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Abstract

Finding similar items based on co-occurrence data is an important data mining task with applications ranging
from recommender systems to keyword based advertising. A number of co-occurrence similarity functions
have been proposed based on graph-theoretic, geometric, and statistical abstractions. Despite the variety of
existing algorithms, however, there exists no formal methodology for analyzing their properties and com-
paring their benefits and limitations. At the same time, the wide range of applications and domains where
co-occurrence-based similarity functions are deployed limits the conclusiveness of experimental evaluations
beyond the narrow task typically considered by each method.
This paper proposes an axiomatic approach to analyzing co-occurrence similarity functions. The approach
is based on formulating general, domain-independent constraints that well-behaved methods must satisfy
to avoid producing degenerate results. Such constraints are derived based on the impact that continuous
aggregation of the co-occurrence data is expected to have on absolute or relative similarity estimates. Pro-
posed constraint-based analysis is applied to several representative, popular similarity functions and reveals
that, surprisingly, none of them satisfy all constraints unconditionally. The analysis leads to the design of
a theoretically well-justified similarity function called Random Walk with Sink (RWS). RWS is parameter-
ized to satisfy the constraints unconditionally, with the parameterization having interesting probabilistic and
graph-theoretic interpretations.





1 Introduction

Co-occurrence data is ubiquitous in modern data mining and machine learning applications as it provides a
very rich signal source for inferring similarity between items, a common prediction task. The following are
examples of problems where different types of co-occurrences are used to identify related items:

1. Item recommendation. Logs of consumption behavior (market-basket data) allow finding products for
cross-promotion (e.g., in personalized recommendations) [17].

2. Query suggestion. Search engine logs associating queries with subsequently visited URLs allow
identifying related queries based on URL co-visitation (e.g., for query suggestion or matching adver-
tisements on relevant keywords) [5, 14].

3. Related author search. Bibliography databases containing co-authorship data or co-occurrences of
publications in the same venues allow finding similar authors (e.g., for finding related work, collabo-
rators or qualified reference letter writers) [18].

Because of the wide applicability of co-occurrence similarity functions, a number of them have been
proposed in the context of different domains. Such methods are roughly grouped into the following groups
based on underlying formalizations:

1. Graph-theoretic methods represent items as nodes in a bipartite graph, with occurrence contexts being
opposite partition nodes connected to item nodes by edges representing occurrences. Similarity cor-
responds to node nearness measures (e.g., probability of reaching another node via a k-step random
walk).

2. Geometric methods represent items as vectors in a metric space with occurrences corresponding to di-
mensions. Similarity corresponds to geometric measures of vector closeness (e.g., cosine similarity).

3. Probabilistic methods represent items as random events over which contexts define probability distri-
butions, based on which similarity is then computed (e.g., Pointwise Mutual Information).

It is important to note that these groups are not disjoint, as a number of methods can be interpreted as
belonging to more than one. However, the bipartite graph representation of co-occurrence data provides a
common underlying formalism, and plays a central role in this paper.

1.1 Axiomatic Approach

Because similarity functions are typically a component in learning and mining applications, their experi-
mental evaluation is tied to the specific task and domain at hand. Their performance then depends on the
application suitability, making empirical evaluations highly domain-specific. Thus, a fundamental unan-
swered question remains: how do we comparatively analyze different co-occurrence-based similarity meth-
ods? This paper describes a general framework that provides the basis for such comparative analysis. The
framework is based on an axiomatic approach: deriving fundamental properties (axioms) that capture basic
intuitions that any reasonable co-occurrence-based similarity measure must obey. These properties are ob-
tained by considering changes in similarity function output that are expected when new item co-occurrences
are observed. Distinguishing between occurrences arriving in new or existing contexts, as well as between
absolute versus relative similarity leads to several types of constraints described in the paper.
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XXXXXXXXXXMethod
Axiom A-NCM R-NCM A-QCM R-QCM A-TCM R-TCM DR

Common Neighbors Yes Yes Yes Yes Yes Yes No
Cosine No† No† No† Yes No† No† No†

Jaccard No† Yes No No No No No†

Pointwise Mutual Information No† No† No No No No No†

Adamic-Adar Yes Yes No No No No No
Forward Random Walk No† Yes No† Yes Yes Yes No†

Backward Random Walk No† No† Yes Yes No† No† No†

Mean Meeting Time No† No† No† No† No† No† No†

Random Walk with Sink Yes* Yes Yes* Yes Yes Yes Yes*

Table 1: Summary of the axiomatic analysis. ‘Yes’: a method satisfies an axiom on any data. ‘Yes*’: a
method satisfies an axiom on any data given appropriate parameter settings. ‘No†’: a method satisfies an
axiom only on a specific set of data. ‘No’: a method does not satisfy an axiom on any data. Notice that
only our proposed Random Walk with Sink (RWS) method, described in Section 5, satisfies all the axioms
on any data given appropriate parameter settings.

1.2 Our Contributions

Applying axiomatic analysis to a number of popular similarity functions yields surprising results: no single
method satisfies all constraints unconditionally, as summarized in Table 1. For example, Figure 1 (a) and (b)
show that the Forward Random Walk (FRW) similarity decreases after the addition a new context. For each
method and each axiom, we either prove that the axiom is always satisfied, or identify the specific conditions
that lead to axiom dissatisfaction. The ultimate utility of the proposed analysis framework is that it allows
considering the shortcomings of current functions systematically, leading to derivation of their variants that
overcome them, e.g., via data-dependent parameterization. This process is demonstrated by introducing a
new variant of random walk-based similarity: random walks with sink (RWS). The method has an intuitive
interpretation that explains its flexibility related to smoothing, and it avoids axiom violations suffered by
regular FRW; e.g., Figure 1 (c) and (d) show how RWS satisfies an axiom which was violated by FRW.

The axiomatic approach has been previously applied to clustering and information retrieval functions [10,
7, 1], leading to their better understanding, and our results indicate that it can be equally fruitful for analyzing
co-occurrence similarity functions. The primary contributions of the paper are the following:

1. Axiomatic framework. We propose a principled methodology for analyzing co-occurrence similarity
functions based on differential response to new observations.

2. Analysis and proofs. We analyze a number of commonly used similarity functions using our pro-
posed abstraction called context-wise decomposition, and derive the conditions under which they
satisfy the axioms. We prove that no single method satisfies all conditions unconditionally.

3. Design of new similarity function. We demonstrate how axiomatic analysis allows designing a new
data-driven, theoretically well-justified co-occurrence similarity function without degenerate proper-
ties.

The rest of this paper is organized as follows. Section 2 surveys commonly used methods for computing
similarities in bipartite graphs. Section 3 introduces the axiomatic framework, defining desirable properties
expected of well-behaved similarity functions, followed by Section 4 where the framework is applied to
analyze the popular similarity functions. Based on the analysis, we propose a new similarity function which
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(a) Forward (b) Forward (c) Random Walk (d) Random Walk
Random Walk: Random Walk: with Sink: with Sink:

before adding ‘CIKM’. after adding ‘CIKM’. before adding ‘CIKM’. after adding ‘CIKM’.
Similarity: 0.2558 Similarity: ↘ 0.2553. Similarity: 0.06347 Similarity: ↗ 0.06758.

Figure 1: The comparison of the Forward Random Walk (FRW) and our proposed Random Walk with Sink
(RWS) method. In (a) and (b), the new context ‘CIKM’ decreases the FRW similarity between Jian Pei and
Ravi Kumar, which is counterintuitive and violating the Axiom 1 ‘New Context Monotonicity’. In (c) and
(d), the same context increases the RWS similarity with the parameter s = 100, showing that RWS satisfies
the Axiom 1.

satisfies all the proposed properties in Section 5. We summarize related work in Section 6 and conclude in
Section 7.

2 Similarity Functions for Co-occurrence Data

In this section, we describe several highly popular co-occurrence similarity functions and briefly discuss
their properties. All considered functions compute the similarity between a query item q and a target
item u ∈ T \ {q}, where T is the set of all items. Items can be represented as nodes on one side of a
bipartite graph, with the set of contexts, C, in which items are observed, represented by nodes on the other
side of the bipartite graph. Graph edges encode occurrences, and may be unweighted or weighted, where
weights would represent occurrence properties, e.g., occurrence count. For a dataset with n items and m
contexts, the graph corresponds to an n×m adjacency matrix W where its (i, j)th element Wij represents
the occurrence weight of i-th item in j-th context. Table 2 summarizes the notation.

Common Neighbors (CN) method computes the similarity of two nodes as the total number of their
common neighbors, and has been extensively used in social network graphs [15]. In a co-occurrence graph,
this corresponds to computing the dot product of the vectors representing the neighborhoods of the two
nodes. Let Γ(q) and Γ(u) be the sets of nodes connected to nodes q and u, respectively. Then, the common
neighbor similarity CNW (q, u) of a target node u to the query q based on weight matrix W is:

CNW (q, u) =
∑

c∈Γ(q)∩Γ(u)

WqcWuc.

Cosine (COS) similarity normalizes Common Neighbors by the total number of contexts in which the
query and target items are observed, and is especially popular for computing textual similarity in information
retrieval applications [13]. Formally, the similarity COSW (q, u) of a target node u to the query q based on
weight matrix W is:

COSW (q, u) =
∑

c∈Γ(q)∩Γ(u)

WqcWuc

||Wq:||2||Wu:||2
,

where Wq: and Wu: are the qth and uth row of the W matrix, respectively.
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Symbol Definition
q Query item with respect to which similarities of other items are computed.
T Set of items similarity between which is computed.
n Number of items, n = |T |.
C Set of contexts in which items occurrences are observed.
m Number of observation contexts, m = |C|.
W n×m graph adjacency matrix.
Wij (i, j)th element of W , meaning the occurrence weight for i-th item in j-th context.
Wi: Row vector containing the ith row of W , meaning the occurrence weights of all contexts for

item i.
Q n× n diagonal degree matrix with Qii =

∑
kWik.

D m×m diagonal degree matrix with Djj =
∑

kWkj .
fW (q, u) Similarity of item u to query item q computed via function f based on weight matrix W .

Γ(u) Set of graph nodes connected to node u.

Table 2: Table of symbols.

Jaccard (JAC) coefficient measures the similarity of two sets as the size of their intersection scaled
by the size of the union, ignoring the occurrence weights in contrast to Common Neighbors and cosine
similarity [13]. Jaccard similarity score JACW (q, u) of a target node u to the query node q based on the
weight matrix W is:

JACW (q, u) =
|Γ(q) ∩ Γ(u)|
|Γ(q) ∪ Γ(u)|

.

Pointwise Mutual Information (PMI) has been used extensively in computational linguistics and in-
formation retrieval literature for similarity calculation between terms [19], modeling them as outcomes of
random variables for different contexts. PMI of two events q and u is defines as log p(q,u)

p(q)p(u) , where p(q),
p(u), and p(q, u) are the probabilities that the events q, u, and (q, u) are observed, respectively. In the
co-occurrence data setting we are considering, probability p(u) for an item u ∈ T is defined as the prob-
ability that it has been observed in a randomly selected context c ∈ C, where C is the set of all contexts:
p(u) = |Γ(u)|

|C| , where Γ(u) is the set of contexts in which u occurred. Then, PMI similarity PMIW (q, u) of
a target u to the query q based on weight matrix W is:

PMIW (q, u) = log
|Γ(q) ∩ Γ(u)|
|Γ(q)||Γ(u)|

|C| ∝ |Γ(q) ∩ Γ(u)|
|Γ(q)||Γ(u)|

. (1)

We use the final term of Equation (1) for the definition of the PMI similarity score.
Adamic-Adar (AA) method measures the similarity of two nodes by aggregating the importance score

of the common contexts between them [2]. The score of a common context is reciprocal to the number of
item occurrences in it, on log scale. Formally, the Adamic-Adar score AAW (q, u) of a target node u to the
query node q based on the weight matrix W is:

AAW (q, u) =
∑

c∈Γ(q)∩Γ(u)

1

log|Γ(c)|
.

Forward Random Walk (FRW) method models the similarity as the probability of a random walk
that started from the query node arriving at the target node after a specified number of steps [6]. Imagine a
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random walk on the graph starting from the node q. The probability score FRWW (q, u) of the walk arriving
at node u in 2 steps based on the weight matrix W is:

FRWW (q, u) = [Q−1WD−1W>]qu =
∑
c

Wqc

Qqq

Wuc

Dcc
,

where both Q and D are the diagonal degree matrices: Qii =
∑

kWik, Djj =
∑

kWkj .
Backward Random Walk (BRW) method computes similarity as the probability of a random walk

starting from target node u and arriving at the query node q, thus traversing in reverse direction compared to
the forward walk [6]. The probability BRWW (q, u) that the walk arrives at item q in 2 steps based on the
weight matrix W is:

BRWW (q, u) = [WD−1W>Q−1]qu =
∑
c

Wuc

Quu

Wqc

Dcc
.

Mean Meeting Time (MMT) method computes similarity based on two independent random walks
that start from the query and the target nodes, respectively [9]. MMT is defined as the one-step meeting
probability that the two walks arrive in a shared context: MMTW (q, u) of a target node u to the query q
based on the weight matrix W is

MMTW (q, u) = [Q−1W (Q−1W )>]qu =
∑
c

Wqc

Qqq

Wuc

Quu
.

Mean meeting time can be more generally defined as the expectation of the minimum number of steps
needed for the two random walks to meet in a common node, while forward and backward random walks
can be more generally considered with a number of steps that is greater than two. In this paper, we focus
on the basic cases of two-step forward and backward walks, and one-step mean meeting time, leaving the
analysis of multi-step walks for future work.

3 Similarity Axioms

What makes each of the method described in Section 2 suitable or unsuitable for a particular application?
To answer this question, we need to define fundamental characteristics that are desirable of co-occurrence
similarity functions. This section describes such characteristics and formalizes them as axioms based on the
bipartite graph representation. The setting for these axioms captures the real-world phenomena underlying
the continuous aggregation of new co-occurrence data: new papers being published, users issuing new
queries or making purchases, articles being edited in Wikipedia. In this setting, each axiom corresponds to
the effects that the arrival of new observations is expected to have on similarity function output.

There are two primary scenarios for the use of similarity functions in applications: selection of k most
similar items (nearest neighbors), and selection of all near neighbors whose similarity to the query item is
greater than some threshold R (neighborhood radius; e.g. see [3]). We will refer to these two scenarios as
kNN and RNN selection1. The two scenarios give rise to different constraints because kNN selection is pri-
marily concerned with the correctness of ranking target items, while RNN selection is primarily concerned
with the accuracy of similarity estimation for the target items. The two corresponding types of axioms can
then be formulated as relative constraints (concerning potential changes in ranking of a target item with
respect to other target items), and absolute constraints (concerning potential changes in the actual similarity
value for a target item).

In the following, we formally define a basic set of relative and absolute axioms which capture the intu-
itions of our expectation on the new observations of co-occurrence data.

1In practical applications, kNN and RNN selection are often hybridized.
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(a) New Context (b) Query Co-occurrence (c) Target Co-occurrence (d) Diminishing Returns
Monotonicity Monotonicity Monotonicity

Figure 2: (a) New Context Monotonicity (NCM): joint observations in a new shared context increase simi-
larity. (b) Query Co-occurrence Monotonicity (QCM): new query observations in a shared context increase
similarity. (c) Target Co-occurrence Monotonicity (TCM): new target observations in a shared context in-
crease similarity. (d) Diminishing Returns (DR): incremental similarity gains due to subsequent observations
decrease as items share more contexts.

3.1 Monotonicity

The first group of axioms encodes the intuition that new observations of query and target items in a shared
context provide additional evidence of association between them. This additional evidence implies that the
result of the observations must be an increase in similarity of the target item to the query (formulated via the
absolute axioms), while the ranking of the target node cannot decrease (formulated via the relative axioms).

We first consider a scenario where a new context containing both the query and target items appears,
corresponding to the arrival of a new context node in the bipartite graph, as shown in Figure 2 (a). Let
fW (q, u) be the similarity of item u to query item q computed via function f based on weight matrix W .
The first axiom is defined as follows.

Property 1 (New Context Monotonicity) Let a new context ĉ be observed with occurrences Ŵqĉ of the
query item q and Ŵuĉ of the target item u. Let W be the original co-occurrence matrix, and Ŵ be the
matrix after the addition of the new context. Then, a well-behaved co-occurrence similarity function must
satisfy the following constraints:

Absolute New Context Monotonicity (A-NCM): fŴ (q, u) > fW (q, u).
Relative New Context Monotonicity (R-NCM): fŴ (q, u) > fŴ (q, v), ∀v s.t. fW (q, u) ≥ fW (q, v).

The next two monotonicity axioms capture the expected response of the similarity function to the arrival
of new observations in existing contexts where co-occurrences of target and query items were observed
previously. In the bipartite graph representation, such observations correspond to an increase in the weight
of an existing edge connecting items to the shared context, as shown in Figure 2 (b) and (c).

Property 2 (Query Co-occurrence Monotonicity) Let a new occurrence of query item q with weight ε be
observed in a context ĉ where the target item has also been observed. Let W be the original co-occurrence
matrix, and Ŵ be the matrix after the new query item observation, differing from W in a single element:
Ŵqĉ = Wqĉ + ε. Then, a well-behaved co-occurrence similarity function must satisfy the following con-
straints:

Absolute Query Co-occurrence Monotonicity (A-QCM): fŴ (q, u) > fW (q, u).
Relative Query Co-occurrence Monotonicity (R-QCM): fŴ (q, u) > fŴ (q, v), ∀v s.t. fW (q, u) ≥

fW (q, v).
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Property 3 (Target Co-occurrence Monotonicity) Let a new occurrence of target item u with weight ε be
observed in a context ĉ where the query item has also been observed. Let W be the original co-occurrence
matrix, and Ŵ be the matrix after the new target item observation, differing from W in a single element:
Ŵuĉ = Wuĉ + ε. Then, a well-behaved co-occurrence similarity function must satisfy the following con-
straints:

Absolute Target Co-occurrence Monotonicity (A-TCM): fŴ (q, u) > fW (q, u).
Relative Target Co-occurrence Monotonicity (R-TCM): fŴ (q, u) > fŴ (q, v), ∀v s.t. fW (q, u) ≥

fW (q, v).

Overall, the monotonicity axioms guarantee that additional observations of the query and the target items
in a shared context, either new or previously seen, imply a stronger degree of association between them and
hence must result in a higher similarity estimate while not lowering the ranking of the target node.

3.2 Diminishing Returns

Next, we consider the rate of similarity increase, that is, the relative size of incremental similarity gains as
more and more contexts are observed in which the query and the target items co-occur, as shown in Figure 2
(d). The diminishing returns axiom postulates that the relative impact of new co-occurrences must decline
as more of them are observed. Intuitively, this property captures the process of continuously obtaining i.i.d.
data occurrences from an underlying distribution that continues to generate new contexts (e.g., new user
sessions in which queries co-occur, or new venues where researchers publish papers). Diminishing returns
guarantees that the novelty of the new occurrence, conditioned on the previous occurrences of the same data,
diminishes.

Property 4 (Diminishing Returns (DR)) LetW be the current weight matrix where query item q and target
item u have been observed to co-occur. Let Ŵ be the weight matrix resulting from addition of a new context ĉ
in which q and u co-occur. Let W̃ be the weight matrix resulting from subsequent addition of a new context
node c̃ in which q and u co-occur. Without loss of generality, assume all edges connecting q, u, ĉ and c̃
have the equal weight θ. Then, a well-behaved similarity function must satisfy the following constraint:
fŴ (q, u)− fW (q, u) > fW̃ (q, u)− fŴ (q, u).

4 Formal Analysis

In this section, we examine the compliance of each similarity function described in Section 2 with the axioms
defined in Section 3. The analysis is simplified by introducing a unifying additive abstraction – context-wise
decomposition – via which all of the considered similarity functions can be represented.

4.1 Unifying Framework for Similarity Functions

We observe that all the similarity functions in Section 2, although seemingly different, can be unified into
our proposed abstraction called context-wise decomposition. Let us define the evidence score eW (c, q, u) to
be the context c’s direct contribution in computing the similarity of q and u in a similarity function fW (q, u).
Then, each of the function in Section 2 is represented by

fW (q, u) =
∑

c∈Γ(q)∩Γ(u)

eW (c, q, u), (2)
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Evidence Evidence
Method eW (c, q, u) Method eW (c, q, u)

CN WqcWuc AA 1
log|Γ(c)|

COS WqcWuc

||Wq:||2||Wu:||2 FRW Wqc∑
j Wqj

Wuc∑
iWic

JAC 1
|Γ(q)∪Γ(u)| BRW Wuc∑

j Wuj

Wqc∑
iWic

PMI 1
|Γ(q)||Γ(u)| MMT Wqc∑

j Wqj

Wuc∑
iWui

Table 3: Evidence score functions for different similarity calculation methods. These functions are plugged
into Equation (2) to define similarity methods.

meaning that the similarity score is the sum of contexts’ evidence scores. Table 3 lists the evidence score
functions for the similarity methods introduced in Section 2. As we will see later in this section, this unified
abstraction eases the formal analysis of functions with regard to the axioms.

Table 1 summarizes the formal analysis of these methods based on the axioms, indicating which axioms
are satisfied by which similarity functions unconditionally, and which do so only under certain constraints.
The following subsections summarize and provide brief intuitions for each result, particularly focusing on
cases whether the axioms are not satisfied under certain conditions. Full proofs are provided in the Appendix.

Method A-NCM R-NCM

CN Always Yes Always Yes

COS ŴqĉŴuĉ+
∑

cWqcWuc√
||Wq:||22+Ŵ 2

qĉ

√
||Wu:||22+Ŵ 2

uĉ

> fW (q, u)
ŴqĉŴuĉ+

∑
cWqcWuc

||Wq:||22
√
||Wu:||22+Ŵ 2

uĉ

> fW (q, v)

JAC 1 > fW (q, u) Always Yes

PMI 1
|Γ(q)|+|Γ(u)|+1 > fW (q, u) 1

Γ(q) > fW (q, u)

AA Always Yes Always Yes

FRW Ŵuĉ

Ŵqĉ+Ŵuĉ
> fW (q, u) Always Yes

BRW Ŵqĉ

Ŵqĉ+Ŵuĉ
> fW (q, u)

Ŵqĉ

Ŵqĉ+Ŵuĉ
> fW (q, u)

MMT ŴqĉŴuĉ > (λ− 1)
∑
c6=ĉWqcWuc ŴqĉŴuĉ >

∑
c6=ĉ (γWqcWvc −WqcWuc)

Table 4: Summary of sufficient and necessary conditions for similarity functions to satisfy New Context

Monotonicity. In MMT, λ =
(Qqq+Ŵqĉ)(Quu+Ŵuĉ)

QqqQuu
, and γ = Quu+Ŵuĉ

Qvv
.

4.2 Analysis for New Context Monotonicity

In New Context Monotonicity axioms, a new context ĉ is observed containing occurrences of target item u
and query item q. Let fW (q, u) and fŴ (q, u) be the similarity of u to q before and after observing the new
context, respectively, based on corresponding similarity matrices W and Ŵ , respectively. Analogously, let
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fW (q, v) and fŴ (q, v) be the similarities of another target item v with respect to query q before and after
the new context observation, respectively. Then, based on Equation (2), the four scores can be written as:

fW (q, u) =
∑

c∈Γ(q)∩Γ(u),c 6=ĉ

eW (c, q, u), (3)

fŴ (q, u) = eŴ (ĉ, q, u) +
∑

c∈Γ(q)∩Γ(u),c 6=ĉ

eŴ (c, q, u), (4)

fW (q, v) =
∑

c∈Γ(q)∩Γ(v),c 6=ĉ

eW (c, q, v), (5)

fŴ (q, v) =
∑

c∈Γ(q)∩Γ(v),c 6=ĉ

eŴ (c, q, v). (6)

4.2.1 Absolute New Context Monotonicity (A-NCM)

We first provide a sufficient condition for A-NCM to hold.

Lemma 1 Similarity function f satisfies A-NCM if evidence for all contexts observed before ĉ is not changed
by observation of ĉ: eW (c, q, u) = eŴ (c, q, u),∀c 6= ĉ.

Proof 1 If eW (c, q, u) = eŴ (c, q, u),∀c 6= ĉ, and eW (ĉ, q, u) > 0,∀q,∀u,∀W , then
fŴ (q, u) = eŴ (ĉ, q, u) +

∑
c∈Γ(q)∩Γ(u),c 6=ĉ eŴ (c, q, u) = eŴ (ĉ, q, u) + fW (q, u) > fW (q, u).

Method A-QCM R-QCM

CN Always Yes Always Yes

COS εWuĉ+
∑

cWqcWuc√
||Wq:||22+ε(ε+2Wqĉ)||Wu:||2

> fW (q, u) Always Yes

JAC Always No Always No

PMI Always No Always No

AA Always No Always No

FRW ε < 1
fW (q,u) (Wuĉ − WqĉWuĉ

Dĉĉ
)−Dĉĉ Always Yes

BRW Always Yes Always Yes

MMT
[
Wqĉ+ε
Qqq+ε −

Wqĉ

Qqq

]
Wuĉ

Quu
> ε

Qqq+ε

∑
c6=ĉ

Wqc

Qqq

Wuc

Quu
ε > −Ŵqĉ + Quu

Ŵuĉ
(
∑
c 6=ĉWqc(

Wvc

Qvv
− Wuc

Quu
))

Table 5: Summary of sufficient and necessary conditions for similarity functions to satisfy Query Co-
occurrence Monotonicity. ε is the additional edge weight as described in Axiom 2 at Section 3.

The lemma effectively states that if the addition of a new context c does not affect the evidence scores
for existing contexts, similarity is guaranteed to increase (as long as evidence from the new context is pos-
itive). Of the similarity functions above, only Common Neighbors and Adamic-Adar satisfy the condition
in Lemma 1, and hence unconditionally satisfy the A-NCM axioms. Other methods only satisfy A-NCM
conditionally, with Table 4 summarizing the conditions for each one. We note that all the conditions from
Table 4 to 7 are both sufficient and necessary.
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4.2.2 Relative New Context Monotonicity (R-NCM)

Next, we provide a sufficient condition for R-NCM to hold, in Lemma 2. It effectively states that R-NCM
holds for all similarity functions which maintain the ranking of nodes after the new context addition without
accounting for the additional evidence score yielded by the new context.

Lemma 2 If a similarity function f satisfies fŴ (q, u)− eŴ (ĉ, q, u) ≥ fŴ (q, v), and eŴ (ĉ, q, u) > 0, then
f satisfies R-NCM.

Proof 2 fŴ (q, u) = (fŴ (q, u)− eŴ (ĉ, q, u)) + eŴ (ĉ, q, u) ≥ fŴ (q, v) + eŴ (ĉ, q, u) > fŴ (q, v). Thus,
fŴ (q, u) > fŴ (q, v).

It can be checked that Common Neighbors, Adamic-Adar, and Forward Random Walk satisfy the con-
dition in Lemma 2. Jaccard similarity does not satisfy the condition, but it can nonetheless be shown to
always satisfy R-NCM. Other methods only satisfy R-NCM conditionally. Table 4 provides a summary of
the conditions for the different similarity functions to satisfy NCM.

4.3 Analysis for Query Co-occurrence Monotonicity

Let fW (q, u) and fŴ (q, u) be the similarity scores of target item u to query item q before and after the new
query observation, respectively. Using the evidence score decomposition in Equation (2), the two scores can
be written as:

fW (q, u) = eW (ĉ, q, u) +
∑

c∈Γ(q)∩Γ(u),c 6=ĉ

eW (c, q, u), (7)

fŴ (q, u) = eŴ (ĉ, q, u) +
∑

c∈Γ(q)∩Γ(u),c 6=ĉ

eŴ (c, q, u). (8)

For the similarities of target v to query q, fW (q, v) and fŴ (q, v), we utilize the expressions in Equa-
tions (5) and (6).

4.3.1 Absolute Query Co-occurrence Monotonicity (A-QCM)

A sufficient condition to satisfy A-QCM is described in Lemma 3. It effectively states that when more query
item occurrences are observed in a context already shared with a target item, similarity of the target item
will increase as long as the corresponding evidence score increases, and the evidence scores for other shared
contexts between the query and the target item don’t decrease.

Lemma 3 If the evidence score function eW of a similarity function f satisfies eW (ĉ, q, u) < eŴ (ĉ, q, u),
and

∑
c∈C∗ eW (c, q, u) ≤

∑
cC∗ eŴ (c, q, u), where C∗ = {c|c ∈ Γ(q) ∩ Γ(u), and c 6= ĉ}, then f satisfies

A-QCM.

Proof 3 Directly follows from applying Equations (5)-(8) to the condition.

It can be checked that Common Neighbors and Backward Random Walk meet the condition in Lemma 3,
and thus satisfy A-QCM unconditionally. Jaccard similarity, PMI, and Adamic-Adar don’t satisfy A-QCM,
as they don’t take into consideration the edge weights in their computation. Cosine similarity, Forward
Random Walk and Mean Meeting Time satisfy A-QCM conditionally, with the conditions for each one
summarized in Table 5.
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Method A-TCM R-TCM

CN Always Yes Always Yes

COS εWqĉ+
∑

cWqcWuc

||Wq:||2
√
||Wu:||22+ε(ε+2Wuĉ)

> fW (q, u)
εWqĉ+

∑
cWqcWuc

||Wq:||2
√
||Wu:||22+ε(ε+2Wuĉ)

> fW (q, u)

JAC Always No Always No

PMI Always No Always No

AA Always No Always No

FRW Always Yes Always Yes

BRW ε < 1
fW (q,u) (Wqĉ − WuĉWqĉ

Dĉĉ
)−Dĉĉ ε < 1

fW (q,u) (Wqĉ − WuĉWqĉ

Dĉĉ
)−Dĉĉ

MMT
[
Wuĉ+ε
Quu+ε −

Wuĉ

Quu

]
Wqĉ

Qqq
> ε

Quu+ε

∑
c6=ĉ

Wuc

Quu

Wqc

Qqq
ε(Wqĉ −

∑
c 6=ĉWqc

Wvc

Qvv
) >∑

c6=ĉWqc(
WvcQuu

Qvv
−Wuc)

Table 6: Summary of sufficient and necessary conditions for similarity functions to satisfy Target Co-
occurrence Monotonicity. ε is the additional edge weight as described in Axiom 3 at Section 3.

4.3.2 Relative Query Co-occurrence Monotonicity (R-QCM)

Next, we describe a sufficient condition for the axiom R-QCM to hold, in Lemma 4.

Lemma 4 Let q be a query node, and u and v are target nodes with fW (q, u) ≥ fW (q, v). If a similarity
function f satisfies the following condition under new appearances of q in context ĉ shared with u but not
with v, it preserves their ranking and hence satisfies axiom R-QCM:
fŴ (q,v)

fW (q,v) =
∑

c∈Γ(q)∩Γ(u),c 6=ĉ eŴ (c,q,u)∑
c∈Γ(q)∩Γ(u),c 6=ĉ eW (c,q,u) <

eŴ (ĉ,q,u)

eW (ĉ,q,u) .

Proof 4 Let C∗ = {c|c ∈ Γ(q) ∩ Γ(u), and c 6= ĉ}. Then,
fŴ (q, u) = eŴ (ĉ, q, u) +

∑
c∈C∗ eŴ (c, q, u)

>
∑

c∈C∗ eŴ (c,q,u)∑
c∈C∗ eW (c,q,u)eW (ĉ, q, u) +

∑
c∈C∗ eŴ (c, q, u)

=
∑

c∈C∗ eŴ (c,q,u)∑
c∈C∗ eW (c,q,u)(eW (ĉ, q, u) +

∑
c∈C∗ eW (c, q, u))

≥
∑

c∈C∗ eŴ (c,q,u)∑
c∈C∗ eW (c,q,u)fW (q, v) = fŴ (q, v).

Thus, fŴ (q, u) > fŴ (q, v).

It can be checked that Common Neighbors, Cosine similarity, Forward and Backward Random Walk
satisfy the condition in Lemma 4, and thus satisfy axiom R-QCM. Jaccard Similarity, PMI, and Adamic-
Adar do not satisfy the axiom due to their ignorance of edge weights and hence of any new item observations
in contexts where they have been seen previously. Mean Meeting Time satisfies R-QCM conditionally as
summarized in Table 5.

4.4 Analysis of Target Co-occurrence Monotonicity

Analogously to the previous section, the evidence score decomposition in Equations (5)-(8) allows us to
examine the compliance of similarity functions with the absolute and relative constraints when new obser-
vations of a target item u are seen in a context ĉ shared with the query item q.

11



4.4.1 Absolute Target Co-occurrence Monotonicity (A-TCM)

The sufficient condition for the axiom A-TCM can be stated analogously to that of A-QCM: when more
target occurrences are observed in a context already shared with the query item, similarity of the target item
will increase as long as the evidence score for ĉ increases, and the evidence scores for other shared contexts
between the query and the target item don’t decrease.
Lemma 5 If the evidence score function eW of a similarity function f satisfies eW (ĉ, q, u) < eŴ (ĉ, q, u),
and

∑
c∈C∗ eW (c, q, u) ≤

∑
c∈C∗ eŴ (c, q, u), where C∗ = {c|c ∈ Γ(q)∩Γ(u), and c 6= ĉ}, then f satisfies

A-TCM.

Proof 5 The proof is analogous to that of Lemma 3, and we omit it for brevity.
It can be checked that Common Neighbors and Forward Random Walk fulfill the condition in Lemma 5,

and thus satisfy axiom A-TCM. Jaccard similarity, PMI, and Adamic-Adar don’t satisfy A-TCM as they
ignore the edge weights and hence any additional occurrences in previous contexts. Cosine similarity, Back-
ward Random Walk and Mean Meeting Time satisfy A-TCM conditionally as summarized in Table 6.

4.4.2 Relative Target Co-occurrence Monotonicity (R-TCM)

Next, we provide a sufficient condition for R-TCM, which is analogous to that of R-QCM.
Lemma 6 Let q be a query node, and u and v are target nodes with fW (q, u) ≥ fW (q, v). If a similarity
function f satisfies the following condition under new appearances of q in context ĉ shared with u but not
with v, it preserves their ranking and hence satisfies axiom R-TCM:
fŴ (q,v)

fW (q,v) =
∑

c∈Γ(q)∩Γ(u),c 6=ĉ eŴ (c,q,u)∑
c∈Γ(q)∩Γ(u),c 6=ĉ eW (c,q,u) <

eŴ (ĉ,q,u)

eW (ĉ,q,u) .

Proof 6 The proof is analogous to that of Lemma 4, and we omit it for brevity.
It can be checked that Common Neighbors and Forward Random Walk satisfy the condition in Lemma 6

and thus satisfy R-TCM unconditionally. Jaccard similarity, PMI, and Adamic-Adar do not satisfy R-TCM
as they ignore edge weights and hence don’t change their output when additional item occurrences are
observed in existing contexts. Cosine similarity, Backward Random Walk, and Mean Meeting Time satisfy
R-TCM conditionally as summarized in Table 6.

4.5 Analysis for Diminishing Returns

Because the increase in similarity due to every subsequently observed co-occurrence context does not de-
pend on the total number of shared contexts for Common Neighbors and Adamic-Adar similarities, they
never satisfy the diminishing returns axiom, linearly increasing similarity with every subsequent shared
occurrence. Other methods satisfy Diminishing Returns conditionally, as summarized in Table 7. This
indicates that in data streaming domains where new contexts are continually observed (e.g., new search
query sessions), Common Neighbors and Adamic-Adar are not appropriate, while other methods should be
monitored to ensure that similarity values grow sublinearly and converge as data is continuously aggregated.

5 Random Walk with Sink

The previous section demonstrates that no similarity function under consideration satisfies all axioms un-
conditionally, implying that they may exhibit unintuitive, degenerate behavior. A natural question is, can we
design a similarity function that satisfies all axioms? This section demonstrates how this can be achieved by
a regularized variant of random-walk based similarity, which shows the benefit of our axiom based analysis.
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Method DR

CN Always No

COS
2θ2+2

∑
c 6=ĉ,c̃WqcWuc√

||Wq:||22+θ2
√
||Wu:||22+θ2

− 2θ2+
∑

c 6=ĉ,c̃WqcWuc√
||Wq:||22+2θ2

√
||Wu:||22+2θ2

> fW (q, u)

JAC 1 > fW (q, u)

PMI 1
|Γ(q)|+|Γ(u)|+1 > fW (q, u)

AA Always No

FRW θ > 2Dc̃c̃Dĉĉ

3Dc̃c̃−Dĉĉ
(fW (q, u)− Qqq(Dc̃c̃−Dĉĉ)

2Dc̃c̃Dĉĉ
)

BRW θ > 2Dc̃c̃Dĉĉ

3Dc̃c̃−Dĉĉ
(fW (q, u)− Quu(Dc̃c̃−Dĉĉ)

2Dc̃c̃Dĉĉ
)

MMT 3θ2 + (Qqq +Quu)θ > (2θ2 + 3(Qqq +Quu)θ +Q2
qq +Q2

uu +QqqQuu)fW (q, u)

Table 7: Summary of sufficient and necessary conditions for similarity functions to satisfy Diminishing
Returns. θ is the weight of the new edges as described in Axiom 4.

5.1 Main Idea

We begin by observing from Table 1 that Absolute New Context Monotonicity (A-NCM) is surprisingly
not satisfied by any random-walk based methods, while intuition suggests that observing new, exclusive
co-occurrences between two items will always increase the visitation probability for walks between them.
While the appearance of a new shared context adds a new visitation path with associated probability mass
(evidence score), it also triggers re-normalization, which may lead to decline in total probability of reaching
the destination via other co-occurrence contexts.

We propose to remedy this issue by attaching an absorbing ‘sink’ context to all item nodes, effectively
smoothing the associated outgoing context probabilities. The weights of the edges between item nodes and
the sink node are constant, regardless of the degree of the item nodes. The sink context does not contribute
any evidence score to the overall similarity, but by re-distributing the probability mass (evidence) among the
co-occurrences, it ensures that addition of a new co-occurrence does not remove more visitation probability
than it contributes.

Formally, our proposed Random Walk with Sink (RWS) similarity is defined as the visitation probability
of a forward random walk originating from the query node to visit the target node, with all item nodes being
observed with the weight s in an absorbing sink context csink. That is, RWSW (q, u) from query node q to
target node u based on the weight matrix W is:

RWSW (q, u) = [Q′−1WD−1W>]qu =
∑
c

Wqc

s+Qqq

Wuc

Dcc
,

where Q′ is an adjusted diagonal degree matrix with Q′ii = s+
∑

kWik.
Let us see how the addition of the sink node with the fixed edge weight solves the problem of FRW’s

conditional satisfiability of A-NCM. In RWS, the similarity increase by the addition of the new context

in A-NCM is given by Ŵqĉ

s+Qqq+Ŵqĉ

Ŵuĉ

Ŵqĉ+Ŵuĉ
, and the similarity decrease of existing contexts by the re-

normalization is given by
∑

c 6=ĉ
Wqc

s+Qqq

Wuc
Dcc
−
∑

c 6=ĉ
Wqc

s+Qqq+Ŵqĉ

Wuc
Dcc

. Satisfying A-NCM requires the increase

is larger than the decrease, which leads to the condition Ŵuĉ

Ŵqĉ+Ŵuĉ
>
∑

c6=ĉ
WqcWuc

(s+Qqq)Dcc
. Notice that by
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increasing s enough, and thereby decreasing the value of the right hand term, the condition can be satisfied.
Thus, RWS can be parameterized to satisfy A-NCM by imposing enough smoothing on the random walk
similarity.

We show a working example of RWS in Figure 1 which contrasts the performance of Forward Random
Walk and RWS on the DBLP bibliography dataset 2. We compute the similarity between authors by treating
venues in which they publish as co-occurrence contexts. Figure 1 (a) and (b) illustrate the effect on Forward
Random Walk similarity between authors ‘Jian Pei’ and ‘Ravi Kumar’ from the addition of a new co-
occurrence context ‘CIKM’. The increase in visitation probability through this context is insufficient to
make up for the decrease in probability mass going through the other co-occurrence contexts (‘VLDB’,
‘SIGMOD’, and ‘KDD’). Figure 1 (c) and (d) show that introducing the sink node csink with a sufficient
smoothing level results in similarity not decreasing when a new shared co-occurrence is observed.

5.2 Analysis

Analysis of axiom satisfiability by RWS is performed analogously to that of Forward Random Walk, demon-
strating that RWS also satisfies R-NCM, R-QCM, A-TCM, and R-TCM axioms. For axioms A-NCM, A-
QCM, and DR, setting the parameter s appropriately allows RWS to satisfy them, as summarized by the
following results.

Lemma 7 RWS satisfies A-NCM if and only if s > −Qqq +
Ŵqĉ+Ŵuĉ

Ŵuĉ

∑
c6=ĉ

WqcWuc

Dcc
.

Proof 7 The full proof is provided in the Appendix.

Lemma 8 RWS satisfies A-QCM if and only if
s > 1

Dĉĉ−Wqĉ
(Wqĉ(Dĉĉ + ε)−Qqq(Dĉĉ −Wqĉ) + (Dĉĉ+ε)Dĉĉ

Wuĉ

∑
c 6=ĉ

WqcWuc

Dcc
).

Proof 8 The full proof is provided in the Appendix.

Lemma 9 RWS satisfies DR if and only if s > 2α−Qqq where α =
∑

cWqc
Wuc
Dcc

.

Proof 9 The full proof is provided in the Appendix.

Thus, the addition of the sink node enables RWS to satisfy all axioms, via a setting of the parameter s,
as shown in Lemmas 7∼9.

We note that a variant of Backward Random Walk analogous to RWS can be designed by adding a sink
with an axiom-driven parameterization. We also point out that RWS’ reliance on a constant smoothing
parameter, s, is a key distinction from PageRank-style smoothing of random walks, where the edge weight
changes in proportion to the current degrees of the node to make the random jump probability constant. It
can be shown that PageRank-style smoothing does not lead to unconditional axiom satisfaction, and hence
is not an appropriate strategy for designing well-behaved similarity functions.

2http://www.informatik.uni-trier.de/˜ley/db/
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6 Related Work

Similarity, distance and distortion measures have been an active research topic for several decades across
many areas of computer science and mathematics, and this paper focuses on their narrow subset that has high
practical significance: co-occurrence-based similarity. Beyond the popular similarity functions introduced
in Section 2, number of other measures were studied in the context of link prediction in social networks [11].
In recent work, Sarkar et al. performed learning-theoretic analysis of several link prediction heuristics under
the assumption that they approximate a distance metric in a latent space [16]. Our approach avoids relying on
metric assumptions, as it has been demonstrated in cognitive psychology literature that their key properties
(minimality, symmetry, triangle inequality) are routinely violated in application domains [20, 12].

This paper’s core contribution lies in developing an axiomatic approach for analyzing the capacity of
various similarity methods to satisfy properties desired of them during continuous co-occurrence data ag-
gregation. The axiomatic approach has previously been proven particularly fruitful in clustering function
analysis, where its introduction by Kleinberg [10] was been followed by a number of results that study a
variety of axiomatic properties for different clustering methods [4, 1]. The axiomatic approach has also been
studied in the context of information retrieval where it was employed to analyze retrieval models [7, 8].

7 Conclusion

In this paper, we propose an axiomatic approach to analyzing co-occurrence similarity functions. The main
contributions are the followings.

1. Axiomatic framework. We propose a principled methodology for analyzing co-occurrence similarity
functions based on differential response to new observations.

2. Analysis and proofs. We perform extensive analysis on a number of common similarity functions
using our proposed unifying abstraction, and prove that there exists no single method which satisfies
all conditions unconditionally.

3. Design of new similarity function. We demonstrate how axiomatic analysis allows designing a new
data-driven, theoretically well-justified co-occurrence similarity function without degenerate proper-
ties.

Future research directions include extending the axioms that capture important properties of other simi-
larity functions in more general contexts.
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A Proofs

In this section, we give proofs of the analysis in Table 1.

A.1 Proofs for New Context Monotonicity (NCM)

It is obvious that Common Neighbors satisfies A-NCM and R-NCM from its definition, so we omit the
proofs. We prove conditions for the Cosine similarity.

Lemma 10 Cosine similarity satisfies A-NCM if and only if ŴqĉŴuĉ+
∑

cWqcWuc√
||Wq:||22+Ŵ 2

qĉ

√
||Wu:||22+Ŵ 2

uĉ

> fW (q, u).

Proof 10

fŴ (q, u) > fW (q, u)

ŴqĉŴuĉ +
∑

cWqcWuc√
||Wq:||22 + Ŵ 2

qĉ

√
||Wu:||22 + Ŵ 2

uĉ

> fW (q, u)

�

Lemma 11 Cosine similarity satisfies R-NCM if and only if ŴqĉŴuĉ+
∑

cWqcWuc

||Wq:||22
√
||Wu:||22+Ŵ 2

uĉ

> fW (q, u).

Proof 11

fŴ (q, u) > fŴ (q, v)

ŴqĉŴuĉ +
∑

cWqcWuc√
||Wq:||22 + Ŵ 2

qĉ

√
||Wu:||22 + Ŵ 2

uĉ

>

∑
cWqcWvc√

||Wq:||22 + Ŵ 2
qĉ||Wv:||2

ŴqĉŴuĉ +
∑

cWqcWuc√
||Wu:||22 + Ŵ 2

uĉ

>

∑
cWqcWvc

||Wv:||2

An equivalent condition to the last line is

ŴqĉŴuĉ +
∑

cWqcWuc

||Wq:||22
√
||Wu:||22 + Ŵ 2

uĉ

>

∑
cWqcWvc

||Wq:||2||Wv:||2

ŴqĉŴuĉ +
∑

cWqcWuc

||Wq:||22
√
||Wu:||22 + Ŵ 2

uĉ

> fW (q, v)

�

Next, we prove conditions for the Jaccard similarity.

Lemma 12 Jaccard similarity satisfies A-NCM if and only if 1 > fW (q, u).
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Proof 12

fŴ (q, u) > fW (q, u)

|Γ(q) ∩ Γ(u)|+ 1

|Γ(q) ∪ Γ(u)|+ 1
>
|Γ(q) ∩ Γ(u)|
|Γ(q) ∪ Γ(u)|

|Γ(q) ∪ Γ(u)| > |Γ(q) ∩ Γ(u)|
1 > fW (q, u)

�

Lemma 13 Jaccard similarity always satisfies R-NCM.

Proof 13 For R-NCM to hold, the following must be true for ∀v such that |Γ(q)∩Γ(u)|
|Γ(q)∪Γ(u)| ≥

|Γ(q)∩Γ(v)|
|Γ(q)∪Γ(v)|

fŴ (q, u) > fŴ (q, v)

|Γ(q) ∩ Γ(u)|+ 1

|Γ(q) ∪ Γ(u)|+ 1
>

|Γ(q) ∩ Γ(v)|
|Γ(q) ∪ Γ(v)|+ 1

which is always true since

|Γ(q) ∩ Γ(u)|+ 1

|Γ(q) ∪ Γ(u)|+ 1
≥ |Γ(q) ∩ Γ(u)|
|Γ(q) ∪ Γ(u)|

≥ |Γ(q) ∩ Γ(v)|
|Γ(q) ∪ Γ(v)|

>
|Γ(q) ∩ Γ(v)|
|Γ(q) ∪ Γ(v)|+ 1

.

�

Next, we prove conditions for the Pointwise Mutual Information.

Lemma 14 Pointwise Mutual Information satisfies A-NCM if and only if 1
|Γ(q)|+|Γ(u)|+1 > fW (q, u).

Proof 14

fŴ (q, u) > fW (q, u)

|Γ(q) ∩ Γ(u)|+ 1

(|Γ(q)|+ 1)(|Γ(u)|+ 1)
>
|Γ(q) ∩ Γ(u)|
|Γ(q)||Γ(u)|

|Γ(q)||Γ(u)|
|Γ(q)|+ |Γ(u)|+ 1

> |Γ(q) ∩ Γ(u)|

1

|Γ(q)|+ |Γ(u)|+ 1
> fW (q, u)

�

Lemma 15 Pointwise Mutual Information satisfies R-NCM if and only if 1
Γ(q) > fW (q, u).

18



Proof 15 For R-NCM to hold, the following must be true for ∀v such that fW (q, u) ≥ fW (q, v)

fŴ (q, u) > fŴ (q, v)

|Γ(q) ∩ Γ(u)|+ 1

(|Γ(q)|+ 1)(|Γ(u)|+ 1)
>
|Γ(q) ∩ Γ(v)|
|Γ(q) + 1||Γ(v)|

|Γ(u)| > |Γ(q) ∩ Γ(u)|
1

Γ(q)
> fW (q, u)

�

Next, we prove conditions for the Forward Random Walk.

Lemma 16 Forward Random Walk satisfies A-NCM if and only if Ŵuĉ

Ŵqĉ+Ŵuĉ
> fW (q, u).

Proof 16 For A-NCM to hold, the following must be true:

fŴ (q, u) > fW (q, u)

Ŵqĉ

Qqq + Ŵqĉ

Ŵuĉ

Ŵqĉ + Ŵuĉ

+
∑
c6=ĉ

Wqc

Qqq + Ŵqĉ

Wuc

Dcc
>
∑
c6=ĉ

Wqc

Qqq

Wuc

Dcc

Ŵqĉ

Qqq + Ŵqĉ

Ŵuĉ

Ŵqĉ + Ŵuĉ

+
∑
c6=ĉ

WqcWuc

QqqDcc(Qqq + Ŵqĉ)
(Qqq −Qqq − Ŵqĉ) > 0

Ŵqĉ

Qqq + Ŵqĉ

(
Ŵuĉ

Ŵqĉ + Ŵuĉ

−
∑
c 6=ĉ

WqcWuc

QqqDcc
) > 0

Ŵuĉ

Ŵqĉ + Ŵuĉ

>
∑
c6=ĉ

WqcWuc

QqqDcc

Ŵuĉ

Ŵqĉ + Ŵuĉ

> fW (q, u)

which holds only when the new context occurrence weights Ŵqĉ and Ŵuĉ satisfy the last inequality. Thus,
for the A-NCM axiom to hold for forward random walks, the target node’s proportion of occurrences in the
new context must be no less than the current value of similarity. �

Lemma 17 Forward Random Walk satisfies R-NCM always.

Proof 17 For R-NCM to hold, the following must be true for ∀v such that fW (q, u) ≥ fW (q, v),

fŴ (q, u) > fŴ (q, v)

Ŵqĉ

Qqq + Ŵqĉ

Ŵuĉ

Ŵqĉ + Ŵuĉ

+
∑
c 6=ĉ

Wqc

Qqq + Ŵqĉ

Wuc

Dcc
>
∑
c 6=ĉ

Wqc

Qqq + Ŵqĉ

Wvc

Dcc

Ŵqĉ

Qqq + Ŵqĉ

Ŵuĉ

Ŵqĉ + Ŵuĉ

+
∑
c 6=ĉ

Qqq

Qqq + Ŵqĉ

Wqc

Qqq

Wuc −Wvc

Dcc
> 0

Ŵqĉ

Qqq + Ŵqĉ

Ŵuĉ

Ŵqĉ + Ŵuĉ

+
Qqq

Qqq + Ŵqĉ

(fW (q, u)− fW (q, v)) > 0
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which is always true as the first summand is positive and the second summand is nonnegative, hence the
R-NCM axiom is always satisfied for Forward Random Walk similarity. �

For the Backward Random Walk (BRW), it can be shown that BRW satisfies A-NCM if and only if
Ŵqĉ

Ŵqĉ+Ŵuĉ
> fW (q, u), using a derivation very similar to the A-NCM for FRW. Since the addition of a new

context doesn’t affect other target nodes in NCM for BRW, the condition that BRW satisfies R-NCM is
exactly the same as those for A-NCM.

Next, we prove conditions for the Mean Meeting Time.

Lemma 18 Mean Meeting Time satisfies A-NCM if and only if ŴqĉŴuĉ > (λ− 1)
∑

c 6=ĉWqcWuc, where

λ =
(Qqq+Ŵqĉ)(Quu+Ŵuĉ)

QqqQuu
.

Proof 18 For A-NCM to hold, the following must be true:

fŴ (q, u) > fW (q, u)

Ŵqĉ

Qqq + Ŵqĉ

Ŵuĉ

Quu + Ŵuĉ

+
∑
c 6=ĉ

Wqc

Qqq + Ŵqĉ

Wuc

Quu + Ŵuĉ

>
∑
c6=ĉ

Wqc

Qqq

Wuc

Quu

Thus,
ŴqĉŴuĉ > (λ− 1)

∑
c6=ĉ

WqcWuc.

�

Lemma 19 Mean Meeting Time satisfies R-NCM if and only if ŴqĉŴuĉ >
∑

c 6=ĉ (γWqcWvc −WqcWuc),

where γ = Quu+Ŵuĉ
Qvv

.

Proof 19 For R-NCM to hold, the following must be true :

fŴ (q, u) > fŴ (q, v)

Ŵqĉ

Qqq + Ŵqĉ

Ŵuĉ

Quu + Ŵuĉ

+
∑
c 6=ĉ

Wqc

Qqq + Ŵqĉ

Wuc

Quu + Ŵuĉ

>
∑
c 6=ĉ

Wqc

Qqq + Ŵqĉ

Wvc

Qvv

ŴqĉŴuĉ

Quu + Ŵuĉ

+
∑
c 6=ĉ

WqcWuc

Quu + Ŵuĉ

>
∑
c 6=ĉ

WqcWvc

Qvv

Thus,
ŴqĉŴuĉ >

∑
c6=ĉ

(γWqcWvc −WqcWuc)

. �

Next, we prove conditions for the Random Walk with Sink.

Lemma 20 RWS satisfies A-NCM if and only if s > −Qqq +
Ŵqĉ+Ŵuĉ

Ŵuĉ

∑
c 6=ĉ

WqcWuc

Dcc
.
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Proof 20 fŴ (q, u) > fW (q, u)

⇔ Ŵqĉ

s+Qqq+Ŵqĉ

Ŵuĉ

Ŵqĉ+Ŵuĉ
+
∑

c 6=ĉ
Wqc

s+Qqq+Ŵqĉ

Wuc
Dcc

>
∑

c 6=ĉ
Wqc

s+Qqq

Wuc
Dcc

⇔
∑

c6=ĉ
WqcWuc

(s+Qqq)Dcc(s+Qqq+Ŵqĉ)
(s+Qqq − s−Qqq − Ŵqĉ) > −

Ŵqĉ

s+Qqq+Ŵqĉ

Ŵuĉ

Ŵqĉ+Ŵuĉ

⇔ Ŵqĉ

s+Qqq+Ŵqĉ
( Ŵuĉ

Ŵqĉ+Ŵuĉ
−
∑

c6=ĉ
WqcWuc

(s+Qqq)Dcc
) > 0

⇔ Ŵuĉ

Ŵqĉ+Ŵuĉ
>
∑

c6=ĉ
WqcWuc

(s+Qqq)Dcc
.

The lemma is proved by rearranging terms in the last equation.

A.2 Proofs for Query Co-occurrence Monotonicity (QCM)

It is obvious that Common Neighbors satisfies A-QCM and R-QCM, so we omit the proofs. We prove
conditions for the Cosine similarity.

Lemma 21 Cosine similarity satisfies A-QCM if and only if εWuĉ+
∑

cWqcWuc√
||Wq:||22+ε(ε+2Wqĉ)||Wu:||2

> fW (q, u).

Proof 21 For A-QCM to hold for the Cosine similarity, the following must be true:

fŴ (q, u) > fW (q, u)

(Wqĉ + ε)Wuĉ +
∑

c 6=ĉWqcWuc√
||Wq:||22 + ε(ε+ 2Wqĉ)||Wu:||2

> fW (q, u)

εWuĉ +
∑

cWqcWuc√
||Wq:||22 + ε(ε+ 2Wqĉ)||Wu:||2

> fW (q, u)

�

The Jaccard similarity, the Pointwise Mutual Information, and the Adamic-Adar similarity do not satisfy
A-QCM nor R-QCM since they do not consider the edge weights.

Next, we prove conditions for the Forward Random Walk.

Lemma 22 Forward Random Walk satisfies A-QCM if and only if ε < 1
fW (q,u)(Wuĉ −

WqĉWuĉ

Dĉĉ
)−Dĉĉ.
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Proof 22 For A-QCM to hold for the Forward Random Walk, the following must be true:

fŴ (q, u) > fW (q, u)

(Wqĉ + ε)

Qqq + ε

Wuĉ

Dĉĉ + ε
+
∑
c6=ĉ

Wqc

Qqq + ε

Wuc

Dcc
>
Wqĉ

Qqq

Wuĉ

Dĉĉ
+
∑
c6=ĉ

Wqc

Qqq

Wuc

Dcc

Wuĉ(QqqDĉĉWqĉ +QqqDĉĉε−Wqĉ(QqqDĉĉ + ε(Qqq +Dĉĉ + ε)))

QqqDĉĉ(Qqq + ε)(Dĉĉ + ε)
+
∑
c 6=ĉ

WucWqc(Qqq −Qqq − ε)
QqqDcc(Qqq + ε)

> 0

ε

Qqq + ε

WuĉQqq(Dĉĉ −Wqĉ)

QqqDĉĉ(Dĉĉ + ε)
− ε

Qqq + ε

WuĉWqĉ

QqqDĉĉ
− ε

Qqq + ε

∑
c 6=ĉ

Wqc

Qqq

Wuc

Dcc
> 0

Wuĉ

Dĉĉ

Dĉĉ −Wqĉ

Dĉĉ + ε
− fW (q, u) > 0

ε <
1

fW (q, u)
(Wuĉ −

WqĉWuĉ

Dĉĉ
)−Dĉĉ

We note that for the case where q and u are the only nodes occurring in context ĉ, and therefore Dĉĉ =
Wqĉ +Wuĉ, the above constraint is equivalent to:

ε <
1

fW (q, u)

W 2
uĉ

Wqĉ +Wuĉ
−Wuĉ −Wqĉ

�

Next, we prove conditions for the Mean Meeting Time.

Lemma 23 Mean Meeting Time satisfies A-QCM if and only if
[
Wqĉ+ε
Qqq+ε −

Wqĉ

Qqq

]
Wuĉ
Quu

> ε
Qqq+ε

∑
c6=ĉ

Wqc

Qqq

Wuc
Quu

.

Proof 23 For A-QCM to hold, the following must be true:

fŴ (q, u) > fW (q, u)

Wqĉ + ε

Qqq + ε

Wuĉ

Quu
+
∑
c6=ĉ

Wqc

Qqq + ε

Wuc

Quu
>
Wqĉ

Qqq

Wuĉ

Quu
+
∑
c 6=ĉ

Wqc

Qqq

Wuc

Quu[
Wqĉ + ε

Qqq + ε
−
Wqĉ

Qqq

]
Wuĉ

Quu
>

ε

Qqq + ε

∑
c 6=ĉ

Wqc

Qqq

Wuc

Quu

�

Lemma 24 Mean Meeting Time satisfies R-QCM if and only if ε > −Ŵqĉ + Quu

Ŵuĉ
(
∑

c 6=ĉWqc(
Wvc
Qvv
− Wuc

Quu
)).

Proof 24 For A-QCM to hold, the following must be true:

fŴ (q, u) > fŴ (q, v)

Wqĉ + ε

Qqq + ε

Wuĉ

Quu
+
∑
c 6=ĉ

Wqc

Qqq + ε

Wuc

Quu
>
∑
c 6=ĉ

Wqc

Qqq + ε

Wvc

Qvv

(Wqĉ + ε)
Wuĉ

Quu
>
∑
c 6=ĉ

Wqc(
Wvc

Qvv
− Wuc

Quu
)

ε > −Wqĉ +
Quu
Wuĉ

(
∑
c 6=ĉ

Wqc(
Wvc

Qvv
− Wuc

Quu
))
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Next, we show that RWS satisfies A-QCM with an appropriate setting of the s parameter.

Lemma 25 RWS satisfies A-QCM if and only if
s > 1

Dĉĉ−Wqĉ
(Wqĉ(Dĉĉ + ε)−Qqq(Dĉĉ −Wqĉ) + (Dĉĉ+ε)Dĉĉ

Wuĉ

∑
c 6=ĉ

WqcWuc

Dcc
) .

Proof 25

fŴ (q, u) > fW (q, u)

Wqĉ + ε

s+Qqq + ε

Wuĉ

Dĉĉ + ε
+
∑
c 6=ĉ

Wqc

s+Qqq + ε

Wuc

Dcc
>

Wqĉ

s+Qqq

Wuĉ

Dĉĉ
+
∑
c 6=ĉ

Wqc

s+Qqq

Wuc

Dcc

The lemma is proved by rearranging terms in the last equation. �

A.3 Proofs for Target Co-occurrence Monotonicity (TCM)

It is obvious that Common Neighbors satisfies A-TCM and R-TCM, so we omit the proofs. We prove
conditions for the Cosine similarity.

Lemma 26 Cosine similarity satisfies A-TCM if and only if εWqĉ+
∑

cWqcWuc

||Wq:||2
√
||Wu:||22+ε(ε+2Wuĉ)

> fW (q, u).

Proof 26 For A-TCM to hold for cosine, the following must be true:

fŴ (q, u) > fW (q, u)

(Wuĉ + ε)Wqĉ +
∑

c 6=ĉWqcWuc

||Wq:||2
√
||Wu:||22 + ε(ε+ 2Wuĉ)

> fW (q, u)

εWqĉ +
∑

cWqcWuc

||Wq:||2
√
||Wu:||22 + ε(ε+ 2Wuĉ)

> fW (q, u)

�

Since the increase of the weight of the target edge doesn’t affect other target nodes’ Cosine similarities,
the condition that the Cosine similarity satisfies R-TCM is exactly the same as those for A-TCM.

The Jaccard similarity, the Pointwise Mutual Information, and the Adamic-Adar similarity do not satisfy
A-TCM nor R-TCM since they do not consider the edge weights.

Next, we prove conditions for the Backward Random Walk.

Lemma 27 Backward Random Walk satisfies A-TCM if and only if ε < 1
fW (q,u)(Wqĉ −

WuĉWqĉ

Dĉĉ
)−Dĉĉ.
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Proof 27 For A-TCM to hold for the Backward Random Walk, the following must be true:

fŴ (q, u) > fW (q, u)

(Wuĉ + ε)

Quu + ε

Wqĉ

Dĉĉ + ε
+
∑
c 6=ĉ

Wqc

Quu + ε

Wuc

Dcc
>
Wuĉ

Quu

Wqĉ

Dĉĉ
+
∑
c6=ĉ

Wqc

Quu

Wuc

Dcc

Wqĉ(QuuDĉĉWuĉ +QuuDĉĉε−Wuĉ(QuuDĉĉ + ε(Quu +Dĉĉ + ε)))

QuuDĉĉ(Quu + ε)(Dĉĉ + ε)
+
∑
c 6=ĉ

WucWqc(Quu −Quu − ε)
QuuDcc(Quu + ε)

> 0

ε

Quu + ε

WqĉQuu(Dĉĉ −Wuĉ)

QuuDĉĉ(Dĉĉ + ε)
− ε

Quu + ε

WqĉWuĉ

QuuDĉĉ
− ε

Quu + ε

∑
c 6=ĉ

Wqc

Quu

Wuc

Dcc
> 0

Wqĉ

Dĉĉ

Dĉĉ −Wuĉ

Dĉĉ + ε
− fW (q, u) > 0

ε <
1

fW (q, u)
(Wqĉ −

WuĉWqĉ

Dĉĉ
)−Dĉĉ

For the case where q and u are the only nodes occurring in context ĉ, and therefore Dĉĉ = Wuĉ +Wqĉ,
the above constraint is equivalent to:

ε <
1

fW (q, u)

W 2
qĉ

Wuĉ +Wqĉ
−Wqĉ −Wuĉ

�

Since the addition of a weight to the target context doesn’t affect other target nodes in TCM for BRW,
the condition that BRW satisfies R-TCM is exactly the same of those for A-TCM.

Next, we prove conditions for the Mean Meeting Time.

Lemma 28 Mean Meeting Time satisfies A-TCM if and only if
[
Wuĉ+ε
Quu+ε −

Wuĉ
Quu

]
Wqĉ

Qqq
> ε

Quu+ε

∑
c 6=ĉ

Wuc
Quu

Wqc

Qqq
.

Proof 28 For A-TCM to hold, the following must be true:

fŴ (q, u) > fW (q, u)

Wuĉ + ε

Quu + ε

Wqĉ

Qqq
+
∑
c 6=ĉ

Wuc

Quu + ε

Wqc

Qqq
>
Wuĉ

Quu

Wqĉ

Qqq
+
∑
c 6=ĉ

Wuc

Quu

Wqc

Qqq[
Wuĉ + ε

Quu + ε
− Wuĉ

Quu

]
Wqĉ

Qqq
>

ε

Quu + ε

∑
c 6=ĉ

Wuc

Quu

Wqc

Qqq

�

Lemma 29 Mean Meeting Time satisfies R-TCM if and only if ε(Wqĉ−
∑

c 6=ĉWqc
Wvc
Qvv

) >
∑

c6=ĉWqc(
WvcQuu

Qvv
−

Wuc).
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Proof 29 For R-TCM to hold, the following must be true:

fŴ (q, u) > fŴ (q, v)

Wqĉ

Qqq

Wuĉ + ε

Quu + ε
+
∑
c6=ĉ

Wqc

Qqq

Wuc

Quu + ε
>
∑
c 6=ĉ

Wqc

Qqq

Wvc

Qvv

Wqĉ(Wuĉ + ε)− (Quu + ε)
∑
c 6=ĉ

Wqc
Wvc

Qvv
> −

∑
c 6=ĉ

WqcWuc

ε(Wqĉ −
∑
c 6=ĉ

Wqc
Wvc

Qvv
) >

∑
c 6=ĉ

Wqc(
WvcQuu
Qvv

−Wuc)

�

A.4 Proofs for Diminishing Returns (DR)

It is obvious that Common Neighbors does not satisfy the Diminishing Returns (DR). We prove conditions
for the Cosine similarity.

Lemma 30 Cosine Similarity satisfies DR if and only if
2θ2+2

∑
c6=ĉ,c̃WqcWuc√

||Wq:||22+θ2
√
||Wu:||22+θ2

− 2θ2+
∑

c 6=ĉ,c̃WqcWuc√
||Wq:||22+2θ2

√
||Wu:||22+2θ2

>

fW (q, u).

Proof 30 For DR to hold, the following must be true:

fŴ (q, u)− fW (q, u) > fW̃ (q, u)− fŴ (q, u)

2fŴ (q, u) > fW (q, u) + fW̃ (q, u)

2θ2 + 2
∑

c6=ĉ,c̃WqcWuc√
||Wq:||22 + θ2

√
||Wu:||22 + θ2

>

∑
c 6=ĉ,c̃WqcWuc

||Wq:||2||Wu:||2
+

2θ2 +
∑

c6=ĉ,c̃WqcWuc√
||Wq:||22 + 2θ2

√
||Wu:||22 + 2θ2

2θ2 + 2
∑

c 6=ĉ,c̃WqcWuc√
||Wq:||22 + θ2

√
||Wu:||22 + θ2

−
2θ2 +

∑
c 6=ĉ,c̃WqcWuc√

||Wq:||22 + 2θ2
√
||Wu:||22 + 2θ2

>

∑
c 6=ĉ,c̃WqcWuc

||Wq:||2||Wu:||2
2θ2 + 2

∑
c 6=ĉ,c̃WqcWuc√

||Wq:||22 + θ2
√
||Wu:||22 + θ2

−
2θ2 +

∑
c6=ĉ,c̃WqcWuc√

||Wq:||22 + 2θ2
√
||Wu:||22 + 2θ2

> fW (q, u)

�

Next, we prove conditions for the Jaccard Similarity.

Lemma 31 Jaccard Similarity satisfies DR if and only if 1 > fW (q, u).

Proof 31 For DR to hold, the following must be true:

|Γ(q) ∩ Γ(u)|+ 1

|Γ(q) ∪ Γ(u)|+ 1
− |Γ(q) ∩ Γ(u)|
|Γ(q) ∪ Γ(u)|

>
|Γ(q) ∩ Γ(u)|+ 2

|Γ(q) ∪ Γ(u)|+ 2
− |Γ(q) ∩ Γ(u)|+ 1

|Γ(q) ∪ Γ(u)|+ 1

|Γ(q) ∪ Γ(u)| − |Γ(q) ∩ Γ(u)|
|Γ(q) ∪ Γ(u)|(|Γ(q) ∪ Γ(u)|+ 1)

>
|Γ(q) ∪ Γ(u)| − |Γ(q) ∩ Γ(u)|

(|Γ(q) ∪ Γ(u)|+ 2)(|Γ(q) ∪ Γ(u)|+ 1)

which is true, since the denominator of the left side is smaller than the right side. �
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Next, we prove conditions for the Pointwise Mutual Information.

Lemma 32 Pointwise Mutual Information satisfies DR if and only if 1
|Γ(q)|+|Γ(u)|+1 > fW (q, u).

Proof 32 For DR to hold, the following must be true:

|Γ(q) ∩ Γ(u)|+ 1

(|Γ(q)|+ 1)(|Γ(u)|+ 1)
− |Γ(q) ∩ Γ(u)|
|Γ(q)||Γ(u)|

>
|Γ(q) ∩ Γ(u)|+ 2

(|Γ(q)|+ 2)(|Γ(u)|+ 2)
− |Γ(q) ∩ Γ(u)|+ 1

(|Γ(q)|+ 1)(|Γ(u)|+ 1)
,

|Γ(q)||Γ(u)| − |Γ(q) ∩ Γ(u)|(|Γ(q)|+ |Γ(u)|+ 1)

(|Γ(q)|+ 1)(|Γ(u)|+ 1)|Γ(q)||Γ(u)|
>

|Γ(q)||Γ(u)| − |Γ(q) ∩ Γ(u)|(|Γ(q)|+ |Γ(u)|+ 1)− 2|Γ(q) ∩ Γ(u)| − 2

(|Γ(q)|+ 2)(|Γ(u)|+ 2)(|Γ(q)|+ 1)(|Γ(u)|+ 1)
,

|Γ(q)||Γ(u)| − |Γ(q) ∩ Γ(u)|(|Γ(q)|+ |Γ(u)|+ 1)

|Γ(q)||Γ(u)|
>

|Γ(q)||Γ(u)| − |Γ(q) ∩ Γ(u)|(|Γ(q)|+ |Γ(u)|+ 1)− 2(|Γ(q) ∩ Γ(u)|+ 1)

(|Γ(q)|+ 2)(|Γ(u)|+ 2)
,

which is true, since |Γ(q)||Γ(u)| < (|Γ(q)|+ 2)(|Γ(u)|+ 2) and |Γ(q) ∩ Γ(u)|+ 1 > 0.
�

Next, we prove conditions for the Forward Random Walk.

Lemma 33 Forward Random Walk satisfies DR if and only if θ > 2Dc̃c̃Dĉĉ
3Dc̃c̃−Dĉĉ

(fW (q, u)− Qqq(Dc̃c̃−Dĉĉ)
2Dc̃c̃Dĉĉ

).

Proof 33 For DR to hold, the following must be true:

fŴ (q, u)− fW (q, u) > fW̃ (q, u)− fŴ (q, u)

2fŴ (q, u) > fW (q, u) + fW̃ (q, u)

2θ2

Qqq + θ

1

Dĉĉ
+
∑
c 6=ĉ,c̃

2Wqc

Qqq + θ

Wuc

Dcc
>

θ2

Qqq + 2θ

1

Dc̃c̃
+

θ2

Qqq + 2θ

1

Dĉĉ
+
∑
c 6=ĉ,c̃

WqcWuc

Dcc
(

1

Qqq
+

1

Qqq + 2θ
)

θ2(
2

Qqq + θ

1

Dĉĉ
− 1

Qqq + 2θ

1

Dc̃c̃
− 1

Qqq + 2θ

1

Dĉĉ
) >

∑
c 6=ĉ,c̃

WqcWuc

Dcc
(

1

Qqq
+

1

Qqq + 2θ
− 2

Qqq + θ
)

θ2 (3Dc̃c̃ −Dĉĉ)θ + (Dc̃c̃ −Dĉĉ)Qqq
Dc̃c̃Dĉĉ(Qqq + θ)(Qqq + 2θ)

>
∑
c 6=ĉ,c̃

WqcWuc

Dcc

2θ2

Qqq(Qqq + θ)(Qqq + 2θ)

(
3Dc̃c̃ −Dĉĉ

2Dc̃c̃Dĉĉ
)θ +

Qqq(Dc̃c̃ −Dĉĉ)

2Dc̃c̃Dĉĉ
> fW (q, u)

θ >
2Dc̃c̃Dĉĉ

3Dc̃c̃ −Dĉĉ
(fW (q, u)− Qqq(Dc̃c̃ −Dĉĉ)

2Dc̃c̃Dĉĉ
)

�

Next, we prove conditions for the Backward Random Walk.
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Lemma 34 Backward Random Walk satisfies DR if and only if θ > 2Dc̃c̃Dĉĉ
3Dc̃c̃−Dĉĉ

(fW (q, u)− Quu(Dc̃c̃−Dĉĉ)
2Dc̃c̃Dĉĉ

).

Proof 34 For DR to hold, the following must be true:

fŴ (q, u)− fW (q, u) > fW̃ (q, u)− fŴ (q, u)

2fŴ (q, u) > fW (q, u) + fW̃ (q, u)

2θ2

Quu + θ

1

Dĉĉ
+
∑
c6=ĉ,c̃

2Wuc

Quu + θ

Wqc

Dcc
>

θ2

Quu + 2θ

1

Dc̃c̃
+

θ2

Quu + 2θ

1

Dĉĉ
+
∑
c 6=ĉ,c̃

WucWqc

Dcc
(

1

Quu
+

1

Quu + 2θ
)

θ2(
2

Quu + θ

1

Dĉĉ
− 1

Quu + 2θ

1

Dc̃c̃
− 1

Quu + 2θ

1

Dĉĉ
) >

∑
c 6=ĉ,c̃

WucWqc

Dcc
(

1

Quu
+

1

Quu + 2θ
− 2

Quu + θ
)

θ2 (3Dc̃c̃ −Dĉĉ)θ + (Dc̃c̃ −Dĉĉ)Quu
Dc̃c̃Dĉĉ(Quu + θ)(Quu + 2θ)

>
∑
c 6=ĉ,c̃

WucWqc

Dcc

2θ2

Quu(Quu + θ)(Quu + 2θ)

(
3Dc̃c̃ −Dĉĉ

2Dc̃c̃Dĉĉ
)θ +

Quu(Dc̃c̃ −Dĉĉ)

2Dc̃c̃Dĉĉ
> fW (q, u)

θ >
2Dc̃c̃Dĉĉ

3Dc̃c̃ −Dĉĉ
(fW (q, u)− Quu(Dc̃c̃ −Dĉĉ)

2Dc̃c̃Dĉĉ
)

�

Next, we prove conditions for the Mean Meeting Time.

Lemma 35 Mean Meeting Time satisfies DR if and only if 3θ2 + (Qqq +Quu)θ > (2θ2 + 3(Qqq +Quu)θ+
Q2
qq +Q2

uu +QqqQuu)fW (q, u).

Proof 35 For DR to hold, the following must be true:

fŴ (q, u)− fW (q, u) > fW̃ (q, u)− fŴ (q, u),

2fŴ (q, u) > fW (q, u) + fW̃ (q, u),

2(
∑
c 6=ĉ,c̃

Wqc

Qqq + θ

Wuc

Quu + θ
) + 2

θ

Qqq + θ

θ

Quu + θ
>

(
∑
c 6=ĉ,c̃

Wqc

Qqq

Wuc

Quu
) + (

∑
c 6=ĉ,c̃

Wqc

Qqq + 2θ

Wuc

Quu + 2θ
) + 2

θ

Qqq + 2θ

θ

Quu + 2θ
,

2θ2(3θ2 + (Qqq +Quu)θ)

(Qqq + θ)(Quu + θ)(Qqq + 2θ)(Quu + 2θ)
>∑

c 6=ĉ,c̃
WqcWuc(

1

QqqQuu
+

1

(Qqq + 2θ)(Quu + 2θ)
− 2

(Qqq + θ)(Quu + θ)
),

3θ2 + (Qqq +Quu)θ >
∑
c 6=ĉ,c̃

WqcWuc

QqqQuu
(2θ2 + 3(Qqq +Quu)θ +Q2

qq +Q2
uu +QqqQuu),

3θ2 + (Qqq +Quu)θ > (2θ2 + 3(Qqq +Quu)θ +Q2
qq +Q2

uu +QqqQuu)fW (q, u).

�
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Finally, we show that RWS satisfies Diminishing Return(DR) axiom.

Lemma 36 RWS satisfies DR if and only if s > 2α−Qqq where α =
∑

cWqc
Wuc
Dcc

.

Proof 36 From the definition of RWS in Section 5,

RWSW (q, u) =
α

s+Qqq
,

RWSŴ (q, u) =
α+ θ

2

s+Qqq + θ
,

RWSW̃ (q, u) =
α+ θ

s+Qqq + 2θ
.

DR is satisfied if and only if

RWSŴ (q, u)−RWSW (q, u) > RWSW̃ (q, u)−RWSŴ (q, u)

2α+ θ

s+Qqq + θ
>

α

s+Qqq
+

α+ θ

s+Qqq + 2θ

The lemma follows immediately by substituting and rearranging terms. �
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