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Abstract

The emerging popularity of multimedia data, as digital esentation of text,
image, video and countless other milieus, with prodigioolsmes and wild diver-
sity, exhibits the phenomenal impact of modern technokgiaeforming the way
information is accessed, disseminated, digested andheetaiThis has iteratively
ignited the data-driven perspective of research and dpuedot, to characterize per-
spicuous patterns, crystallize informative insights, aealize elevated experience
for end-users, where innovations in a spectrum of areas mpater science, in-
cluding databases, distributed systems, machine legmisign, speech and natural
languages, has been incessantly absorbed and integrakcitithe extent and ef -
cacy of contemporary and future multimedia applicatiorns swiutions.

Under the theme of pattern mining and similarity queryings tmanuscript
presents a number of pieces of research concerning mulanteda, to address
an array of practical tasks encompassing automatic anootatutlier detection,
community discovery, multi-modal retrieval and learningank, in their respective
contexts including satellite image analysis, interndtdrsurveillance, image bioin-
formatics, and Web search. A repertoire of extant and neelrtiques pertaining to
graph mining, clustering analysis, tensor decompositra@h@obabilistic graphical
models has been developed or adapted, which satisfaateeiidiffering quality and
ef ciency requisites postulated by speci ¢ applicatiortts®ys, best exempli ed by
the 40 times speed-up in annotating satellite images angihe 30% performance
improvement in predicting web search user clicks, yet withibe loss of generality
to similar and related scenarios.
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Chapter 1

Introduction

1.1 Motivation

The vast and sprawling collection of digital multimediaalain the crescendo of the Internet era,
has manifested unprecedented bandwidth and ef cacy ofnmétion production and transmis-
sion, engendering a profound enrichment of our everydagmampce. Its proliferating ubiquity
could be aptly illustrated by the overwhelming popularifyssart phones, with increasingly
powerful capacity and elegant design for Web browsing, efadeo recording and playback,
location-based services, to name a few, as well as an almospeesent social layer upon them,
thereby generating and exchanging data ows in a misceltdnyodes that extend far beyond
those from call making and text messages only a couple ofyaez.

Web search, from which the Internet giant Google sproutedl tanved in the previous
decade, serves as another vivid example, with most lustsoeekthroughs in this decade to
be much likely towardsnobile searchwhich renders mobile content more “accessible and use-
ful”, plus social searchwhich “brings friend effect to search”, and algoiversal searchwhich
blends regular Web results with a variety of “verticals” swas image, videos, news articles,
microblogging feeds and quite a few others.

These innovations, with gigantic and usually unwieldy nmuétdia data ows, entail a de-
mand of, and would unexcludingly bene t from, novel compidaal approaches to navigate
and explore the space of information mapped from multi-eisjpad typically structured records.
To satisfy the hunger of such algorithmic and heuristicgpthis manuscript presents a set of
studies in an attempt to yield knowledge, information arsiight into multimedia data from two
perspectives miningandquerying

1.2 Mining Multimedia Data

Instead of making a pronouncement on the de nition of muditha mining, it might be more
informative to commence with a sketch through concrete g@tasnto be covered at length in
relevant chapters of the thesis:



Satellite Imagery — Given a collection of high-resolution satellite map imageanning
several gigabytes, each of which is divided into small negtdar or hexagonal tiles, with

a few of them labeled priori by domain experts using a controlled vocabulary, how to, in
an ef cient way, suggest labels for all remaining tiles, pose re nements of the labeling
vocabulary to better distinguish these tiles, and spotlieuiles” that are dissimilar with
most others?

Network Traf c Log — As part of a network measurement study, packet traces isent f
or received by a several-thousand-host enterprise netdumikg an over-100-hour time

span were collected to generate millions of records whighfior each packet, its source,
destination, communication port, and time stamp. The tshterest is to automatically

and swiftly detect possibly suspicious activities to beortgd for further investigation.

Web Knowledge Base- This is produced by an automated system which constamhds
the web” to extract facts such as (Facebook, HeadquarterBdlo_Alto). Is it possible to
distill some knowledge out of these simple and at facts [sissible to further leverage
these facts to compose intelligent answers to questioasti#fl me something interesting
about George Harrison”?

Biological Image Collection— To study the early development process of fruit vy, a to-
tal of more than 70,000 embryo images were captured documgethte spatio-temporal
expression activities of selected genes during the rst @drk after fertilization. An am-
bitious goal is to identify groups of genes that exhibit etated patterns over time and
visualize such relationship silico to assist further scienti ¢ veri cation and discovery.

Each example presented precedingly illuminates a scerelgwant to pattern mining for mul-
timedia data. As diverse as these subjects may be, they de alsngle featuredata-driven
problem solving over multiple modes at a non-trivial sca@d this becomes the working de -
nition of multimedia mining in this monograph, based on whige will strive to understand the
data available and the goals set in each context. How wasatiaesdt collected, or, put another
way, how was the measurement taken for each aspect of the déteat are the connections
amongst different data modes, as well as attributes witlérsame mode? How to transform one
or more modes of the data into a compact and viable repregentd at all necessary? How to
craft algorithms and heuristics accordingly that attaiprapriate trade-off between quality and
computational complexity? How to design numerical expents to evaluate proposed methods
with con dence? The second part of the dissertation will begated to address the forerunning
list of questions.

1.3 Querying Multimedia Data

A substantial part of the information seeking behaviorgeggly from Internet users, is pertinent
to similarity querying, which facilitates the exploratitmbroaden their scope of knowledge, and
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Figure 1.1: Examples of query interfaces which (a) eithgidieily solicits input, (b) or adopts
a light-weight manner to infer users' preferences basedeir pro les and impresses results
devoid of typing.

Figure 1.2: A graphical representation for user-page regendation.

possibly arouses secondary desire and curiosity for memderies. The latter has been critical
to boost up engagement metrics for web sites like FacebabRarazon by keeping users onsite,
both of which have a rich set of multimedia contents to offer.

A querying systerfor such multi-aspect data provides an interface to retriecords within
and across modes that best match users' information neepliré=1.1(a) depicts an interface
explicitly requesting user inputs to query the Web, whefagare 1.1(b) sits at the other end of
the gamut which infers users' interests based on their podnd past activities, not uncommon
in nowadays online recommendation applications.

A key algorithmic part of the querying system is the derivatof a quantitative similarity
measure. For the page recommendation example, a grapbmasentation is illustrated in
Figure 1.2, with two layers of nodes, users and pages, asawdtiter-layer links indicating the
user becomes a fan of the page. The intuition about closesdisat when two pages have a
larger fraction of overlapping fan basesg, pages “FCB” and “ACM” compared with any other
combinations, they are similar to each other and therebseclto each other's existing fans;
iteratively, if a pair of users have quite a few pages of cominterest, one's favorite pages could
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be recommended to the other if she is not yet a fan. This nobatd be re ected by a measure of
proximity over graphs by performing random walk with rettg67] and computing the steady-
state probability, which could be obtained ef ciently evien million-node graphs [108].

On an additional note, the graph transformation itself ddnd non-trivial. With regards to the
previous user-page graph, intra-layer edges could bedated between users who are friends
in a social network, and edge weights may be further assigonedrding to, say, the number of
mutual friends they share and the frequency they are indalvéhe same thread of posts and
comments. Pages may bear a categorical attribute such pkepsports, movies, and alike, this
could be made an additional layer of nodes or be incorporiatéide decision to link pairs of
nodes within the page layer.

Armed with the foregoing idea to formulate the querying peob into graph search, we
present the implementation of an online interface to offeiss-modal search capacity for an
annotated biological image database in the opening chaptie third part of the dissertation.
The succeeding chapter, in a different vein, studies meliamcorpora where each querying unit
itself is represented as features from more than one moademfgeyuite different semantics. A
family of probabilistic graphical model is introduced ag golution, which provides both ex-
ibility to accommodate heterogeneous numerical featunesirterpretability by summarizing
concepts or themes from the data and relating them to peldeientities €.g, words and im-
ageries), a highly desirable property for practitionefse Tast topic of this part is belated to user
interaction with a querying system, given the name “uselliciijeedback”. Statistical models
abstracting users' behavior as they examine the list ofygogresults and issue clicks along the
way are proposed, with the ambition to improve future ragkor elevated user experience.

1.4 Thesis Organization

The body chapters of the thesis are organized into two pHnes part that comes rst consists of
the following two chapters addressing mining problems:
QMAS low-labor labeling, representative nding, and singliogt anomalies for satellite
images and other image collections. The proposed algowyibids a 40x speed up over
the baseline without loss of labeling quality. This studplissented in Chapter 2 and was
published as [30].

MultiAspectForensics mining heterogeneous network data using tensor decotposi
with applications in cyber-security surveillance and @attdiscovery in structured knowl-
edge base. Two novel types of subgraph patterns were diszbfrem data sets across
domains. This study is presented in Chapter 3 and was pebliat [75].

The theme of the later part is querying and it spans oveniafig three chapters:

CDEM: an online query interface fddrosophilaembryo image databases. It supports
cross-modal queries over a large database which consigenels, embryo images docu-
menting gene expression, and image annotations. This &ymlgsented in Chapter 4 and
was published as [48].



BEFH: a Bayesian approach to inference and learning with a faofhilydirected graphical
model for classi cation and retrieval in multimedia corporThis study is presented in
Chapter 5 and was published as [47].

Click Models learning to rank from Web search click data by de ning antiheating user-
perceived relevance of search results. The highlightecetprdvides an easy and ef cient
solution to account for the position-bias inherent in thiadand achieves 7% improvement
over the baseline as measured by a popular log-likelihoadieneand 30% performance
boost when predicting last click positions. This study iegented in Chapter 6 and was
published as [51].

Figure 1.3 provides a summary of data sets as well as how tieeseterred by aforemen-

tioned studies.
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14 high quality images dities around the
world, divided into 14,336 rectangular tiles.

3 hugesatellite images in GeoTIFF format,
divided into 721,408 rectangular tiles.

A 4band multi-spectral proprietary image,
divided into 2.57M hexagonal tiles.

4-mode data representing packet traces
recorded on servers within the Lawrence
Berkeley National Lab.

3-mode triplet data from the NELL system at
Carnegie Mellon University such as
(pittsburgh, city-located-in-state, pa).
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features and 166 image features extracted.
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sampled from a major commercial search
engine in July 2008.

Figure 1.3: A summary of data sets included in this manuscrip
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Chapter 2

QMAS: Querying, Mining And
Summarization of Multi-modal Databases

Given a large collection of images, very few of which haveslabhow can we guess the labels
of the remaining majority, and how can we spot those imagesied brand new labels, distinct
from the existing ones? Current automatic labeling tealmsousually scale super linearly with
the data size, and/or they fail when the amount of labeled datery limited. In this chapter,
we introduceQMAS (Querying, Mining And Summarization of multi-modal databa), a fast
solution to the following problems:
low-labor labeling— given a collection of imagesjery fewof which are labeled with
keywords, nd the most suitable labels for the remaininggne
mining and attention routing in a similar setting, nd clusters and representative igtgg
for each cluster, as well as a set of outlier images.
This chapter is based upon the work published in [30] and [Blig rest of this chapter is orga-
nized as follows: we start with an overview of the proposeatagach in Section 2.1, followed by
discussion of related work in Section 2.2. Algorithmic dlstare presented in Section 2.3, and
empirical results are covered by Section 2.4. Section 2186lades the chapter.

2.1 Overview

The problem of automatically analysis, labeling and undeding large collections of images
appears in numerous elds. Our driving application is retato satellite imagery, involving a
scenario in which a topographer wants to analyze the texrraia collection of satellite images.
We assume that each image is divided into smaller tiles (€xy,6 pixels). Such a user would
like to make the effort to create labeks. g, Water, Concrete Trees etc) for only a small number
of tiles, and then expect an automatic algorithm to gendaas for all the rest. The user would
also like to know what pieces of land exist in the analyzedoregjlook “strange”, not matching
any of the known labels, since they may indicate anomabes, (de-forested areas, potential
environmental hazardsic), or errors in the data collection process. Finally, the wsaild like
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Figure 2.1: An illustration of labeling results from the posed algorithm. Left: the input
satellite image of the city of Annapolis, divided in024 (32x32) tiles, only four of which are
labeled. Right: suggested labels fradMAS yellow indicates outliers which are likely to repre-
sent “Bridge”.

to have a few tiles that best represent each kind of terrain.

Such requirements are not only limited to satellite imagalyamis but also arise in several
other applications including medical image and biologicege pattern analysis. For instance,
a doctor wants to nd tomographies similar to the images aftier patients as well as a few
examples that best represent both the most typical and teestrange image patterns [32, 66],
or a biological expert with a set of imaging data such as th@ession pattern in the early
development of fruit y embryos [106] may need a system tovegrsa similar set of questions.

Our goals are summarized in two research problems:

low-labor labeling— given a collection of images, up to a few of which are labelgdiori,

nd the most appropriate labels for remaining ones.

mining and attention routing in a similar setting, nd clusters, a set of images that best
represent the data patterns and another set which confisis outliers which stand out
from existing patterns with labels.

Figure 2.1 illustrates the input and output of the propodgdrahm for low-labor labeling
The satellite image, public available wivw.geoeye.com , displays part of the city of An-
napolis, MD, USA. We split it intdl; 024 (32x32) tiles, very few (four) of which were manually
labeled as “City” (red), “Water” (cyan), “Urban Trees” (g or “Forest” (black), as shown on
the left gure. QMASautomatically produced the label and results are shown emigint. A
vast majority of tiles are correctly labeled, and a few auttiles, highlighted in yellow, are also
picked up, with the implication that they possibly deserge/itabel(s) of their own. A closer in-
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spection in this example concluded that the outlier tileslti® lie on the border between “Water”
and “City”, and are likely to contain a bridge.

For the problem omining and attention routingve take the approach of nding clusters in
the data without the information from the user-providecklalat the beginning. The pure image-
based results may be aligned and compared with the evideosedxisting labels, possibly
leading to suggestions for re nement such as merging tocispkabels that are dif cult to be
differentiated in practiceg(g, “Forest” and “Urban Trees”), and/or splitting too gendediels
of which tiles are not quite alikee(g, “Shallow Water” and “Deep Sea” could replace a single
label of “Water”). Another advantage it offers is that it bies group labeling — the labeling unit
could be a cluster instead of a single tile.

Table 2.1 provides a list of most common acronyms appeanitigis chapter.

Table 2.1: Summary of Acronyms

Acronym | Explanation
ANN Approximate Nearest-Neighbor, an algorithm for fast nsareighbor searching
GBT Generalized Balanced Ternary, a hexagonal mathematisedmayfor feature extraction
GCap | Graph-based automatic image captioning, the baselinedrmagotation algorithm
MrCC | Multi-resolution Correlation Cluster detection, a scéaduibspace-clustering method[3
RWR Random Walk with Restart for establishing proximity betwgairs of nodes in graph
ViVo Visual Vocabulary, an algorithm to group image tiles inteeaa visual terms

2.2 Related Work

2.2.1 Image Labeling

There is an extensive body of work on the classi cation ofalmdled regions from partially
labeled images in the eld of computer vision, such as imagg®entation and region classi ca-
tion [46, 69, 98, 110]. The conditional random elds (CRFyawosting approach in [98] shows
the competitive accuracy for multi-class classi catiordaegmentation, but it is relatively slow
and requires a lot of training examples to get started. Thdaa walk segmentation method
in [46] is closely related to our work, but scalability is loey the scope of that work since it
is concerned with the segmentation of a single image. The KM er in [110] may be the
fastest way for region labeling, but it may be sensitive fattiers. The empirical Bayes approach
in [69] is able to learn contextual information from unladeidata. However, it may be dif cult
to apply to satellite image sets.

Graph-based methods provide a exible tool for automatiage captioning. Images and
caption keywords are represented by multiple layers of sa@d@ graph. Image content simi-
larities are captured by edges between image nodes, artthgiisage captions become links
between corresponding images and keywords. Such tectmnltawe been previously used in
GCap [84], in which a tri-partite graph was built based onticaged images, further segmented
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into regions. Given an image node of interest, the Randonk Wiih Restart (RWR) algorithm,
which resembles semi-supervised label propagation orhgrd20], was used to perform prox-
imity query to automatically nd the best annotation keywdor each region. RWR is usually
computed using the power iteration method, which conveirgesfew iterations in most cases.
Another alternative algorithm for labeling is the transtieesupport vector machine, which has
been shown to be ef cient and accurate for data which coméis wary high dimension and
sparse features like word counts [59]. In the satellite iempgve studied in this chapter, the
number of dimensions does not go beyond a few dozen andrcétures may be irrelevant to
the labeling class.

To create edges between similar image nodes, most previmkssearches for nearest neigh-
bors in the image feature space. However, this operationgsrdinear even with the speed up
offered by many approximate nearest-neighbor nding atgars (e.g., the ANN Library [80]).
Given millions of image tiles in satellite image analysisaer scalability is almost mandatory.

2.2.2 Clustering

Most clustering algorithms assume the following clustenidi®n: a cluster is a region in the
feature space in which the objects are dense. This regionhanag/ an arbitrary shape, and the
points inside it may be arbitrarily distributedk-means like methods start by pickitkgpoints

in the metric space as cluster centers, or centroids, threugandom process or by applying
some speci ¢ heuristics for this task. The clustering is mpdssible by an iterative process that
assigns objects to their closest centroids, and itergtingbroving the centroids according to the
objects assigned to each cluster. The computation stops wiggiality criterion is satis ed or
when a maximum number of iterations is achieved. An examipllei®approach is K-Harmonic
Means [117]. The main drawbacks of this approach are thasiraes that the clusters have
hyper-spherical shapes in the data space and that the nkmobelusters should be determined
by the usea priori.

The Visual Vocabulary (ViVo) [14] method is particularlyefsil for our work. ViVo is a novel
approach, proposed for the analysis of biomedical imades applies Independent Component
Analysis (ICA) to group image tiles into a set of visual ter@goiding subtle problems, such as
non-Gaussianity.

2.2.3 Feature Extraction

Feature extraction is generally considered to be a lowtlevege processing task and is closely
related to feature detection. Histogram-based featuseperhaps the simplest and most popular
type of features. Texture-based features such as waveldtgactals are able to capture more
subtle spatial variations such as repetitiveness. Loealife descriptors such as SIFT [74] and
SURF [12] have also been widely used, as well as the Geneddialanced Ternary (GBT) [44],

a hexagonal mathematical system that allows feature e¢ixtnacA recent example of GBT's
usage in target recognition is found in [45]. The choice ofdidate features is usually domain-
speci ¢ and may also be subject to scalability constrainttarge scale analysis. The feature
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Figure 2.2: Pre-processing applied to multi-band sateifitagery. Best viewed in colors. Left:
sample input multi-band image; Right: the resulting 5-beachposite image for which features
are computed.

extraction procedures applied in our study will be introelin the next section.

2.3 Proposed Method

In this section we discuss algorithmic detailSQQ¥AS starting with the feature extraction pro-
cedure to obtain a compact yet informative representatiamage pixels. Then procedures for
mining and attention routings are introduced, which inelatlistering, representative identi ca-
tion and outlier discovery. The low-labor labeling techuegs presented in sequel.

2.3.1 Feature extraction

Two approaches feature extraction were employed for @iffedata sets. For public available
image collections, we obtained Haar wavelets in two regmiuevels, plus the mean value of
each band of the images. For proprietary image collectwasapplied an alternative approach:
rst, there was a pre-processing step resulting in a 5-bamiposite image as illustrated in
Figure 2.2. The rst four bands are the 4-band tasseled aapstormation (TCT) of 4-band
multi-spectral data, and the fth band is the panchromasind

Feature generating following this second approach usilaevariety of characteristics, in-
cluding statistical measures, gradients, moments, aridaemeasures. For multi-scale image
characterization, which is crucial for nding patterns arwous resolutions, we adopted General-
ized Balanced Ternary (GBT). We mapped the raster pixelidaidghe GBT space and calculated
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Figure 2.3: GBT structure illustrated. Left: two levels oBT cells with 343 pixels (Leves,
outlined in white) and 2,401 pixels (Levd]-outlined in red) overlaid on an image. Right: output
values were assigned according to the variance of the adjameer level of cells (at LeveZ,
consisting of 49 pixels each). Bright areas have greateaiveg, dark areas have less.

a set of moments-based features over the multi-scale bigraf GBT cells. The GBT structure
is such that any cell or aggregate at a given layer in the tuleyacontains seven hexagonally
grouped aggregates or hexagons (if at the pixel level) inager below it. The cells form a
hexagonal tiling of the pixels at a variety of scales, efiety describing the image in multiple
resolutions. A sample of GBT structure and simple comporgtis shown in Figure 2.3.

Image features such as mean, variance, and GBT texturelamatad for GBT aggregates
in each of the ve bands of data. The nal feature set com@@&0-dimensional feature vector
per aggregate: mean, variance, and GBT texture of the Lreaglgregate in each of the ve data
bands plus the mean, variance, and GBT texture of the Lewek aggregate centered at that
Leveln position in each of the ve data bands.

Following this feature extraction, we adapted the ViVo noetfil4] to group image tiles into
a set of visual terms, with a slight modi cation to incorptgd@BT aggregate features. If a tile
cannot be represented by the vocabulary already known to, ién it will automatically derive
a new type of tiles (represented by a new visual term), asetke@hese new types represent
natural groupings of tiles in the feature space and indiaditere new labels could potentially
improve the accuracy @MAS

2.3.2 Mining and Attention Routing
Clustering

We start by clustering image tiles and subsequently determapresentatives and outliers based
on the output. The clustering step over the set of imageperformed by a modi ed version of
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the MrCC algorithm. As described in Section 2.2, MrCC is & $adbspace clustering algorithm
designed to look for clusters in large collections of medidimensionality data. The original
MrCC algorithm is composed of three main steps: (i) datacttine construction; (ii) identi ca-
tion of initial clusters, named-clusters, which are axis-parallel hyper-rectangles Wwigh data
densities; and (iii) overlapping-clusters merging. Here we bypass the third step to obtaift™s
clusters, where a single tile can belong to one or more akistach as “Trees” and “Water”.

Finding Representatives

Now we focus on the problem of selecting a set of elem&gtsef sizeNg speci ed a priori,

to represent a given set of images The set of representativés should have the following
property: for every imagg in | there should be a representatiefrom R that is mostly similar
to I;. Assuming that these images are already embedded in a mpa@e, a straightforward
optimization goal is to minimize the sum of squared distanoetween each imade and its
closest representatiie,. The solution is simply the popular clustering algorithnnéans.
However, the method is known to be sensitive to skewed Digions, data imbalancetc which

is not uncommon for our use case in studying the satellitggena Here we propose to optimize
the following dis-similarity function instead:

X N
Eomas (I5R) = Pﬁ (2.1)
1i21 =1 ki; Rjk2

Therefore, instead of focusing on the minimum of distandeveen the target image and repre-
sentatives, here the harmonic mean is the concern, whicdualy more robust to extreme data
distributions and unfortunate initializations. The sa@utto this metric is known as K-harmonic
means [117].

Finding Outliers

The goal in this part is to nd an ordered list of potential loers, images of that diverge most
from main data patterns. We take the representatives fautitki previous section as the basis
for the outliers de nition,i.e., assuming that a set of representatiiRs a good summary of
|, theNg images froml worst represented bR are said to be the topo outliers. Formally,
QMASuses the harmonic mean of the squared distances betweeaga jrand each one of the
representatives iR to measure the quality of the representatioi; ptherefore the top outlier is
identi ed by \

arg miaxPNR+1 (2.2)

i=1 ki; RjK2

2.3.3 Low-labor Labeling

Our approach is to represent input images and labels, tegetith the image clusters found
before, in a grapks, known as thé&nowledge graphA random walk-based algorithm is applied
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overG to nd the most appropriate labels for the unlabeled imadgégorithm 1 shows a sketch
of our solution, and details are given in the remainder «f slibsection.

Algorithm 1 : QMAS labeling
Input: collection of image$;
collection of known labels ;
restart probabilityc;
clustering outpucC.
Output: full set of labelsLF .
usel , L andC to build the graphical representati®)
. for each unlabeled imade 2 | do
3:  random walk over grap®® from vertexV (l;), and with
probabilityc, restart the walk fronV (I;) again;
4:  compute the af nity between each labellofandl; using power iteration method imple-
menting a revised random walk with restart algorithm;
5. letL, be the one with the largest af nity value in setlin thenLF; L;
end for
return LF;

A

N o

G is a tri-partite graph that consists of the vertex¢eand the edge s&. V is made up
of three layers corresponding to the input imageshe clusters of image€, obtained with
algorithms described in Section 2.3.2, and the set of imaigel$L . Vertices inG that represent
imagel; and labelL, are denoted by/(I;) andV (L,), respectively. It is self-evident that with
clustering results in hand, the construction process df augraphG is linear in time and space.
Figure 2.4 exempli es a toy graph with seven images, twoinltstlabels, and three clusters.
Imagel ; is pre-labeled with. ;, while 1, andl; are both pre-labeled with,. Note that under
the soft clustering scheme we adopted, an image node magkeszl livith more than one nodes
representing clusters,g, | 3 is connected to bot; andC.,.

Given an unlabeled imade, we apply the following algorithm over the grag@hin order
to nd an af nity score for each possible label with respeati{; it is imitating the well-known
random walk with restart algorithm with a minor modi cati@m selecting the random neighbor
to land on. The random walker starts from verté{d;) initially. At each time step, the walker
always takes one of the following two choices: (1) go bac¥ {b;), with probabilityc; (2) walks
to a neighboring vertex, with probabiliy c. Under the latter case, the probability of choosing
a neighboring vertex is proportional to the degree of thatexei.e., the walker favors smaller
clusters and more speci c labels. The valuedf usually set to an empirical value.§., 0.1%, or
determined by cross-validation. The af nity score fqrwith respect td; is given by the steady
state probability that our random walker will nd himself aertexV (L), always restarting at
V (1;). The label with the largest score becomes the recommenbebftal;.

The intuition behind this procedure is that similar imagest tbelong to the same cluster
should share similar labels. This is consistent with oupraroximity measure which favors
multiple short paths between the two vertices of interegir ikRstance, consider image in
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Figure 2.4: The knowledge graph for a toy input set. Nodepathas squares, circles, and
triangles represent images, labels, and clusters regphcti

Figure 2.4. It belongs to cluste@ andCs;. The other two images i63 bear labeL ,, whereas
none of the images i, is labeled. Hence there is a higher probability that a randatker
starting fromV (1) will reachV (L ;) thanV (L), in that there are two shortest paths of length
3 linking V(l¢) andV (L), whereas the only shortest path connectt(ds) to V(L,) takes as
many as 5 steps. Moreover, the af nity score for could be higher il ¢ were associated with
Cs only. Thus, for larger graphs, in which it is not untypicahtian image belongs to multiple
clusters, the membership with a smaller cluster takes merghwthan that with a larger one.

2.4 Experimental Results

2.4.1 Experimental Setup

We rst introduce three data sets of satellite images thatesat the test beds in this section:
GeoEye- 14 high quality satellite images in JPEG format of a number tésiaround the
world. The total size of these imageslig MB. We divided each image into equal-sized
rectangular tiles and yielded a totallf, 336tiles. Figure 2.1 includes a snapshoiip024
tiles.

SAT1.5GB- the data set is made up of three satellite images in the G&dfbrmat, each
of size 500MB. The total number of equal-sized rectangular tileg2g; 408
SATLARGE- this proprietary data set contains a pan QuickBird imagsiz# 1.8 GB,
and its matching 4-band multi-spectral image of size 450 MBhe These images were
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Figure 2.5: Graph construction time versus size of the fabsandomly sampled from
SAT1.5GBQMAS red circles; GCap: blue crosses; GCap-ANN: green diamofmasing re-
sults are averaged over 10 runs; error bars are too tiny tasberded.

combined as described previously in Section 2.3.1, and0205% hexagonal tiles were
generated.

The experiment is designed to demonstrate the performdn@&IéSin terms of computa-
tional time, non-labor intensive labeling, and identi at of representatives as well as outliers.
We also highlight results from a set qliery-by-exampléests performed over the proprietary
data; such queries exemplify practical retrieval tasksatelite image analysis. The baseline
algorithm to be compared against for performance evaluasithe Graph-based automatic im-
age Captioning method [84], with two different approachksearest neighbor nding in the
graph construction: either the basic quadratic algoritt@&p) and or the approximate nearest
neighbors using the ANN Library (GCap-ANN). The number cdrest neighbors is set to seven.
All three approaches share the same implementation of randalk algorithms with the restart
parameter set to = 0:15. They were executed on a LINUX server using a sirj@&Hz CPU
core and 4GB RAM available.

2.4.2 Computational Time

Figure 2.5 compares the elapsed time for graph construosorg theSAT1.5GBdata set and
smaller randomly sampled subsets. On the e@kd1.5GBlata setQMASIs 40 times faster
than GCap-ANN, while running GCap will take hours (not shpwpMASscales almost linearly
with the input data size, while the slope of log-log curvesal and1:5 for GCap and GCap-
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Figure 2.6: Labeling accuracy versus the number of preldalexamples for each labeling class.
QMAS red circles; GCap-ANN: green diamonds. Accuracy valueldfASare barely affected
by the size of the pre-labeled data. Box plots summarize A8 ower randomly selected inputs,
with outliers (typically over 3 standard deviations frone tnean) indicated by red circles and
green diamonds.

ANN, respectively. Instead of performing nearest neiglsearches, which is super-linear even
with a state-of-the-art approximation algorith@MASemploys a linear-time clustering algo-
rithms to leverage the content similarity in satellite iredides, and achieves superior scalability.

2.4.3 Non-labor Intensive Labeling

We manually labeled 256 tiles in tI8AT1.5GRlata set as the ground truth. By randomly choos-
ing a small number of these labels as input and leaving ouairéng ones for evaluation, we
compare the labeling accuracy of the three approaches féorepktitive runs and display qual-
ity results as box plots in Figure 2. MASdoes not sacri ce quality for faster computational
time when compared with GCap-ANN, and it actually performsrebetter when the size of the
pre-labeled data is limited. Additional experiments haveven givenl0 pre-labeled examples
for each class, even under the optimal performance-spadd-bff for GCap-ANN, where the
number of nearest neighbors set to thi@&)ASis still 1:75 times faster and arourttb%more
accurate. Note that the accuracy@mMASIs barely affected by the number of the pre-labeled
examples in each label class. The fact that it can still exiiete from tiny sets of pre-labeled
data ensures its non-labor intensive capability.

21



Figure 2.7: Representatives for tBe@oEyedataset, each colored according to the cluster mem-
bership.

Figure 2.8: Top3 outliers for theGeoEyadataset.

2.4.4 Finding Representatives and Outliers

Figure 2.7 shows data representatives obtained oGHukEyedata set. A total 06 representa-
tives are displayed, which are colored according to theistelrs. Note that a large cluster, such
as “Water”, may have multiple representatives.

Figure 2.8 presents the tdmutliers on the same data set. Closer inspection foundhbaet
outlier tiles tend to be on the border of areas like “watertl 4aity”, where a bridge usually
appears. Thesgoutlier tiles, together witld representatives, compactly summarize@enEye
data set, which contains more thifthousand tiles.
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Training Set Samples

Example Data (~50 samples)

Query results for most similar “Water” tiles

Figure 2.9: Example “Water”: Labeled Data and Results ofeguery.

Training Set Samples (3 training tiles)

Query results for most similar “boat” tiles

Figure 2.10: Example “Boats”: Labeled Data and Results aitBguery.
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2.4.5 Query-by-Example Experiments

The query-by-example experiments were carried out for tbpnetarySATLARGHlata set by
domain experts in satellite image analysis. Given a smbatifddes asexamplesthey would like

to nd most similar tiles over the entire data set. To apRIMAS the given tiles are assigned with
a single label, and we performed random walk based algosittemnd tiles, other than those
already given, that are mostly similar to this label. Fotanse, Figures 2.9 and 2.10 exemplify
the results obtained for “Water” and “Boats”, respectivélye also varied the size of the pre-
labeled data in these experiments between one and fty, seiole how the system responded
to these changes. In general, labeling only small numbeesarhplegeven less than vestill
leads to accurate results; when the number was redu@&avmbegan to see the negative effects
of having an exceedingly small input set.

Notice that correct returned results often look very ddfarfrom the given samplesge.,
the system is able to extrapolate from the given examplethter,acorrect tiles that do not have
signi cant resemblance to the pre-labeled set. Clearlis th not a typical automated target
recognition (ATR) approach. There are no “templates” andpmeci ¢ object shapes, orienta-
tions, sizes, or patterns that are learned. Unlike a t@dhti ATR that typically fails when it
encounters an object that does not t the speci ed des@iptQMASIs able to correctly label
an object that has a somewhat different appearance fronktteevh” set.

2.5 Conclusion

In this chapter we propos€gdMAS a fast solution to low-labor labeling, mining and attentio
routing for multi-modal databases. We carried out expenisian the scenario of satellite image
analysis to evaluate its performand@MASscales linearly over the size of the data set, being
multiple times faster than an alternative algorithm in ¢gra@pnstruction. At the same time, it
provides high quality labeling results, even with tiny setpre-labeled data as inputs. It could
also spot top representatives and outliers and offered pacnsummarization of a large data set.
The implementation was also employed to perform a set oftiged@ueries over a proprietary
data set by domain experts and it yielded quite positivelt®sitQMASiIs able to correctly label
an object where the traditional automated target recagn(tATR) approach may falil.

Future directions include leveraging the locality withinagesj.e., the fact that image tiles
that are neighbors are more likely to share similar labeld,generalizing the method to handle
an ontology of labels.
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Chapter 3

MultiAspectForensics Pattern Mining on
Large-scale Heterogeneous Networks with
Tensor Analysis

Modern applications such as web knowledge base, netwdrk trenitoring and online social
networks have made available an unprecedented amountwbmetiata with rich types of in-
teractions carrying multiple attributes, for instancertpmumber and timestamp in the case of
network traf c. The design of algorithms to leverage thigustured relationship with the power
of computing to assist researchers and practitioners ftietbenderstanding, exploration and
navigation of this space of information has become a chailhey albeit rewarding, topic in so-
cial network analysis and data mining. The constantly gngwscale and enriching genres of
network data always demand higher levels of ef ciency, kihess and generalizability where
existing approaches with successes on small, homogenebusrk data are likely to fall short.

MultiAspectForensigantroduced in this chapter, is a handy tool to automatycdditect and
visualize novel subgraph patterns within a local commumiityodes in a heterogeneous network,
such as a set of vertices that form a dense bipartite grapbevmdges share exactly the same set
of attributes. We apply the proposed method on three dagdrset distinct application domains,
present empirical results and discuss insights derived tlese patterns discovered. Our algo-
rithm, built on scalable tensor analysis procedures, captspectral properties of network data
and reveals informative signals for subsequent domaioigpgtudy and investigation, such as
suspicious port-scanning activities in the scenario oecygecurity monitoring.

This chapter will be structured as follows: we rst motivéite discussion in Section 3.1, and
then elaborate oNlultiAspectForensicprocedures step-by-step in Section 3.2. Empirical results
are presented in Section 3.3. And related literatures aeeylsketched in Section 3.4. Lastly,
Section 3.5 concludes the chapter and highlights futurectons. Most of the work described
subsequently is based on the material presented in [75].
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3.1 Introduction

Modern applications in the Internet era, either data-imied or data-driven, have contributed to
the boom of network data arising from a spectrum of domainsh @s web knowledge base,
network traf c monitoring and online social networks. A glng trend in the accumulation
and analysis of such data is the emergence of heterogengeusctions between nodes in the
network, for which a vivid depiction is offered by the Facekdriendship page, with multiple
page elements ranging from wall posts, comments, and phtosutual friends, shared inter-
ests and common networks between a pair of users. Browsithgangation over such a space
of information, despite its overwhelming scale and comipyekas been a challenging task com-
mon encountered in many elds. Yet the rather recent avditaland popularity of these data,
in addition to practical requirements over the ef cienagbustness and generalizability of the
solution, has rendered the topic of pattern mining for loggeneous network data a relatively
underexplored one, where even the de nition of interesbngbnormapatternscould become
a non-trivial problem itself.

Many of pioneering studies on pattern discovery for graptl metwork data focused on
frequent substructure mining, with heuristics motivatgdhiformation theory [29], mathematical
graph theory [67, 116], inductive logic programming [35§;.eAn intimately related problem
is the detection of rare event and anomalous behavior, wiashattracted wide interests thanks
to its many well-recognized applications concerned wittusgy, risk assessment, and fraud
analysis. Noble and Cook [82] were among the rst to addréss ¢hallenge on structured
network data by providing solutions based on the minimatdpson length principle to search
for abnormal subgraphs. And many alternative approacles@w available to spot anomalous
nodes [6], edges [24], or both [38], with further elaboratedapted to bipartite graphs [103],
and time-evolving graphs [109]. This piece of work, by rdweatwo classes of patterns in
the context of heterogeneous graphs, resembles a novelptte explore this relatively young
realm of multi-aspect network data for state-of-the-astdveries and developments.

We resort to a tensor-based representation for heterogemetwork data and employ off-
the-shelf decomposition algorithms [64] as a starting pofrnthe analysis. Previous research
along this line has paid a great deal of attention on indi@idwdes, which play a central role in
similarity ranking [41], personalized recommendationd],.tc. The major nding in our study
is that, for multiple heterogeneous network data acrossrsievapplication domains, we could
always observe groups of elements with similar connectaloeg one or more data modes,
as implied by nearly-identical decomposition scores, Whiansform to quite visible spikes in
histogram plots. While algorithms in aforementioned stsdnostly look for elements with top
eigenscores, our heuristic distinguishes itselfdeyng able to capture patterns formed by less
well-connected nodes in the netwpvikhich do not necessarily stand out in the eigenspace and
are often ignored by other extant techniques.

In summaryMultiAspectForensicstarts with a data decomposition step for input heteroge-
neous networks, features a spike detection heuristic teatawon-trivial substructure patterns,
and also includes programs to automatically visualize théings. We demonstrate its effec-
tiveness and ef ciency by executindultiAspectForensicen three data sets from distinct appli-
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Figure 3.1: lllustration of the CP decomposition: the inBunhode tensor on the left is decom-
posed intoR triplets of vectors on the right, reminiscing of the raRksingular value decom-

position of a matrix. The three modes, in a scenario of ndiw@f c analysis, may represent

source IP address (red), destination IP address (blue)@hdymber (green), respectively.

cation scenarios, present empirical results and investity@ discovered patterns, which could
be leveraged to suggest suspicious activities from netivaflc logs such as port-scanning and
denial-of-service attack, extract interesting facts fiomeb knowledge base such as punk musi-
cians or low-cost airline destinations, and report genetion groups in a developmental biology
study consistent with established theories.

3.2 Proposed Algorithm

MultiAspectForensicsn a nutshell, consists of the following steps:
Data Decompositiontake the input heterogeneous network as a tensor and petéoisor
decomposition to obtain an eigenscore vector along eachndatle.

Spike Detection in Histogramgerate over all data modes to obtain histograms and apply
the spike detection algorithm.

Substructure Discoverydentify the induced subgraph/subtensor for each spiklesam-
marize patterns discovered.

Visualization create attribute plots and histogram plots with detecpekks highlighted.
The above procedure just makes use of the strongest compaitendata decomposition. If
the contribution of the top one eigen-component is not agelahe latter three steps should be
carried out over multiple strongest components in a sirfalsinion. For brevity, we subsequently
elaborate on three algorithmic steps with only the rst cament taken into consideration, and
the visualization step is illustrated by resulting guresdarmixed with the rest of the discussion.

3.2.1 Data Decomposition

We rst introduce a few de nitions. Atensorcan be represented as a multi-dimensional array
of scalars. Itrder is the dimensionality of the array, while each dimensionriewn as one
mode of which the value ranges over the setetdémentdor the speci c mode. Thus, vectors
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are tensors of order one, and matrices are tensors with tveesndn Section 3.3 we will use
measureo denote the unit of eadmtryin the multi-dimensional array.

To transform a heterogeneous network into a tensor, evegg bdcomes a non-zero entry
in the multi-dimensional array, where edge attributesetbgr with edge source and destination,
make up different modes of the tensor. Edge weights nayustdly as entry values for weighted
networks. Node attributes could also be incorporated biyngpk Cartesian product over two end
points of an edge, for instance, if a directed network costaiodes witty different colors, we
could have an edge attribute whose arity3s= 49.

Tensor decomposition leverages multi-linear algebra eécatialysis of high-order data. The
canonical polyadic (CP) decomposition we applied in thisathr generalizes the singular value
decomposition (SVD) for matrices. It factorizes a tensahtoweighted sum of outer products of
mode-speci ¢ vectors, as illustrated in Figure 3.1 for ar8ey tensor. Formally, for alM -mode

tensorX of sizel; |, I v, its CP decomposition of rarR yields
X ! !
X(ie:i:0im) coab oo aMl
r=1
¥ (m)
= r a; - (3.2)
r=1 m=1

Similar to SVD, the approximation becomes closeRanlarges, and would be exact if it equals
the rank of the tensor (see [53] for details).

3.2.2 Spike Detection in Histograms

Now that we have transformed complex structured data intet afsnore manageable vectors,
the next step is to spot common patterns from these vectssa #arting point, we visualize
each vector by creating an attribute plot, which displaysoaiie values of eigenscores (y-axis)
along its elements (indexed by the x-axis). An example ohsulots is given in Figure 3.2.
Note that the y-axis should be log scale to emphasize the relative difference. The arrow on
the right indicates a score value shared by many elemiestsa number of entries in the eigen-
vector have exact the same values, which is not uncharsiitarn other dimensions and across
different data setsThis key observatioanables us to create effective heuristics to extract spikes
from histograms and subsequently examine subgraph psittezg imply in the next subsection.
And the fact that many spikes do not appear at the very topeofghire with most signi cant
eigenscore values makes it more dif cult for many altenvatnethods to be effective.

Prior to applying the spike detection heuristics, we obkégtogram data by equally dividing
the range of eigenscores in log scale. The detection ahgoijiist needs to sort and traverse the
histogram data until one of the following conditions is s&td: (1) the energy as measured by
sum of square values covered is equal or more than a fractisnand the magnitude of the
spike is less than a fraction ofthan the largest one; (2) there are alre&dgpikes. Parameter
values are empirically set ®= 90%;r = 50%; K = 20, where small variations lead to little
perturbation of the output. The pseudo-code of the algoriih listed in Algorithm 2 above.
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Figure 3.2: An attribute plot which displays absolute valoéeigenscores (y-axis in log-scale)
along its elements (indexed by the x-axis). The arrow on idpet points to a common score
value, illustrating an observation critical to the algonitic design oMultiAspectForensics

Application of this algorithm to the data vector in Figur® Jields Figure 3.3, where we put
attribute plot on the left side-by-side with histogram matthe right, highlighting every spike in
red.

3.2.3 Substructure Discovery

Having extracted sets of elements that form histogram spiik@m each data mode, we head
back to the input network data to examine corresponding kadanetworks to complete the nal
step of pattern discovery. The running example in this sttitg® comes from a snapshot of
network traf ¢ log which consists of packet traces in an eptse network [70]. Each trace in
the log is a triplet of §ource-IR destination-IR port-numbe}, which could be represented as a
directed network of machine IP addresses with the only ettgbute “port number” and number
of packets as edge weights. Patterns derived fkutiAspectForensicsould be summarized
into the following two categories:

generalized star

A subnetwork which consists of conterminous edges tha¢ddhly in one data mode. For in-
stance, a group of source IP addresses sending packetsrigle @gestination server using the
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Figure 3.3: An attribute plot (adopted from Figure 3.2) oa &ft side-by-side with the corre-
sponding histogram plot with spikes detected indicateditnyes.

same port. It generalizes the star pattern in two dimensgmaghs, and makes up a continuous
block along one dimension in the adjacency tensor, if elésn@iong that dimension are ordered
carefully. Note that in a heterogeneous network, this aategf patterns also includes multiple
edges between one pair of nodes with differing attributeesk.g, a good many port numbers
in our running example, in which case the source machine meagither an administrator per-
forming port screening or a suspect trying to exploit a veabée port. Figure 3.4 provides an
illustration of these patterns.

generalized bipartite-core

A subnetwork that represents a dense bipartite structargasito the bipartite-core pattern in
regular graphs, and is akin to association rules as welleMenerally, it can be viewed as a con-
tinuous block along two dimensions in higher-order tensmder speci ¢ element orders. For
instance, a group of source IP addresses sending packetstiplendestination servers with the
same port. Note that in a heterogeneous network, this cgtedpatterns also includes, written
in the language of network forensics, multiple source IR-@sges sending packets over different
port numbers to the same server. This is likely to happemduai DDoS (Distributed Denial-
of-Service) attack, a typical scenario of network intrusim which source IPs play the role of
malicious hosts sending huge volumes of packets to thettaegeer as the victim. Figure 3.5
provides an illustration of these patterns.

As a nal remark, the statement that both patterns are mladea block along one or two
dimensions in the high-order tensor only holds when elemeftheir respective data modes are
ordered in speci c ways. And the complexity to search fortsan order is generally exponential,
which re ects, in some sense, the power of the proposed agpro
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Figure 3.4: Examples of generalized star patterns diseovierthe LBNL (Lawrence Berkeley
National Lab) network traf ¢ data set. Wavy arrows indicateltiple edges between the pair of
nodes with a handful of distinct attribute values. (a) 10reeuP addresses (randomly selected
out of 172 ones) are sending multiple packets to a server imaetith Port# 534, which is a
UDP port under the NCP protocol from a network OS for le shgrand printing services; (b)
The source IP registered by an Indian ISP is sending paakathdst in LBNL via port numbers
(ranging from 2,300 to 2,900) not usually intended for tlyset of communication, implying a
suspicious activity.
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Figure 3.5: Examples of generalized bipartite-core pasteliscovered in the LBNL (Lawrence
Berkeley National Lab) network traf c data set. Wavy arroindicate multiple edges between
the pair of nodes with a handful of distinct attribute valu€a) 10 source IP addresses (ran-
domly selected out of 119 ones) are sending multiple padkets array of server machines,
including server 131.243.141.187, which also appearsgarei3.4 as part of a generalized star
pattern, over a port used for le sharing and printing seegic(b) 10 source IP addresses (ran-
domly selected out of 63 ones) are sending packets overeiff@orts to a multi-purpose server
machine.
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Algorithm 2 SDA(Spike Detection Algorithm)

Input: Eigenscore histogram vectbrr of sizeN
Output: The set indicating spikes detect8d

1. S=
2: sort the hi§togram to obtain an ordered vetigrs.t. H,, H,, Ho,
3: Qsum ::1 HZ2
4:Q O
5. fork=1;:::;K do
6: S S[f g
7 Q Q+H2
8: if Q=Qsum sandH (o)=H(0,) <r then
o: break
10:  endif
11: end for
12: return S
Data set | # modes | Dimensions Measure # non-zero
elements
2,345 source IPs, 2,355
LBNL 4 dest IPs, 6,055 port #g,# packets | 281K
3,610 timestamps
3,641 subjects, 3,929 ob- .
RTW 3 jects, 98 verbs binary 10K
BDGP 3 4,491 genes, 248 terms, Gbinary 38K
stages

Table 3.1: A Summary of Data Sets

3.3 Empirical Results

We commence this section with the description of data setselss experimental environment.
It is followed by the discussion of respective patternsalgced byMultiAspectForensics each

of the three data sets.

3.3.1 Data and Environment

Data sets are acquired from three dissimilar applicatiomalos: network traf ¢ monitoring,

knowledge networks, and bioinformatics. A summary is hgjtied in Table 3.1.

LBNL The network traf c log is made available through a researffbreto study the char-
acteristics of traf ¢ for Internet enterprises [86]. The aserement was taken on servers
within the Lawrence Berkeley National Lab (LBNL) from th@uls of internal hosts over
time, with millions of packet traces recorded. Each padleste includes four data modes:
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source IP, destination IP, port number, and a timestampdargk For privacy reasons,
lower 16 bits were randomly permuted to anonymize the hasttity, whereas upper 16
bits were kept intact for proper identi cation of the loaatiand service provider [87]. We
borrowed a subset of this data set within 1-hour time spahignsiection.

RTW This online knowledge base is the outcome of the NELL (Nduealing Language Learn-
ing) system at Carnegie Mellon University [20]. It employatural language processing
and machine learning techniques to constantly and autoafigticrawl web pages and
extract facts [21]. Each fact is a triplet of (subject, vesbject) such aspjttsburgh city-
located-in-statgpennsylvanig which could be represented as a directed graph made up of
entities likepittsburghor pennsylvanigedges with attributes likeity-located-in-stateFor
better quality of results, we applied our algorithm on a ppepssed subset after manual
noise removal (by courtesy of Bryan Kisiel at Carnegie Meléniversity).

BDGP The data set is collected from the Berkeley Drosophila GenBroject (BDGP) to study
the spatial-temporal patterns of gene expression duriegetirly development of fruit
y [106, 107]. We selected three data modes from the datadasep available at [13],
which consists of 4,491 genes, 248 functional annotationgdrom a specialized vocab-
ulary, and 6 different developmental stages.

MultiAspectForensice/as implemented in the MATLAB language, and all followingpex-
iments were performed on a Unix machine with four 2.8GHz spasd 16GB memories. For
every of these data sets, the wall-clock time was no more2hlmmutes to carry out the compu-
tation and generate attribute plots and histogram plotsgeddl modes.

3.3.2 LBNL Traf c Log

We have already discussed patterns discovered from a stagfghis data set in Section 3.2.3,
illustrated in Figures 3.4, 3.5. With the additional modeimfestamp, we found two dominating
spikes in its histogram plot. Upon closer examination, werged the following activities: the
rst spike is a generalized bipartite-core pattern relai@the HTTP traf ¢ on port 80 between
four servers in LBNL and three remote hosts in Chinese acadastitutions, possibly executing
scripts to crawl/download web pages. The second spike septe a generalized star pattern
between one of the local HTTP server and the same remote hbstia aforementioned. We
traced further in time and found that the remote host nevermackets back to acknowledge the
connection, suggestive of suspicious activities to bentegdo domain experts.

3.3.3 RTW Knowledge Base

Recall that each item in the knowledge database could besepted as a (subject, verb, object)
triplet. MultiAspectForensicsletected spikes mostly on data modes representing sulajedts
objects.

Figure 3.6(a) illustrates a subgraph discovered revealiggneralized star pattern. The mu-
sic artists/bands listed here are specialized to punk marsits sub-genres (not shown in the
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(a) Punk Music (b) European Cities

Figure 3.6: Two generalized star patterns discovered ft@RTW knowledge base: (a) Music
artists specialized in punk or one of its sub-genres acogrdi the knowledge base; (b) European
destinations of the Ryanair, an Irish low-cost airline.

gure) according to the knowledge base, whereas their mersatile peers will not be favorably
selected byMultiAspectForensics

Figure 3.6(b) displays another generalized star pattemmdsn European cities and an Irish
low-cost airline which ies to many regional or secondarypaits to reduce cost, following a
different business model and choice of destination fronustidal giants.

The evidence here and many others alike could also be les@ia@ variety of graph mining
tasks on this knowledge base such as clustering entitieeatieg an ontology between them,
given the fact that nodes within the same spike tend to besiaviéarly and speci cally. More-
over, as a sanity check, since node names are ordered aligha#lipén this data set, the pattern
does not make a continuous block in the tensor without neratpermutation.

3.3.4 BDGP Gene Annotation

In this data seMultiAspectForensicspots a set of genes known to be responsible fontager-

nal effectin the early development of fruit y (Figure 3.7), which algoovides hints to study
other higher organisms includitdomo sapiensProducts of such maternal effect genes, in the
form of either protein or mRNA, play a critical role in the yeearly stage of embryo devel-
opment, such as the rst few cell divisions. For instanceirfof such genes, includinigicoid,
caudal hunchbackandnanos is mostly responsible for the determination of anteriostgrior
axis — which side of the embryo will be the future head and Winther side will be the future
tail [68].
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Figure 3.7: An attribute plot on the left side-by-side wiltetcorresponding histogram plot for
the “gene” mode of the BDGP data set. The largest spike thaapd at the bottom is the set of
maternal genesa special class of genes that play a vital role in early emdgvelopment such
as the polarity of the egg.e., which part will become the head and which other part turts in
the tail later.

3.4 Related Work

3.4.1 Anomaly Detection

Outlier detection, despite its wide interest across mapfiegtion domains, is usually a chal-
lenging problem, as re ected in the fact that even a formahitien is not easy to make. A
classical one was given by Hawkins in [54]: “an observativet teviates so much from other
observations as to arouse suspicion that it was generatadlifigrent mechanism?”.

Outlier detection methods can be categorized into two getiametric, statistical-based ap-
proaches, and non-parametric, model-free approachesminom characteristic of methods in
the former category is the existence of statistical assiom@about the underlying data distribu-
tion [11]. The latter category usually makes the call by résg to distance computation [63]
or density estimation [19, 58]. Besides, projection-basethods [2] have been introduced for
high-dimensional data. Moreover, clustering algorithnaymutput outlier labels as a by-product

(e.q, [26]).

Compared to outlier detection, anomaly detection in stmect data has only gained recent
attention [25], where we have reviewed relevant studiekenrtroductory section and claimed
that there is no other attempt, to the extent of our knowledlyeliscover similar patterns in
heterogeneous network dataMsltiAspectForensics
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3.4.2 Tensor Analysis and Graph Mining

Tensor decomposition has been a basic technique well stadtapplied to a wide range of dis-
ciplines and scenarios. An informative survey on tensopdgaositions is presented by Kolda
and Bader [64] with many further references. Recent rekearbave further generalized the
CP decomposition to handle incomplete data [1], or to precwmn-negative components [97].
Tucker decomposition, as the other well-known approacmase exible, although its applica-
tion is usually limited by its limited scalability and vulrability to noise. Notably, recent work
on scalable alternatives such as [111] may open up the vererhtance th&lultiAspectForen-
sicsmethodology with more powerful decomposition algorithms.

Quite a few popular implementations of tensor decompasiiilgorithms for academic re-
searchers have been made publicly available. Exampledhard-ivay toolbox by Andersson
and Bro [7] and the more recent MATLAB Tensor Toolbox by Baaed Kolda [9].

Tensor analysis has also been applied to study the dynaifhgrsghs and networks [104].
They commonly start by analyzing graph/tensor snapshdtsmeach timestamp, and take the
output for subsequent time-series analydidultiAspectForensigsinstead of focusing on the
evolution between adjacent timestamps, treats timestangmather data mode to allow better
discovery of global patterns in this trade-off.

3.5 Conclusion

We presentedultiAspectForensicsa handy and effective tool to automatically detect and-visu
alize a category of novel patterns, including generalizadand generalized bipartite-core pat-
terns, within a local community of nodes in heterogeneouwwords, even if they exist among
less-well connected nodes which are more likely to be ighbsemany extant methods. Empir-
ical results exhibited valuable insights derived from @attdiscovered, across multiple applica-
tion domains such as network traf ¢ monitoring, knowledg#morks, and bioinformatics. These
successes could be attributed to the fact that we resoreetkttsor-based representation to facil-
itate data decomposition, reached a key observation lgadispike patterns in histogram plots,
and revealed typical substructures re ecting spectrapprties of heterogeneous data. Hence
MultiAspectForensicsealizes an early attempt to research substructure pattemmonly ex-
isting in heterogeneous network data, and a reasonableagseof tensor analysis, despite the
simplicity of heuristics resided.

An important problem beyond the scope of this manuscrigtesdesign of an objective and
guantitative evaluation framework of discovered patteespecially for large-scale networks for
which it is prohibitive to label every interesting pattethough it may be relatively to de ne
precision and recall by exhaustively searching for subggdgearing the speci ed pattern such as
generalized star or generalized bipartite core, the deniof quality, or value of these patterns
from automated discovery, is usually domain and contextigpe even may not be losslessly
quanti ed. This would also shed lights on a principle way pfimizing parameters, yet we found
that results were usually not sensitive to parameter vallesn they vary within reasonable
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ranges. Meanwhile, it's our plan to open-source MeltiAspectForensicsool based on the
genericboost graph library{99] to make it more accessible and usable by industrialtji@eers
and academic researchers, and collect feedbacks for pofsire developments.
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Part |l

Querying Multimedia Data

39






Chapter 4

CDEM: Flexible Querying System for
Biological Image Databases

Given a large collection of images documenting the spatitibpns of gene activities on football-
shaped embryos, can we perform content-based retrievaldsimilar patterns for an existing
or new input? Can we leverage this similarity to group togetiienes that display correlated
patterns, which suggests a greater likelihood for them tbgpaate in the same biological pro-
cess in the development of the embryo? Can we construct ariebk genes to visualize such
relationships known as co-expression? Moreover, moste@f#nes bear a handful of labels,
manually curated by domain experts using anatomical teorimglicate the body-pare(g, “em-
bryonic hindgut”) with most signi cant expression actigitcan we employ this additional se-
mantic information to improve the retrieval results, oramnétically assign such labels to new
and upcoming images?

This chapter and the accompanying online query interfa@nigitial attempt to address
these questions. Part of the work described subsequeribsisd on the material presented in
[48].

4.1 Background

How an organism develops from a single cell, one of the gregtenies of life, has always
been an intriguing problem for biologists. To uncover thaaje foundation of animal design,
extensivein vitro andin vivo studies have been carried out to decode the early develdpmen
of Drosophila melanogasteor fruit y, with the expectation that understanding gaihna this
organism model may apply to other species, not excludingamubeings, as well. Thanks to
the recent advancement in biomedical imaging technologiés now possible to make high-
resolution image recording of 2D or even 3D spatial signasturing gene expression in cells
and living organisms. As a popular type of data charactagiziomplex biological systems,
many of these images are digitally stored into multimedtaldases and made publicly accessible
via various online and of ine interfaces for querying anawsing. For instance, the Berkeley
Drosophila Genome Project (BDGP) [106, 107] provides amerdatabase of two-dimensional
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Annotation Terms

brain, central nervous system,

glia, neurons, ventral nerve corg

Developmental Stage
13-16

Figure 4.1: A fruit y embryo image with all its attributes sgled from the BDGP database.
The original lename isnsitu65954.jpe

fruit y embryo images, which includes three modes of dataorenthan 70,000 images of size
up to 1520 by 1080 pixels, around 3,000 genes, and severdiémiannotation terms. Figure 4.1
illustrates one image from the database together withsaditiributes.

Every image is associated with a single gene, of which theemgmon is documented digi-
tally. There are up to a few annotation terms from a contdoliecabulary as a textual description
of the pattern, indicating parts of the body that have dackésrs and more signi cant expres-
sions. Image-based analysis is still indispensable sinbdespatterns may not be captured by
the vocabulary of limited size. Also, each image has a timenptwhich is labeled using one
of the six prede ned developmental stage ranges. Patterdsrudifferent stages are not directly
comparable due to the drastic morphological changes in ¢leldpmental process. This also
leads to the difference in the set of annotation terms d&gir each stage ranges.

We present a general framework in this chapter on which a eawibnteresting tasks around
this multi-modal data collection of genes, image pattesnsg, text annotations. For example,

Multi-modal Retrieval given one or more images/genes/terms, what are the mesargl
images/genes/terms? This could assist biologists to ndlarities with each data modal
or perform cross-modal queries such as annotation termestiggs for images.

Multi-modal Clustering nd groups of images/genes/terms that members are moselgio
linked to each other than with non-members. The hope is #et group may correspond
to one or more biological functions so that subsequent bio&d analysis could be more
focused on a smaller set of genes.

Network Constructiondraft a network between a subset of genes where links batwee
genes represent spatial co-expression and may providemimteaningful biological in-
teractions.

The basic idea of our approach is constructing a graph ofipheitlypes of nodes represent-
ing different mode of data. Graph-based algorithms suclamdam walk with restart could be
adapted, and the infrastructure and the algorithm emplayedeadily scalable to handle a rela-
tively large volume of data. An online interface is made klde accordingly to assist biologists
to browse and navigate the data set.
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Figure 4.2: A tri-partite graph constructed from the BDGRablase.

4.2 Proposed Method

4.2.1 Graph Construction

As a prerequisite for all the subsequent algorithmic dgualent, we construct a heterogeneous
graph which consists of multiple layers of nodes, each ottwhepresents one of the data modes
(genes, images, or annotation terms). The connection ketwdferent data modes are ab-
stracted as edges between corresponding nodes. For iestanitiustrated in Figure 4.2, gene
nodeCG32369 is connected to an image nodesitu8820  and a term nodembryonic
midgut . This indicates that the image with the laloeitu8820  documents the expression
pattern for gen€€G32369. And such spatial pattern, as well as those recorded in otheges
of the gene in the same developmental stage, could be (pgrt@ated at theembryonic
midgut , i.e,, the part of embryo from which most of the intestines arevéetri Note that an-
notation nodes are connected nodes representing genes ttzh image nodes because based
on the data source available, given a particular developahstage, images from the same gene
always share the same set of annotation terms.

However, an important part of information is ignored by th@r@mentioned tripartite graph
— content similarity between images, which is the essept#tern we would like to capture in
the image-based analysis. Consequently, we propose tnabfeature-based representation
of expression images, and connect pairs of images that ase ¢ each other in the feature
space. Feature values are borrowed from the triangulatagamin [42], which employed a
number of image processing techniques to align embryosffdreint sizes, shapes, positions
and orientations, as well as to remove certain imagingaatsf And we nd 3 10 nearest
neighbors for each image node to create intra-layer edges.

4.2.2 Multi-Modal Retrieval

With the complete graph of images, genes and terms as wéatlksdetween them, we are ready
to derive the proximity measure for the retrieval task. Heesemploy random walk with restart
(RWR) on graphs, which is also known as personalized Paiggg8&h Given a query node the
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Stages Included| 13-16 | 11-16 9-16 7-16 4-16 1-16
# of Nodes 10,868| 23,008 | 28,568 | 34,141 | 42,319 | 49,261
# of Edges 99,113 199,035| 237,555| 274,415| 336,354| 385,515
Avg Node Degreg 9.2 8.7 8.3 8.0 7.9 7.8

Table 4.1: A summary of graphs constructed of differentsize

proximity fromi to every other node in the graph can be derived from the ststadg probability
of the following discrete-time Markov process: at each timlk, the random walker makes one
of two possible choices:
1. with probability(1 c), randomly pick one of the neighbors of the current node, aaié w
to that node,

2. with probabilityc, jumps back to the query nodg
wherec is known as the restart probability and empirically set th 0f the graph has weighted
edges, the chance of picking a random neighbor under thechstce is proportional to the
weight of the connecting link. Denote the correspondingdyestate probability vector by,
and the graph adjacency matrix 8y, then we have

ri=(@ Cc)Wr;+ ce 4.1)

whereW;, equals the probability of going from nodketo nodej under the rst choice, ane,

is a vector of which théth element is 1 and other ones are 0. Eq. 4.1 can be solvedigitec
obtainr; = ¢(I (1 ©)W) 1)e. However, the cost matrix inversion would be prohibitive fo
a moderately larggV. An iterative power method is applied instead, of which tbmplexity is
linear to the number of edges for a sparse graph. More elabtaehniques such as [108] could
be employed if scalability is concerned.

The RWR algorithm applies naturally to the multi-modal gusetting, as relevance scores
could be normalized within each layer of node respectivétyalso generalizes smoothly to
multiple query inputs, by letting; have multiple non-zero entries, each of which correspomds t
one of the candidate nodes under the random walker's sedumncdec

4.3 Experimental Evaluation

To shed light on the scalability of the proposed approach;eate a total of 6 graphs of varying
sizes by putting in additional data from other stage ran§estistics are summarized in Table 4.1.
The database dump and feature representation of imagesiveesame as [42] and downloaded
from the BDGP website. Images are linked to each other in ¢h&ufe space if their feature
vectors have a correlation value greater than 0.7. The nuaifloearest neighbors linked to each
image is constrained to be between 3 and 10.
We measure the elapsed time of the graph construction #igoon a Linux machine with

2.8GHz cores with MATLAB 2009b installed. Figure 4.3(a) igslthe average number over 10
repetitions against the number of nodes in the graph, whdtigare 4.3(b) reports the running
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Figure 4.3: Running time based on different developmeritajesranges (a) for constructing
the graphical representation, averaged over 10 repedjtiand (b) for one query using RWR,
averaged over 100 random queries, with error bars of oneatdrmeviation.

Rank Image Results Genes (Synonyms) Annotation Terms
1 | insitu67039 (Fig. 4.4(a)) CG10498 (cdc2c)| ventral nerve cord
2 insitu64954 (Fig. 4.4(b) CG15141 brain
3 insitu28800 (Fig. 4.4(c)) CG5581 (Ote) | central nervous system
4 | insitu67041 (Fig. 4.4(d)) CG10212 (SMC2) midgut
5 | insitu35317 (Fig. 4.4(e)) CG1245 (MED27) neurons

Table 4.2: C-DEM query results using the query image showfigare 4.4(a).

time for executing query from a random node of graphs coostdis Both curves show a lin-

ear trend as graph sizes go up, and for the largest graphimioigtalmost 50,000 nodes, the
time needed for graph construction and querying are no nimare 5 minutes and 0.5 seconds,
respectively.

Table 4.2 and Figure 4.4 provide top ve query results forreamdal using an image with
visible expression patterns in the anterior (near the haad)ventral (near the belly) part of
the embryo as the query input. All ve images display simiatterns to the query. The cor-
responding gene for each of these images is also in the listast relevant genes. Three of
the top ve genes (cdc2c, Ote, SMC2) have been identi ed am®tici genes, which is related
to the mitosis (M) phase in the cell-division cycle, in anepéndent study [102]. Relevance
scores for top annotation terms are 0.15, 0.15, 0.12, 0.8 0d4, respectively. Top two terms
(ventral nerve cord andbrain ) are part of the annotation of every image in the top- ve
list, whereas the third terncéntral nervous system ) is shared by all the images but
insitu28800 . This may lead to a speci ¢ annotation suggestiorcehtral nervous
system for the imageinsitu2880 . And we would like to automate this task in our future
work.
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(b) insitu64954 (c) insitu28800

(a) insitu67039 (d) insitu67041 (e) insitu35317

Figure 4.4: A typical query result using an embryo image jragthe query input. Top 4 similar
images other than the query image itself are displayed ne(p)

Browsetbased Ul

HTTP Queries ResultPages

TomcatWeb Server
JSP\pplication

Ay

Remote Results
RMI Function Calls

| Computingengine

(a) Online Interface (b) System Architecture

Figure 4.5: C-DEM: an online, multi-modal query system faioBophila embryo databases.
Images are adapted from [48].

Figure 4.5(a) illustrates the online interface of the C-DEMery system. The query input
could be an image, and/or a gene, and/or an annotation tehm.sdftware architecture of C-
DEM in Figure 4.5(b) de-associates the front-end web seamerback-end computing engine
with a clear and stable API. They are deployed on separat@inescfor better performance by
distributing the workload. Detailed discussion on how temryuand browse the database using
C-DEM is given in [48].
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4.4 Related Work

4.4.1 Automatic Analysis of Embryo Images

A rst analysis of the data set came from [106, 107] by the BD@Bup: [106] performed
co-clustering of the gene-annotation matrix; [107] in@rgied the microarray data for gene
clustering and applied a fuzzy clustering algorithm whidbveed a gene to belong to multiple
clusters. Both of them only made indirect use of image datautih the manual annotation
results. Moreover, [107] provided a network representediocollapsed annotation terms which
re ect tissue relatedness.

[119] developed algorithms to determine the stage of an éaegl perform automatic anno-
tation. Since an image may have multiple annotation termspt@tion was treated as a series of
simple bi-class classi cation problems. Image featuresenabtained using 2D wavelet discrete
transform and a feature selection algorithm from previoada89]. The same author introduced
in [90] additional features based on Gaussian mixture m@@®sIM) and principle component
analysis (PCA) to characterize local and global patterriseirTproposed algorithm performed
very well in the task of automatically nding the developntaistage given an expression image
(> 99% accuracy), however, automatic annotation turned dog @much more challenging task,
and even nding an intuitive, objective evaluation scheraeras to be nontrivial.

[52] argued that the pure visual feature based retrievahatetannot be applied to nd cor-
respondence between images in different developmentg@sta he correspondence should be
established through the annotation terms which are fronsdéinee controlled vocabulary inde-
pendent of developmental stages. A max-margin based #lgodesigned for multi-modal data
mining was applied to obtain empirical evaluation on the BDdatabase. The algorithm outper-
formed another state-of-the-art multi-modal mining aitjon in precision-recall for most of the
retrieval tasks evaluated, and scaled well with the sizéetataset. However, more biological
evidence need to be provided to support this special tredtofe'across-stage retrieval ”, and
this framework may limit some global image features.

The FEMine system [85] derived two sets of features by apgliACA and ICA (Independent
Component Analysis) respectively, and performed clasgian, clustering and retrieval tasks
based on these features. [85] provided a detailed disqussiamage preprocessing, which will
be adapted as an important component in the current prdjeetmajor concern comes from the
experimental evaluation where images were hand-picked the BDGP dataset and the size of
the experimental data need to be signi cantly.

Random walk and related methods have many successful apptis, of which the most
well known one is PageRank [83]. [84] applied random walkhwéstart to a simple automatic
caption setting.

4.4.2 Online Databases

The database created by BDGP provides a query interfaceewlsers provide gene name, devel-
opmental stage, and/or annotation information and seargime returns corresponding images.
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The FlyExpress database [65] offers a content based image retrieval fumetamed “ nd
similar patterns”, where users rst choose an extractedepatof an image from a small set
of candidates, then the search engine returns a list of isnag@ similarity score. Both web
sites refer/link to the well knowklybase [112] for detailed information about gene function,
synonym etc.

4.5 Conclusion

We presented an online interface to assist biological rebegs to perform exible querying and
exploration over a large database which consists of emiongges, image annotations, as well
as genes whose expression patterns are illustrated byithages. Given an input query from
any data modal, image or text, the system could automatiealll ef ciently search over the
entire database and output an ordered list of most similagés or formatted attributes. The
underlying proximity measure is derived via random walkhwistart algorithm over graphs.
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Chapter 5

BEFH : Bayesian Exponential Family
Harmoniums for Multimedia Retrieval

The vast size of the text and multimedia information avaddlom digital libraries and World
Wide Web, and large amount of knowledge contained there@egtes a need to organize and
summarize topical contents of these data. In recent ydas ts a growing volume of research
on applying probabilistic graphical models to develop andtic information distillation systems
that can explore and exploit real-world data from diveragrses, such as texts, images and bio-
logical sequences. This chapter presents a Bayesian appimanference and learning with the
recently proposed exponential family harmonium (EFH) nied@ad their variants for posterior
latent semantic projection of multimedia documents forsegjuent data mining tasks such as
classi cation and retrieval.

We rst provide a table listing common acronyms in this cleagor reference.

Table 5.1: Summary of Acronyms

Acronym | Explanation
EFH Exponential Family Harmonium, a family of undirected gragathmodel
BEFH | Bayesian extension of EFH

GB-EFH | A special case of EFH with variable distributed in binarwGsian
DWH Dual-Wing Harmonium, a generalization of EFH for multi-nabdata

LSI Latent Semantic Indexing, a classical method for topicaliscy

pLSI Probabilistic Latent Semantic Indexing, a classic prolstha topic model
LDA Latent Dirichlet Allocation, a generative Bayesian grajghimodel for topic discovery

5.1 Introduction

Probabilistic graphical models provide a compact desoripdf complex stochastic relation-
ships among random variables, which can correspond to letlepable entitiese(g, words,
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imageries) and abstract concepgsy( topics, themes). Such a formalism often facilitates ex-
ible statistical reasoning and query answering based oropppte computational algorithms.
Inspired by the classical approachlafent semantic indexinig4], at the beginning of this cen-
tury there have been important advances in developingtlaggnantic graphical models for large
text corpora and multimedia data, based on either a Bayesiavork or a Markov random eld
(MRF) formalism. For instance, tharobabilistic latent semantic indexin@LSI) [56] method
models each document as an admixture of topic-speci citigiions of words. The more recent
latent Dirichlet allocation(LDA) technique [18] employs a hierarchical Bayesian exten of
pLSI, treating both the document-speci ¢ topic-mixing €oents and the topic-speci ¢ word
probabilities as random variables, under appropriateugaig priors. LDA can be extended to
multimedia collections by assuming that the unobservefdi¢sy are correlated with both im-
age variables and word variables [10, 16]. Recently, Wgkihal. [113] proposed another class
of latent semantic graphical models known as the exporidatraly harmonium model (EFH),
which can be understood as an undirected, and non-Bayesiarierpart of the LDA model.
Subsequently, [114] extended EFH td@al-wing harmonium modéDWH) for joint modeling

of text and image. Also, Gehler et al. [43] proposed thie adapting PoissofRAP) model
which follows the general architecture of EFH model and um®ldional Poisson distributions
to model observed count data. And McCallum et al. [78] prepoa training criterion called
multiple-conditional learnindMCL) for MRFs and EFHs. Unlike the directed graphical mod-
els such as pLSI and LDA, EFH does not employ auxiliary latemtables (.e., the imaginary
topic indicators for every word) to facilitate topic mixirajnd simulate data generation; and it
allows a more exible representation of the latent topicexgp for documents.€., as a point is

a Euclidean space rather than in a simplex).

An important advantage of the directed latent-topic modelsh as LDA is that they can
be straightforwardly embedded in a Bayesian framework, Gardundergo Bayesian training,
smoothing and inference. To date, the MRF-based modelsauéH and DWH have been
largely limited to a maximum likelihood (ML) learning framerk, which is prone to undesir-
able effects such as over tting over a relatively smalletadset, high variance in sampling-based
inference and parameter estimation, and indifferenceito gnowledge. These limitations re-
strict their utilities in many realistic data mining sceiearwhere data are sparse and spurious.
The ML framework also makes it dif cult to fully exploit the adeling power of MRF in latent
topic distillations and to develop future extensions. Tihawailability of a Bayesian version
of EFH is partly due to the remarkable technical dif cultiese must overcome when working
under such a formalism. It is well-known that statisticari@ng of EFH models from data,
even under an ML framework, is technically non-trivial. Asalssed in [81] and [91], Bayesian
learning for general MRF, is even more challenging, paldidyin cases that involve latent vari-
ables as in EFH. In this chapter, we attempt to address somméesafhallenges: endowing EFH
with a simple Bayesian prior, and presenting a samplingdbasgorithm for Bayesian inference
and learning.

In summary, we present Bayesian EFH (BEFH), in which a maliate Gaussian prior is
introduced for the weight matrix that couples the latenidspvith observed attributes in EFH
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(and also in DWH). As detailed subsequently, it is illuminato view the weight matrix of EFH
as the matrix of word probabilities under all topics in LDAndEr this analogy, our prior corre-
sponds to the Dirichlet priors for the word probabilitiediDA. It is well-known that methods
for Bayesian inference and learning in directed graphicadiefs such as LDA does not apply to
the undirected graphical models concerned here, becatise imtractability and non-conjugacy
arising from the generally intractable partition functidm this chapter, we present the Langevin
algorithm conjoint with a MCMC sampling scheme for postenderence under BEFH. We also
propose an empirical Bayes method based on the Langevinthlgdfor unsupervised estima-
tion of the BEFH hyper-parameter given training data. Fynak show comparisons of ML and
Bayesian approaches on a synthetic dataset with known péessrand a dataset provided by
TRECVID 2003 [101] with both text and image data.

5.2 Bayesian EFH

In this section, we outline the basic structure of a Baye&&h in the context of a simple
instantiation of EFH for latent topic modeling of text corpo

Prior to delving into technical discussion, we provide a marization of symbols to be
referred multiple times in Table 5.2.

We commence the discussion with a brief recap of the basic, EBHlescribed in [113].
Consider an undirected graphical model de ned on a comgigtartite graph containing two
layers of nodes (Fig 5.1). Lét = fH;g denote the set dfidden unitan such a graph, and let
X = fX;g denote the set ahput units An EFH de nes the following Markov random eld:

. nX X X 0
p(x;h)/ - €Xp iafia (Xi) + ibGp(hy) + W2 Tia(Xi)gn(h;) ; (5.1)
ia ib jjab

whereffiy( ) : 8ag denotes the set of potential functions (or features) de amdceach of the
input units (indexed by) in the model, and likewiségj,( ) : 8bg for the hidden units; =
f ag[f jpolf Wi’;.fg denotes the “weights” of the corresponding potentials aeipial pairs;
andZ stands for the partition function, which is a function of

The bipartite topology of the harmonium graph suggestsrbdes within the same layer
are conditionally independent given all nodes of the odpdayer. Speci cally, from Eq. 5.1,
we have ESe following factoreggform for the between-layenditonal distribution functions:
p(xjh) =~ p(xijh), p(hjx) = ; p(h;jx), and each of the singleton conditional has a simple
exponential family form:

X

p(xijh) = exp Mafia(xi)  Ai(fRa0) ; (5.2)
NG

p(hjjx) = exp “bgb(h)  Bi(f o) ; (5.3)
b

whereA;( ) andB;( ) denote the respective log-partition functions; and théftst’ parameters
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Symbol | De nition

X observed units (random variables) in the harmonium model
Xi theith observed unit
X a vector of observed values as an instantiatioX of
Xi theith entry ofx
I the total number of observed units
H hidden units (random variables) in the harmonium model
H; thej th hidden unit representing topics
h a vector of hidden values as an instantiatioof
h; thej th entry ofh
J the total number of hidden units
fia theath potential function associated with thté observed unit
ia the parameter associated with
the vector of such parameters when each observed unit hagla pbtential function
Oib thelth potential function associated with the hidden unit
ib the parameter associated wgh
the vector of such parameters when each hidden unit has le poigntial function
Wi’;,f thea; th potential function associated with thté observed unit anpth hidden unit
W the matrix of such parameters when each unit has only onaft&inction

columns ofW follows iid multivariate Gaussian of dirh: this is the mean vector
the vector of non-zeros elements in the diagonal covariaratex

Z the intractable partition function
2 the discretization size of the Langevin algorithm in Seta3.2
N the size of the data set, or the number of independent oligersavailable
m # samples obtained by repeatedly doing brief sampling aitbesl in Sectoin 5.3.3
\% al | matrix equivalent toWV W T

Table 5.2: Symbol table

"a and”™;, are de ned as:
X

11
+

W2gs(h));

b= bt WIPE . (xi);

ia

where the shiftsj.e., the second term in each of the equation above, are inducéidebiptal
couplings between units in the input and hidden layers. &g $@m the above de nition, since
all the parameters in the joint distribution under EFH caideati ed from the local conditional
distributions, one can determine an EBbing a bottom-up stratedyy directly specifying the
often easily comprehensible local conditionals. For inega as our running example in this
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Figure 5.1: The graphical model representation for a haramomvith 3 input units €.g, binary
word occurrences in a document) and 2 hidden ueitg, (projection in a 2-dim topic space).

chapter, we de ne the following Gaussian-Bernoulli EFH (&BH) for text:

X
p(X,jh) Bernoulli X,leglt( i+ hj Wij) ; (54)

X
N(hjj  xiW;1); (5.5)

p(h; jx)

where logif ) = (1+ e ) ' is the logistic function, and the shift of the logit-transfed
Bernoulli rate ; is induced by a weighted combination of the latent uhitét can be shown that
under this construction, we obtain an EFH with the joint:

p(x;h)/ exp Tx %hTh + x"Wh : (5.6)
The GB-EFH models text (represented by varialleas binary occurrences of words, which is
suitable for sparse, short text such as video captions. Wineleling long articles, one may want
to directly model word counts; and in this case one can redar 5.4 withe.g, a Binomial dis-
tribution. It is interesting to examine side-by-side the-&BH and the LDA model as displayed
in Fig. 5.2. Note that, when treating each hidden tpias a representative of a latent topic as-
pect, Eq. 5.4 can be understood as a likelihood function afmerved attribute, such as a word

denotes thé/l -dimensional vectorN]l denotes the size of the vocabulary) of multinomial word
probabilities under topig. In GB-EFH eachM -vectorW; represents the set of “contributions”
topicj as on each word in a vocabulary. Although structurally samit is noteworthy that the
topic mixing mechanism of GB-EFH is very different from traftthe LDA model. In LDA
the topic mixing is achieved by marginalizing out the awatii topic indicator variables for each
word occurrence — as illustrated in Fig. 5.2(b), the LDA likeod of a wordx,,, given topic
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Figure 5.2: A comparison of EFH, LDA and BEFH models over aylerdocument. Circles
represent variables, and diamond represents model paanéa) EFH. For easy comparison,
the hidden uniti(e., the topic weight coef cients) H; g and the input unit§ X ;g are represented
as vector valued variablé$ andX , respectively. For simplicity, only th&/ parameter of EFH
is explicitly shown. (b) LDA. Note the correspondence bedwein LDA andH in EFH, and the
fact that ;'s are random variables rather than parametiedenotes the length of the document.
(c) BEFH. Note thaw f W, g are now lifted as random variables.

written asp(Xyj ) = P ,P(z] )p(XxwjB;z) = P 0w — whereas it can be shown that in EFH
the expecll_;;ed rates of all words are directly determined eywighted sum of topic speci ¢ con-
tributions ; hjW; ~ Wh . In this regard EFH is closer to the classical LSI principlevhich
the observed rates of all words can be expressed as a weigtdanations of the eigen-topics
(i.e., orthonormal topic-speci ¢ word rate vectors).

Empirically, it was noted that the performance of EFH andargs on latent semantic mod-
eling is comparable, and sometimes superior, to LDA [113}]1But as shown in Fig. 5.2,
structurally EFH is not yet a full undirected counterpartLdA, which employs an elegant
hierarchical strategy to incorporate priors for both thedvprobabilitiesB and topic mixing
coef cients . We expect that, as is the case for LDA, it is possible for E&ldIso leverage on
the possible extra modeling power endowed by a Bayesiaraitsm.

Now we propose a Bayesian EFH that exploits the proclaimee: b2 To maintain ex-
changability between hidden unith; g, we place columnid prior onW , that is, each column
of W follows a multivariate Gaussian, which is a common choicerfiodeling continuous pa-
rameters without any additional assumption:

Y Y _
p(W)=  p(Wj)=  N(Wj; ): (5.7)
j=1 j=1
A full covariance matrix in the above prior would have si¢é, which is prohibitively expensive
for modeling large vocabulary. For simplicity, we considefurther simpli cation where: =
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diagl ),i.e. j = i (i;J). This means that each elementWf follows an independent
normal distribution. Note that although we omit correlagsdetween the topic-word coupling
coef cients, the expressiveness of this prior is compagdbl the Dirichlet prior for columns
in the B matrix of LDA, which captures little correlation behaviof the word-probabilities

sampled from a simplex.

Now we are left with two remaining sets of parameters of EFldnd . It turns out that in
many practical settinge(g, GB-EFH and DWH), is vacuousj.e, = 0, which essentially
“centers"” the conditional distributiop(hjx) at the shifts induced by the input units. Far
in EFH it lacks an intuitive semantics, such as being a portdpic coef cients as in LDA.
Therefore we choose to leaveas xed parameters to be estimated via a maximume-likelihood
principle or cross-validation techniques.

Now, putting things together, we arrive at a Bayesian EFH ehadth the following joint
density function

pOGhiWi 5 5 )= pWj 5 )p(x;hj ;W): (5.8)

The hyperparameters in the model arand , which we treat as xed quantities presumably
known or to be estimated.

5.3 Model Inference and Estimation

5.3.1 Algorithm Overview

Given the prior distribution oW with presumably known hyperparameters and a collection

estimated, we need to compute or approximate the posterior

WiX) /! p(XjW)p(W) = —————p(XjW )p(W 59
P(WjX) I p(XjW)p(W) (Z(W))Np( JW)p(W) (5.9)
and the predictive posterior density over hidden variables

z
p(hjx;X) =" p(hjx; W)p(W jX)dW ; (5.10)

w

wherep( ) in Eq. 5.9 represents the unnormalized density functioresponding tg( ).

ulating an ergodic Markov chain whose stationary distrdouis the posteriop(W jX). The
dif culty here is due to the presence of an intractable t¢t=Z(W ))N in the posterior distribu-
tion, which isa functionof the target random paramet&ks. Therefore, unlike simple posterior
inference settings in which there is a normalization cantdtaat will be canceled out by comput-
ing the ratio of two posterior densities or taking the denxg in Bayesian inference with MRFs
using MCMC we have to seek an ef cient approximation of theantable random partition
function in posterior distribution.
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In the following, we investigate two MCMC approximation sches and show that in both
cases the intractable term can be written as expectatiodesr uhe data distributiop(xjW ).
Then we show that these terms can be approximated ef cidntlyninimizing the contrastive
divergence (CD) [55], or equivalently, by performing Gildempling for only very few steps
starting from data (the empirical distribution). The datien is in parallel with that in [81]; here
we provide a more detailed discussion on the comparisoredith schemes.

5.3.2 Approximation schemes
Metropolis-Hasting algorithms

Consider simulating a Markov chain using a Metropolis-Heagsalgorithm with the proposal
distributiong(W §W ). The acceptance probability of the transitdh! W Cis

p(W §X) qWjw 9.
p(W jX) qWIW)’

(W ;W9 =min (5.11)

Suppose the proposal distribution is easy to draw sampia &nd is tractable, then the only

dif culty in implementing Metropolis-Hasting algorithmis to approximate the intractable term

ZZ((VV\‘,’ 3) , whereN is the size of the data set. The ratio of two partition funtsican be written

as an expectation over the data distribupgxjw 9.

Zw) _ X ebxT(Www T waw )y € Tx+ 3XTW W o'
ZW9 Z(W9
1
= exp EXT ww T wivo x (5.12)
p(XjW 9

The Langevin algorithm

We also investigate the Langevin algorithm as an alteraapproximate MCMC scheme. The
Markov chain simulated by the Langevin algorithm is chageezed by the following stochastic

transition equation
2

wWo=w + > logp(W jX)+ N (5.13)

whereN,y are randomly generated froh (0; I ;). This is a discrete version of the Langevin
diffusion and 2 corresponds to the discretization size. A diffusion is aticmus time process

which can be de ned by a stochastic differential equatiohe Tangevin diffusion is character-
ized by

dw (t) = %r logp(W (1)jX)dt + dB(t) (5.14)

whereB (t) is ajW j-dimensional Brownian motion. The Markov chain convergdemw is
reasonably small and has the desired demgly jX) as 2! 0. The gradient of the posterior is
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the sum of three terms
r logp(WijX)=r logp(X;W)=r logp(W)+ r logp{XjW)+( Nr logZ(W)) (5.15)

where in the GB-EFH model

@ogp(W) _ @ogp; (W) _ 1

fr lo W)g; , — (W; i 5.16
andr logp(XjwW) is also tracta?(le X
r logp{Xjw) = r logp{xijwW) = XixTW = XX TW: (5.17)

i i
Hence, the only intractable term involved in the Langevgoathm isNr logZ (W), in which
r logZ (W) can be written as an expectation over the data distribyijpj\V )

X W X
r logZ (W) = T\l/v) FBOjW ) = p;gx/v)) r logp(xjW )
X X D *E
= p(xjW)r logp(xjw)= xx'W (5.18)
P(XjW')

X

Discussion on the two schemes

The straightforward approach of estimatid@W ) itself often fails to provide reliable estimates.
To provide some intuition of the nature of this dif culty, wgve a brief illustration as follows:
with some mathematical manipulation, the partition fumetin the BG-EFH model equals the
expectation of the following random variabl$

Zt)= (1+1t) (5.19)

under the multivariate lognormal distributiontof
t LogNormal( ;WW T)

Thus under the Bayesian framework in whigh is considered a random matrix, we should
expectZ (W) to haveexponentiaimean and variance.

Thus, we put more emphasis on variance in the bias-variaadedff of estimators in ap-
proximate Bayesian learning. Compare the approximatiotisd Langevin algorithm to update
W as in Eqg. 5.13 and in Metropolis-Hasting algorithms to cotaphe acceptance probability
asinEq.5.11

2r logp(WjX)= 2Nr logz(W)+ C (5.20)
Z(W) N N (W WOYNT logZ (W9
Z(W9 e’ e (5.21)

whereC = ?(r logp(W)+ r logp{XjW)) can be computed exactly, and Eq. 5.21 is obtained
by rst-order Taylor expansion. We expect the latter appmation hasexponentialvariance
compared to the former one. Therefore, we choose the Lamgégorithm conjoint with the
MCMC scheme for posterior inference on BEFH model.
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5.3.3 Approximating the expectations with brief sampling

r logZ(W) in Eg. 5.18 can be estimated using a “sampling very few stews the data" tech-
nique. Itis rst proposed in [55] under the name of minimiginontrastive divergence (CD)
and suggested by [81] for approximate Bayesian inferenddRf# in which it is namedorief
sampling Brief sampling in GB-EFH runs multiple chains startingrfradhe dataX. Each
chain performd full step of Gibbs sampling. A total dil samples are obtained, denoted by

distribution ofX,. This whole procedure of brief sampling is illustrated dtofes where we set
| = 1 to perform just a single iteration:

Drawhy’ N (W Txy; 1) fork=1;:::;N;

Drawx(kl) BerncF))uIIi logit(( + Wh)) fork=1;:::;N;

rlogZ(W) = (X (X)W = IX XTW
Brief sampling has been previously shown to provide low afae estimation with a small
bias in ML learning [22]. The intractable term in ML learnio§ MRF is just the same term
r logZ (W), therefore we expect similar low-variance behavior of fs@mpling estimation in
the Langevin algorithm. Fig. 5.4 in the experiment sectimvjagles an empirical demonstration.

5.3.4 Computing the predictive posterior density

scribed above, the predictive conditional distributioapproximated by

. 1
p(hjx;X) = —  p(hjx; W): (5.22)
k=1

More speci cally, in GB-EFH we are interested in the conaiital expectation ofi givenx, this
is computed as

xn
E (hjx;Wy) =
k=1 k=1

E (hjx;X) = W [ x: (5.23)

1
m

5.3.5 Hyperparameter Estimation

Now we brie y outline how to compute the maximum likelihoosdtienates of the hyperparame-
ters and of BEFH from training data, based on an empirical Bayes piec We employ a
Monte Carlo EM scheme. In the “E"-step, we impute the hiddemables in BEFH, speci cally,
W, from its posterior distribution; and in Section 5.3.2 werdnaeveloped the Langevin algo-
rithm for this step. Given a set &f imputedW from iterationt, we proceed to the “M"-step, in
which now we are essentially back to the standard ML learsaggario for fully observed MRF,
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and compute an estimate of the hyperparameters as follows:

X
( (t+1) ’ (t+1) ) = arg max |Og p(X, W (kt)] ; )

k=1
X
=argmax  logp(W’j; )+log p(XjW’)
" k=1
X
=argmax logp(W ’j; ); (5.24)
" k=1

whereW |’ denotes thé-th imputed sample at iteratidn
It can be shown that, the ML estimate of each elementafd is:

(t+1) 1 X X (t)
ik
S 1 X X
i(t+1) = (le(’tli i(t+1) )2 (526)

JK 1jk

whereW;,; denotes thg -th element ofV .
To initialize the EM procedure, we can make use of the ML esterof W , denoted by
WMLE "and let

©

1
N
s

WMLE (5.27)
]

© 1% MLE ©y2
] (Wj i) (5.28)
i

This concludes the algorithmic section.

5.4 Experimental Evaluation

5.4.1 Synthetic EFH parameter estimation

The dataset is generated for a GB-EFH model withO. The model containk = 100 observed
variables andl = 10 hidden variables, so the number of parametergVins| J = 1000.
We vary the size of the training dataset from 25 to 200 and @wenfhe performance of ML
estimation via gradient ascent and the Langevin algorittop@sed in the previous section.
Generatingid samples from a general MRF is known to be non-trivial. Howefor a GB-
EFH model exact samples can be generated fairly ef cienglgimploying the perfect sampling
technique [28] when all the elements of the makfix WW?T are non-negative. To ensure this
property, we rst generate all M matrix whose elements are uniformly distributed in the
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Figure 5.3: Details of Monte Carlo simulations of the Langeaigorithm, withy-axis corre-
sponds to the value &¥,;. Three chains of different starting points are shown. The{time
to reach convergence is approximately 50 transition.

[0; O:1] interval. ThenW is determined by performing an SVD on this matrix so tMais the
best rankd approximation.
There is an un-identi ability issue here because the dataibution

p(XjW ) = %exp %XTWW Tx (5.29)
is a function ofV and is invariant iflW is right-multiplied by an orthogonal matriQ because
(WQ)(WQ)T = WWT. Also it can be shown the prior & de ned in Eq. 5.7 is also invariant
under this transformation. Therefore our evaluation gatare based on the matik instead of
W. We de ne two error measures: mean averaged emag( and mean relative errome) to
evaluate an estimat

1 X X .
mae= - ivi %] (5.30)
P
X X i\
mre = % Jvf \l)”é _ (5.31)
i maxfj Vi jijViig

I J

Fig. 5.4 shows the estimate of the gradient using brief semgplersus the number of sam-
pling stepd. We also generate the same number of samples using thetsanhepling technique
to provide an approximately correct version for comparidmef sampling provides biased es-
timation compared to the exact sampling approach, but e ibirelatively small considering
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Figure 5.4: The estimation versus the number of samplingsste brief sampling (solid line)
compared with the estimation perfect sampling (dash liw#}) y-axis corresponds to an esti-
mated derivative of log-partition functio@logZ (W)=@V,, averaged over 50 runs. Both sam-
pling schemes generate 100 samples in each run. The stagwarcdars are scaled by 1.64,
indicating 95% signi cance of the difference in estimatigqsingle sampling step suf ces as it
maximizes the program ef ciency without increasing biavariance of the estimation.

the dif culty of dealing with intractable partition funain. Note that the bias is not decreased
by increasing. The variance of the estimation, on the other hand, is mzechwhen = 1.
Therefore, we let = 1 in subsequent experiments.

Two tunable parameters in the Langevin algorithm are yetetalétermined: the step size
in Eqg. 5.13 and the number of stept sample from data in brief sampling. We choose an
appropriate by investigating the evolution of a number of element8\bfluring the simulation
of the Markov chain. Under a too large step size the chain ¢gwésnity in a few steps, and
under a too small one the burn-in time is undesirably longy 3B shows a simulation of the
Langevin algorithm using the step size we choose.

In Fig. 5.5 we compare the performance of ML estimation vadggnt ascent and the Bayesian
approach using the Langevin algorithm. The Langevin aloriconsistently achieves lower er-
rors under both measures and with different sizes of theitrgiset. As more data are available,
the performance of ML estimation improves little; it appetrat the gradient ascent procedure
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Figure 5.5: The Performance of ML learning and Bayesianr@rfee using the brief Langevin
algorithm under two different error measures (a) mean aisarror; (b) mean relative error.
The results are averaged over 10 runs; the error bar may lmrtalbto be distinguishable from
the gure. The Bayesian approach is subject to less errer ttadn its ML alternative in both
measures.

gets stuck into a local minimum. On the other hand, the Laimgalgorithm does bene t from
more data, which is possibly the consequence of the unirdtweprior we placed for this prob-
lem by setting ; =0; ; = d=0:1fori =1;:::;M. The estimation by both methods has a
non-negligible bias from the true value, and we conjectioaeit is due to the sparsity of the data.
We also observe that the performance difference of ML esiimand the Langevin algorithm
is much larger as measured imgan absolute errachanmean relative errorwhich suggests that
the latter algorithm provides better estimates for paramewith larger values.

5.4.2 Classi cation of Text and Image Data

The data set is from the compiled TRECVID'03 news video aditen in [114]. It contains 1078
video shots with captions, each of which can be treated asandent and belongs to one of
ve pre-de ned categories. 1894 binary word occurrenceteas and 166 continuous features
for key images are extracted from each document. We extendual-wing harmonium (DWH)
developed in [114], which was previously trained by ML esttian, to Bayesian DWH (BDWH)
in which columnid multivariate normal priors are placed on the coupling neasifor word and
image features respectively. The hyperparameters in thes@re estimated using the empirical
Bayes method developed in Section 5.3.5.

To give a hint on the dif culty of performing Bayesian leangj in a real dataset discussed
in Section 5.3.2, we implement the naive Monte Carlo estomatf the partition function in
Eqg. 5.19 for both GB-EFH with synthetic dataset and DWH w#hlrworld dataset. The his-
tograms of the estimated over 100 runs are shown in Fig. 5.6. In the synthetic datdmet t
estimated values approximately t to a normal distributidowever, in the real dataset, there

62



14 ‘ ‘ 100

80

60

40

20

0 0.73 0.735 % 1 2 3 4x0°
(a) Synthetic Dataset (b) Real-world Dataset

Figure 5.6: Histogram of 100 estimations of partition fuoctusing a naive Monte Carlo ap-
proximation on (a) synthetic dataset; (b) real-world detag\rrows are centered at the mean
and indicate an interval of length of 2 times the standardadien. Each estimation computes
the expectation using 1000 samples. On the real-world dstatlse estimation is subject to
unacceptably high variance.
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Figure 5.7: Classi cation accuracy versus number of latepics. Bayesian DWH yields com-
parable performance to the original DWH approach. Both pcedetter results over the baseline
LSI approach and the GM-LDA approach backed by a directephgecal model.

are a few spurious outliers, which shift the mean estimaédaes over all the runs signi cantly,
leading to generally biased, high variance estimates.dgn3-6(b) the variance of the estimation
is three times as large as the estimated mean.
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We evaluate the performance of four different models LS],[@M-LDA, DWH and BDWH
for classi cation task on the news video collection. For eadgorithm, the parameters are
estimated using all data, without reference to their lab&sce the model are learned, every
document in the data are projected into the lower-dimemdilatent semantic space. The data
are then randomly split to a training set and a testing sét thié same size. We show the result
of using one nearest neighbor (1-NN) classi er to prediet thtegory of each test data given the
training data.

Fig. 5.7 compares the performance obtained at differenedgions of latent semantic space,
or equivalently different numbers of latent topics randgnagn 4 to 32. BDWH and DWH achieve
comparable classi cation accuracy consistently, and ediggm LSI and GM-LDA with a good
margin when the number of latent topics are 16 and 32. LSI, DAN&iBDWH all get better per-
formances in higher dimensional semantic space with lessmsionality-reduction. In contrast,
GM-LDA outperforms other methods when the number of latepids are 4 but the performance
curve goes down when the number of latent topics increasas 16 to 32, which may re ect a
low-dimensionality bias from the modeling.

5.5 Conclusion

We have proposed a new Bayesian formalism of EFH model andntarfor latent semantic
modeling of text and multimedia data. The Langevin algonitonjoint with an MCMC scheme
was applied to carry out approximate posterior inferenod,an empirical Bayes method is also
developed for estimating the parameters. The Bayesiamapiprachieves superior performance
of parameter estimation on a synthetic data set and conlpasiassi cation accuracy on a real
dataset of both text and image data.

EFH models differ from singular value decomposition in ttiegre is a freedom to choose
different exponential family distribution to model the irtpdata, which could be either discrete
or continuous. Compared with a linear ICA model, hiddendspn EFH arenotassumed to be
statistically independent. Instead, they are conditigrialependent given the observed layer.
This re ects the assumption that topics could be semaryichfferent but correlated, such as
“science” and "technology”. Similar assumptions couldbdie spotted in other studies [5, 17].

Our experiments presented in this chapter focus on binacyroences of words which is
suitable for short texts. A good future direction is to bueld BEFH to directly model word
counts. Also, the independent Gaussian prior we used caepteced by an more informative
one, while the inference and learning algorithm can sttéagardly apply to the new formal-
ism. Finally, the discretization scheme in the Langeviroatgm can be more elaborate, such as
incorporating the idea suggested in [96].
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Chapter 6

Click Models: Leveraging User Feedback
for Better Search Experiences

In the era of World Wide Web, search engines have become tedsols for browsing and
navigating over vast amounts of information on the interAdter a query submission, the user
interacts with the search engine via examining through thppgts from web documents in
the ranked list of query results and following the hypeklwith a click if she would like to
nd more about a particular one. Such events are usuallyddgm track user activities and
provide insights about the performance of the search ending probably the most extensive,
albeit indirect, surveys on user experience, especialtherevent that explicit user feedback is
either expensive or less likely to be collected, which isaligurue for any query system with a
moderate or large user base.

In this chapter, we study how to leverage user click data tainka similarity score, known
as user-perceived relevance, for any query term and resaltndent pair. Such scores form a
important feature to adapt future ranking for improved wesgrerience. Although much of the
material is presented in the context of web search, it shoeldpplicable to other search prob-
lems as well, including the task of querying multimedia dates. Most of the work described
subsequently is based on the material presented in [49,150 2.

6.1 Background

We rst introduce de nitions and notations that will be uséaroughout this chapter. A web
search user initializes query sessioiny submitting aqueryto the search engine. We regard
re-submissions and reformulations of the same query asdisfuery sessions. Snippets from
web documentare presented in a ranked order in the rst result page, waetecument in a
higherposition or rank, appears above those in lower positions. Such appearaatswiknown
asimpressionin the web search community. The identity of a document irsged at theth
position is denoted bg;, where the value afranges betweehandM , the latter of which is the
maximum number of results displayed in the page.
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6.1.1 Click Position-Bias

If a document is impressed and clicked, it indicates a pasfeedback from the user regarding
the relevance of the document. On the other hand, if therelysimpression without any click,
it possibly links to a negative feedback. This may seem aoredse conclusion at rst sight,
however, empirical studies such as [62] have proved thasstinaightforward idea for leveraging
click data is subject to heavy bias favoring documents tpaear at higher positions to those
lower ones, regardless of their snippets or contents. Tdusddbe (partially) attributed to the
fact that users are accustomed to examine over searchsrasalroughly linear order from the
top to the bottom, with the possibility of an early termimatj re ecting varying degrees of trust
on the ranking algorithm of the search engine tailored to fhreferences. Since a typical user
may not go over every document in the page, for a documenatiars at the bottom, even if
it mostly satis ed the user's information needs, it maylsgiceive much less user attention and
clicks than the top ranked one.

This position-biasn observing clicks over different positions can be porécpy examining
Figure 6.1 obtained from an eye-tracking study in [62]. Baltits display how the eye xation,
a measure of user attention, and the number of clicks vary tbeetop-10 search results. The
difference between the two is in the ranking of search restilie top plot assumes the default
ranking, whereas the bottom plot corresponds to a fullynsene, switching the 1st position
with the 10th, the 2nd with the 9th, and so on. If there were ositpn-bias at all, we would
expect the count of clicks would be mirrored in the bottomt le a result of such switching.
However, the top position in the bottom gure still receivesst user attention, and much more
clicks than bottom ones, which implies that position shoutd be excluded when assessing
chances of clicks over search results.

Position-bias has become a key challenge in the accuramgpretation of user clicks and
inspires the proposal of a number of hypotheses to providaedbdescription, followed by the
development of click models to offer more principled saus.

6.1.2 Basic Hypotheses

Theexamination hypothesiproposed rstin [94], characterizes user interactiortvito types

of probabilistic events: examination and click over a doeat The insight is to impose exami-
nation as a prerequisite for click over the same documedtliakthe relevance of the document
to the conditional probability of a click given that it hasdmealready examined. Formally, for
a given query session, we use binary random variableand C; to represent the examination
and click events of the document at positipmespectively, and denote corresponding examina-
tion and click probabilities by (E; = 1) andP(C; = 1). Theexamination hypothessan be
summarized as follows:

P(Ci=1jEi=0)=0;
P(C, = 1JE| = 1) = rdi;
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Figure 6.1: Comparison of user attention ( xation) and kicover top 10 ranks between the
normal order and the reversed order reveals position bilés &re extracted from Figure 4 in
[62].

wherel i M, andry, de ned as thedocument relevanges the conditional probability
of click after examination. GiveR;, C; is conditionally independent of previous examine/click
eventsEq 1;Cyi 1. This helps to disentangle click activities of various doeunts as being
caused by position and content. Click models based on thaieation hypothesis share this
de nition but differ in the speci cation ofP (E;).

The second hypothesis, known as tascade hypothesj83], portrays how user examines
search results one by one. It states that users always lstéagxamination at the rst docu-
ment. The examination is strictly linear to the positiond @adocument is examined only if all
documents in higher positions are examined. Formally,

P(E;=1)=1;
P(Ein =1jE; =0)=0:

The corollary is that giverk;, E;j.; is conditionally independent of all examine/click events
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abovei, but may depend on the cligk;.
In the same manuscript, theascade modeak proposed by putting together previous two
hypotheses and further constrain that

P(Ei+1 = 1]E| = 1,C|) =1 Ci; (61)

which implies that a user keeps examining the next docunmmiitreaching the rst click, after
which the user simply stops the examination and abandonguéey session. However, it is
unclear from the model how to explain multiple clicks exgtin the same query session. A
quick solution is to (independently) apply the same moddtipia times, which does not have a
sound probabilistic interpretation.

6.2 Proposed Method

This section is devoted to the design and implementatiohefiependent click model (DCM),
originally presented in [51]. More sophisticated Bayessiok models were presented in [49]
and [72]; they share similar design goals and applicatigtings as DCM, and yield better
performance when click data are less available, at the egpeihadditional computational time
and storage. All these models take a single pass over tHeddia, scale linearly in time, and
need only constant space for each query-document pair.

In the aforementioned cascade model a user always leavessiliepage upon the rst click
and never comes back. We propose to include a position-depeparameter; to re ect the
chance that the user would like to see more results afteck alipositioni. ;'s is a set of user
behavior parameters shared over multiple query sessio@84 iDherits the assumption that in
the case of examination without a click, the next documealsys examined. This user model
is shown in Figure 6.2.

Examination and click probabilities in DCM can be speci edan iterative fashionl( i
M):

edl;l = 11
Cai;i = €disilais (6-2)
€rsivl = iCasi (€ Cai);

from which the following closed-form equations can be dediv

Yl
€oi:i = 1 rdj + jrdj ; (63)

Ca:i = Ig 1 rdj + jrdj : (64)
j=1
This completes the formal speci cation of tkhependent click mod@DCM), in which examine
probabilities and click probabilities at different positsi become interdependent.
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Figure 6.2: The user model of DCM, in which is the document relevance df, and ; is the
user behavior parameter for position

Given the actual click evertCy;:::; Cy g in a query session as well as the document im-
pressionfds;:::;dyvg, the log-likelihood for a query session with one or moreldics given
by
X 1

= Ci(logrg +log )+(1 GCi)log(l rq)
i=1

+ Cilogrg + (1 C)log(1l rg)

A4

+log 1 |+ | 1 rgq (6.5)
j=1+1

X!

Cilogrg +(1 Cj)log(X rg)
i=1
Xl
+ Cilog i +log(1 1): (6.6)

i=1

If there is no click in this session, then the log-likelihae@ special case with= M;C, = | =

0.
We carry out DCM learning by optimizing values of and ; to maximize the sum of
the lower bound of log-likelihood in Eq. 6.6 over the entiraining set. Document relevance

estimate for a documeantis given by:

o= # Clickond _ 6.7)
47 # Impression ofl before last clicked positioh '
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which is the empirical conditional click probability dfgiven it appears higher than or at position
I. And the maximum-likelihood estimate for the user behapemameter [51]
# query sessions when last clicked position =

i=1 . e ; 6.8
' # query sessions when positiors clicked (6-8)

forl i M 1, which is the empirical probability of positionbeing a not-last-clicked
position over all query sessions in the training set.

Therefore, we can set up two counting statistics to eachrdeotd, and parse only once
through the training data to get all such counts, and nalynpute all document relevance
estimates. Similarly, we need additiofM 1) global counts for j's. This leads to an
learning algorithm with linear time complexity with respeo the number of query sessions
and linear space complexity with respect to the number adindisquery-document pairs. When
new data are available, we can do fast update and re-congubatsed on these counts, while
maintaining the linear scalability.

An important difference of DCM from simply computing theakthrough rate, the number
of clicks divided by the number of impression, is that clitkdicate both relevance and exam-
ination. So if a document is not clicked, it can be attributeckither the document abstract
is examined but not relevant enough to be clicked, or it agpkaver than other documents
that draw the user attention away. This explain-away effect ected in Eq. 6.7 by a smaller
denominator which only counts impression before last slick

Finally, we give the sampling procedure for DCM which drawamination variableg and
click variablesG one-by-one starting from the top position, as applied imine section to carry
out empirical evaluation:

E =1
If § =0;
G=0; B+ =0;
else
G Bernoulli(rg,);
E+1 Bernoullil C;+ G):

(6.9)

6.3 Experimental Evaluation

We report our experimental studies in this section, whidfased on over 8.8 million queries ses-
sions after data preprocessing, sampled from the click i@gmoajor commercial search engine
in July 2008. We are comparing the proposed DCM with the iedépnt click model (ICM), the
baseline approach unaware of the position-bias and thecelamo examinatiorn under which

1The fulltext of [37] proposing user browsing model, whictpaprs in the SIGIR conference in 2008, became
publicly available after we have developed the DCM. ICM reted the best performed alternative to the extent of
our knowledge while we conducted the experiment.
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Table 6.1: Summary of Test Set

Query Freq| # queries # Sessions | Avg # Click
109 59,442 | 216,653 (5.4%) 1.310
10 31 30,980 | 543,537 (13.5% 1.239
32 99 13,667 | 731,972 (17.7% 1.169
100 316 4,465 | 759,661 (18.9% 1.125
317 999 1,523 | 811,331 (20.1% 1.093
1000 3162 553 965,055 (24.0% 1.072

the probability of a click is solely determined by the idénof the document, and equals the
past clickthrough rate of the same document. In the follgywme start with experimental setup
in Section 6.3.1, and proceed with detailed results undertvaluation metrics in Section 6.3.2
and Section 6.3.3, respectively.

6.3.1 Experimental Setup

The data set is obtained by sampling the click log of a majonroercial search engine during
July 2008. The click log consists of the query string, thestigtamp, document impression data
(identities of top-10 documents in the rst page) and cliekal(whether each document s clicked
or not) for each query session. Only query sessions witreat e click are kept for better data
guality since we nd from additional meta-information thaicks on ads, query suggestions or
other elements are much more likely to appear for the igneesdions with no clicks. It also
provides clearer comparison of performances on predidtiegrst and last clicked position.
For each query, we sort its query sessions by time-stampgindh®m into training set and test
set of equal sizes. The number of query sessions in theraset is 4,804,633. Then these
gueries are categorized according to the query frequentheitest set. Top 0.16% (178) most
frequently searched queries (also knowtaad querieswith frequencies greater thai®®® are
not included in the subsequent results on test set becausteserrch engines already do very
well on these queries. After data preprocessing, the tésbsaists of 4,028,209 query sessions
for 110,630 distinct queries in 6 query frequency categoriehe average number of clicks per
guery session is 1.139. Statistics of the test set are suadan Table 6.1. Note that our data
set includes a great number of tail queries which are oftearigd in experiments conducted in
previous studies, and performances over all query sesarensot dominated by head queries or
a particular query frequency range.

For each query, document relevance estimates for DCM ar@uet@d using Eq. 6.7 on the
training data, and for ICM it equals the clickthrough rateut Bor documents which appear
very few times in the training set and which appear only intés set, document relevance
are replaced by position relevance, which are computeddoin @osition in a similar way, for
deriving log-likelihood and other metrics in the test sethisThas a smoothing effect on the
document relevance, and leads to better performance fevtieation on the test data. Since the
additional counts that we need to keep in the computaflivh for each query, is usually much
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smaller than the cost saving from low-frequency documenhtstime and space complexities
can also be reduced. The cut off of minimum number of impogs&r document relevance
computation is set adaptively according to the query fraqueategory (as shown in Table 6.1)
from 1 to 6. Finally, to avoid in nite values in the evaluatiowe further imposes a lower bound
of 0.01 and an upper bound of 0.99 on the learned relevancev&r both models as well as
user behavior parameters in DCM.

Parsing the data from the hard disk and loading them into mmmory takes around 45
minutes. All the subsequent experiments are carried ousénger machine, with 2.67GHz CPU
cores, 32GB memory, Windows Server 2008 64-bit OS, and MABLER2008a installed. The
computational time for training DCM is no more than 7 minutes

6.3.2 Evaluation based on Log-Likelihood

Log-likelihood (LL)is widely used in the machine learning community to measweéeh tness.
Here it indicates a soft-version of the probability thatks from the model prediction over top 10
positions are consistent with the ground truth over thesieistMore formally, given the document
impression for each query session in the test data, LL isekas the log probability of observed
click events computed under the trained model. A larger Ldidates better performance, and
the optimal value is 0. The improvement of LL valugover , is computed agexp('1  »)

1) 100% We report average LL over multiple query sessions usirtgragtic mean.

Figure 6.3 presents log-likelihood curves for differenegufrequencies, where larger log-
likelihood results indicate better t on the test data. DCbheeves larger performance gain for
more frequent queries, and consistently outperforms IClvey 10% when the query frequency
is over 100. The difference is only less signi cant for tailegies of frequencies less than 10.

The DCM curve goes below ICM for queries with frequencies lgn10%°. But this does
not imply that we should always apply ICM to model these qeerilnstead, we suggest that
lower con dence should be given in document relevance eg@sderived from click models
for these tail queries. We could still record counting stats for these queries, but document
relevance estimates should be reliable when new data owehthe amount of training data is
enough to obtain a good t.

6.3.3 Evaluation based on Position-Bias Plots

Click position-bias could be easily visualized by drawinguave for probabilities of clicks over
the top-10 positions based on the test data. And we compaetived click probabilities from
both DCM and ICM with the ground truth in Figure 6.4. DCM matshthese probabilities very
well at the top 5 positions. The higher tail of empirical aesvs probably due to user scrolling
behaviors, especially for informational queries whichédavhigher click through rate. And we
suspect that users may examine documents in a differenofasinen they scroll to the bottom
of the search result page, so that the 10th position receies more last clicks than the two
above. However, they contribute to a fairly small fractidrowerall results: clicks after position
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Figure 6.3: Log-likelihood per query session on the tesadat different query frequencies.
The overall average for DCM is -1.327, compared with -1.4601€M which re ects a 7%
improvement.

6 represent only 6.1% of the total number. ICM tends to ostirate clicks in lower positions,
given the bias that it assumes every position is always exaani

A unique property of DCM is that examination probabilitiesutd be computed for each
guery session and they are aggregated together to providé @nhuser attention over different
positions, which corresponds to the dashed curve in Figute Bhe rst position is always
examined from the modeling assumption, followed by a geaoadty decreasing pattern after
position 2. Compared with the DCM click curve, the gap betwdem re ects the conditional
click probabilities for each position, which suggests ¢éargrobabilities for both top and bottom
positions. Note that both curves go below the empiricakdar the last position, and this bias
is attributed to user behaviors beyond the modeling assamas discussed previously.

Figure 6.5 displays detailed DCM examination probab#ifier different query frequencies.
All of them share similar decreasing pattern but differ is@te values. The trend is that less
frequent queries tend to be examined in greater depth, amdso®bserve more clicks per query
session in the click log for them.

6.3.4 Predicting First and Last Clicks

We now focus on clicks and test whether samples generatedl€i and DCM provide good
match of rst and last clicked position compared with the emcpl data. Given each query
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Figure 6.4: Click probabilities for different positionsramarized from ICM/DCM samples as
well as test data, and examine probabilities implied by DG click distribution implied by
DCM matches the ground truth closely.

session in the test set, we use the document relevanceddaone the training set to determine
the click probability. For ICM, clicks are sampled for eaadsjtion independently, whereas for
DCM, sampling starts from the top ranked document and endgledr the rst non-examined
position or the last (10th) position. For both models, wdeml100 samples with at least one
click, then rstand last clicked position are identi ed fmothe simulated click data and compared
with the ground truth to compute RMS errors. This is the masticonsuming part in the model
evaluation experiments and takes around one hour to nishrelect the inherent randomness
in user click behavior, we also compute for each query thedstal deviation of rst and last
clicked position and take a weighted mean over differentiga¢o approximate the lower bound
of RMS error. This corresponds to the “optimal” curves in g 6.6. We expect a model
that gives consistently best t of click data would have timeatlest margin with respect to the
optimal error, and this margin also re ects the robustndssiaodel prediction since the RMS
error metric takes account of both bias and variance in ptiedi. Finally, we aggregate results
over all queries and compare the distribution of rst and tisks from two click models with the
empirical distribution of the test data, which correspotuihe “empirical” curves in Figure 6.7.
RMS errors for ICM and DCM are close for rst clicked posititiecause their model as-
sumptions are the same until the rst click. Predicting leltked position turns out to be a
more dif cult task as demonstrated by higher error curvegigure 6.6(b) than 6.6(a). With
a position-dependent modeling assumption, DCM outputeemeasonable last click estimates
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Figure 6.5: Examine probabilities implied by DCM for diféat query frequencies. Queries are
grouped into 6 frequency ranges similarly as in Table 6.1lrk&aand lower curves correspond
to more frequent queries.

than ICM, reducing the RMS error gap from the optimal curveasbyund 30%.

Figure 6.7 illustrates generally slower than geometriae@se with the position for the em-
pirical probabilities of both rst and last clicks. DCM mdtes these probabilities very well at the
top 5 positions. The higher tail of empirical curves is prolgadue to user scrolling behaviors,
especially for informational queries which have a highakdhrough rate. And we suspect that
users may examine documents in a different fashion whensitrey to the bottom of the search
result page, so that the 10th position receives even mdrelielss than the two above. However,
they contribute to a fairly small fraction of overall resultlicks after position 6 represent only
6.1% of the total number. For ICM samples, documents thaeaspin lower positions may
receive more clicks than the ground truth because of theiposndependent assumption. This
results in over-estimation of last click probabilities these positions in Figure 6.7(b). On the
other hand, the document relevance estimates in ICM is emid&n those in DCM, due to a
larger denominator in computing the empirical probala$ti This under-estimation has a more
signi cant effect on documents which usually appear in lopesitions and after the last clicked
position. Therefore, the rst click probability distribon derived from ICM has a lower tail than
the empirical curve, as shown in Figure 6.7(a).
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Figure 6.6: Root-mean-square (RMS) errors for predictajgrét clicked position and (b) last
clicked position. Results are averaged over 100 samplegysgy session.
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Figure 6.7: First click distribution (a) and last click dibution (b) obtained by drawing sam-
ples from DCM and ICM given document impression. The overslllast click distribution of
DCM samples matches the empirical distribution in the teswery well, particularly for top 5
positions. Results are averaged over 100 samples per (eEsiB.
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6.4 Related Work

6.4.1 Click Log Analysis and Learning to Rank

One of the earliest publications on large scale query logyaisaappeared in 1999 [100], which
presented interesting statistics as well as a simple @tiwal analysis from the Alta Vista search
engine. Thereafter, search logs, especially the clicithn data, have been utilized for a spec-
trum of search-related applications, and for learning i ia particular.

Joachims [60] presented a pioneering study to exploit tlidugh data for optimizing the
ranking function for search engines. Pairwise preferepedliack, such as web documeis
more relevant as web documgntare extracted from click logs and used to train a ranking sup
port vector machine (ranking SVM) to output a retrieval fuoiec most concordant with these
partial orderings. It was extended by Radlinski et al. [32]d an algorithm was proposed to
detect a sequence of reformulated queries from the sameaaéearn an improved function.
Radlinski et al. [93] followed this line of study for optimigy ranking functions but takes an al-
ternative active-learning approach to control documerdgsgnted to users in search result pages
for obtaining more helpful feedback as the next-round ingmlata.

Xue et al. [115] proposed to use clickthrough data to imprgraph-based static ranking
algorithms. Bilenko et al. [15] presented a novel study enitifying “search trails” from user
activity logs and used a random-walk based algorithm forrowed retrieval accuracy. In [23]
Carterette et al. proposed a logistic model for relevaneéiption using scores obtained from
human judges.

Clickthrough data could be also combined with other implmeasures or browsing data
available from query logs to improve web search. The studye8gichtein et al. proposed to
extract a spectrum of features from browsing and click &ativas well as textual data to train
a better ranker [3] and estimate user preference [4]. Anegavbrk in evaluating these implicit
measures appeared in [40]. Note that these additionahr#ton may not be able to be collected
everyday due to the huge search volume. And it may also bedlioj high level of noises.g,
web page dwelling time may be inaccurate if a user locks theescto have a break with the
browser open.

6.4.2 User Behavior Study and Click Models

A central task in utilizing search log is to understand andlet@ser search and browsing be-
haviors and click decision processes. Joachims and higbaohtors pioneered this direction
by presenting a series of studies around some eye-trackpegienents [61, 62], which inspired
a series of models that interpret user behaviors with irstngacapacity, namely, the cascade
model [33] already discussed, and the user browsing modgbged by Dupret et al [37].
Following the proposal of DCM, more studies have borrowerlBayesian framework and
techniques from probabilistic graphical models to devetape sophisticated alternatives with
dedicated user behavior assumptions. This includes ttleatiain model [50], dynamic Bayesian
network model [27], Bayesian browsing model [72]. Desplite improvement over click pre-
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diction and extended power granted by the Bayesian modEiiBig they share a few simplify-
ing assumptions such as homogenous treatment of diffetemy gessions and are not without
limitations in a number of important aspects, such as patsation, query reformulation, tail
queries / data sparsity, and multimedia search resultst iMosnt developments and generaliza-
tions in this area has started to address these challerayagiifferent perspectives.

Matthijs and Radlinski [77] presented a novel personabredpproach for building user pro-
les based their past behavior to help re-rank future seegshlts in better alignments with their
preferences. Their implementation is publicly availaldeaebrowser add-on with detailed doc-
umentation [76]. Dupret and Liao [36] proposed the sesstoiyumodel to characterize how
users satisfy their information needs in a series of quebyrgssions. Their analysis showed
favorable results for informational queries and other tgpgueries which share a pattern that
involves a relatively large number of reformulation andutasission. Zhu et al. [121] introduced
a generalized click model with the idea that relevance inctiok model could be a function of
multiple predicative input attributes (features), whidfeetively adds a regression-like com-
ponent. The attributes learned are feature-speci c irste#faquery-speci ¢, and the model is
expected to perform well with tail queries.

6.5 Conclusion and Discussion

Web search click logs record and aggregate important imfgiedbacks from user browsing and
click activities, representing one of the most extensiet,iydirect, surveys on user experience.
They are valuable resources for both information retriegakarchers, to better understand hu-
man interaction with retrieval results and calibrate ttgipotheses or models, and web search
practitioners, to measure, monitor and learn to improveckeangine performance. A key chal-
lenge in click log analysis is to obtain accurate, ef ciemtigrpretation of user clicks, despite the
fact that they are “informative but biased” as absolutevatee judgments, as demonstrated in a
number of previous studies.

Click models usually incorporate a statistical depictidruser interaction with web search
results in a query session, by specifying probabilitiesxaineination and clicks at different po-
sitions and how they depend on each other. They provide iptett solutions, scaling up to
terabyte/petabyte scale click data, to inferring usecgiged relevance of web documents, and
modeling outputs could be further leveraged in variousdeeglated applications including
search engine quality evaluation and sponsored searclo@sictThe idea and principle apply
to search interfaces for multimedia search (better knowfe@esrated search) as well, with the
introduction of additional types of bias over user examoraaind click probabilities re ecting
different presentation styles.@, images and videos).

This chapter provides a self-contained discussion of c¢hcklels employing the dependent-
click model as the running example. Trade-offs in model glesind choices of user behavior
assumptions should be dependent on speci ¢ applicatidmgset DCM serves as an easy and
ef cient example that would be quite convenient for fasbyotyping and generally performs
well with abundant data. A brief coverage of click chain mpdieaturing Bayesian statistical
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techniques and more dedicated user model, is left to Chapiethe appendix. This eld has

attracted a lot of interests from academic and industrisgéaechers within the community of
Web Search and Data Mining since 2009, with a number of extitew ideas that will further

push forward the boundary of the state-of-the-art to be eggenext year.

Small ideas and subtle implementation details could alag aldramatic role in addition to
novel ideas and models from academic research. For exairgd&ing and logging how long
users spend on the landing page after a click may providenrdtive signals and lead to a differ-
ent treatment for very short clicks. Also, for pages that‘greckly viewed and reloaded” [39],
these short impressions could well be eliminated at all.
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Chapter 7

Concluding Remarks

Having elaborated on the motivation, related literatuedgorithmic details and experimental
evaluation for each study in the preceding ve chapters, wegdothis document to a close by
reiterating major contributions under the theme of mining guerying, with a sketch of future
directions that comes in sequel.

7.1 Mining Multimedia Data

Chapter 2 presentgdMASIn the context of satellite image analysis. The discussiartexd off
with a dedicated multi-scale feature extraction procefhora image tiles. An ef cient subspace
clustering algorithm was introduced to capture the sintyiaretween tiles, achievingver 40
times speed-upver a prevailing implementation of approximate nearestimbor nding with-
out any expense of quality. Low-labor labeling was made iptesby constructing a three-layer
graph based on clustering outputs, and executing a sliglatian of random walk with restart
algorithm. It provided high quality labeling results, eweith tiny sets of pre-labeled data as in-
puts. It could als@pot top representatives and outliensd offered a compact summarization of
a large data set. The implementation was also employed torpea set of practical queries over
a proprietary data set by domain experts and it yielded quaisgtive results — correct labeling of
objects where the traditional automated target recogn{#d R) approach may fail.

Chapter 3 introduceMultiAspectForensicsa handy tool to automatically detect and visual-
izenovel subgraph patterns within a local community of nodeslieterogeneous netwqrsuch
as a set of vertices that form a dense bipartite graph whageseshare exactly the same set of
attributes. It was effective even if such patterns existiagress-well connected nodes which are
very likely to be ignored by many extant methods. Empiriesiuits exhibited valuable insights
derived from pattern discovered, across multiple appboatiomains such as network traf c
monitoring, knowledge networks, and bioinformatics. T&egccesses could be attributed to the
fact that we resorted to a tensor-based representatiogitibefie data decomposition, reached a
key observation leading to spike patterns in histogramspland revealed typical substructures
re ecting spectral properties of heterogeneous data.

| hasten to point out that although both multimedia data ngrstudies briefed hereinabove
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purport to adopt network representation of the multi-aspata in a more or less similar way,
their approaches are not alike. In the former scenario, thphgconsists of multiple layers of
node, each of which is attributed to one aspect of the dat,ttae structural information is
made salient by the inter-layer links.g, a priori curated labeling inputs were transformed into
edges connecting their respective nodes in the image laygkthmse in the layer of annotation
vocabulary. The labeling problem could be convenientiydtated to cross-modal proximity
query. And for the latter piece, the heterogeneity lies andtige leveli.e., edges in the graph
may carry one or more attributes, which renders tensorebeg@esentation a natural solution
and spectral analysis rather straightforward to carry Blighce, we hope that discussion in this
paragraph could shed some light on the interdependencegathermining task, the choice of
data representation, and subsequent algorithmic design.

7.2 Querying Multimedia Data

Chapter 4 describe@DEM, an online interface to assist biological researchers tiopa ex-
ible querying and exploration over a large database whictsists of embryo images, image
annotations, as well as genes whose expression pattentisstrated by these images. The data
representation scheme is closely aligned with that in Glrdht

Chapter 5 provided a Bayesian approach to inference andimganith the exponential fam-
ily harmonium (EFH) models and their variants for latent aatic projection of multimedia
documents for subsequent data mining tasks such as claisncand retrieval. The technique
differed from previous chapters in that the input data acegeized as snapshots, or observa-
tions, of abstracted random variables following pre-as=siprobability distributions, probably
with parameters yet to be estimated. The data heterogesediycounted in the model setup,
speci cally in the selection of appropriate distributigresg, binary word occurrence feature
corresponds to a Bernoulli distribution, word counts maiofe a Poisson one, whereas image
features could be t with Gaussian.

Chapter 6 served as a short tutorial of click models, \W@®M as an introductory example.
Click models have attracted a lot interests from acadensiearehers and industrial practition-
ers since just a few years ago. The studies highlighted smtlainuscript are among the rst few
papers on this topic and represented state-of-the-art éintle of publication. They provide prin-
cipled solutions to obtain accurate interpretation of wseks as they interact with Web search
results,to measure, monitor and learn to improve search engine pedoce Our proposed
models represented state-of-the-art along this line @fareh, scaled up to terabyte/petabyte size
of click data, and have been further leveraged in variousche@lated applications including
search engine quality evaluation [49] and post-rank reordd73]. The idea and principle are
ready to be applied to search interfaces for multimediabdestas as well.

An interesting observation is that compared with studie®oed in the previous three chap-
ters takes a quite user-centric perspective, while thogaetopic of mining addresses the need
of data owner to take advantage of their assets. Moreoverwbrth noting that exact infer-
ence for most probabilistic graphical models in practineluding those proposed in Chapters 5
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and 6, is intractable, and when there are multiple approxanaalternatives, speci c applica-
tion requirements usually dictate the trade-off betweealityuand scalability. For instance, Web
search click models are desired to be both single-pass aneihmental, to avoid the potentially
high cost to retain and revisit old data, and adapt to newdgevithout much effort.

7.3 Discussion and Future Directions

Studies presented in this thesis represents a miniaturieeke tasks, goals, design constraints,
algorithms, heuristics, and experimental methods belttedultimedia data analysis in prac-
tice. We sought to achieve an appropriate trade-off betvileertwo aspects of performance —
quality and scalability. It is not uncommon in the design @éal mining and querying system,
different components will be constrained in dissimilar waffor example, expensive tensor de-
composition algorithms could be applied to build an of imelex for a recommendation system,
whereas online ranking adjustments should be carried cautnmuch more ef cient fashion. To
rank thousands or millions of candidates for a given quédrgap and quick heuristics could be
implemented at the indexing layer, whereas the nal rankaygr, which receives a small subset
of more relevant candidates, could afford more dedicatedetso
The constantly evolving scale, genre and ubiquity of mugtia data brings up challenges

and opportunities into the fast developing eld of reseaactd practice of multimedia mining
and querying, with a quite incomplete list of questions hgjtted as follows:

Can we better leverage the distributed computing framesvtolgrant greater scalability

to existing solutions? The PEGASUS system [88] serves axegllent example along

this direction.

Can we make available generic implementations of statbefrt algorithms to stimulate
cross-disciplinary impacts? This may seem tedious at tgtwould probably lead to
long-term bene ts.

How to evaluate the effectiveness of a mining algorithm forei pattern discovery beyond
validating anecdotal evidence? In particular, in what daserowd-sourcing a reliable
alternative when domain expertise is inaccessible or prtve?
Recall the opening example in this thesis illustrating theemging trend of mobile and social
in the beginning of the current decade, the quest of betteiclkes to boosting the bandwidth
and quality of information ow via computation, in partiar, improved recommendation and
ranking of multimedia units across different platforms aoatexts, would always be exciting
problems to be working on, which I'd like to pursue as part gffuture career.
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Appendix A
Click Chain Model

A.1 Introduction

Web click are informative but biased. In order to neutraNaeious biases, numerous click
models have been developed as a principled approach taingferser-perceived relevance of
web documents. Furthermore, as search logs can easily emtenabytes into petabytes and
usually comes in a data stream on a daily basis, we wouldlydegpect click models to be
amenable to click data streams, which essentially mearalsiig and the capability to be
incrementally updated.

In this part of the appendix, we present tbkkck Chain Mode(CCM), which features a solid
Bayesian foundation and great scalability. In particul@cument relevance are represented as
random variables in the model, and a closed-form soluticdheaelevance posterior is derived
from the proposed approximate inference scheme. Based atassdt containing 8.8 million
guery sessions, we show that CCM consistently outperfowosstate-of-the-art competitors in
a number of metrics, with over 9.7% better log-likelihooden6.2% better click perplexity, and
much more robust (up to 30%) prediction of the last clickeslijpan.

A.2 Background

A web search user initializesguery sessiolly submitting aqueryto the search engine. We
regard re-submissions and reformulations of the same qgedystinct query sessions. We use
document impressiato refer to theveb document®r URLS) presented in the rst result page,
and discard other page elements such as sponsored ads aed sdarch. The document im-

a set of documents for the queng., d; denotes the document shown on the top position. A

document is in a highgosition(or rank) if it appears before those in lower positions.
Examination and click events for impressed documents aag¢dd in a probabilistic way. For

a given query session, we use binary random variabjeand C; to represent the examination

event and the click event at positiorespectively. Thereford® (E; = 1) andP(C; = 1) are the
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examination probability and the click probability at thersaposition.

The examination hypothesis [94], cascade hypothesis andabcade model [33] have al-
ready been introduced in Section 6.1.2 where the dependiektmodel [51] is presented.
The remainder of this section is devoted to another click ehétdown as theuser browsing
model[37].

The user browsing model, or UBM, is also based on the exammhaypothesis, but does not
follow the cascade hypothesis. Instead, it assumes thatxtmmination probabilitye; depends
on bothi and the previous clicked position= argmax,; fC, = 1g:

P(Ei=1jCy;::5C 1) = iyt (A.1)

If there is no click before, thenl; = 0, therefore0 | < i M. The total number of user
behavior parameters M (M + 1) =2, which are again shared by all query sessions.
Under UBM, the log-likelihood for each query session is

X
()= Cilogrg + Cilog iy, +(1  GCi)log(l rqg i) (A.2)
i=1
The coupling of relevanceand parameter introduced in the second term makes exact com-
putation intractable. The algorithm could alternative beried out in an iterative, coordinate-
ascent fashion. However, we found that the x-point equatipdate proposed in [37] does not
have convergence guarantee and is sub-optimal in certs@s cinstead, we designed the follow-
ing update scheme which takes a few dozen iterations bebtie\ang convergence according
to our evaluation over a real-world click log data set.
Given a query for each documettwe keep its count of clickK 4 and non-clickL 4; where
1 M (M + 1)=2, and they map one-to-one with all possibléendices,andL. d D
maps one-to-one to all query-document pair. Similarlygfach ;, we keep its count of click; .
Then given the initial value of = ©, optimization of relevance can be carried out iteratively,

n M (lk+l) =2 o}
t+1 _— . t
rg~ =arg max Kgqlogr + . Lajlog(l r ) (A.3)
J:
n »0 0
[t = arg max Kjlog +  Lg;log(l rirt (A.4)
d=1

for all possibled andj respectively. The “arg-max” operation can be carried oué¥wsiuating
the objective function for a sequential scarrar values between 0 and 1. And we suggest a
granularity of 0.01 for both scans.

A.3 Click Chain Model

The CCM model is based on the generative process of useadtitem illustrated in the form
of a owchart in Figure A.1. The user initiates the examioatiof the search result in each
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Done

Figure A.1: Our proposed user model of CCM, in whiRhis the relevance variable aof at
positioni, and 's form the set of user behavior parameters.

guery session from the top ranked document. At each poditithve user can choose to click
or skip the documerd; according to the perceived relevariRe SinceR; is a random variable
under CCM, we can draw a sample from the distributioRpto determine the chance of click.
Whatever the outcome for this click decision, the user carosh to continue the examination
or abandon the current query session. The probability dficoimg to examinel;.; depends on
the click decision at position Speci cally, if the user skipsl;, this probability is an (unknown)
constant i; on the other hand, if the user cliclls the probability to examind,;; depends on
the user-perceived relevanRe and range betweern; and ».

CCM shares the following assumptions with the cascade mateDCM: (1) users are ho-
mogeneous: their information needs are similar given theesguery; (2) decoupled examination
and click events: the click probability is solely deterndngy the examination probability and
the document relevance at a given position; (3) cascadeig&ton: examination is in strict
sequential order without breaks.

CCM distinguishes itself from other click models by represey document relevance as
random variables and performing (approximate) Bayesiterence to infer their posterior dis-
tributions. Model tting of CCM includes both inferring thposterior distribution oR; and
estimating user-behavior parameterss f 1; ,; 30. The posterior distribution could be fur-
ther leveraged for applications such as automated rankiagaons because it is possible to
derive con dence measures and other useful features usangard statistical techniques [73].

The graphical model of CCM for one query session is shownguifé A.2. There are three
layers of random variables: for each positioe; andC; denote examination and click events
as usual, wheredg; is the user-perceived relevancedpf The click layer is fully observed given
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Figure A.2: The graphical model representation of CCM. $katbdes are observed click vari-
ables.

the click log. CCM is named after the chain structure of Jalga representing the sequential
examination and clicks through every position in the seagshilt.

The following conditional probabilities are de ned for kigge A.2 according to the modeling
assumption:

P(Ci=1jE;=0)=0

P(Ci=1JEi=1;Ri) = R;

P(Ei+1 =1jE;=0)=0 (A.5)
P(Ei+1 :1jEi:1;Ci:0): 1

P(Ei+1 = 1jEi =1;C = 1;Ri) = 2(1 Ri)+ 3R

To complete the model speci cation we IB{E; = 1) = 1 and impose independent uniform
priors over[0; 1] for every document relevance variali®, i.e, p(Rj) = 1 for 0 R;

1. Note that in this model speci cation, we are not putting raition the length of the chain
structure. Instead we allow the chain to go in nitely. We hdiscuss, in the next section, that
this choice simpli es the inference algorithm, providesader of magnitude savings in space,
and sacri ces little performance since the chance of exation diminishes exponentially after
the last click. An alternative is to truncate the click chtmma nite length ofM . The single-pass
inference and learning algorithms detailed hereinaftette (standard) CCM could be adapted
to this truncated version, to offer more accurate charaetiéon of the posterior when the last
clicked position is close t¥ .
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A.4 Algorithms

This section describes inference and learning algorithmngife CCM. We start with the al-
gorithm for computing the posterior distribution over tleevance of each document in Sec-
tions A.4.1 and A.4.2. Then we describe how to estimate tiparameters in Section A.4.3. We
will also provide a brief discussion in Section A.4.2 to shibvt by keeping appropriate counts
as suf cient statistics, it is straightforward to extenesle algorithms to incrementally update the
relevance posteriors and parameters with newly available data.

want to compute the posterip(R;jC) for the relevance of a document For a single query
session, this posterior can be ef ciently computed due ®dhain structure of the graphical
model (Figure A.2), and the distribution function is polymal with respect tdR;. However,
given multiple query sessions, exact inference becomeactaible due to sharing of relevance
variables between query sessions. For example, if docwnemdj may both appear in two
sessions at different positions, their posteriors are igdigelependent on each other. To carry out
approximate inference, we could resort to off-the-shelfative algorithms such as expectation
propagation [79]. However, to scale the model to terabyta,dee propose a faster method that
requires only a single pass.

The approximation is that, when computing the posterioRfigiwe assume that the clicks in
guery sessions are conditionally independent gRgn

W
p(RijC) (constant) p(R;) P(CY|R;): (A.6)

u=1
Since the priop(R;) is given, we only need to compue(C"j R;) for each query sessian up
to a constant w.r.tR;, in order to obtain an un-normalized version of the posteBection A.4.1

will elaborate on the computation of this conditional prbitity P (C"j R;), and the superscript
u is omitted in the following as we focus on a single query s®ssi

A.4.1 Deriving the Conditional Probabilities

Before diving into the details of deriving(C jR;) for a particular session, we rst highlight the
following three properties of CCM, which will greatly simfyl the variable elimination proce-
dure as we take sum or integration over all hidden variakiesrdahanR;:

1. If C; =1 for somej, then8i  J;E; =1.

2. IfE; =0 forsomej, then8i  j;E; =0;C; =0.

3. IfFE; =1;C; =0, thenP(Ei1jE;;C;R)= S (@ 1) B« does notdepend dR;.
Property (1) states that every document before the lastsdiposition is examined, so for these
documents, we only need take care of different values ofaandariables within its Markov
blanket in Figure A.2, which consists @f, E; andE;.;. Property (2) is a corollary from the

cascade hypothesis, and it reduces the cost of elimin&tiagriables from exponential time to
linear time by using branch-and-conquer. Property (3) révedd from the model speci cation
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Figure A.3: Different cases for computif®C jR;) up to a constant wheleindicates the last
clicked position. Darker nodes in the gure above represdicks at these positions, whereas
lighter nodes represent skips.

(Eq. A.5), and it enables re-arrangement of the sum operatierE andR variables to minimize
the computational effort.

From property 1, we know that the last clicked positiehargmax; ; ,fC; = 1gplays an
important role. Figure A.3 lists the complete results safgat into two categories, depending on
whether there is any click in the current query session.

Derivation for each case is presented in the following:

Case lii<I;C;=0
By property 1 and property &; = 1;Ej+; =1 andP(Ej+; =1jE; =1;C =0;R)) =
1 does not depend dR;. Since any constant w.rR; can be ignored, we have

Case2:i<l;C;=1
By property 1E; =1;E;+; =1, the Markov blanket oR; consists ofC;; E; andE;.; .

P(CjR,)/ P(C, = 1JE| = 1;Ri) P(Ei+1 = 1]E| = 1;Ci = 1;Ri)
I'Ril (1 3= 2)R) (A.8)
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Case 3:i = |
By property 1, the Markov blanket &; does not contain any variable before positipn
and we also knowthad; = 1;E; = 1 and8j > i;C ; = 0. We need to take sum/integration

over all theE;; R; variables wher¢>i and it can be performed as follows:

x £ Y
P(CJjR))/ P(C =1jE =1;R))
tEjjj>i g TRIPT Qs

P(EJE; 1:C 1R 1) p(R)) P(GJE;;R)
=R P(Eix =0jEi=1;C=1;R) 1

+ P(Ei+1 = 1JE| =1:C = 1;Ri)
Z,
P(Ri+1) P(Cisa =0jEis1 =1;Ri41)dRj41
0

P(Ei+2 =0jEi+1 =1;Ci41 =0) 1

+ P(Ei+2 = 1jEix1 =1;Cis1 =0)
Z,
P(Ri+2) P(Ci+2 =0jEj+2 = 1;Ris2)dRis2

°y )

n 0]

=R (1 1 R 3R)+( 201 R+ 3Ry

1 1
_ 1 + _
5 @ D+ 13
/] R 1+-—2 3% R (A.9)
2 1 2
Case 4:i > |
Now the result will be a function o = i |: the offset of the document from the last

clicked position. The branch-and-conquer approach wettakem over variables in the
Markov blanket ofR; is similar to Case 3. The major difference in the equatioolwes
that we are integrating the outmdst while leaving theR; inside without the integration,
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and we will replace the dummy varialfg by R for easier reading:

P(CiR)
R

% sR 1 21 R 9R)+( 21 R+ 3)R) (I R) 14 dR
/ R P (k=1)
3 oR (1 21 R R+( L R+ R 152 [ 1=2)

- + 12 1 R)£% dR (k> 1)
Z,
= R(@ 21 R aR)+( (I R+ R)

0

(1 DA+ =2 T 2( 1=2) 'R)) drR
2

/1 2 R (A.10)

6 3 1 2 2 3 - k 1
1+ T2 5= 1)

Case 5: (No click)

Wheni = 1, we knowE; = 1, thereforeP (E,jE; = 1;C; = 0) does not depend dR;.

We have
P(CjR))/ P(Ci=0jE;=1;R)=1 R, (A.11)

Wheni > 1the derivation is similar to Case 4 and is much simpler siheegtis no ,; 3
term:

Z, ¥ 2 _ _ 1, !
P(CjRi)/ (1 RAR (1 1) (1=2) +( 1=2)' 2 11 Ri)li—

0 i=0 1=
1 1:2)i ! _i 1 1 1
/ (1 1)1—1=2 + 2( 1—2) (1 Rl)li=
2

Eq. A.11 can be treated as a special case of Eq. A.12 wheh.

Both case 4 and case 5 need to take sum over latent variabéeghad current position,
and results depend on the distance from the last clickediposiTherefore the total number of
distinctterms obtained inthese 5 caseswheni M arel+1+1+(M 1)+M =2M+2. If
we impose a nite chain lengtM on CCM and leP (Ey +1) = 0 in Figure A.2, then the number
of distinct results would b® 2+2, which is an order of magnitude higher than the current aesig
and further increases the cost of subsequent steps ofmefeend parameter estimation.

A.4.2 Computing the Posterior

All the conditional probabilities in Figure A.3 for a singleiery session can be written in the form
of RF (1  jR;) where ; is a case-speci ¢ coef cient whose value depend on user ieha
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Algorithm 3 : Computing the Un-normalized Posterior

Input: Click DataC(M U matrix);
Ciy = 1 if useru clicks the document at position
Impression Dat® (M U matrix);
Di, = difthe document is impressed at positian
touseru,1 d N
Parameters
Output: Coefcients ((2M + 2)-dim vector)
ExponentsT (N (2M + 2) matrix)
Compute using the results in Figure A.3.
Initialize T by setting all its elements to 0.
forl u U
forl i M
Identify the linear factors using the click and impressiated
let ; be the corresponding coef cient for the current position,
TDiu iz TDiu it 1.
Time Complexity:O(MU).
Extra SpaceO(MN ).
(UsuallyU >N >>M =10.)

parameters . Let M be the number of web documents in the rst result page anduallys
equals 10. There are at m¢&M + 2) different coef cients from the 5 cases as discussed above.
From Eq. A.6, we know that the un-normalized postep@R;jC) is a polynomial function of

R; which consists of at mo¢2M + 3) distinct linear factors (including; itself), so given user
behavior parameters, we only need to recorfM +2) exponents as suf cient statistics to fully
characterize the posterior distribution for every queogitment pair. The detailed algorithm for
parsing through the click log and updating exponents igdish Algorithm 3. Given output
exponentd as well as coef cients from Algorithm 3, the un-normalized relevance posterior
of a document indexed hyis

2N}'+2
py(r) / rleztTas (X )t (A.13)
j=1

Furthermore, when new click data becomes available, we warAtgorithm 3 to update
exponents stored i by incrementing the counts for each query-document paie ddmpu-
tational time is thu®©(MU 9, whereU®is the number of query sessions in the new data. Extra
space is only needed only when there are previously unselemi@@iments of interest.

Eqg. A.13 gives the analytical formula of the un-normalizedterior as a polynomial function
whose order depend on the number of impressions and clickseatorresponding document.
To evaluate the normalization constant, we could perfotegration ofpy(r) overr 2 [0; 1]in a
straightforward way by sequentially multiplying all thediar factors to obtain every coef cient
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Algorithm 4 : Numerical Integration for Posteriors
Input: Exponent§ (N (2M + 2) matrix)
Coefcients ((2M + 2)-dim vector)
Number of binB
Output: Posterior momenis (N K matrix)
Fax is thekth posterior moment for documedt

Create dN (K + 1) matrix I for intermediate results.
Create & -dimensional vector to keep the center of each bin:
rr=(b 05)=Bforl b B
forl k K+1
forl d N

P
Ba=log  o,exp logB)+(Te+ T+ k 1) log(ry)

2M +2

+ P i=1 Td |0g(1+ jrb)
forl k K
forl d N
Fac = exp By B
Time Complexity:O(KMNB ).
Extra SpaceO(KN + MB).

of the polynomial function. However, the accuracy suffegniscantly from rounding errors as
the size of the input and the order of the polynomial funigoes up, with a more expensive
computational cost as well. To nesse this numerical prohleve propose Algorithm 4 for
computing posterior moments using the midpoint rule \Bitbqual-size bins to approximate the
integral and posterior moments. = 100 is usually suf cient in most cases, though the number
of bins could be adaptively set if necessary. Let

Z 1 1 B 2N +2
fa) = rpa(ndr o T e gy (A.14)
0 b=1 j=1

then the estimation for thkth moment for document is f 4(k)=f4(0). To avoid numerical
problems in the implementation, we usually take sum of Idgesfor the linear factors instead
of multiplying them directly. And the above procedure coblel extended to compute other
posterior estimates depending on the application scenario

A.4.3 Parameter Estimation

We perform approximate maximume-likelihood estimation éarh model parameters. The
approximation is based on the same assumption we propo#ee la¢ginning of this section by
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imposing independent priors for document relevance visadcross query sessions, such that

Z W w Z
P(O= pR) p(C"iR)dR P(R)p(CYjR)dR; (A.15)
u=1 u=1
whereR = fR;jj1 1 Ngisthe set of document relevance variables for the querytefest.

And to compute the log-likelihood function, we simply needdompute the last integral in
the previous equation for each query session and sum ovefalogs across the data set. The
derivation of the value of the integral is analogous to thabection A.4.1, and we could write
the resulting approximate log-likelihood function as do¥s:

()= Nilog 1+ Nzlog( 2+2 3)+ Nzlog(6 3 1 (2+2 3))
+ Nslog(l 1) (Nsz+ Ns)log(2 1) + (constant) (A.16)

whereN; is the total number of times documents fall into cageFigure A.3 in the click data.
By maximizing this approximate log-likelihood w.r.t., we have

_ 3N1+ N+ Ns g (BNz+ Nz + Ns)2  8Ni(Ni+ Np)

A.17
' 2(N1+ Ny) ( )
and
3N (2 1)
+2 3= ——— % A.18
2 3 N, + N ( )

Eq. A.18 leave a degree of freedom in the choice pdnd 3 values, which is introduced by the
iid uniform priors over all documents and the approximatioresoh we took. We can assign a
value to ,= ;3 according to the context of the model application (more amithexperiments).
Note that parameter values do not dependNgrwhen the chain length is in nite.

A.5 Performance Evaluation

In this section, we report on the performance evaluation @wdparison based on a data set
with 8.8 million query sessions that are uniformly samplearf a commercial search engine.
We measure the performance of three click models with a numibevaluation metrics. Our
results show that CCM consistently outperforms its com@estiUBM and DCM with: (1) over
9.7% better log-likelihood (Section A.5.2); (2) over 6.28provement in click perplexity (Sec-
tion A.5.3); (3) more robust (up to 30%) click statistics gition (Section A.5.4). As these
widely used metrics measure model performance from difteaspects, the uniformly better
results demonstrate that CCM robustly captures user ciicllsnumber of contexts. Finally,
in Section A.5.5, we present the empirical examine and diskribution curves, which help
illustrate the differences in modeling assumptions.

99



A.5.1 Experimental Setup

The experiment data set is identical to the one describecatich 6.3.1 For each query, we
compute document relevance and position relevance basedabnof the three models, respec-
tively. Position relevance is computed by treating eachtjposas a pseudo-document. The
position relevance can substitute the document relevastomates for documents that appear
zero or very few times in the training set but do appear in¢séget. This essentially smoothes
the predictive model and improves the performance on tieséts The cutoff is set adaptively
to b2 log,o(Query Frequengg. For CCM, the number of binB is set to 100 which already
provides an adequate level of accuracy.

To account for heterogeneous browsing patterns for diftegeeries, we t different mod-
els for navigational queries and informational queries la@adn two sets of parameters for each
model according to the median of click distribution overigosas [49, 71]. In particular, CCM
sets the ratio ,= 3 equal to 2.5 for navigational queries and 1.5 for informadilcqueries, be-
cause a larger ratio implies a smaller examination proltghiiter a click. The value of ; equals
1 as a result of discarding query sessions with no clitks< 0 in Eq. A.17).

To evaluate model performance on test data, we compute ghigkilihood and other statis-
tics needed for each query session using the document neleand user behavior parameter
estimates learned/inferred from training data. In paliigiby assuming independent document
relevance priors in CCM, all the necessary statistics cadenwed in closed form, as summa-
rized in [50] (Appendix B). Finally, to avoid in nite value log-likelihood, a lower bound of
0.01 and a upper bound of 0.99 are applied to document reteestimates for DCM and UBM.

All experiments described in the remainder of this sectienexcarried out on a 64-bit server
with 32GB RAM and eight 2.8GHz cores with MATLAB 2008b ind&al. The total time of
model training for UBM, DCM and CCM is 333 minutes, 5.4 minutnd 9.8 minutes, respec-
tively. For CCM, obtaining suf cient statistics (Algorith 3), parameter estimation, and poste-
rior computation (Algorithm 4) account for 54%, 2.0% and 4d%4he total time, respectively.
For UBM, the learning algorithm converges in 34 iterations.

A.5.2 Results on Log-Likelihood

Log-likelihood (LL)is widely used to measure model tness. Given the documeptession for
each query session in the test data, LL is de ned as the lolggimitity of observed click events
computed under the trained model. A larger LL indicatesdogierformance, and the optimal
value is 0. The improvement of LL value over , is computed agexp('; ») 1) 100%
We report average LL over multiple query sessions usingm@etic mean values.

Figure A.4 presents LL curves for the three models over diffefrequency categories. The
average LL over all query sessions is -1.171 for CCM, whiclamsghat with 31% chance, CCM
predicts user clicks exactly over top 10 positions (out ef2Zl¥ possibilities) for a query session
in the test data set. The average LL is -1.264 for UBM and -Af80 DCM, with correspond-
ing improvement ratios to be 9.7% and 14% respectively. Kban the Bayesian modeling of
document relevance, CCM outperforms the other two modete signi cantly on less frequent
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Figure A.4: Log-likelihood per query session on test dataditferent query frequencies. The
overall average for CCM is -1.171, 9.7% better than UBM (©%)2and 14% better than DCM
(-1.302).

gueries, as indicated in Figure A.4. Fitting different misder navigational and informational
gueries leads to 2.5% better LL for DCM compared with a presimnplementation in [51] on
the same data set (average LL =-1.327), which is consistiémtonr results [49] obtained from
another data source.

A.5.3 Results on Click Perplexity

Click perplexity was used as the evaluation metric previoirs[37]. It is derived from the en-
tropy measure for binary click events at each position inergsession independently, whereas
log-likelihood computation is based on the whole click wecEor a set of query sessions indexed

positioni andC;" to denote the corresponding binary click event, then tlek gerplexity

P
p=2 n n=(Cllogoq+(L Cloga(l o). (A.19)

A smaller perplexity value indicates higher prediction lgyaand the optimal value is 1. The
improvement of perplexity valugs overp, is given by(p,  py)=(p. 1) 100%

The average click perplexity over all query sessions andipaos is 1.1479 for CCM, which
gives a 6.2% improvement per position over UBM (1.1577) aidd&o improvement over DCM
(1.1590). Again, CCM outperforms the other two models magaisantly on less frequent
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Figure A.5: Perplexity results on test data for (a) for diiet query frequencies or (b) different
positions. Average click perplexity over all positions ©0CM is 1.1479, 6.2% improvement
over UBM (1.1577) and 7.0% over DCM (1.1590).

queries than on more frequent queries. As shown in Figuré}\.Bhe improvement ratio is over
26% when compared with DCM and UBM on the least frequent quatggory. Figure A.5(b)
illustrates that click prediction quality of CCM is the bes$tthe three models for every position,
whereas DCM and UBM are almost comparable with each othepldéaty values for CCM on
position 1 and position 10 equal the perplexity of predigtime outcome of tossing a biased coin
of with knownp(Head) = 0:099andp(Head) = 0:0117respectively.

A.5.4 Last-Click Prediction

Root-mean-square (RMS) erron click statistics prediction was used as an evaluatiorrinet
previously in [51]. Itis calculated by comparing the obseion statistics such as the rst clicked
position or the last clicked position in a query session wWithmodel predicted position. Predict-
ing the last clicked position is particularly challengimg tlick models while predicting the rst
clicked position is a relatively easy task. We evaluate #mégomance of last-click prediction on
the test data under two settings and present results ind-Ay6r.

First, given the impression data, we compute the distmloutf the last clicked position in
closed form, and compare the expected value with the obdestegistics to compute the RMS
error. The optimal RMS value under this setting is approxatyathe standard deviation of last
clicked positions over all query sessions for a given queemng, it is included in Figure A.6 as the
“optimal-exp” curve. We expect that a model that gives cstesitly good t of click data would
have a small margin with respect to the optimal error. Therowpment of RMS error values
overe, w.r.t. the optimal value is givenby(e, e)=(e, e) 100% We report average error
by taking the RMS mean over all query sessions. The optimabR¥or under this setting for
last clicked position is 1.443, whereas the error of CCM 18, which is 9.8% improvement
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Figure A.6: Root-mean-square (RMS) errors for predictimglast clicked position. Prediction
is based on the SIMulation for solid curves and EXPectatwméshed curves.

for DCM (1.560) but only slightly better than UBM (0.2%).

Under the second setting, we simulate query session clicks the model, collect those
samples with clicks, compare the last clicked position @gjahe ground truth in the test data
and compute the RMS error, in the same way as [51]. The nunflsamaples in the simulation
is set to 10. The optimal RMS error is the same as in the prelyadiscussed setting, but
it is much more dif cult to achieve this lower bound under tba@rent setting because errors
from simulations re ect both biases and variances of theligteon. We report the RMS error
margin for the same model between the two settings as fojlam®re robustlick model should
have asmaller margin The error margin on last-click prediction, the margin 460 for CCM,
compared with 0.566 for DCM (23% larger) and 0.599 for UBMY3arger).

In summary, CCM is the best of the three models in this expaminto predict the rst and
the last clicked position effectively and robustly.

A.5.5 Position-bias of Examination and Click

Model click distributionover positions are the averaged click probabilities derifrem click
models based on the document impression in the test data.etts the position-bias implied
by the click model and can be compared with the objective mulainuth—theempirical click
distribution over the test set. Any deviation of model click distributiimom the ground truth
would suggest the existing modeling bias in clicks. Notd trathe other side, a close match
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Figure A.7: Examination and click probability distributi® over the top 10 positions.

does not necessarily imply excellent click prediction,égample, prediction of clicks00; 11g
asf 01; 10g would still have a perfect empirical distributiollodel examination distributioaver
positions can be computed in a similar way to the click distion. But there is no ground truth
to be contrasted with. Under the examination hypothesesgép between examination and click
curves of the same model re ects the average document redeva

Figure A.7 illustrates the model examination and clickrilisition derived from CCM, DCM
and UBM as well as the empirical click distribution on thettdata. All three models under-
estimate the click probabilities in the last few positio®CM has a larger bias due to the ap-
proximation of in nite-length in inference and estimatiofhis approximation is immaterial as
CCM gives the best results in the above experiments. Foaioespplications that require very
accurate modeling of the last few positions, the nite vensof CCM could be employed instead.

Examination curves of CCM and DCM decrease with similar exgmtial rates. Both models
are based on the cascade assumption, under which examimatdinear traverse through the
rank. The examination probability derived by UBM is muchgker, and this suggests that the
absolute value of document relevance derived from UBM igiivectly comparable to that from
DCM and CCM. Relevance judgments from click models is stittlative measure.
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A.6 Conclusion

We have discussed the click chain model (CCM), which featiBayesian modeling and in-
ference of user-perceived relevance. Using an approxiciaged-form representation of the
relevance posterior, CCM is both scalable and incremeptafectly meeting the challenges
posed by real world practice. We carry out a set of extensiperments with various evaluation
metrics, and the results clearly evidence the advanceni¢éme gtate-of-the-art.
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Appendix B

RTW Knowledge Base Query Interface

The “Read the Web” research project at Carnegie Mellon Ugite[95] has made available an
ever-updating web knowledge base which is made up millidrsdractured beliefs like (Face-
book, HeadquarteredIn, Palo_Alto). This part of the appedeéscribes the implementation of a
more user-friendly online interface to ease the browsirug@ss and perform simple proximity
qguery. The data set herein consists of 0.4M promoted behkeiteaner version of the raw data
set in the same format as the aforementioned triplet, bytseyof Bryan Kisiel at Carnegie
Mellon University.

Figure B.1 offers a snapshot of the online interface, alk&lat http://www.db.cs.
cmu.edu/wk/ . It supports two categories of user actions:

Fact Browsing list all facts for a given query word and its role, where eéadt could be
represented as a triplet of (entity, relationship, val&gure B.2(a) highlights a browsing
example.

Similarity Query list relevant information for a given a query word. A grapltonstructed
in a way that each fact in the knowledge base induces an edgengofrom “entity” to
“value”. Proximity query results are based on a fast sinmotabased approximation of
personalized PageRank [8]. Figure B.2(b) highlights a gagrexample.

The implementation of the interface is graphically illased in Figure B.3. It could be
roughly divided into three parts:

Data Store: The raw data set is stored as a single table in &€\ database. A python
script is written to generate derived data tables to promidee friendly interfaces to other
parts of the system.

Query Processing Backend: Upon initialization, it conedotthe data server and build
up in-memory data structures. It employs Thrift [105] to gptthe interface between the
C++ backend and the PHP web server. Caching of recent regaftsalso implemented
to reduce the response time and provide more consistertsdsgpite the randomness of
the approximation algorithm.

Web Client and Server: The client-side collects user inpnts sends to the server-side
using simple Ajax to smooth the user interaction processrasdlts refreshing. The
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server-side PHP communicates directly to the MySQL semwerovide typeahead-like
query suggestion. Suggestions for single-character srgmat hard-coded to eliminate the
possible caveats in case of prolonged ajax response time.
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Figure B.1: A snapshot of the online query interface.

(a) Fact Browsing (b) Similarity Query

Figure B.2: Illustration of user actions supported by thergunterface.
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Figure B.3: A graphical illustration of the interface.
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