
Integrating Representation
Learning and Skill Learning in a
Human-Like Intelligent Agent

Nan Li
June 21, 2013

CMU-CS-13-117

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
William W. Cohen, Co-Chair

Kenneth R. Koedinger, Co-Chair
Tom Mitchell
Pat Langley

Raymond J. Mooney

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2013 Nan Li

This research was sponsored by the National Science Foundation under grant numbers SBE-0354420, DLR0910176,
OMA0836012, and EIA0205301; the University of California (ONR) under grand number G0607ES008; the De-
partment of Education under grant number R305A090519; and the Mitre Corporation under grant number 62459.
The views and conclusions contained in this document are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

Keywords: intelligent agent, learner modeling, representation learning, complex problem solv-
ing

To my parents

iv

Abstract
Building an intelligent agent that simulates human learning of math and science

could potentially benefit both cognitive science, by contributing to the understand-
ing of human learning, and artificial intelligence, by advancing the goal of creating
human-level intelligence. However, constructing such a learning agent currently re-
quires manual encoding of prior domain knowledge; in addition to being a poor
model of human acquisition of prior knowledge, manual knowledge-encoding is
both time-consuming and error-prone. Previous research has shown that one of the
key factors that differentiates experts and novices is their different representations
of knowledge. Experts view the world in terms of deep functional features, while
novices view it in terms of shallow perceptual features. Moreover, since the perfor-
mance of learning algorithms is sensitive to representation, the deep features are also
important in achieving effective machine learning.

In this work, we propose an efficient algorithm that acquires representation knowl-
edge in the form of “deep features” for specific domains, and demonstrate its effec-
tiveness in the domain of algebra as well as synthetic domains. We integrate this
algorithm into a learning agent, SimStudent, which learns procedural knowledge by
observing a tutor solve sample problems, and by getting feedback while actively
solving problems on its own. We show that learning representations enhances the
generality of the learning agent by reducing the requirements for knowledge engi-
neering. Moreover, we propose an approach that automatically discovers student
models using the extended SimStudent. By fitting the discovered model to real stu-
dent learning curve data, we show that the discovered model is better or as good as
human-generated models, and demonstrate how the discovered model may be used
to improve a tutoring system’s instructional strategy.

vi

Acknowledgments
Life itself, to me, is a journey. There are a lot of challenges and excitement along

this long journey. Getting a PhD is one of such challenging but exciting tasks. There
are many people that I would like to thank. Without their support, I would never
have gone this far in this journey.

First and foremost, I would like to thank my advisors Dr. Kenneth R. Koedinger
and Dr. William W. Cohen for their wonderful advice as well as their support on
my career. I have always felt that I am so fortunate to have them as my advisors.
Their great views of the field as well as the inspiring discussions we had during
our meetings have guided me to the right direction in research. As professors at
Carnegie Mellon University, they are, by default, very busy. They have always been
trying their best to squeeze any time they have to provide me with further advice in
addition to our regular meetings. I remember there were times that they gave me
comments on my paper or answered my urgent questions, even when it was late at
night. My advisors do not only teach me how to do brilliant research, they also pay
attention to my career. My advisors not only care about their student, but also can
think from their student’s point of view and provide great advice.

I would also like to express my sincere gratitude to Dr. Tom Mitchell, Dr. Pat
Langley and Dr. Raymond J. Mooney for serving on my committee. Thanks a lot
for the thoughtful advice and thought-provoking questions. During my discussion
with my committee members, I learned how to view my research from different
perspectives. Their valuable expertise in various research areas has broadened my
knowledge, and inspired ideas that I have not thought before. I am particularly
grateful in the thought-provoking questions. Sometimes, the questions can be very
challenging to address. I had to think through my work more thoroughly. This gave
me an opportunity to rethink a lot of issues in my research, to help in getting a deeper
understanding of my work, and to further improve my research.

Furthermore, I thank my parents as well as my boyfriend for their endless sup-
port in my career. Because of my pursuit in research, I could not spend much time
with them, especially my parents, who are in China. However, whenever I ask them
whether I should continue my pursuit, they have always given me the same answer
that I should choose whatever I want to do, and they will always support me. As a
Chinese, sometimes, it is really hard to express my true feelings face-to-face. There-
fore, I write it down here that thank you, and I love you all.

Finally, my gratefulness goes to my friends, Yanan Chen, Bin Fan, Bin Fu, Jialiu
Lin, Liu Liu, Yanjing Long, Julian Shun, Xuezhi Wang, Yuting Weng, Junming Yin
and a lot others. Without you, my life at Carnegie Mellon University would not
have been so wonderful. I thank all of you very much for the happiness we share
everyday. Thank you very much for always being there when I need help. Although
we have now reached to a time we need to continue with our own career, I have no
doubt that we will be friends forever, and see each other in places around the world.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Proposed Approach . 2

1.2.1 Integrating Representation Learning and Skill Learning 3
1.2.2 Applications to Intelligent Tutoring System Authoring 5

1.3 Main Contribution . 6

2 A Brief Review of SimStudent 9
2.1 Prior Knowledge . 9
2.2 Learning Task . 11
2.3 Performance System . 12
2.4 Learning Mechanisms . 14

3 Deep Feature Representation Learning 17
3.1 Representation Learning as Grammar Induction 19

3.1.1 A Brief Review of a pCFG Learner . 19
3.1.2 Feature Learning . 21
3.1.3 Transfer Learning . 22

3.2 Experimental Study . 24
3.2.1 Methods . 26
3.2.2 Measurements . 26
3.2.3 Experimental Results . 26

3.3 Discussion . 28

4 Learning for Operator Functions 31
4.1 Integrating Representation Learning into Skill Learning 31

4.1.1 Extending the Perceptual Representation 32
4.1.2 Extending the Perceptual Learner . 33

4.2 Examples of Integration . 35
4.3 Experimental Study . 36

4.3.1 Methods . 36
4.3.2 Measurements . 38
4.3.3 Experimental Results . 38

ix

4.4 Discussion . 40

5 Learning Perceptual Hierarchies 43
5.1 Learning to Perceive Two-Dimensional Displays 44

5.1.1 Problem Definition . 45
5.1.2 Learning Mechanism . 48

5.2 Experimental Study in Synthetic Domains . 52
5.2.1 Methods . 52
5.2.2 Measurements . 52
5.2.3 Experimental Results . 53

5.3 Experimental Study in Three Tutoring Domains 54
5.3.1 Methods . 54
5.3.2 Measurements . 54
5.3.3 Experimental Results . 55

5.4 Experimental Study within SimStudent . 55
5.4.1 Methods . 55
5.4.2 Measurements . 56
5.4.3 Experimental Results . 56

5.5 Discussion . 56

6 Learning Feature Predicates 59
6.1 Generating Feature Predicates from Learned Grammar 59

6.1.1 Topological Feature Predicates . 60
6.1.2 Nonterminal Symbol Feature Predicates 62
6.1.3 Parse Tree Relation Feature Predicates 62

6.2 Experimental Study on Automatically Generated Feature Predicates 63
6.2.1 Methods . 63
6.2.2 Measurements . 63
6.2.3 Experimental Results . 64

6.3 Experimental Study on Transferability to Harder Problems 65
6.3.1 Methods . 65
6.3.2 Measurements . 66
6.3.3 Experimental Results . 66

6.4 Discussion . 69

7 Integrating Representation Learning with External World Knowledge 71
7.1 English Article System . 71
7.2 Integrating Representation Learning with External World Knowledge 72
7.3 SimStudent with Probabilistic-Based Conflict Resolution 73
7.4 Experimental Study . 74

7.4.1 Methods . 74
7.4.2 Experimental Results . 75

7.5 Discussion . 76

x

8 Using SimStudent to Discover Better Learner Models 77
8.1 Methods . 78
8.2 Dataset . 80
8.3 Measurements . 80
8.4 Experimental Results . 81
8.5 FBI Analysis and LFA on Fraction Addition . 83
8.6 Impact of Representation Learning . 84
8.7 Implications for Instructional Decisions in Algebra 84
8.8 Discussion . 85

9 Conclusion 87
9.1 Related Work . 87
9.2 Limitations and Future Work . 89
9.3 Theoretical Claims . 89
9.4 Contribution . 90

Bibliography 93

xi

xii

List of Figures

1.1 A diagram that shows the architecture of the extended SimStudent. The com-
ponents in the original SimStudent is shown in black, and the extensions are
represented in red. 2

1.2 A diagram that shows the architecture of an intelligent tutoring system. 4
1.3 A diagram that shows how SimStudent assists the authoring process of an intel-

ligent tutoring system. 6

2.1 A simple interface to tutor SimStudent in equation solving. 10
2.2 The interface that shows how SimStudent traces each demonstrated step and

learns production rules. 11
2.3 The perceptual hierarchy associated with the interface in equation solving. 12
2.4 A production rule for divide. 13
2.5 A diagram that shows the architecture of SimStudent. As shown in green, Sim-

Student needs prior knowledge constructed by human author and from library of
primitive predicates and skills. The goal of this thesis is to remove or reduce the
need for human author to manually construct such prior knowledge. 14

3.1 A diagram that shows the input and output of the representation learner. 18
3.2 Correct and incorrect parse trees for −3x. 19
3.3 Candidate parse trees constructed during learning in algebra. 21
3.4 Example context free grammar constructed during learning in algebra. 22
3.5 Learning curves in the last task for four learners in curriculum (a) from task

one to task two (b) from task two to task three (c) from task one and two to
task three. Both prior knowledge transfer and the feature focus strategy produce
faster learning. 27

4.1 A diagram that shows how to integrate representation learning into SimStudent to
improve the operator function sequence learner. The extension of representation
learning is colored in red. Extraction operator functions are no longer needed to
be manually encoded. 32

4.2 Original and extended production rules for divide in a readable format. Grammar
learning allows extraction of information in where-part of the production rule and
eliminated the need for domain-specific function authoring (get-coefficient) for
use in the how-part. 33

4.3 The extended perceptual hierarchy associated with the interface in equation solving. 34

xiii

4.4 Example parse trees learned by the representation learner in three domains, a)
fraction addition, b) equation solving, c) stoichiometry. 35

4.5 Number of domain-specific and domain-general operator functions used in ac-
quired production rules, a) fraction addition, b) equation solving, c) stoichiome-
try, d) across three domains. 39

4.6 Number of lines of Java code developed for operator functions used in acquired
production rules. 40

4.7 Learning curves of three SimStudents in three domains, a) fraction addition, b)
equation solving, c) stoichiometry. 41

5.1 A diagram that shows how to integrate representation learning into SimStudent
to improve the perceptual learner. The 2-D representation learner automatically
acquires the perceptual representation hierarchy, removing the need of a human
author to manually construct the hierarchy. 44

5.2 An example layout of the interface where SimStudent is being tutored in an equa-
tion solving domain. 47

5.3 Recall scores in a) randomly-generated domains, and three synthetic domains, b)
fraction addition, c) equation solving, d) stoichiometry. 53

5.4 Learning curves of three SimStudents in three domains, a) fraction addition, b)
equation solving, c) stoichiometry. 55

6.1 A diagram that shows how to integrate representation learning into SimStudent
to improve the feature test learner. SimStudent automatically generates a set
of feature predicates based on the acquired representation to replace the set of
manually-constructed feature predicates. 60

6.2 Original and extended production rules for divide in a readable format. The
learner grammar automatically generated two feature predicates, is-left-child-
of and is-signed-number, and eliminated the need to manually encode domain-
specific feature predicates (e.g. has-constant-term). 61

6.3 Learning curves of three SimStudents in equation solving measured by, a) first
attempt accuracy, b) all attempt accuracy. 64

6.4 Learning curves of SimStudents in equation solving measured by a) all test prob-
lems, b) hard problems (category 4) only, using all attempt accuracy. 67

7.1 The parse tree of “Clocks measure time.” generated by the Stanford parser. . . 73
7.2 Learning curves of SimStudents in article selection. 75

8.1 Different parse trees for -3x and -x. 81
8.2 Error rates for real students and predicted error rates from two learner models. . . 83

xiv

List of Tables

3.1 Probabilistic context-free grammar for coefficients in algebraic equations. 18
3.2 Method summary . 25

4.1 Number of training problems and testing problems presented to SimStudent. . . . 36
4.2 12 curricula of different orders for each domain. 38

5.1 Part of the two-dimensional probabilistic context free grammar for the equation
solving interface . 46

7.1 Grammar rules in selecting appropriate articles. 72

8.1 Number of KCs in SimStudent models and Human-Generated Models. 81
8.2 AIC on SimStudent-Generated models and Human-Generated Models. 82
8.3 CV RMSE on SimStudent-Generated models and Human-Generated Models. . . 82

xv

xvi

Chapter 1

Introduction

One of the fundamental goals of artificial intelligence is to understand and develop intelligent
agents that simulate human-like intelligence. A considerable amount of effort (e.g., Laird et al.,
1987, Anderson, 1993, Langley and Choi, 2006) has been put toward this challenging task. Fur-
ther, education in the 21st century will be increasingly about helping students not just learn
content but become better learners. Thus, we have a second goal of improving our understanding
of how humans acquire knowledge and how students vary in their abilities to learn.

1.1 Motivation

To contribute to both goals, there have been recent efforts (e.g., Anzai and Simon, 1979, Neves,
1985, Vanlehn, Ohlsson, and Nason, 1994, Matsuda, Lee, Cohen, and Koedinger, 2009) in de-
veloping intelligent agents that model human learning of math, science, or a second language.
Although such agents produce intelligent behavior with less human knowledge engineering than
before, there remains a non-trivial element of knowledge engineering in the encoding of the prior
domain knowledge given to the simulated student at the start of the learning process. For exam-
ple, to build an algebra learning agent, the agent developer needs to provide prior knowledge by
coding functions that describe how to extract a coefficient or how to add two algebraic terms.
Additionally, the manually-constructed domain-specific prior knowledge may not be reusable in
other domains, and thus the need for such prior knowledge hurts the generality of the constructed
learning agent.

Moreover, manual encoding of prior knowledge can be time-consuming and may not correspond
with human learning. Since real students entering a course do not usually have substantial
domain-specific or domain-relevant prior knowledge, it is not realistic in a model of human
learning to assume this knowledge is given rather than learned. For example, for students learn-
ing about algebra, we cannot assume that they all know beforehand what a coefficient is, or what
the difference between a variable term and a constant term is. An intelligent system that mod-
els automatic knowledge acquisition with a small amount of prior knowledge could be helpful

1

Representation
Learning

Learning System

Perceptual
Learner

Feature Test
Learner

Operator Function
Sequence Learner

Skill Learning

What?
Perceptual Representation

Hierarchy

Performance System

Where?
Generalized Information

Finding Paths

When?
Feature Tests

How?
Operator Function

Sequence

Production Rule
If

Then

Figure 1.1: A diagram that shows the architecture of the extended SimStudent. The components
in the original SimStudent is shown in black, and the extensions are represented in
red.

both in reducing the effort in knowledge engineering intelligent systems and in advancing the
cognitive science of human learning.

1.2 Proposed Approach

The goal of this thesis is to build an intelligent agent that is able to learn complex problem
solving skills in Science, Technology, Engineering, and Mathematics (STEM) domains from
simple demonstrations and feedback. As mentioned above, previous work in this area (e.g., An-
zai and Simon, 1979, Neves, 1985, Vanlehn, Ohlsson, and Nason, 1994, Matsuda, Lee, Co-
hen, and Koedinger, 2009) has developed intelligent agents that acquire complex skills, but
the agents’ performance often relies heavily on the pre-programmed representations and fea-
tures specific to the domain. To address this problem, we propose to develop an unsupervised
feature/representation learner, and integrate it into a supervised skill-learning agent to improve
learning effectiveness of the agent. Hence, unlike normal feature discovery methods that op-
timize classification or prediction accuracy, the objective of complex skill learning tasks is to
jointly optimize learning of perceptual chunks, action chunks or functions, and search con-
trol.

2

1.2.1 Integrating Representation Learning and Skill Learning

There are three main streams of feature construction algorithms. The first category of work has
an unsupervised component that learns key features to identify patterns in data (e.g., images),
and then a supervised learning process that makes use of these features to optimize some ob-
jective function. An example of such work is deep belief networks [Hinton, 2007]. Other work
takes a joint learning strategy to build latent variable discriminative models such as supervised
LDA [Blei and McAuliffe, 2007]. A third branch in feature construction is supervised feature
induction, which searches for new features to optimize an objective function.

Our feature/representation learner falls into the first category, where it focuses on building a
generative model, G, that best captures the distribution among observations (e.g., algebraic ex-
pressions), R, which approximates maximum likelihood estimate (MLE) of p(R|G). Although
not trained by directly optimizing the learning effectiveness of the intelligent agent, the philos-
ophy behind this strategy is that if we could correctly model these observations (e.g., the right
parse structures for the expressions), the acquired representation should contain useful features
that aid the skill learning process, and yield faster learning.

The idea of our representation learner comes from previous work in cognitive science [Chi et al.,
1981, Chase and Simon, 1973], which showed that one of the key factors that differentiates
experts and novices in a field is their different prior knowledge of world state representation. Ex-
perts view the world in terms of deep functional features (e.g., coefficient and constant terms in
algebra), while novices only view in terms of shallow perceptual features (e.g., integer in an ex-
pression). Representation learning is a major component of human expertise acquisition, but has
not received much attention in AI until recently. Learning deep features changes the representa-
tion on which future learning is based and, by doing so, improves future learning. However, how
these deep features are acquired is not clear. Therefore, we have recently developed a learning
algorithm that acquires representations of the problems in terms of deep features automatically
with only domain-independent knowledge (e.g., what is an integer) as input [Li et al., 2010]. We
evaluated the effectiveness of the algorithm in learning deep features, but not its impact on future
skill learner.

In order to evaluate how the representation learner could affect future learning of an intelligent
agent, we further integrated this representation learning algorithm into SimStudent [Matsuda
et al., 2009], an agent that learns problem-solving skills by examples and by feedback on per-
formance, and demonstrated the extended SimStudent across multiple domains (e.g., algebra,
fraction addition, stoichiometry, article selection). The original SimStudent relies on a hand-
engineered representation that encodes an expert representation given as prior knowledge. This
limits the generality of the learning agent and its ability to model novice students. Integrating
the representation learner into the original SimStudent both enhances the generality of learning
through reducing the amount of engineering effort and builds a better model of student learn-
ing.

As shown in Figure 1.1, SimStudent contains a performance system as well as a learning system.
As presented in black, the skill knowledge in the performance system is represented as produc-

3

Learner
Model

Model
Tracing

Intelligent Tutoring System

Real
Students

Knowledge
Tracing

Student input

Student input

Student input

Knowledge growth

Individual approach
to a problem

Context-sensitive
instruction

Individualized
activity pacing

Figure 1.2: A diagram that shows the architecture of an intelligent tutoring system.

tion rules. Before our extension, the production rule consists of three parts, the “where”, “when,”
and “how” parts. Each part is acquired by one learning component in the learning system. After
the extension, as shown in red, a representation learning module is added to the learning sys-
tem. The output of the representation learner generates a perceptual representation hierarchy
as SimStudent’s working memory, which is used in the performance system to match against
the production rules. For skill learning, the representation learner acquires and extends the per-
ceptual representation hierarchy to replace the originally manually-constructed prior knowledge
needed for perceptual learner and the operator function sequence learner. The representation
learning module also automatically generates feature predicates as the prior knowledge for the
feature test learner in SimStudent. We show that the extended SimStudent with better representa-
tion learning performs much better than the original SimStudent when neither of them are given
domain-specific knowledge. We also show that even compared to the original SimStudent with
the domain-specific knowledge, the extended SimStudent is able to learn nearly as well without
being given domain-specific knowledge.

One of the distinctive elements of SimStudent and my extensions to it are the emphasis on per-
ceptual information retrieval (a separate part of in problem-solving skill’s if-parts as shown in
Figure 2.4) and perceptual learning (where and what learning to be described in Section 2.4).
This emphasis on perceptual learning has been shown to be one essential component in human
knowledge acquisition [Chase and Simon, 1973, Koedinger and Anderson, 1990]. SimStudent is
different from other cognitive architectures as most of the existing cognitive architectures (e.g.,
[Laird et al., 1987, Anderson, 1993]) do not distinguish perceptual knowledge from conceptual
knowledge. One exception comes from ICARUS [Langley and Choi, 2006], it does have a per-
ceptual memory and a conceptual knowledge base, but it focuses more on concept knowledge
learning [Li et al., 2011c], and does not model perceptual learning.

4

1.2.2 Applications to Intelligent Tutoring System Authoring

Furthermore, intelligent agents can be integrated into authoring tools for intelligent tutoring sys-
tems, so that end-users can create intelligent tutoring systems by demonstration rather than by
programming. In recent years, there has been a fast growing interest for leveraging online plat-
forms for education. Examples of such platforms include Khan Academy, and Stanford online
courses. In order to provide better online learning experiences, educators and researchers have
worked intensively to develop personalized interactive tutoring systems that teach individual stu-
dents according to their abilities, learning styles and so on.

One variety of successes is intelligent tutoring systems. These systems provide context-sensitive
and personalized instructions based on human students’ interaction with the system. As shown in
Figure 1.2, given a problem selected by the tutoring system, the human student tries to solve the
problem by showing step-by-step solution in to the system. Next, the tutoring system sends the
student input to two intelligent instruction selection mechanisms, a model tracing component and
a knowledge tracing component. The model tracer gives this information to a learner model. A
learner model is a system that can solve problems in various ways as human students can. Thus,
the learner model produces the student’s individual approach in solving the problem. Based
on this information, the model tracing component generates context-sensitive instructions to the
student. For example, if the student is given a problem 3(2x− 5) = 9, the learner model shows
that there are two correct ways of solving the problem, 1) distribute the left hand side (i.e.,
6x − 15 = 9), 2) divide both sides by 3 (i.e., 2x − 5 = 3). The tutoring system then provides
different hint messages for these two solutions. Moreover, the system can also select problems for
a human student based on the assessment of the student’s knowledge growth. More specifically,
the knowledge tracing component in the tutoring system asks the learner model to assess the
chance of the human student in knowing a specific skill, and then chooses the problems that will
focus more on the skills that the students have not mastered. Previous studies have shown that
such intelligent tutoring systems are able to yield substantially better student learning in 8 of 10
full-year controlled studies [Koedinger and MacLaren, 1997]. Nevertheless, the quality of the
personalized instructions depends largely on the quality of the learner model. Traditional ways
to construct models are often time-consuming, and require expert input. More importantly, they
are highly subjective, and may ignore distinctions in content and learning that have important
instructional implications [Koedinger and Nathan, 2004].

In this work, as presented in Figure 1.3, we propose a novel approach where we use an intelligent
agent to automatically discover learner models. Then, intelligent agents can be integrated into au-
thoring tools for intelligent tutoring systems, so that non-programmer domain experts can create
learner models for intelligent tutoring systems by demonstration rather than by programming.
We show that the discovered models fit with human student data better than human-generated
models. Further analysis of the discovered model reveals insights that could improve instruc-
tional strategies in intelligent tutoring systems.

5

SimStudent

Learner
Model

Model
Tracing
+

Knowledge
Tracing

Intelligent Tutoring System

Real
Students

Non-Programmer
Expert

Figure 1.3: A diagram that shows how SimStudent assists the authoring process of an intelligent
tutoring system.

1.3 Main Contribution

To summarize, the main contributions of this work are two-fold. By integrating representation
learning into skill learning, 1) we improve the generality of the learning agent by reducing the
amount of knowledge engineering effort required in constructing the intelligent agent; 2) we get
a better modeling of human learning behavior. Note that rather than duplicating how the human
brain works, our focus of this work is to build a system that behaves like human students, and
use the proposed system to get better understanding of human knowledge acquisition.

In the following part, we start with a brief review of SimStudent. Next, we present the deep
feature representation learning algorithm together with its evaluation results. Then, we describe
how to integrate the representation learner into SimStudent, and illustrate the proposed approach
with an example in algebra. After that, we present experimental results for both the original
SimStudent and the extended SimStudent trained with problem sets used by real students during
learning across domains, and show that the extended SimStudent is able to achieve performance
comparable to or better than the original SimStudent without requiring domain-specific knowl-
edge as input. Later, we explore the generality of the proposed approach in a more ill-defined
domain, article selection in English, where no complex problem solving is needed, but where
complex perceptual knowledge and large amounts of background knowledge are needed. Exper-
imental results show that by incorporating world knowledge in the learning agent, the extended
SimStudent can successfully learn how to select the correct article given a reasonable number
(i.e., 60) of problems.

In the third part of the thesis, we focus on how the extended SimStudent contributes to learning
sciences. First, we present how the extended learning agent can provide insights for better un-

6

derstanding of student learning. To study one of the most important variables that affect learning
effectiveness, the order of problems presented to students, we conduct a controlled-simulation
study with SimStudent, and carefully inspect what causes such effect by looking at SimStudents
learning processes and learning outcomes, which are not easily obtainable from human subjects.
Furthermore, we present a method for using the extended SimStudent to automatically discover
learner models, and show that the learner model discovered by the extended SimStudent is bet-
ter than or as good as the human-generated models in predicting human student behavior. We
conclude my thesis with a summary of findings along with a discussion of possible future direc-
tions.

7

8

Chapter 2

A Brief Review of SimStudent

SimStudent is an intelligent agent that inductively learns skills to solve problems from demon-
strated solutions and from problem solving experience. It is an extension of programming by
demonstration [Lau and Weld, 1998] using a variation of the version space algorithm [Mitchell,
1982], inductive logic programming [Muggleton and de Raedt, 1994], and iterative-deepening
depth-first search as underlying learning techniques. Figure 2.1 and 2.2 are screenshots of Sim-
Student learning to solve algebra equations. Figure 2.1 is an interface used to teach SimStudent
equation solving, and Figure 2.2 shows how SimStudent keeps track of the demonstrated steps
and acquires skill knowledge based on them. In this thesis, we will use equation solving as an
illustrative domain to explain the learning mechanisms. But we would like to point out that the
learning algorithms are domain general. In fact, SimStudent has been used and tested across
various domains, including multi-column addition, fraction addition, stoichiometry, and so on.
In the rest of this subsection, we will briefly review the learning mechanism of SimStudent. For
full details, please refer to Matsuda et al. [2009].

2.1 Prior Knowledge

Before learning, SimStudent is given a set of (ideally simple) feature predicates and a set of
(ideally simple) operator functions as prior knowledge.

Each feature predicate is a Boolean function that describes relations among objects in the domain.
For example, (has-coefficient -3x) means -3x has a coefficient. SimStudent uses these feature
predicates to understand the state of the given problems.

Operator functions specify basic functions (e.g., add two numbers, get the coefficient) that Sim-
Student can apply to aspects of the problem representation. Operator functions are divided
into two groups, domain-independent operator functions and domain-specific operator functions.
Domain-independent operator functions can be used across multiple domains, and tend to be sim-
pler (like standard operations on a programming language). Examples of such operator functions
include adding two numbers, (add 1 2) or copying a string, (copy -3x). These operator functions

9

Figure 2.1: A simple interface to tutor SimStudent in equation solving.

are not only useful in solving equations, but can also be used in other domains such as multi-
column addition and fraction addition. Because these domain-general functions are involved in
domains that are acquired before algebra, we can assume that real students know them prior to
algebra instruction. Because these domain-general functions can be used in multiple domains,
there is a potential engineering benefit in reducing or eliminating a need to write new operator
functions when applying SimStudent to a new domain.

Domain-specific operator functions, on the other hand, are more complicated functions, such as
getting the coefficient of a term, (coefficient -3x), or adding two terms. Performing such operator
functions implies some domain expertise that real students are less likely to have. Domain-
specific operator functions tend to require more knowledge engineering or programming ef-
fort than domain-independent operator functions. For example, compare the “add” domain-
independent operator function with the “add-term” domain-specific operator function. Adding
two numbers is one step among the many steps in adding two terms together (i.e., parsing the
input terms into sub-terms, applying an addition strategy for each term format, and concatenating
all of the sub-terms together).

Note that operator functions are different from operators in traditional planning systems, oper-
ator functions have no explicit encoding of preconditions and may not produce correct results
when applied in context. Thus, SimStudent is different from traditional planning algorithms,
which can engage on speed-up learning. SimStudent engages in knowledge-level learning [Diet-
terich, 1986], and inductively acquires complex reasoning rules. These rules are represented as
production rules, which we will explain later.

10

Figure 2.2: The interface that shows how SimStudent traces each demonstrated step and learns
production rules.

2.2 Learning Task

During the learning process, given the current state of the problem (e.g., -3x = 6), SimStudent
first tries to find an appropriate production rule that proposes a plan for the next step (e.g., (bind
?coef (coefficient -3x) (bind ?output (divide ?coef))). If it finds one and receives positive feed-
back, it continues to the next step. If the proposed next step is incorrect, negative feedback
is given, and if SimStudent has no other alternatives, a correct next step demonstration is pro-
vided. SimStudent will attempt to modify or learn production rules accordingly. Although other
feedback mechanisms are also possible, in our case, the feedback is given by automatic cog-
nitive tutors (e.g., Koedinger and Corbett, 2006), which simulate the tutors used to teach real
students.

For each demonstrated step, the tutor specifies 1) perceptual information (e.g., -3x and 6 for

11

Cell 11 Cell 61

Column 1

Table

Column 2 Column 3

... Cell 21 Cell 62... Cell 31 Cell 63...

Figure 2.3: The perceptual hierarchy associated with the interface in equation solving.

-3x = 6) from a graphical user interface (GUI) showing where to find information to perform
the next step, 2) a skill label (e.g., divide) corresponding to the type of skill applied, 3) a next
step (e.g., (divide -3) for problem -3x = 6). This simulates the limited information available to
real students. Taken together, the three pieces of information form an example action record
indexed by the skill label, R=〈label, 〈percepts, step〉〉. In the algebra example, an example
action record is R=〈divide, 〈(-3x, 6), (divide -3)〉〉. For each incorrect next step proposed by
SimStudent, an example action record is also generated as a negative example. During learning,
SimStudent typically acquires one production rule for each skill label, l, based on the set of
associated (both positive and negative) example action records gathered up to the current step,
Rl = (R1, R2, ..., Rn) (where Ri.label = l).

In summary, since we would like to model how real students are tutored, the learning task pre-
sented to SimStudent is challenging. First, the total number of world states is large. In equation
solving, for instance, there are infinite variety of algebraic expressions that can be entered and
there are many possible alternative solution strategies. Second, the operator functions given as
prior knowledge do not encode any preconditions (neither for applicability nor for search control)
or postconditions. Last, the semantics of a demonstrated step is only partially observable. It usu-
ally takes more than one operator function to move from one observed state to the next observed
state. Correct intermediate outputs of operator functions are unobservable to SimStudent. Taken
together, the learning task SimStudent is facing is learning skill knowledge within infinite world
states given incomplete operator function descriptions and partially observable states.

2.3 Performance System

The output of the learning agent is represented as production rules [Laird et al., 1987, Anderson,
1993]. The left side of Figure 2.4 shows an example of a production rule learned by SimStudent
with a simple English description shown on the right. As shown in Figure 2.5, a production
rule indicates “where” to look for information in the interface (perceptual information), “how”
to change the problem state (an operator function sequence), and “when” to apply a rule (a set
of features indicting the circumstances under which performing the how-part will be useful).
For example, the rule to “divide both sides of -3x=6 by -3” shown in Figure 2.4 can be read

12

Skill divide (e.g. -3x = 6)
Perceptual information:

Left side (-3x)

Right side (6)

Precondition:
Left side (-3x) does not

have constant term
=>
Operator sequence:

Get coefficient (-3) of left
side (-3x)

Divide both sides with the
coefficient (-3)

(defrule divide

?var518 <- (problem (interface-elements ? ? ? ? ?var522 ?))
?var522 <- (table (columns $?m557 ?var523 $?))
?var523 <- (column (cells ? ?var525 ? ? ? ? ? ? ? ?))
?var525 <- (cell (name ?foa0) (value ?val0&~nil))

?var518 <- (problem (interface-elements ? ? ? ? ?var522 ?))
?var522 <- (table (columns $?m569 ?var534 $?))
?var534 <- (column (cells ? ?var536 ? ? ? ? ? ? ? ?))
?var536 <- (cell (name ?foa1) (value ?val1&~nil))

?var518 <- (problem (interface-elements ? ? ? ? ?var522 ?))
?var522 <- (table (columns ? ? ?var545))
?var545 <- (column (cells ? ?var547 ? ? ? ? ? ? ? ?))
?var547 <- (cell (name ?selection) (value ?input&nil))

(test (not (has-constant-term?val0)))

=>

(bind ?val2 (coefficient ?val0))
(bind ?input (skill-divide ?val2))
)

Perceptual
Information

Precondition

Operator
Function
Sequence

Figure 2.4: A production rule for divide.

as “given a left-hand side (i.e., -3x) and a right-hand side (6) of an equation, when the left-
hand side does not have a constant term, then get the coefficient of the term on the left-hand
side and write “divide” followed by the coefficient.” The perceptual information part represents
hierarchical paths to identify useful information from the GUI. The precondition (just before “⇒”
in Figure 2.4) includes a set of feature tests representing desired conditions in which to apply the
production rule. The last part (after “⇒” in Figure 2.4) is the operator function sequence which
computes what to output in the GUI.

The working memory of SimStudent is represented as a perceptual representation hierarchy,
as shown in right side of Figure 2.5. For example, recall that the elements in the interface
are organized in a directed graph. The perceptual representation hierarchy in this case consists
of a table node, the table node has columns as children, and each column has multiple cells
as children. During execution SimStudent updates its working memory with inputs from the
environment as a hierarchy, and matches this information against the acquired production rules.
The where part finds the useful information from this hierarchy. Next, the when part uses the
useful information to decide which production rule to fire. The selected production rule will
generate an action that SimStudent is going to execute in the world determined by the how part
of the production rule.

13

Learning System

Perceptual
Learner

Feature Test
Learner

Operator Function
Sequence Learner

Skill Learning

What?
Perceptual Representation

Hierarchy

Performance System

Where?
Generalized Information

Finding Paths

When?
Feature Tests

How?
Operator Function

Sequence

Production Rule
If

Then

Perceptual
Representation

Hierarchy

Feature
Predicates

Extraction
Functions

Transformation
Functions

Human
Author

Figure 2.5: A diagram that shows the architecture of SimStudent. As shown in green, Sim-
Student needs prior knowledge constructed by human author and from library of
primitive predicates and skills. The goal of this thesis is to remove or reduce the
need for human author to manually construct such prior knowledge.

2.4 Learning Mechanisms

With all the challenges presented, we have developed three learning mechanisms in SimStudent
to acquire the three parts of the production rules as shown in the left side of Figure 2.5 [Matsuda
et al., 2009], where each learning component models one aspect of problem-solving skill acquisi-
tion. The first component is a perceptual learner that learns the where-part of the production rule
by finding paths to identify useful information in the working memory. The percepts specified in
the above production rule are cells associated with the sides of the algebra equation, which are
Cell 11 and Cell 21 in this case. Hence, the perceptual learner’s task is to find the right paths
in the tree to reach the specified cell nodes. There are two ways to reach a percept node in the
interface: 1) by the exact path to its exact position in the tree, or 2) by a generalized path to a set
of GUI elements that may have a specific relationship with the GUI element where the next step
is entered (e.g., cells above next step). A generalized path has one or more levels in the tree that
are bound to more than one node. For example, a cell in the second column and the third row,
Cell 23, can be generalized to any cell in the second column, Cell 2?, or any cell in the table,
Cell ??. In the example shown in Figure 2.4, the production rule has an over-specific where-part
that produces a next step only when the sides of the current step are in row two. The learner
searches for the least general path in the version space formed by the set of paths to training ex-
amples [Mitchell, 1982]. This process is done by a brute-force depth-first search. For example,
if only given the example -3x=6 in row two, the production rule learned as shown in Figure 2.4

14

has an over-specific where-part. If given more examples in other rows (e.g., 4x=12 in row three),
the where-part will be generalized to any row in the table.

The second part of the learning mechanism is a feature test learner that learns the when-part of
the production rule by acquiring the precondition of the production rule using the given feature
predicates. The acquired preconditions should contain information about both applicability (e.g.,
getting a coefficient is not applicable to the term 3x+5) and search control (e.g., it is not preferred
to add 5 to both sides for problem -3x = 6). The feature test learner utilizes FOIL [Quinlan, 1990],
an inductive logic programming system that learns Horn clauses from both positive and negative
examples expressed as relations. FOIL is used to acquire a set of feature tests that describe
the desired situation in which to fire the production rule. For each rule, the feature test learner
creates a new predicate that corresponds to the precondition of the rule, and sets it as the target
relation for FOIL to learn. The arguments of the new predicate are associated with the percepts.
Each training action record serves as either a positive or a negative example for FOIL based on
the feedback provided by the tutor. For example, (precondition-divide ?percept1 ?percept2) is
the precondition predicate associated with the production rule named “divide”. (precondition-
divide -3x 6) is a positive example for it. The feature test learner computes the truthfulness of all
predicates bound with all possible permutations of percept values, and sends it as input to FOIL.
Given these inputs, FOIL will acquire a set of clauses formed by feature predicates describing
the precondition predicate.

The last component is an operator function sequence learner that acquires the how-part of the
production rule. For each positive example action record, Ri, the learner takes the percepts,
Ri.percepts, as the initial state, and sets the step, Ri.step, as the goal state. We say an opera-
tor function sequence explains a percepts-step pair, 〈Ri.percepts, Ri.step〉, if the system takes
Ri.percepts as an initial state and yields stepi after applying the operator functions. For example,
if SimStudent first receives a percepts-step pair, 〈(2x, 2), (divide 2)〉, both the operator function
sequence that directly divides both sides with the right-hand side (i.e., (bind ?output (divide 2))),
and the sequence that first gets the coefficient, and then divides both sides with the coefficient
(i.e., (bind ?coef (coefficient 2x ?coef)) (bind ?output (divide ?coef))) are possible explanations
for the given pair. Since we have multiple example action records for each skill, it is not suffi-
cient to find one operator function sequence for each example action record. Instead, the learner
attempts to find a shortest operator function sequence that explains all of the 〈percepts, step〉
pairs using iterative-deepening depth-first search within some depth-limit. As in the above ex-
ample, since (bind ?output (divide 2)) is shorter than (i.e., (bind ?coef (coefficient 2x ?coef))
(bind ?output (divide ?coef))), SimStudent will learn this operator function sequence as the how-
part. Later, it meets another example, -3x=6, and receives another percepts-step pair, 〈(-3x, 6),
(divide -3)〉. The operator function sequence that divides both sides with the right-hand side is
not a possible explanation any more. Hence, SimStudent modifies the how-part to be the longer
operator function sequence (bind ?coef (coefficient ?rhs)) (bind ?output (divide ?coef)).

Last, although we said that SimStudent tries to learn one rule for each label, when a new training
action record is added, SimStudent might fail to learn a single rule for all example action records
when the perceptual information learner cannot find one path that covers all demonstrated steps,
or the operator sequence learner cannot find one operator function sequence that explains all

15

records. In that case, SimStudent learns a separate rule just for the last example action record.
This breaking a single production rule into a pair of disjuncts effectively splits the example
action records into two clusters. Later, for each new example action record, SimStudent tries to
acquire a rule for each of the example clusters plus the new example action record. If the new
record cannot be added to any of the existing clusters, SimStudent creates another new cluster.
As we will see in Chapter 8, this clustering behavior can be used to discover models of student
learning.

16

Chapter 3

Deep Feature Representation Learning

Having reviewed SimStudent’s production rule learning mechanisms, we move to a discussion
of deep feature knowledge acquisition as representation learning. In this chapter, we focus on
describing the representation learning mechanism as a stand-alone module. In later chapters, we
will continue to introduce how the representation learner is integrated into the learning agent. As
shown in Figure 3.1, the representation learner takes problem states (e.g., -3x=6) as input, and
acquires hierarchical representations of the problems.

As mentioned above, representation learning is important both for human knowledge acquisition,
and in achieving effective machine learning. Previous studies [Chi et al., 1981, Chase and Simon,
1973] show that one of the key factors that differentiates an expert from a novice is the knowl-
edge of deep features. For instance, in the algebra domain, deep features such as coefficient and
constant are usually hard for students to acquire. In addition, the performance of learning algo-
rithms is sensitive to representations. Automatic acquisition of good representation knowledge
such as deep features is important in achieving effective learning. We carefully examine the na-
ture of representation learning in algebra equation solving, and discover that it could be modeled
as an unsupervised grammar induction problem given observational data (e.g., expressions in al-
gebra). Expressions can be formulated as a context free grammar and deep features are modeled
as non-terminal symbols in particular positions in a grammar rule. Table 3.1 illustrates a portion
of a grammar for algebra expressions and the modeling of the deep feature “coefficient” as a
non-terminal symbol in one (or more) of the grammar rules, as indicated by the square brackets
(i.e., [SignedNumber]).

Viewing representation learning tasks as grammar induction provides a general explanation of
how experts acquire perceptual chunks [Chase and Simon, 1973, Koedinger and Anderson, 1990]
and explanations for specific novice errors. In this account, some novice errors are the result of
acquiring the wrong grammar for the task domain. Let us use the -3x example again. The correct
grammar shown in Table 3.1 produces the correct parse tree shown on the left in Figure 3.2. A
novice, however, may acquire different grammar rules (e.g., because of plausible lack of expe-
rience with negative numbers) and these result in the incorrect parse tree shown on the right of
Figure 3.2. Instead of grouping - and 3 together, this grammar groups 3 and x first, and thus

17

What?
Perceptual Representation

Hierarchy for Problems

Representation
Learner

Problems

Figure 3.1: A diagram that shows the input and output of the representation learner.

Table 3.1: Probabilistic context-free grammar for coefficients in algebraic
equations.

Terminal symbols: −, x, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
Non-terminal symbols: Expression, SignedNumber, V ariable,MinusSign,Number;
Expression→ 0.33, [SignedNumber] V ariable
Expression→ 0.67, SignedNumber
V ariable→ 1.0, x
SignedNumber → 0.5, MinusSign Number
SignedNumber → 0.5, Number
Number → 0.091, Number Number
Number → 0.091, 0
Number → 0.091, 1
Number → 0.091, 2
Number → 0.091, 3
Number → 0.091, 4
Number → 0.091, 5
Number → 0.091, 6
Number → 0.091, 7
Number → 0.091, 8
Number → 0.091, 9
MinusSign→ 1.0, −

mistakenly considers 3 as the coefficient. In fact, a common strategic error students make in a
problem like -3x=12 is for the student to divide both sides by 3 rather than -3 [Li et al., 2011a].
Based on these observations, we built a representation learner by extending an existing prob-
abilistic context free grammar (pCFG) learner [Li et al., 2009] to support feature learning and
transfer learning. The representation learner is domain general. It currently supports domains
where student input can be represented as a string of tokens, and can be modeled with a context-
free grammar (e.g., algebra, chemistry, natural language processing).

18

3 x

MinusSign Number

SignedNumber

Expression

Variable

3 x

MinusSign

Number

S
1

Expression

Variable

Figure 3.2: Correct and incorrect parse trees for −3x.

3.1 Representation Learning as Grammar Induction

Before introducing the representation learning algorithm, we first briefly review the pCFG learner [Li
et al., 2009] it is based on. The pCFG learner is a variant of the inside-outside algorithm [Lari
and Young, 1990].

3.1.1 A Brief Review of a pCFG Learner

The input to the pCFG learner is a set of observation sequences, O. Each sequence is a string
of tokens directly from user input (e.g., -3x). The output is a pCFG that can generate all input
observation sequences with high probabilities. The system consists of two parts, a greedy struc-
ture hypothesizer (GSH), which creates non-terminal symbols and associated grammar rules as
needed, to cover all the training examples, and a Viterbi training step, which iteratively refines
the probabilities of the grammar rules.

Greedy Structure Hypothesizer (GSH)

GSH creates a context-free grammar in a bottom-up fashion. Pseudo code for the GSH algorithm
is shown in algorithm 3.1. It starts by initializing the rule set S to rules associated with terminal
characters (e.g., -, 3 and x in -3x) in the observation sequences, O. Next the algorithm (line
4) detects whether there are possible recursive structures embedded in the observation sequence
by looking for repeated symbols. If so, the algorithm learns a recursive rule for them (e.g.,
Number→ 0.091, Number Number). If the algorithm fails to find recursive structures, it starts to
search for the character pair that appears in the plans most frequently (line 6), and constructs a
grammar rule for the character pair. To build a non-recursive rule, the algorithm will introduce a
new symbol and set it as the head of the new rule. After getting the new rule, the system updates
the current observation set O with this rule by replacing the character pairs in the observations
with the head of the rule (line 9).

19

Algorithm 3.1: GSH constructs an initial set of grammar rules, S, from observation se-
quences, O.

Input: Observation Sequence Set O.
1 S := terminal symbol grammar rules;
2 while not-all-sequences-are-parsable(O, S) do
3 if has-recursive-rule(O) then
4 s := generate-recursive-rule(O);
5 else
6 s := generate-most-frequent-rule(O);
7 end
8 S := S + s;
9 O := update-plan-set-with-rule(O, S);

10 end
11 S = initialize-probabilities(S); return S

After learning all the grammar rules, the structure learning algorithm assigns initial probabilities
to these rules. If there are k grammar rules with the same head symbol, then each of them are
assigned the probability 1

k
. To break ties among grammar rules with the same head, GSH adds a

small random number to each probability and normalizes the values again. This output of GSH
is a redundant set of grammar rules, which is sent to the Viterbi training phase.

Refining Schema Probabilities – Viterbi Training Phase

The Viterbi training algorithm tunes the probabilities associated with the initial set of rules gen-
erated by the GSH phase. It considers the parse trees T associated with the observation sequence
as hidden variables, and carries out an iterative refinement process to update the parse trees as
well as the grammar rules. Each iteration involves two steps.

In the first step, the algorithm computes the most probable parse tree for each observation using
the current rules. Any subtree of a most probable parse tree is also a most probable parse subtree.
Therefore, for each observation sequence, the algorithm builds the most probable parse tree in a
bottom-up fashion until reaching the start symbol. After getting the parse trees for all observa-
tions, the algorithm moves on to the second step. In this step, the algorithm updates the selection
probabilities associated with the grammar rules. For a grammar rule with head h, the new prob-
ability of being chosen is simply the total number of times that rule appears in the Viterbi parse
trees divided by the total number of times h appears in the parse trees. (This learning procedure is
a fast approximation of expectation-maximization [Dempster et al., 1977], which approximates
the posterior distribution of trees given parameters by the single MAP hypothesis.) After fin-
ishing the second step, the algorithm starts a new iteration until convergence. The output of the
algorithm is a set of probabilistic grammar rules.

For example, as shown in Figure 3.3, the pCFG learner is given three observation sequences, 2,
−5, and −3x, and it knows that 2, 3, and 5 are numbers. In the first step, the structure hypoth-

20

3 x

MinusSign Number

SignedNumber

Expression

Variable

5

MinusSign Number

SignedNumber

2

Number

SignedNumber

ExpressionExpression

Figure 3.3: Candidate parse trees constructed during learning in algebra.

esizer finds that the 〈MinusSign, Number〉 pair appears more often than the 〈Number, Variable〉
pair. It creates a rule that reduces an automatically-generated non-terminal symbol, SignedNum-
ber, into MinusSign and Number, and replaces −5 and −3 in the observation sequences with
the non-terminal symbol SignedNumber. Then, using the updated sequences, the GSH continues
to find frequently appeared pairs and creates non-terminal symbols as well as grammar rules as
needed. This procedure continues until every training example has at least one parse tree, as
shown in Figure 3.3. The hypothesized grammar rules as presented in Figure 3.4 are then sent to
the Viterbi training step, where the probabilities associated with grammar rules are refined, and
redundant grammar rules are removed.

3.1.2 Feature Learning

Having reviewed Li et al.’s [2009] pCFG learning algorithm, we are ready to describe how it is
extended to support representation learning without SimStudent. The input of the system is a set
of pairs such as 〈-3x, -3〉, where the first element is the input to a feature extraction mechanism
(e.g., coefficient), and the second is the extraction output (e.g., -3 is the coefficient of -3x). The
output is a pCFG with a non-terminal symbol in one of the rules set as the target feature (as
shown by [SignedNumber] in Table 3.1). The learning process contains two steps. The system
first acquires the grammar using Li et al.’s [2009] algorithm. After that, the representation learner
tries to identify a non-terminal symbol in one of the rules as the target feature. To do this, the
system builds parse trees for all of the observation sequences, and picks the non-terminal symbol
that corresponds to the most training records as the deep feature. To produce this output, the
representation learner uses the pCFG learner to produce a grammar, and then searches for non-
terminal symbols that correspond to the extraction output (e.g., the -3 in -3x). The process is
done in three steps.

The system first builds the parse trees for all of the observation sequences based on the acquired
rules. For instance, in algebra, suppose we have acquired the pCFG shown in Table 3.1. The

21

... x

MinusSign Number

SignedNumber

Expression

Variable

Number

......

MinusSign Number

SignedNumber

Number

...

Figure 3.4: Example context free grammar constructed during learning in algebra.

associated parse tree of -3x is shown at the left side of Figure 3.2. Next, for each sequence,
the learner traverses the parse tree to identify the non-terminal symbol associated with the target
feature extraction output, and the rule to which the non-terminal symbol belongs. In the case of
our example, the non-terminal symbol is SignedNumber, the associated feature extraction output
is -3, and the rule is Expression→ 1.0, SignedNumber Variable. For some of the sequences, the
feature extraction output may not be generated by a single non-terminal symbol, which happens
when the acquired pCFG does not have the right structure. For example, the parse tree shown
in the right side of Figure 3.2 is an incorrect parse of -3x, and there is no non-terminal symbol
associated with -3. In this case, no non-terminal symbol is associated with the target feature
for the current sequence, and this sequence will not be counted towards the identification of
the target feature. Last, the system records the frequency of each symbol rule pair, and picks
the pair that matches the most training records as the learned feature. For instance, if most of
the input records match with SignedNumber in Expression→ 1.0, SignedNumber Variable, this
symbol-rule pair will be considered as the target feature pattern.

After learning the feature, when a new problem comes, the system will first build the parse tree
of the new problem based on the acquired grammar. Then, the system recognizes the subse-
quence associated with the feature symbol from the parse tree, and returns it as the target feature
extraction output (e.g., -5 in -5x). This model presented so far learns to extract deep features in a
mostly unsupervised way without any goals or context from SimStudent problem solving. Later,
we describe how to extend its ability by integrating it into SimStudent’s supervised skill learning
process.

3.1.3 Transfer Learning

In order to achieve effective learning, we further extend the representation learner to support
transfer learning within the same domain and across domains. Different grammars sometimes
share grammar rules for some non-terminal symbols. For example, both the grammar of equation

22

solving and the grammar of integer arithmetic problems should contain the sub-grammar of
signed number. We extend the representation learning algorithm to transfer solutions to common
sub-grammars from one task to another. Note that the tasks can be either from the same domain
(e.g. learning what is an integer, and learning what is a coefficient), or from different domains
(e.g. learning what is an integer, and learning what is a chemical formula). We consider two
learning protocols: one in which the tutor provides hints to a shared grammar by highlighting
subsequences that should be associated with one non-terminal symbol; and one in which the
shared grammar is present, but no hints are provided. For transfer learning with sub-grammar
hints, we apply what we will call a feature focus mechanism to the acquisition process. For
transfer learning without sub-grammar hints, we extend the system to make use of grammar rule
application frequencies from previous tasks to guide future learning, as explained below.

Explicitly Labeled Common Sub-grammars

We first consider the situation where SimStudent’s tutor provides a hint toward a shared sub-
grammar (the deep feature). In the original learning algorithm, during the process of grammar
induction, the learner acquires some grammar that generates the observation sequences, without
differentiating potential feature subsequences (e.g. coefficients or constant terms) from other
subsequences in the training examples. It is possible that two grammars can generate the same set
of observation sequences, but only one grammar has the appropriate feature symbol embedded
in it. We cannot be sure that the original learner will acquire the right one.

However, it may be reasonable to assume that a tutor explicitly highlights example subsequences
as targeted features as in a teacher giving examples of coefficient by indicating that -3 is the
coefficient of -3x and -4 is the coefficient of -4x. With this assumption, the representation learner
can focus on creating non-terminal symbols for such feature subsequences. We develop this
feature focus mechanism as follows. First, we call one copy of the original learner to acquire
the subgrammar for the highlighted subsequences (i.e., the deep feature). That is, the repre-
sentation learner extracts all the feature subsequences from training sequences, and then learns
a sub-grammar for it. The representation learner then replaces the feature subsequence with a
special semantic terminal symbol, and invokes the original learner on this problem. Since this
semantic terminal symbol is viewed as a terminal character in this phase of learning, it must be
properly embedded in the observation sequence. Finally, the two grammars are combined, and
the semantic terminal is relabeled as a non-terminal symbol and associated with the start symbol
for the grammar for the feature. Note that if we consider the acquisition of the deep feature
grammar is the first subtask, and learning the whole grammar is a second task, we can view this
process as a subtask transfer within the same task.

Learning and Transfer of Common Sub-grammars without Hints

Aiding transfer learning by providing hints for common sub-grammars requires extra work for
the tutor. A more powerful learning strategy should be able to transfer knowledge without adding
more work for the tutor. Therefore, we consider a second learning protocol, where the shared

23

grammar is present, but no hint to it is provided. An appropriate way of transferring previously
acquired knowledge to later learning could improve the speed and accuracy of that later learning.
The intuition here is that the perceptual chunks or grammar acquired with whole-number expe-
rience will aid grammar acquisition of negative numbers that, in turn, will aid algebra grammar
acquisition. Our solution involves transferring the acquired grammar, including the application
frequency of each grammar rule, from previous tasks to future tasks.

More specifically, during the acquisition of the grammar in previous tasks, the learner records the
acquired grammar and the number of times each grammar rule appeared in a parse tree. When
facing with a new task, the learning algorithm first uses the existing grammar from previous
tasks to build the smallest number of most probable parse trees for the new records. This process
is done in a top-down fashion. For each sequence/subsequence, the algorithm first tries to see
whether the given sequence/subsequence can be reduced to a single most probable parse tree. If
it succeeds, the algorithm returns. If it fails, the algorithm separates the sequence/subsequence
into two subsequences, and recursively calls itself. After building the smallest number of most
probable parse trees for the training subsequences, the system switches to the original GSH and
acquires new rules based on the partially parsed sequences.

For example, if the representation learner has acquired what is a signed number (e.g., -3) in a
previous task (as shown in red in Figure 3.4), when facing with a new task of learning what
is an expression (e.g., -3x), the learner first tries to build a parse tree for the whole term (e.g.,
-3x). But it fails because the grammar for signed number can only build the parse trees for
some subsequence (e.g., -3 in -3x). Nevertheless, the grammar learner does get some partially
parsed sequences (e.g., the partial reduced sequence for -3x is SignedNumber x as shown in red
in Figure 3.3), and calls the original grammar learner on these partially parsed sequences.

During the Viterbi training phase, the learning algorithm estimates rule frequency using a Dirich-
let distribution based on prior tasks; that is, it adds the applied rule frequency associated with the
training problems of the current task to the recorded frequency from previous tasks. Note that
it is possible that after acquiring new rules with new examples, in the Viterbi training phase, the
parse trees for the training examples in the previous tasks have changed, and the recorded fre-
quencies are no longer accurate, so this is not equivalent to combining the examples from the old
task with the examples of the new task. By recording only the frequencies, instead of rebuilding
the parse trees for all previous training examples in each cycle, we save both space and time for
learning.

3.2 Experimental Study

To evaluate the proposed representation learner, we carry out two controlled experiments. We
compare four alternatives of the proposed approach: 1) without transfer learning and no fea-
ture focus; 2) without transfer learning, but with feature focus; 3) with transfer learning (from
unlabeled sub-grammars), and without feature focus; 4) with transfer learning from unlabeled
sub-grammars and feature focus. Learners without labeled feature have no way of knowing what

24

Table 3.2: Method summary

Three tasks: T1, learn signed number
T2, learn to find coefficient from expression
T3, learn to find constant from equation

Three curricula: T1→ T2
T2→ T3
T1→ T2→ T3

Number of training condition: 10
Training size in all but last tasks: 10
Training size in the last task: 1, 2, 3, 4, 5
Testing size: 100

the feature is; instead, we report the accuracy that would be obtained using the non-terminal sym-
bol that mostly frequently corresponds to the feature sub-grammar in the training examples. Note
that we do not compare the proposed representation learner with the inside-outside algorithm, as
Li et al. have shown that the base learner (i.e. the learner with no extension) outperforms the
inside-outside algorithm.1 All the experiments were run on a 2.53 GHz Core 2 Duo MacBook
with 4GB of RAM.

In order to understand the generality and scalability of the proposed approach, we first design and
carry out experiments in synthetic domains. The experiment results show that the learner with
both transfer learning and feature focus (+Transfer +Feature Focus) has the steepest learning
curve. Learners with a single extension (-Transfer +Feature Focus, and +Transfer -Feature
Focus) have a slower learning curve comparing with the learner with both extensions (+Transfer
+Feature Focus), but both outperform the base learner (-Transfer -Feature Focus). All learners
acquire the targeted feature within a reasonable amount of time, i.e., 1 – 266 milliseconds per
training record with domains of size smaller than or equals to 25. For full details, pleaser refer
to [Li et al., 2012b].

In order to understand whether the proposed algorithm is a good model of real students, we
carry out a controlled simulation study in algebra. Accelerated future learning, in which learning
proceeds more effectively and more rapidly because of prior learning, is an interesting measure
of robust learning. Two possible causes for accelerated future learning are a better learning
strategy or stronger prior knowledge. Learning with feature focus is an example of using a better
learning strategy during knowledge acquisition. Transfer learning from unlabeled sub-grammars
is an example of developing stronger prior knowledge from previous training to prepare for better
future learning. The objective of this study is to test 1) whether the proposed model could yield
accelerated future learning with stronger prior knowledge and better learning strategies, 2) if
so, how prior knowledge and learning strategies affect the learning outcome. In other words,
can we model how students may learn later tasks more effectively after prior unsupervised or
semi-supervised experience?

1http://rakaposhi.eas.asu.edu/nan-tist.pdf

25

3.2.1 Methods

In order to understand the behavior of the proposed model, we designed three curricula. Three
tasks are used across the three curricula. Task one is to learn about signed numbers. Task two is
to learn how to recognize a coefficient from expressions in the form of {SignedNumber x}. Task
three is to learn how to recognize a constant in the left-hand side from equations in the form of
{SignedNumber x - Integer = SignedNumber}. The three curricula contain 1) task one, task two;
2) task two, task three; 3) task one, task two, and task three.

There were also 10 training sequences to control for a difference in training problems. The
training data were randomly generated following the grammar corresponding to each task. For
instance, task two’s grammar is shown in Table 3.1. In all but the last task, each learner was
given 10 training problems. For the last task, each learner was given training records.

To measure learning gain under each training condition both systems were tested on 100 expres-
sions in the same form of the training data in the last task. For each testing record, we compared
the feature extracted by the oracle grammars with that recognized by the acquired grammars.
Note that in task two, 4% of the testing problems in task two were x and −x. To assess the
accuracy of the model, we asked both systems to extract the feature from each problem. We then
used the oracle grammar to evaluate the correctness of output. A brief summary of the method is
shown in Table 3.2.

3.2.2 Measurements

To assess the learning outcome, we measure the learning rate in the last task of each curriculum
to evaluate the effectiveness of the learners. The experiment tests whether the proposed model
is able to yield accelerated future learning, that is, a faster learning rate in the last task either
because of transferring prior learning or because of a better learning strategy. We compare the
same four learners used in the previous simulations, that is, the combinations of transfer or not
and feature focus or not. To evaluate the learning rate, we report learning curves for all four
learners by the number of training problems given in the last task. The accuracy of the feature
extraction task is averaged over 10 training conditions.

3.2.3 Experimental Results

As shown in Figure 3.5(a), with curriculum one, all four learners acquire better knowledge with
more training examples. With five training problems, either transfer or feature focus are sufficient
to acquire knowledge of score 0.96, while the base learner with neither was only able to achieve
a score around 0.5. None of the learners are able to learn the coefficient of x and −x are 1 and
−1, as it requires the feature learner to generate the number 1 in the coefficient, but 1 is not
presented in x and −x. This difference between problems of the form Ax and problems of the
form −x turns out to be an important distinction in human learning as well, which we will show
in Chapter 8.

26

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o

re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(a)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o

re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(b)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o

re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(c)

Figure 3.5: Learning curves in the last task for four learners in curriculum (a) from task one to
task two (b) from task two to task three (c) from task one and two to task three. Both
prior knowledge transfer and the feature focus strategy produce faster learning.

Both learners with transfer learning (+Transfer -Feature Focus, and +Transfer +Feature Focus)
have the steepest learning curve. In fact, they reach a score of 0.96 with only one training
example. The feature focus learner (-Transfer +Feature Focus) learns more slowly than the
learners with transfer learning (+Transfer -Feature Focus, and +Transfer +Feature Focus), but
is able to reach a score of 0.96 after five training examples. Learners that transfer prior grammar
learning achieve faster future learning than those without transfer learning. The base learner
(-Transfer -Feature Focus) learns most slowly. A careful inspection shows that without feature
focus and transfer learning, the base learner is not able to acquire a grammar rule with a non-
terminal symbol generally corresponding with the feature “coefficient”, though it does learn to
identify positive coefficients (like many novice students). This causes the failure of identifying
the feature symbol. Comparing the base learner (-Transfer -Feature Focus) and the learner with
feature focus (-Transfer +Feature Focus) we can see that a better learning strategy also yields a
steeper learning curve.

Similar results are also observed with curriculum two and curriculum three. In curriculum two,
one interesting point is that, in some conditions, if a transfer learner, (+Transfer -Feature Focus)
remembers the wrong knowledge acquired from task two, and transferred this knowledge to task
three, the learner will perform even worse than the learner with no prior knowledge (-Transfer -
Feature Focus). This indicates that more knowledge does not necessarily lead to steeper learning
curves. Transferring incorrect knowledge leads to less learning.

In all three curricula, the transfer learner (+Transfer -Feature Focus) always outperforms the
learner with the semantic non-terminal constraint (-Transfer +Feature Focus). This suggests that
prior knowledge is more effective in accelerating future learning than this learning strategy.

27

3.3 Discussion

The main contribution of this work is to propose a computational model of representation learn-
ing. In this chapter, we choose pCFG as the form of representation, as it is expressive enough
in representing the perceptual information in the domains of interest, whiling being tractable in
learning. Previous approaches such as discrimination networks [Chase and Simon, 1973, Rich-
man et al., 1995, Gobet and Simon, 2000] and connectionist models (e.g., Anderson 1983) can
also be adopted and used in this task. Since SimStudent adopts perceptual encodings that are
similar to parse trees, incorporating methods for learning grammars that generate these parses is
more natural and consistent than going with discrimination nets or connectionist schemes.

We exploit the connection between representation learning and grammar induction by extending
an existing pCFG algorithm [Li et al., 2009] to support feature learning and transfer. It shares
some ideas from previous work on grammar induction (e.g., [Wolff, 1982, Langley and Strom-
sten, 2000, Stolcke, 1994, Vanlehn, 1987]), which searches for the target grammar by adding or
merging non-terminal symbols2. In short, most of the above approaches focus on the grammar
induction task, rather than applying the techniques to feature learning as we do here.

For example, Stolcke’s [1994] system learns both the grammatical structure and the rule proba-
bilities as our representation learner does. Instead of directly greedily creating an initial grammar
by creating nonterminal symbols for frequently appeared pairs, Stolcke’s algorithm starts with an
initial set of degenerate rules, and then greedily uses merging and chunking operators to improve
the initial rules. It is similar to our approach in that it also uses the Viterbi process to estimate
probabilities associated with each rules, and is also able to acquire recursive grammar rules as
our algorithm does. To the best of our knowledge, Stolcke’s approach does not support feature
learning or transfer learning.

Previous work in cognitive science has shown that “chunking” is an important component of
human knowledge acquisition. Theories of the chunking mechanisms [Chase and Simon, 1973,
Richman et al., 1995, Gobet and Simon, 2000] have been constructed. EPAM [Chase and Simon,
1973] is one of the first chunking theories proposed to explain key phenomena of expertise in
chess. Learning occurs through the incremental growth of a discrimination network, where each
node in the network is a chunk. It has been shown that chunks can be used to suggest plans,
moves and so on. A later version of EPAM, EPAM-IV [Richman et al., 1995], extends the ba-
sic chunking mechanism to support a retrieval structure that enables domain-specific material to
be rapidly indexed. In these theories, chunks usually refer to perceptual chunks. In addition,
CHREST [Gobet and Simon, 2000] proposes a template theory, where the discrimination net-
work contains both perceptual chunks and action chunks. A more detailed review of these work
can be found in [Gobet, 2005]. Our work is similar to these works as we are also modeling
the learning of perceptual chunks, a kind of representation learning, but differs from these theo-
ries since none of the above theories uses pCFG learning to model the acquisition of perceptual
chunks.

In summary, we present a computational model of representation learning that yields accelerated

2Roark and Bacchiani [2003], Hwa [1999], and others have also explored transfer learning for pCFG.

28

future learning. We provide an empirical evaluation of our computational model, and com-
pare four alternative versions of the proposed model. Results show how both stronger prior
knowledge and a better learning strategy can yield accelerated future learning, and indicate that
stronger prior knowledge produces faster learning outcomes compared with a better learning
strategy.

29

30

Chapter 4

Learning for Operator Functions

Given the promising results shown above, we believe the proposed representation learner is ef-
fective in acquiring representation knowledge, and is a good model of real students. To evaluate
how the deep feature representation learner could affect the problem-solving learning of an in-
telligent agent, in this chapter, we present how to integrate the representation learning module
into SimStudent to remove the need of domain-specific feature extraction operator functions. As
shown in Figure 4.1, we extend the original perceptual representation hierarchy with the hier-
archical representations of the problems acquired by the representation learner, and integrate it
into the operator function sequence learner. The feature extraction operator functions can then be
removed from the prior knowledge, as they can now be automatically acquired by the operator
function sequence learner from the extended perceptual representation hierarchy.

4.1 Integrating Representation Learning into Skill Learning

As we have mentioned above, SimStudent is able to acquire production rules in solving com-
plicated problems, but requires a set of operator functions given as prior knowledge. Some of
the operator functions are domain-specific and require expert knowledge to build. In contrast,
the representation learner acquires deep features that are essential for effective learning without
requiring prior knowledge engineering. In order to both reduce the amount of prior knowledge
engineering needed for SimStudent and to build a better model of real students, we present a
novel approach that integrates representation learning into SimStudent.

Figure 4.2 shows a comparison between a production rule acquired by the original SimStudent
and the corresponding production rule acquired by the extended SimStudent. As we can see,
the coefficient of the left-hand side (i.e., -3) is included in the perceptual information part in
the extended production rule. Therefore, the operator function sequence no longer needs the
domain-specific operator, “get-coefficient”. To achieve this, we extend the representation learn-
ing algorithm as described below.

Previously, the perceptual information encoded in production rules was associated with elements

31

Learning System

Perceptual
Learner

Feature Test
Learner

Operator Function
Sequence Learner

Skill Learning

What?
Extended Perceptual

Representation Hierarchy

Performance System

Where?
Generalized Information

Finding Paths

When?
Feature Tests

How?
Operator Function

Sequence

Production Rule
If

Then

Representation Learning

Representation
Learner

Perceptual
Representation

Hierarchy

Feature
Predicates

Extraction
Functions

Transformation
Functions

Problems

Logs

Human
Author

Figure 4.1: A diagram that shows how to integrate representation learning into SimStudent to
improve the operator function sequence learner. The extension of representation
learning is colored in red. Extraction operator functions are no longer needed to be
manually encoded.

in the graphical user interface (GUI) such as text field cells in the algebra equation solving
interface. This assumption limited the granularity of observation SimStudent could achieve. In
fact, the deep features we have discussed previously are perceptual information obtained at a
fine-grained level. Representing these deep perceptual features may enhance the performance
of the learning agent, and may eliminate or reduce the need for authors/developers to manually
encode domain-specific operator functions to extract appropriate information from appropriate
parts of the perceptual input.

Figure 4.1 shows a high-level diagram that illustrates how the extended percept hierarchy is
used by the learning components. We first extend the perceptual representation hierarchy by the
representation acquired by the representation learner, and then send the extended hierarchy to the
how learner. The how learner finds an operator function sequence with the extended hierarchy,
and selects a subset of the elements in the extended hierarchy. The where and when learners then
carry out their learning processes with this selected set of useful information.

4.1.1 Extending the Perceptual Representation

More specifically, to improve perceptual representation, we first extend the percept hierarchy of
GUI elements to further include the most probable parse tree for the content in the leaf nodes
(e.g., text fields) by appending the parse trees as an extension of the GUI path leading to the

32

•  Original:
•  Skill divide (e.g. -3x = 6)
•  Perceptual information:

•  Left side (-3x)
•  Right side (6)

•  Precondition:
•  Left side (-3x) does not

have constant term
•  Operator function sequence:

•  Get coefficient (-3) of left
side (-3x)

•  Divide both sides with the
coefficient (-3)

•  Extended:
•  Skill divide (e.g. -3x = 6)
•  Perceptual information:

•  Left side (-3, -3x)
•  Right side (6)

•  Precondition:
•  Left side (-3x) does not

have constant term
•  Operator function sequence:

•  Get coefficient (-3) of left
side (-3x)

•  Divide both sides with the
coefficient (-3)

Figure 4.2: Original and extended production rules for divide in a readable format. Grammar
learning allows extraction of information in where-part of the production rule and
eliminated the need for domain-specific function authoring (get-coefficient) for use
in the how-part.

associated leaf nodes. All of the inserted nodes are of type “subcell”. In the algebra example,
this extension means that for cells that represent expressions corresponding to the sides of the
equation, the extended SimStudent appends the parse trees for these expressions to the cell nodes.
Let’s use -3x as an example. In this case, as presented in Figure 4.3, the extended hierarchy
includes the parse tree for -3x as shown at the left side of Figure 3.2 as a subtree connecting to
the cell node associated with -3x. With this extension, the coefficient (-3) of -3x is now explicitly
represented in the percept hierarchy. If the extended SimStudent includes this subcell as a percept
in production rules, as shown at the right side of Figure 4.2, the new production rule does not
need the first domain-specific operator function “coefficient”.

4.1.2 Extending the Perceptual Learner

However, extending the percept hierarchy presents challenges to the original perceptual learner.
First of all, since the extended subcells are not associated with GUI elements, we can no longer
depend on the tutor to specify relevant perceptual input for SimStudent, nor can we simply spec-
ify all of the subcells in the parse trees as relevant perceptual information; otherwise, the acquired
production rules would include redundant information that would hurt the generalization capa-
bility of the perceptual learner. For example, consider problems -3x=6 and 4x=8. Although
both examples could be explained by dividing both sides with the coefficient, since -3x has eight
nodes in its parse tree, while 4x has five nodes, the original perceptual learner will not be able
to find one set of generalized paths that explain both training examples. Moreover, not all of the
subcells are relevant percepts in solving the problem. Including unnecessary perceptual infor-
mation into production rules could easily lead to computational issues. Second, since the size

33

Cell 11 Cell 61

Column 1

Table

Column 2 Column 3

... Cell 21 Cell 62... Cell 31 Cell 63...

3 x

Number

SignedNumber Variable

MinusSign

6

Figure 4.3: The extended perceptual hierarchy associated with the interface in equation solving.

of the parse tree for an input depends on the input length, the assumption of fixed percept size
made by the “where” learner no longer holds. In addition, how the inserted percepts should be
ordered is not immediately clear. To address these challenges, we extend the original percep-
tual learner to support acquisition of perceptual information with redundant and variable-length
percept lists.

To do this, SimStudent first includes all of the inserted subcells as candidate percepts, and calls
the operator function sequence learner to find an operator function sequence that explains all
of the training examples. In our example, the operator function sequence for (divide -3) would
only contain one operator function “divide”, since -3 is already included in the candidate percept
list. The perceptual learner then removes all of the subcells that are not used by the operator
function sequence from the candidate percept list. Hence, subcells such as -, 3 and x would not
be included in the percept list any more. Since all of the training example action records share
the same operator function sequence, the number of percepts remaining for each example action
record should be the same. Next, the percept learner arranges the remaining subcell percepts
based on their order of being used by the operator function sequences. After this process, the
percept learner now has a set of percept lists that contains a fixed number of percepts ordered
in the same fashion. We can then switch to the original percept learner to find the least general
paths for the updated percept lists. In our example for skill “divide”, as shown at the right
side of Figure 4.2, the perceptual information part of the production rule would contain three
elements, the left-hand side and right-hand side cells which are the same as the original rule, and
a coefficient subcell which corresponds to the left child of the variable term. Note that since we
removed the redundant subcells, the acquired production rule now works with both -3x=6 and
4x=8.

34

/ 5

DivSign Number

Number

Fraction

M0

3

(a)

3 x

MinusSign Number

SignedNumber

Expression

Variable

(b)

mol C

Number Unit

E1

StoichInput

E0

1 O H 4

ElementNumber

E0E0

Substance

Element Element

(c)

Figure 4.4: Example parse trees learned by the representation learner in three domains, a) frac-
tion addition, b) equation solving, c) stoichiometry.

4.2 Examples of Integration

Here are a few more examples to demonstrate how the extended perceptual learner enables the
removal of domain-specific operator functions, while maintaining efficient skill knowledge ac-
quisition. Figure 4.4 shows the parse trees of example input strings acquired by the representation
learner. The deep features are associated with nonterminal symbols in the parse trees.

In fraction addition, one of the important operator functions in this domain is getting the denom-
inator of the addend (i.e., (get-denominator ?val)). Figure 4.5(a) shows an example parse tree for
3/5. The extended SimStudent can directly get the denominator 5 from the non-terminal symbol
Number in rule M0→ 1.0, DivSign, Number. Then, the operator function (get-denominator ?val)
is replaced by a more general operator function (copy-string ?val).

Another important domain-specific operator function in equation solving is getting the coefficient
of some expression (i.e., (get-coefficient ?val)). With the representation learner, the coefficient of
an expression can be extracted by directly taking the signed number (i.e., SignedNumber) in rule
Expression→ 1.0, SignedNumber, Variable. Again, the domain-specific operator function (get-
coefficient ?val) is replaced by the domain-general operator function (copy-string ?val).

In stoichiometry, (molecular-ratio ?val0 ?val1) is a domain-specific operator function. Instead
of programming this operator function, after integrated with representation learning, the output
can now be generated by taking the “Number” in grammar rule E0→ 0.5 Element, Number, and
then concatenating with the unit mol and the individual substance “Element”. Thus, the origi-
nal operator function (molecular-ratio ?val0 ?val1) is replaced by the domain-general operator
function concatenation (i.e., (concat ?val2 ?val3)).

As we can see from the above examples, without representation learning, SimStudent needs three
different operator functions across three domains. After integrated with representation learning,
these three seemingly distinctive operator functions can all be removed, and replaced by domain-

35

Domain Name # of Training Problems # of Testing Problems
Fraction Addition 40 6
Equation Solving 24 11

Stoichiometry 16 3

Table 4.1: Number of training problems and testing problems presented to SimStudent.

general operator functions, (copy-string ?val) and (concat ?val0 ?val1). It is not hard to see that
the amount of knowledge engineering effort in developing the three original operator functions
is larger than that of implementing copying and concatenating strings.

4.3 Experimental Study

To further quantitatively evaluate the amount of required prior knowledge encoding and the learn-
ing effectiveness of SimStudent, we carry out a controlled simulation study in three domains:
fraction addition, equation solving, and stoichiometry. The objective of this experiment is to test
whether the extended SimStudent can achieve comparable or better learning effectiveness than
the original SimStudent, but with much smaller knowledge engineering effort.

4.3.1 Methods

We compare three versions of SimStudent: two original SimStudents without representation
learning, and one extended SimStudent with representation learning. One of the original Sim-
Students is given both domain-general and domain-specific operator functions (O+Strong Ops).
The other is given only domain-general operator functions (O+Weak Ops). The extended Sim-
Student is also only given domain-general operator functions (E+Weak Ops).

In each domain, the three SimStudents are trained on 12 problem sequences over the same set
of problems in different orders. Both training and testing problems are gathered from classroom
studies on human students. SimStudent is tutored by automatic tutors that are similar to those
used by human students. The number of training and testing problems is listed in Table 4.1.

Fraction Addition: In the fraction addition domain, SimStudent was given a series of fraction
addition problems of the form

numerator1
denominator1

+
numerator2
denominator2

All numerators and denominators are positive integers. The problems are of three types in the
order of increasing difficulty: 1) easy problems, where the two addends share the same denom-
inators (i.e., denominator1 = denominator2, e.g., 1/4 + 3/4), 2) normal problems, where one
denominator is a multiple of the other denominator (i.e., GCD(denominator1, denominator2) =

36

denominator1 or denominator2, e.g., 1/2 + 3/4), 3) hard problems, where no denominator is a
multiple of the other denominator (e.g., 1/3 + 3/4). In this case, students need to find the com-
mon denominator (e.g. 12 for 1/3 + 3/4) by themselves. Both the training and testing problems
were selected from a classroom study of 80 human students using an automatic fraction addition
tutor. The number of training problems is 20, and the number of testing problems is 6.

Equation Solving: The second domain in which we tested SimStudent is equation solving.
Equation solving is a more challenging domain since it requires more complicated prior knowl-
edge to solve the problem. For example, it is hard for human students to learn what is a coeffi-
cient, and what is a constant. Also, adding two terms together is more complicated than adding
two numbers.

In this experiment, we evaluated SimStudent based on a dataset of 71 human students in a class-
room study using an automatic tutor, CTAT [Aleven et al., 2009]. The problems are also in three
types: 1) problems of the form S1 + S2V = S3, 2), V/S1 = S2, 3) S1/V = S2, where S1 and
S2 are signed numbers, and V is a variable. Note that the terms in the above problem forms can
appear in any order, and surrounded with parenthesis. There were 12 training problems, and 11
testing problems in the experiment.

Stoichiometry: Finally, we evaluated SimStudent in a chemistry domain, stoichiometry. Stoi-
chiometry is a branch of chemistry that deals with the relative quantities of reactants and products
in chemical reactions. We selected stoichiometry because it is different from equation solving
and fraction addition in nature. In the stoichiometry domain, SimStudent was asked to solve
problems such as “How many moles of atomic oxygen (O) are in 250 grams of P4O10? (Hint:
the molecular weight of P4O10 is 283.88 g P4O10 / mol P4O10.)”. 8 training problems and 3
testing problems were selected from a classroom study of 81 human students using an automatic
stoichiometry tutor [Mclaren et al., 2008].

To solve the problems, SimStudent needs to acquire three types of skills: 1) unit conversion (e.g.
0.6 kg H2O = 600 g H2O), 2) molecular weight (e.g. There are 2 moles of P4O10 in 283.88 × 2
g P4O10) , 3) composition stoichiometry (e.g. There are 10 moles of O in each mole of P4O10).
The problems are of three types ordered in increasing difficulty, where each later type adds one
more skill comparing with its former type.

To generate different curricula given to SimStudent, for each domain, we first group the problems
of the same type together. Since there are three types of problems, we have three groups in each
domain: group -1, group - 2, and group - 3. Then, there are six different orders of these three
groups. For each order (e.g. [group - 1, group - 2, group - 3]), we generate one blocked-ordering
curriculum by repeating the same problems in each group right after that group’s training was
done (e.g., [group - 1, group - 1’, group - 2, group - 2’, group - 3, group - 3’]). To generate
the interleaved-ordering curriculum, the same problems will be repeated once the whole set of
problems were done (e.g, [group - 1, group - 2, group - 3, group - 1’, group - 2’, group -
3’]).

After this manipulation, we end up having 12 curricula of different orders for each domain as
shown in Table 4.2. Six of them are blocked-ordering curricula, whereas the other six were

37

Blocked-Ordering Curricula Interleaved-Ordering Curricula
1, 1’, 2, 2’, 3, 3’ 1, 2, 3, 1’, 2’, 3’
1, 1’, 3, 3’, 2, 2’ 1, 3, 2, 1’, 3, 2’
2, 2’, 1, 1’, 3, 3’ 2, 1, 3, 2’, 1’, 3’
2, 2’, 3, 3’, 1, 1’ 2, 3, 1, 2’, 3’, 1’
3, 3’, 1, 1’, 2, 2’ 3, 1, 2, 3’, 1’, 2’
3, 3’, 2, 2’, 1, 1’ 3, 2, 1, 3’, 2’, 1’

Table 4.2: 12 curricula of different orders for each domain.

interleaved-ordering curricula. SimStudent was trained and tested on all these curricula. the
results are the average over all curricula.

4.3.2 Measurements

We evaluate the performance of SimStudent with two measurements. We use the number of
domain-specific and domain-general operator functions used in three domains to measure the
amount of prior knowledge engineering needed. In addition, we count the number of lines of
Java code developed for each operator functions, and use this as a secondary measurement to
assess the amount of knowledge engineering. To assess learning effectiveness, we define a step
score for each step in the testing problem. Among all next steps proposed by SimStudent, we
count the number of next steps that are correct, and compute the step score as the number of
correct next steps proposed divided by the total number of correct steps plus the number of
incorrect next steps proposed. This measurement evaluates the quality of production rules in
terms of both precision and recall. For example, if there were four possible correct next steps,
and SimStudent proposed three, of which two were correct, and one was incorrect, then only two
correct next steps were covered, and thus the step score is 2/(4+1)=0.4. We report the average
step score over all testing problem steps for each curriculum.

4.3.3 Experimental Results

Not surprisingly, only the original SimStudent given the strong set of operator functions (O+Strong
Ops) uses domain-specific operator functions. As shown in Figure 4.5, across three domains,
it requires at least as many operator functions as the extended SimStudent without domain-
specific operator functions (E+Weak Ops). Moreover, since domain-specific operator functions
are not reusable across domains, the original SimStudent with domain-specific operator func-
tions (O+Strong Ops) requires nearly twice as many operator functions (31 vs. 17) as that of the
extended SimStudent (E+Weak Ops) needed.

As presented in Figure 4.6, since the domain-specific operator functions often require more
knowledge engineering effort, not surprisingly, in all three domains, the original SimStudent
given domain-specific operator functions (O+Strong Ops) requires more than twice as much

38

O+Strong Ops E+Weak Ops
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
O

p
e
ra

to
r

F
u
n
c
ti
o
n
s

Domain−Specific Ops

Domain−General Ops

(a)

O+Strong Ops E+Weak Ops O+Weak Ops
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
O

p
e
ra

to
r

F
u
n
c
ti
o
n
s

Domain−Specific Ops

Domain−General Ops

(b)

O+Strong Ops E+Weak Ops O+Weak Ops
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
O

p
e
ra

to
r

F
u
n
c
ti
o
n
s

Domain−Specific Ops

Domain−General Ops

(c)

O+Strong Ops E+Weak Ops O+Weak Ops
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f
O

p
e
ra

to
r

F
u
n
c
ti
o
n
s

Domain−Specific Ops

Domain−General Ops

(d)

Figure 4.5: Number of domain-specific and domain-general operator functions used in acquired
production rules, a) fraction addition, b) equation solving, c) stoichiometry, d) across
three domains.

coding compared to the extended SimStudent given only domain-general operator functions
(E+Weak Ops). The total number of lines of code required for the operator functions used by
the extended SimStudent (E+Weak Ops) is 645, whereas the total number of lines of code pro-
grammed for the original SimStudent (O+Strong Ops) is 6789, which is more than ten times the
size of the code needed by the extended SimStudent. In the equation solving domain, the orig-
inal SimStudent (O+Strong Ops) needed 4548 lines of code, whereas the extended SimStudent
(E+Weak Ops) only needs 555 lines of code. The original SimStudent with only domain-general
operator functions (O+Weak Ops) needs more knowledge engineering than the extended SimStu-
dent (E+Weak Ops) in equation solving, but requires less knowledge engineering in the other two
domains. However, as we will see later, it performs much worse than the extended SimStudents
(E+Weak Ops).

39

Fraction Addition Equation Solving Stoichiometry
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u
m

b
e
r

o
f
L
in

e
s
 o

f
C

o
d
e

O+Strong Ops

E+Weak Ops

O+Weak Ops

Figure 4.6: Number of lines of Java code developed for operator functions used in acquired
production rules.

Learning curves of the three SimStudents are presented in Figure 4.7. Across three domains,
without domain-specific prior knowledge, the original SimStudent (O+Weak Ops) is not able
to achieve a step score more than 0.3. Given domain-specific operator functions, the original
SimStudent (O+Strong Ops) is able to perform reasonably well. It obtains a step score around
0.85 in equation solving. However, its performance is still not as good as the extended SimStu-
dent. Given all training problems, the extended SimStudent (E+Weak Ops) performs slightly
better than the original SimStudent with domain-specific prior knowledge in equation solving. It
(E+Weak Ops) achieves significantly (p < 0.0001) better step scores than the original SimStu-
dent given domain-specific operator functions (O+Strong Ops) in two other domains. Hence, we
conclude that the extended SimStudent acquires skill knowledge, which is as or more effective
than the original SimStudent, while requiring less prior knowledge engineering.

4.4 Discussion

The main objective of this work is to reduce the amount of knowledge engineering effort needed
in building an intelligent learning agent by integrating representation learning into skill learning.
There has been considerable research on learning within agent architectures. Soar [Laird et al.,
1986] uses a chunking mechanism to acquire knowledge that constrains problem-space search.
Another architecture ACT-R [Anderson, 1993] creates new production rules through a compila-
tion process that gradually transforms declarative representations into skill knowledge [Taatgen
and Lee, 2003]. Anderson and Thompson [Anderson and Thompson, 1989] developed an analog-
ical problem solving mechanism, and integrated it into an earlier version of ACT-R to assist skill
learning. ICARUS [Langley and Choi, 2006] acquires complex hierarchical skills in the context
of problem solving. Unlike those theories, SimStudent puts more emphasis on knowledge-level
learning (cf., [Dietterich, 1986]) achieved through induction from positive and negative exam-

40

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

Learned

Manual

Baseline

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

Learned

Manual

Baseline

(b)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

Learned

Manual

Baseline

(c)

Figure 4.7: Learning curves of three SimStudents in three domains, a) fraction addition, b) equa-
tion solving, c) stoichiometry.

ples. It integrates ideas of theories of perceptual chunking [Richman et al., 1995] as a basis for
improving knowledge representations that, in turn, facilitate better learning of problem solving
skills.

Another closely related research area is learning procedural knowledge by observing others’
behavior. Classical approaches include explanation-based learning [Segre, 1987, Mooney, 1990],
learning apprentices [Mitchell et al., 1985] and programming by demonstration [Cypher et al.,
1993, Lau and Weld, 1998]. Most of these approaches used analytic methods to acquire candidate
procedures.

For instance, Neves [1985] reported a program that learns production rules from worked-out so-
lutions and by working problems, but not from problem solving experience. Similar to SimStu-
dent’s skill learning mechanisms, the algorithm used analytical approaches. The authors demon-
strated the algorithm in algebra, but did not show results across domains as we do. In addition,
Neves’s [1985] system assumes the representation of the problem is given, whereas our approach
automatically acquires such representation.

Other work on transfer (e.g., [Raina et al., 2006, Niculescu-Mizil and Caruana, 2007, Torrey
et al., 2007, Richardson and Domingos, 2006]) also share some resemblance with our work. They
focus on improving the performance of learning by transferring previously acquired knowledge
from another domain of interest. However, to the best of our knowledge, none of the above ap-
proaches uses the transfer learner to acquire a better representation that reveals essential percept
features, and to integrate it into an intelligent agent.

To sum up, we propose a novel approach that integrates representation learning into an intelligent
agent, SimStudent, as an extension of the perception module. We show that after the integration,
the extended SimStudent is able to achieve better or comparable performance without requiring
any domain-specific operator function as input.

Other research in cognitive science also attempts to use probabilistic approaches to model the
process of human learning. Kemp and Xu [Kemp and Xu, 2008] applied a probabilistic model
to capture principles of infant object perception. Kemp and Tenenbaum [Kemp and Tenenbaum,

41

2008] used a hierarchical generative model to show the acquisition process of domain-specific
structural constraints. But again, neither of the above approaches tend to use the probabilis-
tic model as a representation acquisition component in a learning agent. Additionally, research
on deep architectures [Bengio, 2009] shares a clear resemblance with our work and has been
receiving increasing attention recently. Theoretical results suggest that in order to learn compli-
cated functions such as AI-level tasks, deep architectures that are composed of multiple levels
of non-linear operation are needed. Although not having been studied much in the machine
learning literature due to the difficulty in optimization, there are some notable exceptions in the
area including convolutional neural networks [LeCun et al., 1989, Lecun et al., 1998, Simard
et al., 2003, Ranzato et al., 2007], sigmoidal belief networks learned using variational approxi-
mations [Dayan et al., 1995, Hinton et al., 1995, Saul et al., 1996, Titov and Henderson, 2007],
and deep belief networks [Hinton, 2007, Bengio et al., 2010]. While both the work in deep ar-
chitectures and our work are interested in modeling complicated functions through non-linear
features, the tasks we work on are different. Deep architectures are used more often in classifica-
tion tasks whereas our work focuses on simulating human problem solving and learning of math
and science.

Ohlsson’s [2008] reviews how different learning models are employed during different learning
phases in intelligent systems. Our work on integrating representation learning and skill learning
also reflects how one learning mechanism is able to aid other learning processes in an intelligent
system.

42

Chapter 5

Learning Perceptual Hierarchies

With the above extension, we have shown that we are able to reduce the amount of knowledge
engineering effort in encoding domain-specific operator functions. In this chapter, we shift our
focus on reducing the knowledge engineering effort in constructing the perceptual hierarchy.
As mentioned before, in order to identify useful information from the interface, SimStudent’s
perceptual learner needs to be given a perceptual hierarchy that helps it to understand of the
way the interface is organized. This is a similar problem people face daily. Every day, people
view and understand many novel two-dimensional (2-D) displays such as tables on webpages
and software user interfaces. How do humans learn to process such displays?

As an example, Figure 2.1 shows a screenshot of one interface to an intelligent tutoring system
that is used to teach students how to solve algebraic equations. The interface should be viewed
as a table of three columns, where the first two columns of each row contain the left-hand side
and right-hand side of the equation, and the third column names the skill applied. In tutoring,
students enter data row by row, a strategy that requires a correct intuitive understanding of how
the interface is organized. More complicated displays may contain multiple tables, and require
information sharing and coordination to fully understand the whole display.

Incorrect representation of the interface may lead to inappropriate generalization of the acquired
skill knowledge, such as generalizing the skill for adding two numerators to adding two denom-
inators in fraction addition. A good representation of the display on which future learning is
based is essential in achieving effective learning. How such representation is acquired remains
unknown. Past instances of SimStudent have used a hand-coded hierarchical representation of
the interface, which is both time-consuming, and less psychologically plausible. Here we con-
sider replacing that hand-coded element with a learned representation. As shown in Figure 5.1,
the representation learning mechanism to be described in this chapter learns more of the per-
ceptual representation hierarchy that needed to be manually constructed originally. In particular,
while the primary work involved parsing linear (1-D) string within GUI elements (like a text
field), this chapter describes learning the parse structure over GUI chunks. Then, the acquired
hierarchy assists the perceptual learner to identify useful information in it based on previous
problem solving experience as well as demonstrations.

43

Learning System

Perceptual
Learner

Feature Test
Learner

Operator Function
Sequence Learner

Skill Learning

What?
Extended Perceptual

Representation Hierarchy

Performance System

Where?
Generalized Information

Finding Paths

When?
Feature Tests

How?
Operator Function

Sequence

Production Rule
If

Then

Representation Learning

Representation
Learner

Perceptual
Representation

Hierarchy

Feature
Predicates

Extraction
Functions

Transformation
Functions

Problems

Logs

Human
Author

Figure 5.1: A diagram that shows how to integrate representation learning into SimStudent to
improve the perceptual learner. The 2-D representation learner automatically ac-
quires the perceptual representation hierarchy, removing the need of a human author
to manually construct the hierarchy.

5.1 Learning to Perceive Two-Dimensional Displays

More generally, we consider using a two-dimensional variant of a probabilistic context-free
grammar (pCFG) to model how a user perceives the structure of a user interface, and propose
a novel 2-D pCFG learning algorithm to model acquisition of this representation. Our learning
method exploits both the spatial layout of the interface, and temporal information about when
users interact with the interface. The alphabet of the grammar is a vocabulary of symbols rep-
resenting primitive interface-element types. For example, in Figure 2.1, the type of the cells in
the first two columns is Expression, and the type of the last cell in the each column is Skill. (In
SimStudent, these primitive types can be learned from prior experience.) We extend the ordinary
one-dimensional (1-D) pCFG learner [Li et al., 2010] as described in Chapter 3 to acquire two-
dimensional grammar rules, using a two-dimensional probabilistic version of the Viterbi training
algorithm to learn parameter weights and a structure hypothesizer that uses spatial and temporal
information to propose grammar rules.

We then integrate this two-dimensional representation learner into SimStudent. Previously, we
had to manually encode such representation, which is both time consuming and error prone. We
now extend SimStudent by replacing the hand-coded display representation with the statistically
learned display representation. We demonstrate the proposed algorithm in tutoring systems, and
for simplicity will refer to terminal symbols in the grammar as interface element, but we em-

44

phasize that the proposed algorithm should work for two-dimensional displays of other types as
well. We evaluate the proposed algorithms in both synthetic domains and real world domains,
with and without integration into SimStudent. Experimental results show that the proposed learn-
ing algorithm is effective in acquiring user interface layouts. The SimStudent with the proposed
representation learner acquired domain knowledge at similar rates to a system with hand-coded
knowledge. The main contribution of this work is to use probabilistic grammar induction to
model learning to perceive two-dimensional visual displays.

5.1.1 Problem Definition

To learn the representation of a 2-D display, we first need to formally define the input and output
of the problem.

Input: The input to the algorithm is a set of records, R = {R1, R2, ..., Rn}, associated with
examples shown on the display observed by people. Figure 2.1 shows one problem example in
this algebra tutor interface. Each record, Ri (i = 1, 2, ...n), records how and when the elements
in the display are filled out by users. Thus, Ri is a sequence of tuples, 〈Ti1, Ti2, ..., Tim〉, where
each tuple, Tik (k = 1, 2, ...,m), is associated with one display element that is used in solving the
problem. The tuples in a record are ordered by time. For example, to solve the problem, -3x+2
= 8, shown in Figure 2.1, the cells in the first three rows (except for the last cell of the third row)
are used. We do not assume that meta-elements such as columns and rows are given, but we will
assume that each display element occupies a rectangular region, and that we can detect when
regions are adjacent. In this case, Ri will contain 12 tuples, 〈Ti1, Ti2, ..., Ti12〉, that correspond to
the eight cells, Cell 11, Cell 12, Cell 13, Cell 21, Cell 22, Cell 23, Cell 31, and Cell 32, and the
four buttons, done, help, <<, and >>.

Each tuple consists of seven items,

Tik = 〈type, xleft, xright, yup, ybottom, timestampstart, timestampend〉

where type is the type of the input to the display element, xleft, xright, yup, and ybottom define the
x and y coordinates of the space the element ranges over, and timestampstart and timestampend
are the start and ending time when the display element is filled out by the user. For example, given
the problem -3x+2 = 8, the tuple associated with Cell 11 is Ti1 = 〈Expression, 0, 1, 0, 1, 0, 0〉.
The timestamp of Cell 11 is 0, since both Cell 11 and Cell 21 were entered first by the tutor as
the given problem. As mentioned above, we have developed a 1-D pCFG learner that acquires
parse structures of 1-D strings. The type of the input is the non-terminal symbol associated with
the parse tree of the content. Hence, the type of -3x+2 is Expression.

Output: Given the input, the objective of the grammar learner is to acquire a 2-D pCFG, G, that
best captures the structural layout given the training records, that is,

argmax
G

p (R | G)

45

Table 5.1: Part of the two-dimensional probabilistic context free grammar for the equation solv-
ing interface

Terminal symbols: Expression, Skill;
Non-terminal symbols: Table, Row, Equation, Exp, Ski
Table→ 0.7, [v] Table Row
Table→ 0.3, [d] Row
Row→ 1.0, [h] Equation Ski
Equation→ 1.0, [h] Exp Exp
Exp→ 1.0, [d] Expression
Ski→ 0.5, [d] Skill

under the constraint that all records share the same parse structure (i.e., layout). We will explain
this in more detail in the algorithm description section.

The output of the layout learner is a two-dimensional variant of pCFG [Chou, 1989], which we
define below. When used to parse a display, this grammar will generate a tree-like hierarchical
grouping of the display elements.

Two-Dimensional pCFG: 2-D pCFG is an extended version of 1-D pCFG. Each 2-D pCFG,
G, is defined by a four-tuple, 〈V , E ,Rules, S〉. V is a finite set of non-terminal symbols that can
be further decomposed to other non-terminal or terminal symbols. E is a finite set of terminal
symbols, that makes up the actual content of the “2-D sentence”. In our algebra example, the
terminal symbols of the visual display are the input types associated with the display elements
(e.g., Expression, Skill). Rules is a finite set of 2-D grammar rules. S is the start symbol.

Each 2-D grammar rule is of the form

V → p, [direction] γ1 γ2 ...γn

where V ∈ V , p is the probability of the grammar rule used in derivations1, and γ1, γ2, ...γn is
either a sequence of terminal symbols or a sequence of non-terminal symbols. Without loss of
generality, in this case, we only consider grammar rules that have one or two symbols at the right
side of the arrow.

direction is a new field added for the 2-D grammar. It specifies the spatial relation among its
children. The value of the direction field can be d, h, or v. d is the default value set for grammar
rules that have only one child, in which case there is no direction among the children. h (v)
means the children generated by the grammar rule should be placed horizontally (vertically)
with respect to each other. An example of a two-dimensional pCFG of the equation solving
interface is shown in Table 5.12. The corresponding layout is presented in Figure 5.2. The rows
in the table are placed vertically with respect to other rows. Thus, the direction field in the

1The sum of the probabilities associated with rules that share the same head, V , equals to 1.
2The non-terminal symbols are replaced with meaningful names here. The symbols in the learned grammars are

synthetic-generated symbols.

46

Table

Row

Row

Row

Row

Row

Row

Row

Row

RowEquation

Equation

Equation

Equation

Equation

Equation

Equation

Equation

Equation Ski

Ski

Ski

Ski

Ski

Ski

Ski

Ski

Ski

Figure 5.2: An example layout of the interface where SimStudent is being tutored in an equation
solving domain.

grammar rule “Table → 0.7, [v] Table Row” is set to be v. On the other hand, the equation
should be placed horizontally with the skill cell in the third column, so the direction field of
“Row → 1.0, [h] Equation Ski” is h. These three direction values form the original direction
value set.

Since the interface elements may not form a rectangle sometimes (e.g., the table and the buttons
in the equation solving interface), we further extend the direction field to have two additional
values pv and “ph”. pv (ph) means that the children of the grammar rule should be placed
vertically (horizontally) with respect to each other, but the parts in the interface associated with
these children do not have to form a rectangle. As shown in Figure 5.2, the table in the left side
and the buttons in the right side can be placed horizontally, but do not form a rectangle. In this
case, the grammar rule should use ph instead of h as the directional field value. These direction
values are less preferred than the original values. Grammar rules that have such direction values
will only be added if no more rules with directions d, h, or v can be found.

Layout: Given the 2-D pCFG, the final output of the display representation is a hierarchical
grouping of the display elements, which we will call a layout, L. Figure 5.2 shows an example
layout of the equation solving interface. The left side of the interface contains a row-ordered
table, where each row is further divided into an equation and a skill. The right side of the
interface contains a list of buttons that can be pressed by students to ask for help or to indicate
when he/she considers the problem is solved.

47

Algorithm 5.1: 2D-Layout-Learner constructs a set of grammar rules, Rules, from the
training records,R, and a set of terminal symbols E .

Input: Record SetR, Terminal Symbol Set E
1 Rules := φ;
2 while not-all-records-have-one-layout(R,Rules) do
3 Rules := GSH(R, E ,Rules);
4 Rules := Viterbi-training(R,Rules);
5 end
6 returnRules

5.1.2 Learning Mechanism

Now that we have formally defined the learning task, we are ready to describe the 2-D display
layout learner. In Chapter 3, we have described a 1-D representation learner [Li et al., 2010],
and have shown that the 1-D representation learner acquires knowledge more effectively and
runs faster than the inside-outside algorithm [Lari and Young, 1990]3. Hence, we further extend
the one-dimensional grammar learner to acquire a 2-D pCFG from two-dimensional training
records.

Algorithm 5.1 shows the pseudo code of the 2-D display layout learner. The learning algo-
rithm iterates between a greedy structure hypothesizer (GSH) and a Viterbi training phase. The
GSH tries to construct non-terminal symbols as well as grammar rules that could parse all input
records, R. The set of constructed rules are then set as the start point for the Viterbi training al-
gorithm. Next, the Viterbi training algorithm iteratively re-estimates the probabilities associated
with all grammar rules until convergence. If the grammar rules are not sufficient in generating
a layout in the Viterbi training algorithm, GSH is called again to add more grammar rules. This
process continues until at least one layout can be found.

Since an appropriate way of transferring previously acquired knowledge to later learning process
could potentially improve the learning speed, we further designed a learning mechanism that
transfers the acquired grammar with the application frequency of each rule from previous tasks
to future tasks. To keep the content clear and simple, we will not present the detail of this
extension in this thesis.

Viterbi Training

Given a set of grammar rules from the GSH step, the Viterbi training algorithm tunes the proba-
bilities on the grammar set, and removes unused rules.4 We consider an iterative process. There
are two steps in each iteration.

3rakaposhi.eas.asu.edu/nan-tist.pdf.
4More detailed discussion on why a Viterbi training algorithm instead of the standard CKY is used can be found

in [Li et al., 2011b], which is mainly because of overfitting.

48

One key difference between learning the parse trees of 1-D strings and learning the GUI element
layout is that the parse trees for different input contents are different (e.g., -3x vs. 5x+6), whereas
the GUI elements should always be organized in the same way even if the input contents in
the GUI elements have changed from problem to problem. For instance, students will always
perceive the equation solving interface as multiple rows, where each row consists of an equation
along with a skill operation, no matter which problem they are given. Therefore, instead of
finding a grammar that parses the interface given specific input, the learning algorithm should
acquire one layout for the interface across different problems. This effectively adds a constraint
on the learning algorithm.

In the first step, the algorithm computes the most probable parse trees, T , for all training records
using the current rules, under the constraint that the parse structure among these trees should be
the same, that is,

T = argmax
T

p (T | R,G, S)

=
⋃

i=1,2,...n

argmax
Ti

p (Ti |Ri,G, S)

s.t. parse(T1) = parse(T2) = ... = parse(Tn) ∀ Ti ∈ T

where Ti is the parse tree with root S for record Ri given the current grammar G, and parse(Ti)
denotes the parse structure of Ti ignoring the symbols associated with the parse nodes5

Since any subtree of a most probable parse tree is also a most probable parse subtree, we
have

p (Ti |Ri,G, Si)

= max
rule,idx



p (rule | G)× p (Ti,1 |Ri,1,G, Si,1)× p (Ti,2 |Ri,2,G, Si,2)
if rule is Si → p(rule|G), [direction] Si,1 Si,2,

p (rule | G)× p (Ti,1 |Ri,G, Si,1)
if rule is Si → p(rule|G), [direction] Si,1,

p (rule | G)
if rule is Si → p(rule|G), [direction] Ei,1, and Ei,1 ∈ E .

where rule is the rule that is used to parse the current record Ri, p (rule | G) is the probability of
rule used among all grammar rules (in all directions) that have head Si, Ri,1 andRi,2 are the split
traces based on the direction of the rule, direction, and the place of the split, idx, and Ti, Ti,1
and Ti,2 are the most probable parse trees for Ri, Ri,1 and Ri,2 respectively. Using this recursive
equation, the algorithm builds the most probable parse trees in a bottom-up fashion.

After getting the parse trees for all records, the algorithm moves on to the second step. In this
step, the algorithm updates the selection probabilities associated with the rules. For a rule with

5In the case that some record uses less elements than the other records (e.g., simpler problems that require less
steps), parse(Ti) is considered equal to parse(Tj) as long as the parse structures of the shared elements are the
same.

49

head V , the new probability of getting chosen is simply the total number of times that rule
appearing in the Viterbi parse trees divided by the total number of times that V appears in the
parse trees, that is,

p(rulei|G) =
|rulei appearing in parse trees|
|Vi appearing in parse trees|

where rulei is of the form Vi → p, [direction], γ1, γ2, ...γn, n = 1 or 2.

After finishing the second step, the algorithm starts a new iteration until convergence. This
learning procedure is a fast approximation of expectation-maximization, which approximates
the posterior distribution of trees given parameters by the single MAP hypothesis. The output
of the algorithm is an updated 2-D pCFG, G, and the most probable layout of the interface.
For elements that have never been used in the training examples, the acquired layout will not
include them in it as there is no information for them in the record. But the acquired grammar
may be able to generalize to those elements. For example, if the acquired grammar learns a
recursive rule across rows, it will be able to generalize to more rows than the training records
have reached.

The complexity of the Viterbi training phase isO(|iter|× |R|× |Rulesnt|× |maxRi.length|!),
where |iter| is the number of iterations, |R| is the number of records, |Rulesnt| is the number of
rules that reduce to non-terminal symbols, |maxRi.length| is the length of the longest record.
In practice, since the number of rules generated by GSH is small, and we cache previously
calculated parse trees in memory, as we will see in the experiment section, all learning tasks are
completed within a reasonable amount of time.

Greedy Structure Hypothesizer (GSH)

As with the standard Viterbi training algorithm, the output of the algorithm converges toward
only a local optimum. It often requires more iteration to converge if the starting point is not good.
Moreover, since the complexity of the Viterbi training phase increases as the number of grammar
rules increases, we designed a greedy structure hypothesizer (GSH) that greedily adds grammar
rules for frequently observed “adjacent” symbol pairs. Note that instead of building a structure
learner from scratch, we extend the greedy structure hypothesizer described in Chapter 3 to
accommodate the 2-D space. Extending other learning mechanisms is also possible. To formally
define adjacency, let’s first define two terms, temporally adjacent, and horizontally (vertically)
adjacent.
Definition 1. Two tuples, Ti1 and Ti2, are temporally adjacent, iff the two tuples’ time intervals
overlap, i.e.

[Ti1.timestampstart, Ti1.timestampend) ∩
[Ti2.timestampstart, Ti2.timestampend) 6= ∅

50

Algorithm 5.2: GSH constructs a set of grammar rules, Rules, a set of terminal symbols
E , and from the training records,R.

Input: Record SetR, Terminal Symbol Set E , Grammar Rule SetRules
1 if is-empty-set(Rules) then
2 Rules := generate-terminal-grammar-rules(E);
3 end
4 while not-all-records-are-parsable(R,Rules) do
5 if has-recursive-structure(R) then
6 rule := generate-recursive-rule(R);
7 else
8 rule := generate-most-frequent-non-added-rule(R);
9 end

10 Rules :=Rules + rule;
11 R := update-record-set-with-rule(R, rule,Rules); // First, update the

record set using rule; second, update the record set using
all acquired Rules

12 end
13 Rules = initialize-probabilities(Rules);
14 returnRules

Definition 2. Two tuples, Ti1 and Ti2, are horizontally adjacent, iff the spaces taken up by the
two tuples are horizontally next to each other, and form a rectangle, i.e.

Ti1.xright = Ti2.xleft or Ti2.xright = Ti1.xleft

Ti1.yup = Ti2.yup

Ti1.ybottom = Ti2.ybottom

Definition 3. Two tuples, Ti1 and Ti2, are vertically adjacent, iff the spaces took up by the two
tuples are vertically next to each other, and form a rectangle, i.e.

Ti1.ybottom = Ti2.yup or Ti2.ybottom = Ti1.yup

Ti1.xleft = Ti2.xright

Ti1.xright = Ti2.xleft

Now, we can define what is a 2D-mergeable pair.
Definition 4. Two tuples, Ti1 and Ti2, are 2D-mergeable, iff the two tuples are both temporally
adjacent and horizontally (vertically) adjacent.

The structure hypothesizer learns grammar rules in a bottom-up fashion. The pseudo code of
the structure hypothesizer is shown in Algorithm 5.2. The grammar rule set, Rules, is initial-
ized to contain rules associated with terminal symbols, when GSH is called for the first time.
Then the algorithm detects whether there are recursive structures embedded in the records (e.g.,
Row,Row, ...Row) , and learns a recursive rule for it if finds one (e.g., Table→ 0.7, [v] Table Row).

51

If the algorithm fails to find recursive structures, it starts to search for the 2D-mergeable pair (e.g.,
〈Equation,Ski〉) that appears in the record set most frequently, and constructs a grammar rule
(e.g., Row→ 1.0, [h] Equation Ski) for that 2D-mergeable pair. The direction field value is set
based on whether the 2D-mergeable pairs are horizontally or vertically adjacent. If the Viterbi
training phase cannot find a layout based on these rules, less frequent pairs are added later. When
there is no more pair that is 2D-mergeable, it is possible that some training record has not been
fully parsed, since some symbol pairs that are horizontally (vertically) ordered may not form
rectangles. The grammar rules constructed for these symbol pairs in this case will use the ex-
tended direction values (e.g., ph, pv). After getting the new rule, the system updates the current
record set with this rule by replacing the pairs in the records with the head of the rule.

After learning the grammar rules, the GSH assigns probabilities associated with these grammar
rules. For each rule with head V , p is assigned to 1 divided by the number of rule that have V
as the head. In order to break the symmetry among all rules, the algorithm adds a small random
number to each probability and normalizes the values again. This structure learning algorithm
provides a redundant set of grammar rules to the Viterbi algorithm.

5.2 Experimental Study in Synthetic Domains

In order to evaluate whether the proposed layout learner is able to acquire the correct layout,
we carry out three experiments in progressively more realistic settings. All experiments are per-
formed on a machine with a 3.06 GHz CPU and 4 GB Memory. The time the layout learner takes
to learn ranges from less than 1 millisecond to 442 milliseconds per training record. The objec-
tive of the first experiment is to test whether the proposed 2-D layout learner is able to acquire
better parse trees than the 1-D layout learner given the same number of training examples.

5.2.1 Methods

In this section, we use the 1-D layout learner (i.e., 1-D pCFG learner) as a baseline, and compare
it with the proposed 2-D layout learner. In order to make the training records learnable by the
1-D layout learner, we first transform each training record into a row-ordered 1-D record, and
then call the 1-D layout learner on the transformed records.

5.2.2 Measurements

We evaluate the quality of the learned parses with the most widely-used evaluation measure-
ments [Harrison et al., 1991]: (1) the Crossing Parentheses score, which is the number of times
that the learned parse has a structure such as ((A B) C) and the oracle parse has one or more
structures such as (A (B C)) which “cross” with the learned parse structure; (2) the Recall score,
which is the number of parenthesis pairs in the intersection of the learned and oracle parses (L

52

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training examples

R
e
c
a
ll

s
c
o
re

2D Learner

1D Learner

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training examples

R
e
c
a
ll

s
c
o
re

2D−FractionAddition

1D−FractionAddition

(b)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training examples

R
e
c
a
ll

s
c
o
re

2D−EquationSolving

1D−EquationSolving

(c)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training examples

R
e
c
a
ll

s
c
o
re

2D−Stoichiometry

1D−Stoichiometry

(d)

Figure 5.3: Recall scores in a) randomly-generated domains, and three synthetic domains, b)
fraction addition, c) equation solving, d) stoichiometry.

intersection O) divided by the number of parenthesis pairs in the oracle parse O, i.e., (L intersec-
tion O) / O. To better understand the crossing parentheses score, we further normalize it so that
it ranges from zero to one.

5.2.3 Experimental Results

In the first experiment, we randomly generate 50 oracle two-dimensional grammars. For each
oracle grammar, we randomly generate a sequence of 15 training layouts6 based on the oracle
grammar. Each randomly-generated oracle grammar forms an and-or tree, where each non-
terminal symbol can be decomposed by either a non-recursive or a recursive rule. Each grammar
has 50 non-terminal symbols in it. For each layout, we give the layout learners a fixed number

6Some layouts may be the same.

53

of training records. The two layout learners (i.e., the 1-D layout learner with row-based trans-
formation and the 2-D layout learner) are trained on the 15 layouts sequentially using a transfer
learning mechanism developed for the layout learner. The transfer learning mechanism is not
described here due to the limited space. Then, we generate another layout with a fixed number of
testing records by the oracle grammar, and test whether the grammars acquired by the two layout
learners are able to correctly parse the testing records.

Figure 5.3(a) presents the recall scores of the layout learners averaged over 50 grammars. Both
learners perform surprisingly well. They are able to achieve close to one recall scores, and
close to zero crossing parentheses scores with only five training examples per layout. To better
understand the result, we take a close look at the data. Since the oracle grammar is randomly
generated, the probability of getting a hard-to-learn grammar is very low. In fact, many of the
training records are traces of single rows or columns, which makes learning easy. Hence, to
challenge the layout learner more, we carried out a second experiment.

5.3 Experimental Study in Three Tutoring Domains

In addition, we examine three tutoring systems used by human students: fraction addition, equa-
tion solving, and stoichiometry. The objective of this experiment is to test in tutoring domains,
whether the proposed 2-D layout learner is able to acquire better parse trees than the 1-D layout
learner given the same number of training examples.

5.3.1 Methods

We manually construct an oracle grammar that is able to parse these three domains. Moreover,
the oracle grammar can further generate variants of the existing user interfaces. For example,
instead of adding two fractions together, the oracle grammar can generate interfaces that can
be used to add three factions. We carry out the same training process based on this manually-
constructed oracle grammar, and test the quality of the acquired grammar in three domain vari-
ants.

The interface of the fraction addition tutor has four rows, where the upper two rows are filled with
the problem (e.g., 3

5
+ 2

3
), and the lower two rows are empty cells for the human students to fill in.

The equation solving tutor’s interface is shown in Figure 2.1. The interface of the stoichiometry
domain contains four tables of different sizes. The four tables are used to provide given values,
to perform conversion, to self-explain for the current step, and to compute intermediate results.
All tables are of column-based orders.

5.3.2 Measurements

The crossing parentheses and recall are used to evaluate the quality of the acquired layouts.

54

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

Learned

Manual

Baseline

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

Learned

Manual

Baseline

(b)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
te

p
 s

c
o

re

Learning Curve

Learned

Manual

Baseline

(c)

Figure 5.4: Learning curves of three SimStudents in three domains, a) fraction addition, b) equa-
tion solving, c) stoichiometry.

5.3.3 Experimental Results

Figure 5.3(b), 5.3(c), 5.3(d) show the recall scores of the three domains averaged over 50 runs.
Both learners achieve better performance with more training examples. We also see that the 2-D
layout learner has significantly (p < 0.0001) higher recall scores than the 1-D layout learner in
all three domains. Both fraction addition and stoichiometry contain tables/subtables of column-
based orders. The row-based transformation of the 1-D layout learner removes the column infor-
mation, and thus hurts the learning performance.

The crossing parentheses scores for both learners are always close to zero across three domains,
which indicates the acquired grammar does not generate bad “crosses” often. But since a “cross”
occurs only when the parents in the learned parse and in the oracle parse match, thus the crossing
parentheses score is meaningful only when the recall scores are high. The low crossing paren-
theses score for the 1-D layout learner may be partially due to its relatively low recall.

5.4 Experimental Study within SimStudent

In order to understand how display representation learning affects an agents learning effective-
ness, the last experiment that we carry out is within SimStudent. The objective of this experiment
is to test whether the layouts acquired by the proposed 2-D layout learner are equivalent to or
better than the manually-constructed layouts when integrated into SimStudent.

5.4.1 Methods

We use the actual tutor interfaces in three tutoring domains. The 2-D layout learner is first
trained on no more than five problems used to tutor human students, and sends its output to
SimStudent. An automatic tutor (also used by human students) then teaches the SimStudent with

55

the constructed/acquired layouts with one set of problems, and tests SimStudents’ performance
on another set of problems. Both the training and testing problems are problems used by human
students. In each domain, SimStudent is trained on 12 problem sequences. Three SimStudents
are compared in the experiment. One SimStudent (manual) is given the manually-constructed
layout, one SimStudent (learned) is given the acquired layout, and one SimStudent (baseline) is
given a row-based layout7.

5.4.2 Measurements

To measure learning gain, we calculate step scores of the testing problems after SimStudent is
tutored on each training problems, and report the average step score over all testing problem
steps for each curriculum.

5.4.3 Experimental Results

Figure 5.4 shows the learning curves of the three SimStudents across three domains. In all three
cases, the SimStudent with a row-based layout (baseline) performs significantly (p < 0.0001)
worse than the other two SimStudents. This shows the importance of the layout in achieving
effective learning. Both the SimStudent with the manually-constructed layout (manual) and the
SimStudent with the learned layout (learn) perform well across three domains. There is no
significant difference between the two SimStudents, which suggests that the acquired layouts are
as good as the manually constructed layouts.

5.5 Discussion

The main focus of this chapter is to model how human learns to perceive two-dimensional dis-
plays through a 2-D grammar induction technique. One closely related research area that also
uses two-dimensional pCFGs is learning to recognize equations (e.g., Chou, 1989, Vanlehn,
1987) or images (e.g., Siskind et al., 2007). Algorithms in this direction often assume the struc-
ture of the grammar is given, and use a two-dimensional parsing algorithm to find the most likely
parse of the observed image. Our system differs from their approaches in that we model the
acquisition of the grammar structure, and apply the technique to another domain, learning to
perceive user interface.

One of the rare exceptions in structure learning is Zhu et al.’s [2009] work on object category
detection using a Probabilistic Grammar-Markov Model (PGMM). PGMM is an extension of
probabilistic context-free grammar with Markov Random Fields that deals with 2-D space. The

7A fully flat layout performs so badly that SimStudent cannot finish learning.

56

authors presented algorithms that enable rapid inference, parameter learning, and the more diffi-
cult task of structure induction using a greedy search process. The structure learner uses cluster-
ing techniques to identify possible ways to grow the structure, and accepts the proposed structure
that fit to the data well. However, these PGMMs are defined over attributed features, whereas the
input to our representation learner is text-based strings. Thus, the proposed approach does not
suit with our learning task well.

Research on extracting structured data on the web (e.g., Arasu and Garcia-Molina, 2003, Ca-
farella et al., 2008, Crescenzi et al., 2001) shares a clear resemblance with our work, as it also
concerns on understanding structures embedded in a two-dimensional space. It differs from our
work in that webpages have an observable hierarchical structure in the form of their HTML parse
trees, whereas we only observe the 2-D visual displays, which have no such structural informa-
tion.

Our work in this chapter continues the effort on modeling two-dimensional data in a new do-
main, where structural information is not provided, but temporal information is available for un-
derstanding the layout of a two-dimensional display. We show that the proposed layout learner
is able to acquire the high-quality layouts with a small number of training examples. We fur-
ther integrate the proposed approach into SimStudent, and demonstrate the intelligent agent with
the acquired layouts is able to perform equally well comparing with the agent given manually
constructed layouts.

57

58

Chapter 6

Learning Feature Predicates

Having demonstrated that with representation learning, the knowledge engineering effort needed
for the perceptual learner and the operator sequence learner is reduced, in this chapter, we dis-
cuss how to reduce the knowledge engineering effort of the feature test learner. As shown in
Figure 6.1, we present both a new method for discovering perceptual feature predicates in an
unsupervised way and an integration of the automatically generated feature predicates into skill
learning. This method creates feature predicates from non-terminals in the parse tree and from
relationships between non-terminals expressed in the grammar rules. We provide these auto-
matically generated feature predicates as prior knowledge to the feature test learning component
of SimStudent. As presented in Figure 6.2, the two automatically generated feature predicates,
is-left-child-of and is-signed-number, replace the need of the originally manually-constructed
feature predicate has-constant-term.

More specifically, our system automatically generate, from the acquired representation, a set of
predicates that can be used by the inductive logic programming (ILP) component that learns
when to apply a skill. It is important and interesting that this integration of an unsupervised
representation learner and a supervised skill learner makes it possible, for the first time, for a
computer to learn a complex skill without domain-specific feature or representation engineering.
Prior skill learning efforts have always required such engineering. We evaluate the quality of the
automatically generated feature predicates in the algebra equation solving domain, and report the
results in the experiment section.

6.1 Generating Feature Predicates from Learned Grammar

Having removed the dependency on domain-specific operator functions, we would like to fur-
ther reduce the knowledge engineering required by eliminating SimStudent’s dependency on
manually-constructed feature predicates. As implied by its name, the representation learner ac-
quires information that reveals essential features of the problem. It is natural to think that these
acquired representations can be used in describing desired situations to fire a production rule. In

59

Learning System

Perceptual
Learner

Feature Test
Learner

Operator Function
Sequence Learner

Skill Learning

What?
Extended Perceptual

Representation Hierarchy

Performance System

Where?
Generalized Information

Finding Paths

When?
Feature Tests

How?
Operator Function

Sequence

Production Rule
If

Then

Representation Learning

Representation
Learner

Perceptual
Representation

Hierarchy

Feature
Predicates

Extraction
Functions

Transformation
Functions

Problems

Logs

Human
Author

Figure 6.1: A diagram that shows how to integrate representation learning into SimStudent to
improve the feature test learner. SimStudent automatically generates a set of fea-
ture predicates based on the acquired representation to replace the set of manually-
constructed feature predicates.

this work, we automatically generate, from the acquired grammar, a set of predicates that can
be used by the inductive logic programming (ILP) component. These automatically generated
feature predicates can then replace manually constructed feature predicates.

Hence, we make use of the domain-specific information in the grammar acquired by the rep-
resentation learner to automatically generate a set of feature predicates. There are two main
categories of the automatically generated feature predicates: topological feature predicates, and
nonterminal symbol feature predicates. A third category, parse tree relation feature predicates,
considers a combination of the information used in the first two. All these types of predicates
are applicable to a general pCFG and the parse trees it generates. The truthfulness of the feature
predicates is decided by the most probable parse tree of the problem.

6.1.1 Topological Feature Predicates

Topological feature predicates evaluate whether a node with the value of its first arguments ex-
ists at some location in the parse tree generated from the second argument (e.g., (is-left-child-of
-3 -3x)). There are four generic topological feature predicates: (is-descendent-of ?val0 ?val1),
(is-nth-descendent-of ?val0 ?val1), (is-tree-level-m-descendent-of ?val0 ?val1) and (is-nth-tree-
level-m-descendent-of ?val0 ?val1). These four generic feature predicates are used to gener-
ate a wide variety of useful topological constraints based on different n and m values. An

60

•  Original:
•  Skill divide (e.g. -3x = 6)
•  Perceptual information:

•  Left side (-3x)
•  Right side (6)

•  Precondition:
•  Left side (-3x) does not

have constant term
•  Operator function sequence:

•  Get coefficient (-3) of left
side (-3x)

•  Divide both sides with the
coefficient (-3)

•  Extended:
•  Skill divide (e.g. -3x = 6)
•  Perceptual information:

•  Left side (-3, -3x)
•  Right side (6)

•  Precondition:
•  -3 is the left child of

the left side (-3x)
•  -3 is a signed number

•  Operator function sequence:
•  Get coefficient (-3) of left

side (-3x)
•  Divide both sides with the

coefficient (-3)

Figure 6.2: Original and extended production rules for divide in a readable format. The learner
grammar automatically generated two feature predicates, is-left-child-of and is-
signed-number, and eliminated the need to manually encode domain-specific feature
predicates (e.g. has-constant-term).

automatically-generated predicate is created for each m between 0 and M-1, where M is the
maximum number of nonterminal symbols on the right side of the grammar rules, and for each
n between 0 and N-1, where N is the maximum height of the parse trees encountered.

The level specificity in the desired location varies from the most general topological predi-
cate, (is-descendent-of ?val0 ?val1), to the most specific (is-nth-tree-level-m-descendent-of ?val0
?val1). (is-descendent-of ?val0 ?val1) determines whether ?val0 exists anywhere in the subtree
rooted at ?val1. For example, since 3 is a grandchild of -3x in the parse tree shown in the left
side of Figure 3.2, (is-descendent-of 3 -3x) is true. The next two topological feature predicates
each incorporate one of the two pieces of information available about the location of a node:
the depth of the node in the parse tree and in which subtree its located when the child nodes are
ordered. (is-nth-descendent-of ?val0 ?val1) is slightly more specific than (is-descendent-of ?val0
?val1). It tests whether ?val0 exists anywhere in the subtree rooted at the nth child of ?val1. In
the correct parse tree of -3x, 3 appears in the left subtree of -3x, therefore, (is-Oth-descendent-of
3 -3x) is true. (is-tree-level-m-descendent-of ?val0 ?val1) represents a similar level of specificity
to (is-nth-descendent-of ?val0 ?val1), in that it incorporates one of the two pieces of information
available. It tests whether ?val0 appears at the mth level in the subtree rooted at ?val1. For in-
stance, 3 appears at level two of the parse tree so (is-tree-level-2-descendent-of 3 -3x) is true. The
last topological feature predicate (is-nth-tree-level-m-descendent-of ?val0 ?val1) considers both
the tree level m and the descendent index n. It defines whether ?val0 exists m-11 levels down
in the subtree rooted at the nth child of ?val1. If m=1, n=0, (is-nth-tree-level-m-descendent-of

1We are considering nodes m-1 levels down in the tree rooted at the nth child, rather than m, because the n th

child is already 1 level down in the tree rooted at ?val1.

61

?val0 ?val1) is equivalent to (is-left-child-of ?val0 ?val1).

6.1.2 Nonterminal Symbol Feature Predicates

Nonterminal symbol feature predicates are defined based on the nonterminal symbols used in
the grammar rules. For example, -3 is associated with the nonterminal symbol SignedNumber
based in the grammar shown in Table 3.1. There are three generic nonterminal symbol feature
predicates: (is-symbol-x ?val0 ?val1), (has-symbol-x ?val0 ?val1), and (has-multiple-symbol-x
?val0 ?val1) where x can be instantiated to any nonterminal symbols in the grammar.

(is-symbol-x ?val0 ?val1) describes whether ?val0 is associated with symbol x in the parse tree
of ?val1. For instance, (is-symbol-SignedNumber -3 -3x) tests whether -3 is associated with
SignedNumber in the parse tree of -3x. (has-symbol-x ?val0 ?val1) tests whether any node in
the subtree of ?val0 is associated with symbol x in the parse tree of ?val1. Although -3 is
not associated with symbol Number, it has a child, 3, that is associated with symbol Number.
In this case, (is-symbol-Number -3 -3x) is false, but (has-symbol-Number -3 -3x) is true. The
last symbol feature predicate (has-multiple-symbol-x ?val0 ?val1) operates similarly to (has-
symbol-x ?val0 ?val1), but examines whether there are multiple separate nodes in the subtree
of ?val0 which are associated with the symbol x. For the purposes of this predicate, two nodes
A and B in a parse tree are separate iff A is not in B’s subtree and B is not in A’s subtree. In
math and logic, an exact number is often less significant than whether a number falls into the
category of zero, one, or many/infinite. The (has-multiple-symbol-x) predicate thus covers the
category of many/infinite, without the need to create individual predicates for specific numbers
of nodes which are associated with some symbol. (has-multiple-symbol-Number 4-3 x+(4-3))
would return true because 4-3 has 2 nodes, 4 and 3, each of which is associated with the symbol
Number and neither is in the other’s subtree.

6.1.3 Parse Tree Relation Feature Predicates

Topological feature predicates examine the position of a particular input in the overall parse tree
and symbol feature predicates examine the symbol associated with a particular input. The third
class of feature predicates, parse tree relation predicates, examine both the positions of nodes in
the tree and their associated symbols. These allow SimStudent to examine the surrounding nodes
in the parse tree and determine if they have a particular symbol from the grammar associated with
them.

For the algebra study, three such predicates were used which represent examining the nearest
nodes in the parse which are not in the input’s subtree: (parent-is-symbol-x ?val0 ?val1), (sibling-
is-symbol-x ?val0 ?val1), and (uncle-is-symbol-x ?val0 ?val1) (or aunt). As their names imply,
these predicates examine whether a parent/sibling/uncle(aunt) node of the input is associated
with the symbol x, where x could be any nonterminal symbol in the grammar. As an example,
referring again to the left side of Figure 3.2, consider the predicate (sibling-is-symbol-MinusSign
3 -3x). This would return true because in the parse tree for -3x, the node representing the number

62

3 does have a sibling whose associated symbol is minus sign. In ongoing work, these types
of predicates have been generalized to encompass arbitrary relations between nodes in the tree
in much the same way that (is-child-of ?val0 ?val1) has been generalized to (is-tree-level-1-
descendent-of ?val0 ?val1). An arbitrary relationship representing the relative position of any
two nodes in a parse tree can be described by the predicate (i-j-relation-is-symbol-x ?val0 ?val1).
This represents examining whether the nodes reached by moving up i times in the tree, then
down j times are associated with the symbol x. Using this notation, (1-1-relation-is-symbol-x
?val ?val1) is equivalent to (sibling-is-symbol-x ?val0 ?val1).

6.2 Experimental Study on Automatically Generated Feature
Predicates

In order to evaluate whether the extended SimStudent is able to acquire correct knowledge with
automatically generated feature predicates, we carry out an experiment in equation solving. The
objective of this experiment is to test whether the automatically-generated feature predicates can
replace the manually-constructed feature predicates in SimStudent’s skill learning system.

6.2.1 Methods

The representation learner was first trained on a sequence of feature learning tasks (i.e., what
is a signed number, what is a term, and what is an expression). Then, SimStudent was tutored
by an automatic tutor, CTAT [Aleven et al., 2009], which was used by 71 human students in
a classroom study, to solve basic algebra problems. All of the training and testing problems
were extracted from the same classroom study. There were four sets of training problems. Each
set has 35 training problems. The testing problem set contains 11 problems. In this way, we
have provided Simstuent with the same information and training as would be provided to human
students.

We compared three SimStudents: one SimStudent given the manually constructed feature pred-
icates known to be useful in solving algebra problems, one SimStudent given the automatically
generated feature predicates, and one SimStudent given no feature predicates.

6.2.2 Measurements

We evaluated the effectiveness of SimStudent in two aspects: the amount of knowledge engineer-
ing needed, and the speed of learning. To assess the knowledge engineering effort required, we
counted the number of lines of Java code a developer needed to write for each feature predicate,
and reported the total number of lines developed for all feature predicates used in the acquired
rules.

63

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

F
irs

t A
tte

m
pt

 A
cc

ur
ac

y

Learning Curve

SimStudent w Manually Constructed Predicates
SimStudent w Automatically Generated Predicates
SimStudent w No Predicates

(a)

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

A
ll

A
tte

m
pt

 A
ve

ra
ge

 A
cc

ur
ac

y

Learning Curve

SimStudent w Manually Constructed Predicates
SimStudent w Automatically Generated Predicates
SimStudent w No Predicates

(b)

Figure 6.3: Learning curves of three SimStudents in equation solving measured by, a) first at-
tempt accuracy, b) all attempt accuracy.

To measure learning gain, we calculate a first attempt accuracy and an step score for each step
in the testing problem, and report the average first attempt accuracy and step score of all testing
problems.

6.2.3 Experimental Results

Since there is no manual encoding of domain knowledge needed for the automatically generated
feature predicates, the number of lines of domain-specific code needed in equation solving is 0.
On the other hand, the manually constructed feature predicates required 2093 lines of Java code,
which is also a measure of the amount of knowledge engineering saved by automatic feature
predicate generation.

The second study we carried out focused on evaluation of learning speed. The average learning
curves for the three SimStudents are shown in Figures 6.3(a) and 6.3(b). As we can see, there is
a huge gap between the SimStudents with and without manually constructed feature predicates
(i.e., the two blue lines). The goal of our algorithm is to fill in the gap without requiring extra
knowledge engineering.

As shown in the figures, the SimStudent with automatically generated feature predicates has a
slower learning curve than the SimStudent with manually constructed feature predicates. It does,
however, gradually catch up after being trained on more problems. This is to be expected because
while the manually constructed feature predicate directly evaluates information that is known to
be applicable in solving the problem, the automatically generated feature predicates evaluate a
larger set of information obtained from the parse trees. Much of this information does not turn out
to be relevant to solving the problem. It therefore takes more examples for the SimStudent with
automatically generated feature predicates to learn to solve the problems because it must first

64

determine which of the automatically generated predicates are relevant. As the results show, after
being trained on 35 problems, the SimStudent with automatically generated feature predicates
achieved comparable performance to that with manually constructed feature predicates. This is
the case for both measurements (i.e., 0.77 vs. 0.75 for first attempt accuracy, 0.83 vs. 0.79 for all
attempt accuracy). Taken together, we conclude that with automatic feature predicate generation,
we are able to obtain nearly comparable performance while significantly reducing the amount of
knowledge engineering effort needed.

6.3 Experimental Study on Transferability to Harder Prob-
lems

Having evaluated the effectiveness of the proposed approach on problems at the same level of
difficulty, we further evaluate the transferability of the proposed approach to harder problems, by
training SimStudent on sequences of problems of increasing difficulty. The objective of this ex-
periment is to test whether the automatically-generated feature predicates can replace or exceed
the manually-constructed feature predicates in SimStudent’s skill learning system, when given
harder problems. The main claim of the work is that by integrating representation learning into
skill learning, we are able to develop intelligent agents that learn to solve both easy and hard
problems, which (1) require less knowledge engineering effort, and (2) maintain equally good
performance, compared with human-engineered intelligent agents. Problem representations are
used to learn skill knowledge for simpler problems. This skill knowledge is then automatically
built upon to develop a SimStudent capable of representing and solving much more complicated
problems. This process is performed without manually constructed extensions to prior domain
knowledge as required by the original SimStudent. The results further indicate that while the
original SimStudent given human-engineered prior domain knowledge performed better than the
extended SimStudent without prior domain knowledge on easier problems, it performs worse
on the harder problems, due to the fact that the human-engineered prior domain knowledge was
built for easier problems, and is not easily extensible to harder ones.

To determine whether the skill knowledge of a SimStudent incorporating deep features, obtained
from simple problems, can be transferred to problems of greater complexity, we carry out an
experiment in algebra equation solving. Original and extended SimStudents are trained on se-
quences of increasingly difficult algebra problems and their performance is compared.

6.3.1 Methods

Two extended versions of SimStudent are tested in this study, one with only an extension to
the memory element hierarchy and one with automatically generated feature predicates as well.
Both used only a set of domain-independent operators. To construct the extended SimStudents,
a representation learner is trained on a series of feature learning tasks (i.e. what is a signed num-
ber, what is a term,what is an expression, what is a complex expression). The learned grammar

65

for algebra problems obtained from this is then incorporated into SimStudent, as described in
the Chapter 4 on SimStudent with integrated representation. The two extensions are compared
with an original SimStudent, which is provided a set of domain-specific operator functions, and
feature predicates known to be useful in algebra equations solving and an original SimStudent
with the domain-independent operator functions and a set of domain-independent feature predi-
cates.

All versions are tutored using an automatic tutor, CTAT [Aleven et al., 2009], which is used by
71 human students in a classroom study. Four training sets, each consisting of 47 problems are
constructed for use in teaching the SimStudents. Each training set consists of problems in four
difficulty categories and ordered in increasing difficulty where the fourth category represents a
much more significant increase in problem difficulty. A separate test set consisting of 19 prob-
lems, also of varying difficulty and with a distribution weighted toward more difficult problems,
is constructed for use in evaluation of performance. Problems for both the training and test sets
are likewise obtained from actual classroom studies.

6.3.2 Measurements

We assess the accuracy of the SimStudents’ skill acquisition by measuring each SimStudent’s
first attempt accuracy and step score for each step in the test problems. First attempt accuracy
is the percentage of the time, which the first action proposed, by SimStudent is correct. Since,
for a given problem step, there may be multiple correct courses of action and SimStudent may
propose more than one action at any given step, a more nuanced measure of accuracy is required
to evaluate SimStudent’s overall mastery of the skills represented in the problem domain. Step
score is the same measurement we used in previous studies, which is number of correct steps
proposed by SimStudent, divided by the number of possible correct steps plus the number of
proposed steps, which were incorrect.

Last, to measure the amount of domain-specific prior knowledge encoding required for Sim-
Student, we count the number of lines of Java code used in the implementation.2 There are
two locations where this information is used, the operators and the feature predicates. Each are
measured separately and reported as such.

6.3.3 Experimental Results

Knowledge Engineering Effort

We compare the lines of code needed to encode the operator functions and feature predicates. The
addition of representation learning reduces the effort in coding operator functions from 2287 lines
to only 247 lines. (This replicates results from [Li et al., 2012a] but with a larger training set that

2Although the line of code is not the ideal measurement of knowledge engineering effort due to individual
differences among agent developers, this still serves as a good indication.

66

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Number of training problems

A
ll

A
tt

e
m

p
t

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

Orig., Hand−Coded Preds., Domain−Specific Ops.

Orig., Hand−Coded Preds., Domain−General Ops.

Ext., Auto−Generated Preds., Domain−General Ops.

Ext., Hand−Coded Preds., Domain−General Ops.

(a)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Number of training problems

A
ll

A
tt

e
m

p
t

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

Orig., Hand−Coded Preds.,

Domain−Specific Ops.

Orig., Hand−Coded Preds.,

Domain−General Ops.

Ext., Auto−Generated Preds.,

Domain−General Ops.

Ext., Hand−Coded Preds.,

Domain−General Ops.

(b)

Figure 6.4: Learning curves of SimStudents in equation solving measured by a) all test prob-
lems, b) hard problems (category 4) only, using all attempt accuracy.

indicates more difficult problems.) The addition of predicate learning reduces the effort in coding
feature predicates from 1981 lines of code to zero lines. We find that this approach completely
removes the prior knowledge engineering effort need to author feature predicates. Since one
of the important applications of SimStudent is to enable end-users to create intelligent tutoring
systems without heavy programming, this reduction of programming effort makes SimStudent a
better authoring tool for intelligent tutoring system. Moreover, by requiring less prior knowledge
engineering, SimStudent becomes a more complete model of human skill acquisition.

Speed of Learning

Average learning curves for all attempt accuracy are shown in Figure 6.4(a). Both extended
SimStudents perform similarly to the original SimStudent with domain-specific operators and
feature predicates. This is the case in both first attempt and all attempt accuracy. The extended
SimStudent with representation learning and automatically generated predicates achieves a final
all attempt accuracy of 0.81 and first attempt accuracy of 0.83 after all 47 problems, while the
extended SimStudent with representation learning and hand-coded domain-specific predicates
achieved scores of 0.82 and 0.80 respectively. These are comparable to the original SimStudent
with both domain-specific operators and feature predicates whose accuracy is 0.80 and 0.82.
We see that the original SimStudent when given only the weak operators, as supplied to the
extensions, and domain-independent feature predicates fails to produce any significant level of
skill mastery.

Extended SimStudents, incorporating deep features, do learn slightly slower than the original
SimStudent, but catch up readily with more training examples. This is most noticeable at the
beginning of training when the system has limited information from a small number of training
examples. The hand-coded feature predicates and operators built for the original SimStudent

67

were designed specifically to handle information relevant to solving algebra problems of the
types on which it is being trained. The deep features and associated automatically generated
feature predicates employed in the extended SimStudent include a wider range of information
obtained from parse trees and the topology of parse trees in general. Not all of this information
is applicable to a given problem solving step in algebra. It may, however, be relevant to some al-
gebra skills or to domains aside from algebra, such as stoichiometry, which are likewise modeled
accurately using context free grammars. Identifying the subset of this broader range of infor-
mation which is applicable to a given algebra skill requires more examples. The examples help
eliminate those predicates which are not relevant in this domain or for this particular skill.

Also clearly visible from the graphs are the locations at which the SimStudents began to be
trained on harder problems at problems 14, 20, and 35. Since the testing set consists of problems
of all difficultly levels, the SimStudents perform poorly on the tests at the beginning when they
have only been exposed to simple or moderate difficulty problems. As they are trained on harder
problems, their performance improves until they acquire a similar level of skill mastery to the
original. This transfer of knowledge from simple to harder problems is accomplished without
further knowledge engineering work on the part of the system designers. The overall approach
of learning representations and incorporating them into SimStudent remains effective as the com-
plexity of the skills within the domain increases, ultimately performing slightly better.

Extensibility to Harder Problems

Through the first three categories of problems, the original SimStudent generally performs better
than the extended versions (0.96 vs. 0.90/0.91 on all attempt accuracy), but it is overtaken by the
extended SimStudents when trained on the hardest problems (0.66 vs. 0.78/0.78 on all attempt
accuracy). The learning curves for only hard problems measured by all attempt accuracy are
shown in Figure 6.4(b). There are two reasons for this disparity. First, the hand-coded, domain-
specific operators were originally designed for the first three categories of problems. Hence,
they are not readily extensible to the harder problems, which cause difficulty during the training
process for the original SimStudent. The extended SimStudents, on the other hand, are unaf-
fected by errors in the more complex operators since they use only simple domain-independent
operators. Second, as in the case of the equations −3x = 6 and −3(x + 4) = 6, automatically
generated predicates identify abstract similarities in more complex examples. This allows the
extended SimStudents to more easily transfer their previously acquired skill knowledge from
simple problems to harder ones.

Errors in encoding the prior domain knowledge for use in SimStudent’s operators and in tutor
feedback mechanisms underline the reduced learning rate on harder problems. First, the hand-
coded, domain-specific operators for algebra occasionally fail to correctly handle the input they
are given. Consequently, an operator sequence which we would expect to produce a correct next
step for a given problem state does not do so. During the testing process this is a relatively minor
difficulty since that particular problem step will simply be marked as wrong and the testing will
proceed to the next step. During the training phase these errors are much more problematic.
Should an operator sequence fail to produce a correct next step in an instance when it would oth-

68

erwise have been correct were the domain specific operators perfect, erroneous negative feedback
would be provided to SimStudent. This incorrect negative feedback can weaken SimStudent’s
skill knowledge. Second, complex algebra problems can be written in many equivalent forms.
As the complexity of the problems increases so does the variety of different forms. The feedback
system must correctly identify all such equivalent forms in order to provide universally accurate
feedback. Though the system may not identify all possible forms as equivalent using algebraic
transformations, exact, character-by-character matches will always be identified as correct. The
extended SimStudents are unaffected by errors in the more complex operators since they use only
simple domain-independent operators. Extended SimStudents also tend to be hurt much less by
errors in matching the form of the input. Input produced by extended SimStudents is very often
an exact match since it is constructed from strings directly represented in the parse trees of the
problem. The combination of these two factors helps the extended SimStudents edge out the
original by the end of the training.

6.4 Discussion

The main contribution of this work is to reduce the amount of knowledge engineering required in
building an intelligent agent by automatically generating feature predicates. Although there has
been considerable work on representation change (e.g., Muggleton and Buntine, 1988, Martı́n
and Geffner, 2004, Utgoff, 1984, Fawcett, 1996) in machine learning, little has occurred in the
context of representation learning. Additionally, research on deep architectures [Bengio, 2009]
and Markov logic networks [Richardson and Domingos, 2006] shares a clear resemblance with
our work, but the tasks on which we work are different. These works are used more often in
classification tasks whereas our work focuses on simulating human learning of math and sci-
ence.

Research on ILP (e.g., Quinlan, 1990, Raedt and Dehaspe, 1997, Srinivasan, 2004) is also closely
related to our work, as SimStudent uses FOIL as its “when” learner. ILP systems acquire logic
programs that separate positive examples from negative ones given an encoding of the known
background knowledge. Our work differs from these systems in that it automatically generates
the encoding based on a learned grammar, and calls an existing ILP algorithm to acquire the
“when” part of the production rule.

One open question in this work is that how many feature predicates should be generated. More
specifically, what would be the appropriate M and N (as described in the above section) for
the current learning task. The bigger M and N are, the more expressive the set of generated
feature predicates are. However, setting M and N with large values could lead to an explosion
on the total number of feature predicates generated. We believe that by setting M and N to be
larger than the needed values would not further increase the learning effectiveness. Instead, more
training examples might be needed due to the larger search space. One possible future study is
to systematically search for the appropriate M and N values, or to add a feature selection phase
before calling the feature test learner.

69

In this chapter, the proposed feature generation mechanism is integrated into an intelligent
agent, SimStudent. In the experimental study, we show that the SimStudent with automatically
generated feature predicates is able to achieve comparable performance without requiring any
manually-constructed feature predicates as input.

70

Chapter 7

Integrating Representation Learning with
External World Knowledge

In previous chapters, we have shown that by integrating representation learning with skill learn-
ing, SimStudent can achieve comparable or better learning speed with largely reduced knowledge
engineering effort. However, most of these domains are well-defined problem-solving domains,
where little real-world background knowledge is needed.

In this work, we explore the generality of the proposed approach in another domain, article se-
lection in English, where no complex problem solving is needed, but where complex perceptual
knowledge and large amounts of background knowledge are needed. Specifically, representation
learning in this world-knowledge rich domain requires the ability to parse sentences and the ex-
tensive understanding of semantics of English words and phrases. There has been a long-standing
interest in the natural language processing community to learn how to parse sentences correctly.
Therefore, we apply one of the widely-used linguistic tools, the Stanford parser [Klein and Man-
ning, 2003], to the sentences in the problems, and integrate the perceptual representations (parse
trees) of the sentences into SimStudent.

Additionally, although linguistic theory has long assumed that knowledge of language is char-
acterized by a categorical system of grammar, many previous studies have shown that language
users reliably and systematically make probabilistic syntactic choices [Hay and Bresnan, 2006].
To accommodate to this probabilistic character, we further extend SimStudent to accept less-
accurate production rule conditions, and learn to prioritize learned rules using historical accuracy
statistics. Experimental results show that the extended SimStudent can successfully learn how to
select the correct article given a reasonable number (i.e., 60) of problems.

7.1 English Article System

Before describing our simulated student, let us first take a look at the domain. The learning task
is acquiring the English article system. There are more than 40 grammar rules to decide which

71

Table 7.1: Grammar rules in selecting appropriate articles.

Rule Name Content Article
generic-singular Use “a/an” when a singular count noun is indefinite. a/an

generic-noncount Use “no article” with a noncount noun that is indefinite. no article
generic-plural Use “no article with a plural noun that is indefinite. no article
number-letter Use “a/an” for single letters and numbers. a/an

already-mentioned Use “the” when the noun has already been mentioned. the
same Use “the” with the word “same”. the

article to choose.

In the current study, we took the problems from a previous study on human students [Wylie et al.,
2010]. There are six mostly-used grammar rules taught in the study, as shown in Table 7.1. Each
problem consists of one or two sentences and an empty space to be filled with an article that best
completes the sentence (e.g., Clocks measure time.). There are three choices available, a/an,
the and no article. In the clock example, since time is uncountable, no article should be selected
based on the rule “generic-noncount”.

There are priorities among these six grammar rules. For example, if given the problem He
drives same car as he did last year, both the condition of the rule “generic-singular” and the
condition of the rule “same” are satisfied, but since the rule “same” has a higher priority, article
the should be selected.

7.2 Integrating Representation Learning with External World
Knowledge

In spite of the promising results we have shown, the domains we have tested so far are mainly
well-defined domains (e.g., fraction addition, equation solving, stoichiometry), where the per-
ceptual representation can be captured by a pCFG, and learning such representation does not
require large amounts of external world background knowledge. Article selection in English
is quite different from these domains. To solve this task, it requires complex prior perceptual
knowledge as well as large amounts of world knowledge.

Therefore, we use an existing linguistic tool, the Stanford parser, to automatically generate the
parse structure of the input sentence for SimStudent. The parse tree for the clock example is
shown in Figure 7.1. We give these parse trees to SimStudent as the perceptual hierarchies.
Based on these hierarchies, SimStudent learned that the noun that the article is pointing to is
the last sibling of the article it the subtree. In the example, the non-terminal node NP has two
children, hence, the word time is the noun that the article is pointing at.

Moreover, SimStudent automatically generated a set of feature predicates based on the parse
tree. For example, in the parse tree shown in Figure 7.1, each non-terminal symbol (e.g., NN) is

72

measure .

NNS VB

NP

S

VP

Root

.

DT

NP

Clocks time

NN

Figure 7.1: The parse tree of “Clocks measure time.” generated by the Stanford parser.

associated with a feature predicate (e.g., (is-NN ?val0 ?val1)). Given the parse tree, (is-NN time
Clocks-measure-time) returns true. Topological based feature predicates such as (e.g., (is-child-
of ?val0 ?val1 ?val2)) can also be generated, but were not used in article selection.

Last, we use Wiktionary1, which is a collaborative project for creating a free lexical database
in every language, complete with meanings, etymologies, and pronunciations, to generate two
feature predicates (i.e., (is-countable ?val), (is-uncountable ?val)) that evaluate whether a noun
is countable or not. Note that since one word may have multiple senses, it can be both countable
and uncountable at the same time.

7.3 SimStudent with Probabilistic-Based Conflict Resolution

As mentioned before, although grammar rules are often modeled as a categorical system, pre-
vious studies have shown that people systematically make probabilistic choices. To incorporate
this feature, we developed two conflict resolution strategies that prioritize rules based on his-
torical accuracy statistics. SimStudent associates each production rule with a utility. When
multiple production rules are applicable, the production rule that has the highest utility is applied
first.

To implement the conflict resolution strategy, we lowered the accuracy requirement of the pre-
conditions learned by FOIL, so that preconditions that are less accurate are also included in the
production rule. This change allows SimStudent to learn more general production rules. There-
fore, there are more situations where more than one production rules are applicable. However,
some of them may be incorrect.

1http://www.wiktionary.org/

73

http://www.wiktionary.org/

Next, SimStudent computes the utility associated with each production rule based on the cor-
rectness of the rule’s application history. We designed two ways of computing the utility. The
first approach is developed based on ACT-R’s conflict resolution strategy [Belavkin and Ritter,
2004], where the utility associated with production rule i, Ui, is calculated based on the following
equation.

Ui = PiG− Ci,

where, Pi stands for the probability of success of the production rule i, Ci is the average cost of
the production rule, and G is a goal value.

In the above approach, Pi considers all successful applications are equally important. One in-
teresting question to ask is that whether the importance of the rule application result decays as
time passes. Hence, in the second approach, instead of directly computing the probability of suc-
cess, SimStudent weighs recent successes more than the past ones. Each time a rule is applied
correctly, it is given a constant reward, R, and the utilities of all other rules decay by another
constant, d. In case of an incorrect application, the same constant value, R, is removed from the
utility function. Therefore, the utility of production rule i at time t, Ui,t, is calculated by

Ui,t = Di,tG− Ci,

Di,0 = 0,

Di,t+1 = (−1)failureR + dDi,t,

where failure is an integer that equals to 1 if the rule application is incorrect, and 0 if correct,
R is the reward/punishment given to the production rule, and d is the rate of decaying.

7.4 Experimental Study

To evaluate the effectiveness of the proposed approach, we carry out an experiment to test
whether the extended SimStudent can learn the six grammar rules.

7.4.1 Methods

We use data collected from Wylie et al.’s [2010] recent study on second language learning. The
study is conducted at the University of Pittsburgh’s English Language Institute. Students (N =
99) are adult English language learners (meanage = 27.9, SD = 6.6) and participate as part
of their regular grammar class. Data collection is completed within one 50-minute class period.
Pre- and post-test items are identical in the form of the practice problems students has seen during
tutoring without feedback and hints. All of the student behaviors are recorded during the process,
and encoded with rules applied to the problems and whether students answers are correct.

SimStudent is taught by an automated tutor that simulates the tutor used by human students, and
is trained on the same 60 problems that are provided to human students. The production rules
acquired are evaluated by 12 problems given to human students as test problems.

74

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

A
c
c
u

ra
c
y

Learning Curve

External Knowledge + Original Strategy

External Knowledge + Non−Decaying Strategy

External Knowledge + Time−Decaying Strategy

Figure 7.2: Learning curves of SimStudents in article selection.

7.4.2 Experimental Results

We evaluate four versions of SimStudent, 1) the original SimStudent without external world
knowledge and the new conflict resolution strategy2, 2) the extended SimStudent with external
world knowledge using the original conflict resolution strategy, 3) the extended SimStudent with
external world knowledge using the non-decaying conflict resolution strategy, 4) the extended
SimStudent with external world knowledge using the time-decaying conflict resolution strategy.
In order to rule out the affect of other parameters, we set G and Ci to be the same across all
production rules, so that the production rule priorities are decided by Pi and Di,t. We report the
average accuracy of SimStudent’s first attempts at each step over 12 test problems.

Since the original SimStudent without external world knowledge considered that all words in the
sentence form a flat hierarchy, it fails to learn how to identify the noun that the article is pointing
at. In fact, it learns overly general production rules, and could not finish training in a reasonable
amount of time. Therefore, we do not report the learning curve of the original SimStudent here,
but please keep in mind that, it is much worse than the extended SimStudents.

As we can see in Figure 7.2, all three SimStudents learn reasonably well, reaching accuracies
more than 0.75 given 60 problems. The extended SimStudent using the time-decaying conflict
resolution strategy learns fastest among the three SimStudents. It reaches an accuracy of 1.00
given 60 training problems. The extended SimStudent using the non-decaying conflict resolution
strategy is slightly worse than the one using the time-decaying strategy, reaching an accuracy of
0.92 with 60 training problems. The extended SimStudent using the original conflict resolution
strategy is the worst. This result indicates that by integrating representation learning with ex-

2The conflict resolution strategy of the original SimStudent is to fire the the most recently activated non-buggy
production rule.

75

ternal world knowledge, the extended SimStudent is able to successfully learn the six grammar
rules. Better conflict resolution strategy can further improve SimStudent’s learning effectiveness.
Time-decaying conflict resolution strategy yields a faster learning curve than the non-decaying
strategy.

7.5 Discussion

The objective of this work is to extend representation learning with external world knowledge,
and integrate it into a simulated student. Previous work on article selection (e.g., Wylie et al.,
2010) has shown that learning in this domain contains challenges that cause effective instruc-
tional strategies (e.g., self-explanation) in math and science domains to become less effective. In
order to better understand the cause of this phenomenon, we take one more step in this direction
by constructing a learning agent that models knowledge acquisition.

There have been recent efforts (e.g., Neves, 1985, Anzai and Simon, 1979, Matsuda et al., 2009,
Vanlehn et al., 1994) in developing intelligent agents that model student learning, but most of
the existing works have been done in well-defined domains, where little real-world knowledge is
needed. There has also been considerable research on learning within agent architectures [Laird
et al., 1986, Anderson, 1993, Taatgen and Lee, 2003]. Unlike those theories, SimStudent puts
more emphasis on knowledge-level learning (cf., Dietterich, 1986) than speedup learning. More-
over, to the best of our knowledge, none of them have focused on integrating representation
learning with skill learning as we have done with SimStudent.

To demonstrate the generality of the approach in this chapter in a world-knowledge rich do-
main, we extend representation learning with external world knowledge, and integrate it into
SimStudent. Results show that given a reasonable number of training examples, the extended
SimStudent successfully learns six frequently used article selection rule.

76

Chapter 8

Using SimStudent to Discover Better
Learner Models

As mentioned above, we are not only interested in building a learning agent: we would also
like to construct a learning agent that simulates how students acquire knowledge. Recall that in
Figure 1.3, we have proposed to use SimStudent to automatically construct cognitive models for
intelligent tutoring systems. In this chapter, we are going to present an approach that automat-
ically discovers learner models using the extended SimStudent. If the discovered model turns
out to be a good learner model, we should be able to conclude that the extended SimStudent
simulates the real student learning process well.

One common approach to represent a cognitive model is a set of knowledge components (KC) that
encoded in intelligent tutors to model how students solve problems. The set of KCs includes the
component skills, concepts, or percepts that a student must acquire to be successful on the target
tasks. For example, a KC in algebra can be how students should proceed given problems of the
form Nv=N (e.g., -3x = 6). The cognitive model provides important information to automated
tutoring systems in making instructional decisions. Better cognitive models match with real
student learning behavior. They are capable of predicting task difficulty and transfer of learning
between related problems, and can be used to yield better instruction.

Traditional ways to construct models include structured interviews, think-aloud protocols, ratio-
nal analysis, and so on. However, these methods are often time-consuming, and require expert
input. More importantly, they are highly subjective. Previous studies [Koedinger and Nathan,
2004, Koedinger and McLaughlin, 2010] have shown that human engineering of these models
often ignores distinctions in content and learning that have important instructional implications.
Other methods such as Learning Factor Analysis (LFA) [Cen et al., 2006] apply an automated
search technique to discover models. It has been shown that these automated methods are able
to find better models than human-generated ones. Nevertheless, LFA requires a set of human-
provided factors given as input. These factors are potential KCs. LFA carries out the search
process only within the space of such factors. If a better model exists but requires unknown
factors, LFA will not find it.

77

To address this issue, we propose a method that automatically discovers cognitive models with
less dependent on human-provided factors. The system uses the extended SimStudent to acquire
skill knowledge. Each production rule corresponds to a KC that students need to learn. The
model then labels each observation of a real student based on skill application.

To demonstrate the generality of this approach, we present evaluations of the SimStudent-generated
models in four domains: algebra, stoichiometry, fraction addition, and article selection. We vali-
date the quality of the cognitive models using human student data as in Koedinger and MacLaren
[1997]. In addition to matching with performance data, we use the discovered cognitive model
to predict human learning curve data. Experimental results show that for algebra and stoichiom-
etry, SimStudent directly finds a better cognitive model than humans. In the article selection
domain, SimStudent successfully recovers the human-constructed model. For fraction addition,
SimStudent results assist LFA in finding a better cognitive model than a domain expert. We
have also carried out an in-depth study using Focused Benefits Investigation (FBI) [Koedinger
et al., 2012] to better understand this machine learning approach, and discussed possible further
improvements.

8.1 Methods

The objective of this experiment is to test whether the learner models discovered by the extended
SimStudent are equally good or better than human-generated models. If so, do the differences
between the SimStudent model and the human-generated model provide meaningful insights on
instructions? In order to evaluate the effectiveness of the proposed approach, we carry out a study
using three datasets. We compare the SimStudent model with a human-generated KC model by
first coding the real student steps using the two models, and then testing how well the two model
coding predicts real student data. Note that DataShop [Koedinger et al., 2010] has multiple KC
models for each dataset in the current study, the human-generated KC model we select here is
one of the best models among the existing learner models.

For example, to generated the human-generated model in algebra, the real student steps are first
coded using the “action” label associated with a correct step transaction, where an action cor-
responds to a mathematical operation(s) to transform an equation into another in a way that
makes progress toward the solution. As a result, there are nine KCs defined (called the Action
KC model) – add, subtract, multiply, divide, distribute, clt (combine like terms), mt (simplify
multiplication), and rf (reduce a fraction). Four KCs associated with the basic arithmetic op-
erations (i.e., add, subtract, multiply, and divide) are then further split into two KCs for each,
namely a skill to identify an appropriate basic operator and a skill to actually execute the basic
operator. The former is called a transformation skill whereas the latter is a typein skill. As a
consequence, there are 12 KCs defined (called the Action-Typein KC model). Not all steps in
the algebra dataset were coded with these KC models – some steps are about a transformation
that we do not include in the Action KC model (e.g., simplify division). There are 9487 steps
that can be coded by both KC models mentioned above. The “default” KC model, which were
defined by the productions implemented for the cognitive tutor, has only 6809 steps that can be

78

coded. To make a fair comparison between the “default” and “Action-Typein” KC models, we
took the intersection of those 9487 and 6809 steps. As a result, there are 6507 steps that can be
coded by both the default and the Action-Typein KC models. We then define a new KC model,
called the Balanced-Action-Typein KC model that has the same set of KCs as the Action-Typein
model but is only associated with these 6507 steps, and used this KC model to compare with the
SimStudent model.

To generate the SimStudent model, SimStudent is tutored on how to solve problems by inter-
acting with an automated tutor, like the one used by human students in studies. As the training
set for SimStudent, we selected problems that were used to teach real students. Given all of the
acquired production rules, for each step a real student performed, we assigned the applicable
production rule as the KC associated with that step. In cases where there was no applicable
production rule, we coded the step using the human-generated KC model. Each time a student
encounters a step using some KC, it is considered as an “opportunity” for that student to show
mastery of that KC, and learn the KC by practicing it.

Having finished coding real student steps with both models (the SimStudent model and the
human-generated model), we used the Additive Factor Model (AFM) [Cen et al., 2006] to vali-
date the coded steps. AFM is an instance of logistic regression that models student success using
each student, each KC, and the KC by opportunity interaction as independent variables,

ln
pij

1− pij
= θi +

∑
k

βkQkj +
∑
k

Qkj(γkNik) (8.1)

Where:

i represents a student i.

j represents a step j.

k represents a skill or KC k.

pij is the probability that student i would be correct on step j.

θi is the coefficient for proficiency of student i.

βk is coefficient for difficulty of the skill or KC k

Qkj is the Q-matrix cell for step j using skill k.

γk is the coefficient for the learning rate of skill k;

Nik is the number of practice opportunities student i has had on the skill k;

We utilized DataShop [Koedinger et al., 2010], a large repository that contains datasets from
various educational domains as well as a set of associated visualization and analysis tools, to
facilitate the process of evaluation, which includes generating learning curve visualization, AFM
parameter estimation, and evaluation statistics including AIC (Akaike Information Criterion) and
cross validation.

79

8.2 Dataset

We carry out our study in three domains: algebra, stoichiometry, and fraction addition. In al-
gebra, we analyze data from 71 students who used an Carnegie Learning Algebra I Tutor unit
on equation solving. The students are typical students at a vocational-technical school in a ru-
ral/suburban area outside of Pittsburgh, PA. A total of 19,683 transactions between the students
and the Algebra Tutor were recorded, where each transaction represents an attempt or inquiry
made by the student, and the feedback given by the tutor.

The stoichiometry dataset contains data from 3 studies. 510 high school and college students
participated in the studies, and generated 172,060 transactions. Instructional videos on stoi-
chiometry are intermingled with the problems. Instructional materials were provided via the
Internet. It took students from 1.5 hours to 6.5 hours to complete the study.

In fraction addition, we analyze data from 24 students who use an intelligent tutoring system
as part of a larger study. Approximately half of the students are recruited from local schools,
the PSLC subject pool, and word of mouth. Participants in both settings are given a brief video
demonstration on how to use the tutors, and then have 30 minutes to solve 20 fraction addition
problems with the tutor. Students are given immediate correctness feedback on each step, and are
offered on-demand text hints. Each interaction is logged through Datashop, and the 24 students
yielded 4558 transactions.

Finally, in the article selection domain, we use data collected from Wylie et al.’s [2010] re-
cent study on second language learning. The study is conducted at the University of Pitts-
burgh’s English Language Institute. Students (N = 99) are adult English language learners
(meanage = 27.9, SD = 6.6) and participate as part of their regular grammar class. Data col-
lection is completed within one 50-minute class period. Pre- and post-test items are identical in
the form of the practice problems students has seen during tutoring without feedback and hints.
All of the student behaviors are recorded during the process, and encoded with rules applied to
the problems and whether students answers are correct.

8.3 Measurements

To test how well the existing and generated models predict with real student data, we use AIC
and a 10-fold cross validation. AIC measures the fit to student data while penalizing over-fitting.
We did not use BIC (Bayesian Information Criterion) as the fit metric, because based on past
analysis across multiple DataShop datasets, it has been shown that AIC is a better predictor
of cross validation than BIC is. The cross validation was performed over three folds with the
constraint that each of the three training sets must have data points for each student and KC. We
report the root mean-squared error (RMSE) averaged over three test sets.

80

3 x

MinusSign Number

SignedNumber

Expression

Variable

x

MinusSign

Expression

Variable

Figure 8.1: Different parse trees for -3x and -x.

Table 8.1: Number of KCs in SimStudent models and Human-Generated Models.

Human-Generated
Model

SimStudent-
Discovered Model

Algebra 12 21
Stoichiometry 44 46
Fraction Addition 8 6
Article Selection 19 22

8.4 Experimental Results

As shown in Table 8.2 and Table 8.3, in algebra and stoichiometry, the SimStudent-discovered
models that have lower AICs and RMSEs than the human-generated models. This means the
SimStudent models better match the data (without over-fitting). However, in fraction addition,
the human-generated model performs better than the SimStudent-discovered ones.

A closer look at the models reveals that in algebra, the SimStudent-discovered model splits some
of the KCs in the human-generated model into finer grain sizes. For example, SimStudent creates
two KCs for division, one for problems of the form Nv = N , and one for problems of the form
−v = N . This is caused by the different parse trees for Nv and -v as shown in Figure 8.1.
Due to this split, the SimStudent-generated model predicts a higher error rate on problems of
the form −v = N than problems of the form Nv = N . It matches with human student error
rates better than the human-generated model, which does not differentiate problems of these two
forms.

In stoichiometry, instead of finding splits of existing KCs, SimStudent discovers new KCs that
overlap with the original KCs. There are three basic sets of skills in this domain. Within each set,
the human-generated KCs are assigned based on the location of the input, while the SimStudent-
discovered KCs are associated with the goals of the input. Hence, suppose in two different

81

Table 8.2: AIC on SimStudent-Generated models and Human-Generated Models.

Human-Generated
Model

SimStudent-
Discovered Model

Algebra 6534.07 6448.1
Stoichiometry 17380.9 17218.5
Fraction Addition 2112.82 2202.02
Article Selection 6221.49 6221.39

Table 8.3: CV RMSE on SimStudent-Generated models and Human-Generated Models.

Human-Generated
Model

SimStudent-
Discovered Model

Algebra 0.4024 0.3999
Stoichiometry 0.3501 0.3488
Fraction Addition 0.3232 0.3343
Article Selection 0.4044 0.4033

problems, there are two inputs at the same location in the interface. If they are associated with
different goals, the human-generated model will not differentiate them, while the SimStudent-
discovered model will put them into two KCs. This indicates that SimStudent not only splits
existing KCs, but also discovers totally different KCs.

The fraction addition problem set consists of three types of problems in increasing difficulty: 1)
addends have equal denominators; 2) the denominator of one addend is a multiple of the other;
3) addends have unrelated denominators. The human-generated model differentiates these three
types of problems in calculating the common denominators and the scaled numerators, and ends
up having six KCs. SimStudent, however, associates all of the numerator scaling steps with one
KC and associates the common denominator calculations with two KCs. In other words, in this
domain, SimStudent partially recovered three out of six KCs, but did not further split them into
six KCs. SimStudent did discover the other three KCs, but eventually removed them when they
were superseded by more generalized rules. This bias towards more general production rules
over specific ones regardless of computational cost appears to be a limitation of SimStudent as
a cognitive model. Perhaps if we had let SimStudent keep a utility function for each produc-
tion rule and retrieve them based on the computational cost, last retrieval time, and correctness,
SimStudent may have arrived at all six KCs in the human-generated model.

In article selection, SimStudent successfully recovers the KCs associated with the six grammar
rules. Moreover, it splits the rule “number-letter” into two KCs, one for number and one for
letter. The SimStudent-generated model is as good as the human-generated model both in terms
of AIC (6221.39 vs. 6221.49) and the root mean-squared error in cross validation (0.3769 vs.
0.3777). This suggests that SimStudent can reproduce a human-generated model in terms of its
quality of fit with human learning data.

82

−Nv=N Nv=−N Nv=N N=Nv −N=Nv −Nv=−N N=−Nv −v=N −v=−N −N=−v
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Problem Abstractions

E
rr

o
r

R
a
te

Real Student

Human−generated Model

SimStudent Model

Figure 8.2: Error rates for real students and predicted error rates from two learner models.

8.5 FBI Analysis and LFA on Fraction Addition

The differences of AIC and RMSE between the models are small. This is partially because
the difference between the models is small in the sense that most the KCs in the new model
are the same as in the old model. Thus, the predictions for problem-steps modeled by those
unchanged KCs will be highly similar (not exactly the same because the the student proficiency
parameter estimates will be slightly different as a consequence of the changed KCs). FBI, a
recently developed technique, is designed to analyze which of these differences improves the
model, and by how much. For the original KCs that are different in the discovered model. FBI
shows the greatest reduction in prediction error. We apply FBI to the SimStudent and human-
generated models in each domain to determine why the SimStudent models are better in two of
the three cases. In the analysis, we set the human-generated models as the base.

FBI shows that in algebra, splitting “divide” reduces the RMSE of those steps by 1.02%. Fur-
ther, splitting subtraction and addition decreases the RMSE of those steps by 3.78% and 3.10%,
respectively. Similar results are also observed in the article selection domain, where the split of
”number-letter” rule into two KCs leads to better RMSE up to 2.25% in of the human-generated
KCs. This also indicates that SimStudent is able to discover KCs of finer grain sizes that match
with human data well.

The stoichiometry results are different. SimStudent discovered new KCs that were not part of
any existing KCs. Given the 40 KCs in the human-generated model, SimStudent improves 26
of them. The biggest improvement is on skill molecular weight (4.60%), since there are some-
times more than one skill applicable to the same step. The human-generated model misses the
additional skill, while the SimStudent model successfully captures both skills.

As described previously, SimStudent does not differentiate the numerator-scaling and common-
denominator steps by problem type. This hurts the RMSE of the associated KCs in the SimStudent-
generated model. Nevertheless, SimStudent considers finding the common denominator to be a

83

different KC than copying it to the second converted addend. This split decreases by 7.43% for
problems with unrelated denominators, and by 0.12% for denominator steps of problems where
one addend denominator was a multiple of the other.

Given the above results, we carry out a third study on fraction addition to test that whether the
new KCs created by SimStudent can be used to discover better cognitive models. We used
LFA to discover cognitive models given two sets of factors. The baseline LFA model was
generated based on the factors (KCs) in the human-generated model. The other LFA model
was discovered using both the factors (KCs) in the human-generated model and those in the
SimStudent-generated model. Both LFA models were better than the original human-generated
model in terms of AIC and RMSE. Moreover, the LFA model using both human-generated and
SimStudent-generated factors had better AIC (2061.4) and RMSE (0.3189) than the baseline
LFA model (AIC: 2111.96, RMSE 0.3226). In other words, with the help of SimStudent, LFA
discovered better models of human students.

8.6 Impact of Representation Learning

Now we know that SimStudent can be used to discover better models of human student learning.
In this experiment, we ask the question how much of the improvement is due to the integration
of representation learning and skill learning. To answer this question, we compared the learner
model discovered by the original SimStudent with the model found by the extended SimStudent
in algebra.

The results show that the learner model discovered by the original SimStudent is almost the
same as the human-generated model, which is worse than the model generated by the extended
SimStudent. More specifically, AIC and RMSE of the original SimStudent model are 6536.91
and 0.4043. Both are worse than the extended SimStudent model (6448.1 and 0.3999). A closer
look at the data shows that because of the manually-constructed strong operator functions, the
original SimStudent did not need to split the given KCs into multiple smaller KCs. In the example
shown in Figure 8.1, the original SimStudent fails to distinguish the two types of problems, since
it is given the domain-specific operator function “get-coefficient”, and considers both problems
can be explained as first getting the coefficient, and then dividing both sides with the coefficient.
Thus, we conclude that the extended SimStudent is able to discover new KCs that cannot be
found by the original SimStudent.

8.7 Implications for Instructional Decisions in Algebra

We can inspect the data more closely to get a better qualitative understanding of why the Sim-
Student model is better and what implications there might be for improved instruction. Among
the 21 KCs learned by the SimStudent model, there were 17 transformation KCs and four typein
KCs. It is hard to map the SimStudent KC model directly to the expert model. Approximately

84

speaking, the distribute, clt (i.e. combine like terms), mt, rf KCs as well as the four typein KCs
are similar to the KCs defined in the expert model. The transformation skills associated with
the basic arithmetic operators (i.e., add, subtract, multiply and divide) are further split into finer
grain sizes based on different problem forms.

One example of such split is that SimStudent created two KCs for division. The first KC (simSt-
divide) corresponds to problems of the form Ax=B, where both A and B are signed numbers,
whereas the second KC (simSt-divide-1) is specifically associated with problems of the form
-x=A, where A is a signed number. This is caused by the different parse trees for Ax vs -x as
shown in Figure 8.1. To solve Ax=B, SimStudent simply needs to divide both sides with the
signed number A. On the other hand, since -x does not have -1 represented explicitly in the parse
tree, SimStudent needs to see -x as -1x, and then to extract -1 as the coefficient. If SimStudent
is a good model of human learning, we expect the same to be true for human students. That
is, real students should have greater difficulty in making the correct move on steps like -x = 6
than on steps like -3x = 6 because of the need to convert (perhaps just mentally) -x to -1x. To
evaluate this hypothesis, we computed the average error rates for a relevant set of problem types
– these are shown with the solid line in Figure 8.2 with the problem types defined in forms like
-Nv=N, where the Ns are any integrate number and the v is a variable (e.g., -3x=6 is an instance
of -Nv=N and -6=-x is an instance of -N=-v). The problem types are sorted by increasing error
rates. In other words, the problem types to the right are harder for human students than those to
the left.

We also calculated the mean of the predicted error rates for each problem type for both the
human-generated model and the SimStudent model. Consistent with the hypothesis, as shown in
Figure 8.2, we see that problems of the form Ax=B (average error rate 0.283) are much simpler
than problems of the form -x=A (average error rate 0.719). The human-generated model predicts
all problem types with similar error rates (average predicted error rate for Ax=B 0.302, average
predicted error rate for -x=A 0.334), and thus fails to capture the difficulty difference between
the two problem types (Ax=B and -x=A). The SimStudent model, on the other hand, fits with the
real student error rates much better. It predicts higher error rates (0.633 on average) for problems
of the form -x=A than problems of the form Ax=B (0.291 on average).

SimStudent’s split of the original division KC into two KCs, simSt-divide and simSt-divide-1,
suggests that the tutor should teach real students to solve two types of division problems sep-
arately. In other words, when tutoring students with division problems, we should include two
subsets of problems, one subset corresponding to simSt-divide problems (Ax=B), and one specif-
ically for simSt-divide-1 problems (-x=A). We should perhaps also include explicit instruction
that highlights for students that -x is the same as -1x.

8.8 Discussion

The objective of this work is to use a learning agent, SimStudent, to automatically construct
learner models. Conati and VanLehn [1999] used inference over Bayesian networks to arrive

85

at models of students’ knowledge states, but their model focused on assessing self-explanation
instead of modeling student skill learning. Additionally, there has been considerable work on
comparing the quality of alternative cognitive models. LFA automatically discovers cognitive
models, but is limited to the space of the human-provided factors. Other works such as Pavlik
et al. [2009], Villano [1992] are less dependent on human labeling, but the models generated
may be hard to interpret. In contrast, the SimStudent approach has the benefit that the acquired
production rules have a precise and usually straightforward interpretation.

Other systems (e.g., Tatsuoka, 1983, Barnes, 2005) use a Q-matrix to find knowledge structure
from student response data. Baffes and Mooney [1996] apply theory refinement to the problem
of modeling incorrect student behavior. In addition, some research (e.g., Langley and Ohls-
son, 1984, VanLehn, 1990) uses artificial intelligent techniques to construct models that explain
student’s behavior in math domains. Sleeman and Smith’s [1981] LMS, and Brown and Bur-
ton’s [1982] DEBUGGY also make use of artificial intelligent tools to construct models that
explain student’s behavior in math domains. VanLehn’s [1990] Sierra models the impasse-driven
acquisition of hierarchical procedures for multi-column subtraction from sample solutions. How-
ever, his work focused on explaining the origin of bugs for real students, which is not the focus
here. In addition, Sierra is given a CFG for parsing the visual state of the subtraction problems,
whereas our system automatically acquires a pCFG.

Besides SimStudent, there has also been considerable research on learning within agent archi-
tectures (e.g., Laird et al., 1986, Anderson, 1993, Taatgen and Lee, 2003). Other research on
creating simulated students (e.g., Chan and Chou, 1997, Pentti Hietala, 1998) is also closely
related to our work. Nevertheless, none of the above approaches focused on modeling how rep-
resentation learning affects skill learning. Work by Utgoff [1984] and Li et al. [2011c] are the
rare exceptions that address representation learning in the context of production rule acquisition.
In particular, Li et al. [2011c] report a system that, in the process of learning procedural knowl-
edge, acquires new predicates which it organizes in a conceptual hierarchy with recursion . But
they put more emphasis on learning conceptual knowledge such as feature predicates rather than
perceptual representation. Moreover, none of them compared the system with human learning
curve data. To the best of our knowledge, our work is the first combination of the two whereby
we use cognitive model evaluation techniques to assess the quality of a simulated learner, and
demonstrate it across multiple domains.

In the study, we show that the integration of the representation learning component into skill
learning is key to the success of SimStudent in discovering learner models. Results indicate that
in three out of four domains, SimStudent-generated models are either as good as the human-
generated models, or become better predictors of human students’ learning performance than
human-coded models. For the fourth domain, when given the SimStudent- and human-generated
KCs, LFA finds a better model than the human-generated one. A closer analysis shows that
SimStudent is able to split existing KCs into finer grain sizes, discover new KCs, and uncover
expert blind spots.

86

Chapter 9

Conclusion

Building an intelligent agent that simulates human-level learning is an essential task in AI and
cognitive science, but building such systems requires manual encoding of prior domain knowl-
edge. In this thesis, we proposed a learning mechanism that automatically acquires representa-
tions of the problems in terms of deep features from observations without any annotation or with
light annotations. We then integrate this stand-alone representation learner into an intelligent
agent, SimStudent, as an extension of the perception module.

9.1 Related Work

Our work lies at the intersection of artificial intelligence, machine learning, and cognitive sci-
ence. It builds upon a set of previous work in various areas. Our idea of modeling representation
learning is inspired by previous work in cognitive science [Chase and Simon, 1973, Richman
et al., 1995, Gobet and Simon, 2000], which has shown that “perceptual chunking” is an im-
portant component of human knowledge acquisition. We follow this line of work, and exploit
the connection between perceptual representation learning and grammar induction (e.g., [Wolff,
1982, Langley and Stromsten, 2000, Stolcke, 1994, Vanlehn, 1987]). We generalize a standard
grammar induction algorithm, the inside-outside algorithm [Lari and Young, 1990], to acquire
perceptual representation hierarchies.

We have shown that because of the addition of the greedy structure hypothesizer and the Viterbi
training phase, the search space of the proposed representation learner is smaller than that of
the inside-outside algorithm [Lari and Young, 1990]. Experimental results demonstrate that
the proposed representation learner acquires grammars more effectively than the inside-outside
algorithm [Lari and Young, 1990]. We believe that this result should also hold for the inte-
grated setting. One interesting future study is to carry out more comprehensive experiments
on the comparison between the proposed representation learner and other grammar induction
techniques.

Other research also attempts to model the process of perceptual learning. Kemp and Xu [2008]

87

apply a probabilistic model to capture principles of infant object perception. Deep belief net-
works [Hinton, 2007] acquire a hierarchy of feature representations for object recognition. While
both works are interested in modeling complicated functions through non-linear features, they
focus on specific aspects of human learning (e.g., classification), rather than modeling human
problem solving and learning of math and science as we do in our work. Another closely re-
lated line of work is on representation change (e.g., Muggleton and Buntine, 1988, Martı́n and
Geffner, 2004, Utgoff, 1984, Fawcett, 1996, Li et al., 2011c). To the best of our knowledge, these
works put more emphasis on learning conceptual knowledge such as feature predicates, whereas
our representation learner focuses more on learning perceptual representation. Moreover, these
approaches are not integrated into a learning agent.

Our work shares a clear resemblance with the considerable research on learning within agent
architectures. Examples of such systems include Soar’s chunking mechanism in constraining
problem-space search [Laird et al., 1986], ACT-R’s compilation process on transforming declar-
ative representations into skill knowledge [Anderson, 1993], and ICARUS’s complex hierarchical
skill acquisition module [Langley and Choi, 2006]. Unlike those theories, our work puts more
emphasis on integrating ideas of theories of perceptual chunking [Richman et al., 1995] as a
basis for improving knowledge representations that, in turn, facilitate better learning of problem
solving skills.

The current implementation of the simulated student consists of multiple learning mechanisms in
the system, which is consistent with Ohlsson’s [2008] claim on how different learning models are
employed during different learning phases in intelligent systems. Nevertheless, one interesting
question is whether it is possible to build a more joint learning model that captures representa-
tion learning as well as skill learning. We have carried out a preliminary study in this direction.
The task of acquiring the precondition of the rule is a classification task. In SimStudent, we de-
coupled this learning module in two components, the unsupervised statistical module that learns
the world representation and generates a set of feature predicates, and a supervised logic-based
module that uses the generated feature predicates to acquire the preconditions of production
rules. In comparison with this decoupled learning strategy, we adapt a joint model, deep belief
network [Hinton et al., 2006], to the precondition learning task. Experiment results show that
deep belief network achieves reasonable performance (>80%), but is not as effective as the de-
coupled strategy (>90%). More extensive studies on the comparison between a joint model and
a decouple model are needed in better understanding each type of model.

In addition to building a learning agent that acquires skill knowledge with minimal prior knowl-
edge, our work demonstrates that we can use SimStudent to build better cognitive models of
student performance. There has been previous effort in this direction. Researchers have used
machine learning [Cen et al., 2006, Pavlik et al., 2009, Villano, 1992, Tatsuoka, 1983, Barnes,
2005, Baffes and Mooney, 1996] and artificial intelligence [Langley and Ohlsson, 1984, Burton,
1982, Sleeman and Smith, 1981, VanLehn, 1990] techniques to automatically construct cognitive
models. Our work also applies machine learning and artificial intelligence tools to create intel-
ligent learning agents, and takes one more step in this direction by comparing the system with
human learning curve data. To the best of our knowledge, our work is the first combination of
the two whereby we use student model evaluation techniques to assess the quality of a simulated

88

learner.

9.2 Limitations and Future Work

In spite of the promising results, there are several fruitful future steps that would be interesting
to explore in the future. In this thesis, we use pCFG to model the representation of the prob-
lems, which limits our representation to be hierarchical. Based on our experimental results, this
assumption is sufficient for the domains we explore. However, we imagine that in more compli-
cated domains, more flexible representations such as graph-based structures may be needed. In
future work, it would be interesting to see if we model representations in other forms, how it will
affect skill acquisition.

Currently, representation learning is carried out in a separate stage before skill learning. It would
be great to see how representation learning and skill learning interacts with each other. More
specifically, in addition to modeling how representation learning aids skill learning, we would
like to see how further integration of the two enables skill learning to assist representation learn-
ing.

Last but not the least, the set of domains we explored in this thesis are mainly well-defined
domains, where there is a set of well-defined rules in finding the correct solutions. However,
there are domains such as linguistics that may not have this property. In the future, it would be
interesting to also explore these domains. For example, we would like to see how representation
learning affects skill learning in the article selection task with all the grammar rules.

9.3 Theoretical Claims

As also shown in previous studies [Chi et al., 1981, Chase and Simon, 1973], we claim that rep-
resentation learning is one of the important aspects in human knowledge acquisition, and should
be modeled in cognitive theories of human learning. In our theory, perceptual chunks correspond
to nodes in a context-free grammar that organizes perceptual knowledge. Perceptual processing
is modeled by parsing stimuli using this grammar, with the result being a parse tree that organizes
their constituents. The learning process of the representation is carried out in a bottom-up, un-
supervised fashion guided by statistical regularities in observed stimuli. While results show that
the acquired representation is able to model some types of student errors, other forms of repre-
sentation such as discrimination networks [Chase and Simon, 1973, Richman et al., 1995, Gobet
and Simon, 2000] and connectionist models (e.g., Anderson, 1983) are also possible.

In Chapter 4, 5, and 6, we integrate the proposed representation learner into skill learning. We
claim that the speed of skill acquisition depends on the quality of the representation given to the
skill learner. By integrating representation learning into skill learning, the speed of skill learning
increases. The extended agent can be used to discover better models of student learning, which
suggests that the extended agent better models human knowledge acquisition.

89

In Chapter 4, procedural skills are organized into production rules with three components: con-
ditions that specify perceptual elements, tests on those perceptual elements, and an action se-
quence. Procedure execution operates in cycles that involve parsing the perceived stimuli, find-
ing rules with matched conditions, selecting a matched rule, and carrying out the associated
action sequence. By extending the perceptual hierarchy, skill acquisition involves the construc-
tion of production rules based on analysis of relations between inferred actions and elements in
the parsed perceptual stimuli.

In Chapter 5, knowledge about perceptual displays that arise in many procedures takes the form
of a context-free grammar augmented by annotations that describe two-dimensional relations.
Perceptual processing and learning over these two-dimensional grammars operate in a similar
manner as described for the simpler grammars in Chapter 3, with the extension of using temporal
information in the knowledge acquisition process.

In Chapter 6, conceptual knowledge embedded in the acquired perceptual hierarchy is repre-
sented in an additional form, feature predicates. Feature predicates are automatically generated,
and are able to replace manually-constructed feature predicates.

9.4 Contribution

We showed that after the integration, the extended SimStudent is able to achieve competitive or
better performance with little or no domain-specific knowledge engineering effort across mul-
tiple domains. We further evaluated the generality of the approach in a world-knowledge rich
domain. We extended representation learning with external world knowledge, and integrated it
into SimStudent. Results show that given a reasonable number (e.g., 60) of training examples, the
extended SimStudent successfully learns six frequently used article selection rules, and can be
used to find cognitive models that predict human student behavior as well as a human-generated
model.

More specifically, we introduced an innovative application of the extended SimStudent for an au-
tomatic discovery of cognitive models. An empirical study showed that a SimStudent generated
model was a better predictor of real students learning performance than a human-coded model.
The basic idea is to have SimStudent learn to solve the same problems that human students did
and use the productions that SimStudent generated as knowledge components to codify problem-
solving steps. We then used these KC coded steps to validate the models prediction. Unlike the
human-engineered model, the SimStudent generated model has a clear connection between the
features of the domain contents and knowledge components. An advantage of the SimStudent
approach of learner modeling over previous techniques like LFA is that it does not depend heav-
ily on the human-engineered features. SimStudent can automatically discover a need to split a
purported KC or skill into more than one skill. During SimStudents learning, a failure of gen-
eralization for a particular KC results in learning disjunctive rules. Discovering such disjunctive
rules is equivalent to splitting a KC in LFA, however, whereas humans need to provide potential
factors to LFA as the basis for a possible split, SimStudent can learn such factors. The use of the

90

perceptual learning component, implemented using a probabilistic context-free grammar learner,
is a key feature of SimStudent for these purposes as we hypothesized that a major part of human
expertise, even in academic domains like algebra, is such perceptual learning.

Our evaluation demonstrated that using the rules SimStudent learns as factors in the cognitive
model improves the accuracy of model prediction, and showed how the SimStudent model could
provide important instructional implications. Much of human expertise is only tacitly known. For
instance, we know the grammar of our first language but do not know what we know. Similarly,
most algebra experts have no explicit awareness of subtle transformations they have acquired like
the one above (seeing -x as -1x). Even though instructional designers may be experts in a domain
they have thus have some blind spots regarding subtle perceptual differences like this one, which
may make a real difference for novice learners. A machine learning agent, like SimStudent, can
help get past such blind spots by revealing challenges in the learning process that experts may
not be aware of.

91

92

Bibliography

V. Aleven, B. M. Mclaren, J. Sewall, and K. R. Koedinger. A new paradigm for intelligent
tutoring systems: Example-tracing tutors. International Journal of Artificial Intelligence in
Education, 19:105–154, April 2009. ISSN 1560-4292. 37, 63, 66

J. R. Anderson. A spreading activation theory of memory. Journal of Verbal Leaning and Verbal
Behaviour, 22:261–295, 1983. 28, 89

J. R. Anderson. Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1993.
1, 4, 12, 40, 76, 86, 88

J. R. Anderson and R. Thompson. Similarity and analogical reasoning. chapter Use of analogy
in a production system architecture, pages 267–297. Cambridge University Press, New York,
NY, USA, 1989. 40

Y. Anzai and H. A. Simon. The theory of learning by doing. Psychological Review, 86(2):
124–140, 1979. 1, 2, 76

A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data, pages 337–348,
New York, NY, USA, 2003. ACM. 57

P. Baffes and R. Mooney. Refinement-based student modeling and automated bug library con-
struction. Journal of Artificial Intelligence in Education, 7(1):75–116, 1996. ISSN 1043-1020.
86, 88

T. Barnes. The Q-matrix method: Mining student response data for knowledge. In Proceedings
AAAI Workshop Educational Data Mining, pages 1–8, Pittsburgh, PA, 2005. 86, 88

R. V. Belavkin and F. E. Ritter. OPTIMIST: A New Conflict Resoution Algorithm for ACTR.
In Proceedings of the sixth International Conference on Cognitive Modeling, pages 40–45,
Pittsburgh, PA, 2004. 74

Y. Bengio. Learning deep architectures for ai. Foundations Trends in Machine Learning, 2:
1–127, January 2009. ISSN 1935-8237. 42, 69

Y. Bengio, O. Delalleau, and C. Simard. Decision trees do not generalize to new variations.
Computational Intelligence, 26(4):449–467, Nov. 2010. 42

D. Blei and J. McAuliffe. Supervised topic models. In Proceedings of the Twenty-Fifth An-
nual Conference on Neural Information Processing Systems, pages 121–128, Cambridge, MA,
2007. MIT Press. 3

93

R. R. Burton. Diagnosing bugs in a simple procedural skill. In Intelligent Tutoring Systems,
pages 157–184. Academic Press, 1982. 86, 88

M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. W. 0002, and Y. Zhang. Webtables: exploring the
power of tables on the web. Proceedings of the VLDB Endowment, 1(1):538–549, 2008. 57

H. Cen, K. Koedinger, and B. Junker. Learning factors analysis - a general method for cognitive
model evaluation and improvement. In Proceedings of the 8th International Conference on
Intelligent Tutoring Systems, pages 164–175, 2006. 77, 79, 88

T.-W. Chan and C.-Y. Chou. Exploring the design of computer supports for reciprocal tutoring.
International Journal of Artificial Intelligence in Education, 8:1–29, 1997. 86

W. G. Chase and H. A. Simon. Perception in chess. Cognitive Psychology, 4(1):55–81, Jan.
1973. 3, 4, 17, 28, 87, 89

M. T. H. Chi, P. J. Feltovich, and R. Glaser. Categorization and representation of physics prob-
lems by experts and novices. Cognitive Science, 5(2):121–152, June 1981. 3, 17, 89

P. A. Chou. Recognition of Equations Using a Two-Dimensional Stochastic Context-Free Gram-
mar. In Proceedings of Visual Communications and Image Processing, volume 1199, pages
852–863, Nov. 1989. 46, 56

C. Conati and K. VanLehn. A student model to assess self-explanation while learning from
examples. In Proceedings of the seventh international conference on User modeling, pages
303–305, Secaucus, NJ, 1999. Springer-Verlag New York, Inc. 85

V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic data extraction from
large web sites. In Proceedings of the 27th International Conference on Very Large Data
Bases, pages 109–118, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. 57

A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. A. Myers, and A. Turran-
sky, editors. Watch what I do: programming by demonstration. MIT Press, Cambridge, MA,
1993. ISBN 0-262-03213-9. 41

P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The Helmholtz Machine. Neural Compu-
tation, 7(5):889–904, Dec. 1995. 42

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):
1–38, 1977. 20

T. G. Dietterich. Learning at the knowledge level. Machine Learning, 1(3):287–315, 1986. 10,
40, 76

T. Fawcett. Knowledge-based feature discovery for evaluation functions. Computational Intelli-
gence, 12(1), 1996. 69, 88

F. Gobet. Chunking models of expertise: implications for education. Applied Cognitive Psychol-
ogy,, 19(3):183–204, Jan. 2005. 28

F. Gobet and H. A. Simon. Five seconds or sixty? presentation time in expert memory. Cognitive
Science, 24(4):651–682, 2000. 28, 87, 89

P. Harrison, S. Abney, E. Black, C. Gdaniec, R. Grishman, D. Hindle, R. Ingria, M. P. Mar-

94

cus, B. Santorini, and T. Strzalkowski. Evaluating syntax performance of parser/grammars of
English. In Natural Language Processing Systems Evaluation Workshop, Technical Report,
pages 71–78, Griffis Air Force Base, NY, 1991. 52

J. Hay and J. Bresnan. Spoken syntax: The phonetics of giving a hand in new zealand english. In
The Linguistic Review: Special Issue on Exemplar-Based Models in Linguistics, pages 321–
349, 2006. 71

G. E. Hinton. To recognize shapes, first learn to generate images. Progress in brain research,
165:535–547, 2007. 3, 42, 88

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The ”wake-sleep” algorithm for unsupervised
neural networks. Science, 268(5214):1158–1161, May 1995. 42

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006. 88

R. Hwa. Supervised grammar induction using training data with limited constituent information.
In Proceedings of the 37th annual meeting of the Association for Computational Linguistics
on Computational Linguistics, pages 73–79, Stroudsburg, PA, USA, 1999. Association for
Computational Linguistics. 28

C. Kemp and J. B. B. Tenenbaum. The discovery of structural form. Proceedings of the National
Academy of Sciences of the United States of America, July 2008. ISSN 1091-6490. 41

C. Kemp and F. Xu. An ideal observer model of infant object perception. In D. Koller, D. Schu-
urmans, Y. Bengio, and L. Bottou, editors, NIPS, pages 825–832. MIT Press, 2008. 41, 87

D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics - Volume 1, ACL ’03, pages 423–430,
Stroudsburg, PA, USA, 2003. Association for Computational Linguistics. 71

K. R. Koedinger and J. R. Anderson. Abstract Planning and Perceptual Chunks: Elements of
Expertise in Geometry. Cognitive Science, 14:511–550, 1990. 4, 17

K. R. Koedinger and A. Corbett. Cognitive Tutors: Technology Bringing Learning Sciences to
the Classroom. pages 60–77. Cambridge University Press, Cambridge, 2006. 11

K. R. Koedinger and B. A. MacLaren. Implicit strategies and errors in an improved model of
early algebra problem solving. In Proceedings of the Nineteenth Annual Conference of the
Cognitive Science Society, pages 382–387, Hillsdale, NJ, 1997. Erlbaum. 5, 78

K. R. Koedinger and E. A. McLaughlin. Seeing language learning inside the math: Cognitive
analysis yields transfer. In Proceedings of the 32nd Annual Conference of the Cognitive Sci-
ence Society, pages 471–476, Austin, TX, 2010. 77

K. R. Koedinger and M. J. Nathan. The real story behind story problems: Effects of representa-
tions on quantitative reasoning. The Journal of Learning Sciences, 13(2):129–164, 2004. 5,
77

K. R. Koedinger, R. S. Baker, K. Cunningham, A. Skogsholm, B. Leber, and J. Stamper. A data
repository for the EDM community: The PSLC DataShop, 2010. 78, 79

K. R. Koedinger, E. A. McLaughlin, and J. C. Stamper. Automated student model improvement.

95

In Proceedings of the 5th International Conference on Educational Data Mining, pages 17–24,
Chania, Greece, 2012. ISBN 978-1-74210-276-4. 78

J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in soar: The anatomy of a general
learning mechanism. Machine Learning, 1:11–46, 1986. 40, 76, 86, 88

J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: an architecture for general intelligence.
Artificial Intelligence, 33(1):1–64, 1987. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/
0004-3702(87)90050-6. 1, 4, 12

P. Langley and D. Choi. A unified cognitive architecture for physical agents. In Proceedings of
the Twenty-First National Conference on Artificial Intelligence, Boston, 2006. 1, 4, 40, 88

P. Langley and S. Ohlsson. Automated cognitive modeling. In Proceedings of the Fourth Na-
tional Conference on Artificial Intelligence, pages 193–197, Austin, TX, 1984. Morgan Kauf-
mann. 86, 88

P. Langley and S. Stromsten. Learning context-free grammars with a simplicity bias. In Pro-
ceedings of the 11th European Conference on Machine Learning, pages 220–228, London,
UK, 2000. Springer-Verlag. 28, 87

K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language, 4:35–56, 1990. 19, 48, 87

T. Lau and D. S. Weld. Programming by demonstration: An inductive learning formulation. In
Proceedings of the 1999 international conference on intelligence user interfaces, pages 145–
152, 1998. 9, 41

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Comput., 1:541–551,
December 1989. 42

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–2324, 1998. 42

N. Li, S. Kambhampati, and S. Yoon. Learning probabilistic hierarchical task networks to cap-
ture user preferences. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, CA, 2009. 18, 19, 21, 25, 28

N. Li, W. W. Cohen, and K. R. Koedinger. A computational model of accelerated future learning
through feature recognition. In ITS’10: Proceedings of 10th International Conference on
Intelligent Tutoring Systems, pages 368–370, 2010. 3, 44, 48

N. Li, W. W. Cohen, N. Matsuda, and K. R. Koedinger. A machine learning approach for auto-
matic student model discovery. In Proceedings of the 4th International Conference on Educa-
tional Data Mining, pages 31–40, 2011a. 18

N. Li, W. Cushing, S. Kambhampati, and S. Yoon. Learning probabilistic hierarchical task
networks as probabilistic context-free grammars to capture user preferences. Technical Report
arxiv:1006.0274 (Revised), Arizona State University, 2011b. 48

N. Li, D. Stracuzzi, and P. Langley. Improving acquisition of teleoreactive logic programs
through representation change, 2011c. 4, 86, 88

96

N. Li, W. W. Cohen, and K. R. Koedinger. Efficient cross-domain learning of complex skills. In
Proceedings of the Eleventh International Conference on Intelligent Tutoring Systems, pages
493–498, Berlin, 2012a. Springer-Verlag. 66

N. Li, W. W. Cohen, and K. R. Koedinger. Integrating representation learning and skill learning
in a human-like intelligent agent. Technical Report CMU-MLD-12-1001, Carnegie Mellon
University, January 2012b. 25

M. Martı́n and H. Geffner. Learning generalized policies from planning examples using concept
languages. Applied Intelligence, 20:9–19, January 2004. 69, 88

N. Matsuda, A. Lee, W. W. Cohen, and K. R. Koedinger. A computational model of how learner
errors arise from weak prior knowledge. In Proceedings of Conference of the Cognitive Science
Society, 2009. 1, 2, 3, 9, 14, 76

B. M. Mclaren, S.-j. Lim, and K. R. Koedinger. When and how often should worked examples
be given to students ? new results and a summary of the current state of research why isn t the
science done ? Cognitive Science, pages 2176–2181, 2008. 37

T. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226, 1982. 9, 14

T. M. Mitchell, S. Mahadevan, and L. I. Steinberg. Leap: a learning apprentice for vlsi design. In
Proceedings of the 9th international joint conference on Artificial intelligence, pages 573–580,
San Francisco, CA, 1985. ISBN 0-934613-02-8, 978-0-934-61302-6. 41

R. J. Mooney. A General Explanation-Based Learning Mechanism and its Application to Narra-
tive Understanding. Morgan Kaufmann, San Mateo, CA, 1990. 41

S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting resolution.
In Proceedings of the Fifth International Conference on Machine Learning, pages 339–352.
Morgan Kaufmann, 1988. 69, 88

S. Muggleton and L. de Raedt. Inductive logic programming: Theory and methods. Journal of
Logic Programming, 19:629–679, 1994. 9

D. M. Neves. Learning procedures from examples and by doing. In Proceedings of the 9th inter-
national joint conference on Artificial intelligence - Volume 1, pages 624–630, San Francisco,
CA, USA, 1985. Morgan Kaufmann Publishers Inc. 1, 2, 41, 76

A. Niculescu-Mizil and R. Caruana. Inductive transfer for bayesian network structure learning.
In Proceedings of the 11th International Conference on AI and Statistics, 2007. 41

S. Ohlsson. Computational Models of Skill Acquisition, chapter 13, pages 359–395. Cambridge
University Press, 2008. 42, 88

P. I. Pavlik, H. Cen, and K. R. Koedinger. Learning Factors Transfer Analysis: Using Learning
Curve Analysis to Automatically Generate Domain Models. In Proceedings of 2nd Interna-
tional Conference on Educational Data Mining, pages 121–130, 2009. 86, 88

T. N. Pentti Hietala. The competence of learning companion agents. International Journal of
Artificial Intelligence in Education, 9:178–192, 1998. 86

J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–266,
1990. 15, 69

97

L. D. Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26(2):99–146, 1997. 69

R. Raina, A. Y. Ng, and D. Koller. Constructing informative priors using transfer learning. In
Proceedings of the 23rd international conference on Machine learning, pages 713–720, New
York, NY, 2006. ISBN 1-59593-383-2. doi: http://doi.acm.org/10.1145/1143844.1143934. 41

M. Ranzato, F. J. Huang, Y. L. Boureau, and Y. LeCun. Unsupervised Learning of Invariant
Feature Hierarchies with Applications to Object Recognition. Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on, 0:1–8, 2007. 42

M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1-2):107–136, 2006.
ISSN 0885-6125. doi: http://dx.doi.org/10.1007/s10994-006-5833-1. 41, 69

H. B. Richman, J. J. Staszewski, and H. A. Simon. Simulation of expert memory using EPAM
IV. Psychological Review, pages 305–330, 1995. 28, 41, 87, 88, 89

B. Roark and M. Bacchiani. Supervised and unsupervised pcfg adaptation to novel domains.
In Proceedings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology - Volume 1, NAACL ’03, pages
126–133, Stroudsburg, PA, USA, 2003. Association for Computational Linguistics. 28

L. K. Saul, T. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid belief networks. Journal
of Artificial Intelligence Research, 4:61–76, 1996. 42

A. Segre. A learning apprentice system for mechanical assembly. In Proceedings of the Third
IEEE Conference on AI for Applications, pages 112–117, 1987. 41

P. Y. Simard, D. Steinkraus, and J. C. Platt. Best Practices for Convolutional Neural Networks
Applied to Visual Document Analysis. In ICDAR ’03: Proceedings of the Seventh Inter-
national Conference on Document Analysis and Recognition, Washington, DC, USA, 2003.
IEEE Computer Society. 42

J. M. Siskind, J. J. Sherman, I. Pollak, M. P. Harper, and C. A. Bouman. Spatial random tree
grammars for modeling hierarchal structure in images with regions of arbitrary shape. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(9):1504–1519, Sept. 2007.
ISSN 0162-8828. 56

D. H. Sleeman and M. J. Smith. Modeling students’ problem solving. Artificial Intelligence, 16:
171–187, 1981. 86, 88

A. Srinivasan. The Aleph Manual, 2004. URL http://www.comlab.ox.ac.uk/
activities/machinelearning/Aleph/. 69

A. Stolcke. Bayesian learning of probabilistic language models. PhD thesis, Berkeley, CA,
USA, 1994. 28, 87

N. A. Taatgen and F. J. Lee. Production compilation: A simple mechanism to model complex
skill acquisition. Human Factors, 45(1):61–75, 2003. 40, 76, 86

K. K. Tatsuoka. Rule space: An approach for dealing with misconceptions based on item re-
sponse theory. Journal of Educational Measurement, pages 345–354, 1983. 86, 88

I. Titov and J. Henderson. Constituent Parsing with Incremental Sigmoid Belief Networks. In
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,

98

http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/

pages 632–639, Prague, Czech Republic, June 2007. Association for Computational Linguis-
tics. 42

L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in reinforcement
learning. In Proceedings of the 17th Conference on Inductive Logic Programming, Corvallis,
Oregon, 2007. 41

P. E. Utgoff. Shift of Bias for Inductive Concept Learning. PhD thesis, Department of Computer
Science, Rutgers University, New Brunswick, NJ, 1984. 69, 86, 88

K. Vanlehn. Learning one subprocedure per lesson. Artificial Intelligence, 31:1–40, January
1987. 28, 56, 87

K. VanLehn. Mind Bugs: The Origins of Procedural Misconceptions. MIT Press, Cambridge,
MA, USA, 1990. ISBN 0262220369. 86, 88

K. Vanlehn, S. Ohlsson, and R. Nason. Applications of simulated students: an exploration.
Journal of Artificial Intelligence in Education, 5:135–175, February 1994. 1, 2, 76

M. Villano. Probabilistic student models: Bayesian belief networks and knowledge space theory.
In Proceedings of the 2nd International Conference on Intelligent Tutoring Systems, pages
491–498, Heidelberg, 1992. 86, 88

J. G. Wolff. Language acquisition, data compression and generalization. Language and Commu-
nication, 2:57–89, 1982. 28, 87

R. Wylie, K. Koedinger, and T. Mitamura. Analogies, explanations, and practice: examining how
task types affect second language grammar learning. In Proceedings of the 10th international
conference on Intelligent Tutoring Systems - Volume Part I, ITS’10, pages 214–223, Berlin,
Heidelberg, 2010. 72, 74, 76, 80

L. Zhu, Y. Chen, and A. Yuille. Unsupervised learning of probabilistic grammar-markov models
for object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1):
114–128, Jan. 2009. 56

99

	Introduction
	Motivation
	Proposed Approach
	Integrating Representation Learning and Skill Learning
	Applications to Intelligent Tutoring System Authoring

	Main Contribution

	A Brief Review of SimStudent
	Prior Knowledge
	Learning Task
	Performance System
	Learning Mechanisms

	Deep Feature Representation Learning
	Representation Learning as Grammar Induction
	A Brief Review of a pCFG Learner
	Feature Learning
	Transfer Learning

	Experimental Study
	Methods
	Measurements
	Experimental Results

	Discussion

	Learning for Operator Functions
	Integrating Representation Learning into Skill Learning
	Extending the Perceptual Representation
	Extending the Perceptual Learner

	Examples of Integration
	Experimental Study
	Methods
	Measurements
	Experimental Results

	Discussion

	Learning Perceptual Hierarchies
	Learning to Perceive Two-Dimensional Displays
	Problem Definition
	Learning Mechanism

	Experimental Study in Synthetic Domains
	Methods
	Measurements
	Experimental Results

	Experimental Study in Three Tutoring Domains
	Methods
	Measurements
	Experimental Results

	Experimental Study within SimStudent
	Methods
	Measurements
	Experimental Results

	Discussion

	Learning Feature Predicates
	Generating Feature Predicates from Learned Grammar
	Topological Feature Predicates
	Nonterminal Symbol Feature Predicates
	Parse Tree Relation Feature Predicates

	Experimental Study on Automatically Generated Feature Predicates
	Methods
	Measurements
	Experimental Results

	Experimental Study on Transferability to Harder Problems
	Methods
	Measurements
	Experimental Results

	Discussion

	Integrating Representation Learning with External World Knowledge
	English Article System
	Integrating Representation Learning with External World Knowledge
	SimStudent with Probabilistic-Based Conflict Resolution
	Experimental Study
	Methods
	Experimental Results

	Discussion

	Using SimStudent to Discover Better Learner Models
	Methods
	Dataset
	Measurements
	Experimental Results
	FBI Analysis and LFA on Fraction Addition
	Impact of Representation Learning
	Implications for Instructional Decisions in Algebra
	Discussion

	Conclusion
	Related Work
	Limitations and Future Work
	Theoretical Claims
	Contribution

	Bibliography

