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Abstract

The scheduling of multithreaded computations has attracted extensive re-
search over past decades. Most of the research focused on design schedulers
that are efficient in terms of runtime and space consumption, very often at the
cost of performing more work than the computation itself required.

This work considers a new class of schedulers, called work-efficient sched-
ulers. Work-efficient schedulers aim to minimize extra work, measured by the
total number of instructions executed by all processors due to scheduling, in-
cluding idle (referred to as spinning in this work) time. Specifically, the total
amount of work performed during the scheduling of a computation must be
within a small constant factor of the total work of the computation. This work
first presents an offline elastic scheduler that achieves the goal by dynamically
scaling up or down the processors it utilizes in response to the instantaneous
parallelism. We prove a runtime and total work bound for our offline elastic
scheduler and show that it achieves linear speedup with respect to the number
of processors, while maintaining work efficiency.

This work further presents an online elastic work-stealing algorithm that
aims at approximating the offline work-efficient schedulers. The elastic work-
stealing scheduler augments the traditional work-stealing algorithm with a
lifeline forest communication structure that allows processors to respond swiftly
to varying instantaneous parallelism in a distributed manner. We implemente
this algorithm then evaluate its performance and work efficiency by comparing
it agaist existing implementations of traditional work-stealing schedulers. Re-
sults show that 1) for highly parallel computations, our elastic work-stealing
scheduler is comparable to classic work stealing in its speedup; 2) for compu-
tations where parallelism is more limited, our elastic work-stealing scheduler
performs considerably less work.
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Chapter 1

Introduction

1.1 Overview

Shared memory multi-core or multiprocessor systems are pervasive in modern comput-
ing. Techniques for programming such systems have received extensive research, and
fine-grained parallelism emerged as a promising approach. Fine-grained parallelism pro-
gramming systems encourage the programmer to maximally identify independent compu-
tations, termed threads, and leave the details of executing those threads to the program-
ming systems. This approach has proved to be very effective by Cilk [7], Intel’s Threading
Building Blocks [19], Java Fork/Join [17], X10 [22] and parallel ML [14].

One of the central challenges in designing and implementing fined grained parallel
systems is to efficiently schedule threads on to processors. The scheduler dynamically
map threads onto processors, hoping to achieve overall linear speedup with respect to the
number of processors in the system. This is known as the (thread) scheduling problem.
The algorithm that solves the scheduling problem is termed a (thread) scheduler. If the
number of processors made available to the scheduler stays constant throughout the entire
scheduling, then the scheduler targets a dedicated environment.

We may classify schedulers in terms of the information that they are allowed to take
advantage of. Offline schedulers are omniscient in that they can see the entire system
state, and they may schedule threads arbitrarily (e.g., move threads around, switch threads)
without incurring any overhead. In particular, offline scheduler schedulers are aware of
the structure of the entire computation from the beginning to the end, and they can utilize
that information in any way they see fit. Studying offline schedulers allows us to draw
conclusions about a particular scheduling algorithm given perfect information. Online
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schedulers, on the other hand, only have access to past and local information. In other
words, the online scheduler can only make decisions based on the part of computation that
it explored, or information obtained by explicit communications.

Previous research mainly focused on designing schedulers for better performance [1,
4, 9] and (or) efficient space utilization [6, 9]. Those schedulers try to provide as much
speedup as possible often at the cost of work-efficiency: those schedulers often perform
more work than explicitly demanded by the computation. The goal of this work is to design
and implement a new class of schedulers, called work-efficient schedulers. Informally,
work efficient schedulers perform no more work than the total work of the computation
during the entire scheduling.

Define the maximum number of processors a computation can utilize at some mo-
ment during scheduling as the instantaneous parallelism of that moment. Sources of
work-inefficiencies include the overhead of scheduler code, communications between pro-
cessors, and most importantly, processors spinning and trying to perform load balancing
actions when there is limited instantaneous parallelism. As a concrete example, the work-
stealing scheduler described in [4, 9] will arrange a processor to keep “stealing” even when
there is no viable target, burning CPU cycles while making no progress on the computa-
tion itself. To achieve work-efficiency, we need to minimize the time processors spent
on spinning when instantaneous parallelism is low, by allowing schedulers to dynamically
varying the number of processors it utilizes and voluntarily give up processors if necessary.
We call such schedulers elastic schedulers.

Elasticity is by no means a free lunch. Traditional schedulers arrange processors to
keep performing load balancing actions when instantaneous parallelism is limited so that
they can quickly pick up new threads when parallelism comes back. The ability to respond
to varying instantaneous parallelism is termed responsiveness. Elasticity inevitably trades
off responsiveness for work-efficiency, and a major challenge is to strike a balance between
responsiveness and work-efficiency. This work presents a specific type of elastic offline
scheduler. We show that this scheduler is both work-efficient and performant by proving a
runtime and total work bound for computations scheduled using the scheduler.

This work further proposes an online scheduling algorithm that aims at approximating
the offline work-efficient scheduler based on the traditional work-stealing scheduler. The
randomized work-stealing algorithm is very successful both in theory [4, 9] and in prac-
tice [7, 10, 15]. The work-stealing scheduler is a distributed scheduling algorithm where
each processor maintains and works on its own thread queue. Once a processor exhausted
its queue, the processor obtains work by randomly picking a victim processor and try to
migrate threads from the victim’s queue to its queue. The randomized, distributed nature
of work-stealing makes it very robust and efficient. Our online scheduler, named elastic
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work-stealing scheduler, augments the traditional work-stealing algorithm by allowing
for increasing or decreasing processors utilized during random steals. This allows us to
scale the processor utilization in a randomized and distributed fashion.

The rest of this thesis is organized as follows:

• The rest of the Chapter 1 will first introduce to the readers the DAG model for
modeling parallel computations. We will discuss a few related works. In section 1.4
we will present our main contributions.

• In Chapter 2 we will first augment the existing model for modeling offline sched-
ulers to account for processors spinning. Then we will propose an elastic offline
scheduler. With the help of the proposed scheduling model, we will prove that this
algorithm is both work-efficient and performant by establishing both runtime bound
and work bound for computations scheduled using this scheduler.

• In Chapter 3 we will describe the elastic work-stealing scheduler. The elastic work-
stealing attempts to approximate the offline scheduler. We argue it is both elastic
and work-efficient. We identify two key data structured utilized to implement our
scheduler: lifeline forest and concurrent random set. We describe algorithms that
implement those data-structures and discussed their correctness and performance.

• In Chapter 4, we implement our elastic work-stealing scheduler and evaluate it by
comparing it with existing implementations of traditional work-stealing algorithms.
The results support that our scheduler is as performant as traditional work-stealing
schedulers for highly parallel computations, and performances significantly less
work for computations with limited parallelism. The data provide empirical evi-
dence for the claims in Chapter 3.

• In Chapter 5 we conclude our work and briefly discuss future directions.

1.2 Multithreaded Computations as Computation Graphs

In this section we introduce a widely used [6, 8, 12] graph-theoretic model for analyzing
multithreaded computations. The central idea is to model a multithreaded computation as
an unfolding directed acyclic graph (dag) where nodes represent unit-time instructions,
and edges represents dependencies between instructions.

Figure 1.1 demonstrates a computation graph of some parallel computation. We will
introduce necessary terminologies and definitions using it as a concrete example.
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v0 v1 v2 v3 v4 v5 v6 v7

Γ1

v13 v14 v15 v16 v17

Γ3

v18 v19 v20 v21

Γ4

v22 v23 v24

Γ5

v25 v26 v27 v28

Γ6

v8 v9 v10 v11 v12

Γ2

Figure 1.1: An exemplary computation dag G consisting 6 thread Γ1 . . .Γ6 and 28 nodes
v1 . . . v28. v0 is the root and Γ1 is the initial thread. Computation starts with node v0 in Γ1

and terminates with v7 in Γ1. For this graph, T1 = 29, and the span T∞ = 14.

A computation must start with some instruction. In our case the computation begins
with v0. We call v0 the root node.

A thread is a sequence of connected nodes. In our example, the computation consists
of six threads: each shaded region is a single thread. Because edges represents dependen-
cies, nodes in a single thread form a sequential computation. The thread containing the
root node is called the initial thread.

A P -processor schedule (or just schedule) of a computation graph is an assignment of
nodes n to processors p1 . . . pP for every time step i, and it must respect the dependencies
specified by the graph. A schedule is valid if and only if for all nodes n, if n is scheduled
at time t, then all predecessors of n have been scheduled before t. Figure 1.1 provided one
possible 4-processor schedule of the computation.

At the beginning of time step t, the set of nodes whose dependencies are all satisfied is
referred to as the set of ready nodes of time t. In other words, ready nodes are nodes that
can be scheduled without violating dependencies at time t. Given two different threads Γ
and Γ′, if the execution of some node n of thread Γ at time step t puts node n′ of thread
Γ′ in to the set of ready nodes at time t + 1, we say n enabled n′. In particular, if n′ is
the first node of Γ′, we say n spawned n′ (or equivalently Γ′). It is possible for a node to
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Step Ready nodes Node assignment
p1 p2 p3 p4

1 {v0} v0
2 {v1} v1
3 {v2, v8, v13} v2 v8 v13
4 {v3, v9, v14} v3 v9 v14
5 {v18, v10, v15, v22} v18 v10 v15 v22
6 {v19, v11, v16, v23} v19 v11 v16 v23
7 {v12, v25, v24} v12 v25 v24
8 {v26} v26
9 {v27} v27

10 {v28, v17} v17 v28
11 {v20, v4} v4 v20
12 {v21, v5} v5 v21
13 {v6} v6
14 {v7} v7

Table 1.1: A 4-processor schedule of the exemplary computation dag in Figure 1.1. The
schedule takes exactly T∞ steps to complete, reaching the theoretical limit. Adding more
processor cannot improve runtime.
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spawn multiple nodes. In our example, v1 spawned v8 and v13 at time step 2. On the other
hand, it is also possible to have two nodes “simultaneously” enable the same node. In our
example, execution of v5 and v21 at time step 12 satisfied the dependencies of v6. In this
case, one can arbitrarily pick one of v5 and v21 and claim it enabled v6. Our arguments
will still hold, regardless of the choice.

Another equivalent way of looking at this model is the following: we may think of
a parallel schedule as iteratively removing executed zero in-degree nodes (ready nodes)
from the computation graph, resulting in a smaller computation graph at each time step.
In the beginning, only the root node has zero in-degree. At the end of the computation, all
nodes have been removed, resulting in an empty computation graph.

the work of the computation, denoted by T1, is defined to be the number of nodes in
the graph. For this computation, T1 = 29 since there are precisely 29 nodes. The work
of computation is the number of steps a 1-processors schedule would take to complete the
computation. In other work, it is the minimum amount of work one has to perform to
complete the computation.

The span of the computation, denoted by T∞, is defined to be the length of the critical
path in the graph. For this computation, there exists one unique critical path, consisting
v0, v1, v13, . . . v16 . . . v25 . . . v28, v20, v21, v6, v7. That is T∞ = 14 for this graph. The span
of computation models the minimum time one would have to spend given infinite number
of processors.

The average parallelism, or just parallelism of the computation is defined to be quo-
tient of work and span T1

T∞
. Conversely, we may define the number of ready nodes at time

t as the instantaneous parallelism of time t. It measures the maximum number of pro-
cessors the computation can effectively utilize at time t. For example, in our example, the
instantaneous parallelism at time step 4 is 4, and it’s only 1 at time step 8.

In our exemplary schedule in Table 1.1, we always try to schedule at many nodes as
possible at each step. A scheduler that attempts to schedule as many ready nodes as pos-
sible at each time step is called a greedy scheduler. Note that our model does not mandate
schedulers to be greedy to produce a valid schedule. Numerous previous work [11, 6] have
stated and proved the following lemma using different models:

Lemma 1 (Runtime of greedy schedulers). Any P -processor schedule produced by a
greedy scheduler of a computation graph with T1 work and T∞ span takes at most T1/P +
T∞ steps to complete.

This model can be generalized [4] into the adaptive environment without much ef-
fort. In an adaptive setting, processors in this model are replaced with workers. The job
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schedulers select the “active” workers at each time step.

The model stated above is not sufficient for our purpose. In particular, the model says
nothing about the processors that are not assigned with any node. Our idea is to augment
the model to allow the scheduler to declare the amount of the processors it wishes to utilize
at each time step. For each time step, the scheduler has to declare the number of processors
it wishes to utilize, then assign nodes to a (potentially equal) subset of those processors.
We refer to the number of processors a scheduler is willing to utilize at time step t as the
processor utilization of time t.

1.3 Related Works

This work only considers the dedicated environment where the number of processors made
available to the scheduler stays constant. Conversely, if the number of processors avail-
able varies, then the scheduler works in a multiprogrammed environment [4]. Scheduling
in multiprogrammed environments is also known as adaptive scheduling [2]. Previous
works [4, 3] proposed to model scheduling in an adaptive environment using a two-level
scheduling model: there exists a thread scheduler (in some literature, task schedulers) that
schedules threads on to a fixed set of workers (in some literature, processes), along with a
potentially adversarial job scheduler that schedules a subset the workers onto the proces-
sors. In principle, the job scheduler corresponds to the operating systems’ scheduler, and
workers correspond to operating system threads. Researches focus on the design of thread
schedulers.

In Scheduling Multithreaded Computations by Work Stealing by Blumofe et al., the
authors first proposed the offline work-stealing algorithm for a dedicated environment.
The authors prove that the algorithm is both space-efficient and performant. In particu-
lar, the author proved that the work-stealing scheduler takes on average T1/P + O(T∞).
Arora et al. in Thread Scheduling for Multiprogrammed Multiprocessors extended previ-
ous result to an online adaptive environment. Their work presented a non-blocking work-
stealing scheduler implementation and proved that the work-stealing scheduler completes
any computation of inO(T1/PA+(P/PA)T∞) runtime, where PA is the average processor
availability provided by the job scheduler. Both works did provide an analysis of the total
work performed, but one can show that the online scheduler could perform O(T1 + PT∞)
total work in a dedicated environment. In particular, for almost sequential computations
where T1/T∞ is close to 1, the scheduler performs almost extra work proportional to the
number of processors in the systems, even if we are not effectively utilizing them.

In Adaptive Scheduling with Parallelism Feedback, Agrawal et al. presented the A-
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GREEDY offline scheduler for an adaptive environment. Their scheduler split the com-
putations into quantums and explicitly communicate the number of processors it desires
to the job scheduler at the beginning of each quantum. This is known as the feedback to
the job scheduler. The desire is determined by measuring effective processor utilization,
i.e., the average amount of processors spent on conducting computation, of the previous
quantum. The A-GREEDY scheduler scales up and down the desire at an exponential rate,
controlled by the responsiveness factor ρ. For an dedicated environment with quantums
of unit size, the scheduler completes a computation in T1/P + 2T∞ + logρ P + 1 steps.
A similar bound was also derived for the adaptive environment. They also show that the
scheduler can waste at most ρT1 work. The goal of Agrawal’s research was to prevent
over-provisioning of the workers.

Our α|β-elastic scheduler, being an offline scheduler for a dedicated environment, aims
at work-efficiency. The notion of processor utilization in our scheduler is similar to the
idea of parallelism feedback, namely “processor desire”, in Argarwal’s work. Both sched-
ulers employed exponential scaling of processor utilization; however, our algorithm sep-
arately considers the up-scale and down-scale responsiveness. We show that they work
in coordination to provide work-efficiency. Moreover, our algorithm is more conservative
in that we do not increase processor utilization over the instantaneous parallelism. This
conservative behavior is crucial for work-efficient scheduling.

In Adaptive work stealing with parallelism feedback, Agrawal et al. extended their
previous work and presented an online work-stealing scheduler A-STEAL. The scheduler
again splits the computation into quantums. In each quantum, the scheduler performs
traditional work-stealing. Between quantums, the scheduler communicates its desire to the
job scheduler and adjust the number of workers based on the processor allotment received
from the job scheduler. Their work further provided proof on the runtime and work bound
of the scheduler. Finally, their work presented and implementation of the scheduler and
evaluated the implementation in a simulated environment.

Our elastic work-stealing scheduler is different from A-STEAL in several ways. Most
importantly, our elastic scheduler is fully distributed. Every processor makes decisions
based on its own local view of the system state. This allows our scheduler to avoid con-
tention and synchronization at much as possible. On the other hand, we provided a im-
plementation and evaluated it on a real system. Our work has a few limitations. We only
considered the dedicated environment at this moment, and we did not provide formal proof
of runtime or work efficiency. Overcoming those limitations would be the next step of our
research.

Our work-stealing scheduler employs a communication structure between processors
called lifeline forest. Informally, a lifeline is a channel between a sleeping processor and
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an active processor, through which the latter processor can send a message to wake up the
former. The notion of a lifeline is first proposed by Saraswat et al. in Lifeline-based global
load balancing. Their work proposed using a static, “low-degree, low-diameter, fully-
connected” graph as a communication structure between nodes in a distributed system,
to enable better work balancing and provide termination detection. Although the purpose
of their work is different from ours, both works considered using work-stealing as a load
balancing technique and allowing processors (nodes) to attach and “signal” lifelines during
work-stealing as a method for conserving work.

1.4 Contributions

This thesis proposes two new schedulers: an offline α|β-elastic work-efficient scheduler
and an online elastic work-stealing scheduler, both for dedicated environments.

• We formalized a scheduling model for analyzing offline elastic schedulers for dedi-
cated environments.

• Using the model we proposed, we show our α|β-elastic scheduler is both work ef-
ficient and performant. In particular, we prove that in a P processor dedicated en-
vironment, for any computation of T1 work and T∞ span, the α|β-elastic scheduler

completes the computation in at most
T1
P

+T∞(1+logα β)+loga P steps, performing

at most T1
αβ − 1

α(β − 1)
work.

• We designed an elastic work-stealing scheduler by augmenting the traditional work-
stealing scheduler to allow for increasing (or decreasing) processor utilization during
scheduling. Processors spontaneously maintain a dynamically varying lifeline forest
to be responsive to varying instantaneous parallelism. We identify the random con-
current set as a critical data structure in implementing lifeline forests. We propose
an algorithm for implementing random concurrent sets based on SNZI [13] trees.

• We implemented our elastic work-stealing scheduler and compared it against a tra-
ditional work-stealing scheduler. Evidence shows that our scheduler is both perfor-
mant and work-efficient.

9
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Chapter 2

Work-Efficient Offline Scheduler

2.1 A Model for Offline Elastic Scheduling

In this section, we will begin by introducing a model that enables us to account for vary-
ing processor utilization, namely elasticity, for offline schedulers. This model will be an
extension to the well-recognized P -processor scheduling model introduced in section 1.2.

Suppose there are P processors numbered 1 . . . P in the system. We will work model
a parallel computation by considering what each processor will do for each time step. In
each time step, the thread scheduler assigns each processor an intention, declaring whether
this processor will be utilized, and how it will be utilized. Then the intentions of the
processors are carried out, and we enter the next time step.

We formally define the model for offline elastic scheduling as follows:

• An P -processor elastic schedule consists a sequence of time steps. For a time step i,
denote the computation graph containing all unexecuted nodes as Gi. The schedule
begins with G1 = G and terminates right at the end of time step t if Gt is empty.
Round t is called the final time step.

• In each time step, the scheduler schedules a number of nodes onto P processors
according to some scheduling policy. According the policy, it sets an intention I for
each of the processor. An intention for a processor is one of three options:

– A processor may decide to execute a node n, denoted as “E(n)”.

– A processor may choose to sleep for this time step, denoted as “sleep”.

11



– A processor may be performing load balancing actions, denoted as “spin”.

The function from all processors to their intentions of time step i is called the inten-
tion of time step i, denoted using Ii. A processor is said to be active if it’s assigned
an non-sleep intention, otherwise it’s called inactive.

Different types of schedulers can be considered in this unified model by substituting
different scheduling policies.

• All processors act out their intentions. As a result, if a node is executed by some
processor as a result, then it’s removed from Gi. Removing all executed nodes
results in Gi+1. If a processor is active (executing, or spin), then one piece of work
is performed.

The thread scheduler must respect data dependencies between nodes. Define the set of
zero in-degree nodes {n1, . . . , nr} of Gi as the set of ready nodes at time step i, denoted
as Ri. The scheduler may only execute nodes in Ri for time step i. In particular, ri , |Ri|
is termed the instantaneous parallelism of time step i.

Step Ready nodes Utilization Processor Intention
p1 p2 p3 p4

1 {v0} 4 E(v0) spin spin spin
2 {v1} 2 spin E(v1) sleep sleep
3 {v2, v8, v13} 3 E(v2) E(v8) E(v13) sleep
4 {v3, v9, v14} 3 E(v3) E(v9) E(v14) sleep
5 {v18, v10, v15, v22} 4 E(v18) E(v10) E(v15) E(v22)
6 {v19, v11, v16, v23} 4 E(v19) E(v11) E(v16) E(v23)
7 {v12, v25, v24} 4 spin E(v12) E(v25) E(v24)
8 {v26} 3 spin sleep E(v26) spin
9 {v27} 2 spin sleep E(v27) sleep
10 {v28, v17} 2 E(v17) sleep E(v28) sleep
11 {v20, v4} 3 E(v4) spin E(v20) sleep
12 {v21, v5} 3 E(v5) spin E(v21) sleep
13 {v6} 2 E(v6) sleep spin sleep
14 {v7} 1 E(v7) sleep sleep sleep

Table 2.1: A 4-processor elastic schedule of the exemplary computation dag in Figure 1.1.
The total work performed in this schedule is 40 units.

12



Table 2.1 provides an 4-processor elastic schedule for the exemplary computation dag
in Figure 1.1. Essentially, this model allows us to discuss work by differentiating between
idle and sleeping processors and idle yet spinning processors for each time step.

Definition 1. For time step i, the number of active processors is termed the processor
utilization of time step i, denoted using ui.

The we may define the total work of a P -processor elastic schedule consisting t time
steps as the sum of the work performed in each time step, namely

∑t
i=1 ai.

An elastic scheduling policy is a scheduling policy that dynamically changes its pro-
cessor utilization. The ability to adjust processor utilization gives the thread scheduler a
way to bound the work-cost it incurs. This is very important for the thread scheduler to
achieve work efficiency.

As a concrete example, let’s consider a traditional non-elastic greedy scheduler. A
non-elastic greedy scheduler employs the following scheduling policy X i

greedy:

Scheduler Policy 1 (Non-elastic Greedy Scheduler). For every time step i, suppose Ri =
{r1, . . . , rri}, assign nodes r1, . . . , rmin(P,ri) to the first min(P, ri) processors. The rest of
the processors simply stays spin.

We once again prove the well known greedy scheduling lemma:

Lemma 2 (Greedy Scheduling Runtime Bound). For a computation graph of T1 work and
T∞ span, the P -processor elastic schedule with the greedy scheduler completes in at most
T1/P + T∞ steps.

Proof. We briefly go through the proof because the result is fairly well known. We classify
time steps according to their instantaneous parallelism. For time step i, if ri ≥ P , then
P nodes are removed from Gi. There can be at most T1/P such time steps. Otherwise
ri < P . In this case, all zero in-degree nodes in Gi will be removed, reducing the length
of the critical path by 1. Since the maximum length of the critical path is T∞, there can
be at most T∞ such time steps. Combining both components, we see that there can be at
most T1/P + T∞ time steps.

Since the scheduler is not elastic, we will incur exactly P units of cost under CC each
time step. Then the non-elastic greedy scheduler performs at most T1 +PT∞ work, which
is PT∞ extra work.

We may also consider the “elastic version” of the traditional greedy scheduler.
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Scheduler Policy 2 (Fully Elastic Greedy Scheduler). For every time step i, supposeRi =
{r1, . . . , rri}, assign nodes r1, . . . , rmin(P,ri) to the first min(P, ri) processors. The rest of
the processors stay sleep instead of spinning.

For any computation graph, the runtime of its P -processor elastic schedule using the
fully elastic greedy scheduler is identical to that with the non-elastic greedy scheduler.
However, this scheduler is work-efficient because this scheduler performs exactly T1 work,
given that we never put processors on spin. The problem with it is this scheduler requires
full elasticity, i.e., the scheduler will have to be able to respond to an arbitrarily dramatic
change in instantaneous parallelism in just one time step.

Full elasticity is very hard to achieve in practice. In practice, schedulers schedule tasks
onto worker threads, which usually are operating systems threads. Schedulers increase and
decrease the processor utilization by increasing and decreasing the number of workers,
either by blocking and unblocking them, or through thread creation functions such as
pthread create. All of those approaches costs CPU cycles to add or remove workers,
limiting the elasticity one can possibly obtain. The following sections of this work propose
and demonstrate a scheduler that is both work-efficient, almost equally performant, and
most importantly, requires only limited elasticity.

2.2 α|β-Elastic Greedy Scheduler

In this section, we will introduce the α|β-elastic greedy scheduler. This scheduler is a
greedy scheduler with limited elasticity characterized by two parameters α and β. We
show that such simple constraint is enough to guarantee work efficiency while having
little impact on scheduler performance in terms of runtime. We begin by formally defining
α|β-elasticity:

Definition 2 (α|β-elasticity). Given two real-valued parameters α > 1, β > 1, a scheduler
is called α|β-elastic if and only if, there exists a function û(i) such that ui = bû(i)c and
for all consecutive time steps i and i + 1 where time step i + 1 is not the final time step,
then û(i)/β ≤ û(i+1) ≤ αû(i). In other word, processor utilization never increase faster
than α-fold or decrease faster than β-fold.

The reason for this rather verbose definition of α|β-elasticity is since α and β are real
valued parameters, however processor utilization for each round is integer-valued. Now
we present the α|β-elastic greedy scheduler:
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Scheduler Policy 3 (α|β-elastic greedy scheduler). The α|β-elastic greedy scheduler keeps
track of a parameter ũi ∈ R for every time step si. Parameter ũi serves as the upper bound
for processor utilization for time step i. Let ũ0 , 1. It determines the utilization ũi for the
current time step according to the following rules:

Down-scale If r < ũi−1, then set ũi = max(r, ũi−1/β).

Satisfied If r = ũi−1, then keep ũi = ũi−1.

Saturated If r > ũi−1 = P , then keep ũi = ũi−1 = P .

Up-scale If r > ũi−1 and ũi−1 < P , then set ũi = min(r, P, αũi−1).

For the final time step, since r = 0, then the scheduler will simply carry out the down-scale
rule.

Once the scheduler determined the ũi for current time step, then it will utilize exactly
ui = bũic processors and greedily schedule ready nodes on to those processors. The active
processors without assigned nodes will simply spin.

Remark 1. The following statements hold for the α|β-elastic greedy scheduler:

• For any time step i other than the final time step, 1 ≤ ũi ≤ P .

• The α|β-elastic greedy scheduler defined matches up with our previous definition
for α|β-elasticity, with the function û(i) taken to be û(i) = ũi.

The α|β-elastic greedy scheduler utilizes the elasticity to dynamically to changing
instantaneous parallelism. If the instantaneous parallelism is less than processors available
in the previous time step, the scale-up rule increases the desired number of processors at
a maximum rate of α. If the instantaneous parallelism is more than processors available
in the previous time step, the scale down rules decreases the desired number of processors
at a maximum rate of β. In particular, it does not attempt to predict future instantaneous
parallelism, meaning it will not increase or decrease processor utilization over the available
instantaneous parallelism.

Next section, we show that the α|β-elastic greedy scheduler is both performant and
work-efficient in the sense that it achieves linear speed-up while performing very little
extra work regardless of the number of processors in the system. This boils down to the
following two theorems:
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Theorem 1 (Runtime bound of The α|β-elastic greedy scheduler). Any P -processor elas-
tic scheduling of computation graph with T1 work and T∞ span using the α|β-elastic

greedy scheduler completes in at most
T1
P

+ T∞(1 + logα β) + logα P time steps.

Theorem 2 (Total work bound of The α|β-elastic greedy scheduler). Any P -processor
elastic scheduling of computation graph of T1 work using the α|β-elastic greedy scheduler

completes with performing at most T1
αβ − 1

α(β − 1)
work.

2.3 Analysis of the α|β-Elastic Greedy Scheduler

For the analysis, we further elaborate on the rules of our scheduler into the following six
rules.

• For scale-down rule, r < ũi−1. Let ũi = max(r, ũi−1/β). All r ready nodes are
scheduled.

A. If r = ũi. Parallelism drops within β rate. ũi < ũi−1/β. All ready nodes are
scheduled.

B. If r < ũi. Parallelism drops at a rate higher than β. bũic − r processors are
spinning. ũi = ũi−1/β. All ready nodes are scheduled.

C. r = ũi−1: Remains unchanged. All r ready nodes are scheduled.

D. r > ũi−1 = P : Remains unchanged.

• For the scale-up rule, r > ũi−1 and ũi−1 < P . Let ũi = min(r, P, αũi−1)

E. r = ũi, Parallelism increases within α rate. All ready nodes are scheduled.
ũi > αũi−1

F. r > ũi, Parallelism increases at a rater higher than α. ũi = αũi−1. r − bũic
ready nodes are left for future time steps to execute.

Because ũi ≤ P , rules A to F are mutual exclusive and covers all cases.

We would like to make the following remark, which is just a reiteration of the greedy
scheduling lemma in our context:

Remark 2. In a dedicated environment, if the time step i is governed by rule any one of
the rules A, B, C or E, then span of the remaining graph decrease by 1, because all zero
in-degree nodes are executed.
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2.3.1 Runtime Bound of α|β-Elastic Greedy Scheduler

In this section, we provide a proof of Theorem 1. We will categorize each time step in the
scheduling according to the scheduling rule applied to that time step.

The proof proceeds by categorizing the time steps according whether that time step is
governed by rule D. We will bound the positive and negative cases separately and combine
the counts in the end.

Lemma 3. There are at most T1/P time steps governed by D.

Proof. Each time step governed by D decrease the size of G by P . Note that |G| = T1 by
definition, therefore there may be at most T1/P time steps governed by D.

In the next paragraph will bound the number of occurrences of all other rules through
a potential function argument. Define the potential function

Φ(i) , T i∞(1 + logα β)− logα ũi−1

for time step i, where T i∞ is span of graph Gi. Consider the consecutive difference:

Φ(i)− Φ(i+ 1) = (T i∞ − T i+1
∞ )(1 + logα β)− logα

ũi−1
ũi

(2.1)

Lemma 4. The consecutive difference Φ(i) − Φ(i + 1) is non-negative for all rules, and
decrease by at least 1 for all rules other than D.

Proof. Proof by casing on all rules for time step i:

Rule A & B For rule A, T i∞ − T i+1
∞ = 1, ũi ≥ ũi−1/β. Then

Φ(i)− Φ(i+ 1) = (1 + logα β)− logα
ũi−1
ũi
≥ (1 + logα β)− logα

ũi−1
ũi−1/β

= 1

Rule C For rule C, T i∞ − T i+1
∞ = 1, ũi = ũi−1

Φ(i)− Φ(i+ 1) = (T i∞ − T i+1
∞ )(1 + logα β)− logα

ũi−1
ũi

= 1 + logα β > 1

Rule D For rule D, ũi = ũi−1. T i∞ ≥ T i+1
∞ . Then

Φ(i)−Φ(i+1) = (T i∞−T i+1
∞ )(1+logα β)−logα

ũi−1
ũi

= (T i∞−T i+1
∞ )(1+logα β) ≥ 0
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Rule E For rule E, T i∞ − T i+1
∞ = 1, ũi > ũi−1. Then

Φ(i)−Φ(i+1) = (T i∞−T i+1
∞ )(1+logα β)−logα

ũi−1
ũi
≥ (1+logα β)+logα

ũi
ũi−1

≥ 1

Rule F For rule F, T i∞ − T i+1
∞ ≥ 0, ũi = αũi−1. Then

Φ(i)− Φ(i+ 1) = (T i∞ − T i+1
∞ )(1 + logα β)− logα

ũi−1
ũi
≥ 0− logα

ũi−1
αũi

= 1

We have analyzed all cases.

The analysis on consecutive difference allows us to bound the number of non-D-time
steps by the potential function:

Lemma 5. There are at most T∞(1 + logα β) + logα P steps not governed by D.

Proof. For the first time step, T 1
∞ = T∞ and ũ0 = 1 by definition.

Φ(1) = T i∞(1 + logα β)− logα ũ0 = T∞(1 + logα β)

Suppose the computation finishes after t time steps. As noted in Remark 1, ũt−1 ≤ P . At
the end of the computation, T t∞ = 0. Then

Φ(t) = T t∞(1 + logα β)− logα ũt−1 ≤ − logα P

Then the potential difference is:

Φ(1)− Φ(t) = T∞(1 + logα β) + logα P

Since each time step not governed by D decreases the potential by at least 1, and the
potential decreases monotonically for all time steps, therefore they may be at most
T∞(1 + logα β) + logα P times steps not governed by rule D.

The main result is now directly derivable:

Proof. Combining the results of lemma 3 and lemma 5 allows us to conclude theorem 1.
A time step is either a governed by D or otherwise, therefore there are at most
T1
P

+ T∞(1 + logα β) + logα P time steps. This completes our proof for the performance
bound.
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Theorem 1 suggests our scheduler may take at most T∞ logα β + logα P time steps
compared to a greedy scheduler. We would like to provide some insight into the difference.

The bound contains the additive term logα P . This term exists because we initialized
the utilization ũ0 = 1. Even if the computation is highly parallel, the scheduler still needs
logα P time steps to ramp up.

The other term T∞ logα β reflects our schedulers’ behavior in the face of rapidly chang-
ing parallelism. In the extreme case where α → ∞, the term vanishes. This corresponds
to the case where we may bring back processors as fast as we want. In the usual case, the
size of this term is bounded by the down-scale factor β. This might be surprising at first
glance. In fact, β controls how susceptible our algorithm is to an adversarial computation
graph may be. A large β allows the processor utilization to drop quickly, which will take
more time steps to ramp up again. A small β on the other hand, “smooth” out the rapidly
changing instantaneous parallelism.

2.3.2 Total-Work Bound of the α|β-Elastic Greedy Scheduler

In this subsection, we provide a proof of Theorem 2. Again we will employ an potential
function argument. Consider the following potential function:

Φ(i) = T i1(1 +
α− 1

α

1

β − 1
) +

1

β − 1
ũi−1

where T i1 is number of nodes in Gi. Consider the consider the consecutive difference
Φ(i)− Φ(i+ 1):

Φ(i)− Φ(i+ 1) = (T i1 − T i+1
1 )(1 +

α− 1

α

1

β − 1
) +

1

β − 1
(ũi−1 − ũi)

Lemma 6. The consecutive difference Φ(i)− Φ(i+ 1) ≥ ũi for all time steps i. i.e., Φ(i)
decrease by at least ũi for every time steps.

Proof. Proof by casing on all rules of for time step i:

19



Rule A T i1 − T i+1
1 = ũi and ũi−1 > ũi. Then

Φ(i)− Φ(i+ 1) = (T i1 − T i+1
1 )(1 +

α− 1

α

1

β − 1
) +

1

β − 1
(ũi−1 − ũi)

= ũi(1 +
α− 1

α

1

β − 1
) +

1

β − 1
(ũi−1 − ũi)

> ũi(1 +
α− 1

α

1

β − 1
) + 0

> ũi(1 + 0) = ũi

Rule B ũi = ũi−1/β, which is ũi−1 = βũi. T i1 − T i+1
1 > 0. Then

Φ(i)− Φ(i+ 1) = (T i1 − T i+1
1 )(1 +

α− 1

α

1

β − 1
) +

1

β − 1
(ũi−1 − ũi)

=
1

β − 1
(βũi − ũi) = ũi

Rule C & D In both cases, T i1 − T i+1
1 = r = ũi−1, and ũi = ũi−1 Then

Φ(i)− Φ(i+ 1) = ũi(1 +
α− 1

α

1

β − 1
) > ũi

Rule E & F In these cases T i1 − T i+1
1 = ũi and ũi−1 < ũi ≤ αũi−1. Then

Φ(i)− Φ(i+ 1) = (T i1 − T i+1
1 )(1 +

α− 1

α

1

β − 1
) +

1

β − 1
(ũi−1 − ũi)

= ũi(1 +
α− 1

α

1

β − 1
) +

1

β − 1
(ũi−1 − ũi)

= ũi + ũi
α− 1

α

1

β − 1
+

1

β − 1
(ũi−1 − ũi)

= ũi + (ũi
α− 1

α
+ ũi−1 − ũi)

1

β − 1

= ũi + (ũi−1 − ũi
1

α
)

1

β − 1

We have noted earlier, ũi ≤ αũi−1. I.e., ũi/α ≤ ũi−1. Rewrite the result:

Φ(i)− Φ(i+ 1) ≥ ũi + (0)
1

β − 1
= ũi
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We have analyzed all cases.

Now we are ready to prove Theorem 2.

Proof. Suppose the computation terminates at time step t, that is Wt = 0. By lemma 1,
ũt−1 ≥ 1. Then the initial potential and terminal potential:

Φ(1) = T 1
1 (1 +

α− 1

α

β

β − 1
) +

β

β − 1
ũ0 = T1(1 +

α− 1

α

β

β − 1
) +

β

β − 1

Φ(t) = T t1(1 +
α− 1

α

β

β − 1
) +

β

β − 1
ũt−1 = 0 +

β

β − 1
ũt−1 ≥

β

β − 1

Then potential difference

Φ(1)− Φ(t) ≤ T1(1 +
α− 1

α

β

β − 1
) +

β

β − 1
− β

β − 1
= T1(1 +

α− 1

α

β

β − 1
)

On the other hand, by lemma 6,

Φ(i)− Φ(t) =
t−1∑
j=1

(Φ(j)− Φ(j + 1)) ≥
t−1∑
i=1

ũj

As Remark 1 has noted, ui = bũic. Then the total cost incurred under cost rule CC is

t−1∑
i=1

ai ≤
t−1∑
i=1

ũi ≤ Φ(i)− Φ(t) = T1(1 +
α− 1

α

1

β − 1
) = T1

αβ − 1

α(β − 1)

We have concluded our proof of Theorem 2.

According to the theorem, our scheduler performs at most T∞
α− 1

α

1

β − 1
work. We

would like to make the following remarks regarding this bound.

First of all, the bound makes sense for extreme values of α and β. If β →∞, the extra

work approaches zero. If α→∞, we perform at most T∞
1

β − 1
extra work.

Moreover, the extra work is bounded by
T∞
β − 1

regardless of the choice of α. For

sufficiently large β, the constant is very small. The bound shows that our algorithm is
work-efficient.

Finally, decreasing α also helps to improve work-efficiency. For example, if α = β =
2, we ends up perform at most half of T1.
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Chapter 3

Elastic Working-Stealing Scheduler

3.1 Introduction

In this chapter, we will present an elastic algorithm that aims at approximating the of-
fline α|β-elastic greedy scheduler. The scheduler allows the processors to respond to the
changing parallelism by disabling themselves and enabling each other through a dynami-
cally varying communication structure between the processors. We further argue that such
design achieves exponential rate up-scaling and down-scaling. We will identify critical
data structures to maintain the communication structure and provide support for random
stealing in the face of varying enabled processors. We will further discuss possible imple-
mentations of these data structures.

We will kick off our discussion by briefly introducing the traditional work-stealing
scheduler. Our scheduler will augment the traditional work-stealing algorithm by changing
the stealing part of the algorithm. Here first briefly reiterate the work-stealing scheduler,
as described in the work [9] of Blumofe et. al.

For every processor p in the system, the algorithm maintains a doubly-ended work
queue Qp. Processors push and pop tasks from/to their own work queue at the bottom.
They remove tasks from others’ work queue from the top.

Spawns If the task under execution spawns another task, then the processor begins to
work on the child task, pushing the parent task into its work queue from the bottom.

Dies or Stalls If the current task dies or stalls, the processor first attempts to pop a task
from the bottom of its work queue. If the work queue is empty. The processor will
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try to obtain tasks from other processors through work stealing. Details of work-
stealing will be discussed later on.

Enables If the task happens to enable another task, the enabled task is pushed to the
bottom of the processor’s own work queue.

In the beginning, the root task is assigned to an arbitrary processor. All other processors
start with work-stealing.

When a processor engages in work-stealing, the processor becomes a thief. The thief
uniformly randomly chooses another processor in the system. The chosen processor is
termed the victim. The thief then attempts to pop the work queue of the victim from the
top. If the victim’s work queue is non-empty, then the operation succeeds, and the thief
starts working on the task it just obtained. This terminates the work-stealing phase. If
the victim’s work queue is non-empty, then the thief simply retries by randomly choosing
another victim.

3.2 Elastic Work-Stealing with Lifeline Forest

The goal of our algorithm is to augment the work-stealing algorithm so that processors may
disable themselves when the instantaneous parallelism is low and wake each other up when
parallelism comes back. To reduce contention, decisions to wake up or put processors to
sleep should be made in a distributed fashion. The elastic work-stealing algorithm achieves
this purpose with two simple heuristics:

• When a processor made a few failed steal attempts, the processor can be confident
that the instantaneous parallelism is low, and it should go to sleep.

• When a stealing processor encounters another stealing processor, it’s more work-
efficient to invite the other processor to steal “on its behalf”. In particular, the former
processor could ask disable itself and ask the latter processor to wake it up when
parallelism comes back.

Those two simple heuristics become the foundation of our elastic work-stealing sched-
uler. The elastic work-stealing scheduler augments the work-stealing algorithm by allow-
ing the processors to sleep and (or) wake up other processors during work-stealing. In the
elastic work-stealing scheduler, when a processor becomes a thief, it uniformly randomly
chooses another currently active processor. The chosen processor is termed the victim.
The thief then attempts to pop the work queue of the victim from the top as usual.
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• If the victim’s work queue is empty and the victim is also stealing. Then the thief
will try to set up a message channel between itself and the victim and ask the victim
to message him in the future (explained shortly after). If the operations succeed, then
it sleeps by waiting for a message on the channel. We say the thief now depends on
the victim.

• If the victim’s work queue is non-empty, then the thief will obtain work. The thief
wakes all processors depending on it (processes who previously requested its “help”)
by sending a message through each of the previously established channels, removing
those channels at the same time.

For dependent processors, sending a message through the channel they previously at-
tached is the only way to wake them up. The channel is figuratively called a lifeline. The
terminology is inspired by the work [20] of Saraswat et. al. In Saraswat’s work, they con-
sidered a fixed grid-shaped lifeline structure for distributed systems. Our algorithm, on the
other hand, features a dynamically forming and destructing communication structure.

For our algorithm to work, we must ensure there are no loops in the lifeline structure.
In other words, if we treat each processor as a node, the nodes and lifelines form a forest.
In the next paragraph, we will introduce a new data structure called lifeline forest, which
manages the communication structure between processors.

A lifeline forest is a forest (a number of trees) with a fixed number of nodes (called
endpoints). An edge from one endpoint to another corresponds to a lifeline from former
to the latter (the latter is responsible for sending the message). Roots of the forest are the
zero out-degree endpoints. Those endpoints are called independent endpoints. When a
lifeline is formed, one of the independent nodes becomes a child of another, merging two
trees into one. Conversely, when a lifeline is removed, one tree splits into two trees.

We may define the operations for lifeline forest as follows:

Data Structure 1. A lifeline forest is a concurrent data structure with the following oper-
ations:

new(n) Creates an lifeline forest with n endpoints. Endpoints are conve-
niently number from 1 . . . n. An empty lifeline forest contains no
edges.

L.attach(p, v) Attempt to attach a lifeline from endpoint p to endpoint v. If the
operation succeeds if and only if both p and v are independent
and different. Returns whether the operation is successful.
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L.signal(v) If endpoint v is dependent, then nothing happens. Otherwise,
endpoint v sends a message to all lifelines attached to it, remov-
ing those lifelines in the process.

L.wait(p) If the endpoint p is independent, then nothing happens. Other-
wise, the process “blocks” (that is, sleeps and waits) for a mes-
sage from the lifeline p previously attached.

L.sample() Uniformly randomly return an independent endpoint. If such p
does not exists, return None to signify failure.

Operations attach, wait and signal are linearizable.

We can implement our elastic work-stealing algorithm with the help of a lifeline tree in
a straight forward fashion. Algorithm 1 presents the entire elastic work-stealing algorithm
in terms of the lifeline forest data structure. The key idea is that we assign each processor
1 . . . P an endpoint, conveniently also numbered 1 . . . P . Then each endpoint in the lifeline
forest becomes the corresponding processor’s “mailbox”.

It is possible for the sample operation on the lifeline forest to return the argument p.
Clearly, trying to steal from oneself does not make progress for the scheduling algorithm.
However, after very few retries, the sample operations will always eventually return a
victim other p because there always exists at least one processor that is working on some
task. In other words, there is at least one processor, other than the thief, that is independent.
It will only take the thief a few retries to find that processor (or another victim).

The algorithm presented here assumes that the computation graph has a maximum out-
degree of two. This corresponds to the reality that many existing programming systems [7]
provide only binary forking primitives. However, the validity of our algorithm does not
depend on binary forking. Extending the algorithm from binary forking to multi-ary fork-
ing can be achieved by changing line 6 so that the processor picks an arbitrary task from
the set of new tasks, pushes np along with the rest of new tasks on to Qp. In the next line,
it set np as the chosen task.

We argue that the elastic work-stealing algorithm approximates the online algorithm
by arguing it exhibits exponential scaling of processor utilization in the face of varying
parallelism. When separately consider rapidly decreasing instantaneous parallelism and
rapidly increasing parallelism.

• If the parallelism is quickly decreasing, because the probability for a thief to find
another stealing processor is proportional to the number of thieves in the systems, a
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Algorithm 1: Elastic Work-Stealing Scheduler
Data: A lifeline forest L initialized with the set of all P processors.
Data: For each processor p, an empty queue Qp and its assigned task np
/* Set off the computation */

1 Set n0 to be the root task, all other np to None;
/* Scheduling loop for each processor p. */

2 while True do
3 while np 6= None do
4 newTask ← Execute(np);
5 if newTask 6= None then
6 pushBotom(Qp, np);
7 np ← newTask;
8 continue;
9 end

10 np ← popBottom(Qp);
11 end
12 while True do
13 shouldSleep← False;
14 victim← L.sample();
15 np ← popTop(Qvictim);
16 if np 6= None then
17 L.signal(p);
18 else
19 atomic
20 if nvictim = None then

// The victim is stealing or sleeping.
21 shouldSleep← L.attach(p, victim);
22 end
23 end
24 end
25 if shouldSleep then
26 L.wait(p) // Put myself to sleep.
27 end
28 end
29 end
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thief is very likely to find another thief. As a result of the steal, either the thief or
the victim is disabled. In other words, the rate at which the number of idle proces-
sors decreases is proportional to the number of idle processors, which suggests an
exponential decrease. In other words, when the parallelism is low, the lifeline forest
“folds” at an exponential rate.

• When the parallelism comes back, the algorithm starts to “unfold” the lifeline forest.
Suppose there is plenty of parallelism in the system, then almost all steals succeed
and further unfolds the lifeline forest. Notice that the unfolding of the lifeline tree
simply the “reverse” of the formation of lifeline forest. Thus we should observe an
exponential increase in processor utilization.

The work efficient work-stealing algorithm requires careful treatment of synchroniza-
tion. Because all Qp are concurrent queues, their operations are assumed to be atomic.
Since we are in the dedicated environment, operations do not have to be non-blocking.
Blocks marked with atomic means the code enclosed must be executed in an atomic
fashion. As we will see shortly after, atomicity is necessary to ensure the correctness of
the algorithm.

The efficient work-stealing algorithm will is safe if it satisfies the following properties:

1. In all circumstances, there must not exist a lifeline that is attached to an executing
processor. I.e., a processor executing lines 4 to line 10 must have no lifeline attached
to it.

2. In no circumstances can a processor pj becomes a parent of itself in the lifeline
forest. In other words, nodes in the lifeline forest cannot form a loop.

Violating those properties cause us to lose available processors. Suppose p attached
a lifeline to victim that results in a violation property 1. Now p becomes an orphaned
sleeping processor that potentially will never wake up (because victim may always have
tasks to do). We effectively lose one processor in this case. Violating property 2 will, in
the worst case, causes us to lose all processors participating in the loop (along with all of
their children).

Remark 3. The work efficient work stealing algorithm described in algorithm 1 is safe.

We argue that our algorithm is safe by examining each property separately.
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Property 1 Consider the moment when p attach a lifeline to victim on line 21 when it
observes nvictim = None and the victim’s Qvictim is empty. If the victim is in the
scheduling loop, then it must between line 10 and the loop check. In either case, it
will exit the loop, and we are fine. Otherwise, the victim is current stealing. If it
is before line 15, then it will either continue stealing or remove the lifeline we just
attached. Either way we are fine. If it’s after line 15, then we know it will continue
stealing because we know nvictim is None. We have examined all cases.

Property 2 Property 2 is automatically satisfied by the guarantees provided by the attach
operation of the lifeline tree.

3.3 Lifeline Forest and Concurrent Random Set

It remains to discuss how to implement a lifeline forest described in Data Structure 1. One
important responsibility of a lifeline forest is to keep track of the independent endpoints.
We formulate the following data structure to achieve this purpose:

Data Structure 2. A concurrent random set is a concurrent set where elements in the set
is draw from a fixed finitely large set I. In particular, suppose further elements in the set
is draw from an integer index-able set S. It supports the following operations:

new(n) Creates an empty random set rs on a set of n possible elements.

rs.add(i) Add the item i into the random set rs.

rs.exists(i) Returns True if the item is in the set, False otherwise.

rs.remove(i) Remove the item i from the random set rs.

rs.sample() Uniformly randomly return an element i in the set rs. If the set
is empty, return None to signify failure.

Ideally, the concurrent random set supports concurrent add, remove and sample
without or with very low contention. How concurrent random set may be implemented is
elaborated in later sections.
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3.3.1 Lifeline Forest

A lifeline forest (without versioning) for a set of processors P consist of the following
data fields:

rs A concurrent random set rs initialized to contain all processors.

endpoints[n] Data structure maintained for every endpoint n, described below.

And for each endpoint maintains the following data fields:

sem A semaphore for every processor p, initialized to zero.

lifelines A list of processors that attached to processor p.

waitCnt An integer initialized to zero that counts how many processors
are sleeping on the lifeline p attached earlier.

Semaphores allow the calling processors to block on a lifeline. The semaphore acts as
a channel between the parent and its children in the lifeline forest: sem down corresponds
to waiting on the channel, and sem up corresponds to sending a wake-up message through
the channel. It’s important to make sure that the wake-up message sent by the parent does
not get lost in case the intended receiving process is not ready to wait on the endpoint yet.
The semantics of Semaphores is ideal for our purpose.

Algorithm 2 formally defines the operations on a lifeline forest. Code sections marked
as atomic must be implemented in a way that all effects are observed at once, assuming
operations of the concurrent random set are atomic. Atomicity guarantees can be im-
plemented trivially using locks in most systems. This algorithm also makes use of the
standard compare-and-swap primitive (CAS in the pseudocode).

Now we define and prove the correctness for our algorithm. In our algorithm, an end-
point p is considered to depend on v if and only if p is an element of the listL.lifelines[v].
We now show that our algorithm satisfies our behavior specification in a sequential setting,
first without worrying about the linearization requirement. Observe that our data structure
maintains the following set of invariants:

1. An endpoint p is in the concurrent random set L.rs if and only if it’s an indepen-
dent endpoint. In other words, the concurrent random set L.rs always contains all
independent endpoints.
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Algorithm 2: Operations on Lifeline Forest without Versioning
Data: A lifeline forest L initialized with the set of all processors.

1 fun attach(L, p, v):
2 atomic
3 if p 6= v and L.rs.exsists( p) and L.rs.exsists( v) then
4 append(L.nodes[v].lifelines, p);
5 L.rs.remove (p);
6 return True;
7 end
8 return False;
9 end

10 end
11 fun signal(L, p):
12 atomic
13 if not L.rs.exsists(p) then return;
14 foreach v in L.nodes[p].lifelines do
15 L.rs.add (v);
16 for i = 1 to L.nodes[v].waitCnt do
17 sem up(L.nodes[v].sem)
18 end
19 L.nodes[v].waitCnt← 0;
20 end
21 clear(L.nodes[p].lifelines)
22 end
23 end
24 fun sample(L):
25 L.rs.sample();
26 end
27 fun wait(L, p):
28 atomic
29 toWait← False;
30 if not L.rs.exsists(p) then
31 toWait← True;
32 L.nodes[p].waitCnt += 1;
33 end
34 end
35 if toWait then sem down(L.nodes[p].sem);
36 end
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2. An endpoint may attach at most one lifeline.

3. waitCnt of endpoint n is the number of processors blocked on n.

4. No processor can be blocked on an independent endpoint.

5. For all endpoints, sem is always zero-valued.

We can verify for a newly created lifeline forest that the invariants are satisfied. Invari-
ant 2 allows us to refer to a specific lifeline by referring to the endpoint that attached it in
the first place. We then continue our proof by separately analyze each operation:

attach If p = v then the function returns False. If any one of p and v is dependent,
then by invariant, it is not in the set rs. Then the function returns False. If both p
and v are independent, then p is added to v’s list of lifelines, becoming a dependent
of v. The function finally returns True. Now we have shown attach satisfies the
behavior specification. We then show that all invariants are still intact. We removed
p from the set because p became dependent at the end. p may attach at most one
lifeline because if p would be dependent at the beginning if p previously attached a
lifeline. Since p is previously an independent endpoint, then no processor may be
blocked at p. In other words waitCnt = 0 for p at the end. We have verified all
invariants.

signal If p is a dependent endpoint, then by the invariant it’s not in the set rs. In
this case, nothing happens. Otherwise, p is an independent endpoint. By definition
of independence, its lifelines contains all endpoints that depend on p. Take
arbitrary dependent endpoint v. Its lifeline will be removed in the end if because
lifelines of endpoint p is cleared. Since v can attach at most one lifeline,
it becomes an independent endpoint when its only lifeline is removed. Because
waitCnt counts the number of processors blocking on v through its semaphore,
upping the semaphore waitCnt times wakes up all those processors, resulting in a
zero-valued semaphore. Here we have established signal behaves as specified. It
is left to argue that the invariants are preserved. All previously dependent endpoints,
that according to the invariants have been removed from rs earlier, are added back
as a result of rs.add. No processors will be blocked on any v, and the waitCnt
is cleared. We have verified all invariants.

wait If p is independent then p is in the set. The function does nothing. Otherwise,
p is dependent, and the calling processor will eventually be blocked at p because
the semaphore is zero by invariant. By invariant waitCnt holds the number of
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processors currently blocked on p. Because calling processor will end up blocked at
p, we have to increase waitCnt by 1. We have verified all invariants and wait’s
behavior.

sample By Invariant 1, L.rs contains all independent processors, therefore rs.sample
uniformly randomly select an independent processor by the specification of rs.sample.

It is left to argue that operations in Algorithm 2 is linearizable. Unfortunately, this is
not the case, and it almost is. Here we present a case where Algorithm 2 fails to block
a processor when there does exist a lifeline. Consider the following execution trace in a
system with 2 processors p1 and p2.

• Initialize a lifeline forest with two endpoints n1 and n2.

• Processor p1 attaches n1 to n2. The operations successes.

• Processor p1 try to wait on n1. Suppose p1 is suspended right at line 34. At this
moment, L.waitcnt[n1] = 1.

• Suppose processor p2 signals n1. It will dismantle existing lifelines and increase the
semaphore of n1 to 1.

• Processor p2 then reestablish lifeline by attaching n1 to n2.

• Finally processor p2 waits on n1. At this moment there exists a lifeline from n1 to
n2, yet p2 will not block on n1 because the decrement on n1’s semaphore succeeds,
violating the specification for wait.

This situation can occur because the newly established lifeline see the processors
blocked at the “old” lifeline. In Algorithm 2, a newly established lifeline erroneously
“inherits” the same L.waitcnt[n1] from the previous lifeline. Algorithm 3 solves this
problem by versioning the semaphore and waitcnt. Whenever a new lifeline is created,
it increases the version number so that all other operations always operate on the latest
lifeline, if there exists one. To implement a lifeline forest with versioning requires us to
maintain the following data fields for each endpoint:

v Version number of its own lifeline. Initialized to zero.

sem[v] Semaphore for version v, initialized to zero.
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Algorithm 3: Operations on Lifeline Forest with Versioning
Data: A lifeline forest L initialized with the set of all processors.

1 fun attach(L, p, v):
2 atomic
3 if p 6= v and L.rs.exists(p) and L.rs.exists(v) then
4 ver ← L.nodes[p].v + 1;
5 sem init(L.nodes[p].sem[ver], 0);
6 L.nodes[v].waitCnt[ver]← 0;
7 L.nodes[v].v← ver;
8 append(L.nodes[v].lifelines, p);
9 L.rs.remove (p);

10 return True;
11 end
12 return False;
13 end
14 end
15 fun signal(L, p):
16 atomic
17 if not L.rs.exists(p) then return;
18 ver ← L.nodes[p].v;
19 foreach v in L.nodes[p].lifelines do
20 L.rs.add (v);
21 for i = 1 to L.nodes[v].waitCnt[ver] do
22 sem up(L.nodes[v].sem[ver])
23 end
24 end
25 clear(L.nodes[p].lifelines)
26 end
27 end
28 fun wait(L, p):
29 atomic
30 ver ← L.nodes[p].v;
31 toWait← False;
32 if not L.rs.exists(p) then
33 toWait← True;
34 L.nodes[p].waitCnt[ver] += 1;
35 end
36 end
37 if toWait then sem down(L.nodes[p].sem[ver]);
38 end
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lifelines A list of endpoint that attached a lifeline to endpoint p.

waitCnt[v] Number of processors blocking on the lifeline of version v.

There is no change for sample operation and it’s omitted for brevity.

We argue without a formal proof that Algorithm 3 satisfies our behavior specification.
The algorithm is identical Algorithm 2, except that operations signal and wait now
both accesses the latest version of sem and waitCnt. Previous proof of correctness still
holds if we refer to sem and waitCnt by their latest version. Furthermore, the data
structure is now linearizable. Linearization points of operations attach and signal
are the exit points of their atomic regions. For wait, the linearization point is right before
the sem down procedure call.

3.3.2 SNZI Concurrent Random Set

In this section we will discuss how to design SNZI concurrent random set. We will first
introduce two trivial solutions and discuss their properties. We will argue both of them
are insufficient for our purpose. Then we will discuss a third Scalable Non-Zero Indicator
(SNZI) based implementation, which is based on the work [13] on SNZI trees.

To remind remind the readers of what a concurrent random set is, here we reiterate the
specifications on the operations it should support support. A concurrent random set is a
concurrent data structure supporting the following operations:

new(n) Create an empty random set rs on a set of n possible elements.

rs.add(i) Add the item i into the random set rs.

rs.exists(i) Returns True if the item is in the set, False otherwise.

rs.remove(i) Remove the item i from the random set rs.

rs.sample() Uniformly randomly return an element i in the set rs. If the set
is empty, return None to signify failure.

As stated before, elements in a concurrent random set must be drawn from a fixed, pre-
determined, integer indexable set S. The range of possible elements is termed the space of
the elements, and the size of the space is denoted using S. Ideally, implementations should
provide fast and contention-free access to the data structure and maintain linearizability
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for all operations. It turns out satisfying all those requirements at once is hard, and we are
unable to identify such a solution. Instead, we study what requirements may be relaxed to
allow for practical purposes. To be formal:

Definition 3 (Relaxed specification for sample operation). An implementation of a con-
current random set must at least guarantee the following properties for sample opera-
tion.

• If an element i is added to the set before some invocation of sample operation,
and it is not the target any concurrently executing remove operation, it must be a
possible return value of sample operation.

• If an element i is removed from the set before some invocation of sample operation,
and it is not the target of any concurrently executing add operation, it can not be a
possible return value of sample operation.

The random set is utilized in two ways:

• When the parallelism is plenty, the random set is mainly used to select a victim
uniformly randomly. Because there is high instantaneous parallelism, processors
are very likely to find work through random steal, and write access to the random
set is fairly infrequent. A good design should provide a contention-free sample in
this case.

• When instantaneous parallelism starts to vary, processors frequently sleep or wake
up depending on whether the parallelism is decreasing or increasing, it’s important
for sample provide an up-to-date response. We want to ensure processors do not
waste effort trying to steal from an already sleeping processor during down scaling
or trying to steal from a sleeping processor during up-scaling.

As we have noted before, the correctness of our algorithm does not rely on the sample
always returning a consistent value. Allowing sample to return stale value rarely will in
exchange for improved performance may be acceptable.

In the next few paragraphs, we provide three implementations that have experimented
with. The first implementation is a bidirectional map from index to processor realized
using compacted array. The second in implementation is just a simple array. The third
implementation is based on SNZI (pronounced as snazzy) objects [13] proposed by Ellen
et al.
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Array Based Bidirectional Map (Array-BiMap) The first implementation maintains
the following data strcture for the set:

count Current number of elements in the set.

elements[n] An array of size S. It’s first count elements contains all ele-
ments in the set.

locations[n] An array of size S, mapping values into their location in the set.
If the element is not in the set, it’s location is set to nullary value,
which is −1 in our implementation.

The operations are straight forward.

new(S) Creates an empty random set with count set to zero.

rs.add(i) Adding an element i is done by appending i to elements ar-
ray and setting corresponding entry in locations array, then
increase count.

rs.query(i) Returns if locations[i] is a nullary value.

rs.remove(i) The idea is to swap the element removed with the last element in
elements array. The remove operations ensures the elements
array is always compact so that sampling from it is fast. See Al-
gorithm 4 for details.

rs.sample() Generate a random value p such that 0 ≤ p < count, return
elements[p].

For this simple design, all operations complete in constant time. However operations
add, query and remove must be synchronized to ensure correctness. Fortunately there
is no need to synchronize sample to maintain linearity. This data structure is fast and
contention-free when there is ample instantaneous parallelism in the system. However,
it becomes a single point of contention when there exists when the algorithm is trying to
scale the processor utilization, which is not an ideal implementation for our purpose.

In parctice, the complexity of remove operation made it hard to implement synchro-
nization without using a lock. This makes it hard to devise non-blocking versions of this
data-structure.
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Algorithm 4: remove Operation for Array-BiMap Implementation
1 fun rsRemove(rs, i):
2 atomic
3 rs.count← rs.count− 1;
4 l← rs.locations[i];
5 v ← rs.elements[rs.count];
6 rs.locations[i]← −1;
7 rs.elements[l]← v;
8 rs.locations[v]← l;
9 end

10 end

This design has one extra advantage. It is possible to ask the data structure to report
the number of elements in the set at the beginning of add and remove operations using
the return values of those operations. It can be easily achieved by simply returning count
field at the end of both operations. This is not directly useful for our purpose, but it can be
useful for some other application, as we will see later on.

Naive Array Implementation The second implementation uses just one array as the
data structure:

exists[n] An array of size S mapping values into a Boolean indicator, in-
dicating whether the value is in the set.

Operations are implemented exactly as one would expect:

new(S) Creates an empty random set with all entries of exits set to
False.

rs.add(i) Adding an element i is done by setting exists[n] to True.

rs.query(i) Returns if exists[i] is True.

rs.remove(i) Removing an element i is done by setting exists[n] to False.

rs.sample() Pick a random element i from exists array. Then if exists[e] =
True then return e, otherwise we just try again.
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This very simple algorithm has a number of nice properties. First of all, the data struc-
ture is contention-free in that it requires no synchronization at all. Secondly, operations
add, query and remove require no synchronization at all. The only problem is the
sample operation on average requires S/(n− 1) retries to succeed, where n is the num-
ber of elements in the set, assuming no concurrently executing writes. Each random choice
can be thought of as a Bernoulli trial that succeeds if and only if the selected entry e is both
in the array and is not i itself. There are exactly n−1 such entries in the set. The operation
has a success probability of (n − 1)/S. The expectation of said Bernoulli distribution is
S/(n− 1).

At the initial stages of up-scaling, a thief can take a large number of trials to find a
victim that is awake. This in theory causes our algorithm to respond slowly to emerging
instantaneous parallelism. However, according to our experience, this is not a big problem
when S is on the scale of hundreds because each trial involves very little effort.

SNZI Tree Random Set In this paragraph, we will present an algorithm for implement-
ing data structure 2 with good theoretical guarantees. Our solutions consist of a tree of
SNZI nodes (similar to SNZI objects s [13]), where every element in S corresponds to
some different leaf SNZI node in the tree. In other words, there exists an injection from S
to the set of leaf nodes in the SNZI tree. Every leaf node maintains a binary state according
to whether its corresponding element, if exists, is in the set.

Definition 4. A leaf node is said to be present if and only if its corresponding element, if
exists, is in the set. A non-leaf node is said to be present if and only if any of its children
are present.

The idea of presence is similar to the idea of Surplus in [13]. We immediately see
a non-leaf node is present if and only if one of the leaves in its subtree is present. Ev-
ery SNZI nodes will support three operations: Enter, Depart and Sample. The first
two operations announce (or cancels) the presence of the particular node. They are imple-
mented in terms of operations of the parent node, if necessary. The third operation samples
a present leaf node from that node’s subtree. It’s implemented using Sample operations
of its children.

This algorithm does not impose any constraint on the shape of the tree other than
there must be at lease S leaves. In fact, the optimal shape of the tree is usually machine-
dependent. In general, taller trees further reduces the contention at each node, at the cost
of decreasing the efficiency of sample operation. On the other hand, trees with a small
height necessarily have more children at each node, which increases the contention. The
optimal balance is clearly machine-dependent.
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To efficiently implement those operations, every non-leaf node in the subtree will keep
track of all of its present children. This can be easily achieved through an array-bimap
based concurrent random set implementation introduced earlier. Therefore, the data struc-
ture for a single leaf SNZI node contains the following data fields:

parent Parent SNZI node. None for the root node.

present Boolean. True if and only if the leaf is present.

elem The element associated with the node. None if the leaf is not
associated with any element.

For a non-leaf node with k children:

parent Parent SNZI node. None for the root node.

set An array-bimap based concurrent random set of size k.

Algorithm 5 describes the operations on SNZI nodes.

Then the random set can be trivially implemented using SNZI tree. Our random set
will keep track of the root node and the set of leaf nodes that corresponds to an element
through the following data fields:

root Root SNZI node. None for the root node.

leaves[n] An array mapping each element to a leaf SNZI node.

Operations are now straight forward:

new(S) Initialize an empty SNZI tree with a suitable structure (discussed
in the following paragraphs).

add(rs, i) Invoke enterLeaf(rs.leaves[i]).

query(rs, i) Returns rs.leaves[i].present.

remove(rs, i) Invoke departLeaf(rs.leaves[i]).

sample(rs) Invoke sampleNode(rs.root).
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Algorithm 5: Operations for SNZI node
1 fun enterLeaf(node):
2 atomic
3 node.present← True;
4 enterNonleaf(node.parent, node);
5 end
6 end
7 fun enterNonleaf(node, child):
8 atomic
9 cnt← add(node.set, child);

10 if cnt = 0 and node.parent 6= None then
11 enterNonleaf(node.parent, node);
12 end
13 end
14 end
15 fun departLeaf(node):
16 atomic
17 node.present← False;
18 departNonleaf(node.parent, node);
19 end
20 end
21 fun departNonleaf(node, child):
22 cnt← remove(node.set, child);
23 if cnt = 1 and node.parent 6= None then
24 departNonleaf(node.parent, node);
25 end
26 end
27 fun sampleNode(root):
28 node← root;
29 while node isNot LEAF do
30 node← rsSample(node.set);

// Retry in case of race condition
31 if node = None then node← root;
32 end
33 return node.elem;
34 end
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Similar to the original SNZI algorithm, this design tries to reduce contention for write
access by having child nodes filter access to parent nodes. Specifically, only accesses that
changed the presence status of the current node are propagated up-wards, providing very
fast add and remove operation. This ensures low contention at every non-leaf node,
allowing us to choose array-bimap to implement concurrent random set at each non-leaf
node. On the other hand, sample operation always takes time proportional to the height
of the entire tree to complete. In general, the wider the tree, the higher the contention at
each node, the faster the sample operation.

We briefly discuss the correctness of this algorithm. Because we are in a dedicated
environment, atomicity is achieved by protecting each node with a lock. First of all, we
ascribe sample operation with a relaxed specification. Then add operation must guar-
antee that the added element is observable by all future sample operations. This is why
line 11 has to be protected by synchronization primitives: concurrent calls to enterNode
to the same node may not return unless they are certain the change of presence, if required,
has successfully propagated to the root. On the other hand, the departNode operation
is more straight forward. Simply removing the current node from its parent’s presence set
prevents the node from ever being returned by future sample operations until it is added
back.

Lack of synchronization between sampleNode and departNode introduces an-
other race condition. A sample operation may choose a particular child from its parent. In
the meantime the child is executing a departNode on its parent. The child is no longer
present so that its presence set is empty, and trying to sample from the empty presence
set will fail. We take care of this situation by backing off and simply restart the sampling
process. We believe it is not a significant issue because when this happens, it means our
algorithm has made progress in successfully putting some processor to sleep. This can
happen at most a couple of hundreds of times before almost all processors have been put
to sleep.

One particular problem with this design is that items in the set are not necessarily
sampled uniformly. However, this problem is only significant in extreme cases where
there are very few active processors. In the experiments we conducted in Chapter 4, we
are unable to observe any problem. On the other hand, the logarithm complexity of the
sample operation in the case of high instantaneous parallelism is somewhat unsatisfying.
This can be partially mitigated by first performing k times random samples among all
leaves before invoking sampleNode. This will allow us to avoid logarithm complexity
when parallelism is high. Specifically, we may modify our sample operation according
to Algorithm 6. With this algorithm, when parallelism is plenty, initial random choices
have a high success probability. When the parallelism is low, the steal is guaranteed to
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succeed with at most k + h random samples for a SNZI tree of height h.

Algorithm 6: sample operation with uniform samples.
1 fun sample(rs):

// Perform k times random trials.
2 for i = 0 to k do

// A random number 0 ≤ i < S
3 t← rand(0, S);
4 if rs.leaves[t].present then
5 return rs.leaves[t].elem;
6 end
7 end
8 return sampleNonleaf(rs.root);
9 end
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Chapter 4

Experiments and Results

4.1 Introduction

In this section, we will evaluate our implementation of the elastic work-stealing scheduler
as described in Chapter 3.

We will test our implementation against an existing implementation [21] of a tradi-
tional work-stealing algorithm, written by Daniel Spoonhower.

Our performance benchmarks come from mainly two sources: classical Cilk programs,
the more recent problem-based benchmark suite (PBBS) by Blelloch et al [5]. The bench-
mark suite consists of highly parallel programs, and our goal is to show that our algorithm
is as performant as a traditional work-stealing algorithm. The benchmarks we chose are
listed in Table 4.1.

We will will test out result on the following benchmarks:

Our benchmarking platform contains four Intel(R) Xeon(R) CPU E7-8867 v4 CPUs,
and each contains 18 cores and 36 hardware threads (through hyperthreading). The pro-
cessor runs at 2.40 GHz base frequency and is capable of dynamic frequency scaling. The
maximum possible frequency is 3.30 GHz. The test platforms run on Ubuntu 16.04 SMP,
running Linux kernel version 4.10.0.
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Benchmark Description

fib Compute Fibonacci number using the exponential algo-
rithm. This benchmark is highly parallel and regular. More-
over, the performance of this benchmark is largely indepen-
dent of the memory behavior of the scheduler. Input to the
Fibonacci program is 42.

mergesort A parallel merge sort program running on an input size of
10 million. This algorithm is a direct port of the cilksort
program to SML.

samplesort A cache efficient parallel sample sort program running on
an input size of 10 million elements.

histogram A histogram program based on an concurrent hash table.
The performance of this program relies on the locality of
memory accesses. Input size is 50 million elements.

prime A parallel Sieve of Eratosthenes, expressed succinctly in
terms of delayed sequences. This program looks for all
primes within 50 million.

mcs A parallel maximum sub-array algorithm for one-
dimensional array using a naive search algorithm. The input
array size is 200 million real numbers.

bfs A parallel graph breadth-first search algorithm. Parallelism
available relies heavily on the shape of the graph. We will
run the benchmark with a randomly generated sparse graph
(bfssparse) and dense graph (bfsdense). The sparse
graph contains 100 million nodes with 500 million edges.
The dense graph have 5×105 (0.5 million) nodes and 5×108

(500 million) edges.

Table 4.1: Benchmarks to evaluate the runtime perspective of our elastic work stealing
algorithm.
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4.2 Benchmarking Highly Parallel Computations

The benchmarking is conducted in the following manner. First, we will run a known best
possible sequential algorithm for each problem. Then for each problem, we will run both
the Spoonhower scheduler and our elastic scheduler, with 2, 4, 6, 8, 12, 18, 24, 32, 48,
64, and 72 cores. For each run, we will run the same algorithm on identical input 25
iteration consecutively. We will measure both the average runtime (wall-clock time) and
average total CPU time for each problem. We measure the wall-clock runtime through
gettimeofday system call, which provides microsecond accuracy on our platform.
For the runtime, we will treat the first five runs as warm-ups, and take the average over the
remaining 20 runs. We use GNU time utility available on most Linux systems to measure
total work. It generates output in the following form:

113.32user 8.05system 1:00.75elapsed 199%CPU (...)
0inputs+0outputs (0major+27794minor)pagefaults 0swaps

Important metrics involves user and system.

user Measures total CPU time spent in user space executing the program, in seconds.

system Measures total CPU time spent in kernel space executing code on behalf of the
program, e.g., due to system calls, in seconds.

We will sum up both components and use the sum as the total work performed by all
processors. We will then divide this number by 25 to obtain the work performed in each
iteration.

The structure of the SNZI random set is decided using the following algorithm. First,
each level of the tree will have identical arity. Then we decide the arity for each level by
decomposing the total number of processor P . For example, for P = 24, first obtain its
prime decomposition P = 24 = 23 × 3. Rewrite the power of 2 into a power of 4 with a
possible extra multiplier of 2. In our case P = 23 × 3 = 41 × 2 × 3. Order the product
by descending base and assign the arity top to bottom in the order of the base. In our case,
then the first layer has 4 children, the second layer has 3 children, and the last layer has 2
children. This intuition behind this algorithm is to reduce the height of the tree as much as
possible within the range of tolerable contention.

Through Figure 4.1 to Figure 4.4, we will compare both the runtime speedup and
relative total work for each problem. The speedup is computed by dividing sequential
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Figure 4.1: Comparison of runtime speedup and total work between the spoonhower
scheduler and the elastic work-stealing scheduler on benchmarks problems fib and
histogram
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Figure 4.2: Comparison of runtime speedup and total work between the spoonhower
scheduler and the elastic work-stealing scheduler on benchmark problems mergesort
and samplesort.
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Figure 4.3: Comparison of runtime speedup and total work between the spoonhower
scheduler and the elastic work-stealing scheduler on benchmark problems prime and
mcs
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Figure 4.4: Comparison of runtime speedup and total work between the spoonhower
scheduler and the elastic work-stealing scheduler on benchmark problems bfssparese
and bfsdense

.
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runtime by parallel runtime. The relative total work is computed by dividing the total
work of the parallel run by the total work of the sequential run.

The data shows our scheduler achieves almost identical speedup compared with a tra-
ditional work-stealing scheduler. Part of the reason is that most benchmarks in the suite
are highly parallel, and their instantaneous parallelism is almost always greater than the
available processors in the system. On the other hand, our scheduler performs slightly
more work compared with a standard work-stealing scheduler. This is mainly because
each steal in the elastic work-stealing scheduler is slightly more expensive due to the need
for synchronizations to guarantee correctness. The only exception here being the prime
benchmark problem, which will be studied more closely in the next section.

4.3 Elasticity of the Elastic Work-Stealing Scheduler

In this section, we discuss the elasticity of the elastic work-stealing algorithm through the
lens of the prime benchmark problem. In particular, we want to show that our work-
stealing scheduler is capable of swiftly responding to varying parallelism, and it achieves
it by performing only a constant factor extra work. Towards this goal, we built an event
profiler into the scheduler. The event profiler aims to keep track of 1) the instantaneous
parallelism in the system, measured by the number of ready threads in the system 2) The
number of processors awake and 3) the number of processors performing actual computa-
tion. The profiler captures the following set of events:

EventFork A binary fork is executed and one extra task is spawned as a result. As a
result, the instantaneous parallelism increase by 1.

EventComplete A piece of task has completed. As a result, the instantaneous paral-
lelism drop by 1.

EventSleep A processor sleeps. The number of active processors decrease by 1.

EventWakeup A processor is waken up by one of its peers. The number of active
processors increase by 1.

EventStartStealing A processor transitions into work-stealing. The number of
processors executing user computation decrease by 1.

EventObtainWork A processor successfully obtain work through work-stealing. The
number of processors executing user computation increase by 1.
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The profiler will collect those events independently for every processor during the
scheduling. At the end of the scheduling, the profiler combines and dumps those events
into a file. The analysis of the log file is performed offline. The following results are
obtained by running the prime benchmark program with 72 processors. In Figure 4.5,
the tasks curve shows the number of tasks in the system. The awake curve shows
the number of active processors in the system, and the busy curve shows the number of
processors working on actual computation. In the second subfigure, we trimmed the Y-
Axis by 100 because we are mostly interested in the behavior of our algorithm in the face
of low instantaneous parallelism.

As one can see, the prime benchmark suite is particularly interesting for our purpose
for two reasons: 1) Throughout the computation, the instantaneous parallelism has very
high variance. It touches one even when the algorithm is still in “highly parallel phase”, for
instance, from 50ms to 100 ms. 2) From 100 ms to 300ms, the algorithm the instantaneous
parallelism exposed by the algorithm is not sufficient to keep all processors busy. Those
features are observable in Figure 4.6, where we have isolated the 50ms to 100ms section
and 150ms to 200ms section.

We further isolate 70ms to 80ms, 110ms to 120ms, and 112ms to 116ms section in
Figure 4.7. Figure 4.7 provides evidence for our claims. The scheduler scales-up and
scales-down the processor utilization in response to increasing instantaneous parallelism
in hundreds of microseconds. Moreover, our scheduler is work efficient because the num-
ber of awake processors is almost always a smaller constant larger than the number of
processors executing actual computations. In other words, the work we waste is constant
compared with the total work of the computation, and therefore it is empirically work-
efficient.
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Figure 4.5: Profiling for the prime benchmark problem. The tasks curve shows the
number of tasks in the system. The awake curve shows the number of active processors
in the system, and the busy curve shows the number of processors working on actual com-
putation. In the second subfigure, we trimmed the Y-Axis by 100 because we are mostly
interested in the behavior of our algorithm in the face of low instantaneous parallelism.
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Figure 4.6: Profiling for the prime benchmark problem from 50ms to 100ms and 150ms
to 200ms. Instantaneous parallelism varies dramatically and exhibits burstiness in both
sections. From 150ms to 200ms, the computation has limited parallelism.
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Figure 4.7: Profiling for the prime benchmark shows that the elastic work-stealing algo-
rithm responds to varying instantaneous parallelism swiftly, and is work-efficient.
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Chapter 5

Conclusions and Future Works

This thesis explores the idea of work-efficient schedulers. In order to achieve work-
efficiency, this work identifies elasticity as a critical component in designing work-efficient
schedulers. This work presents two work-efficient elastic schedulers for the dedicated
environment: the offline α|β-elastic greedy scheduler and the elastic work-stealing on-
line scheduler. To formulate and analyze the offline scheduler, we start by defining a P -
processor elastic scheduling model capable of considering offline elastic scheduling. We
show that the α|β-elastic greedy scheduler, being a particular case of the more general α|β-
elastic scheduler, is provably work-efficient and performant. This work further presents an
online elastic work-stealing algorithm. The online work-stealing algorithm approximates
the offline scheduler by utilizing the lifeline forest data structure to respond to varying
instantaneous parallelism actively. We finally implemented the elastic work-stealing al-
gorithm and showed that it is as performant as a traditional work-stealing algorithm on
highly parallel tasks, and performs much less work on programs with limited parallelism.

We propose the following directions for future research:

• Extending the α|β-elastic scheduling algorithm to the adaptive environment. This
extension is not trivial because we will potentially need to extend the notion of α|β-
elasticity to the adaptive environment. In particular, the elasticity that a system can
provide not only depends on the total number of workers but the number of workers
that are currently active, because workers are in the end entities that respond to
varying instantaneous parallelism. In an adaptive environment, our model will have
to take this effect into account.

• Consider allowing the thief to steal half of the work queue instead of just one. Steal-
half strategy has already been studied in the traditional work-stealing context [16].
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The authors argue that in some cases stealing half of the deque provides better per-
formance due to better stability and load balancing. Improved load balancing is
especially interesting for our purpose because a balanced load ensures the recently
joined processors can easily find work, and in turn, enables more processors, as long
as there exists sufficient parallelism in the system. This further ensures an exponen-
tial rate scale-up in the face of increasing instantaneous parallelism.

• We may also investigate whether it’s beneficial to implement the elastic work-stealing
algorithm based on a private-deques [1]. With the lifeline forest meditating the com-
munications between processors, a private deque implementation where processes
explicitly communicate with each other for load balancing is quite approachable.
A private deque implementation could significantly simplify synchronization and
therefore improve performance. Moreover, it works well with the previously men-
tioned steal-half stealing strategy.
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