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Abstract

The emergence of edge computing introduces new complexity in the creation of distributed mobile
applications. Application designers can now deploy application functionality in three or more
tiers of compute infrastructure to optimize bandwidth, latency, cost, user experience and privacy
for their users and their own operations. However, the diversity of edge and cloud computing
resources, networks and end devices challenges the designer’s ability to make efficient distribution
choices. Tools to support this design task are in their infancy. This paper presents our work
in creating a simulation framework for measuring and modeling edge computing infrastructure
as a tool for application characterization. It uses a specially instrumented client application, the
AdvantEDGE edge emulation platform, physical cloudlets and commercial LTE networks to gather
application and infrastructure measurements that inform design decisions.
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1 Introduction
Edge computing [1] brings the promise of enabling new edge-native applications [2] that need low
latency and high bandwidth connections to mobile and wired edge devices to achieve acceptable
user experience. It has been shown [3] that without edge computing, end-to-end network latency
can exceed 150ms.1 Many connected user devices such as cell phones, cameras, vehicles, etc.,
referred to as user equipment (UE) by the telecommunications industry, produce data volumes
that exceed the viable economic costs and acceptable transport times to transfer from the UE
to a remote cloud. The traditional approach to managing these challenges has been to deploy
application functionality on the UE that mitigates the need to transfer data to the cloud. For
example, traditional mobile gaming typically implements the majority of game functionality on
the UE with only time-insensitive tasks implemented in the cloud. Similarly, smart cameras may
perform cropping, downsampling and encoding functions on incoming streams in order to reduce
the transferred bitrate.

These techniques can meet the needs of many applications but, for others, the application
experience quality can be inadequate. In gaming, for example, lighting effects may be of low
quality due to the processing limitations of the UE graphics processing unit (GPU). A computer
vision application may become less accurate when a highly compressed bitstream is sent to the
cloud for processing.

Edge computing offers a solution to these problems by reducing the physical network distance
and the number of network hops from the device to nearby application computing resources. An
edge-native application is one that is designed to take advantage of attributes that this closer
placement provides: low latency, bandwidth scalability, privacy-preservation and WAN-failure
resiliency. Figure 1 shows the architecture of a typical edge-native mobile application. In this
model, the application developer can specify what functionality is deployed on the UE, the nearby
edge computing cloudlet [4] and in the remote data center.

Figure 1: Mobile Distributed Application Architecture

The tradeoffs of this choice are shown qualitatively in Figure 2. Deployment design may be
static (i.e., determined at design time) or dynamic (i.e., determined during runtime). In a dynamic
model, the application responds to changes in operating characteristics by a) throttling certain
aspects of the application to reduce its load on the end-to-end system or b) moving functionality
from one tier to another. Content delivery networks (CDNs) [5] provide simple examples of both

1This number excludes the application processing time at the client and server.
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cases. The “static” CDN design moves large scale video streaming functionality from a central
video repository to video caches distributed to network edges. Then, at runtime, in response to
poor throughput to UEs, these video caches use techniques like HTTP Live Streaming (HLS) [6]
and MPEG-DASH [7] to dynamically reduce the transmitted bandwidth from the edge node to the
UE (at a reduced video quality but with fewer streaming delays). More complex and performance
sensitive applications have more difficult design choices. For example, an edge-native multiplayer
game must optimize for individual user experience and for player interaction experience.

Figure 2: Application Design Tradeoffs

These choices are significantly complicated by several infrastructure related factors:

• Commercial mobile networks are diverse and their topologies and characteristics are
generally opaque to application designers.

• Edge computing networks are new, non-standardized and sparsely deployed at this time.

• The resources available at each cloudlet are limited and shared with other users.

• Different mobile UEs have widely varying capabilities and features.

This report introduces a simulation framework that can provide edge-native application
designers key insight for making static and dynamic deployment decisions. It can also provide
edge computing network designers with insight into cloudlet sizing, placement and interconnect.
This framework is then used to evaluate four edge-native application challenges:

1. Emulating different carrier interexchange architectures to simulate how cloudlets and
interexchange point placement affects application experience.

2. Simulating the impact of cloudlet placement on application performance.

3. Characterizing existing commercial mobile networks to understand how “black box” real
networks impact application experience.

4. Visualizing virtual scenarios using the real world characterizations.
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The report is structured as follows:

• Section 2 gives more background and related work.

• Section 3 describes the simulation framework.

• Section 4 shows the simulation results of the above scenarios.

• Section 5 discusses these results, conclusions and areas for further work.

2 Background and Related Work
This work builds on research and industry efforts in several areas.

• Edge-native applications are the raison d’être for edge computing. Understanding how
these applications operate in edge computing networks is fundamental to designing both the
applications and the networks that support them.

• Edge Network Optimizations are static and dynamic methods for allocating work between
UE, cloudlet and cloud. In particular, others have, like us, used simulation and emulation to
assist in these decisions.

• Edge and Mobile Network Measurement gathers the key metrics from real and simulated
environments to enable the monitoring, analysis and control of those networks.

• Application Quality of Experience Measurement is the method for determining whether
a system provides an adequate experience to its users.

2.1 Edge-Native Applications
The literature and press call out many applications across many industries that can benefit from
edge computing networks. [2] defines the concept of edge-native applications and points to
a number of specific edge-native applications. When examined by their characteristics, most
applications fall into one of the following four categories. See Figure 3.

1. Single User Interactive – These applications involve a single user interacting through a
mobile UE with a distributed application service. Although many users may use the service
simultaneously, interaction between users is negligible. Examples include many augmented
reality applications like wearable cognitive assistance [8] and virtual desktop infrastructure.
The user experience for these applications is generally measured by response time and visual
quality. This report focuses on applications in this category.

2. Multi User Interactive – These applications retain many of the characteristics of single
user interactive applications but add significant interaction between users. Examples include
multi-player gaming and video conferencing. User experience is still measured by response
time and visual quality but delivering acceptable performance is complicated by the potential
for collaborating users to be serviced by different cloudlets and mobile carriers.

3



3. Edge Analytics – These applications involve data collection and processing from distributed
UEs to gain understanding and insight that can drive operational action. Often, transferring
raw collected data to a centralized location is cost or transfer latency prohibitive or
is unacceptable due to privacy concerns. Examples include intelligent processing of
surveillance videos and distributed federated machine learning [9]. User experience is driven
by the cost and time to insight from gathered data.

4. Internet of Things (IOT) Sensor – These applications aggregate connections from many
distributed sensor and actuator UEs to provide control or control-assist and data analysis
and collection functions. Examples include autonomous vehicles and distributed traffic
monitoring services. User experience is driven by the response time for control functions
and the cost and time to insight for analytics functions.

Figure 3: Edge-native Application Categories

This list excludes operator and operations related applications such as firewalls, traffic control
and routing and other virtual network functions (VNF) [10]. It instead focuses on value-added
services where an external consumer or business user gains a tangible and visible benefit from use
of the service. While VNFs may exhibit similar characteristics to these applications (e.g., a virus
scanning VNF may behave similarly to an edge analytics application), those applications were not
considered as part of this work.

2.2 Edge Network Optimization
There is a large and growing body of research on allocating computing tasks across multi-tier
device-edge-cloud application architectures. Much of this work focuses on scheduling-centric
approaches that use dynamic network and application information to selectively execute atomic
application tasks on different processing elements in the architecture [11], [12], [13]. Other work
takes an empirical approach to optimize specific application types (cloud gaming, multimedia) at
design time or run time (c.f., [14], [3], [15]).
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This report focuses on the use of simulation and emulation to inform design or run time task
distribution trade-offs. This approach can be used in concert with the other approaches. We take
an application designer-centric perspective in the belief that, unless the designer can create an
acceptable user experience, the overall efficiency of system wide optimization won’t matter. A few
others have used an approach similar to ours to combine simulation, emulation and application
quality of experience optimization (c.f., [16], [17] and [18]).

2.3 Edge and Mobile Network Measurement
There is a long history of work in measuring the performance of networks in delivering quality
of service to network users. Much of this work focuses on measuring and modeling the core
network characteristics of latency, jitter, packet loss and throughput. This work provides a strong
foundation for understanding how networks behave and can be readily applied to simulation design
and execution (c.f., [19], [20], [21] and [22]). Many of the basic models from these works are
applied in our simulations and in the AdvantEDGE emulation platform that we used.

2.4 Application Quality of Experience Measurement (QoE)
Application Quality of Experience [23] is the measurement of how well the user perceives the
application to be performing. QoE measurement is application specific and can be quite difficult
to define precisely. For most applications, a subjective QoE definition (e.g., visual inspection or
Mean Opinion Score) must be transformed into an objective measure (e.g., Round Trip Time) to
allow application design and test to be automated. This transformation requires the designer to
determine which application characteristics drive the subjective measurement and define a specific
set of metrics for those characteristics. QoE automation can also be complicated by an application’s
need for a human user to perform application tasks during the automation (aka, a human-in-the-
loop). Some have created simulated users who randomly perform the required actions (c.f., [24]).
This approach can greatly improve the scalability of simulations but make it difficult to correlate
objective and subjective QoE measures.

3 Simulation Framework
Our simulation framework is depicted physically in Figure 4 and logically in Figure 5.2 The
framework provides an environment that models Figure 1 in a way that allows for experimentation.
This section describes this framework while Section 4 shows the results of using the framework to
test various scenarios. The framework consists of the following components:

• Section 3.1 Physical Infrastructure

• Section 3.2 Network Emulation Platform

• Section 3.3 Instrumented Client Application

2In this report, the term simulation means the execution of a test scenario on the framework described in this
section. Emulation means the use of AdvantEDGE platform to emulate a mobile wireless network.
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• Section 3.4 Simulation Automation Engine

• Section 3.5 Data Management and Analysis System

Figure 4: Framework Physical Architecture

Figure 5: Framework Logical Architecture

The following sections provide a description of each component.
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3.1 Physical Infrastructure
The physical infrastructure for the simulation framework is built on the Living Edge Lab [25]
infrastructure at Carnegie Mellon University in Pittsburgh, Pennsylvania. It consists of three
independent but interconnected wireless networks, a cloudlet and a set of mobile UEs. The three
wireless networks are:

1. An in-builiding WiFi network connected to a wired LAN network. The cloudlet is also
connected to the same wired LAN.

2. An outdoor private LTE network that is directly fiber connected to the wired LAN. The
Private LTE wireless core resides on the same wired LAN.

3. Local commercial public LTE networks from AT&T and T-Mobile that are connected
through a remote commercial interexchange point to the LAN.

Due to technical issues, the simulations described in Section 4 were done using the WiFi and
public LTE networks.The WiFi network was used for the purely emulated testing as it introduced
the minimum real network latency to the end-to-end application pipeline (<3ms). The public
LTE network was used for the real world measurement cases. Using this network had the
advantage of providing measurements from an operational commercial network, however the lack
of local breakout meant that traffic between client and cloudlet travelled out of the metro area and,
therefore, experienced an additional 20-40ms of one way network latency.

The cloudlet is a single node Intel R© CoreTM i7-6700 CPU @ 3.40GHz with an NVIDIA
GeForce GTX 1060 3GB GPU.The server-side simulation framework and test application run on
the cloudlet. The client UEs are android smartphones including a Samsung Galaxy S8 and an
Essential PH-1.

3.2 Network Emulation Platform (AdvantEDGE)
The simulation framework is centered around the AdvantEDGE platform [26]. AdvantEDGE is
a mobile edge emulation platform that runs on Docker and Kubernetes. AdvantEDGE provides
an emulation environment that enables experimentation with edge computing technologies,
applications, and services. The platform facilitates exploring edge deployment models and their
impact on applications and services in short and agile iterations.

AdvantEDGE enables the user to define scenarios that include:

• A network topology of cloudlets, clients, wireless points of access, zones and UE

• Network characteristics for each element including latency, jitter, packet loss and throughput

• Network and mobility events to change network characteristics and the location of UE and
cloudlets during simulation run time

It allows the connection of real cloudlet and UE applications so that simulation can capture the
impact of network design on application performance. It also supports event scripting, collection
of measurements in an offline InfluxDB time series database and real time Grafana dashboards.
This combination makes it a powerful platform for edge network simulation. These capabilities
were all used in the scenarios discussed below.
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Figure 6: OpenRTIST Style Transfer

3.3 Instrumented Client Application
In edge-native applications, the client application running on the UE directly provides the user
experience. It has visibility to application experience degradation caused by end-to-end latency,
jitter, packet loss and bandwidth constraints. It also has access to network and location information
that can be highly valuable for network analysis.3 In addition, the nature of the application itself
defines the user experience metrics of importance. For example, latency only matters if the delay
is perceptible by a user and materially affects the experience. A test application for assessing edge
computing networks must have a real user experience and be able to measure important quantitative
experience metrics.

In this work, we used a modified version of the OpenRTIST [27] application as our test
application. OpenRTIST is a simple single user interactive application that captures user video,
transfers that video to the cloudlet, performs image style transfer [28] on the video and sends
the styled video back to the UE for display (see Figure 6). Network degradation impacts the
experience by making the styled video appear jerky and lagging behind real time. This experience
can be quantitatively measured using two metrics that are captured by the client, round trip time
(RTT) and framerate (FPS). These two metrics are inversely related to each another and are heavily
impacted by network latency and packet loss. RTT is measured by time stamping each video frame
leaving the client and detecting when the corresponding styled frame is returned to the client.
RTT includes the round trip network latencies, the style processing time at the cloudlet and the
transmit and receive times at the client.4 To prevent frame buffers from overflowing due to these
delays, frames are dropped by the application at various points. This frame dropping reduces the
application FPS.

In addition to these two user experience metrics, other data was captured for use in monitoring
and analysis of the system. They are summarized in Table 1.

Except for traceroute, this data is captured every 10 frames as the application runs. Round
trip times and framerates are averaged over the interval. Traceroute is captured only at session
start however was verified to be relatively stable over the course of a session. Aside from the user

3Access to location and network information requires specific android permissions and, therefore, this data is not
collected in the standard OpenRTIST client

4Times for camera frame capture and frame display on screen are not included in the RTT.
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Measurement Type Description Typical Value

Round Trip Time
User

Experience

Transit time for image
frame from client to
cloudlet and return

30-100ms

Frame Rate
User

Experience
Frames transmitted per

second
10 FPS

Traceroute Network
The network hops
between client and

cloudlet

IP Address List;
End-to-end time

Signal Network

Signal strength for WIFI
or LTE connections to the

client.
Also includes CellID of
the connected cell site

-80dbm

Carrier Network LTE Network Provider AT&T
Connection Type Network WiFi or LTE WIFI

Server URL Network
Cloudlet IP Address and

Port
192.168.1.207:31001

Location UE Client GPS Coordinates Latitude, longitude
Country UE Current country code us

Manufacturer UE Client manufacturer samsung
Model UE Client model SM-G950U

Phone Type UE Client mobile technology gsm

Session ID Timestamp
Session timestamp set

when client connects to
cloudlet

2020-08-24-13-56-35

Table 1: Instrumented Client Measurements

experience metrics, signal strength and CellID, the remaining measurement fields remain constant
during a session.

At each measurement point, the data is pushed into the data management system on the cloudlet
for monitoring and analysis. The data management system timestamps each measurement on
insertion into InfluxDB. This assures that the client and the emulation system measurements are
synchronized.

3.4 Automation Engine
To simulate a realistic mobile network, the configuration and characteristics of that network need
to vary over the course of a simulation. This need requires an automation engine to script
these variations for the specific simulation. The AdvantEDGE platform allows the creation of
mobility events and network characteristic events as simulation building blocks. It presents these
capabilities through REST APIs following the OAS 2.0 specification (a.k.a. Swagger) [29]. These
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APIs allow for various language specific binding through swagger-codegen [30]. For this project,
we used the python bindings to create an automation engine.5

Mobility events allow the movement of UEs from one Point of Access to another, cloudlets from
one zone to another and cloudlet services from one cloudlet to another. Network characteristic
events allow the characteristics of individual nodes to be changed. The primary controllable
network characteristics are latency, latency variation a.k.a. jitter, throughput and packet loss.

Simulations are scripted using a simple python structure as shown in Listing 1. This script sets
the network initial conditions and then steps through test events to move ue1 around the network
and change zone-o1 latency to 2 ms. The waitafter parameter specifies the delay in seconds before
the next event.

Listing 1: Scripting Example
’ b a s i c ’ :{

’ name ’ : ’ t e s t s c e n a r i o ’ ,
’ a p p l i c a t i o n ’ : ’ o p e n r t i s t ’ ,
’ i n i t i a l c o n d i t i o n s ’ : {

’UE ’ : { ’ l a t e n c y ’ : 0 , ’ l a t e n c y V a r i a t i o n ’ : 0 ,
’ t h r o u g h p u t ’ : 1 0 0 0 , ’ p a c k e t L o s s ’ : 0 } ,

’POA ’ : { ’ l a t e n c y ’ : 3 , ’ l a t e n c y V a r i a t i o n ’ : 1 ,
’ t h r o u g h p u t ’ : 1 0 0 0 , ’ p a c k e t L o s s ’ : 0 } ,

’ZONE’ : { ’ l a t e n c y ’ : 5 , ’ l a t e n c y V a r i a t i o n ’ : 1 ,
’ t h r o u g h p u t ’ : 1 0 0 0 , ’ p a c k e t L o s s ’ : 0 } ,

’OPERATOR’ : { ’ l a t e n c y ’ : 5 , ’ l a t e n c y V a r i a t i o n ’ : 1 ,
’ t h r o u g h p u t ’ : 1 0 0 0 , ’ p a c k e t L o s s ’ : 0 } ,

’UE−APP ’ : { ’ l a t e n c y ’ : 0 , ’ l a t e n c y V a r i a t i o n ’ : 1 ,
’ t h r o u g h p u t ’ : 1 0 0 0 , ’ p a c k e t L o s s ’ : 0 } ,

’EDGE−APP ’ : { ’ l a t e n c y ’ : 0 , ’ l a t e n c y V a r i a t i o n ’ : 1 ,
’ t h r o u g h p u t ’ : 1 0 0 0 , ’ p a c k e t L o s s ’ : 0 } ,

’SCENARIO ’ : { ’ l a t e n c y ’ : 1 0 0 0 , ’ l a t e n c y V a r i a t i o n ’ : 1 0 ,
’ t h r o u g h p u t ’ : 1 0 0 0 , ’ p a c k e t L o s s ’ : 0 } ,

} ,
’ e x c e p t i o n s ’ : [

{ ’ name ’ : ’ zone1−o1 ’ , ’ l a t e n c y ’ : 0 , ’ l a t e n c y V a r i a t i o n ’ : 1 0 ,
’ t h r o u g h p u t ’ : 5 0 0 , ’ p a c k e t L o s s ’ : 1} ,

{ ’ name ’ : ’ zone1−o3 ’ , ’ l a t e n c y ’ : 2 5 , ’ l a t e n c y V a r i a t i o n ’ : 1 0 ,
’ t h r o u g h p u t ’ : 5 0 0 , ’ p a c k e t L o s s ’ : 1}

] ,
’ t e s t e v e n t s ’ : [

{ ’ t y p e ’ : ’MOBILITY ’ , ’ mover ’ : ’ ue1 ’ , ’ d e s t ’ : ’ poa1−o1 ’ , ’ w a i t a f t e r ’ : 3 0} ,
{ ’ t y p e ’ : ’NETWORK−CHARACTERISTICS−UPDATE ’ ,

’ name ’ : ’ zone1−o1 ’ , ’ l a t e n c y ’ : 2 , ’ w a i t a f t e r ’ : 1 0} ,
{ ’ t y p e ’ : ’MOBILITY ’ , ’ mover ’ : ’ ue1 ’ , ’ d e s t ’ : ’ poa1−o2 ’ , ’ w a i t a f t e r ’ : 4 0} ,
{ ’ t y p e ’ : ’MOBILITY ’ , ’ mover ’ : ’ ue1 ’ , ’ d e s t ’ : ’ poa1−o1 ’ , ’ w a i t a f t e r ’ : 40}

] ,

}

5AdvantEDGE has a native automation engine however this work began using AdvantEDGE V1.4 which did not
allow scripting of network characteristics. That functionality was added to the native API in V1.5 but, rather than
convert to that API, we upgraded our scripting capability to work with V1.5.

10



3.5 Data Management and Analysis
The value of a simulation is derived primarily from insights from the data collected. As mentioned
above, the AdvantEDGE platform and instrumented client load data into an InfluxDB time series
database. AdvantEDGE stores network and event measurements from deployed scenarios. The
instrumented client stores the measurements described in 3.3. The database is accessible for:

• Display on AdvantEDGE and Grafana dashboards

• Extraction, analysis and visualization by any number of external analytics engines

We primarily use Grafana to monitor scenario execution and for demonstration purposes. We
primarily used pandas, geopandas, numpy and matplotlib for analysis and visualization.

4 Simulation Scenarios
The simulation framework described in Section 3 was created to run simulations that would provide
insight on key edge computing issues. In this section, we describe four simulation scenarios used
to understand the following questions:

1. Edge applications may require a user on one mobile carrier’s network to interact with
a cloudlet service or user on another carrier’s network. How does the location of the
interexchange point between these two carriers impact the user experience? How close to
the user should the interexchange point be?

2. Cloudlet placement to maximize user experience at a minimum carrier cost is complex multi-
dimensional problem with limited known art to apply. Can insights and learnings be obtained
by simulating various cloudlet placements in a realistic emulated network?

3. For most application developers, the mobile network configuration and characteristics are
opaque. Is it possible to reverse engineer a mobile network using an instrumented client and
edge service?

4. Can we visualize a realistic network simulation that reflects the known characteristics of an
existing mobile network?

The following sections describe these simulation scenarios in greater detail.

4.1 Baselining the Environment
Prior to running the specific model simulations, we baselined three attributes of our environment:

1. Application latency (LA) with an unconstrained network (zero network latency, jitter and
packet loss and infinite throughput).

2. The quantitative impact that network latency increases have on application performance
(round trip time and framerate).
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Figure 7: Application Only Round Trip Time and Framerate

3. The actual application performance on a commercial mobile LTE network.

A simple additive model would predict a round trip time of

RTT =
∑
i

Lui
+

∑
i

Ldi + LU + LC

where Lui
is the latency of each upstream link, Ldi is the latency of each downstream link, LU is

the latency of UE application and LC is the latency of the cloudlet application (Total application
latency, LA = LU + LC). Running the simulation with the emulation network Lu = Ld = 0 gives
a measured application latency, LA = 41± 14ms as shown in Figure 7.6

To understand the impact of incremental network latency, we ran a simulation with monoton-
ically increasing network latency in steps of 5ms for one minute with a range from 0ms to 50ms.
The results of our first simulation are shown in Figure 8 which plots round trip time against network
latency. The dots show the measured round trip time. The blue and green lines show linear and
quadratic fits to the data while the orange line is the predicted latency from our equation above.

From this chart, we note:
6LA also includes the latency added by the physical WiFi and ethernet network shown in Figure 4. The UE and

cloudlet are directly connected to the same router and on the same subnet so we estimate this additional latency to be
<5ms.
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Figure 8: Anomalous Application Performance in Increasing Network Latency

• If network latencies were linearly additive to RTT, then we’d expect a 5ms network latency
change to add 20ms to RTT (2×∆Lui

+ 2×∆Ldi) to account for upload and download to
both UE and cloudlet. For example, with a 41ms application only RTT, a network latency of
20ms should give a total RTT of 121ms.

• However, the data from this simulation shows a linear slope of 8.3 rather than the expected
slope of 4.

• We also noted a slight unexpected non-linearity in the curve. The linear fit curve has an
R2 = 0.9443 while the quadratic fit has R2 = 0.9570.

These anomalies led us to suspect an issue with the application or the simulation framework.
We traced the issue to the use of Nagle’s algorithm [31] on the the client-side TCP connection.
Turning off Nagle’s algorithm gave the expected results as shown in Figure 9.

The process described above highlights the utility of this simulation approach. Prior testing
of the application outside the simulation framework did not reveal this impact of increasing
network latency. Once it was identified, the subsequent solution showed a marked improvement in
application performance.

We observed the effect of increasing latency visually on the application itself – as the network
latency increases, the displayed video rapidly becomes choppy and delayed. Based on observation
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Figure 9: Expected Application Performance in Increasing Network Latency

of displayed video, the user experience becomes visibly degraded with an RTT more than 150ms
and framerate less than 10 FPS. These thresholds are clearly subjective and application specific
but, for the purposes of this report, were used as cut off thresholds for acceptable application
performance.

We also baselined an expected RTT for a typical commercial LTE wireless network to assure
that our network characteristics were in line with real world measurements. The data provided by
our carrier partners provided a starting point for our model characteristics; our next step connected
a mobile UE to the local Pittsburgh T-Mobile LTE network. The connection traversed T-Mobile
to a remote carrier inter-exchange point (IXP) where it returned to Pittsburgh through the Verizon
FIOS wired access network. The route of travel for a specific session is shown in Figure 10. We
collected application performance data for this connection as shown in Figure 11. The mean RTT
is 237ms and the mean FPS is 8 FPS – unacceptable application performance when compared with
our acceptability criteria of 150 ms and 10 FPS.

4.2 Carrier Interexchange Simulation
In our work with the Open Edge Computing Initiative (OEC) [32], we were asked to help carriers
understand the trade offs of different network positioning of carrier inter-exchange points (IXP)
in the context of edge computing. This problem was first defined by Gerszberg [33]. IXPs are
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Figure 10: Mobile Wireless Traffic Route

Figure 11: Mobile Network Application Measurements

physical locations at which carriers transfer user and network data that must move between carriers.
In traditional networks, IXPs are often at centralized locations far from users and cloudlets. Data
passing from a user on one carrier network to a cloudlet on another will need to travel across
the first network to an IXP connecting to the second network before it can reach the cloudlet.
Return packets will traverse a similar path in reverse. For multi-user interactive applications, traffic
between users on different carrier networks will also need to pass through an IXP. Depending on
the locations of the users, cloudlet and IXP, the added end-to-end latency can be 10s to 100s of
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Figure 12: Potential Interexchange Points

milliseconds. Gerszberg defined four potential IXP positions for assessment as shown in Figure
12.

1. An IXP position geographically remote from the user and the cloudlet. This position is
currently typical of many existing mobile networks and what we saw in network baselining
in Figure 10. In the simulation, we assumed that the cloudlet was connected to the network
at the radio access network (RAN), requiring packets from the cloudlet to traverse RAN, the
metro core and the Wide Area Network (WAN) to reach the IXP.

2. An IXP position within the same metropolitan area (aka serving area) as the user and
cloudlet. This position would typically be somewhere in the metro core infrastructure. In the
simulation, we looked at two IXP locations in the metro core, a) at a point in the metro core
far from the UE and cloudlet and b) at the edge of the RAN near the UE and the cloudlet.

3. An IXP position in the radio access network (RAN). This position puts the IXP very close
to the UE and the cloudlet.

4. Two IXPs within the metro area core. In this case, the IXPs are provided by a third party
neutral host who transfers the data between the two carriers. Based on partner input, we
estimated that traversing two IXPs within the neutral host’s metro network had <1ms impact
on the latency as compared to Model 2.

Our scenario simulation goals were to measure the application user experience with users and
cloudlets on different carrier networks given each of these IXP positions. We assume that costs
increase as the IXP is moved closer to the network edge. This cost increase derives from the
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Figure 13: Simulation IXP Topologies

increased number of IXPs and increased transport infrastructure required to connect to the IXPs.
Therefore, the optimal IXP position is the location furthest from the edge where the application
user experience meets the minimum acceptable requirement. This criteria is obviously application
specific and is complicated in multi-user interactive applications where the relative positions of
users and cloudlets can be very complex.

To implement this simulation, we used the OpenRTIST instrumented client and created an
AdvantEDGE network scenario that reflected the network topology and characteristics provided
by OEC carrier members, especially Vodafone and VaporIO. Using OpenRTIST means that the
results primarily reflect the single user interactive application case. The topology is shown in
Figure 13 and 4G LTE network and application characteristics are shown in Table 2.7

Measurement UE App
Wireless

Link
RAN

Metro
Core

Out of
Area
WAN

IXP Cloudlet App

Mean Latency Actual 3ms 5ms 5ms 35ms 1ms Actual
Jitter Actual 1ms 1ms 1ms 1ms 1ms Actual

Throughput Actual 1Gbps 1Gbps 1Gbps 1Gbps 1Gbps Actual
Packet Loss Actual 0 0 0 0 0 Actual

Table 2: Carrier Interexchange Simulation Characteristics

7For this simulation, thoughput and packet loss were set to values that simulated ideal conditions with no congestion
or loss.
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4.2.1 Distant IXP (Base Case)

With the baselining in Section 4.1 complete, we calibrated the Distant IXP simulation to align with
the commercial LTE environment. As shown in Figure 11, the commercial LTE RTT averages 237
ms. We were able to calibrate our simulation to this value by setting the out-of-area WAN latency
to 35ms (down from the 50ms estimate from our carrier advisors) and left the other characteristics
unchanged.

The RTT and FPS measurements for all four models are shown in Figure 14. As we would
expect from the baseline in Section 4.1, our Distant IXP simulation gives application RTT and FPS
performance below acceptable per our criteria above. From this data and for this application, we
can see that, the other models achieve acceptable application performance.

4.2.2 Metro Core and 3rd Party Metro IXP

The metro core model (Model 2) has two sub-cases. Case 2a places the IXP in the metro core near
the connection to the out-of-area WAN. This IXP location would be typical as metro interconnect
often occurs at the same physical location as carrier interconnect to the wide area internet. The
metro core case 2b places the IXP in the metro core near the connection between the RAN and the
metro core. The difference in the two cases is an incremental 5ms network latency between case
2b and case 2a. The 3rd party metro model (Model 4) is simulated with the same configuration as
case 2a.

Figure 14: IXP Simulation Application Results

4.2.3 Near RAN IXP

The near RAN (Model 3) assumes that the IXP is placed very near the edge of the RAN such that
the latency between the radio and cloudlet is less than 2ms. This model is the most expensive
case as IXPs and cloudlets would necessarily be widely distributed and the network infrastructure
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to create many distributed IXPs may be cost prohibitive. As seen in Figure 14, the incremental
value to this application over the metro core and 3rd party metro models is slight. There may be
applications (e.g., real time sensitive, safety critical IoT applications) where the added cost can be
justified.

4.3 Cloudlet Placement Simulation
As we discussed the carrier IXP challenges with our OEC partners, they raised a more general
question about placement of cloudlets in a single carrier’s network. Cloudlet placement nearer to
the user will, in theory, provide better user experience at a higher cost. To explore this question,
we adapted the approach in Section 4.2 to examine three possible cloudlet placement points shown
in Figure 15. The results of this analysis are shown in Figure 16. As can be seen, all placements

Figure 15: Cloudlet Placement in Mobile Networks

within the metro area give acceptable application performance.

Figure 16: Application Performance at Different Cloudlet Placements
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4.4 Mobile Network Characterization
One limitation of the IXP simulation in Section 4.2 is that it relies on network characteristics
estimated from the experience of our carrier partners and the end-to-end baselining measurements
in Section 4.1. It lacks detailed network topology and characteristics of the specific carrier
networks that are simulated. These details are generally accessible only to internal carrier teams
and are rarely shared across carriers. Accordingly, we used our best available assumptions and
estimates in Sections 4.2 and 4.3. In this section, we ran a simulation that begins to give some
insight in the nature of the local wireless network by analyzing data collected using the simulation
framework.

As in our application baselining exercise in Section 4.1, we configured the AdvantEDGE
platform to have no impact on the application by setting the emulated network to zero network
latency, jitter and packet loss and infinite throughput. We connected the UE to the local T-Mobile
or AT&T commercial LTE network then through a distant IXP to terminate locally on the Verizon
FIOS network. We could then use the measurements collected by the instrumented client and the
OpenCellid database [34] to characterize and visualize the local commercial network. Because this
configuration still transits through a distant IXP, the measured RTT and FPS are dominated by the
latency of that link. However, some insights can still be gained by studying the variation over time
and UE location.

Data was collected by driving through Pittsburgh’s East End around the Carnegie Mellon
campus. The data collected is intended to be instructive rather than definitive and is limited to
a single route on a single day with a specific client UE on a single commercial network. No
conclusive information can be derived about the network from this limited scenario however it
does show the possibilities inherent in the approach.

Figure 17 shows the route driven (blue dots) and the cell towers (orange triangles) that the UE
connected to during the route. The size of the cell tower icon indicates the peak received signal
strength from that tower. Orange lines show the connection to the cell tower for each measurement.

Some of the specific questions we sought to answer:
Question 1: Does UE received signal strength or distance from cell tower affect application

performance?, Figure 18 shows the application performance for variable signal strengths. A
linear regression produces an RTT R2 of 0.0112. We conclude, for this limited dataset, that
there appears to be no obvious connection between signal strength and application performance.
We were somewhat surprised by this finding since signal strength does directly affect channel
bandwidth. We can only conclude that the network was uncongested at the time of the test and
a larger sample across time and location might lead to a different result. Figure 19 shows the
application performance versus the distance of the UE from the cell tower. With an RTT R2 of
0.0554, there also appears to be no obvious connection between cell tower distance and application
performance. This is not a surprising result given the result of the signal strength experiment.

Question 2: Is there a difference in application performance when the UE is moving versus
stationary? During the route there were a number of locations where the vehicle was stationary.
A stationary location is defined as a location where more than 10 consecutive measurements were
taken. In our sample of 2028 locations, 23 were stationary and 2005 were moving. Using a
similar regression technique as above, there is no relationship between movement and application
performance (RTT R2 = 0.0044, FPS R2 = 0.0044).
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Figure 17: Route and Cell Towers

Figure 18: Application Metrics versus Cell Signal

Question 3: Do handoffs between cell towers impact application performance? During the
route, there were a total of 6 handoffs between towers and 2843 measurements taken while
connected to the same tower as the previous measurement. Figure 20 shows the application metrics
for measurements with and without handoffs. The mean RTT was 13% higher during handoff than
while remaining on a single tower. Results were also calculated using a handoff window including
two measurements before and after the actual handoff. In this case, the mean handoff RTT was
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Figure 19: Application Metrics versus Distance

Figure 20: Application Metrics at Handoffs

19% higher than the no handoff case. While this result comes from a small sample size, it would
appear that handoffs do cause a temporary loss in application performance.
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Figure 21: Walk Down Walnut Street Dashboard

4.5 Visualizing Virtual Scenarios
The other scenarios in this section focus on gathering simulation data for assessing the performance
of applications in the face of varying networks. While that is the primary use of the simulation
framework, we also have found a need to visualize scenarios in a way that makes the user
experience during a simulation more tangible. To accomplish this, we extended the framework
with GMapView [35] and Scrcpy [36] to simulate the movement of a specific UE between virtual
locations while viewing the UE experience and the actual location represented by the virtual
location. This visualization can best be experienced by viewing the video in [37] and the screenshot
in Figure 21. The visualization includes the application RTT and FPS, the simulated network
latency, a map of the virtual route, a video feed from the UE and a Google Streetview image of the
current virtual location.

5 Discussion and Conclusion
This report presented a simulation framework for mobile edge computing and applied that
framework to a set of simulation scenarios. The intent of this work was to show how simulation
can provide insights and conclusions to real mobile edge computing challenges and to present the
specific results of those scenarios. We do not present generalized conclusions from the results due
to the limitations of the simulations:

• The work was completed using a single application, OpenRTIST. While OpenRTIST is
an excellent representative of single user interactive applications, it does not adequately
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represent all applications of all classes. Future work should expand on the representation
with a particular focus on broadening to other application classes.

• The network characteristics used in the simulations were derived from real network
measurements provided by our carrier partners. However, this data was limited in scope
and, accordingly, simulations were run with simple scenarios. More complete simulations
would include a broader sampling of real network characteristics over time and network and
more complex mobility and characteristics scenarios.

• As they are for application developers, mobile networks are opaque for us. Our topology
constructs are accordingly relatively simplistic when compared to real networks. Future
work could benefit from access to a full real network topology and its corresponding
characteristics. Fully implementing a complex topology may also require enhancement to
the AdvantEDGE emulation platform to reflect the complexity.

• Our simulations reflect the typical structure and characteristics of a 4G LTE network. As
networks move to 5G, the new capabilities provided by 5G will impact both the simulations
and their results. For example, the introduction of mmWave technologies into networks will
dramatically change the latency and bandwidth characteristics and therefore the types of
applications that can achieve their minimum acceptability constraints. Future work should
encompass scenarios that represent the characteristics of 5G.

• For simplicity, our simulations were run with a single UE running a single application. Real
networks must support a multi-tenant configuration with many mobile UEs running diverse
applications simultaneously. Many users and applications will also increase the overall
network load and congestion thereby increasing the network latency, jitter and packet loss.
The simulation framework can support scenarios of this type but their design and execution
can be complex. For example, interactive applications usually require user interaction – a
trait which is difficult to scale into hundreds of UEs. Potentially, the simulation framework
could be extended to create more flexible automated UE “load generators”.[24] However,
that approach may lose the connection between the application user experience metrics and
the simulation.

Even with these limitations, some tentative conclusions emerge:

• Edge computing requires that cloudlets are located in the same metro/region as the
application users.

• Once regional cloudlets are deployed, networks and network IXPs must be engineered to
avoid UE to cloudlet paths outside of the region. Since cloudlets will often be hosted on
wired metro networks, regional IXPs will increase significantly in importance.

• However, once cloudlets are in the region, the marginal benefit to moving cloudlets close
to the user (e.g., to the cell tower) is smaller and may not justify cost. This conclusion,
however, depends on the value and requirements of the full set of edge applications to be
deployed. For example, edge games such as first person shooter and driving games that rely
on very fast user responses require very low and consistent RTT to be acceptable. Achieving
this will necessitate moving the edge closer to the gamer. IOT Sensor applications requiring
real-time or near real-time control responses will also likely need closer placements.
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[14] Teemu Kämäräinen et al. “A Measurement Study on Achieving Imperceptible Latency
in Mobile Cloud Gaming”. In: Proceedings of the 8th ACM on Multimedia Systems
Conference. ACM, June 2017. DOI: 10.1145/3083187.3083191. URL: https:
//doi.org/10.1145%2F3083187.3083191.

[15] Shanhe Yi et al. “LAVEA: Latency-Aware Video Analytics on Edge Computing Platform”.
In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing. SEC ’17. San
Jose, California: Association for Computing Machinery, 2017. ISBN: 9781450350877. DOI:
10.1145/3132211.3134459. URL: https://doi.org/10.1145/3132211.
3134459.
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