Map Learning and Coverage Planning for Robots
in Large Unknown Environments

Grant P. Strimel

August 2014
CMU-CS-14-129

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15317

Thesis Committee:
Manuela M. Veloso,chair
Avrim Blum

Submitted in partial ful llment of the requirements
for the degree of Master of Science of Computer Science

Copyright ¢ 2014 Grant Strimel

Keywords: Service Robots, SLAM, Robotic Coverage, Motion and Path Planmng,
Path Planning for Multiple Mobile Robots, Kinect Sensor Feture Extraction

ABSTRACT

The robotics eld has seen indoor robots that are increasihgcapable of accurately
navigating in buildings and performing service tasks, sudms cleaning and transporting
items. Given the advances in accurate navigation and robustotion planning, large
scale industrial applications become feasible tasks. Tworomon tasks are the mapping
of large unknown structured spaces and using learned maps éoverage planning. In
this thesis, methods are presented for robotic mapping ofrtge spaces and coverage
planning under nite energy constraints. The thesis is presited in two parts. Part
| focuses on the mapping component. We present a basic Kindgised Simultaneous
Localization And Mapping (SLAM) system for CoBot (mobile serwie robot in CMU's
Gates-Hillman Center) in predominantly planar environmerg. The SLAM solution is
Kinect-based in the sense that observations come only frond@metry measurements
and three Kinect sensors. The system is designed for the mvating scenario of map-
ping a large room or oor with aisles and shelves for the purges of a robot in a store
or warehouse. We present our feature extraction techniqyegescribe the graph SLAM
method used and show and compare SLAM results with and withopgrallel-orthogonal
geometric constraints on the planar environment.

Part Il addresses the coverage problem. The robot coveragemplem, a common plan-
ning problem, consists of nding a motion path for the robot hat passes over all points
in a given area or space. In many robotic applications invalwg coverage, e.g., industrial
cleaning, mine sweeping, and agricultural operations, traesired coverage area is large
and of arbitrary layout. In this portion of the work, we address the real problem of plan-
ning for coverage when the robot has limited battery or fuelyhich restricts the length
of travel of the robot before needing to be serviced. We codsr several alterations of
the problem with varying objectives. We introduce new sweam planning algorithms,
which build upon the boustrophedon cellular decompositionoverage algorithm to in-
clude a xed fuel or battery capacity of the robot. We show illistrative examples of the
planned coverage outcome in a real building oor maps and rutimed computational
experiments for each of the methods.

Introduction

The robotics eld has seen indoor robots that are increasihg capable of accurately
navigating in buildings and performing service tasks, sudms cleaning and transporting
items. Given the advances in accurate navigation and robustotion planning, large
scale industrial applications become feasible tasks. Ongchk task is oor scrubbing in
large indoor environments. Commercial buildings such ash&mls, airports, stores, and
malls have their oors cleaned on a regular basis. Over a hidh dollars a year is com-
mitted to these tasks. This fact naturally raises the questn whether these scrubbing
tasks can be automated and completed more e ciently using &rcial intelligence and
robots. Addressing the problem poses two interesting reselarchallenges: the mapping
of large unknown structured spaces and using learned maps fwverage planning. In
this thesis, methods are presented for robotic mapping ofrtge spaces and coverage
planning under nite energy constraints. The thesis is presnted in two parts. Part
| focuses on the mapping component. We present a basic Kinddsed Simultaneous
Localization And Mapping (SLAM) system for CoBot (mobile servie robot in CMU's
Gates-Hillman Center) in predominantly planar environmeré. The SLAM solution is
Kinect-based in the sense that observations come only frondametry measurements
and three Kinect sensors. The system is designed for the mwatiing scenario of map-
ping a large room or oor with aisles and shelves for the purpges of a robot in a store
or warehouse. We present our feature extraction techniqyesescribe the graph SLAM
method used and show and compare SLAM results with and withoptarallel-orthogonal
geometric constraints on the planar environment.

Part 1l addresses the coverage problem. The robot coveragemplem, a common plan-
ning problem, consists of nding a motion path for the robot hat passes over all points
in a given area or space. In many robotic applications invdlg coverage, e.g., industrial
cleaning, mine sweeping, and agricultural operations, traesired coverage area is large
and of arbitrary layout. In this portion of the work, we address the real problem of plan-
ning for coverage when the robot has limited battery or fuelihich restricts the length
of travel of the robot before needing to be serviced. We codsr several alterations of
the problem with varying objectives. We introduce new swe@pg planning algorithms,
which build upon the boustrophedon cellular decompositionoverage algorithm to in-
clude a xed fuel or battery capacity of the robot. We show illistrative examples of the
planned coverage outcome in a real building oor maps and rummed computational
experiments for each of the methods.

Part 1
SLAM for CoBot

1.1 Introduction

Carnegie Mellon's CORAL research group led by Professor Magla Veloso works on au-
tonomous indoor mobile robots named CoBot (Collaborative ébot). Currently, CoBot
is able to navigate through the Gates-Hillman Center by non-arkov localization using
3D depth camera information BV12] [BVV14]. The localization uses a blueprint map
of each oor of the environment. With the map, it is able to comlne sequences of
odometry and Kinect depth camera observations to predict st position on the map
with relatively high accuracy.

We address here a method to build maps for use in localizati@and navigation. We
explore and implement a basic Kinect-based Simultaneous ¢alization And Mapping
(SLAM) system for CoBot. The SLAM solution is be Kinect-basedn the sense that
observations come only from odometry and the Kinect camera.

Fig. 1.1: CoBots 1, 2 and 4 (left to right) in the Gates Hillman @nter at Carnegie
Mellon University

1.1.1 Motivation

The motivating scenario for this thesis is the mapping of a tge room or oor for the
purposes of a service robot. For example, CoBot should be altb map the oor of a
store or warehouse with many aisles and shelves. The mapps@ution needs to map
walls and shelves and ignore temporary insigni cant feates of the environment.

The SLAM solution proposed relies on identifying features ian environment and op-
erates under the assumption of a zero-mean Gaussian error tbe observations. The
proposed algorithm can then solve for the maximum a posteriqMAP) of the trajec-
tory of the robot and the map of the environment which is in theform of a non-linear
least squares optimization problem to minimize the reprogtion error of the observa-
tions. The solution uses the Ceres Non-Linear Least Squaredver |] to perform
this optimization. The solution proposed is reasonable irhe sense that it is capable of
generating relatively accurate maps retaining only the maj features of the motivating
environments in an e cient amount of time.

1.1.2 Related work

The SLAM problem is one of the most well-studied problems in raics. The goal of
SLAM is to combine localization measurements to aid in mappgnand concurrently use
the mapping to aid in the localization. In most scenarios, aobot will have several types
of sensors. One will have readings for location but give nofammation about the map.
And others like range sensors will give data about landmarks the map, but without
any localization, these readings have little value. Both sgors have errors and lead to
drift. The aim of SLAM is to combine the data and perform both pocesses at once to
improve accuracy for both.

SLAM techniques usually come in one of two forms. The rst is anndine approach
where the map and predicted locations grow with every obsation. Most of these
use the Extended Kalman Filter approach 1s[1Ll L[]. The
method is able to incrementally estimate the \joint posteror distribution over the robot
pose and landmark positions|Y]. From this procedure, accurate predictions on
the updated pose and map landmarks can be made. There existgealative online
approaches like that ofFastSLAM | I [] based on particle lIters (each

particle represents a pose of the robot) to incrementally b@ the SLAM problem.

The second SLAM form is the batch problem where instead of irementally solving the
problem as more data is observed, all data and observatione @athered and stored and
then all variables (localization and map) are solved for atrwe o ine [], [1,

[I []. This approach is commonly referred to a&raph SLAM or Graphical
SLAM because it is convenient to view the problem as a large graph evke each vertex
is a pose of the robot and constraint edges exist between theses representing the
observed measurements of consecutive frames. We take tl@sand approach and solve
the complete batch problem o ine with our graph SLAM-sdalgorithm. Graph SLAM-sd
is much like the standard graph slam with a shelf detection @ component.

In many scenarios, such as the inside of o ces or academic llings, it is often ap-
propriate to make a planar world assumption on the environnm¢ being explored (i.e.
all landmarks are large planar surfaces) 1, [1 [1, [I []
We, too, make this assumption and solve only the two dimensial case. Methods which
exploit this assumption are often referred to aplanar SLAM or line SLAM.

We use both odometry observations and planar observationfien solving SLAM unlike
occasional techniquesq] when only large plane registration is used to correct the
robot's pose. However, the only depth data we use comes fronetrelatively inexpensive
Kinect sensors instead of the typical more expensive lase@aaner.

1.2 Features

As typical with most SLAM solutions, the data we use to learn thenap comes in two
forms: odometry features and landmark features

1.2.1 Odometry

CoBot is equipped with an omniwheel base. The omniwheel basieCoBot is composed
of a set of four omniwheels arranged in a square formation. Wave motion models
which collect data from the actuators of each of the wheels. h& data gives us the
X;y; distance traveled by the robot at each timestep. The data mearements as
well as the model are susceptible to noise, slippage, and @thnaccuracies. Because
data inaccuracies, relying on only odometry for localizain for long stretches, will lead

4

to large drift and dramatic error in estimating the global paition of the robot. The
tendency for dramatic drift is a fundamental motivation forthe SLAM solution. SLAM
uses thex;y; observation data from odometry for initial pose estimates inuw SLAM
solution.

1.2.2 Landmarks

The landmarks observed by CoBot at each timestep are thosafares which construct
the map of the environment. For the purposes of this projectye have arranged three
Kinect sensors on the robot base. The sensors are arrangedriorease the total eld

of view of the robot so that the most features can be extractedEach Kinect has a
depth sensor which in turn produces point cloud objects as sérvations. With three

Kinects working simultaneously (as opposed to just a singkensor), the point cloud
observations are then combined into single point cloud forbeervation. This process
requires a transform between each of the Kinects. Determing these transforms is part
of a calibration procedure and can be expressed as a learnprgblem in itself. See
Appendix B for the procedure on automatic calibration of the Kinects fothe purposes
of this project.

With the learned transforms from the calibration process, asgle composite point cloud
is observed at each timestep. The solution assumes the eoviment of the oor or store
is a predominantly planar environment. Thus, the algorithmmust be able to detect
both walls (large planar surfaces) and shelves.

Plane Extraction

From each point cloud, we extract all large planar surfacedVe use the Fast Sampling
Plane Filtering algorithm [] to extract the planar surfaces from the data of the
Kinect depth cameras. The method, which utilizes a local itative RANSAC []
approach, is e cient and robustly identi es the large planes at each timestep.

Once the planes are identi ed, they are ltered so that only hose perpendicular to the
ground plane remain (i.e. remove the oor, ceiling and tabl@lanes). The remaining
planes are then projected onto thexy-plane. The exteme point observations of the
projected plane de ne the line segment endpoints. See Figut.2.

Fig. 1.2: RGB image of hallway (left); Identi ed planes frompoint cloud data (center);
Filtered planes as line segments projected oty-plane (right)

Shelf Detection

In addition to walls, for the purposes of our motivating exarple, there is a need to
detect shelves in the same manner. When the shelves are full lwihany items (ex.
boxes, books, etc), the plane extraction method described Bection 1.2.2 often is
su cient. However, when the shelves are sparse, it is less etve. Thus, we additionally
apply a shelf detection technique based on a region growin@sRD segmentation. Our
implementation is a variant based on the method presented [i®\VvdHO9].

After the initial segmentation, we keep only those segmentsitiv length > " and width

w within an error, where", w, and are pre-de ned parameters for the particular
shelves in the environment. After ltering, we check that sesral parallel segments are
identi ed (i.e. greater than or equal to somen) before determining that shelves are
actually present in the scene. Finally, as with plane extrdion, we project the observed
shelves onto the ground plane to get the observations in therin of 2D line segments.

Fig. 1.3: RGB image of store shelves (top-left); RGBD segnie image (top-right);
identi ed shelves (bottom)

1.3 Graph Slam-SD

Graph SLAM solves the full SLAM problem in the sense that it solve®or the entire
map and all robot poses at once. For this setting, it is oftenonvention to represent
the SLAM problem as a graph. Each vertex of the graph represena pose of the robot
de ned by its x;y position and its orientation . Each vertex also contains observations
taken by sensors at that pose. Edges in the graph come in twarfts: odometry edges
and observation or correspondence edge®©dometry edges connect consecutive poses
by measured odometry. Correspondence edges connect oleg@ns of various vertices
which are measurements of the same planar surface.

1.3.1 Notation

Figure 1.4 shows an example graph for a SLAM. The notation that will be usefbllows
the conventions in |]

We de ne a pose at time instance as x;.
01

Xt = %);g

x andy are the coordinates of the robot from the origin and is its orientation measure
from the x-axis.

<5

Fig. 1.4. Graph for SLAM problem. There are 3 robot poses eachtiv 2-3 observa-
tions. Red edges show observation correspondences whilgebédges show odometry
correspondences.

We de ne u; to be the measured distance between poses; and x;.
0 1 0 1

Xt Xt 1 N
Ug = %DYt Yt 18 = %) yg
t ot

1

The observations extracted from the Kinect data come in theofm of 2D line segments.
We de ne the i-th observation at timestept asz which is de ned by its two points.

0 1
Pti; 1.

!
Zti = Pri; 1 - %{F;t;i; 1y§
P 2 i 2
Bi; 2,
We usem to represent the entire map of the environmentm is the planar description
of the environment with which each observation corresponds

m= m; mo My

where eachm; is a landmark (planar surface/partial planar surface). Edtm; is again
de ned by two points m; = (py p2)” = Py, Py, P2 P2, >

Each observation corresponds to a feature of the map. We de & to be the cor-
responding map feature index of!. Thus observationz! corresponds withmg .

Finally, it is useful to de ne the variable y to denote an augmented vector combin-
ing both pose variablesx and and mapm. Hence,yo: will be the vector composed
of both trajectory Xg: and map m through time t. At the same time, y; is the vector
composed of the current pose at timée and the mapm.

> >

Yot = Xo X1 Xy m and Vi= X m

1.3.2 The Posterior

The slam problem involves optimizing the following posteor.

P (yO:tj Ug:t, 21, Cl:t)

We can factor this posterior:

P(Yotjurt; Zit;€1t) = 1 P (ZjYout; Unt; Zit 1;Ct) P (YourjUsst; Zot 1; Cut)
(1.1)
Equation (1) can be reduced further via the following obseations:
P (z:)Yo:t; U1t; Z1t 15Cit) = P (zi)ye; &) (1.2)

since the observations at the timestep (z;) is independent of all states (poses, obser-
vations and correspondences) prior tb. The second probability in (1) can be broken
down by splitting Yo into the most recent statex; and all prior augmented states/o.; 1.

P (zi)Yoit; Urt; Z1:t 1:Cit) = P(XeJXt ;W) P(Y1r 1JZ1t 15U 1:Ce 1) (1.3)

[]. As done in the derivation of (2), irrelevant variables wereemoved.

By substituting (2) and (3) back into (1), one arrives at the bllowing recursive def-
inition.

P(YotjUit; Z1;Cit) = 1 P(zgyn &) P(XegXe 13Ur) P(Yir 1JZ1x 15Uzt 15 Crt)
With induction, one can obtain the closed form:

" #
Y Y _ .
P(YotjUit; Z1t;Cit) = 2 P(Xo) P (X¢jXt 1 Ur) P(zijy:; @)

Note that P (yp) was split into P(xo) and P(m) and since there is no knowledge about
the map, P(m) is consumed by ».

1.3.3 Gaussian Noise

As is typical, we assume that the noise and general inaccuratgm the odometry and
sensors follows normal distribution probability density dinctions.

Keeping notation with [], it is typical to de ne a motion function for odome-
try. Recall that u; is the measured odometry distances between the pose tat (1) and
pose att. We can de ne the motion functiong like so.

(U, Xe 1) = X 1+ Uy

Thus, the model with Gaussian noise becomes

Xt = g(ui;; Xt 1)+ N(O;R)
0, 1
2.0
whereR = %DO 5

0
Og. Thus we haveN (g(ug; X: 1);R)
0 0 ?

With this, we use the multivariate normal distribution PDF to determineP (X¢jX; 1; U).

10

. 1 >
P(XejXe 1;U) = 3 exp =(% 9(UsXe 1))"R (% og(usxe 1)) (1.4)
2

The observations extracted from the Kinect data come in theofm of 2D line segments.
The line segments observed are de ned by the two end points

0 1
Pti; 1.

!
z = Priia %E:mlyg
Pti; 2 HH
Bei; 2,

For this SLAM project, we de ne the distance vector between line segmenta and
line segmentb as the sum of the projected distances of the endpoints afonto the
line through b. See the Figurel.5a). This planar SLAM project assumes that the
distances are distributed normally with variance 3. Seel.5(b).

Fig. 1.5: Landmark distance metric (left); Gaussian observation noise (right)

0 1 O 0 1 vy 1
X2 X1 Xl X2 X1 Y1 Y2
fipz pui Clupz paj
Y2 Y1 X2 X1
zl = % E %Mpz plug A % g %iljjpz plug
X2 X1 X2 X3 Y1 Y2
P2 paij 2jip2 paii
Y2 Y1 X2 X1
P2 i 2Pz pui
! |
C, 20 . iy .
C= c N (O 0 2) where A;B Uniform (0; k) for some positive nite
2 d

constantk. Then de ning h(y;;d) = mg we have

11

1

P(ziyia) = s exp 5 : (z;h(y; @)™ (Z;h(y:;)

*Note that our motion models and sensor experiments give ustiesates ,, 1, and g.

1.3.4 Final Optimization

We want to maximize the probability of the model given the obsgations and corre-
spondences under the conditions stated above. Thus, we wishsolve

#l

Y Y . .
argmaxP (YotjU1y; Z1t; Cr) = argmax » P(Xo) P (X¢jXt 1;Ur) P(zijy:; @)
Yo:t Yo:t t i

Because the logorithm is a monatonically increasing funom, we can apply it to the
function being optimized without it changing its nature under optimization.

argmaxp (yO:tj Ui:t; Z1:t, Cl:t)

Yo:t
X
argmin[const. + %(Xt g(uexe 1))”R T(X¢ 9(u X 1))
= X x4 | | | (1.5)
+ 22 (Z:h(y @)™ (zh(yes @)l

t i

Equation (5) is the non-linear least squares function to beptimized. We use the Ceres
Non-Linear Least Squares solve\[VIO] as an o -the-shelf optimization solution to solve
this problem.

Parallel-Orthogonal Constraint

With the motivating example for this project as an indoor envionment with many
corridors, walls, and/or aisles, it is reasonable to make ¢hassumption that all landmark
line segments are parallel or perpendicular to each othef.we make this assumption, it

12

is an additional \constraint” on the map generated from the pocedure. All landmarks
in the ground truth map are to be parallel to either thex-axis or y-axis. Adding this
constraint to the optimization process is as simple as moyglihg the observational error
function (a; b to a function po(a;b). po(a; b with line segmentsa and bis de ned as
the sum of the projected distances df onto the liney = mid y(a) if a is angularly closer
to the x-axis than the y-axis, otherwise po(a; b is the sum of the projected distances
of b onto the line x = mid x(a). Here mid,(a) and midy(a) are the x and y components
of the midpoint of line segmenta respectively. We compare the maps produced using
both error metrics and .

1.4 Experimental Results

The graph-SLAM method described in this paper was implemerteand tested on four

separate data sets: a single hallway with the robot moving ia swervy path, a rectan-

gular loop path in Wean Hall (WEH) Floor 8, a longer traversal of Vdan Hall Floor

8, and seven aisles of a library. The robot was driven throught the environment on

each dataset via joystick and the appropriate data was cotieed and bagged. We also
recorded the true global positions for start and nish of therobot path. The smallest

data set (the hallway) contained 2705 poses and 3983 planarservations while the

largest data set (the oor) contained 8912 poses and 20023apéar observations.

The SLAM algorithm was run both with and without the parallel-arthogonal constraint.
The results of the rectangular loop data set is shown in Figar.6. Plots of the mapping
relying only on dead-reckoning (odometry only), mapping usg planar SLAM, mapping
using planar SLAM with the parallel-orthogonal contraint, aad the ground truth map
of the environment are shown. Similar gures for the remaing data sets are shown in
Figures2.22 2.18 2.19(Appendix A).

13

=l HERERERE]
AmmnnNuNali
AT T T1T 1TT1°T11

Fig. 1.6: WEH Loop Data Set : raw data map produced using odometry only (top-
left); planar SLAM map (top-right); planar SLAM map [parallel-orthogonal constraint]
(bottom-left); ground truth map (bottom-right)

A qualitative analysis shows us that our SLAM solution signicantly reduces the drift of
the robot's navigation path and the resulting maps are drantecally closer to the ground
truth. This drift is most dramatic in the largest dataset (Figure 2.22 WEH Hall) where
relying simply on dead reckoning leads to a nal pose predion that is approximately
37 m away from the true nal pose in global coordinates while the SLAMsolution
reduces this error to only 15 m.

40

35

30
E
5 25
E m Odometry Only
B 20
o
v uSLAM
2 15
o
E 10 SLAM (orth-par
('8

constr.)
5
0

Fig. 1.7: Final robot position distance errors

We also note that while some minor e ects can be seen by additige parallel-orthogonal
constraint, a major improvement cannot be concluded and angorrections that the
constraint may add are highly dependent on the data set cotieed. The nal position

14

errors (measured by euclidean distance from the recordedlghl position) of dead-
reckoning vs. SLAM vs. SLAM (with constraints) for the four datasets are shown in
Figure 1.7. On average there is only a 3% percent decrease in overalloerby applying

the parallel-orthogonal constraint. In one case, the HallwaDataset (smallest map),
the error actually increased by adding the constraint.

From the maps generated by the graphical SLAM approach implemid here, we nd

our solution is general and able to reconstruct reasonableaps to use for future nav-
igation. We attribute this relative robustness to the methal's simplicity and direct

approach to solving the problem. Though there exists more @@hced and complete
methods, for our needs, graphical SLAM demonstrates su ciay for the motivating

scenario. The design of the mapping system as an o ine apprda to mapping and
unknown indoor environment proves adequate.

1.5 Conclusion

In this work, we explored graphical SLAM for CoBot. We proposk implemented,
and tested a straight-forward o ine graph SLAM solution called graph slam-sdfor
the motivating scenario of mapping a large room or oor with sles and shelves for the
purposes of a service robot in a store. We gave two methods d@tecting and measuring
landmarks of walls and shelves and used them as features wisetving the problem.
They are su cient for the presented scenario. We implementethe solution with the
e cient Ceres solver.

We collected four data sets of varying sizes and tested our theds on each. We nd
that the graphical planar SLAM method can be successful andlagively accurate when
mapping a route of corridors or aisles with shelves. The stihn leads to dramatic
reductions in navigation and mapping errors and yields mapshich are close to ground
truth. Additionally, we analyzed the e ects of adding a paralel-orthogonal constraint to
the optimization and conclude that adding the constraints @n lead to minor corrections
for orientational errors of the map but overall yields litte signi cant improvements.

There are several possible directions for future work for ihh CoBot mapping project.
Future work includes incorporating additional data source such as vision or wi data
to aid in the localization and mapping. Also, it would be inteesting to add a form of
loop closure to the SLAM project and compare the results to tts@ achieved already.

15

Using an advanced automatic loop closure technique or somigity as simple as placing
select QR codes in known locations in the environment are asilities. Though not
directly addressed in this report, the time to perform the opmization and solve for the
larger maps is signi cant. Several optimizations includig heuristics and compressions
should be explored to reduce the amount of computation reqed.

16

Part 2

Methods for Coverage Planning
with Finite Resources

2.1 Introduction

We have extensively experienced mobile indoor robots thateacapable of accurately
navigating in buildings and performing service tasks, suchs transporting items or
accompanying people to locations3[/13]. Given their accurate localization and navi-
gation and their reliable motion planning, we investigateheir service to further include
a complete sweeping task. In this work, we address a robot spacoverage problem.

Coverage planning has been commonly studied in roboticsdg.]]). The goal is
to plan a path in which the robot covers all points in a given mg, i.e., the robot's work
space. Many approaches have been explored for a variety opbgations, including item
search {], oor cleaning [], large scale agricultureff], mowing and
milling [], and painting [?]. In all of these applications, it is essential that the
robot path or sensor paths are guaranteed to cover the suréam a robust and e cient
manner to complete the objective.

These tasks inspire various methods in addressing the cage problem. Techniques
used can be categorized by how they address altering objge8. Some works only
require the robot's sensors to cover an area while many forttee robot base to pass over
the entire region []. There is much work on randomized approaches without
knowledge of the environment(] as well as approaches with a prede ned map like
those which use cellular decomposition {191, ,].

Often these approaches are motivated to minimize some oltjge. A common choice
is to minimize the total distance traveled during the cover fothe area. However, nd-
ing the optimal route in this regard is an NP-Hard problem. This an be seen by its
close relation to solving the geometric Traveling Salesmdtroblem (TSP) with neigh-

17

borhoods []. Hence, approximation heuristics are often used. Even thrgh a
cellular decomposition where the problem is broken down msmaller regions, planning
an e cient tour through the regions requires some form of apximation. Other op-
timizations like minimizing the number of turns required ina decomposition have also
been studied [11].

In this work, motivated by our real robot, we investigate an dditional component to the
coverage problems by incorporating a consideration for a ed battery or fuel source.
Accounting for the limited battery life is important as, in many applications, the area
to cover is too large for the robot to completely cover in a sgtle non-interrupted charge
of a battery. Coverage planning with energy constraints antiming restrictions has
been addressed in previous workssK 1 [][]. Of these works, some
consider the problem of sensor-based multi-robot coveraigenarrow environments and
use a heuristic algorithm to reduce the number of robots need under energy constraints
[][]. Another scenario addressed is a multi-robot deployment problem
to determine the number of groups unloaded by a carrier, theumber of robots in each
group and the initial locations of those robots for coveragasks under both timing and
energy constraints f .

We focus here on coverage planning under several objectiadiswith xed energy ca-
pacity. We present both heuristic algorithms and integer gsggramming to reduce total
distances traveled during coverage. To investigate this golem, we also assume that the
space has a service For our heuristic method, we contributenaw battery-constrained
sweep algorithm BC Sweep which extends the boustrophedon cellular decomposition
coverage algorithm to reason about a battery capacity consint. We then present inte-
ger linear programming formulations to the problem to solveoverage routing solutions
optimally.

2.2 Problem De nitions

There has been limited prior work mentioned for planning anngire path for the robot
that considers the total distance the robot travels or totalenergy used in relation to a
xed battery life or fuel capacity. We consider this extra castraint during path planning
coverage.

In all of the problem variations addressed here, we make thesumption that given some

18

nite path for a robot, an estimate can be made on the energy ad while executing
the path. We denote this estimation functionf . We now de ne three variations of the
problem de nition for the coverage scenario addressed inighwork.

1. Single Robot, Single Depot Coverage (SRSD)

The most basic of the coverage variations is the single robasingle depot (SRSD)
case. The problem formulation can be stated as follows: Givarntwo dimensional
map M with a service center locatiorsy, a fuel capacity , and a fuel consumption
function f , plan a route such that the robot covers the map and respectseahobot's
fuel capacity constraint. The robot begins and ends at, and returns to sy to

refuel. M is represented as a closed gure (typically a polygon) and wilisually

have obstacles. See Figura L

Fig. 2.1: An example polygonal mapM with a single obstacle (black) and a single
service station (green).

2. Single Robot, Multi-Depot Coverage (SRMD)
The single robot, multi-depot coverage (SRMD) scenario is idécal to the SRSD
problem description except that there are several servicégagons present repre-
sented by a depot seD. The robot must originate fromsy and may nish at any
other service station. Under both SRSD and SRMD, the objectivesito nd a
feasible solution which reduces the total distance travele

3. Multi-Robot, Single Depot Coverage (MRSD)
The multi-robot, single depot coverage (MRSD) has a variatiom objective from
SRSD and SRMD. The ultimate goal is to achieve complete coegre, however, we
now have a eet of robots. The robots are identical robots andriginate from a

19

single source depot and then perform coverage in parallela¢h robot has a xed
capacity but recharges are not permitted. The objective heris minimizing the
total of robots needed.

2.3 Boustrophedon Coverage

Our algorithms make use of the boustrophedon cellular decpwsition [10]
for bounded planar environments with obstacles. This decgusition breaks the map
into disjoint regions calledcells The individual cells can be covered simply by back-and-
forth or\ox-plow" motions. See Figure2.2. To cover the entire free space or map, a tour
through each region is constructed and the robot visits anduers the cells sequentially
along this tour.

N\

Fig. 2.2: Back-and-forth ox-plow motions.

Speci cally, the boustrophedon decomposition uses a vetle line sweep approach to
construct the cells. Theslice sweeps from left to right across the map. At any point,
if the continuity of the sweep line changes count, then a newelt is spawned or two
adjacent cells are merged. In the case of connectivity inagng, a new cell is added.
For the instances when connectivity decreases, then adjateells are merged(]

[CPO7].

After decomposition, the algorithm constructs some graph ¢genmonly a complete or
adjacency graph) between the regions. The weight on an edgehe euclidean shortest
distance path between the two points on the map. To determinghe shortest paths on

a map between all cells, aisibility graph is constructed where obstacles are expanded
by the robot radius |]. The visibility graph is simply a graph where an edge
exists between two points of interest if the robot can travebetween by straight line
with touching an obstacle. Figure2.3ashows the visibility graph for our example.

20

(a) Visibility Graph (b) TSP tour through cells

(c) Cell cover paths with tour

Fig. 2.3: Components of boustrophedon coverage

Diijkstra’'s algorithm is then run on this graph for all pairs of cells to determine the
weight of the shortest distance between them. This gives usrocomplete shortest path
graph.

With the complete graph, the goal becomes nding a minimal cosiour through all

regions and reduces to solving the TSP on the graph. Typicallynaapproximation

algorithm is used as a heuristic to solve for a reasonable tolrigure 2.3b shows a TSP
tour through the cells and2.3cshows the complete cover plan.

Our algorithms make use of this decomposition technique toeate cellular regions and
extends touring the regions to account for a xed fuel or batry life.

21

2.4 Approximate Solutions

As discussed in the previous section, determining a minimunoute through the cell
graph created by the boustrophedon decomposition requireslving or approximating
the traveling salesman problem. As an extension to the decowsgition algorithm, we
wish to solve for a minimum route such that the robot (s) abide by the fuel capacity
constraint. This problem becomes more di cult than TSP. We kegin with an approxi-
mation algorithm. We present now theBC Sweepalgorithm.

2.4.1 BC Sweep for SRSD

Again, we presume that given some route of the robot that we have a functionf such
that f (r) is an estimation of the energy used over that route. Often, th is directly
related to the length ofr and could also incorporate the turns (could be expensivei.
must also be linear (id (r; ! ry) = f(ry)+f(ry5)+f(ry)) wherer, is the shortest direct
route connectingr, to r,. We present now theBC Sweepalgorithm. The intuition of BC
Sweepis straight forward. We construct a graph expressing the delar decomposition
of the space with a refueling location. The representationcaounts for the costs of
covering each cell and traveling between them. The algoriththen simply approximates
a minimum cost walk through the graph which circles back to th service station when
necessary to refuel. Our approach needs the minimum requirent that the fuel capacity

is large enough that the robot can depart fronsg, cover any cell, and return without
running out of fuel. Under these conditions, we have the follomg algorithm.

BC Sweep

1. Decomposition Perform boustrophedon decomposition on the mayd into cell set
X . Plan all back-and-forth cover-paths rq;:::; rng for respective celld x4; :::; X, 0.
For simplicity, we assume all cover-paths begin and end inélhsame location. Add
a special celky of 0 size and a null cover-patig representing the service statio,.

2. Graph Construction: Construct a complete graphG = (V;E) between all cells
including the service stationsg. Thus V = fspg [f Xq;:::;X,g. For every edge
& =(vi;vj) 2 E letry = r; be the shortest direct route onM between cell (or
station) i andj . Assign the weightw(e;) = f (r;)+ %(f (ri)+ f (r;)) to each edge.

22

This procedure is shown in Figure.4.

Fig. 2.4: (Left) graph cells (nodes) with intra and inter cell fuel costs(Right) modi ed
graph G of BC Sweepalgorithm

3. Solve for Giant Tour: Use Christo des Algorithm |] to generate a TSP tour
T=v! vil Iyl v starting and ending atsy (ie so = V).

4. Tour Partitioning : We now optimally partition T into subroutes which meet the
fuel capacity constraint. De ne a cost matrixC as follows.8i;j 2f0;:::;ng

8
fvg! Vi ! 1 v vg)
if this cost
Cj = § is and i<
1 otherwise

This cost matrix de nes a new directed graptH . We now use Dijkstra's algorithm
on H to nd the shortest path from node O to node n. Since each edge of this
path represents a subroute, we append these subroutes tdggtto get our tour.
This gives us the shortest route using which abides by the battery capacity
constraint.

The BC Sweepsteps are shown in Figure.5.

23

Fig. 2.5: Steps 1-41eft to right) of the BC SweepAlgorithm

Steps 3) and 4) can be seen as an approximation of a reductiontte distance con-
strained vehicle routing problen{DCVRP). Vehicle routing with constraints is a variant
of TSP and has been studied in several works including4a8] [110 1 [NR].
The heuristic used here is described and analyzed inca83 and |].

We present the following theorem on completeness and cofresss.

Theorem 1. BC Sweep coverd! and obeys the fuel capacity constraint.

Proof. By boustrophedon decomposition, if each cell is visited, itilwbe covered. We
show that each cell is visited and obeys the fuel constraintWhen G is constructed, we
add half of every cell's covering fuel cost to all incident egs of that cell. See Figuré.4.

Hence any path which passes through the cell will pick up halh¢ weight on the way in
and the other half on the way out. Because of this set-up, ourSP tour T accounts for
all cell costs. With all fuel costs accounted for i and H giving in nite weight to any

subroutes violating the fuel constraint, our nal route abdes by the constraint. Note
because we assumed a feasible solution exists, a nite coathpwill always be possible.
Since our nal route is the concatenation of adjacent subrdes beginning and ending
at sg, the route visits all cells. O

2.4.2 Extensions for SRMD

Recall that the problem formulation for the single robot, miti-depot setting is the same
as SRSD except that we consider the ability of the robot to raél at several refueling
stations. The robot must originate fromsy and may nish at any service station in our

by modifying a few of the steps.

1. Decomposition Again, perform boustrophedon decomposition on the mayg into
cell set X. Plan all back-and-forth cover-pathsfrq;::;;r,g for respective cells

24

ro representing the service stations.

2. Graph Construction: Construct a complete graphG = (V; E) between all cells in-
cluding the service stations irD. ThusV = D [f Xi;::;XnQ. As before, for every
edgee; = (Vvi;Vvj) 2 E letr; = r;; be the shortest direct route orM between cell

(or station) i and j. Assign the weightw(e;) = f (r;) + %(f (ri)+ f(r;)) to each
edge.

3. Solve for Giant Tour: Generate an approximate TSP tourv ! v/ ! !
v/ I v] starting and ending atvy (ie sp = vj). Truncate the tour of the service
staton T=v] ! | vI. The important component is the trail through the
cell vertices. See Figure.6.

Fig. 2.6: Giant tour through cell vertices in a multi-servie station environment.

4. Tour Partitioning : We now optimally partition T into subroutes which meet the

25

1)mg if we let

i°= i mod (n +1)

j%=j mod (n+1)

p=b=(n+1)c
q=b=(n+1)c
8
f(sp! vh,! ! vao! Sq)
% if this cost
Cj = % is andi®<j©
"1 otherwise

This cost matrix de nes a new directed graptH. We now use Dijkstra's algorithm
m times onH to nd the minimum cost path of all shortest paths from node O
to node (k(n+1)+ n)forall k 2f0;:::;m 1g. Since each edge of this path
represents a subroute from a depot to depot, we append thesdboutes together
to get our tour. We take the minimum over them instances of Dijkstra's algorithm
to determine the best depot at which to nish. This procedureives us the shortest
route using T which abides by the battery capacity constraint.

2.4.3 BC Sweep for MRSD

The BC Sweepheuristic algorithm need not be modi ed for the multi-robot, sngle depot
setting. Each depot-to-depot subtour of the partitioned pth becomes the entire path

for an individual robot of the multiple robots deployed. Thenumber of robots needed

becomes the number of partitions used bBC Sweep

2.4.4 Performance Analysis

We now show results on the performance of this optimal tour p#tioning heuristic
with respect to the objectives in each scenario. The resulésxd proofs were originally
presented in 19921]. We will use a variant of their notation and proofs when
giving the results here.

26

Bounds for the BC Sweep Heuristic

Since theBC Sweepalgorithm is the same for both the SRSD and MRSD cases, we
begin with their performance bounds. For convenience, we de the following variable
relations.

T - the TSP tour through all cells that is partitioned by BC Sweep
S - the complete route through all the cells produced bBC Sweep
k - the number of subroutes ofs starting and ending at a service station
L = f (S) - the total length of our route S
L - the minimum (optimal) possible length of a tour possible @r all feasible routes
k - the minimum (optimal) possible number of subtours possiblover all feasible routes
Spivg - the closest service station vertex to node in G

dn = maxfw(e;)g wheree; are edges irG wherei 2 D;j 2 L
Lemma 2. L Kk .
Proof. L is composed ok subtours each of which must be less than the fuel capacity

thus the total length must be k .]

Theorem 3. k minfn; 2020 4 1g,

dm

Proof. Consider a greedy tour partitioning ofT instead of the optimal tour partitioning.
For the greedy approach, we go to the nearest service statitm refuel only when we
can go no further without violating the capacity constraint Let the greedy partitions

partitions used and

Ti=so vi Vvj V‘T(l)
_ T T T
T2= Vi Ve V(2
. T T
Tke = Ve 101 Ve 142 Vi(ke)
_ T T T
Also let W(Ti) = W(Vey g4 Vo 1ya2 Viiy)- Thus we have

27

w(Ty) + W(V‘T(l) V‘T(1)+1)+ W(V‘T(1)+1 SpfvTy,., 9) (2.1)
W(Spfv\(i 19 V‘T(i 1)+1) + W(Ti) + W(V‘T(i) V‘T(i)+1)+ W(V‘T(i)+1 Spfv\(i)g)

8ist 1<i<k © (2.2)
W(Tyc) W(spf\,\(kG " vT(kG y+1) O by triangle inequality (2.3)

Using inequalities (1), (2) and (3), we can sum the inequalés over alli from 1 to k®:

T T T
W(T1) + W(Viq) Voayer) + WV () S‘pfvT(l)+l A

kKR 1h [

W(Spfv-; 30 V‘T(i 1+1) + W(Ti) + W(V‘T(i) V‘T(i)+1)+ W(V‘T(i)+1 Spiv.ya) t

i=2
W(TkG) W(Spfv~(k(; e V‘T(kG 1)+1) (k 1)
G XG kﬁ ' T T k>i ;
=) (k* 1) w(T;) + W(V-y Veyer) 2 O
i=1 i=1 i=2
XG
=w(T)+2 dn

i=2

w(T)+2(k® 2)dm,

i G i G w(T) 2dm
We simply rearrange kK 1) w(T) + 2(k 2)dy, to arrive at k .- tL
Since our optimal tour partitioning heuristic will always yield at most as many subtours

as the greedy partition (because of triangle inequality), &havek k. Thus, we can

simply conclude thatk minfn; === +1g.

Theorem 4. L 1+ (1:5)3%"

L m 2

28

Proof.

k M +1 by Theorem 3
o w(T) 20 .
=) L= 2 +1 sinceL Kk
_ w(T) 2dy
=) L —de +1
o o=L W 2n g Ty sincew(T) L
=) L=L (1:5)W(T2)d 20 1 =w(T) by Christodes bound
m
=) L=L (2:5) 2. +1 by <w (T)
— _ . =dn
) Ll (@8 g "5+l

]

Note that if we don't assume < w (T) in the second to last step, then only a single
subtour is needed and the TSP approximation is the solutiordence, there would be a
bound of 1.5 which is tighter than the above bound.

Theorem 5. X 1+ (1:5)—4x

k =dmn 2
Proof.

k M +1 by Theorem 3
) kek MO 2oy (T sincek w(T)=
=) k=k (1:5)W(T2)d 20n L1 oy (T) by Christo des bound

m
=) k=k (1:5) +1 by <w (T)
dm

=) k=k (1:5):d:—z+1

m

29

Theorem4 and Theorem5 give us performance bounds for the tour partitioning heuristic
used byBC Sweepfor all three cases, SRSD, SRMD, and MRSD cases. Speci callget
length of the tour produced byBC Sweepfor SRSD and SRMD is within 1+(15) :zd T

dm 2
times of optimal and the number of vehicles used in the MRSD sa is also within
1+(1:5) =:‘j'nm 5> times of optimal. As is also noted in [], this bound is worth

more when 20m.

2.4.5 Atomic Regions

One of the nice aspects of this algorithm as its stands is thdtf does not underestimate
energy usage and navigation is awless, then each of the deqmosed cells will be covered
in an atomic nature. By atomic, we mean the covering of a cell will not be inteupted
by a need for a recharge. This component is a useful feature irny applications where
a room or designated area must be swept or covered all at oncghwno intermission
guaranteed.

Fig. 2.7: Modied BC Sweepillustration for non-atomic regions. The environment
contains two atomic regions and a single interruptable regn. (Far-left) map decom-
position, (Center-left) key routing nodes identi ed, (Certer-right) routing graph con-
structed, (Far-right) traversal route determined.

However, there are applications where every decomposed ogléd not have an atomic
covering. In such cases, one can optimize the above algamitiio make less service
trips and only perform them in designated regions. We extenithe original BC Sweep
to handle the scenario where there is a set of ceAswhich we want to be atomically
covered and a set of cellB which does not have this constraint. NoteA [B = X and
A\ B=;.

We need only rede neG = (V;E) and cost matrix C and the rest of the algorithm
remains the same.

De ne G; =(Vy;E;y) to be

30

- Xp is a vertex in G;.
- All cells x, 2 A are vertices inG;.

- For every ox-plow cover-path
yk | ! yk = ry corresponding toxy 2 B, the rst and last nodes become
vertices: y&;yK 2 Vi. Like the depot, y¥;yX will have a null cover-paths.

- There is an edge between all atomic cell vertices. There is adge between all
atomic cell vertices and start/ nish cover-path vertices.

- Assign the weightw(e;) = f (r;) + %(f (ri) + f(r;)) to each edge.

De ne G, =(V,; E,) to be

Xo IS a vertex in G,.

- For all cover-paths
yk I ! yk = ry corresponding tox, 2 B, all nodes become vertices:

fyk;nykg Ve
- For every vertexyk there is an edgee betweenyX and y¥, with weight w(e) =

- For every vertexy¥ there is an edge betweenx, and y* with weight of the shortest
path between the two.

Our nal graph G is the union of these two graphsG = G; [G..

We must now slightly change our cost matrixC after we approximate a TSP tour

31

— Tl T T
T=vyg! vy ! ! Vo on G.

8

f(vg ! LTV
if this cost
is andi<j and
v is spawned fromB

Cj =

fvg! vig! 1 v v
else if this cost
is andi<]j
otherwise

This change inC is necessary because in the non-atomic regions, the robotsnceturn
to the same spot it left o so that it may complete coverage in tht area instead of
advancing to the next region.

We now simply plan the entire route by runningBC Sweepon the newly de nedG and
C. The route respects the -capacity constraint and guarantees regions, 2 A remain
atomic. Figure 2.7 demonstrates the modi ed approach.

Theorem 6. The modi ed BC Sweep coverd/, obeys the fuel capacity constraint, and
does not service in atomic regions.

Proof. The algorithm behaves the same in the atomic regions so the pfofollows
through in the same manner as the original theorem for atomicegions. It is only
necessary to argue that complete coverage occurs in nonsato regions. Since the cost
matrix C was constructed in a manner that if a non-atomic cover path vgadivided by
a service trip that the tour would return to the same node afterefueling, we know that
no legs of the sweep will be skipped. And since we assumed a fdassolution, after
resuming sweeping, progress will always be made in non-atomegions until complete.
Thus, complete coverage occurs in hon-atomic regions.]

32

2.4.6 Dynamic BC Sweep

The theoretic algorithms proposed so far are not entirely &sible in practice.BC Sweep
leveraged unrealistic liberties when planning its covergnroute.

First, we assumed that when in operation, the robot has pedenavigation in the envi-
ronment. Due to uncertainty in sensors, actuators and imp#gct navigation algorithms,
this assumption is an impractical one.

Second,BC Sweeprelies on a functionf which does not underestimate the energy used
over a given path. Though one could exaggerateto meet this requirement, the more
accuratef is, the more energy e cient and coverage e ectivalBC Sweepbecomes.

To relax some of these assumptions, we propose extensionthimBC Sweepalgorithm
to be more reliable in practice. The key here is that the algithm needs to be adaptive
while executing.

Variability in Navigation

To account for imperfection in navigation while executing essweeping route, we dy-
namically adjust the route taken. Consider the scenario whe while performing the
back-and-forth motions in a cell, the robot drifts along onef the lengths. Figure2.8a
If the navigation realizes the error, we can modify the routé cover the missing area.
Thus we can dynamically adjust ourBC Sweeproute. Figure 2.8b. In such a case, we
note that it is possible the atomic regions may need to be inteipted depending on how
much rerouting is necessary. DenotinQ to be the current fuel life, the online dynamic
algorithm:

while covering cellx, do

if o path then

recalc. ox-plow pathr for the remainder ofxy;

if xx is atomicand f(r)+ f(xx! Xo)>Q then
make xy interruptible;

end

rerun BC Sweep

end
end

33

(a) Navigation error. (b) Navigation error recovery.

Fig. 2.8: Variability in navigation.

Updating f

One of the more di cult aspects of BC Sweepis determining the energy consumption
function f. Any oine theoretic function f estimate could change depending where
you are in the route, map, or on any other factors. To accounbf a variable function
f, it is possible to recalculate arf estimate dynamically while executing the sweeping.
For example, one could consider a moving average approaclalaated on some past
window sizew for dynamically updating f . After each online update,BC Sweepcan
be rerun. Similar to accounting for variability in navigation, depending on how mucl
changes at any point, atomic regions may become interruptédoor even revert back to
being atomic.

2.4.7 Simulations

We simulated BC Sweepon a test convenience store environment requiring covering.
Figure 2.9 shows the oor plan of a convenience store for whidBC Sweepwas run.

34

Fig. 2.9: An example convenience store layout.

We ran the BC Sweepalgorithm with the following parameters. We used a circular toot

of radius Q75 meters The fuel consumption functionf was a one-to-one correspondence
with the total distance of a path traveled. For example, if tle robot traversed a path of
10 meters then the robot would have consumed 1Qnits of fuel. Each cell constructed
from the boustrophedon decomposition was designated as daraic region. Figure2.10
shows the nal cover route thatBC Sweepgenerates for one of the parameter settings
tested with a fuel capacity of 8, and a single service station in the top-left corner.

Appendix D shows the full set of test runs under several fuel capacitiesand varying
locations and numbers of the service station. It can be seenrh these experiments that
BC Sweepis able to route the robot e ciently through a real test environment with
minimal wasted travel time. Additionally, in Appendix D, Figures2.24- 2.26 show the
basic BC Sweepsteps while Figures2.27 - 2.31 show the algorithm run with di erent
fuel capacities and between one and three service stations.

35

Fig. 2.10: Single depot, =5d,.

2.4.8 BC Sweep Timed Experiments

We also ran timed experiments using the tour partitioning heristic for the single depot
case on the VRP problems given in4]. The problems were transformed int@C
Sweepappropriate problems by treating the item count demanded a¢ach node as the
cover cost distance of a cell. We ran the heuristic with a fuebpacity of &,,, 4d,,, 6dp,
and 10d,,. We compared the total fuel used on tours generated by tHe&C Sweepwith
lower bound costs generated using the integer programmingrinulation presented in
the next section.

Both BC Sweepand the integer programs were executed with a 2.40GHz Intel gd-core
Core 2 Quad Q6600 processor. The integer programs were ruthwLOG CPLEX 8.1
[[LO] with a time limit of 12000 CPU seconds. A summary of results arpresented in
Table 2.1

As can be seen, the smaller the fuel capacity the weaker the histic performs. However,
overall we nd the heuristic is competitive in the sense thathe bench mark problems
run are all within 2:2% of optimal. We also found that allBC Sweepinstances (up to 80

36

Fuel Capacity () | Best Ratio | Worst Ratio | Average Ratio
2dm, 1.2068 2.1808 1.5362
4d, 1.0164 1.2472 1.1349
6dm, 1.0090 1.1276 1.0629
10d, 1.0008 1.0995 1.0289

Table 2.1: Summary ofBC Sweepexecuted on VRP benchmark problems. Ratios are
computed by dividing the fuel consumption of theBC Sweepsolution by the lower
bound generated by the ILP.

nodes and 3160 edges) executed in undeb @PU seconds showing that the heuristic
is not only competitive but also fairly time e cient. For the full set of computational
results see AppendixX.5.

2.5 Integer Programming Methods

In BC Sweep after graph construction, we use a DCVRP tour partitioning heustic
to solve for a feasible route abiding by the fuel capacity cetraint. Instead of using a
heuristic, it is also possible to express the problem as a biy integer linear program
and to solve using studios such as CPLEX.

Though there is a wealth of work studying general forms of vatte routing problems
where each node has some demand for a speci c commodity, asted in |], there
is limited work on ILP formulations for the DCVRP variation.

Of the existing proposed methods, the most studied comporteof the formulation is
that which ensures the tour produced is not disjoint and is aantinuous path through
locations. This is referred to in the literature assubtour elimination Subtour elimina-
tion is accomplished in one of three ways. One method is setrfi@doning which requires

an exponential number of constraintsl|]. Another method is MTZ formulations
which require O(n) extra variables and O(n?) additional constraints | 11].
There are also commodity ow network models\j 110]

Here, we use a solution which is a variant based of the MTZ forradion proposed in

[KB85].

37

2.5.1 MTZ TSP Formulation

Our solution is based on the Miller-Tucker-Zemlin (MTZ) fomulation [] for solv-
ing TSP problems using integer programming. We begin by presting this formulation.
We let d; be the cost of edges; in our graph G. z; 2 f 0; 1g will be variables we need
to solve for. z; = 1 when the edge is used in the TSP tour and O otherwise. Note tha
we would never need to use an edge more than once because otrihagle inequality
on G. A natural starting place would be the following.

X
min € Z;
22R"?
X "
S.t. Z; = 1 82V, (2.4)
X
Zjj =1 8] 2V, (25)
i
z; 210,19 8i;j (2.6)

This set-up ensures every vertex has both an in-degree andt-degree of 1 and con-
sequently, that every vertex is visited exactly once. Thisofmulation as is, however,
allows disjoint subtours or cycles as in Figur@.11

o

Fig. 2.11: An example of two subcycles in a graph. Each vertexa$ in-degree and
out-degree of 1 and thus visited exactly once.

To force there to be a single cycle, we must add extra variakland extra constraints. We

on the position of each vertex in the cycle; it < u; implies vertexi comes before
vertex j in the tour. We add the following contraints known as the MTZ onstraints.

38

up=1; (2.7)
2 U n 8i61; (2.8)
uy u+1l (n 1)1 z) 8i61;8 61: (2.9)

Note we added an extraO(n) variables andO(n?) constraints to the formulation. To
understand why this eliminates disjoint cycles, see that iévery cycle in the graph
contains the start node, then there is only one cycle. Thisrmulation forces this idea
on the tour. We force the start vertex to have position 1i{; = 1) and all other positions
be between 1 anch. When we use edge; , it forcesu; +1 u; which impliesu; < uj.
Now if we don't usee;, then the inequality is not constraining and simply forces the
di erence to be less than some nite value. There cannot be cles which do not contain
the start vertex because the vertex positions; on that cycle will be forced to increase
to in nity which would violate the upper bounds on u;.

2.5.2 SRSD IP Formulation

The integer programming formulation for the single-robotsingle-depot case is based
on the MTZ formulation. For convenience, let our cell verties be setX and our depot
verticesbeD. X [D=V, X\ D = ;.

39

min € Z;
z2Rn? i
&
S.t. z; = 1 8i2X;
X
Z; = 1 8] 2 X;
i
z; 210,19 8i;j;
u=0; i2D; (2.10a)
0 uy 8i 2 X; (2.10b)
u u+e (+emx)(l z) 8i2V;8 2D; (2.10¢)
u + € Zij 8i 2 X,j 2 D: (210d)

See that we asserted that each cell is visited exactly once. eWwleed not assert any
constraint on the degrees of the service station vertex fone¢ degree constraints on the
cell vertices is enough to ensure its in-degree equals itd-degree.

In this formulation, the u; variables represent the concept of the amount of fuel consench
by the robot at vertex i. Thus, we set this to be 0 for the service station vertex. To
ensure no vertex consumes more than our capacity we bound this appropriately in
(2.100. We must also assert that the last leg/edge of each subtour @aes by the
capacity constraint. This is accomplished in4.109.

Eliminating disjoint cycles is done in the same manner as theITZ formulation. In
this case, however, if we use an edgg, we add the associated energg; . See this as
constraint (2.109 reduces tou; + g; u; when edgesg; is used. When it's not used,
we just assert that the di erence between energy consumptiovariablesu; and u; is at
most the nite value of (+ enax) When enax takes on the value of the maximum edge
weight in G.

2.5.3 SRMD ILP Formulation

For the single-robot, multi-depot scenario the ILP involve a bit extra work. We make
n copies of each service station. We denote this augmented deget asD . The

40

augmented service station set has the same function but eachn only be visited at
most once (hence why we need of each). The graph remains a complete graph.
All depot copies get the same weight on edges incident with tekrtices. We put
zero weight edges between all copies of a service stationtererand intraservice station
weights remain the same. Last, all edges coming from a depnota our special starting
service station vertex have weight 0. This allows the robott nish at any depot with
no additional cost to complete the tour. See Figur&.12on this transformation. With
this in place, we present the ILP formulation for our problem

Fig. 2.12: An example of a three-cell, two-node graph into th@ugments graph for the
ILP. (Left) The original graph. (Right) The augment graph with 3 copies of each depot.
The solid arcs all have 0 weight. Dashed arcs retain their ginal weight.

41

X

min &j Zj (2.11a)
ZZR(n+nm)2 i
x 1
s.t. Z; = 1 8i2X; (2.11b)
X
Z; = 1 8 2X; (2.11¢)
X X
Z; = Zji 8i2D; (led)
j X j
z; 182D, (2.11e)
j
z; 210,19 8i;j; (2.111)
u=0; 82D ; (2.119)
0 uy 8i 2 X; (2.11h)
u u+e (+enax)d z) 82V;8 2D ; (2.11i)
U + €; Z; 8i2V;8 2D : (2.11))
G, = 1; (2.11k)
2 g n+mn 8i61; (2.110)
g g+1 (nh+mn 1)1 Zz) 8i2V;8 61: (2.11m)

Our objective remains the same in4.119 while (2.11H and (2.119 retain that every
cell is visited exactly once. 2.11d and (2.11¢ assert that the in-degree and out-degree
of each service station vertex is the same as the degree andtisnost one. This forces
each depot to be visited at most once. Constraint2(119 - (2.11) as in the SRMD and
MRSD formulations ensure that the robot capacity constrainis met. And as with the
MTZ TSP formulation constraints, 2.11k- 2.11mmake certain that the tour is a single
continuous tour from start depot to start depot. Since we uska 0 weight back home
to the start service station, we can simply eliminate that ege and end on the optimal
depot.

42

2.5.4 MRSD ILP Formulation

For the multi-robot, single-depot objective, only minor mali cations are made from the
SRSD IP Formulation. We change the objective to minimize th@umber of robotsk
(subtours of the route) needed. We then simply force the inegree and out-degree of
the depot vertex to bek in (2.129 and (2.12h.

min k
X z2Rn?
S.t. z; =1 8i2X;
X
z; =1 8j 2 X,
Xi
zj = k i2D; (2128.)
X
i
z; 210,19 8i;j;
u=0; i2D;
0 Ui 8i 2 X;
u u+e (+ena)(ZzZ) 8 2V;8 2D;
Ui + € zj 8i 2 X;j 2D:

However because we use triangle inequality, we can use theabformulation to get an
equally good result. This formulation is able to be solved si&r due to the number of
varying optimal solutions.

On Conicting Objectives

One may initially question whether the objective for minimzing total distance in the
SRSD case naturally would reduce the number of robots (refs#oops back to the
depot) in the MRSD case. If it were the case, then the MRSD ILRofmulation is worth
little for we could just reuse the SRSD formulation. This is at the case however. The

43

objectives are separate and can often con ict. To demonstethis we give the example
in Figure 2.13 We will show that for this example, increasing the number dbops (i.e.
increasing the robot count for MRSD) can actually decreaséeé total distance.

Fig. 2.13: An example graph where the objectives con ict. Fle€apacity = 12.

We note rst that the TSP tour on this graph has a length of 21. Kgure 2.14 shows
such a tour.

Fig. 2.14: TSP tour of the example graph. Total cost = 21.

There is a solution using three loops (refuels/robots) thaabides by the fuel constraint
and also has a cost of 21. This route is shown in Figu1l5 We know this solution
is optimal with respect to minimizing distance since it matees the cost of the TSP
solution.

When the objective switches to minimize the number of loopshtugh, we nd that
there exist solutions that use just two loops. One such solat is shown in Figure2.16

44

Fig. 2.15: Distance minimizing optimal solution abiding bythe fuel capacity. Total cost
=21.

which has a total cost of 24. However, any solution which usesd loops cannot match
the total distance of 21. Hence this example shows that the a@gjtives are distinct since

minimizing the total distance cost does not necessarily rade the number of refuels
needed.

Fig. 2.16: Refuel count minimizing optimal solution abidig by the fuel capacity. Total
cost = 24.

2.5.5 ILP Timed Experiments for SRSD

We ran timed experiments of the integer linear programs fohe benchmark problems
of []. We ran experiments on all the problems with fuel capacitiezd,,, 4dy,, 6dn,

45

and 1@,. The integer programs were executed with a 2.40GHz Intel quadre Core 2
Quad Q6600 processor and were run with ILOG CPLEX 8.1L[O] with a time limit of
12000 CPU seconds.

We nd that the smaller the fuel capacity the more di cult the problem becomes to
solve. For example, with a fuel capacity 1), nearly all the problems were solved within
the time limit while only a few of those with capacities &8, could be solved optimally
within the time limit. For full table computational results and times, see AppendixX.6.

2.6 Conclusion

In this work, we have introduced theBC Sweepalgorithm to address the real problem
of robot path coverage, with a battery or fuel capacity consaint. We build upon
previous coverage research using boustrophedon decomipwsi and contribute the BC
Sweepheuristic planning algorithm that has the property of compéte coverage, under
the assumption that there is a limited amount of space that cgabe covered on a single
battery charge, and the assumption that there is a recharginservice station (s). We
show the algorithm is adaptable for three distinct but relagéd problem de nitions. We
presented a proofs of correctness that verify the completeverage under the resource
constraint. BC Sweepruns on arbitrary geometrical physical layouts, and we have
demonstrated it in simulation using a real world map and a réasimulated coverage
robot. We tested the algorithm with varying parameters for he fuel capacity and
service station locations. We also demonstrate that the tee problem scenarios can
also be expressed by integer linear programs. We compare tpimality of the the BC
Sweepheuristic using benchmark problems in the literature. Aftehaving addressed the
real battery constraint, our future work includes to contirue to bring coverage algorithms
closer to real situations faced by real robots in the real wiok.

46

Appendices

a7

A Graph SLAM-SD Experimental Results - Extended

Fig. 2.17: WEH Floor Data Set : raw data map produced using odometry only (top-
left); planar SLAM map (top-right); planar SLAM map [parallel-orthogonal constraint]
(bottom-left); ground truth map (bottom-right)

48

Fig. 2.18: Hallway Data Set : raw data map produced using odometry only (top-top);
planar SLAM map (middle-top); planar SLAM map [parallel-orthayonal constraint]
(middle-bottom); ground truth map (bottom-bottom)

Fig. 2.19: Library Data Set : raw data map produced using odometry only (top-
left); planar SLAM map (top-right); planar SLAM map [parallel-orthogonal constraint]
(bottom-left); ground truth map (bottom-right)

49

B Kinect Calibration

B.1 Introduction

For this project, we placed 3-Kinect sensors on CoBot 4. Segtre 2.20 One Kinect is
placed horizontally at waist height directly in the front center of the robot. Two Kinects
are placed vertically on the sides of the base. They are angjlat approximately 45 so
that their elds of vision (FOV) cross. This leads to a wide el of vision.

Fig. 2.20: CoBot4 base with 3 Kinect sensors (left); Wide FOV piduced by using 3
Kinects

With multiple Kinects receiving data it becomes necessary toatbrate the relative
poses to each other so that a combined point cloud can be geated with data from each
sensor. Thus, without loss of generality, it is necessary tletermine the 3D homogenous
transform H from the frame of Kinect 2 to the frame of Kinect 1. Determining his
transformation can be measured by hand or calibrated manugby using more advanced
techniques and tools. However, these processes tend to beided and have to be
repeated for each sensor anytime they are added or adjustéfle propose here a method
for automatic calibration of the extrinsic poses of two or me Kinect-like RGBD sensors
on a mobile robot. The objective is to give a robot the abilityo automatically calibrate
various sensors while operating in the environment (selbigcecting sensor alignment).
The work allows the robot to simply run in the environment andautomatically compute
the relative transforms between any two Kinect sensors witlut prior information on
the poses of the sensors attached to the robot.

50

B.2 Approach

For simplicity, we assume there are just two Kinects, Kinecl and Kinect 2. The goal
is to nd the transform H which will take an observation in Kinect 2's frame and put
it into Kinect 1's.

The approach is as follows

1. Drive the robot in the environment for an extended periodfdime.

2. At each timestept, record the observed point clouc; from Kinect 1 and C2 from
Kinect 2. The result is two sequences of point cloud obserians: CJ., and C3,,.

3. For each pair of consecutive point cloudsC} ;;C; use the ICP algorithm to
determine the transformH} between them. The result from this is two sequences
of transformsH 1, and H3, (i.e. the measured trajectories of each sensor).

4. Use a non-linear least squares optimization to determinkd optimal transformH
such that when applied toH 2, minimizes the error between the two trajectories.

B.3 ICP

The approach above in Step 2 utilizes the Iterative Closestdit (ICP) algorithm for
point cloud registration to incrementally register pairs bclouds in a sequence from each
Kinect. The resulting sequences of transforms compose wmqtrajectories for each
sensor in its own frame. The ICP algorithm is able to take two @nt clouds C; and
C, and determine the homogenous transforrH; which puts the points inC, into C;'s
frame. See Figur&.21which shows two clouds being aligned. The ICP variant which is
used is based o of a Point Cloud Library(PCL) implementation where surface normals
are used when performing the point cloud matching betweendhwo clouds.

51

Fig. 2.21: Two points clouds being aligned with the ICP algahm

B.4 Probabilistic Foundation

Our goal is to nd the transform H from Kinect 2 to Kinect 1 and the true trajectory
of Kinect 1 H1,, that are most likely given the data from each Kinect. Thus, we igh
to optimize the following posterior.

P H;HIyjH1n (2.13)

We solve for the MLE of the poster. We denotd to be the space of all transforms

argmax P HI,;HZ jH;HI, (2.14)
H2T;HI,2TN

We can decompose the probability of Equatiod.14 like so.

52

Y\I
P HLHZH HY
1

P H}:N;Hi:NjH;Hi:N

= P HYH! P HEHH
1

= P HYH!' P HHZH YH!

i=1

Here HH ?H ! is the application of H to the trajectory observations of Kinect 2. See
sectionB.5 for why. For notational convenience, we Iet—li1 = HH 2H . If we make the
assumption that the rotational and translational observaibns errors are independent,
we can further decompose.

W

P Hin;H2NiH HIy P HiH! P HijH?

1

P RRY P TYT! P RIR: P TjT!
i=1

Distribution Assumptions

Rotation

We measure the distance between two rotational transforms dhe Euclidean distance
between the two unit quaternions representing them. This ntec is chosen for its spa-
tial and computational e ciency[]. For convenience, dene (R4;Rp) = (RpRa) to
be this distance.

We assume that the quaternion distance between a true rotati R and an observed
rotation R} is distributed as folded normal distribution of some normadistribution
N (0;). Thus,

. 2
P R}R' =P RLR! = —Po=exp
q

and

8
2 R R}

> 2 2 >

. 2
P RjR =P R;RY = —p=exp
q

ltis clear that P R4R! P RjR! is maximized whenR> becomes the midpoint

betweenR} and Ril. Since we now knowR} , it can be removed from the optimization

P RYR! P RjR}

8 ,9 8 ,9
_ 2 23 RER] 2, 2§ RERy 2
- ?G?eXp? 22 > ?g?eXp? 22 >
8 ,9
= exp
§2 2 45 7
8 ,9
.pl >
¢ RiiR * 2.15
- :I.exp.> 4 2 > (.)

Translation

Similar to rotation, we make a Gaussian noise assumption ohd observed translations.
Assuming that

0 1
2.0 0

P T4T! andP TjT! N (T!:)where the covariance matrix = %)O 2 0X
0 0 2

Once againP T4T! P THT! is maximized by makingT > the midpoint of T?
and Til.

54

.) Tl Tl.z "T_ le
e e
((
1:: 1]_..2 1:: 1 1::2
AT Ti AT Ti
= exp 55— exp
23 2 2
(Tt lejz)
- 2 i i
= sexp 12 (2.16)
Optimization
Substituting using Equations2.15and 2.16 gives us
8 9
¥ 2 RER! 2 (o pi)
argmaxP HL :H2,jH = argmax exp. —— ' Zeyp TP Tilj
2T LN "T1IN Hot1 - 1 > 43 ,> 2 45
2 8) 29 (3
2 1.l = , .
= argmaxX\I Ing , exp & 2 exp M J4
H2T ., LS 4z > 2 42
1.51 2
= ar maxX\I Ri:Ri T TR
- ng - 42 42
2
X RERD i Tl
= argmax + ! ! 2.17
ng i1 4z 42 ()

Equation 2.17is the nonlinear least squares problem to be solved. The réswg solution
is the transform between Kinect 2 and Kinect 1.

B.5 Transform Application Proof

To see whyHH 2H 1 is the application ofH to the trajectory observations of Kinect 2,
consider the following two equations.

1) Hip, = p}

2)Hp = p

95

The objective is to solve for transformX in terms of H? and H such that
XpL=p}

Inverting (2) and substituting it into (1) yields

HH *p, = p}
Applying H to both sides:
HHZH 'p = Hpg
HHZH 1oy = B}

C DCVRP Tour Partitioning Examples

56

Fig. 2.22: Tour partitioning solutions to example Euclidea instances of DCVRPs

57

D BC Sweep Coverage Experiments for Grocery Store
Test Map

Fig. 2.23: An example convenience store layout.

58

Fig. 2.24: Convenience store decomposition.

Fig. 2.25: Visibility graph for inter-cell travel.

59

Fig. 2.26: TSP tour through cells.

Fig. 2.27: Single depot, =5dy,.

60

Fig. 2.28: Single depot, = 3d,.

Fig. 2.29: Single depot, = d,,.

61

Fig. 2.30: Two depots, = 3d,,.

Fig. 2.31: Three depots, =2d,.

62

2.5 BC Sweep Timed Experiments (Full)

We present here our full results for timed experiments usirtge tour partitioning heuris-
tic for the single depot case on the VRP problems given inlBB *]. We ran the heuristic
with a fuel capacity of &, 4d,, 6d,, and 1,. We compared the total fuel used on
tours generated by theBC Sweepwith a lower bound costs generated using the inte-
ger programming formulation presented in this work. Bott BC Sweepand the integer
programs were executed with a 2.40GHz Intel quad-core Core 28 Q6600 processor.
The integer programs were run with ILOG CPLEX 8.1 [LO] with a time limit of 12000
CPU seconds.

63

Problem | BC Sweep
Heuristic Value | CPU Time | Optimal/Lower Bound | Ratio

A-32-5 | 1341.8521 0.1220 881.6369 1.5220
A-33-5 | 1231.1320 0.1171 915.3952 1.3449
A-33-6 | 1316.6664 0.1175 1032.9360 1.2747
A-34-5 | 1366.7923 0.1216 952.1842 1.4354
A-36-5 | 1568.3419 0.1391 958.3373 1.6365
A-37-5 | 1146.6036 0.1385 950.1409 1.2068
A-37-6 | 1819.7120 0.1340 1127.3387 1.6142
A-38-5 | 1263.0735 0.1797 967.1293 1.3060
A-39-5 | 1623.7513 0.1563 1046.4135 1.5517
A-39-6 | 1479.4874 0.1643 1083.7777 1.3651
A-44-7 | 1790.3942 0.1533 1158.3592 1.5456
A-45-6 | 1579.7607 0.1492 1170.5393 1.3496
A-45-7 | 2549.1018 0.1510 1168.8896 2.1808
A-46-7 | 1701.9274 0.1454 1174.2022 1.4494
A-48-7 | 2057.2713 0.1712 1196.9806 1.7187
A-53-7 | 1833.5260 0.2048 1237.6864 1.4814
A-54-7 | 2158.0950 0.1989 1253.3963 1.7218
A-55-9 | 1892.4983 0.2033 1392.6237 1.3589
A-60-9 | 2551.8017 0.2483 1415.5110 1.8027
A-61-9 | 2011.9458 0.2354 1439.4879 1.3977
A-62-8 | 2356.2706 0.2490 1344.0424 1.6369
A-63-10 | 2331.9485 0.2593 1544.3866 1.5100
A-64-9 | 2711.8107 0.2703 1458.4742 1.8593
A-65-9 | 2167.9079 0.2802 1477.5247 1.4673
A-69-9 | 2078.0104 0.3106 1537.1212 1.3519
A-80-10 | 3115.0281 0.4895 1681.6676 1.8523

Table 2.2: BC Sweeptimed experiments for benchmark problems with a fuel capdgi
= 2dn.

64

Problem | BC Sweep
Heuristic Value | CPU Time | Optimal/Lower Bound | Ratio

A-32-5 | 976.7994 0.1200 888.6141 1.0992
A-33-5 | 965.5320 0.1202 927.1183 1.0414
A-33-6 | 1098.7139 0.1187 1037.4614 1.0590
A-34-5 | 1050.2624 0.1234 948.9164 1.1068
A-36-5 | 1085.5080 0.1233 949.9573 1.1427
A-37-5 | 1001.8634 0.1282 951.1124 1.0534
A-37-6 | 1225.2856 0.1394 1098.8713 1.1150
A-38-5 | 1024.1601 0.1561 974.3002 1.0512
A-39-5 | 1071.5750 0.1562 1054.3126 1.0164
A-39-6 | 1238.3060 0.1612 1075.6960 1.1512
A-44-7 | 1327.7768 0.1511 1160.4964 1.1441
A-45-6 | 1241.2875 0.1792 1170.1926 1.0607
A-45-7 | 1416.5897 0.1612 1156.4692 1.2249
A-46-7 | 1360.7620 0.1765 1170.5404 1.1625
A-48-7 | 1412.1144 0.1617 1196.5563 1.1801
A-53-7 | 1395.2306 0.2284 1238.0001 1.1270
A-54-7 | 1525.9796 0.2026 1250.6669 1.2201
A-55-9 | 1520.7633 0.1999 1396.6109 1.0889
A-60-9 | 1743.0462 0.2426 1415.3698 1.2315
A-61-9 | 1619.2133 0.2554 1438.0602 1.1260
A-62-8 | 1644.5083 0.2532 1347.0455 1.2208
A-63-10 | 1797.7477 0.2648 1539.8955 1.1674
A-64-9 | 1811.8566 0.2593 1452.7961 1.2472
A-65-9 | 1689.8584 0.2781 1475.4044 1.1454
A-69-9 | 1711.2556 0.3321 1539.1846 1.1118
A-80-10 | 2044.0104 0.4428 1684.3730 1.2135

Table 2.3: BC Sweeptimed experiments for benchmark problems with a fuel capdgi
= 4dy.

65

Problem | BC Sweep
Heuristic Value | CPU Time | Optimal/Lower Bound | Ratio

A-32-5 | 886.5527 0.1249 877.0180 1.0107
A-33-5 | 904.7263 0.1317 896.6229 1.0090
A-33-6 | 1063.0649 0.1271 1041.1782 1.0210
A-34-5 | 990.1600 0.1224 946.2012 1.0465
A-36-5 | 990.7470 0.1291 945.7633 1.0476
A-37-5 | 956.6080 0.1400 936.9275 1.0210
A-37-6 | 1149.6745 0.1329 1103.0719 1.0422
A-38-5 | 988.4790 0.1517 967.9090 1.0213
A-39-5 | 1062.6250 0.1685 1041.5212 1.0203
A-39-6 | 1132.6809 0.1543 1090.7617 1.0384
A-44-7 | 1228.4387 0.1465 1207.3985 1.0174
A-45-6 | 1198.8246 0.1515 1174.2733 1.0209
A-45-7 | 1280.1845 0.1746 1154.2068 1.1091
A-46-7 | 1276.9880 0.1544 1174.2646 1.0875
A-48-7 | 1265.8339 0.1781 1197.1468 1.0574
A-53-7 | 1328.1577 0.1853 1240.5438 1.0706
A-54-7 | 1383.8515 0.1973 1255.6921 1.1021
A-55-9 | 1455.8510 0.1965 1405.7774 1.0356
A-60-9 | 1591.5958 0.2619 1411.4460 1.1276
A-61-9 | 1559.8909 0.2727 1438.9646 1.0840
A-62-8 | 1523.3206 0.2826 1345.4170 1.1322
A-63-10 | 1680.4346 0.2900 1538.9563 1.0919
A-64-9 | 1616.7432 0.2941 1451.7449 1.1137
A-65-9 | 1629.1332 0.2940 1474.7291 1.1047
A-69-9 | 1673.7504 0.3472 1540.5185 1.0864
A-80-10 | 1876.0994 0.4672 1681.0542 1.1160

Table 2.4: BC Sweeptimed experiments for benchmark problems with a fuel capdgi
= 6dn.

66

Table 2.5: ILP timed experiments for benchmark problems whit a fuel capacity

10dy,.

Problem | BC Sweep
Heuristic Value | CPU Time | Optimal/Lower Bound | Ratio

A-32-5 | 886.5527 0.1249 877.1055 1.0108
A-33-5 | 890.7367 0.1174 882.3824 1.0095
A-33-6 | 1038.1970 0.1211 1017.0348 1.0208
A-34-5 | 959.5369 0.1191 950.1764 1.0099
A-36-5 | 963.8611 0.1355 922.6063 1.0447
A-37-5 | 932.5413 0.1239 924.1408 1.0091
A-37-6 | 1081.2638 0.1313 1080.3570 1.0008
A-38-5 | 962.4897 0.1294 950.4388 1.0127
A-39-5 | 1043.5868 0.1347 1017.0440 1.0261
A-39-6 | 1084.2549 0.1484 1074.1657 1.0094
A-44-7 | 1179.8530 0.1478 1163.8716 1.0137
A-45-6 | 1177.4215 0.1594 1167.3235 1.0087
A-45-7 | 1191.0457 0.1437 1160.1634 1.0266
A-46-7 | 1209.0902 0.1600 1168.8796 1.0344
A-48-7 | 1250.0388 0.1753 1196.1606 1.0450
A-53-7 | 1259.7351 0.2013 1235.8571 1.0193
A-54-7 | 1296.9474 0.1889 1250.0115 1.0375
A-55-9 | 1447.4495 0.2014 1401.0568 1.0331
A-60-9 | 1457.8535 0.2295 1423.8379 1.0239
A-61-9 | 1498.3937 0.2624 1441.8770 1.0392
A-62-8 | 1420.3737 0.2358 1343.7366 1.0570
A-63-10 | 1624.6901 0.2430 1523.1985 1.0666
A-64-9 | 1600.8198 0.2615 1578.1061 1.0144
A-65-9 | 1541.0332 0.2550 1476.6809 1.0436
A-69-9 | 1592.7001 0.3074 1538.5492 1.0352
A-80-10 | 1851.8863 0.4595 1684.2879 1.0995

67

2.6 ILP Timed Experiments (Full)

We present here our full results for the timed experiments tie integer linear programs
of the benchmark problems of/]. We ran experiments on all of the problems with
fuel capacities 4., 4d,, 6d,, and 10,,. The integer programs were executed with a
2.40GHz Intel quad-core Core 2 Quad Q6600 processor and werewith ILOG CPLEX
8.1 [LO] with a time limit of 12000 CPU seconds.

68

Problem | IP Best Value | CPU Time
A-32-5 | 1177.4083 12000.00
A-33-5 | 1095.5075 12000.00
A-33-6 | 1246.8588 12000.00
A-34-5 | 1172.6370 12000.00
A-36-5 | 1377.0328 12000.00
A-37-5 | 1064.0884 12000.00
A-37-6 | 1606.1097 12000.00
A-38-5 | 1176.1386 12000.00
A-39-5 | 1433.1643 12000.00
A-39-6 | 1362.2655 12000.00
A-44-7 | 1575.6450 12000.00
A-45-6 | 1476.4414 12000.00
A-45-7 | 2179.2248 12000.00
A-46-7 | 1536.1831 12000.00
A-48-7 | 1689.1814 12000.00
A-53-7 | 1607.0092 12000.00
A-54-7 | 1891.8696 12000.00
A-55-9 | 1775.2919 12000.00
A-60-9 | 2211.8483 12000.00
A-61-9 | 1811.2861 12000.00
A-62-8 | 2133.1589 12000.00
A-63-10 | 2185.4414 12000.00
A-64-9 | 2023.1842 12000.00
A-65-9 | 1929.8371 12000.00
A-69-9 | 1948.1469 12000.00
A-80-10 | 2858.1325 12000.00

Table 2.6: ILP timed experiments for benchmark problems whta fuel capacity = 2dy,.

69

Problem | IP Best Value | CPU Time
A-32-5 | 927.5231 12000.00
A-33-5 | 9271183 2790.95
A-33-6 | 1054.3566 12000.00
A-34-5 | 1005.5227 12000.00
A-36-5 | 1049.8718 12000.00
A-37-5 | 9511124 950.36
A-37-6 | 1163.3761 12000.00
A-38-5 | 990.2259 12000.00
A-39-5 | 10543126 7082.17
A-39-6 | 1137.9278 12000.00
A-44-7 | 1262.1916 12000.00
A-45-6 | 1240.8878 12000.00
A-45-7 | 1365.3183 12000.00
A-46-7 | 1220.2775 12000.00
A-48-7 | 1312.2947 12000.00
A-53-7 | 1325.4526 12000.00
A-54-7 | 1360.6019 12000.00
A-55-9 1472.7442 12000.00
A-60-9 1575.1471 12000.00
A-61-9 | 1556.5062 12000.00
A-62-8 | 1509.1816 12000.00
A-63-10 | 1716.3710 12000.00
A-64-9 | 1623.0203 12000.00
A-65-9 | 1596.7408 12000.00
A-69-9 | 1636.9545 12000.00
A-80-10 | 1966.2320 12000.00

Table 2.7: ILP timed experiments for benchmark problems whta fuel capacity = 4dy,.

70

Problem | IP Best Value | CPU Time
A-32-5 | 8770180 103.83
A-33-5 | 8966229 165.58
A-33-6 | 10411782 9420.03
A-34-5 | 979.1952 12000.00
A-36-5 | 974.6411 12000.00
A-37-5 | 9369275 52.13
A-37-6 | 1123.7067 12000.00
A-38-5 | 9679090 399.46
A-39-5 | 1050.3523 12000.00
A-39-6 | 10907617 3657.27
A-44-7 | 1159.5174 12000.00
A-45-6 | 1193.4752 12000.00
A-45-7 | 1230.3585 12000.00
A-46-7 | 1193.8324 12000.00
A-48-7 | 1235.4481 12000.00
A-53-7 | 1265.8045 12000.00
A-54-7 | 1287.6646 12000.00
A-55-9 | 1426.2345 12000.00
A-60-9 1471.5767 12000.00
A-61-9 | 1474.5887 12000.00
A-62-8 | 1395.5335 12000.00
A-63-10 | 1603.5497 12000.00
A-64-9 | 1518.8033 12000.00
A-65-9 | 1521.0789 12000.00
A-69-9 | 1580.6932 12000.00
A-80-10 | 1807.0996 12000.00

Table 2.8: ILP timed experiments for benchmark problems whta fuel capacity = 6dy,.

71

Table 2.9: ILP timed experiments for benchmark problems wht a fuel capacity

1Cnm .

Problem | IP Best Value | CPU Time
A-32-5 | 8771055 109.11
A-33-5 | 8823823 4.39
A-33-6 | 10170348 37.52
A-34-5 | 9501764 950.00
A-36-5 | 9226063 0.94
A-37-5 | 9241407 12.19
A-37-6 | 10803570 17.91
A-38-5 | 9504388 25.39
A-39-5 | 10170440 9.17
A-39-6 | 10741657 67.20
A-44-7 | 11638716 728.16
A-45-6 | 11673235 104.00
A-45-7 11601634 1835.26
A-46-7 | 11688796 61.50
A-48-7 | 11961606 101.08
A-53-7 12358571 78.45
A-54-7 | 12500115 78.58
A-55-9 14010567 736.38
A-60-9 | 14238379 11075.20
A-61-9 | 114568850 12000.00
A-62-8 | 13437370 70.34
A-63-10 | 15726670 12000.00
A-64-9 | 15044854 12000.00
A-65-9 | 15040432 12000.00
A-69-9 | 155557591 12000.00
A-80-10 | 17437459 12000.00

72

Bibliography

[

[ABB*]

[AC91]

[ACZS03]

[AH94]

[AMOO]

[AMO]

[Bea83]

[BRH99]

Vehicle Routing Data Sets.

P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddefand
G. Rinaldi. Computational Results with a Branch and Cut Code dr the
Capacitated Vehicle Routing Problem, Research Report 949: Universite
Joseph Fourier, Grenoble, France36, 45, 63, 68

N R Achuthan and L Caccetta. Integer linear programmindgormulation
for a vehicle routing problem. European Journal of Operational Research
52:86{89, 1991.37

Ercan U Acar, Howie Choset, Yangang Zhang, and Markgzvish. Path
planning for robotic demining: Robust sensor-based covee of unstruc-
tured environments and probabilistic methods.The International journal
of robotics research22(7), 2003.17

Esther M. + Arkin and Refael Hassin. Approximation algorithms or the
Geometric Salesman Problem *Discrete Applied Mathematics55(93):197{
218, 1994.18

Esther M Arkin and Joseph S B Mitchell. Approximation Algorithms for
Lawn Mowing and Milling. Computational Geometry 17(1-2):25{50, 2000.
17

Sameer Agarwal, Keir Mierle, and Others. Ceres Solveg, 12

Je Beasley. Route rst - Cluster second methods for hiele routing.
OMEGA, 11(4):403{408, January 198324

Z.J. Butler, A.a. Rizzi, and R.L. Hollis. Contact sensobased coverage
of rectilinear environments. Proceedings of the 1999 IEEE International
Symposium on Intelligent Control Intelligent Systems and Semiotigsages
266{271, 1999.

73

[BV12]

[BV13]

[BV14]

[CAD11]

[CARLOO]

[ChoO1]

[Chr76]

[Com11]

[CP97]

[DHO3]

Joydeep Biswas and Manuela Veloso. Depth camera baseddor mobile
robot localization and navigation.2012 IEEE International Conference on
Robotics and Automation pages 1697{1702, May 2012, 5

Joydeep Biswas and Manuela M Veloso. Localization and Ngation of the
CoBots Over Long-term Deployments.intelligent Robots and Systems32,
no. 14:1679{1694, 201317

Joydeep Biswas and Manuela Veloso. Episodic Non-Markbwcalization:
Reasoning About Short-Term and Long-Term FeaturesEEE International
Conference on Robotics and Automatiqr2014. 2

Gerardo Carrera, Adrien Angeli, and Andrew J. Davison. SLAM-bsed
automatic extrinsic calibration of a multi-camera rig. 2011 IEEE Inter-
national Conference on Robotics and Automatignpages 2652{2659, May
2011.

Howie Choset, Ercan Acar, Alfred A Rizzi, and Jonathan Lotz. Exact
Cellular Decompositions in Terms of Critical Points of More Functions.
IEEE International Conference on Robotics and Automation San Francisco,
CA, 3:2270 { 2277, 200017, 20

Howie Choset. Coverage for robotics , A survey of rateesults. Annals
of Mathematics and Arti cial Intelligence, 31:113{126, 200117

Nicos Christo des. Worst-Case Analysis of a New Heuristifor the Travel-
ling Salesman ProblemReport 388, Graduate School of Industrial Admin-
istration, CMU, (February), 1976. 23

Andrew | Comport. Real-time dense appearance-basddAM for RGB-D
sensors. 2011.

Howie Choset and Philippe Pignon. Coverage Path Plaimg : The Bous-
trophedon Cellular Decomposition.Proceedings of the International Con-
ference on Field and Service Robotics, Canberra, Austraia997.17, 20

Keith L Doty and Reid R Harrison. Sweep Strategies for a 8gory-Driven,
Behavior-based Vacuum Cleaning Agent.AAAI Fall Symposium, pages
42{47, 1993.17

74

[FB81]

[FCO04]

[FSTCO1]

[Gag93]

[GGR* 05]

[HLO6]

[Hub01]

[HYO1]

[ILO]

[Karll]

Martin A Fischler and Robert C Bolles. Random sample csensus: A
paradigm for model tting with applications to image analysisand auto-
mated cartography. Communications of the ACM 24(6):381{395, 1981.
5

John Folkesson and Henrik Christensen. Graphical SLAM - ASelf-
Correcting Map. IEEE International Conference on Robotics and Automa-
tion, 1(April):383{390, 2004. 4

Skbastien Fabret, Philippe Soukrest, Michel Taiand Lionel Cordesses.
Farmwork Pathplanning for Field Coverage with Minimum Overapping.
8th International Conference on Emerging Technologies and Factory Au-
tomation, 2, 2001.17

Douglas W Gage. Randomized Search Strategies withplerfect Sensors.
SPIE Mobile Robots VIII, 2058(September):270{279, 1993.7

Andrea Garulli, Antonio Giannitrapani, Andrea Rossi, Antonio Vtino, and
Via Roma. Mobile robot SLAM for line-based environment represéation.
44th IEEE Conference on Decision and Control, European Control Confer-
ence. CDC-ECC '05, 2005.3, 4

Y.C. Hu and C.S.G. Lee. Deployment of mobile robots with engy and
timing constraints. IEEE Transactions on Robotics 22(3):507{522, June
2006.18

Daniel F Huber. Fully Automatic Registration of Multiple 3D Daa Sets.
Image and Vision Computing 21:637{650, 2001.

Wesley H Huang and New York. Optimal Line-sweep-based Degpositions
for Coverage Algorithms.IEEE International Conference on Robotics and
Automation, 2, 2001.18

ILOG, Inc. ILOG CPLEX: High-performance software for mahematical
programming and optimization. 36, 46, 63, 68

Imdat Kara. Arc based integer programming formulatioa for the Distance
Constrained Vehicle Routing problem3rd IEEE International Symposium
on Logistics and Industrial Informatics pages 33{38, August 201137

75

[KB85]

[Lat91]

[LDN84]

[LHDO7]

[LpW79]

[LSLOO]

[LSLD92]

[MCaPL13]

[MTO3]

[MTZ60]

R.V. Kulkarni and P.R. Bhave. Integer programming fomulations of vehicle
routing problems.European Journal of Operational Researcl20(September
1983):58{67, 198537

Jean-Claude Latombe. Robot Motion Planning: Edition e anglais.Kluwer
Academic, Boston, MA 1991. 17

Gilbert Laporte, Martin Desrochers, and Yves Nobert. Wo exact algo-
rithms for the distance-constrained vehicle routing problem Networks
14(1):161{172, 198437

Cindy Leung, Shoudong Huang, and Gamini Dissanayake. th& SLAM
in Structured Environments. 2008 IEEE/RSJ International Conference on
Intelligent Robots and System<2007. 3

Tom s Lozano-prez and Michael A Wesley. An Algorithm forPlanning
Collision-Free Paths Among Polyhedral ObstaclesCommunications of the
ACM, 22(10), 1979.20

CL Li and D Simchi-Levi. Worst-case analysis of hewstics for multidepot
capacitated vehicle routing problemsORSA Journal on Computing 2(1),
1990. 24

Chung-Lun Li, David Simchi-Levi, and Martin Desra@hers. On the Distance
Constrained Vehicle Routing ProblemQOperations Research40(4):790{799,
1992. 24, 26, 30

Rizwan Macknojia, Alberto Chavez-aragn, Piere Payeur, and Robert La-
ganere. Calibration of a Network of Kinect Sensors for Rokt@ Inspection
over a Large Workspace University of Ottawa. pages 184{190,12

M. Montemerlo and S. Thrun. Simultaneous localizatin and mapping with
unknown data association using FastSLAM.IEEE International Confer-
ence on Robotics and Automation (Cat. No.0O3CH37422pages 1985{1991,
2003.3

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer Progr.amming For-
mulation of Traveling Salesman Problems *Journal of the ACM (JACM),
7(4):326{329, 1960.38

76

[NHS07]

[NR]

[OLTO6]

[PITNOS]

[Pul9g]

[PVP*09]

[RLO1]

[RVvdHO9]

[SBS]

Viet Nguyen, Ahad Harati, and Roland Siegwart. A lightweight BAM algo-
rithm using Orthogonal planes for indoor mobile robotics2007 IEEE/RSJ
International Conference on Intelligent Robots and Systenmgages 658{663,
October 2007.4

Viswanath Nagarajan and R. Ravi. Approximation algorithms fordistance
constrained vehicle routing problemsNetworks 59(2):209{214.24

E. Olson, J. Leonard, and S. Teller. Fast iterative ajnment of pose graphs
with poor initial estimates. Proceedings 2006 IEEE International Confer-
ence on Robotics and Automation, 2006. ICRA 2006(May):2262{2269,
2006.4

L M Paz, P Jensfelt, J D Tard, and J Neira. EKF SLAM updatesm O (n
) with Divide and Conquer SLAM. IEEE Transactions on Robotics pages
1107 { 1120, 20083

K. Pulli. Multiview registration for large data sets. Second International
Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062)
1:160{168, 1999.

Kaustubh Pathak, Narunas Vaskevicius, Jann Poppinga, Max Rgsthorn,
Soren Schwertfeger, and Andreas Birk. Fast 3D mapping by matciy
planes extracted from range sensor point-clouds2009 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systemgages 1150{1155,
October 2009.4

S. Rusinkiewicz and M. Levoy. E cient variants of the ICP algorithm.
Proceedings Third International Conference on 3-D Digital Imaging and
Modeling pages 145{152, 2001.

T Rabbani, G Vosselman, and F.A. van den Heuvel. Segntation of point
clouds using smoothness constraintISPRS Commission V Symposium
'Image Engineering and Vision Metrology,' 38:1{6, 2009.6

Lazar Sumar and Andrew Bainbridge-Smith. Feasabliity of B&a Image
Processing Using Multiple Kinect Cameras on a Portable Platfor.

s

[SEGLO5]

[SKPY10]

[SM]

[SP90]

[SRDO6]

[SXS' 00a]

[SXS' 00b]

[TBFO5]

[Thro3]

Robert Sim, Pantelis Elinas, Matt Grin, and JJ Litt le. Vision-based
SLAM using the Rao-Blackwellised particle Iter. IJCAI Workshop on
Reasoning with Uncertainty in Robotics2005. 3

Aydin Sipahioglu, Gokhan Kirlik, Osman Parlaktuna,and Ahmet Yazici.
Energy constrained multi-robot sensor-based coverage paplanning us-
ing capacitated arc routing approach.Robotics and Autonomous Systems
58(5):529{538, May 201018

Aaron Staranowicz and Gian-Luca Mariottinini. A Compaative Study of
Calibration Methods for Kinect-style cameras.

Wesley Snyder and A Pirzadeh. A uni ed solution to c@rage and search
in explored and unexplored terrains using indirect control 3:2113{2119,
1990.

P. Smith, I. Reid, and a. J. Davison. Real-Time Monotar SLAM with
Straight Lines. Procedings of the British Machine Vision Conference 2006
pages 3.1{3.10, 20064

Weihua Sheng, Ning Xi, Mumin Song, Yifan Chen, and Perry Maeiile.

Automated CAD-Guided Robot Path Planning for Spray Painting of @m-

pound Surfaces Ford Motor Company. Intelligent Robots and Systems
pages 1918{1923, 200Q.7

Weihua Sheng, Ning Xi, Mumin Song, Yifan Chen, and Perry Maeille.

Automated CAD-Guided Robot Path Planning for Spray Painting of @m-

pound Surfaces Ford Motor Company. Intelligent Robots and Systems
pages 1918{1923, 2000.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Fobabilistic
Robotics. In Probabilistic Robotics chapter The GraphS, pages 337{384.
The MIT Press, Cambridge, 20054, 7, 9, 10

S. Thrun. Results for outdoor-SLAM using sparse exteled information
Iters. IEEE International Conference on Robotics and Automation (Cat.
N0.03CH37422) 1:1227{1233, 2003.

78

[Thr06]

[TIC12]

[TT]

[Wat88]

[WS05]

[YKPS14]

S. Thrun. The Graph SLAM Algorithm with Applications to Large-Scale
Mapping of Urban Structures. The International Journal of Robotics Re-
search 25(5-6):403{429, May 20064

Alexander J B Trevor, John G Rogers lii, and Henrik | Chrisensen. Planar
Surface SLAM with 3D and 2D SensorslEEE International Conference
on Robotics and Automation pages 2{9, 20124

Alex Teichman and Sebastian Thrun. Unsupervised intrinsic aibration of
depth sensors via SLAM.

CDJ Waters. Expanding the scope of linear programmg solutions for
vehicle scheduling problemsOmega 16(6):577{583, January 198837

J. Weingarten and R. Siegwart. EKF-based 3D SLAM for staiured en-
vironment reconstruction. 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systemgages 3834{3839, 200%, 4

Ahmet Yazici, Gokhan Kirlik, Osman Parlaktuna, and Aydn Sipahioglu. A
Dynamic Path Planning Approach for Multirobot Sensor-Based Gverage
Considering. 44(3):305{314, 201418

79

	Title
	Abstract
	1 SLAM for CoBot
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 Related work

	1.2 Features
	1.2.1 Odometry
	1.2.2 Landmarks

	1.3 Graph Slam-SD
	1.3.1 Notation
	1.3.2 The Posterior
	1.3.3 Gaussian Noise
	1.3.4 Final Optimization

	1.4 Experimental Results
	1.5 Conclusion

