Rethinking Storage for Discard-Based Search

Lily Mummert', Steve Schlosser’, Mike Mesnier', M. Satyanarayanan*

December 2007
CMU-CS-07-176

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Intel Research Pittsburgh, *Carnegie Mellon University

Abstract

The workload characteristics of content-based image retrieval are poorly suited to existing storage architectures.
This is particularly true for discard-based search, where images are filtered on-demand, potentially at the storage
devices themselves (an active disk technique referred to as early discard). In general, discard-based search is
a highly concurrent, sequential, and read-only workload, making it ideally suited for JBOD (“just a bunch of
disks™), as opposed to a more familiar RAID configuration. Further, as with most image databases, no specific
order is imposed on the retrieved images. In the context of discard-based search, such any-order semantics
introduce a variety of opportunities to the storage system designer (e.g., an I/O coalescing technique called
“bandwagon synchronization”).

This paper examines the storage workloads of discard-based search, and discusses the implications for a new
storage system specifically designed for content-based image retrieval. In addition, representative synthetic
workloads are used to demonstrate the efficiency of JBOD over RAID, and to quantify the benefits of bandwagon
synchronization. We show that JBOD achieves 80-90% of an array’s bandwidth (depending on the level of I/O
concurrency and the average object size), compared to 40-80% for RAID-0.

This research was partly supported by the National Science Foundation (NSF) under grant number CNS-0614679. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of
the NSF, Carnegie Mellon University, or Intel Corp.

Keywords: Image processing, distributed search, OpenDiamond®, active storage, active disk, RAID,
JBOD, caching, indexing

1 Introduction

Discard-based searcly new approach to interactive search of complex data, was introducedgignet
al in 2004 [16] in the context of a prototype call®idamond.Instead of precomputing index data structures for
anticipated queries over an entire corpus, which is the approach ussebbgh engines and databases today,
Diamond formulates and executes a customized computation in response tpueachAs discussed below in
Section 2.2, this query-specific customization yields a number of importaefitefor an interactive user when
searching rich data of high dimensionality such as medical images. An optimizatiedearly discardis the
key to making discard-based search practical on large volumes of ddtas bptimization, application-specific
code called asearchletis executed close to storage with the goal of rejecting irrelevant data aplghend
efficiently as possible.

There is growing evidence that discard-based search can lead tomasvdf domain-specific applications
in which hypothesis formation and hypothesis validation proceed handrid-im a tightly-coupled and iterative
sequence. This inherently human-centric activity is calieractive data exploration (IDE)The published lit-
erature on Diamond spans many IDE examples, including use of persuhatafessional digital photograph
collections [15], tracking of suspicious entities using surveillance canjgddssimilarity search in mammo-
gram interpretation [32], and adipocyte quantitation in automated cell miqogddd]. While it is premature
to speculate on the eventual significance of IDE, it appears likely thadrdidiased search is here to stay.

This paper examines the storage workloads induced on servers byddisrsed search. We show that these
workloads contradict many commonly-held assumptions that are implicit in thgroefsstorage systems today:
Striping proves to be less effective than a JBOD (“just a bunch of diskganization.

Aborting work in progress turns out to be the norm rather than the exeeptio

Speculation in the form of additional computation imposes no additional cabemystem, and can yield
performance benefits.

Some applications are not particular about order of storage accesses.

e Avoiding seeks is not always a dominant performance consideration.

These counter-intuitive observations suggest a fundamental rethiokistgrage design for discard-based
search applications. We begin in Section 2 by providing backgroundnafion on discard-based search and
systems that use it. Next, Section 3 presents the distinct characteristicsafsterage workloads induced by
discard-based search. Sections 4 to 9 then show how these workladtenistics impact some widely-held
beliefs about storage today. From these observations, Section 1@spsop metaphor for the ideal design of
server storage to support discard-based search. We concludetiarSE2 with a summary of the main points
of the paper.

2 Background
2.1 Indexed Search

Today, the term “search” is almost synonymous with “indexed searctéuse of its phenomenal success
in many contexts, ranging from Web search engines to relational databAsdndexed search strategy rests
on three assumptions. First, the entire space of queries can be anticipathéirte. Second, it is possible to
preprocess data to create indexes. Third, the preprocessing cathilata using query-relevant index terms
(also called “tags,” “meta-data,” or “annotations”). Historically, text bagn the data type most thoroughly
studied from an indexing viewpoint.

In spite of extensive research in systems such as QBIC [9], automatexingdof complex data such as
images remains a challenging problem for several reasons. First, autbmatbods for extracting semantic
content from many data types are still rather primitive. This is referred tioeesemantic gap20] in information
retrieval. Second, the richness of the data often requires a high-dimeahsipresentation that is not amenable
to efficient indexing. This is a consequence of these of dimensionalitys, 8, 33]. Third, realistic user

\

&

~N query query' .

S
g P[omlzS
results
g query . 1 .
Search app St
results . > o late discard ./
= 1
discard ./ early discard

(a) Basic Concept (b) Early Discard Optimization
Figure 1: Discard-based Search

queries can be very sophisticated, requiring a great deal of domainldaige that is often not available to
the system for optimization. Fourth, expressing a user’s vaguely-sgégjfiery in a machine-interpretable
form can be difficult. These problems constrain the success of indexedrsfor complex, multi-dimensional,
loosely-structured data.

2.2 Discard-based Search

Diamond explores a radically different approach to searching compliex dalleddiscard-based search.
This approach does not attempt to preprocess all data in advance ref quieries. Rather, it perfornt®ntent-
based computation on demand in response to a specific qUkeypurpose of the computation is to eliminate
objects that are clearly not results for the query. An optimized versionieitctimcept is calle@arly discard.
The optimization rejects most of the irrelevant data as early as possible in #lmpifsom storage to user. This
improves scalability since it eliminates a large fraction of the data from most giipledine. Figure 1 illustrates
the concepts of discard-based search and the early-discard optimization

Since the knowledge needed to recognize irrelevant data is domain-spdigifiard-based search requires
domain-specific algorithms to be executed on data objects during a searbianhond, these algorithms are
embodied in searchlets. Early discard requires searchlets to be exelmsgedo storage. Ideally, discard-based
search would reject all irrelevant data without eliminating any desired ddtss. is impossible in practice be-
cause of a fundamental trade-off between false-positives (irreleleaa that is not rejected) and false-negatives
(relevant data that is incorrectly discarded) [8]. The best one cdn dractice is to tune a discard algorithm
to favor one at the expense of the other. Different search applicatimhgjueries may need to make different
trade-offs in this space.

2.3 Relative Merits

The strengths and weaknesses of indexed search and discaddskaseh complement each other. As dis-
cussed below, speed and security favor indexed search. Howlaeard-based search offers other advantages.
These include flexibility in tuning between false positives and false negatilygmamically incorporating new
knowledge, and better integration of human expertise. The growing ibierdgscard based search suggests
that the latter attributes offer high value in some important domains.

Search SpeedBecause all data is preprocessed, there are no compute-intensiveagesiatensive algo-
rithms to be run during an indexed search. It is therefore much fasterdisaard-based search, possibly by
many orders of magnitude.

Server securityThe early-discard optimization, which is essential for scaling discardebssarch to large
data volumes, requires searchlet code to be run close to servers.loBee to storage that searchlets can be
executed, the more effective the optimization. While a broad range of eaimdptechniques [28], language-
based techniques [29], and verification techniques [21] can be applieduce risk, the essential point remains
that potentially untrusted code may need to run on trusted infrastructuirgdaidiscard-based search. This

Searchlet
Filter API
Runtime

Searchlet
Filter API
Runtime

I App Code (proprietary or open)
I Diamond API (open)
[Diamond code (open)

I Storage access protocol (open)
Search
Application

Figure 2: Diamond System Architecture

Assoc DMA Assoc DMA

Searchlet API
Host
runtime

Linux
Assoc DMA

Searchlet
Filter API
Storage
Runtime

Assoc DMA

risk does not exist with indexed search, where the preprocessinghis affline by trusted code on trusted
infrastructure.

Precision and RecallThe preprocessing for indexed search represents a specific paapm@cision-recall
curve, and hence a specific design choice in the tradeoff space Inefalse positives and false negatives.
In contrast, discard-based search can change this tradeoff dytignaisa search progresses through many
iterations. An expert user with extensive domain-specific knowledge nmeygearchlets toward false positives
or false negatives depending on factors such as the purpose ofitish, e completeness of the search relative
to total data volume, and the user’s expert judgement of results fromragetiations in the search process. It
is also possible to return a clearly-labelled sampling of discarded objedtgydudiscard-based search to alert
the user to what he might be missing, and hence to the likelihood of false vesyati

New knowledgeThe preprocessing for indexing can only be as good as the state ofddgsvat the time
of indexing. New knowledge may render some of this preprocessing $tat®ntrast, discard-based search is
based on the state of knowledge of the user at the moment of searchlsdrci@ parameterization. This state
of knowledge may improve even during the course of a search. For d&athp index terms used in labelling
a corpus of medical data may later be discovered to be incomplete or inscc@@ame cases of a condition
that used to be called “A” may now be understood to actually be a new contigib8hort of re-indexing the
entire corpus, this new knowledge cannot be incorporated into indesaadhs Note that this observation is
true regardless of how the index terms were obtained, including game-bas®an tagging approaches such as
ESP [27].

User expertise Discard-based search takes better advantage of the expertise gedhprt of the user
conducting the search. There are many degrees of freedom, inclusinghtet creation and parameterization,
through which this expertise and judgement can be expressed. Instomdexed search limits even the most
expert user to the intrinsic quality of the preprocessing that produceddies.

2.4 Diamond Architecture

As shown in Figure 2, Diamond cleanly separates domain-specific applicatitenfrom a generic runtime
system. The user interacts via a GUI with a domain-specific application on d olechine. To handle a
user query, the application constructs a searchlet out of individuapoaents calledilters. For example, an
application might construct a searchlet using color filters, texture filtacsface detection filters. The parameter
values to each filter serve to tune it: for example, the RGB parameter valuesolordilter determine what
color it detects. The searchlet is presented by the application througle#nehtet API to the Diamond runtime
system, which then distributes it to all the servers involved in the search task.

At each server, Diamond iterates through the locally-stored objects intansydetermined order and
presents them to filters for evaluation through the Filter API. Each filter céepiendently discard an object.
Diamond is ignorant of the details of filter evaluation, only caring about thlaseceturn value which is thresh-
olded to determine whether the object should be discarded or passed &xtHéter. Only those objects that
pass through all of the filters in the searchlet are transmitted to the clientaEloobject, the order of filter eval-
uation is determined by runtime cost-benefit statistics that are dynamicallyahgaéyd as a search proceeds.
Each server performs persistent caching of filter execution resuitsy object identfier and a cryptographic
hash of filter code and parameters as the tag value for a cache enttpniétigl. [16] describe Diamond in
more detail.

3 Discard-based Search Workloads

The APIs through which discard-based search clients and servarsdnigth storage are based on an object
model. An object is viewed as a linear sequence of bytes and is named yue identifier. Due to the nature
of discard-based search, these applications exhibit certain distinagstaccess characteristics on servers:

e Read-only, whole objectAfter initial provisioning, a corpus of data is never modified. Although the
runtime performs persistent caching of filter executions, the storagaegpfia persistence occur in data
areas distinct from the corpus itself. In a typical discard-basedBegmlication, the early-discard com-
putation performed by a filter involves the entire contents of an object. Whildhtkisretically possible
for early-discard to be based only on part of an object’s content, we hat seen this in practice.

e Any-order semanticsThe API through which a filter requests the next object to be examinedamses
iterator model. In other words, a filter says “Get next object” rather thaat“object X.” Hence, the
storage subsystem on a server is free to return any object that haseropresented before in the current
search. All that is guaranteed by the API is exactly-once semantics witlgiarals no object is repeated
and, unless a search is aborted, every object is presented onceff€rsshe storage subsystem a degree
of freedom that is rarely available in non-discard-based search afiphs.

e Frequent abortsAs mentioned earlier, discard-based search facilitates interactive aiiploof complex,
non-indexed and loosely-organized ddtarative query refinemerig a key characteristic of this style of
user interaction. A user issues a query, gets back a few results, anddas these exemplary results to
refine the query. The user is, in effect, conducting two interleaveasear one on the query space and
the other on the data space. This continues until the user finds the desstdt$ 1or gives up. Almost
never does a user wait for the entire corpus of data to be processadjbgry. Instead, there is high
probability that current query may be aborted by the user at any moment.

e Embarrassing parallelismit is hard to imagine a workload more friendly to server CPU and storage
parallelism than a typical discard-based search application. Each @b@cicessed independently and
in its entirety, with no concurrency control or ordering constraints acaigects. Since image objects
are typically large, the net effect is to provide ample opportunity for @grained and easy-to-exploit
parallelism.

In Sections 5 to 9 we show how these workload characteristics are atngtfidsome key tenets of storage
design today. We use the tetenethere in accordance with its dictionary definition [19]: “a principle, belief, o
doctrine generally held to be true; especially one held in common by member®ajanization, movement, or
profession.” The storage community has evolved these tenets over tise @fumany years based primarily on
workloads from databases, file systems, web servers, scientific compmtihpersonal computing. The central
message of this paper is that discard-based search workloads ragetteénking of these tenets. We begin by
describing our experimental setup in the next section.

4 Experimental Setup
4.1 Testbed

All experiments were run on an Intel SSR212CC storage system, whichUssar®er with a 2.8GHz Intel
Xeon CPU with hyperthreading, 1GB of main memory, and twelve internal diJkse disks were 200GB
Seagate Barracuda 7200.10 drives (ST3200820AS), which warected to two Intel SRCS28X SATA RAID
controllers. Each controller had 128MB of memory and SATA ports run@gin@Gb/s. Five disks on one
controller were used in a JBOD configuration, while five disks on the otbetraller were configured as a
striped RAID array with 64KB stripe units using the hardware RAID. Thaaming two drives were used as
spares. The operating system on the server was Ubuntu 7.04 (Fiesty S@wer edition, with Linux kernel
version 2.6.20.

While the disk drives we used support SATA Native Command Queuein@(N@e found that NCQ was
disabled in the RAID controllers due to a hardware bug. However, NC@tisnitical to discard-based search
workloads, which are almost entirely sequential.

4.2 Workload generator

All of our experiments used a synthetic benchmark that generates adiisased search storage workload.
Given a number of objects and file size (or range of file sizes), the besdhcreates a synthetic repository in
which the objects are laid out sequentially, nose to tail, on one or more stbeages. Whole object reads are
issued using direct device 1/O. The repository can be scanned s&dlyeonr specific objects may be accessed
randomly given additional settings such as the query pass rate and thabpity that results for an object are
cached. Passing objects are assumed to be distributed uniformly thraulgeoapository. Repositories may
be read concurrently using a specified number of threads per deviakipld threads synchronize on a work
gueue consisting of the list of files in the repository, their sizes and locations

5 Tenet: “Think Striping”

When considering a storage system design for an application such asddissed search, it would seem
that its embarrassingly parallel, read-only workload would be ideally suited RAID array. In particular,
the widely known performance advantages of RAID-O make it an obviesisdnoice. The only questions
remaining relate to the stripe factor (number of disks) and the stripe unit (@nagiiten to each disk).

It is tempting to immediately proceed down the RAID path and overlook the simpl®J@ution: “just
a bunch of disks.” However, earlier work on medical image retrievahiblittle performance improvement
from the use of RAID [12], and even earlier work on RAID [6] suggdbat during times of high concurrency
(the expected case for discard-based search), one should tbdusember of disks that each /O is required
to access, by employing “narrow striping.” For example, with four disks astripe unit of 64 KB, a 256 KB
request must access all four disks (a stripe width of 4). However, ¢trg@sing the stripe unit to 128 KB, a
256 KB request will access only 2 disks (a narrower stripe).

In effect, JBOD represents the narrowest striping, where eaclesetpuches exactly one disk. JBOD sets
the stripe unit sizes to be equal to the size of each individual data objeatingehat each object is stored
entirely on a single disk. Redundancy is achieved easily with mirroring.

5.1 Justifying JBOD

The goal of discard-based search is to filter disk images (objects)martte Because there is no particular
order imposed on the objects, they can be read and discarded in amyasrdehe most efficient way of pro-
cessing objects is to read them sequentially from disk. Given a single diskadrd a collection of images, one
can store the images sequentially and then process them in the same seqastial

Of course, the best performance one can expect from any singleddiskis that of its full streaming
bandwidth, where the disk’s rotational speed is the only limiting factor. In #se of reads, one can achieve

5

\ O RAID mJBOD \ O RAID m JBOD

1 A} 1 \}
> 0.8 1 % 0.8
06 5 0.6
£ 0.4 - S 0.4 -
o2 W02
0 - 0 -
12 3 4 5 6 7 8 9 10 12 3 45 6 7 8 910
threads # threads
(a) 500KB (b) 1MB
\ O RAID m JBOD \‘ O RAID m JBOD
174
> > 0.8
InEEEn
g 1 (B
L0 T
0.2
HEBBBEEREE] 0
12 3 45 6 7 8 910 172 3 45 6 7 8 910
threads # threads
(c) 2MB (d) 4MB
\ O RAID m JBOD \ O RAID mJBOD
1 7% 1 7%
> 0.8 > 0.8
(6] (]
808 06
£ 0.4 £ 0.4
o2 o2

o
o

1 2 3 4 5 6 7 8 910 12 3 45 6 7 8 910
threads # threads
(e) 8MB (f) 16MB

Figure 3: Comparison of RAID and JBOD

such performance by issuing sequential I/O requests. Unless the diskhas read caching, one must also
ensure that there are at least two outstanding 1/Os at the disk contraoliebéing serviced and a second waiting
to be serviced). Otherwise, a full disk rotation will be incurred for ed€h |

Let us now consider the multi-disk case. There are two options for didzasdd search. One would be
to manage the disks separately using JBOD, and another would be to uBe Rd@din, because there is no
particular order to the objects stored on disk, with JBOD, the runtime can émdigmtly manage each disk.
For example, a worker thread can be assigned to each disk, so as emsaliyuscan that disk’s objects and
pass them up to the filters. In the case of a cached retrieval, each wankdre given a list of objects to
retrieve (objects that have previously passed a filter). Moreoveg ttwrld be multiple workers assigned to the
same disk, each retrieving cached results on behalf of a particular cliecauBe the I/O scheduling is under
control of the runtime in a JBOD configuration, the number of worker trsgalel of concurrency) can be
dynamically adjusted so as to make the most efficient use of each disk (ergaritpring disk utilization and
spawning/killing worker threads as necessary).

Although RAID presents a simpler programming model (i.e., it looks just like desitigk) and can provide
data redundancy, there are no performance benefits relative to JBO&duential scans (both JBOD and
RAID-0 will can see at most the full streaming bandwidth of the disks), aAtDRcan decrease performance

when concurrency is high (because of disk contention). The onlywhsee a RAID-0 array will potentially
outperform JBOD is in the case of low-concurrency during a cacheigval (i.e., random 1/O). Consider the
case where one client is randomly retrieving previously filtered objectegeriobject and disk IDs are stored
in the result cache). With JBOD, the random I/O may be directed to only a&sabthe disks. With RAID-0,
the 1/0O will naturally be load-balanced over the entire disk array, and thectoveurrency will limit any disk
contention among the clients. However, because high concurrency igrtiraan case for discard-based search,
this is opportunity will not occur often. Moreover, a JBOD configuratieith a bit more effort, can effectively
achieve the same load-balancing of the random 1/O, simply by selecting wiskhtd retrieve cached objects
from (i.e., order does not matter).

In summary, our hypothesis is that discard-based search is comparatietdighly concurrent workloads,
and can therefore achieve the best performance by using JBOD.

5.2 Results

To test our hypothesis, we ran the following experiments. Our goal wasd@fconfiguration that keeps all
of the disks busy at their full sequential bandwidth under our synthet@adisbased search workload. Thus,
our figure of merit is efficiency: the ratio of the achieved bandwidth to theimiam sequential bandwidth of
the array. We measured that each of our disks can sustain a maximunetnatsfof 74MB/s, so our aggregate
maximum bandwidth is 370MB/s for the five-disk array.

We ran our synthetic discard-based search benchmark on our améigured as JBOD. In order to see the
impact of concurrency, we varied the number of outstanding requestshtdisk. We also tested various object
sizes. In each case, we ran the benchmark to completion, fetching djecy im the array.

The results appear in Figure 3. Each graph shows the efficiency oDJ80a specific file size with
increasing concurrency from left to right. The arrow shows the maximfiiciency achieved for the given file
size. For each file size, the synthetic discard-based search workkaebie to achieve a disk efficiency of at
least 80% (for at least one of the levels of concurrency). In génseafound that the best efficiency occurred
with one or two threads. Note, because the disks have read-ahea$ ciiéh not a requirement that each disk
have more than 1 outstanding I/O in order to reach its full streaming bandwidth.

As a point of comparison, we ran the same tests with the disks configuredlBsR(results also shown
in Figure 3). In most (65%) of the cases, JBOD outperformed RAID-eérwtompared at the same level of
concurrency, thereby supporting our hypothesis that JBOD is a mbeogert disk organization for discard-
based search.

6 Tenet: “Abort Is Rare”

As described in Section 3, the vast majority of discard-based searciegjnever run to completion, mean-
ing that request abort is the rule rather than the exception. The ustigmps one of iterative query refinement:
a user issues a query, gets a few results, and then uses these resfitetthe query. This process continues
until the user has found the desired results or gives up.

Iterative query refinement is illustrated in Figure 4. A user wishes to fintlggs of a friend’s wedding
from a shared photo collection. She begins her search by noting thakingegictures are likely to contain
faces. While the returned images contain faces, many of them are noti®mmedding. She adds a color
filter to match the wedding dress. Unfortunately, the color is not accuratéh@mew query returns no relevant
images. The user then remembers that some of the wedding photos weretd#tears. She replaces the
wedding dress filter with a new green color filter to match grass. The nevy geirns a photo that includes
the bride standing in front of the church. Based on the texture of the siotiee wall of the church, the user
then creates another filter that, together with the face and grass filtedsigg®a satisfactory set of images from
the wedding.

In experiments with users running search tasks over repositories sfic@r digital photographs, only 16%
of queries actually ran to completion [10]. Two of the search tasks emmuhsézall, or fraction of relevant

7

Query lterations

Q1 Face-detector

Q2 Face-detecton Wedding-dress-color

Q3 Face-detecton Grass-color

Q4 Face-detecton Grass-color\ Stone-texture

Figure 4: Example of Iterative Query Refinement

objects retrieved against the number of relevant objects in the repositunlying an exhaustive search. Even
for recall-oriented search, only 42% of the queries ran to completion. rémaining searches emphasized
precision, or fraction of relevant objects retrieved against the nunflretreeved objects. For these precision-
oriented searches, 7% of the queries ran to completion. On averageabseted their queries after viewing 36
objects, and the queries processed less than 10% of the objects in thkagpo

7 Tenet: “The App Knows Best”

As described in Section 3, discard-based search applications adjests doy collection, using an iterator
model. Rather than reading a specific object, a discard-based seplidatign simply requests the next object
that passes the query. The runtime is free to present any such objeltashaot already been presented for the
current search. Any-order semantics provides the runtime the flexibilitydogss objects in whatever order is
most efficient for the storage device. In this section we describe angizarea mechanism for shaping the I/O
workload of discard-based search to achieve this efficiency.

7.1 Shaping Storage Traffic

The best 1/0 throughput can be achieved by reading objects sequestatiyg with the object closest to
the current position of the storage device. If multiple queries are startdte@ame collection of data, any-order
semantics allows their read operations to be coalesced into a single remeast,ghus avoiding the effects of
contention at the storage device. This concept, cdllttiwagon synchronizatiois illustrated in Figure 5.

In Figure 5a, a query embodied in searct¥eprocesses objects retrieved from a sequential scan of the
collection. In Figure 5b, a new query is started on the same collection, @pgem the server as searchlet
Y. Because objects may be processed in any order, seaktheed not begin with the first object in the
collection. Instead, it jumps on the I/O bandwagon at ohjecl, retrieved for searchle{. Figure 5¢ shows
another query joining the fray, appearing as searchlé@®reviously cached results indicate that objepasses
searchleZ. Any-order semantics allows the runtime to proceed directly to oljjexsatisfy the new query, and
simultaneously make the object available to searcMedsadY. In Figure 5d, the sequential scan resumes with
objectj+1.

7.2 Evaluating Bandwagon Synchronization

Figures 6 and 7 are conceptual illustrations of the number of objects dalive the application by two
queries, X andY. The experiment is simple: queby starts aty and queryY starts at,. QueryY can either
introduce its own I/O requests, as in Figure 6, or can synchronize (juntipedimandwagon) with quety, as in
Figure 7. The graphs show the number of results produced as a funttiomne.

The time to deliver a result is determined by the sequential and random lihdire storage system can
provide, the computational demands of the the searchlet, and the selectiiigss rate, of the query. The
pass rates for queries andY are denotedgy andpy. In this examplepy # py. Given a maximum sequential
read rate oB bytes per second, the retrieval time for an object of diie simplytseq= f/B. Accessing data
nonsequentially (randomly) will incur an average seek and rotationaldateeriod,t;,. When accessing data
randomly, the time to fetch an objecttigng = trp + f/B.

Figure 6 shows the case in which the two queries are not synchronizefbreB,, query X reads data
sequentially. After query begins, requests from both queries will incur a random sgglg) for each access,

8

searchlet X

storage runtime

disk

searchlet X

searchlet Y

storage runtime

j i |i+]|i+2| l ll Ij l/‘+llj+2ﬁ ’ i |i+1|i+2| l ll Ij lj+1[j+2‘
(a) Sequential scan (b) New searchlet
searchlet X| |searchlet Y| |searchlet Z searchlet X| |searchlet Y| |searchlet Z
storage runtime storage runtime
disk disk
R TEEREnT e cli e 1O LT L D]

(c) Random access (d) Sequential scan resumes

Figure 5: Bandwagon Synchronization

A

Objects delivered

Time

Figure 6: Independent Request Streams

lowering the bandwidth. Neithet norY is able to read sequentially at that point. Figure 7 illustrates the two
queries with bandwagon synchronization. That is, query able to share the objects that quéryetches. In
this case, both queries can proceed at the sequential read rate with ral intederence.

7.3 Results

We compared independent request streams and bandwagon symatioonusing the experimental setup
described in Section 4. The workload generator ran on a single diskqiiefies were started five seconds apart.
The queries had equal selectivity, but did not pass the same objects imdggpendent synchronization case,
each query employed its own reader thread that scanned the reposiioryhie beginning. In the bandwagon
synchronization case, the queries were serviced from a single riidad that scanned the repository from the

9

Objects delivered

T

t t, Time

Figure 7: Synchronized Request Streams

——Query X =&—Query Y —#—Total

200

-
a
o

Objects delivered
o o
o o

0
0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

Figure 8: Independent Request Streams

——Query X =& Query Y —#—Total

200

150

100

Objects delivered

50 1

0

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

Figure 9: Bandwagon Synchronization
beginning.

Figures 8 and 9 show the total objects returned as a function of time foréndept request streams and
bandwagon synchronization, respectively, for LMB objects, quasg pates of 10%, and no searchlet compu-
tation time. In Figure 8, the rate of return for quetyflattens after query is started. Both queries then return
objects at essentially the same rate, limited by random storage bandwidth.uhe Bigooth queries are able to

10

1000

——Random —#— Sequential

100

-
o

Avg result delivery time (ms)

1 T T T T
0 20 40 60 80 100

Object pass rate (%)

Figure 10: Response Time for Sequential and Random Scans

take advantage of sequential bandwidth, resulting in a twofold improvenveniralependent request streams.
In the next section, we will introduce a variant of bandwagon synéhabion and present results for additional
file sizes and pass rates.

8 Tenet: “Seeks Are Evil”

Conventional wisdom holds that the best performance from storagéiisvad by making 1/0 requests as
sequential as possible. Random access is to be avoided because eérthead associated with seeks and
rotational delay. The any-order semantics of discard-based seléfmoshdata to be searched by sequentially
reading and filtering images from the storage system. However, resultevdbps searches are also stored in a
result cache. If a search or part of a search is re-run, theskisresum be read directly (randomly), rather than
waiting for passing data to be delivered via sequential scan.

In this section, we examine whether or not it is worth interrupting sequent@sses for opportunistic
random accesses to objects known to satisfy a query according to titecaashe. We examined two aspects of
this question. First, what is the relative cost of sequential and randoesse Second, how does random access
impact bandwagon synchronization?

8.1 Sequential vs. Random

Because discard-based search is intended to support interactivexghieation, the dominant performance
consideration is response time rather than throughput. Users need &sske before they can judge the success
of the their queries and determine how to refine them. Figure 10 comparegdifaga time to retrieve objects
satisfying a query as a function of pass rate using sequential andmascins of storage. The workload is
a search over 10MB objects stored in the JBOD described in Section poRestimes are shown on a log
scale and reflect only the storage system'’s performance. They doahadénprocessing time for the filters in
the searchlet. At a pass rate of 100%, random and sequential axeesddentical, and so achieve the same
performance of around 28ms per object. As the pass rate decreasd¢ispéhfor both sequential and random
scans to retrieve objects increases. For sequential access, thesesipee increases for the simple reason that
fewer objects pass the searchlet. As the pass rate drops below 1%#msegpne increases from 2.7 seconds to
over 18 seconds for a pass rate of 0.1%.

The time to retrieve objects using a random scan also increases as paskewigase, but not for the same
reason as the sequential scan. The random scan retrieves objeetetkabwn to satisfy the query according
to the result cache. Passing objects are uniformly distributed over the mgository. Therefore, the pass rate
determines how long a seek is required to reach the next pass. Thetipsrupward only at the smallest pass
rates, to 113ms for a rate of 1 in 50000. This is essentially the time of the lopgesible seek and the time to
transfer the data.

11

100
90
80

[
70 W
60 A
50 -
40 ot
30 —
20 o

10
o T T T T T T T T T T rTTTTh

0.1 1 10 100

Pass rate (%)

% of queries < pass rate

Figure 11: Selectivity of Queries for Digital Photo Searches

Such low pass rates are not unusual. Figure 11 shows the pass ratesrfqueries from an empirical study
of digital photo searches [10]. The graph is read as follows. Forengbass rat® on the X axis (shown on
a log scale), the Y value is the percentage of filters defined that havegtasdess thaR. The jump at 100%
reflects browsing activity. The figure shows that over half of the gqadra pass rates of less than 10%, and
nearly 20% of the queries had pass rates less than 0.1%.

For searches that are selective, it may be faster to seek to objectsdliaioavn to satisfy the query. Such
objects must still be retrieved for presentation to the user. Presentatitohiogalve the data itself (e.g., an
image that matches the query), or a derivation of the data (e.g., locatiorte&sting features).

8.2 Seeks and Bandwagon Synchronization

From Figure 10, we can conclude that if cached results are availabl@\tays worth the cost of a random
access to retrieve an object known to satisfy a query. The storagssggattern for a query then proceeds as
follows. When the query starts, the filter cache is scanned to determinedfdreany passing objects, and such
objects are retrieved. The remaining objects are then scanned sequestéilhyg from the last passing object
as indicated by the result cache.

Figure 12 incorporates greedy retrieval of known passes into bagawiwsynchronization. For simplicity,
the greedy retrieval phase is shown only for quérywWhen queryy begins, its passing objects are retrieved in a
period betweety, andtc lastingn - trang, Wheren is the number of cached passes for quéryrhese objects are
also available to quer), generating an additiongk - (t: —ty) /trand Passing objects. Once the greedy retrieval
phase completes, both queries resume sequential scans.

The greedy retrieval phase for a new query imposes a penalty on thegjiureprogres of

N

(te—ty) Zi(Pi/tseq— Pi/trand)-

For the example in Figure 12, the gain from greedy retrieval exceedstiadtp when

Px/trand + 1/trand > px/tseq"' py/tseq

In other words, the selectivity g, must be sufficiently small for the passes generated in the greedy retrieval
phase to outweigh the decrease in passes for the other queries bettheseverhead of random access. File
size and the relative performance of seek and transfer rates for ttagstdevice determine the extent of this
overhead.

12

Objects delivered

Figure 12: Bandwagon Synchronization with Greedy Retrieval

——Query X =&—Query Y —#—Total

200

150

100 A

50 1

Objects delivered

0
0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

Figure 13: Bandwagon Synchronization with Greedy Retrieval
8.3 Results

To compare greedy retrieval to the strategies described earlier, wehesedme experimental setup as in
Section 7.3. This time, at the start of each query, the reader threadmpeda random retrieval of ten passing
objects distributed uniformly over a 200GB disk. Figure 13 shows the tojaktsbreturned as a function of
time for bandwagon synchronization with greedy retrieval. As in Figurasd3athe object size was 1MB, and
both queries had pass rates of 10%. The improvement from greedya¢tseisible as bump in the number of
objects retrieved at times 0 and 5.

Figure 14 shows the total objects retrieved for all three strategies atiffeeetit object sizes and a pass
rate of 10%. Greedy bandwagon synchronization performs best imsdiscexcept for the 4MB object size. In
this case, we found that after the greedy retrieval phase, the sedseatiastarted deep into the disk, where
transfer rates are lower because of zoned bit recording (ZBR)Hheoother strategies, reads always start at the
outer tracks of the disk. This positioning is an artifact of our experimeetaips In practice, independent and
bandwagon retrievals will be distributed more evenly over the disk.

As object size increases, so does the time to retrieve passing objectsfefraime dominates retrieval
of large objects, diminishing the effect of seeks for both independezdras and queries already in progress
during greedy retrieval. The effect of greedy retrieval is most visibléhe 16MB graph at times 0 and 5.

Figure 15 shows the effect of varying the query selectivity for 1MB filsshigh pass rates, the benefits of
greedy retrieval are diminished, because sequential scan is likely taqgeatjects in the time it takes to seek
to the location of a known pass. Greedy retrieval is most valuable at log/rpgss, as shown in Figure 15b,
where it produces the fast response times needed for discard-4eemeth.

13

Objects delivered

Objects delivered

—#—Nosync —¢—Bandwagon —#*— Greedy —#—Nosync —¢— Bandwagon —#&— Greedy

200 200
A
150 2 150
o
2
o
100 T 100
]
o
2
)
50 3 50
0 T T T T T T T T T T T T T T T T T 1 O T T T T T T T T T T T T T T T T T 1
0 5 10 15 20 0 5 10 15 20
Time (seconds) Time (seconds)
(a) 1MB objects, pass rate 10% (b) 2MB objects, pass rate 10%
—#—Nosync —®—Bandwagon =& Greedy 8- Nosync —¢—Bandwagon =& Greedy
200 200
°
150 2 150
[
2
°
100 T 100
)
o
2
)
3 50
T T T T T T T T T T T T T T 1 o . ‘ ‘ . ‘ ‘ T T T T T T T T T T 1
0 5 10 15 20 0 5 10 15 20
Time (seconds) Time (seconds)
(c) 4MB objects, pass rate 10% (d) 8MB objects, pass rate 10%

—#-Nosync —— Bandwagon =& Greedy

200

150

100

50

R PO =

0 5 10 15 20
Time (seconds)

Objects delivered

(e) 16MB objects, pass rate 10%
Figure 14: Comparison of Synchronization Strategies

14

—#-Nosync —#—Bandwagon —*— Greedy —#—Nosync —¢—Bandwagon —#*— Greedy

900 35
- 750 5 30 A_(‘_‘_r‘_(‘ A
e e o5
[o
2 600 2
T 450 T / ——b
2 215
S 300 2 10 / el
e} e
0 T T T T T T T T T T T T T T T T T 1 O T T T T T T T T T T T T T 1
0 5 10 15 20 0 5 10 15 20
Time (seconds) Time (seconds)
(a) 1MB objects, pass rate 50% (b) 1MB objects, pass rate 1%

Figure 15: Effect of Query Selectivity
9 Tenet: “Real Work Beats Speculation”

It is conventional wisdom that speculative work should always takeckdeat to foreground work. This
tenet is especially true in storage systems, as the cost of mis-speculationlisgie usually at least the cost of
a disk rotation. As a result, storage systems tend to be quite conservatveitvdomes to speculation.

Discard-based search can benefit from several forms of spe®uéatecution [10]. Intra-query speculation
uses periods of user think time to perform additional processing on objetts-query speculation performs
gueries during idle periods consisting of predicates likely to benefit fufuegies. If there is communal locality
among queries, then these speculation schemes can produce results lielysied in future queries.

Intra-query speculation does not generate any additional I/O - it ggggeadditional processing for objects
already retrieved. Inter-query speculation does generate additittabuit only during idle periods. Since
objects are processed one at a time, there are many convenient pointstiaupting speculative work. Further-
more, bandwagon synchronization allows demand queries to synchmmibe objects retrieved by inter-query
speculation. From the perspective of the storage system, this kind of ¢atiopal speculation poses no risk,
and is limited only by the CPU parallelism available.

10 Kaiten-zushi Storage

Given the workload characteristics described in Section 3, and their implsadiscussed in Sections 5 to
9, what would be an ideal storage design for discard-based sedfelstiggest that an apt metaphor for such a
design is that of a Japanese “conveyor belt sushi” or “kaiten-zushktaurant, as described in Wikipedia [30]:

Kaiten-zushi is a sushi restaurant where the plates with the sushi aregblan a rotating conveyor
belt that winds through the restaurant and moves past every table amter seat. Customers
may place special orders, but most simply pick their selections from dyssteeam of fresh sushi
moving along the conveyor belt.

The strongly sequential nature of a discard-based search workieasl rise to the metaphor, as keeping
disk requests sequential is straightforward. We assign to each disk itystersa single reader thread that
continually accesses each object in order. This sequential fetchgsricéhe equivalent of the conveyor belt
carrying sushi to patrons. As objects are fetched from disk, filterghferactive queries are applied to each
object. CPU-bound filters (the equivalent of patrons who eat sushé lowly than it arrives) will process
objects less quickly than they are fetched from disk, but will always lsawew object available to process

15

when they complete. I/O-bound filters (the equivalent of patrons whasuaahi more quickly than it arrives)
will be able to process each object as it is fetched from disk.

Queries for which there are cached results can be serviced by sdékimlisk directly to the location of
those results. At first glance, it would seem that a seek-based fedckgs that favors cached results would
result in better performance than a sequential fetch process. Haoufewguery is not highly selective, then it
is often more efficient to process sequentially-fetched objects for whate #ire no cached results as they are
fetched from disk rather than seek to the locations of cached resulte mdtaphor, processing cached results
is equivalent to placing special sushi orders rather than waiting fortacpiar piece to arrive on the conveyor
belt. (A more extreme version would be a patron getting up from his seatuoklgimoving to another seat in
front of which is his desired piece of sushi.) If a patron is very selectiygarticular piece of sushi could arrive
more quickly by special order. On the other hand, if a patron is less sadetiien he can be satisfied more
quickly by just waiting for sushi from the conveyor belt.

11 Related work

Multimedia information retrieval (MIR) encompasses a variety of disciplinekhvielate to storing and
retrieving digital content, particularly images and video. Content-based ineageval (CBIR), one such sub-
discipline, focuses on retrieval techniques which filter or otherwisega®digital content. Such techniques are
advantageous when text annotations are either incomplete, or nonexistent.

A variety of content-based image retrieval systems have been developEzeit years. Lewt al. provide
an excellent survey of CBIR and the current state-of-the-art [CBNDID [17], QBIC [9], and ASSERT [26]
are notable examples. In each of these systems, images are preptdnessker to efficiently satisfy subse-
guent queries. More specifically, in the CANDID system, images are lsedutty providing an example image.
A distance metric is calculated between each image in the database (e.g., bgltapar, and texture) and the
example image. Similarly, ASSERT uses computer vision and imaging proce$garghans to automatically
extract image attributes, and a multi-dimensional index is built, based on thabatatir In the QBIC sys-
tem, users provide example images, selected color and texture pattereveainsketches or drawings that are
representative of the desired images.

Diamond, in contrast to existing CBIR systems, attempts to build an image repdbiadnables efficient
interactive search of large volumes of complex, non-indexed data. @dqusly discussed, it is the unique
workload characteristics of Diamond that suggests a rethinking of th@ppate storage system design.

Naturally, matching application workload characteristics to storage systsigndehas a long and rich his-
tory in computer systems. Early examples include the use of empirical olisesvaf file sizes and lifetimes
[24] in the design of AFS [13, 25], the use of workload data reporte@bgterhoutt al. [23] in the design
of the Sprite file system [22], and optimizations for read-only workloadaittaristics in the design of the
FileNet file system [7]. More recently, systems have begun to automaticallg stakage configuration de-
cisions normally assigned to an administrator, including the selection of thempRpID configuration for a
storage array [4, 31], the assignment of workloads to a collection cdgtaarrays [2, 3], and the selection of a
data distribution policy for a given workload (e.g., replication versusweasoding)[1].

This paper follows in this long tradition by identifying the unique workload ebteristics of content-
based image retrieval. More precisely, it explores the new class of dibeeed search applications and the
implications for a new storage system design.

12 Conclusion

This paper discussed the unique workload characteristics of diseaetiizearch and how one must re-think
the proper storage system design for such a workload. It was shawthehhighly concurrent, sequential, and
read-only characteristics of discard-based search make JBODabkfe@ver RAID. Experiments with repre-
sentative workloads confirmed that a JBOD organization can achievasit86% of a disk array’s potential

16

bandwidth. Further, because there is no specific order imposed onttleved images, a newly introduced
I/O coalescing technique, bandwagon scheduling, can be used tordigdigtémprove the effective throughput
of the system. The benefits of bandwagon synchronization were qudntifibe context of various images
sizes, filter selectivity, and object access patterns (sequential varsdsm). In addition, discard-based search
introduces additional opportunities in terms of speculative filtering. Unliket stosage applications, the char-
acteristics of discard-based allow one to speculate for free (i.e., witlffeatiag foreground traffic).

Acknowledgements

OpenDiamond is a registered trademark of Carnegie Mellon University.

References

[1] ABD-EL-MALEK, M., Il, W. V. C., CRANOR, C., GANGER, G. R., HENDRICKS, J., KLOSTERMAN, A. J., MES-
NIER, M., PRASAD, M., SALMON, B., SAMBASIVAN, R. R., SNNAMOHIDEEN, S., STRUNK, J. D., THERESKA,
E., WACHS, M., AND WYLIE, J. J. Ursa Minor: versatile cluster-based storagé?rbteedings of the 4th USENIX
Conference on File and Storage Technolodi®an Francisco, CA, December 2005), The USENIX Association

[2] ANDERSON E., HoBBS, M., KEETON, K., SPENCE S., UrSAL, M., AND VEITCH, A. Hippodrome: running cir-
cles around storage administration.Rroceedings of the 1st USENIX Conference on File and Stofagenologies
(FAST 02)Monterey, CA, January 2002), The USENIX Association.

[3] ANDERSON E., KALLAHALLA , M., SPENCE S., SNAMINATHAN , R., AND WANG, Q. Quickly finding near-
optimal storage system desigf8CM Transactions on Computer Systems (TOCS3 ZBlovember 2005), 337-374.

[4] ANDERSON E., SNAMINATHAN , R., VEITCH, A., ALVAREZ, G. A., AND WILKES, J. Selecting RAID levels for
disk arrays. IrProceedings of the 1st USENIX Conference on File and Stdfagenologies (FAST 0ZMonterey,
CA, January 2002), The USENIX Association.

[5] BERCHTOLD, S., BoEHM, C., KEIM, D., KRIEGEL, H. A Cost Model for Nearest Neighbor Search in High-
Dimensional Data Space. Proceedings of the Symposium on Principles of Database®gétucson, AZ, May
1997).

[6] CHEN, P.,AND PATTERSON, D. Maximizing performance in a striped disk array.Rroc. 17th Annual Int'l Symp.
on Computer Architecture, ACM SIGARCH Computer Architecews(1990), p. 322.

[7]1 DaviD A. EDWARDS, M. S. M. Exploiting read-mostly workloads in the filenet fdgstem. InProceedings of the
12th ACM Symposium on Operating System Principles (SOSg.ig$hfield Park, AZ, December 3—-6 1989), ACM
Press.

[8] DuDA, R., HART, P., STORK, D. Pattern ClassificationWiley, 2001.

[9] FLICKNER M, SAWHNEY H, NiBLACK W, ASHLEY J, HUANG Q, Dom B, GORKANI M, HAFNER J, LEE D,
PeETKovIC D, STEELE D, YANKER P. Query by Image and Video Content: The QBIC SystdfEE Computer 28
9 (September 1995).

[10] GiBBONS, P., MUMMERT, L., SUKTHANKAR, R., SATYANARAYANANA , M. Just-In-Time Indexing for Interac-
tive Data Exploration. Tech. Rep. CMU-CS-07-120, Comp&eience Department, Carnegie Mellon University,
Pittsburgh, PA, April 2007.

[11] GoOoDE, A., CHEN, M., TARACHANDANI, A., MUMMERT, L., SUKTHANKAR, R., HELFRICH, C., STEFANNI,
A., FIX, L., SALTZMANN, J., SATYANARAYANAN , M. Interactive Search of Adipocytes in Large Collections
of Digital Cellular Images. IrProceedings of the 2007 IEEE International Conference ortiMadia and Expo
(ICMEOQ7)(Beijing, China, July 2007).

[12] HAUSER, S. E., BERMAN, L. E., AND THOMA, G. R. Is the bang worth the buck?: a raid performance study. |
Proceedings of the Fifth NASA Goddard Conference on Masagit®@ystems and Technolog{€llege Park, MD,
September 1996 1996), IEEE.

[13] HOwARD, J. H., KazAR, M. L., MENEES S. G., NCHOLS, D. A., SATYANARAYANAN , M., SIDEBOTHAM,
R. N., AND WEST, M. J. Scale and performance in a distributed file systef@M Transactions on Computer
Systems (TOCS) & (February 1988), 51-81.

17

[14] HusTON, L., SUKTHANKAR, R., CAMPBELL, J.,AND PILLAI, P. Forensic Video Reconstruction. Pnoceedings
of International Workshop on Video Surveillance and Sehsiworks(2004).

[15] HusTON, L., SUKTHANKAR, R., HOIEM, D., AND ZHANG, J. SnapFind: Brute force interactive image retrieval.
In Proceedings of International Conference on Image Proogsand Graphic42004).

[16] HusTON, L., SUKTHANKAR, R., WICKREMESINGHE, R., SATYANARAYANAN , M., GANGER, G.R., REDEL,
E., AILAMAKI , A. Diamond: A Storage Architecture for Early Discard indrdctive Search. IRroceedings of the
3rd USENIX Conference on File and Storage Technolo@@as Francisco, CA, April 2004).

[17] KELLY, P. M., CANNON, M. T., AND HusH, D. R. Query by image example: the comparison algorithm for
navigating digital image databases (candid) approactRrdeeedings of the Conference on Storage and Retrieval
for Image and Video Databases (SPIE 1985an Diego, CA, February 24-27 1995), The Internationale&pdor
Optical Engineering (SPIE).

[18] LEw, M. S., EEBE, N., DIERABA, C.,AND JAIN, R. Content-based multimedia information retrieval: Stitthe
art and challengesACM Transactions on Multimedia Computing, Communicatiansg Applications (TOMCCAP)
2, 1 (February 2006), 1-19.

[19] MERRIAM-WEBSTER Merriam-webster online search, 2007. [Online; access8d@ember-2007].
[20] MINKA, T., PCARD, R. Interactive Learning Using a Society of ModdRattern Recognition 3(L997).

[21] NEcuLA, G. C.,AND LEE, P. Safe Kernel Extensions Without Run-Time CheckingPtaceedings of the 2nd
Symposium on Operating Systems Design and Implemen{S@attle, WA, October 1996).

[22] NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K. Caching in the sprite network file systerACM
Transactions on Computer Systems (TOCS) @-ebruary 1988), 134-154.

[23] OusTERHOUT, J. K., GOSTA, H. D., HARRISON, D., KUNzE, J. A., KUPFER M. D., AND THOMPSON J. G.
A trace-driven analysis of the unix 4.2 bsd file system.Pmceedings of the 10th ACM Symposium on Operating
System Principles (SOSP §®)rcas Island, WA, December 1-4 1985), ACM Press.

[24] SATYANARAYANAN , M. A study of file sizes and functional lifetimes. Rroceedings of the 8th ACM Symposium
on Operating System Principles (SOSP @acific Grove, CA, December 14-16 1981), ACM Press.

[25] SATYANARAYANAN , M., HOWARD, J. H., NCHOLS, D. A., SDEBOTHAM, R. N., S’ECTOR A. Z., AND WEST,
M. J. The itc distributed file system: Principles and deslgiProceedings of the 10th ACM Symposium on Operating
System Principles (SOSP g®)rcas Island, WA, December 1-4 1985), ACM Press.

[26] SHYU, C.-R., BRODLEY, C. E., KaK, A. C., KOSAKA, A., AISEN, A. M., AND BRODERICK, L. S. ASSERT:
A physician-in-the-loop content-based retrieval systemHRCT image databasesComputer Vision and Image
Understanding (CVIU) 751-2 (July/August 1999), 111-132.

[27] vON AHN, L., AND DABBISH, L. Labeling images with a computer game Hroceedings of the SIGCHI Conference
on Human Factors in Computing Syste@Agril 2004).

[28] WAHBE, R., Lucco, S., ANDERSON T. E., AND GRAHAM, S. L. Efficient Software-based Fault Isolation. In
Proceedings of the 14th ACM Symposium on Operating Systantgdies (Asheville, NC, December 1993).

[29] WALLACH, D. S., BALFANZ, D., DEAN, D., AND FELTEN, E. W. Extensible Security Architectures for Java. In
Proceedings of the 16th ACM Symposium on Operating SystetBranciples(Saint-Malo, France, October 1997).

[30] WIKIPEDIA. Conveyor belt sushi — Wikipedia, The Free Encyclopedia,720[Dnline; accessed 3-September-
2007].

[31] WILKES, J., GOLDING, R., STAELIN, C., AND SULLIVAN, T. The HP AutoRAID Hierarchical Storage System.
ACM Transactions on Computer Systems (TOCS) 1&ebruary 1996), 108-136.

[32] YANG, L., JN, R., SUKTHANKAR, R., ZHENG, B., MUMMERT, L., SATYANARAYANAN , M., CHEN, M., AND
Jukic, D. Learning Distance Metrics for Interactive Search-Assil Diagnosis of Mammograms. Rroceedings
of SPIE Medical Imaging2007).

[33] YAao, A., YAO, F. A General Approach to D-Dimensional Geometric QuerlesProceedings of the Annual ACM
Symposium on Theory of Computifday 1985).

18

