
Guardrail: High Fidelity Correctness
Checking of Device Drivers for Safeguarding

I/O Operations
OLATUNJI RUWASE∗ PHILLIP B. GIBBONS† MICHAEL A. KOZUCH†

TODD C. MOWRY∗

December 2012
CMU-CS-12-149

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
†Intel Labs, Pittsburgh, PA, USA

Keywords: dynamic analysis, virtualization, reliability

Abstract

Device drivers are an Achilles’ heel of modern commodity operating systems, accounting for far
too many system failures. Previous work on driver reliability has focused on protecting the ker-
nel from unsafe driver side-effects by interposing an invariant-checking layer at the driver inter-
face, but otherwise treating the driver as a black box. In this paper, we propose and evaluate
Guardrail, which is a more powerful framework for run-time driver analysis that performs decou-
pled, instruction-grain dynamic correctness checking on arbitrary kernel-mode drivers as they ex-
ecute, thereby enabling the system to detect and mitigate more challenging correctness bugs (e.g.,
data races, uninitialized memory accesses) that cannot be detected by today’s fault isolation tech-
niques. Our implementation of Guardrail demonstrates that it can find serious data races, memory
faults, and DMA faults in native Linux drivers that required fixes, including previously unknown
bugs. Also, we show that with hardware logging support, Guardrail can be used for online pro-
tection of persistent device state from defective drivers with minimal impact on the end-to-end
performance of standard I/O workloads.

1 Introduction
Device drivers have received significant attention in recent years [3, 20, 54, 5, 16, 6, 50, 58, 17,
15, 28, 22, 33, 42, 47, 27] because they are critical pieces of system software that account for
roughly 70% of the Linux code base [9, 33] and cause a large fraction of system crashes [42, 19,
49, 33]. While researchers have explored a variety of different strategies for improving device
driver robustness, including static analysis [9, 3, 22, 33], specification [28, 43, 54], type safety [38,
47, 58], and user-level drivers [5, 20, 27, 54], our focus in this paper is on performing sophisticated
run-time analysis of driver software to detect and mitigate the impact of bugs. Run-time analysis
of driver software complements the other strategies mentioned above since it can potentially catch
problems that the other techniques may miss due to practical limitations.

The main focus of run-time driver analysis to date has been on fault isolation [20, 54, 5, 16, 6,
50], where the goal is to augment the driver interfaces to prevent a buggy driver from corrupting
the OS kernel. The basic idea behind fault isolation is to interpose a run-time checking layer
at the driver interface that performs a sanity check before the driver is allowed to proceed with
performing side effects outside of the driver (e.g., writing to kernel memory [50]).

1.1 Limitations of Existing Fault Isolation Techniques
While existing fault isolation techniques improve device driver reliability relative to systems with-
out fault isolation, their effectiveness is still limited by the fundamental property that they only
check invariants at the driver interfaces, and they treat the bulk of the driver’s execution as a black
box. For example, most fault isolation techniques ignore driver reads (since normal reads do not
have side-effects), which means that they are unable to recognize problems such as data races
within drivers. In other words, existing fault isolation techniques do not focus on whether the
driver software is executing correctly (at a fundamental level), but rather on whether the driver has
obviously harmful side-effects beyond its interface.

While fault isolation research has focused on the driver’s interface with the kernel, arguably the
driver’s interface to its hardware device is equally important (if not more important) since reboot-
ing the kernel may do little good once persistent device state has been corrupted. In contrast with
the driver/kernel interface, which tends to be relatively uniform across drivers, the driver/device in-
terfaces are far more diverse and device-specific, which makes it far more challenging to interpose
and successfully check invariants across this latter interface [54].

1.2 Our Approach: Decoupled Dynamic Instruction-Grain Driver Analysis
Rather than treating the bulk of the driver execution as a black box, we propose a more power-
ful framework, called Guardrail, where the interposition layer’s decision of whether to allow the
driver to proceed with a side-effect-causing operation is driven not simply by invariant checks at
the driver’s interface, but rather by instruction-grain dynamic analysis of the driver software as
it executes, as illustrated in Figure 1. Indeed, Guardrail typically identifies correctness problems
within the driver before they even reach the driver’s interface. Thus, we enable a more compre-
hensive analysis of whether the driver software is behaving correctly or not than what is practical

1

Device	 driver	

Interposi/on	 &	 	 	
Checking	

Device	

Kernel	

Dynamic	 	
Analysis	 Execu/on	 trace	

Interposi/on	 &	 	 	
Checking	

Figure 1: Incorporating dynamic analysis to protect the system from driver faults.

today by simply monitoring the driver’s interfaces. For example, a driver that contained either a
data race or a memory bug might store the wrong value in a legitimate target location in either
kernel memory or its device.

To achieve this higher fidelity of dynamic correctness checking without sacrificing driver per-
formance, we propose a decoupled approach to performing the dynamic instruction-by-instruction
analysis of the driver as it executes. In our decoupled approach, an execution trace of the driver
software is captured (e.g., via a hardware-assisted logging mechanism [7, 51] or through binary
instrumentation [34, 17]) and stored in a buffer that is consumed asynchronously by the dynamic
analysis tool which runs concurrently on a separate thread in its own VM. Because the dynamic
analysis tool can lag behind the driver in our decoupled approach, the interposition layer stalls any
side-effect-causing operations at the driver interface until the dynamic analysis is able to catch up.

Guardrail effectively achieves a “sweet spot” between synchronous instruction-grain analysis
(which results in too large of a performance overhead for latency-critical driver operations such as
interrupt handling) and offline (or post-mortem) instruction-grain analysis (which avoids runtime
overhead but occurs too late to prevent faulty drivers from corrupting persistent state).

We present three example analysis tools for Guardrail: a memory checker, a data race checker,
and a DMA checker. While our memory checker, DMCheck, is fairly straightforward, our race
detector, DRCheck, requires a number of new techniques to address the concurrency complexities
of kernel-mode drivers, and our DMA checker, DMACheck, is to our knowledge the first analysis
tool for detecting DMA errors.

Related Work
As described already, our work complements earlier research on fault isolation [20, 54, 5, 16,

6, 50] by not only using interpositioning to prevent harmful side-effects from escaping from the
driver, but also by “opening the black box”: i.e. using instruction-by-instruction dynamic analysis
of the driver software to hopefully identify problems that are not obvious to interface invariant
checks. Also, in contrast with the previous proposal for isolating devices from driver faults [54],
which required modifying the driver and moving it into user-space, our approach is transparent to
both the driver and the device, and therefore our approach works with arbitrary driver binaries and
devices.

Regarding dynamic checking for faults within drivers, Safe-Drive [58] and KAddrcheck [17]
perform run-time checks to detect memory addressibility issues in kernel code, including drivers.
In contrast with SafeDrive [58], which instruments drivers at compile-time, our approach works
directly on binaries and does not require access to driver source code. In contrast with KAd-

2

drcheck [17], our approach uses decoupled analysis to reduce the impact on driver performance
and can detect problems with memory initialization (in addition to addressability). Moreover,
within the same Guardrail framework, a wide variety of tools are readily supported.

Finally, DataCollider [15] detects data races through a sampling-based approach by stalling
kernel threads in critical sections and using data breakpoints to detect conflicting accesses in other
threads. There are three fundamental differences between DataCollider and our DRCheck tool
(which we describe in detail later in this paper). First, DataCollider can only detect whether a data
race occurred in a specific observed interleaving, whereas DRCheck can detect race conditions that
might occur in other interleavings (since DRCheck models synchronization protocols used in the
driver). Second, DataCollider uses sampling to reduce run-time overheads, whereas DRCheck uses
decoupled analysis to reduce overhead while still checking all driver invocations for potentially
harmful behavior. Third, DataCollider’s stalling approach is not suited for threads servicing time-
critical interrupts, making it less effective for drivers, which are frequently in interrupt contexts,
than DRCheck.

1.3 Contributions
This paper makes the following contributions:

• We propose and implement a novel framework, Guardrail, for detecting incorrect driver be-
havior at run-time and preventing the faulty driver from corrupting the rest of the system
(including persistent state on hardware devices). In contrast to previous proposals, Guardrail
performs instruction-grain correctness checking as the driver executes, and uses a decoupled
VM-based approach to provide isolation and minimize the impact on driver performance.
Guardrail supports arbitrary driver binaries and devices for kernel-mode drivers in commod-
ity operating systems.

• Within our framework, we demonstrate instruction-grain correctness checking tools that de-
tect unsafe use of uninitialized data, data races, and DMA faults (none of which is sup-
ported by existing driver fault isolation techniques). Our data race tool improves upon prior
approaches by minimizing false positives and avoiding false negatives, while handling the
complexities of kernel-mode drivers.

• Our experimental results demonstrate that our correctness checking tools are more effective
at catching driver bugs than previous tools, e.g., finding a bug in the popular qla2xxx SCSI
driver that had eluded detection for years. Moreover, our results show that Guardrail, and
the proposed correctness checkers have negligible performance impact over the base Xen
system for most of the I/O workloads, given hardware logging support.

2 System Design
To foster a principled approach while designing Guardrail, we developed a set of high-level design
goals. In particular, Guardrail should:

3

User	 space	

Kernel	 space	

VMM	 space	
I/O	 interposi4on	

Device	 Driver	

Driver	 VM	 Analysis	 VM	

Dynamic	 Binary	
Analysis	

Hardware	 Device	

Execu4on	 trace	

Figure 2: Decoupled driver analysis for protecting I/O devices from driver faults.

(generality) support the monitoring of unmodified driver binaries running in common computing
environments (e.g. stock multithreaded OS, arbitrary applications and runtimes, etc);

(detection fidelity) enable fine-grain correctness-checking and identification of errors, while sup-
porting a wide variety of monitoring tools;

(containment) provide mechanisms capable of preventing detected driver errors from erroneously
affecting external state;

(response flexibility) allow users to control what Guardrail does on detecting an error (e.g., dis-
able I/O operations from the driver, or simply record information for post-mortem analysis);
and

(trustworthiness) rely on a minimal trusted computing base for containment.

The system architecture that resulted from these goals is shown in Figure 2. To simultaneously
satisfy the containment and generality goals, we adopted a virtual machine-based system. The
driver(s) of interest, along with the stock OS (Linux, in our prototype) and related applications,
executes in one virtual machine (VM), labeled the “Driver VM” in the figure. The virtual machine
monitor (VMM) provides the interposition mechanism. I/O operations are intercepted in this layer,
and should an error be detected, the VMM prevents the error from propogating outside the driver
VM by simply not delivering it to the physical hardware.

While the driver executes, a trace of its operations is collected and delivered to the “Anal-
ysis VM.” An instruction-level trace supporting high detection fidelity can be captured through
one of several mechanisms: binary translation [34, 17] in the driver VM, VMM-based monitor-
ing [56, 10], or monitoring hardware [7, 52, 51]. Because driver code is potentially executed by an
unbounded number of kernel threads, logical logs are maintained per virtual processor, rather than
per kernel thread, in the “Driver VM”, to avoid scalability issues.

The execution trace is streamed, possibly with some buffering delay, to the Dynamic Binary
Analysis tool, which runs in user space in the Analysis VM. This tool consumes the execution
trace and checks for driver errors, such as data races or memory access violations, to help the VMM
determine when (or if) an intercepted I/O operation can be safely dispatched to the device. If a fault

4

is identified in the driver’s execution then it is potentially unsafe to dispatch the intercepted I/O
operation to the device. However, the appropriate course of action in this situation often depends
on the peculiar requirements of the user (e.g., willing to sacrifice system availability to ensure
persistent data integrity). Therefore, to accomodate the variety of constraints in production sites,
end users have the response flexibility of configuring Guardrail to operate in one of 3 modes: (i)
stringent, (ii) permissive, and (iii) triage. In stringent mode, Guardrail blocks the intercepted
and subsequent I/O operations from the driver, effectively disabling the I/O device. Permissive
mode is the other extreme, where after performing user specified actions (e.g., alerting the user,
taking a system checkpoint, enabling more detailed analysis etc.) Guardrail dispatches the I/O
operation to the device and resumes normal execution. Moreover, permissive Guardrail records
information to enable post-mortem analysis of a resulting system failures. Triage mode represents
a middle ground between these two extremes, where Guardrail performs a best-effort estimation
of the safety of completing the I/O operation by automatically triaging the fault [29, 23]. If the
I/O operation is deemed safe, Guardrail behaves like permissive mode, otherwise it behaves like
stringent mode. Although this flexibility allows Guardrail to be configured in interesting ways
for different real-world deployment scenarios, our current work is however focused on stringent
Guardrail.1

Note that in this design, the trustworthiness of the containment mechanism is maintained be-
cause any complexity associated with tracking the driver state, emulating device-specific logic, or
correctness checking is managed in the dynamic analysis tool. Consequently, device-independent
I/O interpositioning may be effected through a simple addition to the VMM layer; less than 500
lines of C code were required to retrofit a commodity VMM (Xen [4]) with I/O interpositioning.
The complexity of the checking tool may be non-trivial, however, primarily because the system
was designed to accomodate arbitrary correctness-checking to cope with the wide variety of bug
types that plague device drivers [9, 19, 33]. Fortunately, these tools run in user space of the analysis
VM– easing their development and deployment.

2.1 Analysis Scope
An important question that arises in our design is: which events should be captured in the execution
trace? For example, the trace could capture all instructions events in the driver VM, all kernel-
level events only, or solely events associated with the driver. Naturally, capturing a larger set of
events than necessary incurs a performance overhead, so ideally, the driver analysis tool would
only need to process events generated by the driver. In our case, this would mean instructions
whose addresses belong to the loaded driver module.

However, we soon observed that many operations critical to determining whether a driver is
behaving correctly are in fact performed outside the driver. In particular, the I/O subsystem (or
protocol stack) (e.g. network, SCSI, sound), which manages the driver, provides certain invari-
ants upon which the driver writer may rely. For example, the network stack will acquire certain

1Permissive and Triage modes only affect Guardrail’s response to suspected driver correctness issues within the
context of the driver VM. The interposition layer always enforces the virtual machine definition. For example, an
attempt to read/write past the end of a virtual disk will be strictly enforced under all modes.

5

 HARD_TX_LOCK(dev, cpu);!
 . . . !
 rc = dev->hard_start_xmit(nskb, dev);!
 . . .!
 HARD_TX_UNLOCK(dev);!

Figure 3: The Linux interface to network drivers serializes packet transmission by locking invo-
cations of hard start xmit().

locks prior to driver execution to protect shared data accesses within the driver, as illustrated by
the code snippet from Linux 2.6.18 in Figure 3. Here, the network stack serializes packet trans-
mission by locking the execution of the driver’s hard start xmit() callback. A race detector
focused solely on the driver’s execution would not observe the lock acquire, which happens out-
side the driver context, and hence would incorrectly flag as data races all pairs of accesses in
hard start xmit() by different threads with at least one writer.

In order to address this issue, Guardrail monitors and analyzes operations occurring in the
relevant portions of the I/O subsystem (e.g., the scsi mod module in the Linux SCSI subsystem) as
well as those originating in the driver, itself. Extending the scope to include this interface captured
all such “critical” operations that we observed. Our goal is not to determine whether there are errors
in the interface, but rather to detect operations that are critical to driver correctness, and indeed this
extension was useful for both our memory fault and data race detectors. A possible drawback of our
approach is that interface changes across kernel versions will require corresponding modifications
to our checking tools—such changes are likely infrequent because they often require corresponding
modifications to the entire driver code base, not just to our tools.

2.2 Analysis Scheduling
Decoupled correctness checking requires careful scheduling of the analysis thread(s) to balance
two conflicting performance goals: (i) minimizing the delay of consuming log entries, and (ii)
minimizing the physical CPU utilization when the log(s) are empty. While log consumption delay
could be minimized by polling the log(s), it leads to an undesirable waste of physical CPU cycles,
because most drivers account for only a small fraction of the system-wide (i.e., “Driver VM”) ex-
ecution. Guardrail addresses this issue as follows. First, analysis thread(s) are put to “sleep” when
execution leaves the “analysis scope” (Section 2.1) in the “Driver VM”, and the log(s) become
empty (saving CPU resources). Conversely, as execution returns to the “analysis scope”, leading
to log production, Guardrail employs inter-processor interrupts to wake the corresponding analysis
thread(s) in the “Analysis VM” (reducing log consumption delay).

2.3 I/O Interposition Details
Since devices are controlled by reading/writing device registers, the interposition layer prevents
driver errors from propogating beyond the VM boundary by: (i) by intercepting all2 device register

2Some performance improvements could be obtained by not intercepting I/O operations that do not affect
externally-visible state, such as side-effect free reads, but such optimizations would require scrutiny of the opera-

6

User	 space	

Kernel	 space	

VMM	 space	
I/O	 interposi4on	

Device	 Driver	

Driver	 VM	 Analysis	 VM	

Dynamic	 Binary	
Analysis	

Hardware	 Device	

2	

4	

1	

3	

1.	 Access	 trap	

2.	 Request	 approval	

3.	 Approve	 access	

4.	 Complete	 access	

Figure 4: Transparent mediation of device register access.

accesses, (ii) coordinating with a decoupled correctness checker to determine the safety of the
accesses, and (iii) ensuring their timely eventual completion as soon as they are deemed safe.
Because the device is directly assigned to the driver VM [55], the interposition layer is transparent
to both the driver and device, and therefore supports arbitrary drivers and devices. Figure 4 depicts
the steps associated with how the interposition layer transparently handles a device register access.

Intercepting device register access Device register accesses from the driver are intercepted by
ensuring that device register accesses from the driver VM fault to the VMM. In virtualized x86
environments, the I/O port address space is typically considered to be privileged by default and
accesses to this space will fault. Many modern devices, however, are managed through memory-
mapped I/O registers that are accessed through regular load and store instructions. Because these
operations are subject to the usual address translation mechanisms, we can intercept accesses to
the device registers by configuring the page tables of the driver VM such that these accesses fault
to the VMM. The page faults resulting from this interposition can be distinguished from normal
memory management page faults based on the faulting address. Note that interposition only affects
communication originating from the driver VM; interrupts to the driver VM may be delivered
normally.

Coordinating with decoupled correctness checking To limit the performance penalty of I/O
interposition, intercepted device accesses should be verified and re-issued as soon as possible. If
correctness checking is coupled with I/O interposition [54], this can be relatively straightforward;
however, in our decoupled checking approach, additional coordination is required between the in-
terpostion and checking components. After intercepting a device register access, the interposition
layer uses a memory-based communication channel to request approval from the checker to com-
plete the access. Details of the faulting instruction (e.g. thread id, faulting address) are included
in the request. If the checker verifies that no errors occured in the execution trace up to the point
where the access was encountered, the access will be approved. Otherwise, if the access is dis-
approved because of a driver fault, the interposition layer can initiate recovery using appropriate
techniques [48, 6, 26].

tions and were not pursued in this work.

7

Because the checker’s response will typically incur some latency, the interposition layer has
at least two options regarding what what to do while waiting for the checker’s response. The first
is to hold the request in the hypervisor until the response arrives, effectively freezing the virtual
CPU. To maintain the responsiveness of the guest OS, if interrupts are generated during this period,
they should be delivered to the virtual CPU at the point just before the faulting instruction.3 For
development expediency, we selected a different option: the interposition layer simply returns
control to the faulting instruction periodically. In other words, a guest OS thread that accesses
device registers will continue executing the access and trapping into the interposition layer, until
either the checker verifies the safety of the access or the thread is preempted.

Completing device register access After the checking tool has verified that the intercepted regis-
ter access is safe, there are two ways of issuing the operation: (i) retry the faulting instruction after
temporarily making the device register available to the guest OS [12], and (ii) emulate the faulting
instruction in the hypervisor. Since the concurrently executing kernel threads, of commodity OSes,
share a single kernel address space, ensuring that the temporarily accessible page is only accessed
by the verified operation in the intended thread at an appropriate time, the first option requires great
care. Consequently, in our current impolementation, we’ve chosen the emulation option to avoid
potential containment errors, especially in SMP environments.

3 Driver Correctness Tools
Guardrail enables a wide range of driver correctness checking tools. In this work, we focus on
tools for memory safety and concurrency, and OS protocol issues, because studies have shown
that these account for a significant fraction of production driver faults [9, 19, 33, 42]. This section
describes the three instruction-grain dynamic analysis tools that we developed for finding memory
faults, data races and violations of OS rules for using DMA in unmodified Linux driver binaries.

3.1 DMCheck: Detecting Memory Faults
Kernel-mode drivers for commodity OSes are prone to type safety issues because they are written
in unsafe languages (C and C++). Common memory faults in drivers include accesses to unallo-
cated memory, unsafe use of uninitialized data, and memory leaks. The objective of our analysis
is to detect such faults in driver executions. To this end, we adapt the analysis in Memcheck [30],
a popular tool for finding memory faults in application binaries, to kernel-mode drivers. Specifi-
cally, we use Memcheck’s algorithm for finding memory faults by maintaining metadata for each
byte of memory indicating whether the byte is currently allocated and, if so, whether it has been
initialized. The metadata is updated in response to instructions that initialize data or system calls
that allocate or free memory. An error is reported if an instruction accesses unallocated memory
or uses uninitialized data in an unsafe way, or a memory leak is detected.

3We assume that the faulting instruction will eventually be re-executed, and the matching approval from the checker
can then be applied. The VMM may need to monitor the guest to ensure it doesn’t make an adjustment to prevent such
re-execution (e.g. re-writing the stack). Such adjustments were not encountered in our experiments.

8

Our tool, DMCheck, adapts Memcheck to kernel-mode drivers by addressing two issues: (i)
recognizing kernel functions for (de)allocating memory, and (ii) dealing with memory objects that
are (de)allocated outside the driver. The first issue is trivially handled by recognizing that kernel
memory management functions such as kmalloc() and kfree() are analogous to user-space
functions such as malloc() and free().

The second issue arises because of the need for drivers to communicate with the kernel in
an efficient manner. Sometimes, this means the driver will manipulate memory objects that are
allocated by other parts of the kernel. An example can be found in how socket buffers, for storing
network packets, are handled in the network stack. The packet transmission path of a network
driver receives socket buffers from the network stack and deallocates them after transmission.
Conversely, the packet reception path allocates socket buffers, for received packets, and expects
the network stack to deallocate them. DMCheck addresses this issue by incorporating the kernel-
driver interface module into our analysis, as described in Section 2.1, so that the address range for
each such memory object can be captured by the analysis.4

3.2 DRCheck: Detecting Data Races
Our second dynamic analysis tool, DRCheck, detects data races in kernel-mode drivers. A data
race condition occurs whenever there are two unserialized accesses to the same shared data with at
least one being a write. Race conditions are difficult to avoid during driver development because of
the complex concurrency setting in which drivers operate, and difficult to find during pre-release
testing because of their non-deterministic nature. Moreover, most drivers are developed by third
parties who are not kernel experts [19, 33]. As modern OS kernels and their drivers increasingly
exploit parallelism to improve performance, avoiding race conditions becomes all the more chal-
lenging, posing a serious threat to system stability.

A recent, related effort, DataCollider [15], used a sampling approach to investigate these issues
in kernel space. This tool purposely stalls kernel threads and detects synchronization errors by
observing “collisions” between the stalled thread and improperly synchronized threads. A thread
“collides” with a purposely stalled thread only if there is nothing preventing them from colliding—
the tool need not reason about the particular mechanisms used to serialize threads. However, be-
cause such stalling is not suited for threads servicing time-critical interrupts, DataCollider provides
only limited coverage of interrupt contexts. This makes DataCollider less effective for drivers, be-
cause interrupt contexts represent significant portions of driver executions.

Our approach, DRCheck, in contrast, covers interrupt contexts as well as all other contexts.
Furthermore, DRCheck can detect not just realized race conditions but also some potential race
conditions that may occur in thread execution interleavings other than the one(s) observed.

Our tool is based on the LockSet algorithm explored in Eraser [44]. Unfortunately, this prior
work may not be employed directly because it, and related studies [57, 18, 45], focused only on
user-space applications, and the concurrency issues of kernel-mode driver execution are signifi-

4As in prior work, we trust the kernel-driver interface module. E.g., we assume that pointer and size arguments
passed to the driver correspond to a properly allocated memory object for the given address range. The design can be
readily extended to correctness check the kernel, but this is beyond the paper’s driver-checking scope.

9

cantly more complex than user-mode execution. In particular, we have identified the following
four sources of additional complexity that must be addressed in kernel-mode driver execution:

• concurrent execution of multiple priority levels, so that a thread may race even with itself;

• ad hoc mutual exclusion techniques that avoid lock overheads, such as disabling interrupts
and preemption;

• deferred execution using softirqs and kernel timers; and

• synchronization invariants based on the context of the driver state.

These issues can lead to excessive false positives and false negatives using existing tools. In this
section, we discuss the issues in further detail and describe the modifications to LockSet required
to enable DRCheck to handle driver execution while minimizing false positives and avoiding false
negatives.

3.2.1 Detecting driver concurrency

The most basic source of driver concurrency is multi-threaded execution of driver code and ac-
cessing of shared driver data. However, kernel preemption also introduces driver concurrency in a
subtle manner using a single thread, as follows. Drivers normally perform tasks of varying impor-
tance (priority). In a network driver, for example, servicing an interrupt generated by the network
card is of higher priority than responding to user-level requests for network card statistics. How-
ever, when kernel preemption switches a thread from a lower to a higher priority task that happens
to share driver data, the thread may race with itself due to the interleaving of the two tasks.

Our approach is to exploit thread context to detect concurrency in drivers, by tracking both
the identifier and context of kernel threads. In Linux, for example, a kernel thread at any point
in time is either in process or interrupt (bottom or top half) context, which reflects the priority of
its current task. (Similar contexts are used for kernel threads in other commodity OS kernels, like
Windows.) Basically, just as memory operations of a user-mode thread are considered serialized,
we consider the memory accesses of a kernel thread in a particular context to be serialized. In
other words, except when explicitly synchronized by any of the methods discussed in this section,
a kernel thread’s memory access in one context is considered to be concurrent with its memory
accesses from a different context (as well as memory accesses by other kernel threads).

3.2.2 Detecting mutual exclusion primitives

The kernel provides a variety of synchronization primitives for mutual exclusion: (i) locking prim-
itives such as spinlocks and mutexes, (ii) operations that disable interrupts and preemption, and
(iii) hardware atomic instructions such as test and set. Detecting (and tracking) locking
primitives such as spinlocks and mutexes is easy because of their modularized interface (e.g.,
spin lock()/spin unlock()). Interrupt enabling/disabling can be detected (and tracked)
by observing the specific instructions (e.g., STI, CLI, POPF, IRET, etc. in x86) in the execu-
tion trace. Hardware atomic instructions like test and set are more challenging because of

10

the need to determine whether the instruction guards a critical section and, if so, whether or not it
succeeded in entering. DRCheck uses pattern matching over a small window of the trace starting
with the test and set instruction (btsl in x86) in order to determine whether the sequence
matches a known critical section preamble for the specific kernel. If so, it checks the value returned
by the test and set to determine whether it succeeded.

3.2.3 Handling deferred execution

Kernel threads that execute under tight deadlines (e.g., interrupt service routines) are often re-
sponsible for important tasks (e.g., copying received packets from the network card) that cannot
be completed in a timely manner. Thus, most OS kernels provide mechanisms for postponing
work until a more convenient time, such as softirqs in Linux, deferred procedure calls (DPCs)
in Windows, and software interrupts in Solaris. Kernel timers are also provided for deferring the
execution of a function until at least a specified time in future. Common uses of timers include
checking that tasks are completed on schedule, or that a device is still functional.

Softirqs are commonly used by interrupt handlers of high performance drivers to defer work
to a future context, e.g., to the bottom half context. However, the way the interrupt thread defer-
ring work synchronizes with the polling thread that will do the work poses a challenge for data
race analysis because these threads do not share any locks. Instead, the interrupt thread enqueues
the work, and then calls raise softirq to asynchronously activate the polling thread. The
Linux softirq infrastructure guarantees that only one polling thread, on the same processor as the
interrupt thread, responds to the call and completes the deferred work. DRCheck recognizes the
raise softirq call as the serializing operation between the threads.

Kernel timers also pose some challenges to data race detection. For example, although a delay
is specified when registering a timer, only the operations that were performed by the thread prior
to timer registeration are guaranteed to be serialized with execution (possibly by a different thread)
of the deferred function. This is because the thread could be preempted for a period longer than
the timer delay. Also, successive executions of the function of a timer are serialized, even though
synchronization primitives (e.g., locks) are not used in the function. On the other hand, executions
of functions with different timers are not serialized.

These issues with kernel timers are handled in DRCheck as follows. First, we associate a virtual
state with each timer. A timer is inactive before its registeration, and active until it executes,
after which it becomes inactive again. This serializes the execution of the timer to operations
preceding its registration. Next, we associate a virtual lock with each timer that is held throughout
the execution of the timer function. This serializes the successive executions of the function of the
timer.

3.2.4 Tracking state-based synchronizations

Many peripheral devices—e.g., ethernet, scsi, usb, etc.—behave like finite state machines (FSM),
and drivers often use their states to protect critical sections. The set of valid operations for a device
depends on the state of the device, and so the kernel, in order to prevent device failures, invokes
only driver callbacks that are valid for the current device state. In other words, device states act

11

as the invariants that guard the invocation of certain driver callbacks by the kernel. Thus, any
pair of driver callbacks that are never concurrently valid (i.e., they have conflicting invariants)
will not execute concurrently, and their critical sections are mutually serialized as a result. For
example, consider the FSM snippet in Figure 5 for a Linux network device. It shows that the
pci::probe and netdev::open callbacks of a network driver are valid in different device
states, and hence cannot race with each other. Existing race detection tools are oblivious to the
invariants (or states) in which driver callbacks are executed, and hence they can incorrectly report
races between callbacks with conflicting invariants. Indeed, our experimental study in Section 4
shows that ignoring state-based synchronization results in a high false positive rate. (As noted
earlier, DataCollider is an exception to this false positives problem because it manifests only actual
races.)

connected	 to	
pci	 bus	

inac.ve	
ready	 for	 	
pkt	 rx/tx	

pci::probe () netdev::open ()

Figure 5: State transitions for a Linux PCI network device, showing that the probe() and
open() functions of the driver are serialized.

So far, our discussion on state-based synchronization has focused on device states that are used
by the kernel to control driver execution. Some examples include status of the PCI connection,
interrupt request line (IRQL), polling/interrupt handling, etc. However, it is possible for a driver
to use other state information internally to manage critical sections. Nevertheless, our focus is on
kernel-aware device states, because most OS kernels organize devices into classes (e.g., network,
scsi, graphics, usb) and export a standard interface to the drivers of a given class. It is therefore
more scalable to design for the kernel interface than for individual drivers.

DRCheck incorporates kernel-aware states that control driver execution by tracking, based on
the execution trace, the set of states under which each callback is invoked. Alternatively, one could
use specifications obtained from kernel experts [14, 21], perhaps incurring less runtime overhead.
We choose our approach because it does not rely on specifications being both correct and repre-
sentative of the kernel code.

Because drivers routinely change device states, the basic approach of tracking states at driver
entry points is not sufficient: Other regions of a callback might execute under a different set of
states. As a refinement, DRCheck also tracks device states at code points that follow device state
changes.

3.2.5 DRCheck Implementation

DRCheck is an extension of the Lockset algorithm in Eraser [44]. Lockset detects races in mul-
tithreaded applications by checking that shared data access is protected by a consistent locking
discipline. Lockset maintains metadata for each word of shared memory indicating whether the
location has been accessed by multiple threads, and if so, the set of locks consistently held by all

12

threads accessing the location from that point on. If there is no such common lock, Lockset reports
a potential data race.

DRCheck extends Lockset as follows. First, adapting Lockset for kernel-mode locking primi-
tives was straightforward for the ones that behave similarly to user-mode primitives (e.g., kernel
spinlocks). However, some kernel-mode locking primitives also disable interrupts (e.g. spin lock irq).
Based on previous Lockset proposals for supporting interrupts, per-CPU virtual locks are associ-
ated with interrupt contexts, and are acquired by threads that disable preemption or interrupts.
Logical locks are maintained for virtual and real locks, e.g. spinlocks, including bitlocks of atomic
test and set instructions. In the evaluation, we call this variant KLockset.

Second, we add the mechanisms for handling deferred execution discussed in Section 3.2.3.
Finally, we further include state-based synchronization tracking, as follows. For each shared data,
in addition to tracking the set of locks held by threads on each access, the set of device states is
also tracked. The state variable field in the device class data structure of each driver is used to track
device states. When a shared data’s set of locks becomes empty at an access, a race is not reported
only if the current device state is disjoint with the state set of the data. Instead, the location’s
metadata is reset to the “exclusive” (i.e., no longer accessed by multiple threads) state.

Note that, as in all our tools (recall Section 2.1), DRCheck tracks synchronization in both the
driver and kernel-driver interface execution, while reporting races only in the driver execution.

3.3 Direct Memory Acess (DMA) Faults
Direct Memory Access (DMA) is an efficient method for performing bulk I/O data tranfers between
system memory and peripheral devices. The main attraction of DMA is that data transfer is per-
formed by device, while (valuable) CPU cycles are conserved. Thus, drivers for high performance
devices (e.g., gigabit network cards, and graphics cards) commonly use DMA to efficiently achieve
high I/O transfer throughputs. However, incorrect DMA operations are a serious threat to system
stability, and thus motivated our third dynamic analysis tool, named DMACheck. DMACheck per-
forms instruction-grained analysis of driver execution to detect incorrect DMA operations.

DMACheck complements prior IOMMU hardware [2, 1], and software [54] solutions. IOMMU
places a restriction on the physical memory locations that a device can DMA into (or from), en-
suring that OS (or hypervisor) enforced memory protection is not circumvented by misconfigured
DMA transfers. In contrast, DMACheck analyzes driver execution to detect misconfiguration of
DMA transfers. DMACheck and Nexus-RVM [54] are similar in that they both detect DMA errors
by checking driver execution, however, they target different types of DMA faults. Nexus-RVM
leverages device-specific logic to detect device protocol bugs (e.g., improperly formatted DMA
transfer requests). In contrast, and as explained in more details below, DMACheck is designed to
detect driver violations of the OS protocol regarding DMA operations, and can therefore be used
for any device supported by the OS.

To motivate the kind of faults that DMACheck was designed to detect, we briefly discuss how
DMA is used by drivers. Although the discussion below is based on Linux drivers running on x86
systems, we expect that the issues generally apply to other platforms.

13

3.3.1 DMA in Linux Drivers

To take advantage of DMA for I/O data transfer, a driver must: (i) map (and pin) physical memory
region(s) (a.k.a. DMA buffer(s)) to be used as source/destination, into the kernel and I/O address
spaces, (ii) inform the device of the DMA buffer(s) (i.e., location in the I/O address space), (iii)
signal the device to begin the transfer, and (iv) wait for the transfer to complete.

As with other system resources, the OS kernel controls the management of DMA buffers, and
provides functions for mapping DMA buffers into, the kernel address space (i.e., for driver ac-
cess), and the I/O address space (i.e., for device access), along with the corresponding unmapping
functions. Thus DMA buffers are, in general, accessible via two different addresses: (i) virtual ad-
dresses, used by drivers, and (ii) device address (I/O bus address), used by devices. The DMA sub-
system of the Linux kernel provides a variety of functions (i.e. dma map {single,page,sg})
for mapping DMA buffers into the I/O address space, and obtaining the corresponding bus ad-
dresses.

Before instructing the device to begin transferring data, the driver must supply the device with
the bus addresses of the DMA buffers to be used for the transfer. This is done by updating the
appropriate set of device registers. The driver’s role in setting up DMA is done as soon as it signals
the device to commence data transfer. The driver then waits for completion, either by yielding the
CPU or performing other important tasks in the meantime. The device signals transfer completion
by interrupting the processor. On completion of an incoming transfer, the driver arranges for data
to be transferred, up the I/O stack, to the requesting process. For outgoing transfers, the driver
optionally releases the source DMA buffers, or recycles them for future use. Nevertheless, a driver
must ensure that its DMA buffers are unmapped (i.e. using dma unmap {single,page,sg}),
before it is unloaded.

Because the driver (i.e., via processor) and the device access physical memory (i.e., DMA
buffers) through different data buses, the driver is responsible for avoiding coherence problems,
i.e., ensure that both work with updated data. To assist drivers achieve this, the kernel provides
functions (e.g. dma sync single,sg) for synchronizing the cache and physical memory copies
of DMA buffers. In particular, a driver can use these functions, to fetch DMA buffer(s) from
memory into the caches, before accessing incoming I/O data, and flush DMA buffer(s) from the
caches, before the device accesses outgoing I/O data.

3.3.2 DMA Buffer Faults

Based on the preceding description of DMA operations by drivers, one might observe a number of
ways in which driver defects could cause problems for the I/O subsystem. Specifically, DMACheck
is designed to check that drivers correctly handle the following DMA buffer issues:

1. Sharing: DMA buffers are shared by the driver and device, and so, the driver should avoid-
ing racing the device. In particular, while transfer is in progress, the device should be as-
sumed to have exclusive access to avoid data corruption. For example, driver writes into
source DMA buffers could corrupt outgoing I/O data.

14

2. Management: DMA buffers are system resources, and should be carefully managed by
drivers. Drivers should avoid leaking (i.e., failing to unmap) DMA buffers, or (un)mapping
them multiple times. Leaks wastes the system’s DMA resources, while multiple (un)maps
could corrupt the DMA subsystem.

3. Coherence: device access to DMA buffers bypasses the caches, thus to avoid coherence
issues DMA buffers should not share cache line, with other data (including other DMA
buffers). One solution is to ensure that DMA buffer size and virtual address are cache line
width aligned.

From the 3 issues listed above, we identfied 5 types of DMA buffer faults: (i) data races be-
tween driver and device, (ii) leaks, (iii) repeat mapping, (iv) repeat unmapping, and (v) misaligned
virtual address. In summary, DMACheck is the first use of dynamic analysis to study DMA related
problems in drivers. Moreover, we expect that DRCheck can be extended for other faults, relating
to DMA buffers or DMA in general.

3.3.3 Design

DMACheck detects errors by monitoring how drivers operate on DMA buffers. Linux drivers ma-
nipulate DMA buffers using both virtual and bus addresses. For example, the virtual address is used
to read/write the DMA buffer while the bus address is used to synchronize the cache and memory
copies of a DMA buffer to avoid coherence issues (e.g., dma sync single for cpu(). Thus,
DMACheck tracks the mapping of a DMA buffer in both the virtual address space and the I/O ad-
dress space, unlike other driver checking tools (i.e., DMCheck, DRCheck) which track only kernel
address space objects.

The DMA buffer faults that DMACheck detects can be grouped into 2 categories, based on the
granularity of the detection analysis. Instruction-grained analysis is used to detect races between
driver and device—checking if a memory operation by the driver overlaps a DMA buffer that the
device is currently accessing. In contrast, the other faults (e.g., misaligned DMA buffers) can be
detected by inspecting the arguments of DMA function calls (e.g., dma map single()) made
by the driver.

DMACheck detects races on DMA buffers by checking for unserialized accesses by the driver
and device to a DMA buffers. However, doing this precisely is challenging because device access
to DMA buffers cannot be (directly) observed by DMACheck. Instead, DMACheck leverages its
ability to observe driver execution to approximate the time intervals when a DMA buffer could be
accessed by the device. We identified two pairs of driver operations for approximating this interval
for a given DMA buffer: (i) mapping the buffer into the I/O address space, and the correspond-
ing unmapping, and (ii) specifying the buffer as part of a DMA transfer to the device, and the
corresponding servicing of the completion interrupt.

Although, at first glance, the second option appears to be a more accurate approximation of
when the device actually uses a DMA buffer for transfer, however, the conservative first option
turns out to be a more practical approach for a couple of reasons. First, some coherence issues of
DMA are addressed when DMA buffer(s) are mapped/unmapped into/from the I/O address space.

15

For example, the cache lines of a source DMA buffer are flushed when it is mapped for the device
to read, and thus later driver updates may not be captured in the transfer. In fact Linux kernel docu-
mentation recommends that drivers should not touch DMA buffers that are accessible to the device,
without unmapping the buffer or synchronizing the cache and memory copies. Next, the second
option introduces the complexity of understanding device-specific logic of how DMA transfers
are configured by drivers–an unscalable undertaking, considering the large number of available
devices. For these two reasons, DMACheck adopts the first option to approximate intervals when
the driver should not access a DMA buffer.

3.4 Discussion
As we demonstrate through evaluation with production Linux drivers (Section 4.2), our checking
tools can detect errors that are missed by current techniques, which suggests that our techniques
can be used to improve driver debugging and testing, or make production systems more resilient
to defective drivers. However, in evaluating how to deploy our techniques in these scenarios it is
worth considering the practical implications of false negatives and false postives (i.e., DRCheck)
of the analysis algorithms.

The underlying Lockset algorithm of DRCheck leads to false data race reports for properly
synchronized code that however deviates from the expected locking discipline. This is a serious
limitation for production deployments, because halting a system for a false alarm is simply un-
acceptable. Moreover, the fact that 76%–90% of true races are actually benign [29], means that
simply avoiding false alarms (e.g., by incorporating a Happens-Before approach [57]) is insuffi-
cient. However, rather than foregoing race detection entirely on production systems, we believe
that this would be an appropriate situation for deploying Guardrail in triage mode (Section 2);
to automatically classify the alarms raised by DRCheck into harmless and harmful races. Fur-
thermore, DRCheck could be extended to recognize the synchronization patterns and benign data
sharing patterns that it had incorrectly flagged in the past to reduce the number of spurious alarms
and the need for triaging.

The dynamic nature of our techniques creates the possibility of false negatives,—our tools
cannot guarantee driver correctness. Rather, they can only determine whether or not the observed
driver executions (i.e., code paths, thread interleavings, and input) are fault-free. For production
deployments, this is not a problem since the goal is to keep the system running (i.e., availability),
until there is a compelling reason to do otherwise (i.e., driver misbehaving). In contrast, for driver
debugging or testing, false negatives make it difficult to reproduce bugs or guarantee their absence.
Thus, our tools will be more effective for pre-release purposes when combined with techniques for
achieving high coverage driver execution [8, 39].

4 Evaluation
We developed a prototype of Guardrail to answer two questions:

1. How effectively do our techniques detect driver faults, particularly when compared with
existing techniques?

16

Class Driver Device
Audio snd hda intel High Def Audio (ICH7)
Network tg3 BCM5754 1Gpbs NIC
Storage ahci ICH7 SATA disk
Video nvidia Quadro NVS 285

Table 1: Linux drivers and devices used in commodity hardware studies.

Class Driver Device model
e100 I82559 100Mbps NIC
e1000 I82543gc 1Gbps NIC

Network pcnet32 AM79C973 100Mbps NIC
tg3 BCM5703C 1Gbps NIC
tulip DEC21143 100Mbps NIC
qla1280 ISP1040 SCSI disk

Storage qla2xxx ISP2200 SCSI disk
sym53c8xx SYM53C875 SCSI disk

Table 2: Linux drivers and devices used in simulated hardware studies.

I/O type Benchmark Version Description
Audio & Video Mplayer 1.0 Multimedia player

Apache 2.2.6 Webserver
Network Memcached 1.2.3 In-memory key value store

Netperf 2.4.0 Network performance measurement tool
Storage GNU Make 3.81 Software compilation utility

Postmark 1.5.1 Filesystem benchmark

Table 3: The I/O intensive benchmarks used for evaluation.

Hardware Network client Postmark
Apache Memcached Netperf

Threads Requests File size Threads Req/thread Length Trx. Files File size
Real 1–32 16K 40KB 32–256 100K 20 secs. 100K 20K 10KB–20KB
Simulated 16 1600 40KB 16 1K 5 secs. 100K 1K 10KB–20KB

Table 4: Benchmark parameters.

2. What is the impact on the system end-to-end performance, of using Guardrail to protect I/O
devices from driver faults, particularly if the monitored device is heavily used?

17

4.1 Methodology
In our Guardrail prototype, the I/O interposition layer is a modified version of a paravirtualized
(PV) Xen-3.3.1, which includes our extensions for containing potential driver faults. The guest
OS is based on the Linux 2.6.18 kernel. A variety of devices were evaluted in this software en-
vironment, and all of the corresponding drivers were stock, unmodified binaries. The devices
were directly assigned [55] to the VM, to enable the execution of non-paravirtualized drivers, and
minimize I/O virtualization overheads [13].

Benchmarks We tested our implementation with a variety of device types, and consequently, we
used a set of popular I/O benchmarks, listed in Table 3, to understand how our techniques affect
the reliability and performance of the corresponding drivers.

We used the open source media player, Mplayer, to evaluate the audio and video drivers; and
we used it’s benchmarking feature to collect our experimental results. We evaluated the network
drivers using the Apache web server, the Memcached in-memory key-value store, and the Netperf
network performance measurement tool. To generate input loads, we used Apache’s benchmarking
tool, ApacheBench, and memcached’s benchmarking tool, Memslap. We evaluated storage drivers
with the Postmark filesystem benchmark and kernel compilation.

Experimental Setup We conducted experiments on both real and simulated multicore x86 hard-
ware, but used the same software stack in both environments.

To evaluate the fault detection of our proposed instruction-grain tools (Section 4.2), we simu-
lated hardware assisted logging [7, 52] to trace driver execution because we did not have access to
a software logging mechanism for tracing kernel-mode execution. Aftersight [10] and Retrace [56]
are proprietary tools, while [17] was proposed after we had completed our evaluations5.

Our performance studies focused on the overheads of our virtualization-based interposition
(Section 4.3) and of deploying the checking tools in decoupled fashion to protect I/O operations
(Section 4.4). We conducted experiments on real hardware platforms to measure interposition
performance. For similar reasons as our fault detection study, we simulated hardware-assisted
logging to measure the end-to-end performance of using Guardrail to protect I/O operations from
driver faults (Section 4.3). This also enabled us to factor out the overheads of software logging and
measure only the performance of the tools.

Our evaluations on real hardware focused on 4 classes of drivers in the 2.6.18 kernel, namely
audio, network, storage, and video. However, only storage and network drivers were used in our
simulation studies because of the difficutly of obtaining audio and video device models for our
simulator (Simics [46]). The drivers used for our real hardware studies are presented in Table 1,
while those used for simulation studies are listed in Table 2. Table 4 shows parameter settings for
the experiments conducted on both real and simulated hardware. Further details of the experimen-
tal setups for the performance studies on real and simulated hardware are provided in Sections 4.3
and 4.4 respectively.

5Initial consultations with the authors indicate that significant engineering effort would be required to incorporate
into our framework.

18

Tool e1000 qla2xxx Total
DMCheck 1 1 2
DDT 0 1 1
KAddrheck 0 1 1
KMemcheck 1 1 2

Table 5: DMCheck found 2 memory bugs that are now fixed, and discovered the qla2xxx bug.
While KMemcheck can find both bugs, the other tools will find only one.

4.2 Fault Detection
We implemented each of the proposed dynamic analysis tools: (i) DMCheck, for detecting memory
faults (Section 3.1), (ii) DRCheck, for detecting data races (Section 3.2), and DMACheck, for
detecting DMA faults (Section 3.3), in Guardrail to evaluate how they can improve the quality of
production drivers. For the evaluation, we applied them to the 8 production Linux drivers (and
corresponding I/O devices) listed in Table 2. The drivers were put under normal I/O workloads for
this study.

As shown in Tables 5, 6 and 8, our tools found serious errors in these real-world drivers,
including previously unknown bugs. We examine the bugs found each tool in more details below,
and then compare each tool against competing kernel-mode dynamic correctness checkers, by
evaluating whether all the bugs could be detected using competing techniques.

4.2.1 Memory Faults

As shown in Table 5, DMCheck found 2 serious memory faults, both of which have been fixed.
In particular, the qla2xxx memory bug was previously unknown until reported by our tool. Based
on our report, the bug was eventually fixed in the 3.2 release of the Linux kernel, 6 years after the
2.6.18 version that we used for our study. Because these bugs involve memory that is exclusively
used by the driver, they cannot be detected using fault isolation technqiues that only check driver
interraction with the kernel [53, 50, 58, 20, 54, 6]. For example, the e1000 memory bug is an
unsafe use of uninitialized stack data, while the qla2xxx memory bug is an out-of-bounds read of
memory mapped device registers.

Furthermore, we use Table 5 to compare DMCheck against existing kernel-mode memory fault
detectors for the Windows (DDT [25]), and Linux (KAdddrcheck [17], KMemcheck [32]). DDT
and KAddrcheck, track memory addressibility, and therefore can only detect the out-of-bounds bug.
KMemcheck, on the other hand, tracks both memory addressibility and initialization, and should
therefore detect both the memory faults.

4.2.2 Data Races

As shown in Table 6, DRCheck found 9 serious data races in 5 Linux drivers, 6 of which have
either been confirmed or fixed. Also, using this table, we compare DRCheck with DataCollider
based on the details in [15]. We made a couple of assumptions in our analysis to increase the

19

Tool qla1280 qla2xxx sym53c8xx tg3 tulip Confirmed/Fixed Unconfirmed* Total
DRCheck 1 3 2* 2 1* 6 3 9
Det-DataCollider 0 1 0 1 0 2 0 2
Ideal-DataCollider 1 2 2* 1 0 4 2 6

Table 6: DRCheck found 9 serious races in Linux drivers, 6 of which were confirmed/fixed.
DataCollider will detect 2 races, if it sampled the racy accesses, and 6 races if racy accesses occured
in an idealized order for it.

qla1280 qla2xxx sym53c8xx tg3 tulip

KLockset 1 36 13 35 26
DeferExec 1 13 13 22 18
DRCheck 0 0 6 4 1

Table 7: False positives of our different race detection techniques.

Fault Type Count Drivers
Data race 7 tulip (7)
Leak 4 sym53c8xx (4)
Repeated map 2 tg3 (1), tulip (1)
Repeated unmap 2 tulip (2)
Misaligned virtual address 10 e100 (1), e1000 (1), pcnet32 (3), tg3 (2), tulip (3)

Table 8: Summary of DMA buffer faults detected by DMACheck in Linux drivers. The number of
fault instances found in each driver is shown in parenthesis.

chances that DataCollider’s sampling will detect the races. First, we assume that the racy accesses,
outside of interrupt contexts, are deterministically sampled (Det-DataCollider). DataCollider does
not sample interrupt context accesses for robustness reasons. Second, for races involving interrupt
and non-interrupt contexts, we assume that the non-interrupt context access occured earlier (Ideal-
DataCollider). With these assumptions, 2 races will be detected by Det-DataCollider, and 6 races
by Ideal-DataCollider.

However, unlike DataCollider which has no false positives, DRCheck generated a small num-
ber of false alarms while detecting these driver races, as shown in Table 7 (DeferExec is DRCheck
without state-based synchronizations (Section 3.2.4)). Although DDT [25] detects data races, it
was not described in sufficient details to allow comparisons in our context.

4.2.3 DMA Faults

The different DMA buffer faults found by DMACheck, in 6 drivers are summarized in Table 8.
Races on DMA buffers, which are the most serious of these bugs, affected only the tulip network
driver. DMACheck found 7 unique driver writes (i.e., static instruction address) that could poten-
tially corrupt I/O data that was being read by the network card. DMA buffers with unaligned vir-
tual addresses (assuming 32 byte cache lines) are the most common fault type—affecting 5 drivers

20

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

1	 2	 4	 8	 16	 32	
Client	 threads	

Linux	

Xen	

IO-‐Interpose	

N
or
m
al
ize

d	
th
ro
ug
hp

ut
	

Figure 6: I/O interposition overheads on Apache throughput; normalized to peak Linux through-
put.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

32	 64	 128	 256	 512	 1K	 2K	 4K	 8K	 16K	
Message	 size	 (Bytes)	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

32	 64	 128	 256	 512	 1K	 2K	 4K	 8K	 16K	
Message	 size	 (Bytes)	

Linux	
Xen	
IO-‐interpose	

N
or
m
al
ize

d	
th
ro
ug
hp

ut
	 TCP_STREAM	 UDP_STREAM	

Figure 7: I/O interposition overheads on Netperf throughput; normalized to BCM5754’s link rate
(1Gbps).

(i.e., e100, e1000, pcnet32, tg3, tulip). sym5c8xx was the only driver that leaked DMA buffers (i.e.,
failed to unmap DMA buffers before unloading), while tulip and tg3 were the only drivers to map
previously mapped DMA buffers, or unmap previously unmapped DMA buffers. Although these
faults reflect programmer error in managing DMA operations, and should be avoided, however we
did not observe any resulting system failures during our experiments.

Because we are unaware of any prior work in detecting DMA faults, we could not compare
DMACheck against alternative approaches.

4.2.4 Summary

In summary, our evaluation validated our proposal that, instruction-grained dynamic analysis can
improve system reliability by detecting real-world bugs in production drivers. Our dynamic anal-
ysis tools detect a significant number of bugs in production Linux drivers: memory faults, data
races, and DMA faults, that are missed by other tools, including a previously unknown memory
faults in the qla2xxx storage driver. Moreover, to our knowledge, our study of DMA buffer faults
using dynamic analysis is the first of its kind. The superior bug detection quality of our proposed
dynamic tools sometimes incurs a small number of false positives, e.g., for data race detection.
Also, Guardrail’s support for all these tools demonstrate it’s value as a general-purpose frame-
work for implementing driver correctness checking tools, in contrast to error-specific tools such as
DataCollider and KMemCheck.

21

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

32	 64	 128	 256	 512	 1K	 2K	 4K	 8K	 16K	
Request/Response	 size	 (Bytes)	

Linux	
Xen	
IO-‐interpose	

N
or
m
al
ize

d	
tr
an
sa
cI
on

	 ra
te
	

TCP_RR	 UDP_RR	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

32	 64	 128	 256	 512	 1K	 2K	 4K	 8K	 16K	
Request/Response	 size	 (Bytes)	

Figure 8: I/O interposition overheads on Netperf transfer rate; normalized to peak Linux rate.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

32	 64	 128	 256	
Client	 Threads	

Linux	
Xen	
IO-‐interpose	

N
or
m
al
ize

d	
th
ro
ug
hp

ut
	

Figure 9: I/O interposition overheads on Memcached throughput; normalized to peak Linux rate.

4.3 I/O Interposition Performance
We evaluated the performance of our I/O interposion techniques using the drivers in Table 1. We
define baseline performance as the driver running in an unvirtualized system with direct access to
the device of interest. We use the following naming convention to present results: the baseline
(unmodified 2.6.18 kernel) is Linux, adding virtualization without I/O interposition (unmodified
PV Xen-3.3.1) is Xen, and our I/O interpositioning modifications is IO-Interpose. The test system
used for the evaluation is a dual-core Intel Core 2 system running at 2.66 GHZ with a 2 GB RAM.
For convenience, we ran the driver in dom0. For the network performance studies, which involved
client-server experiments, we studied the server running in the test system. The client load was
supplied by a non-virtualized, 32-bit Ubuntu 10 (2.6.32 kernel) system (quad-core Intel Core 2
system running at 3 GHz with 4GB RAM). All other I/O experiments were conducted on the test
system.

4.3.1 Audio & Video Performance

We used Mplayer’s benchmarking features to measure how interposition affects the generation of
audio, and video outputs of multimedia files. The multimedia file used in our experiments, was a
150 seconds long movie trailer recorded in the movie industry standard 1080p24 Full HD format
(i.e., 1920 x 1080p resolution and 24 frame rate). Mplayer was configured to use ALSA mode for
audio output, and X11 mode, for video output. The reported results are median of 10 runs.

The movie playback on IO-Interpose was smooth, and of similar audio, and video quality to
Linux, and Xen. There were no dropped frames, and virtually identical frame rates were achieved,
on the different systems. The reported median frame rates were 23.94 on Linux, 23.93 on Xen,
and 23.91 on IO-Interpose. These results show that user experience is barely impacted by I/O

22

Audio Output Video Output Playback
Time(s) Overhead(%) Time(s) Overhead(%) Time(s)

Linux 1.22 - 47.57 - 150.51
Xen 1.28 5 47.73 0 150.52
IO-Interpose 1.27 4 47.77 0 150.52

Table 9: Impact of I/O interpostion on audio and video performance.

interposition on modern multimedia workloads.
Table 9 presents the audio, and video output generation times, as well as the overall play-

back time (including audio and video decoding). Generating the audio output took 4% longer
on IO-Interpose, compared to Linux, while video output time was not noticeably different. Un-
surprisingly, these small slowdowns did not affect the overall quality of the movie. Moreover,
Xen performed similarly to IO-Interpose, which suggests that a significant portion of interposition
overheads can be attributed to virtualization.

4.3.2 Network Performance

For the network experiments described below, we report the median of 10 runs in all cases.

Apache We configured ApacheBench, as shown in Table 4, to make 16000 requests for a 40 KB
static page from the Apache server, and measured the transfer rate for a varying number of client
threads. As shown in Figure 6, IO-Interpose is scalable, as the transfer rate scales with increasing
client threads. Although, performance degradation due to IO-Interpose varies depending on client
thread count, we observed that when the Linux server is saturated (64 client threads), Xen and
IO-Interpose are both only 7% worse.

Memcached Memcached was configured to run on the server using 2 threads and a 512 MB in-
memory object store. Memslap is configured to initially load the server with 100K objects, and
then use a configurable number of threads to make get requests, with 100K requests per thread (Ta-
ble 4). The results are shown in Figure 9. We observed that with IO-Interpose, server throughput
scales, albeit modestly, with increasing client threads. Moreover, when the Linux server is saturated
(256 client threads), Xen and IO-Interpose offer 26% and 35% lower throughput, respectively.

Netperf We measured the impact of I/O interposition on network throughput and transaction rate,
using the TCP and UDP transport versions of the stream tests (TCP STREAM and UDP STREAM),
and request/response (TCP RR and UDP RR) tests. We ran a single instance of each test from
the client for 20 seconds, varying the message sizes, but with default settings of other parame-
ters. As shown in Figure 7, while IO-Interpose delivers similar throughput as Linux and Xen for
TCP STREAM, its UDP STREAM throughput degrades for small (< 512 bytes) messages. Fur-
ther investigations showed that for UDP STREAM, server load increased significantly with small
messages, and so, the increased CPU utilization directly exposes the overheads of interposing on

23

I/O operations. This also explains the poor Linux and Xen performance with small messages. In
contrast, server load is fairly insensitive to the size of TCP STREAM messages. For transaction
rates, IO-Interpose’s performance is comparable to the others for most message sizes, as shown in
Figure 8.

4.3.3 Storage Performance

We now describe our evaluation of the impact of interposition on storage performance, using kernel
compilation and Postmark.

GNU Make We measured how I/O interpostion affects the time that it takes to compile a Linux
2.16.8 kernel with default configuration, using the GNU Make utility. The compilation process
was performed using the stock GCC 3.4.6 compiler that was distributed with the OS kernel. In
addition, we leveraged the parallel compilation feature (-j) of Make, to evaluate the scalability of
our I/O interposition prototype on the Dual-core test system.

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	

1	 2	 4	
Parallelism	 degree	 (i.e.	 make	 –j)	

Linux	 Xen	 IO-‐Interpose	

N
or
m
al
ize

d	
co
m
pi
la
Fo

n	
Fm

e	

Figure 10: Kernel compilation time; normalized to 4-way parallel compilation time on Linux.

In Figure 10, we present the kernel compilation times, measured on Linux, Xen, and IO-
Interpose for different degrees of parallelism, and normalized to the best Linux result. We ob-
served that on each system, compilation time improved as parallelism increased, and this improve-
ment peaked at 4-way parallel compilation. Some intuition for this improved performance can be
gleaned from Figure 11, which shows that Make exploits available parallel computing resources.
For example, CPU utilization increased from 52% for sequential compilation, to 95% for 4-way
parallel compilation, while the increase was 47% to 95%, for IO-Interpose. These results show
that, similar to its comparision points, IO-Interpose allows storage I/O performance to scale with
increased parallelism in computing resources.

With 4-way parallelism, IO-Interpose increased compilation time by 47%, relative to Linux.
This represents a modest improvement over the 52% degradation that we observed with sequen-
tial compilation, suggesting that IO-Interpose benefits relatively more from parallel compilation.
However, since similar overheads were observed with Xen, regardless of parallelism degree, we
suspect that most of the interposition overheads are due to virtualization.

Postmark Postmark [24], is a single-threaded benchmark that simulates an Internet e-mail server.
We configured Postmark, as shown in Table 4, to perform 100K file transactions (create, delete,

24

N
or
m
al
iz
ed

	 C
PU

	 u
0l
iz
a0

on
	

0.52	

0.90	 0.95	

0.47	

0.90	 0.94	

0.47	

0.89	 0.95	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1	 2	 4	
Parallelism	 degree	 (i.e.	 make	 –j)	

Linux	 Xen	 IO-‐Interpose	

Figure 11: CPU utililzation of kernel compilation for different degrees of parallelism.

read, write) operations on 20K files with size range 10KB–20KB. All other parameters were left
at default values. The results presented below, are the median of 10 runs.

In Figure 12, we show the measured transaction, read, and write rates, normalized to Linux. We
observe that relative to Linux, IO-Interpose degrades each performance metric by about 10%; 9%
for transaction rate, and 10% for read and write rates. Just as we observed for kernel compilation,
Xen does not perform noticeably better than IO-Interpose.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

Trans	 Rate	 Read	 Rate	 Write	 Rate	

Linux	 Xen	 IO-‐Interpose	

N
or
m
al
ize

d	
pe

rf
or
m
an
ce
	

Figure 12: Postmark transaction, read, and write rates; normalized to Linux rates.

4.3.4 Summary

We used experiments involving I/O intensive benchmarks, to show that modest overheads (at most
10%) are imposed by I/O interposition on I/O performance in many cases. In particular, we ob-
served that the quality of audio and video playback, using Mplayer, is virtually unaffected by
interpositon, and the frame rate was virtually unchanged during the playback. Other benchmarks,
for which we observed similarly low overheads incude: (i) Apache (7%), all the Netperf tests
except UDP STREAM, and Postmark.

On the other hand, higher overheads were incurred by Memcached (35%) and kernel compila-
tion (47%). Furthermore, we observed that virtualization was responsible for significant portions of
these overheads; about 75% of Memcached overheads, and virtually all the overheads experienced
for kernel compilation, can be attributed to virtualization.

Moreover, we observed that our interposition prototype offers scalable performance; either
scaling up to meet increasing concurrency in client load, or scaling up to better utilize available
parallel computing resources.

25

Simulated H/W CMP Dual-Core, x86, 2.6Ghz, 2GB RAM
Private L1I 16KB, 64B line, 2-way assoc, 1-cycle access lat.
Private L1D 16KB, 64B line, 2-way assoc, 1-cycle access lat.
Shared L2 2MB, 64B line, 8-way assoc, 10-cycle access lat, 4 banks
Main Memory 200-cycle access latency
Tracing 512KB log buffer
DriverVM 2 VCPU, 1GB RAM
Analysis VM 1 VCPU, 512MB RAM

Real Word S/W VMM PV Xen-3.3.1
OS PV 32-bit Linux kernel (Fedora Core 6)
Network driver tg3
Storage driver sym53c8xx

Table 10: Simulated Guardrail system used for measuring performance impact of protecting I/O
devices from driver faults.

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

TCP	 UDP	 TCP	 UDP	

APACHE	 MEMCACHE	 REQUEST/RESPONSE	 STREAM	

DMA	 MEMORY	 RACE	

N
or
m
al
ize

d	
Th
ro
ug
hp

ut
	

Figure 13: Throughput when protecting BCM5703C NIC from tg3 faults; normalized to no pro-
tection.

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

TRX	 RATE	 READ	 RATE	 WRITE	 RATE	

DMA	 MEMORY	 RACE	

N
or
m
al
ize

d	
Th
ro
ug
hp

ut
	

Figure 14: Postmark performance when protecting SYM53C875 SCSI disk from sym53c8xx faults;
normalized to no protection (i.e., Linux).

4.4 End-to-End Performance
To understand the impact of online driver monitoring on end-to-end I/O performance, we simulated
Guardrail as a dual-core, 2.6 GHz, x86 CMP system with 2GB memory. For comparison, Linux,

26

Xen and IO-Interpose are evaluated using a similar simulated x86 CMP system (minus the decou-
pling extensions). In the virtualized environments, the driver runs in domU (DriverVM), while
the analysis runs in dom0 (AnalysisVM) when monitoring is enabled. domU is configured with 2
virtual CPUs, and a 1GB memory, 512KB of which is reserved for execution logging (assuming
each instruction record can be compressed down to a byte [7]). dom0 is configured with 1 virtual
CPU, and a 512MB memory. The details of the simulated environment that was used for this per-
formance study are illustrated in Table 10. The non-virtualized client, for network experiments, is
simulated using similar hardware configuration, and runs a stock Fedora Core 6 (2.6.18) kernel.

One drawback of this performance study is that, due to robustness issues of the simulated device
models, we were forced to scale down the input parameters (see Table 4). The immediate impact of
smaller input parameters was that virtualization and I/O interposition overheads became negligible
(i.e., Linux, Xen, and IO-Interpose performed similarly). However, even with this reduced input
sizes, only SYM53C875 SCSI disk and BCM5703C network card models were robust enough for
our experiments. All experiments were simulated to completion.

4.4.1 Decoupling

First, we evaluate the efficiency of using Guardrail to decouple dynamic analysis from the mon-
itored driver execution. Since hardware-based execution tracing incurs no overheads, we specifi-
cally measured whether Guardrail’s analysis scheduling technique (Section 2.2) introduces addi-
tional monitoring overheads beyond that of the checking tools. We used an idealized checking tool
(NullCheck) that consumes available log entries in a single cycle to measure any overheads relative
to IO-Interpose.

We did not notice any I/O performance degradation by NullCheck, relative to Linux in all
cases, showing that Guardrail schedules NullCheck to consume execution traces in a timely fashion.
Additionally, we observed that compared to Guardrail, polling increased NullCheck’s CPU usage
significantly (e.g. > 300X for monitoring TCP RR & UDP RR).

4.4.2 Protecting I/O Devices

Next, using Linux as baseline, we evaluate the impact of using DMCheck, DRCheck and DMACheck
to protect the device, from the corresponding driver faults, on end-to-end performance. For this
experiment, we did not apply any optimizations on the tools, for better performance, and so these
are conservative results.

The impact of protecting the BCM53703C network card on the throughput of different network
intensive workloads is presented in Figure 13. The figure reports the normalized throughput rela-
tive to running without protection. We observed that most of the benchmarks experienced minimal
throughput loss, the exception being network streaming using TCP and UDP. In particular, for TCP
and UDP streaming respectively, DMACheck reduced throughput by 55% and 53%, DMCheck by
60% and 53%, and DRCheck by 45% and 27%. However, the other benchmarks experienced very
little performance impact, and in particular, the worst case performance for each checker was with
Apache, where DMACheck reduced throughput by 1%, DMCheck by 5%, and DRCheck by 6%.

27

Ac
ce
ss
	 p
er
	 se

co
nd

	

1.E+00	
1.E+01	
1.E+02	
1.E+03	
1.E+04	
1.E+05	
1.E+06	

TCP	 UDP	 TCP	 UDP	

APACHE	 MEMCACHE	 REQUEST/RESPONSE	 STREAM	 POSTMARK	

READ	 WRITE	

Figure 15: Rates of device register access by network benchmarks on the BCM5703C NIC, and a
storage benchmark (Postmark) on the SYM53C875 SCSI disk.

Our investigation into the severe degradation of network streaming performance suggests that
the high rate of device register accesses by networking streaming, compared to other workloads,
could be the reason for the overheads of driver monitoring. As shown in Figure 15, networking
streaming generates device register accesses (especially writes) at a rate that is orders of magnitude
higher than other workloads. In particular, we observed over 300K device register writes per
second for network streaming compared to about 25K and 40 writes per second for Apache and
Memcache respectively. Since driver execution is stalled at device register accesses, until validation
by the (potentially lagging) analysis, it means driver stalling is significantly more frequent for
network streaming.

Figure 14 presents the impact of protecting the SYM53C875 SCSI disk on the performance of
the Postmark benchmark. The figure reports the normalized read, write, and transaction rates of
the benchmark, relative to running without protection. We observed that protecting the disk from
faults incurred only modest overheads. In particular, the worst overheads for each tool was expe-
rienced for writes, 13% for DMACheck and 9% for DMCheck and DRCheck. This relatively good
performance, compared to network streaming, can be explained by Figure 15, which shows that
Postmark generates about 3K device register accesses per second, and thus leads to less frequent
driver stalls.

4.4.3 Summary

Our experiments showed that even with unoptimized sophisticated checking tools, online protec-
tion of I/O devices from subtle driver faults (e.g., memory faults, data races) can be achieved with
mininal impact on end-to-end performance of most I/O intensive benchmarks. Network streaming
was the exception to this, and we observed up to 60% drop in throughput. However, we expect
that these overheads can be significantly reduced through existing software [37, 31, 41, 40] and
hardware [7, 52] techniques for accelerating dynamic analysis.

28

Proposal Detection Protected component System support
Events Synchronous

BGI Interface Yes Kernel
DataCollider Internal Yes Kernel Breakpoints
KAddrcheck Internal Yes Kernel
MicroDriver Interface Yes Kernel Memory protection

Nexus-RVM Interface Yes
Device

Memory protection
Kernel

Nooks Interface Yes Kernel Memory protection
SafeDrive Internal Yes Kernel
SFI Interface Yes Kernel

SUD Interface Yes Kernel
Memory protection

IOMMU
XFI Interface Yes Kernel

Guardrail Internal No Device
Virtualization

Execution tracing

Table 11: Classification of techniques for mitigating driver faults.

5 Related Work
Despite pre-release efforts to avoid and remove faults in drivers, the unfortunate reality is that
driver faults still escape into production environments, and lead to a significant fraction of system
failures. Therefore, production system reliability depends on the ability to tolerate these faults.
Driver faults are a threat to system reliability, because when executed, the driver transitions into
an erroneous state (i.e. become faulty), which could lead to a system crash, or corruption of the
kernel, devices or other drivers. Therefore, fault tolerance requires the protection of trusted system
components (e.g., OS kernel and I/O device) from the harmful effects of driver faults; so that the
system continues to operate correctly, albeit with degraded I/O functionality. Recovery from driver
faults is also desirable for fault tolerance; to reclaim system resources from the failed driver, and
to resume disrupted I/O services by restarting the driver in the case of transient faults. Moreover,
fault recovery is simplified by restricting the scope of damages to the driver.

Driver faults can be prevented from compromising trusted system component(s) by interposing
on the respective driver interface(s) (e.g., to kernel library functions). Current proposals for miti-
gating driver faults can be classified based on: (i) fault detection approach, (ii) range of protected
system components, and (iii) required system support.

5.1 Detection
Checking a driver’s execution for correctness violations is an effective technique for detecting
faults. Current techniques can be classified based on: (i) whether checking is applied to all of driver
execution (Internal-checking), or just the interface execution (Interface-checking), and (ii) whether

29

checking (and thus fault detection) is synchronous (Synch-checking) or asynchronous (Asynch-
checking) with driver execution.

Interface-checking imposes lower monitoring overheads than Internal-checking because driver
interactions with the system typically constitue a relatively small portion of overall execution.
However, this benefit comes at price of reduced fault coverage because the information avail-
able at the driver’s interface (e.g., function call arguments and return values) are often insuffi-
cient to determine that a driver is behaving correctly. On the other hand, Internal-checking, espe-
cially instruction-by-instruction, offers high fidelity fault detection, and typically identifies faults
much earlier in the execution, which helps with debugging. Howevever, as shown in Table 11
Interface-checking is the more popular approach, perhaps because of the performance advantage.
Proposals based on Interface-checking include SFI [53], Nooks [50], XFI [58], Microdrivers [20],
Nexus-RVM [54], BGI [6], and SUD [5]. In contrast, Internal-checking is used by Guardrail,
SafeDrive [16], DataCollider [15], and KAddrcheck [17].

Synch-checking preemptively checks driver execution events (e.g., memory access) and there-
fore detects when a driver is about to become faulty. In contrast, Asynch-checking checks a history
of driver actions, and thus realizes that a driver is faulty after the fact. Delayed fault detection
makes Asynch-checking more challenging than Synch-checking in two ways. First, protecting the
system from faults that manifest in driver execution is relatively easier with Synch-checking be-
cause unsafe actions are intercepted before completion. In contrast, Asynch-checking requires
additional efforts to protect the system from the harmful effects of detected faults. For example,
Guardrail stalls driver execution at interface events to synchronize with the (potentially) lagging
checking tool and prevent faults, that will soon be detected by the tool, from compromising I/O
operations. Second, recovery from driver faults is relatively easier with Synch-checking since the
driver is prevented from executing in a faulty mode. With Asynch-checking, recovery must handle
the side-effects of allowing drivers to execute in a faulty mode for some period of time.

Conversely, Asynch-checking offers a couple of benefits over Synch-check. First, because
Synch-checking overheads are directly incurred on the critical path of driver execution, heavy-
weight analysis (e.g., data race detection) are impractical for timing-sensitive computations (e.g.,
interrupt service routines) in the driver. In contrast, by decoupling the analysis from driver execu-
tion, Asynch-checking can significantly accelerate heavyweight analysis [11, 31, 7, 41, 52, 40] to
enable comprehensive driver monitoring. Second, Synch-checking’s precision (i.e., no false posi-
tives/negatives) depends on the atomic execution of the check and checked event, which can only
be guaranteed if the kernel-space is race-free. Asynch-checking has no such dependencies, but
requires a recording of shared memory dependencies of the driver’s execution [52, 35, 36].

Perhaps due to the challenges of delayed fault detection, Synch-checking is significantly more
popular than Asynch-checking amongst current proposals. As shown in Table 11 all but Guardrail
employ Synch-checking. However, by demonstrating the benefits of Asych-checking, we hope that
Guardrail could motivate further exploration of this approach.

5.2 Protected Components
Techniques for mitigating driver faults can also be evaluated by their containment guarantees, i.e.
which system components they protect. Because the OS kernel and persistent device state are the

30

most vulnerable system components to faulty drivers, protecting them is the focus of most pro-
posals. However, as shown in Table 11, OS kernel protection is the most popular concern, and is
the sole focus of all, but two, of the current techniques. The exceptions are Nexus-RVM, which
protects both kernel and device, and Guardrail, which protects only the device. Existing techniques
protect the kernel from a variety of driver faults including: wild pointer writes, uninitialized mem-
ory use (SafeDrive), buffer overflows (SafeDrive and KAddrcheck), control flow integrity faults
(XFI and BGI), type safety (BGI), and data races (DataCollider). Nexus-RVM protects the device
from device protocol faults and memory faults, while Guardrail protects the device from memory
faults, data races, and DMA buffer errors..

5.3 System Support
Proposals for mitigating driver faults also differ in terms of the required system support, as shown
in Table 11. SFI, XFI, SafeDrive, BGI, Nexus-RVM, and KAddrcheck perform fault isolation us-
ing software checks, and can therefore be deployed without additional mechanisms on commodity
systems. Nooks, Microdrivers, and SUD, complement software checks with commodity hardware
page protection. However, SUD requires relatively new IOMMU hardware [2, 1], which is increas-
ingly available on commodity systems, for additional kernel protection. Finally, Guardrail relies on
virtualization, and execution tracing of kernel-mode execution, both of which can be obtained on
commodity systems. However, our current Guardrail prototype assumes the performance benefits
of hardware assisted execution tracing.

5.4 Summary
Mitigating driver faults in computing systems is of significant research interest, due to the high bug
rate of production drivers. OS kernel protection has drawn the most attention; 10 of the 11 reviewed
proposals, protect the kernel, while only Nexus-RVM and Guardrail provide protect persistent
device state. Most techniques treat the driver as a black box; focusing on the correctness of its
interactions with the rest of the system, rather than whether it is executing correctly. Although
this approach reduces monitoring overheads, it also reduces fault coverage. Also, synchronous
checking of driver execution is the most popular approach, with Guardrail the only technique that
asynchronously checks driver execution for faults.

6 Conclusions
This paper demontrated the feasibility of applying sophisticated dynamic analyses such as data
race detection in the context of unmodified, kernel-level device drivers. Moreover, it described a
system that uses dynamic analyses to monitor driver execution, and uses commodity virtualization
technology to protect persistent device state from memory errors, data races and DMA buffer errors
transparently. The checking tools employed were shown to detect more driver faults than existing
fault detection techniques. Our data race tool improves upon prior approaches by minimizing false
positives and avoiding false negatives, while handling the complexities of kernel-mode drivers.

31

Finally, the paper showed that decoupling dynamic analysis from driver execution reduces the
performance impact of monitoring in most cases.

References
[1] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Rajesh

Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert. Intel Virtualization
Technology for Directed I/O. Intel Technology Journal, 10(3), 2006.

[2] Steve Apiki. I/O Virtualization and AMD’s IOMMU.
http://developer.amd.com/documentation/articles/pages/892006101.aspx, 2006.

[3] Thomas Ball, Ella Buonimova, Byron Cook, Valdimir Levin, Jakob Lichtenberg, Con Mc-
Garvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustunner. Thorough Static
Analysis of Device Drivers. In EuroSys, 2006.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP, 2003.

[5] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating Malicious Device Drivers in Linux.
In USENIX, 2010.

[6] Miguel Castro, Manuel Costa, Jean-Phillipe Martin, Marcus Peinado, Periklis Akritidis,
Austin Donelly, Paul Barham, and Richard Black. Fast Byte-Granularity Software Fault
Isolation. In SOSP, 2009.

[7] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B. Gibbons,
Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael Ryan, and Evangelos Vla-
chos. Flexible Hardware Acceleration for Instruction-grain Program Monitoring. In ISCA,
2008.

[8] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A Platform for In-Vivo
Multi-Path Analysis of Software Systems. In ASPLOS, 2011.

[9] Andy Chou, Jufeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An Empirical
Study of Operating Systems Errors. In SOSP, 2001.

[10] Jim Chow, Tal Garfinkel, and Peter M. Chen. Decoupling Dynamic Program Analysis from
Execution in Virtual Environments. In USENIX, 2008.

[11] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A Programmable Macro Engine for Cus-
tomizing Applications. In ISCA, 2003.

[12] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware analysis via
hardware virtualization extensions. In CCS, 2008.

32

[13] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian, and Haibing Guan. High
performance network virtualization with sr-iov. In HPCA, 2010.

[14] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking System rules using
System-specific, Programmer-written Compiler Extensions. In OSDI, 2000.

[15] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. Effective Data-
Race Detection for the Kernel. In OSDI, 2010.

[16] Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and George C. Necula. XFI:
Software Guards for System Address Spaces. In OSDI, 2006.

[17] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Comprehensive Kernel Instrumenta-
tion via Dynamic Binary Translation. In ASPLOS, 2012.

[18] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient and Precise Dynamic Race
Detection. In PLDI, 2009.

[19] Archana Ganapathi, Viji Ganapathi, and David Patterson. Windows XP Kernel Crash Anal-
ysis. In LISA, 2006.

[20] Vinod Ganapathy, Matthew Renzelmann, Arini Balakrishnan, Michael Swift, and Somesh
Jha. The Design and Implementation of Microdrivers. In ASPLOS, 2008.

[21] Qi Gao, Wenbin Zhang, Zhezhe Chen, Mai Zheng, and Feng Qin. 2ndStrike: Toward Mani-
festing Hidden Concurrency Typestate Bugs. In ASPLOS, 2011.

[22] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tolerating Hardware Device
Failures in Software. In SOSP, 2009.

[23] Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs. data race bugs: telling the
difference with portend. In ASPLOS, 2012.

[24] Jeffrey Katcher. Postmark: a new file system benchmark. Network Appliance Tech Report
TR3022, October 1997.

[25] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. Testing Closed-Source Binary
Device Drivers with DDT. In USENIX, 2010.

[26] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. Recovery domains: an organizing
principle for recoverable operating systems. In ASPLOS, 2009.

[27] Ben Leslie, Peter Chubb, Nicholas Fitzroy-dale, Stefan Gtz, Charles Gray, Luke Macpherson,
Daniel Potts, Yueting Shen, Kevin Elphinstone, and Gernot Heiser. User-level device drivers:
Achieved performance. Journal of Computer Science and Technology, 20, 2005.

[28] Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Marlet, and Gilles Muller.
Devil: an idl for hardware programming. In OSDI, 2000.

33

[29] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder.
Automatically classifying benign and harmful data races using replay analysis. In PLDI,
2007.

[30] Nicholas Nethercote and Julian Seward. Valgrind: a Framework for Heavyweight Dynamic
Binary Instrumentation. In PLDI, 2007.

[31] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. Parallelizing Security
Checks on Commodity Hardware. In ASPLOS, 2008.

[32] Vegard Nossum. Getting started with KMemcheck.
http://www.mjmwired.net/kernel/Documentation/kmemcheck.txt, 2012.

[33] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles
Muller. Faults in Linux: Ten Years Later. In ASPLOS, 2011.

[34] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie. Pinplay:
a framework for deterministic replay and reproducible analysis of parallel programs. In CGO,
2010.

[35] Gilles Pokam, Cristiano Pereira, Klaus Danne, Rolf Kassa, and Ali-Reza Adl-Tabatabai. Ar-
chitecting a Chunk-based Memory Race Recorder in Modern CMPs. In MICRO, 2009.

[36] Gilles Pokam, Cristiano Pereira, Shiliang Hu, Ali-Reza Adl-Tabatabai, Justin Gottschlich,
Jungwoo Ha, and Youfeng Wu. Coreracer: a practical memory race recorder for multicore
x86 tso processors. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO, 2011.

[37] F. Qin, C.Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A Low-Overhead Practical
Information Flow Tracking System for Detecting Security Attacks. In MICRO-39, 2006.

[38] Matthew Renzelmann and Michael Swift. Decaf: Moving Device Drivers to a Modern Lan-
guage. In USENIX, 2009.

[39] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. Symdrive: testing drivers
without devices. In OSDI, 2012.

[40] Olatunji Ruwase, Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Decoupled life-
guards: Enabling Path Optimizations for Dynamic Correctness Checking tools. In PLDI,
2010.

[41] Olatunji Ruwase, Phillip B. Gibbons, Todd C. Mowry, Vijaya Ramachandran, Shimin Chen,
Michael Kozuch, and Michael Ryan. Parallelizing Dynamic Information Flow Tracking. In
SPAA, 2008.

[42] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: Taming Device Drivers.
In EuroSys, 2009.

34

[43] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. Automatic
Device Driver Synthesis with Termite. In SOSP, 2009.

[44] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: A Dynamic Race Detector for Multithreaded Programs. ACM TOCS, 15(4), 1997.

[45] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitzer - Data Race Detection in
Practice. In WBIA, 2009.

[46] Simics. Wind River Simics Full System Simulator. http://www.simics.net/, 2010.

[47] Michael F. Spear, Tom Roeder, Orion Hodson, Galen C. Hunt, and Steven Levi. Solving the
starting problem: device drivers as self-describing artifacts. In Eurosys, 2006.

[48] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy. Re-
covering device drivers. In OSDI, 2004.

[49] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy. Re-
covering device drivers. ACM Trans. Comput. Syst., 24(4):333–360, November 2006.

[50] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the Reliability of
Commodity Operating Systems. In SOSP, 2003.

[51] Mohit Tiwari, Shashidhar Mysore, and Timothy Sherwood. Quantifying the potential of
program analysis peripherals. In PACT, 2009.

[52] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen, Babak Falsafi,
Phillip B. Gibbons, and Todd C. Mowry. ParaLog: Enabling and Accelerating Online Parallel
Monitoring of Multithreaded Applications. In ASPLOS, 2010.

[53] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the fourteenth ACM symposium on Op-
erating systems principles, 1993.

[54] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gun Sirer, and Fred B. Schneider. De-
vice Driver Safety through a Reference Validation Mechanism. In OSDI, 2008.

[55] Xen PCI Passthrough. http://wiki.xen.org/wiki/XenPCIpassthrough, 2012.

[56] Min Xu, Vyascheslav Malyugin, Jeffery Sheldon, Ganesh Venkitachalam, and Boris Weiss-
man. ReTrace: Collecting Execution Trace with Virtual Machine Determinstic Replay. In
MoBS, 2007.

[57] Yaun Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: Efficient Detection of Data Race
Conditions via Adapative Tracking. In SOSP, 2005.

[58] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals, Matthew Har-
ren, George Necula, and Eric Brewer. Safedrive: Safe and Recoverable Extensions using
Language-Based Techniques. In OSDI, 2006.

35

	1 Introduction
	1.1 Limitations of Existing Fault Isolation Techniques
	1.2 Our Approach: Decoupled Dynamic Instruction-Grain Driver Analysis
	1.3 Contributions

	2 System Design
	2.1 Analysis Scope
	2.2 Analysis Scheduling
	2.3 I/O Interposition Details

	3 Driver Correctness Tools
	3.1 DMCheck: Detecting Memory Faults
	3.2 DRCheck: Detecting Data Races
	3.2.1 Detecting driver concurrency
	3.2.2 Detecting mutual exclusion primitives
	3.2.3 Handling deferred execution
	3.2.4 Tracking state-based synchronizations
	3.2.5 DRCheck Implementation

	3.3 Direct Memory Acess (DMA) Faults
	3.3.1 DMA in Linux Drivers
	3.3.2 DMA Buffer Faults
	3.3.3 Design

	3.4 Discussion

	4 Evaluation
	4.1 Methodology
	4.2 Fault Detection
	4.2.1 Memory Faults
	4.2.2 Data Races
	4.2.3 DMA Faults
	4.2.4 Summary

	4.3 I/O Interposition Performance
	4.3.1 Audio & Video Performance
	4.3.2 Network Performance
	4.3.3 Storage Performance
	4.3.4 Summary

	4.4 End-to-End Performance
	4.4.1 Decoupling
	4.4.2 Protecting I/O Devices
	4.4.3 Summary

	5 Related Work
	5.1 Detection
	5.2 Protected Components
	5.3 System Support
	5.4 Summary

	6 Conclusions

