
Hyrax: Crowdsourcing Mobile Devices to
Develop Proximity-Based Mobile Clouds

Chye Liang Vincent Teo

CMU-CS-12-131

August 2012

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Priya Narasimhan, Chair

Daniel Siewiorek

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2012 Chye Liang Vincent Teo

This research was sponsored by the National Science Foundation under grant number CNS-090754.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the US gov-
ernment or any other entity.

Keywords: mobile, cloud, grid, distributed, computing, Hadoop, Android, Hyrax,
MapReduce, smartphones, middleware, filesystem, peer-to-peer

Abstract

The computation and storage capabilities of today’s mobile devices are
rapidly catching up with those of traditional desktop computers and servers. In
fact, multi-core mobile phones with 1 GHz processors are readily available in
the market today. Mobile devices also have more onboard resources, typically
512 MB of RAM or more available. Furthermore, tablet computers, which
are even more resource-rich, are increasingly prevalent with projections of
195 million tablets to be sold by 2015. This implies that there are plenty of
computing resources present within our vicinity, and literally in our hands, in
our everyday lives.

Unfortunately, all these processing and computation resources are mostly
under-utilized as mobile devices are generally used to process local data and
programs only. In other words, devices mostly operate independently from
each other. Any data that they share usually has to go through a central con-
tent server, which involves the use of global data networks (i.e., either a Wi-Fi
connection or a 3G/4G cellular connection) to access the Internet in order to
communicate with the central server. Any computation that these devices of-
fload (perhaps to dedicated cloud-hosted services) also typically involve com-
munications through the Internet. However, with an increasing number of
both mobile and Internet users globally, the bandwidth of networks that form
the Internet are getting strained. This means that users usually experience
a perceptible delay before getting results back from the content servers they
are communicating with through the Internet. Also, given the richness of
resources that a collection of mobile devices can constitute, there might be al-
ternative ways of exploiting those collective resources to provide benefits for
the user.

To overcome these constraints, we propose to utilize local wireless net-
works to enable mobile devices that are within the vicinity of each other to
communicate directly without utilizing either the resources of a global cel-
lular network or the Internet. We believe that crowdsourcing the mobile-
computing resources within a vicinity has the potential to enable collaborative
data-intensive computing across a cloud of mobile devices within the same
network without straining the bandwidth of global networks. Effectively, the
collection of mobile devices that collaborate in such a manner represent a
genuine mobile cloud. Such collaborative computing efforts could also poten-
tially take advantage of the locality and/or data from sensors (such as GPS,
temperature, etc.) that are prevalent in smartphones today. Such a system
also has the advantage of speed because the communications only need to go
through one hop to get to their respective destinations.

iv

To achieve these objectives, we have designed and developed Hyrax, a
MapReduce system derived from Hadoop that supports cloud computing on
a networked collection of Android mobile devices. Mobile users will then
be able to leverage the collective computational resources of devices in their
vicinity through Hyrax to run distributed jobs on readily available data stored
on their devices. We evaluate the resource usage (bandwidth, CPU, memory,
battery usage, etc.) of using Hyrax on a collection of mobile devices for stan-
dard MapReduce benchmarks that are traditionally run for a cloud of desktop,
rather than mobile, computers. We also develop and evaluate a music-sharing
application to demonstrate an application of Hyrax in a possible real-world
scenerio, where users can share, and make available for download, the music
files stored on their mobile devices with other users in their vicinity.

v

vi

Acknowledgments

Acknowledgements are due to the many people who have supported me, either directly or
indirectly, in completing this work.

Firstly, I would like to acknowledge and thank Professor Priya Narasimhan, my thesis
adviser, for all her help, guidance, advice and funding for the past two years that I have
worked with her.

Acknowledgements are also due to the Defence Science and Technology Agency, Sin-
gapore, for sponsoring my education for the last 4 years. I would never have had the
opportunity to attend Carnegie Mellon University if not for their scholarship.

I would also like to thank Tan Jiaqi for his support, encouragement and occasional
input of ideas for this project over the last 2 years.

Thanks is also due to Deborah Cavlovich for all her administrative help with the Fifth
Year Master’s Programme.

My sincere gratitude to my friends Esther, Benjamin, Heow Hui, Ruthika, Hannah,
Yaqi, Junkai, Allen, Yiling, and (especially) Wee Hong for their words of encouragement,
patience, listening ears and company when I needed it. Special thanks is also due to my
roommate, Hui Han, for bearing with me all these years and for his excellent culinary
skills.

Finally, I would like to thank my parents, sister and brother-in-law for their support,
care and concern over the past few years of my education away from home. They have
been a constant source of care and comfort, even when I have not always shown my ap-
preciation.

vii

viii

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 Smartphone Technology . 2

1.1.2 Cloud Computing . 3

1.1.3 Cloud Computing & Mobile Devices 4

1.1.4 MapReduce and Hadoop . 4

1.1.5 Android . 6

1.2 Contributions . 6

2 Related Work 9

2.1 Mobile Devices as Thin Clients . 10

2.2 Mobile Devices as Computational and Storage Nodes 10

2.2.1 MapReduce on Mobile Devices 11

2.3 Augmented Mobile Applications . 11

2.4 Mobile Nodes in a Sensor Network . 12

3 Problem Statement and Motivation 13

3.1 Assumptions . 13

3.2 Requirements . 14

3.3 The Choice of Hadoop . 16

3.3.1 Advantages . 16

ix

3.3.2 Disadvantages . 17

3.4 Hadoop’s Assumptions & Mobile Cloud Computing 17

3.5 Hadoop on Android . 18

3.6 Problem statement . 19

3.7 Goals . 20

3.8 Motivation . 20

3.8.1 Advantages of Mobile Devices 21

3.8.2 Possible Applications . 22

3.8.3 Feasibility . 22

3.8.4 Cost-Benefit Tradeoff . 23

4 Implementation 25

4.1 Architecture . 25

4.2 Porting Hadoop . 27

4.2.1 Android Obstacles . 28

4.2.2 Hadoop Obstacles . 29

4.3 Block Replication Strategy . 30

4.4 Network Organisation . 31

5 Evaluation 33

5.1 Infrastructure . 33

5.1.1 Testbed . 33

5.1.2 Benchmarks . 34

5.1.3 Analysis tools . 36

5.2 Baseline performance of mobile devices vs. traditional servers 36

5.3 Performance Improvements in Hyrax . 38

5.3.1 Question . 38

5.3.2 Hypothesis . 38

5.3.3 Results . 39

x

5.3.4 Conclusions . 43

5.4 File sharing . 44

5.4.1 Question . 44

5.4.2 Approach . 45

5.4.3 Hypothesis . 46

5.4.4 Results . 48

5.4.5 Conclusions . 50

5.5 Battery consumption . 51

5.5.1 Question . 51

5.5.2 Approach . 51

5.5.3 Hypothesis . 51

5.5.4 Results . 52

5.5.5 Conclusions . 56

6 Case Study: A Distributed Music Search and Sharing Application 59

6.1 Requirements . 59

6.2 Design and Architecture . 60

6.3 Implementation . 61

6.4 Evaluation . 63

6.4.1 Test Data . 64

6.4.2 Results . 65

7 Conclusions 69

7.1 Challenges . 70

7.1.1 Android Fragmentation . 70

7.1.2 Size of Hadoop Codebase . 70

7.1.3 Debugging . 71

7.2 Future work . 71

7.2.1 Hyrax on other Mobile Platforms 71

xi

7.2.2 Improving Hadoop Performance 71

7.2.3 Reducing Power Consumption 72

7.2.4 Switching Clusters . 72

7.2.5 Mobile Rack-awareness . 73

7.2.6 Adaptive Replication and Selection of Active Nodes 73

7.2.7 Security . 73

7.2.8 Optimisation or re-implementation of MapReduce 74

7.2.9 Large-scale Testing . 74

7.2.10 Offloaded vs. Local Computation 74

Bibliography 77

xii

List of Figures

4.1 Basic architecture of Hyrax . 26

4.2 Mobile node within Hyrax . 27

4.3 Master node within Hyrax . 28

5.1 Some of the Samsung Nexus S phones that were used as our testbed for
Hyrax . 34

5.2 Simulated relative benchmark execution time vs. number of nodes for
varying levels of parallelisation. 40

5.3 Average execution times for the Sort benchmark on different cluster sizes 41

5.4 Average execution times for the RandomWriter benchmark on different
cluster sizes . 42

5.5 Average CPU utilisation for the control benchmark 43

5.6 Average network I/O for the control benchmark 44

5.7 Average CPU Utilisation for Sort benchmark 45

5.8 Average CPU utilisation for PiEstimator benchmark 46

5.9 Total Network IO for 5 runs of Sort benchmark 47

5.10 Graph of Average File Upload Time against File Sizes for a Cluster Size
of 5 with Standard Deviation . 48

5.11 Graph of total network IO for a cluster of 5 nodes and replication factor 2 49

5.12 Graph of Average File Download Time against Cluster Size for a 10MB
file with Standard Deviation . 50

5.13 Battery consumption for the Sort benchmark on a cluster of 3 nodes . . . 52

5.14 Battery consumption for the Sort benchmark on a cluster of 5 nodes . . . 53

xiii

5.15 Battery consumption for the Sort benchmark on a cluster of 7 nodes . . . 54

5.16 Average Battery Lives for Sort Benchmark 55

6.1 Overview of design of MusicDJ. Each mobile device contains its own mu-
sic files on its own local filesystem . 61

6.2 Design of cloud in MusicDJ. This cloud is virtual, and is the view that
each client / mobile node sees . 62

6.3 Design of mobile node in MusicDJ. The mobile node is the location of
actual computation and storage of data that logically belongs to the cloud.
It sees the cloud as a service and uploads data and computation to it. . . . 63

6.4 Screenshots of the MusicDJ application. On the left is a view of an upload
in progree, on the right is a view of search results 64

6.5 Graph of upload times against cluster size with standard deviation included 65

6.6 Graph of search times against cluster size with standard deviation included 67

xiv

List of Tables

5.1 Benchmark input types and sizes per node. 35

5.2 Results from Simple Benchmarks on Nexus S 37

5.3 Mean resource usage for each battery workload. Computed over entire
duration of each workload and averaged over all phones. 56

6.1 Average upload throughput for different cluster sizes 66

xv

xvi

Chapter 1

Introduction

Despite the advent of cloud computing and the increasing use of cloud services by mobile
phone users, the resources of mobile devices today are still primarily only utilised locally.
Given that the computational and storage capabilities of mobile devices today are rapidly
catching up with those of our traditional desktop computers and servers, it seems viable to
utilise these resources for collaborative data-intensive computing across a cloud of mobile
devices. In fact, multi-core mobile phones are already available in the market. Unfortu-
nately, these computational resources are currently underutilised as they are generally only
used to process local data and programs.

We developed Hyrax to utilise these resources on a network of Android smartphones
to provide a local cloud computing infrastructure largely made up of these mobile de-
vices. Hyrax is a MapReduce system based on Hadoop, which is an open-source Java
implementation of the MapReduce system and the Google File System. Hyrax, together
with the hardware resources of the mobile devices, could form the basis of a local mobile-
cloud that can be used to compute jobs. Here, we define a local mobile-cloud as a cloud
computing infrastructure that does not make use of global networks (ie the Internet).

There are already many mobile applications that obtain information or data from mul-
tiple mobile phones and process the data before displaying the results to users. Examples
include websites and services such as Flickr, YouTube and Dropbox. Even Facebook now
increasingly utilises location information from mobile users. The main difference between
Hyrax and such applications is that current applications perform the computation on a cen-
tralised remote server (ie users upload their data to the server where it is processed), while
Hyrax aims to bring the storage and computation of data to the local level on the networked
set of mobile devices, thereby bypassing the global network altogether.

1

Hyrax allows mobile users to offer their smartphones’ computing and storage resources
to other users and applications within the same network. This has the potential to enable
a collection of smartphones to execute large-scale distributed applications at little extra
monetary cost, since unlike traditional cloud-based infrastructure, no major new invest-
ment in servers and other equipment is required nor necessary. Each device acts as both
a computation and storage node, able to support local computation on (potentially local)
data as part of a larger distributed job.

The use of mobile devices for cloud computing offers some advantages over the use
of traditional servers and machines. For example, the use of mobile devices opens the
possibility of making use of local sensor and multimedia data without substantial network
transfer of data, since the computation can be performed locally on the node with the data.
This gives rise to more efficient data access patterns, as well as distributed maintenance of
hardware.

1.1 Background

We provide some necessary background in current smartphone technology, cloud comput-
ing, MapReduce and Hadoop, as well as Android in this section.

1.1.1 Smartphone Technology

Smartphone technology has seen numerous advances in the last several years, both in terms
of hardware and software. Advances in hardware have resulted in more memory, sensors
and computational resources being packed within one mobile device. A corresponding ad-
vance in software has allowed numerous applications that make full sue of the sensors and
Internet connectivity available to the user. Examples include image and video capturing,
playing of music and films, as well as games (some of which include collaboration with
other players over the Internet). The use of location sensors has also enabled applications
such as GPS navigation, which once required the use of a specialised GPS navigational
system. Tha ability to use location sensors as well as image and sound capturing also
means that smartphones are capable of producing and storing local data.

Furthermore, advances in hardware such as cheaper memory and faster processors
also mean that smartphones are now capable of storing amounts of data and performing
computations that were once only possible on traditional desktop machines. This implies
that many of us now carry the resources of a desktop machine around with use in our bags

2

and pockets constantly.

The use of smartphones has also become increasingly common and widespread. Ac-
cording to a report by telecommuncations equipment and services provider Ericsson, mo-
bile broadband subscriptions globally have reached 1 billion by the end of 2011, and is
projected to hit 5 billion by 2017 [24]. The same report stated that there were approxi-
mately 700 million smartphone subscriptions by the end of 2011, and it is predicted that
this figure will increase to 3 billion by 2017.

On a similar trend, tablet computers have also seen widespread adoptation for use
in recent years. Being larger in size, tablet computers usually have more computation,
memory and power resources than a mobile phone. In fact, studies have shown that 14 %
of mobile subscribers in the US now own a tablet device as well. This figure is predicted
to rise, and similar trends are predicted for other markets in Europe and Asia as well [16].
This further serves to increase the amount of computation power that is available at our
disposal regardless of our location.

On the other hand, despite all these advances made in smartphone technologies, some
aspects of this development are still left wanting. While numerous advances have been
made in processor speeds and memory capacities, the same cannot be said for battery
technology. Mobile devices are still severely constrained by the limitations of their battery
capacities. In fact, short battery lives still have a huge potential in destroying customer
satisfaction with their mobile devices [37]. Hence, any discussion of applications for
mobile devices must take power consumption into account.

1.1.2 Cloud Computing

Cloud computing, according to [7], refers to “both the applications delivered as services
over the Internet and the hardware and systems software in the datacentres that provide
those services.” In other words, cloud computing allows users to execute huge computa-
tional jobs on hardware provided at datacentres for a low cost. The benefits are two-fold:
users get to execute their jobs at low cost without having to invest in their own infrastruc-
ture, while service providers get to profit when their machines are constantly utilised by
their customers. Without the need to invest in their own hardware, users do not have to
worry about under-investing or over-investing in hardware, especially when they some-
times only need the hardware for a few jobs.

An important aspect of cloud computing is virtualisation, where users are given the
illusion of infinite computational and memory resources that are available when needed.
With the advent of cloud computing services such as Amazon Elastic Compute Cloud

3

(EC2) [2], users can now utilise the power of huge clusters of computing on demand and
only pay for what they use for. This gives them the ability to rapidly develop products or
expand their business at low cost.

1.1.3 Cloud Computing & Mobile Devices

The idea of “mobile cloud computing” is not new. However, most research into mobile
cloud computing to date have concentrated on using mobile devices as interfaces to access
cloud computing resources and services provided on traditional servers over the Internet.
In other words, the mobile devices only act as the client, offloading computation to other
machines off-site.

The primary motivation for accessing cloud services on mobile devices is power con-
straints. As mentioned in Sub-Section 1.1.1, battery capacities are still wanting in today’s
mobile devices. Numerous studies have been conducted to investigate the potential power
savings involved in offloading computations off-site from mobile devices. This involves a
study into the tradeoff between the energy consumption of performing the computations
locally and that of the communications involved in offloading the computations (and asso-
ciated data) off-site [34, 31]. In other cases, the motivation for offloading computation is
the prohibitively large size of the computations involved in the application, which makes
it unsuitable to be executed on a mobile hardware device (for an example, see [3]).

Our work differs significantly from the above-mentioned works in that we do not aim
to offload computations from the mobile devices to off-site servers that reside somewhere
else over a network or even the Internet. Instead, we intend to offload computations to
mobile devices in the vicinity of the client device. To date, however, performing such
computations on mobile devices have primarily been explored in the context of grid com-
puting (for example, see [11]).

One of the closest works that is similar to ours is [20], which also aims to develop a
MapReduce framework for a mobile platform. One major difference between that work
and Hyrax is the lack of a distributed file system in that work. We provide further details
about this and other related work in Chapter 2.

1.1.4 MapReduce and Hadoop

MapReduce [18] is a programming model initially developed by Google. It was designed
to process large sets of data distributed across a cluster of commodity servers. It was
specifically designed to be scalable and fault-tolerant in order to accomodate both an ex-

4

pansion in cluster size as well as equipment failure. It is usually used in conjunction with
the Google File System (GFS) [25], which is a distributed file system.

Under a MapReduce framework, jobs are essentially split into two main distinct phases:
a “map” phase and a “reduce” phase. During the “map” phase, users provide a “map” func-
tion that accepts key/value pairs as input parameters and returns intermediate key/value
pairs (which need not be of the same type). The intermediate key/value pairs are then
sorted by key value (during an intermediate phase known as “shuffle”) before being used
as input to a user-specified “reduce” functin. This function then produces the final output.
Both the initial input and final output are read from and written to a distributed file system.

MapReduce is able to parallelise jobs as it is able to split the initial input by key value
and call the “map” function on each such portion of the initial input data. In this way,
individual “map” functions on different nodes can run at the same time on different parts
of the initial input data. The same principle applies during the “reduce” phase of the job,
where intermediate key/value pairs with similar keys are handled by the same instance of
the “reduce” function. In this way, the “reduce” phase of the job can also be parallelised
and run on multiple nodes simultaneously. This entire operation is manged by a master
node, which decides how the input data is split and which nodes will handle which portion
of the input data. In order to minimise data transfers across nodes (and hence the job
execution time), the master node will attempt to ensure that each node will work on data
that is already stored on its local filesystem. If a data transfer between nodes is required,
the master node will inform the slave node concerned and the transfer takes place directly
between the two nodes without having to go through the master node. Readers might refer
to [18] for a more detailed explanation of the MapReduce framework.

Hadoop [5] is an open-source implementation of the MapReduce model and is usually
used in conjunction with the Hadoop Distributed Filesystem (HDFS) [39], which is itself
based on the GFS. Hadoop is implemented in Java.

An instance of a Hadoop cluster consists of four main processes: NameNode, Job-
Tracker, DataNode and TaskTracker. There is only one NameNode and one JobTracker
running per Hadoop cluster, and these two processes are typically executed on one or two
main master nodes. There is one DataNode and one TaskTracker instance running on
each slave node of the cluster. The NameNode is responsible for maintaining the direc-
tory structure of the HDFS, and receives information about each block of data residing in
each slave node from the individual DataNodes. The NameNode is also responsible for
deciding where new data is to reside in the cluster. The JobTracker, on the other hand, is
responsible for managing jobs and coordinates the execution of jobs and sub-tasks among
the individual TaskTrackers. The TaskTrackers are responsible for executing tasks as-
signed to its corresponding node by the JobTracker, while the DataNaodes are responsible

5

for fetching and writing data blocks on its local node.

One main draw of Hadoop is its ability to tolerate faults. Hadoop (and MapReduce)
was designed under the assumption that hardware faults will occur. Hadoop achieves fault
tolerance by re-executing failed tasks on other nodes, and also by replicating each block
of data among several DataNodes. Furthermore, Hadoop has the capability to redundantly
execute multiple instances of the same task on different nodes (known as speculative ex-
ecution) in order to increase the probability of success and decrease execution time. This
capability to tolerate faults, as well as the ability to execute largely independent tasks and
directly transfer data between slave nodes, makes Hadoop easily scalable to a cluster of a
large number of machines.

Writing applications for Hadoop is not complicated as programmers typically are only
required to specify two main functions: the “map” and “reduce” functions. The details of
data storage, as well as data splitting and task distribution, are handled automatically by
the Hadoop system and hidden away from the programmer. This takes a lot of the work
away from the programmer, enabling rapid program development.

1.1.5 Android

Android [1] is an open-source mobile operating system developed by both Google and the
Open Handset Alliance. Along with the Applie iPhone and Blackberry, Android is one of
the more popular mobile operating systems in use today. It is built on the Linux kernel,
and uses the Dalvik Virtual Machine to execute applications.

Dalvik was specifically designed to optimise applications for the limited computation,
power and memory resources of a mobile device. Android code (written in Java) must be
compiled to Dalvik bytecode (which have the .dex format) and packaged in a .apk file
to be installed on an Android device.

1.2 Contributions

We aim to develop a mobile cloud-computing infrastructure mostly made up of mobile
nodes. We present our implementation and evaluation of a mobile-cloud computing in-
frastructure based on MapReduce and Hadoop in this paper.

We focused on Hadoop since it was based on MapReduce, which was designed for
data-intensive cloud computing on commodity clusters. Furthermore, Hadoop enjoys sup-
port among the industry, being used by companies such as Yahoo!, Facebook and IBM to

6

process large sets of data.

Hadoop was a suitable choice as it already includes the features and functionalities
required for a mobile-cloud computing infrastructure, including the ability to handle node
departures. The Android platform was chosen since it is based on the Dalvik Java VM,
which allows us to execute much of Hadoop’s original codebase without heavy modifica-
tions.

This project is a continuation of an initial version of Hyrax, and represents some im-
provements over the previous project by Marinelli [33]. While Marinelli’s project was
suitable for initial use to discover the resource constraints / challenges, performance and
the scalability aspects of using mobile devices for collaborative data-intensive computing,
we found that his initial implementation of Hyrax was not suitable for wide-scale deploy-
ment on the mobile devices of common users.

To that end, we have improved on Marinelli’s implementation of Hyrax

This paper is organised as follows: Chapter 2 discusses some related work. We present
our problem statement, goals and high-level approach in Chapter 3. Chapter 4 describes
our implementation of Hyrax. Our empirical evaluation of Hyrax is given in Chapter 5.
We provide an example of a use-case for Hyrax and our evaluation of it in Chapter 6.
Finally, we discuss lessons learnt, possible future work, as well as present our conclusion
in Chapter 7.

Note that all references to the “previous implementation” or “previous report” refer to
the work described in [33].

7

8

Chapter 2

Related Work

Bahl et al [8] provide a rather comprehensive view of mobile cloud computing research
and future directions. According to them, the current research on mobile cloud computing
can broadly be categorised into two categories: using mobile devices as thin clients to ac-
cess cloud services online, and using mobile devices as computational and storage nodes
as part of a cloud computing infrastructure. These two models of mobile cloud computing
are referred to as the “agent-client scheme” and “collaborated scheme” respectively by
[29]. Another category is a hybrid of the previous two, where part of the computation is
performed on the mobile client device itself, while the rest of the computation is offloaded
to a cloud service. This is described as “augmented smartphone applications” by [15].
[29] also argue for the case of a middle-tier (ie “cloudlet”), which is a cloud computing
service that is located in the vicinity of a mobile user so that clients can access cloud com-
puting services directly without the use of the Internet. The use of “cloudlets” will greatly
improve latency, which is important in many mobile applications where user interaction is
involved.

Another category of work that is not directly related to mobile cloud computing is that
of using mobile devices as nodes in a mobile sensor network. We feel that such work
are interesting as the full potential of the mobile devices are not utilised in such cases, as
they could also be used as computational nodes. Extending these works could result in
interesting applications.

We provide an overview of the different categories of mobile cloud computing in the
remaining sections of this chapter.

9

2.1 Mobile Devices as Thin Clients

Most research into mobile cloud computing assume a model where the mobile devices are
no more than thin clients, offloading computation to other cloud resources on the Internet.

One prime example of such a work is that done by Satyanarayanan et al [38]. Instead
of accessing cloud computing facilities over the Internet, they propose setting up small
clusters of cloud computing resources in local areas such as cafes that mobile users can
access through the use of wireless LANs. They term such clusters “cloudlets.” Through
the use of cloudlets, mobile users retain the advantage of offloading huge computation jobs
to machines with more appropriate resources to handle them. An additional advantage is
that due to the proximity of the cloud computing facilities, users no longer need to depend
on Internet connectivity to access cloud services. Instead, network latency can be greatly
reduced since only a one-hop latency is involved. Using a local network also provides
greater bandwidth than a mobile Internet connection, which allows for faster transfer of
data and code. However, they propose offloading entire virtual machines to the cloudlets in
order to excute jobs. This entails the transfer of huge amounts of data as virtual machines
are huge in size. The sizes of the virtual machines, even when compressed, were at least
100 MB. This involves a huge amount of data transfer before running jobs on the cloudlets.
We describe an extention of this work in Section 2.2, which mitigates this problem.

Other works involved offloading computation to a cloud computing provider over the
Internet. An example is [3], which is an application that makes use of the availability of
sensors on mobile devices as well as leveraging the power of cloud computing resources
on the Internet to detect traffic lights for the blind, where pictures taken by cameras on the
devices are sent over the Internet to cloud computing clusters to be processed in order to
detect the position and state of traffic lights at road junctions.

2.2 Mobile Devices as Computational and Storage Nodes

There has also been some research into enabling mobile devices to act as computational
and storage nodes in a cloud computing infrastructure. These works are closer to what we
are trying to achieve with Hyrax.

One such work extends that of [38] by extending the concept of cloudlets to include
the use of mobile devices that are also in the vicinity. Verbelen et al [40] propose the use of
available mobile devices in the vicinity of a user instead of a fixed infrastructure to provide
local cloud computing services. Furthermore, they propose breaking down applications
into components and offloading componenets instead of entire virtual machines. This not

10

only reduces the data transfer necessary to execute a distributed job, but also allows greater
control over how the application is divided among the available resources.

2.2.1 MapReduce on Mobile Devices

Elespuru et al [23] developed a MapReduce system for mobile devices in order to explore
the feasibility of deploying such a system on such devices. Their work was developed
for the iPhone platform. Their results show that implementing a MapReduce system for
mobile devices is feasible. Furthermore, they have some ideas for encouraging user par-
ticipation in such a system, which includes providing incentives such as rewards.

The work which we find to be the closest to Hyrax is a system by Dou et al known as
Misco [20]. They implemented a MapReduce system from scratch using Python, targeting
the Nokia N95 smartphone. One major difference between Misco and Hyrax is that Misco
does not contain a distributed file system. As a result, input and output data are stored
on the server of their system. This makes the loss of the server even more critical than
in a typical Hadoop system, as the loss of the server also means the loss of data from the
system. This also increases data transfer when executing jobs as all mobile nodes must
download the input data from the main server before task exeuction can begin. There are
no opportunities for tasks to be assigned to nodes that already store the required input data.

2.3 Augmented Mobile Applications

Chun et al [15] introduced the idea of augmented mobile applications, where part of the
application is executed on the local mobile device, while other parts (for example, com-
putationally intensive tasks such as speech recognition) are offloaded to cloud computing
infrastructure. They proposed a system called “CloneCloud”, where the cloud computing
infrastructure hosts clones of the actual mobile devices. They envisioned the development
of (possibly annotated) mobile applications which could be analysed both statically and
dynamically to determine which portions or blocks of the application could be offloaded
to the cloud infrastructure.

[14] extends the work from [15] by actually implementing a “CloneCloud” system.
Their system operates at the thread granularity, which means that they offload work to the
cloud infrastructure at the thread level. Applications are partitioned offline through both
static and dynamic analysis. The partitioning process is automated and requires no modi-
fication to the original application nor any programmer annotations within the application

11

code. Their results indicate that speedups of up to 20 times are possible when mobile
applications are augmented as compared with executing them solely on mobile devices.
Furthermore, such speedups are obtained without requiring any effort by developers to
modify nor annotate their applications.

[26] is also a work based on partitioning an application (not necessary a mobile ap-
plication) to run on both mobile devices and traditional servers. Applications are first
represented by a data flow graph and the partitioning algorithm finds an optimal cut on
this graph that maximises some objective function. Interestingly, the primary motivation
for this work does not appear to be for mobile applications. Instead, they focus on making
non-mobile applications accessible from mobile devices. In other words, the mobile de-
vice acts as an interface to the application. For example, one of the example applications
they studied was a 3D home modelling application that was not originally designed for
mobile users.

2.4 Mobile Nodes in a Sensor Network

Craciunas et al [17] present a rather novel concept of mobile cloud computing. They pro-
pose to use physical mobile nodes (aerial vehicles in this case) as platforms to host virtual
sensor networks. These virtual mobile sensors, known as “virtual vehicles”, have the abil-
ity to migrate from one physical vehicle to another depending on the operational need of
their mission as well as the physical location of the actual vehicles. The entire network of
physical vehicles and virtual vehicles is managed by a central server (the “virtual vehicle
network monitor”), similar to how a NameNode and JobTracker manages the entire cluster
in a Hadoop system.

[17] is interesting as it allows tasks (the virtual vehicles), which collectively make up
a distributed job, to migrate from one hardware to another in the midst of execution in
order to achieve better performance. This is in contrast to traditional cloud computing
and mobile cloud computing, where tasks are typically executed to completion on a single
machine. It opens up many possible applications such as environment monitoring. It could
be inexpensive if deployed on vehicles and aircraft that are already in service on the roads
and in the skies as no investment in running and maintaining dedicated vehicles is required.

Another work that makes use of mobile devices as part of a sensor network is [10],
which makes use of sensors on mobile devices to determine events of interests in a social
setting and record them. The mobile devices mainly only play the role of sensors, while
the computation required to determine event of interests and create interesting videos of
them fall on backend servers.

12

Chapter 3

Problem Statement and Motivation

We state our assumptions, requirements, goals, non-goals, motivation, approach and prob-
lem statement in this chapter.

3.1 Assumptions

This project makes certain assumptions about the available hardware, as well as the pos-
sible applications of Hyrax. A brief justification is given with each of the following as-
sumptions:

• Hyrax will mostly be used to process data that are already available on the mobile
devices. This is in contrast to the usual cloud computing infrastructure, where data
for generic distributed jobs must be specially uploaded to the cluster or obtained
from the Internet. We do not target such generic jobs as we feel that they derive
little or no benefits from a mobile cluster as there are many other cost-effective
solutions using machines that are more capable than mobile devices.

• A central machine which acts as the master node exists in the network and is able
to communicate with all the mobile nodes. This is a requirement of our current
implementation as we do not intend to port the code for NameNode and JobTracker
over to run on mobile devices. We feel that this requirement is realistic as the master
node must have a stable connection to the network. This precludes having a mobile
node (or mobile nodes) act as the master as its connection to the network cannot be
assumed to be reliable.

13

• The master node will not fail. This is an assumption inherited from Hadoop. The
master node is a single point of failure for the entire cluster. While there is work
being done to implement a secondary master node in Hadoop, we do not implement
it for Hyrax. While such a feature could possibly be implemented in future, it is not
necessary to how the viability of Hyrax. We therefore do not plan to recover from
any master node failure.

• Data uploaded to the mobile cluster will not be modified (or will rarely be modified).
This is actually an assumption inherited from Hadoop. We feel that this assumption
is reasonable in the context of our mobile cloud infrastructure as well since we do
not expect data generated by mobile devices (sensor logs, pictures, videos etc) to
change after they have been produced.

• Users have an incentive to sacrifice some of their devices’ resources in order to
use Hyrax. We assume that users have a compelling reason to trade some of their
devices’ resources in order to derive some benefit from Hyrax-based applications.
While we do provide some motivating examples in Section 3.8, this paper is primar-
ily concerned with the technical aspects of Hyrax. Nevertheless, we recognise that
it is important that such incentives exist in order for Hyrax to be utilised to its full
potential.

3.2 Requirements

We now list the requirements of a mobile cloud computing platform, which must be able
to serve the needs of any applications written for it.

• Users and applications should be able to access any data (with the appropriate per-
missions) that is stored in the cluster regardless of the actual physical location of the
data blocks.

• The platform should be capable of splitting a job that uses data on the cluster’s
filesystem as input among many different nodes, with each node working on one
portion of the total input data independently. The platform should then be able to
combine the results from each node and present the final output to the client.

• The platform should be fault-tolerant. It should also be able to tolerate node depar-
ture and arrival without any adverse effects on jobs that are executing nor loss of
data. This is important as we anticpate that node departures will occur frequently
with mobile nodes due to their unreliable network links.

14

• The platform should be able to work on any mobile hardware that supports the ap-
plication. Currently, this only includes mobile devices that run on the Android op-
erating system. As there are many different models of mobile devices on the market
that support the Android operating system, they must all be able to work together
within the cluster. The same requirement applies to the master node as well.

• The platform should be able to scale with the size of the cluster. An increase in
the size of the cluster should not have any negative effects on the latencies of any
executing jobs.

Resource Usage

• The platform should not consume an excessive amount of battery power when run-
ning. This is an important requirement as battery power is a very limited resource
on a mobile device. Users will not want to be part of a system if it consumes too
much power and depletes the batteries too fast, rendering the device unusable.

• The platform should not require a large network bandwidth. There are two reasons
behind this requirement: network connections on mobile devices are known to be
unreliable and slow, and network usage accounts for a significant portion of a de-
vice’s power consumption. In order to reduce network data transfers, the platform
should, as far as possible, process data that resides on the device itself. Besides, ex-
cessive network usage can result in a decreased availability of services, depending
on the number of nodes and users on the network.

• The platform should not require too much memory nor consume too much processor
resources. Besides consuming power, using too much memory or too much of the
processor cycles will affect the performance of other running applications on the
device. In the case of the Android operating system, memory use is limited to 16
MB per application.

• The platform should be able to complete any given jobs in a reasonable amount of
time. This is important for a mobile cloud computing platform, especially if the
clients are the users of the devices. Clients are unlikely to have the patience to wait
if their jobs take a long time to complete.

15

3.3 The Choice of Hadoop

In order to implement a mobile cloud computing platform, there is a choice between build-
ing such a system from scratch (as some of the previous work mentioned in Chapter 2 have
done), or to modify an existing cloud computing platform. We chose to implement our mo-
bile cloud computing platform based on Hadoop because Hadoop already meets some of
the requirements listed above. It therefore seemed to serve as a good starting point. The
fact that Hadoop was developed in Java also tied in well with the fact that Android appli-
cations are developed in Java as well. We explore some the advantages and disadvantages
of this decision below.

3.3.1 Advantages

• Hadoop is able to support global data access through the HDFS, which is a dis-
tributed filesystem. Furthermore, data is transferred directly from one node to an-
other by the HDFS, which saves on network bandwidth and data transfer latency.

• Hadoop supports distributed data processing through MapReduce. MapReduce di-
vides jobs into independent tasks and assigns each task to a node in the cluster. This
assignment considers the location of the physical data blocks, such that as far as pos-
sible, computation is performed by a node that already has the required data blocks
locally in order to avoid excessive data transfers within the cluster.

• Hadoop was designed with the possibility of hardware failures. It was therefore
designed to be fault-tolerant. Hadoop handles this by replicating the data stored on
the HDFS among different nodes, as well as re-executing any failed tasks (possibly
due to node departure or equipment failure). This tolerance for faults is exactly what
is required for a mobile cloud computing platform, where the risk of equipment
failure (include battery exhaustion) and node departure is higher due to the mobile
nature of the hardware.

• Hadoop is designed to run on different types of hardware and machines within the
same cluster. This is due to the fact that Hadoop abstracts things such as the commu-
nications between nodes or disk I/O so that they are not hardware dependent. This
ensures that different hardware can work together on the same cluster running the
same code.

16

3.3.2 Disadvantages

• Due to the fact that Hadoop was initially designed for traditional machines and
servers, excessive CPU and memory usage were not of critical concern during the
development of Hadoop. This presents a problem on mobile platforms, since CPU,
memory and power resources are limited on mobile devices. See [32] for a more
in-depth discussion about the energy consumption of Hadoop.

• The master node is a single point of failure in the cluster. If the master node fails,
the remaining nodes in the cluster will have no knowledge about the file paths nor
block locations of the data blocks that are already stored in the HDFS. Only the
NameNode has this information. It will be impossible for any node to get any data
from the HDFS, even if the data is stored locally. Similarly, if the JobTracker fails,
no new jobs nor tasks can be assigned to the slave nodes. The failure of the master
node will effectively render the entire cluster useless. For a method to mitigate the
failure of the NameNode, see [35].

• Hadoop makes extensive use of technologies such as XML for its configuration files.
XML is, however, computationally expensive to parse and process. This is all the
more evident on mobile devices. Further inefficiency is exposed through the use of
servlets, which incur significant overheads, to make intermediate results available
during the course of excution of a job.

3.4 Hadoop’s Assumptions & Mobile Cloud Computing

As briefly mentioned in Section 3.1, some of the assumptions made by Hadoop fit in well
within the constraints of a mobile cloud computing platform. These assumptions include:

• Hadoop’s assumption that hardware will fail at some point is especially applica-
ble for mobile devices. In the context of mobile devices, a disconnection from the
network is also equivalent to a failure of equipment. Network disconnections are
frequent for mobile devices. These can be due to signa losses, equipment failure,
battery exhaustion or simply a result of power-saving mechanisms.

• Hadoop’s assumption that it is easier to move the computation (ie code) than to move
the data fits in really will within the context of a mobile cluster. Moving the code
instead of data significantly reduces the need for network I/O since code is usually

17

much smaller in size than data. It therefore makes perfect sense to move the code
instead of the data.

• Hadoop assumes that files are not modified after they are created / written. This ties
in well with our assumption that Hyrax will mainly be used on data that originate
from the nodes of the cluster itself (such as sensor logs, photos, videos etc). Such
data typically do not change once they are written.

On the other hand, some of Hadoop’s assumptions do not fit in well within the context
of a mobile cloud computing platform. These include:

• Hadoop assumes that any applications written for it will make use of large datasets.
It therefore sets the default block size to 64 MB, which is quite substantial. This
size, however, does not correspond to the typical filesizes of sensor logs or photos or
any other types of data that are typically stored on mobile devices. Using a blocksize
of 64 MB will result in a lot of wasted disk space. One possible workaround would
be to combine numerous files into one single file stored on a single block. Another
(much simpler) workaround would be to simply reduce the blocksize.

• Hadoop and HDFS assume that jobs will not be interactive and therefore some de-
gree of latency is tolerable. Consqeuently, HDFS is designed for batch-processing.
This assumption does not correspond with the uses of a mobile applications, which
typically involves real-time interaction with a user who expects the results of his or
her request to be delivered within a reasonable amount of time, if not immediately.
Hadoop is, in this respect, unsuitable for use on a mobile cloud computing plat-
form targeted at mobile users. Readers may refer to [12] for some ideas on making
Hadoop more suitable for interactive use.

3.5 Hadoop on Android

It was an obvious choice to port Hadoop over to run on the Android operating system.
This was mainly due to the compatibilities between many of the libraries provided by the
Android and the standard Java libraries used by Hadoop. Most of the code of Hadoop was
therefore able to run on Android without any modifications.

Furthermore, it is easy to develop applications for the Android operating system as its
SDK is easily available for download and the operating system allows any application to
be installed on its devices. This is in stark contrast to the iPhone, another popular mobile

18

operating system on the market. In order to be able to install an application on the iPhone,
developers will first need to have a developer account, which is expensive to purchase.
Android’s relative open-ness as compared to other mobile operating systems makes it an
attractive option as the platform for experimentation as it eases the development process.

3.6 Problem statement

This project aims to explore the issues related to developing a mobile cloud computing in-
frastructure. The infrastructure should allow users and applications to utilise the resources
of a mobile devices to perform collaborative computation tasks without affecting the mo-
bility of the device itself. Furthermore, since cloud computing platforms for traditional
clusters are already widely available, it makes sense to try to adopt them for use on a
mobile cloud computing platform. Specifically, we aim to address the following issues:

1. What are the different requirements between a traditional cloud computing infras-
tructure and a mobile cloud computing infrastructure? What modifications to a ex-
isting cloud computing platform must be made in order to adopt it for use on a
mobile cloud computing infrastructure?

2. How does the limitations in terms of power, storage and computational resources
affect the effectiveness of a cloud computing platform? Is performance serverely
affected?

3. What issues are involved when porting a cloud computing platform over to support
a mobile cluster? How much work is involved in resolving these issues? Would it be
better to build a new platform from scratch in order to support a mobile platform?

4. What possible applications are there for such a mobile cloud computing platform?
Are there any practical applications that would benefit greatly through the use of
such a platform?

This thesis will make the following claim:

Thesis Statement: A mobile cloud computing infrastructure can be built through the
adaptation of existing cloud computing platforms to provide local cloud services through
the use of local data and computational resources.

19

3.7 Goals

The goals of this project are as follows:

• Provide motivations for the use of mobile devices in a cloud computing architecture
by citing advantages of such a platform, as well as how that it is feasible for such a
platform to be developed.

• Implement a cloud computing platform for a mobile cluster. This shall be done
through adapting the code of Hadoop for use on the Android platform for mobile
devices.

• Evaluate the performance of Hyrax, including any improvements over the previous
version of Hyrax, and any effects on Hadoop due to the use of a moblile platform
instead of a traditional static cluster.

• Implement an application on top of Hyrax and evaluate its performance.

We do not aim to do the following:

• Develop a system / infrastructure that is fully ready for real-world deployment.
This project is still at a proof-of-concept stage, and will be some way off from a
real-world deployment. For example, our implementation only has support for lo-
cal WiFi, but a real-world deployment implementation could possible support other
forms of communications such as 3G mobile networks.

• Develop a system that is intended to completely replace a traditional cloud com-
puting static cluster. We aim for this infrastructure to mainly support distributed
mobile applications, and not take over many large-scale distributed applications that
are supported by clusters today.

3.8 Motivation

The primary motivation for developing a mobile cloud-computing infrastructure is to bet-
ter utilise the processing capabilities of a mobile device, which sit idle most of the time.
Furthermore, the use of mobile devices as nodes in a cloud-computing cluster offers some
advantages over static machines. Examples include the use of sensor and location data as
input to distributed applications. Furthermore, advances made in mobile devices technol-
ogy has made the use of mobile devices in such a platform feasible.

20

3.8.1 Advantages of Mobile Devices

Cloud computing systems are usually built on clusters of static servers. Large amounts of
data are uploaded onto these servers and computations are performed on them. The data
usually originates from external sources, and has to be specially uploaded to the system.
In contrast, we envision that the data to be used in a mobile cloud computing system will
mostly originate from within the cluster itself, specifically the mobile nodes. Since the data
originates from the nodes, it can be processed locally as well, which reduces the frequency
of data transfer over the network.

However, the use of mobile devices over traditional servers obviously posts some chal-
lenges as well. The first challenge that comes to mind is the limited resources, in terms of
power, computation and storage, available on mobile devices. Furthermore, the network
connectivity of mobile devices is far less reliable than that of a traditional static clusters.
Despite all these challenges, the use of mobile devices still offers some advantages over
static servers for a cloud computing infrastructure:

• There is no need to specially upload data to the cluster as the data is already available
since it was generated from within the cluster. The data can also be processed locally
by the node which generated it. This eliminates the need to transfer the data before
processing can take place, saving precious network bandwidth.

• Since there is no need to transfer the data in from external sources, the data can easily
be shared among other nodes through direct peer-to-peer connections within the
cluster, which is both more efficient and cost effective. It also removes dependence
on the global network connection as the service of an external centralised server is
not required.

• It will be easier and more cost-effective to maintain the cluster as the ownership of
the hardware (ie mobile devices) is distributed among the mobile users. These users
will ensure that their individual devices are always working, since they use their
devices for their personal needs as well.

• More and more mobile devices in use today have the capabilities to perform compu-
tation like any traditional machine. Besides, as the use of mobile devices is already
widespread, the hardware is already available. A mobile cloud infrastructure could
therefore potential consist of more machines than a traditional cluster at only a frac-
tion of the cost.

21

3.8.2 Possible Applications

In this section, we explore some possible applications that could be implemented on top of
a mobile cloud computing system. Such applications could possibly make extensive use of
data obtained through the sensors and logs of the individual mobile nodes. Computation
could be performed on the data directly and the results returned.

We explore the use of Hyrax for a music search and share application in Chapter 6.
This idea can be further extended to searching for a sharing other types of media that
can be found on mobile devices, typically photos and videos. Other possible applications
include making use of the sensors on the devices to provide information such as traffic
speed on the highways, crowd distribution within a building or area (such information
could be useful, for example, during a fire evacuation) or temperature monitoring within a
building in order to adjust the thermostat.

One compelling example of an application for Hyrax is searching for a particular fea-
ture in images. For example, imagine an event (such as university commencement) where
hundreds and thousands of attendees are snapping photos using their mobile phones. If a
person wanted to get all the images with his or her face in it, or images capturing a certain
event, he or she would have to contact as many attendees as possible and request that they
look through their pictures manually and send back the relevant ones. This is not only
a time-consuming process, but almost impossible to achieve. With Hyrax, however, one
could simply upload a sample image (for example, his or her face), which would then be
distributed among all the mobile nodes. Each individual node could then perform a search
on the photos that were taken by their owners locally and return only the relevant ones.
Not only is this convenient for the user, but it is also much more efficient than the previous
scenario. Hyrax actually makes such a huge task feasible.

3.8.3 Feasibility

We feel that the use of mobile devices as the hardware for a cloud computing infrastructure
is technically feasible given the advances made in terms of both hardware and software.
Besides CPU and RAM resources, the networking capabilities of mobile devices are also
diverse now. Networking options including WiFi, 3G (or even 4G) mobile networks as
well as Bluetooth are approaching speeds that are more than capable of supporting cloud
computing traffic. For example, the Samsung Nexus S (one of the phones we used during
the course of developing Hyrax) has a 1 GHz processor with 512 MB of RAM available,
as well as 16 GB of internal storage. It has the capabality to use WiFi, 3G and Bluetooth
to communicate with networks or other devices.

22

Furthermore, mobile devices now run operating systems that are based on those of
desktop machines such as Linux or Mac OS. The most popular mobile operating systems
include Android and iOS. Developers are able to write applications for these operating sys-
tems through the SDKs provided for these operating systems, much like writing programs
for traditional operating systems running on desktop machines and servers. Furthermore,
mobile applications are usually written in a programming language that is derived from
one that is already widely used. For example, applications for Android are written mostly
in Java, while those for iOS are written largely in Objective-C and C. This makes it feasi-
ble to port code that was already written in these languages to run on the mobile operating
systems.

The main obstacle in terms of hardware for a mobile cloud computing infrastructure
is the power resources of mobile device. Unfortunately, advances in battery capacities
have not kept pace with advances in processor speeds or memory densities. This is a
serious concern as running a cloud computing application will require power resources,
and the cloud computing application will be competing for this resource with the other
applications running on the device. It is important that power consumption is kept to a
minimum.

3.8.4 Cost-Benefit Tradeoff

Given that users are required to sacrifice some of their devices’ resources (disk space,
network bandwidth, CPU, battery life etc) to be part of a Hyrax cluster, there must be
some incentives and benefits involved for users before they will be willing to participate
in a Hyrax cluster. We have to explore what makes using Hyrax beneficial to users such
that it outweighs the cost of doing so.

One possible measure would be the job execution time. If a job can be completed in
a significantly shorter amount of time with Hyrax than running it on a single device, it
might be enough to convince users who want to execute similar jobs to participate in a
Hyrax cluster.

Assuming that preparing and setting up a Hyrax job takes time s, ideally, we should
have that the running time of a hyrax job on a cluster of n nodes is

t′ =
t

n
+ s

,

where t is the time taken to run the job on one single node alone (without Hyrax). In

23

order to achieve this, we need s < t
(

n−1
n

)
. This is easier to achieve with a higher value

of n. Unfortunately, it is difficult to quantify the tolerance of users in terms of the need to
sacrifice their devices’ resources.

Another cost-benefit tradeoff that needs to be considered is the block replication factor.
This factor determines how many copies of each block of data is stored within the cluster.
This factor is a tradeoff between the amount of disk space required of users to store the
replicas of each block, and the data availability of the cluster. A further discussion of block
replication is given in Section 4.3.

24

Chapter 4

Implementation

In this section, we describe how Hadoop was ported to the Android platform, and we also
provide an overview of the issues we encountered in the process of doing so. We found
that the main challenge when porting the Hadoop code lay in the differences between the
Android API and that of standard Java, which are not completely compatible.

4.1 Architecture

The architecture of Hyrax is shown in Figure 4.1.

From Figure 4.1, we can see that only the master node is connected to the router by
wired ethernet. The mobile nodes are connected to the router by wireless LAN, and all
communications within the network go through the router.

The master node hosts both the NameNode and the JobTracker. The NameNode ob-
tains information from each DataNode in order to determine what blocks reside on each
DataNode. It is also responsible for determining where nodes should get data from, and
which nodes should data be written to. The JobTracker, on the other hand, determines
how to distribute tasks among the TaskTrackers, and is responsible for coordinating the
execution of tasks for each job. The master node is shown in Figure 4.3.

Each mobile node in the cluster runs an instance of both DataNode and TaskTracker
and acts as a slave node. Disk space (typically in storage such as MicroSD) is also set
aside on each mobile node to host blocks of data for the HDFS. The DataNode manages
this storage space. Furthermore, the TaskTracker manages the computation tasks that are
undertaken by this node. A detailed description of each mobile node is shown in Figure

25

Figure 4.1: Basic architecture of Hyrax

4.2. Mobile nodes are where the concrete storage of data and actual computation takes
place within the cluster. Mobile nodes also have the potential to act as clients that send
jobs to the cluster. Users do this through the client application installed in each mobile
node. The client applications will then interact with the cluster through the NameNode
and JobTracker on the master node via the “cloud”.

It is extremely important to note that the “cloud” shown in Figure 4.1 exists logi-
cally, but not physically. Physically, the storage space and computation capabilities of the
“cloud” are located within each worker node (which are the mobile nodes), as shown in
4.2. However, these details are hidden from the client, and only the “cloud” is presented
as a virtualised interface to the client to access all these services within the cluster.

We do not assume that any of the devices nor the router are connected to the Internet,
as we envision that Hyrax will depend only on data that is available within the devices
in the cluster. This is, after all, one of the motivation for developing Hyrax: to reduce
reliance on the global network.

From the perspective of a mobile user, Hyrax is easily set up as it mainly involves
installing an Android application on the device. The only main setting that concerns users

26

Figure 4.2: Mobile node within Hyrax

could be the IP address fo the master node to connect to. Other possible settings (for
example, which files to share) would depend on the specific application that Hyrax is
being used for.

From the perspective of the system, setting up Hyrax mainly involves installing the
Hadoop code on a master node machine and running the NameNode and JobTracker dae-
mons. The setting up of a cluster is therefore probably no more complicated than that of
setting up a normal Hadoop cluster.

4.2 Porting Hadoop

We ported Hadoop 0.21.0 over to the Android platform for this implementation of Hyrax.
The goal of porting the code was to create an Android application that could act as a slave
node on a Hadoop cluster. In order to achieve this goal, the code for the DataNode and
TaskTracker had to be completely ported over to the Android platform. This was a com-
pletely new port from that of the previous implementation of Hyrax, which ported Hadoop
0.19.1. The main challenge lay in reconciling the differences present in the Hadoop code-
base that resulted due to the incompatibilities of the Android API and the Java API. We
ported the code to run on devices that run Android 2.1 (Update 1) or later (ie Android API
Level 7).

It is not our goal to use the Android devices as the master node in the Hadoop cluster.
We therefore did not port the code for the NameNode and JobTracker over to the Android

27

Figure 4.3: Master node within Hyrax

platform, although it should be possible to do so. We feel, however, that given the unreli-
ability of the connection of a mobile node to the cluster, it is unsuitable to implement the
NameNode and JobTracker on a mobile node as they are both single points of failure for
the system. We thus still require a traditional desktop machine or server within a Hyrax
cluster to serve as the master node.

4.2.1 Android Obstacles

As mentioned earlier, porting Hadoop over to the Android platform proved to be a difficult
task. While API differences were easily caught and corrected at compile time, the sheer
volume of code in the Hadoop codebase made this task of rewriting the offending portions
of the code extremely time-consuming. Furthermore, besides the Hadoop codebase itself,
some libraries that Hadoop made extensive use of (including Java libraries) also contained
incompatibilities with the Android API. The source code for these libraries had to be
downloaded, modified and included in the final Hyrax code.

Another major obstacle was that the java executable that is usually used to run Java
programs is not available on Android. Instead, applications must be packaged in a .apk
file before they can be executed in Android. This forces the entire Hyrax application to
be packaged in the same file and to run in the same process. Since the original Hadoop
launches the DataNode and TaskTracker instances as separate processes, this had to be
changed for Hyrax. In Hyrax, the DataNode and TaskTracker instances are run as seperate

28

services within the same application.

A related issue is that of launching tasks on the Android slave nodes. Upon receiving
a task from the JobTracker, Hadoop usually forks a new process and runs the task within
that process. Forking a new process is, however, not possible with Android. The code for
the TaskTracker has therefore been modified to launch a new thread to handle any new
tasks that is assigned to it by the JobTracker. The new task is launched with an explicit
call to the child’s class main method.

A major improvement over the previous version of Hyrax is the ability of the current
implementation to support dynamic class loading. Hadoop packages a job’s code into a
Java class file before sending it over the network (through the HDFS) to the slave nodes,
which then load the classes dynamically and execute them at runtime. However, the byte-
code used by the Java JRE and Dalvik are different. Since code must be in the .dex
format before it can be excuted by the Android system, we are not able to dynamically
load classes as Hadoop did without modifying the client side code that is used to launch
the job. The client-side code has been modified to compile the job’s code into the .dex
format before it is sent to the slave nodes for execution. Of course, if job class files are
to be launched from the mobile devices itself, it will probably already be packaged into
the .apk file and not require any dynamic class loading, which will result in faster job
execution.

Other issues include race conditions involving file I/O that are a result of different
behaviours between the Java and Android libraries, where files are closed before they are
completely written. These issues were more difficult to discover and debug because they
could not be reliably reproduced and only manifested themselves at runtime.

It should be noted that due to the size of the Hyrax application, much of the debugging
was done through observation of the application’s log through the logcat utility provided
with the Android SDK. This was a time-consuming and painful process as this meant
that debugging was mostly done manually. Due to the size of the codebase, it also takes
several minutes to compile Hyrax everytime a modification was made to the code. All
these contributed to the development time of the entire system.

4.2.2 Hadoop Obstacles

Since Hadoop was designed to be run on traditional hardware, some of the assumptions
made by its designers do not hold for mobile devices. Such assumptions affect the perfor-
mance of Hyrax.

Assumptions regarding the amount of memory available for use can be easily corrected

29

through the Hadoop parameters. For example, Hadoop typically allocates buffers of up to
100 MB in size, but the heap space of an Android application is limited to 16 MB. The
buffer sizes had to be reduced, which in turned cause excessive swapping to occur. This
had to be reduced through the io.sort.record.percent parameter.

Another key change that was made was to change the format of the Hadoop configu-
ration files from XML to a simple property file format. The primary motivation for this
change was the excessive computation and memory requirements for parsing a XML file.
This change would enable faster initialisation of the DataNode and TaskTracker instances,
as well as jobs and tasks.

A few other minor changes were also made to the Hadoop codebase. An example
includes a simple check when accessing data through the HDFS to see if the node where
the data is to be retrieved from is the local node. This idea originated from [12]. The
original Hadoop code treats all nodes the same, and forces the data to be retrieved through
the Java networking APIs even if the data is available locally. The code was changed
such that the data is retrieved from the node’s local storage directly if the data is available
locally. This simple change has led to a shorter execution time of up to 30 seconds on
some sample example jobs provided with Hadoop.

4.3 Block Replication Strategy

The replication factor of each block of data in the HDFS can be configured. The replication
factor is basically a tradeoff between the availability of data and the cost of network data
transfer (and consequently, battery consumption). Having a high replication factor means
that the data will be available on more nodes, which provides more flexibility in terms of
task assignment as well as more tolerance towards node failure. However, it also means
that each block of data will have to be copied to more nodes, resulting in higher network
data transfer.

On the other hand, if the replication factor is low, then data is at risk of being lost from
the cluster completely if the nodes that hold the relevant blocks suddenly depart from the
cluster. Furthermore, if the data is in high demand, this also places a very high load on the
devices that hold the blocks as other nodes will often request for these blocks to be read.

In order to mitigate the issues outlined above, users might prefer to specify a replication
factor for each file (or type of file). For example, users might want to keep the replication
factor for logs and multimedia files to be 1 so as to avoid excessive network transfers due
to replications. In such a case, the file will only be stored on the local device where the

30

data originated from. However, if a file proves to be popular, it will make sense to give
it a higher replication factor so as to reduce the load on the originating device, as well
as to avoid excessive network transfer as the JobTracker has more flexibility in assigning
tasks that require that data as input to nodes which already contain the relevant blocks. It
will be quite trivial to allow users to set the replication factors for individual files as the
HDFS allows this, so it is just a matter of exposing that setting to the users. Users might
want control over this parameter on a case-by-case basis, depending on the requirements
of their application.

Getting the block replication correct can be critical. On the one hand, we would prefer
the replication factor to be low in order to minimise usage of disk space, since users are
not likely to be willing to sacrifice too much disk space on their devices for Hyrax. A
low replication factor can also result in the further benefit of less data transfers, since
data needs to be replicated to fewer nodes. On the other hand, in order to ensure data
availability in the face of node departures / failures, we prefer the replication factor to be
high. Assuming that the probability of a node departing the cluster is d for every unit of
time, and that the replication factor is r, then there is a probability of dr that a block of data
will be lost from the cluster if all the nodes that it is replicated to depart at approximately
the same time (before the cluster has a chance of making up for lost replications). It is
up to users or an administrator to determine what the acceptable tolerance for data loss is,
together with a consideration of the amount of space needed to store data replications, in
order to decide what the replication factor should be.

4.4 Network Organisation

Hadoop originally has a concept of servers on racks. Hadoop has a default replication
factor of 3. In order to protect against data loss, Hadoop usually stores two copies of each
data block on servers within the same rack, and the final copy on a server on a different
rack. In this way, even if one entire rack of servers were to be unavailable (due to a power
loss, for example), there would still be one copy of the data block on another rack, which
will then be replicated to bring the number of copies of that block back to 3.

We do not currently have a concept of racks for Hyrax, although one could possibly be
implemented. For example, we could possibly augment the mobile nodes with traditional
servers so that data blocks could also be stored on those static servers, where the chances
of node failure are far lower than that of mobile nodes. Furthermore, these servers will
be able to process tasks in a shorter amount of time than a mobile node. In this way,
we could possibly have two racks: a mobile rack and a server rack. This configuration

31

is feasible since very little code needs to be modified to adapt the Hyrax code to run on
servers. This is because the code uses the same interfaces and network protocols for inter-
node communications. It should be noted, however, that if static servers are present in
the clusters, it would not make much sense to replicate data blocks to the mobile nodes
anymore.

Another possibility would be to assign the mobile devices to racks, perhaps depending
on their location in the network. However, due to the mobility of these devices, such a
scheme could result in issues of frequently reassigning the devices to different racks as
their locations change. This would in turn wreck havoc in the data replication scheme.
Another possibility would be to assign racks to devices based on the kind of hardware and
resources available on the devices. While this would ensure that once a device is assigned
to a rack it will remain in that rack, it would result in uneven rack sizes of many of the
devices are made up of similar hardware (same device model, for example).

In either case, a rack scheme, whether it be a combination of servers and mobile de-
vices or just mobile devices alone, can be explored in future work.

32

Chapter 5

Evaluation

We present our evaluation results of Hyrax in this chapter. We mainly evaluate Hyrax
based on its performance in relation to the requirements that were established earlier. Note
that because we are using similar benchmarks as that of the previous study of Hyrax, we
do not perform any analysis of the performance of Hadoop on traditional servers, as that
analysis has already been done in the previous work.

5.1 Infrastructure

5.1.1 Testbed

We conducted our experiments on a pure mobile devices cluster (with the exception of the
master node, of course) that consists of Samsung Nexus S [27] phones (see Figure 5.1).
The Nexus S devices were all running Android 4.1.1, which was released on 9 July 2012.

The hardware of the Nexux S phones contain a 1 GHz Cortex-A8 processor, 512 MB
of RAM and a 1500 mAh lithium-ion battery. The phone is capable of communicating
through IEEE 802.11 b/g/n, has GPS capabilities, as well as sensors such as an accelerom-
eter and a digital compass. In a departure from many earlier devices running Android,
the Nexus S has an internal memory of 16 GB, with no allowance for the insertion of an
external microSD card. This memory (known as external storage memory) is used to store
not just user data (such as photo or video files), but it is also used to store the Hyrax logs,
sensor logs, resource usage logs etc. Most importantly, it is also where the HDFS data
blocks are stored.

33

Figure 5.1: Some of the Samsung Nexus S phones that were used as our testbed for Hyrax

The phones communicate with each other, as well as the master node, through a
Linksys WRT54GL wireless router. The router is capable of supporting the IEEE 802.11
g/n standards. No modifications were made to the router.

The master node, which runs the NameNode and JobTracker daemons, runs on a desk-
top machine that is connected to the router through a normal Ethernet connection.

5.1.2 Benchmarks

We made use of benchmarks and run them on Hyrax in order to evaluate the performance
of Hyrax. These benchmarks are derived from some of the example applications that come
together with Hadoop. They include Sort, RandomWriter, PiEstimator, WordCount and
Grep. We use similar benchmarks to that from the original Hyrax implementation study
in order to provide a basis for comparison in any differences in performance between this
new implementation over the previous one. The benchmarks are listed in Table 5.1.

As Table 5.1 suggests, the total input size for each benchmark is scaled to the size

34

Benchmark Input Type(s) Input Size
PiEstimator Maps per host 3

RandomWriter Bytes per map, Maps per node 1 MB, 2
Sort Bytes per map, Maps per node 256 KB, 1
Grep File size, Files per node 64 KB, 1

WordCount File size, Files per node 32 KB, 1

Table 5.1: Benchmark input types and sizes per node.

of the cluster in order to ensure that each node in our cluster is assigned some work.
Therefore, the total amount of work done by the cluster in aggregate will increase with the
cluster size. However, the average amount of work done by each individual node within
the cluster should be the same. We provide a brief description of each benchmark below.

In order to account for the base resource usage of Android’s background processes, we
also run a control benchmark by running Hyrax for 60 seconds without executing any jobs
and collecting the corresponding resource usage statistics. This control benchmark will
also account for the overhead of the DataNode, TaskTracker and communications with the
master node.

We only take into account the resource usage statistics within the execution phase of
each benchmark.

Description of Benchmarks

• The PiEstimator benchmark uses a Monte Carlo method to calculate an estimate for
the value of π.

• The RandomWriter benchmark randomly generates a certain amount of data at each
node and writes it to the HDFS.

• The Sort benchmark actually makes use of the RandomWriter benchmark to first
generate sortable data, and then sorts this randomly generated data. Sort’s map
phase is an identify function, as the benchmark takes advantage of the fact that
intermediate keys are sorted by Hadoop before the Reduce phase.

• The Grep benchmark searches for a word or pattern within a given piece of text
placed on the HDFS.

• The WordCount benchmarks counts the number of times each individual word ap-
pears in a given piece of text placed on the HDFS.

35

We launch each benchmark from a separate client machine (not a mobile device)
through the ./hadoop program and leave Hyrax to load the required code to execute
the jobs from the HDFS dynamically.

5.1.3 Analysis tools

We make use of both Android system resource usage logs and Hadoop logs in order to
analyse the performance of Hyrax.

System resource usage logs

We make use of information from /proc to study the system resource usage of Hyrax.
We study relevant information such as CPU usage, memory usage, disk I/O and network
I/O. To aid us in this, we made use of code from NetMeter, an Android application that
allows users to troubleshoot performance issues by collecting network and CPU usage
statistics over time.

We also included code to log the battery levels of each device over time in order to
study the battery consumption due to Hyrax. Naturally, we have to make sure that the de-
vices are unplugged from any chargers or USB ports in order for the battery level statistics
to be meaningful.

5.2 Baseline performance of mobile devices vs. traditional
servers

A study of the differences in the baseline performance between an Android G1 and tra-
ditional servers was already done in the previous report on Hyrax. We now explore the
baseline performance difference between the Samsung Galaxy S, Android G1 and tradi-
tional servers by running the same four micro-benchmarks on the Galaxy S and comparing
the results with that from the previous work.

The four micro-benchmarks are each bound by CPU, memory, disk or network re-
sources. A brief description of each benchmark is given below.

36

Benchmark G1 (MB/S) Nexus S (MB/s) Server (MB/s) Nexus S Advantage
Memory Write 12 142 4600 11.8x
Memory Read 11 114 4500 10.4x

Disk Write 8.7 5.5 66 0.6x
Disk Read 15 16 460 1.1x

Network Write 0.92 0.26 87 0.3x
Network Read 0.64 0.2 86 0.3x

CPU N/A N/A N/A 6.6x

Table 5.2: Results from Simple Benchmarks on Nexus S

Descriptions of Micro-Benchmarks

• The CPU benchmark simply executes an empty loop for a number of iterations.

• The memory benchmark writes to a buffer sequentially for a number of times, and
then it is subsequently sequentially read from.

• The disk benchmark, data is sequentially written to the device’s internal memory
andsubsequently read.

• The network benchmark runs the benchmark on one device while a socket is running
on another similar device. Data is written and read from the socket server.

The results of the simple benchmarks on the Nexus S are given in Table 5.2. We
also include the results from the G1 and traditional servers from the previous report for
comparison. In this table, the Nexus S advantage is the advantage of the Nexus S over the
G1.

As Table 5.2 shows, the newer hardware and software of the Nexus S offers advantages
over the Android G1 in terms of memory access and CPU speed. The performance of disk
access is comparable between the two devices. However, the Nexus S performs poorly in
terms of network I/O. This has implications for Hyrax since Hyrax depends on data and
code being transferred over the network. Furthermore, the poor performance of network
I/O in both devices suggests that it would be prudent to keep the need of network I/O in
Hyrax down to a minimum.

The huge difference in memory access is probably due to a combination of better
hardware as well as better software in the Nexus S. The better performance of the CPU is
not surprising since the Nexus S has a more capable processor than the Android G1.

37

5.3 Performance Improvements in Hyrax

In this section, we study the performance differences between this implementation of
Hyrax agains the previous one. We also determine how Hyrax scales with the cluster
size.

5.3.1 Question

We aim to explore any improvements (or setbacks) from the previous version of Hyrax.

Approach

We run the exact same benchmarks on Hyrax as that in the previous study in order to
provide a basis for comparison. We varied the cluster size from 1 to 9 and ran each
experiment 5 times and took the average values of statistics such as job execution time, task
execution time, CPU utilisation etc. Similar to the previous study, we set the replication
factor of the HDFS to 2 in each case.

Recall from Subsection 5.1.2 that in our benchmarks, the total amount of work done
by the cluster in aggregate increases with the size of the cluster, but the average amount of
work done by each individual node remains approximately the same.

Since the benchmarks used are the same, a direct comparison can be made between the
results of this study and those of the previous one.

5.3.2 Hypothesis

Our hypothesis is the same as that in the previous study.

According to Amdahl’s Law, we can expect the total execution time of a benchmark to
increase linearly with the cluster size, depending on what fraction of the benchmark can
be executed in parallel.

Amdahl’s law states that given n nodes, we can expect a maximum speed-up of

Sn =
1

(1− P) + P
n

, where P is the fraction of a program that can be parallelised.

38

If we apply Amdahl’s law and assume a fixed input size, then we can derive a lower
bound on our execution time. This should be

En ≥ ((1− P) +
P

n
)E1

, where En is the execution time for a cluster of size n. However, since the input size for
our benchmarks are actually proportional to n, we have to modify the above inequality.
Given that the input size, In of our input size is

In = nI1

, we can therefore determine the execution time per unit of input instead. This will be

En

In
≥ ((1− P) +

P

n
)
E1

I1

We can then derive that

En ≥ (1− P)E1n+ PE1

In other words, we can expect that the execution time for our benchmarks will increase
linearly with a gradient of (1 − P)E1. This depends on the value of P , which is difficult
to determine. Figure 5.2 shows the predicted execution time versus cluster size for various
values of P .

We expect that average CPU utilisation should remain consistent across cluster size,
since the average amount of computation performed by each device is about the same
regardless of cluster size. We, however, expect that network IO will increase roughly
linearly with the cluster size since our input data size is proportional to the cluster size.

5.3.3 Results

Execution time

The exeuction time of a benchmark is the total time that a job takes to run in a benchmark.
These job times are calculated from the job launch time and the job finish times in the
Hadoop logs.

In general, the execution time of a job increases with the number of clusters n. This can
be seen in Figure 5.3 and Figure 5.4. As predicted by the model, the execution times of the
tasks increase roughly linearly with the cluster size. However, we note that the absolute
execution times of the Sort benchmark is higher than that from the previous study, while
those of the RandomWrtier benchmark are similar.

39

Figure 5.2: Simulated relative benchmark execution time vs. number of nodes for varying
levels of parallelisation.

40

Figure 5.3: Average execution times for the Sort benchmark on different cluster sizes

Resource usage

Figure 5.5 shows the average CPU utilisation for the control benchmark, while Figure
5.6 shows the average network I/O for the control benchmark. Recall that the control
benchmark is simply a benchmark that runs Hyrax for 60 seconds without running any
jobs in order to determine how much the CPU is utilised by Hyrax and other applications
on the device.

As can be seen in Figure 5.5, the average CPU utilisation stays relatively constant
for all cluster size, which is to be expected since no jobs were executed, therefore there
was no unusually heavy demand for the CPU. The same can also be said for the average
network I/O for the control benchmark, where the average number of kilobytes sent and
received per device stays relatively constant for all cluster sizes. This means that the
average background network traffic required to run Hyrax does not depend on the cluster
size.

We expect CPU utilisation to increase when running our benchmarks, but it should
remainly relatively constant across cluster sizes. For network IO, we expect network IO
to increase roughly linearly with the cluster size since our benchmark input size is propor-
tional to the cluster size. Furthermore, since we are running Hyrax on a closed network,

41

Figure 5.4: Average execution times for the RandomWriter benchmark on different cluster
sizes

the total bytes received over the network should roughly correspond to the total bytes sent.

We also show the average CPU utilisation for the Sort and PiEstimator benchmarks
in Figure 5.7 and Figure 5.8 respectively. Compared to the previous study, the average
CPU utlisation for both benchmarks is lower in this study, most probably due to the better
hardware that we used since the benchmarks and input sizes were the same.

Surprisingly, if we compare Figures 5.7 and 5.8 with Figure 5.5, it appears that even
with jobs executing, the load on the CPU does not increase substantially at all. Of course,
CPU load is also job-dependent, but a further study of the CPU load imposed by jobs may
be warranted.

Figure 5.9 shows the total network IO for 5 runs of the Sort benchmark. As expected,
the total network IO increases with the number of nodes due to the increase in the amount
of data to be sorted and also increased background traffic. However, given that the total
amount of data that needs to be sorted is only 2n MB, where n is the number of nodes in
the cluster, the figures in Figure 5.9 seem unusually high. For example, in the case of 2
nodes, an average of over 12 MB of data is transmitted over the network just to sort 4 MB
of data for each run. The situation worsens in the case of a cluster consisting of 9 nodes,
where sorting 18 MB of data results in traffic in excess of 100 MB per run. Even if the

42

Figure 5.5: Average CPU utilisation for the control benchmark

figures in Figure 5.6 are taken into account, the high network IO for the Sort benchmark
is still not sufficiently explained. A further investigation into whether this constitutes an
inefficiency in either the HDFS or MapReduce framework is warranted in a future work.

5.3.4 Conclusions

As expected, the average job execution time increases with the cluster size. This is in line
with our hypothesis involving Amdahl’s Law. The average CPU utilisation per device also
remained fairly consistent, which is also in line with our hypothesis. The trend of total
network IO also agreed with our hypothesis, with total network IO increasing roughly
linearly with the cluster size. However, the absolute figure of the total network IO does
not seem to correspond with the input data size. The total network IO figures in Figure 5.9
seem excessive when compared with the input size of the job, which is approximately 2n,
where n is the cluster size.

43

Figure 5.6: Average network I/O for the control benchmark

5.4 File sharing

One of the primary motivations for developing Hyrax was to avoid uploading data to offsite
cloud services over the Internet, especially when the data is readily available from devices
that are in the vicinity. We now evaluate how effective Hyrax and the HDFS is in achieving
this aim by comparing the file upload and download times to and from both the HDFS and
a file hosting service over the Internet.

5.4.1 Question

Our main goal is to compare how file sharing (specifically, file upload and download)
within the HDFS compares with file sharing over a file hosting service through the Internet.
Our secondary goal is to compare how the replication factor of files within the HDFS
affects the file upload and download times.

44

Figure 5.7: Average CPU Utilisation for Sort benchmark

5.4.2 Approach

We make use of DropBox [21], a popular file hosting service online, as our offsite file
hosting service. We access the Internet through a campus wireless connection. The files
were uploaded and downloaded through the DropBox application for Android. We chose
to use an existing online file hosting service instead of our own server as transferring data
over the Internet appears to be a more realistic scenerio since most mobile users currently
access cloud services over the Internet.

To determine file upload times, we upload files of sizes 5, 10, 15, 20, 25 and 30 MB to
the HDFS and the offsite file hosting service from a node within a cluster of 5 nodes. For
the HDFS, we do this for every node and take the average of the readings. We also vary
the replication factor of the files. For uploading to DropBox, we only take the reading of
one upload as DropBox appears to keep a copy of the file on their server even after we
have deleted it, which makes for inaccurate readings for subsequent uploads.

We keep the cluster size constant at 5 when uploading files. We do not anticipate that
there will be significant changes in file upload times regardless of cluster size. We conduct
an evaluation of an application that studies file upload times with respect to cluster size
in Subsection 6.4.2. The results from Figure 6.5 seem to suggest that it is indeed the case

45

Figure 5.8: Average CPU utilisation for PiEstimator benchmark

that cluster size has no significant impact on file sharing operations.

File download times are measured by downloading the same file from all nodes within
the cluster simultaneously. We vary the cluster size between 3 to 7 as well as the replica-
tion factor of the files to determine how fast the HDFS can serve data to multiple nodes
simultaneously.

Data Set

Our files are generated through the dd utility, with input taken from /dev/random. We
use this to generate files of sizes 5, 10, 15, 20, 25 and 30 MB.

5.4.3 Hypothesis

For uploads to the HDFS, we expect the upload times to increase with the replication
factor. This is due to the additional copying that needs to be performed when data is
written to the HDFS. On the other hand, we expect the download times to decrease as the
replication factor is set higher. This is because with a higher replication factor, less data

46

Figure 5.9: Total Network IO for 5 runs of Sort benchmark

transfer is required overall due to more nodes already having the data locally.

We also expect that the transfer times will increase with file size for both file uploads
and downloads since more data needs to be transferred when files are larger in size.

It is hard to predict how the transfer times to an online hosting service will compare
with that of the HDFS. We expect that the HDFS should outperform the online service for
a replication factor of 1. However, due to the additional data transfer required for higher
replication factors, it is possible for the online hosting service to outperform HDFS in
those cases.

We expect the total amount of network traffic to increase with the file size as well. The
increase should correspond to the number of times the file is replicated on the network.
For example, for a replication factor of 2, we expect that the total network IO should be
around the same as each file size, since the file will only be sent over the network once.

47

5.4.4 Results

File Upload

The results for our file upload experiments for files of different sizes and different replica-
tion factors are shown in Figure 5.10.

Figure 5.10: Graph of Average File Upload Time against File Sizes for a Cluster Size of 5
with Standard Deviation

Figure 5.10 suggests that our hypothesis that file upload times will increase with repli-
cation factor is correct. It also validates our hypothesis that larger files will result in longer
file upload times. However, the standard deviation, especially that for a replication factor
of 3, suggests that file upload times can vary widely across different runs and devices. This
could be due to unreliable network links, resulting in more time spent repeating transmis-
sions.

Figure 5.10 also shows that uploading files to DropBox over the Internet will take a
shorter amount of time, especially for larger file sizes. Since our network latency is shorter
when transferring to the HDFS than by transferring across the Internet, this result possibly
exposes some of the weaknesses or inefficiencies of the HDFS or its data transfer protocol.

48

Figure 5.11: Graph of total network IO for a cluster of 5 nodes and replication factor 2

Figure 5.11 shows the total network IO for uploading the files on a cluster of 5 nodes
with the replication factor set to 2. This is for a total of 5 runs of the uploading experiment,
so we should expect to see a total network traffic (that is, either received or sent) of about
5s, where s is the size of the file being uploaded. Instead, we see that the total network
traffic is way more than 5s, sometimes up to 2 times. This does not fit with our hypothesis,
but agrees with our findings from Subsection 5.3.3.

File Download

The results for our file download experiments for a 10MB file are shown in Figure 5.12.

The average download time of a 10MB file from DropBox for a cluster of 7 phones
was about 20 seconds.

Figure 5.12 suggests that our hypothesis of longer download times for smaller replica-
tion factors is correct. Furthermore, the average download time increases with the cluster
size, which is also expected since more bandwidth is bring used to transfer the blocks
to the requesting nodes. The small standard deviations seen in the download times also
suggests that download times are consistent across runs and nodes.

49

Figure 5.12: Graph of Average File Download Time against Cluster Size for a 10MB file
with Standard Deviation

5.4.5 Conclusions

While setting a higher replication factor will result in increased parallelism in serving
data, it comes at a cost of higher data transfers during data upload as compared with
uploading to a server offsite. However, a faster download time might offset the high cost
of file upload with a higher replication factor, depending on application. Also, note that
the Internet connection used for this experiment is fast as it was a campus connection.
Internet connections of similar quality might not be assured in a more realistic situation.

Again, as with Subsection 5.3.3, we see excessive network IO traffic when uploading
the files to HDFS. This excess traffic could possibly account for the slow upload speed
that was observed. A further investigation into the causes for the excess traffic could be
undertaken in the future.

50

5.5 Battery consumption

Power resources are a huge constraint on any mobile device. Users will not want to use
a system or application that consumes too much power, resulting in the need for more
frequent charging. In this experiment, we investigate the rate of battery consumption on
our testbed equipment while running Hyrax, and compare the results to that from the
previous implementation.

5.5.1 Question

In this experiment, we want to know how does the battery consumption of the current
implementation of Hyrax compare to that of the previous implementation.

5.5.2 Approach

Similar to the previous study, we run the Sort benchmark so as to provide a basis for
comparison. The benchmark is ran repeatedly until battery exhaustion.

Besides collecting statistics on battery levels periodically, we also collect logs of other
system resources such as CPU utilisation, memory use as well ask Disk I/O. We also
collected the logs from the jobs in order to determine battery consumption rate during
different phases of a job (map, reduce etc).

We run the experiments on clusters of 3 nodes, 5 nodes and 7 nodes.

Note that the GSM modules of the phones were left running, as would be typical of
a phone usage scenerio, even though no calls nor SMS messages were sent / received
while the experiments were running. Therefore, the GSM modules would have consumed
some of the battery power. Note also that the screens of the phones were turned off for
the duration of the experiments, which would also be typical of normal usage as we do
not anticipate that users would have their screens on while running Hyrax unless they are
performing other activities or are acting as the client.

5.5.3 Hypothesis

Carroll and Heiser [13] have shown that RAM and SDCard usage play a negligable role in
the overall power consumption of a smartphone. On the other hand, they have concluded
that the screen and GSM module are the biggest consumer of battery power. However,

51

since we run out experiments with the screen turned off and the GSM module in what is
essentially an idle state, we believe they are not significant contributing factors to power
usage for our experiments.

Given that we are using newer hardware (Nexus S versus Android G1) with a battery
that can hold more charge (1500 mAh versus 1150 mAh), we would expect that the bat-
teries should be able to last longer in this study than in the previous one. Furthermore, we
also expect reduce tasks to consume more power than map tasks since reduce tasks involve
network I/O during the “sort” and “shuffle” phases of the task. We expect power consump-
tion to increase with the number of nodes in the cluster as well since an increase in the
number of nodes means an increase in network traffic due to increased communications
between nodes.

5.5.4 Results

Figures 5.13, 5.14 and 5.15 show the graphs of the battery levels over time for a cluster of
3 nodes, 5 nodes and 7 nodes running the Sort benchmark respectively.

Figure 5.13: Battery consumption for the Sort benchmark on a cluster of 3 nodes

52

Figure 5.14: Battery consumption for the Sort benchmark on a cluster of 5 nodes

53

Figure 5.15: Battery consumption for the Sort benchmark on a cluster of 7 nodes

54

Figure 5.16: Average Battery Lives for Sort Benchmark

55

Resource 3 Nodes 5 Nodes 7 Nodes
CPU 23.58 % 37.60 % 34.15 %

Disk reads 0.160 reads/s 0.103 reads/s 0.109 reads/s
Disk writes 6.046 writes/s 5.761 writes/s 5.025 writes/s

Network send 36.00 KB/s 41.94 KB/s 37.89 KB/s
Network receive 34.55 KB/s 39.74 KB/s 35.21 KB/s

Table 5.3: Mean resource usage for each battery workload. Computed over entire duration
of each workload and averaged over all phones.

Figure 5.16 shows the average battery life for each device for clusters of size 3, 5 and
7 running the Sort benchmark.

Table 5.3 shows the resource usage of each run on 3 nodes, 5 nodes and 7 nodes. These
readings are the mean readings over all the phones for each cluster.

It should be noted that although the average network traffic appears low in Table 5.3
overall, a previous study by Balasubramanian et al [9] has shown that the energy con-
sumption for WiFi is highly dependent on the inter-transfer interval. They show that WiFi
is energy inefficient when used for small sized transfers. Hence, even if the average net-
work traffic is low, if the inter-transfer interval is high, the overall energy consumption
due to WiFi traffic might still be higher than a traffic load of higher transfer size but lower
inter-transfer interval.

Furthermore, it appears that CPU utilisation is also highly dependent on hardware. For
example, for the 5-node experiment, the average CPU utilisation of the Nexus S phones
was only 37.6%, whereas the average CPU utlisation of the Android G1 phones was over
70%. With a lower average CPU utilsation, devices with better processors appear to be
more capable of handling the requirements of Hyrax while still retaining the ability in
terms of computation resources to handle other tasks as required by the user. Futhermore,
depending on the individual processors, it is possible that a lower CPU utilisation will
result in lower power consumption as well.

5.5.5 Conclusions

As expected, the average battery lives are slightly longer than those in the previous study.
However, the average battery life of a device running the Sort benchmark appears to in-
crease slightly with the cluster size, which is contrary to what we expected. This can be
seen in Figure 5.16. The reason for the increase is not immediately clear, as the resource

56

usage (CPU utilisation, network IO and disk IO) don’t appear to be significantly differ-
ent across cluster sizes either, as shown in Table 5.3. We believe, however, that further
increases in battery life can be achieved in the future. One area for possible improve-
ment is the amount of data that is transmitted across the network, which currently appears
excessive given the size of input data for the jobs.

57

58

Chapter 6

Case Study: A Distributed Music Search
and Sharing Application

In order to showcase the potential of Hyrax, we developed a simple music search and
sharing application on top of it and evaluated its performance. This application, known as
MusicDJ, allows users to share the music files stored on their devices with others within
their vicinity. Such an application could easily be extended to other types of files such as
image and video files. It would enable users to obtain such files without having to perform
a search on the Internet.

MusicDJ has two basic functions: To allow users to select a folder containing music
files on their local device to upload to the cloud, and to allow users to search for a particular
song or music file on the cloud by either title or artist, download and play it. The search
functionality is provided by the MapReduce framework, which searches through an index
of all the available files through a distributed job. We implemented the user interface of
MusicDJ as an Android application.

6.1 Requirements

We established the following requirements for MusicDJ:

1. Users must be able to upload music files to the cloud and search for music files that
are stored on the cloud. Users should be allowed to search for files by song title or
artist.

59

2. Users must be able to download any music file that is stored on the cloud to their
local mobile device.

Furthermore, on the backend, the search functionality of MusicDJ must be able to scale
with the number of devices and files that are available on the cloud. It should also provide
reliable storage for the music files and indices. These properties are already provided by
Hyrax, as they were assumptions and requirements that were inherent in the design of
Hadoop.

6.2 Design and Architecture

The design of MusicDJ was deleberately kept simple so that it would be easy to implement
and evaluate. It is a proof-of-concept application that is not meant for public deployment
as it depends on each device to supply and maintain the correct information about each
music file that was uploaded. In other words, there is no mechanism to verify that the
information that is stored on the index files are correct and up-to-date.

The high-level design of MusicDJ is shown in Figure 6.1, which is similar to Figure
4.1 in Chapter 4. More detailed illustrations of both the cloud component of the system as
well as the individual devices specific to MusicDJ are shown in Figure 6.2 and Figure 6.3
respectively.

The key to the search and download functionalities of MusicDJ is the index files. These
are simple text files that are generated by each device when users upload music files to the
cloud. These text files contain information about the title, artist, duration and storage
location within the HDFS for each music file that was uploaded by the user. Each line of
the text files correspond to one music file. The index files from each device are then stored
in a special directory within the HDFS (/indices). Music files that are uploaded to the
HDFS by users are also stored in device-specific directories on the HDFS.

In order to execute a search, a MapReduce job is started with the user-supplied search
term as input. The map phase of the job reads through every single line of all the index
files in the /indices directory, and performs a regular expression match of the search
term with the title and artist of each file specifiedin the index files. The map phase only
emits an output if there is a match. The reduce phase of the job simply collects all the
intermediate output from the map phase and outputs them into one final output file, which
is then copied to the client device before being processed locally to display the results of
the search to the user.

60

Figure 6.1: Overview of design of MusicDJ. Each mobile device contains its own music
files on its own local filesystem

It is important to note that while logically the music files and index files stored on the
HDFS are all “in the cloud”, physically they all reside within the disk space of the indi-
vidual mobile devices that make up the cluster. The “cloud” as shown in Figure 6.1 only
exists due to the virtualisation of the individual mobile devices as a single computation
and storage unit.

6.3 Implementation

The backend (upload, search, download) of MusicDJ did not take much effort to imple-
ment as most of the low-level details of storage location and task distribution were handled
automatically by the Hadoop system. The main application code itself has absolutely no
knowledge of the physical details of the cloud service that is provided by Hyrax, and only
interacts with the service through the interfaces provided by Hadoop. The application
code simply views the cloud as one computation and storage unit, when in reality it is
much more complicated than that. It would have required a lot more work to implement

61

Figure 6.2: Design of cloud in MusicDJ. This cloud is virtual, and is the view that each
client / mobile node sees

MusicDJ without the benefits of using Hyrax.

On the front end, once the user selects the local folder to upload to the HDFS, our
Android application automatically goes through all the music files within the folder and
extracts their metadata (ie title, artist, length), compiles the metadata into a index file, and
uploads this as well as the actual music files to the HDFS through the interface provided
by Hadoop.

Besides the mobile devices, MusicDJ does not require any other hardware or software
except for a machine to act as the NameNode and JobTracker. No dedicated server for the
application is required as all the upload, search and download functionalities are included
in the Android application itself.

Note that we did not make use of the dynamic class loading functionality that is pro-
vided with Hyrax (described in Subsection 4.2.1) as every node already has the code re-
quired for the MapReduce job. It therefore makes no sense to have to transfer the code
to the nodes when executing jobs as this would only increase communications cost (and
hence battery consumption). However, if another device had only the Hyrax backend with-
out the application code of MusicDJ itself, dynamic class loading would enable that device
to act as a node within the cluster as well even though the device is not a client of MusicDJ.

MusicDJ is currently only able to handle MP3 music files, but this can easily be ex-
tended as the Android operating system is capable of handling many different types of
multimedia files. We chose to use MP3 files as we already possess a significant collection
of these files in our own personal collection that we can use to test and evaluate MusicDJ.

62

Figure 6.3: Design of mobile node in MusicDJ. The mobile node is the location of actual
computation and storage of data that logically belongs to the cloud. It sees the cloud as a
service and uploads data and computation to it.

A screenshot of MusicDJ is shown in Figure 6.4.

6.4 Evaluation

Similar to our testbed in Chapter 5, we tested MusicDJ on a testbed of Nexus S devices
running Android 4.1.1. We used the same router and same machine as the master node
as that mentioned in Chapter 5. We ran MusicDJ on a cluster of 3, 5, 7, 10 and 12 phones
in order to determine how well the search functionality that was implemented using the
MapReduce framework scaled with the cluster size. We format and restart the cluster for
each cluster size we run the evaluations for so that the evaluations always start in the same
state.

In our evaluation, only one device is performing an operation (either upload or search)
at any one time. While this is not realistic since it is more likely that multiple users will be
accessing the system simultaneously in a real-life setting, it gives a good indication of the

63

Figure 6.4: Screenshots of the MusicDJ application. On the left is a view of an upload in
progree, on the right is a view of search results

baseline performance of MusicDJ. Unfortunately, emulating the real-world usage patterns
of users is difficult to achieve. We therefore do not attempt to do so.

We evaluate MusicDJ by the time taken to upload music files to the cloud and to per-
form a search for music files. We focus on these two operations as they are the most
time-consuming ones and are the ones directly related to Hyrax.

6.4.1 Test Data

We used a folder of 25 MP3 files as our test set for MusicDJ. The total size of the folder is
119.2 MB. We used the same set of files for every device.

64

6.4.2 Results

File Upload

Since the replication factor was set at 2, we do not anticipate significant differences in file
upload times for the different cluster sizes as the length of the write pipeline is the same
for each case.

To determine file upload times, we upload the same set of music files mentioned in
Subsection 6.4.1 from each device in each case and take the average of the upload times.
We measure search time from the time the user initiates the search till the results are
returned to the user for display. Our findings are displayed in Figure 6.5. We also provide
an estimate of the average upload throughput in Table 6.1.

Figure 6.5: Graph of upload times against cluster size with standard deviation included

Figure 6.5 and Table 6.1 both show that the upload times and speed were not signif-
icantly affected by the cluster size. This agrees with our expectations since the pipeline
length was always the same during data write as the replication factor was kept constant.
However, the upload times were approximately 15 to 16 minutes long in each case. Such

65

Cluster Size 3 Nodes 5 Nodes 7 Nodes 10 Nodes 12 Nodes
Average throughput (MB/s) 0.14 0.14 0.14 0.13 0.13

Table 6.1: Average upload throughput for different cluster sizes

long upload times for only 25 music files might be unacceptable to users who are unwilling
to wait.

In contrast, uploading the same set of files onto DropBox [21], which is a file hosting
service, over the Internet through a wireless connection (not 3G) from a Nexus S took
approximately 210 seconds, which translates to a throughput of approximately 0.57 MB/s.
The relatively huge disparity between this and the upload times observed for MusicDJ
could be due to the slower write rates on the mobile devices, as well as inefficiencies
within HDFS itself.

One possible way to reduce file upload times is to reduce the replication factor. For
example, when uploading the same set of files with only one node in the cluster, the upload
took approximately 461 seconds. However, this involves a tradeoff with file availability,
as the risk of a file being lost from the cluster due to node departures or failures is higher.

File Search

We evaluate file search times by first uploading the test files from each device onto the
cloud. Although the test files uploaded by each device is the same, our system will still
perform a full search on every index file found so that on average, each node on the cluster
should search through the same amount of data. We therefore do not anticipate significant
differences in the seach times for the different cluster sizes as well.

We determine file search times by performing the search on each device in the cluster
and taking the average of the search times. We vary the search terms on each device in
order to inject some variety in the search jobs. Our findings are displayed in Figure 6.6.

Figure 6.6 shows that the average search times for a file increases with the cluster
size, but it appears to plateau as the cluster size increases further. The increase in time is
possibly due to the increased overhead in setting up the search jobs to run on more nodes,
which requires more data transfer and control messages. The graph does seem to suggest,
however, that with more nodes, the cluster will be able to scale well with respect to the job
time.

We believe that the benefits of Hyrax on file search times will emerge with more nodes

66

Figure 6.6: Graph of search times against cluster size with standard deviation included

and more data to search through. If the search were to be performed on one single node
alone (ie without using Hyrax), not only would an index of available music files from other
nodes need to be downloaded from each individual node, but the volume of information
that the node needs to search through would increase by a factor of the cluster size as well.
Ideally, assuming it takes time d to download the index from another node, and time t to
execute the search job on just a single node alone, Hyrax would be beneficial if

t

n
+ s < t+ dn

, where n is the cluster size, and s is the time required to set up the search job on Hyrax
(we assume s is not affected by n). That is, we require s < t

(
n−1

n

)
+ dn. This would

be easier to achieve with a higher value of n. Therefore, the more nodes we have in the
cluster, the more benefits users will be able to derive from Hyrax.

67

68

Chapter 7

Conclusions

The full potential of both cloud computing and mobile applications have not been realised
yet. We believe implementing a cloud computing infrastructure on mobile devices is a
step towards realising that potential. Hyrax provides such an infrstructure that allows for
the mobile devices to be storage and computation nodes within a cloud computing cluster,
hence creating a local mobile cloud.

Hyrax is based on Hadoop. We feel that Hadoop was a natural choice for Hyrax, since
it was already built with certain assumptions in mind that apply in the case of a cluster
made up of mobile devices. Such assumptions include node departures and hardware
failure, both of which are handled automatically by Hadoop.

While basing Hyrax on Hadoop has its benefits, there are disadvantages as well. For
example, Hyrax has a relatively high overhead cost, which is magnified when resource-
constrained mobile devices are used [33].

Nevertheless, Hyrax provides a convenient and abstract interface for implementing dis-
tributed applications on mobile devices. We demonstrated this through our music sharing
application, where the code of the actual search function was written fairly quickly (in a
much shorter time than the code for the user interface).

We describe some of the challenges we faced in the development of Hyrax in Section
7.1, and some possible future work in Section 7.2.

69

7.1 Challenges

7.1.1 Android Fragmentation

While the choice of developing Hyrax for the Android system provided numerous bene-
fits (see Section 3.5, the open nature of the Android system was also the source of some
development challenges. One such prime example is that of fragmentation. Fragmen-
tation refers to the numerous devices and versions (including manufacturer versions) of
the Android OS available on the market. [36] gives a typical scenerio where developers
have to test their applications on as many devices running Android as possible in order
to be sure that their applications will work as expected for users. However, this provides
no guarantee that the application will run on any untested device. In fact, [36] mentions
that complaints about applications not supporting their devices is one of the most common
complaints on the Android Market (also known as Google Play since 6 March 2012 [28]).

We also faced similar problems during the development of Hyrax. Hyrax was origi-
nally developed and tested on an Android G1 [30] running Android 2.1 (Update 1). We
subsequently managed to procure some Nexus S devices [27] running Android 2.3. How-
ever, running Hyrax on the Nexus S exposed certain behavioural differences in the code
that had to be fixed. The version of Android for the Nexus S was subsequently upgraded
to version 4.1.1 (released 9 July 2012), which led to further necessary modifications to
make Hyrax work on the new version of Android. We anticipate that running Hyrax off
other devices or subsequent versions of the Android operating system will probably re-
quire changes to the Hyrax code again as further problems due to behavioural differences
are exposed.

7.1.2 Size of Hadoop Codebase

An unexpected challenge that manifested itself early on in the development of Hyrax is the
sheer size of the Hadoop codebase. For example, a compressed version of Hadoop 0.21.0
is approxmiately 71 MB in size [6]. The Eclipse Integrated Development Environment
(IDE) [22], which is usually used for Android application development, could not handle
the compilation of this large amount of code on our development machine without running
out of memory. Even when we compiled from the shell using ant [4], each run of the
compile process took at least 2 minutes. This resulted in a lot of wasted time during
development, especially when only a few lines of code were changed each time. It also
robbed us of the benefits of using an IDE to develop our code.

70

7.1.3 Debugging

Debugging Hyrax also proved to be a challenge. Due to the size of Hyrax, it was pro-
hibitively slow to run it on a standard Android emulator or with any form of a debugger.
All debugging was hence done on runs on actual devices. In order to see what was go-
ing on, it became necessary to study the Hyrax logs, as well as use the Android logcat
utility, to read log messages and any error messages to determine if any errors or unex-
pected behaviours have occured. This was time consuming, and required attention as error
messages tend to scroll past the top of the screen relatively quickly. It sometimes became
necessary to add more debugging messages into the Hyrax code in order to determine the
exact location where an error or unexpected behaviour occured. All these served to in-
crease development time as adding more debugging messages meant having to recompile
Hyrax.

7.2 Future work

7.2.1 Hyrax on other Mobile Platforms

Hyrax currently only works on the Android platform. While this enables a substantial
proportion of the mobile users population to make use of Hyrax, it still leaves out a sig-
nificant proportion of users of other platforms such as the iPhone or BlackBerry. It would
be beneficial to develop Hyrax for these other platforms as well so that we can create
mobile clouds that are based not only on different mobile devices, but different mobile
operating systems and platforms as well. In this way, Hyrax would truly be working on a
heterogeneous cloud.

7.2.2 Improving Hadoop Performance

Bahl et al [8] advocate performing optimisations on current cloud infrastructure to spe-
cially cater to the needs and requirements of mobile applications. They cited the example
of zCloud [41], which is a cloud computing infrastructure developed by Zynga specially
for their popular mobile games.

Previous research and studies have shown that Hadoop suffers from performance is-
sues. For example, [32] focuses on making Hadoop more energy efficient, while other
studies have focused on improving Hadoop’s node failure recovery performance (for ex-

71

ample, see [19]). It may be worthwhile to look at these studies and implement their meth-
ods to Hyrax in order to achieve similar improvements in the performance of Hyrax.

Furthermore, as mentioned in Subsection 5.3.3, an investigation into any inefficiencies
in either the HDFS or MapReduce framework for Hadoop might need to be investigated
as the amount of network traffic does not correspond to the amount of input data being
processed by Hyrax.

7.2.3 Reducing Power Consumption

As noted in Section 1.1, battery life is still of topmost concern to mobile users. Therefore,
it is important to manage the power consumption of Hyrax in order to attract users to
actually use Hyrax.

Further studies on the power consumption of Hyrax could be undertaken in the future.
For example, studies on the power consumption by different tasks on Hyrax could be
performed. However, it is not clear if such studies might turn out to be useful as we feel
that power consumption by tasks is highly dependent on individual applications. Other
studies taken to improve the power consumption of Hadoop itself could also be explored
and possibly implemented in Hyrax.

7.2.4 Switching Clusters

We envision that users will switch clusters often as they move about and change location,
coming into range of different clusters all the time. On the backend, this requires the
datanode to clean up all the data blocks that were already stored on the device from a
previous cluster in order to be able to accept blocks from a new cluster. Another, perhaps
more useful, feature would be for the datanode to be able to store data blocks from different
clusters on the device, and only access those blocks that belong to the cluster that the
device is currently connected to. Hyrax currently only supports the use of one cluster, and
requires manual intervention to clean up the blocks stored on the nodes before they can
connect to a new cluster. Support for such a feature could be implemented on Hyrax in the
future.

72

7.2.5 Mobile Rack-awareness

Hyrax, unlike Hadoop, currently has no concept of a “rack”. Rack information is used by
Hadoop in order to determine block placement locations. Hadoop assumes that nodes on
the same rack were located in the same location physically. Thus, nodes within the same
rack could communicate with each other easily, but could also fail together in the case of
rack failure.

To apply the “rack” concept to our mobile cloud, we could assign mobile devices con-
nected to the network at the same point (for example, perhaps through the same router) to
the same “rack”. Such mobile devices would experience shorter latencies since commu-
nications between them would only require one hop through a router. On the other hand,
should the router fail, both nodes could possibly be lost as well unless they manage to
connect to another router or network access point. Given that the physical location of the
nodes can change, our system will have to be able to reassign “racks” on the fly as the mo-
bile devices switch wireless access points. This would further affect the block replication
strategy. A detailed study will have to be performed to determine the feasibility of such a
scheme, or if a better scheme could be devised.

7.2.6 Adaptive Replication and Selection of Active Nodes

Work has been done to explore the effects that the replication factor for files has on en-
ergy consumption in a Hadoop cluster [32]. A study could be undertaken to see if the
work and suggestions mentioned in [32] could be adapted for use in Hyrax. For example,
suggestions on putting a portion of the nodes into a less power-consuming standby mode
could be adopted so that communications between these nodes and the master node need
not happen too frequently, which will save power due to reduced network traffic. This is,
however, at a tradeoff with data availability and node response time.

7.2.7 Security

The data stored on the HDFS for Hyrax is physically stored on numerous mobile devices,
each with a different owner. It is possible for the owners of each device to read the data
blocks stored on their own device. We currently envision that users should be able to read
all files within the HDFS, since the HDFS is a shared storage space. However, should there
be a future need to restrict file access, schemes such as data encryption could be employed
in order to protect the data blocks from being read by unauthorised users.

73

Another potential issue is that the data blocks are currently stored within the external
stroage space on each device. By design, Android allows any application and user to
access this storage space. This means that users can potentially modify or remove the data
blocks stored locally on their device. Studies should be done to understand the effects
of any such events, and whether the NameNode is able to recover from such events and
replicate the affected blocks. Another possible solution is to look into storing data blocks
in a part of the Android filesystem which only allows for restricted access.

7.2.8 Optimisation or re-implementation of MapReduce

Given the high overheard required to run Hadoop, it may be more beneficial to create a
new implementation of the MapReduce framework that is more mobile-friendly. Such
an implementation should be created with the resource limitations and other aspects of
mobile devices in mind. Such limitations include memory limitations, power limitations
and processing capabilities limitations. It should be possible to optimise MapReduce to
not just use resources more efficiently, but it may also be possible for to re-implement
MapReduce with a smaller code base that will not only reduce application size, but also
be easier to maintain.

7.2.9 Large-scale Testing

Hyrax has only been tested on a relatively small testbed of up to 12 devices. Given that
Hyrax was designed to scale to hundreds or even thousands of devices, further tests should
be conducted to verify that it is indeed capable of scaling to such large numbers. It will be
difficult to procure so many devices for the sole purpose of testing, so asking for volunteer
participation from existing mobile users will probably be required. Not only will this keep
cost down, but this will also allow Hyrax to be tested in a more realistic setting since the
mobile devices will also be used for daily normal use. This provides for the possibility of
studying how using Hyrax might affect the day-to-day operations of the mobile devices.

7.2.10 Offloaded vs. Local Computation

Depending on the application, it might sometimes be more beneficial to offload only part
of the computation to the Hyrax infrastructure and perform the remaining computation
locally. This, however, requires a study on the tradeoffs between local computation and
offloading. Such a study could possibly be undertaken in the future so that the perfor-

74

mance of Hyrax and distributed jobs on mobile devices can be improved both in terms of
execution time and resource usage.

75

76

Bibliography

[1] ALLIANCE, O. H. Android. http://www.android.com, 2008. [Online; ac-
cessed 17 July 2012]. 1.1.5

[2] AMAZON. Amazon elastic compute cloud (amazon ec2). http://aws.amazon.
com/ec2/, 2006. [Online; accessed 21 July 2012]. 1.1.2

[3] ANGIN, P., BHARGAVE, B., AND HELAL, S. A mobile-cloud collaborative traffic
lights detector for blind navigation. In 2010 Eleventh International Conference on
Mobile Data Management (May 2010), pp. 369 – 401. 1.1.3, 2.1

[4] APACHE. Apache ant. http://ant.apache.org, 2000. [Online; accessed 8
August 2012]. 7.1.2

[5] APACHE. Hadoop. http://hadoop.apache.org, 2007. [Online; accessed 16
July 2012]. 1.1.4

[6] APACHE. Hadoop 0.21.0. http://apache.cs.utah.edu/hadoop/
common/hadoop-0.21.0/, 2010. [Online; accessed 8 August 2012]. 7.1.2

[7] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R., KONWIN-
SKI, A., LEE, G., PATTERSON, D., RABKIN, A., STOICA, I., AND ZAHARIA, M.
Above the clouds: A berkeley view of cloud computing. Tech. rep., University of
California, Berkeley, February 2009. 1.1.2

[8] BAHL, P., HAN, R. Y., LI, L. E., AND SATYANARAYANAN, M. Advancing the state
of mobile cloud computing. In Proceedings of the Third ACM Workshop on Mobile
Cloud Computing and Services (New York, NY, USA, 2012), MCS ’12, ACM, pp. 21
– 28. 2, 7.2.2

[9] BALASUBRAMANIAN, N., BALASUBRAMANIAN, A., AND VENKATARAMANI, A.
Energy consumption in mobile phones: A measurement study and implications for

77

http://www.android.com
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://ant.apache.org
http://hadoop.apache.org
http://apache.cs.utah.edu/hadoop/common/hadoop-0.21.0/
http://apache.cs.utah.edu/hadoop/common/hadoop-0.21.0/

network applications. In Proceedings of the 9th ACM SIGCOM conference on Inter-
net measurement conference (New York, NY, USA, 2009), IMC ’09, ACM, pp. 280
– 293. 5.5.4

[10] BAO, X., AND ROY CHOUDHURY, R. Movi: Mobile phone based video highlights
via collaborative sensing. In Proceedings of the 8th International Conference on
Mobile Systems, Applications and Services (New York, NY, USA, 2010), MobiSys
’10, ACM, pp. 357 – 370. 2.4

[11] BLACK, M., AND EDGAR, W. Exploring mobile devices as grid resources: Using an
x86 virtual machine to run boinc on an iphone. In 2009 10th IEEE/ACM International
Conference on Grid Computing (October 2009), pp. 9 – 16. 1.1.3

[12] BORTHAKUR, D., GRAY, J., SARMA, J. S., MUTHUKKARUPPAN, K., SPIEGEL-
BERG, N., KUANG, H., RANGANATHAN, K., MOLKOV, D., MENON, A., RASH,
S., SCHMIDT, R., AND AIYER, A. Apache hadoop goes realtime at facebook. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data (New York, NY, USA, 2011), SIGMOD ’11, ACM, pp. 1071 – 1080. 3.4,
4.2.2

[13] CARROLL, A., AND HEISER, G. An analysis of power consumption in a smart-
phone. In Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-
nical Conference (Berkeley, CA, USA, 2010), USENIXATC’10, USENIX Associa-
tion, pp. 21 – 21. 5.5.3

[14] CHUN, B.-G., IHM, S., MANIATIS, P., NAIK, M., AND PATTI, A. Clonecloud:
Elastic execution between mobile device and cloud. In Proceedings of the Sixth
Conference on Computer Systems (New York, NY, USA, 2011), EuroSys ’11, ACM,
pp. 301 – 314. 2.3

[15] CHUN, B.-G., AND MANIATIS, P. Augmented smartphone applications through
clone cloud execution. In Proceedings of the 12th Conference on Hot Topics in
Operating Systems (Berkeley, CA, USA, 2009), HotOS’09, USENIX Association,
pp. 8 – 8. 2, 2.3

[16] COMSCORE. Exponential tablet adoption in 2011 ushers in era of conver-
gent consumption. http://www.comscoredatamine.com/2012/03/
exponential-tablet-adoption-in-2011-ushers-in-era-of-
convergent-consumption/, March 2012. [Online; accessed 9 August 2012].
1.1.1

78

http://www.comscoredatamine.com/2012/03/exponential-tablet-adoption-in-2011-ushers-in-era-of-convergent-consumption/
http://www.comscoredatamine.com/2012/03/exponential-tablet-adoption-in-2011-ushers-in-era-of-convergent-consumption/
http://www.comscoredatamine.com/2012/03/exponential-tablet-adoption-in-2011-ushers-in-era-of-convergent-consumption/

[17] CRACIUNAS, S. S., HAAS, A., KIRSCH, C. M., PAYER, H., RÖCK, H.,
ROTTMANN, A., SOKOLOVA, A., TRUMMER, R., LOVE, J., AND SENGUPTA, R.
Information-acquisition-as-a-service for cyber-physical cloud computing. In Pro-
ceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (Berke-
ley, CA, USA, 2010), HotCloud’10, USENIX Association, pp. 14 – 14. 2.4

[18] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data processing on large
clusters. Commun. ACM 51, 1 (January 2008), 107 – 113. 1.1.4

[19] DINU, F., AND NG, T. E. Understanding the effects and implications of compute
node related failures in hadoop. In Proceedings of the 21st International Symposium
on High-Performance Parallel and Distributed Computing (New York, NY, USA,
2012), HPDC ’12, ACM, pp. 187 – 198. 7.2.2

[20] DOU, A., KALOGERAKI, V., GUNOPULOS, D., MIELIKAINEN, T., AND TUULOS,
V. H. Misco: A mapreduce framework for mobile systems. In Proceedings of the
3rd International Conference on PErvasive Technologies Related to Assistive Envi-
ronments (New York, NY, USA, 2010), PETRA ’10, ACM, pp. 32:1 – 32:8. 1.1.3,
2.2.1

[21] DROPBOX. Dropbox: Simplify your life. http://www.dropbox.com, 2008.
[Online; accessed 30 July 2012]. 5.4.2, 6.4.2

[22] ECLIPSE. The eclipse foundation open source community website. http://www.
eclipse.org, 2004. [Online; accessed 8 August 2012]. 7.1.2

[23] ELESPURU, P. R., SHAKYA, S., AND MISHRA, S. Mapreduce system over het-
erogeneous mobile devices. In Proceedings of the 7th IFIP WG 10.2 International
Workshop on Software Technologies for Embedded and Ubiquitous Systems (Berlin,
Germany, 2009), SEUS ’09, Springer-Verlag, pp. 168 – 179. 2.2.1

[24] ERICSSON. Traffic and market report. [Online; accessed 18 July 2012]. 1.1.1

[25] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file system. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2003), SOSP ’03, ACM, pp. 29 – 43. 1.1.4

[26] GIURGIU, I., RIVA, O., JURIC, D., KRIVULEV, I., AND ALONSO, G. Calling the
cloud: Enabling mobile phones as interfaces to cloud application. In Proceedings of
the 10th ACM/IFIP/USENIX International Conference on Middleware (New York,
NY, USA, 2009), Middleware ’09, Springer-Verlag New York, Inc., pp. 5:1 – 5:20.
2.3

79

http://www.dropbox.com
http://www.eclipse.org
http://www.eclipse.org

[27] GOOGLE. Google nexus s technical specifications. http://www.google.com/
nexus/s/tech-specs.html, 2010. [Online; accessed 16 July 2012]. 5.1.1,
7.1.1

[28] GOOGLE. Google play. https://play.google.com/, 2012. [Online; ac-
cessed 1 August 2012]. 7.1.1

[29] GUAN, L., KE, X., SONG, M., AND SONG, J. A survey of research on mobile cloud
computing. In Proceedings of the 2011 10th IEEE/ACIS International Conference on
Computer and Information Science (Washington, DC, USA, 2011), ICIS ’11, IEEE
Computer Society, pp. 387 – 392. 2

[30] HTC. Htc dream specifications. http://www.htc.com/www/product/
dream/specification.html, 2008. [Online; accessed 30 December 2010].
7.1.1

[31] KUMAR, K., AND LU, Y.-H. Cloud computing for mobile users: Can offloading
computation save energy? Computer 43, 4 (April 2010), 51 – 56. 1.1.3

[32] LEVERICH, J., AND KOZYRAKIS, C. On the energy (in)efficiency of hadoop clus-
ters. SIGOPS Oper. Syst. Rev. 44, 1 (March 2010), 61 – 65. 3.3.2, 7.2.2, 7.2.6

[33] MARINELLI, E. Hyrax: Cloud computing on mobile devices using mapreduce. Tech.
Rep. CMU-CS-09-164, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA, September 2009. 1.2, 7

[34] MIETTINEN, A. P., AND NURMINEN, J. K. Enerty efficiency of mobile clients in
cloud computing. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (Berkeley, CA, USA, 2010), HotCloud’10, USENIX Association,
pp. 4 – 4. 1.1.3

[35] MYERS, A. High availability for the hadoop distributed file system (hdfs).
http://www.cloudera.com/blog/2012/03/high-availability-
for-the-hadoop-distributed-file-system-hdfs/, 2012. [Online;
accessed 22 July 2012]. 3.3.2

[36] PANZARINO, M. The shocking toll of hardware and software fragmen-
tation on android development. http://thenextweb.com/mobile/
2012/03/30/the-shocking-toll-of-hardware-and-software-
fragmentation-on-android-development/, March 2012. [Online;
accessed 1 August 2012]. 7.1.1

80

http://www.google.com/nexus/s/tech-specs.html
http://www.google.com/nexus/s/tech-specs.html
https://play.google.com/
http://www.htc.com/www/product/dream/specification.html
http://www.htc.com/www/product/dream/specification.html
http://www.cloudera.com/blog/2012/03/high-availability-for-the-hadoop-distributed-file-system-hdfs/
http://www.cloudera.com/blog/2012/03/high-availability-for-the-hadoop-distributed-file-system-hdfs/
http://thenextweb.com/mobile/2012/03/30/the-shocking-toll-of-hardware-and-software-fragmentation-on-android-development/
http://thenextweb.com/mobile/2012/03/30/the-shocking-toll-of-hardware-and-software-fragmentation-on-android-development/
http://thenextweb.com/mobile/2012/03/30/the-shocking-toll-of-hardware-and-software-fragmentation-on-android-development/

[37] POWER, J. D., AND ASSOCIATES. Smartphone battery life has become a significant
drain on customer satisfaction and loyalty. Wireless Smartphone and Traditional
Mobile Phone Satisfaction Studies 1 (2012). 1.1.1

[38] SATYANARAYANAN, M., BAHL, P., CACERES, R., AND DAVIES, N. The case for
vm-based cloudlets in mobile computing. Pervasive Computing, IEEE 8, 4 (Oct –
Dec 2009), 14 – 23. 2.1, 2.2

[39] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The hadoop dis-
tributed file system. In Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST) (Washington, DC, USA, 2010), MSST
’10, IEEE Computer Society, pp. 1 – 10. 1.1.4

[40] VERBELEN, T., SIMOENS, P., DE TRUCK, F., AND DHOEDT, B. Cloudlets: Bring-
ing the cloud to the mobile user. In Proceedings of the Third ACM Workshop on Mo-
bile Cloud Computing and Services (New York, NY, USA, 2012), MCS ’12, ACM,
pp. 29 – 36. 2.2

[41] ZYNGA, I. The evolution of zcloud. http://code.zynga.com/2012/02/
the-evolution-of-zcloud, 2012. [Online; accessed 31 July 2012]. 7.2.2

81

http://code.zynga.com/2012/02/the-evolution-of-zcloud
http://code.zynga.com/2012/02/the-evolution-of-zcloud

	1 Introduction
	1.1 Background
	1.1.1 Smartphone Technology
	1.1.2 Cloud Computing
	1.1.3 Cloud Computing & Mobile Devices
	1.1.4 MapReduce and Hadoop
	1.1.5 Android

	1.2 Contributions

	2 Related Work
	2.1 Mobile Devices as Thin Clients
	2.2 Mobile Devices as Computational and Storage Nodes
	2.2.1 MapReduce on Mobile Devices

	2.3 Augmented Mobile Applications
	2.4 Mobile Nodes in a Sensor Network

	3 Problem Statement and Motivation
	3.1 Assumptions
	3.2 Requirements
	3.3 The Choice of Hadoop
	3.3.1 Advantages
	3.3.2 Disadvantages

	3.4 Hadoop's Assumptions & Mobile Cloud Computing
	3.5 Hadoop on Android
	3.6 Problem statement
	3.7 Goals
	3.8 Motivation
	3.8.1 Advantages of Mobile Devices
	3.8.2 Possible Applications
	3.8.3 Feasibility
	3.8.4 Cost-Benefit Tradeoff

	4 Implementation
	4.1 Architecture
	4.2 Porting Hadoop
	4.2.1 Android Obstacles
	4.2.2 Hadoop Obstacles

	4.3 Block Replication Strategy
	4.4 Network Organisation

	5 Evaluation
	5.1 Infrastructure
	5.1.1 Testbed
	5.1.2 Benchmarks
	5.1.3 Analysis tools

	5.2 Baseline performance of mobile devices vs. traditional servers
	5.3 Performance Improvements in Hyrax
	5.3.1 Question
	5.3.2 Hypothesis
	5.3.3 Results
	5.3.4 Conclusions

	5.4 File sharing
	5.4.1 Question
	5.4.2 Approach
	5.4.3 Hypothesis
	5.4.4 Results
	5.4.5 Conclusions

	5.5 Battery consumption
	5.5.1 Question
	5.5.2 Approach
	5.5.3 Hypothesis
	5.5.4 Results
	5.5.5 Conclusions

	6 Case Study: A Distributed Music Search and Sharing Application
	6.1 Requirements
	6.2 Design and Architecture
	6.3 Implementation
	6.4 Evaluation
	6.4.1 Test Data
	6.4.2 Results

	7 Conclusions
	7.1 Challenges
	7.1.1 Android Fragmentation
	7.1.2 Size of Hadoop Codebase
	7.1.3 Debugging

	7.2 Future work
	7.2.1 Hyrax on other Mobile Platforms
	7.2.2 Improving Hadoop Performance
	7.2.3 Reducing Power Consumption
	7.2.4 Switching Clusters
	7.2.5 Mobile Rack-awareness
	7.2.6 Adaptive Replication and Selection of Active Nodes
	7.2.7 Security
	7.2.8 Optimisation or re-implementation of MapReduce
	7.2.9 Large-scale Testing
	7.2.10 Offloaded vs. Local Computation

	Bibliography

