applied in the “back” sequence
(Figure 2.20).

91



92



Chapter 3

Time-critical distributed deformable
contact

This chapter presents a novel CPU-based algorithm to simulate contact between geometrically
detailed reduced deformable objects and geometrically detailed rigid objects. Three types of in-
teraction are supported: rigid vs rigid, reduced-deformable vs rigid, and reduced-deformable vs
reduced-deformable. Such simulations (especially the deformable simulations) are challenging
because collision detection, contact force computation and deformable object dynamics are all
time-consuming operations. Consequently, maintaining haptic update rates is difficult. To the best
of our knowledge, this thesis presents the first deformable haptic simulations with geometric detail
on the order of magnitude depicted in our examples. The reduced deformable object simulations
are achieved using the algorithms presented in the previous chapter of this thesis.

Researchers at the Boeing Corporation have invented the Voxmap-PointShell method (VPS),
which is a pioneering six-degree-of-freedom haptic rendering algorithm capable of rendering dis-
tributed contact between a rigid object and a detailed rigid environment. The contact is distributed
(also sometimes called multi-point contact, see Figure 3.1): there can be several simultaneous con-
tact sites each spatially distributed over a (typically non-zero) surface area. The surface areas and
traction distribution will vary from one site to the next. Distributed contact represents an impor-
tant component of interactive physically based virtual environments. It is the most general kind
of a contact between two (detailed) objects; contrast this with simulations where two objects are
only allowed to touch simultaneously at a single point, or even simpler simulations where a single
object can only be touched by a single point, or the user can pull on selected vertices of the model.

VPS was introduced in Boeing’s SIGGRAPH 1999 paper [MPT99], and subsequently im-
proved in [WM03] and [MPT06]. Typical environments simulated consisted of the interior of
a commercial airplane, with hoses, linkages, tubes, wires, bolts, and different other mechanical
parts. The mechanical parts are often in close proximity to each other, or even fit tightly to each
other, introducing lots of opportunity for distributed contact. Haptic simulations are useful for vir-
tual prototyping: airplane designers need to check if a certain mechanical part can be positioned
into/removed from its designated location, so that design flaws can be detected without actually

93



Figure 3.1: Distributed deformable contact: Top Left: contact configuration between a nonlinear
reduced deformable bridge and a rigid dinosaur, with 12 separate contact sites. Other images:
contact sites viewed from three different camera angles. A total of 5200 points were traversed,
resulting in 426 points (in red) in contact. Points traversed but not in contact are shown in blue.
Note: temporal coherence was disabled for this figure.

manufacturing the structure. In this way, one can test whether a fire detector can be removed from
an aircraft engine, such as when the detector needs servicing. Another example presented in the
literature is manipulation of a small valve in close proximity to aircraft geometry such as beams,
wires, and tubes [WM03].

94



Virtual prototyping can be approached with conventional path-planning methods. Haptic sim-
ulations, however, have the promise of being simpler and more reliable. In a haptic simulation,
the manipulated object is virtually attached to the haptic device’s manipulandum, and the human
operator can then attempt to insert or remove the mechanical part, while the simulation ensures
that the penetration constraints are not violated. Any contact forces are haptically rendered to the
operator, which helps the operator find the desired path. Such haptic path planning exploits hu-
man path planning intuition to potentially solve difficult planning problems faster than using fully
automated path planners. The path from the haptic simulation could serve as an initial guess to an
offline fully automated path planner [BSA00].

Existing virtual assembly simulations are, however, limited to rigid objects and environments
(for geometrically complex models). In a deformable object simulation, a significant amount of
computation must be devoted to deformations, which makes it difficult to maintain high haptic
update rates. Simulating deformable geometry is important: airplane geometry is often rigid, but
hoses, wires, tubes, etc., are deformable. If a rigid simulation is used to check for mechanical part
removability, it might be unnecessarily restrictive and report that a part cannot be (dis)assembled,
when in reality it can be. For example, wires and hoses can be bent to let the object pass through a
narrow passage (see Figure 1.4 on page 29).

3.1 Background: The Voxmap-PointShell (VPS) method

VPS is a haptic rendering method that can simulate six-degrees-of-freedom distributed contact
between a rigid object and a rigid environment. The rigid object is manipulated by the haptic
device. The user can position the object in the environment interactively, and feel the forces and
torques as the object collides with the environment.

Figure 3.2: VPS pointshell: Left: the pointshell points for the teapot model. Right: a schematic
representation of the pointshell, with inward normals. Both images are from [MPT99].

95



VPS uses a different representation for the rigid object and the rigid environment, and is as
such an asymmetric approach. The rigid object is modeled as a pointshell: a collection of points
positioned near-regularly on the surface of the object, similar to surfels in point-based rendering
(see Figure 3.2). Each point also caches its inward normal, which is static since the object is rigid.
The environment is modeled as a voxmap, a compressed data structure computed by voxelizing
polygon geometry into small voxels (see Figure 3.3). Each voxel is assigned a 2-bit value:

• 0: free-space: voxel lies in the exterior empty space and is not a proximity voxel of case 3

• 1: interior: voxel lies inside some environment object

• 2: surface: voxel intersects surface of some environment object

• 3: surface proximity: voxel is immediate neighbor to some surface voxel, and is non-interior

In this sense, the voxmap can be seen as a 2-bit implicit function, designed specifically for the pur-
poses of haptic rendering. The improved VPS approach of [MPT06] allocates more bits per voxels
so that they can cache distance-to-contact information with each voxel. Interesting environments
require high-resolution voxmaps, which can easily exceed the size of a computer’s main memory.
To save space, the voxmap is compressed by an octree: if all voxels in a certain subtree of the
octree contain the same value v, the subtree can be pruned and replaced by a leaf node storing v.

Figure 3.3: VPS voxmap: Left: a VPS environment (a scene from the interior of an airplane,
serving as source data for voxmap). Right: a schematic illustration of the voxmap, also showing
the voxmap octree. Both images are from [MPT99].

The voxmap and pointshell are precomputed, so that they can be used efficiently for fast run-
time haptic simulation. At runtime, at every haptic cycle, every pointshell point is queried against
the voxmap (see Figure 3.4). No action is taken if the point lies in the exterior empty space. If the

96



Figure 3.4: VPS in action: Left: the user manipulates the teapot in the virtual environment. Right:
the virtual coupling between the haptic device and the manipulated simulation object in contact.
Both images are from [MPT99].

point occupies a surface voxel, a penalty force is assigned to the point, pushing it away from the
object. The direction of the force equals the point’s cached static inward normal, and the magnitude
is determined from the amount of penetration. The algorithm is designed to prevent points from
entering into the interior region of the model. Preventing such penetration is not trivial to achieve,
and VPS takes special care to prevent it as much as possible. Proximity voxels are treated just like
free-space voxels, with the addition that breaking pulses (short impulsive contact forces) [SV97]
are applied to high-velocity points in contact (if the velocity is large enough and directed toward
contact). Such breaking pulses prevent the user from propelling the object toward the environment,
overpowering the surface voxels’ penalty force layer to penetrate into the environment’s interior.
While these kind of situations are of course not typical of manipulations with careful intent, it is
still important for the method to respond appropriately if they do occur.

Pointshell accuracy and virtual coupling stability have been improved in [RPP+01]. The Boe-
ing follow-up paper of [WM03] replaced the original VPS mass-spring-damper for a quasi-static
spring, introducing static virtual coupling (which is discussed extensively below). In [MPT06],
the authors introduce the additional constraint that the pointshell object is only allowed to move
with a certain maximum velocity (the MaxTravel constraint), which further prevents such penetra-
tions. Note that both linear velocity and angular velocity need to be limited. Another improvement
of [MPT06] is wider voxmaps (4-bit), to accommodate distance-to-nearest-contact information
for free space voxels. Since the haptic device is controlled by a human, there exists an upper
bound on the maximum speed of a pointshell point, and therefore points located in a voxel suffi-
ciently far from contact need not be checked for several haptic cycles (temporal coherence). Also,
the pointshell is traversed on two levels: a coarse level pointshell is tested against a coarse level

97



voxmap, followed by finer tests if necessary. Unlike the methods presented in this thesis, the hier-
archy of [MPT06] only consists of two levels, the simulation is rigid, and graceful degradation of
contact is not addressed.

3.1.1 Virtual coupling

Six-DOF haptic rendering is not simply a matter of computing contact forces and torques at high
rates. If the contact forces and torques are rendered directly to the user, the simulation will suffer
from stability problems. Namely, force jumps discontinuously from a non-zero penalty force to
zero force when a point leaves a surface voxel and enters a proximity voxel. Another problem with
direct rendering of contact forces occurs when several points enter contact simultaneously (which
is a common occurrence). Each point adds to the overall stiffness of the system, and if enough
points are added, the maximum stiffness of the haptic device can be exceeded. This is an example
of how in a distributed contact simulation (such as ours), one cannot directly control the rate at
which contact forces change (grow) as the user manipulates the haptic object; the contact forces
are computed from the contact model which is not aware of the limitations of the haptic device.
Maximum renderable stiffness is an important hardware parameter of each particular (impedance)
haptic device. If the simulation produces contact forces that grow (spatially, as the user moves
the manipulandum) more quickly than the rate given by maximum device stiffness, and if these
forces are directly rendered to the device, the device starts to buzz and eventually goes unstable.
For example, the maximum renderable stiffness of our PHANToM Premium 1.5A 6-DOF-output
haptic device is about 0.6 N/mm.

To mitigate these problems, the penalty forces and torques are not rendered directly to the user.
Instead, it is customary to separate the simulation position of the haptic object (the simulation
object position) from the position imposed by the haptic manipulandum (the haptic manipulandum
position), and connect the two with a spring (virtual coupling [CMJ95, AH98a]) (see Figure 3.5).
The penalty spring tries to align the simulation position and orientation of the haptic object to
the manipulandum and also smooth any discontinuous force transitions. In some cases, virtual
coupling includes a damper into addition to the spring. There are actually two separate 3-DOF
virtual coupling springs: one for the linear translations and one for rotations. It is possible to
prove that the stiffness of virtual coupling presents an upper bound on the stiffness ever rendered
to the haptic device, no matter how many points might be in contact simultaneously (assuming
continuous time control, i.e., infinite haptic update rates). We give the proof in Section 4.7. The
displacement-force relationship of virtual coupling is designed to be linear only up to a certain
maximum force value, after which the force is held constant (saturates) at some maximum value,
even if the user stretches the virtual coupling spring even further. Such saturation prevents the
user from pulling the manipulated object into the interior of the other object. For more details, see
Section 4.9.

We consider two kinds of virtual coupling: dynamic virtual coupling (which uses mass-spring-
damper) and static virtual coupling (which uses spring only).

98



Figure 3.5: Virtual coupling: Left: the green mechanical component (distance field haptic object)
and the deformable hose scene (pointshell, with points shown in red). Wireframe shows the ma-
nipulandum position, solid green color shows the simulation object position. Right: a schematic
representation of the manipulandum position (stippled black line) and simulation position (solid
green line), together with the two coordinate systems which virtual coupling tries to align.

Dynamic virtual coupling

In dynamic virtual coupling [CMJ95, AH98a], the simulation object is assigned a non-zero mass,
and virtual coupling is a mass-spring-damper. At the beginning of every haptic cycle, the simula-
tion reads the current haptic manipulandum position and orientation. This position and orientation
are then set to be the current rest position and orientation of the two 3-DOF virtual coupling
springs. Since the simulation object position will (almost) never match the haptic manipulan-
dum position (even if they matched during the previous haptic cycle, the shaking of the user’s
hand will make them slightly mismatch at the beginning of the next cycle), there will be some
non-zero virtual coupling force FVC,spring and torque TVC,spring. The difference in velocities (and
angular velocities) of the haptic manipulandum and simulation object is penalized by damping
forces (and torques) FVC,damping and TVC,damping. The total virtual coupling force and torque are
then FVC,spring + FVC,damping and TVC,spring + TVC,damping, respectively. Next, collision detection
and contact computation are invoked with respect to the simulation object position. The computed
contact forces and torques are added to the virtual coupling forces and torques, which gives the net
forces and torques on the simulation object. Next, the position and orientation of the simulation
object is updated using the equations of motion of a rigid body. These equations take into account
the simulation object’s mass and inertia tensor.

99



The original VPS method of [MPT99] uses dynamic virtual coupling. The inertia tensor was
modeled as a diagonal matrix to simplify the simulation. The rigid body motion was integrated
using the explicit Euler integrator. We found that simulation stability can be slightly improved if
we subdivide the haptic timestep into several Euler sub-timesteps. During these sub-timesteps, the
haptic manipulandum position and orientation are assumed to stay constant (or could be extrapo-
lated from previous positions, e.g., using a Kalman filter). The Euler integrator updates the simu-
lation object position and orientation after every sub-timestep (which causes the virtual coupling
forces and torques to change). The contact forces and torques are kept constant (again, extrapola-
tion would be possible), as they are expensive to compute (they require traversing the pointshell).
For this reason, the stability improvements due to sub-timestepping are limited. However, we spec-
ulate that if manipulandum position and orientation could be sampled continuously (infinitely fast),
and contact forces and torques also sampled continuously (with zero computation cost), and if one
could (say analytically) solve the resulting ODE for the simulation object rigid body motion with
zero latency, that this would give very stable force and torque signals. Such (hypothetical) simu-
lations are called simulations with continuous time control [CGSS93]. In essence, our simulations
are discrete approximations to this continuous limit. Of course, the limit can never be achieved in
practice. It is useful from a theoretical point of view, as stability properties can sometimes only be
proven under continuous time control, with discrete-sample time control converging to the limit
under progressively higher update rates.

Virtual coupling damping terms require measuring manipulandum velocities. The rotational
damping of [MPT99] used only the angular velocity of the simulation object, not the difference in
angular velocities of the simulation object and haptic manipulandum. The API of the PHANToM
force feedback device does not (currently) support measuring manipulandum’s angular velocity,
only translational velocity. Even for translational velocities, accurate estimates are inherently dif-
ficult to obtain due to limited encoder resolution. The need to measure velocities presents one
weakness of the dynamic virtual coupling model. In our experiments with the PHANToM device,
the velocity estimates were often under-resolved (noisy) to the point that they would degrade our
haptic signal. If the damping virtual coupling coefficients are too high, then the noise in the mea-
sured velocities can get amplified into a haptic instability. Low damping coefficients can cause
instabilities during contact, when more damping would be needed to make the contact more pas-
sive. In practice, we found it challenging to choose good virtual coupling damping coefficients.
Furthermore, one also has to simultaneously select good values for virtual coupling spring stiff-
ness and mass. Overall, we spent a significant amount of time tuning the virtual coupling mass,
damping and stiffness coefficients, and the final results were still not satisfactory in some cases, in
the sense that we were sometimes not able to render contact forces and torques as stiff as possible
given the hardware design of the device. In such cases, we were always able to make the dynamic
virtual coupling simulation stable by decreasing stiffnesses, at the cost of making the contact less
stiff and hence less realistic.

With badly tuned parameters it is not difficult to run into residual instabilities when the simu-
lation object is located in free space. One approach to avoid the residual instabilities is to simply
render zero forces and torques if the simulation object is not in contact with the environment.

100



However, this is not a perfect solution. For example, consider a case where a square peg is inserted
into a (long) vertical square shaft. The contact forces in this case provide no resistance to the
upward/downward motion of the manipulandum: along this axis, the simulation behaves as if in
free space. However, the virtual forces and torques will be rendered in this case (together with any
instabilities), because the object is in contact. There are several other such “degenerate” contact
situations, such as a cylindrical peg in a cylindrical hole, ball in a (hemispherical) socket, or a box
in between two planes.

Static virtual coupling

Static virtual coupling was introduced in [WM03], where they replaced the mass-spring-damper
with a quasi-static spring. Static virtual coupling simplifies the simulation, since no mass or damp-
ing parameters are needed; what is needed is only one scalar parameter for translational virtual
coupling stiffness, and one scalar parameter for rotational stiffness. Also, it is no longer nec-
essary to measure any manipulandum velocities. This paper also modified the virtual coupling
displacement-force relationship for large spring extensions. The original virtual coupling used a
linear displacement-force relationship, followed by a constant saturated maximum force. The new
relationship also uses an initial linear region, but then exponentially saturates the force to a max-
imum force value, making the displacement-force relationship continuously differentiable. The
exponential relationship can be replaced for a computationally simpler cubic spline [OL05]. Our
experiments indicate, however, that the difference in execution speed is very small. The cost of
evaluating one exponential function value per haptic cycle, or evaluating one cubic polynomial per
haptic cycle, are negligible compared to the costs of collision detection, contact computation and
deformable object simulation.

In this thesis, we adopt static virtual coupling of [WM03] since it needs a relatively small
number of parameters, and extend it by introducing static damping. According to our experiments,
static virtual coupling can simulate very stiff environments. We were able to maintain stability
while increasing stiffness all the way up to hardware stiffness limits of the PHANToM force-
feedback device (e.g., 0.6N/mm). However, the static model is not forgiving to contact force/torque
discontinuities, and in the case of voxmap forces of [WM03], those discontinuities can be felt
clearly. This motivated us to use a distance field instead of a voxmap, where contact forces and
torques are continuous with respect to simulation object position and orientation. We were able to
feel a clear improvement between distance field contact forces and voxmap-based contact forces.
Another improvement presented in this thesis is the inclusion of large rotation terms in the static
equilibrium equations (which are not included in formulas in [WM03]). We also demonstrate how
to handle virtual coupling saturation in the presence of rank-deficient virtual coupling force and
torque gradients of static virtual coupling. These improvements are presented in Chapter 4.

101



3.2 Overview of our approach

As described previously, this thesis addresses distributed contact between 3D objects, i.e., con-
tact with potentially several simultaneous contact sites, each distributed over a non-zero surface
area. We use a penalty-based contact model similar to VPS: contact force direction is obtained
from the point’s normal, and the magnitude is proportional to the amount of penetration. We ob-
tain this penetration depth from a precomputed floating-point signed distance field instead of a
voxmap. The contact model is described in Section 3.5. We deform our pointshells using the re-
duced nonlinear deformable object algorithm presented in the first part of this thesis. We give the
details in Section 3.6. Pointshell normals change under deformation, and we update them using
the approximation described in Section 3.6.2. A rigid distance field and a deformable pointshell
support haptic contact between a geometrically complex rigid and geometrically complex reduced
deformable model for the first time. In addition, we present a novel extension that permits ap-
proximate evaluation of deforming distance fields for reduced deformable models, which enables
haptic rendering of two geometrically complex reduced deformable objects in contact. Deformed
distance fields are presented in Section 3.12.

To support haptic display of geometrically detailed models, e.g., involving a million pointshell
points, we resolve distributed contact progressively. We organize the pointshell into a nested multi-
resolution hierarchy, by sampling points (and normals) from an appropriately defined smooth man-
ifold surface. Our sampling is near-uniform which provides economic pointshells and improves
haptic stability. We use a precomputed sphere-tree hierarchy to bound the pointshell points, with
sphere centers located at (non-leaf) pointshell points. For deformable models, this is a point-based
variation of the Bounded Deformation Tree (BD-Tree) [JP04]. Such a hierarchy permits large
pointshells, bigger than what could be examined point by point during one haptic cycle: if a point
on some coarse hierarchical level is sufficiently far from contact, none of the points in the sub-
tree can be in contact, and then those points need not be checked. In contrast, if a large part of
the pointshell is in contact or close to contact, few subtrees will be culled and a large part of the
pointshell will need to be examined point by point. We address this problem by providing graceful
degradation of contact: if there is not enough computation time to fully complete the tree traversal,
the algorithm still returns a reasonable answer, with accuracy dependent on contact-configuration
difficulty and available processing power. Graceful degradation is achieved by traversing the nested
hierarchy in a breadth-first order, rendering deeper and deeper tree levels until out of computation
time. We use two separate activation thresholds to avoid abrupt changes in the rendered depth
during consecutive haptic cycles. The simulation also uses temporal coherence to time-sample the
individual points at rates depending on distance to contact, i.e., temporal adaptivity.

We display distributed contact (haptically) using a novel first-order quasi-dynamic virtual cou-
pling method which uses both forces and torques, and their derivatives with respect to simulation
object position and orientation. In haptics, higher update rates generally enable stable rendering
of stiffer forces and torques; but reaching such high rates is challenging for models with detailed
geometry. In our system, the deformations, collision detection and contact force computations run
together in one loop at haptic rates (1000 Hz). We do not need to extrapolate from lower-rate sig-

102



nals. A multi-rate simulation using the contact gradients of Section 4.2 could exploit user’s limited
sensing bandwidth to further increase example complexity [OL06, OG07].

3.3 Related work: Multi-resolution rendering

The idea to render pointshells hierarchically is very natural. Our progressive interruptible point-
based contact-sampling approach is analogous to the QSplat algorithm from point-based render-
ing [RL00] which represented the point cloud hierarchically to enable level-of-detail control for
graphical rendering. Our oriented pointshell can be seen as a surfel point cloud, the meshless geo-
metric representation used in point-based rendering. A single-resolution contact algorithm for two
mesh-free deformable point-sampled objects has been presented in [KMH+04]. The method com-
putes the contact surface using the point-based surface projection operator, reaching interactive
(but not haptic) rates: timesteps of 130-200 milliseconds were reported for two models of about
10,000 surfels each. Hierarchical point-contact handling was explored in [PPG04], where they
demonstrate near-interactive (a few frames per second without precomputation) contact of point-
based quasi-rigid (quasi-static and linear) deformable objects. This particular deformable model
was designed for local deformations; global deformations were not modeled. Contact tractions are
computed by approximately solving LCPs in each contact region, at progressive resolution lev-
els, until desired accuracy is reached. In this thesis, we present a hierarchical contact rendering
method designed for high-rate (haptic rendering) applications. We demonstrate how to maintain
upper bounds on the amount of computation per haptic cycle, and how to minimize contact force
artifacts when run-time constraints force a transition to a different contact resolution level.

Bounding volume hierarchies can be used for interruptible collision detection for rigid [Hub95]
and embedded deformable models [MO06] by traversing the hierarchy in a breadth-first manner.
Time-critical contact can be approximated by applying contact forces between contacting (sphere)
primitives at the deepest level traversed in a particular frame. Unfortunately, such approaches can
have trouble resolving close-proximity and conforming contact configurations in high-rate scenar-
ios (as in haptic rendering): finer bounding volumes more closely approximate the object, and as
such the effective contact surface (and therefore forces) depend on the level of detail rendered at
any instant. In our work, the points at different resolution levels progressively sample the same
well-defined contact surface, thereby making contact at different levels of detail more consistent.

Six-DOF haptic rendering of complex rigid objects can be achieved using a number of tech-
niques, in addition to VPS, such as multi-resolution collision detection on convex decompositions,
followed by a clustering of contacts [KOLM03], or incremental local contact search [GME+00].
Multi-resolution contact haptics has been demonstrated for polygonal geometry by appropriately
simplifying the objects at different hierarchical levels, to preserve the haptic sensation to the
user [OL03, OL06]. The authors suggest that for contact sites of large area, resolving the contact
at a coarser resolution will not result in significant haptic sensation degradation; this has moti-
vated our graceful degradation algorithm. These approaches, however, do not directly apply to
point-sampled objects or deformable objects.

103



3.4 Related work: Haptic rendering of deformable objects

Haptic rendering has received increasing attention over the last decade [LD07], and significant
challenges remain especially for rendering deformable systems. Early methods were developed for
tissue simulations during virtual surgery [KcM00], and mostly used mass-spring deformable ob-
jects. Space-time adaptive and multi-rate methods have been successful for real-time deformable
object simulation [AH98b, DDCB01], but time-critical distributed contact algorithms have re-
ceived less attention (c.f. [MO06]). Discrete Green’s functions (computed, say, under the BEM
discretization) can be used for haptic rendering of linear elastostatic solid 3D deformable mod-
els [JP01, JP03]. The simulation is linear and as such accurate under small deformations. The
approach can model static deformation response under externally applied forces and vertex posi-
tion constraints. The simulation is driven by the user prescribing the position of a single vertex (or
a few vertices) using the haptic manipulandum, and feeling the force as the model deforms to ac-
commodate prescribed position of the vertex (or vertices). The static deformation response of the
model is encoded in the columns of the Green’s function matrix; roughly speaking, each column
gives the deformation under the displacement of a certain vertex in one of the x, y, z directions.
With some extra run-time computations, the technique can be extended to the case where positions
of multiple vertices are prescribed simultaneously. Let S denote the time-varying set of vertices
constrained during a particular simulation timestep. There is a separate set of Green’s functions
for every possible set S and, since the number of possible sets S combinatorially explodes with
the cardinality of S, it is not feasible to precompute these Green’s functions for all possible sets
S. Instead, these updates are performed at runtime, by incrementally updating the Green’s func-
tions using the Sherman-Morrison-Woodbury formula. The approach is fast, compact, robust and
well-suited for local deformations. One limitation is that for large contact areas with many ver-
tices simultaneously in contact, the required updates become progressively expensive, or more
complicated hierarchical GF strategies are needed. Also, the approach cannot simulate deformable
dynamics and large deformations.

Related to the Green’s function approach are the elastostatic FEM approaches of [BNC96,
CDA99], employing techniques of static condensation and precomputed model displacements for
unit forces applied on the object’s boundary. These approaches use a different kind of discretization
(FEM), and require a volumetric mesh. A simple linear correction scheme is suggested to extend
the single-contact responses to contacts with multiple points. A recent method of [JCC06] uses
s-FEM [Fis92], a variant of FEM, where two meshes are used simultaneously: a coarse mesh to
capture global deformations of the model, and a local mesh activated in a region of interest. The
method is limited to small deformations and cannot simulate deformable dynamics. The approach
is similar to [JP01], in that it uses Green’s functions and capacitance matrices to enable altering the
set of vertices with displacement boundary conditions at runtime. Unfortunately, most such haptic
rendering papers assume interactions based on pulling on (or constraining) a small set of vertices,
not performing real-time deformable object collision detection and distributed contact force and
torque computations between two object with complex geometry.

Linear complementary problem (LCP) solvers can be used to solve the Signorini contact prob-

104



lem between a rigid object and a linear deformable object [DA04, DDKA06]. LCP solvers are
computationally demanding which limits the approach to models of modest geometric complex-
ity. In this thesis, we do not use LCP; we use the contact model described in Section 3.5. We
demonstrated a deformable pointshell haptic rendering example in [BJ05]; however, one of the
two contacting objects (a small rigid ball) had trivial geometry. This thesis supports both con-
tacting objects having non-trivial geometry, resulting in a much more difficult collision detection
problem. Also contact models based on the use of analytical gradients (as was the case with the
ball) give discontinuities if naively extended to non-trivial distance field geometry.

3.5 Penalty-based point-contact model
The point-contact model employed for rigid-rigid, rigid-defo, or defo-defo contact are conceptually
identical: the contact penalty forces are determined by querying the points of the pointshell object
against the signed distance field of the other object (see Figure 3.6). The user manipulates one
of the two objects (the haptic object). In our implementation, the pointshell object is anchored
(cannot undergo rigid body motion), and the distance field object is the haptic object; the distance
field translates and rotates with the haptic object. Alternative configurations where the pointshell
object can undergo rigid body motion, or takes the role of a haptic object, are straightforward.

Both pointshell and the distance field are computed in a pre-processing stage (see Sections 3.8
and 3.11). During every haptic cycle, pointshell points are queried against the signed-distance
field, as illustrated in Figure 3.6. By convention, negative distance field values denote the interior
of the distance field object, and therefore points in contact. Penalty forces are computed for points
in contact and no force is assigned to points not in contact. We choose the direction of the force
to equal the inward normal of the pointshell point in contact (and as such the force acts to resolve
contact; see also Section 3.8). The magnitude is determined from the amount of penetration:

F = −kC dN, (3.1)

where kC > 0 is the contact penalty force stiffness, d < 0 is the signed distance field value, and
N ∈ R3 is the point’s inward normal in the world coordinate system. The point world-coordinate
position, normal, and distance field value are approximated differently for rigid and deformable
objects, and are discussed in detail in later sections. Note that the total force and torque can be
computed easily using this model, as can the trilinearly interpolated signed distance field values.
The details on virtual coupling, contact torques, and contact force and torque gradient computation
are given in Chapter 4. If the number of points in contact ` is greater than some constant L (we use
L = 10), we scale the total contact force by L/`, for reasons of stability. Such scaling is commonly
used in the VPS method (see Section 4.7).

We note that this contact model is not standard, but it has useful approximation properties for
haptics. It avoids using the distance field gradients which are discontinuous across the object’s
interior medial axes. In fact, we first tried using distance field gradients to determine the direction
of the penalty force, but the resulting force direction discontinuities gave poor haptic signals. In our

105



contact model, the force on a point is a continuous function of objects’ position and deformation.
Only the normal of one of the two contacting objects (that of the pointshell object) determines
force direction, and this is both an approximation used for speed, and robustness; also note that
for smooth surfaces in non-penetrating contact, the normals of the two opposing surfaces at the
contact point are colinear.

Figure 3.6: Point-contact model: Left: Pointshell with inward normals. Middle: the signed
distance field. Right: deformable contact and contact forces.

Scaling penalty forces by the area weights of the points (optional step): If a pointshell does
not sample a surface near-uniformly, it can be beneficial to scale the penalty force of each point
by the local surface area “belonging” to each vertex. Otherwise, if all points are weighted equally,
spurious contact torques could occur. For example, this will happen if a U-shaped rigid object
contacts (with the two ends of the U) a planar pointshell object, generating two contact sites with
about equal area. If one site is sampled to a finer resolution than the other, the U will want to
rotate. To alleviate this problem, the weights could be taken to be, for example, surface areas
of the Voronoi cell (based on the surface geodesic metric) of each point. These areas could be
approximated, for example, by sampling the surface with a large number of randomly positioned
point samples, and counting the number of point samples closest to each point of the pointshell.
When contact forces are weighted, the quantity computed in Equation 3.1 can be interpreted as

106



a contact traction. Area-weighted tractions give the total contact force on the part of the surface
“belonging” to the point in contact.

In our implementations, however, the pointshells come from particle repulsion, which gives
near-regular pointshell samplings. Therefore, we do not assign any area weights to points; all
points are assigned an equal weight of 1.Also, we keep the weight at 1 regardless of the hierarchical
level of the point. This does not cause significant discontinuities if the deepest rendered pointshell
level changes from one haptic to cycle to the next because (1) each level is always either rendered
completely or not started, and (2) the L/` scaling essentially acts as area weight. For example, if
a face of a box is in parallel contact with a planar pointshell surface, and one increases the deepest
rendered pointshell level, say, by one level, more points will be in contact, causing ` to increase.
The scaling L/` will stay proportional to the area “belonging” to each point in contact, so overall
contact stiffness will stay approximately the same regardless of the deepest level rendered. This
role of L/` is not accidental, as we investigate next.

3.5.1 Contact force convergence under pointshell refinement

In this section, we will prove that our contact force con-
verges to a limit if the pointshell is made progressively finer
and finer. In this sense, traversing the pointshell can be
seen as collocating the analytical contact model of Equa-
tion 3.2 at the locations of pointshell points. Rendering the
pointshell at progressively deeper levels provides better and
better approximations to the analytical contact model.

To derive the limit, assume that the surface of the pointshell
object is in contact with the volume of the distance field ob-
ject, and denote the part of the pointshell object surface in
contact by SC . Also, assume that the contact surface area
is non-zero (otherwise, there is no penetration between the
two objects and penalty forces do not apply). As previously
mentioned, if the number of points in contact ` is greater
than some constant L (we use L = 10), we scale the total contact force by L/`, for reasons of
stability. We are interested in the limit process where the pointshell is increasingly refined to finer
and finer levels (say, in an infinite sequence of pointshell levels L1,L2, . . .). Since the surface
contact area is non-zero, the pointshell will eventually be fine enough that more than L points will
be in contact. Therefore, it is correct to use the L/` force-scaled version of the contact force in our
derivation of the limit.

Theorem: If one samples the surface with an increasingly larger number of near-uniform points
(or area-weighted non-uniform points), with the largest gap between points smaller than ε, with

107



ε→ 0, the total contact force converges to the following integral:

Fcontact, analytical limit =
−kC L

∫
SC
d(x)n(x)dS∫

SC
dS

, (3.2)

where d(x) and n(x) are the signed distance value and inward normal at x, respectively.

Proof: Summing the contributions of all points in contact (Equation 3.1) gives the total contact
force

Fcontact, discrete collocation =
−kC L

`

∑̀
i=1

diNi, (3.3)

where i runs over all points in contact. Since the pointshell is near-uniform, we can approximate
∆Si = S/m, where ∆Si is the surface area “belonging” to point i, S is the total surface area of
the pointshell object and m is the total number of points in the pointshell. Then, Equation 3.3 can
be rewritten as

Fcontact, discrete collocation =
−kC L

∑`
i=1 diNi ∆Si∑`

i=1 ∆Si

. (3.4)

This last equation gives a Riemann sum for the integral of Equation 3.2. That is, Equation 3.4 is an
approximation sum for the definite integral of Equation 3.2. As ε→ 0, the Riemann sums converge
to the integral by definition (standard definition of integral in calculus). That is, the approximation
sums of Equation 3.4 (and hence our contact model of Equations 3.3 and 3.1) converge to the
analytical limit given by the integral in Equation 3.2. QED

3.5.2 Our contact model as a volume integral

Our limit contact model of Equation 3.2 has an alternative intuitive rep-
resentation. First, note that the integral from Equation 3.2 can be extended
over the contacting surface area SZ of the distance field object, as distance
field values are zero on SZ . Now, the integral is over a closed surface and
we can use the divergence theorem to rewrite the contact integral as

Fcontact, analytical limit =
−kC L

∫
SC∪SZ

d(x)n(x)dS∫
SC
dS

=
kC L

∫
V

grad d(x)dV∫
SC
dS

.

(3.5)
Our contact limit can therefore be seen as a version of the distance field
gradient-based contact model, where each infinitesimal volumetric element on one object feels a
contact force proportional to the local distance field gradient on the other object. Note that the
accumulated volumetric integral changes continuously when the two objects change position and
orientation, even though the distance field gradient is in general not a continuous function. The

108



contact model is not symmetric if we reverse the roles of the two objects; we discuss this further
with our experiments and results (Section 3.13).

3.6 Sampling reduced deformable models
Our approach is designed to work with a variety of reduced deformable models that support a basic
two-step simulation process: (1) a fast timestep of reduced deformable dynamics; (2) fast evalu-
ation of individual deformed surface point positions and normals to resolve contact adaptively.
Suitable reduced models include classical linear modal vibration models, reduced nonlinear mod-
els, simple low-resolution deformable models with embedded geometry, adaptive multi-resolution
models, articulated flexible multibodies, etc. The only requirement is that the model’s reduced state
can be time-stepped at high rates, and its deformed geometry sampled adaptively for time-critical
contact force estimation. In our implementation we employ prior dimensional model reduction
and Newmark subspace integration techniques for reduced geometrically nonlinear models, as
presented in the first part of this thesis. These models are suitable for large deformations with
large rotations but small local strain. We make extensive use of the low-dimensional shape param-
eterization for time-critical collision and force processing. Regardless of the particular reduced
deformation model used, our approach addresses stable haptic display of distributed contact be-
tween two objects each with non-trivial geometry. We also exploit the reduced coordinates, q ∈ Rr,
to perform collision processing (Section 3.8), and to approximate deformed distance field values
(Section 3.12).

Without loss of generality (among reduced models) we assume the reduced deformation kine-
matics u(t) = Uq(t), where u ∈ R3n is the displacement vector (e.g., for a FEM simulation mesh
with n vertices), U ∈ R3n×r is a certain time-independent low-rank deformation basis matrix,
and q = q(t) ∈ Rr is the vector of reduced coordinates. The key algorithmic idea is that once
the reduced state, q and q̇, has been updated by the reduced integrator, co-state quantities such as
individual deformable point positions and normals can be sampled adaptively as needed by the
tree traversal. This evaluate-when-needed strategy enables us to reconstruct only the deformed po-
sitions of points encountered during the particular multi-resolution pointshell hierarchy traversal.
Points that are culled by the tree need not have their deformed position computed. The traversed
set of points is typically a sparse subset of all the points in the pointshell, resulting in significant
computation savings. We now describe the evaluation of pointshell points and normals.

3.6.1 Computing deformed point positions
Given the current reduced coordinates q of a haptic cycle, any of the deforming pointshell’s S
points can be reconstructed in 3r-flops by summing up the r per-vertex displacement modes:

ps = Ps + Us q, s = 1 . . . S, (3.6)

where Ps is the undeformed pointshell position, and Us ∈ R3×r is the precomputed modal dis-
placement matrix (interpolated at Ps from U using the FEM shape functions). If the haptic object

109



is the distance field object, the point then needs to be transformed into the frame of reference of
the distance field object (a 4 × 4 mtx-vec multiply with the same 4 × 4 matrix for all pointshell
points). The signed distance field value d is then obtained by a look up into the distance field (as
described in Section 3.11). If the point is in contact (d < 0), the normal will be computed, and the
penalty contact force evaluated. This force fs ∈ R3 is then applied as an external reduced force
UT

s fs ∈ Rr to the reduced deformable object integrator to excite deformations. This integration
timestep is performed at the end of the haptic cycle, producing q and q̇ for the next haptic cycle.

3.6.2 Computing deformed pointshell normals
Normals must be computed for sparse pointshell points in contact (d < 0) for rapid evaluation of
penalty forces. The set of points in contact during every haptic cycle is typically small compared to
the rest of the pointshell. We need not compute normals for noncontacting points, as the normal is
only necessary to determine the direction of the penalty contact force. Rigid pointshells have static
body-frame normals that can be precomputed. However, normals change under deformation (see
Figure 3.7), and not updating them significantly degrades haptic stability for large deformations.

Figure 3.7: Dynamic normals (computed using our method): Left: undeformed. Middle, Right:
deformed, viewed from two camera angles. In practice, normals need only be computed for
pointshell points in contact. Maximum deviation from the correct surface normal is 5.2 degrees in
this example; and less than 3.6 degrees for all but five points.

Deforming pointshell normals can be approximated in a variety of ways. Approximating a
pointshell point’s normal using a nearby surface triangle involves reconstructing at least three
points for a cost of 9r flops, with weighted surface normals involving more work. Normal is a
cross product of two tangent vectors, each of which is a linear function in q, so the normal is
quadratic in the components of q (plus normalization). Fast linear approximations involving 3r

110



flops (followed by normalization) have been used [JP02] to approximate this quadratic form, but
unfortunately their accuracy is restricted to small deformations (and they worked fine for small
deformations).

Figure 3.8: (Inward) normals deformed with deformation gradients: Left: undeformed con-
figuration. Right: deformed configuration. Our pointshell surfaces are embedded into FEM volu-
metric meshes (voxel volumetric mesh is shown in gray). Volumetric mesh deformations drive the
pointshell point positions and normals.

In our work, we exploit the fact that our geometrically nonlinear deformable models involve
large rotations but small strain. This enables us to well approximate the deformed normals simply
by transforming the undeformed normal by the local deformation gradient, followed by normal-
ization (see Figures 3.7 and 3.8). The deformation gradient at Ps ( ∂

∂Ps
of (3.6)), interpolated from

the FEM model, is a linear function of q,

Fs(q) = I +
∑

j=1..r

Fs,j qj, (3.7)

where s is the index of the pointshell point, and Fs,j ∈ R3,3 can be computed from the deformation
basis matrix U and the FEM shape functions. This allows us to construct a fast 3r-flop pointshell
normal approximation,

ns =
n′s
||n′s||

, n′s ≈ Fs(q)Ns = Ns + ∆Ns q, s = 1 . . . S, (3.8)

where Ns is the undeformed normal, and ∆Ns ∈ R3×r is a precomputed normal-correction ma-
trix (whose j-th column equals Fs,j · Ns) that accounts for large rotations–unlike the linearized
approximation in [JP02]. Unfortunately, due to its stretch component, the pseudonormal will (a)
be (typically slightly) off unit length and needs to be normalized, and (b) will be inaccurate in

111



the presence of large shear. Nevertheless, we find that the fast pseudonormal is an accurate and
haptically stable approximation when deformations consist of large material rotations and small
strain. Finally, at double the cost (6r flops + cross product + normalization), true normals could
be sampled by instead transforming the tangent space [RJ07]. This would likely not be a signifi-
cant bottleneck issue; we did not pursue it due to additional code complexity and since the 3r-flop
normals already performed well in our examples.

3.6.3 Alternative approaches to determining the contact normal
In this section, we discuss potential alternative approaches to computing the deformed normals. We
considered (and in some cases implemented) these alternatives when designing our algorithm, but
eventually decided not to pursue them. This is because we determined that normals obtained from
the deformation gradient (as presented in Section 3.6.2) best match the needs of our simulations,
both in terms of speed and continuity: deformation gradient normals are continuous both with
respect to contact location and deformations, which is beneficial to stability. Note that all of our
strategies obtain the contact normal using only one of the two objects in contact. The rationale for
this approximation was discussed in Section 3.5.

Normals from a local point cloud: This approach uses current positions of points in the con-
tacting point’s local neighborhood to recompute the normal. Denote the contacting point’s position
as p0, and let p1, . . . , ps denote points in some appropriately chosen neighborhood of p0, appropri-
ately weighted as w1, . . . ws, say, according to some kernel centered at p0. Then, the eigenvector
of the smallest eigenvalue of the matrix

s∑
i=1

wi(pi − p0)(pi − p0)
T (3.9)

points in the normal direction to the local point cloud [Hop94]. However, this is a costly computa-
tion, as measured by the time-constraints of haptic rendering: for every point in contact, it requires
computing the current positions of all points pi (O(3r) cost for each), assembling the 3x3 matrix,
and performing Singular Value Decomposition (SVD) on it.

Normals from two (or a few) neighboring vertices: in this approach, one defines a local tangent
plane at every contacting point by dynamically computing the vectors from the contact point to two
(or a few) pre-selected neighboring points. The normal is then obtained as a cross product of these
two vectors (or appropriately averaging cross-products if tracking more than two neighbors). This
method can be seen as an approximation to the method from the previous paragraph (normal from
a local point cloud). It is very simple, however it requires reconstructing the deformed positions of
two additional points, each of which requires a 3 × r matrix by r-vector matrix multiply. This is
twice the amount of work of the deformation gradient method that we use in our implementations.
Another problem occurs with sharp corners, where it is difficult to define meaningful local tangents

112



simply by tracking two neighboring vertices. More neighboring vertices might be required in such
cases (with higher costs).

Normals from the distance field: the previous two approaches (and the deformation-gradient-
based approach used in our simulations) obtain the normal from the pointshell. We also tried an
alternative approach of obtaining the normals from the distance field object; but eventually decided
not to pursue this approach, for technical reasons described below.

But first, why did we initially try to use the distance field to give us our contact normals? In a
simulation with a rigid distance field object and a deformable pointshell object, this would sidestep
the problem of the pointshell normals changing under deformation. We could simply obtain the
contact normal from the distance field, and not worry about the deformed normal of the pointshell
object. Another reason for considering normals from distance field was that if the pointshell object
is a thin-shell structure, such as a plastic chair, the normal direction is not well-defined: the surface
is infinitely thin and there are as such two candidate (opposite) choices for the direction of the
normal. Imagine the thin-shell upper part of the chair in contact with an infinite plane. No matter
which of the two directions is chosen for the normal, touching the chair with the ground will pull
the chair into the ground for one of the two possible ways of orienting the chair in contact (see
Figure 3.6.3). We eventually addressed thin shells and thin wires by fitting pointshell points onto
an offset manifold closed surface around the thin structure (see Section 3.8.1, last paragraph), but
we tried with distance field gradients first, as follows.

The most straightforward way to define normals from the distance field objects is to analytically
evaluate the gradient of the distance field at the locations of contact. The distance field is sampled
at discrete grid locations inside the distance field box, and can be trilinearly interpolated to arbitrary
positions inside a voxel:

d(x) =
8∑

i=1

φi(x) di, (3.10)

where φi(x) is the interpolating function of corner i of a voxel, and di is the distance field value in
that corner. Such interpolation makes the distance field C∞-continuous in the interior of a voxel,
and C0-continuous at the voxel boundaries. To obtain the gradient of this distance function, one
can analytically compute the gradients of the trilinear interpolation functions, and then evaluate:

∇d(x) =
8∑

i=1

(∇φi(x)) · di. (3.11)

The gradients are C∞ in the interior of the voxels, and not continuous at the voxel boundaries. We
implemented this approach, and found it not to work very well. The gradient discontinuities signif-
icantly affected the quality of haptic feedback. Namely, distance field gradients change direction
discontinuously at the voxel boundaries, which causes the contact force to discontinuously change
direction. This discontinuity is worse than with the original VPS, where only the force magnitudes
are discontinuous when crossing voxel boundaries, but not directions.

113



Figure 3.9: Normals ob-
tained only from the chair
geometry will give contact
forces in the wrong direction
for one of the two chair ori-
entations.

We also considered addressing this problem by precomputing
gradients on the points of the distance field grid, and then (trilin-
early) interpolating these precomputed gradients to arbitrary loca-
tions inside a voxel (and then obtain the contact normal via nor-
malization). The force direction is then continuous everywhere,
except along the (interior) medial surfaces of the object, where the
gradient is discontinuous, and might even flip 180 degrees from
one side to the other, causing the contact force direction to flip
also. Unfortunately, these interior medial surfaces can reach all
the way to the surface of the object. For example, consider a box
with 90 degree angles. The medial surface reaches each box edge
at an angle of 45 degree to both the adjacent faces. Consequently,
severe contact force discontinuities can occur very close to the sur-
face. For these reasons, we decided not to obtain the normal (and
therefore contact force) directions from the distance field object.

3.7 Point-based BD-Tree

Our nested tree traversal algorithm (to be discussed in Sec-
tion 3.10) must be intertwined with deformable collision detection
to quickly cull points not in contact. Collision detection is a time-
consuming process for general deformable models. With reduced
deformable models, it is possible to take advantage of the partic-
ular shape model u = Uq to perform collision detection at hap-
tic rates. Such collision detection is possible using the Bounded
Deformation Tree (BD-Tree) [JP04], a bounding volume hierar-
chy equipped with an efficient algorithm to update bounding vol-
umes when the model undergoes reduced deformations (see Fig-
ure 3.10).

The BD-Tree method is general in that it can be used, for example, for collision detection
against reduced deformable curves, triangle meshes, or tetrahedral meshes. The bounding volume
can be spheres, boxes, k−DOPs, etc. The strength of the BD-Tree is that it is output-sensitive:
unlike most standard bounding volume hierarchy updating algorithms for deformable geometry,
it is not necessary to update the entire hierarchy for collision detection: only bounding volumes
for which the immediate parents are in contact will be updated, and this can be done in cost
linear in the number of reduced deformable degrees of freedom and independent of geometric
complexity. We use a point-based version of BD-Tree with spherical bounds, where the BD-Tree
spheres cover the pointshell points (as opposed to, say, input triangle geometry), and wherein each
sphere center is also a point on the pointshell. That is, our novel nested point tree construction
allows us to use actual pointshell point positions as sphere centers, as described in Section 3.8. The

114



key benefit is amortization: all effort put into updating sphere centers during BD-Tree traversal also
simultaneously evaluates deformed pointshell point positions. See Figure 3.11 for an in-simulation
illustration of the BD-Tree on one of our haptic examples.

Figure 3.10: BD-Tree: Left: The BD-Tree for the green arc geometry in the rest pose. Center:
BD-Tree refitted under deformation. Right: the tree topology (which is never updated in the BD-
Tree method). In our work, the geometry covered by the spheres are not arcs (as in this illustrative
example), but pointshell points.

Only the spheres visited during deformable collision detection need to be repositioned and re-
fitted, and this can be done in r flops, and only using the knowledge of q. It is not necessary to know
the deformations of all the points in the pointshell, avoiding the O(n) bounding volume refitting
costs of standard collision detection methods. Each sphere center coincides with a pointshell point,
so the center is obtained automatically when evaluating the pointshell point position. Undeformed
sphere radius, and BD-Tree coefficients that specify how the radius changes under deformations,
are all precomputed. In particular, for every BD-Tree node i, the current radius Ri of the bounding
sphere can be computed (with r multiplications) as

Ri = Ri,0 +
r∑

j=1

aij|qj|, (3.12)

where Ri,0 is the sphere radius in the rest pose, qj is the j-th component of the current reduced
deformation vector q, and coefficients aij are time-independent and precomputed (see [JP04] for
more details). Radius Ri is not the smallest possible bounding radius; however, it is reasonably
conservative (see Figure 3.12). It grows less tight for large deformations, which makes collision
detection less effective for large deformations. However, performance was still very good in our
examples. We discuss pointshell construction and the point-based BD-Tree in the following sec-
tions.

115



Figure 3.11: Point-based BD-Tree: Top row: the rest configuration. Bottom row: tree during
contact. Right column shows the deepest bounding spheres that were traversed during this partic-
ular haptic cycle (i.e., each rendered sphere is free of contact). Note how the tree is traversed to
different depths depending on proximity to contact. We typically use many spheres (320 in this
example) on the first level, followed by 4x more spheres on consecutive levels. First-level spheres
are always traversed (therefore they appear in top-right image) if temporal coherence is off; how-
ever, when temporal coherence is enabled most of them need not actually be checked during most
haptic cycles. There are 4 hierarchy levels in this example. The small spheres next to the green
metallic part in the bottom-right image are level 3 spheres. Level 4 spheres have zero radius, as
they correspond to leaf points.

116



Figure 3.12: Point-based BD-Tree performance under large deformations: The sphere radii do
grow under large deformations (see, e.g., two level-1 spheres at the tip of the upper u-shaped hose),
however tree traversal is still very efficient. The upper hose is bent at an angle of approximately
25 degrees. If the green part is lowered (but kept inserted in between hoses) such that the upper
hose returns to (almost) rest configuration, the performance changes from 220µs to 210µs. To the
best of our knowledge, while limited to reduced deformations (as in our case), BD-Tree is the only
deformable bounding volume hierarchy update method that can reach haptic update rates (1000
Hz) with example complexity similar to ours. In general, the BD-Tree performs especially well
when large deformations are localized to a part of the scene; also, BD-Tree could be augmented
by computing bounds at configurations other than the rest configuration.

3.8 Multi-resolution nested pointshell

In this section, we describe pointshell generation. Our pointshells are not just flat collections of
points as in the original VPS method. They are organized into a multi-resolution hierarchy, which
enables significant computation speedups when large parts of the pointshell are sufficiently far
from contact. This section discusses various properties of pointshells and how they are related
to/necessary for stable haptic rendering. We then present an algorithm for generating a multi-
resolution pointshell guided by these properties.

Uniform pointshell sampling and meaningful pointshell normals are important for reliable
contact-force estimates and stable haptic rendering. At first, we considered pointshells sampling
polygon soup geometry, but stable haptic rendering cannot be guaranteed due to unpredictable
normals and the non-closed and non-oriented nature of the surface sampling. It is not possible to
guarantee stable haptic rendering of penalty-based contact forces for arbitrary pointshells: imagine
the rendering chaos if pointshell was a closely packed set of points, randomly positioned in a unit

117



box with randomly assigned normals (see Figure 3.13). The pointshell must also sample a closed
and oriented surface; otherwise, the inside of the object can enter contact, and/or the normals and
consequently contact forces could point in the wrong direction. Consequently, we designed our
pointshells to sample a closed manifold oriented surface. When combined with virtual coupling
saturation (Section 4.9), this restricts the distance field object to lie outside the pointshell object
(or at most a shallow penetration). A similar problem happens if points are too far apart from each
other, allowing a small feature in the distance field object to slip undetected in between two points
(and then abruptly being pulled out if it touches the pointshell from the interior side). This problem
can be prevented by keeping the pointshell resolution equal or finer to that of the distance field.
The original VPS pointshell was obtained by voxelizing the pointshell geometry, and using centers
of surface voxels as points of the pointshell. This approach is easy to implement and requires few
parameters, however we found that it can result in a relatively large number of points, many of
which are redundant. The VPS pointshell essentially samples the contact surface with points on an
axis-aligned grid, resulting in “staircase” sampling of the surface. We found that pointshells that
are positioned on an actual smooth closed manifold surface, and (quasi-)uniformly sample that
surface, tend to be stable; high frequency components, either in point locations or point normals
tend to cause instabilities. Sharp surface corners can still be rendered by properly orienting the
normals, albeit not aggressively.

3.8.1 Multi-resolution pointshell via particle repulsion

Figure 3.13: Unstable
pointshell: This “nightmare”
pointshell will result in a
very unstable (chaotic) haptic
signal.

We generate our pointshells by fitting a set of particles (points)
onto a smooth manifold surface, using the ideas of particle repul-
sion [Tur92, WH94]. Similar to [Tur01], we construct a nested
point hierarchy by fitting progressively finer samplings of points
(4× branching factor), while freezing coarser level points. We,
however, fit points on a level set of a distance field as opposed
to a triangle mesh (see Figure 3.14). We do so since (1) it was
convenient to re-use our distance field code, (2) the distance field
abstracts all underlying geometry and as such pointshell genera-
tion runs in time independent of the complexity of the underlying
triangle mesh, (3) “polygon soup” geometry (common in virtual
assembly simulations) can be supported.

In particular, the pointshell generation proceeds as follows. We
fit the particles onto a level set of a distance field. This distance
field is not to be confused with the signed distance field of the other
object (the distance field object) in the simulation. If pointshell
object is given as a closed manifold triangle mesh, we compute
a signed distance field to the pointshell object geometry, and use
the zero-distance level set. If it is given as a triangle “soup”, we compute an unsigned distance
field, and use the level set of some small positive distance value. In either case, call the resulting

118



level set surface T . We also construct a triangulated level set surface S using marching cubes. For
unsigned distance fields, we also remove any connected surface components lying completely
inside another component. In our examples, we identified the connected components using a
simple greedy algorithm. Then, we manually identified the exterior components and removed
the interior components; this last step could also have been automated. We used single precision
floating-point distance fields with resolutions ranging from 128× 128× 128 (8 Mb of storage) to
512×512×512 (515 Mb of storage (a 513×513×513 grid)). Our distance field computations took
on the order of 1 hour for 256 × 256 × 256 resolutions and meshes with about 100, 000-200, 000
triangles. These computation times could be shortened using advanced distance field computation
techniques [SOM04, SGG+06b]. We computed the distance fields everywhere inside the bounding
box (on grid vertices). Note, however, that these distance fields are only required to obtain S and to
constrain the particles to the level set surface T during repulsion. Therefore it is sufficient to only
compute the (unsigned) distance field in some appropriate shallow layer surrounding the geometry,
as opposed to everywhere inside the distance field box. Such computation could proceed faster and
require less memory.

Our nested hierarchy construction is similar to [Tur01]. We first “inject” the n1 points of the
coarsest level 1, by using stratified area-weighted random sampling of S [Tur92]. We then let the
particles repel each other while constraining them T . We do so by alternating between particle
repulsion and constraint stabilization (to T ) steps. Our repulsion potential among two particles
is radial, and its gradient equals 2(d/R)3 − 3(d/R)2 + 1, where R is the finite influence radius,
and d is the Euclidean distance among two particles. Gradient is set to zero for d ≥ R. At every
iteration step, we assemble the repulsion gradients, then move each particle a distance of −η in
the direction of the net gradient, where η > 0 is the descent parameter. This step will move the
particle (slightly) off the level set surface T . We restore it back to T by performing a Newton
solve using the distance field and its gradients: we walk in the direction of the gradient of the
distance field, until the particle is within ε tolerance to the level set value. This two stage process
is repeated until particles have converged sufficiently. We then permanently fix the position of the
particles, and inject n2 new particles that will form level 2. These new particles are influenced
both by level 1 particles and among each other. Again, the level 2 particles are iterated until
convergence, when we fix them, and insert level 3 particles. This procedure is repeated until a
desired number of levels, or a desired sampling accuracy, has been reached. We use ni+1 = 4ni

so that surface sampling resolution about doubles with every level. We also decrease the particle
repulsion radius R by a factor of two for each new level. The resulting multi-resolution pointshell
has the property that for every level k, the set of points up to level k samples the level set surface
T about uniformly (see Figure 3.14). Note that the triangle surface S is only necessary to be able
to efficiently draw initial random positions of particles. Computing the gradient of each particle
by traversing all other particles is expensive, so we accelerate it using a hash table. Every particle
can then quickly traverse the particles inside neighboring cells, up to the necessary distance given
by the finite repulsion radius.

The repulsion algorithm uses parameters R, η, and ε. We tuned these parameters manually, by
trial and error. We set ε to a constant small value; we typically used ε = 10−4 with our scenes (total

119



size of scene geometry was typically between 1 and 10 units). Repulsion radius R and descent
parameter η were tuned by running the repulsion interactively on coarse repulsion levels, with the
user tuning the two parameters until pointshell visually looked good quality (near-uniform point
distributions). Too high η causes oscillations in point locations, too low η causes slow convergence.
Too high R causes points to spuriously accumulate at sharp edges, too low R causes points to stall,
as they are no longer affected by their neighbors. The choice of R, η is important as repulsion does
not perform well with suboptimal values of parameters, but works really well with good parameter
choices. We were always able to find good values for R, η within a few tuning iterations. Then, we
used these parameters to run an offline process that generated as many pointshell levels as desired,
splitting R by 2 for every new level generated. It typically took several hours to fit our pointshells
with 256, 000 points onto a 256 × 256 × 256 unsigned distance field. Other than the hash table,
the process was not optimized. If desired, particle fission could be used to iron out local point
irregularities [WH94], however, such irregularities were rare in our examples.

Pointshell points need to be assigned (inward-pointing by convention) normals. We do so by
locating the closest triangle of S, and assigning the normal to be the pseudonormal [BA05] of
the closest feature (face, edge, or vertex). Other variations include using barycentrically weighted
pseudonormals, the normalized gradient of the distance field, or, if original geometry is a closed
manifold mesh, the pseudonormal of the closest feature on that mesh, which best preserves sharp
corners.

Figure 3.14: Multi-resolution oriented pointshell from particle repulsion: Left: The first two
levels of a part of the hose scene. Right: detail with four levels shown. Points are fitted on a small-
distance offset oriented manifold surface to support “polygon soup” input geometry, and provide
oriented surface normals for contact.

Simulating thin shells and thin wires: This same approach of fitting points on a small-offset
level set of a distance field also allows us to simulate thin shells and thin wires, by treating them as

120



pointshell objects. No modification of the pointshell generation algorithm is necessary. Extracting
the isosurface of the unsigned distance field effectively serves to construct an offset surface for the
thin structure. Pointshell points are fit onto this offset surface. Normals on opposite sides of this
offset surface then oppose one another, giving correct contact force directions. The choice of the
offset value is important, since the pointshell must be thick enough to prevent pop-through, and
at the same time thin enough to still approximate thin structures well. We were able to find such
offset values in practice. The thin structure must be resolved well, and therefore high resolution
distance fields are typically required (e.g., 256x256x256 or higher). For example, this is how we
simulated the cables of the deformable pointshell bridge (Figures 3.15 and 3.16). See also the
discussion in Section 3.6.3 on thin-shell structures.

Figure 3.15: Pointshell for thin structures (e.g., cables): First and third image from left: the
bridge geometry, viewed from two camera angles. Second and fourth image: the pointshell. Each
red dot is one point. Points are fitted onto a level set (offset surface) of an unsigned distance field
to the bridge geometry. Distance field resolution was 256x256x256 for this pointshell, and offset
distance was 1.4x the size of a distance field voxel.

3.8.2 Pointshell generation alternatives
In this section, we briefly describe some alternative approaches to pointshell generation. These ap-
proaches could be used instead of the particle-repulsion generated pointshells. Points could then be
organized into a multi-resolution hierarchy using a general-purpose hierarchy generation method
(described in Section 3.9.1). However, in this thesis, we advocate the particle-fitting approach as
the general method of choice because it can provide (near-)uniform sampling, at all resolution lev-
els. All the other methods described below will typically give less uniform pointshells, and/or they
will not aim at organizing the pointshell into a hierarchy, requiring a general-purpose hierarchy
generation method, which sometimes results in suboptimal hierarchies.

The first approach that we tried in our research was implementing the pointshell generation
technique of the original VPS method. In this method, centers of voxels intersecting the input

121



Figure 3.16: Pointshell for thin structures with a smaller offset: Left: pointshell (four levels,
85,000 points) fitted using a 256x256x256 unsigned distance field (same pointshell as in Fig-
ure 3.15). Right: pointshell (five levels, 256,000 points) fitted using a 512x512x512 unsigned
distance field, and with a 2x smaller offset distance as pointshell on the left. Both pointshells use
an offset of 1.4x the size of the distance field voxel. Note that the finer pointshell resolves all
twelve central vertical cables on the bridge, whereas the coarser pointshell merges groups of three
cables together. Simulation with the finer pointshell is more permissive (accurate) in that thicker
objects can be inserted through holes in pointshell geometry, such as the holes in the bridge’s up-
per shelf. In general, higher resolution unsigned distance fields are required for smaller offsets,
otherwise the offset surface becomes progressively non-smooth (noisy).

polygonal geometry are used as the pointshell. In the VPS method, point normals are assigned from
the nearby voxel geometry, or from suitable nearby triangle geometry (personal correspondence
with Boeing). We simply located the nearest triangle to each pointshell point and assigned the
pseudonormal of the nearest feature (vertex, edge or face) on this triangle. In our experiments,
these “classical” VPS pointshells often resulted in redundant samplings of the contact surface. For
example, in areas of high surface curvature there were regions where the surface was represented
by two “layers” of points (with normals pointing in about the same direction). Since the point
locations originate from a voxelization, the surface is sampled along a rectangular grid (which is
effectively high spatial frequency content). In our experiments, the VPS pointshell was reasonably
stable. However, stability improved when we started using pointshells from particle repulsion,
especially at (generally more difficult) higher stiffness settings.

The next thing that we tried was to simply use the vertices of the input geometric model as the
pointshell points. This will give poor results if the model mesh vertices do not sample the surface
near uniformly. For example, large triangles will introduce under-sampled regions. If triangle sizes
vary across the model, bias will be introduced into contact forces, since more densely populated re-
gions will contribute larger contact forces One fix to this problem is to sample randomly positioned
points on the triangles (with randomization weighted by triangles’ surface areas), as opposed to
vertex positions. However, pointshell uniformity cannot be guaranteed and will be moderate at
best in practice. Another possible solution is to use contact weights for points, as discussed in

122



Section 3.5, but this is still not a good solution; the randomness of point positions will adversely
affect the haptic signal, and point resolution will be wasted in regions that ended up being densely
sampled by the random number generator.

Figure 3.17: A point cloud generated us-
ing the Layered Depth Cube algorithm.

Another approach to generate the pointshell is
the Layered Depth Cube algorithm [PZvBG00] from
point-based rendering. This algorithm was designed
for converting polygonal models into a point repre-
sentation suitable for point-based graphical rendering.
In this approach, the input polygonal surface is inter-
sected with rays of parallel lines. Three bundles of rays
are used: one for each of the x, y, z coordinate axes.
Within each bundle the rays are parallel to the coor-
dinate axis, and follow a regular grid pattern. Points
are defined as intersections of rays with the geometry
(see Figure 3.17). The resulting sampling will have the
property that, roughly speaking, every location on the
input surface is at most a distance of h

√
3/2 away from some point sample, where h is the distance

between parallel rays. However, the sampling is non-uniform due to the bias introduced through
the chosen x, y, z directions. For example, three points will be positioned close to each other at
any location where the surface is close to the intersection of three orthogonal rays. This might not
be a major issue for point-based graphical rendering, but in haptics, it can lead to instabilities in
the force/torque signals.

Both the random point sampling strategy and the Layered Depth Cube strategy result in non-
uniform point distributions. Particle repulsion arises very naturally in this context, as it allows
to smooth out these irregularities. This is what eventually led us to use particle repulsion as the
pointshell generation method of choice in this thesis. As we described in Section 3.8.1, we use
random point sampling to initialize point locations, followed by repulsion. Another option would
be to use the LDC point cloud as the initialization step.

3.9 Nested point-tree construction

In this section, we demonstrate how the multiresolution pointshell can be organized into a nested
point-tree, a novel datastructure that combines a nested multiresolution pointshell with a de-
formable sphere-tree hierarchy (BD-Tree). Only small pointshells (∼4000 points on our hardware:
Intel Core 2 Duo 2.66 Ghz processor with 2 Gb RAM, manufactured in 2007) can be traversed
linearly (point by point) in a haptic cycle. To some extent, larger pointshells are possible by us-
ing temporal coherence and wider voxels [MPT06]. To simulate much larger pointshells (rigid
or deformable), we organize the pointshell into a nested tree hierarchy (see Figure 3.18). The
(deformable) pointshell hierarchy also serves as a (BD-Tree) bounding sphere hierarchy. Such a
nested point-tree essentially converts the tree traversal into a linear operation, which in turn enables

123



graceful degradation of contact.

Figure 3.18: Nested point-tree: Left: The pointshell. Right: the hierarchy, the traversal order and
tree levels Li. Particle-repulsion levels are 0-1, 2-5, and 6-19 in this case.

After particle repulsion, each point is positioned, and assigned to one of the disjoint particle-
repulsion levels. We proceed by organizing the points into a sphere-tree hierarchy. In the de-
formable case, this results in a point-based Bounded Deformation Tree (BD-Tree). We first gen-
erate tree levels Li : the set Li consists of an instance of every point of particle-repulsion levels
1 through i (see Figure 3.18). Therefore, if a point first appears on particle-repulsion level i, an
instance of this point will appear in all tree levels Lj, for j ≥ i. Instances can share common mem-
ory data. For example, when traversing the tree at runtime, the distance field value for a parent
can be cached and reused when instances of the same point are traversed further down the hier-
archy. The deepest tree level consists of a single instance of all the points in the pointshell. The
elements of Li are our tree nodes on tree level i. This construction was chosen so that all nodes at
all levels lie on the actual contact surface T , and that each Li samples T about uniformly (with-
out gaps at locations of coarser level points), with progressively finer resolution with level index
i. This is in contrast with previous time-critical bounding volume hierarchy approaches in litera-
ture [Hub95, MO06]. In these previous approaches, the contact surface is resolution-dependent,
consisting simply of a union of bounding spheres (with progressively smaller radii depending on
the level-of-detail).

We establish the tree parent-child relationships by traversing nodes at every level Li+1, and
assigning each node to the nearest node from level Li. We call the resulting tree hierarchy a nested
point tree hierarchy. A bounding sphere radius is computed for each non-leaf tree node, centered
at the location of the node, and covering all nodes in the subtree, in the undeformed configuration.
The radius of the bounding sphere gets progressively smaller for instances of the same point at dif-
ferent levels. For deformable pointshells, the sphere radius is updated at runtime using appropriate
precomputed BD-Tree datastructures (update cost is r flops per traversed node). The sphere center
always coincides with the current node location (and its child instances).

124



3.9.1 Nested point-tree construction for alternative pointshell generation
approaches

The “alternative” pointshell generation techniques of Section 3.8.2 only give the positions of the
points. In order to benefit from a multi-resolution pointshell, it is necessary to organize the points
into a multi-resolution nested tree. Here is one general algorithm to do so. First, pick a “seed” point
and denote it p0. The seed can be picked, for example, at random. Find the point furthest away
from p0 and denote it p1. Next, p2 is defined to be the point with the maximal minimum distance
to {p0, p1}. This process is repeated, pk being the point with the maximal minimum distance to
{p0, . . . , pk−1}. When all the points have been selected, the algorithm has ordered the pointshell
points into a sequence. Next, we organize the points into a tree, as follows. We first select a
branching factor B for the tree (we typically used B = 8). The first B points in the sequence
are defined to be level 1 points, the next B2 points are level 2 points, and so on until all points
have been assigned to a level. These levels then take the role of particle-fitting levels, and from
here on, nested point-tree generation proceeds exactly as described in Section 3.9. We note that
the idea of sorting point locations by selecting the next farthest point is very natural; for example,
in [ELPZ97], they use it for progressive transmission of 2D images.

3.10 Time-critical progressive contact forces

We now describe the core approach for time-critical evaluation of contact forces when one object
is represented as a rigid or deformable pointshell, and the other object provides a signed-distance
oracle, d(p).

3.10.1 Runtime tree traversal

At every haptic cycle, the algorithm traverses the pointshell hierarchy in breadth-first order (see
Figure 3.18). For every tree node, the algorithm looks up the value of the signed distance field
at the node’s location. Next, to support deformations, the BD-Tree method is used to update the
radius of the bounding sphere covering points in the subtree rooted at the node. If the distance
field value is greater than the radius, no point in the subtree can possibly be in collision, and the
subtree is not traversed further (see Figure 3.19 (Bottom, node 1)). Otherwise, all children of the
node are added to a list for future traversal (see Figure 3.19 (Top, node 0)). If the distance field
value is negative (contact), a penalty force is assigned to the node, just like in the single-resolution
case. If descendant copies of the node (i.e., same point on deeper levels) are visited during later
traversal, no additional force is accumulated. The copies, however, are not skipped from traversal
(unless graceful degradation forces the traversal to terminate before the corresponding level is
reached) since they might have proper (i.e., non-copy) children in contact. Also, the distance value
is cached the first time a point is looked up into the distance field in a given haptic cycle, and
subsequently simply read from memory when visiting descendant copies.

125



Figure 3.19: Tree traversal: Left: The bounding sphere of node 0 intersects the environment and
all the children are queued for traversal (indicated by the symbol ’Q’). Right: Node 1 is sufficiently
far from contact that its bounding sphere does not intersect the environment, and as such, the
subtree need not be traversed further. This completes the traversal of Level 1. The traversal list for
Level 2 is {0, 4, 5}, where 0 is in this case the copy on level 2.

The subtle but algorithmically key point is that our point-based BD-Tree uses nested pointshell
points as deformed sphere centers. This seemingly trivial choice enables time-critical testing of the
point-based BD-Tree against a distance field: updating a BD-Tree sphere also updates a deformed
pointshell point, p, which can in turn be immediately evaluated against the distance field, and
if in contact (d(p) < 0) will contribute to the progressive accumulation of contact forces in a
multi-resolution manner. Therefore, even in the expected case where there is insufficient time
to completely test the BD-Tree against the distance field, approximate contact forces can still be
accumulated in a time-critical fashion.

126



3.10.2 Temporal coherence

Temporal coherence [Hub95, MPT06] is exploited using space-time bounds as follows. When a
tree node is processed, an estimate of the earliest possible haptic cycle when the bounding ball
at this node can enter contact is determined (and cached with the node), based on node’s current
distance to contact, sphere radius, and maximum point velocity that can occur in the simulation.
This cycle can be the immediate next one if the node is close to contact (or in contact), or it can
be hundreds of cycles into the future for points far from contact. Next time a node is about to be
processed, we can safely skip it if the current haptic cycle is younger that what stored in the node.
Temporal coherence reduced our simulation times by 20%-45%.

We currently do not take into account pointshell point deformation velocities in our tempo-
ral coherence estimates (our deformations are low-frequency), only the haptic object maximum
velocities and rotational velocities. Including pointshell deformation velocities would be straight-
forward, with the additional cost of having to construct point velocities (ṗs = Usq̇), see Equa-
tion 3.6 on page 109. It would also be necessary to impose a maximum acceleration limit on q̈
(and take this into account in the temporal coherence estimate). This could be done inside the
implicit Newmark integrator, in a way similar to how we limit haptic object velocities and rota-
tional velocities (Section 4.6). In particular, after the implicit Newmark integrator has evaluated
the current internal forces and damping forces (and before solving the r×r linear system), one can
compute the current reduced acceleration as q̈ = −D̃(q, q̇) − R̃(q) + f̃ . If ||q̈||2 > q̈max, then one
can scale (for this timestep only) D̃(q, q̇), R̃(q), f̃ by q̈max/||q̈||2. Such scaling will only chop high
accelerations. These are not very typical of manipulation scenarios; they can occur for example,
if the user deliberately quickly pushes on the deformable object, or if the object is very stiff with
strong internal elastic forces. They can also occur if the user strains the deformable object and
then suddenly releases it. This technique is general and can be used whenever one needs to keep
the velocities/acceleration of a reduced deformable object within given boundaries.

3.10.3 Graceful degradation

A desirable property of a haptic rendering algorithm is graceful degradation: if there is not enough
computation time to complete the contact computation fully, the algorithm should not fail, but
rather return a reasonable approximation, given the limited computation time available.

If the contact scenario is not very involved, much of the tree will be culled quickly and only
a small fraction of the pointshell will be traversed. In contrast, if there are many different contact
sites, such as when the pointshell object is positioned close to the distance field object, a large
fraction of the pointshell will need to be traversed, preventing a complete tree traversal within one
haptic cycle. To support graceful degradation in such cases, we traverse the tree progressively
level by level (see Figure 3.20). While traversing the list of nodes that need to be visited on
level i (as determined by level i − 1), we build the traversal list for level i + 1. At the end of
level i, we compare the size of this list to a measure of the remaining computation time for the
haptic cycle. Only if enough time remains, we render the next level. The algorithm always either

127



Figure 3.20: Graceful degradation: Left, Middle: With involved contact scenarios, many tree
nodes need to be traversed during a complete hierarchy traversal. Right: Under graceful degrada-
tion, tree is traversed only up to a shallow depth, as permitted by available CPU power.

completes a level or does not start it. The resulting contact forces are identical to those obtained
under an exhaustive tree-less traversal of points up to a given level. Note that such a scheme is of
course only approximate: only geometric features resolved by points on the deepest traversed level
will be rendered. The benefit of our algorithm is that rendered surface resolution and contact force
accuracy both increase with available computing power, as deeper levels can be rendered. The level
at which the traversal terminates depends on the difficulty of the contact configuration and the cold
and warm thresholds. Faster computers can use larger thresholds and will as such render deeper
levels (potentially the entire pointshell), i.e., more accurate contact forces will be computed. With
progressively finer pointshells, contact forces converge to a limit, as demonstrated in Section 3.5.1.

LOD control: The amount of work required to process a node is predictable 1, and it is not
necessary to time the execution explicitly. Instead, we count the total number of tree nodes visited,
V , during the current haptic cycle. We use two thresholds to determine whether to render the next
tree level. All the levels up to and including the deepest level rendered in the previous haptic cycle
use the warm threshold VW , whereas all deeper levels use the cold threshold VC < VW . A level
is rendered if the total number of tree nodes visited before entering this level is below the level’s
threshold. Cold threshold is stricter to prevent popping back and forth among two levels during
consecutive haptic cycles; we set VC = 0.8VW . In practice, we have seen LOD changes at most
about 2-3× per second, and did not feel any popping haptic rendering artifacts. LOD changes can
be made fewer by reducing VC .

Warm threshold selection: In our simulations, we selected VW manually by running the sim-
ulation and observing computation times per haptic cycle. Often, we would use VW = 2500 for
a new (2007) Intel Core 2 Duo 2.66 Ghz processor with 2 Gb RAM, and VW = 600 for a three-
year-old (2004) 3.0 GHz dual Intel Xeon processor with 2.75 Gb of memory. The selection of VW

was not difficult and could be automated, as the cost to process each node is O(r), establishing
a high correlation between the number of traversed nodes and the total haptic cycle computation

1Applies also to deformable distance fields, if the proxy shell is small and spatially nearly uniform, such that the
kNN search runs in approximately constant time.

128



time. For example, the user could set the desired maximum computation time per haptic cycle, and
the computer would (continually) measure the execution time using the standard internal system
timers, reducing/increasing the warm threshold to match the desired performance.

Counting points in contact: Another possible improvement to our thresholding scheme would
be to count both the number of points traversed and the number of points in contact. Namely,
points in contact require more work than traversed points not in contact. Traversed points require
3r flops to construct point position, r flops to construct BD-tree radius, andO(1) flops to transform
the point to the frame of reference of the distance field object (4×4 mtx-vec multiply) and look up
the signed distance value. Points in contact additionally require 3r flops to construct the contact
normal, one sqrt computation to normalize it, O(1) work to update the total contact force and
contact force derivatives, and 3r flops to project the contact force into the reduced deformable
basis. Therefore, we could predict the computation time approximately by a properly weighted
linear combination of the number of traversed points Vtraversed and number of points in contact
Vcontact. That is, we would not render the next level if the predicted next level completion time

α
(
Vtraversed + Vqueued

)
+ β

(
Vcontact +

Vcontact

Vtraversed

Vqueued

)
(3.13)

is greater than the appropriate (warm or cold) threshold. Here, Vtraversed and Vcontact refer to the
node count at the end of the current level, and Vqueued refers to the number of nodes queued for
traversal on the next level. Note that the number of nodes in contact on the next level is not known.
The above prediction estimates it based on the ratio between the nodes in contact and traversed
nodes up until the current point in time. Given the cost of operations for points in contact, β could
be set to 1.5α. This is, however, probably too pessimistic, as the the O(1) distance field look up
costs carry a relatively high constant due to costs of accessing memory, and trilinear interpolation.
However, in our implementation we opted for the simple count-traversed-points-only scheme (as
described in the LOD control paragraph). The number of points in contact is typically small
compared to the total number of points traversed. Our experiments indicate that the amount of
time spent in the point-contact part of the code is small compared to the point-traversal code; but
of course, this becomes less so in scenarios where the ratio between points in contact and traversed
points is high. In such cases, a scheme such as the one from Equation 3.13 might be employed to
predict next level computation times more accurately.

Low-pass filtering geometry at coarser levels: it might be advantageous to have the different
LODs sample appropriately low-pass-filtered versions of the geometry, as opposed to one and the
same surface at all levels. The motivation for this is that if the surface has high-frequency spatial
components, sampling it near-uniformly at coarse resolutions might result in aliasing in contact
forces. We did not address this extension in this thesis, and were still able to generate very stable
haptic simulations with reasonably detailed models; the problem might be more pronounced with
extremely detailed objects. One way to address it would be note that the issue is more pressing with
normals than with point positions (normals are essentially spatial derivatives of geometry and as

129



such more prone to aliasing than the geometry itself). We would generate the pointshell hierarchy
in the same way as in this thesis, but assign different normals to copies of the same point at different
levels; each normal would be assigned with respect to the appropriately low-pass-filtered version
of the pointshell object geometry.

3.11 Rigid distance field

Figure 3.21: The proof of Inequal-
ity 3.14.

A rigid distance field object in our simulations carries
a signed distance field, d(p), against which any trans-
formed pointshell point p can be queried to detect con-
tact (d(p) < 0). Computing a signed distance field
is straightforward for closed manifold meshes. In the
common case of “polygon soups” we first compute an
unsigned distance field to the geometry, then extract
a level set isosurface for some small positive distance
value using marching cubes to obtain a closed mani-
fold mesh [LLVT03] (see also [SOS04]). Next we re-
move any mesh components completely contained in-
side another component, and then compute a signed
distance field with respect to the remaining closed
manifold mesh(es). At runtime, we interpolate the dis-
tance field grid values to the query location if the query
location is inside the distance field box. If it is outside
the box, we conservatively estimate

d(p) ≥ dbox + dboundary, (3.14)

where dbox is the shortest distance from the query
to the distance field box, and dboundary is the query-
independent minimum distance field value on the surface of the distance field box (see Figure 3.11).

Inequality 3.14 has an important practical value: many pointshell points (when transformed to
the frame of reference of the distance field object) will not lie inside the distance field bounding
box, because they are far away from contact. Typically, the distance field bounding box will cover
some reasonable amount of space encompassing the distance field object; but making the distance
field box too large is impractical since it either leads to a larger distance field memory footprint, or
to lower resolution in resolving the features of the distance field object (since a lot of the resolution
is “wasted” in free space). In our implementation, we first fit a tight centered box (with all sides
equal, i.e., a cube) to the distance field object, then scale the box from its center by a certain
expansion factor (typically 1.5). Without Inequality 3.14, when p is outside the distance field box,
all that can be said about d(p) is d(p) ≥ dboundary.When traversing the nested point-tree, we would
therefore have to assume the worst case d(p) = dboundary. If p is very far away from the box, this

130



estimate is wasteful. For example, if p is an inner node in the nested tree, its bounding sphere
might be deemed to be potentially colliding, and as such its children will be traversed, even though
in reality p and the bounding sphere for its subtree might be far away from contact. In contrast,
Inequality 3.14 provides an estimate that grows with the distance of p to the bounding box: for
points very far from the bounding box, the estimate will be dominated by the dbox term. Tighter
(and hence larger) distance estimates also enable more aggressive temporal coherence estimates
of point’s shortest time to contact. Note that the distance estimate discontinuity when crossing
in/out of the distance field box does not affect the validity of temporal coherence predictions, as
our distance estimate is always conservative: it reports a value smaller than the true distance to
contact.

The proof of Inequality 3.14 follows by connecting the query point p to its closest point pC

on the surface (see Figure 3.11). The line segment from p to pC penetrates the distance field box
boundary at exactly one location: if it penetrated the box boundary at two locations, the second
location would make the line segment exit the box, so a third penetration would be necessary to re-
enter the box; no straight line, however, can intersect the box boundary in more than two locations
(except if the line lies in the plane of a face of the box; but then, it cannot connect to a closest point
inside the box). Call the distance from p to the bounding box intersection d1, and let d2 be the
distance from the bounding box intersection to pC . Then, d(p) = d1 +d2.We must have d1 ≥ dbox,
since d1 is the length of some segment joining p and the distance field box. Also, we must have
d2 ≥ dboundary, since d2 is the length of some segment connecting a point on the box boundary and
a point on the object’s surface. Therefore, it follows that d(p) = d1 + d2 ≥ dbox + dboundary. QED.

Comparison to VPS voxmap: We also implemented the standard VPS voxmap [MPT99] and
found distance fields to provide more stable haptic feedback, especially at higher stiffness settings.
We attribute this difference to discontinuities in voxmap contact force when crossing voxel bound-
aries. Distance fields also better support deeper penetrations: voxmap force vanishes as soon as
the single-voxel contact layer is penetrated, whereas the distance field continues to give a repulsive
force even for deep penetrations. The distance field contact force is proportional to penetration,
and only peaks once reaching object’s interior medial surface. To reduce distance-field memory,
a hybrid data structure would be possible, using a wide-bit voxmap in free space, and a distance
field accessed via a hash table [SL06] in the shallow contact force layer surrounding the object.
With increasing distance field resolution, the number of surface voxels (where 32-bit floating point
values must be stored) grows quadratically, whereas the number of all voxels (where n-bit voxmap
must be stored, n < 32) grows cubically, so such hashing becomes more and more advantageous
with increasing resolutions.

Fast runtime evaluation of distance fields: Given a query location p inside the distance field
box, we evaluate d(p) using trilinear interpolation of precomputed distance field values at the
vertices of the rectangular grid. However, in order to perform the trilinear interpolation, it is first
necessary to find the distance field voxel containing the query location p, i.e., it is necessary to

131



compute (
floor(

x− x0

h
), floor(

y − y0

h
), floor(

z − z0

h
)
)
, (3.15)

where the distance field box is assumed to be aligned with the coordinate system axes, (x0, y0, z0)
is the lower-left-bottom corner of the distance field box, h is the distance field grid spacing, and
p = (x, y, z). It is possible evaluate Equation 3.15 directly, say, using the (int)( ) float-to-integer
type-cast in C. However, on Intel architectures, (int) compiles into an instruction that causes the
CPU pipeline to stall temporarily. We were able to obtain a 30% speedup in overall distance
field lookup using an alternative approach that avoids explicit integer rounding by exploiting the
structure of the IEEE floating point format [Nin02, Eri01]. This optimization is possible when
the distance field resolution is a power of 2. Essentially, if w ∈ [0, 1], and [0, 1] is divided into
2k uniform buckets, then the index of the bucket containing w is given (in binary notation) by the
first k mantissa bits of 1 + w ∈ [1, 2]. Furthermore, the remaining mantissa bits give barycentric
coordinate within the bucket, which can then be used directly for trilinear interpolation. We wrote
C inline assembly code that uses these ideas to quickly find the voxel containing the query point
and barycentric weights within the voxel.

3.11.1 Analytical implicit functions instead of a distance field

The haptic simulation can be simplified if the voxmap/distance field is replaced by a simpler im-
plicit function with an analytical formula, such as a sphere, cube, or combination of infinite planes
(see Figure 3.22). Analytical gradients are then typically continuous and can be used to determine
contact normals (but the issue of contact force direction discontinuities across the medial axis is
still present, as discussed in Section 3.6.3; the singularities are isolated/non-existent for very sim-
ple objects such a sphere or a single plane). Such analytical implicit function simulations are, of
course, limited by the fact that analytical implicit functions cannot simulate detailed geometry.

3.12 Deformed distance field

Our real-time contact algorithm performs over a thousand signed-distance-field evaluations per
millisecond-long haptic frame. Distance fields for complex rigid objects can be preprocessed and
runtime-sampled quickly, however the same is not true of the deformable distance fields needed to
support time-critical “defo-defo” contact. In this section, we explain how we can exploit reduced
deformations to provide approximate signed distance values very quickly.

If distance field computation (evaluation) costs were zero or negligible (which is not the case
today, but perhaps possible in the future), one could simply treat the deformed distance field as
an oracle to provide the exact distance d(p) to be used in the contact force model of Equation 3.1
on page 105. On today’s hardware, however, distance field evaluation for deformable models is
expensive and cannot be performed at haptic rates for non-trivial geometry [SGG+06b, SGG+06a].

132



Figure 3.22: Haptic contact between reduced deformable objects and rigid objects modeled
by simple analytical functions: Left: The user-manipulated deformable chair is a deformable
pointshell with about 26,000 vertices, rendered against an analytical implicit function of two per-
pendicular walls. Right: The deformable bridge is a deformable pointshell of about 41,000 ver-
tices, rendered against a user-manipulated sphere. The chair is a linear reduced deformable model
(linear modal analysis deformations). The bridge is a nonlinear StVK reduced deformable model,
as described in the first part of the thesis.

Even if an acceleration datastructure such as a bounding volume hierarchy was computed (re-
fitted) to the deformed triangle mesh before each haptic cycle, each individual point distance query
requires O(log(n)) search time, where n is the number of triangles in the model.

Deformed distance fields can be computed on grids in appropriate regions of interest using
methods such as Fast Marching [SM01], or 3D scan conversion [SPG03] (also see [JBS06] for a
survey). Fast marching has also been applied to unstructured locations inside the object [MAC04],
however the approach relies on good spatial distribution of the distance field query locations, with
the locations known in advance at the beginning of each haptic cycle, neither of which is the
case in our simulations. These methods recompute the distance field from scratch, i.e., they are
general-purpose distance field computation algorithms, invoked separately with each deformed
configuration. They cannot update the distance field at hard real-time rates for complex geometry
as their computation times depend on the number of model triangles; the workload required to
process each haptic cycle would also grow with the distance field resolution.

A deformed distance field can be approximated by re-using a precomputed distance field in the
object rest configuration. One such “material-space distance” approach was proposed by [HFS+01],
and it works as follows. First, note that deformable objects typically carry a deformable simula-
tion mesh, such as a tetrahedral mesh or hexahedral mesh (this is also the case in our work). One
can then maintain a bounding volume hierarchy on top of the tetrahedral mesh. Given a query
location p, one can use the hierarchy to quickly locate the tetrahedron containing p, or detect that

133



p is not contained in any tetrahedron. If inside a tetrahedron, one can use p’s barycentric weights
to pull p back to the rest configuration, obtaining the corresponding rest configuration location P.
A distance value estimate is then obtained by looking up P into the precomputed signed distance
field. There are two main problems with this method. First, the computed distance value will be
inaccurate under stretching and compression. Second, the methods cannot report distances outside
of the object, i.e., it is restricted to the domain of the tetrahedral mesh. The first problem can be
alleviated by using a push-forward to the current configuration [TSIF05]. After computing P, one
does not use the precomputed undeformed distance field directly. Instead, a Newton solve across
the undeformed distance field is performed, starting from P and guided by the distance field gra-
dients, to obtain a location S on the zero signed distance field level set S. Point S serves as a
reasonable approximation to the closest point to P on S. Then, one can use another precomputed
static bounding volume hierarchy to quickly locate the closest point to S on the object’s rest con-
figuration triangle mesh (call this closest point SM ). Note that this triangle mesh can be much
higher resolution than the tetrahedral mesh. Finally, the deformed distance is approximated as the
distance from p to the current (i.e., deformed) location of SM .

In our work, we only need the distance at the sparse locations of traversed tree nodes, which
only become known progressively during the traversal. Also, we need to be able to compute
distances quickly; both [HFS+01] and [TSIF05] were designed and used in offline simulations.
Material-space methods do not assume any particular structure to the query locations, and as such
permit convenient output-sensitive random access to the signed distance field. The disadvantage of
material-space methods is that one needs to maintain a bounding volume hierarchy on the object’s
deforming simulation mesh, and traverse this hierarchy for each deformed signed distance field
query. Because we typically have to perform many distance queries in each haptic cycle, this
method cannot sustain haptic rates for objects with complex geometry. We propose a variant of the
material-space distance method which does not require a deformable bounding volume hierarchy
and which can also compute distance approximations for query locations outside the object. During
pre-process, we compute a signed distance field with respect to the undeformed configuration. At
runtime, we compute fast approximations to the deformed distance field values d(p) of a reduced
deformable object, at the locations of traversed pointshell points. We do so by pulling pointshell
point positions back to the undeformed configuration of the distance field object, followed by a
lookup into the precomputed distance field, similar to [HFS+01], but with some key modifications.
During pre-process, we fit a small pointshell (typically ∼ 40 points) to the surface of the distance
field object. We call this pointshell the proxyshell and its points the proxies. We fit the proxies
using the same algorithm that was used to fit the points to the surface of the pointshell object
(Section 3.8.1). Proxies deform together with the deformable distance field object. To evaluate
the deformed distance field at some query pointshell point location x, we first perform a k-nearest
neighbor search to locate the k closest proxies p1, . . . , pk to x (see Figure 3.23, Left, Middle). We
then assign non-negative weights to pi; closer proxies are given larger weights, and the weights

134



sum to one; we use the scheme described in [BBM+01] to assign weight wi to proxy i,

wi =
w′i
W
, w′i =

1/di − 1/dmax

1/dmin − 1/dmax

, W =
k∑

i=1

w′i, (3.16)

where di = ||x − pi||2 and dmax (dmin) is the max (min) of di over i = 1, . . . , k. We typically set
k = 5 in our implementations to avoid singular configurations where dmin = dmax (five points in
general do not lie on the same sphere in 3D).

We use local deformation models at pi to generate an approximation to the deformed distance
field at x, as follows. Let Pi be the material position of pi; then the deformation transformation in
the vicinity of Pi can be approximated as

X 7→ x = pi + Fi(X − Pi), (3.17)

where X is an arbitrary material point sufficiently close to Pi, and Fi ∈ R3×3 is the deformation
gradient at Pi. We evaluate Fi in 9r-flops using (3.7), and the precomputed deformation gradient
mode matrices, (Fi)j. We then pull the query position x back to Xi, by inverting equation 3.17
(see Figure 3.23, Right). Next, we obtain di, the distance with respect to proxy i, by looking up the
undeformed field at Xi. Our distance approximation is d =

∑k
i=1widi. Note that the weights are

continuous, and always vanish at the furthest nearest neighbor, ensuring C0 continuity of d both
with respect to x and the reduced coordinates of the deformable distance field object.

Figure 3.23: Deformed distance field approximation: Left: Proxies (squares), the query
pointshell point at x. Middle: 3-nearest neighbors and their weights. Right: material configuration
pull-backs Xi of x.

The resulting contact forces are applied (with opposite sign) to both the pointshell reduced
deformable object and the distance field reduced deformable object. The latter requires projecting
the contact force into the subspace of the reduced-deformable distance field object. In order to
project with respect to the correct 3 × r modal submatrix, it is necessary to identify where on
the distance field object is the location of application of the contact force. One could perform
an O(n) nearest-neighbor search, for example, against the deformed positions of distance field

135



object simulation mesh vertices. For performance reasons we approximate the modes at the contact
location with the modes at the nearest proxy (which was already identified during the k-nearest
neighbor query).

Our scheme is capable of computing a fast approximation to the deformed distance field with
respect to complex geometry. This is possible because the complex geometry is encoded into the
distance field in the undeformed configuration. The k-nearest neighbor search is fast since it is
performed only on a small number of proxy points. Our approximation benefits from spatially
smooth modal basis deformation fields, and becomes progressively less accurate under stretch-
ing/compression.

3.12.1 Multiple domains

The basic deformable distance field scheme can suffer from spurious contact regions when two
nearby parts deform away from each other: “mirror” images of one part appear in estimates di un-
der proxies on the other part (see Figure 3.24, Middle). These artifacts can be reduced by dividing
the distance field object into several domains, precomputing a separate distance field for each do-
main, performing the single-domain scheme with respect to each domain, and taking the minimum
(see Figure 3.24, Right). Mirroring essentially introduces “extra” geometry, which typically pushes
the isocontours of the approximate field further out than the true isocontours, leading to conser-
vative distance estimates. Strictly speaking, however, we cannot guarantee conservative distance
estimates. Although more costly, deformable distance field accuracy might be improved under
compression deformations by pushing forward material-space closest-point information [TSIF05].

Figure 3.24: Isocontours of the exact and approximate deformed distance field: Left: Pose
1, single-domain approximation. Middle: Pose 2, single-domain approximation with the two legs
mirroring. Right: Pose 2, multiple domain approximation without mirroring. Green denotes the
interior of the object, with respect to the approximated field.

136



3.13 Experiments and results

Contact case; Contact Pointshell Dist. field Traversed nodes Points in LOD Timings [µs]
pointshell+distance field depicted at: levels points resolution with TC TC off contact VC StVK TT total TL

knight(r) + axe(r) Figure 1.3 6 1.02M 256 2050 3400 820 6 90 0 780 870 80,000
CAD scene(d) + metallic part(r) Figure 1.4 4 80K 128 530 1520 50 4 90 45 125 260 6,600

dragon(d) + Buddha(r) Figure 3.6 5 256K 256 1750 2900 650 5 90 45 615 750 29,800
dragon(d) + dinosaur(d) Figure 1.3 5 256K 256 300 1500 40 3 90 90 660 840 590,000

Table 3.1: Model statistics for selected contact configurations, timed on an Intel Core 2 Duo 2.66
GHz processor with 2 Gb RAM; r=rigid, d=deformable, VC=virtual coupling and manipulandum
transformations, StVK=deformable FEM dynamics, TT=tree traversal, TC=temporal coherence,
LOD=level of detail rendered (in the particular configuration), TL=time under a tree-less pointshell
traversal. All deformable models use r = 15.

Graphical rendering: Our pointshell objects carry two meshes, in addition to the pointshell.
A volumetric mesh (i.e., consisting of 3D solid elements) is used for the FEM deformable object
simulation. A surface triangle mesh is used to render the object on the screen. The volumetric
mesh deformation vector u drives the deformation vector of the rendering mesh u. If necessary,
the rendering mesh can display higher visual detail as actually used internally for the FEM de-
formable object simulation. However, we do not exploit this aggressively, but instead rely on our
model reduction to reduce a geometrically complex FEM simulation to a small number of de-
formable degrees of freedom. Each vertex of the rendering mesh is contained in some element of
the simulation mesh. Using the FEM shape functions and the volumetric mesh modal matrix U, it
is possible to show that u takes the form u = Uq, for some precomputed rendering mesh modal
matrix U. This equation is evaluated at graphics rates in graphics hardware, to obtain the current
rendering mesh deformation vector u (see Section 2.12.1). Such off-loading to the graphics card
helps avoid cache pollution which would otherwise slow down the haptic cycle immediately after
each graphics frame. For lighting, dynamic normals can be computed in the vertex shader just like
dynamic contact normals. To render the rigid object, we use its input triangle mesh, cached in a
display list.

6-DOF haptic rendering: In our first example, we simulate a detailed deformable bridge in con-
tact with a detailed rigid dinosaur. We recorded a characteristic manipulandum trajectory, and give
simulation data under this trajectory, computed offline under different force approximations (see
Figure 3.27). We also demonstrate that our method can render small geometric features, by sliding
the bumps on the back of the dinosaur against the bridge (see Figure 3.26). We also present a
geometrically detailed deformable dragon in contact with a rigid Buddha (see Figure 3.25). We
demonstrate contact between two deformable objects by simulating the deformable dragon in con-
tact with a deformable dinosaur. Figure 3.28 demonstrates the benefits of graceful degradation
to simulate very large contact areas. Example statistics are provided in Table 3.1. In all of our

137



examples in this thesis, haptic forces and torques are rendered stiff (i.e., near the hardware stiff-
ness limit of our haptic device). We used the Phantom Premium 1.5 6-DOF device from Sensable
Technologies (see Figure 3.25). This device can sense manipulandum positions and orientations
(6-DOF input), and render both forces and torques (6-DOF output). We also ported the demo to the
Phantom Premium 1.5 3-DOF device, and the Omni 3-DOF device, both from Sensable Technolo-
gies. These two devices can sense both position and orientation (6-DOF input), and can display
forces, but not torques (3-DOF output). With these devices, our simulation computes both forces
and torques, but renders only forces; we display torques on the screen numerically.

Figure 3.25: 6-DOF haptic rendering: Left: the user is manipulating a rigid Buddha (distance
field object) against the deformable dragon (pointshell object). Right: the user is solving the alpha
puzzle, while the device provides contact force and torque feedback (see also Figure 3.31). The
device in the images is a Phantom Premium 1.5 6-DOF device from Sensable Technologies.

Asymmetry of the contact model: our contact model is not symmetric under reversal of roles
of the distance field object and the pointshell object: if object A is the pointshell object, and object
B is the distance field object, and A and B are in contact, then we will obtain a different contact
force if A is made into the distance field object, and B is made into the pointshell object. This is
immediately obvious from our contact force formula 3.1 (page 105). An intuitive explanation can
also be seen from Equation 3.5 (page 108): the limit contact force is obtained by volumetrically
integrating the distance field gradient over the contact volume V ; if we reverse the roles, we still
integrate over V, however, we must now integrate the distance field gradient of the other object.

We evaluate the asymmetry experimentally, by both fitting a pointshell (256,000 points) and
computing a signed distance field (256x256x256) to dragon geometry (150,000 triangles). We
then position two rigid copies of the dragon in contact. In particular, we fix the first dragon, and
then rigidly translate the second dragon into contact. The experiment was performed offline, with

138



Figure 3.26: Our method can render small features: Left (top and bottom): resolution in our
method is high enough for the user to feel the bumps on the back of the rigid dinosaur (distance
field object, 256x256x256), by sliding the back of the dinosaur against the upper shelf of the bridge
(pointshell object). The red arrows are indicating the direction of the dinosaur’s sliding. Both
objects are rigid in this experiment. Bridge pointshell has five levels of detail with 256,000 points
(same L5 pointshell as in Figure 3.16, Right, on page 122). Right: the force magnitude rendered
to the user, under progressively finer pointshells and a pre-recorded manipulandum trajectory.
Sampling rate is 1000 frames per second. The user caused six bumps total to touch the bridge
(one after another, in tangential motion). The impact of each individual bump can be clearly seen
in the haptic signal, and felt in the haptic simulation.

a pre-recorded linear translational trajectory for the second dragon. We repeat this experiment
twice; once with the first dragon a pointshell object and the other dragon a distance field object,
and then with roles reversed. The trajectory was chosen such that the two dragons collide in a
non-trivial distributed contact configuration (see Figure 3.29, page 145, bottom-right). We do
not use virtual coupling for this experiment. Signals in this experiment are raw contact signal,
obtained by evaluating our contact model for 1800 equally distributed configurations along the
pre-recorded motion trajectory. For each configuration sampled, we traverse all pointshell points,
and accumulate the total contact force (see Figure 3.29). The contact force is L/`-scaled (see
Section 3.5), and as such grows about linearly with the penetration depth.

The bottom chart in Figure 3.29 (page 145) gives the minimum distance field value over all

139



Figure 3.27: Illustration of graceful degradation (GD): Simulation data for a pre-recorded ma-
nipulandum trajectory is rendered in two ways: using GD (in red) with warm threshold at 600
nodes; without GD (in black) with all four tree levels. The pointshell has 85, 018 points total
(same L4 pointshell as in Figure 3.15 on page 121). The common x-axis corresponds to haptic
frames. This data was recorded on a three-year-old 3.0 GHz dual Intel Xeon processor with 2.75
Gb of memory, illustrating algorithm’s adaptivity to different computer speeds. On the machine of
Table 3.1, the black timing curve reaches a maximum of ∼800 µs.

pointshell points and can be understood as penetration depth. The distance field value is expressed
in multiples of the signed distance field voxel size; for comparison, the diameter of the largest horn
(at its widest point) on dragon’s head is about 9 distance field voxels. Real simulations use virtual

140



coupling, with static damping (Section 4.8), and employ saturation (Section 4.9), which prevents
the object penetrating into the other object deeper than some small threshold; typically one voxel
or half a voxel in our simulations. To see the contact forces for such shallow penetration depths
more clearly, we reproduce the contact forces (i.e., raw contact signal) from Figure 3.29 in greater
detail (see Figure 3.30).

Application: Interactive assembly and path planning: We present an example where the user
can manipulate a metallic rigid component in contact with deformable geometry typical of modern
airplanes, e.g. hoses. Large hose deformations allow the operator to navigate the component in
between the hoses. Another example presented is the classic “alpha” path planning puzzle [BSA00,
Kuf04] (see Figure 3.31). We use the 1.0 version of the alpha puzzle (i.e., the most difficult),
obtained at [Alg].

Application: Interactive gaming with haptics: Interactive haptic gaming is an emerging appli-
cation area. In this example, the user can swing a detailed rigid axe to “interact” with an armored
rigid knight (see Figure 1.3 on page 28). This example demonstrates crisp contact with detailed
million-point pointshells possible when our method is used for rigid-only simulations. Recently, 6-
DOF input devices such as Nintendo’s Wii have seen a lot of commercial success, and we envision
that adding appropriate force feedback could make such games even more fun.

3.14 6-DOF haptic demo
We made several of our haptic demos available on the web in the form of executables, so that other
researchers can download and try them. The demos run on Sensable’s force feedback devices,
under Windows XP. In particular, the demos were designed for the Phantom Premium 6-DOF 1.5
device. We were also able to run them with Phantom Premium 3-DOF 1.5, and with an Omni. The
demos use OpenHaptics, a haptic API from Sensable Technologies.
Our demos are at: http://graphics.cs.cmu.edu/projects/defoContact/demo
Note that URLs are rarely permanent due to system maintenance issues and website migrations. Also, we
cannot promise to keep the demos up-to-date if hardware, operating systems, etc., change in the future.

3.15 Discussion
We have demonstrated that real-time haptic rendering of distributed contact between geometrically
complex models is possible for both rigid and reduced deformable models. A key ingredient has
been the exploitation of reduced-coordinate parameterizations of deformable models for fast dy-
namics, point-based deformation bounds, and output-sensitive evaluation of pointshell points and
contact normals for time-critical evaluation of contact forces. We have also introduced deformable
distance fields for the modal deformation models, to support time-critical contact between two

141



deformable models. Real-time contact simulations, such as for 6-DOF haptic rendering, are now
becoming possible between rigid and reduced deformable models on commodity workstations.

There are a number of discussion items, potential limitations, and opportunities for future
work. First, our deformations are not fully general; in the future, fully general complex FEM
deformable objects might run at haptics rates on commodity workstations, but this is not the case
today. Our deformable model is adaptive in the sense that more basis vectors can be added to
the basis as processor speeds will increase. While our current demonstrations run on standard
Windows or Linux platforms, one should investigate simulations on operating systems and parallel
architectures that can guarantee hard real-time scheduling. While static virtual coupling greatly
improves simulation stability, our algorithms come with no theoretical guarantees on passivity of
our simulations (the same is true with most other notable 6-DOF haptic rendering algorithms).
Developing stability and passivity proofs for 6-DOF haptic rendering is a natural area for further
exploration.

The simulation can be simplified if the signed distance field is replaced by a simpler implicit
function with an analytical formula, such as a sphere, or combination of infinite planes. Our offset
surfaces are not reaching down to the exact geometry in case of polygon “soup” input geometry,
when the contact surface is not well-defined. Quality of the offset surface degrades under offsets
too small compared to distance field resolution. Large deformations can potentially introduce un-
dersampled pointshell regions, however this issue was not problematic in our case of deformations
consisting mostly of large rotations and small strain.

The deformed distance fields might be used to resolve multiple inter-scene deformable inter-
actions. Even if deformable distance fields are not used, it would be possible to have scenes with
several (smaller) deformable objects attached to a mostly rigid environment, with the rigid part
carrying both a pointshell and a distance field. Each deformable object carries a pointshell that is
queried against two distance fields: against the rigid part of the environment and the manipulated
rigid object. If deformable objects are sufficiently far apart that they cannot touch each other, all
interactions are covered.

Other reduced deformable models should be investigated, including low-resolution models that
deform embedded meshes, and multi-resolution models. Algorithms to support high rank StVK
models are being investigated. Although our implementation is not highly optimized, we did im-
plement some time-critical routines (Uq and ∆Nq mtx-vec multiplies, and 4x4 mtx-vec multiplica-
tions to transform points into the frame of reference of the distance field object) in assembly (SSE2
multimedia instructions), and carefully laid out data in memory to optimize cache performance;
a system speedup of about 2× was obtained. Haptic interaction with animated characters could
also be possible by exploiting fast reduced-coordinate representations [JT05, DSP06]. Although
we have focused on haptic rendering of distributed contact, deformable distance fields could also
be used to support implicit rendering of single-point contact analogous to [KKSD02]. Perceptual
studies may be useful in determining speed-accuracy trade-offs, such as maximum necessary con-
tact resolution or perception of deformation complexity, similar to other studies done in rigid-rigid
contact rendering [OL03]. Another interesting area of future work is simulating friction, which
can play an important role in applications such as analysis of mechanical part removability and

142



accessibility.
Some applications may be limited by the fact that modification or cutting of the models is

prohibited by the preprocessing employed for performance. Also, preprocessing larger models
takes several hours on a single-processor computer. It would be advantageous to be able to go
from input meshes to haptic simulations much faster. We have, however, demonstrated that high-
quality contact signal is possible at haptic rates between complex deformable geometry, with a
reasonable amount of precomputation. The slowest precomputation component is typically particle
repulsion (not very optimized in our implementation), then deformable model reduction, and then
distance field computations (we are not using the fastest algorithms available in literature, such
as [SOM04, SGG+06b]). All computationally significant parts of the pipeline can be processed
in parallel. Although unaddressed in our implementation, large deformations can necessitate self-
collision processing, and this remains a significant computational challenge for hard real-time
(haptic rendering) applications (c.f. [GKJ+05]).

143



Figure 3.28: Graceful degradation supports large conforming contacts to allow time-critical
approximation of very difficult contact configurations (here under 1 millisecond). Top Left: A
dragon “peg” inserting into a matching dragon “hole” obtained via CSG difference. Top Middle:
dragon manipulated haptically into the hole. Top Right: Large contact area with traversed points in
blue (43% of all L2 points), and contacting points in red (21% of all L2 points). (Bottom Graphs)
Simulation data for a pre-recorded manipulandum trajectory is rendered in two ways: using GD
(in red) with warm threshold at 2000 nodes; without GD (in black) with all five tree levels. Same
machine as in Table 3.1. The common x-axis corresponds to haptic frames.

144



Figure 3.29: Asymmetric contact model: The contact force changes under role reversal, however
the error is quite reasonable. The first contact case (green dragon=pointshell, brown dragon=signed
distance field) is depicted with a solid red line, the reverse case (green dragon=signed distance
field, brown dragon=pointshell) is shown in dashed blue. Both lines show the raw contact force
on the green (i.e., moving) dragon. The top-right image shows the configurations at samples
900 and 1800, respectively. The bottom-right images depict points in contact (red=in contact,
blue=traversed by tree, but not in contact). Note that the z-axis is aligned with the direction of
motion, and is (about) normal to the contact areas; z-force is therefore the normal contact force
and is as such substantially larger than tangential forces. Penetration depths are large in this exper-
iment; in our simulations, virtual coupling coupling saturation would prevent penetrations deeper
than about 1 voxel. The vertical green line denotes the sample index where penetration reaches 1
voxel. 145



300 400 500 600 700
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

c
o
n
ta

c
t 
fo

rc
e
 (

x
) 

[N
]

300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

c
o
n
ta

c
t 
fo

rc
e
 (

y
) 

[N
]

300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10

c
o
n
ta

c
t 
fo

rc
e
 (

z
) 

[N
]

Figure 3.30: Asymmetric contact (detailed plot for shallow penetrations): the contact forces
are not symmetric, however the difference is small for shallow penetrations. Same notation as in
Figure 3.29. X-axis corresponds to sample indices.

Figure 3.31: Interactive path planning with 6-DOF haptics (Alpha puzzle): The goal is to
position the rigid blue alpha-shaped tube inside the loop of the rigid red alpha-shaped tube. The
red and blue tubes have identical shapes. The red tube (pointshell object, 5571 points, 4 levels
total) is fixed in space, and the blue tube (distance field, 128x128x128) is the haptic object. The
gap between the two sides of each alpha (best seen with the blue alpha in the middle image) is
too small for trivial attempts to succeed, both in the real-world and in our haptic simulation. With
careful manipulation, the two solutions to the puzzle can be discovered. Left: initial configuration
(106µs of computation per haptic cycle, 2 tree nodes traversed, 0 points in contact). Middle: a
configuration in the middle of one of the two solution paths (156µs, 233, 5). Right: puzzle solved
(108µs, 16, 0). Path planning is accurate up to the penetrations permitted by maximum contact
forces under virtual coupling saturation, e.g. typically one half of a distance field voxel. Also note
that we could make this example deformable, but then the solution would be very easy.

146



Chapter 4

Haptic display of distributed contact

Until now we have abstracted 6-DOF haptic rendering as simply a matter of computing contact
forces and torques at high rates. However, as described in Section 3.1.1, the penalty forces and the
corresponding torques cannot simply be sent to the haptic device: each point in contact adds to the
overall stiffness of the system and if enough points are added, maximum renderable stiffness of the
haptic device is exceeded easily, resulting in device instabilities. Instead, it is customary to separate
the simulation position of the haptic object from the position imposed by the haptic manipulandum
(manipulandum position), and connect the two with virtual coupling [CMJ95]. We introduced
virtual coupling in Section 3.1.1; we reiterate key points for chapter completeness. Common
choices for virtual coupling are a mass-spring-damper (dynamic virtual coupling), or a spring only
(static virtual coupling). Virtual coupling tries to align the simulation position and orientation
to the manipulandum position and orientation (see Figure 3.5 on page 99, or also Figure 4.1 for
an illustration). Virtual coupling consists of two separate 3D mass-spring-dampers (or springs):
one for position and one for orientation. As a starting point, we adopt static virtual coupling
of [WM03] since it needs a relatively small number of parameters, and extend it by introducing
static damping. We give explicit formulas for contact forces and torques, their gradients, as well
as virtual coupling forces and torques, and their gradients. We also include large rotation terms
in the static equilibrium equations. Another contribution is our handling of rank-deficient virtual
coupling force and torque gradients that can occur during virtual coupling saturation.

The manipulandum and the simulation object: One good way to visualize virtual coupling is
to imagine two coordinate systems, one for the simulation copy and one for the manipulandum
copy of the haptic object. We will call these two copies the “simulation object,” and “manipu-
landum,” respectively. Both coordinate systems are attached to some material location Xgrasp on
the object; imagine they are rigidly tied to a (small interior) piece of the object. The location
Xgrasp is same for both haptic object copies. The two coordinate systems transform rigidly with
their respective haptic object copy. Denote the current world-coordinate location of the grasping
point on the simulation object and manipulandum by xgrasp,s and xgrasp,m, respectively. Both of
these locations are functions of time, as the user moves the manipulandum and as the simulation

147



updates the position (and orientation) of the simulation object. Virtual coupling tries to align the
two coordinate systems: the positional virtual coupling tries to align the origins and the rotational
virtual coupling tries to align the coordinate axes. The exact formulas for these forces and torques
are given in Section 4.3. During contact, the two coordinates systems separate, as the user moves
the manipulandum into contact, and the contact forces keep the simulation object away from con-
tact. The virtual coupling forces and torques, as felt by the manipulandum copy, are the forces and
torques that are rendered to the user. The user feels as if they are holding the manipulandum and
are connected to the simulation object via a spring.

Choice of grasping location: The particular location Xgrasp can be chosen anywhere inside the
object (or even outside), and can be interpreted as grasping the haptic object at a particular location
on the object. The grasping location could be easily modified during the simulation if necessary.
However, everywhere in this thesis we will assume that the grasping location does not change
during the simulation. The virtual coupling forces and torques experienced during the simulation
will of course differ depending on the choice of the grasping location For example, if one grabs a
long pole at one end, stronger torques will be felt when the other end of the pole enters contact with
some stationary rigid object than if the pole were grabbed near its center of mass (see Figure 4.1).

Figure 4.1: Grasping location affects virtual coupling forces and torques: The user is manip-
ulating this long pole against a rigid obstacle (a cylinder viewed from top), and will feel different
forces and torques depending on the choice of Xgrasp (Left: at pole center, Right: at pole far
end). Stippled line denotes the manipulandum and solid line denotes the simulation object. Virtual
coupling tries to align the two coordinate systems.

The structure of one haptic cycle: In each haptic cycle, we first read the position and orientation
of the haptic device manipulandum. We then traverse the nested point-tree to compute contact
penalty forces and torques, and their gradients with respect to the simulation position of the haptic
object (see Figure 3.6 on page 106). Next, we compute the virtual coupling force and torque, and
their gradients. The net force and torque on the simulation copy of the haptic object under a (small)

148



incremental displacement ∆x and (small) rotation ∆ω ∈ R3 of the simulation object, are then

Fnet = FVC + FC +
(∂FVC

∂x
+
∂FC

∂x

)
∆x+

(∂FVC

∂ω
+
∂FC

∂ω

)
∆ω, (4.1)

Tnet = TVC + TC +
(∂TVC

∂x
+
∂TC

∂x

)
∆x+

(∂TVC

∂ω
+
∂TC

∂ω

)
∆ω, (4.2)

where FVC, TVC denote current virtual coupling force and torque on the simulation object, and
FC, TC denote the sum of all contact forces and torques. We displace the simulation object such
that the net force and torque on the object vanish under this first-order model (Fnet = Tnet = 0), by
solving the 6× 6 linear system of Equations 4.1, 4.2 for (∆x,∆ω). This system is (in general) not
symmetric and we use a LU decomposition to solve it (but see also Section 4.9). Solution is fast,
typically ∼ 5 microseconds on our hardware. Finally, we compute the virtual coupling force and
torque with respect to the new simulation position, and render them to the user, with a negative sign
(Newton’s 3rd law: virtual coupling force/torque on manipulandum is opposite to virtual coupling
force/torque on simulation object). See Figure 4.2 for a schematic block diagram of one haptic
cycle. In the next sections, we describe how we compute the virtual coupling and contact forces,
torques, and their derivatives.

How simulation update rate affects static virtual coupling stability: The static virtual cou-
pling procedure can be seen as a Newton-Raphson solver which tries to position the simulation
object into equilibrium under the virtual coupling and contact forces and torques. The solver is
aiming at a moving target, as the manipulandum position and orientation constantly change. Each
haptic cycle is one solver iteration: traversing the nested point-tree and evaluating the virtual cou-
pling model is equivalent to computing the current function value f(x) and its derivative f ′(x).
Solving Equations 4.1 and 4.2 for Fnet = Tnet = 0 is equivalent to solving f(x) + f ′(x)∆x = 0.
Higher update rates allow f and f ′ to be sampled more often in time. Hence, the Newton-Raphson
solver is closer to the equilibrium solution at the beginning of each haptic cycle, and therefore
convergence is better. It is possible for static virtual coupling to not converge. We found our simu-
lations to be very stable, even at stiff settings, however, they are not perfect: in case of convergence
problems, static virtual coupling tends to get stuck in a limit cycle, which manifests as haptic sig-
nal noise. One solution in such cases would be to momentarily reduce the maximum allowable
simulation object displacements and orientations (see Section 4.6), until convergence is restored.

Stability is related to the ratio between update rate and manipulandum velocities: Static
virtual coupling does not incorporate dynamics and hence does not know about time explicitly.
Let us disregard issues related to deformable object simulation and the fact that manipulandum is
held by a human (i.e. assume the manipulandum is driven according to a pre-specified trajectory by
a stiff robot). Then, a simulation running at 1000Hz will give equally stable forces as a simulation
running at 5000Hz with 5x higher average manipulandum velocities, because a 5000Hz simulation
will have sampled five times more manipulandum samples. For a fixed average manipulandum

149



Figure 4.2: Block diagram of one haptic cycle: SPO=Simulation object Position and Orientation,
MPO=Manipulandum Position and Orientation.

velocity, higher update rates imply that the manipulandum moves a shorter distance within each
haptic cycle, which is beneficent to convergence of static virtual coupling.

150



4.1 The contact force and torque
Without loss of generality, we assume (everywhere in this thesis) that the pointshell object is an-
chored (i.e., it does not possess rigid degrees of freedom, but can undergo reduced deformations),
and that the user is manipulating the distance field object; that is, the distance field object is the hap-
tic object. As described in Section 3.5, we use penalty contact forces. The points of the pointshell
are transformed into the frame of reference of the distance field object (we coded the required
4 × 4 mtx-vec multiplications using Intel’s SSE2 assembly language multimedia instructions),
then looked up into the signed distance field to determine the penetration depth d.

Contact force: Our contact force, arising from contacting point i and acting on the simulation
object, is FC,i = kCdiNi (see Figure 4.3, and also Figure 3.6 on page 106; note that di < 0 due to
contact). Here, Ni is the inward normal of point i, that is, a normal pointing in the interior of the
pointshell object (and typically away from the distance field object). The contact force FC,i and
the normal Ni are expressed in the world-coordinate system. Note that this contact model obtains
the penetration depth from one object and contact normal from the other object; this construction
avoids using the distance field gradients for contact force directions, as these gradients are discon-
tinuous along the object’s (interior) medial axes. The total contact force on the simulation object
is obtained by summing the contributions of all points: FC =

∑
i FC,i.

Figure 4.3: The contact model

Contact torque: The torque on the simulation copy of the distance field object, originating from
point i, is ri × FC,i, where ri is the vector from xgrasp,s (expressed in the world coordinate system)

151



to the world-coordinate location of point i on the pointshell object (see Figure 4.3).

4.2 The contact force and torque gradients

During every haptic cycle, it is necessary to compute the gradients

∂FC

∂x
,

∂FC

∂ω
,

∂TC

∂x
,

∂TC

∂ω
, (4.3)

so that we can then solve the Equations 4.1 and 4.2. Here, ∂
∂x

and ∂
∂ω

denote the gradient with
respect to a small position and small orientation change of the simulation object, respectively.
That is, we need to determine how the contact force and torque, on the distance field object,
change if the distance field object displaces a small (infinitesimal) amount of ∆x, and/or rotates
by a small (infinitesimal) rotation ∆ω. These changes can be visualized as a change in the position
and orientation of the coordinate system attached to the simulation object. The gradients are a limit
under infinitesimal changes, therefore we are interested in small rotations and can approximate the
rotation with an infinitesimal rotation. Every point in contact contributes to these gradients; the
total gradient is obtained by summing the contributions from all points in contact. In the following,
we describe how we compute the contact gradient contribution for each individual point in contact.

For writing simplicity, we will omit the point index i for the rest of this section. Consider
a pointshell point in contact, and let r be the world-coordinate vector from xgrasp,s to the world-
coordinate location of the point. The contact force on the simulation object is F = kC ·d(xgrasp,s +
r) ·N0, where N0 is the point’s inward normal, expressed in the world coordinate system, and d( )
denotes signed distance field look up, in this case at the location corresponding to xgrasp,s + r. The
change in the contact force and torque due to displacing the distance field object by (∆x,∆ω) is
identical to the change incurred if the distance field object stayed fixed, but the point is displaced
according to (−∆x,−∆ω).1 That is, the point’s position changes to p(∆x,∆ω) = xgrasp,s + r −
∆x − (∆ω) × r, and the point’s normal changes from N0 to N(∆x,∆ω) = N0 − (∆ω) × N0.
Therefore, we have

∂p

∂x
= −I, ∂p

∂ω
= r̃,

∂N

∂x
= 0,

∂N

∂ω
= Ñ0. (4.4)

Here, x̃ denotes the skew symmetric matrix (x̃T = −x̃) corresponding to the cross product with
x ∈ R3, i.e., x̃ · y = x × y for all y ∈ R3. All the gradients of scalar quantities are assumed to be
laid out in the 1 × 3 row vector format. All the gradients of vector quantities are 3 × 3 matrices,
where each row gives the gradient of the corresponding component of the vector. Using the chain

1We also derived direct formulas using (∆x,∆ω), however the simulation performed worse than if using the mirror
(−∆x,−∆ω) construction described in this section.

152



rule and the multiplication rule, it follows that

∂F

∂x
= kN0 ⊗

(∂d
∂p

∂p

∂x

)T

+ kd
∂N

∂x
= −kN0 ⊗

(∂d
∂p

)T

, (4.5)

∂F

∂ω
= kN0 ⊗

(∂d
∂p

∂p

∂ω

)T

+ kd
∂N

∂ω
= −kN0 ⊗

(
r̃
(∂d
∂p

)T )
+ kdÑ0, (4.6)

∂T

∂x
= F̃ − r̃ ∂F

∂x
(4.7)

∂T

∂ω
= −F̃ r̃ − r̃ ∂F

∂ω
. (4.8)

Tensor product a⊗ b of vectors a, b ∈ R3 denotes the matrix abT . Also, we have used the rule that
the gradient of a cross product u× v, where both u and v are vector functions of x, is

∂

∂x

(
u(x)× v(x)

)
= −ṽ(x)∂u

∂x
+ ũ(x)

∂v

∂x
. (4.9)

Gradient Equations 4.5-4.8 require the computation of ∂d
∂p
, the gradient of the distance field with

respect to the query location. This gradient could be obtained by differentiating analytically the
trilinear interpolation functions, as explained in Section 3.6.3. Also note that the gradient ∂d

∂p
must

be evaluated with respect to the rotated signed distance field:

∂d

∂p
=

∂d

∂X

∂X

∂p
=

∂d

∂X
RT . (4.10)

Here, R denotes the rotation from the material space of the distance field object to the current
configuration of the distance field object (we have p(X) = xgrasp,s + R · X), and ∂d

∂X
denotes the

gradient in the rest configuration; i.e., the configuration in which the distance field was precom-
puted. Distance field gradient computation is only necessary for points in contact, not all pointshell
points. Even if the contact gradient vanishes due to crossing an interior medial axis, the degenerate
rank handling technique of Section 4.10 takes care of the singularity.

In our implementations, however, we make the assumption that the distance field gradient
is oriented in the direction of N0, i.e., ∂d

∂p
= N0. This approximation avoids the exact gradient

computation, and is motivated by the fact that during contact, the point’s normal will typically be
orthogonal to the penetrated surface, hence approximately colinear with the distance field gradient.
Under this assumption, our contact force and torque gradients become

∂F

∂x
= −kN0 ⊗N0,

∂F

∂ω
= k

(
N0 ⊗N0

)
r̃ + kdÑ0, (4.11)

∂T

∂x
= F̃ − kr̃N0 ⊗N0,

∂T

∂ω
= −F̃ r̃ + kr̃

(
N0 ⊗N0

)
r̃ + kdr̃Ñ0. (4.12)

Finally, we note that this gradient computation scheme assumes that the pointshell does not
undergo any deformations in between two haptic cycles. It would be possible to add partial deriva-
tives of the contact force and torque with respect to q, i.e., the reduced coordinates of the current

153



haptic cycle. However, we would then need to solve a (6 + r) × (6 + r) linear system instead
of the 6 × 6 system of Equations 4.1 and 4.2, and the r × r system inside the implicit Newmark
integrator. This (6 + r)× (6 + r) system would incorporate the implicit Newmark dynamics, and
would thus simultaneously update the position and orientation of the distance field object, and the
reduced coordinates of the pointshell object. We did not implement this extension due to a signifi-
cantly larger implementation complexity, and to some extent, also slower simulation times: a 6×6
system solve plus r × r system solve is faster than a (6 + r) × (6 + r) system solve, especially
for values of r typically used in our simulations (e.g., r = 15). The speed difference in the system
solves, however, becomes marginal with larger values of r. Adding such contact force gradients
with respect to the reduced coordinates is a potential area for future work.

4.3 The virtual coupling force and torque
The virtual coupling force on the simulation object is

FVC = kV C(xgrasp,m − xgrasp,s), (4.13)

where kV C is the virtual coupling stiffness coefficient (units are N/m). This linear relationship
between displacement and virtual coupling force is, however, only used for small displacements;
for large displacements, the force is designed to saturate to a constant maximum value, to prevent
deep penetrations and potential pop through (discussed in Section 4.9).

The virtual coupling torque TVC tries to align the orientation of the simulation object to the
manipulandum. For this purpose, one can conceptually translate the two coordinate systems of the
two copies of the haptic object such that they have a common origin. Then, there exists a unique
rotation that would transform the simulation coordinate system to the manipulandum coordinate
system. Every rotation is a rotation around some axis for some angle θ ∈ [0, π]. This axis is unique
for θ ∈ [0, π) (there are two opposite axis choices when θ = π) and is called the equivalent axis
of rotation. The virtual coupling torque is set to be oriented in the direction of the equivalent axis
of rotation. Its magnitude in our implementation equals kV C,torquesin(θ/2), which means that the
torque saturates to a plateau as θ → π. Here, kV C,torque denotes the rotational virtual coupling
stiffness (units are Nm). Its value is independent from kV C . If kV C is kept constant, but kV C,torque

is decreased, the virtual coupling torques become progressively weaker than the virtual coupling
forces, and object’s rotation progressively more compliant. Under such circumstances, the object
tends to change orientation easily to avoid contact. Conversely, if one increases kV C,torque, rotations
become stiffer, allowing smaller rotation discrepancies between the manipulandum and simulation
object. Increasing kV C,torque too much causes deep penetrations and haptic instabilities. If the user
orients the manipulandum deep into contact, the simulation object has to follow deep into contact
due to high rotational virtual coupling stiffness. This leads to the same problems as if simulation
used no virtual coupling (direct rendering).

We use unit quaternions to represent haptic object orientations. Denote the quaternions corre-
sponding to current rotations of the manipulandum and simulation object as qm, qs, respectively.

154



The question is now, how to express our definition of TVC from the previous paragraph in the
language of quaternions. As is well known, opposite quaternions q and −q represent the same ro-
tation [Sho85, Par01], and therefore our formulation will have to be invariant to multiplying either
of qm or qs (or both) by −1. After some algebra, it can be shown that

TVC = kV C,torquevector
(
toPositiveHemisphere

(
qm · q−1

s

))
. (4.14)

Here, vector(q) is the vector part of the quaternion, that is, if q = s + xi + yj + zk, we have
vector(q) = (x, y, z). The function toPositiveHemisphere(q) moves the unit quaternion q to the
positive unit quaternion hemisphere, that is, it establishes s ≥ 0 :

toPositiveHemisphere(q) =
{ q ; if s ≥ 0,

−q ; if s < 0.
(4.15)

Therefore, our particular choice for TVC (involving sin(θ/2)) is convenient because it leads to a
simple quaternion expression for TVC; we use expression 4.14 in our implementation.

The function toPositiveHemisphere(q) is necessary to prevent the virtual coupling torque from
pointing in the wrong direction, as described next. For a unit quaternion q = s+ xi+ yj + zk, the
corresponding rotation is encoded as

q = cos(θ/2) + sin(θ/2)(axi+ ayj + azk), (4.16)

where (ax, ay, az) is a unit rotation axis, and θ is a rotation angle in radians. Given a particular
quaternion q, quantities θ and (ax, ay, az) in Equation 4.16 are unique, if one assumes θ ∈ [0, 2π]
and a2

x + a2
y + a2

z = 1. Note that we must include the θ = 2π case; it is necessary for representing
the identity rotation of q = −1. The unique quantities change if q is multiplied by−1, even though
the underlying rotation does not. For quaternions with s ≥ 0, the unique angle θ lies on [0, π],
whereas for s < 0, it lies on (π, 2π]. Without using toPositiveHemisphere(q), if q = qmq

−1
s

happens to have the property s < 0, the quaternion q will want to rotate the simulation object by
an angle θ ∈ (π, 2π] around (ax, ay, az). In other words, this is actually a rotation by an angle of
2π−θ ∈ [0, π) around−(ax, ay, az), so the torque actually needs to act along the axis−(ax, ay, az).
However, we have sin(θ/2) ≥ 0, which makes vector(q) = sin(θ/2)(axi + ayj + azk), and
therefore torque, point in the wrong opposite direction! This can lead to a difficult implementation
bug. If one applies toPositiveHemisphere(q) before applying vector( ), one ensures that one is
always in the θ ∈ [0, π] case, making the torque in Equation 4.14 always point in the correct
direction.

Our definition of TVC allows us to compute the torque without ever explicitly constructing θ or
(ax, ay, az), avoiding the need for inverse trigonometric functions. The same property also holds
with the virtual torque gradients, which we will derive in the next Section 4.4. However, in some
cases it might be advantageous to use other monotonically increasing functions of θ for torque
magnitude (as opposed to sin(θ/2)). For example, if one wanted torques to saturate at some angle
α ∈ (0, π], one could use sin(θ/2)/sin(α/2) for θ ≤ α, and 1 otherwise. This technique could be

155



useful in preventing the user from applying large torques (which could overpower penalty contact
forces), i.e., it could be used for torque saturation, as described in Section 4.9. These alternative
torque functions would require an explicit computation of θ and (ax, ay, az) (which would be
cheap; on the order of 1 microsecond or less). Again, discussion from the previous paragraph
should be followed to orient the axis correctly.

4.4 The virtual coupling force and torque gradients
In this section, we discuss virtual coupling force and torque gradients with respect to the position
and orientation of the simulation object, assuming that the manipulandum copy is held fixed. Such
an assumption is reasonable given that the manipulandum position and orientation is only sampled
at the beginning of the haptic cycle, and their subsequent trajectory during the haptic cycle is not
known. The virtual coupling force depends only on the difference in current world-coordinate
locations of grasping points xgrasp,s and xgrasp,m (Equation 4.13). Also, virtual coupling torque
does not change under translations of the simulation object. Hence, we have

∂FVC

∂x
= −I, ∂FVC

∂ω
= 0,

∂TVC

∂x
= 0. (4.17)

The trickiest gradient to compute is the torque gradient with respect to the orientation. First of
all, the virtual coupling torque has a singularity in the extreme case where the manipulandum and
virtual object orientation differ by a rotation of 180 degrees. In this case, there are two equally
plausible opposite choices for the direction of the virtual coupling torque, each trying to unrotate
the simulation object in one of the two ways toward the orientation of the manipulandum. The
particular chosen torque direction is not very significant in practice because both directions are
physically plausible and because such extreme rotations are rarely encountered. Except for this
singularity, the gradient of the virtual coupling torque of Equation 4.14, with respect to a small
incremental simulation object rotation, is a well-defined and smooth function of the orientation
difference quaternion qmq−1

s . Here is how it can be derived.
Assume that the current simulation object orientation quaternion qs has been chosen such that

toPositiveHemisphere(qmq
−1
s ) = qmq

−1
s ; if not, multiply qs by −1. This potential sign flipping

does not affect the virtual torque (and therefore neither its gradient), as explained in Section 4.3.
The singular 180 degree configuration corresponds to the case where the scalar part of qmq−1

s is
zero. Since we are assuming a non-singular configuration, it follows that qmq−1

s will remain on
the positive hemisphere even under small perturbations of qs. Therefore, we can safely simplify
Equation 4.14 to

TVC = kV C,torque vector
(
qmq

−1
s

)
= −kV C,torque vector

(
qsq

−1
m

)
. (4.18)

For the purpose of deriving the formula for ∂TVC

∂ω
, consider (an imaginary) process where the sim-

ulation object starts at the rotation corresponding to qs, and then rotates with some (arbitrary, but

156



constant in time) world-coordinate angular velocity W ∈ R3, for some short period of time, start-
ing at t = 0. Essentially, what we are trying to establish is the change in the quaternion qmq−1

s if
an infinitesimal rotation Wdt is superimposed on top of the original simulation object rotation qs,
so that we can compute a formula for how the virtual coupling torque will change. We first use the
following formula, valid for for an arbitrary rotating object, and derived, for example, in [BW03]:

dqs
dt |t=0

=
1

2
Ŵ qs, (4.19)

where Ŵ denotes a quaternion whose scalar part is zero and whose vector part equals W ∈ R3.
Note that the multiplication between Ŵ and qs in the above formula is quaternion multiplication.
Then, we have

d

dt
TVC = −kV C,torque vector

(
q̇sq

−1
m

)
= vector

(1

2
Ŵ (−kV C,torqueqsq

−1
m )

)
=

1

2
vector(Ŵ qT ),

(4.20)
where we have denoted qT = −kV C,torqueqsq

−1
m , and where all time derivatives are meant to be

taken at t = 0. Note that we previously assumed scalar(qT ) > 0, where scalar( ) denotes the
scalar part of the quaternion, and that we have TV C = vector(qT ) by Equation 4.14. We can now
use the quaternion equality

vector(q1q2) = scalar(q2)vector(q1) + scalar(q1)vector(q2) + vector(q1)× vector(q2), (4.21)

which is valid for any quaternions q1, q2, to continue the derivation from Equation 4.20

d

dt
TVC =

1

2

(
scalar(qT )W +W × vector(qT )

)
=

1

2

(
scalar(qT )I − T̃VC

)
W. (4.22)

On the other hand, we have
d

dt
TVC =

∂TVC

∂ω

∂ω

∂t
=
∂TVC

∂ω
W. (4.23)

Since Equations 4.23 and 4.22 hold for any W ∈ R3, we can now state the final result:

∂TVC

∂ω
=

1

2

(
scalar(qT )I − T̃VC

)
, (4.24)

where we previously defined

qT = −kV C,torque toPositiveHemisphere
(
qsq

−1
m

)
, (4.25)

TVC = vector(qT ). (4.26)

157



Large rotations: Equation 4.24 gives the gradient of the virtual coupling torque under arbitrary
orientations of the manipulandum and the simulation object (except assuming that not in the singu-
lar 180 degree rotation configuration). In particular, this formula is not limited to small orientation
differences between the manipulandum and the simulation object. If only small orientation differ-
ences are considered, the T̃VC term in Equation 4.24 can be omitted, yielding the approximation
described in the static virtual coupling VPS paper of [WM03]. Such an approximation gives a
virtual coupling torque gradient where an infinitesimal rotation is added on top of another previous
infinitesimal rotational difference between the manipulandum and simulation object. Our formula-
tion from Equation 4.24 supports an infinitesimal incremental rotation on top of an existing finite
rotational difference. In our simulations, the orientation difference between the manipulandum
and the simulation object can be large (often, e.g., 20 degrees or more). In such cases, the extra
term T̃VC better captures torque changes if the simulation object is rotated along axes orthogonal
to TVC, where the T̃VC∆ω term does not vanish.

4.5 Separating the simulation from haptics
We designed our simulation to run independently from haptics, in the following sense. The simula-
tion happens in its own “simulation world” and could run without an actual haptic device present.
The device is only a medium to obtain the manipulandum trajectory and display the computed
forces and torques. The simulation receives the manipulandum trajectory as input, one datapoint
at a time. This input typically comes from the haptic device, but it can be, for example, read from
a file, or obtained via some other input device. The units of length as reported by the haptic device
need not be the same as the units used in the simulation; in our simulations, they are almost always
different. We use a scaling factor α (adjustable by the user) that controls how many millimeters of
the physical haptic device space correspond to one distance unit of the simulation world:

xin physical device units = α · xin simulation units . (4.27)

The user can adjust parameter α during the simulation. Suppose the user is exploring a particular
scene under varying values of α. Without compromising anything essential, we can simplify the
discussion by assuming that virtual coupling is not used, i.e., all the contact forces and torques are
rendered directly to the device. If α is large, then for a fixed physical manipulandum displacement,
the haptic object in the simulation moves a small distance. Large physical device workspace will
be necessary to cover the entire scene if the scene is large. On the upside, for a fixed physical
rendered force stiffness (in physical device units, e.g. 0.6N/mm), the penetration depths incurred
by the time the contact force reaches some fixed value (e.g. 8.5N on our device) will be small.
This is because (1) it always takes 14.17mm for the device to ramp up forces from 0N to 8.5N if
stiffness is 0.6N/mm, and (2) while device travels the 14.17mm, the object will move little in the
simulation world, resulting in a shallow contact penetration. Conversely, small values of α make
for a fast traveling manipulandum position in the simulation, so the scene can be easily explored,
but the penetration depths incurred during contact will be larger. Middle ground needs to be sought,

158



such that good scene coverage is achieved, while at the same time penetrations are not too deep. A
good choice for α is a value such that the user can about cover the scene, or an interesting subpart
of the scene, within the physical workspace of the device. Larger workspaces can be simulated
using workspace indexing [CK05b]. We use a simple workspace indexing scheme that works as
follows: when the user presses and holds the button on the PHANToM end-effector, they can
freely reposition and reorient manipulandum without this having any effect on the manipulandum
position and orientation in the simulation world. For example, if the user reaches the boundary
of the device workspace (translational or rotational), they can use the button to physically move
and orient the physical manipulandum back to the neutral rest manipulandum configuration. Our
software internally keeps track of appropriate transformation matrices, so that when the button is
released, the manipulandum position and orientation in the simulation world simply continue from
where they were before the button was pressed.

All the manipulandum positions and orientations, and all the contact forces and torques in
this thesis (other than here in this discussion) refer to the simulation world. The manipulandum
position of the haptic device is transformed (virtual indexing + α-scaling) to the corresponding
manipulandum position in the simulation world. We then perform deformable object simulation,
collision detection and compute contact forces and torques in the world coordinate frame of the
simulation world (not to be confused with the local frame of reference of the simulation object).
Another scaling factor could be used to convert the simulation forces and torques to the forces and
torques that are actually sent to the device; we, however, use a scaling factor of 1 (however, see the
virtual coupling saturation discussion in Section 4.9). That is, we interpret the computed forces
and torques as if they were given in N and mNm (milliNewton times meter). We do so since this
extra scaling factor would not add anything substantially new to our simulations: if one wishes to
scale all the rendered forces and torques by a constant β, one can simply scale kC , kVC, kVC,torque

by β. Other than scaling the forces and torques rendered to the user, this will have no effect on the
simulation, as the factor β simply cancels out when solving for the zero net equilibrium of forces
and torques in Equations 4.1 and 4.2.

4.6 Limiting maximum speed of the haptic object

Without restricting velocities, it is possible for the user to propel the object very fast into contact,
causing deep penetrations upon impact, which can in turn cause instabilities in the haptic signal.
Likewise, without restricting angular velocities, the user can rotate the object very quickly (espe-
cially around the roll axis on our PHANToM Premium device), entering fast contact with one part
(arm) of the object.

These velocities can be limited as follows (similar ideas were used by others before [MPT06]).
The user specifies the maximum velocity and angular velocity that can occur in the simulation. This
gives a maximum distance dmax and maximum angle θmax that the simulation object can travel and
rotate in one haptic cycle. Each time the new position and orientation of the simulation object is
determined by solving Equations 4.1 and 4.2 (i.e., once per haptic cycle), we check whether the

159



new position xgrasp,s,new is more than dmax away from the previous position xgrasp,s,old. If yes, the
new position xgrasp,s is not set to xgrasp,s,new, but instead to the location a distance of dmax away
from xgrasp,s,old to xgrasp,s,new. In the same way, we impose a limit on maximum rotations during
every haptic cycle. If the user moves his/her hand very quickly, causing the manipulandum to
exceed maximum velocities, the simulation object will start lagging behind the manipulandum,
causing a viscous force/torque to be rendered to the user. This has a convenient side-effect of
slowing down the user’s hand, thus lowering the velocities. Even if force/torque feedback is turned
off and manipulandum is moved around at extremely high speed, the scheme will limit simulation
object’s displacements within one haptic cycle to dmax, which helps with the convergence of static
virtual coupling and therefore improves haptic stability.

Also note that the temporal coherence module uses limits dmax and θmax to predict the next
possible cycle when a currently non-contacting point can enter contact. The lower these limits,
the more aggressive the prediction of the temporal coherence module, hence larger temporal co-
herence benefits. Of course, setting low limits means that the user cannot move the object very
fast in the scene, so a tradeoff needs to be sought. In our simulations, we typically set maximum
linear velocity to 0.6m/s and maximum angular velocity to 360degrees/s. With faster computer
speeds, one can run the simulation at higher update rates, e.g., several kilohertz, and then higher
velocity limits become possible. For example, one can keep dmax constant (which, roughly speak-
ing, implies a fixed level of haptic stability) if both the haptic update rate and the maximum linear
velocity are increased five-fold (or by any other factor).

4.7 Controlling maximum stiffness

Haptic devices can only render limited stiffnesses. For example, on an impedance device (that
is, a device that senses position and renders force), the rendered force can only increase by a
certain device-dependent maximum amount per unit displacement of the manipulandum, or else
the device experiences instabilities. On our PHANToM Premium 1.5 6-DOF device, this limit
is in the range of 0.6N/mm. The higher the stiffness, the more challenging the design of the
haptic device. Ideally, one would wish to be able to render (close to) infinite stiffnesses, such
as pushing against a rigid physical wall. With existing devices, however, it is necessary for the
haptic simulation to ensure that the forces sent to the device do not exceed the maximum stiffness,
otherwise device instabilities can occur. In this section, we analyze how static virtual coupling
limits the maximum stiffness of the forces sent to the device. We limit the discussion to the 3-
DOF case: an object manipulated using the three translational degrees of freedom (no rotations)
with the simulation computing contact forces (torques are not discussed in this section), which
are then sent to the device. We prove that if haptic update rate was unlimited (“continuous time
control” [CGSS93]), static virtual coupling guarantees an upper limit on the stiffness of forces that
are ever sent to the haptic device.

160



Multiplane penalty contact: In our penalty-based model, the contact is modeled as a collection
of penalty-based springs, with different spatial orientations. At any given moment of time, there are
` ≥ 0 points (penalty springs) in contact, with contact normals ni, i = 1, . . . , `. Assuming that the
distance field gradient at point i is oriented in the direction of ni (as described in Section 4.2), then
the contact model becomes ` penalty contacts against ` planes with normals ni (see Figure 4.4).
We call such contact multiplane penalty contact. It arises naturally with penalty-based contact
between two 3D objects, and it has been used by other researchers as well [Ota04, OL06].

Figure 4.4: Multiplane penalty contact (` = 3).

Let J= ∂FC

∂x
be the gradient of the contact force (under multiplane penalty contact) with respect

to simulation object position. Maximum contact stiffness is defined as the largest increase in force
per given simulation object displacement, that is, max||J · dx||/||dx||, over all directions dx. All
norms in this section are 2-norms. Maximum contact stiffness therefore equals ||J ||2, the 2-matrix
norm of J. We can now prove the following theorem.

Theorem: Assume a multiplane penalty contact configuration with ` ≥ 1 contact points with
contact normals ni, and penalty stiffnesses ki, for i = 1, . . . , `. Then, maximum contact stiffness
equals k1 + ...+ k`, which is achieved if and only if all normals ni are equal.
Proof: If ni = n for all i = 1, . . . , `, then we have ` parallel springs whose stiffnesses simply
add up to k1 + ... + k`. Assume now that contact normals ni point in arbitrary directions. Then,
it follows from the penalty force model that the net change in contact force of spring i due to an
object (3D) displacement ∆x equals kinin

T
i ∆x. Therefore, the net contact force change is

∆F = J∆x = −
(∑̀

i=1

kinin
T
i

)
∆x. (4.28)

161



Since ni is a unit vector, we have || − ki(n
T
i ∆x)ni|| = ki|nT

i ∆x| ≤ ki||∆x||, and therefore ||∆F || ≤(∑`
i=1 ki

)
||∆x||, i.e., maximum contact stiffness equals k1 + ... + k`. It remains to be proven

that this maximum bound can only be achieved if all ni are equal. Assume maximum bound
is achieved for some normals ni. Then, there exists a unit vector direction ∆x, such that || −(∑`

i=1 kinin
T
i

)
∆x|| = k1 + . . . + k`. By denoting ai := −kinin

T
i ∆x we can rewrite this as

||
∑`

i=1 ai|| = k1 + . . . + k`. At the same time, we also have ||ai|| ≤ ki, so it follows from the
triangle inequality that

∑̀
i=1

||ai|| ≥ ||
∑̀
i=1

ai|| = k1 + . . .+ k` ≥
∑̀
i=1

||ai||. (4.29)

In other words, we have equality in the triangle inequality. This is only possible if all vectors ai

are positive scalar multiples of one another, which is only possible if ni = n for all i. QED
In our simulations, we usually set ki = kC for all i. Therefore,

the contact stiffness will be ` kC when ` points are in parallel contact,
so contact stiffness can grow arbitrarily large as more and more points
are in contact. For example, if a surface is sampled with progressively
finer pointshells, stiffness would grow out of control. Even if points are
weighted with their corresponding surface areas, stiffness can become
large if the contact area is large. This problem is addressed using virtual coupling. Say that one
connects two springs serially, one with an acceptable stiffness kV C (the virtual coupling spring),
and another with unpredictable stiffness k = `kC (the contact forces). Then, it is an easy exercise
to show that the net stiffness felt at the free end is 1/(1/kV C + 1/k). This is always less than or
equal to min{kV C , k}. Therefore, in a 3-DOF simulation, the maximum stiffness felt by the user
if ` points are in contact is

1

1/(` · kC) + 1/kVC

, (4.30)

where kVC is the stiffness of the translational virtual coupling. Therefore kVC presents an upper
bound on the stiffness ever rendered to the haptic device, regardless of `.

The previous paragraph gave an informal discussion on maximum stiffness. We have also
proved the following theorem that formally proves a maximum limit on stiffness under virtual
coupling (for a three-dimensional 3-DOF simulation):

Theorem: Assume a 3-DOF simulation with continuous time control, and a multiplane penalty
contact configuration with ` ≥ 1 contact points with arbitrary contact normals ni. Let J = ∂FC

∂x
be

the gradient of the contact force with respect to simulation object position. Let kVC ∈ R denote
the stiffness of translational static virtual coupling. Then (1) the 3 × 3 linear system of equations
to be solved at every timestep of static virtual coupling (the 3 × 3 version of the system from
Equations 4.1, 4.2) is always non-singular (even if J is singular), and (2) the maximum stiffness

162



rendered to the device is
1

1
||J ||2 + 1

kVC

, (4.31)

which is always less than or equal to kVC.

Proof: Throughout the proof, remember that for a symmetric matrix A the maximum absolute
eigenvalue equals the matrix norm ||A||2. Suppose the simulation object is initially in static equilib-
rium against the virtual coupling force and contact forces, and suppose the user then displaces the
manipulandum by a small displacement ∆x. The virtual coupling force on the simulation object
therefore changes by kVC∆x. Since the simulation object was previously in equilibrium, the net
force on the simulation object now equals kVC∆x. We need to compute the change in the equilib-
rium position of the virtual object, i.e., we need to compute such a displacement (∆x)SO of the
simulation object that the net force on the simulation object vanishes again:

kVC∆x+ J(∆x)SO − kVC(∆x)SO = 0. (4.32)

The middle term in the above equation corresponds to the change in contact forces on the sim-
ulation object, and the last term corresponds to the change in the virtual coupling force on the
simulation object. The equation can be rewritten as(

J − kVCI3

)
(∆x)SO = −kVC∆x, (4.33)

where I3 is the 3× 3 identity matrix. This 3× 3 system of equations is precisely the 3× 3 version
of the system from Equations 4.1, 4.2. Its nonsingularity can be established as follows. From the
multiplane penalty contact model it follows that

J = −
∑̀
i=1

kinin
T
i , (4.34)

and therefore J is symmetric negative-definite. By the previous theorem the spectrum of J is
contained inside [−||J ||2, 0] = [−k1− . . .−k`, 0]. The spectrum of J−kVCI3 is therefore contained
inside [−||J ||2 − kVC,−kVC]. Because kVC > 0, the matrix in the system of equations 4.33 is
therefore invertible, which proves (1).

To prove (2), observe that the net change in the rendered force to the user as the manipulandum
displaces ∆x and the virtual object consequently displaces by (∆x)SO will be

kVC

(
(∆x)SO −∆x

)
= −kVC

(
kVC(J − kVCI3)

−1 + I3

)
∆x = A∆x, (4.35)

where we have denoted
A = −kVC

(
kVC(J − kVCI3)

−1 + I3

)
. (4.36)

163



The stiffness rendered to the user equals ||kVC

(
(∆x)SO − ∆x

)
||/||∆x||. Therefore, the maxi-

mum stiffness rendered to the user is bounded by ||A||2. Matrix A is symmetric and its spec-
trum can be bounded as follows. As demonstrated previously, the spectrum of J − kVCI3 is con-
tained inside [−||J ||2 − kVC,−kVC], therefore the spectrum of (J − kVCI3)

−1 is contained inside
[−1/kVC,−1/(||J ||2 + kVC)]. It follows that the spectrum of A is contained inside the interval[

0,
kVC||J ||2
kVC + ||J ||2

]
=

[
0,

1
1

||J ||2 + 1
kVC

]
. (4.37)

Therefore
||A||2 ≤

1
1

||J ||2 + 1
kVC

, (4.38)

which proves (2). QED
Our theorem establishes that virtual coupling regularizes the contact Jacobian: it makes for

a non-singular system of static virtual coupling equations even when the contact Jacobian J is
degenerate (which is easily the case; e.g., it is always the case when ` ≤ 2). The theorem also
proves an upper limit on the rendered stiffness of multiplane penalty contact if collision detection
and contact force computation could be performed infinitely fast (continuous time control). In
practice, however, discretization introduces additional instabilities. Stability is improved if kC is
scaled down when there are multiple points in contact; as in VPS, we replace kC with L · kC/` (we
use L = 10) if ` ≥ L points are in contact.

4.8 Static damping
There is no dissipation in the standard static virtual coupling model, which can manifest as slight
instabilities in some cases, e.g., if one object quickly slides around the other object. We augment
the static virtual coupling model by introducing static damping: after ∆x,∆ω are computed, we
only change the simulation position and rotation by (1−α)∆x, (1−α)∆ω, where α ∈ [0, 1) con-
trols the amount of static damping. Such damping restores the simulation position exponentially
to the manipulandum position, similar to critical damping in mass-spring-damper dynamic virtual
coupling models [MPT99]. We set α = 0.5 in all our simulations; high values of α are avoided
since they introduce a surface stickiness effect.

4.9 Virtual coupling saturation
The displacement-force relationship of virtual coupling is designed to be linear only up to a certain
maximum force value, after which the force is held constant (saturates) at some maximum value,
even if the user stretches virtual coupling even further. Such saturation prevents the user from
pulling the manipulated object into the interior of the other object. Even if force feedback is turned
off completely, and the user is free to position the haptic manipulandum arbitrarily, the virtual

164



object is prevented from penetrating the environment more than allowed by the maximum value
of the virtual coupling spring. The value to which the force saturates is typically set such that it
corresponds to some shallow penetration, such as, for example, half a voxel. This enables us to
control the amount of maximum penetration. Saturation as such acts as a virtual proxy, similar to
the approaches of [ZS95, RKK97].

Virtual coupling saturation worked very well for us in practice, however, strictly speaking, it
does not guarantee theoretically that deep penetrations cannot occur. The reason for this is that
manipulandum position could, theoretically speaking, vary large distances from one haptic cycle
to the next. For example, imagine a thin wall, and suppose the manipulandum is first located in free
space on one side, but then suddenly moves to free space on the other side in one haptic cycle. The
simulation object will then, in principle, skip through the wall. However, the problem is alleviated
by imposing a limit on simulation object position and orientation change within one haptic cycle,
as discussed in Section 4.6. If the wall is thicker than dmax from Section 4.6, pop-through will
not occur, no matter how fast the manipulandum moves. Also, if one increases the haptic update
rate, say, by a factor of 2, one will have sampled an additional manipulandum position in the
middle of the way from one side of the wall to the other side, which will prevent the pop-through.
Ultimately, the right way to prevent pop-through is to perform continuous collision detection;
however, existing deformable algorithms would not scale simultaneously to both haptic rates and
the complexity of our examples.

We implemented saturation for the virtual coupling force, and an extension to torques would
be possible too. The idea of saturation is to keep the force linear for small displacements, but then
smoothly saturate it to some maximum constant value. We use the saturation method presented
in [WM03], with some modifications. We explicitly give the virtual coupling force gradients, and
show how the net force/torque equilibrium Equations 4.1 and 4.2 can be solved in the presence of
degenerate virtual coupling force gradients in the saturated region (in Section 4.10).

Saturation works as follows. The user specifies the maximum permitted penetration depth, in
distance field voxel units. We then compute the contact force felt by a single point under this
penetration depth, which is set to be the plateau (maximum value) of the saturated virtual cou-
pling force; call it FVC,max. Note that if more than one point is in contact, the situation in terms
of penetration becomes better, because the penalty forces of several simultaneous contact points
only admit progressively shallower penetrations. The relationship between virtual coupling spring
displacement and virtual coupling force is set to be linear up to FVC,max/2, i.e., the maximum dis-
placement up until which the virtual coupling force is linear is chosen to be rlin = FVC,max/(2kVC).
Beyond rlin, our virtual coupling force saturates exponentially to the limit FVC,max, at a rate such
that the derivative of the force is continuous at the joint at rlin :

FVC = −f(r)er, where f(r) =
{ kV C r ; if r ≤ rlin

FVC,max

(
1− 1

2

(
2kVC(rlin − r)/FVC,max

))
; if r > rlin.

(4.39)
Here, FVC is the virtual coupling force on the simulation object, er is a unit vector in the direction
of xgrasp,s− xgrasp,m, and r = ||xgrasp,s− xgrasp,m||. An alternative choice for saturation would be to

165



use a cubic spline [OL05], which (say) reaches the maximum value of FVC,max at r = 3rlin, with a
continuous derivative at both joints r = rlin, r = 3rlin.

Gradient of the saturated virtual force: In the linear region, the computation can proceed just
as outlined in Section 4.4. For r > rlin, some algebra using spherical coordinates gives

∂FVC

∂x
= −f(r)

r
I +

(f(r)

r
− f ′(r)

)
er ⊗ er, (4.40)

where a ⊗ b = abT for a, b ∈ R3. This expression can be directly evaluated at runtime. Note
that as r → ∞, the gradient becomes progressively singular, as ∂FVC

∂x
er tends to zero much faster

than the gradient in the other two orthogonal directions. Consequently, the 6× 6 linear system of
Equations 4.1 and 4.2 can become singular. We deal with this issue in Section 4.10.

Rendering the saturated force to the device: If saturation is not used, then the force that is
rendered to the device is −FVC. If using saturation, one can of course still render −FVC, which
means that the actual physical force felt by the user will also saturate, together with the simulation
virtual coupling force. However, in practice, this maximum rendered force often turns out to be
significantly less than the maximum force that a particular haptic device can render, and then large
forces are never rendered. We address this by (1) computing FVC according to Equation 4.39, and
use this value everywhere in the simulation, and (2) always rendering −kVC · r to the device, even
if r > rlin. If the force exceeds the maximum force renderable by the particular device (8.5N for
our device), then we clamp the rendered force at this maximum value. Under this scheme, the
relationship between the simulation virtual coupling force and the force rendered to the device is
no longer linear. We did not detect any problems in practice. The relationship is monotonic, and
linear for small forces.

The rendered force is only C0 continuous when it hits the maximum plateau (8.5N ). On our
PHANToM device, we are unable to feel this C1 discontinuity. If necessary, the discontinuity
could be avoided by applying another nonlinear filter on −kVC · r prior to rendering. This filter
would be identity for small forces, followed by a smooth ramp to the maximum renderable force
value. This could be done using an exponential function or cubic spline, in the same spirit as we
saturated FVC.

Saturated torques: The virtual coupling torques can be saturated in a similar way as the virtual
coupling forces. We did not implement this extension due to additional implementation complex-
ity. If virtual coupling torque is not saturated, it is possible to apply large virtual coupling torques,
which can in some cases lead to penetrations deeper than what allowed by saturated virtual cou-
pling forces, or even pop-through. For example, in our implementation of the path planning alpha
puzzle, there is a configuration (see Figure 4.5, left) where the user can apply large virtual cou-
pling torques to “cheat” the puzzle. While we did not find this spurious shortcut to be particularly
distracting, it could be remedied by saturating virtual coupling torques. Note, however, that saturat-
ing torques alone is not always sufficient due to mechanical leverage considerations. For example,

166



imagine that the user is manipulating a long rod, with the point of attachment at the rod’s center of
mass (see Figure 4.5, right). Suppose that the rod is positioned horizontally, and is in contact with
a narrow vertical pillar at one of its ends. For a fixed applied virtual coupling torque, in order to
prevent pop-through, the pillar has to resist with a contact force that grows linearly in the length of
the rod. For a fixed virtual coupling torque saturation limit, there is always a rod long enough that
a pop-through could occur. This problem can be addressed by choosing a torque saturation limit
that takes into account the haptic object’s diameter, in addition to the maximum allowable distance
field penetration depth.

Figure 4.5: Virtual coupling torque saturation: Left: without torque saturation, the user can
squeeze the blue alpha in between the other (red) alpha’s gap, by using the blue alpha’s long end
as a lever. Right: A fixed torque saturation limit will overpower contact penalty forces for long
objects, such as for this manipulated long (horizontally positioned) rod in contact with a static
vertical cylinder (view from top).

4.10 How to handle degenerate virtual coupling gradients
In certain degenerate contact configurations, the gradients of the contact force with respect to
haptic object position, or orientation, become rank deficient. For example, when in free space,
both gradients are identically zero. If a square box is positioned in an (infinite) shaft with a square
profile, there is no contact force resistance to the motion in the direction along the shaft, hence the
gradient of the contact force with respect to simulation object position will have a null space of
dimension 1. Similarly, there will be a degeneracy of dimension 2 if a square box is positioned in
between two infinite planes, in simultaneous contact with both planes. The contact torque gradients
can be degenerate too: imagine a ball contacting a hemispherical hole obtained by carving the
shape of the ball from a wall. In this case, contact torques offer no resistance to rotation at all,
i.e., this is a contact torque degeneracy of dimension 3. A torque degeneracy of dimension 1 is
possible too: consider a cylinder in a cylindrically shaped shaft. If one positions a sphere in such

167



a shaft, one obtains a degeneracy of dimension 4. To sum up, degenerate contact force and torque
gradients are possible even if not in free space.

In practice, any such degeneracy is removed when the virtual coupling gradients are added to
the 6× 6 system of Equations 4.1 and 4.2. In this sense, virtual coupling regularizes the system of
equations to be solved, making it nonsingular even in the presence of degenerate contact configu-
rations. However, special care has to be taken if using virtual coupling saturation, because in this
case, the gradient of the virtual coupling force itself vanishes in the saturated region, and therefore
cannot regularize any degenerate contact gradients. Essentially, the net force/torque gradient when
moving in singular directions is zero, and as such the simulation, observing only the current net
forces and torques and the current gradients, cannot know where to move the object to minimize
the net force/torque imbalance. If no special care is taken, this leads to an (almost) singular system
of Equations 4.1 and 4.2, potentially leading to simulation “explosion”. For example, this could
happen in free space if the user moves the haptic handle so quickly that the displacement between
the manipulandum and the haptic object grows to the fully saturated region. Imposing limits on ve-
locities typically does not help, as in practice (in our examples) those limits are too large to remedy
this problem. The problem is not limited only to free space, however. For example, for the square
box in a square infinite shaft, one can reproduce the same problem if moving the manipulandum
very fast along the axis of the shaft.

We designed a scheme that handles these kind of degeneracies, and guarantees stable operation.
This scheme is only necessary if virtual coupling saturation is used (and typically it is used in our
demos), and it works as follows. LetA be the 6×6 system matrix from Equations 4.1 and 4.2. Call
the right-hand side b ∈ R6, and the unknown vector x = (∆x,∆ω) ∈ R6. Instead of proceeding
to solve Ax = b directly via Gaussian elimination (which could fail as we do not know whether
A is singular or not), we first compute the singular value decomposition of A = UΣV T , where
U, V,Σ ∈ R6×6, U and V are 6×6 orthogonal matrices, and Σ is a diagonal matrix of non-negative
singular values σ1 ≥ σ2 . . . σ6 ≥ 0. We threshold the singular values: any singular value smaller
than εσ1 is considered too close to zero. We use ε = 0.001 everywhere in our implementations. Let
Vnd denote the submatrix of V corresponding to the retained singular values; these columns span
our non-degenerate solution space. Likewise, the remaining columns of the matrix (submatrix Vd)
span our degenerate solution space, so we have V = [Vnd|Vd]. The matrix U is subdivided in the
same way.

We solve the problem separately for the non-degenerate and degenerate part. For the non-
degenerate subspace, there is sufficient (i.e., nonsingular) information on gradients of the net equi-
librium forces and torques. Therefore, we compute the minimum norm solution of Ax = b within
the subspace spanned by Vnd, i.e., xnd = VndΣ

−1UT
ndb. For the degenerate subspace, the system is

offering negligible resistance in the directions of the subspace. Therefore, we simply pick the xd

from the degenerate subspace which minimizes the difference between the manipulandum position
and simulation object position, i.e., we set

xd = VdV
T
d

(
xgrasp,m − xgrasp,s

)
. (4.41)

We use x = xnd + xd as the final solution. Note that this scheme is different from Truncated

168



Singular Value Decomposition (TSVD) and also from Tikhonov regularization [TV77]. TSVD
would use xd = 0, while Tikhonov regularization would change the truncated singular values to
some constant ε′; one would then solve the regularized system of equations. It is not obvious how
to select a stable ε′, as too small values cause solution overshoot and instabilities, whereas too large
values cause the simulation object to lag behind the manipulandum, at smaller velocities than with
typical velocity limits of Section 4.6.

Let us give an example of how our scheme works. Suppose the user moves the manipulandum
very quickly in free space. Then, Vnd will span the 3-dimensional space of infinitesimal rotations,
whereas Vd will span the degenerate 3-dimensional space of translations. The simulation object
will snap to the manipulandum within the subspace spanned by Vd. In the case of a square box
in a square shaft, if the user moves the box very quickly along the axis of the shaft, Vd will span
the direction along the shaft. Within Vd, the simulation object will snap to the manipulandum. In
the other five directions, the simulation behaves as usual. If the user moves the box in the plane
perpendicular to the shaft axis, or attempts to rotate the box, they will feel the contact forces and
torques, while simultaneously feeling no resistance to the motion along the shaft axis.

Note that xd will be invoked only when the rank is degenerate. In the vast majority of cases,
there will be no singularity and only the xnd term will be present. This algorithm requires perform-
ing a SVD on a 6× 6 matrix, as opposed to simply solving the system with Gaussian elimination.
SVD is slower than Gaussian elimination, but this was not a significant bottleneck in our simula-
tions: solving the 6× 6 linear system with Gaussian elimination typically took 5 microseconds on
the machine of Table 3.1, whereas the entire degenerate rank support algorithm, including SVD,
typically took 30 microseconds, which is still only 3% of the entire computation time available.

The velocity-limiting scheme of Section 4.6 can still be used, even when using degenerate rank
handling. We do this by first computing x = xnd + xd, then perform the velocity (and angular
velocity) limiting on x as usual. Typically our velocity limits are larger than velocities than cause
degenerate ranks, so x computed in a degenerate situation will often pass the velocity limiting
stage unmodified.

169



170



Conclusion

This thesis proposed a class of reduced deformable objects that can undergo large deformations and
can be timestepped at high update rates. The reduced dynamics are simulated in a low-dimensional
basis of deformations, obtained by appropriately reducing large-deformation (geometrically non-
linear) FEM deformable models. We use reduced models because general FEM models do not
run at haptics for models with complex geometry. We demonstrated that it is now possible to
simulate distributed contact between reduced-deformable objects at haptic rates, with an algorithm
that scales to complex geometry. We introduced the nested point-tree, a novel datastructure that
can be used to simulate time-critical (deformable) contact. We gave a detailed description of our
6-DOF haptic rendering pipeline, exposing several important details that were previously either
sparsely documented or not documented in literature, but are essential for building a robust haptic
rendering system. We demonstrated that the entire simulation pipeline can benefit from reduction,
not just deformable object simulation. Collision detection and contact largely benefit from our
output-sensitive nested point-tree traversal. A general FEM deformable model would explicitly
compute the deformations of all vertices (points) at every timestep, whereas we can timestep the
deformations in a subspace and therefore do not have to explicitly construct the deformations of all
vertices (points) at every haptic cycle. We only have to evaluate individual deformed point posi-
tion, normal and bounding sphere radius if this particular point is encountered by the tree traversal.
Such selective individual evaluation is only possible due to reduction. The reduced deformable
model, (reduced-deformable) distance fields and the nested bounded deformation point-tree can be
integrated into one system which can render complex geometry in reduced-deformable distributed
contact at haptic rates for the first time.

171



172



Bibliography

[ABA] ABAQUS. ABAQUS Inc., http://www.hks.com.

[AH98a] Richard J. Adams and Blake Hannaford. A Two-Port Framework for the Design
of Unconditionally Stable Haptic Interfaces. In Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 1254–1259. IEEE, 1998.

[AH98b] Oliver Astley and Vincent Hayward. Multirate Haptic Simulation Achieved by Cou-
pling Finite Element Meshes Through Norton Equivalents. In Proc. of the IEEE Int.
Conf. on Robotics and Automation, 1998.

[Alg] Algorithms and Application Group (Nancy Amato), Parasol Lab, Texas A&M
University. Motion path planning puzzles (benchmarks) online repository,
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp.

[ASB78] B. O. Almroth, P. Stern, and F. A. Brogan. Automatic Choice of Global Shape Func-
tions in Structural Analysis. AIAA Journal, 16(5):525–528, 1978.

[BA05] J. Bærentzen and H. Aanæs. Signed distance computation using the angle weighted
pseudo-normal. IEEE Transactions on Visualization and Computer Graphics,
11(3):243–253, 2005.

[Bas01] C. Basdogan. Real-time Simulation of Dynamically Deformable Finite Element
Models Using Modal Analysis and Spectral Lanczos Decomposition Methods. In
Medicine Meets Virtual Reality (MMVR’2001), pages 46–52, 2001.

[BBM+01] Chris Buehler, Michael Bosse, Leonard McMillan, Steven J. Gortler, and Michael F.
Cohen. Unstructured lumigraph rendering. In Proceedings of ACM SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series, pages 425–432, August
2001.

[Bel01] Ted Belytschko. Nonlinear Finite Elements for Continua and Structures. Wiley,
2001.

[BFA02] Robert Bridson, Ronald P. Fedkiw, and John Anderson. Robust Treatment of Col-
lisions, Contact, and Friction for Cloth Animation. ACM Trans. on Graphics,
21(3):594–603, 2002.

173



[BFSV06] Peter Benner, Roland W. Freund, Danny C. Sorensen, and Andras Varga. Special
Issue on Order Reduction of Large-Scale Systems. Linear Algebra and its Applica-
tions, 415:231–234, june 2006.

[BJ05] Jernej Barbič and Doug L. James. Real-Time Subspace Integration for St. Venant-
Kirchhoff Deformable Models. ACM Transactions on Graphics (SIGGRAPH 2005),
24(3), August 2005.

[BNC96] Morten Bro-Nielsen and Stephane Cotin. Real-time Volumetric Deformable Models
for Surgery Simulation using Finite Elements and Condensation. Comp. Graphics
Forum, 15(3):57–66, 1996.

[BSA00] O. Burchan Bayazit, Guang Song, and Nancy M. Amato. Enhancing Randomized
Motion Planners: Exploring with Haptic Hints. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pages 529–536, 2000.

[BW92] David Baraff and Andrew Witkin. Dynamic Simulation of Non-penetrating Flexible
Bodies. Computer Graphics (Proc. of ACM SIGGRAPH 92), 26(2):303–308, 1992.

[BW97] Javier Bonet and Richard D. Wood. Nonlinear Continuum Mechanics for Finite Ele-
ment Analysis. Cambridge University Press, 1997.

[BW98] David Baraff and Andrew P. Witkin. Large Steps in Cloth Simulation. In Proc. of
ACM SIGGRAPH 98, pages 43–54, July 1998.

[BW03] David Baraff and Andrew Witkin. Physically based modelling course notes, 2003.

[CDA99] S. Cotin, H. Delingette, and N. Ayache. Realtime Elastic Deformations of Soft Tis-
sues for Surgery Simulation. IEEE Trans. on Vis. and Comp. Graphics, 5(1):62–73,
1999.

[CG98] Marie-Paule Cani-Gascuel. Layered Deformable Models with Implicit Surfaces. In
Graphics Interface, pages 201–208, 1998.

[CGC+02a] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. A
Multiresolution Framework for Dynamic Deformations. In Proc. of the Symp. on
Comp. Animation 2002, pages 41–48, 2002.

[CGC+02b] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. Interac-
tive Skeleton-Driven Dynamic Deformations. ACM Trans. on Graphics, 21(3):586–
593, July 2002.

[CGSS93] J.E. Colgate, P.E. Grafing, M.C. Stanley, and G. Schenkel. Implementation of Stiff
Virtual Walls in Force-Reflecting Interfaces. In Proc. of IEEE Virtual Reality Annual
Int. Symp., pages 202–208. IEEE, 1993.

174



[CK05a] Min Gyu Choi and Hyeong-Seok Ko. Modal Warping: Real-Time Simulation of
Large Rotational Deformation and Manipulation. IEEE Trans. on Vis. and Comp.
Graphics, 11(1):91–101, 2005.

[CK05b] Francois Conti and Oussama Khatib. Spanning large workspaces using small haptic
devices. In Proc. of the World Haptics Conference, pages 183–188, 2005.

[CM69] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the 24th National Conference of the ACM, pages 157–172, 1969.

[CMJ95] J.E. Colgate, M.C.Stanley, and J.M.Brown. Issues in the Haptic Display of Tool Use.
In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 140–145.
IEEE, 1995.

[DA04] C. Duriez and C. Andriot. A multi-threaded approach for deformable/rigid contacts
with haptic feedback. In Proc. of the Symp. on Haptic Interfaces For Virtual Environ-
ment and Teleoperator Systems, pages 272–279, 2004.

[DDCB01] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dynamic
Real-Time Deformations Using Space & Time Adaptive Sampling. In Proc. of ACM
SIGGRAPH 2001, pages 31–36, August 2001.

[DDKA06] Christian Duriez, Frédéric Dubois, Abderrahmane Kheddar, and Claude Andriot. Re-
alistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments.
IEEE Trans. on Vis. and Comp. Graphics, 12(1):36–47, 2006.

[DSB99] Mathieu Desbrun, Peter Schröder, and Al Barr. Interactive Animation of Structured
Deformable Objects. In Graphics Interface ’99, pages 1–8, June 1999.

[DSP06] Kevin G. Der, Robert W. Sumner, and Jovan Popović. Inverse kinematics for reduced
deformable models. ACM Transactions on Graphics, 25(3):1174–1179, 2006.

[DW03] G. Dhondt and K. Wittig. CalculiX: A Free Software Three-Dimensional Structural
Finite Element Program, 2003.

[ELPZ97] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi. The farthest point strategy for
progressive image sampling. IEEE Trans. on Image Processing, 6(9):1305–1315,
1997.

[Eri01] Eric de Castro Lopo. Faster Floating Point to Integer Conversions, http://mega-
nerd.com/FPcast/, 2001.

[Fis92] J. Fish. The s-version of the finite element method. Computers and Structures,
43(3):539–547, 1992.

175



[Fun77] Y. Fung. A First Course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs,
NJ, 1977.

[FvdPT97] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Dynamic Free-
Form Deformations for Animation Synthesis. IEEE Trans. on Vis. and Comp. Graph-
ics, 3(3):201–214, 1997.

[GKJ+05] Naga K. Govindaraju, David Knott, Nitin Jain, Ilknur Kabul, Rasmus Tamstorf, Rus-
sell Gayle, Ming C. Lin, and Dinesh Manocha. Interactive collision detection be-
tween deformable models using chromatic decomposition. ACM Transactions on
Graphics, 24(3):991–999, August 2005.

[GKS02] Eitan Grinspun, Petr Krysl, and Peter Schröder. CHARMS: A Simple Framework for
Adaptive Simulation. ACM Trans. on Graphics, 21(3):281–290, July 2002.

[GL89] Alan George and Joseph W. H. Liu. The Evolution of the Minimum Degree Ordering
Algorithm. SIAM Review, 31(1):1–19, 1989.

[GM97] S. Gibson and B. Mirtich. A Survey of Deformable Modeling in Computer Graph-
ics. Technical Report TR-97-19, Mitsubishi Electric Research Lab, Cambridge, MA,
November 1997.

[GME+00] Arthur Gregory, Ajith Mascarenhas, Stephen Ehmann, Ming Lin, and Dinesh
Manocha. Six degree-of-freedom haptic display of polygonal models. In T. Ertl,
B. Hamann, and A. Varshney, editors, Proceedings Visualization 2000, pages 139–
146, 2000.

[GTH98] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. NeuroAnimator:
Fast Neural Network Emulation and Control of Physics-Based Models. In Proc. of
ACM SIGGRAPH 98, pages 9–20, July 1998.

[GW06] Joachim Georgii and Ruüdiger Westermann. A multigrid framework for real-time
simulation of deformable bodies. Computer & Graphics, 30:408–415, 2006.

[HFL00] G. Hirota, S. Fisher, and M. C. Lin. Simulation of Non-penetrating Elastic Bodies
Using Distance Fields. Technical report, University of North Carolina at Chapel Hill,
NC, April 2000.

[HFS+01] Gentaro Hirota, Susan Fisher, Andrei State, Chris Lee, and Henry Fuchs. An implicit
finite element method for elastic solids in contact. In Proc. of Computer Animation,
Seoul, South Korea, 2001, 2001.

[Hol00a] J. M. Hollerbach. Some current issues in haptics research. In Proc. IEEE Intl. Conf.
Robotics and Automation, pages 757–762, April 24-28 2000.

176



[Hol00b] Gerhard A. Holzapfel. Nonlinear Solid Mechanics. Wiley, 2000.

[Hop94] Hugues Hoppe. Surface reconstruction from unorganized points. PhD thesis, Depart-
ment of Comp. Science and Engineering, University of Washington, 1994.

[HSO03] K. K. Hauser, C. Shen, and J. F. O’Brien. Interactive Deformation Using Modal
Analysis with Constraints. In Proc. of Graphics Interface, 2003.

[Hub95] Philip M. Hubbard. Collision Detection for Interactive Graphics Applications. PhD
thesis, Department of Comp. Science, Brown University, 1995.

[HW04a] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer, Berlin, third edition, 2004.

[HW04b] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems. Springer, Berlin, third edition, 2004.

[IC85a] Sergio R. Idelsohn and Alberto Cardona. A Load-dependent Basis for Reduced Non-
linear Structural Dynamics. Computers and Structures, 20(1-3):203–210, 1985.

[IC85b] Sergio R. Idelsohn and Alberto Cardona. A Reduction Method for Nonlinear Struc-
tural Dynamic Analysis. Computer Methods in Applied Mechanics and Engineering,
49:253–279, 1985.

[ITF04] G. Irving, J. Teran, and R. Fedkiw. Invertible Finite Elements for Robust Simulation
of Large Deformation. In Proc. of the Symp. on Comp. Animation 2004, pages 131–
140, 2004.

[Jam01] D.L. James. Multiresolution Green’s Function Methods for Interactive Simulation of
Large-scale Elastostatic Objects and Other Physical Systems in Equilibrium. PhD
thesis, Institute of Applied Mathematics, University of British Columbia, Vancouver,
British Columbia, Canada, 2001.

[JBS06] M. Jones, J. Bærentzen, and M. Sramek. 3d distance fields: a survey of tech-
niques and applications. IEEE Transactions on Visualization and Computer Graph-
ics, 12(4):581–599, 2006.

[JBT04] Doug L. James, Jernej Barbič, and Christopher D. Twigg. Squashing Cubes: Au-
tomating Deformable Model Construction for Graphics. In Proc. of ACM SIGGRAPH
Sketches and Applications, August 2004.

[JCC06] S. Jun, J. Choi, and M. Cho. Physics-based s-adaptive haptic simulation for de-
formable object. In Proc. of the Symp. on Haptic Interfaces For Virtual Environment
and Teleoperator Systems, pages 72–78, 2006.

177



[JF03] Doug James and Kayvon Fatahalian. Precomputing Interactive Dynamic Deformable
Scenes. In Proc. of ACM SIGGRAPH 2003, pages 879–887. ACM, 2003.

[JJ] J. Barbič and D. James. The project webpage for the Barbič-James 2005 SIGGRAPH
paper, http://graphics.cs.cmu.edu/projects/stvk.

[Jol86] I. T. Jolliffe. Principal Component Analysis. New York: Springer-Verlag, 1986.

[JP99] Doug L. James and Dinesh K. Pai. ARTDEFO: Accurate Real Time Deformable
Objects. In Proc. of ACM SIGGRAPH 99, volume 33, pages 65–72, 1999.

[JP01] Doug L. James and Dinesh K. Pai. A Unified Treatment of Elastostatic Contact
Simulation for Real Time Haptics. Haptics-e, The Electronic J. of Haptics Research
(www.haptics-e.org), 2(1), September 2001.

[JP02] Doug L. James and Dinesh K. Pai. DyRT: Dynamic Response Textures for Real
Time Deformation Simulation With Graphics Hardware. ACM Trans. on Graphics,
21(3):582–585, July 2002.

[JP03] Doug L. James and Dinesh K. Pai. Multiresolution Green’s Function Methods for
Interactive Simulation of Large-scale Elastostatic Objects. ACM Trans. on Graphics,
22(1):47–82, 2003.

[JP04] Doug L. James and Dinesh K. Pai. BD-Tree: Output-Sensitive Collision Detection
for Reduced Deformable Models. ACM Trans. on Graphics, 23(3):393–398, August
2004.

[JT05] Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Trans-
actions on Graphics, 24(3):399–407, August 2005.

[KcM00] U. Kühnapfel, H. Çakmak, and H. Maaß. Endoscopic surgery training using virtual
reality and deformable tissue simulation. Computers & Graphics, 24:671–682, 2000.

[KKR00] Jeonghwan Ko, Andrew J. Kurdila, and Othon K. Rediniotis. Divergence free
bases and multiresolution methods for reduced-order flow modeling. AIAA Journal,
38(12):2219–2232, 2000.

[KKSD02] Laehyun Kim, Anna Kyrikou, Gaurav S. Sukhatme, and Mathieu Desbrun. Implicit-
based Haptic Rendering Technique. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2002.

[KLM01] P. Krysl, S. Lall, and J. E. Marsden. Dimensional model reduction in non-linear
finite element dynamics of solids and structures. Int. J. for Numerical Methods in
Engineering, 51:479–504, 2001.

178



[KMH+04] R. Keiser, M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Contact Handling
for Deformable Point-Based Objects. In Proc. of Vision, Modeling, Visualization
2004, pages 339–346, 2004.

[KOLM02] Young J. Kim, Miguel A. Otaduy, Ming C. Lin, and Dinesh Manocha. Six-Degree-of
Freedom Haptic Display Using Localized Contact Computations. In The Tenth Symp.
on Haptic Interfaces For Virtual Environment and Teleoperator Systems, March 24-
25 2002.

[KOLM03] Young J. Kim, Miguel A. Otaduy, Ming C. Lin, and Dinesh Manocha. Six degree-
of-freedom haptic display using incremental and localized computations. Presence-
Teleoperators and Virtual Environments, 12(3):277–295, 2003.

[Kuf04] James J. Kuffner. Effective sampling and distance metrics for 3d rigid body path
planning. In IEEE Int. Conf. on Robotics and Automation 2004, April 2004.

[LB05] Ren-Cang Li and Zhaojun Bai. Structure preserving model reduction using a Krylow
subspace projection formulation. Comm. Math. Sci., 3(2):179–199, 2005.

[LCN99] J.C. Lombardo, M.P. Cani, and F. Neyret. Real-time Collision Detection for Virtual
Surgery. In Proc. of Comp. Animation 1999, May 1999.

[LD07] S.D. Laycock and A.M. Day. A Survey of Haptic Rendering Techniques. Computer
Graphics Forum, 26:50–65, 2007.

[LLVT03] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient implementation of
Marching Cubes’ cases with topological guarantees. Journal of Graphics Tools,
8(2):1–15, 2003.

[LMG02] S. Lall, J. E. Marsden, and S. Glavaski. A subspace approach to balanced truncation
for model reduction of nonlinear control systems. Int. J. on Robust and Nonlinear
Control, 12:519–535, 2002.

[LS76] Wai-Hung Liu and Andrew H. Sherman. Comparative Analysis of the Cuthill-McKee
and the Reverse Cuthill-McKee Ordering Algorithms for Sparse Matrices. SIAM
Journal on Numerical Analysis, 13(2):198–213, 1976.

[LS07] François Labelle and Jonathan Richard Shewchuk. Isosurface Stuffing: Fast Tetrahe-
dral Meshes with Good Dihedral Angl es. In Proc. of ACM SIGGRAPH 2007, Aug
2007.

[Lum67] J. L. Lumley. The structure of inhomogeneous turbulence. In A.M.Yaglom and
V.I.Tatarski, editors, Atmospheric turbulence and wave propagation, pages 166–178,
1967.

179



[MAC04] Damien Marchal, Fabrice Aubert, and Christophe Chaillou. Collision Between De-
formable Objects Using Fast-Marching on Tetrahedral Models. In Proc. of the Symp.
on Comp. Animation 2004, Aug 2004.

[MBTF03] Neil Molino, Robert Bridson, Joseph Teran, and Ron Fedkiw. A crystalline, red green
strategy for meshing highly deformable objects with tetrahedra. In 12th Int. Meshing
Roundtable, pages 103–114, 2003.

[MDM+02] M. Müller, J. Dorsey, L. McMillian, R. Jagnow, and B. Cutler. Stable Real-Time
Deformations. In Proc. of the Symp. on Comp. Animation 2002, pages 49–54, 2002.

[MG04] M. Müller and M. Gross. Interactive Virtual Materials. In Proc. of Graphics Interface
2004, pages 239–246, 2004.

[MHTG05] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. Mesh-
less Deformations Based on Shape Matching. In Proc. of ACM SIGGRAPH 2005,
pages 471–478, Aug 2005.

[MO06] C. Mendoza and C. O’Sullivan. Interruptible collision detection for deformable ob-
jects. Computer & Graphics, 30(2), 2006.

[MPT99] William A. McNeely, Kevin D. Puterbaugh, and James J. Troy. Six degree-of-
freedom haptic rendering using voxel sampling. In Proc. of ACM SIGGRAPH 99,
pages 401–408. ACM, 1999.

[MPT06] W.A. McNeely, K.D. Puterbaugh, and J.J. Troy. Voxel-Based 6-DOF Haptic Render-
ing Improvements. Haptics-e, 3(7), 2006.

[MT92] Dimitri Metaxas and Demetri Terzopoulos. Dynamic Deformation of Solid Primitives
with Constraints. Computer Graphics (Proc. of ACM SIGGRAPH 92), 26(2):309–
312, 1992.

[MTG04] M. Müller, M. Teschner, and M. Gross. Physically-Based Simulation of Objects
Represented by Surface Meshes. In Proc. of Comp. Graphics Int. (CGI), pages 26–
33, Crete, Grece, June, 16–19 2004.

[Nic76] R. E. Nickell. Nonlinear Dynamics by Mode Superposition. Computer Methods in
Applied Mechanics and Engineering, 7:107–129, 1976.

[Nin02] Ning Hu and Vahe Poladian. Characterizing and Enhancing the Performance of
Sound Synthesis Applications on Pentium III, Computer Architecture Final Course
Project Report, http://www.cs.cmu.edu/ ninghu/papers/Report CA02.pdf, 2002.

[Noo81] Ahmed K. Noor. Recent Advances in Reduction Methods for Nonlinear Problems.
Computers and Structures, 13:31–44, 1981.

180



[NP80] Ahmed K. Noor and Jeanne M. Peters. Reduced Basis Technique for Nonlinear Anal-
ysis of Structures. AIAA Journal, 18(4):455–462, 1980.

[OG07] Miguel A. Otaduy and Markus Gross. Transparent Rendering of Tool Contact with
Compliant Environments. In Proc. of the World Haptics Conference, pages 225–230,
2007.

[OH99] J.F. O’Brien and J.K. Hodgins. Graphical Modeling and Animation of Brittle Frac-
ture. In Proc. of ACM SIGGRAPH 99, pages 111–120, 1999.

[OL03] Miguel A. Otaduy and Ming C. Lin. Sensation Preserving Simplification for Haptic
Rendering. In Proc. of ACM SIGGRAPH 2003, pages 543–553. ACM, 2003.

[OL05] Miguel A. Otaduy and Ming C. Lin. Stable and Responsive Six-Degree-of-Freedom
Haptic Manipulation Using Implicit Integration. In Proc. of the World Haptics Con-
ference, pages 247–256, 2005.

[OL06] Miguel A. Otaduy and Ming C. Lin. A Modular Haptic Rendering Algorithm for
Stable and Transparent 6-DoF Manipulation. IEEE Trans. on Robotics, 22(4):751–
762, 2006.

[OSG02] J. F. O’Brien, C. Shen, and C. M. Gatchalian. Synthesizing Sounds from Rigid-Body
Simulations. In Proc. of the Symp. on Comp. Animation 2002, pages 175–181, 2002.

[Ota04] Miguel A. Otaduy. 6-DoF Haptic Rendering Using Contact Levels of Detail and
Haptic Textures. PhD thesis, Department of Comp. Science, University of North
Carolina at Chapel Hill, 2004.

[Pai02] Dinesh Pai. Strands: Interactive simulation of thin solids using Cosserat models.
Computer Graphics Forum, 21(3):347–352, 2002.

[Par01] Rick Parent. Computer Animation: Algorithms and Techniques. Morgan Kaufmann,
2001.

[PDA01] G. Picinbono, H. Delingette, and N. Ayache. Non-linear and anisotropic elastic soft
tissue models for medical simulation. In IEEE Int. Conf. on Robotics and Automation
2001, May 2001.

[PPG04] M. Pauly, D. K. Pai, and L. Guibas. Quasi-Rigid Objects in Contact. In Proc. of the
Symp. on Comp. Animation 2004, 2004.

[PW89] Alex Pentland and John Williams. Good vibrations: Modal dynamics for graphics
and animation. Computer Graphics (Proc. of ACM SIGGRAPH 89), 23(3):215–222,
July 1989.

181



[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels:
Surface Elements as Rendering Primitives. In Proc. of ACM SIGGRAPH 2000, pages
335–342, 2000.

[RJ07] Alec R. Rivers and Doug L. James. FastLSM: Fast Lattice Shape Matching for Robust
Real-Time Deformation. In Proc. of ACM SIGGRAPH 2007, Aug 2007.

[RKK97] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib. The Haptic Display of
Complex Graphical Environments. In Turner Whitted, editor, Proc. of ACM SIG-
GRAPH 97, pages 345–352. Addison Wesley, August 1997.

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point render-
ing system for large meshes. In Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, pages 343–352, July 2000.

[RPP+01] M. Renz, C. Preusche, M. Pötke, H.-P. Kriegel, and G. Hirzinger. Stable haptic
interaction with virtual environments using an adapted voxmap-pointshell algorithm.
In Proc. of Eurohaptics, pages 149–154, 2001.

[Sen] Sensable Technologies, Inc. Phantom haptic interfaces, http://www.sensable.com.

[SF92] Mikio Shinya and Alain Fournier. Stochastic motion - Motion under the influence of
wind. Comp. Graphics Forum, pages 119–128, 1992.

[SGG+06a] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha. Fast Proximity Com-
putation Among Deformable Models using Discrete Voronoi Diagrams. In Proc. of
ACM SIGGRAPH 2006, 2006.

[SGG+06b] Avneesh Sud, Naga Govindaraju, Russell Gayle, , and Dinesh Manocha. Interactive
3D Distance Field Computation using Linear Factorization. In Proc. ACM Sympo-
sium on Interactive 3D Graphics and Games (I3D), 2006.

[Sha90] Ahmed A. Shabana. Theory of Vibration, Volume II: Discrete and Continuous Sys-
tems. Springer–Verlag, New York, NY, 1990.

[Sha05] Ahmed A. Shabana. Dynamics of Multibody Systems. Cambridge Univ. Press, New
York, NY, 2005.

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. In Proc. of ACM SIG-
GRAPH 1985, pages 245–254, 1985.

[SL06] H. Hoppe S. Lefebvre. Perfect Spatial Hashing. In Proc. of ACM SIGGRAPH 2006,
Aug 2006.

182



[SM01] S.Fisher and M.C.Lin. Fast penetration depth estimation for elastic bodies using
deformed distance fields. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 330–336, 2001.

[SOM04] Avneesh Sud, Miguel Otaduy, and Dinesh Manocha. DiFi: Fast 3D Distance Field
Computation Using Graphics Hardware. Comp. Graphics Forum, 23(3):557–556,
2004.

[SOS04] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating and approx-
imating implicit surfaces from polygon soup. In Proceedings of ACM SIGGRAPH
2004, pages 896–904. ACM Press, August 2004.

[SPG03] Christian Sigg, Ronny Peikert, and Markus Gross. Signed Distance Transform using
Graphics Hardware. In Proceedings of IEEE Visualization Conference, pages 83–90,
2003.

[Sta97] J. Stam. Stochastic Dynamics: Simulating the Effects of Turbulence on Flexible
Structures. Comp. Graphics Forum, 16(3), 1997.

[SV97] S. Salcudean and T. Vlaar. On the emulation of stiff walls and static friction with a
magnetically levitated input-output device. ASME Journal of Dynamics, Measure-
ment and Control, 119:127–132, 1997.

[TBHF03] J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw. Finite volume methods for the
simulation of skeletal muscle. In 2003 ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, pages 68–74, August 2003.

[TLP06] A. Treuille, A. Lewis, and Z. Popović. Model Reduction for Real-time Fluids. In
Proc. of ACM SIGGRAPH 2006, 2006.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically De-
formable Models. Computer Graphics (Proc. of ACM SIGGRAPH 87), 21(4):205–
214, 1987.

[TSIF05] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. Robust Qua-
sistatic Finite Elements and Flesh Simulation. In 2005 ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, pages 181–190, July 2005.

[Tur92] Greg Turk. Re-Tiling Polygonal Surfaces. Computer Graphics (Proc. of ACM SIG-
GRAPH 92), 26(2):55–64, 1992.

[Tur01] Greg Turk. Texture Synthesis on Surfaces. In Proceedings of ACM SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series, pages 347–354, August
2001.

183



[TV77] A.N. Tikhonov and V.A.Arsenin. Solution of Ill-posed Problems. Winston & Sons,
1977.

[TW88] Demetri Terzopoulos and Andrew Witkin. Physically Based Models with Rigid and
Deformable Components. IEEE Comp. Graphics & Applications, 8(6):41–51, 1988.

[WH94] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control im-
plicit surfaces. In Proceedings of SIGGRAPH 94, Computer Graphics Proceedings,
Annual Conference Series, pages 269–278, July 1994.

[WM03] Ming Wan and William A. McNeely. Quasi-Static Approximation for 6 Degrees-of-
Freedom Haptic Rendering. In Proc. of IEEE Visualization 2003, pages 257–262,
2003.

[WRF+96] Mark William, Scott Randolph, Mark Finch, James Van Verth, and Russell M. Taylor
II. Adding Force Feedback to Graphics Systems: Issues and Solutions. In Proc. of
ACM SIGGRAPH 96, pages 447–452, August 1996.

[Wri02] Peter Wriggers. Computational Contact Mechanics. John Wiley & Sons, Ltd., 2002.

[WW90] Andrew Witkin and William Welch. Fast Animation and Control of Nonrigid Struc-
tures. Computer Graphics (Proc. of ACM SIGGRAPH 90), 24(4):243–252, August
1990.

[ZC00] Yan Zhuang and John Canny. Haptic Interaction with Global Deformations. In Proc.
of the IEEE Int. Conf. on Robotics and Automation, San Francisco, USA, 2000.

[ZS95] C.B. Zilles and J.K. Salisbury. A Constraint-based God-object Method for Haptics
Display. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
146–151. IEEE, 1995.

184


	Introduction
	Fast deformable models using model reduction
	Real-time deformable contact and haptic rendering
	Thesis overview
	Thesis contributions

	Real-time geometrically nonlinear deformable models using model reduction
	Background: Nonlinear deformable object modeling
	The finite element method
	Strain and stress
	Elastic and hyperelastic deformable models
	Linear materials
	Nonlinear material models
	Why the simulation is nonlinear
	The equations of motion
	Cubic polynomials for linear materials
	Offline simulation
	Static simulations

	Related work: Real-time deformable objects
	Related work: Dimensional model reduction in solid mechanics
	Overview of our approach
	Mesh generation
	Choice of elements
	Free-form deformations

	The reduced equations of motion
	Reduced internal forces are cubic polynomials
	Reduced tangent stiffness matrix entries are quadratic polynomials
	Precomputing polynomial coefficients
	Runtime polynomial evaluation

	Damping
	Low-dimensional basis selection
	Mass PCA
	Sketch-based basis generation
	Basis from modal derivatives
	Alternative view on modal derivatives
	Modal derivatives generalization to second-order ODEs
	Comparison: modal derivatives vs sketch basis
	Basis for unconstrained models

	The implicit Newmark (subspace) integrator
	Why not explicit subspace integration?
	Numerical damping
	Choice of timestep for implicit Newmark

	External forces
	Runtime modification of material parameters
	Graphical rendering
	Computing u=Uq on the GPU
	Adaptive u=Uq computation for collision detection

	Experiments
	Re-simulation, modal derivatives, sketch
	Modal derivative basis under progressive r

	Real-time interactive demo
	Discussion and future work

	Time-critical distributed deformable contact
	Background: The Voxmap-PointShell (VPS) method
	Virtual coupling

	Overview of our approach
	Related work: Multi-resolution rendering
	Related work: Haptic rendering of deformable objects
	Penalty-based point-contact model
	Contact force convergence under pointshell refinement
	Our contact model as a volume integral

	Sampling reduced deformable models
	Computing deformed point positions
	Computing deformed pointshell normals
	Alternative approaches to determining the contact normal

	Point-based BD-Tree
	Multi-resolution nested pointshell
	Multi-resolution pointshell via particle repulsion
	Pointshell generation alternatives

	Nested point-tree construction
	Nested point-tree construction for alternative pointshell generation approaches

	Time-critical progressive contact forces
	Runtime tree traversal
	Temporal coherence
	Graceful degradation

	Rigid distance field
	Analytical implicit functions instead of a distance field

	Deformed distance field
	Multiple domains

	Experiments and results
	6-DOF haptic demo
	Discussion

	Haptic display of distributed contact
	The contact force and torque
	The contact force and torque gradients
	The virtual coupling force and torque
	The virtual coupling force and torque gradients
	Separating the simulation from haptics
	Limiting maximum speed of the haptic object
	Controlling maximum stiffness
	Static damping
	Virtual coupling saturation
	How to handle degenerate virtual coupling gradients

	Conclusion
	Bibliography

