
Fast anomaly discovery given duplicates

Jay-Yoon Lee, U Kang, Danai Koutra,
Christos Faloutsos

Dec 2012
CMU-CS-12-146

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Given a large cloud of multi-dimensional points, and an off-the-shelf outlier detection method,
why does it take a week to finish? After careful analysis, we discovered that duplicate points
create subtle issues, that the literature has ignored: if dmax is the multiplicity of the most over-
plotted point, typical algorithms are quadratic on dmax. For graph-related outlier detection, all the
satellites of a ‘star’ node will have identical features, and thus create over-plotting with dmax being
the highest degree; due to power law degree distributions, this may be huge, for real graph data. We
propose several ways to eliminate the problem; we report wall-clock times and our time savings;
and we show that our methods give either exact results, or highly accurate approximate ones.

This research was sponsored by the United States Army under grant number W1911NF-11-C-0088. The views
and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.



Keywords: computer science, tech reports, anomaly detection, large graph



1 Introduction
Outlier detection, also known as anomaly detection, is an important area of data mining which has
been receiving a lot of research attention [6, 23, 19, 9, 2] due to its numerous applications: fraud
detection, health care, computer security, social network, etc.

The size of the data to apply outlier detection algorithms is growing at an unprecedented
rate. For example, Facebook loads 10 Terabyte of new data every day [24]; Microsoft has click-
through data reaching Petabyte scale [16]; Yahoo’s web graph has 1.4 billion nodes and 6.6 billion
edges [11]. These big data pose new problems, such as the “duplicate data point” problem, which
refers to the existence of many data points with same coordinates. For example, assume a 2-
D dataset <degree, PageRank> of nodes in a graph. Although for up to medium sized graphs
duplicates are not an issue, in large billion-node graphs multiple nodes have the same <degree,
PageRank> pairs.

Traditional outlier detection algorithms did not consider the duplicate data point problem for
two reasons: (i) they dealt with relatively small amount of data with few -if any- duplicates, and
(ii) most outlier detection algorithms work on Geographical Information System (GIS) data which
do not have many duplicates as buildings, obviously, never exist over a building.

Challenges. This existence of the duplicate data points in traditional algorithms poses two chal-
lenges.

1. Degeneracy. The duplicate data points distort the existing algorithms to have degenerate
results: (a) they act as black holes with extremely high densities and, thus, the normal-
looking points near them are assigned as outliers, and (b) the outlier score may not be defined
at all (Section 2.1).

2. Running Time. The duplicate points retard the computation of the existing algorithms; e.g.,
the running time grows from near-linear to near-quadratic (Section 2.2).

Our Contributions. In this paper we address the above challenges of outlier detection algo-
rithms. Specifically, we focus on Local Outlier Factor (LOF), a powerful, widely-used outlier
detection algorithm and propose optimizations. Our main contributions are:

1. No Degeneracy. We re-design the existing outlier detection algorithm to handle duplicate
points and remove degeneracy.

2. Running Time. Our algorithms, FADD and G-FADD, run in near-linear time compared to
the near-quadratic time of the existing algorithm.

3. Discovery. We run experiments on many real, large data and present interesting findings
including Twitter accounts for advertisement spams, and nodes with high PageRanks despite
small degrees.

The rest of the paper is organized in a typical way from background to proposed method to
experiments and conclusions. Table 1 shows the symbols used in the paper.

1



Symbol Definition

xi Multi-dimensional point.
X Set of multi-dimensional points: X = {x1, ..., xN}.
N The cardinality of X .
U Set containing all unique elements of X: U = {u1, ..., uM}.
M The cardinality of U .
ci Count of duplicates of a unique element ui.

SN(ui) Super node: set of xj that have the same coordinates as ui; i.e. |SN(ui)| = ci.
k Number of nearest neighbors in LOF.
pi Point of interest.
oij Point in the k-distance neighborhood of pi.

d(p, o) Distance between points p and o.
lofk(xi) Local outlier score of point xi.
lrdk(xi) Local density of point xi.

l Number of grids used in each dimension for G-FADD.

Table 1: Table of symbols and definitions.

2 Background and Observations
To address the “duplicate data point” issue, we focus on the Local Outlier Factor algorithm (LOF)
[6] for two reasons: (a) the techniques that suffer most from the duplicates are based on k-nearest
neighbor (kNN) method, and, as we will see next, LOF adopts this approach, and (b) it is the most
widely used outlier detection scheme.

In a nutshell, LOF compares the local density of each data point to the densities of its neighbors
by employing the kNN technique. Data points whose densities differ much from their neighbors’
densities are flagged as outliers.

2.1 Definitions
Definition 1 (k-distance) The k-distance of a data point p, k-distance(p), is defined for any k ∈
N+ as the distance d(p, o) between the points p and o ∈ X such that:

(i) for at least k objects o′ ∈ X \ {p} it holds that d(p, o′) ≤ d(p, o), and
(ii) for at most k − 1 objects o′ ∈ X \ {p} it holds that d(p, o′) < d(p, o). �

For example, Figure 1 (a) shows that the 3-distance of data point p1 is the distance between p1
and o11, which is the distance between p1 and its third nearest neighbor.

Definition 2 (k-distance neighborhood) The k-distance neighborhood of an object p is given by
Nk(p) = {o ∈ X \ {p} | d(p, o) ≤ k-distance(p)}. �

In Figure 1 (a), N3(p1) = {o11, o12, o13}, and N3(p2) = {o21, o22, o23, o24, o25}. Note that
|N3(p2)| = 5 > 3 because there are three ties between the distances d(p2, o23), d(p2, o24), and
d(p2, o25). In Figure 1 (b), there are 1000 duplicate points on the position of p. What would be the

2



(a) LOF in normal case (b) LOF in heavy duplicate
points case

Figure 1: Illustration of concepts of k−distance, Nk(p) and reach-distk required for computation of LOF.

4-distance neighborhood of p? It turns out that the size of the set is |N4(p)| = 999. Furthermore,
the neighboring points o1, o2, o3, and o4 will have 4-distance neighborhood of size 1003, since
all the duplicate points in p will be counted as members of their 4-distance neighborhood. This
phenomenon affects the runtime of the algorithm, as we present next.

Definition 3 (Reachability distance) The reachability distance [6] of an object p w.r.t. object o
is given by reach-distk(p, o) = max{k-distance(o), d(p, o)}. �

For example, in Figure 1 (a), reach-dist3(p1, o13) = 3-dsitance(o13), and reach-dist3(p2, o23) =
d(p2, o23). Conceptually, one can think this distance simply as physical distance between p and o.

Definition 4 (Local reachability density) The local reachability density (lrd) of an object p is
defined as

lrdk(p) = 1/(

∑
o∈Nk(p)

reach-distk(p, o)

|Nk(p)|
). (1)

�
The local reachability density lrdk(p) is a measure of density w.r.t. distance. If we simply think

of reach-distk(p, o) as d(p, o), then the denominator is just the average distance of Nk(p) from p.
In Figure 1 (b), the average distance in N4(p) is 0, because all the neighborhoods have the same
coordinates.The ill-defined lrd in the case of duplicate points is an additional problem to the large
neighborhood size that we mentioned above.
Definition 5 (Local outlier factor) The local outlier factor of an object p is:

LOFk(p) = |Nk(p)|−1
∑

o∈Nk(p)

lrdk(o)

lrdk(p)
(2)

�

3



Based on Equation (2), a point p is outlier if its lrd is relatively small compared to its neighbor-
hoods’ lrd’s. That is, a point whose density is different from the densities of its neighbors is likely
to be an outlier. Note that the LOF score of a point with more than k duplicates should be 1, since
the point and all its k neighbors are identical.

2.2 Observations: LOF Runtime and Duplicate Points

10-1
100
101
102
103
104
105
106

 500  1000  5000
R

un
ni

ng
 T

im
e

Number of Duplicate Points

LOF
FADD

G-FADD

Figure 2: Running time of LOF, FADD, and G-
FADD on 50k uniformly distributed points with dif-
ferent number of duplicate points. LOF suffers from
the quadratic complexity while FADD and G-FADD
are less sensitive to the duplicates.

We show an example illustrating the prob-
lem caused by duplicate points. Consider the
case of Figure 1 (b): LOFk(p) calls lrdk(p)
999 times, and each lrdk(p) calls 999 reach-
distk(p, o) since each runs kNN once. Thus,
kNN is called in total 998,001 times. Although
data structures that use kNN algorithms mostly
segment the coordinate space and do not search
the whole space for every point, duplicates can-
not be separated; for example, in Figure 1 (b),
the 999 points cannot be separated.

Observation 1 ( LOF with duplicates ) LOF works
fine with normal use, but has problems with
large duplicate points because:

1. Large duplicates impede the calculation
of LOF score by increasing the number
of data access to O(max(ci2)), where ci
is count of duplicates for unique element
ui, from O(N) in no duplicate situation.
The proof is omitted for brevity but the trend is illustrated in Figure 2.

2. LOFk(p) value is not well defined due
to division by 0 in computation of local
reachability density lrdk(p).

2.3 Patterns of Duplicates in real data
How many duplicate points do real world data have? We show the patterns of duplicates from two
real world data: Stack Overflow and US Patent (see Section 4) which have 244 K and 2 million
points, respectively. We count the number of duplicate points and show the number of top 5 largest
duplicates in Table 2. The top 5 duplicate counts comprise 6.70% and 12.90% of total number of
points in Stack Overflow and US patent data, respectively. Also, they occupy 61.7% and 79.5%
of the total sum of count2, so more than half of the computation work described in Section 2.2 is
spent on these points. To solve this problem of duplicates, we propose two fast outlier detection
algorithms, FADD and G-FADD, in Section 4.

4



Stack Overflow | US Patent

Top5 count count2 | count count2

1 4221 17.8 M | 60598 3.7 B
2 3799 14.4 M | 59744 3.6 B
3 3147 9.9 M | 56191 3.2 B
4 2844 8.1 M | 49192 2.4 B
5 2374 5.6 M | 41929 1.8 B

sum 16385 (6.70%) 55.8 M (61.7%) | 267654 (12.9%) 14.7 B (79.5%)

Table 2: (M: million, B: billion.) The number of points (count) and the number of points squared (count2)
for the top 5 largest duplicates in real world data. The top 5 duplicate counts comprise 6.70% and 12.90%
of total number of points in Stack Overflow and US patent data, respectively. Also, they occupy 61.7% and
79.5% of the total sum of count2, so more than half of the computation work described in Section 2.2 is
spent on these points.

3 Proposed Method: Fast Outlier Detection
The challenges discussed in the previous section mainly arise from regarding as unique the points
that are similar in the projected feature space, and handling them separately (e.g., all the<pagerank,
degree> points with the same coordinates are viewed as distinct points). This approach causes a
quadratic runtime complexity and renders outlier scores undefined. In this section, we present
FADD, Fast Anomaly Detection algorithm given Duplicates, and G-FADD (Grid Fast Anomaly
Detection algorithm given Duplicates) that overcome these challenges by inspecting aggregate in-
formation.

3.1 FADD: Fast Anomaly Detection given Duplicates
FADD considers identical coordinates in n-dimensional space as a super node with their duplicate
count information, ci. More specifically, rather than visiting all of the N points separately, FADD
only deals withM unique super nodes SN(ui) which is the set of xj that have the same coordinates
as ui ∈ U (where U is the set of all unique points in n-dimensional space).

With this super node scheme, for the kNN algorithm, we define the density of a duplicate point
xj ∈ SN(ui) with more than k duplicates (ci = |SN(ui)| > k) as lrdk(xj) =

|SN(ui)|
ε

, where ε is
a constant described in the next paragraph. This new definition of density follows naturally from
Equation (1) which defines density approximately as average distance to neighbors.

In the case of points with many duplicates, the sum of the distances to other points in the
neighborhood is 0. In FADD, instead of 0, we designate infinitesimal artificial distance ε as the
sum of the distances in the super node and the average distance as the sum ε divided by the duplicate
count ci. The ε value was employed in order to avoid 0 value in the denominator; however, we still
want the super node SN(ui) to have higher density than any other neighborhood set with the same

5



size. In order for this to hold, the ε value should be smaller than the sum of distances of any
other neighborhood set. To achieve this the ε should satisfy the following condition: ε ≤ k ×
min(d(xi, xj)) ∀xi, xj ∈ X, i 6= j. The given condition is sufficient since the following inequality
holds: ε ≤ k×min(d(xi, xj)) ≤

∑
o∈Nk(p)

min(d(xi, xj)) ≤
∑

o∈Nk(p)
d(p, o) ≤

∑
o∈Nk(p)

reach-
distk(p, o) for any point p ∈ X , where the rightmost term∑

o∈Nk(p)
reach-distk(p, o) is the sum of distances in the denominator of lrdk(p) in Equation (1).

The ci information differentiates the density of one duplicate point to another. For example, if we
set ε = 10−6, a point with duplicate count of a thousand will have the density of 1 billion, while
another point with duplicate count of 20 will have the density 20 million. Having re-defined the
density, we can compute the lofk(xj) for the duplicate point xj , as well as the points that have
the duplicate point in their k-distance neighborhood. Not surprisingly, lofk(ui) = 1 for a point
with more than k duplicates, since the neighborhoods are just identical points with identical local
densities. The point that encompasses the duplicate point in the k-distance neighborhood will have
very high lof score, unless it has similar amount of duplicates itself. The detailed algorithm for
FADD is given in Algorithm 1 .

This super node scheme gives us two benefits: (a) as shown above, we can define the duplicate
point’s local density and outlier score, and (b) by reducing the number of points from N to M ,
and by skipping the computations for duplicate points in SN(ui) that have ci larger than k, the
runtime complexity is enhanced significantly. That is, in FADD the kNN algorithm is dependent
on the unique number of coordinates M rather than the whole space N . In terms of reduction in
computation, from the statistics provided in previous section, 60% of computations are reduced by
avoiding the top 5 ci2 computation steps. Theoretically, in heavy duplicate data sets, the runtime
complexity drops from O(max(ci

2)) to O(M), where M is the number of unique coordinates.

3.2 G-FADD: Grid based FADD
FADD lets us effectively compute outlier scores and defines local density of duplicate points.
When using FADD, one effect caused from very high density of duplicate points is that the outlier
scores for points near the heavy duplicate point become dominantly large, and wipe out all other
points from marked as anomalies. Although it is true that a point near thousands and millions of
duplicate points is anomalous, it does not mean that there are no other outliers with large enough
lofk(xi) values that are worth inspecting.

In the same spirit of FADD, we adopt grid based FADD, the G-FADD, in order to analyze
aggregate behavior and reveal other anomalous points in multiple granularities. The granularity
can be changed with the parameter l, which denotes the number of grids each dimension holds: for
n-dimensional space, the number of boxes would be ln. The basic idea is to observe the behavior
of the grid rather than each point: we count the number of points that reside in the grid and only
run FADD for the grids that have low count. The threshold for the count would be k + 1 for kNN
algorithm, since it means that the grid is self-sufficient in querying nearest neighbors and is dense
enough to be exempt from outlier detection at granularity with the number of grid l. The detailed
steps of the algorithm is presented in Algorithm 2.

6



Algorithm 1: Fast Anomaly Detection algorithm given Duplicates (FADD)
Input: n-dimensional data points x1, ..., xN ,

number of nearest neighbors k, and
constant ε.

Output: Outlier scores lof 1, ..., lofN for input data points.
1: # Form a super node set SN(ui) whose elements xj have the same coordinate with ui,

# the ith unique element of X . Then, |SN(ui)| = ci is the count of duplicates.
2: # For every super node, compute the local density lofk(xj) for xj ∈ SN(ui).
3: for i = 1, ...,M do
4: if |SN(ui)| > k then
5: for xj ∈ SN(ui) do
6: Assign local density: lrdk(xj)← ci

ε

7: Assign outlier score: lofk(xj)← 1
8: end for
9: else

10: for xj ∈ SN(ui) do
11: Compute lrdk(xj)
12: end for
13: for xj ∈ SN(ui) do
14: Compute lofk(xj) using lrdk(xj) which is obtained from line 11.
15: end for
16: end if
17: end for

4 Experiments
In this section, we present experimental results to answer the following questions.

Q1 Running Time. How much do our algorithms reduce the running time?
Q2 Scalability. How do our algorithms scale-up with data sizes?
Q3 Parameter. How does the grid granularity parameter affect the running time and the found

outliers in G-FADD?
Q4 Discovery. What are the interesting outliers on large, real world data?

Both Q1 and Q2 are answered in Section 4.1. Q3 and Q4 are answered in Sections 4.2 and 4.3,
respectively. We use the data shown in Table 3. Each data contains multi-dimensional points
whose dimensions are specified in the ‘Description’ column. The degree, PageRank, and triangle
of Twitter, US Patent, and Stack Overflow data are extracted from the Pegasus [11] package as
properties of nodes in the corresponding graphs. The Weibo data contains the number of tweets,
the number of followees, the location, the number of retweets, the number of comments of users
in a social network. As described in Section 3.1, our algorithms are not sensitive to the choice
of parameter ε if it is small enough. In the experiments we use ε = 10−6; changing it to the
other values (10−5 or 10−7) lead to the same results. We run the experiments on a machine with

7



Algorithm 2: Grid Fast Anomaly Detection algorithm given Duplicates (G-FADD)
Input: n-dimensional data point x1, ..., xN ,

number of nearest neighbors k,
constant ε, and
number of grid l.

Output: Outlier scores lof 1, ..., lofN for input data points.
1: # Form a super node set SN(ui) whose elements xj have the same coordinate with ui,

# the ith unique element of X . Then, |SN(ui)| = ci is the count of duplicates.
2: # Calculate local density lrdk(xj) for xj ∈ SN(ui), where |SN(ui)| > k.
3: # For every super node bigger than k, compute local density lofk(xj) for xj ∈ SN(ui).
4: for i = 1, ...,M do
5: if |SN(ui)| > k then
6: for xj ∈ SN(ui) do
7: Assign local density: lrdk(xj)← ci

ε

8: end for
9: end if

10: end for
11: # Separate n-dimensional space uniformly into ln n-dimensional bins (bin1, ..., binln).
12: bincounti ← number of points in bini
13: for i = 1, ..., ln do
14: if bincounti > k then
15: Assign outlier score 1 to points inside the bini: lofk(xj)← 1 for xj ∈ bini
16: else
17: Compute lofk(xj) using FADD
18: end if
19: end for

2 dual-core Intel Xeon 3.00 GHz, 16 GB memory and 480 GB hard disk, running Red Hat Linux
4.1.2.

4.1 Running Time
We first show how our proposed algorithms, FADD and G-FADD, outperform the existing al-
gorithm. Figure 3 (a) shows the running times of FADD and G-FADD, compared to LOF, on a
synthetic 2-dimensional data with 50% duplicate points. Note that LOF died out of memory when
the number of data points exceeds 20K. For 20K data points, FADD and G-FADD runs 1590× and
19132× faster than LOF, respectively. Also note that the running time of LOF increases quicker
(slope 1.241) than the runtime of FADD (slope 0.6949) and G-FADD (slope 0.6271).

Next, we show how the ratio of duplicate points affects the running time. Figure 3 (b) and
(c) show the running times of FADD and G-FADD respectively, for different ratio of duplicate
points on synthetic data where the number of points ranges from 20K to 100K. Note that given the
same data size, more duplicate points lead to faster running time as the size M of unique points
decreases. This trend solidifies our assertion that the running time depends on M . Also, G-FADD

8



Data # Dimensions # Points Description

Twitter 2009 3 39,972,230 degree - PageRank - triangle
US Patent 2 2,076,613 degree - PageRank

Weibo 5 2,158,558 tweets - followees - at -
retweets - comments

Stack Overflow 2 243,776 degree - PageRank

Table 3: Summary of the data used. Each data contain multi-dimensional points whose dimension informa-
tion is specified in the last column.

(a) FADD and G-FADD vs. LOF (b) FADD (c) G-FADD

Figure 3: (a): Running time comparison of FADD and G-FADD vs. LOF, in log-log scale. LOF died
out of memory for more than 20K data points. FADD and G-FADD runs 1590× and 19132× faster than
LOF, respectively. (b,c): Running time vs. data size of FADD and G-FADD in log-log scale. Note that
more duplicate points lead to faster running time. Also note that G-FADD runs faster (smaller slopes) than
FADD for all the ratios of duplicate points.

runs faster (smaller slopes) than FADD for all the ratios of duplicate points.

4.2 Impact of Granularity
Figure 4 shows the top 3 outliers from FADD and G-FADD with different grid granularities. Note
that for all the data, the top outliers from FADD are local outliers buried in the middle of the main
clouds of points because of the duplicate points in the main cloud. However, G-FADD with the
coarsest grid granularity (l=8) gives global outliers which are separated from the main clouds of
points. Also note that as the grid granularity becomes finer, the output from G-FADD gets closer
to that from FADD.

Figure 5 shows the running time of G-FADD with different grid granularities. Note that the
running time decreases dramatically as the cell width increases.

4.3 G-FADD At Work
We present interesting observations of top outliers generated from G-FADD on real world data.

Twitter degree-PageRank. Figure 4 (d) shows the top 3 outliers from G-FADD on the Twitter
degree-PageRank plot. The top 3 outliers are unpopular accounts with very small degrees (7,

9



Fine granularity (local outliers) −→ Coarse granularity (global outliers)

Twitter (degree-PageRank):
(a) FADD (b) G-FADD, l=1K (c) G-FADD, l=256 (d) G-FADD, l=8

Twitter (degree-triangle):
(e) FADD (f) G-FADD, l=1K (g) G-FADD, l=256 (h) G-FADD, l=8

US Patent (degree-PageRank):
(i) FADD (j) G-FADD, l=1K (k) G-FADD, l=256 (l) G-FADD, l=8

Figure 4: [Best viewed in color.] 2-D scatter plot highlighting top 3 outliers from FADD and G-FADD
with different grid granularity l. The blue, green, and red triangles denote the points with the 1st, 2nd,
and 3rd largest outlier scores, respectively. The top outliers from FADD are local outliers buried in the
center of the main clouds of points due to the existing duplicate points, while G-FADD with the coarsest
grid granularity (l=8) gives global outliers which are separated from the main clouds of points. As the grid
granularity becomes finer, the output from G-FADD gets closer to that from FADD.

10



 0
 1000
 2000
 3000
 4000
 5000
 6000

23 24 25 26 27 28 29 210

R
un

ni
ng

 T
im

e

Relative Cell Width

Twitter

 10

 20

 30

 40

 50

20 22 24 26 28 210

R
un

ni
ng

 T
im

e

Relative Cell Width

US Patent

 0

 200

 400

 600

 800

 1000

20 22 24 26 28 210

R
un

ni
ng

 T
im

e

Relative Cell Width

Weibo

 2

 4

 6

 8

 10

20 22 24 26 28 210

R
un

ni
ng

 T
im

e

Relative Cell Width

Stack Overflow

(a) Twitter (b) US Patent (c) Weibo (d) Stack Overflow

Figure 5: Running time (in seconds) of G-FADD dramatically decreases as the cell width increases.

2, and 7, respectively), but they have relatively high PageRank values which make themselves
outstanding. It turns out their neighbors have relatively high degrees: the average degrees of
neighbors are 1646, 89, and 343014, respectively. Due to the many neighbors, they have higher
PageRanks despite their low degrees.

Twitter degree-triangle. Figure 4 (h) shows the top 3 outliers from G-FADD on the Twitter
degree-triangle plot. Each point in the plot represents the degree and the number of participating
triangles of a node in the Twitter who-follows-whom graph. All the top 3 outliers have relatively
small number of triangles compared to their neighbors. The top outlier (blue triangle) is likely to
be an advertisement spammer since it has only 3 tweets which are all about free gift card offers
from Wal-Mart and Best Buy, and it has no followees at all. It has few triangles since the followers
are not likely to know each other, although they had the same interest of a stroke of luck. The
third outlier (red triangle) is an account of a comics character which has 11207 followers and 6
followees. It seems to have few triangles because the fans (followers) of the character might not
be close friends with each other.

US Patent degree-PageRank. Figure 4 (l) shows the top 3 outliers from G-FADD on the US
Patent degree-PageRank plot. The 1st and 2nd outliers (blue and green triangles, respectively)
have high degrees; however the 1st outlier has much larger PageRank than the 2nd outlier. The
reason is that the 1st outlier has 200 incoming edges, with no outgoing edges, and thus can absorb
many PageRanks from its neighbors; however, the 2nd outlier has only 6 incoming edges and 337
outgoing edges, and thus absorbs very few PageRanks from its neighbors. The 3rd outlier (red
triangle) has relatively high PageRank since all of its 3 edges are incoming edges.

5 Related Work
Two comprehensive surveys of existing outlier detection techniques can be found in [7] and [8].
The anomaly detection algorithms can be divided into categories based on the way that the data is
modeled: (a) probabilistic, (b) depth-based, (c) distance-based, (d) angle-based, and (e) density-
based.

The probabilistic approaches ([3], [21]) mark as anomalous the points that do not fit the found
distribution model, while depth-based approaches ([22],[10]) use computational geometry to spot

11



outliers. Knorr and Ng introduced the distance-based approaches ([12], [13]), which (a) rely on
the different neighborhood density between normal and outlier points, and (b) are often based on
the k-nearest neighbor (kNN) distance model ([20], [4], [18], and [25]). For high-dimensional
data, Kriegel et al. [15] introduced an angle-based approach, which tends to flag as outliers points
that are at the borders, and others proposed subspace outlier detection methods ([1], [14], [17]).

The density-based approaches have attracted the most interest, and the representative algo-
rithm is the Local Outlier Factor (LOF) [5]. It is based on the kNN method, and the idea is that a
point is outlier if its local density is different from the density of its neighbors. Improvements on
LOF include: INFLO [9] which handles cases of clusters that are not well separated; LOCI [19]
which automatically detects outliers and micro-clusters without requiring input (k) from the user;
and COF [23] that distinguishes the cases of isolation and low density.

In this work, we focus on the subtle problem of duplicate points, which increases dramatically
the runtime of the distance and density-based techniques that use the kNN model. To the best of our
knowledge, non of the previous works has taken care of this issue yet. We mainly study the widely
used LOF method and propose duplicate-specific optimizations that render it more efficient. We do
not consider the probabilistic and depth-based approaches here, since the former are bound by the
choice of distribution, and the latter suffer from the curse of dimensionality. As far as angle-based
methods are concerned, angle is not well defined in the case of duplicate points.

6 Conclusions
In this paper we propose FADD and G-FADD, fast and scalable algorithms that detect outliers
from multi-dimensional points despite large duplicates. The main contributions are the following:

1. No Degeneracy. We re-design the standard outlier detection algorithm to remove degeneracy
that comes from duplicate points in large, real world data.

2. Running Time. Our proposed algorithms enjoy near-linear running time compared to the
near-quadratic running time of the existing algorithm.

3. Discovery. We analyze large, real world data, and find interesting outliers including Twitter
accounts for advertisement spams, and nodes with high PageRanks despite small degrees.

Future research directions include the on-line outlier detection algorithms to handle duplicate
points for streaming data.

References
[1] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional data. In SIG-

MOD, pages 37–46, 2001.

[2] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. OddBall: Spotting Anomalies in
Weighted Graphs. In PAKDD, 2010.

[3] V. Barnett and T. Lewis. Outliers in statistical data. John Wiley & Sons Ltd., 2nd edition
edition, 1978.

12



[4] Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In KDD, pages 29–38, 2003.

[5] Markus Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jrg Sander. Lof: Identifying
density-based local outliers. In SIGMOD, 2000.

[6] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Joerg Sander. LOF: Identify-
ing density-based local outliers. In SIGMOD Conference, pages 93–104, Dallas, TX, 2000.

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3), 2009.

[8] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection for discrete se-
quences: A survey. IEEE TKDE, 24:823–839, 2012.

[9] Wen Jin, Anthony K. H. Tung, Jiawei Han, and Wei Wang. Ranking outliers using symmetric
neighborhood relationship. In PAKDD. Springer, 2006.

[10] Theodore Johnson, Ivy Kwok, and Raymond T. Ng. Fast computation of 2-dimensional depth
contours. In KDD, pages 224–228, 1998.

[11] U Kang, Charalampos Tsourakakis, and Christos Faloutsos. Pegasus: A peta-scale graph
mining system - implementation and observations. In ICDM, 2009.

[12] Edwin M. Knorr and Raymond T. Ng. A unified approach for mining outliers. In CASCON,
page 11, 1997.

[13] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers in large
datasets. In VLDB, pages 392–403, 1998.

[14] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier detection in
axis-parallel subspaces of high dimensional data. In PAKDD, pages 831–838, 2009.

[15] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. Angle-based outlier detection in
high-dimensional data. In KDD, pages 444–452, 2008.

[16] Chao Liu, Fan Guo, and Christos Faloutsos. Bbm: bayesian browsing model from petabyte-
scale data. In KDD, 2009.

[17] Emmanuel Müller, Matthias Schiffer, and Thomas Seidl. Adaptive outlierness for subspace
outlier ranking. In CIKM, pages 1629–1632. ACM, 2010.

[18] Gustavo Henrique Orair, Carlos Teixeira, Ye Wang, Wagner Meira Jr., and Srinivasan
Parthasarathy. Distance-based outlier detection: Consolidation and renewed bearing. PVLDB,
2010.

[19] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Christos Faloutsos. Loci:
Fast outlier detection using the local correlation integral. In ICDE, pages 315–326, 2003.

13



[20] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining
outliers from large data sets. SIGMOD, 29(2):427–438, May 2000.

[21] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. John Wiley &amp;
Sons, Inc., 1987.

[22] Ida Ruts and Peter J. Rousseeuw. Computing depth contours of bivariate point clouds. Com-
putational Statistics & Data Analysis, 23(1):153–168, November 1996.

[23] Jian Tang, Zhixiang Chen, Ada W. Fu, and David W. Cheung. Enhancing Effectiveness of
Outlier Detections for Low Density Patterns. In PAKDD, pages 535–548, 2002.

[24] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep Sen
Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analytics infrastructure at
facebook. In SIGMOD, 2010.

[25] Ke Zhang, Marcus Hutter, and Huidong Jin. A new local distance-based outlier detection
approach for scattered real-world data. PAKDD, pages 813–822, 2009.

14


	1 Introduction
	2 Background and Observations
	2.1 Definitions
	2.2 Observations: LOF Runtime and Duplicate Points
	2.3 Patterns of Duplicates in real data

	3 Proposed Method: Fast Outlier Detection
	3.1 FADD: Fast Anomaly Detection given Duplicates
	3.2 G-FADD: Grid based FADD

	4 Experiments
	4.1 Running Time
	4.2 Impact of Granularity
	4.3 G-FADD At Work

	5 Related Work
	6 Conclusions

