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Abstract
Deep neural networks have revolutionized computer vision, with state-of-the art

performance across multiple tasks. An important part of training such networks is
the availability of large, high-quality labeled datasets. This makes building new
datasets a significant hurdle to approaching novel tasks or domains. In many cases,
acquiring labels can be difficult, expensive, or time-consuming. Active learning
seeks to improve label efficiency and lower overall labeling cost by allowing the
learning system to intelligently pick samples to label. Active learning is well stud-
ied for classical machine learning models, but many of these approaches have been
shown to be ineffective for deep models and modern image datasets. This raises the
question of how to develop and use active strategies in these settings. In this work,
we seek to build intuitions for deep active learning by conducting a comprehensive
empirical analysis of existing approaches for image classification tasks. Critical to
this analysis is the distinction between uncertainty and diversity-based strategies and
how they perform in various settings. Our experiments show surprising results re-
garding the efficacy of existing approaches in commonly tested settings. We find
that active learning is more useful in settings such as low data availability, class im-
balance, and transfer learning. Finally, our results provide heuristics for the active
learning practitioner to decide on a strategy to use, and more crucially whether to
use active learning at all.
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Chapter 1

Introduction

Machine learning models have shown incredible ability for inference and prediction across a
variety of domains. However, this ability is extremely dependent on the amount and quality of
training data. As model complexity increases, so does the amount of training samples required.
And while samples may be easy to collect, such as through crawling the web [50], in supervised
learning we require a large number of labels as well.

Building such large datasets has become even more important with recent advances in deep
neural networks. Although they have achieved successful results in high complexity sample
domains like natural language and images, deep networks often require tens of thousands of
examples or more. ImageNet, a popular large image classi�cation dataset, currently contains 14
million images with accompanying labels collected through crowdsourcing [12]. Collecting such
a labeled dataset for a novel task can thus be dif�cult, particularly if labeling is time-intensive or
expensive. For example, medical images may require an expert opinion in order to obtain a label
[1]. Active learning seeks to solve this problem by allowing learning systems to query labels for
unlabeled samples during the learning process, and has shown successful results in many tasks
including speech recognition, classi�cation, and �ltering [41].

There have been several results for active learning with classical machine learning models.
One paradigm is uncertainty sampling, where the algorithm queries labels for samples that the
model is uncertain about. Other paradigms include query-by-committee, in which the algorithm
trains several models and queries the samples for which they disagree most, and density-weighted
sampling, which queries the most representative samples in the input space. Of these, uncertainty
sampling has been the most successful and commonly used [41].

However, many of these intuitions, paradigms, and results have not been successful for deep
models. One issue is that deep models are unlikely to learn from single data points and generally
require mini-batch learning to train ef�ciently and avoid local minima. This requires design-
ing active algorithms which can query several samples at once. In addition, many uncertainty
sampling methods have been speci�cally shown to perform poorly in the deep setting. Methods
that have shown the most promise [40, 47] instead query diversely throughout the input space,
which is unlike most of the existing paradigms. Even so, it is still not clear which active learn-
ing methods a practitioner would use with a deep model. In addition, evaluating active learning
algorithms for deep networks is dif�cult due to long training times and noisy results. And criti-
cally, nearly all recent work trains in restricted settings which are often not the most realistic or
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practical.
In this work, we empirically analyze deep active image classi�cation algorithms across sev-

eral different settings in order to address these concerns. We particularly focus on the differences
between uncertainty and diversity-based methods across these settings. Additionally, we argue
that the most common settings in which these algorithms are tested are not optimal for active
learning, and explore what we believe are more interesting and practical settings.

Our main contributions are: (a) identifying settings where uncertainty-based active methods
outperform diversity-based methods, (b) analyzing the effect of learned model representations
on diversity-based methods, (c) understanding how deep active methods perform in common
classi�cation tasks of varying dif�culty, and (d) helping the active learning practitioner identify
the usefulness of active learning strategies in their particular setting.
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Chapter 2

Background

In this section we provide an overview of existing active learning paradigms and approaches,
both for classical models as well as deep models. In an active learning system, the learner
queries for new labels in a systematic way to achieve the best performance. In many cases, we
can achieve better performance with smart label queries than random selections, and indeed we
evaluate these systems against a random sampling baseline (”passive” learning).

There are several high-level scenarios for active learning. In pool-based active learning, the
most common scenario, samples come from a �xed unlabeled pool. When the algorithm queries
a sample and receives a label, the sample moves to the labeled pool. Other scenarios exist,
such as query-synthesis, in which the system can queryany samplefrom the input space (even
synthetically generated ones), and stream-based, in which the system receives candidate samples
in a stream and chooses whether or not to label them [41].

We focus on pool-based active learning in this work. At each active acquisition step, we
query the new sample(s) to label from the unlabeled pool. These samples are moved to the
labeled pool, and the process is repeated with the next step

2.1 Classical Active Learning

There have been many successful active learning results for classical models. A common cate-
gory of methods is uncertainty sampling, in which we query samples the learner is unsure about.
These strategies implicitly select points near decision boundaries in order to improve perfor-
mance. For models that estimate class probabilities, margin [39], and entropy [45] sampling are
common ways of computing uncertainty. For maximum-margin classi�ers, we can directly es-
timate distance to the margin [9, 49]. Uncertainty-based strategies also exist for nonparametric
models such as decision trees [32] and nearest-neighbor classi�ers [18, 33].

A related category of strategies is query-by-committee (QBC), where several learners are
trained and the samples that the learners most disagree on are selected [44]. QBC strategies
have been explored for naive Bayes [35] and hidden Markov models [3]. Several model-agnostic
methods also exist [2, 36, 37]. Often these methods employ methods similar to uncertainty
sampling in order to compute disagreement, such as [3] which extends entropy sampling to a
committee of models. An issue with QBC methods is that we must train multiple models, but
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[35, 42, 44] suggest that using as few as two models is suf�cient.
Another important category of strategies is density-weighting, where the learner queries the

most ”representative” samples. This involves modeling the input space, which can be challeng-
ing, but avoids the problem of querying unnecessary outliers (which uncertainty sampling may
do). It also allows for possibly leveraging the unlabeled samples, turning the active strategy
into a form of semi-supervised learning. [42] employs a density-weighted strategy that estimates
density using average similarity to nearby samples, and combines it with uncertainty sampling.
The formulation allows for arbitrary uncertainty methods to be used, and for trading off between
representativeness and uncertainty. [52] performs a similar tradeoff by using an integer pro-
gramming formulation to querying informative samples while querying close to the input data
distribution.

Other strategies aim to �nd samples that most improve expected error or induce the greatest
model change. [29] introduces a Bayesian method for Gaussian processes to �nd queries that
maximize expected model improvement. [43] uses expected gradient length as a proxy for model
change. [38] proposes an error reduction strategy for naive Bayes. Again, ef�ciency is often a
concern with some of these strategies, as we may have to retrain the model for every candidate
query.

A signi�cant characteristic of classical methods is strong theoretical results. One speci�c
idea we are interested in in this work is understanding the conditions under which active learning
algorithms will provide a potential advantage. [10] studies upper and lower bounds for active
classi�cation improvement for nonparametric active methods, as functions of data dimensional-
ity, decision boundary complexity, and noise around the boundaries. Critically, they show that
potential improvement degrades exponentially as dimensionalityd or noise� increases. [6] ex-
tends this result to parametric methods and shows a better lower bound on active classi�cation
improvement, but with a similar dependence on the dimensiond. Together both works sug-
gest that increased task dif�culty, represented by higher data dimensionality and more complex
boundaries, lowers the effectiveness of active learning. The various settings we study in this
work are motivated by this idea.

A full overview of classical active learning techniques is out of the scope of this work, and
we refer the reader to [41] for a comprehensive survey.

2.2 Deep Active Learning

As we move to settings with deep models and complex datasets, many of these active strate-
gies have been empirically shown to break down. Several studies [7, 40] �nd that uncertainty
sampling methods, are ineffective (i.e. unable to outperform random sampling) for nontrivial
datasets. It has been shown that class scores from softmax outputs are often poor estimates of
probability (the ”calibration problem”) [23]. This cripples uncertainty sampling strategies that
leverage these scores like entropy and margin sampling. [22] �nds that an expected gradient
length strategy signi�cantly underperforms for image datasets.

[40] argues that mini-batch training in deep learning is a large part of the reason why classi-
cal active learning algorithms underperform. Most classical methods query samples in a serial
manner, but deep active strategies must query in batches since networks have dif�culty learning
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from single samples. Furthermore, within these batches, we would like the samples to be uncor-
related for the networks to learn well. Another issue is ef�ciency. Some methods are suited to
small datasets and have undesirable time or space complexity. For example, [15, 24, 56] require
optimization overO(n2) variables wheren is the dataset size.

2.2.1 Diversity-based approaches

A recent trend in deep active methods is querying diversely throughout the sample space. This
direct optimization of sample diversity is claimed to improve learning, and runs contrary to the
uncertainty sampling intuitions that have been successful in classical methods. Coreset [40]
formulates this approach geometrically through the k-Center problem [53]. The goal is to �nd
a subset of points, which they call a ”core-set”, such that for all points, the maximum distance
to the closest selected point is minimized. IfX u andX ` are the set of unlabeled and labeled
samples respectively, we aim to �nd a setS � X u of sizek such that:

min
S� X u

max
i

min
x j 2 X u [ X `

�( x i ; x j )

The method includes a greedy solution as well as a robust solution with mixed integer program-
ming - we use the greedy solution following the recommendation of [7], which showed that the
performance difference was negligible. Coreset incorporates the current model (and by exten-
sion, the current labeled pool) by de�ning�( x i ; x j ) as the Euclidean distance between last-layer
embeddings ofx i andx j .

Other diversity-based methods seek to model the unlabeled sample space more directly, lever-
aging the large set of unlabeled samples. These methods are similar to density-sampling as they
aim to query in areas of the sample space where labels are sparse. [22] train a binary classi�er
to distinguish between unlabeled and labeled samples. The samples that are predicted to be most
likely from the unlabeled set are selected. [47] extends this by using the classi�er as a discrim-
inator. The discriminator is trained adversarially with a variational autoencoder (VAE) [30] -
the VAE aims to trick the discriminator into classifying both unlabeled and labeled samples as
labeled, while the discriminator aims to distinguish the two.

2.2.2 Uncertainty-based approaches

A few uncertainty-based methods have also been proposed for deep models. [14] aims to query
samples near decision boundaries by taking labeled samples, �nding their adversarial attacks,
and querying unlabeled samples near the attacks. Combining Bayesian methods with deep mod-
els is a promising direction, as such methods have been sparsely used with classical models
successfully with the exception of Gaussian processes. One recent approach [19, 20, 21] obtains
posterior uncertainties using dropout masks. This method, called MC-dropout, involves get-
ting uncertainty estimates by setting several random dropout masks and averaging the resulting
network outputs. This approximates a query-by-committee strategy as the collection of masks
implicitly de�nes an ensemble of models.

[7], which we call Ensembles, extends MC-dropout by explicitly using an ensemble of mod-
els. They experiment with various uncertainty estimation methods to compute disagreement, and
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�nd that the best performing one is thevariation ratio, de�ned as the proportion of predictions
from the ensemble that are not equal to the modal prediction. Ifpm is the most common class
prediction for a sample across the ensemble andN is the number of networks, the uncertainty
estimate for the sample would be

1 �
pm

N

The algorithm simply ranks unlabeled samples according to this metric and picks the topk.
Ensembles has been shown to outperform MC-dropout and a variety of classical uncertainty
sampling methods.

2.2.3 Hybrid approaches

Finally, some works have explored hybrid methods that incorporate both diversity and uncer-
tainty. [27] combines uncertainty estimation with softmax entropy with an ”informativeness”
metric for pretrained networks. [4] computes embeddings for each sample based on induced gra-
dients, and then uses k-means sampling to geometrically pick diversely from the space, similar
to Coreset. They argue that since the gradient space gives information on both the magnitude
and direction, picking diversely from this space yields useful, yet diverse sample queries. Such
hybrid approaches are promising but have failed to outperform non-hybrid methods in standard
deep settings. In this work we mainly focus on the distinction between purely diversity and
uncertainty-based approaches.

2.3 Class Imbalance

An interesting setting for active learning is class imbalance, where one more more classes is rarer
than the others. Nearly all practical classi�cation problems are inherently imbalanced to some
degree. In some cases, we are not even aware that classes are imbalanced, such as when there
are hidden patterns in the data or when our selection of classes is poorly de�ned.

As imbalance increases, a carelessly trained model can achieve high accuracy on majority
classes while ignoring minority classes. Although we can track metrics that tease out perfor-
mance between classes like area under curve (AUC) and average precision (AP), it is still often
nontrivial to improve minority class performance. A common approach is to force a balanced
class distribution by oversampling minority classes and/or undersampling majority classes. How-
ever, both of these can cause issues - over�tting on minority class samples [11], or losing valuable
majority class information [13, 28].

Active learning methods have high potential in this setting. A common approach for improv-
ing performance is to collect more data for the minority class. This ”mining” problem involves
�nding probable minority class samples without labels, a clear application for active learning.
Active learning could also be used to implicitly undersample the majority class by identifying
the most useful samples. In this way, classical active methods are able to be used out-of-the-box
in imbalanced scenarios. [5] and [17] show that SVM-based active learning strategies are able to
query minority samples without any modi�cations. However, there are some issues with directly
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using active methods. As imbalance becomes more harsh, minority samples may get missed en-
tirely, worsening the problem for future label acquisitions. Several works propose to explicitly
encourage minority selections. [8] modify the SVM loss to weight classes differently. [57] and
[16] adaptively oversample minority class samples through query synthesis.

Once again, however, we see issues when moving to the deep setting. The problems that arise
with imbalanced settings are exacerbated in data-hungry deep networks that need to learn highly
nonlinear decision boundaries. Classical active learning methods, even those speci�cally de-
signed for imbalanced datasets, have shown dif�culty when applied to deep learning [5]. Certain
task-speci�c deep methods have succeeded - for example, object detection is a common highly
imbalanced task between positive (is an object) and negative (not an object) classes. Hard ex-
ample mining [46] has been extensively studied for detection and related tasks, and can be seen
as a form of active learning. Active learning has also been applied to the problem of fairness
by emphasizing less-represented classes using diversity-based sampling [54, 55]. However, it is
unclear how recent deep active methods for classi�cation perform in this setting, as they usually
test on balanced, standard datasets. We seek intuitions on how uncertainty and diversity-based
methods perform in imbalanced settings in Chapter 4.4.
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Chapter 3

Simple Classi�cation Settings

3.1 Introduction

As mentioned in Chapter 2, a common intuition in classical active learning is to select points near
decision boundaries. However, this becomes dif�cult when working with high-complexity data
as decision boundaries are highly complex, and we have to simultaneously learn a representation
for the data. We can alleviate this problem by studying settings where the classi�cation task is
easy enough for a network to learn a discriminative representation with few samples and where
decision boundaries are simple. In this chapter, we focus on a simple synthetic dataset as well as
two image classi�cation datasets, and investigate the ability of uncertainty-based and diversity-
based active strategies to identify samples near decision boundaries.

3.2 Experimental Setup

We brie�y describe here the speci�c pool-based framework we use for experiments in this chapter
and the following chapter. An initial labeled pool, which we denote as thewarmup setis selected
randomly from all samples. These are the only labels available before any active queries. At
each step, we select the same number of samples from the unlabeled pool, denoted as thequery
size, and receive labels for them. Unless otherwise speci�ed, the warmup set is initialized with
the same number of samples as the query size. The model is initially trained on the warmup set,
and the active algorithm has access to this trained model when selecting samples to query. We
record the number of samples in the current labeled pool, and evaluate the trained model on a
held-out test set. After a new set of labels is queried, this model is discarded, and a fresh model
is trained on the new labeled set. The process continues until we are satis�ed with the model's
performance. We run each active strategy with 3 random seeds to reduce variability.

3.3 Synthetic Data

In order to motivate our work in this setting, we experiment with deep active algorithms on a
synthetic dataset consisting of 5000 points sampled from two equal-variance 2D Gaussians, as
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Selection 1 Selection 2 Selection 3

Figure 3.1: Active queries on 2-blob Gaussian dataset. First row: Coreset selections. Second
row: Ensembles selections. Labeled points denoted in orange, Current step label queries in red.

shown in Figure 3.1. Each Gaussian represents one class, so this sets up a binary classi�cation
problem with a simple decision boundary. The low data complexity allows us to easily visualize
selections in the original space. We train a simple multilayer perceptron (MLP) network with
2 layers and ReLU activation to solve this task, and simulate 3 active acquisition steps with
random, diversity, and uncertainty sampling. We choose the Coreset [40] and Ensembles [7]
strategies as described in Chapter 2 as our diversity and uncertainty candidates respectively. The
warmup set consists of 5 randomly chosen labels, and each strategy queries 5 additional points at
each step. After each selection, we evaluate accuracy on a held-out test set of 500 samples from
the same synthetic dataset.

The results are visualized in Figure 3.1. We found that Coreset is unable to identify the
points near the training boundary as it picks diversely throughout the space, causing more outlier
selections. This issue persisted over all selections. In contrast, Ensembles picked nearly all of
its points near the decision boundary. Table 3.1 shows test accuracy at each selection, including

Strategy Selection 1 Selection 2 Selection 3
Coreset 80.2 83.4 80.3
Ensembles 79.4 84.0 85.6
Random 77.8 81.8 82.4

Table 3.1: Test accuracy for active strategies on 2D Gaussian dataset at each selection
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accuracy of a random acquisition strategy. Coreset is hurt by outlier selections, causing accuracy
to actually regress at the last selection. In contrast, Ensembles is able to leverage good boundary
selections into a 3.2% improvement over random selection.

3.4 Natural Images

In moving to real datasets, we aim to �nd similar settings where a useful representation is quickly
learned, causing decision-boundary points to be important when querying labels. We start with
the MNIST handwritten digit dataset, which contains 60000 images. We run both Coreset and
Ensembles with a query size of 600 (1% of the dataset), following the setup in [22]. We also
replace the MLP with LeNet [31] to account for increased task dif�culty. In order to slightly
increase the dif�culty of querying labels, we also test with harshly restricted data availability,
using a low query size of 10 (0.2% of the dataset). Our results for both query sizes are shown in

Figure 3.2: Left: MNIST test accuracy at each label query. Right: accuracy improvement over
random sampling. Top: low query size (0.2%). Bottom: high query size (1%).

Figure 3.2. We found that both active approaches consistently outperformed random sampling
at all queries, with Ensembles doing the best. In addition, all strategies achieved high accuracy
very early, which is similar to the synthetic case. We also saw that diversity sampling was
punished heavily when query size was low. This makes intuitive sense since the fewer points we
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