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Abstract 

Modern astronomical datasets are getting larger and larger, which already include billions of 

celestial objects and take up terabytes of disk space. Meanwhile, many astronomical applications 

do not scale well to such large amount of data, which raises the following question: How can we 

use modern computer science techniques to help astronomers better analyze large datasets? 

To answer this question, we applied various computer science techniques to provide fast, 

scalable solutions to the following astronomical problems: 

 We developed algorithms to better work with big data. We found out that for some 

astronomical problems, the information that users require each time only covers a small 

proportion of the input dataset. Thus we carefully organized data layout on disk to 

quickly answer user queries, and the developed technique uses only one desktop 

computer to handle datasets with billions of data entries. 

 We made use of database techniques to store and retrieve data. We designed table 

schemas and query processing functions to maximize their performance on large datasets. 

Some database features like indexing and sorting further reduce the processing time of 

user queries. 

 We processed large data using modern distributed computing frameworks. We 

considered widely-used frameworks in the astronomy world, like Message Passing 

Interface (MPI), as well as emerging frameworks such as MapReduce. The developed 

implementations scale well to tens of billions of objects on hundreds of compute cores. 

 During our research, we noticed that modern computer hardware is helpful to solve 

some sub-problems we encountered. One example is the use of Solid-State Drives 

(SSDs), whose random access time is faster than regular hard disk drives. The use of 

Graphics Processing Units (GPUs) is another example, which, under right circumstances, 

is able to achieve a higher level of parallelism than ordinary CPU clusters. 

 Some astronomical problems are machine learning and statistics problems. For example, 

the problem of identifying quasars from other similar astronomical objects can be 

formalized as a classification problem. In this thesis, we applied supervised learning 

techniques to the quasar detection problem. Additionally, in the context of big data, we 

also evaluated existing active learning algorithms which aim to reduce the total number 

of human labels. 

All the developed techniques are designed to work with datasets that contain billions of 

astronomical objects. We have tested them extensively on large datasets and report the running 

times. We believe the interdisciplinarity between computer science and astronomy has great 

potential, especially toward the big data trend. 

 



 

vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Acknowledgements 

I express my greatest gratitude to all the people who gave me the possibility to complete this 

thesis. I could not have achieved this without every piece of your help.  

First, I want to thank my advisors, Professor Jaime Carbonell and Dr. Eugene Fink, who gave me 

the opportunity to conduct computer science research. When I first came to Carnegie Mellon 

University six years ago, I was a very raw undergraduate student. They guided me in every 

perspective of life in graduate school, and made me not only a better computer science 

researcher, but also a better person overall. 

Second, thanks to Professor Garth Gibson, with whom I was honored to work. He supported my 

research, and provided me useful suggestions in various occasions. The most important thing I 

learnt from him is to think hard and be aggressive, which is exactly what I am lack of. I owe him 

a big favor. 

There are also a couple of Carnegie Mellon faculty members that I learnt a lot from. I published 

two papers in collaboration with Dr. Julio López, who provided valuable vista and tips from 

computer system point of view. He also gave me a lot of encouragements along the way. 

Professor Christos Faloutsos delivered a significant amount of suggestions during our 

discussions, and he also illustrated me an ideal way to teach an undergraduate course when I was 

a teaching assistant in his class. 

Since my thesis focuses on astronomical problems, I am lucky to work with faculty members and 

students from Bruce and Astrid McWilliams Center for Cosmology at Carnegie Mellon 

University, Department of Physics and Astronomy at University of Pittsburgh, and Pittsburgh 

Supercomputing Center. Professor Michael Wood-Vasey, Professor Rupert Croft, Professor 

Tiziana Di Matteo, Professor Shirley Ho, and Dr. Joel Welling taught me basic and advanced 

physics and astronomy knowledge, and gave me extensive feedback on my work. They played an 

important role for me to understand astronomy background that is essential for this thesis, and I 

thank them for their consideration and patience for me as a physics novice. 

I also consulted both graduate and undergraduate students from Carnegie Mellon University 

Physics department about many astronomy questions, including Eric Chandler, Colin DeGraf, 

Tommy Dessup, Nishikanta Khandai, Mariana Vargas Magana, Ross O’Connell, Xiaoying Xu, 

and Feng Yu. They are very nice and provided a lot of useful information. 

During these years I have worked with the following undergraduate students: Tarush Aggarwal, 

Tanachat (Gor) Nilanon, Yongwen (Peter) Liang, and Sangjae Yoo. They worked hard and 

contributed a significant part of my research and papers. 

 



 

viii 

 

I feel that I was always playing catch-up in graduate school, so I express my apologies and 

thanks to those who needed to take care of my unnecessary troubles. CSD administrators, 

especially Deborah Cavlovich, SCS Help Desk, payroll office, and etc. 

I also want to thank my friends, who shared most of my happiness and sorrows here in 

Pittsburgh: Bin Fan, Tinglong Dai, Wenjie Fu, Sicun Gao, Fan Guo, Yunchuan Kong, Ni Lao, 

Lei Li, Nan Li, Jialiu Lin, Yuefeng Lin, Xi Liu, Ning Lu, Min Luo, Kai Ren, Chao Shen, Long 

Qin, Huimin Tan, Yuandong Tian, Dingxin Qin, Ilari Shafer, Mehrbod Sharifi, Ruizhi Wang, 

Shuyang Wang, Chuang Wu, Yi Wu, Guangyu Xia, Lin Xiao, Guang Xiang, Guzi Xu, Changqi 

Yang, Xidong Ye, Junming Yin, Xin Zhang, Xiong Zhang, Le Zhao, Hua Zhong, Yuan Zhou, 

Haiyi Zhu, and anybody else who I forget to mention here (I have suffered Permanent Head 

Damage anyway). It is great to have them accompanied in my life these years. 

Finally, and most importantly, there are three people I cannot express my gratitude more. My 

father Deqian Fu and my mother Yimin Kong always supported me and saw me growing up. My 

fiancée Liu Liu is the nicest person in the world. I dedicate this thesis and my deepest love to 

them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

 

Contents 

 

Chapter 1 Introduction .................................................................................................................. 1 

Chapter 2 DiscFinder: Identification of Galaxy Clusters .............................................................. 6 

2.1 Introduction ........................................................................................................................... 6 

2.2 Motivating Application ......................................................................................................... 7 

2.3 Related Work....................................................................................................................... 10 

2.4 DiscFinder ........................................................................................................................... 11 

2.5 Pipeline Implementation ..................................................................................................... 15 

2.6 Evaluation............................................................................................................................ 21 

2.6.1 Scalability Experiments ................................................................................................ 22 

2.6.2 Performance Characterization ...................................................................................... 24 

2.6.3 Future optimizations ..................................................................................................... 27 

2.7 Potential utilization of our proposed technique................................................................... 27 

2.8 Conclusion ........................................................................................................................... 28 

Chapter 3 Exact and Approximate Computation of a Histogram of Pairwise Distances between 

Astronomical Objects.................................................................................................................... 30 

3.1 Background ......................................................................................................................... 30 

3.2 Problem ............................................................................................................................... 32 

3.3 Existing Solutions ............................................................................................................... 33 

3.3.1 Naive algorithm ............................................................................................................ 33 

3.3.2 Kd-tree algorithm .......................................................................................................... 34 

3.3.3 Fractal approximation ................................................................................................... 36 

3.4 Proposed Technique ............................................................................................................ 41 

3.4.1 Sampling algorithm ...................................................................................................... 41 

3.4.2 Hybrid algorithm .......................................................................................................... 43 

3.4.3 Distributed hybrid algorithm ........................................................................................ 45 

3.4.4 Other distributed implementations ............................................................................... 49 

3.5 Current and Future Use of the Proposed Technique ........................................................... 57 

3.6 Conclusion ........................................................................................................................... 59 



 

x 

 

Chapter 4 Indexing a Large-Scale Database of Astronomical Objects ....................................... 60 

4.1 Background ......................................................................................................................... 60 

4.2 Problem ............................................................................................................................... 60 

4.3 Solution ............................................................................................................................... 62 

4.3.1 Indexing ........................................................................................................................ 62 

4.3.2 Retrieval........................................................................................................................ 63 

4.3.3 Matching ....................................................................................................................... 64 

4.4 Experiments ......................................................................................................................... 65 

4.4.1 Indexing ........................................................................................................................ 65 

4.4.2 Retrieval........................................................................................................................ 67 

4.4.3 Matching ....................................................................................................................... 68 

4.5 Discussion ........................................................................................................................... 69 

4.5.1 Indexing Method........................................................................................................... 69 

4.5.2 Updating Catalog .......................................................................................................... 69 

4.5.3 Width of Strips.............................................................................................................. 70 

4.6 Related Work....................................................................................................................... 70 

4.7 Conclusion ........................................................................................................................... 71 

Chapter 5 Building and Querying Black Hole Merger Trees via Database ................................ 72 

5.1 Introduction ......................................................................................................................... 72 

5.2 Black Holes in the Study of Cosmological Simulations ..................................................... 73 

5.3 Background and Related Work ........................................................................................... 77 

5.3.1 Non-DB Approach: Custom Binary Format ................................................................. 78 

5.4 Building and Querying Black Forest Databases ................................................................. 79 

5.4.1 Database Design ........................................................................................................... 79 

5.4.2 Approach 1: Recursive DB Queries ............................................................................. 80 

5.4.3 Approach 2: In-Memory Queries ................................................................................. 81 

5.4.4 Approach 3: In-Memory Forest Queries ...................................................................... 82 

5.4.5 Approach 4: ForestDB .................................................................................................. 83 

5.5 Evaluation............................................................................................................................ 84 

5.5.1 Workload ...................................................................................................................... 84 

5.5.2 Storage Requirements ................................................................................................... 84 



 

xi 

 

5.5.3 Performance .................................................................................................................. 85 

5.5.4 Pre-processing .............................................................................................................. 88 

5.6 System Utilization and Future Work ................................................................................... 89 

5.7 Conclusion ........................................................................................................................... 90 

Chapter 6 Quasar Detection ........................................................................................................ 91 

6.1 Background ......................................................................................................................... 91 

6.2 Related work ....................................................................................................................... 92 

6.3 Data and experimental setup ............................................................................................... 92 

6.4 Solution ............................................................................................................................... 92 

6.4.1 Supervised learning ...................................................................................................... 92 

6.4.2 Active learning ............................................................................................................. 95 

6.5 Conclusion ........................................................................................................................... 97 

Chapter 7 Conclusion and Future Directions .............................................................................. 98 

Bibliography ............................................................................................................................ 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

 

 

 



 

1 

 

Chapter 1  Introduction 

We have entered the “big data” era. Massive information has been created every day at an 

unprecedented rate, making it an interesting and important issue to store, transmit, analyze, and 

summarize them. 

For example, to index the current web, Google’s new indexing system “Caffeine” now keeps 

track of 30 trillion web pages
1
, and the system takes up about 100 petabytes (100 million 

gigabytes) of storage
2

. The similar trend also arises in environmental research 

[Reichman et al., 2011], genomics [Ward et al., 2013], biology [Swan, 2013], and etc. Take the 

medical field as an example: It has been estimated that if we want to record the hourly blood 

pressure readings for all Americans, it will require 1460 terabytes of storage
3
, and more space 

will be needed to store other types of biomedical data. 

What about astronomy? One may think that it is a discipline that does not need to worry about 

the big data issue. But the advent of modern digital telescopes dramatically increases the size of 

digital sky surveys: We are now talking about millions or billions of observable astronomical 

objects. The most recent Sloan Digital Sky Survey (SDSS), for instance, has included over 500 

million stars and galaxies [Abazajian et al., 2009], at a speed of 200 gigabytes per night, with the 

total amount of 140 terabytes in size. For another example, the Guide Star Catalog II contains 

almost one billion objects [Lasker et al., 2008]. 

Furthermore, the field is quickly moving toward large time domain surveys, where the surveys 

are designed to map the whole sky once each few nights. A couple of ongoing projects, including 

the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) [PanStarrs] 

[Kaiser et al., 2002], and the Large Synoptic Survey Telescope (LSST) [Ivezic et al., 2008], will 

store many time slices of data, and thus become significantly larger than existing surveys. LSST, 

for example, is estimated to request an initial computing power of 100 teraflops and 15 petabytes 

of storage. 

In the meantime, cosmologists, who conduct simulations about the evolving universe, are also 

producing much more data than before. Since there are about 170 billion galaxies in the 

observable universe and to the order of 6 × 10
22

 (sixty sextillion) stars [Gott et al., 2005], as well 

as other types of particles such as the hypothesized dark matters, the potential scale of such 

simulations is enormous. With the increasing power of computing resources, recent publications 

on state-of-the-art N-body cosmological simulations ([Di Matteo et al., 2008] 

[Heitmann et al., 2008a] [DeGraf et al., 2012a]) have produced datasets with tens of billions of 

cosmological particles and occupy tens of terabytes of storage, even after aggressive temporal 

sub-sampling.  

                                                           
1
 http://www.google.com/insidesearch/howsearchworks/thestory/ 

2
 http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html 

3
 http://onhealthtech.blogspot.com/2011/10/rise-of-big-data.html 

http://www.google.com/insidesearch/howsearchworks/thestory/
http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
http://onhealthtech.blogspot.com/2011/10/rise-of-big-data.html
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Many classical astrophysical
4
 applications, however, do not scale up well to such data volumes. 

For example, to solve the astronomical correlation function problem [Peebles, 1980], a 

straightforward solution takes quadratic time to the number of objects in the dataset, which 

becomes extremely slow for datasets with more than tens of millions of objects. For a second 

example, all memory-based techniques are at least cumbersome, if not unable, to process datasets 

that are larger than the aggregate memory of the computing resources. Actually, when an 

astronomy dataset is large enough (e.g., 65 billions of objects [DeGraf et al., 2012a]), it is 

already an interesting topic of how to store and transmit the data themselves. 

The use of supercomputers is a natural and popular solution to handle these kinds of large 

astronomy data. Since large-scale N-body simulations are now conducted on supercomputers 

with a hundred thousand cores and a few hundred terabytes of memory
5
, subsequent analysis can 

be conducted similarly on the same supercomputer [Chhugani et al., 2012]. However, the access 

of those supercomputers is not always convenient or free. Astronomers need to e.g. write 

proposals and share their data to receive time slots on supercomputers, and those time slots are 

not easily extensible. More flexible tools are thus needed to analyze large data. 

So in this thesis, I explore the intersection between modern astronomy and computer science. I 

want to answer the following question:  

Assume that we have acquired a large-scale astronomical dataset. How can we use state-

of-the-art computer science techniques to help astrophysicists better analyze it? 

The answer depends on the characteristics of the problem we attack. Specifically, we have 

utilized various computer science techniques to analyze large-scale datasets: 

Algorithm. For some astrophysics problems, we do not need to throw in more computing power 

right away while facing a large dataset. A better algorithm can also do the trick. In Chapter 4 and 

Chapter 5, we present two pieces of work that both can deal with billions astronomical data 

entries. For both problems, the information a user requires each time only accesses a small 

proportion of data out of the whole dataset. As a result, with careful data organization, user 

queries can be quickly processed by a single desktop machine.  

In Chapter 3, we developed an algorithm to work with big data in a different way. When 

calculating the astronomical correlation functions, we noticed that the computational complexity 

of existing algorithms is expensive. So instead we explored the possibility of using a sampling-

based approximate algorithm to estimate correlation functions. We provided ways to calculate 

                                                           
4
 In this thesis, we use the words “astronomy” and “astrophysics” interchangeably. Strictly 

speaking, astrophysics is a branch of astronomy, but in this thesis we will not discuss other 

subfields of astronomy (such as geology). 
5
 For example, the Kraken supercomputer with 112,896 cores, 147TB memory, 3.3 PB disk, and 

1.17 peak petaflops http://www.nics.tennessee.edu/computing-resources/kraken 

http://www.nics.tennessee.edu/computing-resources/kraken
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the sampling error and showed the empirical running time. To what is better, our solution is also 

easy to parallelize. 

Database. For the problem introduced in Chapter 5, we made use of a relational database to 

provide a simple and straightforward solution. We carefully designed the table schema, and used 

indexing and sorting to further reduce query time. 

Distributed computing. Not every problem can be simplified computation-wise. Many 

problems have inevitable high computational complexity, and in order to reduce their processing 

time, distributed computing techniques have to be applied. In this thesis, we considered two 

major distributed computing frameworks and compared their differences. 

We started with the framework that is already popular to the astronomers, Message Passing 

Interface (MPI, [MPI, 1993]), a leading message-passing framework in high performance 

computing community. MPI has been widely used in the astronomy world, and since it 

aggregates the memory of all the compute nodes together, it greatly increases the power of 

memory-based algorithms. MPI is specifically suitable for compute-intensive tasks (e.g. N-body 

simulation), but toward data-intensive tasks, it requires more efforts for programmers to take 

care of, including data partition, failure handling and so on. It is inconvenient for programmers to 

handle all these related features themselves. 

To overcome those limitations, a new wave of distributed computing frameworks have emerged 

in recent years, led by Google’s MapReduce [Dean and Ghemawat, 2004] and Microsoft’s Dryad 

[Isard et al., 2007] systems. Those frameworks better support distributed computing on large 

datasets. In this thesis, we mainly used Hadoop
6
, the open source implementation of MapReduce, 

to implement and solve two astronomy problems (Chapter 2 and Chapter 3). We provide a more 

detailed comparison between Hadoop, MPI, and others in Section 3.4.4. 

Hardware. We noticed that two pieces of emerging computer hardware are suitable for 

sub-problems we encountered in Chapter 3. One example is the use of Solid-State Drives 

(SSDs), which is becoming an alternative to normal hard disk drives. SSDs have fast random 

access time (as fast as 0.1ms, comparing to 2.9~12ms of normal hard disk drives), and thus they 

are efficient to be applied to randomly retrieve a small amount of information from a large 

dataset. 

Furthermore, we made use of General Purpose Graphics Processing Units (GPUs) to accelerate 

the calculation of all pairwise distances in an astronomical dataset. GPUs are not as general 

parallel computing resources as CPU clusters, since each GPU core has access to less memory, 

and it is fast only if the executing program contains little branches. However, it turned out to be 

suitable for our application. Finally our implementation using SSD and GPU together is 

competitive comparing to our CPU-based technique. 

                                                           
6
 http://hadoop.apache.org 

http://hadoop.apache.org/
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With the advent of other new hardware (non-volatile memory, shingled disk, etc.), it is worth 

keeping an eye on their potential use on astronomy problems. 

Machine learning. Astrophysics is highly correlated to machine learning and statistics. In fact, 

there is an individual field, Astrostatistics, which solves astrophysics problems using statistical 

tools. In this thesis, we focus on a specific classification problem: identifying quasars from other 

types of objects. In Chapter 6, we applied supervised learning techniques to solve the problem. 

Moreover, with the datasets getting larger, we cannot afford to acquire the labels (galaxies, stars, 

quasars etc.) of all celestial objects. The quasar classification problem under this scenario can be 

formulated to an active learning problem. In this setting, a user only needs to label a limited 

number of objects, and an active learning algorithm interacts with the user and decides which 

objects to label. Normally, an active learner is more efficient than ordinary supervised learners in 

terms of that it usually requires fewer labels for an active learner to train a classifier with 

comparable accuracy. 

 

In the following chapters, we give more details on our works to utilize the aforementioned 

computer science techniques to help astrophysicists better analyze large datasets. From Chapter 2 

to Chapter 6, in each chapter we introduce one problem we tackled
7
: 

 We developed a distributed solution to the Friends-of-Friends problem 

[Huchra and Geller, 1982], which is a standard astronomical application for analyzing 

clusters of galaxies. The distributed procedure can process tens of billions of objects, 

which makes it sufficiently powerful for modern astronomical datasets and cosmological 

simulations ([Fu et al., 2010], Chapter 2). 

 The computation of correlation functions [Peebles, 1980] is a standard cosmological 

application for analyzing the distribution of matter in the universe. We studied existing 

approaches to this problem and proposed a distributed approximation procedure based on 

a combination of these approaches, which scales to datasets with multi-billion objects 

([Fu et al., 2012a], Chapter 3). 

 When astronomers analyze telescope images, they match the newly observed objects to 

an existing catalog. We present a fast matching procedure on a catalog with billions of 

                                                           
7
 I conducted the implementations and experiments for all five pieces of works, except the black 

hole database (Chapter 5) in which Dr. Julio López completed the data pre-processing works. 

The algorithms of the distributed Friends-of-Friends technique (Chapter 2) and catalog indexing 

(Chapter 4) are mostly proposed by Eugene Fink, where I participated in discussions and 

provided suggestions for improvements. The algorithm of the black hole database (Chapter 5) 

came from my discussion with Julio López. The algorithms of the correlation function 

techniques (Chapter 3) and quasar selection (Chapter 6) was developed by me. 
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objects, which processes millions of newly observed objects per second using only a 

desktop computer ([Fu et al., 2012b], Chapter 4). 

 Cosmologists conduct simulations to study the evolution of black holes by looking at the 

event history where two or more black holes merge to form a larger one. Existing 

analytical method no longer scales to the size of black hole datasets produced by the 

latest cosmological simulations. We introduce algorithms and strategies to store, in a 

relational database, a forest of black hole merger trees ([López et al., 2011], Chapter 5).  

 We report our initial works on the identification of quasars:  a type of galaxy that is 

valuable to astrophysics researchers (Chapter 6). We applied normal supervised learning 

techniques to classify quasars from other kinds of astronomical objects. Furthermore, 

since the acquisition of labels is expensive, we also used active learning techniques to 

reduce the overall labeling cost.   

Finally, I summarize in Chapter 7 and envision the related future work. I believe the 

interdisciplinary of astronomy and computer science has broad opportunity for collaboration and 

bright prospect. 
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Chapter 2  DiscFinder: Identification of Galaxy Clusters 

DiscFinder [Fu et al., 2010] is a scalable, distributed, and data-intensive group finder for 

analyzing observation and simulation astrophysics datasets. Group finding is a form of clustering 

used in astrophysics for identifying large-scale structures such as clusters and superclusters of 

galaxies. DiscFinder runs on commodity compute clusters and scales to large datasets with 

billions of particles. It is designed to operate on datasets that are much larger than the aggregate 

memory available in the computers where it executes. As a proof-of-concept, we have 

implemented DiscFinder as an application on top of the Hadoop framework. DiscFinder has been 

used to cluster the largest open-science cosmology simulation datasets containing as many as 

14.7 billion particles. We evaluate its performance and scaling properties and describe the 

performed optimization. 

2.1 Introduction 

Today, the generation of new knowledge in data-driven sciences, such as astrophysics, 

seismology and bio-informatics, is enabled by the processing of massive simulation-generated 

and sensor collected datasets. The advance of many fields of science is increasingly dependent 

on the analysis of these necessarily much larger datasets. For example, high-resolution 

cosmological simulations and large sky surveys are essential in astrophysics for answering 

questions about the nature of dark energy and dark matter (DE&DM) and the formation of 

large-scale structures in the universe. 

The analysis of these datasets becomes extremely challenging as their size grows. They become 

too large to fit in the aggregate memory of the computers available to process them. Enabling the 

scaling of science analytics to these larger datasets requires new data-intensive approaches. 

Frameworks, such as Hadoop and Dryad, are commonly used for data-intensive applications on 

Internet-scale datasets. These applications include text analysis, natural language processing, 

indexing the web graph, mining social networks and other machine learning applications. The 

natural question is then: Can we leverage these data-intensive frameworks for science analytics? 

In this work, we want to understand the requirements for developing new algorithms to enable 

science analytics using these systems. In the process, we should understand the advantages and 

limitations of these frameworks and how they should be enhanced or extended to better support 

analytics for science. 

As part of our collaboration with domain scientists, we have developed DiscFinder: a new 

data-intensive distributed approach for finding clusters in large particle datasets. Group finding is 

a technique commonly used in astrophysics for studying the distribution of mass in the universe 

and its relation to DE&DM. DiscFinder is complementary to other existing group finding 

methods and is particularly useful for processing very large datasets on commodity compute 

clusters even in the case where the available aggregate memory cannot hold the entire dataset. 



 

7 

 

Although, the mechanisms described here are specific to group finders for astrophysics, the 

principles are generally applicable to clustering problems in other fields of science. 

DiscFinder is scalable and flexible. DiscFinder scales up to process datasets with tens of billions 

of particles, the largest open-science simulation datasets. The DiscFinder design is compact and 

conceptually simple. The approach used in DiscFinder leverages sequential group finder 

implementations, which are employed for clustering relatively small subsets of the input 

particles. The main idea is to group and partition the input particle dataset into regions of space, 

then execute a sequential group finder for each partition, and finally merge the results together to 

join the clusters that span across partitions. The sequential finders are independently executed on 

relatively small subsets of the input to keep their running time low. The approach is implemented 

as a series of jobs on top of the Hadoop framework. DiscFinder relies on Hadoop for splitting the 

input data, managing and coordinating the execution of tasks and handling task failures. Finally, 

the DiscFinder strategy is flexible in the sense that it allows multiple implementations of the 

sequential group finder to be used. DiscFinder distributes the execution of the sequential finder 

to scale to large datasets. This strategy reduces the overall implementation complexity and 

benefits from the efforts invested in the development of the sequential finders. 

We are interested in determining the feasibility of the DiscFinder design and understanding its 

performance characteristics. In our evaluation, we first characterize the DiscFinder scalability 

with respect to the data size and find that it is possible to cluster large datasets with this 

approach. 

The main benefits of DiscFinder and future analysis applications implemented using similar 

approaches are their simplicity and potentially shorter development time. However, the 

simplicity of the implementation comes at a performance cost. We characterize the DiscFinder 

running time and apply a set of modifications to the implementation to improve its performance. 

There is clearly room for improvement both at the application and framework levels. We discuss 

various potential optimizations that can provide additional performance benefits. As the 

performance of these frameworks improves, they will be more widely used in data analytics for 

science. 

The rest of this chapter is structured as follows: We describe the motivating application in 

Section 2.2, and summarizes previous related work in Section 2.3; the DiscFinder design is 

explained in Section 2.4; the implementation details are presented in Section 2.5; We presents 

the performance evaluation of the approach in Section 2.6. 

2.2 Motivating Application 

Analysis of Astronomical Datasets. Domain scientists are now commonly faced with the 

challenge of analyzing massive amounts of data to conduct their research. In particular, ever 

increasing large observation and simulations datasets abound in astrophysics. The advent of 

digital sky surveys, beginning with the Sloan Digital Sky Survey (SDSS), increased dramatically 
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the scope and size of astronomical observational datasets [Abazajian et al., 2009]. The latest 

SDSS data release was over 30 TB in size. The field is moving toward large time domain 

astronomy surveys, such as Pan-STARRS [PanStarrs] [Kaiser et al., 2002] and LSST 

[Ivezic et al., 2008], which will store many time slices of data. Pan-STARRS is producing in the 

order of 1TB/day of imagery. Both Pan-STARRS and LSST are projected to produce multi-TB 

datasets over the lifetime of the surveys. Similarly, state-of-the-art N-body cosmological 

simulation, such as the Bigben BHCosmo and Kraken DM simulations [Di Matteo et al., 2008] 

produce multi-billion particle datasets with sizes in the orders of tens of terabytes, even after 

aggressive temporal sub-sampling. This down-sampling is needed to deal with the bandwidth 

and capacity limits of the storage system available in the supercomputers where these 

simulations execute. 

The analysis of these datasets is essential for tackling key problems in astrophysics, such as the 

understanding the nature of dark energy (DE) and dark matter (DM), and how DE&DM controls 

the formation of large-scale structures in the universe [Colberg and Di Matteo, 2008], such as 

clusters and superclusters of galaxies. To better understand the role of DE&DM in the evolution 

of the universe, theoretical and observational astrophysicists analyze the aggregate properties of 

large-scale structures, such as the distribution of their size, volume and mass [White, 2002]. 

Finding the groups of particles that make up the large-scale structures is the first step toward 

carrying out this process. Once the groups have been identified, then their properties can be 

calculated and the groups can be decomposed into sub-halos for further analysis 

[Springel et al., 2008] [Couchman et al., 1996] [Dikaiakos and Stadel, 1996] [Springel, 2005] 

[Heitmann et al., 2008b]. 

Group Finding. In astrophysics, group finding refers to a family of physics-based spatial 

clustering problems applied both to observation and simulation datasets. Their input is a set of 

celestial objects such as stars, galaxies, gas, dark matter, etc. We will refer to those as particles, 

points or objects. A group finder separates the particles into groups that make up larger structures 

such as galaxies and clusters of galaxies. In very loose terms, we will refer to those structures as 

groups or clusters interchangeably. In slightly more formal terms, a group finder takes an input 

set of particles P = {p1, p2,…, pn} and produces a set of m disjoint groups G = {G1,…, Gm} such 

that each group Gi comprises the subset of points from P (i.e.,  Gi   G: Gi   P and  Gi   G, 

 Gj   G, i ≠ j: Gi   Gj =  ). The criteria for determining the membership of a particle to a group 

may use physics-based computations that take into account particle properties such as position, 

mass and velocity. There are many variants of group finding approaches, both from the 

algorithmic point of view as well as the criteria used for the selection. 

Friends-of-Friends (FOF). FOF is a simple algorithm proposed by Huchra and Geller to study 

the properties of groups of galaxies in observation surveys [Huchra and Geller, 1982] 

[Davis et al., 1985]. Its group membership criteria are solely based on the Euclidean 

inter-particle distance. FOF is widely used and works in practice for many analysis scenarios. 

There are a large number of more sophisticated group finding approaches that are based on FOF. 
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FOF is driven by two parameters: a linking length ( ) and a minimum group size (minGz). The 

input is a set of particles P, in particular each particle is a tuple of the form <pidi, (xi, yi, zi)>, 

where pidi is the particle identifier and xi, yi, zi are the particle’s position coordinates in 3D space. 

The only group membership criteria is the following: two particles pi and pj belong to the same 

group Gl (i.e., they are friends), if the distance between them (dij) is less than  . This procedure is 

illustrated in two dimensions in Figure 2.1. Any other particle pk also belongs to the group Gl, if 

the distance between pk and any of the particles in Gl is less than  . After we apply this criterion, 

all the friends of pi become friends of pj and vice versa, which reflects the name of the approach. 

The output set G comprises the groups that contain a number of points equal to or larger than the 

minGz parameter. The output is represented as a list of tuples of the form <pid, groupId> where 

groupId is the group identifier. 

 

Figure 2.1: Friends of Friends (FOF) clustering. This dataset contains 8 particles p1,…,p8. 

Shaded regions denote groups of particles. Notice that particles p3 and p6 belong to the same 

group although they are not close enough to each other. The reason is that they are indirectly 

linked through their friends, particles p4 and p5. In this example, minGz = 2, and thus particles p7 

and p8 do not belong to any group.  

 

There are available sequential implementations of the FOF algorithm, such as the one from the 

“N-body shop” at the University of Washington [UW-FOF]. These implementations rely on 

building a spatial indexing structure, such as a kd-tree, to speed up lookups to nearby particles 

[Lee and Wong, 1977]. However, sequential solutions are relatively slow to process billions of 

galaxies. There are also various parallel group finders for distributed memory machines with 

low-latency networks that are often used in simulations (See Section 2.3). 

Existing group finding implementations, whether sequential or parallel, are in-core and thus 

require large enough available memory to fit the dataset and internal data structures. This means 

that finding groups and analyzing large simulation datasets require supercomputers of 

comparable capacity as the one used to generate them. For the very large datasets these resources 

are not readily available. In the cases where there is enough aggregate memory to execute the 

group finding process, the end-to-end running time is dominated by the I/O required to load the 
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input dataset and produce the results. We have developed an alternative data-intensive group 

finding approach named DiscFinder, which complements existing approaches. DiscFinder is 

useful for finding groups in datasets need to be loaded from external storage, such as it is often 

the case in the analysis of astronomy surveys and post-simulation analysis of synthetic datasets. 

DiscFinder makes it possible to find groups in datasets that are much larger than the memory of 

the available compute resources. 

2.3 Related Work 

Group finders used in astrophysics refers to a class of clustering approaches. The group 

membership criteria used in the basic FOF approach may not be appropriate for certain 

applications. Variations of the base algorithm are designed to handle uncertainties in the input 

data, and to take into account other particle properties besides their positions [Gottloeber, 1997] 

[UW-Skid]. For example, Extended FOF (EXT-FOF) is a finder used in photometric datasets 

[Botzler et al., 2004]; probability FOF (pFOF) is used to identify galaxy groups in catalogs in 

which the red shift errors have large dispersions [Liu et al., 2008]. Hierarchical FOF 

[Gottloeber, 1997], SOF
8
, SKID [UW-Skid], DENMAX [Gelb and Bertschinger, 1994], IsoDEN 

[Pfitzner et al., 1997], HOP [Eisenstein and Hut, 1998] and Sub-halos [Springel et al., 2008], 

among others, are sophisticated group finders with selection criteria that take into account the 

density of the neighborhood surrounding a particle and whether or not that particle is 

gravitationally bound to the larger structure. The approximate implementation from the 

University of Washington “N-body shop” (aFOF [UW-aFOF]) aims to overcome the severe 

slowdown experienced by the basic FOF implementation when the linking parameter   is 

relatively large. 

Parallel group finders, such as pHOP [Liu et al., 2003], HaloWorld [Pfitzner and Salmon, 1996], 

Amiga Halo Finder (AHF) [Gill et al., 2004] and Ntropy [Gardner et al., 2006], are implemented 

atop the Message Passing Interface (MPI) [MPI, 1993] and are designed to execute on parallel 

distributed memory machines with a fast low-latency interconnect between the processing nodes. 

These implementations are suitable for finding groups during the execution of the simulation. 

Ntropy is implemented as a framework atop MPI that provides a distributed kd-tree abstraction. 

One of its goals is to make it easy to implement analysis algorithms, such as FOF, on massively 

parallel distributed memory platforms. The user writes a function for reading the data that the 

Ntropy framework calls at run time to load the data into memory. 

All the aforementioned approaches require the complete dataset to fit in memory to execute. 

Their reported performance excludes the time needed to load the data and assume that the data is 

already in memory, which makes sense for the case where these approaches are used in 

numerical simulations. Recently, Kwon et al. developed an approach atop Dryad 

                                                           
8
 http://www-hpcc.astro.washington.edu/tools/so.html 
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11 

 

[Kwon et al., 2009] [Kwon et al., 2010] that shares similarities with the work presented here. 

They have shown results for clustering datasets with up to 1 billion particles using 8 nodes. 

2.4 DiscFinder 

DiscFinder is a distributed approach for group finding in datasets that may be larger than the 

total aggregate memory of computers performing the computation. DiscFinder enables the use of 

stand-alone sequential group finders in a distributed setting, and thus leveraging the efforts that 

has been put in the development of those sequential implementations. At a high level, the basic 

idea behind DiscFinder is to take a large unordered input particle set, then organize it and split it 

into multiple spatial regions and find groups in each region using the sequential group finder. 

The resulting groups from each region are merged to obtain the global set of groups. Figure 2.2 

depicts the stages involved in the DiscFinder pipeline. As in many other computational sciences 

applications that deal with a spatial phenomenon, DiscFinder uses spatial partitioning to split and 

distribute the computation across processing units. Unlike other applications, there is no explicit 

communication in the algorithms used at the application level. Instead, the needed data is moved 

by an underlying framework or through a distributed file system. 

 

Figure 2.2: DiscFinder Pipeline. The DiscFinder computation flow graph comprises the 

following stages: 1. Sampling (distributed), 2. Splitting (sequential), 3. Partitioning (distributed), 

4. Clustering (distributed), 5. Merging (sequential), and 6 Relabeling (distributed). 

Particle Set. The input particle dataset contains tuples of the form <parId, pos, oAttr>, where 

parId is the particle identifier, pos is the position of the particle in 3D space, and oAttr are other 

particle attributes such as mass, temperature, velocity, and so on. To cluster particles using the 

FOF criteria, we are only interested in parId and pos. Other attributes can be safely ignored and 

not read at all. 

Sampling. The objective of this stage is to sample the dataset to build a suitable partition of the 

data so the processing can be evenly split into independent compute nodes. Since the particles 

positions in space is the primary criteria for determining the groups, the generated partitions 

correspond to regions of space. The simplest approach is to divide the space into equal-size 

disjoint regions, such as 3D cubes. However, we have a-priori knowledge that points in real-

world astronomy datasets, whether generated by simulation or collected by observation, rarely 

follow a uniform distribution. This makes it undesirable to simply split the space into equal-size 

cubes, as this partitioning scheme generates partitions with different number of points per 

partition, and thus becomes hard to balance the load. A tree-based data structure, such as a 
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kd-tree, can be used to split the domain space into cuboid regions with equal number of points. 

This process is memory intensive and the time complexity of building such kd-tree using a 

median-finding algorithm is O(n log n), where n is the number of particles. The resulting cuboid 

regions are axis-aligned rectangular hexahedra, which we simply refer to as boxes. 

To deal with the size of the input dataset, instead of building a kd-tree for the whole dataset, we 

build a much smaller kd-tree with randomly selected sample points. The sampling stage is 

performed in a fully data-parallel manner. The input dataset is divided into many disjoint pieces 

such as file offset ranges or subsets of files for datasets made up of many files. Then a worker 

task can sample each of these subsets by choosing a small percentage of the records, e.g., 0.01%, 

and output the position of the sampled records. There is a sample set per worker task.  

Splitting. This is a sequential step that creates the split boxes used for partitioning the particles. 

It takes the sample sets produced by the sampling tasks in the previous step and builds a kd-tree 

that can be used to partition the input particle set into boxes with roughly the same number of 

particles per box. The granularity of the boxes, and thus the depth of the tree, is chosen so that in 

the cluster stage, for each box there is enough memory left to execute the sequential group finder 

code on the particles in the box. This yields many partitions that are usually larger than the 

number of available worker tasks for the pipeline. The number of worker tasks is proportional to 

the number of available compute nodes, e.g., 4 to 8 worker tasks per compute node. If the 

number of partitions is less than the number of worker tasks that means the pipeline can be easily 

executed with fewer computers. 

Shell-based Partitioning. This stage takes the input particle set and sorts it according to the 

partitions produced by the splitting phase. Splitting the data in disjoint spatial partitions requires 

communication across neighboring partitions to determine whether a group crosses a partition 

boundary. For example, the domain shown in Figure 2.3 is divided into 4 rectangular partitions. 

Although particles 3 and 4 are in separate partitions, they are close enough to belong to the same 

group. DiscFinder is designed so each partition can be processed independently and 

asynchronously. Partitions can be processed at different points in time. DiscFinder is targeted to 

execute atop data processing frameworks, such as MapReduce, Hadoop, or Dryad, that do not 

provide explicit communication primitives for the applications. 

DiscFinder uses a shell-based partitioning scheme to avoid explicit communication at the cost of 

a small increase in the memory requirement for each partition. All the partitions are extended by 

a small factor sl =  /2 on each side, where   is the linking length parameter for the group finder. 

The end result is that a partition has a shell around it that contains points shared with adjacent 

partitions. Shell-based partitioning enables the independent and asynchronous processing of each 

partition by decoupling the local computation of groups inside a partition from the resolution of 

groups that span across partitions. 

To illustrate the approach, consider a 2D domain made of 4 partitions as shown in Figure 2.3. 

The non-overlapping partitions are delimited by the heavy continuous line. Each partition is 

extended along each boundary by an additional length of  /2 (shaded area). The particles 
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numbered from 1 to 7 in the figure form a group. Without the shell, two disjoint groups would be 

created. The group in the top-left partition would contain three of the points (1, 2, 3) and the 

group in the top right partition would comprise the other four points in the group (4, 5, 6, 7). 

Joining these two non-overlapping groups requires communication across the tasks that process 

these partitions. Once the partitions are extended with the shell, the top-left partition finds a 

group G1 = 1,…,5; The top-right partition contains a group with 5 points G2 = 3,…,7. The 

members of these two groups overlap, which facilitates the unification of the groups in a separate 

merging stage down the pipeline. 

 

Figure 2.3: Shell-based Partitioning. Four partitions are shown here in two dimensions. Each 

partition has an additional shell of length  /2 along the boundary. The shaded area at the top left 

of the figure represents the actual size of the partition 1 once it has been extended to include its 

shell. 

The choice of the value for sl ensures that when two points in separate partitions are at a distance 

d(pi, pj) <  , then at least one of them is included in the shell of one of the partitions, which is 

enough to later find the groups that span multiple partitions. Note that shell-based partitioning 

increases the volume of each partition and potentially the number of particles to be processed per 

partition. This approach works under the assumption that the size of the shell, or equivalently the 

chosen linking length parameter  , is relatively smaller than the size of the partition, which 

usually holds in practice. 

The partitioning stage is distributed across many worker tasks. Each task reads a chunk of the 

input particles and classifies them into buckets that correspond to the spatial partitions (including 

their shells). Each bucket contains a subset of the particles belonging to a spatial partition. 
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Distributed Clustering. In this stage, all the particles in each bucket (i.e., partition) are collected 

so a worker task has all the particles in a shell-extended partition. The partitions are distributed 

to worker tasks. Locally, each task executes a sequential group finder, such as the FOF 

[UW-FOF] or aFOF implementations [UW-aFOF] from University of Washington. For each 

point in a partition, the local group finder generates a <pointId, pGroupId> tuple, where the 

group identifier pGroupId is local to each partition. The generated tuples are separated into two 

sets: shell set and interior set. The shell set contains points inside the shell region. This set is 

passed to the merging stage. The interior set contains points that fall inside the original disjoint 

partition, but not in the extended shell of any partition. This set is stored and used again later in 

the relabeling stage. At the end of the distributed clustering stage there are R shell sets and R 

interior sets, where R is the number of partitions generated by the splitting phase. 

Merging. As shown in Figure 2.3, a point inside a partition’s shell is processed in two or more 

partitions. Such a point may belong to different local groups across partitions. Figure 2.4 shows 

the resulting groups for two partitions (1 & 2) of Figure 2.3. Points 3, 4, 5 are assigned to group 

G1 in partition 1 and to group G2 in partition 2. The purpose of the merging stage is to 

consolidate groups that span multiple partitions by using R shell sets generated in the previous 

stage. The amount of data passed to this stage is relatively smaller than the size of the particle 

datasets (since   is relatively small), thus reducing both compute and I/O requirements for this 

stage.  

The merging stage employs a Union-Find algorithm to merge subgroups that have common 

points into unique global groups [Galler and Fischer, 1964] [Galil and Italiano, 1991]. 

Union-Find uses a disjoint-set data structure to maintain several non-overlapping sets, while each 

set containing one or several elements. This data structure supports the following two operations: 

Union and Find. Union(A, B) merges two sets A and B and replaces them with their union. 

Find(e) determines to which set an element e belongs. For the purpose of the group merging 

stage, a group corresponds to a set in the disjoint-set data structure, and a particle corresponds to 

an element. Initially, each particle belongs to its own group. The procedure iterates over all the 

particles and when it discovers that a particle belongs to two different groups, and then it merges 

those two groups using the Union operation. The output of the merging procedure is a list of 

relabeling rules that describe the equivalent groups, i.e., the groups that span across partitions. 

These rules are tuples of the form <oldGroupId, newGroupId>. A set of relabeling rules is 

produced for each partition. 

This data structure and the corresponding Union-Find algorithm can be implemented using hash 

tables. The complexity of the Union-Find algorithm is nearly linear in the number of input 

elements [Tarjan, 1975]. Since it is only applied to a small subset of the particles, the ones inside 

the shells, its running time is relatively short compared to the rest of the pipeline. Since this 

algorithm is sequential, its scalability is limited by the memory available in a single processing 

node. We have used it to execute pipelines with close to 15 billion particles. Until now, its 

memory requirements have not been an issue. 
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Relabeling. This is the last stage in the pipeline. Its purpose is to apply the relabeling rules from 

the merging stage to each of the partitions generated in the clustering stage. This is a 

data-parallel process. The work is distributed to many tasks, where each task applies the rules to 

a partition. This is done in a single pass. The partitions are expected to be evenly balanced, so the 

running time of this step is proportional to N/m, where N is the total number of particles and m is 

the number of available processing units. 

 

Figure 2.4: Merging Stage. The shell sets for partitions 1 and 2 in Figure 2.3 contain groups that 

share common points. The Merging Stage consolidates the sub-groups that span multiple 

partitions. 

2.5 Pipeline Implementation 

The DiscFinder algorithms are designed to be implemented using a MapReduce 

[Dean and Ghemawat, 2004] style of computation. We implemented the DiscFinder pipeline atop 

Hadoop
9
 – an open-source, free implementation of the MapReduce framework. Alternatively, the 

DiscFinder pipeline could be implemented as a collection of programs that use a programming 

interface such as MPI [MPI, 1993] and/or OpenMP [Chandra et al., 2000] and are glued together 

with scripts that execute with the help of a resource manager such as PBS [Bayucan et al., 1999]. 

Our objective is to explore how the MapReduce programming model, and frameworks such as 

Hadoop, can be used to tackle large-scale data-intensive analytics found in many science 

domains. 

Hadoop. Hadoop is a distributed framework that has become very popular among the Internet 

services companies. It is widely used at companies such as Yahoo! and Facebook for their 
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analytics applications for web graph and social network data. Applications for the framework use 

a MapReduce programming model. Hadoop has a few features that make it attractive for 

large-scale data-intensive processing: its support for processing datasets larger than the available 

memory of the compute resources; its ability to scale the processing to handle very large 

datasets; its resilience to individual component failures; its relatively simple programming 

model; and, its community supported open-source implementation. 

 

Figure 2.5: DiscFinder partitioning and clustering stages. This is the central MapReduce job in 

the DiscFinder pipeline.  

As a first approximation, Hadoop provides a mechanism for applying a user-defined procedure 

(map function) over a large dataset, then grouping the results by a key produced by the map 

function, and then applying another user-defined procedure (reduce function) to the resulting 

groups. The execution of these functions is distributed over a compute cluster. The framework 

handles the partitioning of the input data, the data communication, the execution of the tasks and 

the recovery from errors such as hardware failures and software crashes. For example, Figure 2.5 

illustrates a MapReduce job that belongs to the DiscFinder pipeline. The input particle dataset is 

split across three map tasks that perform the partitioning stage by assigning a key (partition box 

id) to each input record (particle). The framework collects all the intermediate records that have 

the same key (box id) such that a reducer process receives all the records with the same box id. 

Separate distributed processes execute the reduce function that, in this case, perform the 

clustering pipeline stage. Each reducer produces a subset of the output dataset. 

The map and reduce functions may execute in the same set of computers. The datasets are 

available to the tasks on a distributed file system (DFS). Hadoop works with a variety of DFSs 

including parallel file systems, such as PVFS2, and Hadoop’s own HDFS. HDFS is modeled 

after the Google File System [Ghemawat et al., 2003]. It is designed to aggregate the storage 

capacity and I/O bandwidth of the local disks in a compute cluster. Adding hosts to the file 
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system results in capacity and bandwidth scaling. In a typical Hadoop deployment, the 

computation is carried out in the same computer used for HDFS. The Hadoop job scheduler 

makes an effort to place the computation in the hosts that store the data. 

DiscFinder Pipeline. The DiscFinder pipeline (Figure 2.2) is implemented as a succession of 

Hadoop MapReduce jobs and sequential programs written in Java. The sampling and splitting 

stages are implemented as one MapReduce job, the partitioning and clustering phases make up 

another job. The merging stage is implemented as a stand-alone Java program. The relabeling 

phase is a distributed map-only job. 

The procedures shown below are the high-level driver for the DiscFinder pipeline. It takes as 

input the astrophysics dataset P and the grouping parameters (here  ) and produces as output a 

list with mappings from particles to groups. Remember that the input set P contains a set of 

tuples where each tuple corresponds to a particle in the dataset. The tuple contains information 

about the particle such as its identifier and other attributes such as its position and velocity 

among others. 

 

The first step (Line 1) corresponds to the dataset sampling in the processing pipeline. It is carried 

out using a distributed MapReduce job. The map and reduce functions for this step are shown in 

detail below in the procedures SamplingMap and SamplingReduce. 

Sampling and Splitting. The sampling stage is implemented as a map function in the first job. 

Each map task randomly selects a subset of particles. A single reducer task in this job 

implements the splitting stage. The CubeSplit procedure (line 5 in the SamplingReduce 

procedure), takes the output of the sampling and, using a kd-tree, splits the domain into partitions 

that are used in the subsequent MapReduce job. The partition description is written to HDFS. 

Procedure DiscFinder(P, 𝜏): Driver for the DiscFinder pipeline. 

Input: P is a set of N points, where each point pi is of the form 

<parId, attributes> 

Input: 𝜏 is the linking distance parameter for FOF 

Output: Mapping of particles to groups. 

// Run a map reduce job for the sampling phase 

1 MapReduce( SamplingMap, SamplingReduce ); 

/* Use map reduce for point partitioning points and running the 

groupfinder distributedly */ 

2 MapReduce( PartitionMap, ClusteringReduce ); 

3 CollectShell() // Collect the shell data into a central location 

4 UnionFind() // Merge groups across partitions 

// Finally, use a map-only job to relabel the points 

5 MapReduce( RelabelMap, NullReducer ); 
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Partitioning and Clustering. The second MapReduce job executes the partitioning and clustering 

stages, which correspond to the bulk of the processing in the pipeline. The partitioning stage is 

executed by the map tasks (See Figure 2.5). Each task takes a portion of the particle dataset and 

executes the function shown in procedure PartitioningMap. This procedure is executed for each 

input particle. It receives as parameters the particle’s identifier and position. First, it determines 

the partition in which this particle falls (Line 1) and emits a tuple with the partition (box.id) as 

the key, and the particle id and position as the values. Additional tuples are emitted for particles 

that fall in the shell of any other partition(s) (Lines 3–7). 

The framework groups the tuples having the same box id and sends them to a reducer task and 

calls the ClusteringReduce procedure for each group of values that have the same key. This 

procedure executes the external group finder implementation (Line 1), specifically the UW FOF 

sequential implementation [UW-FOF]. It involves creating an input file in the local file system 

for the external program, launching the executable and reading the output produced by the 

program from the local file system. The group membership information for particles that lie in 

the shell is stored in a separate file (Lines 4–6). 

Procedure SamplingMap(Int Key, Particle Value) 

Input: Key is a randomly generated integer value for each point. 

Input: Value contains relevant payload values for the particle, such 

as <parId, position> 

Input: c is a pre-defined prime integer to indicate the sampling rate. 

We set c = 16001 in our experiments. 

Output: A subset of sampled particles 

/* Key is used to sample the input points, since the attribute is 

randomly generated */ 

1 if Key % c == 0 then 

2  EmitIntermediate(1, Value.position) 

3 end if 

 

Procedure SamplingReduce(Int Key, Iterator Values) 

Input: Key is emitted by the SamplingMap procedure. 

Input: Values contains the positions of the sampled particles. 

Output: Partitioning scheme for the input dataset 

1 List<Particle> particleList = null 

2 foreach v in Values do 

3  particleList.add(v) 

4 end foreach 

/* Use particleList to build a kd-tree and use 𝜏  to generate the 

boundary of each extended cube. */ 

5 Output(CubeSplit(particleList)) 
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Merging. The merging stage is implemented as a sequential Java program that reads the files 

with the shell information, which were generated by the ClusteringReduce procedure. The 

merging code executes the union-find algorithm and writes out the relabeling rules only for 

groups that span across partitions. 

 

Procedure PartitioningMap(pId, position) 

Partition particles into overlapping boxes. 

Input: pId → particle identifier. 

Input: position → particle position (<x, y, z>). 

Output: Tuple → <key = boxId, value = (pId, position)> 

1 box ← getPartitionBox( position ) 

2 EmitIntermediate( box.id, pId, position ) 

3 if position in shell(box) then 

// Emit tuples for adjacent boxes 

4  foreach oBox: getAdjBoxes( position, box ) do 

5   EmitIntermediate( oBox.id, pId, position ) 

6  end foreach 

7 end if 

 

Procedure ClusteringReduce(boxId, particles) 

Apply the sequential group finder to a partition (box). 

Input: boxId → partition identifier. 

Input: particles → list of tuples <pId, position>. 

Output: Particle membership list <pId→gId>. where pId: particle id, gId: group id. 

// Run local group finder 

1 particleToGroupMap = groupFind( particles ) 

2 foreach particle in particleToGroupMap do 

3  Emit( particle.id, particle.groupId ) 

// Write in a separate file the group membership for particles in the shell 

4 if particle in shell(box) then 

5   Output( particle.id, particle.groupId ) 

6  end if 

7 end foreach 
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Relabeling. A map-only job (no reducer) implements the final relabeling stage. Each task reads 

the groups for a partition and the corresponding relabeling rules. For each tuple <pid, gIdLocal>, 

a corresponding tuple <pid, gIdGlobal> is generated using the relabeling rules to map from local 

group (gIdLocal) to the equivalent global group (gIdGlobal). 

Procedure UnionFind(groupMapping) 

Execute the union-find algorithm for particles on the shell. 

Input: groupMapping is a set of <parId, groupId> pairs. 

Output: A set of group-transition rules. 

1 parToGroupMap ← EmptyMap; 

2 groupToGroupMap ← EmptyMap; 

3 foreach (parId, groupId): groupMapping do 

4  if groupId not in groupToGroupMap then 

// Add self-mapping: groupId to groupId 

5   groupToGroupMap.put( groupId, groupId ) 

6  end if 

7  if parId not in parToGroupMap then 

// Add mapping: parId to groupId 

8   parToGroupMap.put( parId, groupId ) 

9  else 

10   groupId* = parToGroupMap.get( parId ); 

11   while groupId not equal groupToGroupMap.get( groupId ) do 

12    groupId = groupToGroupMap.get( groupId ) 

13   end while 

14   while groupId* not equal groupToGroupMap.get( groupId* ) do 

15    groupId* = groupToGroupMap.get( groupId* ) 

16   end while 

17   if groupId not equal groupId* then 

// Merge (union) groups groupId and groupId* 

18    groupToGroupMap.put( groupId, groupId* ) 

19   end if 

20  end if 

21 end foreach 

22 foreach (groupId, groupId’) : groupToGroupMap do 

23  if groupId not equal groupId’ then 

24   while groupId’ not equal groupToGroupMap.get( groupId’ ) do 

25    groupId’ = groupToGroupMap.get( groupId’ ) 

26   end while 

27   Output <groupId, groupId'> to group-transition rule file. 

28  end if 

29 end foreach 
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2.6 Evaluation 

The goal of our evaluation is to test whether DiscFinder is a feasible approach for clustering 

massive particle astrophysics datasets, and indirectly whether similar approaches can be used for 

other large-scale analytics in science. We want to measure and understand the overheads 

introduced by the DiscFinder algorithm and the Hadoop framework, and thus find ways to 

improve both the application and the framework. We conducted a set of scalability and 

performance characterization experiments as shown below. 

Datasets. In our evaluation we used snapshots (time slices) from the three different cosmology 

simulation datasets shown in Figure 2.6. BHCosmo simulates the evolution of the universe in the 

presence of black holes [Di Matteo et al., 2008]. Coyote Universe is part of a larger series of 

cosmological simulations carried out at Los Alamos National Laboratory 

[Heitmann et al., 2008a]. DMKraken is a 14.7 billion dark-matter particle simulation carried out 

by our collaborators at the CMU McWilliams Center for Cosmology . These datasets are stored 

using the GADGET-2 format [Springel, 2005]. 

 

 

 

 

 

 

Procedure RelabelMap(Int Key, Int Value)  

Relabel groups and particles for each partition. A mapper operates on a set of 

particles in a cube partition. Each entry in this set is of the form <parId, groupId> 

Input: Group-transition rules produced by the Union-Find procedure. 

Input: Key is the particle ID. 

Input: Value is the group ID. 

Output: Relabeled particle set. 

1 parId = Key, groupId = Value 

2 if exists mapping from groupId to groupId’ then 

// Relabel by changing groupId to groupId' 

3  Emit(parId, groupId’) 

4 else 

// Emit original result 

5  Emit(parId, groupId) 

6 end if 
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Name Particle 

count 

Snap 

size 

Snap 

count 

Total 

size 

BHCosmo 20M 850MB 22 18.7GB 

Coyote Universe 1.1B 32GB 20 640GB 

DMKraken 14.7B 0.5TB 28 14TB 

Figure 2.6: Cosmology simulation datasets 

Experimental Setup. We carried out the experiments in a data-intensive compute facility that 

we built in late 2009, named the OpenCloud
10

 cluster. Each compute node has eight 2.8GHz 

CPU cores in two quad-core processors, 16 GB of memory and four 1 TB SATA disks. The 

nodes are connected by a 10 GigE network using Arista switches and QLogic adapters at the 

hosts. The nominal bi-section bandwidth for the cluster is 60 Gbps. The cluster runs Linux 

(2.6.31 kernel), Hadoop (0.19.1), PVFS2 (2.8.1) and Java (1.6). The compute nodes serve both as 

HDFS storage servers and worker nodes for the MapReduce layer. A separate set of 13 nodes 

provide external RAID-protected storage using PVFS2. Hadoop is configured to run a maximum 

of 8 simultaneous tasks per node: 4 mappers and 4 reducers. 

Datasets Pre-processing. The original input data is in the GADGET-2 format, which is a binary 

format used by astrophysicists. To fit it naturally to the Hadoop framework and speed up 

implementation, we converted all the input data to a simple text format. The whole conversion 

costs significantly (e.g. 11 hours for the 14.7 Billion point dataset), although each dataset only 

needs to be processed once. 

2.6.1 Scalability Experiments 

With these experiments we want to determine whether DiscFinder can be used to cluster datasets 

that are much larger than the aggregate memory of the available compute resources, and how its 

running time changes as we vary the available resources. Similar to the evaluations of 

compute-intensive applications, we performed weak and strong scaling experiments. However, 

the results are presented in terms of number of compute nodes, as opposed to number of CPUs. 

This is more representative of the evaluated application, where the memory capacity and I/O 

bandwidth are the bottlenecks. Due to the nature of how tasks are managed in Hadoop, there is 

no one-to-one mapping between tasks and number of CPU cores. The results reported below are 

the average of three runs with system caches flushed between runs. Some of the running times 

include partial task failures that were recovered by the framework and allowed the job to 

complete successfully. 

                                                           
10

 http://wiki.pdl.cmu.edu/opencloudwiki/bin/view/Main/ClusterOverview 

http://wiki.pdl.cmu.edu/opencloudwiki/bin/view/Main/ClusterOverview
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In the strong scaling experiments, the total work is kept constant and the work per host changes 

inversely proportional to the number of compute nodes. In the weak scaling experiments, the 

work per host is kept constant and the total work grows proportional as compute resources are 

added. We varied the number of compute hosts from 1 to 32. The results are shown in Figures 

2.7 and 2.8. The X axis in these figures is the cluster size (number of worker nodes) in log scale. 

 

 

 

 

Figure 2.7: Strong scaling. 

Strong Scalability. Figure 2.7 shows the strong scalability of the DiscFinder approach. The Y 

axis is the running time in log scale. The curves correspond to different dataset sizes of 14.7, 1.1, 

and 0.5 billion particles. Notice that the 14.7 billion dataset is larger than the memory available 

for the experiments (16 and 32 nodes). The same applies for various scenarios in the cases for 

1.1 and 0.5 billion particles. Linear scalability corresponds to a straight line with a slope of –1, 

where the running time decreases proportionally to the number of nodes. The DiscFinder running 

time is not linear. With a small number of nodes, the running time actually is superlinear
11

, 

which probably due to that not enough memory are provided to the Hadoop framework (so too 

much disk access, and possible memory thrashing slows down the computation job), and with a 

larger number of nodes each node performs too little work and the framework overhead 

dominates. 

Weak Scalability. To perform the weak scaling experiments, we extracted sub-regions of the 

different datasets to match the appropriate sizes needed for the experiments. The Y axis in the 

weak scaling graph (Figure 2.8) is the elapsed running time in seconds (linear scale). The curves 

                                                           
11

 Similar phenomena were reported for other Hadoop jobs, including Terasort, CloudBurst 

(https://blogs.oracle.com/BestPerf/entry/20090920_x2270m2_hadoop), and PageRank 

(http://cs264.org/projects/web/Porter_Judson/brownell-porter/). 
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correspond to different problem sizes of 64 (top) and 32 (bottom) million particles per node. The 

point of 32 nodes in the X axis for the 32M/node curve corresponds to a problem size of 1 billion 

particles. Similarly, the 16 node, 64M/node curve also has a total problem size of 1 billion 

particles. 

 

 

Figure 2.8: Weak scaling values in seconds. 

The best running time in our experiments lies around a sweet spot between 4 to 8 nodes for 

datasets smaller than 1 billion particles. We expect non-negligible overheads, introduced by the 

framework and the approach, due to the incurred I/O, data movement and non-linear operations 

such as the shuffle/sort in the job that performs the partitioning and clustering stages. A non-

negligible amount of memory in each node is used for the HDFS processes. The shuffle/sort 

operation also uses large amounts of memory per reducer task when the data sizes are large. The 

running time in all cases exhibits a non-linear trend, especially for larger number of nodes where 

the framework overheads dominate the running time. Even with all the aforementioned 

overheads and task failures, it was possible to process and cluster particle datasets that were 

much larger than the available memory. 

2.6.2 Performance Characterization 

We are interested in gaining insights about the DiscFinder running time. We performed 

additional experiments to break down the total running time into the time spent in each stage of 

the pipeline. In addition, we split the running time of the second job (Partitioning and Clustering) 

into the phases corresponding to finer-grained operations in that job. For this set of experiments 

we used 32 nodes and focused on the largest dataset (14.7 billion particles). The phases for the 

running time breakdown are the following. 
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1. Sampling: This corresponds to the sampling stage of the pipeline. 

2. Splitting: This stage builds a kd-tree to spatially partition the space. 

3. Loading input data: This refers to reading the particle dataset from HDFS. This step is 

performed in the map phase of the main MapReduce job (PartitioningMap). 

4. Loading box index: Time spent loading the index that contains the partition information. This 

is done in the PartitioningMap procedure. 

5. Box search: This is the time required to search the spatial partition information in the map 

phase in the PartitioningMap procedure. 

6. Shuffling / Sorting: This is the time required to move data from the mappers to the reducers in 

the main MapReduce job (from PartitioningMap to ClusteringReduce). 

7. FOF data generation: This is the time required in the reducer to generate the input data for the 

external group finder program. 

8. FOF execution: This is the time needed to run the external group finder. 

9. Merging: Pipeline merging stage. 

10. Relabeling: Pipeline relabeling stage. 

We conducted extra experiments from the start of the pipeline to each of above phase. Using the 

time difference between these experiments we have acquired the running time of each phase. For 

instance, the running time of step4 is measured by the difference between experiment of phases 

1–4 and experiment of phases 1–3. 

The detailed breakdown of the running time for each of these steps is shown in Figure 2.9. 

Columns 2 and 3 show the absolute (in seconds) and relative time for the unmodified 

implementation of the pipeline. The relative time is expressed as a percentage of the total 

running time. The data shows that the Sampling/Splitting, Box search and Shuffle/sort steps 

account for about 80% of the running time. The time spent in the sampling/splitting step was 

unexpectedly high. The long time spent in the box search step was due to an inefficient 

implementation of the search. An incorrect setting of a Hadoop parameter caused the shuffle/sort 

step to take longer than necessary. 

Performance Improvements. We performed a set of optimizations to improve the overall 

performance of the pipeline. The breakdown of the running time for the improved version is 

shown in columns 4 and 5 of Figure 2.9. Column 4 has the absolute time for each step in seconds 

and column 5 contains the relative time with respect to the total running time of the improved 

version. Column 6 shows the speedup for that step relative to the baseline. The overall speedup is 

3X. However, do not read too much into this result. What it really means is that it is easy to 

introduce performance bugs that may lead to inefficient implementations. Below are the 

anecdotes of our debugging experience. 
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Step Base Improved Speedup 

Second Relative time % Second Relative time % 

Sampling 1555 13.4% 859 22.5% 1.8 

Splitting 62 0.5% 62 1.6% 1.0 

Load particles 229 2.0% 232 6.1% 1.0 

Load box idx 3 0.0% 12 0.3% 0.3 

Box search 3422 29.5% 122 3.2% 28.0 

Shuffle/sort 4363 37.6% 1000 26.2% 4.4 

FOF data gen. 762 6.6% 320 8.4% 2.4 

FOF exec 576 5.0% 584 15.3% 1.0 

Merging 151 1.3% 137 3.6% 1.1 

Relabeling 486 4.2% 482 12.7% 1.0 

Total 11609 100.0% 3810 100.0% 3.0 

Figure 2.9: Breakdown of the DiscFinder elapsed time. The experiments were running on a 

snapshot of the DMKraken dataset (14.7 billion particles) on 32 worker nodes. 

 Improving the Sampling/splitting Phase. In this step only a very small number of particles 

need to be sampled, but our implementation as a natural MapReduce program still had to 

read the full dataset, which incurred extra overhead. The current solution consists of 

performing the sampling outside Hadoop in a separate stage. The sampling time is still 

relatively high. We are working on alternate solutions to further decrease the sampling 

time using some of the sampling facilities available in later versions of Hadoop (0.20.x). 

 Speeding up Box Lookups. The performance of the box lookup was affected by the initial 

implementation choice. We had used a simple linear search mechanism for this structure. 

However, this box lookup is performed at least once for every particle. On aggregate, the 

lookup time becomes significant. Replacing the lookup mechanism with a routine that 

uses a O(log n) algorithm, where n is the number of partitions, provided major benefits. 

 Adjusting Number of Reducers. In this set of experiments the particles are split into 1024 

spatial partitions. At first, it was only natural for the domain application developer to set 

the total number of reduce tasks equal to the total number of partitions. In this way, each 

reduce task would process a single partition. This is the same approach used in high 

performance computing applications, where the number of partitions matches both the 

number of processes and processors. During the execution of the original DiscFinder 

implementation, we noticed in our cluster monitoring tool that the network bandwidth 

consumption had a cyclic behavior with periods of high utilization followed by idle 

periods. This effect was caused by multiple waves of reduce tasks fetching data produced 
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by the map tasks. By setting the number of reducers for the job to (numberOfNodes – 1) 

× reducersPerNode = 124, all the reduce tasks were able to fetch and shuffle the data in a 

single wave, even in the presence of a single node failure. In this scenario, a reduce task 

processed multiple domain partitions. This adjustment required no code changes, as this 

is the normal mode of operation for the framework. 

Although the running time significantly decreased after these modifications, there is clearly room 

for additional improvement, both at the algorithmic level in the application and in terms of 

efficiency in the framework. 

2.6.3 Future optimizations 

 Fine tuning the size of the memory buffers used for the shuffle/sort step in Hadoop jobs. 

 Re-designing the pipeline so the external FOF can run on the map phase as opposed to 

the reduce phase to make more efficient use of the memory, which would allow for 

higher parallelism and more efficient use of the memory. 

 Reading binary data directly: Loading the data using a binary Hadoop reader to avoid 

preprocessing step. 

 Better sampling and box lookup implementation. 

 Shuffle: Text vs. binary shuffle transfers. Using a binary representation for transferring 

data between map and reduce during the shuffle phase. 

 Shuffle: Compressing the intermediate tuples, to reduce the network I/O. 

 Producing compressed output in the last stage (relabeling). 

2.7 Potential utilization of our proposed technique 

Currently the most popular large-scale Friends-of-Friends solvers are based on MPI, e.g. Ntropy 

[Gardner et al., 2006]. Those solutions work best for large-scale cosmological simulations, 

because the simulations are normally conducted in supercomputers running MPI
12

, and it is 

convenient to directly use the simulation output in an MPI cluster, rather than moving data to a 

Hadoop cluster first. 

Furthermore, some advantages of Hadoop over MPI do not stand out in this situation as of now. 

For example, Hadoop handles failures automatically, and users do not need to worry if an 

individual node goes down. MPI itself does not provide this functionality. However, currently 

when large-scale cosmological simulations are being conducted, failures do not occur often. Our 

collaborators indicated that in their simulations using 98,304 cores, failure happened “a few 

                                                           
12

 MapReduce/Hadoop is inefficient at running cosmological simulations. MapReduce is 

designed to run batch processing jobs, not iterative jobs or jobs with too much communications 

between compute nodes. Generally, the traditional high performance computing (supercomputer, 

MPI) is designed for compute-intensive jobs, while Hadoop/MapReduce is good for 

data-intensive jobs.  
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times” during a 7-day span, but not a serious concern. They also wrote checkpoints every 6~7 

hours (not only for failure prevention, but also at the end of each allocated time slot). 

Although our Hadoop implementation has not yet been utilized by astronomers
13

, they do think 

that it has several attractive features. For one, although the supercomputers are very powerful, 

they are not free to access: For example, in order to use the 98,304 cores of Kraken 

supercomputer (almost all of its cores), our collaborators can only take full control of it for 24 

hours per week. On top of that, they need to write proposals and make their data public. These 

limitations add difficulties for astronomers to use supercomputers. 

If a user cannot access to the many cores of supercomputers, then it is harder for him to use 

MPI-based solutions to analyze a large dataset, since most MPI-based solutions require all the 

data to be loaded into memory. In contrary, our Hadoop solution does not have that requirement 

and it only needs all the data in each partition to fit into the memory of a reducer. This is a very 

big plus. 

Furthermore, Hadoop provides automatic data partition to users. This is helpful especially when 

a user wants to re-partition data for a different cluster setting (e.g. use different number of nodes, 

and/or different set of nodes). The Hadoop framework automatically provides all above 

operations. Actually, for each partition of input data, Hadoop even tries to allocate the nearest 

Map task to process it, making better exploitation of data locality. An MPI-based alternative 

requires users to write additional codes for these functionalities, which is a lot of works and 

error-prone. 

Finally, although the benefit of Hadoop’s fault tolerance is not standing out now, one of our 

astronomer collaborators said the feature is still attractive because comparing to MPI, he feels 

safer to use Hadoop to execute long-running tasks. To summarize, all these Hadoop’s features 

dealing with large data make our implementation a very flexible tool. Our collaborators indicated 

that they would try it in some scenarios, or use it to complement their current tools. 

2.8 Conclusion 

The analysis of state-of-the-art and future astrophysics datasets is difficult due to their size. 

Group finding and other analysis techniques need to be scaled to operate on these massive 

datasets. DiscFinder is a novel data-intensive group finder that scales to datasets with tens of 

billions of particles. DiscFinder has enabled the analysis of the largest state-of-the-art cosmology 

datasets. Nevertheless, its first implementation has relatively high overheads introduced by 

application algorithms and framework implementation. We described different approaches to 

improve its performance. As the analysis of truly very large datasets requires a data-intensive 
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 Although our technique has been used as an I/O intensive scientific workload in the evaluation 

of computer systems [Fan et al., 2011] [Tantisiriroj et al., 2011]. 
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approach, there are opportunities and needs to improve the performance and extend the 

programming models to better support analytics applications for science. 
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Chapter 3  Exact and Approximate Computation of a Histogram of 

Pairwise Distances between Astronomical Objects 

3.1 Background 

In this chapter, we turn to the following astrophysics problem: building a histogram of pairwise 

distances between celestial objects, the astronomical correlation function problem 

[Peebles, 1980]. The histogram essentially measures the distribution of astronomical objects at 

given distances, and it has been widely used by astrophysicists. 

For instance, one application of correlation functions is to help cosmologists better understand 

the universe. Now cosmologists have come to the consensus that the universe is not only 

expanding, but expanding at an accelerated rate. How to better understand and measure the 

acceleration of our expanding universe has become one of the most important questions in 

modern cosmology. Relatively, the recession velocities of distant astronomical objects are easier 

to determine via the Doppler effect, but the exact distance of distant objects is extremely difficult 

to measure very accurately. 

Recently cosmologists studied the Baryon Acoustic Oscillations (BAO), a complex astrophysical 

effect. What BAO tells us is a precise distance formed at the early stage of the universe – 

currently measured at about 490 million light years – that separates the hypothesized dark matter 

and other baryonic matter. Since both the baryons and dark matter continued to attract matter and 

eventually form galaxies, cosmologists expect a greater number of galaxies that are separated by 

that specific distance. Although people cannot observe this phenomenon directly, one can 

measure it by looking at the separations of large numbers of galaxies, i.e. using tools like 

correlation functions.  

Moreover, since the physics of BAO is simple enough, there are few uncertainties in the 

measurement, making it the most accurate cosmological distance indicator (a standard ruler) 

known as of now
14

. As a result, the study of BAO has been very popular recently. For example, 

the BAO signal has been detected in the latest Sloan Digital Sky Survey [Anderson et al., 2012], 

as shown in Figure 3.1. 

                                                           
14

 More details about the current applications of BAO can be found in the project description of 

SDSS-IV: http://www.sdss3.org/future/sdss4.pdf. 

http://www.sdss3.org/future/sdss4.pdf
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Figure 3.1: BAO signal detected in the Sloan Digital Sky Survey. There is a peak around 

100~110 Mpc/h
15

 (equivalent to about 490 million light years), which indicates that more 

galaxies are separated by that distance. 

The current datasets that the BAO is calculated on is getting larger. For example, BigBoss
16

 has 

collected two millions red luminous galaxies, on which cosmologists calculate the correlation 

function. The Euclid project
17

 is expected to observe 20 million red luminous galaxies. 

Moreover, in order to determine whether indeed a greater number of galaxies are separated by 

some distance in the dataset, we also need to calculate the correlation function over a random 

point set
18

 which, to get statistical significance, should be at least 50 times larger than the 

original data. As a result, in the near future cosmologists will need to calculate correlation 

functions over billions of astronomical objects for the BAO application. And correlation 

functions are also used in many other scenarios. 

In this chapter, we provide a survey on different ways to calculate the correlation function. Since 

a naive solution takes quadratic time, a more efficient solution is necessary on large datasets. 

Researchers have proposed sequential approaches to better compute correlation functions. In 

particular, Gray and Moore used kd-trees [Gray and Moore, 2000], and Belussi and Faloutsos 

developed an approximation algorithm based on fractal dimensions 

                                                           
15

 “Mpc” is short for Megaparsecs. 1 parsec is equal to 3.26 light years, and one Megaparsec is 

10
6
 parsecs. “h” represents the Hubble constant. 

16
 http://bigboss.lbl.gov/ 

17
 http://sci.esa.int/euclid 

18
 Since the coverage maps of most data surveys are in irregular shape, we usually cannot get an 

analytical solution theoretically, but have to generate random data in the irregular space (Monte 

Carlo) and calculate the correlation function on it. 

http://bigboss.lbl.gov/
http://sci.esa.int/euclid
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[Belussi and Faloutsos, 1995]; however, our experiments have shown that the existing sequential 

techniques are either very slow or give inaccurate approximations.  

Scientists also presented distributed computing solutions [Dolence and Brunner, 2008]  

[Ponce et al., 2011] [Chhugani et al., 2012]. Although some can quickly calculate correlation 

functions on datasets with up to billion objects [Chhugani et al., 2012], they requires powerful 

yet not easily accessible supercomputers with tens of thousands of computing cores. In this 

chapter, we propose a sampling method and combine it with the kd-tree technique, which results 

in an efficient and accurate approximation of the correlation function [Fu et al., 2012a]. The 

proposed technique can also be easily distributed, resulting in a powerful tool that only uses tens 

or hundreds cores and applicable to datasets with multi-billion objects. 

3.2 Problem 

We assume that each astronomical object is a point in three-dimension space with known 

coordinates. We are given a set of N astronomical objects, denoted p1, p2, …, pN, and a strictly 

increasing series of M + 1 distances, denoted d0, d1, …, dM, defining the bins of a histogram. 

For each index i from 1 to M, we need to determine the number of object pairs such that the 

distance between each pair is between di–1 and di: 

cf(i) is the number of pairs (pu, pv), where u < v, 

such that di–1 ≤ dist(pu, pv) < di 

where dist(pu, pv) is the Euclidean distance between pu and pv. 

We assume that the given sequence of distances is a geometric progression. That is, we are given 

the distance d0 and a constant C > 1, and we need to compute the correlation function for the 

distances d0, C ∙ d0, C
2
 ∙ d0, ..., C

M
 ∙ d0. 

We conducted experiments on a dataset of 4.5 million objects, with coordinate values between 

0.0 and 40.0 (the unit in this dataset is Mpc/h [Di Matteo et al., 2008]). The dataset is provided 

by our collaborators from McWilliams Center for Cosmology at Carnegie Mellon University. 

We compute the correlation function with the following parameters unless indicated otherwise: 

M = 257, d0 = 0.001, and C = 1.044.  

We have implemented all the sequential algorithms in Java 1.6 and tested them on a 2.66GHz 

Intel Core 2 Duo desktop with 2GB memory.  
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3.3 Existing Solutions 

3.3.1 Naive algorithm 

We first consider the straighforward algorithm shown in Figure 3.2, which iterates over all pairs 

of objects, thus taking O(N
2
) time. In Figure 3.3, we compare the actual running time and the 

theoretical complexity of the algorithm. 

Figure 3.2: Naive algorithm. 

 

Figure 3.3: Running time of the naive algorithm, which is quadratic to the number of objects. 

Note that both axes are on logarithmic scales. 

There are two approaches to determine in which histogram bin each object-pair falls: a single 

logarithm operation (since the distance sequence is a geometric progression) and binary search. 

While the theoretical time complexity of the single logarithm operation is constant, its 

computation takes multiple CPU circles, and in practice it is slower than binary search for a short 

sequence of distances. In Figure 3.4, we compare the running time of these two approaches. The 

results show that the logarithm computation is more efficient only when the length of the 

distance sequence, M, is larger than 75.  

In Figure 3.5, we show the exactly computed correlation function for the dataset of 4.5 million 

objects. The elasped time of the naive algorithm is 176 hours (7.3 days). 
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for i = 1 to M do cfi = 0 

for u = 1 to N − 1 do 

    for v = u + 1 to N do 

        find i such that di−1 ≤ dist(pu, pv) < di; cfi ++         
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Figure 3.4: Running time of the two approaches in the naive algorithm: logarithm operation and 

binary search. Note that the horizontal axis is on logarithmic scale. The use of the logarithm 

operation is faster when the length of the distance sequence is over 75, i.e. M > 75. 

 

Figure 3.5: The exact correlation function for the set of 4.5 million objects. Note that both axes 

are on logarithmic scale. 

3.3.2 Kd-tree algorithm 

Gray and Moore used kd-tree to accelerate the computation of correlation functions 

[Gray and Moore, 2000], which is presented in Figure 3.6. Unlike the naive algorithm, their 

procedure processes one range of distances, di-1 to di, at a time. The kd-tree structure supports 

tree pruning, which speeds up the computation. The time complexity of processing a single range 

of distances is O(N
5/3

). The overall processing time grows as we increase the length M of the 

distance sequence, as shown in Figure 3.7. 

To improve the efficiency, we have developed a new version of the kd-tree algorithm, called 

multiple-range algorithm, designed for processing multiple ranges in one pass. The pseudo-code 
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of the multiple-range kd-tree algorithm is shown in Figure 3.8. We have conducted experiments 

on both the original single-range algorithm and the new multiple-range algorithm. The main 

results are as follows: 

a. As shown in Figure 3.9, the single-range algorithm follows the O(N
5/3

) asymptote. The 

multiple-range algorithm is in practice faster than the single-range kd-tree algorithm, but 

its asymptotic complexity is O(N
2
). 

b. Why the time complexity of the multiple-range kd-tree algorithm is O(N
2
)? The reason is 

that C in our experiments is relatively small, specifically, C = 1.044, which means that 

the ranges used in constructing the histogram of distances are very fine-grained, and the 

tree pruning in this situation does not lead to the reduction of the asymptotic time 

complexity. 

c. Since the distance sequence is relatively long (M = 257), the kd-tree algorithms in our 

experiment actually ran slower than the naive algorithm. 

d. The processing time of the single-range kd-tree algorithm differs significantly for 

different distances, as shown in Figure 3.10. The results suggest that the pruning is most 

effective for small and very large distances. 

To summarize, we have confirmed that both the single-range and the multiple-range kd-tree 

algorithms have superlinear time complexity. Figure 3.9 further shows that they can be 

slower than the naive algorithm. They are therefore impractically slow for massive dataset 

with billions of objects. The kd-tree technique is effective for small and very large distances, 

but not in-between. 
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Figure 3.6: Single-range kd-tree algorithm. 

3.3.3 Fractal approximation 

The main advantage of the naive and kd-tree algorithms is that they provide exact results. On the 

downside, they are slow for massive datasets. The processing of 4.5 million objects takes several 

days, and the time grows superlinearly with the number of objects, which means that processing 

a set with billions of objects would be very slow even on a powerful supercomputer. We now 

consider the alternative of developing fast approximate algorithms for computing correlation 

functions. 

 

 

 

Output: Counters cf1, cf2, …, cfM 
 

for i = 1 to M do cfi = 0 

construct a kd-tree from the root node. Each node in the kd-tree has a left child and 

a right child. The bounding box of each node is calculated and stored. The number 

of objects (num) in each node is also calculated. 

for i = 1 to M do 

    cfi = SINGLE-DISTANCE(root, root, di–1, di); 
 

Procedure SINGLE-DISTANCE(kd-node n1, kd-node n2, double small, double large) 

if (n1.num < 1 || n2.num < 1) then return 0 

if (n1.num == 1 && n2.num == 1) then  

    //assume n1 includes object p1 and n2 includes object p2 

    if (small ≤ dist(p1, p2) < large) then return 1 

    else return 0 

calculate the maximum distance (max) and the minimum distance (min) between 

the bounding boxes of n1 and n2. 

if (min ≥ large || max < small) then return 0 

if (min ≥ small && max < large) then  

    return n1.num ∙ n2.num 

if (n1.num > n2.num) then 

    return SINGLE-DISTANCE(n1.left, n2, small, large) + 

                SINGLE-DISTANCE(n1.right, n2, small, large) 

else 

    return SINGLE-DISTANCE(n1, n2.left, small, large) +  

                SINGLE-DISTANCE(n1, n2.right, small, large) 

End Procedure 
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Figure 3.7: Dependency of the running time on the length of distance sequence for the 

single-range kd-tree algorithm. In this set of experiments we only change C. We have run this 

experiment with a dataset of 75 thousand objects. 

Belussi and Faloutsos used an approximate technique for computing fractal dimensions of point 

sets [Belussi and Faloutsos, 1995], which can be readily adapted to approximate correlation 

functions in two main steps, as shown in Figure 3.11. First, we divide the space into a grid of 

cubic cells, iterate over all objects, and assign each object to the corresponding cell. Second, we 

count the number of objects in each cell. 

The underlying assumption behind the fractal approximation is that we assume the object density 

among nearby regions is similar, which leads to two approximation steps. First, when calculating 

how many objects are within distance r of an object pi, we do not consider a ball centered at pi 

with radius r, but instead use a cube centered at pi with side length r ∙ (4π/3)
1/3

. Since the 

volumes of the ball and the cube are the same, we expect that the numbers of objects within them 

is roughly the same. Second, rather than going over each object and counting the number of 

objects within their corresponding cubes, we use a set of global cubes (the aforementioned cells) 

to represent all the cubes around objects, which greatly reduce the time complexity.  

If we represent the grid using a hash table, the time complexity of the fractal algorithm is linear 

on the number of objects. We show the empirical running time in Figure 3.12. If we process each 

of the M ranges separately, the overall time complexity is O(M ∙ N). In Figure 3.13, we show the 

dependency of the running time on the number of ranges. We may further reduce the processing 

time to O(N) by sorting the cells in Z-order [Morton, 1966]. 
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Figure 3.8: Multiple-range kd-tree algorithm. 

 

 

 

 

Output: Counters cf1, cf2, …, cfM 
 

for i = 1 to M do cfi = 0 

construct a kd-tree from the root node. Each node in the kd-tree has a 

left child and a right child. The bounding box of each node is 

calculated and stored. The number of objects (num) in each node is 

also calculated. 

MULTIPLE-DISTANCES(root, root); 
 

Procedure MULTIPLE-DISTANCES(kd-node n1, kd-node n2) 

if (n1 .num < 1 || n2 .num < 1) then return 

if (n1 .num == 1 && n2 .num == 1) then 

    //assume n1 includes object p1 and n2 includes object p2 

    find i such that di−1 ≤ dist(p1, p2) < di; cfi ++         

    return 

calculate the maximum distance (max) and the minimum distance 

(min) between the bounding boxes of n1 and n2. 

if (min ≥ dM || max < d0) then return 

if ([min, max]   [di–1, di) for an i) then 

    cfi += n1.num ∙ n2.num; 

    return 

if (n1.num > n2.num) then 

    MULTIPLE-DISTANCES(n1.left, n2) 

    MULTIPLE-DISTANCES(n1.right, n2) 

else 

    MULTIPLE-DISTANCES(n1, n2.left) 

    MULTIPLE-DISTANCES(n1, n2.right) 

End Procedure 
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Figure 3.9: Running time of the single-range kd-tree algorithm,  multiple-range kd-tree 

algorithmm, and the naive algorithm (Figure 3.3). The single-range algorithm follows an O(N
5/3

) 

asymptote. The multiple-range algorithm has quadratic complexity but it is faster than the 

single-tree algorithm in practice. 

 

Figure 3.10: The dependency of the running time on the distances for the single-range kd-tree 

algorithm. Note that the vertical axis is on logarithmic scale. This experiment is conducted on a 

dataset with 450 thousands objects. The results show that the processing of small and very large 

distances is much faster than the processing of medium distances. 
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Figure 3.11: Fractal algorithm. 

 

Figure 3.12: Running time of the fractal approximation, which is linear on the number of objects. 

 

Figure 3.13: Dependency of the running time on the length M of the distance sequence. 
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Output: Counters cf1, cf2, …, cfM 
 

create an array si, i = 0 to M 

s0 = 0 

for i = 1 to M do 

    divide the space into a grid of cubic cells with side side di 

we use fk to denote the number of objects falling in the k
th
 cell 

    si = lg   𝑓𝑘 
2

k    

D = (si – si–1) / (di – di–1) 

    cfi = N (N – 1) (π / 6)
D/3

 (2di)
D  

/ 2 

for i = M to 2 do 

cfi = cfi – cfi–1 
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While this procedure is fast, the resulting approximation is inaccurate. Belussi and Faloutsos 

reported that the relative error of the fractal procedure for estimating     
 
    is in the 10–15% 

range [Belussi and Faloutsos, 1995]. Since in our application the correlation function histograms 

use cfk, the resulting error is even greater, achieving as high as 40%. 

3.4 Proposed Technique 

3.4.1 Sampling algorithm 

We next consider the application of sampling to approximate the computation of correlation 

functions. Specifically, we randomly select S objects from the original set and apply the naive 

algorithm to this smaller sample. To convert the resulting counters on the sample to the counters 

on the original set, we multiple each of them by (N/S)
2
 (Figure 3.14). 

To get a more accurate estimate, we repeat the described procedure T times, and then compute 

the mean µ(cfi) and the standard deviation σ(cfi) for each estimation cfi. According to the central 

limit theorem, when T is at least 30, the means µ(cfi) follow normal distribution, which allows 

determining their confidence intervals. For instance, the true counter on the original dataset cfi 

has a 95% probability to be located within 2σ(cfi) away from our estimation µ(cfi): 

                                      

 , which enables us to calculate the maximum relative error of our estimations, each has a 95% 

probability to be correct: 

                           (
|   

  (   )|

 (   )
)  

     
 
 

      
 

In Figure 3.15, we show the maximum relative error of the sampling algorithm. We have found 

that even a small sample provides a relatively accurate approximation for many distance ranges. 

For example, if S = 10,000, the sampling algorithm can produce estimates with less than 1% 

error for distances from 2 to 50.  

The overall running time of the sampling algorithm is the sum of (1) time to retrieve samples 

from the original dataset and (2) the time to conduct the subsequent computations on the 

samples. We use a straightforward method to select samples from the original dataset (for 

another implementation using SSDs, see Section 3.4.3), which makes a liner pass through the 

whole dataset, thus taking O(N) time. For the dataset of 4.5 million objects, this sample selection 

takes 2.3 seconds. The time of applying the naive correlation function algorithm to the selected 

samples is O(T ∙ S
2
).  
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Figure 3.14: Sampling algorithm. 

Another advantage of the sampling technique is that it has enormous potential to handle a 

massive dataset: Assume that we have two datasets with different sizes, where their objects 

follow the same spatial distribution. Then although it still takes more time to select samples from 

the larger dataset (O(N)), their remaining computations are the same. As a result, the sampling 

technique is able to process a much larger dataset than other techniques. 

On the downside, the sampling error is higher for small and very large distances. Generally, the 

error of estimating cfi (Figure 3.15) is in inverse proportion to the value of cfi (Figure 3.5). 

 

 

 

 

 

 

 

 

 

 

 

Output: Mean and standard deviation of cf1, cf2, …, cfM 
 

T = 30 // T is the number of samples 

create two dimensional array auv, u = 1 to M, v = 1 to T 

for u = 1 to M do 

    for v = 1 to T do 

        auv = 0 

for t = 1 to T do 

    randomly select S objects r1, r2, …, rS from p1, p2, …, pN 

    for u = 1 to S – 1 do 

        for v = u + 1 to S do 

                find i such that di−1 ≤ dist(ru, rv) < di; ait ++          

    for i = 1 to M do ait = ait ∙ (N/S)
2
 

for i = 1 to M do 

    µ(cfi) = (ai1 + ai2 +…+ aiT) / T 

σ(cfi)
2
 = ((ai1 – µ(cfi))

2
 + (ai2 – µ(cfi))

2
 +…+ (aiT –  

µ(cfi))
2
) / (T (T – 1)) 
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Figure 3.15: Relative error of the sampling technique. We plot the maxiumum errors with 95% 

confidence interval. The four curves represent experiments with samples of size 1,000, 10,000, 

50,000 and 100,000.  

3.4.2 Hybrid algorithm 

We have shown that the sampling method is fast but inaccurate for small and very large distances 

(Figure 3.15). On the other hand, the kd-tree technique is fast for small and very large distances 

(Figure 3.10). We can thus obtain better results by combining these two techniques. Specifically, 

we apply the kd-tree algorithm to small and very large distances, and the sampling technique to 

the distances in the middle. 

 

Figure 3.16: Illustration of the hybrid technique.  

 

Figure 3.17: Hybrid algorithm. 

sampling 

Dmax Dmin 0 

kd-tree kd-tree 

Input: Required maximum relative error epsilon 

Output: Mean and standard deviation of cf1, cf2, …, cfM 
 

 Find turning points Dmin and Dmax according to epsilon. 

 For distances inside [Dmin, Dmax), select the number of 

sampled objects S according to epsilon, and use the 

sampling algorithm in Section 3.4.1. 

 For distances inside [d0, Dmin) and [Dmax, dM), use the 

kd-tree algorithm described in Section 3.3.2. 
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The related parameter tuning involves setting the “turning points” Dmin and Dmax, and 

determining the appropriate sample size S. We have selected these parameters based on empirical 

results, with the purpose of achieving the given accuracy in minimal running time.  

In Figure 3.18, we compare the running time of the hybrid algorithm given different allowed 

approximation errors (epsilon). 

 

Figure 3.18: Running time of the hybrid algorithm with different allowed errors. The five data 

points correspond to the errors of 0.2%, 0.5%, 1%, 2% and 5%. 

In Figure 3.19, we compare the running time of the hybrid algorithm with other techniques on 

the set of 4.5 million objects. The proposed hybrid algorithm is at least one order of magnitude 

faster than the exact computations, even if we limit the approximation error to 0.2%. When the 

running time of the hybrid algorithm is similar to that of the fractal approximation, its error is at 

least one order of magnitude smaller. 
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Figure 3.19. Running time of the described techniques on the 4.5 million objects dataset. 

3.4.3 Distributed hybrid algorithm 

Although our hybrid technique can process a larger dataset than other existing sequential 

techniques, it is still slow to produce results with very high precision, or deal with even larger 

datasets. In this section we introduce our efforts to parallelize the hybrid procedure, which 

further reduces its overall running time. 

Our hybrid method consists of the sampling algorithm and the kd-tree algorithm. The sampling 

algorithm is easy to parallelize, but the kd-tree algorithm cannot be trivially distributed. So we 

extended the sampling idea to the kd-tree algorithm, by not applying the kd-tree computation to 

the set of all objects, but to several samples from the original dataset, and then we compute the 

means and standard deviations as similar to the sampling algorithm (Figure 3.14). The samples 

used in the kd-tree computation are larger than the samples used in the naive computation, which 

ensures sufficient accuracy for small and very large distances. 

We next introduce our implemention of the distributed hybrid algorithm using Hadoop. We 

evaluate its performance on the a compute intensive cluster in Carnegie Mellon University. After 

that, given the scenario that users do not access a Hadoop cluster themselves, we also discuss the 

deployment of our implementation on an Amazon cloud computing cluster. 

Hadoop implementation 

We use Hadoop to implement the distributed hybrid technique. Hadoop provides a convenient 

distributed computing framework to users, so they can mainly focus on the functionality of their 

code, rather than worrying about other issues of distributed computing, especially ones related to 

the processing of large datasets. 

Our hybrid algorithm is highly parallelizable and fits well to the Hadoop framework. During the 

Map phase, we select random samples. During the Reduce phase, we process the selected 
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samples in parallel. The distributed implementation is similar to that of the DiscFinder pipeline 

in Section 2.5 (procedures PartitioningMap and ClusteringReduce). 

We first tested our implementation on the OpenCloud computer cluster, which is a 64-node 

cluster in Carnegie Mellon University. Each compute node has eight 2.8GHz CPU cores in two 

quad-core processors, 16 GB of memory and four 1TB SATA disks. The nodes are connected by 

10 GigE network. 

Our first goal is to see whether our distributed algorithm can be applied to analyze a large 

dataset. Other than the dataset with 4.5 million objects that we processed in previous sections, we 

tested our algorithm on two larger datasets: the Coyote Universe [Heitmann et al., 2008a], which 

contains 1.1 billion objects, and the DMKraken provided by our collaborators at the McWilliams 

Center for Cosmology at Carnegie Mellon, which contains 5 billion objects. We normalized the 

coordinates of objects in each dataset to make their bounding boxes equal-sized. 

In Table 3.1, we show the running time to process the three datasets using 32 reducers. We 

issued the query with same distance ranges and maximum allowed error
19

. The results show that 

our Hadoop implementation is able to process datasets with billions of objects. For larger 

datasets, most of the elapsed time is spent on the procedure of sample selection (the Map phrase). 

Table 3.1: Time of computing correlation functions using with 32 reducers, for the allowed 

maximum error of 1%. We set d0 = 0.006, dM = 65, C = 1.044, and M = 216 in this experiment. 

Number of objects in 

the overall dataset 

(before sampling) 

Running 

time 

(Seconds) 

4.5 million 888 

1.1 billion 1529 

5 billion 2436 

 

The second goal of our experiments is to evaluate the scalability of the distributed hybrid 

algorithm, so we conducted a set of strong scalability experiments shown in Figure 3.20. We 

processed the DMKraken dataset with 5 billion objects using different number of reducers, and 

plotted the running time. For this set of experiments we issued 512 samples. First in Figure 

3.20(a), we put 30,000 objects to each sample; then in Figure 3.20(b), we increased the number 

of sampled objects to 120,000.  

These experiments indicate that the scalability is affected by the number of sampled objects. 

With more objects in a sample, each reducer having to execute more calculation, and the 

                                                           
19

 We should note that our distributed algorithm has one natural weakness: it cannot effectively 

calculate the distance ranges where the number of qualifying pair is very small. That is because 

the calculation on different samples leads to very high variance, so the estimated errors would be 

very high (Figure 3.15). That’s why the distance ranges we use here (d0 = 0.006, dM = 65) is a 

little bit narrower than previously specified (d0 = 0.001, dM = 70). 
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overhead of Hadoop framework and data communication become less obvious. The speedup in 

Figure 3.20(a) begins to decrease around 16 reducers, but with more calculation for each reducer, 

the speedup in Figure 3.20(b) is perfect up to 64 reducers. 

 

(a) 512 samples, each with 30,000 sampled objects. 

 

(b) 512 samples, each with 120,000 sampled objects. 

Figure 3.20: Strong scalability experiments on our Hadoop implementation. Blue line represents 

actual running time and red dotted line plots the ideal case. For both sets of experiments we used 

512 samples, and changed the number of reducers. With more sampled points and thus more 

computations to do, (b) exhibits better scalability than (a). Note that the X axis of (b) starts at 16 

reducers, not 1, and the Y axis of (b) starts at 100 seconds, not 1 second. 
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Finally, we conducted another set of experiments to see how the processing time varies to 

achieve different precision. Similar to what we did in Figure 3.18 to the sequential hybrid 

method, we specify different maximum errors and see how long the distributed method takes to 

get to the required precision. In this set of experiments we stuck to the DMKraken dataset (5 

billion objects) using 128 reducers. Figure 3.21 illustrates the processing time of the distributed 

method, and we also copied the data points in Figure 3.18 to the same figure. The distributed 

method (5 billion objects) under current setting is about one magnitude faster than the sequential 

method (4.5 million objects) to achieve the same precision. 

 

Figure 3.21: Running time of the distributed hybrid algorithm with different allowed errors. The 

five blue data points correspond to the maximum errors of 0.05%, 0.1%, 0.2%, 0.5% and 1%. All 

distributed experiments use 128 reducers and calculate distance ranges from d0 = 0.01. Result 

from the sequential hybrid method (Figure 3.18) is also plotted for comparison.  

Hadoop implementation on Amazon EC2 

In the previous part we evaluated the performance of our distributed hybrid algorithm on the 

OpenCloud cluster. However, not every cosmologist has a ready-to-use Hadoop cluster. In this 

section, we answer the following question: How can we help cosmologists analyze large-scale 

data using Hadoop without a Hadoop cluster at hand? 

Cloud computing is one possible answer for them. The idea behind cloud computing is that some 

Internet companies provide computers, networks, and other related computing resources, on 

which users can deploy and run their own applications. Users can pre-select from various 

operating systems and software, and they can also install new software themselves easily. Users 

can request the amount of resources as they wish, and it is flexible for them to add more 
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resources or remove excessive resources in real time. Usually cloud computing resources are 

charged on a pay-per-use model
20

. 

Currently the most widely used cloud computing service is Amazon Elastic Compute Cloud 

(EC2), from which users can rent computer machines. Using EC2 it is convenient and flexible to 

setup a Hadoop cluster. Amazon Simple Storage Service (S3) – Amazon’s online file storage 

service – can be used to store data for Hadoop jobs running on EC2. 

We conducted the Hadoop experiments of our distributed hybrid technique on an Amazon EC2 

cluster. Our goal is to evaluate current EC2 computer clusters comparing to the OpenCloud 

cluster from performance and economical point of view. We setup a Hadoop pre-installed Linux 

cluster on EC2, which consists of one master node and seven compute nodes. Each node has 1.7 

GB memory and 5 EC2 compute units. Each EC2 compute unit provides the equivalent CPU 

capacity of a 1.0–1.2 GHz 2007 Opteron/Xeon processor, and costs $0.165 per hour. In other 

words, we spent $1.32 per hour to acquire an EC2 cluster with equivalently 35 compute cores in 

total. 

We repeated the same experiments on our EC2 cluster. We used the same input dataset (1.1 

billion objects) and same number of reducers (32). The performance of Hadoop jobs on EC2 was 

unstable, and it is roughly 60~70% slower than jobs on OpenCloud, which is reasonable since 

the EC2 cluster has slower CPU and network. 

We also compare the pricing of the EC2 cluster to OpenCloud. The OpenCloud cluster has been 

in service for about three years (25,000 hours)
21

. Its building cost was around $400,000 for 64 

nodes, so our usage worth about 2 dollars per hour at the time of the experiments
22

. 

Consequently, current cloud computing services are not essentially cheaper, although it provides 

a flexible solution, which is most helpful when users only want to test their code on a small 

cluster, and when they want to increase/decrease the computing resources frequently. 

3.4.4 Other distributed implementations 

Hadoop provides a neat solution of distributed computing to users, and they are especially 

powerful toward large datasets. Since MapReduce origins from the Internet industry, they are not 

yet very popular to the domain science community. 

                                                           
20

 To encourage the use of cloud services, most providers now have a free-tier for basic use. For 

example, Amazon EC2 provides 750 hours of Micro Instance (its low-end computer) usage for 

free per month. Amazon S3 offers 5 GB of standard storage for free. 
21

 … as of the end of 2012. 
22

 The Hadoop configuration on OpenCloud is 6 Map slots and 4 Reduce slots for each node. So 

using 32 reducers is equivalent to 8 compute nodes. If we simply spread the building cost of 

OpenCloud over the course of its lifespan (three years), then the cost of using 8 nodes is about 2$ 

per hour. Notice that here we ignore all other maintenance costs. 
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Similar in other science disciplines, the most widely used distributed computing frameworks for 

astrophysicists and cosmologists are still MPI [MPI, 1993]. Cosmologists use MPI to conduct 

large-scale simulations, so they usually possess a computer cluster with MPI installed, rather 

than Hadoop. Thus it is usually more convenient for them to use MPI to analyze large datasets 

[Dolence and Brunner, 2008] [Chhugani et al., 2012]. 

Additionally, recently some cosmologists also use General Purpose Graphic Processing Units, or 

GPUs
23

, to conduct their simulations. GPU is distinct from CPU, and it provides a different angle 

for us to design parallel computing algorithms. Sometimes the speedup of GPU implementations 

is substantially higher than that of CPU.  

So in this section, we compare the implementations of our hybrid algorithm using Hadoop, MPI, 

and GPU. We compare their characteristics and analyze their advantages and disadvantages. 

Although we only focus on one application here, we hope to provide a more general guidline to 

other similar lage data analysis scenarios in domain science. 

For simplicity, in this section we mainly focus on the sampling technique on the naive 

calculation (Section 3.4.1 and Figure 3.22). We do not discuss the distributed computing on the 

kd-tree algorithm (researchers discussed the acceleration of kd-tree computation on 

supercomputers [Dolence and Brunner, 2008] [Chhugani et al., 2012]). 

 

Figure 3.22: Illustration of the sampling-based naive calculation. 

                                                           
23

 The formal abbreviation should be “GPGPU”. Since there is no ambiguity, in this section we 

use “GPU” for simplicity. 
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MPI implementation 

Message Passing Interface (MPI) is a popular standard for distributed computing. It is the most 

widely used distributed computing technique to astronomers and other domain scientists. MPI 

framework allocates multiple compute machines which themselves communicate by 

sending/receiving messages. We implemented our sampling algorithm in MPI and show the 

pseudocode in Figure 3.23. We used the Portable Batch System
24

 (PBS, [Bayucan et al., 1999]), 

resource management software for computer cluster, along with MPI to handle the job allocation 

on the cluster and other issues. 

The MPI implementation is simple and efficient. MPI is considered to be the universal choice for 

high-throughput computation, and are deploying on the world’s fastest supercomputers. However, 

it is not as good a framework as Hadoop to handle large data. We discuss its advantages and 

disadvantages in detail at the end of this section. 

 

Figure 3.23: The MPI implementation of the distributed sampling algorithm 

SSD and GPU implementation 

In previous experiments, all the numbers we reported are the program execution time, and we did 

not consider the pre-processing time before running experiments. For example, in the Hadoop 

experiments, we did not count the time to transfer data to Hadoop File System; In the Amazon 

                                                           
24

 The MPI implementation is run on the Ferrari cluster of the Physics Department of Carnegie 

Mellon University (http://ferrari.phys.cmu.edu/ferrari/greet.html). 

… 

// MPI initializations 

MPI_Init(&argc, &argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &size); 

MPI_Get_processor_name(name, &length); 

… 

randomly select S objects r1, r2, …, rS from p1, p2, …, pN 

for u = 1 to S – 1 do 

    for v = u + 1 to S do 

            find i such that di−1 ≤ dist(ru, rv) < di; ait ++          

… 

//start to pass results to master 

if rank <> 0 then 

  MPI_Send(…); 

else 

    for i = 1 to numThread do 
    MPI_Recv(…); 

… 

http://ferrari.phys.cmu.edu/ferrari/greet.html
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EC2 cloud computing experiments, we also did not count the time to put data into the Amazon 

Storage System; Similarly, in the MPI experiments, the time to partition data and transmit them 

to different compute node (if necessary) is not calculated as well. These inspire us to answer the 

following question: Assuming that we store a large dataset on a single disk, which 

implementation is the most convenient one if we consider the end-to-end cost? 

In this regard we propose another implementation. The new solution consists of two procedures: 

First, we store the input data in the Solid-State Drives (SSDs) and use it to select samples from a 

large dataset; then we make use of the General Purpose Graphics Processing Units (GPUs) to 

conduct the all pairwise distances computation on selected samples. We show that the running 

time of this new solution is comparable to the previous Hadoop implementation, while the new 

approach requires almost zero data pre-processing works. 

a. SSD 

As we state in Section 3.4.1, the sample selection procedure simply traverses the whole dataset, 

so it has O(N) complexity where N is the number of objects in the dataset. Normally it is a fast 

procedure comparing to the all pairwise distances computation, but it is still costly if the dataset 

is very large or if the computation is less intensive (for example, if we only need a very rough 

estimate of the correlation function). 

For instance, our 1.1 billion objects dataset occupies about 50 Gigabytes space on disk. Currently 

the data transfer rate of normal hard disk drives is about 100 Megabytes per second, which 

means that it takes around 500 seconds to go through the whole dataset and select all the 

samples. 

But one does not need to traverse the whole dataset to select samples. Instead, we can 

pre-calculate the positions of all the sampled objects, and seek each of them from disk. To select 

T samples with S objects in each sample, S × T random seeks are needed. If the total number of 

seeks is relatively small comparing to the number of objects in the dataset, this seek-based 

sample selection may become faster than the traversal of the whole dataset. 

Applying this seek-based sampling to our previous experiments, however, where T = 30 samples 

and S = 120,000 objects in each sample, results in a much slower process. Given the current 

random seek time of hard disk drives (12ms), this seek-based procedure takes 43,200 seconds, 

much worse than the traversal sampling (~500 seconds). 

That is when we introduce one of the emerging storage systems – Solid-State Drives (SSDs). 

Different from the normal hard disk drives that use magnetic material to store data, solid-state 

drives use integrated circuit assembles, and it can achieve comparable read/write speed than that 

of hard disk drives. Moreover, the random access time of SSDs is significantly better, reaching 

as fast as 0.1ms comparing to 2.9~12ms of normal hard disk drives. 
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With the help of SSDs, the processing time of seek-based sampling is greatly improved: Using 

an SSD with 0.1ms random access time, retrieving samples on the previous setting takes about 

360 seconds, better than the 500 seconds figure of the traversal solution. Although the 

improvement is not dramatic, it will be more obvious if the dataset is even bigger. For example, 

if the input dataset is 500GB and we still sample the same number of objects, then the seek-based 

sampling using an SSD still takes around 360 seconds, while the time to traverse the dataset will 

increase to 5,000 seconds.  

This solution, though, would be the most efficient if we already store all the data in SSDs. 

Currently SSDs are still more expensive than hard disk drives
25

. However, the size of 

state-of-the-art SSDs can reach 2TB and it is becoming more and more popular. Many laptops 

now have already used SSDs as its primary storage media. 

b. GPU 

We have introduced a better technique to select samples, and now we focus on speeding up the 

following all pairwise distances computation on the samples, which has O(TS
2
) complexity.  

In this part we make use of General Purpose Graphics Processing Units (GPUs) to distribute the 

computation. Graphics processing units are first used in the computer graphics community, and 

recently the general purpose graphics processing units have been applied to conduct general 

computation tasks as well. Comparing to CPU, GPU especially excels at high-throughput 

computation. For example, the GPU module we have tested on, Tesla M2050 from NVIDIA, has 

a theoretical peak performance of 515 Gflops
26

. On many scenarios a GPU cluster can achieve 

substantially higher throughput than a CPU cluster. 

The computing model of GPU is very different from CPU (Figure 3.24), and it is not equally 

suitable to process every distributed computing task. First, GPU modules do not have as much 

memory as CPU clusters. A Tesla M2050 has an aggregate 3GB memory for all its 448 cores to 

share. Secondly, GPU is most effective if each subtask follows the same instruction sequence. If 

the code sequence contains many branches, and different subtasks follow different control flows, 

then the parallelism of GPU modules will be seriously hindered. 

                                                           
25

 NAND flash SSDs cost approximately $0.65 per GB.  HDDs cost about $0.05 per GB for 3.5 

inch and $0.10 per GB for 2.5 inch drives (data collected in early 2013).  
26

 flops = FLoating-point Operations Per Second. A single-core 2.5GHz processor has a 

maximum of 10 billion flops = 10 Gflops. 
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Figure 3.24: Illustration of the architecture differences between CPU and GPU. The figure is 

extracted from http://ixbtlabs.com/articles3/video/cuda-1-p1.html. 

Our sampling-based all pairwise distances computation is suitable for GPU modules, since the 

samples do not require a large amount of extra memory, and the computation of each task shares 

the same control flow. Different from all our previous distributed computing solutions that 

distribute the computations by different samples, here we distribute the computation of a single 

sample to multiple GPU threads. We first load the objects in a sample into the global memory of 

GPU. Then, we let each GPU thread hold one object. Finally, each thread visits the global 

memory to fetch all other objects in the sample, and calculate the distances between the object it 

holds and other objects. This implementation is similar to a piece of previous work 

[Ponce et al., 2011]. 

We tested our GPU implementation on an Amazon EC2 machine with a GPU module. The GPU 

module is NVIDIA Tesla “Fermi” M2050, which contains 448 GPU cores (each at 1.15GHz), 

and its price is $2.1 per hour. Out of the two mainstream GPU programming models on market, 

we used NVIDIA’s CUDA framework, which supports C/C++ extensions. The core function of 

our GPU implementation is illustrated in Figure 3.25. 

Our GPU implementation achieved high level of parallelism. Comparing to the sequential code 

on GPU using only one GPU thread, the parallel code is 600X faster. Notice that although the 

GPU module contains only 448 cores, the actual speedup may exceed the total number of cores. 

However, since the GPU cores are slower than our CPU cores and due to other GPU costs like 

data loading, our parallel GPU implementation is about 100 times faster than our sequential CPU 

implementation.  

To summarize, we used SSD and GPU together to develop another implementation. As Table 3.2 

shows, the running time of the new implementation is comparable to the Hadoop implementation 

on OpenCloud using 128 cores. A more impressive property of this new technique is that it 

requires little pre-processing on the input dataset if it is already stored in an SSD.  

http://ixbtlabs.com/articles3/video/cuda-1-p1.html
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Figure 3.25: The GPU implementation of the distributed sampling algorithm. 

Table 3.2: Hardware specification and processing time of our implementations on a dataset with 

1.1 billion objects (50 Gigabytes). We issued 30 samples each with 120k sampled points. 

Asterisks indicate estimated figures. 

 Sequential Hadoop on OpenCloud Hadoop on EC2 SSD+GPU 

# nodes 1 8 7 1 

# cores 2 64 (but only used 32 

Reducers) 

35 448 

CPU frequency 

(GHz) 

2.3 2.83 ~1.1 1.15 

Aggregate 

Memory (GB) 

4 128 12 3 

Price  $2/hour  $1.3/hour $2.1/hour 

Sampling 

(seconds) 

500 512
*
  360

*
 

Computation 

(seconds) 

6750 329
*
 78 

Total time 

(seconds) 

7250 881 2500 438
*
 

void vecadd(double* data_x, double* data_y, double* data_z, 

            int* result, int* final) 

{ 

  // Some initializations are omitted. 

  // Let this thread to hold one sampled points 

  double x = data_x[index]; 

  double y = data_y[index]; 

  double z = data_z[index]; 

 

  // Thread visits global memory to get other sampled points 

  for (int i = 0; i < OBJECT_NUM; i++) { 

    double distSqr = (data_x[i] - x) * (data_x[i] - x) + 

                    (data_y[i] - y) * (data_y[i] - y) + 

                    (data_z[i] - z) * (data_z[i] - z); 

    int bin_num = (int)(sqrt(distSqr) – small_epsilon); 

if (bin_num < INTERVAL_NUM) 

      // local counters 

      result[index * INTERVAL_NUM + bin_num]++;   

    } 

   

  // move the results of local counters to global counters 

  for (int i = 0; i < INTERVAL_NUM; ++i) { 

    // Use atomic function to avoid race condition 

    atomicAdd(final + i, result[index * INTERVAL_NUM + i]); 

  } 

} 
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Discussion 

In this section, we introduce the implementations of our algorithm in popular distributed 

computing frameworks. All the related hardware specification and running times are summarized 

in Table 3.2. Each implementation (MPI, Hadoop, SSD/GPU) has its own merit, and it really 

depends on data, computing resources, and other factors for one to choose the most suitable 

framework for him: 

MPI. MPI is the most widely used and deployed framework on existing computing resources 

possessed by domain scientists. Since currently most large-scale cosmological simulations are 

conducted under MPI, subsequent analysis on MPI is a natural and convenience choice. Also the 

performance is expected to be better than Hadoop Since Hadoop introduces extra overhead. 

There are a couple of extra works that is needed to be handled by MPI users, though, when the 

input data is large. For example, to improve the I/O performance of MPI, users usually need to 

partition the input files and transmit them to different compute nodes (if it has not been so), so 

multiple processes can read them simultaneously. This processing needs to be executed every 

time when we change the computing environment (for instance, if we want to add more nodes to 

conduct experiments, and if a compute node fails), so it may be inflexible. 

Hadoop. Hadoop is designed for the batch processing of large-scale data, and our algorithm, 

especially the sampling step, falls into that category. For this kind of tasks, Hadoop saves users a 

lot of efforts by implementing some useful features in the framework. From users’ point of view, 

programmers just need to put all the input data into the Hadoop File System without worrying 

about the partition of input dataset, which is an issue for MPI when the input data is big. Hadoop 

further provides user-defined functions to conveniently partition input as they want. Several 

other useful properties are also provided, including the automatic handling of failed jobs and 

very slow jobs (stragglers), and so on.  

Thus, comparing to MPI, the ideal case to use Hadoop is toward a large amount of data (so a 

MPI user may need to partition the data himself), and a large heterogeneous computer cluster 

that needs to be shared with others (So there might be more failures and/or some very slow tasks). 

Hadoop generally prevails in those situations. 

SSD+GPU. We provided another implementation using SSD and GPU. SSD is suitable for 

random access (sampling), and GPU is compelling to work on “regular” computationally intense 

tasks (pairwise computation on samples). Currently both SSD and GPU are not as popular as 

normal hard disks and CPU respectively, but they are catching up. GPU especially have been 

deployed on some new supercomputers: Out of the 10 most powerful supercomputers in the 

world, three have already taken advantage of GPU acceleration. It is possible that more and more 

tasks running on CPU now will be shifted to GPU in the near future. 
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3.5 Current and Future Use of the Proposed Technique 

Giving a large dataset, how the correlation functions are calculated in related works? 

There are many previous works that calculate correlation functions toward a large dataset. 

[Dolence and Brunner, 2008] used MPI and OpenMP to parallelize the kd-tree calculation with 

up to 10
3
 processors, and they evaluate the scalability of their code with a dataset with 10 million 

objects. [Chhugani et al., 2012] pushed further into this direction, optimizing the parallel kd-tree 

calculation from SIMD, thread, and node levels. Their largest experiment was running on 25,600 

cores with 1.7 billion objects, which takes 5.3 hours to finish, although they only processed 10 

distance ranges. [March et al., 2012] improved the original kd-tree technique, and tested on a 

dataset with one million objects. [Ponce et al., 2011] developed a GPU implementation of the 

naive technique and tested it up to 7 million objects. 

What are the current uses of correlation functions by astrophysicists? 

Astrophysicists calculate correlation functions on both astronomical sky surveys and 

cosmological simulations. In Section 3.1 we have introduced one of its applications in digital sky 

surveys (capturing the Baryon Acoustic Oscillations signals). In that context, the amount of 

computation is already enormous. For example, in order to get the results like Figure 3.1, 

correlation functions are needed to be calculated on both multi-million galaxies datasets and 

hundred-million random generated datasets, and the procedure needs to be repeated for a 

considerable number of times to get a statistically significant result. Using the MPI tree-based 

code, our collaborators indicated that it already takes several days on the Hopper 

supercomputer
27

 in National Energy Research Scientific Computing Center.  

It is not very expensive for astrophysicists to access those supercomputers as they do not need to 

pay actual money for use. However, there are still some restrictions and costs for using them: For 

one thing, astrophysicists need to write proposals for their potential use. For another thing, they 

have to make related data (for example, cosmological simulation) public. Even if one acquires 

the permission to use the supercomputers, in many cases he cannot use it 24/7 (The 

MassiveBlack simulation can only be run for a consecutive 24 hours each week). All these 

factors make supercomputers not a handy way to analyze very large datasets. 

With respect to the analysis of large-scale cosmological simulations, the same argument also 

applies Again, since those simulations are usually conducted on supercomputers, a distributed 

correlation function code using MPI is a natural solution. However, there are surely needs when 

people cannot easily access supercomputers or want to run a preliminary smaller experiment. 

Moreover, current cosmological simulations produce much larger amount of data, which already 

achieved tens of billions objects as of now. For that amount of data, even the biggest 

                                                           
27

 Hopper with 131,072 cores and 221 TB memory:  

http://www.nersc.gov/users/computational-systems/hopper/ 

http://www.nersc.gov/users/computationalsystems/hopper/
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supercomputer cannot run the kd-tree algorithm in a short amount of time. Then our hybrid 

method provides an easy way to quickly come up with some estimation with controlled error. 

To that end, we have already used our distributed hybrid technique to analyze one cosmological 

simulation. Figure 3.26 shows the correlation function results we conducted on a 3D density map 

[Dessup et al., 2013]. For that dataset, the simulation cube was divided to 137 million (512
3
) 

sub-cubes, and each sub-cube contains a density value which indicates the amount of matter in it. 

We successfully observed the expected BAO peak in this dataset using our distributed hybrid 

method. In the future, these density-map simulations with finer granularity will generate even 

larger datasets, where our method will be even more attractive. 

 

Figure 3.26: Correlation function results on a density map [Dessup et al., 2013]. In this 

experiment we calculated the correlation function in a simulation cube with the side length of 

1600Mpc/h. The cube is split into 512
3
 sub-cubes. Each sub-cube is represented by a 

floating-point number indicating the overall matter density in it. Error bars in the figure 

represents 95% confidence interval. Similar to Figure 3.1, a peak arises around 100Mpc/h, 

indicating that more material is split by that distance. 

How the error introduced in the sampling-based methods is perceived by astrophysicists? 

Some astrophysicists reminded us to be alert of the use of subsampling. Their reason is that for 

both sky surveys and cosmological simulations, the amount of data collected/simulated are via 

precise calculation in order to achieve some statistics (e.g. eliminating counting error to 

acceptable level), since collecting/simulating excessive data is expensive. As a result, if we apply 
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sampling on those datasets, some information will definitely be lost
28

 (for example, we cannot 

use sampling to correctly calculate correlation functions at a very small distance). This effect, 

together with the fact that astrophysicists have spent million or billion dollars to acquire those 

data, may make them wary of our technique. Instead they would rather prefer spending more and 

use supercomputers to get exact results. 

Despite the above argument, I want to point out that in some scenarios the results that 

astrophysicists generated already have a large error bar. Take Figure 3.1 as an example, where 

the errors shown in the graph can be as high as 100%
29

. It is reasonable that astrophysicists will 

try their best to not introduce any further error, but they will consider our technique if the 

introduced extra error is small, controllable, and above all, fast to come out. 

3.6 Conclusion 

We have presented a hybrid approximate algorithm for building the histogram of all pairwise 

distances between celestial objects, which allows fast accurate approximation for dataset with 

billions of objects. We also explore different distributed computing frameworks and analyze 

their properties. Our work has helped astronomers to study the property of expanding universe. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
28

 ... unless we select a considerable number of samples or sampled objects. For example, if the 

dataset contains a billion objects, then 1000 samples with a million objects each would be more 

acceptable to astrophysicists, since in that way we will actually touch most of the input data. 
29

 In Figure 3.1, the main source of error at small distances is shot-noise (counting error). The 

main source of errors at large distance is the boundary effect: Sky surveys are finite, and more 

uncertainty comes up when we consider the area outside the surveyed area. For a larger distance, 

there are more qualifying pairs that will stretch out of the surveyed area, thus leading to a higher 

variance.  
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Chapter 4  Indexing a Large-Scale Database of Astronomical Objects 

In the next two chapters, we introduce our efforts to accelerate the solutions of two astrophysics 

problems. Although each problem also deals with billions of astronomical data entries, these 

problems exhibit different behavior, in that the information users query always touch a small 

proportion of the whole dataset. Consequentially, with careful data organization on disk to 

exploit data locality, the system we built can quickly answer user queries, using only one desktop 

machine. In this chapter, we introduce a low-level implementation to construct and query 

astronomical objects [Fu et al., 2012b]. In the next chapter, we use database techniques to handle 

the merge events of black holes. 

4.1 Background 

When astronomers analyze telescope images, they check whether the newly observed objects 

appear in available catalogs of known objects. Due to atmospheric and optical distortions, the 

positions of celestial objects in a telescope image may change slightly from observation to 

observation. As a result, the retrieval of exact catalog matches would be inadequate. 

Astronomers need to retrieve catalog objects that are close to the newly observed objects. 

Straightforward matching algorithms, such as a linear search through a catalog, are too slow for 

analyzing a stream of newly incoming imaging data on a large catalog. We have developed a 

new technique for indexing massive catalogs and matching newly observed objects. On a 

standard desktop computer, it takes less than a second to match all objects in an image to a 

catalog with two billion objects. 

4.2 Problem 

Assume that we have a catalog of known celestial objects, and we also have obtained many new 

images. Typically, each image covers a square region of the sky, whose area is several square 

degrees. For example, the area of each image in the Sloan Digital Sky Survey is 1.5 square 

degrees. An image may contain from a few hundred to a few hundred thousand objects, 

depending on the image size and the telescope resolution. 

The position of each object is represented by two values, called right ascension and declination, 

which define its equatorial coordinates (Figure 4.1). The right ascension, which is the celestial 

equivalent of longitude, ranges from 0.0 to 360.0 degrees; the declination, the celestial 

equivalent of latitude, ranges from −90.0 degrees (which represents the South Pole) to 90.0 

degrees (the North Pole). We ignore the third spatial coordinate, that is, the distance from Earth 

to the object, since it is not directly observable and usually unknown during the initial stages of 

the image processing. 
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Figure 4.1: The representation of a celestial object in spherical coordinates. 

Furthermore, astronomers also record the apparent magnitude of each object, which is the 

logarithm of its brightness. The apparent magnitude value serves as the “third coordinate”, which 

is used to identify the object along with its two spherical coordinates. 

We assume that the edges of an image are parallel to the directions of right ascension and 

declination (Figure 4.2). For each image, we want to find the matches for all its objects. 

Specifically, for each object p in the image, we are looking for an object q in the catalog such 

that: 

 Among all objects in the image, p is the nearest to q. 

 Among all objects in the catalog, q is the nearest to p. 

 The distance between p and q in the two-dimensional spherical coordinates is at most 1 

arc second, which is 1/3600 of a degree. The value of 1 arc second reflects the maximal 

possible observation error due to atmospheric and optical distortions. 

 The difference between the apparent magnitudes of p and q is smaller than a given 

constant C. 

If the catalog contains an object q that satisfies all these constraints, we call it the match for p.  

 

Figure 4.2: Example of the matching problem. There are two objects in the image, both of which 

have catalog matches. 
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4.3 Solution 

The size of modern astronomical catalogs exceeds the memory of desktop computers. For 

example, suppose that each celestial object is stored as a 14−byte record: 4 bytes for its right 

ascension, 4 bytes for its declination, 2 bytes for its apparent magnitude, and 4 bytes with a 

pointer to the respective record with more information about the object in an external database. 

Then a catalog with one billion objects takes 14 Gigabytes, which would not fit the memory of a 

regular desktop. We therefore store the catalog on disk and load only parts relevant to processing 

a given image. 

We first describe the organization of the catalog on disk. We then present the retrieval procedure 

that identifies the relevant part of the catalog and loads it into memory. Finally, we explain the 

in-memory matching. 

4.3.1 Indexing 

The indexing procedure arranges the catalog objects on disk, with the purpose to minimize the 

number of disk accesses during the retrieval of objects relevant to processing a given image. 

We split the celestial sphere into multiple longitudinal strips, so for each image the retrieval 

procedure would only access a few of strips. These strips are parallel to the direction of right 

ascension, and each strip is exactly one degree wide (Figure 4.3). In Section 4.5, we will further 

discuss the choice of the specific strip width and the reason for setting it to one degree in the 

current system. 

 

 

Figure 4.3: Indexing procedure. Top: The celestial sphere is divided into one-degree-wide strips. 

Bottom: In this example we assume that there are seven objects in the catalog, which are 

distributed among three strips. For each strip, the objects within the strip are sorted by their right 

ascension, and stored as a separate file. 
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The objects within a strip are stored as a separate file on disk, where the objects in the file are in 

sorted order by their right ascension. 

Since the whole catalog usually does not fit in memory, we cannot process all data in one pass. 

The described procedure is implemented indirectly in two passes. During the first pass, we read 

all catalog objects, and put them to the corresponding files without sorting. In the second pass, 

we load each file into memory, sort its objects, and store the file in sorted order. 

If we split the celestial sphere into S strips, and N catalog objects are about uniformly distributed 

among those strips, then the time complexity of this procedure is O(N ∙ lg(N/S)), and the number 

of disk accesses during its execution is O(N). 

4.3.2 Retrieval 

Given an image, we need to retrieve the catalog objects that may potentially match the image 

objects. Since a matching catalog object must be within 1 arc second from a newly observed 

object, the possible matches for an image may be located at most 1 arc second away from the 

image area. We retrieve all the catalog objects that are near the axis-aligned minimum bounding 

box of the image, which is the smallest rectangle that covers all image objects, with sides parallel 

to the directions of right ascension and declination (Figure 4.4). 

We calculate the axis-aligned minimum bounding box of the image, and extend it by one arc 

second on all sides. 

We then retrieve all catalog objects inside the extended bounding box from the catalog files, 

which is done in three steps. The first step is to locate the strips that overlap the extended 

bounding box; the second is binary search within each respective file, which identifies all catalog 

objects whose right ascension value falls inside the extended bounding box; the third is to load 

all the related objects to memory. 

To analyze the time complexity of the retrieval procedure, we again assume that the celestial 

sphere is split into S strips, and N catalog objects are about uniformly distributed among those 

strips. We further assume that the cost of each disk access is c1 in average, and the cost of 

loading each object from disk to memory is c2. If the extended bounding box of the image covers 

s strips and contains n catalog objects, then it takes O(s ∙ lg(N/S) ∙ c1) to use binary search to 

locate the extended bounding box of image on the catalog,  and O(n ∙ c2) to load related catalog 

objects to memory. 
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Figure 4.4: Retrieval procedure. Given an image, its axis-aligned minimum bounding box is 

calculated and extended by 1 arc second on all sides. Then, the part of the catalog that covers the 

extended bounding box of the image (that is, the retrieved strip segments in the figure) is loaded 

into memory. 

4.3.3 Matching 

The last main step is to identify matches among the objects loaded into memory. If the image 

contains M objects, and L objects are extracted from the catalog in the retrieval procedure, a 

naive matching algorithm would take O(M ∙ L) time, which is impractically slow for real-time 

matching of images against large-scale catalogs. We next provide a more efficient technique. 

The developed approach is similar to the “strip” idea used in the indexing procedure. 

Specifically, we further subdivide the retrieved strips into thinner sub-strips. These sub-strips are 

also parallel to the direction of right ascension, and each sub-strip is exactly one arc second wide. 

The objects within each sub-strip are again sorted by their right ascension, which allows the use 

of binary search for identifying close catalog objects for each image object. 

 

Figure 4.5: Illustration of the matching procedure. For each image object, we extract all catalog 

objects that are at most one arc second away, and then calculate their exact distances to the 

image object. 

retrieved
strip

segmentsimage

extended bounding box 
of image



 

65 

 

For each image object, since its match can be at most one arc second away, we consider only the 

catalog objects in its three nearby sub-strips, that is, its own sub-strip and the two adjacent 

sub-strips. Among these three sub-strips, we use binary searches to locate the image objects that 

are at most 1 arc second away. We illustrated the matching procedure in Figure 4.5 and give 

pseudocode in Figure 4.6. 

4.4 Experiments 

We have evaluated the running time of each procedure described in Section 4.3: the indexing 

procedure, the retrieval procedure, and the matching procedure. We have used synthetic catalog 

data with a random uniform distribution of objects across the sky. 

We have run the experiments on a desktop computer with Pentium Xeon 2.8 GHz dual quad 

core, 16GB memory, and 7200 RPM 160 GB disk. The described algorithms are implemented in 

Java 1.6. All data points in the summary graphs are the mean of three runs with system caches 

flushed between runs. 

4.4.1 Indexing 

We show the running time of the indexing procedure in Figure 4.7. As discussed in 

Section 4.3.1, its time complexity is O(N ∙ lg(N/S)) where N is the number of objects in the 

catalog and S is the number of strips, which matches the observed empirical results. Specifically, 

the running time is about 1.85 ∙ 10
-7

 ∙ N ∙ lg(N/S) seconds. It takes about 6,000 seconds (1.7 

hours) to index a catalog of two billion objects. Note that this procedure has to be run only once 

for the given catalog, and occasionally rerun later after updates of the overall catalog. 
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Figure 4.6: Matching algorithm. 

Input: 

q1, q2, …, qM: Image objects. 

c1, c2, …, cL: Extracted catalog objects that are possible to match the image objects. This is the 

output of the retrieval procedure. 

Output: Possible matches for image objects. 

BestI[1, 2, …, M] and DistanceI[1, 2, …, M]: BestI[i] stores the index of the closest catalog 

objects to qi. The distance between qi and cBestI[i] is stored in DistanceI[i]. 

BestC[1, 2, …, L] and DistanceC[1, 2, …, L]: BestC[j] stores the index of the closest image 

objects to cj. The distance between cj and qBestC[j] is stored in DistanceC[j]. 

for i = 1 to M do DistanceI[i] = MAX; BestI[i] = 0 

for j = 1 to L do DistanceC[j] = MAX, BestC[j] = 0 

Split the extracted catalog area into sub-strips, and sort the catalog objects in each sub-strip 

for i = 1 to M do 

    // Find possible match for qi 

Retrieve the nearby 3 sub-strips of qi, and conduct binary searches in the three sub-strips to    

    retrieve the catalog objects r1, r2, …, rK that are at most 1 arc second away from qi (Figure 4.5). 

    for k = 1 to K do 

        //Assume rk = cj. Compute the distance between qi and cj 

        d = distance(qi, cj)  

        if d < DistanceI[i] then DistanceI[i] = d; BestI[i] = j 

        if d < DistanceC[j] then DistanceC[j] = d; BestC[j] = i 

for i = 1 to M do 

    // Output the possible match for qi 

    match = BestI[i] // cmatch is the closest catalog object to qi  

    if match > 0 && BestC[match] == i then 

        // qi is also the closest to cmatch 

        OutputMatch(qi, cmatch) 
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Figure 4.7: Running time of the indexing procedure. 

4.4.2 Retrieval 

The two main factors affecting the retrieval time are the number of objects in the catalog, and the 

area of the image. On the other hand, the number of objects in the image does not affect the 

retrieval time. 

We breakdown the retrieval time into three parts: the time to load image objects from a file 

(image loading), the aggregate time on binary searches when we identify all the catalog objects 

falling in the bounding box of the image (binary searches), and the time to load the catalog 

objects to memory (catalog loading). Specifically, using the notations in Section 4.3.2, the 

retrieval time is about 0.0028 ∙ lg(N / S) ∙ s  + 9 ∙ 10
–7

 ∙ n seconds. 

The top graph in Figure 4.8 shows the dependency of the retrieval time on the number of objects 

in the catalog. The bottom graph in Figure 4.8 shows the relationship between the retrieval time 

and the side length of the square image. It takes about 0.5 second for a large image (3.5 × 3.5 

degrees) and a large catalog (2 billion objects). 
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Figure 4.8: Retrieval time. We use 2.5 × 2.5 degree images and a catalog with 2 billion objects as 

the baseline. We show the dependency of the running time on the catalog size for 2.5 × 2.5 

degree images (top), and the dependency of the time on the side length of the square image for a 

catalog with 2 billion objects (bottom). 

4.4.3 Matching 

We have evaluated the dependency of the matching time on two parameters: the number of 

objects in the image (top of Figure 4.9), and the side length of the image (bottom of Figure 4.9). 

The running time is under 0.6 second in all cases. Most of the running time is spent on the 

sub-strip division and sorting.  
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Figure 4.9: Matching time. The baseline experiment is with a catalog of 2 billion objects, and a 

2.5 × 2.5 degree image with 100 thousands objects. We show the dependency of the matching 

time on the number of image objects (top), and the side length of the image (bottom). 

4.5 Discussion 

We next discuss some issues related to the problem and the proposed approach. 

4.5.1 Indexing Method 

We use a simple method of splitting the celestial sphere into strips. There are other standard 

ways to divide the sphere into multiple parts and index them, such as the Hierarchical Triangular 

Mesh [Szalay et al., 2005], that some datasets may benefit from. 

4.5.2 Updating Catalog 

We may need to perform occasional updates of the catalog to add newly discovered objects or 

delete some of the old objects. The described technique provides an efficient solution for such 
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updates. To insert and delete celestial objects, we load each related strip into memory, make 

insertions and deletions, re-sort each strip, and store the updated strips on disk. 

4.5.3 Width of Strips 

We have set the strip width to one degree. We now explain the reason behind this choice.  

The main related tradeoff is that, if the strips are too wide, we retrieve many catalog objects that 

do not match objects in the image; on the other side, if the strips are too narrow, we need to open 

too many files to conduct binary searches, thus incurring high disk-access costs. In Figure 4.10, 

we show the dependency of the retrieval time on the strip width, which confirms that the use of 

1-degree strips leads to the fastest retrieval of 2.5 × 2.5 degree images. 

 

Figure 4.10: Impact of the strip width on the retrieval time for 2.5 × 2.5 degree images. 

4.6 Related Work 

The described matching problem can be formulated as a range query: Find all catalog objects 

that are within 1 arc second from an image object. Space-partitioning data structures, such as 

R-tree [Guttman, 1984] and kd-tree [Bentley 1975] and others [Wicenec and Albrecht, 1998] can 

be used for such queries. However, the retrieval based on these structures is significantly slower 

than the described technique, especially when the catalog is too big to store in memory. 

Scientists from database community have also developed tools for organizing astronomical data 

[Baruffolo, 1999]. Although traditional database technologies are difficult to use for efficient 

handling large astronomical data [Pirenne and Ochsenbein, 1991], the emergence of new 

database technologies, namely, Object Data Management Systems, and Object-Relational 

Database Management Systems, now provides spatial indexes for astronomical data, and already 

used by researchers [Chilingarian et al., 2004]. 
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For example, two widely-used open source databases, MySQL
30

 and PostgreSQL 

[Douglas and Douglas, 2003], support R-tree spatial indexes ([Rigaux et al., 2002] and 

PostGIS
31

). It is a promising direction since the database approach is straightforward and easy to 

implement, and it provides more functions than a stand-alone implementation as our technique. 

However, the scalability of current off-the-shelf solutions is severely limited. The experiments 

show that it takes over two thousand seconds (33 minutes) to load 50 million objects into the 

database and create the spatial index.  Furthermore, the database approach requires 5 GB to store 

those 50 million objects, while our solution takes only 600 MB on the same amount of data. 

4.7 Conclusion 

If we have a catalog with billions of objects, how do we index it to support fast matching 

operations? We have tackled this problem on a standard desktop computer. We propose a way to 

organize the catalog on disk and dynamically loading relevant parts of the catalog into memory, 

thus achieving good performance. Experiments on a catalog with 2 billion objects show that 

building a catalog takes less than 2 hours, and the retrieval and matching for an astronomical 

image takes less than a second. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
30

 http://dev.mysql.com/doc/refman/5.1/en/index.html 
31

 http://postgis.refractions.net/ 

http://dev.mysql.com/doc/refman/5.1/en/index.html
http://postgis.refractions.net/
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Chapter 5  Building and Querying Black Hole Merger Trees via 

Database 

Large-scale N-body simulations play an important role in advancing our understanding of the 

formation and evolution of large structures in the universe. These computations require a large 

number of particles, in the order of 10–100 of billions, to realistically model phenomena such as 

the formation of galaxies. Among these particles, black holes play a dominant role on the 

formation of these structures. The properties of the black holes need to be assembled in merger 

tree histories to model the process where two or more black holes merge to form a larger one.  

In the past, these analyses have been carried out with custom approaches that no longer scale to 

the size of black hole datasets produced by current cosmological simulations. We present 

algorithms and strategies to store, in relational databases, a forest of black hole merger trees 

[López et al., 2011]. We implemented this approach and present results with datasets containing 

0.5 billion time series records belonging to over 2 million black holes. We demonstrate that this 

is a feasible approach to support interactive analysis and enables flexible exploration of black 

hole forest datasets. Our systems are deployed and utilized by astrophysicists in several of their 

projects. 

5.1 Introduction 

The analysis of simulation-produced black hole datasets is vital to advance our understanding of 

the effect that black holes have in the formation and evolution of large-scale structures in the 

universe. Increasingly larger and more detailed cosmological simulations are being developed 

and carried out to increase the statistical significance of the generated particle and black hole 

datasets. These higher resolution datasets are key to gain insight on the evolution of massive 

black holes. 

The simulations store the data in a format that is not readily searchable or easy to analyze. 

Purpose-specific custom tools have often been preferred over standard relational database 

management systems (RDBMS) for the analysis of datasets in computational sciences. The 

assumption has been that the overhead incurred by the database will be prohibitive. Previous 

studies of black holes have used custom tools. However, this approach is inflexible: The tools 

often need to be re-developed for carrying out new studies and answering new questions. We 

recently faced this challenge when the existing tools could not handle the data sizes produced by 

our recent simulations.  

As part of our goal of reducing the time to science, we decided to leverage RDBMS 

implementations to perform the analysis of black hole datasets. This approach enables fast, easy 

and flexible data analysis. A major benefit of the database approach is that now the 

astrophysicists are able to interactively ask ad-hoc questions about the data and test hypotheses 

by writing relatively simple queries and processing scripts. We present: 
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 A set of algorithms and approaches for processing, building and querying black hole 

merger tree datasets. 

 A compact database representation of the merger trees. 

 An evaluation of the feasibility and relative performance of the presented approaches. 

Our evaluation suggests that it is feasible to support the analysis of current black hole datasets 

using a database approach. The rest of this chapter is structured as follows: In Section 5.2 we 

describe our motivating science application, the analysis of black hole datasets. We show 

background information and related work in Section 5.3, and various approaches for processing 

black hole datasets in Section 5.4. The evaluation will be presented in Section 5.5. We review the 

deployment and utilization of our systems, and discuss future work in Section 5.6. Finally we 

conclude in Section 5.7. 

5.2 Black Holes in the Study of Cosmological Simulations 

Black holes play an important role in the evolution of the universe. Astrophysicists have found 

that supermassive black holes exist at the center of most galaxies, including our own, and there 

are strong correlations between the black hole and its host galaxy, which indicates that black 

holes have a significant impact on how galaxies evolve.  

Moreover, since black holes are usually very bright and thus easily detected, they act as tracers 

for astrophysicists to study galaxies even when the galaxies are too faint to be observed. Study 

how black holes cluster and how they grow provide valuable insights for astrophysicists to 

understand the process by which large-scale structures, such as galaxies, groups and clusters of 

galaxies, are organized in the universe. Structure formation and evolution in cosmology 

encompasses the description of the rich hierarchy of structures in the universe, from individual 

galaxies and groups to clusters of galaxies, and up to the largest scale filaments along which 

smaller structures align.  

To study the processes, cosmological numerical simulations that cover a vast dynamic range of 

spatial and time scales are being developed. These need to include the effect of gravitational 

fields generated by superclusters of galaxies on the formation of galaxies, which in turn harbor 

gas that cools and makes stars and is being funneled into supermassive black holes the size of the 

solar system. 

There are two conflicting requirements that make the study of hierarchical structure formation 

extremely challenging. To have a statistically significant representation of all structure in the 

universe, the studied volume needs to be large. However, the particle mass needs to be relatively 

small to adequately resolve the appropriate physics and the scale of the structures that emerge. 

This implies a need for an extremely large number of particles in the simulation, requiring in 

principle a dynamic range of 10
10

 or more. 
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Figure 5.1: Visualizations of a large-scale dark matter simulation carried out by the researchers 

of the McWilliams Center for Cosmology. The top two pictures show slices of the simulation 

volume. The black holes are shown as bright dots (light color). Successive zoom factors (10X) of 

the highlighted boxes are shown in the bottom 3 frames. 

Scientists at the CMU McWilliams Center for Cosmology and collaborating institutions use the 

parallel program GADGET-3 [Springel, 2005] to carry out large-scale cosmology simulations, 

MassiveBlack, on supercomputers with 100,000 CPU cores. A visualization of the result of these 

computations is shown in Figure 5.1. The simulations evolve an initial realization of a Lambda 

Cold Dark Matter (ΛCDM) cosmology over cosmological timescales, incorporating dark matter, 

gas, stars and black holes. The gravitational forces are calculated with a hybrid approach, named 

TreePM, which combines a hierarchical tree algorithm for short range forces with a 

particle-mesh algorithm for long-range forces. The gas is modeled using Smoothed Particle 

Hydrodynamics (SPH) which uses the Lagrangian method of discretizing mass into a set of 

particles with adaptive smoothing lengths [Springel and Hernquist, 2002], naturally providing a 

varying resolution from the densest regions at the center of massive galaxy halos to the diffuse 

voids between halos. Sub-resolution models are used to model star formation and supernova 
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feedback (using the multi-phase model [Springel and Hernquist, 2003]) as well as black hole 

formation, accretion, and feedback [Springel et al., 2005] [Di Matteo et al., 2005]. 

Analysis of Black Hole Datasets. With the current simulation capabilities, we are now in a 

position to make predictions about the mass distribution in the inner regions of galaxies. In 

particular, recent observations imply that black holes with billion solar masses are already 

assembled and seen as the first quasars and large galaxies when the universe is only 800 million 

years old. As these objects are likely to occur in extremely rare high density peaks in the early 

universe, large computational volumes are needed to study them. An aim of high-resolution, 

large-volume simulations and associated analysis of the produced datasets is to explain the 

formation of these objects, which is a major outstanding problem in structure development. 

 

Figure 5.2: Sample black holes. This figure shows the gas distribution around two of the largest 

black holes in a snapshot from a recent simulation. The respective light curves for these black 

holes are shown in the plot, as well as the accretion rate history for the most massive one.  

There are two general types of questions which we typically want to address using the black hole 

datasets. The first one is to investigate the black hole populations which exist at a specific time. 

These queries on the overall population of black holes have been used to study a wide variety of 
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black hole properties, such as the number and density of black holes as a function of mass 

[Di Matteo et al., 2008] or luminosity [DeGraf et al., 2010a], the clustering properties of 

different populations of black holes [Degraf et al., 2010b], and the correlation between black 

holes and the galaxies in which they are found [Colberg and Di Matteo, 2008] 

[Di Matteo et al., 2008]. These questions require queries based on a specific redshift (i.e., 

simulation time), often selecting a subset of the black holes at that time based on their mass and 

accretion rate. The second type of questions requires looking at the detailed growth history of 

individual black holes. An example is shown in Figure 5.2. These histories can help us 

understand how black holes grow, the relative importance of black hole mergers vs. gas 

accretion, how the black hole luminosity varies with time, and how they depend on their 

surrounding environment [Colberg and Di Matteo, 2008] [Di Matteo et al., 2008]. At a high-level 

these analyses involve deriving, examining and correlating aggregate statistics of the black hole 

datasets obtained from the simulations. In particular, it requires obtaining the time history for a 

black hole including the information about which black holes merged. 

Black Hole Datasets. Our cosmological simulations produce three types of datasets: snapshots, 

group membership and black holes. The snapshots contain complete information for all the 

particles in the simulation at a given time step. Snapshots have a high cost in terms of both time 

and storage space. For example, the snapshots of the latest simulations are each three terabytes in 

size. Only a few snapshots are stored per simulation (e.g., 30). The output frequency varies 

throughout the simulation, with snapshots being written more frequently at later times when the 

simulation exhibits a highly non-linear behavior. The group membership files contain the 

statistics of cluster structures, such as dark matter halos, as well as the group membership 

information for particles in the snapshots. 

In addition, the black hole data is written to a separate set of text files at a much higher 

time-resolution to preserve the black hole information. This is feasible since the black holes only 

make up a relatively small fraction of the total number of particles in the simulation. Each of the 

compute hosts participating in the simulation produces a file containing the data associated with 

the black holes residing in that host. The files contain one of the following three types of records 

per line: black hole properties, near mergers, and merger events: 

(1) The black hole properties are stored when they are re-calculated for a new time step. The 

stored properties include the id, simulation time, mass, accretion rate, position, velocity 

relative to the surrounding gas, local gas density, local sound speed, and local gas 

velocity. Records of this type make the most of the black hole output.  

(2) Near merger records are produced when a pair of black holes are close enough to initiate 

a merger check, but are moving too rapidly past one another. The output record contains 

the simulation time, the id of each black hole, the velocity of the black holes relative to 

one another, and the local sound speed of the gas.  

(3) Merger event records are stored when a pair of black holes merge with one another. The 

output record contains the ids and masses of the two black holes and the time at which 
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the merger occurred. A black hole merger tree comprises the set of merger event records 

along with the detailed property records for the black holes involved in the mergers. 

5.3 Background and Related Work 

The scientific computing community has developed several file formats, such as FITS 

[Wells et al., 1981], NetCDF [Rew and Davis, 1990] and HDF5 [Folk et al., 1999], for storing 

datasets produced by numerical simulation, atmospheric and astronomy observations. These 

formats support efficient storage of the dense array-oriented data. However, these formats have 

limited mechanisms for indexing objects based on their values and fast retrieval of matches to 

specific queries. Specialized applications, e.g., in seismology [Tu et al., 2002] 

[Schlosser et al., 2008] and geographical information systems, have used indexing structures 

such as B-trees [Bayer and McCreight, 1970], R-trees [Guttman, 1984], octrees [Samet, 1990] 

[Tu et al., 2003] and kd-trees [Lee and Wong, 1977]. The use of RDBMSs for array oriented 

data, in systems such as rasdaman [Baumann et al., 1997], is an emergent area of active research. 

Database techniques have been adopted to manage and analyze datasets in a variety of science 

fields such as neuroscience [Lependu et al., 2008], medical imaging [Cohen and Guzman, 2006], 

bioinformatics [Xu et al., 2009] and seismology [Yang et al., 2007]. In astronomy, RDBMSs 

have been used to manage the catalogs of digital telescope sky surveys [Brunner et al., 1999] 

[Ivanova et al., 2007]. For example, the Sloan Sky Digital Survey (SSDS) has collected more 

than 300 million celestial objects to date [Abazajian et al., 2009]. Database techniques have been 

used in observational astronomy datasets to perform spatial clustering [Szalay et al., 2002] and 

anomaly detection [Kaustav et al., 2008] among others. Various research groups have used 

distributed computing frameworks, such as MapReduce [Dean and Ghemawat, 2004], Pig 

[Olston et al., 2008] and Dryad [Isard et al., 2007] for clustering and analysis of massive 

astrophysics simulations [Leobman et al., 2009] [Fu et al., 2010] [Kwon et al., 2010]. 

RDBMSs have not been as widely used for the analysis of cosmological simulations, in part due 

to the challenge posed by the massive multi-terabyte datasets generated by these simulations. 

The German Astrophysical Virtual Observatory (GAVO) has led in this aspect by storing the 

Millenium Run dataset in an RDBMS and enabling queries to the database through a web 

interface [Lemson and Springel, 2006]. GAVO researchers proposed a database representation 

for querying the merger trees of galactic halos.  

In our collaboration with astrophysicists, we are using RDBMSs to support the analysis of 

cosmological simulation datasets. We present various techniques for building and querying the 

merger trees of black holes. We present a modified database representation for these trees that is 

compact and addresses the particular requirements of the black hole datasets produced by 

cosmological simulations. Union-Find is an algorithm that has near-linear running time and can 

be used to find the connected components of a graph [Galler and Fischer, 1964] [Tarjan, 1975]. 

Various approaches presented here are based on Union-Find, with adaptations to handle the 
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specifics of the merger events representation produced by cosmological simulations. The 

non-RDBMS approach used to analyze previous black holes datasets is described below. 

5.3.1 Non-DB Approach: Custom Binary Format 

The analyses of black hole datasets produced by previous simulations used custom tools that 

employed a storage layout specifically designed for this purpose. The process comprises two 

steps: first generating a binary file containing all the black hole information, and then using tools 

to extract desired black hole data from that file. The binary file consists of a series of arrays, 

starting with the general properties at each timestep, including the number of black holes active 

at any given timestep, a list of those black holes, and what the previous/next timesteps are. Then 

there are a series of arrays, each containing one element for every timestep of every black hole. 

Most of these arrays contain the basic properties of the black holes as output by the simulation 

(mass, accretion rate, position, etc.) but there is also an array generated with the binary file, 

containing the array location of the black hole’s progenitor at the previous timestep (or 

progenitors if the previous time step contained a merger with another black hole). This array acts 

as a form of indexing which can be used when querying the history of a given black hole by 

pointing directly to the previous timestep. However, it is only helpful for this specific query, and 

is inefficient as it does not exploit locality of reference. 

The system was quite inflexible, as the queries were hardcoded into the program, only allowing 

three specific requests: (a) extracting the black hole properties at a specified time, (b) extracting 

the complete histories of all the black holes found in the merger tree of a given black hole, and 

(c) extracting the most-massive progenitor history for a given black hole (i.e. the history of the 

most massive black hole involved in each merger event). Because these queries are hardcoded 

into the software and rely upon the exact structure of the binary file (particularly the index 

pointing to the black hole(s) at the previous timestep), any other type of query required 

modifying the code, and would likely be very inefficient unless the binary file was re-produced 

with additional indexing arrays customized for that query.  

The process for a user to execute queries was cumbersome. After producing the binary file, the 

user could immediately query the black holes for a specific time (query a), but the histories 

(queries b and c) could not be queried by black hole id, but rather required the array index within 

the binary file, which could only be extracted via query (a). So the user must first get the list of 

all black holes at the end of the simulation, get the array location for the desired black hole from 

that list, and use that to query for the desired history. This became more involved with our new 

simulation, since the complete dataset could not be handled with a single binary file, instead 

requiring a series of binary files. Extracting the history for a single black hole thus required 

sequentially querying each file, with each successive file needing to be queried for all the black 

holes found to be part of the merger tree in the previous file, making the querying system 

significantly more time-consuming and error prone. In practice, these queries could take as long 

as 24 hours to finish, which is unsatisfactory for interactive analysis.  
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5.4 Building and Querying Black Forest Databases 

To support the types of queries described in Section 5.2, we first need to transform the data 

produced by the simulation into a tabular, relational representation suitable for use in an 

RDBMS. Then, the data analysis is carried out by querying the database and processing the 

results using the algorithms described below. 

 

Figure 5.3: Merger tree representations. 

 

Figure 5.4: Basic schema for the black holes database. The MergeEvents (ME) table contains the 

ids and masses of the black holes that merged (bh_id1, bh_id2, mass1, mass2), and the time of 

the event. We always assume that bh_id1 will be passed along after the merging. The 

BlackHoles (BH) table contains the high-resolution time history of all the black holes in the 

dataset. The bolded fields represent the primary key in each table. The bh_id1 and bh_id2 fields 

in the ME table are used as search keys to retrieve the history of the respective black holes from 

the BH table. 

5.4.1 Database Design 

A simple schema to represent the black holes dataset comprises three main tables as shown in 

Figure 5.4: BlackHoles (BH), MergerEvents (ME), NearMergers (NM). These tables correspond 

to the three different types of entries present in a black hole dataset produced by a simulation. 

Splitting the black hole output dataset into these tables is achieved through a set of 

pre-processing scripts that cleanup, transform and build the database. The database also contains 
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auxiliary indices and tables to keep summary information and track particle provenance, e.g., 

which processor hosted the particle, which file a record came from. Storing the merger event 

records in a separate table enables fast construction of the merger trees. In general, the merger 

events account for a small size of the black holes dataset. The ME table will often fit entirely in 

the page cache or can be loaded into the application memory for processing. Notice that the ME 

records do not have explicit links to other ME records that belong to the same merger tree. 

Different approaches for building and querying the merger trees follow. We use Python
32

 to 

implement the procedures and interact with RDBMS. 

5.4.2 Approach 1: Recursive DB Queries 

The types of analysis described in Section 5.2 require retrieving the detailed time history for the 

black holes of interest that make up a merger tree. The procedure consists of two conceptual 

steps: (1) building the merger tree from the ME table to obtain the ids of the black holes in the 

tree; (2) querying the BH table to retrieve the associated history for the black holes. For 

explanation purposes, assume that the input for a query is the id of a black hole of interest 

(qbhid). The desired output for step 1 is the ids of all the black holes in the same merger tree as 

qbhid. This can be easily generalized to build multiple merger trees (from a list of black holes of 

interest), and to retrieve a subset of the tree or the most massive progenitor path. 

The recursive DB approach (see Figure 5.5 for more details) works as follows. Given a qbhid, 

find the root of the merge tree by repeatedly querying the ME table. At each step, search for a 

record where bh2 equals the current value of bh. Once the root is found, recursively query the 

ME table for each of the root’s children as shown in the BuildTree procedure (Python code). In 

the BuildTree procedure, qresult contains the left-most path for the subtree with the given root. 

The right child for each node in qresult is recursively added in the loop that iterates over qresult. 

Indices on the bh1 and bh2 fields are needed to speed up the queries. 

This simple approach works well when only a small number of merger trees are being queried 

and the resulting trees have few records. However, it requires repeated queries to the database. 

The number of required queries is in the range [m, 2m], where m is the number of merger events 

in the tree. In most implementations, the repeated queries will dominate the running time due to 

the relatively high per-query cost involved in the communication with the database engine, query 

parsing and execution. 

                                                           
32

 http://www.python.org/ 
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Figure 5.5: Python code for the merge tree construction procedure. 

5.4.3 Approach 2: In-Memory Queries 

This approach consists of loading all the records from the ME table into a set in memory 

(MESet) and then looking up in MESet the events that belong to a tree. The algorithm is the 

following. Given a query qbhid, add it to a queue pq of pending black holes. For each element bh 

in the queue, fetch from MESet the records r that match bh (i.e., r.bh1 = bh). For each matching 

record r, add the corresponding r.bh2 to the pq queue. Repeat this process until every element of 

pq has been processed (i.e., the end of the queue is reached). At the end of the procedure, pq 

contains the ids belonging to the corresponding merger tree. The resulting ids are used to query 

the BH table to retrieve the detailed history for the black holes. 

This approach issues a single heavy query to the ME table beforehand, and all subsequent query 

will benefit from the in-memory information. On the downside, it possibly requires large 

amounts of memory to hold the in-memory data structures, and thus it may not be suitable for a 

Type TreeNode { id, time, left, right } 

Procedure BuildTree(bhroot, ctime): 

// Recursively build a merger tree with bhroot as the root 

// Find all the records that have the bh1 field = bhroot 

qresult = SELECT bh2, time FROM ME 

WHERE bh1 = bhroot AND time <= ctime ORDER BY time DESC  

node = null; pnode = null; rnode = null 

for (bh2, time) in qresult 

node = new TreeNode(id, time) 

node.right = BuildTree(bh2, time) 

if pnode is not null 

pnode.left = node // set left child for previous node in the result 

 else rnode = node 

pnode = node 

return rnode 

 

Procedure BuildTreeDB(qbhid): 

Input: qbhid is the query black hole id 

Output: the merge tree that contains qbhid 

// Find the root node of the merge tree 

bh = qbhid 

while bh is not null 

bhroot = bh 

bh = SELECT bh1 FROM ME WHERE bh2 = bh 

// Now bhroot is the root node of the merge tree 

// Then recursively build the merge tree 

return Buildtree (bhroot, inf) // inf signals the simulation end time 
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dataset with a very large number of merger events. The I/O cost of scanning the entire table can 

be amortized over queries for multiple merger trees. 

5.4.4 Approach 3: In-Memory Forest Queries 

This approach is a modification of the In-Memory Queries one. The basic idea is that instead of 

building the merger tree for a set of query qbhids, the complete merger forest is built upon 

scanning the ME table. Although this approach incurs extra work to build all the trees, this cost 

is amortized when a large number of queries need to be processed. This approach is based on the 

Union-Find algorithm [Galler and Fischer, 1964] and adjusted to handle the peculiarities of the 

merger events representation, such as the fact that there is no explicit link that indicates the 

relationship between an ME node and its left child (bh1). The procedure builds the tree structure 

for each of the connected components. 

This approach uses two associated set structures (e.g., hash tables or dictionaries). The first one, 

bh1Map maps from bh1 to the list of merger events that share the same value of bh1. The second 

one, bh2Map maps from bh2 to a single ME record that has the appropriate bh2 value. As the 

records are scanned from the database, they are added to bh1Map and bh2Map as shown in the 

BuildForestInMemory procedure (Figure 5.6). Then, the right-side links are created by iterating 

over the bh2Map and searching for the corresponding list of nodes in bh1Map, i.e., it creates a 

link where node.bh2 = node1.id. The left-side links are created by iterating over the lists found in 

bh1Map. During this loop, the root nodes for all the trees are determined using the 

findRootAndAddToForest procedure. This procedure only adds new trees to the forest and 

returns early when the root for a tree has already been found. Finally, the BuildForestInMemory 

procedure returns a tuple containing the forest and the maps from the ids to the tree nodes. 

Queries are processed by looking up the desired qbhid in either bh1Map or bh2Map to obtain a 

starting node in the tree from which the root of the tree can be obtained. From the root, all the 

nodes in the tree can be returned. 
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Figure 5.6: Python code for the BuildForestInMemory process. 

5.4.5 Approach 4: ForestDB 

The ForestDB approach builds on the techniques used in the In-Memory Forest approach. The 

basic idea is to build the black hole forest in the same way as in the in-memory case. Then tag 

each tree with an identifier (tid). The forest can be written back into a table in the database that 

we will call merger events forest (MF). This is done as a one-time pre-processing step. The 

schema for this table is the same as the ME’s schema (see Figure 5.4), with the addition of the tid 

field. Two conceptual steps are performed at query time to extract a merger tree for a given 

qbhid. First, search the MF table for a record matching qbhid. The tid field can be obtained from 

the record found in this step. Second, retrieve from the MF table all the records that have the 

same tid. These two steps can be combined in a single SQL query. Moreover, the detailed history 

for the black holes in the tree can be retrieved from the BH table using a single query that uses 

tid as the selection criteria and joins the MF and BH tables. Indices on the bh1, bh2 and tid fields 

are required to speed up these queries. Alternatively, the indices on bh1 and bh2 can be replaced 

by an additional auxiliary indexed table to map from bhid to tid. 

The MF table only stores the membership of the merger event records to a particular tree. Notice 

that the MF table does not explicitly store the tree structure, i.e., the parent-child relationships. 

Also, the MF table only stores the internal nodes of the merger tree. The leaves are not explicitly 

stored. Instead the relevant data (such as the leaf’s bhid) is stored in the parent node. This makes 

for a more compact representation as it requires fewer records in the MF table. 

Procedure BuildForestInMemory(db): 

Input: the DB with the ME table 

Output: a forest containing all the merge trees in ME 

// Scan over all ME records 

cursor = SELECT bh1, bh2, time FROM ME; 

foreach (bh1, bh2, time) in cursor 

node = new TreeNode(bh1, time, bh2) 

bh2Map.put(bh2, node) // Map from bh2 to this node 

bh1Map.addToList(bh1, node) // Map from bh1 to a node list 

foreach node in bh2Map 

// Create the link for the right-side child 

node.right = bh1Map.get(node.bh2) // It may be null 

forest = emptySet() 

foreach lst in bh1Map 

sortbytime(lst) 

// Create links from lst[n-1].left to lst[n] 

createLinkOnBh1(lst) 

findRootAndAddToForest(lst, forest) 

return (forest, bh1Map, bh2Map) 
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5.5 Evaluation 

We built a prototype implementation of the approaches described above using Python and 

SQLite
33

. Our evaluation aims to characterize the relative performance of these approaches and 

determine the feasibility of using RDBMSs in the analysis of black holes datasets. For this 

purpose, we ran a set of experiments using a dataset produced by the largest published 

cosmology simulation to date. 

5.5.1 Workload 

The dataset was produced by a ΛCDM cosmology simulation using the GADGET-3 

[Springel, 2005] parallel program. The simulation ran at the National Institute for Computational 

Sciences (NICS) using all 99072 processors of the Kraken supercomputer and running a total of 

7 days (wall-clock time). The simulation invoked 16,384 MPI processes, each with 6 threads. A 

snapshot of all the particles is 3 TB in size. The simulation contained 33 billion dark matter 

particles and 33 billion hydro particles in a box of 533.33Mpc/h in size. At the end of the 

simulation (z = 4.7), there are 2.4 million black holes. The size of the resulting black holes 

dataset is 84 GB. The black hole history table contains 420 million records corresponding to 3.4 

million unique black holes and 1 million merge events. Figure 5.7 shows the distribution of tree 

sizes in number of merger events in the ME table. 

 

Figure 5.7: Distribution of tree sizes in the black holes dataset. The X axis is the size of a merger 

tree measured as the number of events in a tree. The Y axis is the number of trees of that size in 

log10 scale. 

5.5.2 Storage Requirements 

For our prototype implementation, we stored the BH data in SQLite (v3.7.3). We gathered the 

storage requirement of storing the BH dataset in the database and compared it to a raw binary 

representation. In the binary layout, the records are stored in a dense array of size N × sz, where 

                                                           
33

 SQLite: An open-source RDMBS. http://www.sqlite.org/ 
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N is the number of records in the table and sz is the size of an equivalent unpadded C structure. 

Table 5.1 shows the sizes of the main tables in SQLite and the corresponding size of the binary 

array representation. We built various indices required for speeding up the queries to the BH and 

ME tables. Table 5.2 contains the size of the indices and additional summary and provenance 

database. 

Table 5.1: Size of main tables in the BH dataset 

Table - Records - Tab. Size - Bin. Size 

BH 420M 50GB 22GB 

ME 1M 49MB 26MB 

NM 175M 13GB 4.6GB 

Total  63GB 27GB 

 

Table 5.2: Size of indices and auxiliary tables 

Item Size 

BH index on bhid 8GB 

BH index on time 8GB 

ME index on bh1 17MB 

ME index on bh2 15MB 

MF table 53MB 

MF indices bh1,bh2 32MB 

MF index on tid 12MB 

Aux. and provenance data 6GB 

 

5.5.3 Performance 

To characterize the performance of the developed approaches, we conducted a series of micro 

benchmark experiments that correspond to the steps involved in answering queries for the 

detailed time history of merger trees. 

Setup. The experiments were run on a server host with 2 GHz dual core Intel(R) Xeon(R) CPUs, 

24GB of memory and a 0.5 TB software RAID 1 volume over two SATA disks. The OS was 

Linux(R) running a 2.6.32 kernel. Our prototype implementation of the different approaches is 

written in Python (v3.1) and the data is stored in SQLite. 

Building Merger Trees. The first set of micro benchmark experiments corresponds to the steps 

needed to build the merger trees for a set of query black holes (qbhs). We compared three of the 
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approaches explained in Section 5.4: (a) Recursive DB – RDB (Section 5.4.2), (b) In-memory – 

IM (Section 5.4.3), and (c) Forest DB – FDB (Section 5.4.5). The In-memory Forest approach 

(Section 5.4.4) was only used to build the tables for Forest DB. For these experiments we 

selected black holes (qbhs) that belonged to merger trees in the ME table. We timed the process 

of satisfying a request to build one or more merger trees specified by the requested qbhs. The 

processing time includes the time required to issue and execute the database query, retrieve and 

post-process the result to build the trees. 

     

(a) Cold OS cache                                       (b) Warm OS cache 

Figure 5.8: Running time to obtain the merger trees for the different approaches. These results 

correspond to a tree of size 5. The X axis is the number of trees being queried at once in a batch. 

The Y axis is the elapsed time in seconds (log scale) to retrieve the corresponding records from 

the ME table. The cases with cold (a) and warm (b) OS caches are shown. 

In the first experiment, we kept the tree size fixed at 5 and varied the number of black holes for 

which a tree is requested (number of qbhs). The results for the different approaches are shown in 

Figure 5.8. The X axis is the qbh count varying from 1 to 10,000. The Y axis shows the 

processing time (seconds) in log scale. For qbh counts less than 1K, both the RDB and FDB 

approaches are faster than the In-Memory approach. The RDB approach is not as expensive as 

we originally thought for small queries. It was surprising to find out that for the cold OS cache 

setup (Figure 5.8a), the processing time for RDB and FDB does not differ significantly. For the 

warm OS cache, there is a constant (in log scale) difference between RDB and FDB. The IM 

approach pays upfront a relatively large cost of 15 seconds to load the entire ME table, then the 

processing cost per requested qbh is negligible, and thus can be amortized for a large number of 

qbhs. 

Figure 5.9 shows the effect of the merger tree size on the request processing time. In this 

experiment the requests were grouped by tree sizes (X axis = 1, 5, 10, 15, 20). This experiment 

was performed with a warm OS cache and cold database cache. The initial load time for the IM 

approach is not included in the processing time shown in the graphs, only the time to build the 

tree in memory. The running time for the RDB approach increases as the trees get larger. This is 
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due to the larger number of queries to the ME table needed to process each tree in the recursive 

approach. The FDB approach requires a single query to the ME table per requested tree. 

       

(a) Batch size = 250 qbhs                              (b) Batch size = 2 qbhs 

Figure 5.9: Processing time for building the merger trees using various approaches. This 

experiment was performed with a warm OS cache and a cold DB cache. The X axis is the size of 

the resulting tree; (a) and (b) show the time to process 250 qbhs and 2 qbhs per request 

respectively. The Y axis is the elapsed time to build the number of trees of each size. 

 

                   (a) Request size = 2 qbhs                            (b) Average over requests for 2 qbhs 

Figure 5.10: Processing time for building the merger trees for 2 qbhs per request with cold OS 

and DB caches. The X axis corresponds to the tree size. The Y axis is the elapsed time in 

seconds to build the trees. (a) shows the time for a particular request set with 2 qbhs. The average 

processing time for multiple 2-qbhs sets is shown in (b). 

Figure 5.10 shows the processing time according to tree size for requests of size 2 qbhs and cold 

OS cache. In these experiments, a request for 2 qbhs (of a given tree size) is repeated 9 times 

with cold cache. The minimum average and maximum are shown for each point. Figure 5.10(a) 
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shows the result for a particular set of request qbhs, and Figure 5.10(b) shows the aggregate 

across different 2-qbh request sets. The difference between the RDB and FDB approaches is 

inconclusive in this scenario, especially for small trees. In this case, the request time is 

dominated by the characteristics of the I/O devices, rather than the particular approach. 

 
(a)                                                                             (b) 

Figure 5.11: Time to retrieve the detailed BH history from the BH table for merger trees of 

various sizes. The running times for queries to sorted and unsorted BH tables are shown. Figure 

(a) shows the elapsed time grouped by tree size. Figure (b) shows the same data grouped by the 

number of BH records comprising the merger trees. 

Retrieving the Time History for Merger Trees. In the second set of experiments, we retrieved 

the detailed time history for a set of trees retrieved in the previous step. This entails retrieving 

from the BH table all the records for the corresponding BH in a given merger tree. For each tree 

size (1, 5, 10, 15), we retrieved the BH histories for 100 trees of that size. Figure 5.11a shows the 

elapsed time in seconds to retrieve the detailed records from the BH table. The times are shown 

for an unsorted indexed BH table and a BH table sorted by the black hole id. As expected for this 

query pattern, sorting by the BH id is beneficial. Figure 5.11b shows the elapsed time according 

to the number of records that were retrieved from the BH table. Each data point corresponds to a 

merger tree that resulted in retrieving the number of BH records shown in the X axis. The Y axis 

is the elapsed time in seconds for the unsorted and sorted BH tables. 

5.5.4 Pre-processing 

Creating the BH database involves loading the data and creating the needed indices. Although 

this is a one-time cost, it is a necessary step to enable the data analysis. If this process takes too 

long, it may become a barrier for adoption of the DB approach. The initial loading operation 

presents a good opportunity for performing needed data cleanup operations such as removing 

duplicate or unwanted records. Loading the database takes 10 hours using our pre-processing 

scripts in our platform. Under closer examination we determined that the process was CPU 

intensive. Its running time can be greatly reduced with a compiled language implementation and 

by processing in parallel subsets of the data being loaded. Creating the MF table takes 55–65s 
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once the data is loaded. The pre-processing time of the current implementation is already a 

significant improvement over the previous custom approach where creating the binary files 

required days. In the custom approach, the data of recent simulations could not be loaded into a 

single file in a single step. Instead, multiple binary files need to be created to deal with the larger 

data sizes. For example, creating the binary file for the last fraction of the most recent simulation 

took approximately 12 days. The resulting files cannot be easily queried at once. In contrast, with 

the DB approach, not only the initial pre-processing time is lower, but also all the data is in a 

single database that can be queried in a consistent and flexible manner. 

5.6 System Utilization and Future Work 

Our systems are very helpful in several astrophysics projects ([DeGraf et al., 2012a]  

[DeGraf et al., 2012b] [Di Matteo et al., 2012] [Khandai et al., 2012]). Astrophysicists usually 

use it to extract individual black hole histories (query (b) and (c) in Section 5.3.1), and to get a 

full list of black holes at any given time (query (a) in Section 5.3.1). Occasionally, they use the 

system to query other useful information, like getting all the black holes in a given time frame, or 

acquiring the statistics of merger events. These extractions normally are an intermediate step, 

followed by subsequent analysis written in IDL
34

 or C++. 

Comparing to the old non-DB approach, RDBMS solution is faster and more flexible. It is easier 

to add new types of queries (like to get all black holes in a given time frame), or new 

post-processed properties of specific black hole entries (for example, host galaxy mass). The 

database approach lets us easily add an index on a new column if it turns out helpful, and we can 

make additional tables which are added to the database based on the current information. All of 

above features are not easily extensible to the old approach. 

Additionally, the RDBMS approach makes it more convenient to link the black hole dataset to 

databases and tables of other particle or galaxy properties from the same simulation. This 

functionality is currently being implemented and not yet functional, and the goal is to not only 

provide an easier way for data access, but also make the database publicly accessible, ideally 

through an online-query system, like the SkyServer interface of Sloan Digital Sky Survey
35

. 

Now that scientists are able to easily query the data, they are able to carry more involved and 

extensive types of analysis, which in turn results in more complex queries and access patterns. 

One of the next steps is to add other types of data, such as information about galaxy halos, to 

correlate black holes with their surrounding environment. Adding new types of data brings 

challenges due to the size of those other data sources. Current black hole datasets can be 

managed with RDBMS using a single server-class host. The size of these datasets will increase 

as cosmology simulations grow larger. Alternative, more efficient approaches will be needed to 

manage and analyze these coming datasets. To address the challenges of scaling to larger data 

                                                           
34

 IDL programming language, http://www.exelisvis.com/ProductsServices/IDL.aspx 
35

 http://skyserver.sdss.org/public/en/tools/search/sql.asp 

http://www.exelisvis.com/ProductsServices/IDL.aspx
http://skyserver.sdss.org/public/en/tools/search/sql.asp
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sizes, there are a new generation of tools that will leverage distributed, scalable, structured table 

storage systems such as Bigtable [Chang et al., 2006] and Cassandra 

[Lakshman and Malik, 2010]. Currently, the data analysis is delayed by the time required to load 

the simulation output into the database. Although it is a one-time cost, the time required to load 

multi-terabyte and petabyte datasets is potentially long, in the order of multiple days on 

relatively small computer clusters. We are exploring efficient in-situ processing and bulk loading 

mechanisms to address this issue. 

5.7 Conclusion 

Rapid, flexible analysis of black hole datasets is key to enable advances in astrophysics. We 

presented a set of algorithms for processing these data using a database approach. The database 

approach is not only flexible, but also exhibits good performance to support interactive analysis. 

Our approach has been used by astronomers to analyze large-scale astronomical data. 
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Chapter 6  Quasar Detection 

6.1 Background 

Astronomers observe the universe via modern telescopes. Sometimes, it is not easy to identify 

celestial objects only through telescope images. For example, the Andromeda Galaxy 

(catalogued as M31) – the nearest spiral galaxy to our Milky Way galaxy, was considered a 

nebula when first discovered. Later in 1864, William Huggins discovered that the spectrum of 

M31 is continuum – very different from that of a nebula. But people still thought M31 is a 

nearby object. Finally in 1925, Edwin Hubble successfully measured the distance of M31, and 

determined that it is not a cluster of stars or gas within our galaxy, but an entirely separate 

galaxy. 

Although nowadays we have modern high-resolution telescopes, the same problem still exists: 

When using telescopes to observe an astronomical object, which looks like “shining dots”, 

sometimes we cannot tell what it really is. So in this chapter, we use machine learning techniques 

to help astrophysicists better identify astronomical objects from telescope images. We focus on 

one specific type of objects, quasars.   

A quasar is an unusually bright galaxy, which is visible to us even if it is far away from the earth. 

Astronomers are interested in studying the properties of quasars because it provides information 

about remote regions of the universe, and thus advance the study of universe expansion. 

It is hard to identify quasars accurately, because regular telescopes do not explicitly provide the 

distance information of an object, and quasars look similar to regular galaxies and other types of 

objects. We help astrophysicists better classify quasars. Specifically, given a dataset of 

astronomical objects, we identify quasars from all other types of objects. Two groups of machine 

learning algorithms are applied to this problem:  

Supervised Learning: This is the basic and simple case, where we have already acquired the 

labels of all objects
36

 and use them to train a classifier on new data. To solve this problem, we 

apply a variety of supervised learning algorithms, including decision trees, support vector 

machines, and k-nearest neighbors.  

Active Learning: In this scenario, we assume the labeled data do not come for free, and we want 

to train an accurate classifier while minimizing the number of labels. In reality, labeling 

astronomical objects requires additional measurements to acquire and analyze their spectrum, 

which costs a couple of dollars per object. As a result, for future massive sky surveys, it may be 

very expensive to get the labels of all objects. Active learning handles this kind of situations: 

assuming that a user can provide only a small amount of labels, and an active learning algorithm 

interacts with the user and automatically select appropriate objects for labeling [Settles, 2010]. 

                                                           
36

 That is to say, for each object, we already know whether it is a quasar or not. 
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Active learning technique is usually more effective than the ordinary supervised learning 

techniques: It requires fewer labels to get a classifier with comparable accuracy. 

6.2 Related work 

The detection of quasars from multicolor imaging data dated back to Sandage and Wyndham 

[Sandage and Wyndham, 1965]. Richards et al. identified quasars using fluxes of astronomical 

objects in five color bands (U, G, R, I and Z). Using non-parametric Bayesian classification 

together with fast kernel density estimation [Gray and More, 2003], their algorithms achieved 

65–95% precisions and 70–95% recalls, varying on different datasets [Richards et al., 2002] 

[Richards et al., 2004] [Richards et al., 2009].  

Despite the high precision and recall, the solution is less powerful to identify extra-bright 

objects, due to interlopers like white dwarfs and faint low-metallicity F-stars. The solution also 

has trouble classifying high-redshift quasars (z > 2.2, where z represents redshift), where the 

precision drops below 50% [Richards et al., 2009]. 

6.3 Data and experimental setup 

We conducted experiments on a dataset provided by our collaborators in University of 

Pittsburgh. The dataset, which is manually selected as possible quasar candidates, contains 8,200 

objects. We observed the apparent magnitudes of each object – the logarithm of its brightness – 

as its feature. Object brightness is measured in five color bands, so we acquired a 

five-dimensional vector of numeric features for each object. The dataset also includes the true 

label of each object, determining whether it is a quasar or not (Figure 6.1). 

6.4 Solution 

6.4.1 Supervised learning 

We ran a series of machine learning experiments using Java and Weka [Holmes et al., 1994]. We 

considered the following four supervised learning techniques: 

C4.5 – A decision tree classifier [Quinlan, 1992] that learns and organizes a set of decision rules 

in a tree structure that determines the label of each object. 

k-NN – A k-Nearest Neighbor classifier. The label of each object is determined by the majority 

of its k closest objects. 

SVM – A Support Vector Machine classifier. SVM chooses from possible hyperplanes that 

separate the objects of two classes. The chosen hyperplane represents the largest separation, or 

margin, between the two classes. 
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Figure 6.1: The distribution of objects in pairwise feature space. The features are the magnitude 

of objects in five color bands (U, G, R, I, Z). 8,200 objects are shown. Quasars are plotted in 

black and non-quasars are plotted in grey.  

Majority Vote – A majority vote on the results of C4.5, k-NN, and SVM. 

Illustrations of the three techniques are shown in Figure 6.2. 

We used 10-fold cross-validation to test the performance of each technique, and report the 

average precision (#correctly_classified_quasar / #classified_quarsars), average recall 

(#correctly_classified_quasar / #true_quasars), and their standard deviations in Table 6.1. 

Table 6.1: Precision, recall, and their standard deviations of the supervised learning techniques 

 Average Precision Precision Stdev Average Recall Recall Stdev 

C4.5 0.726 0.008 0.612 0.004 

k-NN 0.737 0.01 0.612 0.003 

SVM 0.456 0.023 0.699 0.058 

Majority Vote 0.812  0.295  
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(a) Decision tree. 

 

(b) k-nearest neighbor. Here k is set to 3. 

 

(c) SVM. 

Figure 6.2: The three techniques we use to train a classifier. 
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Among the results, the performance of C4.5 and k-NN are similar, with around 72% precision 

and 61% recall. SVM exhibit a poor precision (46%), but its recall is better (70%). The majority 

vote has the highest precision (81%), but its recall is the lowest (30%). 

6.4.2 Active learning 

In this section we apply active learning algorithms to the quasar detection problem. Under this 

scenario, we assume that most of the input objects are unlabeled and the acquisition of labels is 

not free. An active learning algorithm automatically decides which objects to query and actively 

asks human for labels. Comparing to supervised learning techniques, it usually requires fewer 

labels to train an equally good classifier. Consequently it is suitable for the applications where 

the acquisition of labels is expensive. 

Formally, assume that the input objects D = {(x1, y1), (x2, y2), …, (xn, yn)}, where xi stands for a 

feature vector, and yi   {–1, 1} is its binary label. Assume further that at phase t (t     and 

t   ), L is a set of t–1 objects whose true labels have already been learnt
37

, and U is set of the 

remaining objects whose labels are not yet revealed. An active learning algorithm will train a 

classifier CL on L, and choose an unlabeled object (query) (xi, yi)   U for human to label. After 

the label yi is discovered, the query (xi, yi) will be added to L and removed from U. Then the 

learning algorithm will train another classifier, and choose the next object to label, and so on. 

Next we introduce a baseline, and three active learning techniques [Baram et al., 2004]. All 

active learning algorithms use SVMs as their classifiers.  

Baseline. We use a simple random-selection as the baseline for other active learning algorithms. 

The baseline learner randomly chooses an object in U as query. Any active learning algorithm 

needs to beat this baseline to have any practical value. 

Simple algorithm. After an SVM classifier CL is trained over L, the learner will choose the 

object that is the closest to the hyperplane of CL as the next object to query. This algorithm has 

the effect of quickly reducing the size of possible hyperplanes [Tong and Koller, 2001]. 

Kernel Farthest First (KFF). Given the set of labeled instances L, the KFF algorithm chooses 

the next object xi which is the farthest to L (here the distance from a point to a point set is defined 

as the minimal distance to any point in the set). We measure the distances in the kernel space of 

SVM. Intuitively this algorithm is comprehensible because it chooses the query that is the most 

dissimilar to any labeled object. 

Self-Confidence. The decision boundary of a SVM classifier is a linear hyperplane:  

w ∙ xi – b = 0 

                                                           
37

 Initially (when t = 3) L contains two randomly selected objects, one with label 1 and one with 

label –1. 
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Here ∙ denotes dot product, and w and b are the trained parameters for the decision boundary. To 

further get a probabilistic estimation for each object, we apply a normal logistic regression model 

to the above formula: 

              
           

              
 

               
 

              
 

Assume that we have trained a SVM classifier CL and its probabilistic model PL at phase t.  Now, 

for each unlabeled object and its label (xi, yi)   U, we train a new SVM model and a probabilistic 

model with L   (xi, yi), and estimate the “self-estimated log-loss” of the remaining unlabeled 

objects on the new model: 

 (          
)    

 

     
∑           
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After that, we estimate the average expected loss of labeling xi: 

         ∑          
  

 (          
) 

, and finally the learner choose the xi with the smallest Loss(xi). 

Note that the computational complexity of the Self-Confidence algorithm is high: At each phase, 

the Self-Confidence algorithm trains 2|U| SVM classifiers, which is costly especially for a large 

dataset when most of the objects are unlabeled. Thus we implemented a modified algorithm: at 

each phase, we do not evaluate the loss function of each unlabeled object, but only a fixed 

number of randomly selected unlabeled objects (in the following experiments, the constant is set 

to 10). 

To evaluate the effectiveness of an active learning algorithm, here we look at the classification 

precision on each classifier CL. At the beginning of our experiments we left out a test set S that is 

randomly selected from U, and applied each CL to the test set to calculate the classification 

precision, defined by #objects_classified_correctly / |S|. 

For each active learning algorithm we repeated our experiment for 30 times. Each time, two 

initial labeled objects were randomly chosen. The average precision of each algorithm is reported 

in Figure 6.3. 

It is surprising to see that two of the active learning techniques, Simple and KFF, performed 

worse than the baseline, which indicates that they are worse than the random selection. On the 

other side, the Self-Confidence algorithm outperformed the baseline, although their difference is 

not obvious. 
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Figure 6.3: The performance of different active-learning techniques: random baseline (Base), 

simple algorithm (Simple), Kernel Farthest First (KFF), and Self-Confidence (Self_conf). 

6.5 Conclusion 

In this chapter we report our initial efforts on the quasar detection problem. We utilized two 

kinds of machine learning techniques, supervised learning and active learning, to automatically 

identify quasars from other kinds of objects. Our experiments showed that supervised learning 

techniques, especially the majority vote on different algorithms, lead to high precision. However, 

our active learning algorithms did not hold expected advantage. As the future sky surveys keep 

getting larger, automatic analysis become more attractive, and it is interesting to see how the 

above techniques perform on future larger datasets. 
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Chapter 7  Conclusion and Future Directions 

In this thesis I introduce our efforts to analyze large-scale astronomical datasets, which currently 

contain billions of celestial objects. We show that there is wide area for collaboration between 

computer science and astronomy. Specifically, we utilize various computer science techniques, 

including algorithm, distributed computing, database, hardware, and machine learning to provide 

fast and scalable solutions toward big data. 

As more and more astronomical data will be available in the near future, there are multiple 

potential opportunities for large-scale astronomical data analysis. Other than the future works 

introduced at the end of each chapter, I feel the following research directions interesting and 

promising: 

 A basic topic is how to store and process large amount of available data in the near 

future. As astronomers estimated, the initial computer requirements for Large Synoptic 

Survey Telescope (LSST) [Ivezic et al., 2008] are already at 100 teraflops of computing 

power and 15 petabytes of storage, which calls for more efficient algorithms, carefully 

designed systems, as well as flexible software frameworks. 

 One possible research direction is to make use of a new wave of database techniques to 

better store and process big data. One of the new trends is called “Column-oriented” 

databases (Vertica
38

, MonetDB [Boncz 2002]), which store database tables as sections of 

columns, not on rows. In an extreme case (e.g. if a query only covers a small number of 

the columns in a table), a column-oriented database can answer user queries ten time 

faster than traditional databases [Stonebraker et al., 2007]. Previous work already applied 

column-oriented database to astronomical field, which used MonetDB to store SDSS’s 

Skyserver [Ivanova et al., 2007], and it is worthwhile to see whether this direction is 

favorable on larger databases. 

 Another new database technique is “No-SQL” (Bigtable [Chang et al., 2006], Cassandra 

[Lakshman and Malik, 2010]), where these new database systems provide a faster and 

more scalable solution, although not supporting all the functionalities of ordinary 

relational databases. For example, Google's Bigtable system provide only one data 

model, (key, value) pairs. Users can only add, remove or search for information on keys. 

It is interesting to see whether the data retrieval patterns to astronomical databases can be 

represented by the simplified data models, and if so, these new databases can provide a 

more scalable and robust alternative to existing systems. 

 Most future digital surveys will store many time slices of data. For example, Panoramic 

Survey Telescope and Rapid Response System (Pan-STARRS) [PanStarrs] 

[Kaiser et al., 2002] can map the entire sky in just 40 hours. How to utilize these multiple 

slices of data becomes an interesting topic. For example, how to locate a celestial object 

                                                           
38

 http://www.vertica.com/ 

http://www.vertica.com/
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among datasets at different times? Are there any spatial indexes that can accelerate such 

queries? Is there any related data mining problems? And so on. 

 As more and more astronomical data become available, most will not have human labels. 

For example, LSST is expected to take more than two hundred thousand pictures per 

year, much more than what humans are expected to review. This is a big opportunity for 

active learning techniques, which aims to learn a concept while minimizing the number 

of labels it needs from human. We have provided preliminary results about the use of 

active learning algorithms in Chapter 6, but it will be more challenging to consider 

similar problems at larger scale. Another potential direction is to use the “wisdom of 

crowds”, i.e. crowdsourcing to quickly collect human labels [Lintott et al., 2008].  
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