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Abstract
In most of the world’s democracies, policy decisions are primarily made by

elected political officials. However, under mounting dissatisfaction with represen-
tative government due to issues ranging from social inequality to public distrust, a
new proposal is taking off: to augment representative democracy with mechanisms
by which the public can directly participate in policymaking.

The guiding application of this thesis will be one particular model of participa-
tion, deliberative minipublics (DMs), though we will argue that our contributions
may apply to many models of direct participation. In a DM, a panel of citizens is
selected by lottery from the population; then, this panel convenes around a particular
policy issue to study background information, deliberate amongst themselves, and
then weigh in on the issue. DMs have been gaining momentum over the past decade,
and they are now being used at national and supranational levels, and are even being
integrated into representative governments.

Motivated by this application domain, we make the following main contribu-
tions: In Part I, we design algorithms for performing the random selection of DM
participants, a process known as sortition. Our sortition algorithms permit users
to make optimal trade-offs between descriptive representation and other desirable
properties conferred by randomness, and we characterize these tradeoffs using game
theory, optimization, and empirics. In Part II, we use a novel social choice the-
ory framework to investigate a notion of representation that departs from descriptive
representation in a key way: it accounts for the political reality that people may
be affected to widely varying degrees by any given policy decision. In Part III,
we study an important hypothesized impact of deliberation: increasing the extent to
which participants consider how others in their society may be affected by different
policies. In Part IV, we highlight how the enclosed research illustrates new ways to
combine tools from political science and computer science.
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0.1 Introduction

Democracy as a form of governance—despite its long-debated and evolving imperfections—remains
prized for its foundational principle: citizens should have the right to participate actively in gov-

erning their society. In democratic countries around the world, this philosophy tends to be imple-
mented via representative government, in which citizens elect representatives to make decisions
on their behalf and, in theory, in their interests. In recent decades, many have begun sounding
the alarm about a “crisis in democracy”, spurred by mounting evidence that many feel decreas-
ingly represented by, trusting in, and able to in�uence their governments [74, 168, 217, 282, 283].
Others might argue that the more enduring crisis is that, over the past centuries, many of the
world’s democratic powers have consistently under-served the interests of entire subsets of their
constituents, including indigenous populations, racial and ethnic minorities, people with disabil-
ities, and the unhoused (e.g., [20, 171, 202, 228, 236, 262]). Either perspective leads to the same
basic conclusion: there is a need to create more e�ective and inclusive access to governing power.

In this thesis, we focus on a proposed solution that is now gaining widespread momentum: aug-
menting representative democracy with processes that permit direct citizen participation in poli-
cymaking.1 Our aim will be to contribute tools that support the principled design, implementa-
tion, and proliferation of these processes.

To start, in Section 0.1.1 we will design from the ground up a hypothetical process for facilitating
direct participation in policymaking. Our goal here is not to build a perfect process, or even
survey all possible design choices. Rather, we aim to illustrate some of the major challenges
associated with involving citizens directly in policymaking, and to motivate the tools and ideas
we will study in response.

0.1.1 Facilitating Direct Participation, Hypothetically

We start from what might seem to many like the biggest hurdle: Do everyday people have the

expertise to make high-quality policy recommendations? If we imagine an average member of
the public being asked to recommend a policy under everyday conditions, a reasonable answer
might be No: there is signi�cant data supporting that people are susceptible to misinformation
and propaganda [271], polarized [265], and politically disengaged [73, 108].

Fortunately, we are not bound to everyday conditions. This the proposal of democratic deliber-

ation: to have people reason about politics through a structured discussion that is grounded in
evidence and reasoning.2 A growing community experts have high hopes for deliberation, see-
ing it as a way to facilitate high-quality political reasoning among everyday people even under
conditions of polarization, misinformation, and political distrust [3, 100, 123, 222]. We add this
tool to our hypothetical process so that prior to weighing in on what should be done, the citizens
weighing in will engage in informed deliberation.

1Wewill use “citizen” to refer to any constituent of a democracy, implying nothing about legal citizenship status.
2Underlying this simple de�nition, there is signi�cant research dedicated to the precise de�nition of deliberation

in a democratic context (e.g., [200]).
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Policy 
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Deliberation

Population

For all its potential bene�ts, democratic deliberation has the downside that it is time- and resource-
intensive: it often takes place over several days, in-person, and participants are necessarily com-
pensated and reimbursed. As a result, not everyone in the population can participate. In practice,
the solution is usually to choose a smaller group of citizens, which we will call a Panel, that
ultimately participates in the discussion.

As soon as we need to select a smaller panel from within the population, we encounter a second
major challenge: whose should be given a seat at the table? This challenge engages the concept
of representation, on which there is a rich scholarship investigating who can, and who should,
represent who? (e.g., [199, 229]). In many real-world decision-making contexts, it is popular
to aim for descriptive representation of the population — that is, proportional representation of
population subgroups — at least with respect to a prede�ned set of identities. We will adopt this
goal for now, though we will revisit it later.

Policy 
proposal

Deliberation

Panel
(Representative) 

Population

Finally, regardless of the notion of representation we want to ensure, we must decide: how should

we select our representative panel? Here, we take inspiration from a centuries-old example of di-
rect citizen participation: in ancient Athenian democracy, political representatives were selected
directly from the population by lottery—a concept known as sortition [272]. Randomly selec-
tion may seem unprincipled compared to, e.g., choosing citizens who are especially quali�ed by
some criteria. However, it is precisely this absence of reasons for which many advocate sortition,
arguing that a uniform lottery gives everyone a fair chance to participate; mitigates perverse
and �ltration mechanisms produced by elections; and as an added bonus, produces descriptive
representation [71].

Unfortunately, adding sortition to our process will be a bit less straightforward than running
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a uniform lottery: when participation is voluntary (as it typically is in models of direct demo-
cratic participation), those who are willing to partake tend to be highly skewed demographically
and ideologically compared to the underlying population. Under this circumstance, known as
selection bias, a uniform lottery will faithfully replicate this skew, failing to ensure the descrip-
tive representation we desire. We therefore must implement a random selection procedure that
strikes a desirable tradeo� between the representation we want, and the randomness that origi-
nally conferred sortition’s de�ning bene�ts. We punt, for now, on how to do this, as it will be a
central focus of this thesis.

Figure 1 depicts our resulting hypothetical process for facilitating direct citizen participation in
governance.

Policy 
proposal

Population

Deliberation

Panel

Random Selection

(Representative) 

Figure 1: Our hypothetical process for facilitating direct citizen participation in governance.

0.1.2 From a Hypothetical Process to Real Participation Models

Although this process is hypothetical, in developing it we had to posit solutions for challenges
that are somewhat fundamental to the task of facilitating direct participation in policymaking:
to ensure participants can make well-reasoned decisions, processes often need to be somewhat
intensive. When processes are intensive and the underlying population is large, it is often nec-
essary to choose only a subset of the public to participate. When we must choose a subset of the
public, we must make judgements about whose representation should be ensured, and how to
choose participants in a way that best serves the goals of direct participation.

Given the fundamental nature of these challenges, it is perhaps unsurprising that the process in
Figure 1 has many hallmarks in common with real participatory models being adopted around
the world:

– In participatory budgeting, a subset of citizens are appointed as budget delegates, and they con-
vene to review evidence and collectively decide on how to divide a public budget over candi-
date public-interest projects. Although budget delegates are not typically selected randomly,
many participatory budgeting resources reference the importance of representation among par-
ticipants, especially from communities that are marginalized in standard politics [223, 244, 255].
In many cases, delegates engage in deliberation or other similar modes of learning about and
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collaboratively weighing project alternatives [89, 192]. One guide even proposes deliberative par-
ticipatory budgeting, suggesting the use of sortition to select a representative deliberative body
[36]. Since 2013, participatory budgeting has been used to allocate billions of dollars (or other
units of currency) [16]. In 2019 alone, there were upwards of 11,000 participatory budgeting
events worldwide spanning 71 countries [89].

– In deliberative town halls, citizens have moderated many-on-one discussions with their elected
o�cials [211]. Deliberative town halls are built around goal of facilitating deliberative interaction
between constituents and o�cials [212]. While they are sometimes open to all members of the
community, in high-stakes applications with large populations, participants have been randomly
selected with measures to ensure descriptive representation [178]. Deliberative town halls, often
run through OSU’s Connecting to Congress initiative [13], were recently used as part of Chile’s
national e�ort to amend their constitution [8, 9], and this participation model is now being scaled
up through the online platform Prytaneum [15].

– In independent redistricting commissions, a group of voters is convened to draw the boundaries
of voting districts in a way that is hopefully more impartial than those produced through partisan
gerrymandering. It is often paramount that the members of these commissions are representative
on dimensions like political leaning; in some cases, the selection of participants involves random-
izing; and many times, the process of collaboratively drawing new maps can involve substantial
discussion [66, 245]. Independent redistricting commissions have been increasing in uptake over
the past few years, having been used recently to draw congressional districts in Michigan, New
York, Virginia, and Colorado [83].

– Finally, the participation model that perhaps most closely resembles Figure 1 is the deliberative
minipublic (DM). A DM proceeds much like our hypothetical model: a representative sample of
the public is chosen by lottery to serve on a panel. Then, this panel convenes around a policy issue
for several days, learning from experts, deliberating, and then �nally weighing in on what should
be done. DMs are actually an entire category of democratic paradigms, encompassing citizens’

assemblies, citizens’ panels, citizens’ juries, deliberative polls, and more.1 DMs constitute one of
themost rapidly-growingmodels of citizen participation globally, with hundreds having been run
around theworld in just the past decade [4, 225]. DMs have been used at the national level inmany
countries including Mongolia [1], South Korea [7], Ireland [169], France [2, 65], and Germany
[5]; they have even been used at the supranational scale (e.g., in the COP 26 Global Climate
Assembly [11]). In the past few years, several instances have begun charting a path toward formal
integration of deliberative minipublics into representative government. Citizens’ assemblies are
being integrated as permanent arms of governing bodies in major regions and cities, including
Ostbelgian [215], Madrid [29], and Brussels [6], and there is now a law in Mongolia requiring
deliberative polls before making certain kinds of constitutional amendments [1].

1The main distinction deliberative polls and many other DMs is how opinions are elicited post-deliberation:
deliberative polls end with an anonymous poll of participants [125], while many other DMs end with participants
collaboratively forming a policy proposal.
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0.2 Thesis Overview

In this thesis, we will consider each of the three key components depicted in Figure 1: in Part I,
we study procedures for randomly sampling a representative panel when there is selection bias;
in Part II, we consider the implications of descriptive representation and explore an alternative;
and in Part III, we examine potential impacts of deliberation on participants’ political reasoning.
Our work on these tools will be guided primarily by the application of deliberative minipublics,
and sometimes citizens’ assemblies in particular. However, given these tools’ relevance to even
just the participation models that already exist—and the fact that new ones are emerging all the
time [12, 14, 91, 289]—we hope the ideas in this thesis can be applied to many other participatory
processes as the landscape of citizen participation evolves.

Across Parts I - III, this thesis contains eight completed original papers [32, 43, 128, 130, 131, 134,
135], each in their own chapter.1 Each of these Parts is laid out as follows:

– A background chapter outlines the problems we will solve, their context and motivation,
modeling notions that apply across chapters, and an overview of the chapters themselves.

– Several research chapters each enclose the body of a single original paper.

– An ongoing and future work chapter discusses limitations of the existing work and
some of the follow-up questions needed to address them.

Part IV is the Discussion, and Part V contains the appendices of all enclosed papers.

0.3 A Final Comment on Motivation

The primary motivation for the enclosed research, as discussed above, is advancing and support-
ing deliberative minipublics and other emerging models of direct citizen engagement. However,
it is important to acknowledge that the political potential of these processes is yet unclear: mul-
tiple of these paradigms have so far shown mixed impacts [167, 220, 244, 267], and in many cases
there remains the question of how to balance giving adequate authority to citizens’ input while
also maintaining robustness against bad actors [268, 284].

I tend to interpret these concerns as an indication that direct participation is a necessarily complex
solution to a complex problem, and while it may have great potential to work, a lot of research is
required to get there. The uncertainty of the present, however, requires us to address the question:
what does this research contribute, in the event that direct citizen participation does not ultimately

�nd a path to integration into representative government?

1It omits four additional published papers [88, 132, 133, 279], two of which relate to topics in this thesis but were
deemed insu�ciently relevant to democratic participation to be included. The �rst of these studies voting axiom
satisfaction under a smoothed model of preferences, delineating classes of axioms and voting rules by whether semi-
random noise is enough to escape axiomatic impossibilities [132]. The second covers a student-designed discussion-
based course on diversity and inclusion in computer science [133], the discussion portion of which was in�uenced
by—and has in�uenced—my thinking around democratic deliberation.
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Fortunately, the ultimate implementation of these democratic innovations is not required for their
study to be worthwhile. As we will illustrate throughout this thesis, the process of trying to un-
derstand these innovations o�ers new angles from which to study concepts that are fundamental
to how citizens engage with democracy in general. Moreover, direct participation models o�er a
uniquely good settings in which to study these concepts: �rst, they tend to bring people together
in a location for long periods, allowing more in-depth inquiry of people’s political knowledge,
opinions, and patterns of political reasoning. Second, these processes are not yet entrenched in
institutions, and the resulting �uidity of their design makes them fertile ground for experimen-
tation. Several ideas in this thesis will make use of – or propose new ways for others to make use
of – these features for future research.
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Part I

Sortition: Representation by Random

Representatives
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1
Background

1.0.1 Why Sortition (In Theory)?

There is a large body of political science scholarship arguing for the use of sortition over other
methods for selecting political representatives. Here, we overview three of the arguments consid-
ered must centrally in this literature. We then distill these arguments into four technical ideals,
numbered (i)-(iv), which we will pursue algorithmically throughout Part I. The arguments we
discuss here were originally laid out in 1989 by Fredrik Engelsted [112] and have since been ex-
panded upon by several scholars [98, 124, 259? ]. Importantly, this body of literature conceives of
sortition as a uniform lottery over the population, so for the purpose of interpreting the following
arguments, we will adopt this conception for now.

The �rst argument in favor of sortition, articulated here by Carson and Martin, is that “those
chosen [by sortition] are far more likely to be a typical cross section of the population, with
the same sort of distribution according to sex, age, ethnicity, income, occupation, and so forth”
[71]. Here, Carson and Martin refer to the fact that a uniform lottery will in expectation (and ex

post, with high probability) choose a panel that is proportionally representative of all population
cross-sections. Fishkin makes a similar argument, speci�cally with regards to how sortition can
support the legitimacy of deliberative democracy: “We can only know [what the people would
think] if we start the deliberations with a good microcosm, as representative as possible in both
demographics and attitudes.” [124] We distill these points into the following ideal:

(i) Descriptive Representation: The panel should be (at least nearly) proportionally represen-

tative of all population cross-sections.

A second popular argument for sortition has to do with its equal treatment of potential partici-
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pants. Carson and Martin talk about the importance of equality of opportunity: “[Sortition] gives
everyone an equal chance of being chosen, whereas in elections, factors such as funding, appear-
ance, speaking ability, threats, and promises play a big role” [? ]. Peter Stone o�ers a allocative
justice as a normative argument in favor of this type of equality: “Allocative justice...is to treat
public o�ce as a type of good to which citizens might have various claims...Random selection
is...appropriate...when all citizens have equal claims to that o�ce” [259]. We summarize these
these arguments as the following ideal:

(ii) Fairness: All people should have an equal opportunity to participate.

A third bene�t of sortition is its ability to protected against subversion. As put by Oliver Dowlen,
“[Sortition’s] primary political potential is its ability to protect the public process of selection
from subversion by those who might...use it for their own private or partisan ends” [98]. To distill
technically well-de�ned ideals from this argument, we �rst ask: who might want to subvert the
sortition process to their own ends? Peter Stone identi�es two such parties: the organizers who
select the panel, and the potential panel participants themselves [259].

According to Stone, sortition avoids potential subversion by the former group because “If [the
agent who must select o�cials] selects randomly, then she must act on the basis of no reasons,
and therefore cannot be in�uenced by corrupting or dominating interests even if she would like
to be” [259]. However, we note a caveat to this argument: it relies on the fact that the public can
con�rm the selection was random. Otherwise, what is to stop the organizers from hand-picking
a panel behind the scenes, and then claiming the selection was random? This can be avoided if
there is transparency:

(iii) Transparency: Observers of the panel selection process should be able to con�rm their prob-

ability of selection using only simple intuition about probability.

Fortunately, transparency is not hard to achieve when participants are selected by uniform lot-
tery: one can just run a public lottery using simple physical randomness (e.g., drawing balls from
bins).

The second entity who may want to subvert the sortition process are the participants themselves:
they might engage dishonestly in the selection process in order to stack the panel with people
supporting their interests. For reasons that will soon become clear, we will be concerned with one
particular method of dishonesty: misrepresenting one’s attributes during the selection process
(and/or convincing others to do so). Of course, because a uniform lottery treats everyone equally
and independently, it ensures that this issue avoided. To capture this potential issue, we de�ne
the ideal of manipulation-robustness:

(iv) Manipulation-Robustness: Potential participants should not be able to a�ect their own
or others’ probabilities of selection by misrepresenting their identities in the selection pro-
cess.
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1.0.2 Sortition in Practice

Today, one of the most prominent (and growing!) use cases of sortition is to choose participants
of deliberative minipublics. The practical reality of this use case, however, di�ers in a crucial way
from the ideal. In idealized sortition, it is assumed that any member of the population selected by
uniform lottery will participate. In contrast, organizers of modern deliberativeminipublics cannot
compel participants to participate, and must rely on people to opt in. The typical rate of opting
in among the general population is around 2-5% [128], and as we will illustrate with data shortly,
those who agree to participate are usually highly demographically skewed. A simple uniform
lottery would replicate this skew, producing a panel that is far from descriptively representative.
Seeing this as an important issue for public and normative legitimacy, practitioners—at least of
citizens’ assemblies, which will be the primary application of Part I—perform random selection
via the following two-stage process (depicted in Figure 1.1).

Population
Pool

Panel

Invitation 
recipients Stage 1 Stage 2

Figure 1.1: The two-stage panel selection process commonly used to select citizens’ assemblies in
practice. The dashed lines through the pool represent the fact that, the while the panel is designed
to resemble the population, the pool may be very skewed demographically and ideologically due
to selection bias.

Stage 1 (Uniform Lottery Invitations). Practitioners invite participants uniformly randomly
from the underlying population (usually via either letters or phone calls). Those who receive
an invitation and respond a�rmatively form the Pool of volunteers. Upon volunteering (i.e.,
joining the pool), all pool members must �ll out a survey about their demographic and ideological
attributes, which will be used in Stage 2 to ensure that the panel is representative.

Stage 2 (Panel Selection). The Panel is selected from within the pool. In practice, this panel
must satisfy two main requirements deterministically:

• Panel size. The panel must contain exactly : members, where : is chosen by the panel
organizers. This requirement arises from budgetary constraints, as practitionersmust cover
some per-participant cost.

• Representative quotas. The panel must satisfy upper and lower quotas on a set of pre-
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de�ned attributes, again chosen by practitioners. More precisely, these quotas are struc-
tured in the following way:

Let � be a set of attribute categories, which we will call features; for example, in a UK-
wide assembly on climate change in 2020 (our running example for the remainder of this
section), � included the features education level, gender, age, climate concern level, race/eth-

nicity, geography 1, and geography 2 [232]. For each feature 5 ∈ � , practitioners de�ne a set
of mutually exclusive and exhaustive values+5 , which we call feature-values. For example,
in the UK climate assembly, +climate concern level contained the values Not concerned, not very
concerned, fairly concerned, very concerned.

Upper and lower quotas are imposed at the feature-value level, denoted respectively as
ℓ5 ,E , D 5 ,E for feature-value 5 , E . Take the example of the feature-value gender, female: lower
and upper quotas of ℓ64=34A,5 4<0;4 = 8 and D64=34A,5 4<0;4 = 12 would mean that the panel
would be required to contain between 8 and 12 women. Typically, upper and lower quotas
are imposed on all feature-values in

⋃
5 ∈� +5 , and enforce that each feature-value-de�ned

group receives a number of panel seats near-proportional to their share of the population.
For example, if women comprise 49% of the population, then quotas on a panel of size
: = 100 might require between ℓ5 ,E = 48 and D 5 ,E = 50 women.1

Let # denote the pool, let 5 (8) ∈ +5 denote a pool member 8’s value for feature 5 , and let �+ :=⋃
5 ∈� +5 denote the set of feature-values on which quotas are imposed. I(·) will be the indicator

function. Then, an instance of the panel problem is de�ned by four quantities, #, (ℓ5 ,E |5 , E ∈
�+ ), (D 5 ,E |5 , E ∈ �+ ), : . In any given instance, the set of valid panels is{

 :  ⊆ # ∧ | | = : ∧
∑
8∈ 
I (5 (8) = E) ∈ [ℓ5 ,E , D 5 ,E ] for all 5 , E ∈ �+

}
.

An instance of the panel selection problem is solved by a selection algorithm, which is any pro-
cedure (mapping) that intakes an instance of the panel selection task and outputs a valid panel,
provided at least one valid panel exists.

1.1 Our Task: Sortition Subject to Quotas, Under Selection Bias

Notably absent from this discussion so far has been any discussion of randomness, the hallmark of
sortition. As the previous section suggests, in our version of sortition, we must randomize within
the quotas. This restriction already precludes one aspect of idealized sortition: we can no longer
independently sample the panel members. The question is then whether we can still retain the

1Occasionally, practitioners impose quotas on combinations of attributes as well, though of course the extent
to which this is possible is limited by the combinatorial explosion of attribute combinations relative to the small
panel. To implement quotas on arbitrary combinations of attributes within this model, one would just make each
combination they care about a feature-value. For example, if youwanted to enforce representation on all intersections
of age and height, you would de�ne the feature 5 =age × height with values+age × height = { young & short, young &
tall, old & short, old & tall }.
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other, perhaps more de�ning property of idealized sortition: giving people equal probability of

selection. Unfortunately, in the practical case, the answer is No. This is because there is selection
bias in who opts into the pool from the population, meaning that the pool is far from represen-
tative of the population on the dimensions on which we impose quotas. To illustrate this point,
Figure 1.2 shows the compositions of the Population, Pool and Panel in the UK Climate Assembly
for two features: 5 = education level whose values we re +43D20C8>= ;4E4; = {0/1, 2/3, 4+} where
higher levels correspond to more education, and 5 = climate concern level, whose values were
+climate concern level = {Not concerned, not very concerned, fairly concerned, very concerned}. In the
�gure below, we group the two lowest levels of climate concern.

Population

Pool

Panel

0/1

2/3
4+

Education Level

Population Pool Panel

Not / not very concerned
Fairly concerned
Very concerned

Climate Concern Level

52%33%15%

67%28%

Population Pool Panel

36% 37%

27%

10%

27%

63%

15%

33%

52%

67%

28%

5%

Figure 1.2: Selection bias in the UK Climate Assembly across values of two features, education
level and climate concern level. Percentages are omitted above Panel bars because by design, they
are essentially the same as those for the Population.

To see the selection bias in Figure 1.2, we must compare the composition of the population versus
the pool. In making this comparison, note that because invitations to participate were sent out to
members of the population uniformly at random, the pool is e�ectively a uniform random sample
of people who would opt if invited. Examining the features of education and climate concern level

as in Figure 1.2, we see that less educated groups and those who are less concerned about climate
change are dramatically underrepresented among those who opted into the pool.

To understand the implications of this selection bias for the panel selection problem, we now
compare the pool versus the panel. Comparing pool members with education level 0/1 versus
those with level 4+, notice that there are way more panel seats per person reserved for the former
group: there are about 1/12 as many pool members in the former group, and they are entitled to
about 1.5x as many panel seats. They key consequence is that as a result, those with education

level 0/1 must be selected for the panel with higher probability, on average, than those with education

level 4+. This example illustrates a very general impossibility that grounds our subsequent work:

Key Impossibility: Whenwemust satisfy representative quotas under the condition of selection
bias, we cannot select all pool members with equal probability.

Things now seem a bit bleak: in practical sortition, we cannot give people equal probabilities of
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selection, and thus cannot achieve the de�ning property of a uniform lottery. Our last hope is
that despite these impossibilities, we can still achieve ideals (i)-(iv) — i.e., the reasons for using
sortition at all — to at least a reasonable degree. This will be the goal of Part I, whose chapters we
now overview. For most of this part, we will consider the �rst ideal, (i) Descriptive Representation,
to be automatically satis�ed by the requirement of quotas. We examine the extent to which this
an oversimpli�cation in our ongoing and future work (Chapter 7).

Remark 1.1.1 (TheCase ofMandatoryParticipation). Onemight argue that these algorithms—
designed around the challenge of selection bias—would become obsolete if participation in direct
democratic processes became required. The assumption implicit in this argument is that requir-
ing participation would eliminate selection bias and restore the viability of a uniform lottery; we
now examine this assumption via the case study of U.S. jury selection, in which participation is
legally required upon being summoned—except if the person meets one of the many criteria for

excused absence, commonly including being above a certain age, being a student, or having a
dependent child (precise regulations vary by jurisdiction, e.g., [138, 235]). These exemptions are
necessary to avoid placing undue burdens on citizens, and similar exemptions would undoubtedly
be needed if mandating participation in deliberative minipublics were mandated. Unsurprisingly,
these exemptions—along other issues with people simply failing to appear—result in documented
issues with certain populations being underrepresented among those who report for jury duty
[270], posing a concern for the equity of our justice system’s verdicts [26]. Based on this case
study, it seems unlikely that a participation mandate—or any other intervention—could com-
pletely eliminate selection bias in deliberative minipublics, and moreover, failing to account for
what bias remains would likely lead to systematic exclusion of certain groups. Our algorithms
can ensure representation in the presence of selection bias, while retaining key properties of uni-
form lotteries to the greatest extent possible. Of course, as we will discuss in this thesis, e�orts to
decrease selection bias are extremely important; our algorithms align with this goal, improving
in performance as selection bias decreases in severity.

1.2 Overview of Chapters

We begin by posing the question of whether our Key Impossibility above is really so fundamen-
tally problematic. That impossibility says that we cannot give all pool members an equal chance
of selection; however, it seems like to imitate idealized sortition, we should care about giving
all population members an equal chance of participating, rather than all pool members. We now
consider the implications of this distinction for the most directly-related ideal, (ii) Fairness. We
make the distinction explicit by delineating two possible interpretations of fairness:

Fairness of outcome. All population members should have the same probability of participating.

Fairness of opportunity. All population members should have the same probability of receiving
the opportunity to participate.

To unpack these notions, we �rst de�ne the central object of Part I: a pool member’s selection
probability is their probability of being chosen for the panel. These two notions of fairness, then,
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di�er fundamentally in what they mean for the ideal selection probabilities. The �rst notion
amounts to giving all population members an equal probability of ending up on the panel, which
would be achieved by choosing each pool member with a probability inversely proportional to
their chance of opting into the pool. The second notion amounts giving equal selection probability
to all pool members, because the �rst stage is a uniform lottery, which gives everyone the same
probability of being invited; then, to maintain equal opportunity to participate, we need to give
all those who opted in an equal chance of being chosen for the panel in the second stage.

For reasons that will become apparent throughout Part I, we will focus primarily on the second
notion of Fairness. However, the �rst notion a priori perhaps seems more theoretically natural,
so in Chapter 2, we explore what it would take to design a selection algorithm that achieves it.

Chapter 2: A Selection Algorithm for Explicitly Reversing Self-Selection Bias

Based on Neutralizing Self-Selection Bias in Sampling for Sortition [128].
In this chapter, we design a selection algorithm that achieves the �rst notion of (ii) Fairness
via the intuition above: if each population member 8 opts into the pool (conditional on being
invited) with probability @8 , we want to choose them with probability proportional to 1/@8 in
the second stage. This will give all population members an equal probability of ending up on
the panel end-to-end, regardless of their opt-in probability.

The key technical challenges here are (1) knowing individuals’ unobservable opt-in probabil-
ities @8 , so that our algorithm can set probabilities correctly; (2) determining conditions under
which we can set all pool members’ selection probabilities proportionally 1/@8 such that they
remain in [0, 1]; and �nally, (3) designing a procedure for turning these probabilities into
a �nal panel that a. preserves these probabilities and b. is deterministically guaranteed to
satisfy descriptively representative quotas.

Our approach to challenge (1) begins with the observation that, by comparing the compo-
sition of the pool to that of the population, one can make inferences about which types of
people tend to participate. For example, if the population is 50% women but the pool is only
20% women, you might infer that being a woman decreases one’s chance of participating. We
formalize this intuition by using these data to �t a model predicting the @8 ’s via maximum
likelihood estimation. Addressing challenge (2) requires an assumption that no participation
probability is too low, and our guarantees depend on the extent to which this assumption
holds. Finally, we address challenge (3) by designing a dependent rounding procedure based
on a celebrated discrepancy theorem by Beck and Fiala [40]. This dependent rounding pro-
cedure preserves the 1/@8-proportional selection probabilities, while also guaranteeing that
the �nal panel does not deviate from perfect proportional representation by more than ±|� |.

While the selection algorithm presented in Chapter 2 is theoretically appealing, we argue that
a main takeaway of this chapter is that trying to explicitly reverse self-selection bias in practice

is fraught with risks. First, the levels of Descriptive Representation and Fairness achieved by this
method hinge on one’s ability to accurately estimate pool members’ individual opt-in probabil-
ities. In practice, this estimation must be done by comparing the pool versus the population
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composition, which makes estimations fundamentally susceptible to errors for several reasons:
(1) the population data serves as the “control group”, but it truly contains many people whomight
have opted in if invited, so we have no data on exclusively people who decline to participate; (2)
the available population data may be limited, especially at the level of combinations of attributes;1
and (3) practitioners typically know very few feature-values about pool members, so predictions
would likely be based on only some of the features that are crucial to the decision to opt-in.

Even if we could perfectly estimate pool members’ opt-in probabilities, our rounding-based ap-
proach does not give strong enough guarantees on ex-post representation: in contrast to the
custom quotas practitioners prefer to use, this rounding method may relax representation by |� |,
which in practice typically ranges from 4-8; for groups that are small (which is not uncommon in
real instances), this relaxation can dramatically weaken or even eliminate any guarantee of their
inclusion. While it might be possible to drop this bound to

√
|� | based on a conjecture by Beck

and Fiala [40], it seems unlikely that it could be improved further due to a lower bound previously
proven by Olson and Spencer [221]. In principle, one could altogether abandon the approach of
�rst determining selection probabilities and then rounding them, though there is not a clear al-
ternative approach that would reverse the selection bias while meaningfully circumventing this
issue.

For the remainder of Part I, we will for now abandon the goal of Fairness of outcome, and instead
pursue Fairness of opportunity, which we will henceforth refer to as Fairness. Our goal will
now be to design selection algorithms that achieve the ideals outlined above—(ii) Fairness, (iii)
Transparency, and (iv) Manipulation Robustness,—to the greatest degree possible subject to custom
practitioner-de�ned quotas (standing in for (i) Descriptive Representation).

Our approach begins from the observation that these ideals were originally conferred by giving
people equal selection probabilities. Given that this is impossible by our Key Impossibility, we
pursue the next best goal: to make pool members’ selection probabilities as equal as possible,
subject to the quotas. Solving this technical task is the purpose of Chapter 3, whose primary
contribution is an algorithmic framework that will serve as the basis of all later chapters.

Chapter 3. An Algorithmic Framework for Maximal Equality.
Based on Fair Algorithms for Selecting Citizens’ Assemblies [130].
Before designing any algorithms of its own, this paper’s �rst contribution was to evaluate
the selection algorithms that were being used in practice at the time. These pre-existing
algorithms were greedy heuristics whose main goal was to �nd any valid panel, randomizing
in ad-hoc fashion where possible along the way (this was a reasonable �rst goal, given that
�nding any single valid panel is NP-hard [130]). In our empirical evaluation, we found that a
popular such algorithm—whose probabilistic properties had never been characterized—was
prone to giving a large portion of the pool near-zero chance of selection, posing a signi�cant

1For example, the European Social Survey data (the public population-level data corresponding to the UK climate
assembly) is missing 335 of the 762 unique feature-value combinations that appear in the pool.
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issue from the perspective of Fairness.

In response, our goal was to design a selection algorithm that made pool members selection
probabilities maximally equal, subject to practitioner-de�ned quotas. A natural question, of
course, is how one should measure “maximally equal”. The algorithms we present in this
paper will permit the use of any convex function that intakes a vector of selection proba-
bilities and outputs a real-numbered measurement of their level of equality—a class which
encompasses well-known notions likeMaximin (no one receives too little selection probabil-
ity), Nash Welfare (the geometric product of selection probabilities), or the Gini Coe�cient (a
popular measure of inequality).

The algorithmic framework we present, at a high level, �rst computes a distribution over
valid panels, which we call a panel distribution, and then samples the �nal panel from that
distribution. Note that by taking this approach, we ensure that the resulting panel is valid.
Then, since any panel distribution implies selection probabilitiesa, our task boils down to
�nding an optimal panel distribution—i.e., one that makes pool members’ selection probabil-
ities maximally equal.

The major technical challenge in computing an optimal panel distribution is that a priori, any
optimal distribution might need to place selection probability on all valid panels, of which
in practice there are astronomically many. Fortunately, we show that due to our equality
objective being a function of just the selection probabilities (a very low-dimensional object
relative to the space of all valid panels), by Caratheodory’s theorem there must exist an opti-
mal solution over only very few panels. Unfortunately, this theorem does not tell us how to
�nd such a small-support distribution.

Our main contribution is an algorithmic framework for �nding an optimal panel distribution
over a practicable (but not theoretically bounded, in the worst case) number of panels. To
understand this algorithm, it is useful to envision the primal program: we have one variable
per every possible valid panel, corresponding to the probability we will place on that panel.
Our goal is to �nd values of these (astronomically many) variables that optimize our convex
objective function, which captures the equality of the selection probabilities implied by our
panel distribution. The framework solves this massive program by solving its dual, using col-
umn generation to iteratively add panels to the support (corresponding to adding constraints
to the dual) until a stopping condition is reached. As we prove, this stopping condition is
su�cient for the existence of a KKT-condition-satisfying solution to the full dual program,
corresponding to the current randomization being optimal among all randomizations over
all valid panels.

aGiven a panel distribution, the selection probability of any pool member is simply the probability of draw-
ing a panel containing them.

With this algorithmic framework in hand, the question is then, How can we best use it to serve

our ideals of Fairness, Manipulation-Robustness, and Transparency? This is the main question that
will occupy us for the rest of Part I.
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In the paper from Chapter 3, we instantiated our framework with an equality objective chosen
to promote Fairness. To translate this ideal into a mathematical objective, we began from the
allocative justice perspective [259] that the chance to hold public o�ce is a good to which people
are entitled to their fair share. Accordingly, we de�ned “maximal fairness” according to the objec-
tive Maximin, which when optimized maximizes the minimum selection probability received by
any pool member, corresponding to ensuring that no one receives too much less than their share.
Our implementation (of a slight re�nement of this objective called Leximin) is publicly available
on Panelot.org and on the widely-used selection tool of the Sortition Foundation, a major orga-
nizer of citizens’ assemblies [163]. Since 2020, this algorithm has been used to select high-pro�le
assemblies, including the Global Climate Assembly in 2020, Michigan’s statewide assembly on
COVID-19 in 2021, Scotland’s national climate assembly in 2022, Germany’s National Assembly
on Nutrition in 2023, and Ostbelgien’s permanent assembly in 2023.

An additional contribution of Chapter 3 is a proposal for an algorithmic add-on targeting the goal
of Transparency. In its standard implementation, our algorithmic framework from Chapter 3
is not very transparent; it computes a complicated distribution over a few thousand panels, and
then samples this distribution. In principle, one could publish this distribution, and then sample
it by publicly running code that generates a random number. Needless to say (but we will say it
anyway), this would be virtually impossible for the average person to understand. To remediate
this, we proposed the following approach:

1. Round the optimal panel distribution produced by our algorithmic framework so that all
probabilities in the panel distribution are multiples of 1/1000 (or some other integer de-
nominator of the user’s choice), while ensuring it remains a valid distribution.

2. Number these probability blocs from 000...999. Note that each bloc corresponds to a panel
(with multiple blocs potentially corresponding to the same panel). Now, one has a list of
1000 panels (with duplicates).

3. Uniformly sample this list of panels to choose the �nal panel. By construction, this corre-
sponds to sampling the rounded distribution from step 1.

This method is transparent in an important sense: if the list of panels and their (anonymized)
members can be made public—which in practice, it has been [130]—this uniform lottery over
panels allows the public to observe their own and other pool members’ selection probabilities
by the same simple reasoning required to understand that by buying more lottery tickets, you
increase your chance of winning the lottery.1

Although Chapter 3 proposed this method, it left out an important open question: Does the round-
ing of the optimal panel distribution signi�cantly compromise its optimality? In Chapter 4, we
prove that it does not.

1If someone sees that they are on 20 out of 1000 panels, they immediately see that their chance of selection is
20/1000 = 2%.
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Chapter 4. Transparency.
Based on Fair Sortition Made Transparent [131].
In this paper, we propose several algorithms for rounding the panel distribution output by the
algorithm in Chapter 3. For each rounding algorithm, we upper-bound the maximum extent
that it can change any individual selection probability in order to quantize any panel distri-
bution. Though we extend these bounds to bound the optimality loss for only two equality
objectives—Maximin and Nash Welfare—our bounds on changes to individual selection prob-
abilities are general enough to bound optimality loss for most reasonable equality objectives.
Finally, we empirically evaluate these rounding algorithms in real citizens’ assembly datasets.
This analysis identi�es a simple and fast rounding procedure that almost exactly retains the
optimality of the original panel distribution across instances. We conclude that Transparency
comes at essentially no cost to maximal equality in practice, and at a practically bounded cost
in theory.

Since its proposal, this rounding method has been used in conjunction with our algorithmic
framework to select multiple citizens’ assemblies, including aforementioned assemblies in Michi-
gan and Germany.

We now turn our attention to the ideal ofManipulation Robustness. In an unfortunate turn of
events, our study of this ideal will reveal some bad news about the equality objectives we have
studied so far.

Chapter 5. Manipulation Robustness
Based on Manipulation-Robust Citizens’ Assembly Selection [135].
In Chapter 3, translating the conceptual ideal of Fairness to a mathematical equality objective
to plug into our algorithmic framework was relatively straightforward. However, the analo-
gous transformation forManipulation Robustness is less straightforward: to understand what
equality objective minimizes incentives for pool members to misreport their features, we �rst
need to de�ne a game theoretic model. Instead of de�ning just one such model, we de�ne
three, each corresponding to di�erent potential motive for misreporting one’s features: to
increase one’s own selection probability, decrease someone else’s, or to steal seats—that is,
you might impersonate another group so that if you are selected, you will have taken a panel
seat reserved for that group.

Our �rst �nding is quite troubling: we show that Maximin and Nash Welfare, the two ob-
jectives we’ve studied for their prioritization of Fairness, are arbitrarily manipulable—that is,
they permit a pool member, by misreporting their features, to gain selection probability 1.
This is a worst-case result, but we show that this �nding also holds in real datasets, even for
very rudimentary manipulations requiring no knowledge of the algorithm.

The most striking aspect of this impossibility is that it persists even as the pool grows arbitrar-
ily large relative to the panel.a To see why this is surprising, let = be the pool size; as = grows
relative to : , the average selection probability :/= should go down. Then, it seems that there
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is less probability available per person, so shouldn’t everyone’s selection probability decrease,
both pre- and post-manipulation, thereby decreasing the amount of probability that can be
gained by manipulating? The key to understanding this impossibility is the intuition peo-
ple can misreport combinations of features that do not exist in the pool, and which can make
them “unicorns” to the objectivesMaximin and NashWelfare—both which almost exclusively
care about making sure the lowest probability is not too low.b Here, someone is a “unicorn”
when giving them more selection probability makes it feasible to raise the lowest selection
probabilities. When someone misreports a combination of features that makes them a uni-
corn, both Maximin and Nash Welfare may pile probability onto them to the greatest extent
possible, bringing their selection probability up to 1.

Based on the intuition that high selection probabilities are a problem formanipulation robust-
ness, it should not come as a surprise that the equality objective Minimax, which minimizes
the maximum selection probability, provably minimizes manipulation incentives.c We show
that the manipulation incentives induced byMinimax decline at a rate of$ (:/=) as = grows
relative to : , which is the optimal possible rate for any selection algorithm.

a“Growing the pool” just means sending out more letters in the �rst stage, so the composition of the pool
(and thus the level of selection bias) remains relatively constant.

bMaximin does this by de�nition. NashWelfare, by being the product of selection probabilities, is relatively
una�ected by probabilities near 1, but is extremely a�ected by even a single probability near 0.

cIn the paper, we do not strictly study the objective Minimax, but rather the ℓ? norms of selection proba-
bilities, which e�ectively converge to Minimax as ? → ∞ (a regime we characterize). In subsequent work, we
will consider Minimax in place of the ℓ∞ norm.

Remark 1.2.1 (Revisiting Our Approach From Chapter 2). With Chapters 4 and 5 under our belt,
we can now identify another reason why the approach taken in Chapter 2—to make pool mem-
bers’ probabilities inversely proportional to their chance of opting in—is practically dicey. The
key reason is that this method will make pool members’ probabilities widely di�erent—far more
di�erent, potentially, than algorithms maximizing their equality. This is a problem for Trans-
parency: if we make selection probabilities visible to the public and they are extremely disparate,
this may create the sentiment that the process is very unfair (and the estimates upon which these
probabilities are based are hard to soundly and transparently justify). Second, these disparate
problems are an even bigger problem for Manipulation Robustness: the higher the probability
someone can receive based on their features, the stronger the incentives for manipulation.

We have now studied Fairness, Transparency, and Manipulation Robustness; in our �nal research
chapter in Part I, we will study the extent to which we can achieve these ideals simultaneously.
If we can achieve this, we will complete our original goal: to design a sortition algorithm that
achieves ideals (i)-(iv) to the greatest extent possible given the non-ideal conditions of real-world
sortition.

Chapter 6. Fairness, Manipulation-Robustness, and Transparency
Based on Fair, Manipulation-Robust, and Transparent Sortition [31].
Setting aside Transparency for a moment, the previous chapters reveal a potential tradeo�
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between Fairness andManipulation Robustness: low probabilities are a problem for the former
(essentially by de�nition), and high probabilities are a problem for the latter. No equality
objectivewe have studied achieves anywhere close to both ideals: Maximin/Leximin andNash
Welfare control only low probabilities, making them very fair but arbitrarily manipulable; by
controlling only high probabilities,Minimax is optimally manipulation-robust but arbitrarily
unfair, giving many pool members zero chance of selection.

In this chapter, we propose a new equality objective, called Goldilocks, that aims to achieve
these ideals simultaneously by controlling both high and low selection probabilities, and
which can be optimized via the framework in Chapter 3. The fundamental challenge in con-
trolling high and low probabilities simultaneously is that manipulating coalitions, by misre-
porting, can a�ect the quality of available lotteries by reporting features between which there
must be fundamental gaps between the maximum and minimum probability. Thus, in order
to analyze our algorithm, we must �rst characterize the extent to manipulation can damage
the space of feasible solutions, and thenwe can analyze the ability of our algorithm to recover
good solutions despite this.

After circumventing these challenges, we give theoretical bounds (many of them tight) on
the extent to which Goldilocks achieves Fairness and Manipulation Robustness, �nding that
in a very important sense, Goldilocks recovers among the best available solutions in a given
instance. We then extend these theoretical bounds to the case where the output of Goldilocks
is transformed to achieve a third goal, Transparency. Our empirical analysis of Goldilocks in
real data is evenmore promising: we �nd that this objective achieves nearly instance-optimal
minimum and maximum selection probabilities simultaneously in most real instances— an
outcome not even guaranteed to be possible for any algorithm.

Although there is always room for future work here, in many respects, Goldilocks closes the ques-
tion of whether we can simultaneously achieve three key ideals of sortition— Fairness, Manipu-

lation Robustness, and Transparency—and contributes a practicable algorithm for doing so. Now
that we better understand what is possible in lottery design regarding ideals (ii)-(iv), in ongoing
and future work, we can circle back to the very �rst ideal—(i) Descriptive Representation—and
consider the implications of how quotas are used to enforce it.

Chapter 7: Ongoing and Future Work. In our �rst ongoing project, we are trying to
help practitioners set more principled quotas. Currently, practitioners hand-design quotas
without insight into how small changes in the quotas may change the lottery — changes
that are di�cult to predict, given the combinatorial relationship between the quotas and the
space of possible lotteries. To close this gap, we are designing a deployable tool for �ne-tuning
quotas that are optimized to permit better lotteries. Empirically, our preliminary results show
that small changes in quotas can permit signi�cantly more uniform lotteries.

Sometimes our quota-tuning method relaxes a quota, e.g., reserving 22 instead of 24 seats for
women, in favor of a far more uniform lottery. Often, we think of loosening quotas as de�ni-
tively harming representation; however, expanding our conception of representation beyond
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just the few features protected by quotas, it is not actually clear: a more uniform lottery can
also support representation by ensuring that no group unprotected by quotas is systematically
given low selection probability, plus it can decrease incentives for representation-corrupting
manipulation. We are investigating this ambiguity by studying how di�erent trade-o�s be-
tween quota tightness and lottery uniformity a�ects representation of unprotected groups and
the diversity of the resulting panel.

Additional ongoing and future work aims to alleviate other bottlenecks in the selection pro-
cess, including the need to select alternate panel members to handle dropout.
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2
A Selection Algorithm for Explicitly

Reversing Selection Bias
Neutralizing Self-Selection Bias in Sampling for Sortition [128].

Bailey Flanigan, Paul Gölz, Anupam Gupta, and Ariel D. Procaccia.
NeurIPS 2020.

2.1 Introduction

What if political decisions were made not by elected politicians but by a randomly selected panel
of citizens? This is the core idea behind sortition, a political system originating in the Athenian
democracy of the 5th century BC [272]. A sortition panel is a randomly selected set of individuals
who are appointed to make a decision on behalf of population from which they were drawn.
Ideally, sortition panels are selected via uniform samplingwithout replacement— that is, if a panel
of size : is selected from a population of size =, then each member of the population has a :/=
probability of being selected. This system o�ers appealing fairness properties for both individuals
and subgroups of the population: First, each individual knows that she has the same probability of
being selected as anyone else, which assures her an equal say in decision making. The resulting
panel is also, in expectation, proportionally representative to all groups in the population: if a
group comprises G% of the population, they will in expectation comprise G% of the panel as well.
In fact, if : is large enough, concentration of measure makes it likely that even a group’s ex

post share of the panel will be close to G%. Both properties stand in contrast to the status quo
of electoral democracy, in which the equal in�uence of individuals and the fair participation of
minority groups are often questioned.

Due to the evident fairness properties of selecting decision makers randomly, sortition has seen
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a recent surge in popularity around the world. Over the past year, we have spoken with several
nonpro�t organizations whose role it is to sample and facilitate sortition panels [75]. One of these
nonpro�ts, the Sortition Foundation, has organized more than 20 panels in about the past year.1
Recent high-pro�le examples of sortition include the Irish Citizens’ Assembly,2 which led to Ire-
land’s legalization of abortion in 2018, and the founding of the �rst permanent sortition chamber
of government,3 which occurred in a regional parliament in the German-speaking community of
Belgium in 2019.

The fairness properties of sortition are often presented as we have described them— in the setting
where panels are selected from the whole population via uniform sampling without replacement.
As we have learned from practitioners, however, this sampling approach is not applicable in
practice due to limited participation: typically, only between 2 and 5% of citizens are willing to
participate in the panel when contacted. Moreover, those who do participate exhibit self-selection
bias, i.e., they are not representative of the population, but rather skew toward certain groupswith
certain features.

To address these issues, sortition practitioners introduce additional steps into the sampling pro-
cess. Initially, they send a large number of invitation letters to a random subset of the popula-
tion. If the recipients are willing to participate in a panel, they can opt into a pool of volunteers.
Ultimately, the panel of size : is sampled from the pool. Naturally, the pool is unlikely to be rep-
resentative of the population, which means that uniformly sampling from the pool would yield
panels whose demographic composition is unrepresentative of that of the population. To prevent
grossly unrepresentative panels, many practitioners impose quotas on groups based on orthog-
onal demographic features such as gender, age, or residence inside the country. These quotas
ensure that the ex-post number of panel members belonging to such a group lies within a nar-
row interval around the proportional share. Since it is hard to construct panels satisfying a set
of quotas, practitioners typically sample using greedy heuristics. While these heuristics tend to
be successful at �nding valid panels, the probability with which an individual is selected is not
controlled in a principled way.

Since individual selection probabilities are not deliberately chosen, the current panel selection
procedure gives up most of the fairness guarantees associated with sortition via sampling from
the whole population. Where uniform sampling selects each person with equal probability :/=,
currently-used greedy algorithms do not even guarantee a minimum selection probability for
members of the pool, let alone fair “end-to-end” probabilities with which members of the popula-
tion will end up on the panel. As a further downside, the greedy algorithms we have seen being
applied may need many attempts to produce a valid panel and might take exponential time to
produce a valid panel even if one exists.

1https://www.youtube.com/watch?v=hz2d_8eBEKg at 8:53.
2https://2016-2018.citizensassembly.ie/en/
3https://www.politico.eu/article/belgium-democratic-experiment-citizens-assembly/
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2.1.1 Our Techniqes and Results

The main contribution of this paper is a more principled sampling algorithm that, even in the
setting of limited participation, retains the individual fairness of sampling without replacement
while allowing the deterministic satisfaction of quotas. In particular, our algorithm satis�es the
following desiderata:

– End-to-End Fairness: The algorithm selects the panel via a process such that all members of
the population appear on the panel with probability asymptotically close to :/=. This also
implies that all groups in the population have near-proportional expected representation.

– Deterministic Quota Satisfaction: The selected panel satis�es certain upper and lower quotas
enforcing approximate representation for a set of speci�ed features.

– Computational E�ciency: The algorithm returns a valid panel (or fails) in polynomial time.

Deterministic quota satisfaction is a guarantee of group fairness, while end-to-end fairness, which
recovers most of the ex ante guarantees of sampling without replacement, can be seen primarily
as a guarantee of individual fairness. The phrase end-to-end refers to the fact that we are fair
to individuals with respect to their probabilities of going from population to panel, across the
intermediate steps of being invited, opting into the pool, and being selected for the panel.

The key challenge in satisfying these desiderata is self-selection bias, which can result in the pool
being totally unrepresentative of the population. In the worst case, the pool can be so skewed
that it contains no representative panel — in fact, the pool might not even contain : members.
As a result, no algorithm can produce a valid panel from every possible pool. However, we are
able to give an algorithm that succeeds with high probability, under weak assumptions mainly
relating the number of invitation letters sent out to : and the minimum participation probability
over all agents.

Crucially, any sampling algorithm that gives (near-)equal selection probability to all members
of the population must reverse the self-selection bias occurring in the formation of the pool. We
formalize this self-selection bias by assuming that each agent 8 in the population agrees to join the
pool with some positive participation probability @8 when invited. If these @8 values are known
for all members of the pool, our sampling algorithm can use them to neutralize self-selection bias.
To do so, our algorithm selects agent 8 for the panel with a probability (close to) proportional to
1/@8 , conditioned on 8 being in the pool. This compensates for agents’ di�ering likelihoods of
entering the pool, thereby giving all agents an equal end-to-end probability. On a given pool,
the algorithm assigns marginal selection probabilities to every agent in the pool. Then, to �nd a
distribution over valid panels that implements these marginals, the algorithm randomly rounds
a linear program using techniques based on discrepancy theory. Since our approach aims for a
fair distribution of valid panels rather than just a single panel, we can give probabilistic fairness
guarantees.

As wementioned, our theoretical and algorithmic results take the probabilities@8 of all pool mem-
bers 8 as given in the input. While these values are not observed in practice, we then show that
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they can be estimated from available data. We cannot directly train a classi�er predicting partic-
ipation, however, because practitioners collect data only on those who do join the pool, yielding
only positively labeled data. In place of a negatively labeled control group, we use publicly avail-
able survey data, which is unlabeled (i.e., includes no information on whether its members would
have joined the pool). To learn in this more challenging setting, we use techniques from con-

taminated controls, which combine the pool data with the unlabeled sample of the population to
learn a predictive model for agents’ participation probabilities. Finally, we use data from a real-
world sortition panel to show that plausible participation probabilities can be learned and that the
algorithm produces panels that are close to proportional across features. For a synthetic popula-
tion produced by extrapolating the real data, we show that our algorithm obtains fair end-to-end
probabilities.

2.1.2 Related Work

Our work is broadly related to existing literature on fairness in the areas of machine learning,
statistics, and social choice. Through the lens of fair machine learning, our quotas can be seen
as enforcing approximate statistical fairness for protected groups, and our near-equal selection
probability as a guarantee on individual fairness. Achieving simultaneous group- and individual-
level fairness is a commonly discussed goal in fair machine learning [49, 151, 166], but one that
has proven somewhat elusive. To satisfy fairness constraints on orthogonal protected groups,
we draw upon techniques from discrepancy theory [34, 40], which we hope to be more widely
applicable in this area.

Our paper addresses self-selection bias, which is routinely faced in statistics and usually addressed
by sample reweighting. Indeed, our sampling algorithm can be seen as a way of reweighting the
pool members under the constraint that weights must correspond to the marginal probabilities
of a random distribution. While reweighting is typically done by the simpler methods of post-
strati�cation, calibration [165], and sometimes regression [233], we use the more powerful tool
of learning with contaminated controls [185, 277] to determine weights on a more �ne-grained
level.

Our paper can also be seen as a part of a broader movement towards statistical approaches in
social choice [195, 197, 252]. The problem of selecting a representative sortition panel can be seen
as a fair division problem, in which : indivisible copies of a scarce resource must be randomly
allocated such that an approximate version of the proportionality axiom is imposed. Our group
fairness guarantees closely resemble the goal of apportionment, in which seats on a legislature
are allocated to districts or parties such that each district is proportionally represented within
upper and lower quotas [33, 58, 157].

So far, only few papers in computer science and statistics directly address sortition [44, 246, 274].
Only one of them [44] considers, like us, how to sample a representative sortition panel. Un-
fortunately, their strati�ed sampling algorithm assumes that all agents are willing to participate,
which, as we address in this paper, does not hold in practice.

25



2.2 Model

Agents. Let # be a set of = agents, constituting the underlying population. Let � be a set
of features, where feature 5 ∈ � is a function 5 : # → +5 , mapping the agents to a set +5
of possible values of feature 5 . For example, for the feature gender, we could have +gender =

{male, female, non-binary}. Let the feature-value pairs be ⋃
5 ∈� {(5 , E) | E ∈ +5 }. In our example,

the feature-value pairs are (gender,male), (gender, female), and (gender, non-binary). Denote the
number of agents with a particular feature-value pair (5 , E) by = 5 ,E .

Each agent 8 ∈ # is described by her feature vector � (8) := {(5 , 5 (8)) | 5 ∈ � }, the set
of all feature-value pairs pertaining to this agent. Building on the example instance, suppose
we add the feature education-level, so � = {gender, education level}. If education level can take
on the values college and no college, a college-educated woman would have the feature-vector
{(gender, female), (education level, college)}.

Panel Selection Process. Before starting the selection process, organizers of a sortition panel
must commit to the panel’s parameters. First, they must choose the number of recipients A who
will be invited to potentially join the panel, and the required panel size : . Moreover, they must
choose a set of features � and values {+5 }5 ∈� over which quotas will be imposed. Finally, for all
feature-value pairs (5 , E), they must choose a lower quota ℓ5 ,E and an upper quota D 5 ,E , implying
that the eventual panel of : agents must contain at least ℓ5 ,E and at most D 5 ,E agents with value
E for feature 5 . Once these parameters are �xed, the panel selection process proceeds in three
steps:

population

STEP 1−−−−−−→ recipients

STEP 2−−−−−−→ pool

STEP 3−−−−−−→ panel

In STEP1, the organizer of the panel sends out A letters, inviting a subset of the population— sampled
with equal probability and without replacement— to volunteer for serving on the panel. We refer
to the random set of agents who receive these letters asRecipients . Only the agents inRecipients
will have the opportunity to advance in the process toward being on the panel.

In STEP 2, each letter recipient may respond a�rmatively to the invitation, thereby opting into
the pool of agents from which the panel will be chosen. These agents form the random set Pool ,
de�ned as the set of agents who received a letter and agreed to serve on the panel if ultimately
chosen. We assume that each agent 8 joins the pool with some participation probability @8 > 0. Let
@∗ be the lowest value of @8 across all agents 8 ∈ # . A key parameter of an instance is U B @∗ A/: ,
which measures how large the number of recipients is relative to the other parameters. Larger
values of U will allow us the �exibility to satisfy stricter quotas.

In STEP 3, the panel organizer runs a sampling algorithm, which selects the panel from the pool.
This panel, denoted as the set Panel , must be of size : and satisfy the predetermined quotas for
all feature-value pairs. The sampling algorithm may also fail without producing a panel.

We consider the �rst two steps of the process to be fully prescribed. The focus of this paper is
to develop a sampling algorithm for the third step that satis�es the three desiderata listed in the
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introduction: end-to-end fairness, deterministic quota satisfaction, and computational e�ciency.

2.3 Sampling Algorithm

In this section, we give an algorithm which ensures, under natural assumptions, that every agent
ends up on the panel with probability at least

(
1 − > (1)

)
:/= as = goes to in�nity.1 Furthermore,

the panels produced by this algorithm satisfy non-trivial quotas, which ensure that the ex-post
representation of each feature-value pair cannot be too far from being proportional.

Our algorithm proceeds in two phases: I. assignment of marginals, during which the algorithm
assigns a marginal selection probability to every agent in the pool, and II. rounding of marginals,
in which the marginals are dependently rounded to 0/1 values, the agents’ indicators of being
chosen for the panel. As we discussed previously, our algorithm succeeds only with high proba-
bility, rather than deterministically; it may fail in phase I if the desired marginals do not satisfy
certain conditions. We refer to pools on which our algorithm succeeds as good pools. A good pool,
to be de�ned precisely later, is one that is highly representative of the population— that is, its
size and the prevalence of all feature values within it are close to their respective expected values.
We leave the behavior of our algorithm on bad pools unspeci�ed: while the algorithm may try its
utmost on these pools, we give no guarantees in these cases, so the probability of representation
guaranteed to each agent must come only from good pools and valid panels. Fortunately, under
reasonable conditions, we show that the pool will be good with high probability. When the pool
is good, our algorithm always succeeds, meaning that our algorithm is successful overall with
high probability.

Our algorithm satis�es the following theorem, guaranteeing close-to-equal end-to-end selection
probabilities for all members of the population as well as the satisfaction of quotas.

Theorem 2.3.1. Suppose that U → ∞ and = 5 ,E ≥ =/: for all feature-value pairs 5 , E . Consider a

sampling algorithm that, on a good pool, selects a random panel, Panel , via the randomized version

of lemma 2.3.3, and else does not return a panel. This process satis�es, for all 8 in the population, that

P[8 ∈ Panel ] ≥ (1 − > (1)) :/=.

All panels produced by this process satisfy the quotas ℓ5 ,E B (1 − U−.49) : = 5 ,E/= − |� | and D 5 ,E B
(1 + U−.49) : = 5 ,E/= + |� | for all feature-value pairs 5 , E .

The guarantees of the theorem grow stronger as the parameter U = @∗ A/: tends toward in�nity,
i.e., as the number A of invitations grows. Note that, since A ≤ =, this assumption requires that
@∗ � :/=. We defer all proofs to appendix A.2 and discuss the preconditions in appendix A.2.1.

2.3.1 Algorithm Part I: Assignment of Marginals

To a�ord equal probability of panel membership to each agent 8 , we would like to select agent
8 with probability inversely proportional to her probability @8 of being in the pool. For ease of

1We allow : ≥ 1 and A ≥ 1 to vary arbitrarily in = and assume that the feature-value pairs are �xed.
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notation, let 08 B 1/@8 for all 8 . Speci�cally, for agent 8 , we want P[8 ∈ Panel | 8 ∈ Pool ]
to be proportional to 08 . Achieving this exactly is tricky, however, because each agent’s selection
probability from pool % , call it c8,% , must depend on those of all other agents in the pool, since their
marginals must add to the panel size : . Thus, instead of reasoning about an agent’s probability
across all possible pools at once, we take the simpler route of setting agents’ selection probabilities
for each pool separately, guaranteeing that P[8 ∈ Panel | 8 ∈ %] is proportional to 08 across all
members 8 of a good pool % . For any good pool % , we select each agent 8 ∈ % for the panel with
probability

c8,% B : 08/
∑
9∈% 0 9 .

Note that this choice ensures that the marginals always sum up to : .

De�nition of Good Pools. For this choice of marginals to be reasonable and useful for giving
end-to-end guarantees, the pool % must satisfy three conditions, whose satisfaction de�nes a good
pool % . First, the marginals do not make much sense unless all c8,% lie in [0, 1]:

0 ≤ c8,% ≤ 1 ∀8 ∈ % . (2.1)

Second, the marginals summed up over all pool members of a feature-value pair 5 , E should not
deviate too far from the proportional share of the pair:

(1 − U−.49) : = 5 ,E/= ≤
∑
8∈% :5 (8)=E c8,% ≤ (1 + U−.49) : = 5 ,E/= ∀5 , E . (2.2)

Third, we also require that the term
∑
8∈% 08 is not much larger than E[∑8∈Pool 08] = A , which

ensures that the c8,% do not become to small:∑
8∈% 08 ≤ A/(1 − U−.49) . (2.3)

Under the assumptions of our theorem, pools are good with high probability, even if we condition
on any agent 8 being in the pool:

Lemma 2.3.2. Suppose that U →∞ and = 5 ,E ≥ =/: for all 5 , E . Then, for all agents 8 ∈ Population ,
P[Pool is good | 8 ∈ Pool ] → 1.

Note that only constraint (2.1) prevents Phase II of the algorithm from running; the other two
constraints just make the resulting distribution less useful for our proofs. In practice, if it is
possible to rescale the c8,% and cap them at 1 such that their sum is : , running phase II on these
marginals seems reasonable.

2.3.2 Algorithm Part II: Rounding of Marginals

The proof of Theorem 2.3.1 now hinges on our ability to implement the chosen c8,% for a good
pool % as marginals of a distribution over panels. This phase can be expressed in the language of
randomized dependent rounding: we need to de�ne random variables-8 = 1{8 ∈ Panel } for each
8 ∈ Pool such thatE[-8] = c8,% . This di�culty of this task stems from the ex-post requirements on
the pool, which require that

∑
8 -8 = : and that

∑
8:5 (8)=E -8 is close to : = 5 ,E/= for all feature-value
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pairs 5 , E . While o�-the-shelf dependent rounding [78] can guarantee the marginals and the sum-
to-: constraint, it cannot simultaneously ensure small deviations in terms of the representation
of all 5 , E .

Our algorithmuses an iterative rounding procedure based on a celebrated theorem byBeck and Fi-
ala [40]. We sketch here how to obtain a deterministic rounding satisfying the ex-post constraints;
the argument can be randomized using results by Bansal [34] or via column generation (Ap-
pendix A.2.4).1 The iterated rounding procedure manages a variable G8 ∈ [0, 1] for each 8 ∈ Pool ,
which is initialized as c8,% . As the G8 are repeatedly updated, more of them are �xed as either 0 or
1 until the G8 ultimately correspond to indicator variables of a panel. Throughout the rounding
procedure, it is preserved that

∑
8 G8 =

∑
8 c8,% = : , and the equalities

∑
8:5 (8)=E G8 =

∑
8:5 (8)=E c8,%

are preserved until at most |� | variables G8 in the sum are yet to be �xed. As a result, the �nal
panel has exactly : members, and the number of members from a feature-value pair 5 , E is at least∑
8:5 (8)=E c8,% − |� | ≥ (1 − U−.49) : = 5 ,E/= − |� | (symmetrically for the upper bound).2 As we show

in appendix A.2.4,

Lemma 2.3.3. There is a polynomial-time sampling algorithm that, given a good pool % , produces

a random panel Panel such that (1) P[8 ∈ Panel ] = c8,% for all 8 ∈ % , (2) |Panel | = : , and (3)∑
8:5 (8)=E c8,% − |� | ≤ |{8 ∈ Panel | 5 (8) = E}| ≤

∑
8:5 (8)=E c8,% + |� |.

Our main theorem follows from a simple argument combining Lemmas 2.3.2 and 2.3.3 (Ap-
pendix A.2.5).

While the statement of theorem 2.3.1 is asymptotic in the growth of U , the same proof gives
bounds on the end-to-end probabilities for �nite values of U . If one wants bounds for a speci�c
instance, however, bounds uniquely in terms of U tend to be loose, and one might want to relax
Condition (2.2) of a good pool in exchange for more equal end-to-end probabilities. In this case,
plugging the speci�c values of =, A, :, @∗, = 5 ,E into the proof allows to make better trade-o�s and
to extract sharper bounds.

2.4 Learning Participation Probabilities

The algorithm presented in the previous section relies on knowing @8 for all agents 8 in the pool.
While these @8 are not directly observed, we can estimate them from data available to practition-
ers.

First, we assume that an agent 8’s participation probability @8 is a function of her feature vector
� (8). Furthermore, we assume that 8 makes her decision to participate through a speci�c genera-
tive model known as simple independent action [119, as cited in [280]]. First, she �ips a coin with

1Bansal [34] gives a black-box polynomial-time method for randomizing our rounding procedure. We found
column-generation-based algorithms to be faster in practice, with guarantees that are at least as tight.

2Observe that our Beck-Fiala-based rounding procedure only increases the looseness of the quotas by a constant
additive term beyond the losses to concentration. The concentration properties of standard dependent randomized
rounding do not guarantee such a small gap with high probability. Moreover, our bound does not directly depend
on the number of quotas (i.e., twice the number of feature-value pairs) but only depends on the number of features,
which are often much fewer.
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probability V0 of landing on heads. Then, she �ips a coin for each feature 5 ∈ � , where her coin
pertaining to 5 lands on heads with probability V 5 ,5 (8) . She participates in the pool if and only if
all coins she �ips land on heads, leading to the following functional dependency:

@8 = V0
∏

5 ∈� V 5 ,5 (8) .

We think of 1− V 5 ,E as the probability that a reason speci�c to the feature-value pair 5 , E prevents
the agent from participating, and of 1− V0 as the baseline probability of her not participating for
reasons independent of her features. The simple independent action model assumes that these
reasons occur independently between features, and that the agent participates i� none of the
reasons occur.

If we had a representative sample of agents— say, the recipients of the invitation letters— labeled
according to whether they decided participate (“positive”) or not (“negative”), learning the pa-
rameters V would be straightforward. However, sortition practitioners only have access to the
features of those who enter the pool, and not of those who never respond. Without a control
group, it is impossible to distinguish a feature that is prevalent in the population and associ-
ated with low participation rate from a rare feature associated with a high participation rate.
Thankfully, we can use additional information: in place of a negatively-labeled control group, we
use a background sample—a dataset containing the features for a uniform sample of agents, but
without labels indicating whether they would participate. Since this control group contains both
positives and negatives, this setting is known as contaminated controls. A �nal piece of informa-
tion we use for learning is the fraction @ B |Pool |/A , which estimates the mean participation
probability across the population. In other applications with contaminated controls, including @
in the estimation increased model identi�ability [277].

To learn our model, we apply methods for maximum likelihood estimation (MLE) with contami-
nated controls introduced by Lancaster and Imbens [185]. By reformulating the simple indepen-
dent action model in terms of the logarithms of the V parameters, their estimation (with a �xed
value of @) reduces to maximizing a concave function.

Theorem 2.4.1. The log-likelihood function for the simple independent action model under con-

taminated controls is concave in the model parameters.

By this theorem, proven in Appendix A.3, we can directly and e�ciently estimate V . Logistic
models, by contrast, require more involved techniques for e�cient estimation [277].

2.5 Experiments

Data. We validate our @8 estimation and sampling algorithm on pool data from Climate Assembly

UK,1 a national-level sortition panel organized by the Sortition Foundation in 2020. The panel
consisted of : = 110 many UK residents aged 16 and above. The Sortition Foundation invited all
members of 30 000 randomly selected households, which reached an estimated A = 60 000 eligible

1https://www.climateassembly.uk/
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Legend: proportional no. seats expectated no. seats range in no. seats over all panels in distribution

0 10 20 30 40 50 60 70 80 90 100 110

Number of seats (out of 110)

Rural

Urban

Level 4 and above

Level 2-3 or other

Level 1 and below

60+

45-59

30-44

16-29

Female

Male
Gender

Age

Education

Urban/Rural

0 10 20 30 40 50 60 70 80 90 100 110

Number of seats (out of 110)

BAME

White

Northern Ireland

Scotland

Wales

South West

South East

London

East of England

West Midlands

East Midlands

Yorkshire/Humber

North West

North East

Ethnicity

Region

Figure 2.1: Expected and realized numbers of panel seats our algorithm gives each feature-value
pair in the Climate Assembly pool.

participants.1 Of these letter recipients, 1 715 participated in the pool,2 corresponding to a mean
participation probability of @ ≈ 2.9%. The feature-value pairs used for this panel can be read o�
the axis of �g. 2.1. We omit an additional feature climate concern level in ourmain analysis because
only 4 members of the pool have the value not at all concerned, whereas this feature-value pair’s
proportional number of panel seats is 6.5. To allow for proportional representation of groups with
such low participation rates, A should have been chosen to be much larger. We believe that the
merits of our algorithm can be better observed in parameter ranges in which proportionality can
be achieved. For the background sample, we used the 2016 European Social Survey [216], which
contains 1,915 eligible individuals, all with features and values matching those from the panel.
Our implementation is based on PyTorch and Gurobi, runs on consumer hardware, and its code
is available on github. Appendix A.4 contains details on Climate Assembly UK, data processing,
the implementation, and further experiments (including the climate concern feature).

Estimation of mV Parameters. We �nd that the baseline probability of participation is V0 =

8.8%. Our V 5 ,E estimates suggest that (from strongest to weakest e�ect) highly educated, older,
urban, male, and non-white agents participate at higher rates. These trends re�ect these groups’
respective levels of representation in the pool compared to the underlying population, suggesting
that our estimated V values �t our data well. Di�erent values of the remaining feature, region
of residence, seem to have heterogeneous e�ects on participation, where being a resident of the
South West gives substantially increased likelihood of participation compared to other areas.
The lowest participation probability of any agent in the pool, according to these estimates, is
@∗ = 0.78%, implying that U ≈ 4.25. See Appendix A.4.4 for detailed estimation results and
validation.

1Note that every person in the population has equal probability (30 000/#households) of being invited. We
ignore correlations between members of the same household.

2Excluding 12 participants with gender “other” as no equivalent value is present in the background data.
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Running the Sampling Algorithm on the Pool. The estimated @8 allow us to run our algo-
rithm on the Climate Assembly pool and thereby study its fairness properties for non-asymptotic
input sizes. We �nd that the Climate Assembly pool is good relative to our @8 estimates, i.e., that
it satis�es eqs. (2.1) to (2.3). As displayed in �g. 2.1, the marginals produced by Phase I of our
algorithm give each feature-value pair 5 , E an expected number of seats,

∑
8∈%,5 (8)=E c8,% , within

one seat of its proportional share of the panel, : = 5 ,E/=. By lemma 2.3.3, Phase II of our algo-
rithm then may produce panels from these marginals in which 5 , E receives up to |� | = 6 fewer
or more seats than its expected number. However, as the black bars in �g. 2.1 show, the actual
number of seats received by any 5 , E across any panel produced by our algorithm on this input
never deviates from its expectation by more than 4 seats. As a result, while theorem 2.3.1 only
implies lower quotas of .51: = 5 ,E/= − |� | and upper quotas of 1.49: = 5 ,E/= + |� | for this instance,
the shares of seats our algorithm produces lie in the much narrower range : = 5 ,E/= ± 5 (and even
: = 5 ,E/= ± 3 for 18 out of 25 feature-value pairs). This suggests that, while the quotas guaranteed
by our theoretical results are looser than the quotas typically set by practitioners, our algorithm
will often produce substantially better ex-post representation than required by the quotas.

End-to-End Probabilities. In the previous experiments, we were only able to argue about the
algorithm’s behavior on a single pool. To validate our guarantees on individual end-to-end proba-
bilities, we construct a synthetic population of size 60 million by duplicating the ESS participants,
assuming our estimated @8 as their true participation probabilities. Then, for various values of A ,
we sample a large number of pools. By computing c8,% values for all agents 8 in each pool, we
can estimate each agent’s end-to-end probability of ending up on the panel. Crucially, we assume
that our algorithm does not produce any panel for bad pools, analogously to theorem 2.3.1. As
shown in the following graph, for A = 60 000 (as was used in Climate Assembly UK), all agents
in our synthetic population, across the full range of @8 , receive probability within .1:/= of :/=
(averaged over 100 000 random pools):

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

.5 k/n

k/n

1.5 k/n

end -to-end
probability

qi

That these end-to-end probabilities are so close to :/= also implies that bad pools are exceedingly
rare for this value of A . As we show in appendix A.4.6, we see essentially the same behavior for
values of A down to roughly 15 000, when U ≈ 1. For even lower A , most pools are bad, so end-to-
end probabilities are close to zero under our premise that no panels are produced from bad pools.

To demonstrate that our algorithm’s theoretical guarantees lead to realized improvements in in-
dividual fairness over the state-of-the-art, we re-run the experiment above, this time using the
Sortition Foundation’s greedy algorithm to select a panel from each generated pool. Since their
algorithm requires explicit quotas as input, we set the lower and upper quotas for each feature-
value group to be the �oor and ceiling of that group’s proportional share of seats. This is a popular
way of setting quotas in current practice.
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The results of this experiment show that the individual end-to-end probabilities generated by the
currently-used greedy algorithm range from below 0.5:/= up to 1.3:/=. In comparison to the
end-to-end probabilities generated by our algorithm, those generated by the greedy algorithm
are substantially skewed, and tend to disadvantage individuals with either low or high participa-
tion probabilities. One might argue that the comparison between our algorithm and the greedy is
not quite fair, since the greedy algorithm is required to satisfy stronger quotas. However, looser
quotas do not improve the behavior of the greedy algorithm; they simply make it behave more
similarly to uniform sampling from the pool, which further disadvantages agents with low par-
ticipation probability (for details, see appendix A.4.5).

Taken together, these results illustrate that, although greedy algorithms like the one we examined
achieve proportional representation of a few pre-speci�ed groups via quotas, they do not achieve
fairness to individuals or to groups unprotected by quotas. Compared to the naive solution of
uniform sampling from the pool, greedily striving for quota satisfaction does lead to more equal
end-to-end probabilities, as pool members with underrepresented features are more likely to be
selected for the panel than pool members with overrepresented features. However, this e�ect
does not neutralize self-selection bias when there are multiple features, even when selection bias
acts through the independent-action model as in our simulated population. Indeed, in this exper-
iment, the greedy algorithm insu�ciently boosts the probabilities of agents in the intersection of
multiple low-participation groups (the agents with lowest @8 ), while also too heavily dampening
the selection probability of those in the intersection of multiple high-participation groups (with
highest @8 ). These observations illustrate the need for panel selection algorithms that explicitly
control individual probabilities.

2.6 Discussion

In a model in which agents stochastically decide whether to participate, our algorithm guarantees
similar end-to-end probabilities to all members of the population. Arguably, an agent’s decision
to participate when invited might not be random, but rather deterministically predetermined.

From the point of view of such an agent 8 , does our algorithm, based on a model that doesn’t
accurately describe her (and her peers’) behavior, still grant her individual fairness? If 8 deter-
ministically participates, the answer is yes (if not, of course she cannot be guaranteed anything).
To see why, �rst observe that, insofar as it concerns 8’s chance of ending up on the panel, all other
agents might as well participate randomly.1 Indeed, from agent 8’s perspective, the process looks

1Fix a group of agents who, assuming the stochastic model, will participate if invited with probability @. Then,
sampling letter recipients from this set of agents in the stochastic model is practically equivalent to sampling recip-
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like the stochastic process where every other agent 9 participates with probability @ 9 , where 8
herself always participates, and where the algorithm erroneously assumes that 8 joins only with
some probability @8 . Therefore, the pool is still good with high probability conditioned on 8 being
in it, as argued in lemma 2.3.2. Even if the algorithm knew that @8 = 1, 8’s end-to-end probability
would be at least

(
1 − > (1)

)
:/=, and the fact that the algorithm underestimates her @8 only in-

creases her probability of being selected from the pool. It follows that 8’s end-to-end probability
in this setting still must be at least around :/=.

Thus, in a deterministic model of participation, our individual guarantees are reminiscent of the
axiom of population monotonicity in fair division: If the whole population always participated

when invited, every agent would reach the panel with probability :/=. The fact that some agents do

not participate cannot (up to lower-order terms) decrease the selection probabilities for those who do.

ients from this group in the deterministic model, if a @ fraction of the group deterministically participate.
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3
A Framework of Sortition Algorithms

Fair Algorithms for Selecting Citizens Assemblies [130].
Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, & Ariel D. Procaccia.

Nature, 2021.

This exposition is adapted from the slightly modi�ed version of this paper enclosed in [152].

3.1 Introduction

In representative democracies, political representatives are usually selected by election. However,
over the last 35 years, an alternative selection method has been gaining traction among politi-
cal scientists [71, 87, 90] and practitioners [126, 203, 222, 225]: sortition, the random selection of
representatives from the population. The chosen representatives form a panel, commonly called
a citizens’ assembly, which convenes to deliberate on a policy question. Citizens’ assemblies are
now being administered by around 50 organizations in over 25 countries[92], and just one of these
organizations, the Sortition Foundation in the UK, recruited 29 panels in 2020. While many citi-
zens’ assemblies are initiated by civil-society organizations, [71, 87, 90, 92, 126, 203, 222, 225] they
are also increasingly being commissioned by public authorities on municipal, regional, national,
and supranational levels [222]. In fact, since 2019, multiple regional parliaments in Belgium and
the Council of Paris have internally established permanent sortition bodies [137, 215]. Citizens’
assemblies’ growing utilization by governments is giving their decisions a more direct path to
policy impact. For example, two recent citizens’ assemblies commissioned by Ireland’s national
legislature led to the legalization of same-sex marriage and abortion [169].

Ideally, a citizens’ assembly selected via sortition acts as a microcosm of society: its participants
are representative of the population, and thus its deliberation simulates the entire population
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convening “under conditions where it can really consider competing arguments and get its ques-
tions answered from di�erent points of view” [124]. Whether this goal is realized in practice,
however, depends on exactly how assembly members are chosen.

Panel selection is generally done in three stages: �rst, thousands of randomly chosen constituents
are invited to participate. Second, a subset of the invited constituents opt into a pool of volunteers.
Third, a panel of pre-speci�ed size is randomly chosen from the pool via some �xed procedure,
which we call a selection algorithm [82, 170, 211, 218]. As the �nal and most complex component
of the selection process, the selection algorithm has great power in deciding who will be chosen
to represent the population. In this chapter, we introduce selection algorithms that preserve the
key desirable property of existing algorithms, while also more fairly distributing the sought-after
opportunity [82, 170, 211, 218] of being a representative.

To our knowledge, all of the selection algorithms used in practice aim to satisfy one particular
property, known as descriptive representation, the idea that the panel should re�ect the compo-
sition of the population [124]. Unfortunately, the pool from which the panel is chosen tends
to be far from representative. Speci�cally, it tends to overrepresent groups whose members are
more likely to accept an invitation to participate, such as high educational attainment. To en-
sure descriptive representation despite the biases of the pool, selection algorithms require that
the panels they output satisfy upper and lower quotas on a set of speci�ed features, which are
roughly proportional to each feature’s population rate (e.g. quotas might require that a 40-person
panel contain between 20 and 21 women). These quotas are generally imposed on feature cate-
gories delineated by gender, age, education level, and other attributes relevant to the policy issue
at hand. We note that quota constraints of this form are more general than those achievable via
strati�ed sampling, a common technique for drawing representative samples.

Selection algorithms that pre-date this work focused solely on satisfying quotas, leaving unad-
dressed a second property that is also central to sortition: that all individuals should have an
equal chance of being chosen for the panel. Several political theorists present equality of selec-
tion probabilities as a central advantage of sortition, stressing its role in promoting the ideals
such as equality of opportunity [71, 224], democratic equality [123, 124, 224, 258], and allocative

justice [257, 258]. In fact, Engelstad, who introduced an in�uential model of sortition’s bene�ts,
argues that this form of equality constitutes “The strongest normative argument in favor of sor-
tition” [112]. (See Appendix B.4 for more details on sortition desiderata from political theory.) In
addition to political theorists, major practitioner groups have also advocated for equal selection
probabilities [21, 201]. However, they face the fundamental hurdle that, in practice, the quotas
almost always necessitate selecting people with somewhat unequal probabilities, as individuals
from groups that are underrepresented in the pool must be chosen with disproportionately high
probabilities to satisfy the quotas.

Though it is generally impossible to achieve perfectly equal probabilities, the reasons to strive
for equality also motivate a more gradual version of this goal: making probabilities as equal
as possible, subject to the quotas. We refer to this goal as maximal fairness. We �nd that our
benchmark, a selection algorithm representing the previous state of the art, falls far short of this
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goal, giving volunteers drastically unequal probabilities across several real-world instances. This
algorithm even consistently selects certain types of volunteers with near-zero probability, thereby
excluding them in practice from the chance to serve. We further show that, in these instances,
it is possible to give all volunteers probability well above zero while still satisfying the quotas,
demonstrating that the level of inequality produced by the benchmark is avoidable.

In this chapter, we close the gaps we have identi�ed, both in theory and in practice. We �rst
introduce not just one selection algorithm that achieves maximal fairness, but a more general (I)
algorithmic framework for producing such algorithms. Motivated by the multitude of possible
ways to quantify the fairness of an allocation of selection probabilities, our framework gives a
maximally fair selection algorithm for any measure of fairness with a certain functional form.
Notably, such measures include the most prominent from the literature on fair division [55, 206],
and we show that these well-established metrics can be applied to our setting by casting the
problem of assigning selection probabilities as one of fair resource allocation. Then, to bring this
innovation into practice, we implement a (II) deployable selection algorithm, which is maximally
fair according to one speci�c measure of fairness. We evaluate this algorithm and �nd that it is
substantially fairer than the benchmark on several real-world datasets and by multiple fairness
measures. Our algorithm is now in use by a growing number of sortition organizations around
the world, making it one of only a few [62, 114, 150, 261] deployed applications of fair division.

3.2 Contribution I: Algorithmic Framework

3.2.1 Definitions

Webegin by introducing necessary terminology. We refer to the input to a selection algorithm—a
pool of size =, a set of quotas, and the desired panel size : —as an instance of the panel selection
problem. Given an instance, a selection algorithm randomly selects a panel, which is a quota-
compliant set of : pool members. We de�ne the algorithm’s output distribution on an instance
as the distribution specifying the probabilities with which the algorithm outputs each possible
panel. Then, a pool member’s selection probability is the probability that they are on a panel
randomly drawn from the output distribution. We refer to the mapping from pool members to
their selection probabilities as the probability allocation, which we aim to make as fair as possible.
Finally, a fairness measure is a function that maps a probability allocation to a fairness “score”
(e.g. the geometric mean of probabilities, where higher is fairer). An algorithm is called optimal

with respect to a fairness measure if, on any instance, the fairness of the algorithm’s probability
allocation is at least as high as that of any other algorithm.

3.2.2 Formulating the Optimization Task

To inform our approach, we �rst analyze the algorithms pre-dating ours. Those we have seen in
use all have the same high-level structure: they select individuals for the panel one-by-one, in
each step randomly choosing whom to add next from among those who, according to a myopic
heuristic, seem unlikely to produce a quota violation later. Since �nding a quota-compliant panel
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is an algorithmically hard problem,1 it is already an achievement that such simple algorithms �nd
any panel in most practical instances. Due to their focus on �nding any panel at all, however,
these algorithms do not tightly control which panel they output, or more precisely, their out-
put distribution (the probabilities with which they output di�erent panels). Since an algorithm’s
output distribution directly determines its probability allocation, existing algorithms’ probability
allocations are also uncontrolled, leaving room for them to be highly unfair. In contrast to these

Figure 3.1: The steps of the algorithm optimizing the fairness measure � . The left-hand panel
shows the implementation of step (1): constructing a maximally fair output distribution over
panels (denoted by white boxes), which is done by iteratively building an optimal portfolio of
panels and computing the fairest distribution over that portfolio. The right-hand panel shows
step (2): sampling the distribution to select a �nal panel.

existing algorithms, which have output distributions that arise implicitly from a sequence of my-
opic steps, the algorithms in our framework (1) explicitly compute their own output distribution,
and then (2) sample from that distribution to select the �nal panel (�g. 3.1). Crucially, the maxi-
mal fairness of the output distribution found in the �rst step makes our algorithms optimal. To
see why, note that the behavior of any selection algorithm on a given instance is described by
some output distribution; thus, since our algorithm �nds the fairest possible output distribution,
it is always at least as fair as any other algorithm.

Since step (2) of our selection algorithm is simply a random draw, we have reduced the problem
of �nding an optimal selection algorithm to the optimization problem in step (1) —�nding a max-
imally fair distribution over panels. Now, to fully specify our algorithm, it remains only to solve
this optimization problem.

1See supplementary information 6.
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3.2.3 Solving the Optimization Task

A priori, it would seem that computing a maximally fair distribution might require constructing
all possible panels, since achieving optimal fairness might necessitate assigning non-zero proba-
bility to all of them. Such an approach would be impracticable, however, as the number of panels
inmost instances is intractably large. Fortunately, since wemeasure fairness according to only in-
dividual selection probabilities, there must exist an optimal portfolio—a set of panels over which
there exists a maximally fair distribution— containing few panels by Carathéodory’s theorem:

Proposition 3.2.1. Fix an arbitrary instance and a fairness measure � for this instance. If there

exists any maximally fair distribution over panels for � , there exists a maximally fair output distri-

bution whose support includes at most = + 1 panels.

Proof. Consider the hypercube [0, 1]= , and associate each dimension with one pool member. A
panel % can be embedded into this space by its characteristic vector ®E% ∈ {0, 1}= , whose 8th
component is one exactly if pool member 8 is contained in % .

Fix a maximally fair output distribution, let P denote its support, and let {_% }%∈P denote its
probability mass function. Note that

®? B
∑
%∈P

_% ®E%

is a probability allocation maximizing � , and that it is a convex combination of the {®E% }%∈P . By
Carathéodory’s theorem, there is a subset P′ ⊆ P of size at most = + 1 such that ®? still lies in the
convex hull of this smaller set. Thus, there are nonnegative real numbers {_′

%
}%∈P′ adding up to

one such that
®? =

∑
%∈P′

_′% ®E% .

These _′
%
form the probability mass function of a distribution over at most = + 1 panels, which

has the same probability allocation ®? as the original maximally fair distribution, which implies
that the new distribution is also maximally fair for � . �

This result brings a practical algorithm within reach, and shapes the goal of our algorithm: to
�nd an optimal portfolio while constructing as few panels as possible.

We accomplish this goal using an algorithmic technique called column generation, where, in our
case, the “columns” being generated correspond to panels. A more in-depth discussion and for-
mal description of this algorithm, as well as proofs of correctness, can be found in supplementary
information 8. As shown in �g. 3.1, our algorithms �nd an optimal portfolio by iteratively adding
panels to a portfolio P, in each iteration alternating between two subtasks: (i) �nding the optimal
distributionD over only the panels currently in P and (ii) adding a panel to P that, based on the
gradient of the fairness measure, will move the portfolio furthest towards optimality. This second
subtask makes use of integer linear programming, which we use to generate quota-compliant pan-
els despite the theoretical hardness of the problem. Eventually, the panel with the most promising
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gradient will already be in P, in which case P is provably optimal and D must be a maximally
fair distribution. In practice, we observe that this procedure terminates after few iterations.

Our techniques extend column generation methods that are typically applied to linear programs,
allowing them to be used to solve a large set of convex programs.This extension allows our frame-
work to be used with a wide range of fairness measures— essentially any for which the fairest
distribution over a portfolio can be found via convex programming. Supported measures include
those most prominent in the fair division literature: egalitarian welfare [111], Nash welfare [206],
Gini inequality [110, 187], and the Atkinson indices [110, 247][247]. Our algorithmic approach
also has the bene�t of easily extending to organization-speci�c constraints beyond quotas; for
example, practitioners can prevent multiple members of the same household from appearing on
the same panel. Due to its generality, our framework even applies to domains outside of sortition,
including the allocation of classrooms to charter schools [182] and kidney exchange [243].

3.3 Contribution II: Deployable Selection Algorithm

To bring fair panel selection into practice, we develop an e�cient implementation of one speci�c
selection algorithm, which we call LexiMin (formally de�ned in supplementary information 10).
LexiMin optimizes the well-established fairness measure leximin [51, 182, 206], a fairness mea-
sure that is sensitive to the very lowest selection probabilities. In particular, leximin is optimized
by maximizing the lowest selection probability, then breaking ties between solutions in favor of
probability allocations with highest second-lowest probability, and so on. This choice of fairness
measure is motivated by the fact that, as we show in this section and in supplementary infor-
mation 13, Legacy gives some pool members a near-zero probability when much more equal
probabilities are possible. This type of unfairness is especially pressing because, if it consistently
impacted pool members with certain combinations of features, these individuals and their distinct
perspectives would be “systematically excluded from participation” [250], which runs counter to
a key promise of random selection.

To increase the accessibility of LexiMin, we made its implementation available through an ex-
isting open-source panel selection tool [164] and on Panelot [153], a website where anyone can
run the algorithm without installation. LexiMin has since been deployed by several organiza-
tions, including Cascadia (US), the Danish Board of Technology (Denmark), Nexus (Germany), of
by for * (US), Particitiz (Belgium), and the Sortition Foundation (UK). As of July 2021, the Sortition
Foundation alone had already used LexiMin to select more than 40 panels.

We measure the impact of adopting LexiMin over pre-existing algorithms by comparing its fair-
ness to that of a benchmark, Legacy (supplementary information 11), the algorithm used by the
Sortition Foundation prior to their adoption of LexiMin. We choose Legacy as a benchmark be-
cause it was widely used prior to this work, it is similar to several other selection algorithms used
in practice (see supplementary information 13) and it is the only existing algorithmwe found that
was fully speci�ed by an o�cial implementation. We compare the LexiMin and Legacy on ten
datasets from real-world panels, with respect to several fairness measures including theminimum
probability (table 3.1), the Gini coe�cient, and the geometric mean. In this analysis, we �nd that
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instance = : # of
features

:/= Legacy min.
probability
(sampled)1

LexiMin min.
probability
(exact)

LexiMin
running time

sf(a) 312 35 6 11.2% ≤ 0.32% 6.7% 20 sec
sf(b) 250 20 6 8.0% ≤ 0.17% 4.0% 9 sec
sf(c) 161 44 7 27.3% ≤ 0.15% 8.6% 6 sec
sf(d) 404 40 6 9.9% ≤ 0.11% 4.7% 46 sec
sf(e) 1727 110 7 6.4% ≤ 0.03% 2.6% 67 min
cca 825 75 4 9.1% ≤ 0.03% 2.4% 7 min
hd 239 30 7 12.6% ≤ 0.09% 5.1% 37 sec
mass 70 24 5 34.3% ≤ 14.9% 20.0% 1 sec
nexus 342 170 5 49.7% ≤ 2.24% 32.5% 1 min
obf 321 30 8 9.3% ≤ 0.03% 4.7% 3 min

Table 3.1: List of instances used in our experiments. For the instances we study, panels were
recruited by the following organisations. sf(a-e): Sortition Foundation; cca: Center for Climate
Assemblies; hd: Healthy Democracy; mass: MASS LBP; nexus: Nexus; obf: of by for * (At the
request of practitioners, topics, dates, and locations of the panels are not identi�ed.) = is the pool
size, : is the panel size, and consequently, :/= is the mean selection probability. The # of features
is |� |, where each 5 ∈ � has between 2 and 49 possible values (with the typical range being 2-5).

LexiMin is fairer on all instances we examine, and substantially so in nine out of ten.

3.4 Effect of Adopting LexiMin over Legacy

We study datasets from ten sortition panels, organized by six di�erent sortition organizations in
Europe and North America. As Table 3.1 shows, our instances are diverse in panel size (range:
20–170, median: 37.5) and number of quota categories (range: 4–8). On consumer hardware, the
run-time of our algorithm is well within the time available in practice.

Out of concern about low selection probabilities, we �rst compare the minimum selection prob-
abilities given by Legacy and LexiMin, summarized in the second and third columns from the
right in Table 3.1. Strikingly, in all instances except mass (an outlier in that its quotas only mildly
restrict the fraction of panels that are feasible), Legacy chooses some pool members with prob-
ability close to zero. In fact, we can identify combinations of features that lead to low selection
probabilities across all instances,2 raising the concern that Legacy may in fact systematically
exclude some groups from participation. By contrast, LexiMin selects no one nearly so infre-
quently, with minimum selection probabilities ranging from 26% to 65% (median: 49%) of :/=,
the “ideal” probability individuals would receive in the absence of quotas. One might wonder
whether this increased minimum probability achieved by LexiMin a�ects only a few pool mem-
bers most disadvantaged by Legacy. This is not the case: As shown in Figure 3.2 by the shaded

2See methods section “Individuals rarely selected by Legacy” of the full version.
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Figure 3.2: Selection probabilities given by Legacy and LexiMin to the bottom 60% of pool mem-
bers on six representative instances, where pool members are ordered in order of increasing
probability given by the respective algorithms. Shaded boxes denote the range of pool members
whose selection probability given by Legacy is lower than the minimum probability given by
LexiMin. Legacy probabilities are estimated over 10,000 random panels and are indicated with
99% con�dence intervals (see methods section “Statistics” of the full version). For corresponding
graphs for all other instances and up to the 100th percentile, see Figures 3.4 and 3.5 respectively
in Section 3.6.

boxes, between 13% and 56% of pool members (median 46%) across instances receive probability
from Legacy lower than the minimum given to anyone by LexiMin (Table 3.7). Thus, even just
the �rst stage of LexiMin, i.e., maximizing the minimum probability, provides a sizable section
of the pool with more equitable access to the panel.

We have so far compared Legacy and LexiMin over only the lower end of selection probabili-
ties, as this is the range in which LexiMin prioritizes being fair. However, even considering the
entire range of selection probabilities, we �nd that LexiMin is quanti�ably fairer than Legacy
on all instances by two established metrics of fairness, namely the Gini Coe�cient and the ge-
ometric mean (Table 3.6). For example, across instances excluding mass, LexiMin decreases the
Gini coe�cient, a standard measure of inequality, by between 5 and 16 percentage points (me-
dian: 12; negligible improvement on mass). Strikingly, the 16-point improvement in the Gini
coe�cient achieved by LexiMin on the instance obf (from 59% to 43%) approximately re�ects
the gap between relative income inequality in Namibia (59% in 2015) and the United States (42%
in 2019) [285].

3.5 Discussion

As the recommendationsmade by citizens’ assemblies increasingly impact public decision-making,
so grows the urgency that selection algorithms distribute this power fairly across constituents.
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Figure 3.3: How LexiMin’s output was used to select a panel via a live uniform lottery. (a) First,
the output distribution was transformed into a uniform distribution over 1,000 panels, numbered
000–999. (b) The three digits determining the �nal panel were drawn from lottery machines,
making each panel observably selected with equal probability. (c) The personalized interface
(screen-captured with (b)) shows each pool member the number of panels out of 1,000 they are
on, allowing them to verify their own and others’ selection probabilities. Screenshots credit: of
by for *.

We have made substantial progress on this front: the optimality of our algorithmic framework
conclusively resolves the search for fair algorithms for a broad class of fairness measures, and
the deployment of LexiMin puts an end to some pool members being virtually never selected in
practice.

Beyond these immediate bene�ts to fairness, the exchange of ideas we have initiated between
practitioners and theorists presents continuing opportunities to improve panel selection in areas
such as transparency. For example, for an assembly in Michigan, we assisted of by for * in se-
lecting their panel via a live lottery in which participants could easily observe the probabilities
with which each pool member was selected. This is an advance over the transparency possible
with previous selection algorithms. We found that, in this instance, the output distribution of
LexiMin could be transformed into a simple lottery without meaningful loss of fairness (�g. 3.3).
Subsequent work by Flanigan et al. [131] developed general procedures and bounds for this trans-
formation.

The Organisation for Economic Co-operation and Development (OECD) describes citizens’ assem-
blies as part of a broader democratic movement to “give citizens a more direct role in [. . .] shaping
the public decisions that a�ect them” [222]. By bringing mathematical structure, increased fair-
ness, and greater transparency to the practice of sortition, research in this area promises to put
practical sortition on �rmer foundations, and to promote citizens’ assemblies’ mission to give
everyday people a greater voice.
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3.6 Additional Methods and Empirical Analysis

3.6.1 Extended results for Figure 3.2,Table 3.1

Figure 3.4: Selection probabilities given by Legacy and LexiMin to the bottom 60% of pool mem-
bers on the 4 instances that are not shown in Figure 3.2. Pool members are ordered across the x
axis in order of increasing probability given by the respective algorithms. Shaded boxes denote
the range of pool members with a selection probability given by Legacy that is lower than the
minimum probability given by LexiMin. Legacy probabilities are estimated over 10,000 random
panels and are indicated with 99% con�dence intervals (as described in Statistics in the Methods).
Green dotted lines show the equalized probability (:/=).

3.6.2 Individuals rarely selected by Legacy

The empirical results in Table 3.1 demonstrate that, in most instances, Legacy selects some pool
members with very low probability. However, in any given citizens assembly, this does not auto-
matically imply that these individuals had low probability of serving on the panel. Indeed, if such
an individual would have been selected by Legacy with higher probability in most other pools
that could have formed (as a result of other sets of agents being randomly invited alongside this
individual), then the individual might still have had a substantial overall probability of serving
on the citizens assembly.

In this section, we show how our data suggest that this is not the case, and that some people do
in fact seem to have very low likelihood overall of ending up on the panel when Legacy is used.
We make this case by demonstrating two separate points. First, we show that, across instances,
Legacy tends to give very low selection probabilities to agents who have many features that are
overrepresented in the observed pool relative to the quotas. Second, we discuss why it is likely
that, across possible pools for the same citizens assembly, it is usually the same agents who have
many overrepresented features. These two points, taken together, suggest that agents who have
many overrepresented features in the pools we observe are rarely selected by Legacy overall.
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Figure 3.5: Selection probabilities given by Legacy and LexiMin on all ten instances. Pool mem-
bers are ordered across the x axis in order of increasing probability given by the respective al-
gorithms. In contrast to Figure 3.2 and Figure 3.4, this graph shows the full range of selection
probabilities (up to the 100th percentile). Shaded boxes denote the range of pool members with
a selection probability given by Legacy that is lower than the minimum probability given by
LexiMin. Legacy probabilities are estimated over 10,000 random panels and are indicated with
99% con�dence intervals (as described in Statistics in the Methods). Green dotted lines show the
equalized probability (:/=).

Relationship between overrepresentation of features and selection probability. To mea-
sure the relationship between the level of overrepresentation of an agents features and that agents
selection probability by Legacy, we �rst construct a simple indicator called the ratio product,
which measures the level of overrepresentation of a given agents set of features in the pool. The
ratio product is composed of, for each of the features of an agent, the ratio between the fraction
of this feature in the pool and the fraction of the quotas of the feature (speci�cally, the mean of
lower and upper quota) in the panel. That is, if we denote the set of pool members with a feature
5 by # 5 and if we denote the lower and upper quotas of the feature by ℓ5 and D 5 , respectively,
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Figure 3.6: Gini coe�cient and geometric mean of probability allocations of both algorithms, for
each instance. On every instance, Legacy has a lower Gini coe�cient and a larger geometric
mean. For computing the geometric mean, we slightly correct upward empirical selection prob-
abilities of Legacy that are close to zero (as described in Statistics in the Methods).

Figure 3.7: For each instance, the share of pool members selected with lower probability by
Legacy than the minimum selection probability of LexiMin is shown. This corresponds to the
width of the shaded boxes in Figures 3.2, 3.4 and 3.5.

then the ratio product of an agent 8 is de�ned as:∏
features 5 of 8

|# 5 | /=
(ℓ5 + D 5 ) / 2:

.

Given that the quotas are typically set in proportion to the share of the feature in the population,
we say that agents with a high ratio product have many overrepresented features. Using this indi-
cator, we �nd that there is a clear negative relationship in all instances between the ratio product
of an individual and their selection probability by Legacy (Figure 3.8). Most importantly, as this
trend would suggest, we �nd that the pool members with the largest ratio products consistently
have some of the lowest selection probabilities.
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Figure 3.8: Relationship between how overrepresented the features of an agent are and how likely
they are to be chosen by the Legacy algorithm. The level of overrepresentation is quanti�ed as
the ratio product (as described in Individuals rarely selected by Legacy in the Methods); agents
further to the right are more overrepresented. Across instances, pool members with high ratio
product are consistently selected with very low probabilities.

The same agents probably have many overrepresented features across most possible

pools. Recall that we de�ne an instance with respect to a single pool. However, this observed
pool is only one among several hypothetical pools that could have resulted from the random
process of sending out invitation letters. We de�ne the ratio product of an agent with respect
to a single instance and, therefore, a single observed pool. Then, if a di�erent hypothetical pool
(including that agent) had instead been drawn during the invitation process, the ratio product
of the same agent with respect to that pool would probably be di�erent, depending on which
constituents were invited to join the pool alongside them. As the quotas and the target panel
size k would be the same for all these hypothetical instances, the di�erences in ratio product
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would be due to di�erent values of |# 5 |, for all features f of the agent. Here, |# 5 | — a random
variable, the value of which is determined during the random invitation process — essentially
follows a hypergeometric distribution, because it is simply the number of invitations sent to
constituents who both have feature f and are willing to participate. Consequentially, all |# 5 |
are well-concentrated, from which it follows that the ratio product of an individual should not
vary much across all hypothetical pools containing them. The ratio product should be especially
concentrated when all of an individuals features tend to be overrepresented, and thus all factors
of the ratio product are large.

Interpretation of results. The analysis so far suggests that Legacy selects individuals with
many overrepresented features with low probability. Even so, one might consider the possibil-
ity that these individuals are more likely to join the pool if invited (given that they are over-
represented in the pool), and that, therefore, their lower selection probability by Legacy in the
panel-selection stage is outweighed by their higher probability of entering the pool in the pool-
formation stage. This raises the question of whether the low selection probabilities given to these
individuals by Legacy are necessarily inconsistent with a scenario in which the probabilities of
people going from population to panel (their end-to-end probabilities [128]) are actually equal.

A back-of-the-envelope calculation suggests that this is not the casethat, in fact, the end-to-end
probabilities are probably far from equal when using Legacy. Across instances, the median ratio
between the average selection probability k/n and (the upper con�dence bound on) the minimum
selection probability given by Legacy is larger than 100. If the selection probability of an indi-
vidual conditioned on appearing in some pool is indeed 100 times lower than that of an average
citizen, the individual would have to enter the pool 100 times more frequently than this average
citizen to serve on the panel with equal end-to-end probability. Given that average response rates
are typically between 2 and 5%, someone opting into the pool 100 times more frequently than an
average citizen is simply not possible.

Althoughwe have demonstrated that Legacy underrepresents a speci�c group (agents withmany
overrepresented features), we do not have reason to believe that Legacy would exclude groups
de�ned by intersections of few features (for example, young women or conservatives with a
university degree are the intersection of two features). In Supplementary Information section
14, we investigate the representation of such groups for one instance, sf(e). There, we �nd that
Legacy and LexiMin represent intersectional groups to similar degrees of accuracy (Figure 3.9),
explore factors determining the representation of an intersectional group, and describe how the
accuracy of intersectional representation could be improved using our algorithmic framework.

3.6.3 Instance-data preprocessing

At the request of practitioners, we pseudonymize the features of each dataset. This does not a�ect
the analysis, as both Legacy and LexiMin are agnostic to this information.

For data fromHealthy Democracy (instance hd), of by for* (instance obf) andMASS LBP (instance
mass), and for the instance sf(e) from the Sortition Foundation, respondent data and quotas were
takenwithout modi�cation. For privacy reasons, pool members with non-binary gender in the in-
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Figure 3.9: For all intersections of two features on the instance sf(e), how far the expected num-
ber of group members selected by Legacy or LexiMin di�ers from the proportional share in
the population is shown. Although many intersectional groups are represented close to accu-
rately, some groups are over- and underrepresented by more than 15 percentage points by either
algorithm. Which groups get over- and underrepresented is highly correlated between both al-
gorithms. Panel shares are computed for a pool of size 1,727, and population shares are based on
a survey with 1,915 respondents after cleaning.

stances sf(a) to sf(d) were randomly assigned female or male gender with equal probability. In two
of these instances (sf(a) and sf(d)), the originally used quotas were not recorded in the data, but
we reconstructed them according to the procedures of the Sortition Foundation for constructing
quotas from the population fractions. The panel from the Center for Climate Assemblies (instance
cca) did not formally use upper and lower quotas; instead, exact target values for each feature
were given (which could not simultaneously be satis�ed) as well as a priority order over which
targets were more important than others. We set quotas by identifying the minimal relaxation
to the lowest-priority target that could be satis�ed. For the Nexus instance (instance nexus), the
region of one pool member was missing and inferred from their city of residence. Because Nexus
only used lower quotas, the upper quotas of each feature were set to the di�erence between k
and the sum of lower quotas of all other features of the same category. Such a change does not
in�uence the output distribution of either Legacy or LexiMin but makes the ratio product de-
�ned in Individuals rarely selected by Legacy above more meaningful. Because Nexus permitted
k to range between 170 and 175, we chose 170 to make their lower quotas as tight as possible.
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3.6.4 Statistics

The selection probabilities of LexiMin are not empirical estimates, but rather exact numbers
generated by the algorithm, computed from its output distribution.

By contrast, the selection probabilities given to each agent by Legacy (as used in the numbers in
the text and tables) refer to the fraction of 10,000 sampled panels in which the agent appears (in
which each sample is from a single run of Legacy on the same instance).

In Figures 3.2, 3.4 and 3.5, when plotting the line representing Legacy, agents are sorted along the
G axis in order of this empirical estimate of their selection probability by Legacy, and this is the
selection probability given on the ~ axis. As, for each agent, the number of panels on which they
appear across runs of Legacy is distributed as a binomial variable with 10,000 trials and unknown
success probability, we indicate Je�reys intervals for each of these success probabilities (that
is, selection probabilities) with 99% con�dence. These are con�dence intervals on the selection
probability of a speci�c agent, not on the selection probability of a speci�c percentile of the
agents.

In addition to reporting two-sided 99% con�dence intervals on each agents selection probability
by Legacy, in Table 3.1, we report a 99% con�dence upper bound on the minimum selection given
to any agent by Legacy per instance. We cannot simply set this upper bound equal to the smallest
upper end of the two-sided con�dence interval of any agent as computed above because out of
thesemany con�dence intervals, some are likely to lie entirely below the true selection probability
of the respective agent. Instead, we compute the upper bound on the minimum probability using
the con�dence interval for a single agent, by running two independent sets of 10,000 samples: In
the �rst set of samples (the one discussed two paragraphs prior), we identify a single agent who
was least frequently chosen to the panel in this set; then, we count how often this speci�c agent
is selected across the second set of samples and calculate an upper bound based on a one-sided
Je�reys interval as follows: if the speci�c agent was selected in s out of the 10,000 panels, the
con�dence bound is the 99th percentile of the distribution V (1/2+B, 1/2+10, 000−B). (The bound
would be 1 if B = 10, 000, but this does not happen in any of the instances.) With 99% con�dence,
this is an upper bound on the selection probability of the speci�c agent, and thus also an upper
bound with 99% con�dence on the minimum selection probability.

As the magnitudes of the two-sided con�dence intervals in Figures 3.2, 3.4 and 3.5 show, the em-
pirical estimates we get of the selection probabilities of agents by Legacy are likely to be close to
their true values. Moreover, two of the three statistics we report are not very sensitive to sampling
errors: For Gini inequality, additive errors in the estimate of selection probabilities translate into
additive errors in the Gini coe�cient; and, when we report the number of agents whose selection
probability by Legacy lies under the minimum selection probability of LexiMin, Figures 3.2, 3.4
and 3.5 show that the con�dence intervals of most agents lie either below or above this threshold.
Therefore, our analysis of Legacy selection probabilities should not be substantially a�ected by
the fact that we can only use empirical estimates of selection probabilities rather than the ground-
truth selection probabilities themselves. The one exception is the geometric mean, for which the
error in estimating small selection probabilities can severely a�ect the measure. In particular, in
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all instances in which one individual appeared in 0 out of 10,000 sampled panels, the geometric
mean of empirical selection probabilities would be 0. Thus, when computing the geometric mean
for Legacy in Table 3.6 and in the body, we erred on the side of being generous to Legacy by
setting the selection probabilities of these individuals to 1/10,000 instead of 0.

The running times of LexiMin were measured on a 2017 Macbook Pro with a 3.1-GHz dual-
core Intel i5 processor. Although the running time should not depend on random decisions in
the algorithm, the running time of calls to the optimization library Gurobi depends on how the
operating system schedules di�erent threads. Reported times are medians of three runs, and are
rounded to the nearest second if below 60 s, or to the nearest minute otherwise.
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4
Fairness & Transparency

Fair Sortition Made Transparent [131].
Bailey Flanigan, Gregory Kehne, & Ariel D. Procaccia.

NeurIPS 2021.

4.1 Introduction

In a citizens’ assembly, a panel of randomly chosen citizens is convened to deliberate and ulti-
mately make recommendations on a policy issue. The de�ning aspect of citizens’ assemblies is
the randomness of the process, sortition, by which participants are chosen. In practice, the sor-
tition process works as follows: �rst, volunteers are solicited via thousands of letters or phone
calls, which target individuals chosen uniformly at random. Those who respond a�rmatively
form the pool of volunteers, from which a �nal panel will be chosen. Finally, a selection algorithm
is used to randomly select some pre-speci�ed number : of pool members for the panel. To ensure
adequate representation of demographic groups, the chosen panel is often constrained to satisfy
some upper and lower quotas on feature categories such as age, gender, and ethnicity. We call a
quota-satisfying panel of size : a feasible panel. As this process illustrates, citizens’ assemblies of-
fer a way to involve the public in informed decision-making. This potential for civic participation
has recently spurred a global resurgence in the popularity of citizens assemblies; they have been
commissioned by governments and led to policy changes at the national level [130, 169, 222].

Prompted by the growing impact of citizens’ assemblies, there has been a recent �urry of com-
puter scienti�c research on sortition, and in particular, on the fairness of the procedure by which
participants are chosen [46, 128, 130]. The most practicable result to date is a family of selection
algorithms proposed by Flanigan et al. [130], which are distinguished from their predecessors by
their use of randomness toward the goal of fairness: while previously-used algorithms selected
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pool members in a random but ad-hoc fashion, these new algorithms aremaximally fair, ensuring
that pool members have as equal probability as possible of being chosen for the panel, subject to
the quotas.1 To encompass the many interpretations of “as equal as possible,” these algorithms
permit the optimization of any fairness objective with certain convexity properties. There is
now a publicly available implementation of the techniques of Flanigan et al. [130], called Panelot,
which optimizes the egalitarian notion that no pool member has too little selection probability
via the Leximin objective from fair division [129, 206]. This algorithm has already been deployed
by several groups of panel organizers, and has been used to select dozens of panels worldwide.

Fairness gains in the panel selection process can lend legitimacy to citizens’ assemblies and po-
tentially increase their adoption, but only insofar as the public trusts that these gains are truly
realized. Currently, the potential for public trust in the panel selection process is limited by
multiple factors. First, the latest panel selection algorithms select the �nal panel via behind-the-
scenes computation. When panels are selected in this manner, observers cannot even verify that
any given pool member has any chance of being chosen for the panel. A second and more fun-
damental hurdle is that randomness and probability, which are central to the sortition process,
have been shown in many contexts to be di�cult for people to understand and reason about
[196, 240, 281]. Aiming to address these shortcomings, we propose and pursue the following
notion of transparency in panel selection:

Transparency: Observers should be able to, without reasoning in-depth about proba-
bility, (1) understand the probabilities with which each individual will be chosen for
the panel in theory, and (2) verify that individuals are actually selected with these
probabilities in practice.

In this paper, we aim to achieve transparency and fairness simultaneously: this means advanc-
ing the de�ned goal of transparency, while preserving the fairness gains obtained by maximally
fair selection algorithms. Although this task is reminiscent of existing AI research on trade-o�s
between fairness or transparency with other desirable objectives [47, 48, 120, 269], to our knowl-
edge, this is the �rst investigation of the trade-o� between fairness and transparency.

Setting aside for a moment the goal of fairness, we consider a method of random decision-making
that is already common in the public sphere: the uniform lottery. To satisfy quotas, a uniform
lottery for sortition must randomize not over individuals, but over entire feasible panels. In fact,
this approach has been suggested by practitioners, and was even used in 2020 to select a citizens’
assembly in Michigan. The following example, which closely mirrors that real-world pilot,2 il-
lustrates that panel selection via uniform lottery is naturally consistent with the transparency
notion we pursue.

Suppose we construct 1000 feasible panels from a pool (possibly with duplicates), numbered 000-
999, and publish an (anonymized) list of which pool members are on each panel. We then inform

1Quotas can preclude giving individuals exactly equal probabilities: if the panel must be 1/2 men, 1/2 women
but the pool is split 3/4 men, 1/4 women, then some women must be chosen more often than some men.

2Of By For’s pilot of live panel selection via lottery can be viewed at https://vimeo.com/458304880#t=17m59s
from 17:59 to 21:23. For a more detailed description, see Figure 3 and surrounding text in [130].
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spectators that we will choose each panel with equal probability. This satis�es criterion (1): spec-
tators can easily understand that all panels will be chosen with the same probability of 1/1000,
and can easily determine each individual’s selection probability by counting the number of pan-
els containing the individual. To satisfy criterion (2), we enact the lottery by drawing each of the
three digits of the �nal panel number individually from lottery machines. Lottery spectators can
con�rm that each ball is drawn with equal probability; this provides con�rmation that panels are
indeed being chosen with uniform probabilities, thus con�rming the enactment of the proposed
individual selection probabilities. In addition to its conventionality as a source of randomness,
decision-making via drawing lottery balls invites an exciting spectacle, which can promote en-
gagement with citizens’ assemblies.

This simple method neatly satis�es our transparency criteria, but it has one obvious downside: a
uniform lottery over an arbitrary set of feasible panels does not guarantee any measure of equal
probabilities to individuals. In fact, it is not even clear that the fairest possible uniform lottery over
< panels, where< is a number conducive to selection by physical lottery (e.g. < =1000), would
not be signi�cantly less fair than maximally fair algorithms, which sample the fairest possible
unconstrained distribution over panels. For example, if< is too small, there may be no uniform
lottery which gives all individuals non-zero selection probability, even if each individual appears
on some feasible panel (and so can attain a non-zero selection probability under an unconstrained
distribution).

Fortunately, empirical evidence suggests that there is hope: in the 2020 pilot mentioned above,
a uniform lottery over< =1000 panels was found that nearly matched the fairness of the max-
imally fair distribution generated by Panelot. Motivated by this anecdotal evidence, we aim to
understand whether such a fair uniform lottery is guaranteed to exist in general, and if it does,
how to �nd it. We summarize this goal in the following research questions:

Does there exist a uniform lottery over< panels that nearly preserves the fairness of the

maximally fair unconstrained distribution over panels? And,
Algorithmically, how do we compute such a uniform lottery?

Results and Contributions. After describing the model in Section 4.2, in Section 4.3 we prove
that it is possible to round an (essentially) arbitrary distribution over panels to a uniform lot-
tery while preserving all individuals’ selection probabilities up to only a small bounded devi-
ation. These results use tools from discrepancy theory and randomized rounding. Intuitively,
this bounded change in selection probabilities implies bounded losses in fairness; we formalize
this intuition in Section 4.4, showing that there exists in general a uniform lottery that is nearly
maximally fair, with respect to multiple choices of fairness objective. Although we would ideally
like to give such bounds for the Leximin fairness objective, due to its use practice, we cannot
succinctly represent bounds for this objective because it is not scalar valued. We therefore give
bounds for Maximin, a closely related egalitarian objective which only considers the minimum
selection probability given to any poolmember [81]. We discuss in Section 4.4 why bounds on loss
in Maximin fairness are, in the most meaningful sense, also bounds on loss in Leximin fairness.
We additionally give upper bounds on the loss in Nash Welfare [206], a similarly well-established
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fairness objective that has also been implemented in panel selection tools [163].

Finally, in Section 4.5, we consider the algorithmic question in practice: given a maximally fair
distribution over panels, can we actually �nd nearly maximally fair uniform lotteries that match
our theoretical guarantees? To answer this question, we implement two standard rounding al-
gorithms, along with near-optimal (but more computationally intensive) integer programming
methods, for �nding uniform lotteries. We then evaluate the performance of these algorithms in
11 real-world panel selection instances. We �nd that in all instances, we can compute uniform
lotteries that nearly exactly preserve not only fairness with respect to both objectives, but en-
tire sets of Leximin-optimal marginals, meaning that from the perspective of individuals, there
is essentially no di�erence between using a uniform lottery versus the optimal unconstrained
distribution sampled by the latest algorithms. We discuss these results, their implications, and
how they can be deployed directly into the existing panel selection pipeline in Section 4.6.

4.2 Model

Panel Selection Problem. First, we formally de�ne the task of panel selection for citizens’
assemblies. Let # = [=] be the pool of volunteers for the panel—individuals from the population
who have indicated their willingness to participate in response to an invitation. Let � = {5C }C
denote a �xed set of features of interest. Each feature 5C : # → ΩC maps each pool member to
their value of that feature, where ΩC is the set of 5C ’s possible values. For example, for feature 5C
= “gender”, we might have ΩC = {“male”,“female”, “non-binary”}. We de�ne individual 8’s feature
vector � (8) = (5C (8))C ∈

∏
C ΩC to be the vector encoding their values for all features in � .

As is done in practice and in previous research [128, 130], we impose that the chosen panel %
must be a subset of the pool of size : , and must be representative of the broader population with
respect to the features in � . This representativeness is imposed via quotas: for each feature 5
and corresponding value E ∈ Ω, we may have lower and upper quotas ; 5 ,E and D 5 ,E . These quotas
require that the panel contain between ; 5 ,E and D 5 ,E individuals 8 such that 5 (8) = E .

In terms of these parameters, we de�ne an instance of the panel selection problem as: given
(#,:, �, ;,D)—a pool, panel size, set of features, and sets of lower and upper quotas—randomly
select a feasible panel, where a feasible panel is any set of individuals % from the collection K :

K :=
{
% ∈ (#

:
) : ; 5 ,E ≤ |{8 ∈ % : 5 (8) = E}| ≤ D 5 ,E for all 5 , E

}
.

Maximally Fair Selection Algorithms. A selection algorithm is a procedure that solves in-
stances of the panel selection problem. A selection algorithm’s level of fairness on a given in-
stance is determined by its panel distribution ? , the (possibly implicit) distribution over K from
which it draws the �nal panel. Because we care about fairness to individual pool members, we
evaluate the fairness of ? in terms of the fairness of selection probabilities, or marginals, that
? implies for all pool members.1 We denote the vector of marginals implied by ? as c , and we

1A panel distribution ? implies a unique vector of marginals c as follows: �xing ?, c , a pool member 8’s marginal
selection probability c8 is equal to the probability of drawing a panel from ? containing that pool member. For a
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will sometimes specify a panel distribution as ? , c to explicitly denote this pair. We say that c is
realizable if it is implied by some distribution ? over the feasible panels K.

Maximally fair selection algorithms are those which solve the panel selection problem by sam-
pling a speci�cally chosen ?: one which implies marginals c that allocate probability as fairly as
possible across pool members. The fairness of ?, c is measured by a fairness objective F , which
maps an allocation—in this case, of selection probability to pool members—to a real number mea-
suring the allocation’s fairness. Fixing an instance, a fairness objective F , and a panel distribution
? , we express the fairness of ? as F (?). Existing maximally fair selection algorithms can maxi-
mize a wide range of fairness objectives, including those considered in this paper.

Leximin, Maximin, and Nash Welfare. Of the three fairness objectives we consider in this
paper, Maximin and Nash Welfare (NW) have succinct formulae. For ?, c they are de�ned as
follows, where c8 is the marginal of individual 8:

Maximin(?) := min
8∈#

c8, NW(?) :=
(∏

8

c8

)1/=
.

Intuitively,NWmaximizes the geometric mean, prioritizing themarginal c8 of each individual 8 in
proportion to c−18 . Maximinmaximizes themarginal probability of the individual least likely to be
selected. Finally, Leximin is a re�nement ofMaximin, and is de�ned by the following algorithm:
�rst, optimize Maximin; then, �xing the minimum marginal as a lower bound on any marginal,
maximize the second-lowest marginal; and so on.

Our task: qantize a maximally fair panel distributionwithminimal fairness loss. We
de�ne a 1/<-quantized panel distribution as a distribution over all feasible panelsK in which all
probabilities are integer multiples of 1/<. We use ?̄ to denote a panel distribution with this
property. Formally, while an (unconstrained) panel distribution ? lies in D := {? ∈ R|K|+ : ‖? ‖1 =
1}, a 1/<-quantized panel distribution in ?̄ lies in D := {?̄ ∈ (Z+/<) |K| : ‖?̄ ‖1 = 1}. Note that
a 1/<-quantized distribution ?̄ immediately translates to a physical uniform lottery of over <
panels (with duplicates): if ?̄ assigns probability ℓ/< to panel % , then the corresponding physical
uniform lottery would contain ℓ duplicates of % . Thus, if we can compute a 1/<-quantized panel
distribution ?̄ with fairness F (?̄), thenwe have designed a physical uniform lottery over< panels
with that same level of fairness.

Our goal follows directly from this observation: we want to show that given an instance and
desired lottery size<, we can compute a 1/<-quantized distribution ?̄ that is nearly as fair, with
respect to a fairness notion F , as the maximally fair panel distribution in this instance ?∗ ∈
argmax?∈D F (?). We de�ne the fairness loss in this quantization process to be the di�erence
F (?∗) −F (?̄). We are aided in this task by the existence of practical algorithms for computing ?∗
[130], which allows us to use ?∗ as an input to the quantization procedure we hope to design. For
intuition, we illustrate this quantization task in Figure 4.1, where c∗, c̄ are the marginals implied

more detailed introduction to the connection between panel distributions and marginals, we refer readers to [130].
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by ?∗, ?̄ , respectively. Since the fairness of ?∗, ?̄ are computed in terms of c∗, c̄ , it is intuitive
that a quantization process that results in small marginal discrepancy, de�ned as the maximum
change in any marginal ‖c − c̄ ‖∞, should also have small fairness loss. This idea motivates the
upcoming section, in which we give quantization procedures with provably bounded marginal
discrepancy, forming the foundation for our later bounds on fairness loss.

all feasible panels all feasible panels

Maximally fair distribution over panels 
(output of LEXIMIN [FGGHP21])

Uniform lottery over m panels

quantize

p* p̄input output

all pool members

π* π̄

all pool members1/m

(  )

Does there exist a uniform lottery over m panels that nearly preserves the fairness

of the maximally fair unconstrained distribution over panels? And,
Algorithmically, how do we compute such a uniform lottery?

Results and contributions. After describing the model in Section 2, in Section 3 we prove that it
is possible to round an (essentially) arbitrary distribution over panels to a uniform lottery while pre-
serving all individuals’ selection probabilities up to only a small bounded deviation. These results
use tools from discrepancy theory and randomized rounding. Intuitively, this bounded change in
selection probabilities implies bounded losses in fairness; we formalize this intuition in Section 4,
showing that there exists in general a uniform lottery that is nearly maximally fair, with respect to
multiple fairness objectives. Although we would ideally like to give such bounds for the Leximin
fairness objective due to its use practice, this objective cannot be summarized by a single expres-
sion. Thus, we give bounds for the closely-related egalitarian objective, Maximin [CELM07]. We
additionally give upper bounds on the loss in Nash Welfare [Mou03], a similarly well-established
fairness objective that has also been implemented in panel selection tools [HG20].

Finally, in Section 5, we consider the algorithmic question: given a maximally fair distribution over
panels, can we find a near-maximally fair uniform lottery, as our bounds suggest should exist? To
answer this question, we implement two standard rounding algorithms, along with near-optimal (but
more computationally-intensive) integer programming methods, for finding uniform lotteries. We
then evaluate the performance of these algorithms in 11 real-world panel selection instances. We find
that in all instances, we can compute uniform lotteries that nearly exactly preserve not only fairness
with respect to both objectives, but entire sets of Leximin-optimal marginals, meaning that from the
perspective of individuals, there is essentially no difference between using a uniform lottery versus
the optimal distribution used by the latest algorithms. We discuss these results, their implications,
and how they can be deployed directly into the existing panel selection pipeline in Section 6.

2 Model

Panel Selection Problem. First, we formally define the task of panel selection for citizens’ assem-
blies. Let N = [n] be the pool of volunteers for the panel—individuals from the population who
have indicated their willingness to participate in response to an invitation. Let F = {ft}t denote a
fixed set of features of interest. Each feature ft : N ! ⌦t maps each pool member to their value
of that feature, where ⌦t is the set of ft’s possible values. For example, for feature ft = “gender”,
we might have ⌦t = {“male”,“female”, “non-binary”}. We define individual i’s feature vector

F (i) = (ft(i))t 2
Q

t ⌦t to be the vector encoding their values for all features in F .

As is done in practice and in previous research [FGGP20, FGG+21], we impose that the chosen
panel P must be a subset of the pool of size k, and must be representative of the broader population
with respect to the features in F . This representativeness is imposed via quotas: for each feature f
and corresponding value v 2 ⌦, we may have lower and upper quotas lf,v and uf,v . These quotas
require that the panel contain between lf,v and uf,v individuals i such that f(i) = v.

In terms of these parameters, we define an instance of the panel selection problem as: given
(N, k, F, l, u)—a pool, panel size, set of features, and sets of lower and upper quotas—randomly
select a feasible panel, where a feasible panel is any set of individuals P from the collection K:

K :=
�
P 2 (Nk) : lf,v  |{i 2 P : f(i) = v}|  uf,v for all f, v

 
.

Maximally Fair Selection Algorithms. A selection algorithm is a procedure that solves instances
of the panel selection problem. A selection algorithm’s level of fairness on a given instance is
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Q
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Figure 4.1: The quantization task takes as input a maximally fair panel distribution ?∗ (implying
marginals c∗), and outputs a 1/<-quantized panel distribution ?̄ (implying marginals c̄ ).

4.3 Theoretical Bounds on Marginal Discrepancy

Here we prove that for a �xed panel distribution ?, c , there exists a uniform lottery ?̄, c̄ such that
‖c − c̄ ‖∞ is bounded. Preliminarily, we note that it is intuitive that bounds on this discrepancy
should approach 0 as< becomes large with respect to = and : . To see why, begin by �xing some
distribution ?, c over panels: as< becomes large, we approach the scenario in which a uniform
lottery ?̄ can assign panels arbitrary probabilities, providing increasingly close approximations
to ? . Since the marginals c8 are continuous with respect to ? , as ?̄ → ? we have that c̄8 → c8 for
all 8 .

While this argument demonstrates convergence, it provides neither e�cient algorithms nor tight
bounds on the rate of convergence. In this section, our task is therefore to bound the rate of this
convergence as a function of< and the other parameters of the instance. All omitted proofs of
results from this section are included in appendix C.2.

4.3.1 Worst-Case Upper Bounds

Our �rst set of upper bounds result from rounding Standard LP, the LP that most directly arises
from our problem. This LP is de�ned in terms of a panel distribution ?, c , and " , an = × |K|
matrix describing which individuals are on which feasible panels: "8,% = 1 if 8 ∈ % and "8,% = 0
otherwise.

Standard LP "? = c (4.1)
‖? ‖1 = 1 (4.2)

? ≥ 0.
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Here, (4.1) speci�es= total constraints. Our goal is to round ? to a uniform lottery ?̄ over< panels
(so the entries ?̄ are multiples of 1/<) such that (4.2) is maintained exactly, and no constraint in
(4.1) is relaxed by too much, i.e., ‖"? −"?̄ ‖∞ = ‖c − c̄ ‖∞ remains small.

Randomized rounding is a natural �rst approach. Any randomized rounding scheme satisfying
negative association (which includes several that respect (4.2)) yields the following bound: For
any realizable c , we may e�ciently randomly generate ?̄ such that its marginals c̄ satisfy

‖c − c̄ ‖∞ = $

(√
= log=
<

)
.

Fortunately, there is potential for improvement: randomized rounding does not make full use of
the fact that" is:-column sparse, due to each panel inK containing exactly: individuals. We use
this sparsity to get a stronger bound when = � :2, which is a practically signi�cant parameter
regime. The proof applies a dependent rounding algorithm based on a theorem of Beck and Fiala
[40], to which a modi�cation ensures the exact satisfaction of constraint (4.2). For any realizable
c , we may e�ciently construct ?̄ such that its marginals c̄ satisfy

‖c − c̄ ‖∞ ≤ :/<.

This bound is already meaningful in practice, where : � < is insured by the fact that < is
pre-chosen along with : prior to panel selection. Note also that : is typically on the order of 100
(Appendix D.4.1), whereas a uniform lottery can in practice be easily made orders of magnitude
larger, as each additional factor of 10 in the size of the uniform lottery requires drawing only one
more ball (and there is no fairness cost to drawing a larger lottery, since increasing< allows for
uniform lotteries which better approximate the unconstrained optimal distribution).

4.3.2 Beyond-Worst-Case Upper Bounds

As we will demonstrate in section 4.3.3, we cannot hope for a better worst-case upper bound
than poly(:)/<. We thus shift our consideration to instances which are “simple” in their fea-
ture structure, having a small number of features (theorem C.2.7), a limited number of unique
feature vectors in the pool (section 4.3.2), or multiple individuals that share each feature vector
present (theorem C.2.8). The beyond-worst-case bounds given by section 4.3.2 and theorem C.2.8
asymptotically dominate our worst-case bounds in section 4.3.1 and section 4.3.1, respectively.
Moreover, section 4.3.2 dominates all other upper bounds in 10 of the 11 practical instances stud-
ied in section 4.5.

We note that while our worst-case upper bounds implied the near-preservation of any realizable
set of marginals c , some of our beyond-worst-case results apply to only realizable c which are
anonymous, meaning that c8 are equal for all 8 with equal feature vectors. We contend that any
reasonable set of marginals should have this property,1 and furthermore that the “anonymization”

1The class of all anonymous marginals c includes the maximizers c∗ of all reasonable fairness objectives, and
second, this condition is satis�ed by all existing selection algorithms used in practice, to our knowledge.
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of any realizable c is also realizable (claim C.2.6); hence this restriction is insigni�cant. Our
beyond-worst-case bounds also di�er from our worst-case bounds in that they depart from the
paradigm of rounding ? , instead randomizing over panels that may fall outside the support of ? .

The main beyond-worst-case bound we give, stated below, is parameterized by |C|, where C is
the set of unique feature vectors that appear in the pool. All omitted proofs and other beyond
worst-case results are stated and proven in appendix C.2.

If c is anonymous and realizable, then we may e�ciently construct ?̄ such that its marginals c̄
satisfy

‖c − c̄ ‖∞ = $

(√
|C| log |C|
<

)
.

|C| is at most =, so this bound dominates section 4.3.1. In 10 of the 11 real-world instances
we study, |C| is also smaller than :2 (appendix C.1), in which case this bound also dominates
section 4.3.1.

At a high level, our beyond-worst-case upper bounds are obtained not by directly rounding ? ,
but instead using the structure of the sortition instance to abstract the problem into one about
“types.” For this boundwe then solve an LP in terms of “types,” round that LP, and then reconstruct
a rounded panel distribution ?̄, c̄ from the “type” solution. In particular, the types of individuals
are the feature vectors which appear in the pool, and types of panels are the multisets of : feature
vectors that satisfy the instance quotas. Fixing an instance, we project some ? into type space
by viewing it as a distribution p over types of panels K, inducing marginals g2 for each type
individuals 2 ∈ C.

To begin, we de�ne the Type LP, which is analogous to eq. (4.1). We let & be the type analog
of " , so that entry &2 9 is the number of individuals 8 with � (8) = 2 contained in panels of type
9 ∈ K.1 Then,

Type LP & p = g (4.3)
‖p‖1 = 1 (4.4)

p ≥ 0.

We roundp in this LP to a panel type distribution p̄ while preserving (4.4). All that remains, then,
is to construct some ?̄, c̄ such that ? is consistent with p̄ and ‖c − c̄ ‖∞ is small. This ?̄ is in
general supported by panels outside of BD?? (?), unlike the ?̄ obtained by section 4.3.1. It is the
anonymity of c which allows us to construct these new panels and prove that they are feasible
for the instance.

4.3.3 Lower Bounds

This method of using bounded discrepancy to derive nearly fairness-optimal uniform lotteries
has its limits, since there are even sparse" and fractional G for which no integer Ḡ yields nearby

1Completing the analogy, C,K, &,p, p̄, g are the “type” versions of #,K, ", ?, ?̄, c from the original LP.
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"Ḡ . In the worst case, we establish lower bounds by modifying those of Beck and Fiala [253]:
There exist ?, c for which for all uniform lotteries ?̄, c̄ ,

min
?̄∈D
‖c − c̄ ‖∞ = Ω

(√
:

<

)
.

Our :-dependent upper and lower bounds are separated by a factor of
√
: , matching the current

upper and lower bounds of the Beck-Fiala conjecture as applied to linear discrepancy (also known
as the lattice approximation problem [254]). The respective gaps are incomparable, however, since
for a given G ∈ [0, 1]= , the former problem aims to minimize ‖" (G − Ḡ)‖∞ over Ḡ ∈ {0, 1}= , while
we aim to do the same over a subset of the Ḡ ∈ Z= for which ∑

9 G 9 =
∑
9 Ḡ 9 (see lemma C.2.4).

4.4 Theoretical Bounds on Fairness Loss

Since the fairness of a distribution ? is determined by its marginals c , it is intuitive that if uniform
lotteries incur only small marginal discrepancy (per section 4.3), then they should also incur only
small fairness losses. This should hold for any fairness notion that is su�ciently “smooth” (i.e.,
doesn’t change too quickly with changing marginals) in the vicinity of ?, c .

Although our bounds from section 4.3 apply to any reasonable initial distribution ? , we are partic-
ularly concerned with bounding fairness loss from maximally fair initial distributions ?∗. Here,
we speci�cally consider such ?∗ that are optimal with respect to Maximin and NW. We note
that, since there exist anonymous ?∗, c∗ that maximize these objectives, we can apply any upper
bound from section 4.3 to upper bound ‖c∗ − c̄ ‖∞. We defer omitted proofs to appendix C.3.

4.4.1 Maximin

Since Leximin is the fairness objective optimized by themaximally fair algorithm used in practice,
it would be most natural to start with a ?∗ that is Leximin-optimal and bound fairness loss with
respect to this objective. However, the fact that Leximin fairness cannot be represented by a single
scalar value prevents us from formulating such an approximation guarantee. Instead, we �rst
pursue bounds on the closely-related objective, Maximin. We argue that in the most meaningful
sense, a worst-case Maximin guarantee is a Leximin guarantee: such a bound would show limited
loss in the minimum marginal, and it is Leximin’s lexicographically �rst priority to maximize the
minimum marginal.

First, we show there exists some ?̄, c̄ that gives bounded Maximin loss from ?∗, c∗, the Maximin-
optimal unconstrained distribution. This bound follows from Theorems 4.3.2 and C.2.8, using
the simple observation that ?̄ can decrease the lowest marginal given by ?∗ by no more than
‖c∗ − c̄ ‖∞. Here =<8= := min2 =2 denotes the smallest number of individuals which share any
feature vector 2 ∈ C.
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By section 4.3.2 and C.2.8, for Maximin-optimal ?∗, there exists a uniform lottery ?̄ that satis�es

Maximin(?∗) −Maximin(?̄) = 1
<
·$

(
min

{√
|C| log |C|, :

=<8=
+ 1

})
.

Section 4.3.3 demonstrates that we cannot get an upper bound on Maxmin loss stronger than
$ (
√
:/<) using a uniform bound on changes in all c8 . However, since Maximin is concerned

only with the smallest c8 , it seems plausible that better upper bounds on Maximin loss could
result from rounding c while tightly controlling only losses in the smallest c8 ’s, while giving freer
reign to larger marginals. We show that this is not the case by further modifying the instances
from section 4.3.3 to obtain the following lower bound on the Maximin loss: There exists a
Maximin-optimal ?∗ such that, for all uniform lotteries ?̄ ,

Maximin(?∗) −Maximin(?̄) = Ω

(√
:

<

)
.

4.4.2 Nash Welfare

As NW has also garnered interest by practitioners and is applicable in practice [163], we upper-
bound the NW fairness loss. UnlikeMaximin loss, an upper bound on NW loss does not immedi-
ately follow from one on ‖c − c̄ ‖∞, because decreases in smaller marginals have larger negative
impact on the NW. As a result, the upper bound on NW resulting from section 4.3 is slightly
weaker than that on Maximin:

For NW-optimal ?∗, there exists a uniform lottery ?̄ that satis�es

NW(?∗) − NW(?̄) = :

<
·$

(
min

{√
|C| log |C|, :

=<8=
+ 1

})
.

Wegive an overview of the proof of section 4.4.2. To begin, �x aNW-optimizing panel distribution
?∗, c∗. Before applying our upper bounds on marginal discrepancy from section 4.3, we must
contend with the fact that if this bounded loss is su�ered by already-tiny marginals, the NW
may decrease substantially or even go to 0. Thus, we �rst prove Lemmas 4.4.2 and 4.4.2, which
together imply that no marginal in c∗ is smaller than 1/=.

For NW-optimal ?∗ over a support of panels BD?? (?∗), there exists a constant _ ∈ R+ such that,
for all % ∈ BD?? (?∗), ∑8∈% 1/c∗8 = _.

For NW-optimal ?∗, c∗, we have that c∗8 ≥ 1/= for all 8 ∈ # .

Section 4.4.2 follows from the fact that the partial derivative ofNWwith respect to the probability
it assigns a given panel must be the same as that with respect to any other panel at ?∗ (otherwise,
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mass in the distribution could be shifted to increase the NW). Section 4.4.2 then follows by the
additional observation that E%∼?∗

[∑
8∈% 1/c∗8

]
= =.

Finally section 4.4.2 follows from the fact that Section 4.4.2 limits the potential multiplicative, and
therefore additive, impact on the NW of decreasing any marginal by ‖c − c̄ ‖∞:

For NW-optimal ?∗, c∗, there exists a uniform lottery ?̄, c̄ that satis�es NW(?∗) − NW(?̄) ≤
: ‖c∗ − c̄ ‖∞. As the NW-optimal marginals c∗ are anonymous, we can apply the upper bounds
given by section 4.3.2 and theorem C.2.8 to show the existence of a ?̄, c̄ satisfying the claim of
the theorem.

4.5 Practical Algorithms for Computing Fair Uniform Lotteries

Algorithms. First, we implement versions of two existing rounding algorithms, which are im-
plicit in our worst-case upper bounds.1 The �rst is Pipage rounding [141], or Pipage, a ran-
domized rounding scheme satisfying negative association [102]. The second is Beck-Fiala, the
dependent rounding scheme used in the proof of section 4.3.1. To benchmark these algorithms
against the highest level of fairness they could possibly achieve, we use integer programming (IP)
to compute the fairest possible uniform lotteries over BD?? (?∗), the panels over which ?∗ ran-
domizes.2 We de�ne IP-Maximin and IP-NW to �nd uniform lotteries over BD?? (?∗) maximizing
Maximin and NW, respectively. We remark that the performance of these IPs is still subject to
our theoretical upper and lower bounds. We provide implementation details in appendix C.4.1.

One question is whether we should prefer the IPs or the rounding algorithms for real-world ap-
plications. Although IP-Maximin appears to �nd good solutions at practicable speeds, IP-NW
converges to optimality prohibitively slowly in some instances (see appendix C.4.2 for runtimes).
At the same time, we �nd that our simpler rounding algorithms give near-optimal uniform lotter-
ies with respect to both fairness objectives. Also in favor of simpler rounding algorithms, many
randomized rounding procedures (including Pipage rounding) have the advantage that they ex-
actly preserve marginals over the combined steps of randomly rounding to a uniform lottery and
then randomly sampling it—a guarantee that is much more challenging to achieve with IPs.

Uniform lotteries nearly exactly preserveMaximin, NashWelfare fairness. We �rst mea-
sure the fairness of uniform lotteries produced by these algorithms in 11 real-world panel selec-
tion instances from 7 di�erent organizations worldwide (instance details in appendix C.1). In all
experiments, we generate a lottery of size < = 1000. This is fairly small; it requires drawing
only 3 balls from lottery machines, and in one instance we have that< < =. We nevertheless see
excellent performance of all algorithms, and note that this performance will only improve with
larger<.

1We do not implement the algorithm implicit in section 4.3.2 because our results already present su�cient al-
ternatives for �nding excellent uniform lotteries in practice.

2Note that these lotteries are not necessarily universally optimal, as they can randomize over only BD?? (?∗);
conceivably, one could �nd a fairer uniform lottery by also randomizing over panels not in BD?? (?∗). However,
Pipage and Beck-Fiala are also restricted in this way, and thus must be weakly dominated by the IP.
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Figure 4.2: < = 1000. Shaded regions extend from Maximin(?∗), the fairness of the optimal
unconstrained distribution, down to the minimum fairness implied by the tightest theoretical
upper bound in that instance (in all instances but “obf” section 4.3.2 is tightest). Each algorithm
or bound’s loss relative to Maximin(?∗) is written above in the corresponding color. We show a
representative run of Pipage, a randomized algorithm.

Figure 4.2 shows the Maximin fairness of the uniform lottery computed by Pipage, Beck-Fiala,
and IP-Maximin for each instance. For intuition, recall that the level ofMaximin fairness given by
any lottery is exactly the minimummarginal assigned to any individual by that lottery. The upper
edges of the gray boxes in �g. 4.2 correspond to the optimal fairness attained by an unconstrained
distribution ?∗. These experiments reveal that the cost of transparency to Maximin-fairness is
practically non-existent: across instances, the quantized distributions computed by IP-Maximin
decrease the minimum marginal by at most 2.1/<, amounting to a loss of no more than 0.0021 in
the minimummarginal probability in any instance. Visually, we can see that this loss is negligible
relative to the originalmagnitude of even the smallest marginals given by ?∗. Surprisingly, though
Pipage and Beck-Fiala do not aim to optimize any fairness objective, they achieve only slightly
larger losses in Maximin fairness, with Pipage outperforming Beck-Fiala. Finally, the heights
of the gray boxes indicate that our theoretical bounds are often meaningful in practice, giving
lower bounds on Maximin fairness well above zero in nine out of eleven instances. We note
these bounds only tighten with larger<. We present similarly encouraging results on NW loss
in appendix C.4.3.

Uniform lotteries nearly preserve all Leximin marginals. We still remain one step away
from practice: our examination ofMaximin does not address whether uniform lotteries can attain
the �ner-tuned fairness properties of the Leximin-optimal distributions currently used in prac-
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tice. Fortunately, our results from section 4.3 imply the existence of a quantized ?̄ that closely
approximates all marginals given by the Leximin-optimal distribution ?∗, c∗. We evaluate the ex-
tent to which Pipage and Beck-Fiala preserve these marginals in �g. 4.3. They are benchmarked
against a new IP, IP-Marginals, which computes the uniform lottery over BD?? (?∗) minimizing
‖c∗ − c̄ ‖∞.
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Figure 4.3: Instance = sf(a), < = 1000. Line plot shows the Leximin-optimal marginals c∗ (im-
plied by panel distribution ?∗), along with marginals given by all algorithms sorted according
to c∗. Note that each G coordinate then corresponds to an individual. The zoomed box shows
the magnitude of marginal discrepancy around c∗. The surrounding shaded region shows the
tightest theoretical bound on the marginal discrepancy, in this case from section 4.3.2, around
the optimal marginals. We show a representative run of Pipage, a randomized algorithm.

Figure 4.3 demonstrates that in the instance “sf(a)”, all algorithms produce marginals that devi-
ate negligibly from those given by c∗. Analogous results on remaining instances appear in ap-
pendix C.4.4 and show similar results. As was the case for Maximin, we see that our theoretical
bounds are meaningful, but that we can consistently outperform them in real-world instances.

4.6 Discussion

Our aim was to show that uniform lotteries can preserve fairness, and our results ultimately sug-
gest this, along with something stronger: that in practical instances, uniform lotteries can reliably
almost exactly replicate the entire set of marginals given by the optimal unconstrained panel dis-
tribution. Our rounding algorithms can thus be plugged directly into the existing panel selection
pipeline with essentially no impact on individuals’ selection probabilities, thus enabling transla-
tion of the output of Panelot (and other maximally fair algorithms) to a nearly maximally fair and
transparent panel selection procedure. We note that our methods are not just compatible with
ball-drawing lotteries, but any form of uniform physical randomness (e.g. dice, wheel-spinning,
etc.).

Althoughwe achieve our stated notion of transparency, a limitation of this notion is that it focuses
on the �nal stage of the panel selection process. A more holistic notion of transparency might
require that onlookers can verify that the panel is not being intentionally stacked with certain
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individuals. This work does not fully enable such veri�cation: although onlookers can now ob-
serve individuals’ marginals, they still cannot verify that these marginals are actually maximally

fair without verifying the underlying optimization algorithms. In particular, in the common case
where quotas require even maximally fair panel distributions to select certain individuals with
probability near one, onlookers cannot distinguish those from unfair distributions engineered
such that one or more pool members are chosen with probability near one.

In research on economics, fair division, and other areas of AI, randomness is often proposed as
a tool to make real-world systems fairer [63, 139, 157]. Nonetheless, in practice, these systems
(with a few exceptions, such as school choice [213]) remain stubbornly deterministic. Among the
hurdles to bringing the theoretical bene�ts of randomness into practice is that allocation mech-
anisms fare best when they can be readily understood, and that randomness can be perceived as
undesirable or suspect. Sortition is a rather unique paradigm at the heart of this tension: it relies
centrally on randomness, while in the public sphere it is attaining increasing political in�uence.
It is therefore a uniquely high-impact domain in which to study how to combine the bene�ts of
randomness, such as fairness, with transparency. We hope that this work and its potential for
impact will inspire the investigation of fairness-transparency tradeo�s in other AI applications.
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Manipulation-Robustness

Manipulation-Robust Citizens’ Assembly Selection [128].
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5.1 Introduction

In a citizens’ assembly, a panel of randomly-chosen constituents convenes to make a policy rec-
ommendation on a political issue. Although citizens’ assembly participants are not career politi-
cians, their recommendations are informed by an extensive process of learning from experts and
deliberating with one another. As such, citizens’ assemblies are appealing because they combine
the goals of engaging everyday citizens in democratic decision-making, while also facilitating
informed decisions. Citizens’ Assemblies are now being used to make increasingly high-pro�le
decisions around the world [225]; for example, France recently ran a national-level assembly on
the topic of assisted dying, and its outcome is slated to a�ect policy on palliative care [65].

Because the participants of a citizens’ assembly represent their entire underlying constituency,
the process by which they are selected is crucial to whether the policy recommendation they pro-
duce is perceived as trustworthy. The importance of this selection process has motivated a grow-
ing body of research on selection algorithms [104, 106, 128, 130, 131], which solve the following
task: from among a pool of volunteers, randomly sample a panel that is (at least approximately)
descriptively representative of the underlying population. This means that if the population is
48% women, the panel should be approximately 48% women. Because exact representation of all
identities cannot be achieved with a �nite-size panel, practitioners’ main goal is to achieve rep-
resentation with respect to a handful of key features, such as gender, age, geographic location,
education level, and opinion on the issue at hand.
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Themain algorithmic challenge in selecting descriptively representative participants is self-selection
bias: di�erent demographic groups agree to participate at vastly di�erent rates, so the pool of vol-
unteers from which the panel is sampled is demographically skewed compared to the underlying
population. Consequently, simple sampling techniques do not produce the desired descriptive
representation.

Existing work has circumvented the challenge of achieving representation to a large degree. The
�rst selection algorithms, developed by practitioners, were heuristics that searched for represen-
tative panels, injecting randomness wherever possible. More recent work has contributed algo-
rithms that not only �nd representative panels, but do so in a way that achieves other desiderata
simultaneously. For example, Flanigan et al. [130] presents a framework of algorithms that are
maximally fair to individual pool members: that is, they make pool members’ probabilities of
being selected as equal as possible, subject to representation constraints. One algorithm within
this framework, called Leximin [130], is now widely used in practice.

Beyond the desiderata of representation and maximal fairness, follow-up work has contributed
methods for additionally achieving transparency [131]. However, at the current frontier of re-
search on selection algorithms, a key desideratum remains yet untouched: their manipulability.

In this paper, we initiate the study of selection algorithms’ vulnerability to perhaps the most
salient type of potential manipulation: volunteers misreporting their features. With Example 5.1.1,
we now illustrate in detail why the selection process, as it commonly works in practice, can
permit— and strongly incentivize— such manipulation.

Example 5.1.1. We want to select a panel of 10 people to convene on climate policy. We care about

descriptive representation of one feature only: people’s level of concern about climate change. This

feature has two possible values: those who are less concerned (20% of the population) and more

concerned (80% of the population). Thus, we will reserve 2 and 8 panel seats for these respective

groups.

Stage 1: Recruiting the pool of volunteers. We send out invitations to 1000 uniformly sampled

households in our constituency. In response, 100 people volunteer to participate, but they are strongly

self-selected: only 4 are truly less concerned, and 96 of them are truly more concerned.
1
In preparation

for selection, we ask all 100 volunteers to report which group they belong to. Among these volunteers,

suppose there is one strategic agent 8 who is truly more concerned, but is willing to misreport their

group membership if it increases their chance of being on the panel.

Stage 2: Panel selection. Given this pool of volunteers and their self-reported group memberships,

a selection algorithm is then used to choose a panel. We assume nothing about this algorithm ex-

cept that it treats people in the same group uniformly, and it produces a panel with 2 seats for less

concerned people and 8 seats for more concerned people.

It is not hard to see that, in this example, 8 bene�ts signi�cantly from misreporting their group

membership. If 8 truthfully reports they are more concerned, they will join a group of 96 people for

1These numbers are based on a real-world panel selection task (instance sf-e in our empirical analysis).

67



whom the panel has 8 seats, and thus will be chosen with probability 8/96 ≈ 8%. If 8 reports that
they are less concerned, they will join a group of 5 people for whom the panel has 2 seats, and will

be chosen with probability 2/5 = 40%. By misreporting that they are less concerned, 8 can increase

their selection probability by almost 32%. Moreover, with probability 40%, 8 will be given a panel seat

reserved for less concerned people, thereby giving the group of more concerned people an extra panel

seat.

Example 5.1.1 illustrateswhy suchmanipulation is of practical concern: the nature of self-selection
bias in this example would be fairly easy for constituents to anticipate— surely, people who care
less about climate change will be less likely to volunteer—making the optimal manipulation pub-
lic knowledge.1 Moreover, we cannot always prevent manipulation through veri�cation; here,
people’s opinions would be impossible to check. As citizens’ assemblies are used for increasingly
higher-pro�le decisions, the political power associated with participating— and thus the incen-
tive to manipulate—will only increase. Example 5.1.1 also shows a fundamental impossibility:
when there is self-selection bias, achieving descriptive representation necessitates giving di�erent
probabilities to di�erent groups, thereby permitting manipulability. In other words, no selection
algorithm can achieve representation while eliminating manipulation incentives. This motivates
our research question:

Research question: What aspects of the selection process can we adjust in practice to limit

agents’ incentives to misreport their features?
Approach. We focus on two main aspects of the selection process that can be changed in prac-
tice: the size of the pool of volunteers =, and the choice of selection algorithm. The intuition for
why increasing = could help is simple: as the pool grows, there are more volunteers per available
panel seat. For the correct choice of selection algorithm, this could permit the decrease of all
volunteers’ selection probabilities, thereby diluting the potential gains of manipulation.

Among selection algorithms, we consider only algorithms that achieve maximal fairness, be-
cause per Example 5.1.1, manipulation incentives arise from inequality in selection probabilities
(thus, the goal of equalizing selection probabilities is aligned with limiting manipulation). Specif-
ically, we introduce and study rounding-based selection algorithms— a class of maximally fair
algorithms that generalizes an algorithm of Flanigan et al. [128]. As discussed in Section 5.2,
rounding-based algorithms closely re�ect those used in practice, but enforce a slightly relaxed
notion of representation.

Each rounding-based algorithm optimizes a di�erent fairness objective: a function measuring how
fairly the chance to participate is spread over volunteers. We study several such functions: Lex-
imin, the objective most commonly used in real-world panel selection [130]; Nash Welfare, which
has known fairness and transparency properties and is available online for practical use [131];
and all ℓ? norms, which we newly introduce to the citizens’ assembly setting.

Results and Contributions. (1) Manipulation model. Our �rst contribution is to formally
model three realistic manipulation incentives in the assembly selection context: increasing one’s

1More generally, there are clear patterns across real-world instances of which groups tend to be most underrep-
resented among volunteers (e.g., those with less education).
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own probability of selection, changing someone else’s, and— aswe saw in Example 5.1.1—misappropriating
seats from other groups. (2) Impossibilities for existing algorithms. We then show that,
somewhat alarmingly, the state-of-the-art objectives Leximin and Nash Welfare are arbitrarily

manipulable on multiple of these counts. Even as = grows large, they permit agents to gain prob-

ability 1 by misreporting, and they allow coalitions to misappropriate a constant fraction of the
panel seats. These lower bounds give a key insight: fairness objectives are manipulable when
they permit some agents to receive very high selection probabilities. (3) An optimal selection

algorithm. Motivated by this �nding, we study ℓ? norms, which heavily penalize high proba-
bilities due to their strong convexity. We show that even when agents can costlessly misreport
any vector of features, the manipulability of the ℓ?-norm declines in = at a rate =−(1−1/?) , a rate
which holds for all three notions of manipulability. We further show that any selection algorithm

must su�er manipulability at least Ω(1/=); as ? → ∞, our upper bound approaches this lower
bound, implying that the ℓ∞ norm — the objective that minimizes the maximum selection prob-
ability — achieves optimal convergence. As a bonus, our analysis handles coalitions of size up to
Θ(=). (4) Empirical results. We complement these theoretical results with experiments in eight
real-world panel selection datasets. Our empirical results closely track our theory, showing that
Leximin and Nash Welfare su�er high manipulability even as = grows, while the manipulability
of the ℓ2 and ℓ∞ norms declines quickly.

5.2 Model

5.2.1 Foundations of Selection Algorithms

At a high level, a selection algorithm must select a panel of : agents from the pool of = agents.
This panel must be representative of the population with respect to a prede�ned set of features
� , where each 5 ∈ � has a prede�ned set of possible values +5 . For example, the feature 5 = age

might have possible values +age = {18 - 40, 41 - 60, 61+}. We assume that for each feature 5 , its
possible values+5 are exhaustive and mutually exclusive. We de�ne �+ :=

⋃
5 ∈� +5 to contain all

feature-value pairs, (5 , E) for all 5 ∈ �, E ∈ +5 . For all (5 , E), ? (5 ,E) is the fraction of the underlying
population with value E for feature 5 . Then, a representative panel contains ? (5 ,E) · : agents with
value E for feature 5 , for all (5 , E) ∈ �+ . Let ? := (? (5 ,E) |5 ∈ �, E ∈ +5 ).

An instance of the panel selection task is then composed of population rates ?; a desired panel
size : ; and the pool # , which is de�ned by all = agents’ true values of each feature. To de�ne these
values, we let 5 (8) denote 8’s value for 5 , thereby implicitly treating each feature as a function
5 : [=] → +5 . 8’s values across features are summarized in their feature vector F (8) := (5 (8) |5 ∈
� ). The pool of volunteers # := (F (8) |8 ∈ [=]) is then an =-tuple containing all agents’ feature
vectors. We letW :=

∏
5 ∈� +5 be the collection of all possible feature vectors (i.e., all possible

intersections of feature-value pairs). A generic feature vector isF ∈ W. Wewill often reason only
about fractional composition of a pool # , called . (# ). This vector is indexed by feature-vector,
with F-th entry aF (# ) := |{8 ∈ [=] : F (8) = F}|/|# | representing the fraction of the pool with
vectorF .

In practice, organizers must rely on agents to report their feature vectors. Agent 8’s reported

69



feature vector is denoted F̃ (8) ∈ W; in general, we will use tilde ·̃ throughout the paper to
distinguish reported values from true values. The reported pool is then denoted as #̃ = (F̃ (8) |8 ∈
[=]). In an instance ?, :, # , a selection algorithm A actually receives as input ?, :, #̃ , and must
map it to a panel  ⊆ #̃ .

In the next subsection, wewill formally de�ne threemotiveswithwhich an agentmightmisreport
their feature vector. All these motives revolve around controlling a particular resource: selection
probability. Agent 8’s selection probability is P[8 ∈  ], the probability 8 is chosen for the panel.
We de�ne cA

8
(?, :, #̃ ) to be the selection probability given to agent 8 by algorithm A on input

?, :, #̃ . Accordingly, the vector of agents’ selection probabilities is cA (?, :, #̃ ). Since ? and :’s
true values are known to the algorithm, we simply write cA (#̃ ). A generic vector of selection
probabilities is c . Note that there are : available seats for = people, so the average selection
probability over agents must be :/=.

5.2.2 Manipulation of Selection Algorithms

In the game we study, we permit all agents to costlessly misreport any feature vector inW. We
assume that agents report their feature vector F̃ (8) with knowledge of the entire instance ?, :, # ,
plus full access to the selection algorithm.1 While the assumption that agents exactly know the
true pool # is slightly adversarial, our study of simple manipulation heuristics in Section 5.5 will
shed light the potential for manipulation using less detailed information about the pool.

We do not commit to a speci�c utility function for agents, because they might manipulate with a
variety of di�erent goals. Instead, we de�ne the threemeasures of manipulability below, each cor-
responding to a di�erent motive: the internal manipulabilitymanipint captures howmuch a coali-
tion can increase the selection probability of its members; the external manipulability manipext
captures how much a coalition can harm a non-member; and the composition manipulability
manipcomp captures how many seats (in expectation) a coalition can misappropriate from any
feature-value group. We denote a coalition as� , and we let #−� denote the pool with the feature
vectors of 8 ∈ � removed. In instance ?, :, # , the manipulability ofA by any coalition of size 2 is
de�ned, per notion, as follows, where > := max�⊆[=],|� |=2 maxw̃∈W |� | is shorthand for taking the
worst possible coalition of size 2 and worst possible strategic reports of its members.

manipint(#,A, 2) := > max
8∈�

cA8 (#−� ∪ w̃) − c
A
8 (# ),

manipext(#,A, 2) := > max
8∉�

cA8 (# ) − c
A
8 (#−� ∪ w̃),

manipcomp(#,A, 2) :=
> max
(5 ,E)∈�+

∑
8:5 (8)=E

cA8 (#−� ∪ w̃) −
∑

8:5 (8)=E
cA8 (# ).

1It is realistic to assume agents know ? and : , and can access the selection algorithm: ? is found in census
data, and for transparency, : might be public and the selection algorithm would be open-sourced. Assuming agents
know # is somewhat adversarial, because in practice, the agents report their features simultaneously; however, this
assumption re�ects the concern that, by comparing census data and the compositions of past pools, agents could
infer who tends to participate, and thus the likely composition of # .
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5.2.3 Rounding-Based Selection Algorithms

We study the manipulability of a class of selection algorithms which we call rounding-based selec-
tion algorithms. Each rounding-based algorithm is speci�ed by a convex function6 : [0, 1]= → R;
we will refer to the algorithm de�ned by function 6 simply as 6. Algorithm 6 proceeds in two
steps: Step 1 computes selection probabilities that minimize 6, subject to some constraints; then,
Step 2 dependently rounds these probabilities to produce a �nal panel. Since selection probability
is the resource sought by manipulating agents— and the selection probabilities are fully deter-
mined in Step 1— only the Step 1 will be of interest in this paper.
Step 1. Find 6-optimal selection probabilities. Given instance ?, :, # , in this step the algorithm
optimizes 6 over the polytope R(# ), de�ned such that c ∈ R(# ) ⇐⇒ c satis�es the following
constraints: ∑

8∈# :5 (8)=E
c8 = :? (5 ,E) for all (5 , E) ∈ �+ (C1)∑

8∈#
c8 = : (C2)

c ∈ [0, 1]= (C3)

(C1) requires ex-ante representation for all feature-value pairs; (C2) requires that the panel is the
correct size in expectation (required for Step 2), and (C3) requires c to contain valid probabilities.
Formally, in step 1 the algorithm 6 solves the following convex program:

min
c

6(c) s.t. c ∈ R(# ) (opt-prob)

Note that without loss of generality, we can assume that the solution of this convex program
assigns the same probability to all agents with the same feature vector, since as any feasible
solution can be transformed into such a solution, per the de�nition of R(# ). We will consider
only such solutions throughout the paper.

Step 2: Randomized-rounding. This step intakes the selection probabilities found in the previous
step, called c6, and samples a panel  of size : using the discrepancy-based rounding procedure
of Flanigan et al. [128]. For our purposes, the key property of this rounding procedure is that it
preserves the selection probabilities c6; we defer the details of this procedure to Appendix D.1.1.

Speci�c choices of 6. We will instantiate the rounding-based algorithms above with various
convex functions6—all which, whenminimized, tend to make selection probabilities more equal.
We analyze two choices of 6 that serve as benchmarks: Nash Welfare, and Leximin. Nash Welfare
is the geometric mean of selection probabilities:

Nash(c) := −
∏
8∈[=]

c8 .

Leximin is not itself strictly a function, but a re�nement of the objective Maximin, which maxi-
mizes the minimum selection probability given to any agent:

maximin(c) := −min
8∈[=]

c8 .
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The Leximin-optimal solution is computed iteratively: optimize maximin, �x the minimum entry
of that solution as a lower bound on any entry of c , then maximize the second-lowest entry;
repeat until all entries are �xed.

Finally, we study all ℓ? norms for ? > 1, which measure the distance between c and the vector of
exactly equal selection probabilities (:/=, :/=, . . . , :/=):

ℓ? (c) := ‖c − (:/=, . . . , :/=)‖?? .

Connections to existing algorithms. With rounding-based algorithms de�ned, we can now
compare them to existing selection algorithms. The most closely-related algorithm is that of
Flanigan et al. [128]. Their algorithm computes selection probabilities within R as in our in Step
1, and then rounds them via the same procedure as in our Step 2. The main di�erence is that
their algorithm manually sets selection probabilities to speci�c values in Step 1 in a way that
ends up satisfying the constraints, while algorithm 6 within our class sets them by optimizing
the function 6.

Slightly further a�eld are the most widely-implemented maximally fair algorithms, as introduced
by Flanigan et al. [130]. These algorithms di�er from ours only in that they enforce representa-
tion slightly di�erently: instead of ex ante representation, they require the satisfaction of hard
upper and lower demographic quotas ex post (e.g., quotas might require that a panel of 10 people
contains between 4 and 6 women). As we show in Proposition D.1.2, our algorithms are formally
equivalent to a continuous relaxation of these quota-based algorithms where agents are divisible.
Moreover, our rounding-based algorithms do, in fact, achieve a relaxed version of these ex-post
quotas: they are guaranteed to produce a panel containing within ±|� | of :? (5 ,E) agents with
each value E of each feature 5 (Lemma 9, Flanigan et al. [128]). This panel is found via a rounding
scheme based on a discrepancy theorem due to Beck and Fiala [41].

5.3 Leximin and Nash are Highly Manipulable

We begin by analyzing the two objectives most closely tied to practice. Strikingly, Theorem 5.3.1
shows that both Leximin and Nash are extremely manipulable: using either algorithm, an indi-
vidual agent can gain selection probability 1 bymisreporting, and a coalition can deterministically

misappropriate (approaching) half of all panel seats for their own group. The proof of this theo-
rem is found in Appendix D.2.1; we give a proof sketch below.

Theorem 5.3.1. For an arbitrarily large = and for all 2 ∈ [1, :/2), there exists an instance ?, :, # ,

|# | = = such that

manip8=C (#, Leximin, 1) = 1 and
manip8=C (#,Nash, 1) = 1; moreover,

manip2><? (#, Leximin, 2) = 2 and
manip2><? (#,Nash, 2) = 2.
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Proof sketch. Fix a 2 ∈ [1, :/2). All claims are proven by a single instance ?, :, # with features
51, 52 that take on binary values {0, 1} (so the possible feature vectors are 00, 01, 10, 11). In this
instance, we let the population rates of all feature-values be balanced: ? 51,0 = ? 51,1 = ? 52,0 = ? 52,1 =
1/2. We construct # with the following fractional composition, where a∗ should be thought of
as a quantity shrinking in 2: a00(# ) = a11(# ) = a∗, a10(# ) = 1 − 2a∗, and a01(# ) = 0. We let this
pool have some size |# | = = ≥ :2, such that its fractional composition can be realized.

First, observe that in this instance, all agents with vector 10must receive zero selection probability
due to the constraints: giving them any probability would induce a constraint-violating imbalance
in the probability given to agents with 51 = 0 versus 52 = 0, which cannot be re-balanced because
the complementary vector 01 does not exist in # . This suggests a manipulation strategy: an
agent with 10 could misreport 01, thereby permitting greater fairness by allowing agents with 10
to receive some probability.

Let 8 with F (8) = 10, and de�ne #̃ := #−8 ∪ {01} as the pool resulting from 8 using the pro-
posed strategy. In instance ?, :, #̃ , agents with 10 can receive probability; the catch is that, for
every unit of probability given to such an agent, a unit must also be given to 8 , meaning that 8
must receive |# |a10 times the probability of any agent with 10. The key observation is that both
Leximin and Nash prioritize ensuring theminimum probability is not too small, with little con-
sideration for what happens to the highest probability. For this reason, both algorithms give 8
selection probability 1 in the instance ?, :, #̃ . 8 has gained probability 1 by misreporting, imply-
ing the bounds on manip8=C (#, Leximin, 1) and manip8=C (#,Nash, 1). This argument extends to
an entire coalition of 2 < :/2 such agents, implying the bounds onmanip2><? (#, Leximin, 2) and
manip2><? (#,Nash, 2). �

Takeaway: strongly convex objectives. The key takeaway from this proof is that objectives
that do not penalize high selection probabilities can be highly manipulable. A natural class of
objectives that do penalize high probabilities are strongly convex objectives—we formalize this
intuition in Proposition D.2.1. This insight suggests that in future study of selection algorithms,
it may be desirable to focus on such objectives. This �nding also motivates our focus on ℓ?
norms— a natural class of strongly-convex objectives.

5.4 ℓ?-Norms Approach Optimal Manipulability as ? →∞

We now present upper-bounds on all three measures of manipulability for all rounding-based
algorithms ℓ? with ? > 1. These upper bounds will hold for any instance whose pool satis�es
Assumption 5.4.1, which conceptually requires that the pool has a minimal level of feature vector
richness.

Assumption 5.4.1 (Pool richness). # contains some set of feature-vectorsW∗ ⊆ W such that

1. there is a constant ^∗ > 0 such that aF (# ) ≥ ^∗ + :/= for allF ∈ W∗
, and

2. R(# ) contains a solution c∗ such that c8 = 0 for all 8 : F (8) ∉W∗
.
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This assumption is likely to hold in practice; in fact, due to how the pool is sampled, every feature-
vector group’s presence in the pool should grow approximately linearly in =. We expand on this
in Appendix D.3.1. Also, note that the pool used to prove Theorem 5.3.1 satis�es Assumption
5.4.1 (Proposition D.3.1), thus demonstrating a genuine gap between the manipulability of all ℓ?
norms and Leximin, Nash.

Theorem 5.4.2. Let ? > 1, and let # be any pool of size = satisfying Assumption 5.4.1 with

W∗, ^∗, c∗. Let ^ ∈ (0, ^∗); then, for any coalition size 2 ≤ ^=, we have that

manipint(#, ℓ?, 2) ∈ $
(
:/=1−1/?

)
,

manipext(#, ℓ?, 2) ∈ $
(
:/=1−1/?

)
, and

manipcomp(#, ℓ?, 2) ∈ $
(
2:/=1−1/?

)
.

Proof. Fix a pool # withW∗, ^∗, c∗, as in the theorem statement. Fix any coalition� ⊆ # of size
2 ≤ ^=. Let #̃ := #−� ∪ {F̃ (8) |8 ∈ �} be the manipulated pool. For convenience, we will again
work with feature-vector-indexed objects. We will again use aF (# ) as the frequency of F in # .
We also de�ne CF (c) :

∑
8:F (8)=F c8 as the total probability c gives to agents with vector F . Let

the vector of these totals be C (c) = (CF (c) |F ∈ W). We can now reformulate the constraints
de�ning R(# ) in terms of the variable C : let T (# ) ⊆ R|W| such that C (c) ∈ T (# ) i�∑

F :F 5 =E

CF (c) = :? (5 ,E) for all (5 , E) ∈ �+ (C1’)∑
F

CF (c) = : (C2’)

CF (c)
=aF (# )

∈ [0, 1] for allF ∈ W (C3’)

Let c∗ ∈ R(# ) be the feasible solution assumed to exist by Assumption 5.4.1. Then, construct
the vector c̃ as follows:

c̃8 = CF (8) (c∗) /=aF (8) (#̃ ) for all 8 ∈ # .

In e�ect, the total probability assigned to each vector group from c∗ to c̃ is maintained, despite
the potentially changing number of agents in that group from # to #̃ . Formally:

Claim 1: For allF ∈ W, CF (c∗) = CF (c̃). Proof:

CF (c̃) =
∑

8:F (8)=F
c̃8 =

∑
8:F (8)=F

CF (c∗)
=aF (#̃ )

= CF (c∗).

Claim 2: c̃ ∈ R(# ). Proof: We prove this by equivalently showing that C (c̃) ∈ T (#̃ ). The
satisfaction of constraints C1’ and C2’ follow from Claim 1. Moreover, by de�nition CF (c̃)

=aF (#̃ )
≥ 0
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for allF . Then, it just remains to show C3’:

CF (c̃)
=aF (#̃ )

=
CF (c∗)
=aF (#̃ )

≤ CF (c∗)
=(aF (# ) − ^)

≤ CF (c∗)
=(^∗ + :/= − ^) ≤

:

: + =(^∗ − ^) ≤ 1.

Now, we will show that the vectors of probabilities c∗, c̃ have maximum entry on the order 1/=:

Claim 3: ‖c∗‖∞ ≤ :/̂ ∗= and ‖c̃ ‖∞ ≤ :/(^∗−^)=. Proof: For all 8 with F (8) ∉W∗, c∗8 = c̃8 = 0 by
de�nition. For 8 withF (8) ∈ W∗, we have that

c∗8 =
CF (c∗)
=aF (# )

≤ :

=^∗
and c̃8 =

CF (c∗)
=aF (#̃ )

≤ :

=(^∗ − ^) .

Now, we relate the in�nity-norms of any feasible solution and the ℓ?-optimal solution of opt-
prob:

Claim 4: For all c ∈ R(# ), ‖c ℓ? (# )‖∞ ≤ =1/? ‖c ‖∞ + 2:=−
?−1
? . Proof: By the optimality of

c ℓ? (# ), we have that ℓ? (c ℓ? (# ))1/? ≤ ℓ? (c (# ))1/? . Then, using properties of norms, and the
triangle inequality (twice), we obtain that

‖c ℓ? (# )‖∞ ≤ ℓ? (c ℓ? (# ))1/? + ‖:/=1‖?
≤ ℓ? (c)1/? + ‖:/=1‖?
≤ ‖c ‖? + 2‖:/=1‖? ≤ =1/? ‖c ‖∞ + 2:=

1−?
? .

Using thatc∗ ∈ R(# ), c̃ ∈ R(#̃ ), Claims 3 and 4 together imply that ‖c ℓ? (# )‖∞ ≤ :/(^∗ =1−1/?)+
2:/=1−1/? and likewise, ‖c ℓ? (#̃ )‖∞ ≤ :/((^∗ −^)=1−1/?) + 2:/=1−1/? . Using that the entries of all
c are nonnegative, it follows that

‖c ℓ? (#̃ ) − c ℓ? (# )‖∞ ≤
(

1
^∗ − ^ + 2

)
:

=1−1/?
. (5.1)

We’ve now shown an upper bound on howmany any 8’s probability changes between pool # and
pool #̃ . This immediately implies the upper bounds on manipint(#, ℓ?, 2) and manipext(#, ℓ?, 2).
Our upper bound on ‖c ℓ? (#̃ )‖∞ further implies that post-defection, the members of the coalition
can have atmost$ (2:/=1−1/?) total selection probability, giving our upper bound onmanipcomp(#, ℓ?, 2).

�

We now show a lower bound that applies to any rounding-based algorithm. It shows that up to
constants, the manipulability of ℓ∞ decreases at the optimal rate in =.

Theorem 5.4.3. There is some [ > 0 such that there exist pools # of arbitrarily large size = which,

for any coalition size 2 ≤ 5=/64 and all objectives 6, satisfy
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manip8=C (#,6, 2) ≥ [ :/=, manip4GC (#,6, 2) ≥ [ :/=,
manip2><? (#,6, 2) ≥ [ 2:/=.

The same pools also satisfy Assumption 5.4.1.

The proof is in Appendix D.3.3 and relies on an example exactly like Example 5.1.1: there is one
binary feature, where E1 is severely underrepresented in the pool. The bounds arise from agents
with E0 misreporting E1.

5.5 Manipulability of Real-World Instances

Now we compare the manipulability of Leximin, Nash, ℓ2 and ℓ∞ in eight real-world panel selec-
tion instances. Instance details are provided in Appendix D.4.1. We present here two representa-
tive instances, called sf(a) and hd, and defer the rest to Appendix D.4. The datasets were obtained
from groups of assembly organizers based in the UK and US, respectively. Each real-world in-
stance consists of ?, :, # . To study how manipulability changes as we increase the pool size, we
simply copy the pool, leaving ? and : �xed. In each instance, we copy the pool until = ≥ 100: ,
as practitioners often specify their target pool size in multiples of : .

We will test our selection algorithms against an individual manipulator— that is, we measure
how much selection probability any agent can gain by misreporting their feature vector. The
most powerful individual manipulator could gain manip8=C (#,A, 1) probability against A— the
quantity to which our theoretical bounds apply. Given the computational di�culty of calculat-
ing the optimal manipulation (each agent has |W| ∈ Ω(2|� |) possible strategies), we test our
algorithms against three practically-motivated heuristic strategies: OPT-1, MU, and HP, de�ned
below. The results are summarized in Figure 5.1.

OPT-1: Optimal misreport of one feature. An agent playing strategy OPT-1 reports the fea-
ture vector that bene�ts them most, subject to misreporting their value for at most one feature.
This strategy, in practice, might correspond to a practical setting in which only a few features
cannot be validated. When comparing across algorithms, we think of OPT-1 as a proxy for the
optimal individual manipulation. As column 1 of Figure 5.1 shows, the manipulability of ℓ2 and ℓ∞
against OPT-1 declines quickly in =, while Leximin and Nash remain arbitrarily susceptible to
manipulation. The fact that Leximin and Nash are so manipulable even when agents are willing

to misreport only one feature was not implied by our lower bounds, and shows the �ndings in our
theoretical lower bounds are of practical relevance.

MU: Most underrepresented. Let [(5 ,E) (# ) := |{8 |5 (8) = E}|/|# | be the fraction of agents with
value E for feature 5 . An agent playing strategy MU reports the vector containing the most un-
derrepresented value of each feature 5 — that is, F̃ 5 := argmaxE∈+5 ? (5 ,E)/[ (5 ,E) (# ). Again, Leximin
and Nash are arbitrarily manipulable againstMU, even for large =. The vulnerability of Leximin
and Nash here is of especially high practical concern, because the MU manipulation strategy is
perhaps the most likely to be used in practice by less sophisticated manipulators: it is intuitive
and requires only ordinal information about (the only $ ( |� |) many) feature-value frequencies
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and no access to the algorithm (in contrast, OPT-1 and HP require algorithm access and informa-
tion about the pool’s vector-level composition).

HP: Highest-Probability. Another reasonable heuristic a manipulator 8 might use would be to
report the vector F̃ that receives the highest selection probability in the true pool; we call this
heuristic HP. That this strategy’s e�cacy declines in = intuitively makes sense: misreporting a
vector that is already in the pool means joining a vector group whose size is growing linearly
in = (at least in these experiments, where we are duplicating # ). This intuition alludes to the
insight that the most problematic misreports for suboptimal algorithms are those of vectors that
do not already exist in the pool— an intuition supported by both the proof of our lower bound in
Theorem 5.3.1, and the fact that the most underrepresented vector (targeted by the much more
e�ective strategy MU ) is not in the original pool of any instance we study.
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Figure 5.1: Rounding-based algorithms Leximin , Nash , ℓ2, and ℓ∞ versus each manipulation
strategy in instances sf(a) and hd.

5.5.1 Extension: Manipulability and Selection Bias
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Figure 5.2: The impact of self-selection bias on the manipulability of Leximin , Nash , ℓ2 and ℓ∞
by an agent playing OPT-1 strategy.
While = is much easier to change in practice than the level of self-selection bias (SSB), the SSB
could be decreased by a more targeted recruitment process, motivating our study of this would
impact the manipulability. We introduce a measure of SSB in an instance, which roughly captures
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how severely the algorithm must skew selection probabilities to satisfy the constraints:

Δ?,:,# := max
(5 ,E)∈�+

? (5 ,E)

[(5 ,E) (# )
− min
(5 ,E)∈�+

? (5 ,E)

[(5 ,E) (# )

Figure 5.2(a) shows that this measure of SSB is highly predictive of manipulability: across in-
stances, the manipulation gain of OPT-1 (scaled by :/=, for standardization) against ℓ∞ corre-
sponds closely with instances’ Δ?,:,# values, as listed in the �gure legend. Proceeding with this
measure, we evaluate the impact of decreasing it in two ways. First, in Figure 5.2(b), we decrease
the SSB smoothly by interpolating between the original pool # and the “nearest” (by Euclidean
distance) pool # ′ with Δ?,:,# ′ = 0. Second, in Figure 5.2(c), we decrease the SSB by successively
dropping features from the instance in decreasing order of their feature-level SSB, de�ned asΔ?,:,#
restricted to the values of a given feature. Using either approach, in sf(a), the manipulability of
all algorithms except Leximin against OPT-1 drops quickly, while Leximin remains manipulable
until extremely low levels of SSB are reached. We defer the details of these methods, plus results
for the remaining instances, to Appendix D.4.3.

5.6 Discussion

Our work illuminates a tradeo� between two goals: ensuring that no one gets too little selection
probability (as pursued in the related work [130]), and ensuring that no one gets too much prob-
ability (which we show is important for limiting manipulation incentives). Leximin and Nash
prioritize the �rst goal but, as we show, perform poorly on the second. In contrast, we show that
ℓ? norms can be optimal in regards to the second goal, but they perform poorly on the �rst: we
�nd that both ℓ2 and ℓ∞ give at least one agent zero probability in all eight instances we study
(see Appendix D.4.5). This begs the question: is there an objective that both prevents high prob-

abilities (thereby limiting manipulability) as well as low probabilities? An objective with optimal

dependency on = for both desiderata at once would give all agents Θ(1/=) probability.1

Another �rst-order technical extension of this workwould be to repeat this analysis within quota-
based algorithms, as they implement the notion of representation most commonly used [130].
Because the separation between Leximin , Nash versus ℓ? norms is due to fundamental prop-
erties of these objectives, we expect them to exhibit roughly similar behavior in quota-based
algorithms. However, the combinatorial structure of quotas may make quota-based algorithms
much more manipulable in the worst case.

Even without this extension to quota-based algorithms, our work raises some practical insights.
First, it suggests that in general, algorithms permitting high selection probabilities come with
risks of manipulability— a property that can be tested in any selection algorithm, maximally fair
or not. If one does maximize a carefully chosen fairness objective, our work reveals practicable
strategies for limiting manipulation incentives: decreasing the SSB (even simply by dropping
features that one expects to be highly self-selected), or recruiting a larger pool. Based on our

1Θ(1/=) is the optimal rate at which manipulability can decline (Theorem 5.4.3); because any algorithm must
divide : probability over = people, the minimum probability can be at most Θ(1/=).
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empirical results, even doubling the pool sizes currently used in practice would substantially
decrease manipulability.

Beyond the application of assembly selection, our problem is conceptually reminiscent of strate-
gic classi�cation, in which agents may misreport their features to increase their probability of
receiving a desirable prediction from a machine-learned classi�er [19, 80, 95, 161]. Within the
strategic classi�cation framework, we can view a selection algorithm as a constrained classi�er:
one which classi�es agents as either on or o� the panel with some probability based on their fea-
tures, while satisfying demographic representation constraints on who receives a positive clas-
si�cation. While some existing work is tangentially related [190], to our knowledge this precise
problem has not been studied in the strategic classi�cation literature. Our notions of manipula-
bility, and our technical results on the stability of our convex program, may be of interest for this
domain.
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6
Fairness, Manipulation-Robustness, &

Transparency
Fair, Manipulation-Robust, and Transparent Sortition [31].

Carmel Baharav & Bailey Flanigan.
submitted 2024.

6.1 Introduction

In a citizens’ assembly, a panel of randomly-selected everyday people is convened to discuss and
collectively weigh in on a policy issue. Each year, more and more cities, regions, countries, and
even supranational bodies are turning to citizens’ assemblies1 to involve the public in policymak-
ing; prominent recent examples include multiple national citizens’ assemblies in France [65, 146],
Scotland’s national climate assembly [249], and a permanent assembly instated in the Ostebelgian
government [219].

The subject of this paper is the process used to randomly select the panelmembers, called sortition.
Broadly de�ned, sortition just means “random selection”, and it is often thought of as a simple
uniform lottery over the population. In practice, however, the task of sortition is more compli-
cated: practitioners require the panel to satisfy custom quotas, which enforce near-proportional
representation of key population sub-groups. These groups are usually de�ned by individual fea-
tures (e.g., women or right-leaning voters), but can be de�ned by intersections of features as well.
While representation of groups would in theory be achieved by a uniform lottery, there is selec-

1
Citizens’ assemblies belong to a broader category of closely-related methods called deliberative minipublics,

which consist also of citizens’ juries, citizens’ panels, deliberative polls, and other processes of similar form. We will
discuss citizens’ assemblies as the primary application domain of this paper.
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tion bias: di�erent subgroups tend to agree to participate at very di�erent rates, meaning that a
simple lottery would produce a panel that is far from representative. To ensure representation
despite selection bias, in practice panels are selected via the following two-stage process:

(1) First, a uniform sample of the population is invited to participate. Those who respond
a�rmatively form the pool of volunteers. Due to selection bias, this pool is typically very
skewed compared to the population.

(2) All pool members are asked to report their values of the features on which quotas will be
imposed. Then, a selection algorithm is used to �nd a panel within the pool, which must
satisfy the practitioner-de�ned quotas and be of predetermined size : .

Our focus is the design of the selection algorithm in Stage (2), whose task it is to sample a rep-
resentative panel from a skewed pool. The skew of the pool relative to the panel prevents any
selection algorithm from randomizing over the pool members perfectly uniformly, as would a
simple lottery.1 However, recent work by Flanigan et al. [130] has made it possible to random-
ize as equally as possible over pool members: they introduce an algorithmic framework that can
make volunteers’ probabilitiesmaximally equal subject to the quotas, as measured by any convex
equality objective E (i.e., any mapping from a vector of pool members’ selection probabilities to a
real numbermeasuring how equal they are). The ability tomake selection probabilitiesmaximally
equal is desirable because it o�ers hope of retaining— at least to amaximum degree possible— the
normative ideals granted by a simple lottery, such as Fairness,Manipulation Robustness, and
Transparency (to be de�ned shortly). The question is then: what equality objective E should we

optimize, in order to maximally achieve these ideals? Subsequent work, which we overview now,
has revealed how the choice of E can have important consequences for these ideals.

The originally proposed equality objective was Leximin (a re�nement of Maximin), which mea-
sures equality according to theminimum selection probability, thereby ensuring that no one gets
too little selection probability. This choice of objective was motivated by the ideal of Fairness:
that every willing participant is entitled to their fair share of the chance to participate.

Leximin made very real fairness gains over the existing state-of-the-art algorithms, but subse-
quent work identi�ed a major weakness of this objective: both in theory and in practice, it allows
pool members to ensure they are deterministically selected for the panel by misreporting their
features at the beginning of Stage (2). Flanigan et al. [135] named this behavior manipulation;
while they show that some incentives for manipulation are unavoidable, they say a selection
algorithm exhibits Manipulation Robustness if it minimizes agents’ incentives to manipulate.
Flanigan et al diagnose the reason Leximin is so vulnerable to manipulation: it raises low proba-
bilities without regard for high probabilities, so if the manipulator can guess which identities are
essential to raising low probabilities, the algorithm may push their selection probability all the
way up to 1. Further, Flanigan et al show that the popular equality objective Nash Welfare— the
geometric mean of selection probabilities— su�ers the same problem for the same reason. Moti-
vated by these negative results, they propose a new equality objective,Minimax, whichminimizes

1If a group is disproportionately overrepresented in the pool compared to their quota-allotted fraction of the
panel, satisfying the quotas requires giving at least one member of this group below-average chance of selection.
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the maximum selection probability. They show that Minimax, by controlling high probabilities,
minimizes agents’ incentives for manipulating, thereby achieving optimal Manipulation Robust-

ness. Unfortunately, they �nd that Minimax has essentially the opposite problem as Leximin:
because Minimax does not control low probabilities, it often gives many people zero selection
probability, thereby performing unacceptably poorly on the ideal of Fairness.

From the related work, we distill three observations: low probabilities are a problem for Fairness;
high probabilities are a problem for Manipulation Robustness; and no known objective controls
both simultaneously. These observations motivate the �rst two questions we will tackle in this
paper:

Question 1: Can we design an equality objective E that ensures optimal simultaneous lower and
upper bounds on selection probabilities? and consequently,

Question 2: Do these bounds on E permit simultaneous guarantees on E’s Fairness and Manip-

ulation Robustness?

Finally, we investigate a third ideal, Transparency—colloquially, the idea that public should be
able to con�rm that the selection process is actually random, and the organizers are not just stack-
ing the panel behind the scenes. Flanigan, Kehne, and Procaccia [131] proposed a more precise
de�nition of the ideal of Transparency: that without reasoning in-depth about probability, the

public should be able to observe all volunteers’ chances of selection. Flanigan et al. [130] also pro-
posed a method that targets this ideal: a rounding algorithm that, with only slight modi�cation
to the optimal probabilities, permits panel selection to be done via a live uniform lottery over
(potentially duplicated) panels [130]. Then, given a public (anonymized) list of panels each pool
member is on, people can tabulate pool members’ selection probabilities by simply counting the
number of panels they are on and dividing by the total number of panels (usually 1000 in prac-
tice). Flanigan et al. [131] proved bounds on how much optimality can be lost in the rounding
required to produce the uniform lottery, with respect to the objectives Leximin and Nash Welfare.
Given that this uniform lottery approach is used in practice [130], for a new equality objective to
be viable, we must ensure that it can be rounded to a uniform lottery without too much loss in
Fairness or Manipulation Robustness. This motivates our third question:

Question 3: If we achieve Transparency by rounding the output of our E-optimal algorithm to a
uniform lottery, to what extent does E still achieve Fairness and Manipulation Robustness?

6.1.1 Approach and Contributions

Uni�cation of existing models and new equality objectives (Section 6.2). Before address-
ing these questions, there is considerable work to do in unifying existing models of fairness,
manipulation robustness, and transparency. This requires new algorithm performance metrics,
such asmanip-fairness, which captures the worst-case fairness of an algorithm in the presence of

manipulating coalitions. Next, given the insu�ciency of known equality objectives, we propose
two new ones that explicitly aim to control high and low selection probabilities simultaneously.
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To design these objectives, we draw frommulti-objective optimization: we combine our two goals
into one objective, with a scalar W that determines the extent to which prioritize them relative
to each other. The objectives are as follows, where (slightly informally for now) 0 is an assign-
ment of selection probabilities to pool members, and max(0),min(0) are variables describing
the maximum and minimum selection probability, respectively:

LinearW (0) : max(0) − W ·min(0) and GoldilocksW (0) : max(0) + W · 1/min(0).

Impossibilities for existing equality objectives, plus LinearW (Section 6.3). First, we show
that all objectives studied in past work—Maximin, Leximin, Nash Welfare, and Minimax

1—are
either arbitrarily manipulable (unnecessarily giving manipulators probability 1) or unfair (un-
necessarily giving some agents probability 0). Surprisingly, we show that despite its explicit
prioritization of both high and low probabilities, LinearW also su�ers these problems: for high W ,
LinearW is also arbitrarily manipulable; for lower W , it is unnecessarily unfair. Conceptually, this
is because LinearW does not penalize low probabilities relative to high ones steeply enough. This
�nding motivates our study of GoldilocksW , whose gradient in the minimum probability is steeper.

Main Results: Bounds on the Fairness, Manipulation Robustness and Transparency of

Goldilocks1 (Sections 6.4 and 6.5). As in previous work [135], we study three manipulation
incentives: increasing one’s own selection probability, decreasing someone else’s, or misappro-
priating panel seats from other groups. As in past work, we permit manipulating coalitions of up
to linear size (in the pool size =), and we permit agents to misreport any features costlessly with
full knowledge of the selection algorithm and the pool’s composition.

Key technical challenge. Goldilocks1’s ability to guarantee Fairness and Manipulation Robustness

simultaneously depends on its ability to ensure that no selection probability is too low (to en-
sure fairness) nor too high (to ensure manipulation robustness). However, the extent to which
any algorithm can do this depends on the quality of solutions available in the instance, which
we observe can be a�ected by manipulation. Concretely, we show that a coalition of agents can
misreport their features in a way that eliminates all feasible solutions in which agents’ proba-
bilities are close together. In previous work on the manipulation robustness of Minimax —an
objective which cares only about high selection probabilities— this was not a problem, because
Minimax could simply give groups inducing such probability gaps zero selection probability. In
other words, manipulating coalitions did not a�ect the set of potentially optimal solutions. In
contrast, Goldilocks (or any objective controlling both high and low probabilities) must respond

to such fundamental gaps in selection probabilities, so manipulating coalitions can a�ect the set
of potentially optimal solutions.

Approach. Our approach consists of two steps: �rst, we show that Goldilocks1 guarantees lower
and upper bounds on selection probabilities that scale naturally— in the many relevant cases,
tightly—with the quality of available feasible solutions, which can depend on the existence of

1For simplicity, we study Minimax in place of the ℓ? -norm equality objectives studied in [135]. As we will see,
the behavior of these classes of objectives is essentially the same, with both strongly penalizing high probabilities.
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coalitions. Then, we bound the extent to which a manipulating coalition can a�ect the set of
potentially Goldilocks-optimal solutions.

Results. In regards to manipulation robustness, we �nd that no manipulating coalition of size 2
can increase a single member’s selection probability by more than order

√
2/=—a quantity that

diminishes quickly in =, even if 2 grows linearly with =. We show that this bound is tight. We
give similar bounds for the other two manipulation incentives, and discuss their tightness. Re-
garding Fairness, we �nd that, even when a coalition of size 2 manipulates, Goldilocks1 guarantees
Maximin fairness (i.e., minimum probability) of at least order 1/(

√
2=). We show that this bound

is tight. To enable these results to be (approximately) achieved alongside Transparency, in Sec-
tion 6.5 we extend our bounds to hold for output of Goldilocks1 after it is rounded to a uniform
lottery.

Empirical study of Goldilocks1 (Section 6.6). Finally, we analyze Goldilocks1 in real citizens’
assembly datasets, and we �nd that it performs even better than our bounds guarantee. Our
�rst key �nding is that Goldilocks1 achieves near Leximin-optimal minimum probabilities and
Minimax-optimal maximum probabilities— an outcome whose possibility by any algorithm was
not guaranteed. On our ideals, we compare Goldilocks1’s performance to the other equality no-
tions previously analyzed— Leximin, Nash Welfare, and Minimax —as well as Legacy, a heuristic
standing in for the wide variety of heuristics still used in practice today. We �nd that Goldilocks
performs nearly as well as Leximin on fairness and Minimax on manipulability, and far outper-
forms all other algorithms in its ability to achieve both these goals at once. Finally, we �nd that
Goldilocks1 can be made transparent with little-to-no cost to the maximum and minimum selec-
tion probabilities.

6.1.2 Related Work

In addition to the existing work on fairness [130], manipulation robustness [135], and trans-
parency [131] on which we directly build, there is a growing body of work pursuing selection
algorithms achieving similar ideals. There is especially a wealth of literature considering the
interplay of two ideals: fairness (as we de�ne it), and proportional representation of the under-
lying population, which we enforce with quotas. However, much of this work is done in the
distinct model of sortition where it is possible to sample the population directly, and all chosen
will participate (i.e., there is no selection bias). For example, Ebadian and Micha [104] study how
to achieve exact fairness and deterministic proportional representation simultaneously; closely
related is work by Benadè et al. [46], which focuses on uniform-like strati�ed sampling while pre-
serving subgroup-level representation. Ebadian et al. [106] ask richer questions about the nature
of representation that that can be achieved when individual people can serve as representatives
for others to varying extents. Outside the uniform selection model, Gąsiorowska [143] does a
qualitative survey across many selection process case studies, evaluating them on the basis of
randomness (closely related to our ideal of fairness) as well as representation. Beyond related
work on sortition, the existing theoretical results we build on in this paper use tools from across
several �elds, including randomized rounding [141], discrepancy theory [41], and optimization
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of large linear programs [54].

6.2 Model

We use Δ(() to represent the set of all distributions over the elements of set ( . Let # = [=] be
the pool, where 8 ∈ # is an individual agent. # is formed by inviting a uniform sample of the
population to participate; the agents in# are thosewho responded a�rmatively to this invitation.

Features, feature-values, and feature-vectors. Let � be a prede�ned set of features, where
each feature 5 ∈ � can take on some prede�ned set of values +5 . For example, � could be {age,
gender}, and +064 might be {18 - 40, 41 - 60, 61+}. We call each E ∈ +5 a feature-value and each
5 , E a feature-value pair. �+ := {(5 , E) |5 ∈ �, E ∈ +5 } is the set of all feature-value pairs.

We assume that for each feature 5 , its possible values +5 are exhaustive and mutually exclu-
sive, so every agent has exactly one value E ∈ +5 for every feature 5 . We denote 8’s value for
feature 5 as 5 (8), thereby using each 5 as a function 5 : [=] → +5 . We let 8’s feature vector
F (8) := (5 (8) |5 ∈ � ) summarize their feature-values, and letW :=

∏
5 ∈� +5 be the set of all

possible feature vectors. We will often reason about a pool according to the number of agents it
contains with each feature vector; for allF ∈ W, let #F denote the number of agents in # with
vector F . Because the pool will generally not contain all possible feature vectors, we will abuse
notation slightly and letW# ⊆ W denote the set of unique feature vectors present in # .

The panel selection task. Our task is to choose a panel  ⊂ # of some pre-chosen size : ∈ N.
The main constraint on  is that it must satisfy upper and lower quotas on all feature-values.
Formally, for each 5 , E ∈ �+ , we de�ne lower and upper quotas ℓ5 ,E ∈ N+ and D 5 ,E ∈ N+ We
summarize these quotas in ℓ = {ℓ5 ,E |5 , E ∈ �+ } and u = {D 5 ,E |5 , E ∈ �+ }. The set of all valid
panels— i.e., those satisfying all requirements— is then

K :=
{
 :  ⊆ # ∧ | | = : ∧ ℓ5 ,E ≤ |{8 ∈  : 5 (8) = E}| ≤ D 5 ,E ∀5 , E ∈ �+

}
.

An instance of the panel selection task is de�ned as I := (#,:, ℓ, u). Given an instance, the panel
selection task is to output a valid panel  ∈ K .

Panel distributions and selection probabilities. In instance I with valid panels K , Δ(K) is
the set of all possible randomizations over valid panels. We call each d ∈ Δ(K) a panel distribu-
tion, where 3 then denotes the probability of drawing  from d. Any given d must imply some
selection probability for each agent 8 ∈ # , de�ned as

c8 (d) :=
∑
 ∈K :8∈ 3 for all 8 ∈ [=] .

In words, c8 (d) is the probability that 8 is included on the panel when the panel is drawn from
d. We refer to 0 (d) := (c8 (d) |8 ∈ [=]) as an assignment of selection probabilities to all agents in
the pool. A generic selection probability assignment will be 0 . We use the shorthand max(0) :=
max8∈[=] c8 and min(0) := min8∈[=] c8 to respectively represent the maximum and minimum se-
lection probability assigned by 0 to any agent.
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In any instance I, the space of all realizable selection probability assignments is Π(I) := {0 (d) :
d ∈ Δ(K)}. In words, Π(I) is the set of all selection probability assignments that are implied by
some randomization over exclusively valid panels. Observe that for any 0 ∈ Π(I), ∑8∈[=] c8 = : .
Therefore, in any given instance, the selection probability assignment that gives all agents equal
selection probability must be 0 = :/=1= , the =-length vector in which every entry is :/= (note
that in most instances, this selection probability assignment will not be in Π(I)).

Finally, we say that 0 is anonymous i� it gives all agents with the same feature vector the same
selection probability— that is, for all F ∈ W, there exists a constant IF such that c8 = IF for
all 8 : F (8) = F . As we will typically work with anonymous selection probability assignments,
we de�ne vector-indexed selection probabilities pF (0) = IF . Let p(0) = (pF (0) |F ∈ W). When
0 is clear from context or when we work with arbitrary vector-indexed probabilities, we simply
write p.

Equality objectives. Let an equality objective E : [0, 1]= → R be a function that intakes a selec-
tion probability assignment and outputs a scalar measure of how equal the selection probabilities
within it are. All equality objectives we will consider will be convex, and will have the property
that 0 is “more equal” than 0 ′ according to E if E(0) ≤ E(0 ′). Then, a selection probability
assignment 0 is maximally equal in I i� 0 ∈ arg inf0∈Π(I) E(0). The set of all maximally equal
selection probability assignments in I, as measured by E, is

ΠE (I) := arg inf0∈Π(I) E(0) ⊆ Π(I).

The equality objectives we study are de�ned below. Of these objectives, we introduce LinearW

and GoldilocksW ; all others have been studied in past work on sortition [130, 131, 135]. Here, Nash
is the Nash Welfare. By convention, we de�ne all objectives to be minimized.

"0G8<8=(0) := −min(0), "8=8<0G (0) := max(0), #0Bℎ(0) := −
(∏

8∈[=] c8
)1/=

.

We also study Leximin, which is not strictly an equality objective, but is a re�nement of Max-

imin. Leximin �rst maximizes the minimum selection probability (i.e., �nds theMaximin-optimal
solution), then maximizes the second-lowest selection probability, then the third-lowest, and so
on. The two new equality objectives we introduce, !8=40AW and �>;38;>2:BW , are both designed
to simultaneously ensure that no one gets too little or too much selection probability. In either
objective, W ∈ R≥0 controls the relative priority placed on each goal.

LinearW (0) := max(0) − W min(0), GoldilocksW (0) := =/: max(0) + W · 1
=/: min(0) .

In addition to being convex (proposition E.1.1), all objectives we consider in this paper1 satisfy
two other natural axioms— conditional equitability (Proposition E.1.2) and anonymity (Proposi-
tion E.1.4), both weak requirements re�ecting that these objectives truly measure the level of
equality of selection probabilities. In words, conditional equitability (CE) requires E to consider

1Because Leximin is not an equality objective, it cannot formally satisfy these properties. However, as will be
clear throughout the paper, Leximin e�ectively satis�es these properties to the extent we need it to.
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0 = :/=1= the most equal possible probability assignment, and anonymity requires that E does
not penalize giving identical agents identical selection probabilities.

Axiom 6.2.1 (CE). E is conditionally equitable i� for all I, :/=1= ∈ Π(I) =⇒ :/=1= ∈ ΠE (I).

Axiom 6.2.2 (Anonymity). E is anonymous i� for all I, there exists an anonymous 0 ∈ ΠE (I).

Because all objectives E we consider satisfy anonymity, wewill without loss of generality rede�ne
Π(I) and ΠE (I) to contain only anonymous selection probability assignments.

6.2.1 Selection algorithms

A selection algorithm A : I → K is any (potentially randomized) mapping from an instance to
a valid panel  ∈ K . Note that in a given instance, any selection algorithm must induce a panel
distribution; we denote the panel distribution implied by A in I as dA(I) ∈ Δ(K). Its implied
selection probability assignment is then 0 (dA(I)); for simplicity of notation, when the panel
distribution is not directly relevant, we will shorten this to 0A(I).

A selection algorithm A is maximally equal with respect to E i� 0A(I) ∈ ΠE (I) for all I .
Fortunately, the optimization framework proposed by Flanigan et al. [130] gives an algorithmic
implementation for any maximally equal selection algorithm whose corresponding equality ob-
jectives E is convex, which we will use to optimize the equality objectives de�ned above. At
a high level, their algorithmic approach works in two steps: �rst, it explicitly computes a panel
distribution implyingmaximally equal selection probabilities per E; then, it draws the �nal panel
from this panel distribution, thereby realizing those maximally equal selection probabilities. As
shorthand, we will refer to the algorithm from this framework optimizing E as E (e.g., the algo-
rithm optimizing Maximin is calledMaximin).

To simplify our exposition, we make two weak assumptions about the instances and the maxi-
mally equal selection algorithms we study.

Assumption 6.2.3. (1) Feasibility: All I have non-empty corresponding K . (2) Unincludable
Agents: If in I, there exists any 8 ∈ # for which { :  ∈ K ∧ 8 ∈  } = ∅, then the algorithm will

�rst identify these agents, remove them from the instance, and act on the resulting instance in which

all agents exist on a valid panel.

6.2.2 Ideals: Manipulation Robustness, Fairness, and Transparency

Manipulation Robustness. To capture the fact that agents may misreport their feature-values to
the algorithm, we denote 8’s reported feature vector F̃ (8) ∈ W, which may di�er from F (8).
When 8 misreports their feature vector, this changes the composition of the pool given to the
selection algorithm; we denote the reported pool as #−8 ∪ F̃ (8). Abusing notation slightly, if an
entire coalition of agents� ⊂ # misreports their feature vectors as w̃ ∈ W |� | , we denote the new
pool as #−� ∪w̃ . We will denote a manipulated pool as #̃ and the resulting manipulated instance
as Ĩ := (#̃ , :, ℓ, u).
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As in past work [135], we assume that agents or coalitions can costlessly misreport any feature
vector inW, and they do so with full information about the selection algorithm and pool # . We
consider three incentives for doing so: manipint captures how much a coalition can increase the

selection probability of someone internal to the coalition;manipext measures how much a coalition
can decrease the selection probability of someone external to the coalition; andmanipcomp measures
howmany seats a coalition can, in expectation, misappropriate from another group. In the formal
de�nitions of these measures, > := max�⊆[=],|� |=2 maxw̃∈W |� | is shorthand for taking the worst
possible coalition of size 2 and worst possible strategic misreports of its members, and Ĩ :=
(#−� ∪ w̃, :, ℓ, u) is the instance that results from a coalition � misreporting as w̃ .

manipint(I,A, 2) := > max
8∈�

cA
8 (Ĩ) − cA

8 (I),

manipext(I,A, 2) := > max
8∉�

cA
8 (I) − cA

8 (Ĩ),

manipcomp(I,A, 2) := > max
(5 ,E)∈�+

∑
8:5 (8)=E

(
cA
8 (Ĩ) − cA

8 (I)
)
.

These measures can be interpreted as Nash equilibrium-style measures, capturing how much a
coalition can gain if everyone else is truthful. From a formal game theoretic perspective, the argu-
ment of each maximum above can be thought of as a utility function, which an agent or coalition
may aim to maximize.

Fairness. In accordance with past work on fairness in sortition [130, 131], we evaluate the fairness
of a selection algorithm A in instance I by the Maximin fairness objective— that is, a fairer

algorithm makes the minimum selection probability higher. Formally, A’s fairness in I is

fairness(I,A) := "0G8<8=(0A(I)) .

Because we want to guarantee fairness and manipulation robustness simultaneously, we will also
want to measure fairness when our pool may be corrupted by a manipulating coalition. De�ning
> and Ĩ as before, the fairness of A in I permitting a manipulating coalition of up to size 2 is

manip-fairness(I,A, 2) := >"0G8<8=
(
cA
8 (Ĩ)

)
.

Transparency. We now formally de�ne the components of Flanigan et al. [131]’s algorithmic
approach to transparency. For a given set of valid panels K , let< ∈ Z+ and de�ne the set of all
<-uniform lotteries Δ< (K) := (Z+/<) |K | ∩ Δ(K) as the set of all panel distributions in which all
probabilities are multiples of 1/<. d ∈ Δ< is called an <-uniform lottery due to the following
key observation: d contains exactly< discrete blocs of 1/< probability mass, so we can sample a
panel from d via a uniform lottery over< panels (with duplicates) by numbering these probability
blocs 1 . . .<, and then uniformly drawing a number from [<]. For example, if< = 1000, we can
execute this uniform lottery physically, by drawing balls from bins corresponding to drawing
3 digits between 0 and 9, as in Figure 3 of Flanigan et al. [130]. Finally, we de�ne Π< (I) :=
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{0 (d̄) |d̄ ∈ Δ< (K)} as the set of all selection probability assignments realizable by <-uniform
lotteries in I.

An <-uniform lottery is created by a rounding algorithm R< : Δ(K) → Δ< (K), which is any
(possibly randomized) mapping from a panel distribution into an <-uniform lottery. We apply
a rounding algorithm R< in conjunction with maximally fair algorithm E as follows: �rst, run
E to compute panel distribution dE(I); then, use R< to round dE(I) to an <-uniform lottery
R< (dE(I)). Note that R< ◦ E is itself a selection algorithm, mapping I to an<-uniform lottery
dR<◦E(I). We will de�ne speci�c rounding algorithms as needed.

6.2.3 Key Assumption: Pool is Growing Linearly

Our positive results will be proven under the following assumption on the true pool # . For
comparability, the truthful instances in our lower bounds will also satisfy this assumption.

Assumption 6.2.4. In all instances I = (#,:, ℓ, u) where # is the true pool,

1. There exists some constant ^∗ > 0 such that #F ≥ =^∗ + : for allF ∈ W# .

2. For all 8 ∈ # , there exists some  ∈ K such that 8 ∈  .

(2) is very weak, and holds in all real-world datasets we study. Conceptually, (1) requires two
things: (i) that every vector group present in # grows linearly as # grows, and (ii) that # is large
enough so that there are at least : people of each vector type. (i) is true in practice in expectation,1
and should be true reliably as soon as = is su�ciently large for variance e�ects to diminish. Given
that : is �xed relative to =, (ii) will hold with high probability for large enough =; however, it does
not hold at the = values in the instances we study.

6.3 Impossibilities for Maximin / Leximin, Nash, Minimax, and LinearW

To motivate our ultimate study of GoldilocksW , we now show that all previously-studied objec-
tives—Maximin/Leximin, Nash and Minimax—all perform poorly on the dimension of either
Fairness orManipulation Robustness. Moreover, we surprisingly �nd the same issue with perhaps
the most natural candidate objective for our purposes, LinearW , which combines our two goals
linearly. Although similar impossibilities have already been proven for the previously-studied
objectives, they were proven in the relaxation of the panel selection task studied by [135], so
these negative results do not immediately carry over to our setting.

First, Theorem 6.3.1 shows that Maximin/Leximin and Nash are highly manipulable. While we
defer the arithmetic aspects of the proof to Appendix E.2.1, we present and analyze the construc-
tions of the pre and post-manipulation instances here. Wewill name themI= andI∗2 respectively,

1The pool is recruited by inviting uniformly-sampled members of the population. If a vector groupF ’s average
rate of entering the pool conditioned on being invited is some constant AF > 0, then over the randomness of receiving
and accepting the invitation, groupF will compose in expectation a AF fraction of the pool. If AF = 0, then they will
never enter the pool, and our growth assumption does not apply to them.
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as we will use them again to prove lower bounds later in the paper. These instances are closely
related to those used to prove lower bounds in [135].

Theorem 6.3.1 (Lower Bound). For all E ∈ {Maximin, Leximin,Nash}, there exists I satisfying

Assumption 6.2.4 such that

manip8=C (I, E, 2=/: + 1) = 1 − :/=.

Proof. Let there be two features, 51 and 52, and suppose that they are binary, so +51 = {0, 1} and
+52 = {0, 1}. Then, there are four unique possible feature vectors: W = {00, 01, 10, 11}. Set the
quotas ℓ, u so that ℓ51,0 = ℓ52,0 = D 51,0 = D 52,0 = :/2, meaning that any valid panel will be perfectly
split between values on both features. Fix : (we will set it carefully in the proof).

Instance I=. De�ne instance I= := (#,:, ℓ, u) be our truthful instance, which inherits the
features, quotas, and : de�ned above. We de�ne the pool # such that #00 = #11 = =/2 and
#01 = #10 = 0.

Observation 6.3.2. We make two key deductions about I=.

6.3.2.1 I= satis�es Assumption 6.2.4 with associated ^∗ so long as = ≥ 2:/(1 − ^∗); we can set =
and : such that this is the case.

6.3.2.2 :/=1 ∈ Π(I=). By observation, we can give all 8 ∈ # equal selection probability by
randomizing uniformly over all panels containing :/2 agents with vector 00 and :/2 agents
with vector 11. It follows that for any conditionally equitable algorithm E, 0� (I=) = :/=1.

Amanipulating coalition. Now, let� ⊆ # be a coalition of size 2 , composed of 2/2 agents with
F (8) = 00 and 2/2 agents with F (8) = 11. Let some 8∗ ∈ � misreport the vector F̃ (8∗) = 01; for
all other agents 8 ∈ � \ {8∗}, let F̃ (8) = 10. We name the resulting instance I∗2 , as we will use this
construction later on.

Instance I∗2 . The resulting instance is I∗2 := (#̃ , :, ℓ, u), where #̃00 = #̃11 =
=−2
2 , #̃10 = 2 − 1, and

#̃01 = 1 and :, ℓ, u are the same as in I=. Now, we make several useful observations about I∗2 ,
which we will reference each time we analyze it:

Observation 6.3.3. We deduce the following about I∗2 , whose associated valid panels we call
K∗2 :

6.3.3.1 K∗2 contains two types of valid panels:

• Type 1: Panels containing :/2 agents with vector 00 and :/2 agents with vector 11

• Type 2: Panels containing :/2 − 1 agents with vector 00, :/2 − 1 agents with vector
11, 8∗, and 1 agent with vector 10.

6.3.3.2 Fix any d ∈ Δ(K∗2 ), and let 31, 32 represent the total probability d places on panels of
Types 1 and 2, respectively. Then, by simply dividing the expected panel seats given to
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agents with each vectorF divided by the total number of pool members with vectorF , the
resulting selection probabilities (assumed to be anonymous) in terms of 31, 32 are:

p00 = p11 = 31
:/2

(= − 2)/2 + 32
:/2 − 1
(= − 2)/2 , p10 = 32

1
2 − 1 , p01 = 32. (6.1)

Equation (6.1) reveals that in any realizable selection probability allocation over panel types 1
and 2, p01 must be 2−1 times as large as p10. Because any selection algorithmmust su�er this gap,
then the question remaining is: how do Maximin, Leximin, and Nash prioritize the maximum
and minimum selection probabilities when positioning this gap? As we show in the full proof in
Appendix E.2.1,Maximin, Leximin, and Nash, all being highly sensitive to low probabilities, will
position this gap as high as possible to mitigate low probabilities, thereby driving 8∗’s probability
all the way to roughly 2:/=. �

Moving ontoMinimax, we expect this algorithm to perform poorly with respect to fairness Fair-
ness, becauseit considers only the highest probabilities and can thus unnecessarily give some
agents selection probability 0. Observing thatMinimax is the special case of LinearW = max(0) −
W · min(0) where W = 0, we will prove a negative result on Minimax in the course of proving a
negative result for the objective !8=40AW . To show that !8=40AW does not adequately control high
and low selection probabilities, we will show that no matter howwe setW , we can �nd an instance
where this objective is either arbitrarily unfair (low W ), essentially arbitrarily manipulable (high
W ), or unfair to a degree that we will later show is sub-optimal (intermediate W ).

Theorem 6.3.4 (Lower Bound). For all W ∈ [0, 1), there exists I satisfying Assumption 6.2.4 such

that

fairness(I, LinearW ) = 0.

For all W ∈ [1, =/3 − 1), there exists an instance I′ satisfying Assumption 6.2.4 in which

manip-fairness(I′, LinearW , =/6) = 9:
2(=2−9) ∈ $ (:/=

2).

For all W ∈ [=/3 − 1,∞), there exists an instance I′ satisfying Assumption 6.2.4 such that

manip(I′, LinearW , =/6) = 1 − :/=.

Proof sketch. We defer the full proof to Appendix E.3.1, but the main ideas will give useful in-
tuition. The truthful pool is the same across all three cases of the proof: #00 = #11 = =/3 and
#01 = #10 = =/6. The quotas we set, however, di�er across cases; we describe each one separately.

Large/Intermediate W . In this case, our quotas are set as in I∗2 , so ℓ51,0 = ℓ52,0 = D 51,0 = D 52,0 = :/2.
For both large and intermediate W , we pursue bounds assuming manipulation by a coalition of
size=/6. The coalition� is the same in both cases: it consists of all agents with vector 01. Of these
agents, one agent 8∗ reports F̃ (8∗) = F (8∗) = 01, and the rest 8 ∈ � \ {8∗}misreport F̃ (8) = 10. The
resulting instance is exactly I∗

=/6, as de�ned in the proof of Theorem 6.3.1. Per Observation 6.3.3,
there is a fundamental gap in selection probabilities of =/6−1 between agents with vector 10 and
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01. Intuitively, to control maximum and minimum probabilities to the greatest extent possible,
we would like to place this multiplicative gap squarely over :/=, so probabilities are bounded
in [:/=√=, :√=/=]. We conclude these two cases by showing that neither intermediate nor large W
places the gap as we want. When W ≥ =/3 − 1, we �nd that LinearW acts like Maximin, priori-
tizing low probabilities too much, to the point that 8∗ receives probability nearly 1— a problem
forManipulation Robustness. In contrast, when W < =/3 − 1, we �nd that W does not place enough
weight on low probabilities, and thus places this probability gap too low, guaranteeing minimum
probabilities of at best order :/=2—a problem for Fairness.

Small W . Finally, for small W ∈ [0, 1] we consider the fairness of LinearW in the instance with the
pool # above, but now with skewed quotas: we let ℓ51,0 = 2:/3 and ℓ52,0 = :/3. Then, there are
more panel seats available for agents with value 0 for the �rst feature and value 1 for the second
feature. This skew means that we must give agents with vector 01 higher selection probability
than those with 10, where this fundamental gap is additive and of order :/=. As W gets large,
LinearW starts behaving likeMinimax (indeed, limW→0 !8=40AW = "8=8<0G ) — prioritizing ensur-
ing that the maximum selection probability LinearW places this gap very low, giving some agents
0 probability. �

Although our lower bound for intermediate W is already adequate to show a separation between
LinearW and our proposed algorithm GoldilocksW , we suspect that a more elaborate construc-
tion can permit an even more extreme lower bound for intermediate W (to see why, note the
discontinuity in our lower bounds at W = 1; we expect a truly worst-case construction to allow
continuous bounds across this juncture).

6.4 Analysis of Goldilocks

Finding all previous equality objectives insu�cient to control high and low selection probabilities
to the degree we want, we now study GoldilocksW (0) = =/: max(0) + W 1

=/: min(0) . At the cost
of being nonlinear, this objective addresses this issue with LinearW by more steeply penalizing
decreases in the minimum probability relative to the maximum. We focus on Goldilocks with
W = 1, as this will be su�cient both in theory and in practice. We now prove our main result:

Theorem 6.4.1 (Upper Bound). For any instance I in which # satis�es Assumption 6.2.4 with

^∗, then for any constant ^ ∈ (0, ^∗) and all 2 ≤ ^=/
√
: ,

manip8=C (I,Goldilocks1, 2) ∈ $
(
:2
√
2/=

)
manip4GC (I,Goldilocks1, 2) ∈ $

(
:/= ·

(
1 − 1/(:

√
2)

))
manip2><? (I,Goldilocks1, 2) ∈ max

(5 ,E)∈�+
(D 5 ,E − ℓ5 ,E ) +$

(
:22
√
2/=

)
manip-fairness(I,Goldilocks1, 2) ∈ Ω

(
1/= · 1/

√
2

)
.
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To get some intuition for the meaning of this result before proving it, recall the problem we iden-
ti�ed with LinearW for intermediate W , where a coalition of size =/6 induced an order = gap in
agents’ selection probabilities. We wanted LinearW to place this gap directly over :/=, guarantee-
ing probabilities in order [1/=√=, √=/=] (treating : as constant relative to =). While LinearW failed
to do this, Theorem 6.4.1 alludes to the fact that Goldilocks1 will succeed: in that instance, with
coalition of size 2 of order =, Goldilocks1 will achievemanip-fairness of order 1/=√= andmanip8=C

(a proxy for the maximum probability) of order
√
=/=, as desired.

6.4.1 Proof of Theorem 6.4.1

The proof of Theorem 6.4.1 will rely on three technical lemmas. These lemmas center around
the instance-wise parameter X (I), which conceptually measures the quality of feasible solutions
that exist in instance I. Formally, we measure the quality of a given 0 by two values,

X14;>F (0) := :/=
min(0) and X01>E4 (0) := max(0)

:/= ,

which respectively capture how much any selection probability in 0 deviates below and above
:/=. Then, we de�ne X (I) to capture the quality of the “best” feasible solution available in I:

X (I) := min
0∈Π(I)

max{X14;>F (0), X01>E4 (0)}.

Now, we state and prove our key lemmas. First, Lemma 6.4.2 gives instance-dependent bounds on
themaximumandminimum selection probability given byGoldilocks. The instance-dependence
of these bounds is re�ected in their dependence on X (I). This is really our key lemma; it shows
that Goldilocks1 will recover among the best solutions available in any given instance.

Lemma 6.4.2. For all instances I, 0Goldilocks1 (I) ∈
[
:/=

2X (I) , :/= · 2X (I)
]=
.

Proof. Fix instance I and the selection probability assignment 0 ′ ∈ Π(I) such that
max{X14;>F (0 ′), X01>E4 (0 ′)} = X (I). For this proof, we will use the shorthand X14;>F = X14;>F (0 ′),
X01>E4 = X01>E4 (0 ′) and 0∗ = 0Goldilocks1 (I).

First, we upper bound the optimal objective value using our feasible solution c :

Goldilocks1(0∗) ≤ =/: max(0 ′) + 1
=/: min(0 ′) = X01>E4 + X14;>F

≤ 2max{X14;>F , X01>E4} = X (I) . (6.2)

Now, suppose there exists 8 ∈ [=] such that 0∗8 > :/= · 2X (I). Then,

Goldilocks1(0∗) > =/: · :/= · 2X (I) + 0 = 2X (I),

which is a contradiction to (6.2). We conclude that c∗8 ≤ :/= · 2X (I) for all 8 ∈ [=] . Likewise,
suppose that there exists 8 ∈ [=] such that 0∗8 < :/= · 1/2X (I). Then,

Goldilocks1(0∗) > 0 + 1
=/: · :/= · 1/2X (I) = 2X (I).
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This is again a contradiction to (6.2), and we conclude that c∗8 ≥ :/= · 1/2X (I) for all 8 ∈ [=]. �

Now, wewant to use Lemma 6.4.2 to draw conclusions about the absolutemaximumandminimum
probabilities guaranteed by Goldilocks. The functional form of Lemma 6.4.2 dictates that doing
so requires characterizing what X (I) can be. First, in Lemma 6.4.3, we answer this question for
truthful instances. We show that given Assumption 6.2.4 on the true pool, if agents are truthful,
then X (I) ∈ $ (1). This is the best case scenario, and Goldilocks1 will make use of it: by
Lemma 6.4.2, in this case Goldilocks1 will give all agents probabilities in Θ(:/=).

Lemma 6.4.3. In instance I, if # satis�es Assumption 6.2.4, then X (I) ∈ $ (1).

We defer the proof of this claim to Appendix E.4.3, because it uses notation and machinery that
will not be useful throughout the rest of the paper, and we will drag constants through the argu-
ment. We sketch the proof here: First, showing that we can give all agents $ (:/=) probabilities
is simple: all vector groups present in the pool are of size order = by Assumption 6.2.4, and the
total probability given to all agents in any given vector group cannot exceed : . Spreading at most
: probability over = members of a vector group ensures that no agent gets more than$ (:/=) se-
lection probability. Proving that probabilities are lower-bounded as Ω(:/=) is less obvious, and
has to do with the limited number of possible feature vectors in the pool— a consequence of As-
sumption 6.2.4.

Although excellent solutions are possible— and recovered by Goldilocks1—when agents are
truthful, such solutions are no longer necessarily available when agents or coalitions can misre-
port their vectors. For example, take the example I∗2 , which we know can arise from a manipulat-
ing coalition of size 2; in that instance, one agent must receive (2 − 1) times as much probability
as another agent (Equation (6.1)), meaning that X (I∗2 ) must be at least

√
2 − 1. We formalize this

lower bound in Appendix E.4.4. Fortunately, we now show that although coalitions can drive up
X , this simple lower bound is actually tight (up to a factor of :):

Lemma 6.4.4. If in instance I = (#,:, ℓ, u), # satis�es Assumption 6.2.4, then for any constant

^ ∈ (0, ^∗) and coalition size 2 ≤ =^/
√
: ,

X (#−� ∪ w̃, :, ℓ, u) ∈ $ (:
√
2) for all � ⊆ [=], |� | = 2 and F̃ ∈ W2 .

This is our most technically demanding result, and we defer the formal proof to Appendix E.4.5,
because it again requires signi�cant notation and machinery. The key idea is that we can mod-
ify the solution in the truthful instance, redistributing some probability from truthful agents to
de�ne a panel distribution in the post-manipulation instance. More concretely, the steps of the
proof are as follows: �rst, we show that all types of panels (de�ned by the fraction of seats taken
up by each feature vector) that exist in the truthful instance still exist in the post-manipulation
instance. This is the critical consequence of Assumption 6.2.4: that although a coalition can shift
the space of panel types, it can only expand it. We then modify our solution in the truthful in-
stance, which we know gives all agents Θ(:/=) selection probability by Lemma 6.4.3. We modify
this solution by shifting a small amount of probability away from the panel types available in
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the original solution, and onto panels containing the coalition members. We precisely tune the
amount of probability we redistribute in order to ensure that, although there may be requisite
gaps in coalition members’ probabilities, we place these gaps to be symmetric around :/=. We
then argue that the panel distribution we construct gives all agents 8 ∈ [=] selection probabilities
within c8 ∈

[
Ω (1/√2=) ,$

(
:+:
√
2/=

) ]
. This gives us the desired bound on X (I).

Finally, we apply Lemmas 6.4.2, 6.4.3, and 6.4.4 to complete the proof. Fix a truthful in-
stance I with pool # ; let it satisfy Assumption 6.2.4 with constant ^∗. Let 0∗ = 0Goldilocks(I)
denote the optimal probabilities given by Goldilocks1 on this instance. By Lemma 6.4.3, we
know that X (I) ∈ $ (1), and hence by Lemma 6.4.2, we have that c∗8 ∈ Θ(:/=) for all 8 ∈ [=].
Now, �x an arbitrary coalition � ⊂ # of size 2 ≤ ^=/

√
: for some constant ^ ∈ (0, ^∗), and

suppose they misreport vectors F̃ (8) |8 ∈ � , creating a new instance Ĩ.

Let c̃∗ = cGoldilocks( ♥I) be shorthand for the optimal probabilities given by Goldilocks on this
post-manipulation instance. By Lemma 6.4.4, we know that no matter what the members of this
coalition misreport, X (Ĩ) ∈ $ (:

√
2). By Lemma 6.4.2, the probabilities in 0̃∗ are bounded as

c̃∗8 ∈
[
Ω(1/=

√
2),$ (:2

√
2/=)

]
for all 8 ∈ [=] .

From this we can draw conclusions about the extent to whichGoldilocks1 satis�esManipulation

Robustness and Fairness in this instance. The maximum gain in probability for any individual
agent can be upper bounded by the maximum marginal in c̃∗. It follows that

manip8=C (I,Goldilocks1, 2) ∈ $
(
:2/= ·

√
2
)
.

The largest probability decline for any agent, regardless of whether they are in � , is bounded in
terms of the minimum guaranteed probability as$ (:/=− 1/=

√
2) = $ (:/= · (1− 1/:

√
2)). Hence,

manip4GC (I,Goldilocks1, 2) ∈ $ (:/= · (1 − 1/:
√
2)) .

Analyzing manip2><? requires a little more care. Let 5̃ : # → +5 map each agent 8 to their
reported feature. Fix an 5 , E ; we will divide the quantity we want to bound into two quantities,
where the �rst represents the probability garnered among people who actually report value E for
feature 5 in the post-manipulation pool, and the second represents probability garnered among
people who do not report value E for feature 5 in the post-manipulation pool, but truly possess
that feature.∑

8:5 (8)=E

(
cA
8 (Ĩ) − cA

8 (I)
)
=

∑
8:5 (8)=E∧ 5̃ (8)=E

(
cA
8 (Ĩ) − cA

8 (I)
)
+

∑
8:5 (8)=E∧ 5̃ (8)≠E

(
cA
8 (Ĩ) − cA

8 (I)
)

≤ D 5 ,E − ℓ5 ,E +
∑

8:5 (8)=E∧ 5̃ (8)≠E

(
cA
8 (Ĩ) − cA

8 (I)
)

≤ D 5 ,E − ℓ5 ,E +$ (:22
√
2/=),

Here, the �nal step holds because every 8 contributing to the second sum must be in the manipu-
lating coalition; there can be at most 2 of these 8’s, and each of them can have at most$ (:2

√
2/=)
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total probability in Ĩ (Lemmas 6.4.2 and 6.4.4). Therefore, we have that

manip2><? ∈ max
(5 ,E)∈�+

D 5 ,E − ℓ5 ,E +$
(
:22
√
2/=

)
.

Finally, we getmanip-fairness directly from the lower bound onmarginals in c̃∗ given by Lemmas
6.4.2 and 6.4.4 together, and we conclude the proof:

manip-fairness ∈ Ω(1/=
√
2).

6.4.2 On the tightness and implications of Theorem 6.4.1

First, we give tight lower bounds onmanip8=C andmanip-fairness (up to:), representing the ideals
manipulation robustness and fairness. These lower bounds are proven with truthful instance I=
and manipulated instance I∗2 ; the full proof is in Appendix E.4.6.

Theorem 6.4.5 (Lower Bound). manip8=C (I=,Goldilocks1, 2) = :/= · (
√
2 − 1 − 1) and

manip-fairness(I=,Goldilocks1, 2) = :/= · 1/
√
2−1.

Now, we discuss our bounds in Theorem 6.4.1 item-wise. First, our upper bound on manip8=C is
encouraging: even up to linear-size coalitions, this upper bound declines at a rate of $ (1/

√
=),

meaning we can improve Goldilocks1’s manipulation robustness by recruiting more pool mem-
bers. This upper bound also shows a clear separation betweenGoldilocks1 andMaximin, Leximin,Nash
and LinearW with large W ; for all those objectives, linear-size coalitions could drive the selection
probability of a member of a manipulating coalition up to (essentially) 1 (Theorem 6.3.1, Theo-
rem 6.3.4).

Our positive result formanip-fairness is also encouraging, showing that even linear-size coali-
tions can drive the minimum probability only as low as order :

=
√
=
. This bound shows a clear

separation between Goldilocks1 versus Minimax and LinearW with W < =/3 − 1, where linear-
size manipulating coalitions can drive the fairness down to $ (:/=2) or even 0 (Theorem 6.3.4).
We remark that while we proved in Theorem 6.4.5 that our positive result on manip-fairness

is tight, in that lower-bound instance, it is only members of the coalition who receive probability
:/=√
2−1—all truthful agents actually receive probability inΘ(:/=) in the post-manipulation instance.

With this in mind, it might be tempting to say that we want to be fair only to honest agents, in
which case an even stronger positive result on manip-fairness might be possible. However, we
caution that while such a bound could hold in theory under Assumption 6.2.4, trying to detect
and protect only truthful agents would be risky in practical instances where Assumption 6.2.4 is
unlikely to exactly hold.

Finally, despite the foregoing good news, one may notice something concerning about our upper
bound on manip2><? : if 2 ∈ Ω(=2/3), this bound is constant and could be as large as : . Con-
ceivably, then, a coalition could misappropriate the entire panel. However, it is actually not at all
clear that this upper bound is tight, at least based on the lower bound constructions we have used
so far. In all of our lower bounds, manipulating coalitions drive gaps in selection probabilities
by dividing into two subgroups who report complementary feature vectors 10 and 01. While this
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can drive up the probabilities of agents in one such group at the expense of the other, the total
probability garnered by each feature-value group must remain roughly commensurate due to the
quotas. Because these feature vectors are complements, the total probability misappropriated
from any feature-value by such strategies is actually roughly 0. Thus, to either tighten our upper
bound onmanip2><? or prove a useful lower bound, new ideas are required, and we leave this for
future work.

6.5 Analysis of Transparent Goldilocks

We now seek a rounding algorithm R< that allows us to extend our guarantees on Goldilocks1
to R< ◦ Goldilocks1. For this, we directly apply the rounding algorithms studied in Flanigan
et al. [131], which are guaranteed to round any panel distribution to an<-uniform lottery while
changing no agent’s selection probability by more than a bounded amount:

Theorem 6.5.1 (Thms 3.2 and 3.3, [131]). For all I and< ∈ Z+, there exists an R< such that for

all d with corresponding 0 , it holds for R< (d) = d with corresponding 0 that

‖0 − 0 ‖∞ ≤ $
(
min

{
:,

√
|W# | log( |W# |)

}
/<

)
.

However, one may notice a problem with directly applying this bound to our setting: by Theo-
rem 6.4.5 that the minimum probability may be dropping at a rate of 1/=

√
2 in =, which can be

as low as order 1/=
√
=. In contrast, the above bound does not shrink in =, meaning that as =

grows (which is bene�cial for manipulation robustness), the minimum probability given to any
agent will eventually become so small that this upper bound will be larger than the minimum
probability in the pre-rounded instance, resulting in a fairness guarantee of 0. We solidify this
concern by proving a lower bound showing that this dependency on < is indeed unavoidable:
Proposition 6.5.2 shows that in the worst case, rounding the Goldilocks-optimal solution (using
that Goldilocks is conditionally equitable) may result in decreasing the minimum probability
by up to

√
:/<:

Proposition 6.5.2. There exists an instance I such that for all conditionally equitable algorithms

E and for all 0̄ ∈ Π< (I), min
(
0E(I)

)
−min (0) ≥

√
:/<.

Proof. We defer the construction of the instance to Flanigan et al. [131], about which they show
that for all 0̄ ∈ Π< (I),Maximin(0) −Maximin(0) ≥

√
:/<. We simply generalize their result to

all conditionally equitable objectives with the following simple observation. In their construction,
the original instance I is such that :/=1= ∈ Π(I), and in the original panel distribution they
consider in fact implies 0 = :/=1= . By the de�nition of conditional equitability, 0 must be
maximally equal with respect to any conditionally equitable objective E. �

In order to avoid this issue, we need< to grow at least at a rate of Ω(=
√
=). The good news is

that in practice, it is much lower cost to scale up< than to scale up =. For example, scaling up =
by a factor of 10 requires sending out 10 times as many letters; multiplying< by 10 just requires

97



adding another lottery bin, thereby permitting the panels to be numbered 0000 - 9999 instead of
000 - 999. Thus, we assume that< ≥ =

√
=. Finally, we are permitting manipulation here, which

means that the number of unique vectors in the pool (a parameter of the bound we will apply)
may be larger than |W# |. We thus use the observation that a manipulating coalition of size 2
can change the number of unique feature vectors by at most 2 , soW#̃ ≤ W# + 2 . By combining
this observation, Theorem 6.5.1, and Theorem 6.4.1, we conclude the following bounds on the
simultaneous manipulation robustness and fairness of R< ◦ Goldilocks1 for any< ≥ =

√
=:

Theorem 6.5.3 (Upper Bound). There exists an R< ,< ≥ =
√
= such that for all I,

manip8=C (I,R< ◦ Goldilocks1, 2) ∈ $
(
:
√
2/= + min

{
:,
√
(|W# |+2) log( |W# |+2)

}
/=√=

)
,

manip4GC (I,R< ◦ Goldilocks1, 2) ∈ $
(
: (1−1/

√
2)/= + min

{
:,
√
( |W# |+2) log( |W# |+2)

}
/=√=

)
,

manip2><? (I,R< ◦ Goldilocks1, 2) ∈ max
(5 ,E)∈�+

(D 5 ,E − ℓ5 ,E )

+$
(
:2
√
2/= + min

{
:,
√
( |W# |+2) log( |W# |+2)

}
/=√=

)
,

manip-fairness(I,R< ◦ Goldilocks1, 2) ∈ Ω
(
:/=√2 − min

{
:,
√
( |W# |+2) log( |W# |+2 |)

}
/=√=

)
.

6.6 Empirical Evaluation

Instances. We analyze 9 instances of real-world panel selection data identi�ed only by number
(their sources are anonymized). The relevant properties of these instances are in Appendix E.5.2.

Algorithms. Weevaluate fourmaximally fair selection algorithms Leximin,Minimax,Goldilocks11,
Nash. For our most computationally-intensive experiments, we replace Leximin withMaximin,
as it runs much faster on large instances but behaves similarly with respect to the properties we
aim to test. We also analyze the selection algorithm Legacy, which is a greedy heuristic that
was used widely in practice, and serves here as a benchmark representing greedy algorithms that
remain in use (see Appendix E.5.3 for details). In some analyses, we consider only a key subset of
these algorithms: Minimax, Leximin, and Goldilocks1. When optimizing Goldilocks via Flani-
gan et al. [130]’s algorithmic framework, we run into the issue that it is not di�erentiable, as is
needed to apply the framework. We thus instead implement the following di�erentiable version
of Goldilocks1:

=/: ·
(∑

8∈[=] c
?

8

)1/?
+ 1/=/: ·

(∑
8∈[=] 1/c?8

)1/?
.

In Appendix E.5.4, we show that this objective converges quickly to Goldilocks1 as ? → ∞
(Proposition E.5.1); we characterize this convergence rate precisely in Lemma E.5.2. We set ? =

1It seems plausible that an instance-spec�c setting of W might perform better than a �xed W across instances. We
additionally de�ne and evaluate two natural instance-speci�c de�nitions of W , but �nd that they make very little
di�erence to the performance of Goldilocks. These W values are de�ned in Appendix E.5.1, and the corresponding
results are in Table E.1.
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100 in our analysis. Appendix E.5.4 also describes our implementation of Flanigan et al. [130]’s
framework.

6.6.1 Maxes and mins

We �rst compare algorithms in their ability to control the maximum and minimum probability si-
multaneously. In Table 6.1, for each algorithmAwe report entries of the form

(
min(cA)

min(cMaximin) ,
max(cA)

max(cMinimax) )
)
.

In words, we are reporting the multiplicative approximations achieved by A to the optimal min-
imum probability (given by Maximin) and optimal maximum probability (given by Minimax).

Equality Notions

Instances Legacy Minimax Maximin Leximin Nash Goldilocks1
1 (0.0, 1.14) (0.0, 1.0) (1.0, 2.0) (1.0, 2.0) (0.62, 2.0) (0.73, 1.14)
2 (0.03, 1.01) (0.0, 1.0) (1.0, 1.33) (1.0, 1.33) (0.67, 1.33) (0.9, 1.0)
3 (0.0, 1.0) (0.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.61, 1.0) (0.99, 1.0)
4 (0.01, 1.0) (0.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.61, 1.0) (0.97, 1.0)
5 (0.0, 1.02) (0.0, 1.0) (1.0, 1.17) (1.0, 1.17) (0.57, 1.17) (0.92, 1.0)
6 (0.66, 1.11) (0.25, 1.0) (1.0, 1.5) (1.0, 1.11) (0.9, 1.08) (1.0, 1.09)
7 (0.0, 2.18) (0.0, 1.0) (1.0, 3.5) (1.0, 3.5) (0.46, 3.5) (0.7, 1.45)
8 (0.0, 1.0) (0.0, 1.0) (1.0, 1.0) (0.98, 1.0) (0.78, 1.0) (0.96, 1.0)
9 (0.0, 1.0) (0.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.45, 1.0) (0.94, 1.0)

Table 6.1: Approximations to the optimal minimum, maximum probabilities across algorithms
and instances.
Whatwe see is already encouraging: in 7 out of 9 instances,Goldilocks1 simultaneously achieves
within 10% of optimal maximum and minimum probabilities. This is striking, because it was not
even clear a priori that this would be possible for any algorithm. In contrast, we see that Legacy
and Minimax perform poorly on low probabilities, and Maximin/Leximin perform poorly on
high probabilities, and Nash performs poorly on both.

However, these results do not paint a complete picture: in several instances (3, 4, 8, 9), all al-
gorithms achieve the optimal maximum probability simply because the quotas require an agent

to receive probability 1. Thus, to fully compare the performance of these algorithms’ on con-
trolling high probabilities, we must examine their performance on less constrained— but still
realistic— instances. To do so, we study these algorithms’ maximum and minimum probabilities
as we successively drop features from each instance in decreasing order of their selection bias,
as in [135], Figure 1c. We discuss the formal feature dropping procedure and provide results for
omitted instances in Appendix E.5.5.

What we see in Figure 6.1 is striking: Goldilocks1 hugs the gray region almost perfectly above
and below, thus maintaining near optimality as features are dropped. This is in contrast toMax-
imin andMinimax, which continue to perform poorly on high and low probabilities respectively,
even as the instance is loosened and better probabilities are possible. Together, these results show
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Figure 6.1: The solid, dashed lines represent maximum, minimum probabilities per algorithm,
respectively. The shaded region lies between the optimal maximum probability and optimal min-
imum probability, establishing the region where no algorithm’s extremal probabilities can exist.

that controlling high and low probabilities simultaneously is generally possible to a great extent,
and all previously explored algorithms were leaving a lot on the table with respect to this goal.

6.6.2 Fairness, Manipulation Robustness, and Transparency

Fairness. While the above results already show the performance of all algorithms on Maximin

fairness, there are other normatively justi�ed notions of fairness, such as the Gini Coe�cient, de-
�ned asGini(0) :=

∑
8, 9∈[=] |c8−c 9 |
2
∑

8, 9∈[=] c8c 9
. Figure 6.2 shows the Gini Coe�cient achieved across algorithms

and instances. Note that a smaller Gini Coe�cient re�ects greater fairness, as Gini measures in-
equality.

1 2 3 4 5 6 7 8 9
Instance

0

20

40

60

80

100

Gi
ni

 C
oe

ffi
cie

nt
 (%

)

legacy
minimax
leximin
goldilocks

Figure 6.2: Gini coe�cient across algorithms and instances. Lower Gini Coe�cient means greater
fairness.

Figure 6.2 shows similar algorithmic behavior across instances: Legacy and Minimax—which
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we expect to be very unfair — tend to have high inequality per Gini. In contrast, Goldilocks1
and Leximin perform far better (unsurprisingly, Leximin is slightly better, as it prioritizes fair-
ness alone).

Manipulation Robustness. In accordance with previous work, we evaluate manipulation ro-
bustness by measuring a weakened version manip8=C with a single manipulator. In particular,
we measure the maximum probability gainable by any Most Underrepresented (MU) manipula-
tor, reports the value of each feature that is most disproportionately underrepresented in the
pool (as studied in Flanigan et al. [135]). We evaluate how this probability changes as = grows,
which we simulate by simply duplicating the pool. Details on these experiments are found in
Appendix E.5.6.
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Figure 6.3: The maximum amount of probability any single MU manipulator can gain, for 1 and
2 pool copies.

In Figure 6.3, we see that in instances 1 and 2, Goldilocks1 is far less manipulable than Max-
imin; in instance 3, we know the quotas require some agents to receive probability 1. However,
we see that as the pool is duplicated, Goldilocks1 makes use of this and the manipulation drops;
in contrast, across instances, Maximin remains just as manipulable. From Figures 6.3 and 6.2,
we conclude that Goldilocks1 achieves meaningful gains in Manipulation Robustness over Lex-
imin— the practical state-of-the-art —without any meaningful cost to fairness, as desired.

Transparency. Finally, we evaluate the extent to which we can round Goldilocks1-optimal
panel distributions to<-uniform lotteries without losing too much on high or low probabilities.
In this analysis, we use< = 1000. Although this is lower than =

√
= as our theory dictates, we will

�nd that this practicable number of panels is su�cient for good performance.

We consider two rounding algorithms. First, ILP is the integer programwhich �nds the E-optimal
<-uniform lottery. Second Pipage rounding [141] is a simple randomized dependent rounding
procedure. Although this algorithm does not come with any formal guarantees on how much
its rounded distribution will change agents’ selection probabilities, Pipage is fast; already imple-
mented in practice for the purposes of transparent sortition [163]; and has the added advantage
that, over the randomness of the rounding and sampling, it perfectly preserves the selection prob-
abilities, thereby exactly maintaining our guarantees in Theorem 6.4.1 end-to-end. Details on our
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rounding algorithms and experimental methods are in Appendix E.5.7
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Figure 6.4: Deviations from Goldilocks1-optimal selection probability assignments by Pipage

and ILP. The values for Pipage correspond to averages of minimum, maximum probability per
run over 1000 runs. Error bars are plotted to indicate standard deviation, but they are so small
that they are not visible. Gray boxes extend vertically from the minimum (resp. maximum)
probability given by Goldilocks1 to the “theoretical bound”, as given by Theorem 6.5.1. Optimal
minimum, maximum probabilities per instance are shown for reference.

Figure 6.4 shows good news: while ILP tends to lose a lot on either the maximum or minimum
probability in many instances, Pipage is reliably leaving Goldilocks1’s optimal selection prob-
abilities essentially unchanged. This is great news, because it means that we can have the best
of both words: we can achieve a high-quality uniform lottery while preserving our fairness and
manipulation robustness guarantees from Theorem 6.4.1 exactly, end-to-end.

6.7 Discussion

From our empirical analysis, we see that the good behavior of Goldilocks1 suggested by our
main results (Theorem 6.4.1) is borne out in real data: Goldilocks1 indeed performs well on fair-

ness, manipulation robustness, and transparency simultaneously. However, this was not actually
guaranteed; while apparently re�ective of reality, our bounds in Theorem 6.4.1 do not directly
apply to most real-world instances because real pools are too small to satisfy Assumption 6.2.4.
To prove bounds that truly give guarantees in practice, one would need to prove results like in
Theorem 6.4.1 without Assumption 6.2.4. The key technical challenge here is that manipulating
coalitions can not only expand the set of feasible panel types; they can also diminish it. This may
enable qualitatively di�erent kinds of strategies, which may reveal new potential vulnerabilities
of selection algorithms— and algorithmic solutions that can resolve them.
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7
Ongoing & Future Work

7.1 A Second Look At Representation/Randomness Trade-offs

The prevailing narrative in applied sortition is that tighter quotas equals better descriptive repre-
sentation. Under this interpretation, descriptive representationmust fundamentally trade o�with
the equality of the lottery, due to the simple mathematical fact that tighter quotas more strongly
constrain the randomness available.

However, we now call this narrative into question with the following simple observation: there
are many groups whose representation might matter that cannot be protected with quotas. Such
groups may exist for various reasons: organizers may not know these groups are important to
the conversation a priori; it may be legally or publicly controversial to impose quotas on a certain
groups; one may not want to impose quotas on groups whose de�ning feature(s) cannot be easily
con�rmed, raising risks of manipulation; or, it may simply be that the number of groups we care
about are too numerous, and imposing quotas on all of them would cause infeasibility or too
severely limit the randomness.

Clearly, tightening the quotas will improve the representation of groups protected by quotas. How-
ever, assuming there are some subgroups that maymatter but who cannot be protected by quotas,
it becomes far less clear that tightening the quotas will de�nitely improve representation overall.
We illustrate how tightening the quotas can harm representation (and diversity) via the following
concrete example.
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7.1.1 Motivating Example

Let : = 8. Let = = 64. Suppose we have three binary features, each which can take on values 0
or 1. Suppose on every feature, 3/4 of the population has value 0 and 1/4 has value 1. Suppose
the pool contains the following unique vectors: 000, 100, 010, 111. The numbers of each type
don’t matter much for most of the example; for now, let’s just assume that there are at least : = 8
people in each group so that our counterexamples won’t be due to simply running out of people.

Perfectly tight quotas. Suppose �rst that we set exactly tight quotas, so for each feature, we need
exactly 6 people with value 0 and 2 people with value 1. Then, the only feasible panel is

Panel Type 1: 6 × (000), 2 × (111) .

To see this, �rst observe that any valid panel must contain two people with vector 111 in order to
get two people with 1 values for the third feature; then the rest of the panel must be 6 people
with vector 000. Thus, people with vectors 100 and 010 cannot be included on any feasible panel,
and must receive 0 probability.

Relaxation of 1. Now, suppose we permit a tolerance of 1 on all quotas: we need 5-7 people with
value 0 and 1-3 people with value 1 for each feature. Now, the set of valid panels includes the
following three panels:

• Panel Type 2: 5 × (000), 1 × (111), 1 × (100), 1 × (010)

• Panel Type 3: 5 × (000), 2 × (111), 1 × (100)

• Panel Type 4: 5 × (000), 2 × (111), 1 × (010)

Observation 7.1.1. Tighter quotas can harm intersectional representation.

A strong case can be made that Panel 2 is more representative at the intersectional level than panels

1, 3, or 4. This panel is only available to us if we loosen the quotas.

Observation 7.1.2. Tighter quotas can harm hidden feature representation.

Suppose that there is another hidden feature, which we cannot even observe in the selection process.

Suppose that that value 0 for this feature perfectly correlates with vectors 100 and 010. Then, tight-

ening quotas excludes those with value 0 for the hidden feature, thereby also excluding this group.

Observation 7.1.3. Tighter quotas can harm representation on groups protected by quotas.

Suppose the pool contains only 2 people with vector 111. Then, both of them will have to be chosen

with probability 1 in the original example, and a manipulator from group 000 can misreport vector

111 and be selected with probability 2/3. Then, in expectation, people with 0-values for any of the

three features will receive (6+2/3)/8 = 83% of the seats instead of their allotted 75%.

This example illustrates how tightening the quotas can actually harm representation of all three
kinds of groups: those protected by features, those de�ned by intersections of protected fea-
tures, and those de�ned by features we cannot observe.
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Once the quotas are loosened, this problem with representation being �xed is not guaranteed:
Panel Type 1 is still valid, and in principle, a selection algorithm could randomize over only pan-
els of that type, causing exactly the same problems as above. However, we can ensure some
measure of representation by carefully designing the lottery. To see this, suppose our lottery uni-
formly randomizes over Type 2 panels. This lottery is like a (possibly suboptimal) version of the
Goldilocks objective from Chapter 6, in that it ensures no one gets too little or too much selection
probability. Here is how our three kinds of groups now fare with regards to representation:

• Intersectional groups: Vectors 100 and 010 are guaranteed 1 panel seat each, whereas
before they were receiving 0.

• Hidden groups: People with value 0 for our hidden feature are now guaranteed two panel
seats, whereas before they were receiving 0.

• Groups protected by quotas: There is now 1 seat reserved for people of vector 111, so
misreporting vector 111 as a 000 person will mean you are selected with probability 1/3.
Now, 0-value groups for the �rst two features receive in expectation (5+1/3)/8 = 67% of their
due 75% of seats (partly due to the relaxed quotas), and those with 0 for the third feature
receives 79% of panel seats (which is still over their allotted 75%, but less so).

7.1.2 Research�estions

Based on the example above, we de�ne rich representation as proportional representation of all
population subgroups, including those de�ned by combinations of observed features and those
de�ned by features we cannot observe. The above example illustrates why sacri�cing the equality
of the lottery in favor of tighter quotas will not necessarily improve representation when its
conception goes beyond the narrow version de�ned by quotas. On the contrary, a more equal
lottery can provide guarantees on representation of unprotected groups, which can be harmed

by tightening the quotas.

In this project, we are examining—both in theory and in practice—how both the uniformity of
the lottery and the quotas can together help support rich representation—and which balance of
lottery uniformity and tightness of quotas (a true mathematical trade-o�) to achieve the best
possible rich representation. The relationships between these quantities must fundamentally
depend on how features correlate with one another in the population versus the pool. Our goal
is to understand (1) what representation guarantees are possible regardless of these correlations,
which often cannot be observed, and (2) whether the quotas currently being used in practice are
tight enough to be signi�cantly harming rich representation.

7.1.3 Practical Impact: A Tool for�ota-Tuning.

We present a tool to help practitioners to �ne-tune their quotas in a way that accounts for the
equality of the lottery, as measured by any equality objective E that can be used in the framework
discussed in Chapter 3. This tool is motivated by the research above, which illustrates why it can

105



be advantageous for representation to slightly loosen the quotas in favor of a far more uniform
lottery.

Inputs. When practitioners use this tool, they must supply the equality objective E they want the
lottery to optimize, the pool, and their desired panel size: , as usual. Then, instead of exact quotas,
they give the following inputs for every feature-value 5 , E on which they want to ultimately want
quotas to be imposed:

– ? 5 ,E , the ideal number of panel seats given to people with value E for feature 5 .

– !5 ,E and * 5 ,E , integer-valued hard limits on the number of seats given to group 5 , E . Note
that these hard limits are distinct from quotas imposed at the panel selection stage: they
are considerably looser, as they are just the non-negotiable bounds.

– _
upper
5 ,E

and _lower
5 ,E

(optional): describes the priority on the upper (resp. lower) quota on 5 , E .
This dictates how important it is for that quota to be very close to the ideal proportion ? 5 ,E ,
relative to other quotas. If not set, these values default to 1.

A Human-In-The-Loop Algorithm.

Step 1: Generate candidate qota settings. First, three possible quota settings are deter-
mined by optimizing the following program. We initially run it for three di�erent & values (e.g.,
& ∈ {1, 10, 20}), where& controls the extent to which tight quotas are prioritized over the quality
of the lottery. We are experimenting with I ∈ {1, 2}.

min
c, ℓ5 ,E, D5 ,E

E(c) + &

|�+ |
∑
5 ,E

(
_
upper
5 ,E

(
D 5 ,E − ? 5 ,E

? 5 ,E

)I
+ _lower

5 ,E

(
? 5 ,E − ℓ5 ,E
? 5 ,E

)I)
Subject to: ℓ5 ,E ∈ [!5 ,E , ? 5 ,E ]

D 5 ,E ∈ [? 5 ,E ,* 5 ,E ]∑
8 : 5 (8)=E

c8 ∈ [ℓ5 ,E , D 5 ,E ] ∀5 , E∑
8∈[=]

c8 = :

For any given & , I, the quotas proposed by this program are the values of variables ℓ5 ,E , D 5 ,E .
The �rst two constraints require that these proposed quotas fall within the hard limits set by
practitioners. The last two constraints are those from the continuous relaxation of the quotas and
panel size restrictions, in which people are treated as divisible (as studied in Chapter 5). These
constraints require that the lottery, speci�ed by the variable c , satis�es the quotas in expectation.
Subject to these restrictions, the objective function balances two goals according to& : optimizing
the equality of the lottery, and tightening the quotas.

Step 2: Generate lotteries based on candidate qota settings. From running the above
program for & ∈ {1, 5, 20}, we have three proposed ways to set the quotas. Because these quotas
may be fractional, we round them outwards to the nearest integer; that is, ℓ5 ,E values get rounded
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down, D 5 ,E values get rounded up.1 Then, for each & ∈ {1, 10, 20} we run the algorithmic frame-
work from Chapter 3 with the corresponding rounded quotas and the chosen equality objective
E. This produces lotteries corresponding to each of these quota settings, which we display on
the following interface. Here, quota settings and corresponding E-optimal lotteries are ordered
on a line in increasing order of & :

Figure 7.1: Caption

Step 3: Human Selection of & . Practitioners see the interface above, and they can review the
proposed quota settings and the corresponding lotteries, each which represents a point near2 the
Pareto frontier between quota tightness and lottery equality. They then have 3 options: (a) If
they are happy with one of the proposed options, they can directly select it. (b) If they aremostly

happy with one of the proposed options but want to tweak it, they can modify a quota setting,
and then immediately generate the associated lottery to make sure they’re ok with it. (c) If they
want to explore a& value that isn’t shown, they can click on the& line to select a new value of&

1We round outwards because these quotas were optimized in the continuous relaxation of the panel selection
problem, whereas they will be used the more constrained integer version. Thus, for there to be hope of retaining the
good properties of the lottery determined in Step 1, we need to round outward to loosen the problem. Note that this
rounding will produce quotas that still fall within [!5 ,E,*5 ,E] because these bounds are integers.

2The trade-o� is not optimal, because the quotas are optimized in the continuous relaxation of the problem.
Part of this project will be investigating, both in theory and in practice, how much the lottery can change from the
continuous to integer version. Empirically, it looks to change very little.
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and the corresponding lottery will be generated and placed on the & line. They iterate through
this process until they �nd a quota setting they are happy with.

Preliminary Results. Here, we show two di�erent instances where we compare the original
quotas hand-tuned practitioners to quotas proposed by our method for @ ∈ {1, 10, 20}, where E
is Goldilocks. By inspection, the quotas chosen by our algorithm are by and large qualitatively
very similar to the original quotas, but we can permit signi�cantly more uniform lotteries.

category name original q=1.0 q=10.0 q=20.0
a a1 (2, 4) (2, 5) (2, 5) (2, 4)
a a2 (2, 4) (2, 4) (2, 4) (2, 5)
a a3 (2, 4) (2, 4) (2, 4) (2, 4)
a a4 (2, 4) (2, 4) (2, 4) (2, 4)
a a5 (2, 4) (2, 5) (2, 5) (2, 5)
a a6 (2, 4) (2, 4) (2, 4) (2, 4)
a a7 (2, 4) (2, 4) (2, 4) (2, 4)
a a8 (2, 4) (1, 4) (2, 4) (2, 4)
a a9 (2, 4) (2, 4) (2, 4) (2, 4)
b b1 (13, 15) (13, 15) (13, 15) (13, 15)
b b2 (15, 17) (15, 17) (15, 17) (15, 17)
c c1 (8, 10) (5, 10) (5, 10) (7, 10)
c c2 (4, 6) (3, 6) (4, 6) (4, 6)
c c3 (4, 6) (4, 6) (4, 6) (4, 6)
c c4 (2, 4) (2, 5) (2, 5) (2, 4)
c c5 (2, 3) (2, 4) (2, 3) (2, 3)
c c6 (3, 5) (3, 5) (3, 5) (3, 5)
c c7 (2, 4) (2, 4) (2, 4) (2, 4)
d d1 (13, 15) (13, 15) (13, 15) (13, 15)
d d2 (13, 15) (13, 15) (13, 15) (13, 15)
d d3 (2, 2) (1, 3) (1, 3) (1, 3)
e e1 (2, 2) (1, 3) (1, 3) (1, 3)
e e2 (2, 2) (1, 3) (1, 3) (1, 3)
e e3 (4, 6) (2, 6) (2, 6) (4, 6)
e e4 (2, 4) (1, 4) (2, 4) (2, 4)
e e5 (2, 2) (1, 3) (1, 3) (1, 3)
e e6 (16, 18) (16, 22) (16, 20) (16, 18)
f f1 (4, 6) (4, 6) (4, 6) (4, 6)
f f2 (24, 26) (24, 26) (24, 26) (24, 26)
g g1 (2, 3) (1, 3) (2, 3) (2, 3)
g g2 (4, 6) (3, 6) (4, 6) (4, 6)
g g3 (11, 13) (10, 13) (11, 13) (11, 13)
g g4 (10, 12) (10, 15) (10, 12) (10, 12) 0 20 40 60 80 100

percentile of pool members (by selection probability)
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category name original q=1.0 q=10.0 q=20.0
a a1 (19, 20) (19, 20) (19, 20) (19, 20)
a a2 (20, 21) (20, 21) (20, 21) (20, 21)
b b1 (7, 7) (6, 8) (6, 8) (6, 7)
b b2 (8, 9) (8, 9) (8, 9) (8, 9)
b b3 (13, 14) (13, 14) (13, 14) (13, 14)
b b4 (11, 12) (11, 12) (11, 12) (11, 12)
c c1 (11, 12) (11, 12) (11, 12) (11, 12)
c c2 (7, 8) (7, 8) (7, 8) (7, 8)
c c3 (3, 4) (2, 4) (2, 4) (2, 4)
c c4 (4, 4) (2, 5) (2, 5) (2, 5)
c c5 (4, 4) (3, 5) (3, 5) (3, 5)
c c6 (11, 12) (11, 12) (11, 12) (11, 12)
d d1 (20, 20) (19, 21) (19, 21) (19, 20)
d d2 (20, 20) (19, 21) (19, 21) (19, 20)
e e1 (20, 21) (20, 23) (20, 23) (20, 21)
e e2 (13, 14) (13, 14) (13, 14) (13, 14)
e e3 (6, 6) (4, 7) (4, 7) (5, 7)
f f1 (37, 38) (37, 38) (37, 38) (37, 38)
f f2 (3, 3) (2, 4) (2, 4) (2, 4) 0 20 40 60 80 100
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Figure 7.2: Caption

7.1.4 Extension to diversity

Another goal one might have for the panel, beyond rich representation, is diversity—roughly,
how many di�erent kinds of people are on the panel. In fact, the intuition from our example in
SECTION also applies to this goal:

Observation 7.1.4. Tighter quotas can harm diversity.

By any reasonable metric, Panel 2 is more diverse than Panels 1, 3, or 4, whether or not we consider

our hidden feature. This panel is only available to us if we loosen the quotas.

108



We plan to repeat our analyses proposed above to study the impact of quotas and the equality of
the lottery on diversity, in addition to rich representation.

7.2 Holistically Designing the Participant Recruitment Process

So far, the research discussed only addresses Stage 2 of the two-stage participant recruitment
process, as de�ned in Chapter 1. Now, we zoom out to consider the entire recruitment process
end-to-end, which involves the two stages de�ned before, plus a third stage we omitted above for
simplicity. The unifying aim of the open directions in this section is to design these three stages
together, so that each stage works in concert with the other stages. When possible, we propose
new ways to utilize data from past selection processes to make predictions, which is available in
practice but is currently unused.

Stage (1): Pool recruitment. People from the population are recruited into a group that has said
they will participate if chosen. In reality, while these people have a far higher probability of
participating if chosen than the general population, they are not guaranteed to ultimately say
yes. We can assume that, unlike people in the population, we know the relevant features of the
people in the pool, which they are asked to report.

Stage (2): Panel selection. The panel is typically selected from the pool by lottery, and must satisfy
demographic quotas.

Stage (3): Panel re-selection post-dropout. After the panel is selected, some subset of people from
the panel will drop out. They may drop out as early as the moment they are noti�ed of their
selection, or as late as the �rst day of deliberation (in which case they just do not show up to the
process). Their seats need to be �lled with people who are as close as possible to their feature-
values, while also trying to preserve properties of the lottery.

We present open research directions roughly in the order we think they should be completed:
working backwards from stage (3) back to stage (1), so that our approaches in earlier stages can
account for the needs of later stages. The �rst direction, in Section 7.2.1, is already ongoing.

7.2.1 Replacing panelists who drop out in stage (3)

Remark: Many questions posed in this section can be studied with or without access to predic-
tions about who will drop out, which can be made based on existing data from past panels. Using
access to predictions would prompt questions beyond those listed below regarding ensuring ro-
bustness to bad predictions, as is the common goal in the algorithms with predictions literature
(e.g., [193]).

In practice, replacement panelists can be sourced in one of two ways. Sometimes, practitioners
sample them directly from the remaining members of the pool. When this approach is taken,
practitioners typically run the algorithmic framework from Chapter 3. This approach poses sev-
eral questions, including: Are there ways to design the selected panel to make it more likely that

we will be able to retain representation after dropout? and If we run a lottery, lose some people to
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dropout, and then run it again, how closely do the selection probabilities approximate those that

would have been achieved in a one-shot lottery where the dropouts had not signed up in the �rst

place?

In higher-stakes settings, it is especially important to the integrity of the deliberative process
for all panelists to attend the �rst day of the event, when crucial on-boarding information is
conveyed. To prepare for the inevitable scenario that some panelists do not show up for the
�rst day, sometimes practitioners pre-select a set of alternate panelists and pay them to attend
the �rst day. The constraint, then, is that selecting more alternates is more costly. The task of
selecting these panelists raises several additional questions, the most obvious being how should

these alternates be selected, potentially based on predictions, howmany alternates do we need to select

to achieve guarantees on the availability of replacements, and should these alternates be selected in

conjunction with the panel itself, to maximize the chances of suitable replacements being available?

Finally, when analyzing any algorithm(s) for handling dropout, we need to consider the potential
for a new kind ofmanipulation: opting in with the intent of dropping out. This type ofmanipulation
is possible, because all else held constant, it is possible for someone change the lottery by, instead
of just declining to participate, opting in and then dropping out. Our task is to characterize the
extent to which such manipulations can be successful, and under what conditions.

7.2.2 Characterizing what pools are “good” for Stages (2) and (3).

Chapters 3 to 6 gave us several deployable algorithmic solutions for stage (2). The ongoing work
described in Section 7.2.1, once completed, will also provide algorithmic solutions for stage (3).
However these algorithms, no matter how sophisticated, are fundamentally limited by the quality
of the pool from which they can choose participants. When we talk about impossibilities, the
theme that arises again and again is selection bias—how the pool is imbalanced compared to the
population, and resultingly, compared to the quotas we ultimately want to satisfy.

The algorithms designed in the work so far are built to take the pool as given, assuming no
control over its composition. Ultimately, we want to take a more active role in improving Stage
(1), pool recruitment. Before we do this, though, we must understand: what kind of pool are we

trying to create? In other words, what kinds of selection bias are the biggest problem in practice,

for stages (2) and (3)? This is di�cult to answer, because there is no clear metric of selection
bias: one can measure it at the feature vector level, or the quota level, or in any other number
of ways; in any case, it is hard to reduce such a complex and combinatorial property into a
single-dimensional measurement capturing the extent the skew of the pool will prevent us from
achieving our original ideals throughout Stages (2) and (3).

Some work in this thesis has examined one approach in a limited capacity: in Chapter 5 Figure
2(a), our empirical analysis revealed a very simple measure of selection bias was highly predictive
of (asymptotically) optimal manipulability across datasets :

max
5 ,E∈�+

? 5 ,E

[ 5 ,E
− min
5 ,E∈�+

? 5 ,E

[ 5 ,E
,
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where ? 5 ,E and [ 5 ,E are the fraction of the population and pool, respectively, with value E for
feature 5 . Then, the �rst term is a proxy for the maximum selection probability due to selection
bias (proportional to the seats per person for themost underrepresented feature-value group), and
the second is a proxy for the minimum. As such, this di�erence intuitively roughly captures the
gap in selection probabilities, though not precisely. While this is a natural metric, its usefulness
has so far been established only in a very limited capacity, and it is just one of many reasonable
measurements.

In this project, wewould considermany suchmetrics, studying—both theoretically and empirically—
which are most robustly likely to compromise our ideals. This line of questioning would also
involve interrogating the stability of the relationship between our metric and our sortition ideals
to small random perturbations in the quotas or pool composition, to understand how robustly it
is possible to meaningfully measure the selection bias.

7.2.3 Improving recruitment in Stage (1)

With the understanding of which metrics best capture the problematic types of selection bias,
we can then turn to the task of understanding how to better-design Stage (1). Our goals in doing
so should really be two-fold: �rst, we want to decrease selection bias along our metrics, which
will measure the representativeness of the pool only based on the attributes protected by quo-
tas. While this is important for the properties of the lottery, from a normative perspective we
also want to try to reach hard-to-reach groups—even those de�ned by attributes that will not be
protected in the lottery—because they may have important perspectives to add even by virtue of
being hard to reach (e.g., because they might be distrustful of government). We propose a range
of ideas here, which achieve these two goals to varying degrees.

Door-knocking plus two-stage selection. Some groups (e.g., [10]) advocate and deploy panel
selection via door-knocking, which departs signi�cantly from the two-stage process we have stud-
ied. In the door-knocking approach, a random lottery is done, and then for every person selected,
the organizers go to their door and engage in a conversation with them about participating. Al-
though this process is signi�cantly can be resource-intensive—especially at scale—it can reach
hard-to-reach groups who would not typically participate, resulting in richer diversity.

One challenge with door-knocking alone is that, even though it can signi�cantly bring up par-
ticipation rates, they can remain far from 100% and still result in a panel that is far from propor-
tionally representative on salient demographic and ideological dimensions. For contexts where
this is a concern, one could consider doing a two-wave process to try to get the best of both
worlds: do door-knocking �rst at a small scale, from which you would get a group that is not
proportionally representative, but would include populations who would otherwise not opt in.
Then, run the two-stage process above to select the remainder of the panel, using the quotas to
correct deviations from proportional representation.

Directed sampling with imperfect data. Suppose for a moment that you had perfect demo-
graphic data about every person in the underlying population. Then, it would be possible to
simply do adaptive sampling of the population until a representative pool (at least on the ob-
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served dimensions) was achieved. Even doing this is not perfectly trivial: without knowing a
priori who will accept, one has to be thoughtful about the order in which people are invited to
avoid risking having to recruit an enormous number of people before the pool is well-balanced.
How to do this while retaining good probabilistic properties and a reasonably-sized pool (and
number of phone calls) is already an interesting question, with or without predictions of who
will accept. Regardless of how it’s implemented, however, any such sampling process that pro-
duces a balanced pool must be e�ectively shifting the unequal probability of selection from the
second stage to the �rst.

The more interesting question is how to do this adaptive sampling when data about the popula-
tion is limited. For example, practitioners may have aggregate level data about the residents of
neighborhoods or zip codes, perhaps about a limited set of features (e.g., race, income). Based
on this data, plus an understanding of how these known features correlate with unknown features
based on census data, one could try to design a probabilistic process for adaptively sampling.
The questions are: can we build a process that is �exible enough to use diverse kinds of data? and
how closely can such a process—depending on the data quality—approximate the optimal sampling

procedure in the case where perfect population data is available?

Furthermore, being able to make more intentional sampling decisions based on the limited pop-
ulation data available in practice opens up the door for other kinds of more targeted approachs.
One example that might be fruitful would be to extend the hybrid door-knocking approach above
to more continuously interpolate between the opting-in process and the door-knocking process.
For example, suppose you could run the two-stage process we study, but based on predictions
(using limited data) you could decide to more intensively recruit certain invitees – the ones you
believe for whom it will make a di�erence – by door-knocking.

Fine-tuning the invitation format. Across organizations and time, the invitations sent out in
Stage (1) have varied in format and medium. Using these invitations — and data on the pools that
were recruitedwith them—one could ask: What formats of invitations lead tomore balanced pools?

This question would require feature extraction, possibly using LLMs, of the text of invitations.
It is reminiscent of work done in marketing on how to format solicitations of donations, and
tools from that regime might be useful; the qualitative di�erence here is that our goal is not
maximizing the number of the responses, but the diversity, which might lead to qualitatively
di�erent prediction methods and conclusions.
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Part II

Beyond Descriptive Representation

113



8
Background

In part I, we discussed how one of the key arguments of sortition, in its “ideal” form is a uniform
lottery, is that it yields proportional descriptive representation. Underlying the commitment to
this ideal is a philosophical judgement that is very popular in computational social choice: that
regardless of the decision at hand, everyone should be entitled to the same in�uence. This principle
founds not just sortition, but most popular decision methods in computational social choice, in
which all voters are given a single vote to cast (or in the case of liquid democracy [159], delegate).
In this section, we question this philosophical principle, and explore an intuitive alternative no-
tion of representation that accounts for the extent to which people are a�ected by the decision
at hand.

Consider the following scenario. Suppose we have a city that is making decisions about major
changes to the public transit system. 90% of people in the city can a�ord their own private transit,
and rarely or never use public transit. In contrast, the remaining 10% cannot a�ord private transit
and depend on public transit for all travel. Now, suppose we are choosing a panel of : = 50 people
to deliberate on some decision about their local transit system. Let us be in the “ideal” case where
we can do a uniform lottery and all chosen will partake. Then, the resulting panel will contain
roughly 5 people who use public transit regularly, and 45 people who essentially never use it. If
we imagine this deliberation, it seems somewhat strange: the large majority of participants will
not be impacted at all by changes to the public transit system. Even worse, it could be the case
that those dependent on public transit tend to have a fundamentally di�erent opinion about what
should be done than those who do not; with such a small fraction of seats on the panel, they may
be unsuccessful in advocating for their own interests, despite being the ones who will have to
live with the ultimate decision that is made on a day-to-day basis.
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At face value, this is an example of a classical phenomenon, the tyranny of the majority (e.g.,
see [57]). However, we pose that this example actually illustrates a more insidious sub-case of
this general phenomenon. In one version of the tyranny of the majority, the majority group and

the minority group can both bene�t signi�cantly, but from opposing policy options. In this case,
someone has to lose—this is just a fundamental impossibility of politics, which often requires us
to choose one policy that will apply to all. However, the example above presents a much more
problematic version: the minority can gain signi�cantly by getting their way, while they majority

cannot. This is even worse than the previous case: now, when the majority gets their way, they
barely stand to bene�t, when a di�erent outcome could have substantially helped the population
much more overall.

We will refer to this phenomenon here as the tyranny of the less a�ected majority. It is not hard
to think about salient examples of issues in which this problem could occur: Consider masking
requirements and immunocompromised populations, or accessibility features (e.g., wheelchair
ramps) and those who rely on them. This idea can also apply to issues where “minority” status
is not statistical, but rather political: consider the global discussions around climate change, in
which the global south has been underrepresented despite projections that they will be dispro-
portionately a�ected [260].

The tyranny of the less a�ected majority scenario —and why it can lead to democratic outcomes
with suboptimal social bene�t — can be understood without committing to any formal model or
democratic mechanism. It does, however, connect to an important folklore impossibility in the
computational social choice literature on distortion (Theorem 8.0.1). It is therefore from within
this model that we will begin our study of this problem.

The distortion model. The distortion literature traditionally studies a model in which voters’
preferences are de�ned by latent utilities: that is, each voter 8 ∈ [=] has a nonnegative utility
D8 (0) for each alternative (policy or candidate) 0 ∈ [<], which we will think of as the extent
to which 8 bene�ts if 0 is implemented. Voters “vote” by providing a complete ranking in order
of their utilities: that is, 8 prefers 0 to 1 if and only if D8 (0) > D8 (1). A voting rule 5 is any
(possibly randomized) mapping from a set of = such rankings to a single winning alternative,
typically denoted in this thesis as 0′. We evaluate the “societal bene�t” of any given alternative
via its utilitarian social welfare, sw(0) := ∑

8∈[=] D8 (0), the sum of voters’ utilities for it. In a given
election, let 0∗ := argmax0∈[<] sw(0) be the highest-welfare alternative (i.e., the most socially
bene�cial outcome available). The distortion is the competitive ratio between sw(0∗) and sw(0′),
quantifying the suboptimality of the winner relative to the best possible outcome. Note that
because it is de�ned as sw(0∗)/sw(0′), larger distortion re�ects a more sub-optimal outcome.

Theorem 8.0.1 (folklore). The distortion of any deterministic voting rule is unbounded.

Proof. This can be proven via our transit decision example above, once embedded into the dis-
tortion model above. Suppose there are two possible transit system policies, 0 and 1. The 10%
who depend on public transit are signi�cantly bene�ted by 0 but not at all by 1; let their vector
of utilities for 0 and 1 be (10, 0). Let the remaining 90% bene�t slightly from 1 and not at all from
0; accordingly, their utilities are (0, n). The former 10% of voters will vote for 0, all the rest will
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vote for 1, making 1 the winner, with welfare proportional to 0.9 · n < n . In contrast, 0 is the
highest-welfare alternative, with welfare proportional to 0.1 · 10 = 1. The distortion is therefore
at least 1/n . �

This resounding impossibility has spawned substantial work trying to get around it. Usually this
literature does so via one of two kinds of assumptions, bothwhichwill connect to ourwork in Part
II. First, there is the unit-sum utilities assumption [231], where each voters’ utilities are assumed to
add to 1—that is, for all 8 ∈ [=], ∑0∈[<] D8 (0) = 1. Another assumes the ability to query utilities.
We will discuss these assumptions and other related assumptions in more detail in Chapter 9,
where we present a di�erent, intuitive solution: suppose we could represent people in proportion
to how often they use public transit. This solution — while very intuitive — pursues a kind of
representation that is fundamentally di�erent from descriptive representation; we call it stakes-
based representation. This representation concept connects to multiple political scienti�c and
philosophical theories; for example, Harry Brighouse and Marc Fleurbaey de�ne the principle of
democratic proportionality as the idea that thosewho aremore a�ected by the decision are entitled
to greater representation [57]. A more detailed discussion of these connections is provided in
Chapter 9.

8.1 Overview of Chapters

Chapter 9: A Voting Framework for Stakes-Based Representation [132]. In this chap-
ter, we investigate whether stakes-based representation can address the impossibility of un-
bounded distortion, and in the process circumvent the tyranny of the less a�ected majority.
We study this question in perhaps themost canonical method of democratic decision-making:
ranking based voting. In this setting, we design a general social choice framework that cap-
tures the intuition of accounting for stakes through the notion of stakes-based representation,
whereby voters are reweighted according to their stakes. In this framework, voters’ stakes
are measured via stakes functions—any function mapping each voter’s vector of utilities to a
real number measuring the extent to which they stand to lose or gain from the decision at
hand.

Within this framework, we then derive tight bounds on achievable distortion under stakes-
based representation when perfect information about stakes is available. When stakes can
only be estimated, we show that our distortion bounds hold approximately, implying that
even a coarse estimate of stakes can bring about a large reduction in distortion. Finally, for
the setting where stakes are completely unknown, we develop a proof-of-concept mechanism
that ties together multiple elections so that the behavior of voters reveals their stakes, leading
to bounded distortion in each election.

Our exploration of future work embarks on the signi�cant task of exploring what it would take
to bring this theory of stakes into the practice of democracy. When we think about bringing
stakes-based representation in practice, we must let go of the goal of precise stakes-proportional
representation, as it is likely impossible to assign any single “correct” number to someone’s util-
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ities or stakes. We are therefore just aiming to account for stakes within orders of magnitude, a
goal toward which our results already go a long way, especially for issues where voters’ stakes
are extremely disparate. In Chapter 10, we discuss two distinct extensions of Chapter 9, both
which pertain to the goal of bringing the theory of stakes into practice.

Chapter 10: Ongoing and Future Work. The �rst approach we consider endeavors to an-
alyze Quadratic Voting (QV), an increasingly deployed voting mechanism, within our stakes
framework from Chapter 9. Although the proposed work in this part is theoretical, it takes a
pragmatic perspective, considering whether a core QV assumption holds in practice; whether
an existing practical �x has the desired e�ect; and how to apply multi-issue mechanisms from
Chapter 9 with QV ballots.

Our second course of ongoing/future study is less economic andmore political. In the context
of deliberative town halls, we aim to (a) devise a publicly acceptable approach to identifying
key high-stakes groups on the issue, and then (b) designing the town hall to give these groups
“substantively su�cient” in�uence in the democratic process—even if it means deviating from
descriptive representation. We hypothesize there is hope for achieving goal (a), which comes
from the (so far anecdotally-supported) idea that when asked who should be in the room
when deciding a given issue, people seem to gravitate toward listing high-stakes groups (For
example, in response to the question “whose perspectives absolutely need to be considered in the
conversation about COVID-19 masking requirements?”, anecdotally people commonly identify
frontline workers, medical sta�, and those who are immunocompromised). Goal (b) is much
trickier to achieve, because it relies on understanding what constitutes “substantively suf-
�cient” in�uence—and measuring it. Conceptually, we use “substantive in�uence” to mean
that a group’s interests are accurately accounted for in the �nal decision. Whether this is
achieved is a function of who is in the room and what happens in the room. The latter will
be considered in Part III.
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9
A Voting Framework for Stakes-Based

Representation
Voters with Stakes can Ward O� Bad Outcomes [32]
Bailey Flanigan, Ariel D. Procaccia, and Sven Wang

submitted 2024 (and FORC 2023, non-archival)

9.1 Introduction

In the standard model of voting, voters express their ordinal preferences by ranking a set of
alternatives. It is reasonable to assume, however, that there exist cardinal utilities that voters
associate with alternatives, and a voter’s ranking is consistent with those latent utilities. From
this viewpoint, a natural goal for a voting rule—which aggregates the given rankings—would
be to select a good alternative in terms of utilitarian social welfare (the sum of utilities), despite
having access only to ordinal information. The notion of distortion [231] measures how far a
given voting rule is from achieving this goal. It is the worst-case ratio between the social welfare
of the optimal alternative and the social welfare of the alternative selected by the rule, where the
worst case is taken over utilities.

Without any additional assumptions, any deterministic voting rule must have unbounded distor-
tion. Intuitively, even in an electionwith two voters, one preferring 0 to1 and the other preferring
1 to 0, it could be the case that one voter has arbitrarily high utility for their preferred alterna-
tive whereas the other has low utility for both alternatives, but it is impossible to di�erentiate
between 0 and 1 based on the ordinal information alone. To circumvent this obstacle, the rich
literature on distortion has explored several approaches, one of which is to assume access to lim-
ited cardinal information (see Section 9.1.2 for details). Our work is inspired by this approach;
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we are interested in a speci�c and very natural type of cardinal information: stakes.

Tomotivate the idea of stakes, let us consider a concrete example. Cambridge, Massachusetts, like
many US cities, seeks public input on the questions surrounding a�ordable housing. In past years,
the city has proposed to permit building taller buildings— a move that would increase a�ordable
housing, but would change the skyline of Cambridge and potentially cast shadows over existing
homes. City Councilor Burhan Azeem, who proposed the amendments, said “I understand that
tall buildings are something that people are sensitive to, but this comes down to which should
we care more about. How tall a building is? Or the people who dont have stable housing?” [60].
Councilor Azeem is pointing out a contrast of stakes: while both homeowners and those who
don’t have stable housing are a�ected by the decision of whether to permit taller buildings, the
latter group is far more a�ected.

Now, suppose the decision is put to public referendum; placing this example in the utility model
above (using numbers to illustrate the intuition), suppose that 10% of residents are renters who
are at risk of losing their home due to rising rental prices, and 90% are homeowners who are
worried that a�ordable housing would lead to a decrease in the value of their property. Let the
former group have utility 100 for accepting the proposal and utility 0 for rejecting it; let the latter
group have utility 1 for rejecting the proposal and utility 0 for accepting it. Based on their utilities,
90% of residents will vote to reject the proposal, and any majority-consistent voting rule must
con�rm their choice. This is a severely suboptimal outcome, as the social welfare of accepting
the proposal is more than 10 times that of rejecting it.

Notice that, in the foregoing example, the chosen numbers do not matter much: the key prob-
lem is that a minority of residents have disproportionately high stakes, but they lack the voting
power to sway the election. By contrast, the majority stands to gain little, so when they get their
way, little value is generated for the population. It is not hard to think of salient examples of real
political decisions with this property: consider masking requirements and immunocompromised
populations, accessibility features (e.g., wheelchair ramps) and those who rely on them, or the
design of public transit and those who cannot a�ord private transportation. Although the impos-
sibility that all deterministic rules have unbounded distortion is often thought of as a theoretical
one, these examples make the issue seem practically pressing: given that people are likely to have
disparate stakes in real issues— and sometimes minority groups have much higher stakes than
the majority— these examples suggest that such welfare loss can occur in real elections.

Motivated by this problem, we pursue bounded distortion by assuming that voters’ stakes are
known, at least approximately, to the voting rule. Unlike a signi�cant branch of the distortion
literature that assumes voters’ utilities are normalized, we will allow voters’ utilities to be ar-
bitrary and unknown to ensure that our model captures the problematic examples above. One
may wonder whether it is plausible to know stakes information but not precise utilities. To see
why knowing stakes is far easier, consider the a�ordable housing example: conceptually, stakes
captured how a�ected each voter is relative to other voters. Stakes information, then, is just a single
number measuring the extent to which a voter can gain or lose depending on the decision out-
come, relative to other voters in the election. As the number of alternatives in an election grows,
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the gap in di�culty widens between the doing a coarse-grained assessment of how relatively af-
fected a voter is (which in the examples above is not hard to do) versus understanding individuals’
�ne-grained preferences over all alternatives. As we discuss below, our results permit having just
approximate stakes information; going further, we then initiate a study of how voters’ stakes can
be revealed in their behavior, potentially permitting our positive results to hold even in cases
where legitimate estimates of voters’ stakes are unavailable.

9.1.1 Approach and contributions

How should we measure stakes? (Section 9.2). First, we must embed a model of stakes in the
standard model of voting with latent utilities. The a�ordable housing example illustrates that,
intuitively, a voter’s stakes are captured in their utility vector — that is, their utilities across al-
ternatives. In that example, it seems natural to measure voters’ stakes as the di�erence between
their utilities (so the respective stakes of renters and homeowners would be 100 and 1). However,
how to measure stakes becomes less obvious when< > 2. (Consider the utility vectors (1, 1, 0)
and (1, 0, 0). Which re�ects higher stakes?) We thus de�ne and study general stakes functions B:
any mapping from a voter’s utility vector to a scalar measure of their stakes in the election.

What can we do with perfect stakes information? (Section 9.3). In the a�ordable housing
example, an intuitive idea for addressing high distortion would have been to re-weight votes
according to voters’ stakes. Taking this approach, we characterize the distortion possible, across
stakes functions B , by any deterministic or randomized rule when votes are re-weighted in a
stakes-proportional way.

Deterministic rules. Here we �nd that knowing stakes information— even according to a surpris-
ingly simple stakes function— can drop the distortion from ∞ to the number of alternatives<.
We �rst prove a lower bound showing that no deterministic voting rule, when reweighted by any
stakes function B according to any reweighting scheme, can achieve distortion lower than< (The-
orem 9.3.1). We then prove a general upper bound on the distortion of any deterministic voting
rule, when votes are reweighted proportionally via any stakes function B (Theorem 9.3.4). We use
this bound to identify a stakes function, voting rule pair that matches our lower bound: we show
that the rule Plurality achieves optimal distortion<when reweighted according to the stakes as
measured bymaximum utility or the di�erence between maximum and minimum utilities (Propo-
sition 9.3.7). We henceforth refer to these stakes functions as B = max and B = range, respectively.
This bound further implies proportional re-weighting is su�cient to achieve optimality. Beyond
Plurality, we surprisingly �nd that among deterministic voting rules, most are not helped by
knowledge of stakes— a result which has both positive and negative interpretations.

Randomized rules (plus, an independently interesting lemma). We repeat this analysis for ran-
domized rules, showing that if a stakes-reweighted voting rule is permitted to be randomized,
the distortion can be as low as $ (

√
<). We show that the rule Stable Lottery [105] achieves

$ (
√
<) distortion when given stakes measured by B = max, B = range, or B = sum (the sum

of a voter’s utilities) (Theorem 9.3.12). The lemma used to prove this upper bound may be of
independent interest, as it shows a surprising and technically useful connection between our
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setting and the popular setting of distortion assuming unit-normalized utilities (i.e., where vot-
ers’ utilities are assumed to sum to 1). We observe, �rst, that assuming voters’ utilities sum to
1 is akin to assuming they have identical stakes, as measured by the stakes function B = sum.
Then, we show that this assumption is equivalent, from a distortion perspective, to permitting
arbitrary utilities but reweighting votes by stakes measured by B = sum. In fact, we show this
equivalence holds for any 1-homogeneous stakes function (Lemma 9.3.13). This result establishes
a formal link— and permits the transfer of bounds— between two key assumption classes in the
distortion literature: unit-normalized utilities and queries of cardinal information (our setting).
Finally, we conclude our analysis with a lower bound proving that Stable Lottery’s distortion
is within a log< factor of optimal across randomized rules and stakes functions (Theorem 9.3.11).

What if we just have stakes information in orders of magnitude? (Section 9.4). In the mo-
tivating examples above, we can identify one or more population groups who are substantially
disproportionately a�ected by the decision. However, assigning any single number to the extent
to which their stakes are higher is di�cult; in reality, people’s stakes may be observable (or even
fundamentally measurable) only at the resolution of orders of magnitude. Fortunately, in Sec-
tion 9.4 we �nd that even very approximate stakes information can help: we give an instance-wise
upper bound showing that for any 1-homogeneous stakes function B (a natural class encompass-
ing all B discussed so far), if our stakes information is X-approximately correct (and adversarially-
designed otherwise), the distortion of any rule 5 scales simply by X (Theorem 9.4.1). Given that
the distortion of deterministic voting is otherwise unbounded, this result means that even just
coarsely accounting for voters’ di�ering stakes can o�er substantial improvements in distortion.

What if we don’t have any stakes information at all? (Section 9.5). In some cases, we may
not even be able to guess voters’ stakes at the resolution of orders of magnitude— or, even more
likely, one may encounter cases where it is not possible to make a publicly acceptable case that
a certain group should receive disproportionate representation in a given democratic decision.
However, in many such cases, it is still desirable to account for stakes; this is an extremely sticky
problem, which merits more exploration than we can do in a single paper. We present an initial
study of this problem in Section 9.5, where we propose and explore a class of mechanisms that
aims to reveal voters’ information in their behavior and, in the process, accounts for stakes au-
tomatically. This class of mechanisms, called multi-issue mechanisms, is based on a simple idea:
it requires voters to decide how to allocate a total allotment of voting power across elections.
In forcing voters to make such trade-o�s, this class of mechanisms exploits a special property
of stakes information: unlike other kinds of cardinal utility information, stakes-information is
action-relevant, describing, roughly, how much a voter may care about the outcome of a given
election.

After de�ning this class of mechanisms, we perform a proof-of-concept analysis of a mecha-
nism in this class. This example illustrates mathematically how voters’ stakes can be revealed
in their behavior, and how our results from the previous sections can be applied to analyze such
a mechanism. Our distortion analysis of this mechanism shows that although any election run
individually within the mechanism could have unbounded distortion, the distortion of each elec-
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tion in our mechanism is at most X<2, where X corresponds to the extent to which voters have
the same total stakes across the issues we place on the multi-issue ballot (Theorem 9.5.4).

9.1.2 Related work

The literature on distortion is quite rich; for an overview, we refer the reader to the survey by
Anshelevich et al. [25]. At a high level, there are at least three avenues to achieving meaningful
bounds on distortion. The �rst (and by far the most common) is to restrict the utilities, e.g., by
assuming that voters have the same sum of utilities [53, 231], or by assuming that the utilities are
induced by an underlying metric space [24]. The second is to consider public spirit, in the sense
that voters seek to optimize social welfare in addition to their own utilities [134]. And the third,
which is most relevant to our work, is to assume the availability of limited cardinal information.

In the context of the last approach, the work of Amanatidis et al. [22] is most closely related to
ours. They study deterministic voting rules with access to one of two kinds of queries: value
queries, where the voting mechanism can directly ask agents about any one of their utilities;
and comparison queries, where the voting mechanism can ask agents: “for alternatives 0 and 1,
is your utility for 0 at least g times your utility for 1?” Among other results, they prove that
constant distortion is achievable using $ (log2<) queries per voter, where < is the number of
alternatives. To achieve their upper bounds, they construct an approximate utility pro�le via the
queries and maximize social welfare with respect to these estimated utilities. This is conceptually
very di�erent from our approach of employing common voting rules and accounting for stakes
through stakes-proportionality. Nevertheless, there are a few technical connections between the
work of Amanatidis et al. [22] and ours, which comment on below.

Another (more distantly) related paper in the same vein is that of Abramowitz et al. [17]. Their
main results pertain to a setting where answers to the above comparisons queries are given for
every pair of alternatives, either with respect to a single �xed threshold g or multiple �xed thresh-
olds; their distortion bounds are parameterized by these thresholds. They additionally assume an
underlying metric space and therefore their results are technically incomparable to ours.

Although standard social choice mechanisms do not account for stakes,1 the concept has been
conceived of in multiple disciplines. From the social sciences, there is the philosophical notion
of proportionality— the idea that “power should be distributed in proportion to peoples stakes
in the decision under consideration” [57]. In the context of binary decisions, ? ] explores the
welfare cost of treating agents symmetrically when they have di�erent stakes, and the results of
Fleurbaey [136] suggest that accounting for stakes can help: they show that in elections over two
alternatives, reweighting each voter’s vote by the di�erence of their utilities— a measurement of
their “stakes”— increases the welfare of majority voting. Our work can be seen as generalizing
the latter analysis substantially, permitting < alternatives, any stakes function B , any stakes-
reweighting scheme, and any voting rule.

The idea that those with higher stakes in a decision should have greater political in�uence arises
1We know of two social choice papers that use the term “stakes” [23, 172]; both use the term di�erently and

explore unrelated questions.
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in many other theories in political science as well, such as the principle of a�ected interests [140];
the concept of empowered inclusion [38, 278]; and the concept of precarity [210], which describes
the idea that socially or economically vulnerable populations may be more a�ected by political
issues due to their inability to adjust to decisions that are sub-optimal for them. Our work can be
seen as a technical companion to this literature in three ways: it (1) o�ers a formal framework for
modeling stakes, (2) explores the impact of accounting for stakes as proposed by these theories,
and (3) identi�es a class of mechanisms which can be explored further as a method for accounting
for stakes.

Our mechanism design approach requires assumptions about how voters will engage with the
mechanism, which can be informed by existing social science research on how voter behavior
depends on preference intensity [99, 115]. Moreover, our proposed class of mechanisms relates to
(but is not encompassed by) two existing voting mechanisms, quadratic voting [230] and storable
votes [72]. We defer a detailed discussion of these connections to Sections 9.5 and 9.6.1, where
we can establish them more concretely in comparison to the mechanisms we study.

9.2 Model

We introduce the model in two parts. Section 9.2.1 establishes the standard voting model; Sec-
tion 9.2.2 embeds our model of voters’ stakes within it. Throughout the paper, we use the short-
hand 1ℓ0ℓ ′ to mean a vector containing ℓ ones followed by a string of ℓ′ zeros. We let I(·) be the
indicator function.

9.2.1 The voting model

In an election, there are = voters and< alternatives. We let voters 8 ∈ [=] and alternatives 0 ∈ [<]
have some �xed numbering. Voters’ underlying preferences over [<] are modeled with utilities:
each voter 8 has a utility D8 (0) ∈ R≥0 for each alternative 0 ∈ [<]. Let u8 = (D8 (0) |0 ∈ [<]) be 8’s
utility vector, and let u be a generic utility vector. We summarize all voters’ utilities in a utility
matrix * ∈ R=×<≥0 .

The voting process. Each voter 8 expresses their preferences via a complete ranking over (i.e.,
permutation of) [<]. Letting (< be the set of all permutations of [<], a generic ranking is c ∈
(< . We use 0 �c 0′ to denote that 0 precedes 0′ in c , re�ecting that 0 is preferred over 0′.
Abusing notation slightly, we let c ( 9) denote the alternative ranked in the 9-th position in ranking
c . When voter 8 “votes”, they submit a ranking c8 . This ranking is determined by u8 : 8 ranks
alternatives in decreasing order of their utilities, so that D8 (0) > D8 (0′) =⇒ 0 �c8 0′ for all
0, 0′ ∈ [<].1

A collection of = voters’ rankings is called a preference pro�le 0 . As in prior work such as that of
Xia [287], instead of working with pro�les 0 , we will work with histograms, which summarize
collections of rankings by their frequencies. A generic preference histogram is a vector indexed by

1For simplicity of our lower bounds, we will assume worst-case rankings whenD8 (0) = D8 (0′); one could instead
tie-break explicitly by perturbing the utilities by arbitrarily small amounts.
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rankings, h = (ℎc |c ∈ (<), whereℎc ∈ [0, 1] is the fraction of rankings in a given collection equal
to c . As such, ‖h‖1 = 1. The space of all possible preference histograms is thus the simplex of all
valid distributions over (< , which we call Δ((<) :=

{
h ∈ [0, 1](< :

∑
c∈(< ℎc = 1

}
. Connecting

pro�les and histograms, we say 0 is consistent with h if each c ∈ (< appears in 0 exactly = · ℎc
times. Let Πh be the set of all pro�les consistent with a histogram h. Note that Πh is non-empty
i� all entries of h are rational.

Since voters’ rankings are fully implied by * , we let * constitute an instance. We denote the
histogram implied by* as hist(* ), whose c-th entry is given by

histc (* ) := 1/=∑8∈[=] I{c8 = c}, for all c ∈ (< .

Voting rules. Let Δ( [<]) denote the set of all probability distributions over the alternatives [<].
Then, a voting rule is a function 5 : Δ((<) → Δ( [<]) that maps a preference histogram to a
distribution over winning alternatives.1 We refer to this class of functions as randomized rules
to distinguish them from their sub-class, deterministic voting rules, which map a histogram to a
distribution with singleton support. Among deterministic rules, the only speci�c rule we study
is Plurality, whose winner is the alternative that is ranked �rst by the most voters. Among
randomized rules, we consider the Stable Lottery rule [105], which draws a winner either at
random or from a stable lottery—a distribution over a subset of [<] that is preferred by voters to
other such subsets. Wewill not apply this rule’s precise de�nition, sowe defer it to Appendix F.2.9.

Distortion. Let an alternative0’s utilitarian social welfare be sw(0,* ) := ∑
8∈[=] D8 (0).Webench-

mark the social welfare of the winner against that of 0∗ := argmax0∈[<] sw(0,* ), the highest-
welfare alternative. For any rule 5 , the value of this approximation ratio in instance * is called
the instance-speci�c distortion, de�ned as

dist* (5 ) :=
sw(0∗,* )

E[sw(5 (hist(* )),* )] ,

where the expectation is over the draw of the winner from the distribution 5 (hist(* )). As is
standard, we evaluate 5 via its overall distortion, dist(5 ), which is the worst-case approximation
ratio over all possible instances* :

dist(5 ) := sup=≥1 sup* dist* (5 ) .

The supremum over = is just to more conveniently deal with the fact that in worst-case instances,
= must be large enough relative to< to realize utility matrices with<-dependent fractional com-
positions. We consider the distortion to be a function of<, as is standard in the literature.

9.2.2 A stakes framework within the voting model

Measuring stakes via stakes functions. A stakes function is any function B : R<≥0 → R that
maps a utility vector to a scalar measure of the stake it re�ects. Intuitively, a voter’s stake should

1Histograms are inherently anonymized, so we study only anonymous voting rules (encompassing all common
voting rules).
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depend on the relative magnitudes of their utilities, but not which alternatives they prefer; we
thus restrict to functions B which are permutation invariant. For example, utility vectors (0, 1)
and (1, 0) re�ect the same stake. We often apply this invariance to evaluate voters’ stakes on a
sorted version of their utility vector.

In some results, we restrict our consideration to stakes functions that are 1-homogeneous, i.e.,
for all scalars U , B (Uu) = UB (u). This applies to U = 0, implying that for all 1-homogeneous
B , B (0) = 0. This restriction on B is natural in that it makes our notion of accounting for stakes,
formalized below, invariant to rescaling* . Although many of our results apply for generic stakes
functions, three in particular will come up frequently, so we de�ne shorthand for them:

range(u) := max0 D (0) −min0 D (0), max(u) := max0 D (0), sum(u) := ∑
0 D (0)

Stakes-reweighting of votes. Colloquially, we say that a voting process “accounts for stakes” if
it grants voters representation to an extent that depends on their relative stakes. We can think of
this as a form of stakes-dependent reweighting: instead of voter 8’s ranking contributing to the
c8-th entry of the histogram with weight 1/=, its contribution is additionally weighted by some
function of B (u8). We can also think of this as recomposing the electorate, by e�ectively duplicat-
ing voters in proportion to some function of B (u8). For convenience of intuition and notation, we
adopt the second interpretation. Formally, let A : R≥0 → R≥0 be a generic recomposition function.
Then, the (A, B)-recomposed histogram arising from* has c-th entry

hist
A◦B
c (* ) =

∑
8∈[=] A (B (u8)) · I(c8 = c)∑

8∈[=] A (B (u8))
∀c ∈ (<,

representing the fraction of voters in the (A, B)-recomposed electorate with ranking c . In this re-
composed histogram, each voter 8’s ranking is represented with weight A (B (u8))/

∑
8∈[=] A (B (u8)).

Proportional stakes-reweighting of votes. In this paper, we will focus on perhaps the sim-
plest reweighting scheme: stakes-proportionality, where A is the identity function � . In the B-
proportional histogram hist

�◦B (* ), voters’ votes are reweighted in proportion to their stakes, i.e.,
by B (u8)/

∑
8∈[=] B (u8). For notational simplicity, we will shorten the name of hist�◦B to hist

B hence-
forth. We will use stakes proportionality (or B-proportionality) to refer to the condition under
which votes are reweighted in this way.

Distortion under stakes-proportionality. In a given instance, reweighting an electorate to be
stakes-proportionate will potentially change the distortion. We de�ne the B-distortion of 5 as its
distortion in hist

B (* ), the B-proportional electorate arising from* :

dist
B
* (5 ) :=

max0∈[<] sw(0,* )
E[sw(5 (histB (* )),* )] , and dist

B (5 ) := sup
=≥1

sup
*

dist
B
* (5 ).
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9.3 What if we have perfect stakes information?

9.3.1 Deterministic voting rules

We begin by analyzing deterministic voting rules, which without stakes information have in�nite
distortion (the proof is essentially the housing example in Section 9.1; for a formal proof, see
Appendix F.2.1). Motivated by this impossibility, wewill studywhat B-distortion is possible across
deterministic rules and stakes functions.

Lower bound for all 5 , B .

Our �rst result is a lower bound that shows that the best possible B-distortion achievable by any
deterministic rule 5 , given stakes information according to any stakes function B , is at least<−1.

Theorem 9.3.1 (lower bound). For all B and deterministic 5 ,

dist
s(5 ) ≥ < − 1.

Proof sketch. Our approach is to de�ne two instances, * and * ′, and show that all deterministic
rules 5 must have at least< − 1 distortion in one of these two instances. To construct* ,* ′, �rst
set aside one alternative 0′; let the remaining alternatives be 01 . . . 0<−1. For any ℓ ∈ [< − 1],
de�ne �ℓ = {0 9 | 9 ∈ [<] \ {ℓ}}. When we write �ℓ in a ranking, it represents a ranking over all
the alternatives within it in increasing order of index. Now, we de�ne voters’ rankings 0 and two
possible underlying utilities* and* ′. Divide voters in into< − 1 groups, and consider a voter 8
in group ℓ . Let them rank alternatives as c8 = 0ℓ � 0′ � �ℓ . Their underlying utility vectors as
given by* and* ′, called u8 and u′8 , are de�ned below:

alternative: 0ℓ � 0′ � �ℓ
u8 for 8 ∈ group ℓ : 1 1 0 . . . 0
u′8 for 8 ∈ group ℓ : 1 0 0 . . . 0

With this construction, the proof follows from three observations. Observation 1: First, because
both * and * ′ result in the same ranking for each voter 8 , hist(* ) ≡ hist(* ′), and these two
underlying utility matrices are indistinguishable to any voting rule. Observation 2: Within each
utility matrix, all voters have the same ordered utility vector, and thus have the same stakes;
formally, histB (* ) ≡ hist(* ) and hist

B (* ′) ≡ hist(* ′). Observation 3: In both * and * ′, the social
welfare of any 0ℓ is equal to =/(< − 1); however, in * , 0′ has high social welfare (sw(0′,* ) = =)
while in* ′, 0′ has low social welfare (sw(0′,* ′) = 0).

Now, when a voting rule 5 receives the pro�le 0 , either 5 (0) = 0′ or 5 (0) = 0ℓ for some
ℓ ∈ [< − 1]. If the former is true, Observations 1-3 imply that for any B , distB* ′ (5 ) =

=/(<−1)
0 = ∞.

If the latter is true, Observations 1-3 imply that for any B , distB* ′ (5 ) = =
=/(<−1) = < − 1. We spell

out this argument in full formality in Appendix F.2.2. �
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Remark 9.3.2 (Extension to arbitrary recomposition functions). In the instance giving Theo-

rem 9.3.1, either utility matrix gave all voters identical stakes. If B (u8) is equal across voters, then
for any recomposition function A , A (B (u8)) will be equal across voters. Observation 2 still holds, and

the lower bound applies. Given that we will �nd this lower bound to be tight, it implies that in the

worst case, applying a recomposition function other than the identity function will not improve the

B-distortion of any deterministic voting rule, for any stakes function B .

Remark 9.3.3 (Connection to existing results). Theorem 7 of Amanatidis et al. [22] shows that any

single value query of utilities (where the voting mechanism can directly ask agents about any one

of their utilities) can enable at best Ω(<) distortion. Our lower bound in Theorem 9.3.1 generalizes

this lower bound, showing that any system of queries yielding the value of a scalar-valued stakes

function, when paired with a deterministic voting rule, can achieve at best Ω(<) distortion.1

Upper bound for all 5 , B .

Now, we will prove upper bound on the B-distortion of any deterministic voting rule 5 , for any
stakes function B . To reason about all voting rules 5 and stakes functions B at once, we must
determine: Given any pair of B, 5 , what properties of B and 5 will lead to low distortion? We now
introduce two such properties. First, V 5 is the minimum fraction of voters that must rank the
winner by 5 in �rst position:

V 5 := minh∈Δ((<)
∑
c∈(< ℎc · I{c (1) = 5 (h)}.

Second, ^-upper(B) and ^-lower(B) measure the extent to which B can over- or under-estimate
max(u), respectively:

^-upper := supu
B (u)

max(u) , ^-lower(B) := infu B (u)
max(u) .

While bounds in terms of other properties of B, 5 are conceivable, these quantities will permit
optimal upper bounds.

In terms of these quantities, Theorem 9.3.4 gives an upper bound on the B-distortion for any B
and any deterministic 5 . The proof relies on the insight that V 5 and the ^ values are linked: V 5
lower bounds how often the winner is ranked �rst, while the ^’s links the stakes and maximum
utility of any voter who ranks the winner �rst. This connection implies a lower-bound on the
social welfare of the winner.

Theorem 9.3.4 (upper bound). For all B and deterministic 5 ,

dist
s(5 ) ≤ V−1

5
· ^-upper(B) /^-lower(B).

Proof. Fix an instance * , a stakes function B , and a deterministic rule 5 . Let 0′ = 5 (histB (* )) be
the winner of the B-proportional election. First, we have that the social welfare of any alternative

1Note: a necessary step in showing that our lower bound subsumes theirs is arguing that our lower bound
actually applies to any stakes-dependent electoral recomposition, not just proportional recomposition, which we do.
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0 is upper-bounded:

sw(0,* ) ≤
∑
8∈[=]

max(u8) ≤
∑
8∈[=]

B (u8) /^-lower(B). (9.1)

Now, let #0′ be the set of voters who rank 0′ �rst. All 8 ∈ #0′ must have at least some utility for
0′:

D8 (0′) = max
0
D8 (0) ≥ B (u8)/^-upper(B). (9.2)

Also, since 0′ is the winner, #0′ composes at least a V 5 fraction of the stakes-proportional elec-
torate: ∑

8∈#0′ B (u8) /
∑
8∈[=] B (u8) ≥ V 5 .

This fact, combined with Equation (9.2), gives that

sw(0′,* ) ≥
∑
8∈#0′

D8 (0′) ≥
∑
8∈#0′

B (u8) /^-upper(B) ≥ V 5
∑
8∈[=]

B (u8) /^-upper(B).

Combining this with Equation (9.1) and denoting the maximum welfare alternative by 0∗, we
obtain that

dist
B
* (5 ) =

sw(0∗,* )
sw(0′,* ) ≤ V

−1
5
· ^-upper(B)
^-lower(B) . �

Remark 9.3.5. Theorem 9.3.4 also holds if in the de�nitions of ^-upper(B) and ^-lower(B), max
is replaced with range. This is because the worst-case distortion can always be realized by instances

where every voter has minimum utility 0, in which casemax = range. We prove this in Appendix F.2.3.

Optimality of Plurality and B =max

In our �rst extension of these results, we identify a voting rule-stakes function pair that attains
the best possible B-distortion <, matching our lower bound in Theorem 9.3.1. We do this by
minimizing the upper bound in Theorem 9.3.4, which amounts to choosing B and 5 to minimize
both ^-upper(B)/^-lower(B) and V−1

5
.

It is easy to see that B = max achieves the minimal value ^-upper(B)/^-lower(B) = 1. For V 5 , the
answer is more subtle; in Appendix F.2.4, we prove the following lemma, which shows that the
maximal attainable value is V 5 = 1/<, and that this maximum is achieved by Plurality.

Lemma 9.3.6. For any deterministic voting rule 5 , V 5 ≤ 1/<, and VPlurality = 1/<.

With this lemma in hand, we now apply Theorem 9.3.4 to conclude the following upper bound,
which matches the lower bound in Theorem 9.3.1.

Proposition 9.3.7. distmax(Plurality) ≤ <.
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The above result suggests using Plurality with B = max as a promising choice. However, in
some motivating contexts— e.g., where stakes-proportionality arises from voters’ behavior—we
may not be able to control which stakes function is used. To characterize the B-distortion of
Plurality, we show that it is essentially tight with respect to Theorem 9.3.4 for all B , except that
^-lower is replaced with ˜̂-lower, in which the supremum is taken over only utility vectors u
with the same �rst and second entry. See Appendix G.1.10 for the formal de�nition of ˜̂-lower
and subsequent proof.

Proposition 9.3.8. For all B , dists(Plurality) ≥ (< − 1) · ^-upper(B)˜̂-lower(B) .

Remark 9.3.9 (Connection to existing results). Theorem 1 of Amanatidis et al. [22] shows that

their voting mechanism 1-PRV—which is equivalent to Plurality under stakes-proportionality with

respect to max—gives distortion $ (<). This result corresponds to our upper bound on the max-
distortion of Plurality, proven via Proposition 9.3.7.

Beyond Plurality

To understand the B-distortion of other deterministic voting rules 5 , we �rst observe that when
V 5 = 0, there is an unbounded gap between the lower bound in Theorem 9.3.1 and the upper bound
in Theorem 9.3.4. Unfortunately, the B-distortion for such 5 is indeed unbounded— a �nding that
is practically signi�cant because, as we prove in Appendix F.2.6, most popular voting rules have
V 5 = 0.

Proposition 9.3.10. For all stakes functions B and all deterministic rules 5 with V 5 = 0, distB (5 ) =
∞.

Proof. Let 5 satisfy V 5 = 0, and �x a histogram h in which the winner 5 (h) is never ranked �rst.
Then, set the underlying * to realize this histogram while setting each voter’s ordered utility
vector to 110<−1. Since the winner is never ranked �rst, it must get 0 average utility. Since each
voter gives their respective �rst-ranked alternative utility 1, at least one alternative must have
at least 1/< average utility; thus, dist* (5 ) = ∞ is unbounded. Because all voters have identical
utility vectors, for all B , hist(* ) = hist

B (* ) =⇒ 5 (hist(* )) = 5 (histB (* )) =⇒ dist* (5 ) =
dist

B
* (5 ) = ∞. �

Proposition 9.3.7 and Proposition 9.3.10 together point to Plurality-like rules as uniquely promis-
ing when stakes are accounted for. This may seem strange, as Plurality is often considered a
“bad rule” due to its lack of expressiveness. One positive interpretation of this �nding is that Plu-
rality, when stakes are accounted for, actually accounts for the most critical information; this
is good news, as Plurality-like voting methods are widely used. Another possibility is that the
ranking-based ballot format is insu�ciently expressive; as we discuss in Section 9.6, our model
and approach extend easily to richer ballot formats.

It is also important to acknowledge that although V 5 = 0 for many non-Plurality voting rules,
this is a worst case result. It could very well be that in typical instances, the winners chosen by
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other voting rules are often ranked �rst by many voters. In this case, our impossibility in Propo-
sition 9.3.10 would be quite pessimistic. This possibility motivates beyond-worst-case analysis,
and/or simple su�cient conditions under which a broader range of voting rules can make use of
stakes information. We leave these directions to future work.

9.3.2 Randomized voting rules

Next, we give an analogous but brief analysis of randomized rules. First, we lower-bound the B-
distortion across all 5 and all 1-homogeneous B , characterizingwhat B-distortion stakes-proportionality
will permit. For comparison, randomized rules have at best Ω(<) distortion without accounting
for stakes (see Appendix F.2.10 for details).

Theorem 9.3.11 (lower bound). For all 1-homogeneous B , randomized 5 , distB (5 ) ≥
√
<

10+3 log< .

Proof sketch. The construction of this lower bound is rather intricate, and its full proof is deferred
to Appendix F.2.7. Themain idea is to identify indices of the utility vector overwhich large gaps in
utilities have the smallest e�ects on the stakes. More formally, we try to identify a small I ∈ [<]
such that the following quantity is upper-bounded:

B (1I+10<−(I+1))
B (1I0<−I)

.

Then, we can exploit this lack of sensitivity of the stakes function to drive large gaps in alterna-
tives’ utilities over this index. If such a small I doesn’t exist, we know that placing utility gaps
over all early indices of a utility vector will create a lower-bounded gap in stakes, which we can
then exploit via a di�erent construction. As in previous lower bounds, in the instance we design,
all voters have identical stakes. �

Our next result proves that a known randomized rule, Stable Lottery, paired with one of a few
stakes functions B , achieves $ (

√
<) B-distortion, matching our lower bound up to a log factor.

This rule was originally introducedwith the goal of achieving low distortion in the distinct setting
assuming normalized utilities; there, Stable Lottery was shown to achieve distortion $ (

√
<)

when utilities were restricted to have have unit sum, i.e.,
∑
0∈[<] D8 (0) = 1 for all 8 [105]. The

theorem is proven via Lemma 9.3.13, which shows a connection between our model and the
popular normalized utilities model that may be of independent interest.

Theorem 9.3.12 (upper bound). For B ∈ {sum,max, range}, distB (Stable Lottery) ∈ $ (
√
<).

Proof. We prove this upper bound by connecting stakes information to the popular normalized
utility model, in which it is assumed that voters’ utilities are normalized to sum to 1 [69, 70, 231]
(or, in recent work, havemaximum utility 1 [105]). Placed within our model, observe that such as-
sumptions amount to assuming that voters have identical stakes as measured by sum (resp.max).1

1This interpretation is already informative, as it raises substantive questions about whether these widely-used
restrictions on the utilities are likely to hold in practice, where people may have dramatically di�ering stakes.

130



Of course, one could assume this normalization with respect to any stakes function B; we call this
general class of assumptions B-unit-stakes assumptions.

We now show a surprising equivalence: Assuming sum-unit stakes is equivalent, from a distortion
perspective, to the sum-distortion (i.e., the distortion achievable under B-proportionality when
B = sum). In fact, we show this correspondence to hold for any 1-homogeneous stakes function, as
stated informally in Lemma 9.3.13.

Lemma 9.3.13 (informal). For all 1-homogeneous B , the distortion of 5 under the B-unit-stakes

assumption is equivalent to its B-distortion.

The bidirectional reduction that proves this lemma is pictured in Figure 9.1. We prove it for-
mally over two theorems in Appendix F.2.8: Theorem F.2.5 handles rational-valued histograms,
and Theorem F.2.7 extends the claim to real-valued histograms (at the cost of a mild technical
condition on the voting rule). With this reduction in hand, we can now transfer lower and upper

 satisfying -unit stakes assumption 
profile histogram 

U s
𝗁𝗂𝗌𝗍(U)

unrestricted , 
profile histogram 

U′ 

𝗁𝗂𝗌𝗍s(U′ )
Construct  from  as follows: 

1. For all , scale  by  
2. Duplicate  in proportion to 

U U′ 

i u′ i 1/s(u′ i)
i s(u′ i)

Set .U′ =U

 = ; alternatives’ social welfares are preserved;  satisfies -unit stakes assumptionhist(U) 𝗁𝗂𝗌𝗍s(U′ ) U 𝗌𝗎𝗆

  (since all voters have same unit stakes); alternatives’ social welfares are preserved 𝗁𝗂𝗌𝗍s(U′ )= hist(U)

-proportionalitys-unit-stakes assumptions

Figure 9.1: Constructions for reducing between the B-unit stakes assumption (existing model) and
B-proportionality (our model).

bounds between the B-unit stakes setting and ours. We conclude the proof of Theorem 9.3.12
by transferring bounds on Stable Lottery proven under the sum-, max-unit stakes assumptions
[105, Theorem 3.4]. The case of range requires a minor technical extension— see Appendix F.2.9
for details. �

Implications for the B-unit stakes literature. This reduction proves a formal connection be-
tween two distinct branches of the literature: distortion under normalized utilities, and distortion
with auxiliary utility information. Using the fact that this reduction permits transferring bounds
across these settings, in Appendix F.1.1 we illustrate how our results recover— and even some-
times strengthen— existing results, often via simpler arguments.

Beyond existing results, we can also use our reduction to immediately derive new results for the
B-unit stakes assumption setting. Although there is a vast space of possible B-unit-stakes assump-
tions (one per possible stakes function B), the literature has explored few; to our knowledge, only
max and sum. This inspires the open question: would assuming unit stakes with respect to a dif-

ferent stakes function permit better distortion bounds? Our results immediately close this question
for deterministic rules:
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Corollary 9.3.14 (of Lemma 9.3.13). For all 1-homogeneous stakes functions B and all deterministic

voting rules 5 , the best achievable distortion of any 5 under any B-unit stakes assumption is< − 1
(Theorem 9.3.1), and this is achieved by assuming max-unit stakes or range-unit stakes and using
the rule Plurality (Proposition 9.3.7, Remark 9.3.5).

Our results also close this question within a factor of log(<) for randomized rules:

Corollary 9.3.15 (of Lemma 9.3.13). For all 1-homogeneous stakes functions B and all randomized

voting rules 5 , the best achievable distortion of any 5 under any B-unit stakes assumption is at least

Ω(
√
</log(<)) (Theorem 9.3.11), and this distortion is achieved within a log(<) factor by assum-

ing max-unit stakes, range-unit stakes, or sum-unit stakes and using the rule Stable Lottery
(Theorem 9.3.12).

9.4 What if we have approximate stakes information?

In many cases, we may know voters’ stakes only coarsely, at the level of orders of magnitude. To
understand what is possible in this case, we now extend our results from previous sections to the
case where our estimates of voters’ stakes are incorrect.

Let us formally de�ne these errors. Suppose we achieve B-proportionality according to an incor-
rect estimate of each voter 8’s stakes B̂ (u8) := X8 B (u8), where X8 ≥ 1 is the factor by which we
overestimate 8’s stakes.1 Let % := (X8 |8 ∈ [=]) be the vector of all such errors. Given * and % , we
denote the %-approximately stakes-proportional histogram as hist%,Bc (* ), with c-th entry

hist
%,B
c (* ) :=

∑
8∈[=] B̂ (u8) · I(c8 = c)∑

8∈[=] B̂ (u8)
.

For X := max8 X8 , the X, B-distortion of 5 is then given as

dist
X,B (5 ) = sup=≥1, * , %∈[1,X]=

max0 sw(0,* )
E[sw(5 (hist%,B (* ),* )] .

Note that for �xed X , by this de�nition, % ∈ [1, X]= is chosen adversarially. We now prove strong,
instance-wise robustness to such errors.

Theorem 9.4.1. For all 5 , 1-homogeneous B ,* , and X ≥ 1, distX,B
*
(5 ) ≤ X distB* (5 ).

The intuition is simple: since B is 1-homogeneous, mis-estimating 8’s stakes by up to X is the same
as overestimating voters’ utilities by up to X . Such overestimates can change the distortion by at
most a X factor. We now formalize this intuition.

Proof of Theorem 9.4.1. Fix a utility matrix * , a 1-homogeneous stakes function B , and an error
vector % ∈ [1, X]= . Let *̃ be the utility matrix where voter 8’s utility vector is scaled by a factor
of X8 , i.e., ũ8 = X8u8 . Then, since B is 1-homogeneous, we have that B (ũ8) = X8B (u8), and therefore

1We can realize any type of errors with X ≥ 1, because the weighting of the resulting electorate is relative.
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hist
B (*̃ ) ≡ hist

%,B (* ), directly implying that 5 (histB (*̃ )) ≡ 5 (hist%,B (* )). Moreover, for every
alternative 0, it holds that sw(0, *̃ ) ∈ [sw(0,* ), Xsw(0,* )]. It follows that

E[sw(5 (hists (*̃ )), *̃ )] ≤ X · E[sw(5 (hist%,B (* )),* )],

from which we deduce that

max0 sw(0,* )
E[sw(5 (hist%,B (* )),* )]

≤ X max0 sw(0,* )
E[sw(5 (histB (*̃ )), *̃ )]

=
max0 sw(0,* )
max0 sw(0, *̃ )

· X · max0 sw(0, *̃ )
E[sw(5 (histB (*̃ ), *̃ )]

≤ X · distB (5 ).

Taking suprema on the left hand side then completes the proof. �

9.5 What if we have no stakes information?

In this section, we are interesed in the case where voters may have extremely di�erent stakes (in
which case our results dictate that accounting for them is important), but either (1) we cannot
even coarsely guess them, or (2) we cannot explicitly re-weight votes without public backlash.
In this section, we propose a mechanism design concept for revealing voters’ stakes through their

behavior. We propose a class of mechanisms, called multi-issue mechanisms, based on a simple
idea: if voters must decide how to allocate voting power over multiple entire elections, they will
exert in�uence in the decisions that most a�ect them, thereby revealing their stakes. We de�ne
this class of mechanisms here, where (MD) indicates a decision by the mechanism designer:

Multi-issue mechanisms:

Setup. Each voter 8 ∈ [=] is presented with a slate of : entire elections (MD), where each election
ℓ is over its own set of alternatives �ℓ . Voter 8 has utility vector uℓ8 in election ℓ .

Voting. To vote, each voter 8 submits to each election two things: a ballot of some format (MD),
and a scalar weight F ℓ

8 ∈ [0, 1] describing the weight 8 wishes to place on election ℓ . These
weights are restricted such that

∑
ℓ 2 (F ℓ

8 ) ≤ 1 for all 8 , where 2 : R→ R+ is a cost function (MD)

describing how much a voter is charged per unit of weight placed on an election.

Aggregation. Each voter 8’s ballot in each election ℓ is weighted by F ℓ
8 , and a voting rule (MD) is

then used to aggregate these weighted ballots into a winner.

We next perform a proof-of-concept analysis of a multi-issue mechanism. We emphasize that this
analysis is meant to build intuition rather than to be the �nal word on the design of multi-issue
mechanisms. In particular, the analysis will illustrate (1) how voters’ individual incentives can
reveal their stakes according to a natural stakes function, (2) what assumptions are required for
analyzing such a mechanism, and (3) how our results from Section 9.3 and Section 9.4 can be
applied to bound the distortion of such a mechanism. Then, with the intuition from this analysis
in hand, in Section 9.6.1, we will discuss generalizations of this mechanism and connections to
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the existing mechanisms storable votes [72] and quadratic voting [230], which use similar types
of trade-o�s to elicit richer utility information.

To fully de�ne our multi-issue mechanism, we must instantiate the four aspects left up to the
mechanism designer (those �agged with (MD)): the elections to be included, the ballot format,
the cost function, and and the voting rule.

Elections to be included. We allow the inclusion of an arbitrary number of elections : ≥ 2. For
ease of exposition, we assume each election ℓ contains the same number of alternatives< (this
can easily be achieved by simply adding dummy alternatives).

Ballot format. Voters “vote” by submitting complete rankings as was assumed throughout the
paper, in order to apply our results to analyze the mechanism.

Cost function. We let 2 : R: ↦→ R be quadratic,1 so that given x := (G8 |8 ∈ [:]), 2 (x) =
∑
8∈[:] G

2
8 .

Voting rule. We will aggregate votes via Plurality, guided by our results showing its optimality
among deterministic rules.

For the purposes of analyzing our mechanism, we must also de�ne with what motives— and
based on what information—voters translate their utilities into actions (votes). Our assumptions
prioritize simplicity.

Assumption 9.5.1. We assume that voters satisfy the following properties.

– Honest: voters will submit rankings that are true to their underlying utilities.

– Oblivious: voters have uniform priors over all sets of =−1 other rankings in every election,
i.e., they make the impartial culture assumption [145].

– Not mathematicians: voters believe their probability of pivotality in election ℓ increases
linearly inF ℓ

8 , the weight they place on their vote in that election.2

– Utility-maximizing: voters submit weights across elections tomaximize their total expected
individual utility (where the expectation is over the randomness of others’ votes).

Finally, we need to introduce formal notation that will allow us to analyze multi-issue mecha-
nisms. In each election ℓ ∈ [:], the underlying=×< utility matrix is denoted* ℓ ; correspondingly,
voters’ utility vectors are uℓ8 and individual utilities are Dℓ8 (0). For a given stakes function B , we
use shorthand s8 := B (uℓ8 )ℓ∈[:] to summarize 8’s stakes across all : elections.

1One may wonder if there is a correspondence between this mechanism and Quadratic Voting (QV). Technically,
the cost quadraticity serves the same purpose, but our mechanism is overmultiple elections, while QV occurs within
a single election.

2While this is technically inconsistent with their uniform priors over others’ votes, we see it as at least as reason-
able as assuming voters compute their precise probabilities of pivotality: even under uniform priors, computing the
exact marginal increase in probability of pivotality per unit of weight is a combinatorial calculation that we cannot
expect voters to do. In light of this, linearity is a natural assumption.
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Because we use Plurality, we are concerned only with each voter’s �rst-ranked alternative,
so we will consider histograms that are indexed by 0 ∈ < rather than c ∈ (< . Let 1ℓ8 ∈ [<]
be 8’s �rst-ranked alternative in election ℓ ; abusing notation, we will represent 8’s vote in this
election using e1ℓ

8
, the <-length alternative-indexed basis vector with a 1 at the 1ℓ8 -th index.

We can then represent 8’s weighted vote in election ℓ as the weighted basis vector F ℓ
8 e1ℓ8 . Let

w8 := (F ℓ
8 |ℓ ∈ [:]) be the weights 8 submits across elections. We let the resulting histogram in

election ℓ be hℓ :=
∑
8∈[=]F

ℓ
8 e1ℓ8 /

∑
8∈[=]F

ℓ
8 . Let hℓ−8 be the histogram not including 8’s vote, i.e.,

hℓ−8 :=
∑
8∈[=]\{8}F

ℓ
8 e1ℓ8 /

∑
8∈[=]F

ℓ
8 . We write h ∼ I to denote a histogram that re�ects a pro�le

drawn from the Impartial Culture model.

Now, we apply results from Sections 9.3 and 9.4 to show that although any election encompassed
by the mechanism, if run in isolation, could have had unbounded distortion, within this mech-
anism all elections are guaranteed to have distortion at most order <2 (Theorem 9.5.4). This
analysis proceeds in 3 steps. In Step 1, we show how voters’ stakes are revealed in how they
allocate weights across elections, and we characterize the particular stakes function that arises
from their behavior. Then, in Step 2, we show that this stakes function is quite natural, and per
our previous results, behaves similarly enough to range to permit near optimal distortion when
paired with Plurality. Finally, in Step 3, we characterize the distortion of each election in the
mechanism, which reveals an important feature of our choice of the : elections around which we
design the mechanism.

Step 1: A natural stakes function B∗ arises from voter behavior. First, we show that the
stakes function arising from voters’ utility-maximizing behavior is simple and intuitive:

B∗(u) := max(u) − sum(u) − max(u)
< − 1 ,

the gap between their maximum utility and their average utility for the other alternatives.

Lemma 9.5.2. In each election ℓ , each voter 8 weights their vote by F̂ ℓ
8 = B

∗(uℓ8 ) / ‖s∗8 ‖2.

Proof. Fix an 8 , whose behavior in the mechanism we will analyze. Let the alternatives in each
election ℓ be �ℓ , and for all ℓ ∈ [:], let 1ℓ8 be 8’s favorite alternative in the ℓ-th election. Now,
de�ne the following events, some which depend onw8 :

• - ℓ : 1ℓ8 wins among only the votes in hℓ−8 (and thus also wins with 8’s ranking weighted by
F ℓ
8 added to the pro�le).

• / ℓ (w8): Some 0 ≠ 1ℓ8 wins among only the votes in hℓ−8 by a margin small enough that 8’s
vote for 1ℓ8 is pivotal.

• ¬- ℓ∧¬/ ℓ (w8): Some alternative 0 ≠ 1ℓ wins among the votes in hℓ−8 +F ℓ
8 e1ℓ8 (i.e., regardless

of whether 8 votes for 1ℓ8 with weightF ℓ
8 ).
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Note that these events are mutually exclusive. Now, we compute voter 8’s expected reward in
terms of these quantities:

Eh−8∼I


∑
ℓ∈[:]

D8 (Plurality(h−8 +F ℓ
8 e1ℓ8 ))


=

∑
ℓ∈[:]

©«
(
Pr[- ℓ] +Pr

[
/ ℓ (w8)

] )
· D8 (1ℓ8 ) + %A

[
¬- ℓ ∧ ¬/ ℓ (w8)

]
·

∑
0∈�ℓ\{1ℓ

8
}

D8 (0)
< − 1

ª®¬
Unpacking this expression, if either event - ℓ or / ℓ occurs, 8 gets the utility associated with 1ℓ8 . If
neither occurs, 8 expects some other alternative to win, and has uniform priors over other voters’
rankings; thus their expected utility in this event is the average of all alternatives in �ℓ \ {1ℓ8 }.
Again using 8’s uniform priors over other voters’ behavior, %A [- ℓ] = 1/<. Simplifying,

=
∑
ℓ∈[:]

©«
(
1/< +Pr[/ ℓ (w8)]

)
D8 (1ℓ8 ) +

(
1 − 1/< − %A [/ ℓ (w8)]

)
·

∑
0∈�ℓ\{1ℓ

8
}

D8 (0)
< − 1

ª®¬
=

∑
ℓ∈[:]

©«
∑
0∈�ℓ

D8 (0)
<
+ %A [/ ℓ (w8)]

©«D8 (1ℓ8 ) −
∑

0∈�ℓ\{1ℓ
8
}

D8 (0)
< − 1

ª®¬ª®¬ .
The �rst term of the summand is �xed in the instance, so it is not decision relevant. Then, we
have deduced that

max
w8

Eh−8∼I


∑
ℓ∈[:]

D8 (Plurality(h−8 +F ℓ
8 e1ℓ8 ))


= max

w8

∑
ℓ∈[:]

%A [/ ℓ (w8)]
©«D8 (1ℓ8 ) −

∑
0∈�ℓ\{1ℓ

8
}

D8 (0)
< − 1

ª®¬
= max

w8

∑
ℓ∈[:]

%A [/ ℓ (w8)]
(
max(uℓ8 ) −

sum(uℓ8 ) − max(uℓ8 )
< − 1

)
= max

w8

∑
ℓ∈[:]

%A [/ ℓ (w8)] · B∗(uℓ8 )

Finally, by Assumption 9.5.1, voters act as though their probability of pivotality increases linearly
with each additional unit of weight placed behind their vote. Applying this assumption,

= max
w8

∑
ℓ∈[:]

F ℓ
8 · B∗(uℓ8 ) .
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Then, subject to to the constraint that each voter has total weight 1, the �nal problem voters are
solving is as follows, where ŵ8 describes their optimal weighting across elections:

ŵ8 := argmax
w8

∑
ℓ∈[:]

F ℓ
8 · B∗(uℓ8 ) s.t.

∑
ℓ∈[:]
(F ℓ

8 )2 ≤ 1. (9.3)

We can compute the optimizer of this program by simply projecting the vector s∗8 onto the unit
sphere, concluding that

ŵ8 =
s∗8
‖s∗
8
‖2
. �

Step 2: This stakes function B∗ is nearly optimal. Next, using our previous distortion bounds,
we �nd that B∗ is nearly optimal across all stakes functions when paired with Plurality:

Lemma 9.5.3. dist
B∗ (Plurality) ≤ <2.

Proof. We will use the alternative de�nitions of ^-upper and ^-lower from Remark 9.3.5, where
max is replaced with range. Characterizing these ^ values, ^-upper(B∗) = 1, realized by the vector
u = 110<−1, and ^-lower(B∗) = 1/(< − 1), realized by the vector u = 1<−101. Using that
VPlurality = 1/< (Lemma 9.3.6), Theorem 9.3.4 gives us that distB∗ (Plurality) ≤ < · 1

1/(<−1) ≤
<2. �

Step 3: Bounding the distortion of the mechanism. Finally, we bound the distortion in
each election within the mechanism. The remaining issue to deal with is that although each
individual voter will spread their votes across elections in proportion to their stakes (Lemma 9.5.2),
if some voters have substantially higher total stakes across the : elections, the uniform budgets
across voters will under-count these voters’ stakes. It may seem that we are back where we
started—where uniform voting power fundamentally cannot account for stakes. However, unlike
before, we have another lever at our disposal: the design of our slate of : elections. Speci�cally, we
can choose this slate of elections such that all voters are a�ected to a relatively high degree by
at least one election. While we cannot hope for this approach to perfectly equalize voters’ total
stakes, it may bring them closer, e.g., within a factor of X . Then, per Theorem 9.4.1, all elections
in our mechanism will have distortion at most X<2.

Theorem 9.5.4. Fix a X ≥ 1 such that for all pairs of voters 8, 8′ ∈ [=], ‖s∗8 ‖2 / ‖s∗8′ ‖2 ≤ X . Then, for
all ℓ ∈ [:],

dist
B∗

* ℓ (Plurality) ≤ X<2.

Proof. Let U := max8∈[=] ‖s∗8 ‖2 be the maximum total stakes of any voter. Fix an ℓ ∈ [:]. Then, per
Lemma 9.5.2, for all 8 , and for some X8 ∈ [1, X], we have thatF∗ℓ8 = B∗(uℓ8 ) / ‖s∗8 ‖2 = X8 · B∗(uℓ8 )/U.
Since U is constant across voters, we get B∗-proportionality in election ℓ with respect to the mis-
estimate of 8’s stakes B̃∗(uℓ) = X8 · B∗(uℓ). This is the precondition of Theorem 9.4.1; using this
and Lemma 9.5.3,

dist
X,B∗

* ℓ (Plurality) ≤ X distB
∗

* ℓ (Plurality) ≤ X<2. �

137



9.6 Discussion

We concludewith an in-depth discussion of questions raised bymulti-issuemechanisms, followed
by opportunities for accounting for stakes in emerging democratic paradigms.

9.6.1 The multi-issue mechanism design space & connections to other mechanisms

While we focused on ranking-based voting, the same mechanistic approach we introduced for
multi-issue mechanisms could be used with essentially any election format: simply place multi-
ple elections on the same ballot, across which voters must trade o� a total allotment of voting
power. In fact, there is a known mechanism that roughly does this: storable votes [72], which
allows voters to save up votes over a sequence of elections and spend them on the later elections
they care about most. Like the mechanism above, storable votes is just one within a massive
design space, whose many levers we explore below. As we go, we point out a wealth of open
questions.

Slate of issues. As captured by X in our analysis above, the performance of a multi-issue mech-
anism relies on choosing a slate of issues that roughly balance voters’ total stakes. In some cases
this will not be hard: consider a case where we want to decide a design aspect of our public transit
systems, and want to ensure we su�ciently account for the interests of those who cannot a�ord
cars. We might choose our second issue to be where to �x potholes— a decision that will primar-

ily a�ect those who drive. In this case, voters who do/do not have cars will have high stakes in
opposite elections, getting closer to balanced total stakes than in either election alone.

However, this gets complicated quickly when we want to consider more than two groups of
stakeholders. For example, suppose there is a third group in our example above—people who
drive, but also live by candidate transit stops. These people may have high stakes in both decisions,
due to their potential to avoid pothole damage to their cars and their potential to be a�ected by
loud public transportation outside their house. To balance stakes across these voters too, we need
a third issue, which may in turn imbalance the stakes of the �rst two groups.

To state this question of issue design formally: Suppose there is a universe of potential elections
! and a set of voters [=], where for each election ℓ ∈ !, each voter 8 has stakes B (uℓ8 ). For any
given  ⊆ !, let s 8 := (B (uℓ8 ) |ℓ ∈  ). Then, for any given X ≥ 1, we want to know: what is the
smallest slate of elections  that ensures that for all 8, 8′ ∈ [=], ‖s∗8 ‖2 / ‖s∗8′ ‖2 ≤ X? As illustrated by
our analysis above, the precise stakes function and method of totaling stakes for which we want
to achieve this bound is mechanism-dependent.

Ballot format. In our paper, we assumed voters submit their preferences as complete rankings.
However, there are many other ballot formats that could reveal richer information about voters’
utilities. One promising candidate is the ballots used in Quadratic Voting (QV) [230], where a
voter has a budget of total voting power to allocate over the alternatives in a single election, and
they are charged quadratically per unit of weight they place on a given alternative. For example,
in an election over alternatives 0,1, 2 where each voter has 10 votes total, they could place 3 on
alternative 0, 1 on 1, and 0 on 2 to spend their total budget of 32 + 12 + 02 = 10.
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Notice that this is di�erent from how we use quadraticity in our mechanism: we charge voters
quadratically for power allocated toward a given election, while QV considers a single election
and charges voters for power allocated toward a single alternative. However, the quadraticity
works for the same reason, encouraging voters to spread their power over elections or alterna-
tives in proportion to their stakes or relative utilities, respectively. In summary, QV ballots— at
least under the (strong) assumptions made by Posner and Weyl [230]— allow the recovery of in-
formation about voters’ relative utilities (i.e., 8 likes 0 3 times as much as 1), while rankings lose
this information, thereby losing < distortion even when stakes are known. To design a multi-
issue mechansim using QV ballots, then, one must answer: how can we set up voting budgets to

recover stakes-proportionality when voters are charged quadratically per unit of votes for a single

alternative and weight toward a single election?

Designing new ballots will open up the possible space of voting rules— an enticing prospect,
given that with ranking-based ballots, our results show that the space of rules where stakes in-
formation is helpful is very limited.

Voter model. Ultimately, the success of a multi-issue mechanism depends on how voters will
behave within it. This depends on several things, including (1) voters’ beliefs about their chances
of pivotality across elections—whether they believe some elections are close whereas they have
no chance of swaying others, (2) how voters may strategize in misreporting their preferences,
and most importantly, (3) how voters’ preference intensities relate to both their ability and their
desire to vote in a given election. A more holistic mechanism design approach here would build
on the wealth of empirical evidence on these topics [99, 115].

Other kinds of trade-offs.

In a multi-issue mechanism, voters’ stakes are revealed in how they make trade-o�s between
voting power in election ℓ with voting power in a di�erent election. However, one could also
imagine designing a mechanism in which voters must trade o� voting power in election ℓ with
some other resource. One natural option, from amechanism design perspective, would be currency
(or something with similar external economic value). This is precisely the proposal of quadratic
voting, which in its theoretical conception requires voters to purchase votes withmoney, thereby
revealing voters’ stakes in how many votes they buy [230]. However, we emphasize that such
monetary mechanisms may not recover stakes at all — to do so, they require voters convert their
value for voting power to their value for money at the same rate, when in reality, less wealthy
voters may have higher marginal value for money, in which case they will purchase fewer votes
and their stakes will be underestimated.

9.6.2 Stakes in liqid and deliberative democracy

Our model of stakes functions applies in any voting model with latent utilities, and while we only
formally de�ne the reweighting of ranking-based ballots, our model can easily be extended to
study the impact of stakes-dependent reweighting under other ballot formats or decision mech-
anisms. One extension where studying stakes may especially be of interest is liquid democracy
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[154], where each voter receives one unit of voting power but may delegate it to others. Conceiv-
ably, voters might naturally delegate their votes to others in ways that at least partially depend
on stakes; in the extreme, one could imagine a pro-social society in which voters delegate their
votes to those with the highest stakes, out of a belief that they deserve the most in�uence. In
this case, we might not need to reweight votes explicitly, motivating an interesting question: if
voters delegate their votes in a way that accounts for others’ stakes, does the outcome have better

distortion?

One can also conceive of accounting for stakes in ways that go beyond asking who receives the
most voting power. For example, there is a growing body of work in computer science studying
sortition, the random process of selecting a “representative” body of citizens to deliberate and
make a collective policy recommendation on a given issue [130]. Although in practice “repre-
sentation” is typically designed to be proportional to population composition, one could instead
implement progressive representation, where representation targets for population groups are at
least in part determined by their stakes. In fact, this is already being tried: in a deliberative poll in
Australia on how to facilitate reconciliation between Indigenous and non-Indigenous groups, In-
digenous people— a very small fraction of the overall population, but a�ected by this decision to
an outsize degree—were intentionally over-represented in some deliberation groups [176]. More
generally, on the topic of representation in the deliberative context, the idea of accounting for
the interests of highly a�ected groups in how representation is decided is already being discussed
and advocated [176].
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10
Ongoing and Future Work

10.1 A Stakes-Based Analysis of�adratic Voting Ballots

Quadratic voting (QV) [107] has been increasing in popularity over the past �ve years, being used
in polling and decision-making around the world.1 Its popularity is due at least in part to its ap-
parent ability to circumvent impossibilities faced by most other popular voting mechanisms: QV
is marketed as an incentive-compatible voting system which achieves optimal utilitarian social
welfare with high probability as the number of voters becomes large.

At a high level, QV as proposed works as follows: each voter can purchase unlimited votes using
some currency. For reasons we will discuss, the key feature of this currency is that it has real
economic value outside the election. Each vote purchased can be for or against any alternative.
The core idea (and namesake) of QV is that a voter pays quadratically in the number of votes they
purchase for or against a given alternative; that is, to cast 3 votes for alternative 0 and 3 votes
against 1, a voter pays 32 + 32 = 18 units of currency; to cast 6 votes for 0 alone, a voter pays
62 = 36 units. After votes are cast, the total votes (positive and negative) for each alternative
are summed to yield a vote total, at which point a voting rule is applied to choose a winner.
Two di�erent voting rules have been studied in the QV literature: earlier work, which permitted
elections over only two alternatives, used deterministic majority voting to aggregate votes [184].
In more recent work, Eguia et al present a QV procedure that applies to < alternatives, which
uses a new, randomized aggregation mechanism in which an alternative wins with probability
exponential in the vote total [107]. We will focus here on the latter QV mechanism.

1For an overview of instances in which QV has been applied, see the the Quadratic Voting Wikipedia page:
https://en.wikipedia.org/wiki/Quadratic_voting.
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The feature of QV essential to its optimal social welfare and incentive compatibility is its quadratic
cost function. Conceptually, this quadraticity means that the derivative of the overall utility func-
tion voters are optimizing — describing their marginal bene�t from purchasing an additional vote
for a given alternative — is changing linearly in the cost of that vote. Thus, a voter’s utility-
maximizing strategy is to purchase a number of votes for each alternative that is approximately
“proportional”, in a loose sense, to their utility. This amounts to the mechanism getting almost
complete information about voters’ utilities, as revealed through the number of votes they pur-
chase for each alternative, thereby permitting the mechanism to achieve optimal social welfare.1

10.1.1 Stakes Information and Relative Utilities Information

First, we observe that for any stakes function B , a voter’s utility information u can be decomposed
into two types of information: their stakes B (u)—howmuch they care about the outcome overall—
and their relative utilities u/B (u)— i.e., how strongly they prefer each alternative relative to each
other alternative. If B is 1-homogeneous, we can perfectly recover 8’s utility vector from these two
types of information.

We now conjecture connections between these quantities to the behavior of QV. For the sake
of intuition, throughout this section we will use phrase “proportional to” loosely. Technically, it
re�ects a linear transformation of the utilities by an invertible matrix, rather than just multipli-
cation by a scalar as “proportional to” would typically suggest.

Conjectures:

• Stakes. When voters vote via QV ballots, stakes information is encoded in the total number
of votes each voter purchases. That is, voter 8 purchases a total number of votes propor-
tional to their stakes.

• Relative utilities. When voters vote via QV ballots, relative utility information is encoded
in how a voter spreads these total votes over alternatives. That is, the number of votes 8
casts for 0 is proportional to their utility for 0.

10.1.2 What information do we lose when QV assumptions do not hold?

We now study: which types of information are lost —and how is the social welfare consequently
impacted—under two practically-motivated ways in which QV may deviate from the assump-
tions made in Eguia et al’s theoretical model?

Assumption Deviation 1: What if voters don’t the have the same marginal utility per unit of

currency?

Intuitively, the cost of voting causes people’s stakes to be revealed through their behavior: be-
cause voting is costly, people who care less about the decision will purchase fewer votes, thereby

1Suppose, in contrast, the costs were linear in the number of votes: then the derivative of the objective with
respect to each alternative would be constant, and the voter would allocate all their votes to their favorite alternative,
giving the mechanism much less rich utility information.
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leading to something that looks like stakes-based representation among the votes cast. However,
that QV elicits voters’ stakes in this way relies on the assumption that all voters have the same

marginal value for a unit of the currency. Because any externally-valuable currency is essentially
money,1 this assumption seems unlikely to hold in practice: people with greater wealth will have
lower marginal value for currency, will purchase more votes per additional unit of stakes, and
the result will no longer be stakes-proportional.

We therefore instead suppose that voter 8 has idiosyncratic marginal utility per unit of currency
28 , and propose the following conjectures:

Conjectures:

– Stakes information is lost. Voter 8 will purchase a total number of votes (approximately)
proportional to their stakes divided by 28 , where 28 can be arbitrary and is unknown to the
mechanism.

– Relative utility information is retained. Voters will still spread the total votes they
purchase over the alternatives proportionally to their relative utilities.

– Distortion is unbounded. Without stakes information, the distortion can be unbounded
due to negative examples similar to those in Chapter 9.

Assumption Deviation 2: Uniform vote budgets.

Perhaps because of the practical issue discussed in Assumption Deviation 1, the implementation
of QV in practice deviates from the use of externally valuable currency, as studied in theory.
Instead of paying for potentially unlimited votes with externally valuable currency, in practice
voters may be given the same �xed budget of votes. While this a priori appears to solve the
unequal marginal values problem, it is still unclear whether this mechanism elicits stakes — after
all, it stands to reason that all voters, regardless of how much they care, will cast all their votes.

Supposing that all voters receive a divisible vote budget of �, we propose the following conjec-
tures:

Conjectures:

– Stakes information is lost. Voter 8 will purchase a total of � votes, regardless of their
stakes.

– Relative utility information is retained. Voters will still spread the total votes they
purchase over the alternatives proportionally to their relative utilities.

– Distortion is unbounded. Without stakes information, the distortion can be unbounded
due to negative examples similar to those in Chapter 9.

1If a currency that is not strictly monetary has societal value, it can (and will likely) be monetized in a market.
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10.1.3 Proposed Solution: QV within A Multi-Issue Mechanism

Among the vast space of possible multi-issue mechanisms, one instantiation that seems espe-
cially promising for getting constant distortion is one which uses QV ballots to elicit preferences
within each election. We hypothesize that the following intuition would hold: due to the multi-
issue nature of the mechanism, voters will spread their votes across elections according to some
reasonable stakes function, as was the case in Chapter 9. Thus, at the stage where voters decide
how many votes to cast in each election, stakes information is recovered—at least to the de-
gree that our slate of issues balances voters’ total stakes. Then, due to the quadraticity of the
ballots, voters will spread the votes they have allocated to any given election proportionally to
their relative utilities over alternatives in that election. Thus, at the stage where voters cast their
votes in each election, relative utilities information is recovered.

10.2 Implementing Stakes-Based Representation in Deliberative Town Halls

For the duration of this section, for consistency with the literature we will often use the term
“a�ected interests” interchangeably with stakes, referencing Archon Fung’s Theory of A�ected
Interests [140].

There are two main reasons why deliberative town halls (DTHs) are an excellent participatory
model in which to experiment with bringing stakes-based representation into practice.

• In the status quo, representativeness of any kind is not always ensured. Unlike citizens’ as-
semblies where it is standard to enforce descriptive representation, DTHs are often open
to anyone in the community.1 This has the bene�t of broadening participation, but a major
downside is that community members with more spare time and resources tend to be over-
represented with respect to attendance and speaking time. This status quo o�ers a clear
opportunity to improve representation by moving toward representation of people based
on the unique ways in which they are impacted by the issue at hand.

• DTHs are currently scaling up in an AI-enabled way. Researchers at UC Riverside, led by
Kevin Esterling, are in the process of building and testing Prytaneum, an online platform
that streamlines the process of running DTHs [15]. The existence of an online platform nat-
urally provides infrastructure for deploying surveys, advertising to potential participants,
balancing and guiding the conversation, and tracking which a�ected interests are being
discussed.

The task of implementing stakes-based representation in DTHs presents many experimental de-
sign choices and research questions. For example, “representation” can mean multiple things,
including who is actually in the room and who is given speaking time; we have the potential to
in�uence both. If we are to recruit participants based on a�ected interests, the question is how
to recruit participants in order to reach hard-to-reach groups who may be very a�ected, but less
predisposed to participating. If we are to moderate speaking time based on a�ected interests, we

1Especially in larger use-cases, DTH participants are sometimes recruited to be approximately descriptively
representative [178].
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may need to structure the conversationmore intentionally around how participants are a�ected—
a change which may itself have positive impacts on outcomes. On this note, another lever we can
pull is what impacts to measure: does improving stakes-based representation materially change...
the nature of the discussion? ...participants’ or elected o�cials’ perceptions of the usefulness
or legitimacy of the event? ...what participants’ or elected o�cials learn about others in their
community?

In order to pursue any of these lines of research, we �rst need a clear and practically-applicable
de�nition of who exactly quali�es as having an a�ected interest. In this future work section, we
approach this task by decomposing “a�ected interests” into types of a�ected interests that may
exist for any given political issue. We propose them only as a starting point, and do not claim
they are exhaustive. To ensure our de�nitions are concrete, we will apply them to a running
example as we go. This example — a decision about how to allocate funding to support mental
health services in k-12 schools — is based on an actual DTH that will be run in June 2024 using
Prytaneum.

De�ning types of a�ected interests in practical cases

We begin from the premise that the minimum requirement for an individual to have an “a�ected
interest” in a policy decision is that it is possible to articulate what that interest or stake is, i.e.,
how the individual is a�ected. In other words, one should be able to provide a reason for why
others should see the individual as having an interest that is a�ected. Here are some possible
reasons someone could be a�ected by a policy decision.

People with primary a�ected interests in a decision are those whose basic needs being met
(healthcare, shelter, food, physical and mental safety...) are impacted by that decision.

Example: K-12 students would be an example of a population that has primary af-
fected interests, as they are the people being served by mental health services.

Note that the degree of primary a�ected interests across K-12 students can vary sig-
ni�cantly depending on things like precarity does the student have access to mental
health services outside of school, or do they rely on school-provided mental health
services?

People with secondary a�ected interests in a decision are those who are impacted because
they care about the basic needs of someone who has primary a�ected interests.

Example: Parents of K-12 students would be an example of people with secondary
a�ected interests, because they care deeply about the well-being of their children.
They are a�ected because they meaningfully su�er when they see their children suf-
fer.

Note that parents could additionally have primary a�ected interests, because without
access to mental health services at their childrens school, they may have to sacri�ce
means of meeting basic needs to get their children mental health care elsewhere.
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People with professional a�ected interests in a decision are those whose professional respon-
sibility it is to attend to the basic needs of people with primary a�ected interests.

Example 1: Pediatricians are professionally responsible for ensuring that their pa-
tients are having their basic needs met.

Example 2: A school mental health provider will be professionally responsible for
enacting the policy to the best of their ability.

Note that pediatricians or school mental health providers may also have secondary
a�ected interests, as they may care deeply about the well-being of their patients.

People with group-based a�ected interests in a decision are those who have a sense of linked
fate with a group within whom some members may be primarily a�ected.

Example 1: Someone of a certain demographic group may care about the impact of
the decision on other members of their own demographic group.

Example 2: A teacher might identify as a union member, and the decision might have
an impact on the community of unionized teachers.

People with abstract, ideological, or conceptual a�ected interests in a decision are those
who have a categorical or principle-based concern with the decision, even if it does not impact
them personally.

Example 1: Someone who does not (and will never) have kids in k-12 school might
object on principle to the idea of increasing in-school services to support students in
the queer community.
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Part III

Deliberation, Public Spirit, and the

Quality of Democratic Outcomes
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11
Background

In an important sense, deliberativeminipublics are built around deliberation: a discussion between
constituents, usually informed by expert-derived information, about a political decision at hand.
In a deliberative minipublic, deliberation is theorized to serve a key purpose: to help participants
learn about and carefully weigh competing, evidence-based arguments before expressing their
opinions about what should be done.

Now, we interrogate a key anecdotal claim underlying the study and practice of deliberative
democracy: that deliberation leads to better democratic outcomes. We posit and investigate one
particular hypothesis as to why: that deliberation improves democratic outcomes by shifting

participants’ opinions toward outcomes that more strongly prioritize the good of their society, even

if it means deprioritizing their own interests. In fact, many practitioners and political scientists
had already identi�ed this “social consciousness” as a key condition cultivated by deliberation;
we call it public spirit after [276], but similar concepts go by many names (e.g., sociotropism,
collectivism).

In this line of work, we consider two main questions about public spirit: I. Does deliberation truly
cultivate public spirit? and II. If people are more public-spirited, are democratic outcomes guaran-

teed to be “better”? These questions target implications I and II in the diagram below, which, if
demonstrated, would together support the overall claim that deliberation, by cultivating public
spirit, improves democratic outcomes.

Deliberation
Implication I

==========⇒ Public Spirit
Implication II

===========⇒ Better Democratic Outcomes

The completed research in Part III, covered in Chapters 12 and 13, addresses Implication II. This
implication is most naturally studied in a theoretical model, where we can assume a practically-
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unobservable ground truth about outcomes’ relative social bene�ts, and then test whether greater
public spirit reliably leads to more socially-bene�cial outcomes. In Chapter 12, we capture public-
spirited voting behavior via a natural generalization of the standard voting model with latent
utilities. Recall from Part II that in the standard version of this model, voters rank alternatives
according to their utilities. In our generalization, we permit voters to weigh each alternative’s
utilitarian social welfare to an idiosyncratic degree in addition to their own utility when they rank
alternatives. We call the relative weight a voter places on the utilitarian social welfare their level
of public spirit.

In this model, in Chapter 12 we show that in most senses, increasing voters’ public spirit levels
does dramatically improves the welfare of voting outcomes. Notably, we �nd that public spirit
permits constant welfare loss in voting without restricting (or assuming the election designer has

knowledge of) voters’ latent utilities—a �rst, to our knowledge.

Chapter 12: Public Spirit: Voting Beyond Self Interest [134] In this chapter, we show
that the issue of unbounded distortion, as discussed in Part II, is mitigated by voters being
public-spirited: that is, when deciding how to rank alternatives, voters weigh the common
good in addition to their own interests. We �rst generalize the standard voting model to
capture this public-spirited voting behavior. In this model, we show that public-spirited vot-
ing can substantially— and in some senses, monotonically— reduce the distortion of several
voting rules. Notably, these results include the �nding that if voters are at all public-spirited,
some voting rules have constant distortion in the number of alternatives— a highly sought-
after result in the social choice literature. Further, we demonstrate that these bene�ts are
robust to adversarial conditions likely to exist in practice. Taken together, our results sug-
gest an implementable approach to improving the welfare outcomes of elections: democratic

deliberation, an already-mainstream practice that is believed to increase voters’ public spirit.

In Chapter 13, we then extend our model of public-spirited voting to the more general setting
of participatory budgeting (PB). We show that again, public spirit permits fundamental improve-
ments in welfare loss without structural restrictions on or knowledge of voters’ utilities — and
reveals a new voting rule that may make better use of public spirit in the PB setting.

Chapter 13: Extensions to Participatory Budgeting [43]. The paper begins by closing a
question about standard voting left open in Chapter 12: what is the best possible distortion
achievable by any ranking-based deterministic voting rule when voters are public-spirited?
We answer this question, giving a lower bound thatmatches the upper bound fromChapter 12
on the voting rule Copeland when< is large, and that for the voting rule Plurality when
< is small. For the the �rst time, we then extend these results to study what is possible with
randomized voting rules. We characterize the optimal distortion, giving a lower bound and
providing an optimal randomized rule to match.

Moving onto the strictly more general setting of PB, we study the public-spirited distortion of
various common PB ballot formats such as rankings by value, rankings by value for money,
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:-approvals, knapsack votes, and threshold approval votes. We prove that multiple of these
ballot formats achieve distortion linear in<, but unfortunately, none of these ballot formats
can break that linear barrier. We then design a novel and practical PB ballot format which,
we prove, achieves sublinear distortion in< (and even logarithmic, if voting over two rounds
is possible).

Chapter 14: Ongoing and Future Work.

The theory above suggests that public spirit can lead to far better democratic outcomes. Then,
the question is: does deliberation cultivate public spirit, and what does it look like? This
question targets Implication I, which we examine in our �rst stream of ongoing work. This
implication is best studied experimentally, as we are trying to understand what public spirit
looks like in real deliberative contexts. In designing these experiments, our theoretical public
spirit model is valuable, because it decomposes “public spirited” behavior into three outcome-
relevant components that can be measured experimentally: the extent to which deliberants
prioritize societal bene�t over their own; with what information deliberants evaluate alter-
natives’ “social bene�t”; and what notion of “social bene�t” deliberants actually care about
(e.g., some may be utilitarian, caring about total prosperity, while others may be egalitarian,
caring about minimizing inequality).

In this chapter, we also push the theoretical frontier of this line of work, discussing multiple
ways to go beyond one very strong assumption made by our public-spirited model: that at
the time of deliberation, there is one ground-truth policy that is best for society.
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12
Public Spirit: Voting Beyond Self Interest

Distortion Under Public-Spirited Voting [134]
Bailey Flanigan, Ariel D. Procaccia, & Sven Wang

EC 2023

12.1 Introduction

Consider an election with two alternatives, 0 and1; of the 100 voters, 50 prefer 0 to1 and 50 prefer
1 to 0. Since the preference pro�le is symmetric, let us assume that 0 is elected. Although their
rankings are symmetric, votersmay have highly asymmetric underlying intensities of preferences,
perhaps capturing that they are a�ected to di�ering degrees by the outcome of the election. We
capture these preference intensities with utilities, which can be interpreted as measuring the
value a voter gains from a given alternative. In this case, suppose the supporters of 0 are a�ected
similarly by the alternatives, having utility 1 for 0 and 0 for 1, whereas the admirers of 1 are, by
comparison, a�ected much more disparately by the alternatives, having utilities 0 for 0 and 100
for 1.

From a societal bene�t standpoint, 1 would have been the better choice, as it would yield sub-
stantially more utility to voters overall. This intuition is captured by the utilitarian social welfare,
de�ned as the sum of voters’ utilities for a given alternative: 0 (the winner) is severely suboptimal
in terms of this measure, its social welfare being 100 times lower than that of 1 (the alternative
with optimal social welfare). This ratio can be made arbitrarily large by, say, making the support-
ers of 0 arbitrarily una�ected by the decision.

The simple example above implies an alarming conclusion: that any deterministic rankings-based
voting procedure will, in some instances, choose an alternative that yields arbitrarily suboptimal
value for the population. Moreover, while this is just a theoretical example, what makes it patho-
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logical — that people can be a�ected to di�ering degrees by a given decision— is almost surely
a property of real elections, suggesting that such welfare loss could occur in practice. From a
technical standpoint, this welfare loss arises due to information lost between cardinal utilities
and ordinal preferences; this was �rst observed by [231], who quanti�ed this loss with the notion
of distortion. Assuming voters report rankings that are consistent with their underlying utilities,
the distortion of a voting rule is the worst-case (over latent utilities) ratio between the utilitar-
ian social welfare of the highest-welfare alternative and that of the elected alternative. By the
example above, then, all deterministic voting rules must have unbounded distortion.

A natural question, then, is: under what assumptions is the distortion bounded? The rich litera-
ture on distortion— overviewed in an excellent recent survey by [25]— has largely taken one of
two approaches to achieving bounded distortion. One line of research, originating from the work
of [231], assumes that each voter’s utilities sum to 1, thereby eliminating the possibility of voters
being a�ected by widely di�ering degrees by the decision. Another line of research, originating
from the work of [24], assumes that voters’ preferences are induced by distances in an underlying
metric space.

Both of these lines of work rely on assumptions that restrict voters’ possible latent utilities (or
analogously in some models, costs). However, it is not clear whether we can rely on such as-
sumptions to hold in practice. This is perhaps most directly illustrated by the fact that the core
problem in our example above cannot be ruled out as a potential feature of real-world elections:
the utilities are such that there is a minority group that is much more a�ected by the issue than
a majority group with decisive voting power. Moreover, it seems unlikely that we can promote

such conditions on the utilities, because voters’ utilities— how much they fundamentally gain
from a given election outcome—would likely arise from features that are di�cult to change with
simple interventions.

In this paper, we take a di�erent approach to attaining bounded distortion. This approach begins
from the realization that while underlying utilities like those in our example might unfortunately
be realistic, the behavioral model by which voters translate utilities into rankings might be too
pessimistic. The standard behavioral assumption made in the literature is that voters rank alter-
natives according to only the order of their own utilities. However, as many social scientists have
observed, this model is unrealistic in a way that can potentially help us: voters can be public-

spirited — that is, when they vote, they weigh not only how they themselves are impacted by
each alternative, but also each alternative impacts their society as a whole.1 This behavior of
balancing self and societal interest can be captured in a natural generalization of the standard
behavioral model of voters: instead of ranking alternatives according to only their own utilities,
a W-public spirited voter ranks alternatives according to values that place weight 1 − W on their
own utilities, and weightW on each alternative’s utilitiarian social welfare. It is then intuitive why
public spirited voting could help decrease the distortion: it will cause voters to more highly rank
higher-welfare alternatives, potentially increasing the social welfare of the election winner.

1Public-spirited behavior among voters has been demonstrated empirically [177, 290] and has long featured in
economic theories of how people make decisions [42, 173].
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While existing work suggests that voters are willing and able to be public-spirited, we need not
assume that these conditions are satis�ed by default; instead, we can intentionally cultivate them
within the democratic process. One promising innovation on this front that is currently gain-
ing momentum globally1 is democratic deliberation, summarized by [204] as dialogues in which
“people rely on reasons that speak to the needs or principles of everyone a�ected by the matter
at hand.” This description of deliberation already alludes to some of its key potential bene�ts,
which roughly correspond to promoting our conditions. For instance, deliberation is theorized
to lead to “citizens [being] more enlightened about their own and others’ needs and experi-
ences” [204]— akin to promoting more accurate estimates of alternatives’ welfares, and to “an
increased willingness to recognize community values and to compromise in the interest of the
common good” [175]— akin to promoting voters’ levels of public spirit. These theorized bene�ts
are supported by empirical evidence showing, for example, that deliberation can increase public-
spiritedness [276], lead to more egalitarian values [144], and increase empathy for members of
social outgroups [158].

This evidence suggests that public-spirited voting behavior can be cultivated (or may already ex-
ist) among voters. This motivates our research question, which, if answered a�rmatively, would
lead to an actionable approach to decreasing deterministic voting rules’ otherwise unbounded
distortion:

To what extent is public-spirited voting guaranteed to decrease the distortion, and for

which voting rules?
2

We aim to formally answer this question with the tools of social choice theory, as outlined in the
results and contributions below. In our analysis, we focus on deterministic voting rules, owing to
the several political hurdles to implementing randomized rules. We leave the study of randomized
rules in our model to future work.

12.1.1 Results and Contributions

Throughout the rest of the paper, we will often use PS to refer to the concept of public spirit.

Section 12.2: Amodel of public-spirited voters. A precursor to answering the question above
is formally modeling public-spirited voting behavior. Our model is a simple generalization of the
standard model: voter 8 has public spirit level W8 ∈ [0, 1], where higher W8 corresponds to more
public spirit. Then, voter 8 ranks alternatives in order of their PS-value for each alternative 0,

1Democratic deliberation is commonly implemented through deliberative polls or citizens’ assemblies, of which
hundreds have been run in the past few years [225]. Such processes have played a key role inmajor political decisions:
for example, citizens’ assemblies commissioned by Ireland’s national legislature recently led to amending the Irish
constitution on the issues of same-sex marriage and abortion [169].

2A natural question here is, if constituents can learn alternatives’ social welfares via, e.g., deliberation, why
can’t the election designer learn these values and directly select the highest-welfare alternative? One reason is that
the election designer imposing such “complete” public spirit could be perceived as undemocratic and illegitimate.
Underlying this point is the premise that in a democracy, it is voters’ prerogative to decide how strongly to account
for the social good, an interpretation which views deliberation as a process of clarifying for voters how much public
spirit their values dictate they should have.
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called E8 (0,$ ,* ). This value is a convex combination of their utility D8 (0) and 0’s social welfare
sw(0,* )— the sum of all voters’ utilities for 0, summarized in the utility matrix* :

E8 (0,$ ,* ) = (1 − W8)D8 (0) + W8 · sw(0,* )/=.

The standard behavioral model is then the special case of our model where W8 = 0 for all 8 .

Section 12.3: Distortion bounds for voting rules. We begin by proving our key lemma, which
upper bounds the extent to which the social welfare of an alternative 0 can exceed that of another
alternative 1 —a bound which is decreasing in the fraction of voters who rank 1 ahead of 0 in the
election, along with the minimum level of public spirit among voters, W<8= := min8 W8 . We then
use this result, plus other techniques, to give tight bounds on the distortion of several popular
voting rules. For consistency with the distortion literature, we consider these bounds asymptotic
in<, the number of alternatives in the election. The main takeaway from these bounds is that
when voters have any public spirit (i.e., if W<8= > 0), several voting rules’ distortion drops from
unbounded to linear (for the rules Borda, Plurality, Maximin) or even constant (for the rules
Copeland and Slater). We emphasize that our bounds asymptotically— and for some settings
ofW<8= , non-asymptotically— either match or beat those possible in both aforementioned models,
and moreover do so without any assumptions on voters’ underlying utilities.

Section 12.4: PS-Monotonicity. The upper and lower bounds we give in Section 12.3 are de-
creasing in W<8= , hinting at a weak form of PS-monotonicity— i.e., that the distortion decreases
as voters’ public spirit increases. Although it seems intuitive that this property should hold, we
show that, while some notions of PS-monotonicity are guaranteed, other natural notions do not
hold. Working from weaker to stronger notions, we show �rst that if public spirit increases uni-
formly among voters, then the worst-case distortion of all voting rules decreases monotonically.
Given that in reality voters’ W8 levels are unlikely to be uniform, we then show that for Copeland
and Plurality, the worst-case distortion decreases even if voters’ public spirit is increased het-
erogeneously. This implies that cultivating greater public spirit among any voters to any extent is
guaranteed to decrease the worst-case distortion over possible utility pro�les — already a useful
guarantee, since we cannot observe voters’ initial levels of public spirit. Given that utilities are
also unobservable, one might hope that PS-monotonicity holds for all �xed utility matrices and
initial levels of public spirit. We soundly resolve this question by showing this is too much to
hope for: applying classic axiomatic impossibilities by Muller and Satterthwaite, we prove that
no weakly unanimous, non-dictatorial voting rule exhibits PS-monotonicity on an instance-by-
instance basis.

Section 12.5: Robustness of distortion bounds. There are two key weaknesses, from a prac-
tical perspective, of our upper bounds in the Section 12.3. First, they are vacuous if W<8= = 0, and
second, they a priori rely on voters using accurate and internally-consistent inputs to ourmodel of
PS-values, W8 , D8 (0), and sw(0,* ). We provide robustness results that address both of these gaps.
First, we show that our upper bounds degrade by only a constant factor if up to some fraction of
voters has W8 = 0; for Copeland this fraction is quite large—up to 1/2 of voters. Second, we gen-
eralize our model to allow voters to deviate arbitrarily from correct and/or internally-consistent
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values of any model input W8 , D8 (0), and sw(0,* ). We then extend our distortion upper bounds to
this generalized model, showing that our original bounds are robust to all such deviations: that is,
our upper bounds degrade smoothly, by constant factors, in the magnitude of these deviations.

12.1.2 Related Work

Distortion under existing models. As discussed in the introduction, the main body of work
achieving bounded distortion does so by assuming regularity conditions on voters’ utilities. Un-
der the assumption that voters’ preferences can be embedded in a metric space, the well-known
rule Copeland has distortion of 5 and there are deterministic voting rules that achieve the best
possible distortion of 3 [147, 180]. Under the assumption that each voter’s utilities sum to 1, all
deterministic rules have distortion at least Ω(<2), where < is the number of alternatives; the
popular rule Plurality achieves a matching upper bound [67]. More distantly, there is some
work that achieves bounded distortion by assuming additional access to some cardinal informa-
tion about voters’ utilities (see Sec. 5 of [25] for an overview). In contrast to these lines of existing
work, our distortion bounds require neither regularity conditions on voters’ utilities, nor any in-
formation from voters beyond their rankings. Nonetheless, we can match or improve upon the
metric model’s upper bound of 5 on Copeland’s distortion when W<8= ≥ (

√
5 − 1)/2 ≈ 0.61, and

we can show that Plurality, along with several other deterministic rules, have linear or sub-
linear distortion, improving upon the distortion achievable in the unit sum model by at least a
factor of< (Table 13.2).

Related behavioral models. Our model of public-spirited voting is a direct analog of a model
used in the study of congestion games by [79], who in turn attribute the idea to Ledyard [186,
p. 154]. Additionally, similar ideas appear in literature exploring altruistic behavior by agents in
decision-making systems: for instance, [189] model agents as giving some linear weight U > 0 to
the interests of another entity as a form of altruism. We remark, however, that altruism in this
work is distinct from public spirit, because it may involve accounting for only the interests of
population subgroups or speci�c agents for strategic reasons, rather than arising from the motive
of bene�ting society at large. Other related models include Fehr and Schmidt’s model of how
economic agents incorporate inequality into their utilities [116], Austen-Smith and Feddersen’s
model of how voters may be inequality-averse [28], and political economy models of sociotropic
voters, who weigh the economic interests of their country over their own [179]. [39] even aim to
estimate from data how sociotropic voters are, corresponding to estimating W8 parameters in our
model.

12.2 Model

12.2.1 Public-Spirited Voting Behavior

There are = voters and< alternatives. We refer to the set of voters as [=] and alternatives as [<].
By default, individual voters and alternatives are denoted 8 ∈ [=] and individual alternatives are
denoted 0 ∈ [<].
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Public spirit (PS) We represent voters’ levels of public spirit with the PS-vector $ ∈ [0, 1]= ,
whose 8-th entry W8 is voter 8’s level of public spirit (higher W8 means more public spirit). Our
upper bounds will be in terms of the minimum level of public spirit possessed by any voter,
W<8= := min8∈[=] W8 . We will also sometimes restrict our consideration to uniform PS-vectors $ =

W1, in which all voters have the same public spirit level W ∈ [0, 1].

Utilities. We de�ne a utility matrix * ∈ [0, 1]=×< such that its (8, 0)-th entry is 8’s utility for 0,
called D8 (0). Let sw(0,* ) denote the utilitarian social welfare of 0 based on* , i.e.,

sw(0,* ) :=
∑
8∈[=]

D8 (0).

When* is clear, wemay denote the highest-welfare alternative in* as0∗ := argmax0∈[<] sw(0,* ).

PS-values. Together, a pair $ , * imply a PS-values matrix + ($ ,* ), containing the values for
alternatives by which voters decide how to vote. A voter 8’s PS-value for 0 weighs their own
utility D8 (0) to a (1 − W8) extent, and 0’s social welfare sw(0,* ) to a W8 extent:

E8 (0,$ ,* ) = (1 − W8)D8 (0) + W8sw(0,* )/=. (12.1)

Note that sw(0,* )/= is interpreted as voters’ average utility for 0. Per this equation, the mathe-
matical interpretation of a voter’s public spirit level is the weight they place on the average utility
versus their own in this convex combination.

Rankings. A ranking c is a permutation of [<]. Voter 8 expresses their preferences over alter-
natives as a strict, complete ranking c8 . We denote that 8 ranks 0 ahead of 1 by 0 �c8 1. We say
that c8 ( 9) is the alternative that voter 8 ranks in the 9-th position.

Preference pro�les. A preference pro�le 0 is the =-tuple of all = voters’ rankings: 0 := (c8 :
8 ∈ [=]). We let Π be the set of all preference pro�les. To compare how two alternatives’ relative
positions compare within a pro�le 0 , we denote the number of voters in 0 who prefer 0 to 1 as
|{8 : 0 �c8 1}|. A pairwise election between 0 and1 in 0 compares |{8 : 0 �c8 1}| and |{8 : 1 �c8 0}|;
we say that 0 pairwise-dominates 1 if |{8 : 0 �c8 1}| > =/2, and we add weakly if the inequality
is weak. We say that 0 is a Condorcet winner in 0 if 0 pairwise-dominates all 1 ≠ 0 (note: not all
pro�les have a Condorcet winner).

Translating instances to preference pro�les. In any instance ($ ,* ), its associated PS-values
matrix+ ($ ,* ) naturally implies a preference pro�le in which alternatives are ordered in decreas-
ing order of PS-value; formally, for any voter 8 ,

E8 (0,$ ,* ) > E8 (1,$ ,* ) =⇒ 0 �c8 1. (12.2)

We do not specify the ranking implied when E8 (0,$ ,* ) = E8 (1,$ ,* ); rather, we allow there to
be multiple pro�les consistent with the same + ($ ,* ). We let Π+ ($ ,* ) be the set of all pro�les
consistent with + ($ ,* ).
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12.2.2 Voting Rules

A preference pro�le maps to a winning alternative via a (resolute) voting rule 5 : Π → [<]. Then,
5 (0) = 0 means that on pro�le 0 , rule 5 chooses 0 as the winner. We study two main classes of
voting rules, uncovered set rules and positional scoring rules, de�ned below.1 All of our examples
will be strict, so we need not specify tie-breaking methods.

Uncovered Set Rules. The uncovered set of a given pro�le 0 is the set of all alternatives 0
such that there is no 1 that pairwise-dominates both 0 and all alternatives pairwise-dominated
by 0. Uncovered set rules are all voting rules whose winner lies in the uncovered set, for all
pro�les. From this class, we primarily study the well-known rule Copeland, where the score
of an alternative is the number of alternatives it pairwise-dominates, and an alternative with
maximum score is the Copeland winner. We also study Slater, which selects the ranking that
is inconsistent with the outcomes of as few pairwise elections as possible.

Positional Scoring Rules. Positional scoring rules are de�ned by a score vector s of weakly de-
creasing scores B1 ≥ · · · ≥ B< , where (without loss of generality) B1 = 1 and B< = 0. The winner by
positional scoring rule 5s is the alternative that receives themost points, where0 receives B 9 points
for every voter that ranks it 9th. We will study three standard positional scoring rules, Plurality
with score vector s = (1, 0, . . . , 0), Bordawith score vector s = (1, 1 − 1/<−1, 1 − 2/<−1, . . . , 1/<−1, 0),
and Veto with score vector s = (1, . . . , 1, 0). We will also de�ne a new positional scoring rule
Piecewise in Section 12.3, which will achieve better distortion than any of the previous three.

Other rules and axioms. We characterize one additional rule, Maximin, which chooses the
alternative with the lowest minimax score, de�ned for 0 as the magnitude of 0’s most severe
pairwise domination, i.e., max0̃≠0 |{8 : 0̃ �c8 0}|. We also sometimes discuss the axiom Condorcet

consistency, where 5 is Condorcet consistent if it selects the Condorcet winner in all pro�les
in which one exists. Of the rules we study, Copeland, Slater, and Maximin are Condorcet
consistent.

12.2.3 Distortion of Voting Rules

The distortion of a voting rule 5 in an instance ($ ,* ), called dist(5 ,$ ,* ), is the ratio between
the respective welfares of the highest-welfare alternative 0∗ and the winner 5 (0). As is standard,
we use distortion, called dist(5 ,$ ), to mean the worst-case such ratio over all * (here, for a �xed
$ ).

dist(5 ,$ ,* ) := sup
0∈Π+ ($ ,* )

sw(0∗,* )
sw(5 (0),* ) , and dist(5 ,$ ) := sup

* ∈R=×<≥0
dist(5 ,$ ,* ).

1The rules we study are standard, de�ned in, e.g., [84] (Slater) and [286] (all others).
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12.3 Distortion Bounds for Voting Rules

We now analyze the distortion of several voting rules under the condition thatW<8= , the minimum
level of public spirit among voters, is positive. First, in Section 12.3.1, we prove our key lemma,
which founds our analysis of speci�c voting rules and gives intuition for why public spirit should
limit the distortion. In Section 12.3.2, we will apply this lemma in various forms to upper bound
the distortion of several standard voting rules. Section 12.3.3 contains our lower bounds for these
rules, which match in almost all cases. We summarize these bounds in Table 13.2. Most include
exact constants; the few asymptotic results we give are asymptotic in <, as is standard in the
distortion literature.

Rule Upper bounds Lower bounds

Uncovered set rules (2IW<8=
+ 1)2 (Thm. 12.3.3)

Copeland (2IW<8=
+ 1)2 (2IW + 1)2 (Prop. 12.3.9)

Slater (2IW<8=
+ 1)2 (2IW + 1)2 (Prop. 12.3.10)

Positional scoring rules Ω(
√
<) (Thm. 12.3.11)

Plurality <IW<8=
+ 1 (Prop. 12.3.5) <IW + 1 (Prop. 12.3.15)

Borda <IW<8=
+ 1 (Prop. 12.3.6) (< − 1)IW + 1 (Prop. 12.3.13)

Veto in�nite (Prop. 12.3.14)
Piecewise $ (<2/3) (Prop. 12.3.7) Ω(

√
<)

Maximin <IW<8=
+ 1 (Prop. 12.3.8) (< − 1)IW + 1 (Prop. 12.3.16)

Table 12.1: Bounds on the distortion of voting rules. Upper bounds hold for all $ ; lower bounds
hold for all uniform $ = W1. As shorthand, we let IW = (1−W)/W . Gray-text results are inherited
from more general results.

12.3.1 Key Lemma

Lemma 12.3.1. For all* , all 0,1 ∈ [<] with sw(0,* ) > 0, all$ withW<8= > 0, and all 0 ∈ Π+ ($ ,* ) ,

sw(1,* )
sw(0,* ) ≤

1 − W<8=
W<8=

· =

|{8 : 0 �c8 1}|
+ 1.

Conceptually, Lemma 12.3.1 states that for arbitrary alternatives 0,1, the more voters who rank
0 ahead of 1, the less the welfare of 1 can exceed that of 0 (assuming W<8= > 0). The intuition
for the proof, below, is that any voter 8 who ranks 0 �c8 1 must have utility for 0 that exceeds
1 su�ciently to close the countervailing gap sw(1,* ) − sw(0,* ), which is weighted by W8 in 8’s
PS-value. This fact implies a lower bound on 8’s utility for 0, which grows in W8 ; summing over
all voters 8 , we get a lower bound on sw(0,* ) relative to sw(1,* ), which grows stronger in W<8= .
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Proof. Fix a * , $ , and let 0 ∈ Π+ ($ ,* ) . Let #0�1 be the set of voters in 0 who rank 0 ahead of 1,
and let 8 ∈ #0�1 . The fact that 0 �c8 1 means that E8 (0,$ ,* ) ≥ E8 (1,$ ,* ), implying that

(1 − W8)D8 (0) + W8
sw(0,* )

=
= E8 (0,$ ,* ) ≥ E8 (1,$ ,* ) = (1 − W8)D8 (1) + W8

sw(1,* )
=

≥ W8
sw(1,* )

=
.

Now, dividing both sides by W8 and then adding up both sides over all 8 ∈ #0�1 :∑
8∈#0�1

(
1 − W8
W8

D8 (0) +
sw(0,* )

=

)
≥

∑
8∈#0�1

sw(1,* )
=

.

Using that 1−W8
W8

is decreasing in W8 and making simpli�cations,

=⇒ |#0�1 |/= · sw(0,* ) +
1 − W<8=
W<8=

∑
8∈#0�1

D8 (0) ≥ |#0�1 |/= · sw(1,* ).

Finally, we use that
∑
8∈#0�1 D8 (0) ≤ sw(0,* ) to conclude the claim. �

In the next sections, we will apply this lemma to upper bound the distortion of various voting
rules. Although we apply it in di�erent ways across voting rules, the key idea is always the
same: as long as enough voters rank the election winner 0′ ahead of the highest-welfare alter-
native 0∗ (or an alternative with social welfare comparable to 0∗), then sw(0∗,* ) cannot exceed
sw(0′,* ) by more than a bounded amount, bounding the distortion. Intuitively, for “reason-
able” voting rules, the number of voters who prefer 0′ to some such alternative should be lower-
bounded—otherwise, 0′ would not be the winner. We will formalize this intuition as we prove
our upper bounds.

12.3.2 Upper bounds

Uncovered Set Rules

Wewill now show that, whenW<8= > 0, all uncovered set rules—most notably includingCopeland
and Slater—have constant distortion. To prove this, we apply Lemma 12.3.1 in two di�erent
ways: in the �rst case, we use it to directly compare 0′, the winner, and 0∗. In the second and
more interesting case, we apply the lemma twice, �rst to compare 0′ with some intermediate al-
ternative 0, and then to compare 0 with 0∗. The choice of this intermediate alternative 0 arises
from a known1 property of the uncovered set:

Lemma 12.3.2 ([205]). If 0′ is in the uncovered set then for all 0 ≠ 0′, 0′ either weakly pairwise-

dominates 0, or there exists some 0′′ such that 0′ weakly pairwise-dominates 0′′ and 0′′ weakly
pairwise-dominates 0.

1Our framing slightly adapts the classic result [205] to permit pairwise ties. We remark that this result was also
used to prove the constant distortion of uncovered set rules under metric preferences [24, Thm. 5].
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Theorem 12.3.3. For all uncovered set rules 5 and all $ with W<8= > 0,

dist(5 ,$ ) ≤
(
2(1 − W<8=)

W<8=
+ 1

)2
.

Proof. Let 5 be an uncovered set rule, and �x arbitrary * , $ and 0 ∈ Π+ ($ ,* ) . Let 0∗ be the
highest-welfare alternative in* , and let 0′ be the winner by 5 , i.e., 0′ = 5 (0). Then, we know 0′

is in the uncovered set. If 0′ weakly pairwise-dominates 0∗, then |{8 : 0′ �c8 0∗}|/= ≥ 1/2 and by
applying Lemma 12.3.1 with 0′ = 0, 0∗ = 1, we immediately obtain an upper bound stronger than
the claim. Else, by Lemma 12.3.2, there exists some 0 such that 0′ weakly pairwise-dominates
0, and 0 weakly pairwise-dominates 0∗. Fix this 0. Then, by Lemma 12.3.1, both sw(0∗)/sw(0) and
sw(0)/sw(0′) are at most 2(1−W<8=)/W<8= + 1. Multiplying these inequalities implies the claim. �

Positional scoring rules

In giving upper bounds on the distortion of positional scoring rules, we will establish an upper
bound on the distortion of all voting rules — one which will turn out to be tight for not only key
positional scoring rules, but also some Condorcet consistent rules (e.g.,Maximin, as analyzed in
Section 12.3.2). This upper bound will be a corollary of Lemma 12.3.1, derived by using the lemma
to compare the social welfares of 0′ directly with 0∗.

Formally, we deduce this corollary by plugging in 0 = 5 (0) (for any 0 ∈ Π+ ($ ,* )) and 1 = 0∗.
Then, for a given 5 , we need only to bound the quantity |{8 : 5 (0) �c8 0∗}|/=. We thus de�ne
the parameter ^ 5 (<), the minimum fraction of voters who must rank the winner 5 (0) ahead of
any other given alternative, in any pro�le 0 .

^ 5 (<) := min
0

min
0≠5 (0)

|{8 : 5 (0) �c8 0}|/=. (12.3)

Although this quantity is often function of<, for brevity we will write it as ^ 5 . For a �xed 5 , we
then have by de�nition that |{8 : 5 (0) �c8 0∗}|/= ≥ ^ 5 for all instances ($ ,* ) and corresponding
0 ∈ Π+ ($ ,* ) , as needed. From this we conclude the following corollary of Lemma 12.3.1, which
we emphasize is an upper bound on the distortion of any voting rule 5 :

Corollary 12.3.4 (Universal Upper Bound). For all rules 5 and all $ with W<8= > 0,

dist(5 ,$ ) ≤ 1 − W<8=
W<8= · ^ 5

+ 1.

To apply this corollary to upper bound the distortion of a speci�c 5 , we must simply lower bound
^ 5 . One useful observation, before doing so, is that for all 5 , ^ 5 ≤ 1/<; thus, Corollary 12.3.4 can
be used to prove linear distortion at best.1

1To see why ^5 ≤ 1/< for all 5 , divide [=] into < equal-sized groups �1, ...,�< . Then, for each group �: ,
suppose the voters have rankings : � : + 1 � ... � < � 1 � ...: − 1. In this case, every alternative’s worst pairwise
defeat is to be ranked behind another alternative by an (< − 1)/< voters. Hence, ^5 ≤ 1/<.
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Now, we prove upper bounds on the standard positional scoring rules Borda and Plurality by
characterizing their respective ^ 5 values and applying Corollary 12.3.4:

Proposition 12.3.5. ^Plurality = 1/<, so for all $ with W<8= > 0, dist(Plurality,$ ) ≤ < 1−W<8=

W<8=
+ 1.

Proposition 12.3.6. ^Borda = 1/<, so for all $ with W<8= > 0, dist(Borda,$ ) ≤ < 1−W<8=

W<8=
+ 1.

For Veto, we cannot apply the same approach, because^Veto is 1/= — i.e., there exists an instance
in which just one voter must rank the winner ahead of any other alternative— and thus the upper
bound given by Corollary 12.3.4 is unbounded in =. It will turn out that, as Corollary 12.3.4 would
suggest, the distortion of Veto is truly unbounded, shown via an instance in which the Veto-
winner is almost never ranked ahead of the highest-welfare alternative.

So far, we have not found a positional scoring rule that has sub-linear distortion, prompting the
question: does one exist? We answer this question in the a�rmative with Piecewise, a voting
rule we newly de�ne. It can be seen as a hybrid of Plurality and Borda, de�ned by a score
vector with<2/3 non-zero entries: s =

(
1, 1 − 1/<2/3, 1 − 2/<2/3, . . . , 1/<2/3, 0, . . . , 0

)
. We now show

that, when W<8= is any nonzero constant, Piecewise su�ers at most $ (<2/3) distortion. Here, we
depart from the approach of directly applying Corollary 12.3.4 (as we must in order to obtain a
sub-linear bound).

Proposition 12.3.7. For all $ with (�xed) W<8= > 0, dist(Piecewise,$ ) ∈ $ (<2/3).

The proof of this proposition, found in Appendix G.1.4, again applies our key lemma, but in a
more intricate fashion than in the preceding bounds. Similarly to the proof of Theorem 12.3.3,
the argument considers one case comparing the Piecewise winner 0′ directly to 0∗, and another
comparing0′ to some intermediate alternative(s) other than0∗. The �rst case is invoked in pro�les
where at least half of voters rank0∗ in the �rst<2/3 positions; then, normalizing0∗’s social welfare
to be constant, 0′ must have social welfare Ω(<−2/3) in order to win the election. In the second
case, over half the voters must rank 0∗ in the last< −<2/3 positions, implying that each of these
voters must rank at least<2/3 many alternatives ahead of 0∗. In order for 0′ to win the election
over these other alternatives, 0′ must again have social welfare Ω(<−2/3).

Maximin

Given that ^ 5 is not meaningfully lower-bounded for Copeland and Slater (indeed, per the
instance giving Proposition 12.3.9, it can be arbitrarily small), one might think that this is the
case for all Condorcet consistent rules. On the contrary, here we show that ^Maximin = 1/<, and
thus Corollary 12.3.4 gives a useful distortion upper bound forMaximin— in fact, it will turn out
that this upper bound is tight. The proof of this proposition is found in Appendix G.1.5.

Proposition 12.3.8. ^Maximin = 1/<, so for all $ with W<8= > 0, dist(Maximin,$ ) ≤ < 1−W<8=

W<8=
+ 1.
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12.3.3 Lower bounds

We give matching lower bounds for all voting rules analyzed in Section 12.3.2 except Piecewise.
The lower bound we give for Piecewise is Ω(

√
<) (thus leaving an asymptotic gap of <1/6) is

implied by Theorem 12.3.11, which shows that evenwhen voters are public-spirited, all positional
scoring rules must su�er at least Ω(

√
<) distortion. The proofs of all our lower bounds proceed

by �xing an arbitrary uniform PS-vector $ = W1, and then constructing a utility matrix* whose
entries depend on W , in which the election winner 0′ has far lower social welfare than 0∗.

Uncovered set rules

Proposition 12.3.9. For all uniform $ = W1, W ∈ [0, 1], dist(Copeland,$ ) ≥
(
2(1−W)
W
+ 1

)2
.

Proposition 12.3.10. For all uniform $ = W1, W ∈ [0, 1], dist(Slater,$ ) ≥
(
2(1−W)
W
+ 1

)2
.

The proofs of these propositions are found in Appendices G.1.6 and G.1.7, respectively. Both use
the same instance, constructed so that 0′ pairwise-dominates every alternative except 0∗, and 0∗
pairwise-dominates all but two alternatives, 01, 02 ≠ 0′. (We use two such alternatives here only
to ensure that 0∗ is not contained in the uncovered set, and thus the winner 0′ is unique. Proving
the bound requires reasoning about 01 or 02; here, we explain the bound via 01.) Normalizing the
average utility of 0∗ to be 1, observe that because at least half of voters rank 01 ahead of 0∗, 01 must
have average utility at least 2(1−W)/W . In turn, because at least half of voters rank 0′ ahead of 01,
0′ must have average utility of at least (2(1−W)/W)2. Then, the * that minimizes 0′’s social welfare
relative to 0∗ while also realizing the above pro�le makes all these inequalities tight, giving the
lower bound.

Positional scoring rules

First, in Theorem 12.3.11, we show that whenever W<8= < 1, all positional scoring rules must
have distortion at least Ω(

√
<). Note that this result implies a fundamental separation between

positional scoring rules and uncovered set rules, which per Theorem 12.3.3 have at most constant
distortion for �xed values of W<8= > 0.

Theorem 12.3.11. For all positional scoring rules 5 and uniform $ = W1 with (�xed) W ∈ [0, 1),

dist(5 ,$ ) ∈ Ω(
√
<).

The key observation underlying this lower bound, proven formally in Appendix G.1.8, is that
in any positional scoring rule’s score vector, there exists some position C amongst the �rst

√
<

entries in the score vector— that is, C ∈ {1, . . . ,
√
<}—such that the gap BC − BC+1 between the

scores for positions C and C + 1 is at most 1/
√
< (this is simply by averaging). Then, for �xed W

and corresponding PS-vector $ = W1, one can use this fact to construct an instance ($ ,* ) which
realizes order-

√
< distortion. The construction works as follows: Divide voters into two groups,

a small group of size $ (1/
√
<), and the remainder of the electorate. Let all voters in the larger
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group rank 0∗ in the C-th position and the winner 0′ in the (C + 1)-st position. In the small group,
0′ is ranked �rst and 0∗ is ranked last, thereby compensating for 0′’s ‘scoring’ de�cit in the larger
group and allowing it to win the election. Because 0′ is so rarely ranked ahead of 0∗ in this pro�le,
it can be realized by a utility matrix in which 0∗ has constant average utility, while all voters have
utility $ (1/

√
<) for the winner 0′, resulting in a distortion of order $ (

√
<).

It turns out that many positional scoring rules have distortion far exceeding Ω(
√
<) distortion;

this is true, for instance, for all voting rules with a small value of Δ5 := B1 − B2, the gap in scores
of the �rst two ranking positions:

Lemma 12.3.12. For all positional scoring rules 5 and uniform $ = W1, W ∈ [0, 1], dist(5 ,$ ) ≥
1−W
WΔ5
+ 1.

In the proof of this proposition, found in Appendix G.1.9, we again construct an instance in which
as few voters as possible rank the winner 0′ ahead of 0∗. To illustrate why smaller Δ5 permits
fewer voters to rank 0′ ahead of 0∗, we will describe this construction. Divide voters into two
groups: voters in the �rst group rank 0′ �rst and 0∗ last, and voters in the second group rank 0∗
and 0′ adjacently over the �rst two positions. In order for 0′ to win this election, the �rst group
must contain at least Δ5 voters; moreover, only these voters must have non-negligible utility for
0′. Note that the use of the gap over the �rst two positions is essential: if we placed 0∗ � 0′ over
a smaller adjacent gap elsewhere, 0′ would be ranked below several other alternatives by many
voters, and we could no longer guarantee that it wins the election.

We can now directly apply Lemma 12.3.12 to lower bound the distortion of Borda and Veto,
using that ΔBorda = 1/(< − 1) and ΔVeto = 0.

Proposition 12.3.13. For all uniform $ = W1, W ∈ [0, 1], dist(Borda,$ ) ≥ (< − 1) · 1−W
W
+ 1.

Proposition 12.3.14. For all uniform $ = W1, W ∈ [0, 1], dist(Veto,$ ) = ∞.

For Plurality, ΔPlurality = 1, so Lemma 12.3.12 does not give a useful lower bound. However, we
can get a tight lower bound using a similar construction: We let a 1/< + n fraction of voters rank
0′ �rst, and all other voters rank 0′ last. Only the former group of voters must have non-negligible
utility for 0′, while all other alternatives can receive non-negligible utility from the much larger
second group of voters, yielding linear distortion. The full proof is found in Appendix G.1.10.

Proposition 12.3.15. For all uniform $ = W1, W ∈ [0, 1], dist(Plurality,$ ) ≥ < · 1−W
W
+ 1.

Maximin

Finally, we show that our upper bound on Maximin’s distortion was, indeed, tight.

Proposition 12.3.16. For all uniform $ = W1, dist(Maximin,$ ) ≥ (< − 1) · 1−W
W
+ 1.

The formal proof of this proposition is found in Appendix G.1.11. The construction is somewhat
involved, but it intuitively works as follows: voters are divided into two groups. In Group 1,
containing a 1/(< − 1) fraction of voters, the election winner 0′ is ranked �rst; in Group 2,
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composed of the remaining voters, 0′ is ranked last. The relative ranking of alternatives other
than 0′ is ‘cyclical’ — that is, all voters order them identically, up to a shift. There are<−1 possible
such shifts, and each shifted ranking occupies a 1/(< − 1) fraction of the voters. In this pro�le,
0′’s greatest pairwise defeat is by (<− 2)/(<− 1) fraction of voters, and the cyclical treatment of
all other alternatives ensures that each su�ers a pairwise defeat at least as severe as 0′, making
0′ the winner. This pro�le can be realized with a utility matrix in which all alternatives besides
0′ get utility 1 from all voters in Group 2, while 0′ only gets utility from Group 1.

12.4 PS-monotonicity

Given that increasing voters’ public spirit can only promote higher-welfare alternatives in their
rankings, it seems natural that distortion should decrease as voters’ public spirit increases. We re-
fer to this general property of voting rules— decreasing distortionwith increasing public spirit — as
public-spirit monotonicity (for short, PS-monotonicity). Our upper (and matching lower) bounds
from Section 12.3 already hint at a weak form of PS-monotonicity, as they are decreasing in W<8= .

In this section, we pursue stronger forms of PS-monotonicity, which ask for monotonicity not just
in W<8= , but in voters’ individual levels of public spirit. To this end, we de�ne and analyze three
notions of PS-monotonicity, from weakest to strongest. We �rst study uniform PS-monotonicity,
which requires that distortion decreases as public spirit increases uniformly across voters. We
�nd that this property holds for all voting rules— i.e., it is a fundamental property of the model.
We next study a much stronger notion, nonuniform PS-monotonicity, which requires that the
distortion decreases as voters’ public spirit increases heterogeneously. We show that this notion
holds for all voting rules when< ≤ 3, and it holds for arbitrary< for Copeland and Plurality.

These �rst two notions examine monotonicity in the worst-case distortion. Even more optimisti-
cally, one might hope that public spirit would decrease the distortion on an instance-wise basis:
i.e. in a �xed instance, if all voters’ public spirit levels weakly increase, the welfare of the chosen
outcome should only increase. We refer to this property as instance-wise PS-monotonicity. Unfor-
tunately, we prove via classical voting axioms that no reasonable voting rule satis�es this notion:
speci�cally, anyweakly unanimous voting rule that satis�es instance-wise PS-monotonicity must
be a dictatorship.

12.4.1 Uniform PS-monotonicity

De�nition 12.4.1 (Uniform PS-monotonicity). A voting rule 5 exhibits uniform PS-monotonicity

if, for all W ′ ≥ W and associated uniform $ = W1,$ ′ = W ′1, dist(5 ,$ ′) ≤ dist(5 ,$ ).

Theorem 12.4.2. All voting rules are uniform PS-monotonic.

Proof. We will prove this theorem by showing that, given arbitrary * and Wbig ≥ Wsmall, we can
�nd *̃ such that dist(5 , Wbig,* ) = dist(5 , Wsmall, *̃ ): roughly, under a lower level of public spirit,
there exists a utility matrix with distortion at least as high. In fact, this distortion-preserving *̃
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will simply be* with some carefully-chosen amount of public spirit applied:

*̃ := + (W∗,* ), where W∗ :=
Wbig − Wsmall

1 − Wsmall
. (12.4)

We begin by considering two = ×< matrices: * (which we can interpret as a matrix) and,* ,
whose columns contain the column sums of* :

,* =


sw(01,* )/= . . . sw(0<* )/=

...
...

sw(01,* )/= . . . sw(0<,* )/=

 .
We think of applying an arbitrary W to* as a linear transformation on* , where varying W from 0
to 1 interpolates between thematrices* and,* : applyingW = 0 returns* , applyingW = 1 returns
,* , and there is an in�nite sequence of matrices in between ranging over W ∈ [0, 1], where the
W-th matrix is equal to a convex combination of* and,* — that is, + (W,* ) = (1 − W)* + W,* .

A key property of this transformation is that it is column-sum-preserving, so all matrices in this
sequence have the same column sums; that is, for all W ∈ [0, 1],,+ (W,* ) =,* . We use this fact to
make the general observation that applying public spirit W1 and then W2 in succession is the same
as applying W1 + W2 − W1W2 public spirit all at once:

Lemma 12.4.3. For arbitrary* and arbitrary W1, W2 ∈ [0, 1],+ (W2,+ (W1,* )) = + (W1+W2−W1W2,* ).

Proof of Lemma 12.4.3:

+ (W2,+ (W1,* )) = W2,+ (W1,* ) + (1 − W2)+ (W1,* )
= W2,+ (W1,* ) + (1 − W2)

(
(1 − W1)* + W1,*

)
= W2,* + (1 − W2) ((1 − W1)* + W1,* )
= (1 − W1) (1 − W2)* +

(
W1 + W2 − W1W2

)
,*

= + (W1 + W2 − W1W2,* ) �

Because applying public spirit is column-sum-preserving, we can set *̃ to any matrix + (W,* ),
W ∈ [0, 1] and be certain that *̃ will give the same welfares to all alternatives as * . We will
carefully choose thisW = W∗ according to Lemma 12.4.3: W∗ = W1,Wsmall = W2, andWbig = W1+W2−W1W2,
which means setting W∗ as in Equation (12.4). This setting of W∗ then ensures that the rankings
are preserved:

+ (Wsmall,+ (W∗,* )) = + (Wbig,* ) =⇒ Π+ (Wsmall,*̃ ) = Π+ (Wbig,* ) .

Thus, across (* ,Wbig) and (*̃ , Wsmall), the rankings (and therefore the winner) and social welfares
are identical. The distortion must then be the same across the instances, proving the claim. �
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12.4.2 Nonuniform PS-monotonicity

Here, we de�ne the ordering of vectors in the standard way: $ ′ ≥ $ i� W ′8 ≥ W8 for all 8 ∈ [=].

De�nition 12.4.4 (NonuniformPS-monotonicity). Avoting rule 5 exhibits nonuniform PS-monotonicity

if for all $ ,$ ′ where $ ′ ≥ $ , dist(5 ,$ ′) ≤ dist(5 ,$ ).

First, we show that nonuniform PS-monotonicity holds for all voting rules when< ≤ 3.

Proposition 12.4.5. If< ≤ 3, then all voting rules exhibit nonuniform monotonicity.

We defer the proof of this proposition to Appendix G.2.1, as it is fairly involved. The main intu-
ition behind the proof is as follows: If* is a utility matrix, $ is some PS-vector and $̃ arises from
lowering an entry in $ , then we can explicitly construct another utility matrix *̃ such that the
pro�le(s) implied by ($ ,* ) and ($̃ , *̃ ) are identical (i.e., Π+ ($ ,* ) = Π+ ($̃ ,*̃ )), and the social wel-
fares of all alternatives are preserved (i.e., sw(0,* ) = sw(0, *̃ ) for all 0). Across these instances,
the election winner, and thus the distortion, must be the same.

The construction used to show Proposition 12.4.5 is already considerably complicated when< =

3; proving the claim for all (or a broad class of) voting rules when< ≥ 4 remains an interesting
open problem. However, we do a�rmatively resolve this question for two speci�c voting rules,
showing that Copeland and Plurality both satisfy nonuniform PS-monotonicity for arbitrary
<.

Proposition 12.4.6. Copeland is nonuniform PS-monotonic.

Proposition 12.4.7. Plurality is nonuniform PS-monotonic.

These propositions are proven in Appendices G.2.2 and G.2.3, respectively. Although the con-
structions used to analyzeCopeland and Plurality are di�erent, both re�ect the argument from
Proposition 12.4.5: given * ,$ , $̃ where $̃ ≤ $ , we construct a *̃ such that the election winner
and welfares are preserved instances. Note that these arguments can be simpler than the proof
of Proposition 12.4.5 because, given that we are not reasoning about all voting rules, preserv-
ing these features across instances does not necessitate preserving the full preference pro�le. As
such, in the analysis of Copeland, *̃ just preserves the relevant aspects of the uncovered set; in
the analysis of Plurality, *̃ just preserves the �rst-ranked alternatives.

12.4.3 Instance-wise PS-Monotonicity

De�nition 12.4.8 (Instance-wise PS-monotonicity). A voting rule 5 is instance-wise PS-monotonic

i�, for all* and all $ ,$ ′ where $ ′ ≥ $ , dist(5 ,$ ′,* ) ≤ dist(5 ,$ ,* ).

Unfortunately, Theorem 12.4.11 shows that no reasonable— i.e.,weakly unanimous (De�nition 12.4.9)
and non-dictatorial (De�nition 12.4.10) — voting rule satis�es this property. Although the proof is
involved, the intuition is simple: consider three alternatives in order of decreasing welfare, 0,1, 2 .
Suppose 0 wins initially, but after increasing voters’ public spirit, all voters promote 1 over 2
but no other relative rankings change. For any monotonic and otherwise reasonable voting rule,
1 —whose welfare is lower than 0’s —must in some cases be able to become the winner.
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De�nition 12.4.9 (weakly unanimous). A voting rule 5 is weakly unanimous i� for every pro�le

0 , if there is a pair of alternatives 0,1 such that 0 �c8 1 for all voters 8 , then 5 (0) ≠ 0.

De�nition 12.4.10 (dictatorship). Voter 8 is a dictator with respect to 5 if 5 always selects 8s top

choice: for every pro�le 0 , 5 (0) = 0 i� for all 0′ ≠ 0, 0 �c8 0′. 5 is a dictatorship if it has a dictator.

Theorem 12.4.11. If < ≥ 3 and 5 is weakly unanimous and instance-wise monotonic, 5 is a

dictatorship.

We prove Theorem 12.4.11 at the end of this subsection by showing that instance-speci�c PS-
montonicity implies an increasingly strong series of voting axioms. We build up this system of
axiomatic implications until they meet the preconditions of a known result by [208] implying
that 5 is a dictatorship. Below, we step through each of these axiomatic implications, de�ning
the relevant axioms as we go.

First, Lemmas 12.4.13 and 12.4.15 (proven in Appendix G.2.4 and Appendix G.2.5) show that for all
weakly unanimous 5 , instance-wise PS-monotonicity implies monotonicity (De�nition 12.4.12),
the standard voting axiom, and swap invariance (De�nition 12.4.14), which we newly de�ne.

De�nition 12.4.12 (monotonic). A voting rule rule 5 is monotonic i�, for every pro�le 0 such that

5 (0) = 0, and for every 8 ∈ [=], if 0 ′ is identical to 0 except that in ranking c ′8 , 0 is promoted (with

one adjacent swap) compared in c8 , then 5 (0 ′) = 0.

Lemma 12.4.13. If 5 is weakly unanimous and instance-wise PS-monotonic, then it is monotonic.

De�nition 12.4.14 (swap invariant). A voting rule 5 satis�es swap invariance i�, for every pro�le

0 such that 5 (0) = 0, every 8 ∈ [=], and every pair of alternatives 1, 2 ∈ [<] where 1, 2 ≠ 0, if 0 ′
is identical to 0 except 1 and 2 are adjacently swapped in c ′8 , then 5 (0 ′) = 0.

Lemma 12.4.15. If 5 weakly unanimous and monotonic, then if 5 is instance-wise PS-monotonic,

it must also be swap-invariant.

Next, Lemma 12.4.17 (proven in Appendix G.2.6) shows that together, monotonicity and swap in-
variance imply a stronger notion ofmonotonicity known asMaskinmonotonicity (De�nition 12.4.16).

De�nition 12.4.16 (Maskin-monotonic). A voting rule 5 is Maskin-monotonic i�, for every pref-

erence pro�le 0 such that 5 (0) = 0, if 0 ′ is another pro�le such that 0 �c ′
8
1 whenever 0 �c8 1 for

every voter 8 and every alternative 1, then 5 (0 ′) = 0.

Lemma 12.4.17. If 5 is monotonic and swap-invariant, then it is Maskin-monotonic.

Finally, we apply Theorem 12.4.18, a known result by Muller and Satterthwaite, which shows that
any voting rules that is weakly unanimous and Maskin-monotonic must also be a dictatorship.

Theorem 12.4.18 ([208]). When< ≥ 3, if 5 is weakly unanimous and Maskin-monotonic, it is also

dictatorial.

We prove Theorem 12.4.11 by applying these lemmas in sequence.
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Proof of Theorem 12.4.11.

5 is weakly unanimous and instance-wise PS-monotonic =⇒ 5 is monotonic (Lemma 12.4.13)
5 is weakly unanimous, monotonic, and instance-wise PS-monotonic

=⇒ 5 is swap-invariant (Lemma 12.4.15)
5 is monotonic and swap-invariant =⇒ 5 is Maskin-monotonic (Lemma 12.4.17)
5 is weakly unanimous and instance-wise PS-monotonic

=⇒ 5 is weakly unanimous and Maskin-monotonic

=⇒ 5 is a dictatorship. (Theorem 12.4.18)

�

12.5 Robustness of Distortion Bounds

So far, we have considered the distortion of voting rules under two ideal conditions, which we
will now relax: (a) W<8= , the minimum public spirit level, is bounded away from zero, and (b)
voters act according to precise and internally-consistent values of the model inputs D8 (0), W8 , and
sw(0,* ). Wewill show that the distortion is asymptotically maintained— and degrades smoothly
by constant factors— as we relax these conditions (up to an extent, for (a)).

When proving robustness to violation of (a), we essentially work within our model; to study
deviations from (b), we meaningfully generalize our model to encompass a variety of errors. Our
arguments for both types of robustness follow the same structure, paralleling the main upper
bound results from Sections 12.3.1 and 12.3.2 in the robust setting. In particular, for both (a) and
(b), we �rst prove a “robust” version of Lemma 12.3.1, and then deduce corresponding “robust”
distortion upper bounds via the same arguments used to deduce our original upper bounds from
Lemma 12.3.1.

12.5.1 Robustness to a Non-Public-Spirited Contingent

Here, we show that our upper bounds from Section 12.3 continue to hold up to constants as long
as the number of non-public-spirited voters 8 , i.e. with W8 = 0, is not too large. We begin by
proving a “robust” version of Lemma 12.3.1, with respect to this form of robustness:

Lemma 12.5.1. Let * be any utility matrix, and let $ be such that W<8= > 0. Then, for any 2 < 1,
any alternatives 1, 0 with sw(0,* ) > 0 and any $̃ which arises from setting the public spirit of at

most any 2 · |{0 �c8 1}| voters in $ to zero, it holds that

sw(1,* )
sw(0,* ) ≤

1 − W<8=
W<8=

· =

|{8 : 0 �c8 1}|(1 − 2)
+ 1.

Proof. Let us denote the set of voters who both have at least W<8= public spirit and rank 0 ahead
of 1 by #̃0�1 := |{8 : 0 �c8 1 and W8 ≥ W<8=}|. Then, we can follow the same arguments as in the
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proof of Lemma 12.3.1 with #̃0�1 in place of #0�1 to obtain the inequality

|#̃0�1 |
=

sw(0,* ) + 1 − W<8=
W<8=

sw(0,* ) ≥ |#̃0�1 |
=

sw(1,* ).

Dividing both sides by sw(0,* ) · |#̃0�1 |/= yields

sw(1,* )
sw(0,* ) ≤

1 − W<8=
W<8=

=

|#̃0�1 |
+ 1.

By assumption, |#̃0�1 | ≥ (1 − 2) |{8 : 0 �c8 1}|, and the claim follows. �

Then, since ^ 5 lower bounds the fraction of agents who must rank ahead the winner (which we
think of as 0 in the lemma above) ahead of the maximum welfare alternative (which we think
of as 1), Lemma 12.5.1 immediately implies the following corollary, as Lemma 12.3.1 implied
Corollary 12.3.4.

Corollary 12.5.2. Let 5 be any voting rule, and let $ with W<8= > 0. Then, for any 2 < 1 and any

$̃ created by setting the public spirit of at most 2^ 5 · = many voters in $ to zero,

dist(5 , $̃ ) ≤ 1 − W<8=
W<8= (1 − 2)^ 5

+ 1.

Similarly, for Uncovered Set Rules, Lemma 12.5.1 implies the following corollary (analogously to
Lemma 12.3.1 implying Theorem 12.3.3).

Corollary 12.5.3. Let 5 be an uncovered set rule, and let $ with W<8= > 0. Then, for any 2 < 1/2
and for any $̃ created by setting the public spirit of a 2-fraction of voters in $ to zero,

dist(5 , $̃ ) ≤
( 1 − W<8=
W<8= (1/2 − 2)

+ 1
)2
.

12.5.2 Robustness to inaccurate or internally-inconsistent voter behavior

Our model assumes that voters know (or can come to know) their own utilities and the respec-
tive welfares of all alternatives, to which they then uniformly apply some level of public spirit.
However, voters almost certainly do not maintain precise internal values of W8 andD8 (0), sw(0,* )
for all 0, and then vote by tabulating their PS-values. In fact, it is dubious whether a voter, if
asked, could even assign useful numeric values to these quantities. As a result, the best we can
probably hope for in practice is that voters have some internal sense of these quantities, which
may be subject to errors, biases, and internal inconsistencies.

This motivates our extension of our upper bounds to the case where voters may deviate from our
model with respect to any input to Equation (12.1). First, we allow voters to misestimate their util-
ities, and likewise the social welfares, by some bounded multiplicative error. Since we can always

169



rescale utilities by a multiplicative factor without changing the voting outcome or the distortion,
we can without loss of generality only consider the case where voters overestimate these quanti-
ties. Second, voters may apply di�erent levels of public spirit to di�erent alternatives. These are
not “errors”, per se, because voters’ levels of public spirit do not factor into the utilitiarian social
welfare (our benchmark) and thus do not necessarily have a ground-truth value. These devia-
tions can rather be seen as internal inconsistencies— or even natural behaviors—where voters
are partial to the nature of certain alternatives’ social bene�t over that of others.

To formalize these errors, we assume voter 8 applies multiplicative errors X8 (0) ≥ 1 to their
utility for 0 and [8 (0) ≥ 1 to the social welfare of 0. We de�ne X∗ = max8∈[=],0∈[<] X8 (0) and
[∗ = max8∈[=],0∈[<] [8 (0) as the maximum such errors across all voters and alternatives, and we
let % ∈ [1, X∗]=×<, ( ∈ [1, [∗]=×< be the matrices of these errors across voters and alterna-
tives. We also assume 8 applies public spirit level W8 (0) to each alternative 0, and we let the
PS-matrix Γ ∈ [0, 1]=×< be the matrix of these W over all voters and alternatives. We now let
W<8= = min8∈[=],0∈[<] W8 (0) be the minimum level of public spirit in Γ.

Incorporating these deviations, voter 8’s e�ective PS-value is then

Ẽ8 (0, Γ,* , %,() := (1 − W8 (0)) · X8 (0)D8 (0) + W8 (0) · [8 (0)sw(0,* )/=.

Correspondingly, we let +̃ (Γ,* , %,() be the matrix of all voters’ e�ective PS-values. Finally, we
de�ne distortion under such errors, bounded above by X∗, [∗ respectively, as

dist
X∗,[∗ (5 , Γ) := sup

* ∈R=×<≥0 , %∈[1,X∗]=×<, (∈[1,[∗]=×<
sup

0∈Π
+̃ (Γ,* ,%,()

sw(0∗,* )
sw(5 (0),* )

A priori, it seems that the distortion of a voting rule might not be at all robust to such errors,
because even a minimal deviation could cause a pivotal switch in two alternatives, changing
the winner and causing a jump in distortion. Surprisingly, however, we �nd that we can give
distortion upper bounds on any voting rule that increase smoothly in X∗ and incur merely an
additive term of [∗/W<8= . At a high level, this holds because Lemma 12.3.1 must still upper-bound
the ratio of the estimated social welfares of the winner and 0∗, which in turn bounds the ratio of
the true welfares, given that the estimates are not too far o�. We formalize this intuition below
in a generalized “robust” version of Lemma 12.3.1 that incorporates these errors.

Lemma 12.5.4. Fix utility matrix * , X∗, [∗, errors % ∈ [1, X∗]=×< and ( ∈ [1, [∗]=×< , and a PS-

matrix Γ with W<8= > 0. Then, for any alternatives 0, 1 with sw(0,* ) > 0 and any 0 ∈ Π+̃ (Γ,* ,%,() ,

sw(1,* )
sw(0,* ) ≤

X∗ · (1 − W<8=)
W<8=

· =

|{8 : 0 �c8 1}|
+ [∗

W<8=

Proof. We take the same approach as in the proof of Lemma 12.3.1, this time accounting for all

170



deviations. For any voter 8 ranking 0 � 1, and thus having Ẽ8 (0, Γ,* , %,() ≥ Ẽ8 (1, Γ,* , %,(),

(1 − W8 (0)) · X∗D8 (0) + W8 (0)
[∗sw(0,* )

=
≥ (1 − W8 (0)) · X8 (0)D8 (0) + W8 (0) · [8 (0)

sw(0,* )
=

≥ (1 − W8 (1)) · X8 (1)D8 (1) + W8 (1) · [8 (1)
sw(1,* )

=

≥ W8 (1)
sw(1,* )

=
.

Then, following through the same rearrangements as in the proof Lemma 12.3.1 and summing
over #0�1 (shorthand for {8 : 0 �c8 1}), we conclude the proof:

[∗ · sw(0,* ) |#0�1 |
=

W8 (0)
W8 (1)

+ X∗ · 1 − W8 (0)
W8 (1)

sw(0,* ) ≥ |#0�1 |
=

sw(1,* )

=⇒ sw(1,* )
sw(0,* ) ≤ X

∗ · 1 − W8 (0)
W8 (1)

=

|#0�1 |
+ [∗ · W8 (0)

W8 (1)
≤ X

∗(1 − W<8=)
W<8=

=

|#0�1 |
+ [∗

W<8=
.

�

Now, we conclude the robust versions of our original distortion upper bounds. Lemma 12.5.4
implies Corollary 12.5.5 just as Lemma 12.3.1 implied Corollary 12.3.4. Similarly, Lemma 12.5.4
implies Corollary 12.5.6 just as Lemma 12.3.1 implied Theorem 12.3.3.

Corollary 12.5.5. For all voting rules 5 , all X∗, [∗ ≥ 1 and PS-matrices Γ ∈ [0, 1]=×< with W<8= > 0,

distX
∗,[∗ (5 , Γ) ≤ X

∗(1 − W<8=)
W<8= ^ 5

+ [∗

W<8=
.

Corollary 12.5.6. For all uncovered set rules 5 , all X∗, [∗ ≥ 1 and PS-matrices Γ ∈ [0, 1]=×< with

W<8= > 0,
distX

∗,[∗ (5 , Γ) ≤
(2X∗(1 − W<8=)

W<8=
+ [∗

W<8=

)2
.

A remark about tightness. Most of the upper bounds derived from Lemma 12.3.1 were tight for
constant PS-vectors $ = W1 (Section 12.3.3). Thus, one may wonder whether the upper bounds
in this subsection are likewise tight for constant PS-matrices. This question merits formal theo-
retical treatment, because one must construct a separate lower bound for each voting rule, as in
Section 12.3.3. However it does seem that tightness should hold via the following simple construc-
tion: let 0′ be the election winner. Then, construct a pro�le in which, for all voters 8 , X8 (0′) = X∗
and [8 (0′) = [∗ and X8 (0) = [8 (0) = 1 for all other 0 ≠ 0′. Intuitively, this construction allows
0′ to win the election with the smallest true utility possible, and should yield lower bounds cor-
responding to those in Section 12.3.3 as follows: if a lower bound on the standard model is, for
some functions ℎ,6, of the form ℎ(6(<) · (1−W)/W +1), then it should be ℎ(6(<) ·X∗(1−W)/W +[∗)
in the generalized model.
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12.6 Discussion

A key contribution of our work is to establish cultivating voters’ public spirit as a new approach to
increasing the welfare of democratic decision-making— an approach which can be operational-
ized via publicly-palatable interventions like deliberation. In the introduction, we discussed why
increasing the welfare of voting outcomes is a pressing goal; however, regardless of how pressing
one believes this goal to be, our results suggest that in many senses, interventions that promote
public spirited voting can only help.

Of course, these results arise from a theoretical model, so their practical implications depend on
how our model may capture— or fail to capture— reality. On this note, our robustness results
in Section 12.5.2 cover a wide range of plausible behavioral deviations: they allow voters to,
e.g., assess their utilities on di�erent scales, overestimate their own utilities compared to others’,
underestimate the interests of certain groups due to biases, apply di�erent levels of public spirit to
di�erent alternatives, or evenmore coarsely, just maintain a ranking over alternatives rather than
any sense of these quantities (this corresponds to arbitrary errors in utilities and social welfares).
Our results in Section 12.5.1 also allow for participants who exhibit no public spirit; however,
a key issue we sidestep is the case where some participants not only lack public spirit, but are
actually adversarial to the process. We address this in part 2 of the future work below.

12.6.1 Future work

In addition to the theoretical directions identi�ed below, we remark that our work motivates
further experiments studying how voters’ public spirit changes over the course of deliberation.
In turn, with a more detailed understanding of the structure of voters’ deviations from our model,
one can get more �ne-grained robustness bounds than we achieve in Section 12.5.2.

1 Identifying the optimal deterministic voting rule. Although we exactly characterize the
distortion of several popular deterministic voting rules, this work leaves open: ‘what is the
welfare-optimal deterministic voting rule when voters are public-spirited?’ More precisely, ob-
serve that our lower bound on Plurality’s distortion (Proposition 12.3.15) can be directly ex-
tended to prove that any deterministic voting rule must su�er distortion at least 2(1 − W)/W + 1
when $ = W1.1 It is not clear whether this lower bound is tight, however, because no voting rule
we study has distortion matching this bound. A natural extension of this work, then, would be
to prove a tight lower bound on the distortion all deterministic voting rules under public-spirited
voting, and �nd a voting rule whose distortion matches this bound.

2 Strategic voters among public spirited voters. As always, in our setting there is the poten-
tial for manipulation—perhaps more so here because some voters are prioritizing the collective
rather than acting in rational self-interest. The possibility of some voters being strategic opens

1Let 5 be any deterministic voting rule, and consider the instance used to prove Proposition 12.3.15 with n = 0
and< = 2. Let the two alternatives be 0,1, corresponding to the utilities of groups (A) and (B) in the instance). Then,
exactly half of agents rank 0 � 1 and half rank 1 � 0. Since 0 and 1 are symmetric from the perspective of 5 , wlog
let 5 choose 0. This gives distortion exactly 2(1 − W)/W + 1.
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several questions, such as: ‘Does public spirit among most voters make the voting process more
or less robust to a few manipulators?’ and ’Given that the presence of strategic voters might pose
a risk to others, how might voters who would otherwise intend to be public-spirited respond?’

3 Su�cient conditions for (approximate) instance-wise monotonicity. While in many re-
spects, our results suggest that increased public spirit is bene�cial, Theorem 12.4.11 shows an ex-
tremely fundamental impossibility: that in general, public spirit may not help on an instance-by-
instance basis. This begs the question: canwe establish su�cient conditions on instances— ideally
which are roughly detectable in practice—under whichwe can be certain that increasing the pub-
lic spirit will improve outcomes? Moreover, even if we cannot hope for exact monotonicity, can
we show approximate notions, e.g., in which the social welfare increases up to bounded �uctua-
tions?

4 Extensions to other notions of social welfare. In this paper, we assume that public-spirited
voters determine how positively an alternative impacts society according to its utilitarian social
welfare. However, voters might just as easily take an egalitarian perspective, thus quantifying an
alternative’s social welfare by how it a�ects the person it bene�ts the least. Even further, there
is no guarantee that public spirited voters apply the same priorities when assessing the social
welfare. These points open questions such as, if voters are public-spirited but quantify the social

good via di�erent objectives, does public spirit still increase the welfare of the outcome?

5 Other collective decision mechanisms. Our results identify public-spirited voting behavior
as a powerful, practically-motivated beyond-worst-case assumption. We have demonstrated this
speci�cally for deterministic voting mechanisms where voters express preferences as complete
rankings. However, there aremany other well-studied collective decisionmechanisms— e.g., ran-
domized voting rules, approval voting, multi-winner elections, liquid democracy, participatory
budgeting— that could potentially bene�t from public spirit, too. To initiate the study of public
spirit in other mechanisms, we remark that all the aforementioned mechanisms can be analyzed
in the same utilitarian social welfare framework: one needs only to specify a model of how vot-
ers translate their underlying utilities into ballot responses— analogous to our Equations (12.1)
and (12.2) — that allows voters to weigh their own interests against the common good.
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13
Extensions to Participatory Budgeting

The Distortion of Public-Spirited Participatory Budgeting [43]
Mark Bedaywi, Bailey Flanigan, Mohamad Lati�an, & Nisarg Shah

submitted 2024

13.1 Introduction

Governments at all scales regularly face the question: With a limited budget, which public-good

projects — e.g., building bike paths or installing streetlamps— should they fund? To make such deci-
sions democratically, governments are increasingly using participatory budgeting (PB), in which
constituents vote onwhich projects theywould like to see funded. In PB, the government supplies
a budget � and a list of< potential projects 0 ∈ {1, . . . ,<} with corresponding costs 21, . . . , 2< .
Voters submit their preferences via ballots, and then these ballots are aggregated via an aggrega-

tion rule to select a set of projects to be funded, whose total cost must be at most �. PB is now
used all over the world to decide allocations of public funds1 [89, 225, 275].

When designing the PB process described above, one goal that many consider important is en-
suring that the ultimate allocation of funds has high societal bene�t. As have many others (e.g.,
Benadè et al. [45]), we formalize the “societal bene�t” of an allocation by its utilitarian social

welfare: the total utility it gives to all voters combined. In using this measurement, we adopt the
standard model of latent additive utilities: each voter 8 has utility D8 (0) ∈ R≥0 for each project 0,
and their total utility for a set of projects ( being funded is D8 (() =

∑
0∈( D8 (0). Then, the social

welfare of ( is equal to sw(() = ∑
8∈# D8 (().

If voters’ utilities were observable, choosing the maximum-welfare allocation would amount to
1See https://en.wikipedia.org/wiki/List_of_participatory_budgeting_votes for a list of use cases.
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solving the knapsack problem. However, in practice voters’ preferences can only be elicited more
coarsely through ballots. For example, popular ballot formats in PB include rankings by value,
where voters are asked to rank the individual projects, or :-approval votes, where voters are
asked to approve their favorite : alternatives. It is not hard to see that such ballot formats lose
far too much information about voters’ utilities to allow deterministic selection of a high-welfare
solution: suppose there are two projects, 0 and 1, both costing � so we must simply choose one
or the other to fund. If half the population has utilities 1, 0 for 0,1 and the other half has utilities
0, 1000 for 0,1 (so the welfare of 1 is 1000 times that of 0). Although 1 has far higher social
welfare, any ordinal ballot format where voters only compare sets of alternatives will produce
symmetric ballots, leading to any deterministic aggregation rule—i.e., any deterministic mapping
from = ballots to an allocation funds—to choose (without loss of generality) 0; the best thing we
can do here is to randomize uniformly over the two options.

This example illustrates a prohibitive impossibility: in the worst case, any deterministic aggre-
gation rule over any ordinal PB ballot format will select an outcome with arbitrarily sub-optimal
social welfare, simply because these PB ballot formats do not contain enough information about
voters’ cardinal preferences. Formally, this sub-optimality is captured with the distortion: the
worst-case (over possible latent utilities) ratio of the best possible social welfare that of the out-
come. Existing work sidesteps this impossibility by assuming that each voter’s utilities are re-
stricted to add up to 1 [45]. Although this permits bounded distortion in theory, it remains unclear
whether these bounds apply in practice: For example, this assumption may not hold in the likely
case that the public goods will more greatly impact lower-income constituents.

Fortunately, recent work by Flanigan et al. [134] o�ers a source of hope: under unrestricted
utilities, they achieve low distortion in single-winner elections by leveraging the idea that voters
may be public-spirited: when casting their ballots, voters consider others’ interests in addition
to their own. While it is not clear that such behavior would be reliably present in the wild, as
Flanigan et al point out, research suggests that public spirit can be cultivated via democratic
deliberation — a practice that is already commonplace in PB elections [89, 225]. The possibility of
cultivating public spirit among PB participants motivates our main research question:

Question: If voters are public-spirited, do there exist ballot formats and associated

aggregation rules that achieve small distortion, without any restrictions on voters’ util-

ities?

An a�rmative answer to this question would suggest a practicable approach—democratic delib-
eration— to achieving higher-welfare outcomes in PB elections. In the process of pursuing this
question, we close an open question for the single-winner voting setting left open by Flanigan
et al. [134], and introduce a new ballot format which makes better use of voters’ public spirit to
break an important distortion barrier in the PB context. We overview these contributions below.

13.1.1 Results and contributions.

We study the distortion of PB with public-spirited participants by adopting Flanigan et al. [134]’s
model of public-spirited voting, extending it as needed to new ballot formats. In this model, each
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voter 8 evaluates each alternative 0 not just according to her her own utility D8 (0), but by her
public-spirited (PS) value: the convex combination of her utility for 0 and its social welfare. This
convex combination is weighted by her public spirit level W8 ∈ [0, 1], where higher W8 means she
more strongly weighs the social welfare. As in Flanigan et al. [134], our distortion bounds, sum-
marized in Tables 13.1 and 13.2, are parameterized by Wmin = min8 W8 , the minimum public spirit
level of any voter.

Contribution 1: Tight bounds for single-winner voting with ranking by value ballots.

Building directly from Flanigan et al. [134], we begin by studying ranking-by-value ballots, where
voters rank the alternatives in [<] in decreasing order of their public-spirited values. Before an-
alyzing the performance of this ballot format in the PB context, we �rst study it in the single-
winner context— a signi�cant strict restriction of the PB setting where all projects cost �. We
begin with the single-winner setting because, although this is precisely the setting studied by
Flanigan et al, there remain two important open questions, which we close in order to build upon
their answers later.

1.1 What is the best distortion achievable by any deterministic voting rule over ranking-by-value
ballots? The lowest-distortion voting rule identi�ed by Flanigan et al is Copeland, achieving
constant (in<) distortion of exactly (1 + 2(1−Wmin)/Wmin)2; in contrast, their results lead to a lower
bound on any deterministic rule of at most 1+2(1−Wmin)/Wmin. To close this gap, we design a nontrivial
construction to prove a stronger lower bound. This lower bound is tight to known upper bounds
in its dependency on both< and Wmin, thereby closing the question of what level of distortion is
possible in single-winner public-spirited deterministic voting. This analysis reveals that in fact,
the rule Copeland is optimal (except when< is small relative to 1/Wmin, in which case Plurality
is optimal).

1.2 What is the best distortion achievable by any randomized voting rule over ranking-by-value

ballots? Flanigan et al. [134] did not study randomized voting rules at all. Thus, here we must
prove lower and upper bounds anew. Our lower bound arises from the same construction as de-
scribed above. We identify a novel optimal voting rule for this case, whose distortion matches our
lower bound in both< and Wmin. Its distortion is Θ(min{<, 1/Wmin}), the best distortion possible
in single-winner public-spirited randomized voting.

Contribution 2: Distortion bounds for PB with ranking-by-value ballots. Next, we gen-
eralize our results from the single-winner to the PB setting, again with the goal of identifying
optimal aggregation rules and proving matching lower bounds.

2.1 Lower bounds. First, we extend our lower bounds from the single-winner case to prove that
in PB, the distortion of any deterministic rule must be in Ω(</Wmin), and that of any randomized
rule must be in Ω(log<).

2.2 Upper bounds via reductions from single-winner voting to PB. For both deterministic and ran-
domized rules, we prove our upper bounds via direct reductions relating any voting rule’s dis-
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tortion in the single-winner setting to its performance in the PB setting. Such a reduction was
previously known for deterministic rules, incurring a factor of at most< in the distortion from
single-winner to PB. Via this method, we �nd that Copeland is again optimal as before, with
distortion matching our lower bound in both its dependency on< and Wmin.

For randomized rules, no such reduction existed, so we extend the previous reduction to the ran-
domized case. Via this reduction, we incur a factor of order at most log< in the distortion from
single-winner to PB. Then, we apply this reduction to give an upper bound on our single-winner
randomized rule above. In the PB setting, this voting rule achieves distortion with optimal de-
pendency on<, and within a factor of at most Wmin of optimal dependency on Wmin.

Contribution 3: Approval-style ballot formats. A practically important type of ballot for-
mat in the PB context are :-approval ballots. In our model, this means voters submit the set of
: alternatives for which they have the highest public-spirited values. Due to their practical im-
portance, we now repeat our analysis for this entirely new ballot format. Our �rst key �nding is
that if : is larger than one or more maximal budget-feasible sets of projects, the distortion can be
unbounded because voters’ approval sets can be budget-infeasible, thus giving us no information
about their preferences over budget-feasible sets. This is clearly avoided when : = 1; accordingly,
we give matching lower and upper bounds on the distortion of 1-approval ballots of Θ(<2/Wmin)

The issue of :-approval ballots permitting budget-infeasible approval sets motivates another bal-
lot format often considered in the PB literature— knapsack ballots. Knapsack ballots again allow
each voter to approve a set of items, but only if that set is budget-feasible. Perhaps themost striking
�nding in our analysis of knapsack ballots is that while they have at best exponential distortion
Ω(2</

√
<) under the unit sum utilities assumption, we show via a novel approach of compar-

ing entire subsets of alternatives that under public-spirited voting, these ballots have polynomial
distortion of at most order O

(
<3) .

Contribution 4: Ballot formats that breaks the< distortion barrier. In the previous sec-
tions, our lower bounds show us that across the ballot formats we study—plus two others whose
analysis we relegate to the appendix— no ballot format can achieve distortion with sublinear de-

pendency on < with deterministic aggregation rules (which is the practical case of interest). This
barrier also exists under the unit-sum utilities assumption [45]. Motivated by this, we ask: is
public spirit powerful enough to permit a any practical ballot format to break this barrier?

We�nd that in fact, the answer is yes. We de�ne a new, simple ballot format, which pre-partitions
the alternatives into (at most <) feasible sets of alternatives, and requires voters to rank them
rather than the individual alternatives. We show that by carefully bundling the alternatives in
the ballot, we can get O

(√
</W2min

)
distortion. If a second stage of elicitation is allowed, we

show that the distortion can be further reduced to O
(
log</W4min

)
using this ballot format. These

results show that our new ballot format is signi�cantly more e�cient, while also being thrifty
and practical. These results also point to the exciting open question of whether any ordinal ballot
that only asks voters to compare polynomially many sets of alternatives can reduce the distortion
all the way down to a constant.
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Public-Spirit Unit-Sum

SW Deterministic Θ (1/Wmin ·min{<, 1/Wmin}) Θ(<2)
Randomized Θ (min{<, 1/Wmin}) Θ(

√
<)

PB Deterministic Ω (</Wmin), O (</Wmin ·min{<, 1/Wmin}) Θ(<2)
Randomized Ω (log<), O (min{<, (log<)/Wmin}) Ω(

√
<), O

(√
< log<

)
Table 13.1: Asymptotic (in<,Wmin) distortion bounds for rankings-by-value, comparing results for
Single-winner (SW) and Participatory Budgeting (PB) ballots. The unit-sum results are derived
in Benadè et al. [45] and are included for comparison.

Public-Spirit Unit-Sum
:-approvals (: > 1) ∞ ∞
1-approval Θ

(
<2/Wmin

)
Θ(<2)

Knapsack Ω (</Wmin), O
(
<3/W2min

)
Ω(2</√<), O (<2<)

Single Round rbp O
(√
</W2min

)
Ω(<2)

Two Round rbp O
(
(log<)/W4min

)
Ω(<2)

Table 13.2: Asymptotic (in <,Wmin) deterministic distortion bounds across ballot formats other
than ranking-by-value. The colored rows indicate new ballots introduced in this paper. The unit-
sum results are derived in Benadè et al. [45] and are included for comparison.

13.1.2 Related work

Our work directly builds on the works of Benadè et al. [45], who analyzed distortion in PB, and
Flanigan et al. [134], who introduced the public-spirit model. Our results eliminate the unit-sum
assumptionmade in the former work, and generalize the latter work from single-winner elections
(selecting a single alternative) to the more general problem of PB, where multiple alternatives
are selected subject to a budget constraint and there are multiple reasonable ballot formats to
consider.

Procaccia and Rosenschein [231] introduce the distortion framework in single-winner elections
under the unit-sum assumption. We now know that the best distortions achievable by determin-
istic and randomized rules for this special case are Θ(<2)[67, 68] and Θ(

√
<) [53, 103], respec-

tively. Optimal distortion bounds have also been identi�ed for :-committee selection [52, 68],
which still remains a special case of PB. As an alternative to the unit-sum assumption, unit-range
utilities or metric costs have been studied [24, 117], but all of these place some restriction on voter
preferences. For further details, we suggest the survey of Anshelevich et al. [25].

Multiple approaches other than distortion have been studied for PB. The axiomatic approach has
been used to identify aggregation rules satisfying desirable axioms such as various monotonicity
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properties Baumeister et al. [37], Rey et al. [239], Talmon and Faliszewski [263]. Another im-
portant consideration in PB is whether the allocation of funds is fair with respect to (groups of)
voters [59, 113, 227]. For further details, we suggest the survey of Rey and Maly [238] and the
book chapter of Aziz and Shah [30].

13.2 Model

We introduce the most general framework of participatory budgeting (PB) �rst, and later intro-
duce single-winner and multiwinner voting as its special cases.

There is a set # of = voters and a set � of < alternatives (projects). We denote voters by 8, 9
and alternatives by 0,1. There is a total budget of �, which is normalized to 1 without loss of
generality, and a cost function 2 : � → [0, 1], where 2 (0) is the cost of 0. Slightly abusing
notation, we use 2 (() = ∑

0∈( 20 as the total cost of alternatives in ( . Let F = {( ⊆ � : 2 (() ≤ �}
be the set of budget-feasible subsets of alternatives. The goal is to select such a budget-feasible
subset by eliciting and aggregating voter preferences.

Special cases. We note that :-committee selection is a special case of PB, where the cost of
each alternative is 1/:, so F consists of all subsets of alternatives of size : . We use “:-committee
rule” to refer to a rule for this special case. Further, single-winner selection is a special case of
:-committee selection where : = 1; we use “single-winner rule” to refer to a rule for this special
case.

Utilities. Each voter 8 ∈ # has a utility for each alternative 0 ∈ � denoted by D8 (0) ∈ R≥0.
Together, these utilities form a utility matrix* ∈ R=×<≥0 . De�ne the social welfare of an alternative
0 ∈ � w.r.t. utility matrix * as sw(0,* ) = ∑

8∈# D8 (0); for a subset of alternatives ( ⊆ �, de�ne
sw((,* ) = ∑

0∈( sw(0,* ). We use sw(0) or sw(() when* is clear from context.

PS-values. Following the model introduced by Flanigan et al. [134], we assume that each voter
8 ∈ # has a public spirit (PS) level W8 ∈ [0, 1] and together these PS-levels form the PS-vector
®W ∈ [0, 1]= . Our results depend on the minimum public spirit level of the voters Wmin , min8∈# W8 .

Each voter submits her preferences according to not her personal utilities, but her PS-values,
which she computes by taking a W8-weighted convex combination of her personal utilities and
the average utility of all voters. Formally, the PS-value of voter 8 for alternative 0 is

E8 (0) = (1 − W8) · D8 (0) + W8 · sw(0)/=.

Together, these PS-values form the PS-value matrix +®W,* ∈ R=×<≥0 . PS-values are additive across
alternatives, so that for each ( ⊆ �, E8 (() =

∑
0∈( E8 (0).

Note that PS-values have the same scale as utilities because sw(0) = ∑
8∈# D8 (0) =

∑
8∈# E8 (0) for

each 0 ∈ �. We show that this transformation allows us to get rid of the unit-sum assumption
(
∑
8∈# D8 (0) = 1,∀0 ∈ �) required by much of the prior work [45].
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Elicitation. Since it is cognitively burdensome for voters to report numeric PS-values, it is
common to elicit their preferences using discrete ballots. Following the model of Benadè et al.
[45], a ballot format X : R<≥0 × [0, 1]< → LX turns every PS-value function into a “vote”, which
takes values from a (usually �nite) setLX, sometimes using the cost function over the alternatives.
Under this ballot format, each voter 8 submits the vote d8 = X(E8); together, these votes form the
input pro�le ®d = { d1, . . . , d= }. We use +®W,* BX ®d to indicate that PS-value matrix +®W,* induces
input pro�le ®d under ballot format X. Alternatively, we say that ®d is consistent with +®W,* . We
omit X when it is clear from the context.

We study four ballot formats also studied by Benadè et al. [45], namely rankings by value, rank-
ings by value for money, knapsack votes, and threshold approval votes, as well as a new ballot
format we introduce, namely ranking of prede�ned bundles; we de�ne them in their respective
sections.

Aggregation Rules. Let Δ(F ) be the set of all distributions over F . A (randomized) aggre-
gation rule 5 : L=

X
× [0, 1]< → Δ(F ) for ballot format X takes an input pro�le ®d ∈ L=

X
and a

cost function over alternatives 2 ∈ [0, 1]< as input, and outputs a distribution over feasible sets
of alternatives in F . We say that 5 is deterministic if its output always has singleton support.

Distortion. The distortion measures the e�ciency of a voting system, composed of a ballot
format and an aggregation rule for that ballot format. For a ballot format X and minimum public
spirit level Wmin ∈ [0, 1], the distortion of an aggregation rule 5 on input pro�le ®d in format X and
cost function 2 is the following worst-case ratio:

distX(5 , ®d, 2) = sup
* ,®W :

min8∈# W8=Wmin,
+®W,*B®d

max(∈F sw((,* )
E( ′∼5 ( ®d)sw((′,* )

.

The (overall) distortion of 5 is obtained by taking the worst case over all instances ( ®d, 2) and all
=:

distX(5 ) = sup
=≥1

sup
®d∈L=

X
, 2∈[0,1]<

distX(5 , ®d, 2).

The resulting distortion is a function of < and Wmin; we �x arbitrary < ≥ 2 and Wmin ∈ (0, 1]
throughout the paper. We are interested in the lowest distortion enabled by each ballot format,
across all aggregation rules for that ballot format. This is a measure of the usefulness of the
information contained in the ballot format for social welfare maximization.

Supporting results. Let us state a lemma that we use throughout the paper. This is a simple
generalization of Lemma 3.1 of Flanigan et al. [134]; the proof is in Appendix H.3.1.

Lemma 13.2.1. Let �1, �2 ⊆ � be two arbitrary subsets of alternatives. Fix any U ≥ 0 and de�ne

#�1��2 = {8 ∈ # : U · E8 (�1) ≥ E8 (�2)}. Then:
sw(�2)
sw(�1)

≤ U ·
(
1 − Wmin
Wmin

=

|#�1��2 |
+ 1

)
.
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Finally, for comparison, we remark that for all ballot formats we consider, when there is no public
spirit and the utilities are unrestricted, all deterministic voting rules have unbounded distortion
and the randomized rules have at best< distortion (Appendix H.3.2).

13.3 Single-Winner Voting

As mentioned before, single-winner voting can be seen as a special case of participatory bud-
geting problem in which all the alternatives have a cost equal to the budget, so only a single
alternative can be selected. Flanigan et al. [134] analyze the distortion of various deterministic
voting rules for this single-winner case under public-spirited voting. In this section we give lower
bounds on the distortion of any deterministic and randomized voting rule in this setting, and also
design rules that match the lower bound. For the results in this section, we consider, as do Flani-
gan et al. [134], the prominent ballot format of rankings by value (rbv). In this ballot format, each
voter ranks the alternatives in a non-increasing order of her values for them. Formally, Lrbv is
the set of all rankings of the alternatives, and each voter 8 submits a ranking d8 ∈ Lrbv such that
for every 0,1 ∈ � with E8 (0) > E8 (1), we have 0 �d8 1 (i.e., 0 appears above 1 in the ranking d8 );
the voter can break ties among equal-PS-valued alternatives arbitrarily.

13.3.1 Lower bounds

We start by proving the lower bound for the deterministic rules.

Theorem 13.3.1 (Lower Bound - Deterministic). Any deterministic single-winner voting rules 5

with ranked preferences has distortion

distA1E (5 ) ≥ 1 + 21 − Wmin
Wmin

· <2

2Wmin + Wmin<2 + (2 − 3Wmin)<
∈ Ω

(
1

Wmin
·min {<, 1

Wmin
}
)
.

Proof Sketch. Our construction consists of< types of voters, equally distributed with =/< voters
of each type. Let #: be the set of voters of type : . Suppose each voter type votes as follows,

#1 : 01 � 02 � . . . � 0<−1 � 0<
#2 : 02 � 03 � . . . � 0< � 01
...

#<−1 : 0<−1 � 0< � . . . � 0<−3 � 0<−2
#< : 0< � 01 � . . . � 0<−2 � 0<−1

so that #8 prefers alternative 08 most, and cycles through the rest. We use this instance to prove
the lower bound. �

The full proof can be found in Appendix H.4.1. We include the instance that gives this lower
bound here, because versions of it will be used to prove lower bounds throughout the paper.
Using a similar instance, we can prove a lower bound on the distortion of any randomized voting
rule. The full proof of this theorem is in Appendix H.4.2.
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Theorem 13.3.2 (Lower Bound - Randomized). Any randomized single-winner voting rules 5 with

ranked preferences has distortion

distA1E (5 ) ∈ Ω
(
min

{
<,

1
Wmin

})
.

13.3.2 Upper Bounds

In this section we focus on designing voting rules with distortion matching the lower bounds.
First, in the deterministic case, we give a deterministic voting rule that directly combines upper
bounds from Flanigan et al. [134].

Corollary 13.3.3 (Upper Bound - Deterministic). The deterministic single-winner rule 5%� that

runs Plurality if< ≤ 1/Wmin and Copeland otherwise, has distortion at most

distrbv (5PC) ≤ min
{
<

Wmin
−<,

(
2

Wmin
− 1

)2}
∈ O

(
1

Wmin
·min {<, 1

Wmin
}
)
.

Proof. Per Proposition 3.5 and Theorem 3.3 of Flanigan et al. [134] respectively, distrbv (5Plurality) ≤
</Wmin −< and that of distrbv (5Copeland) ≤ (2/Wmin − 1)2. Thus, by de�ning the rule that chooses
the Plurality winner when< ≤ 1/Wmin and the Copeland winner otherwise, we can guarantee
achievement of the desired distortion. �

Now, we endeavor to �nd an optimal randomized voting rule. Since Flanigan et al. [134] does not
study randomized rules, we cannot apply their bounds. Here, we turn to maximal lottery, a ran-
domized voting rule that was originally proposed by Kreweras [181] and rediscovered numerous
times in the social choice literature [121, 122, 183, 241]. Curiously, Charikar et al. [76] recently
use this rule to derive a breakthrough result in the related setting of metric distortion. There are
various alternative formulations of this rule, but the one most useful to us is the following.

De�nition 13.3.4 (Maximal Lottery). De�ne the domination graph to be a directed graph � with

alternatives in� as the vertices and an edge between every pair of vertices, oriented so that if 0 beats

1 in a pairwise election, then the edge goes from 0 to 1. In the case of ties, we may pick orientation

arbitrarily. The maximal lottery rule returns a distribution ? over the vertices such that for any

vertex E ∈ �, the probability of picking E or a vertex adjacent to E is at least 1/2. The existence of
such a distribution can be inferred from, e.g., Farkas’ lemma (see Theorem 2.4 of Harutyunyan et al.

[162]).

Theorem 13.3.5 (Upper Bound - Randomized). There exists a randomized single-winner voting

rule 5 with distortion at most

distrbv (5 ) ≤ min{<, 2(2/Wmin − 1)} ∈ O
(
min

{
<,

1
Wmin

})
.
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Proof. To match our piecewise lower bound, we must again decide between two voting rules: the
voting rule which chooses an alternative uniformly at random (thereby achieving< distortion)
and the maximal lottery rule, which we prove has distortion at most 2/Wmin − 1.

Indeed, let 0∗ be the optimal alternative. If we pick 0∗ or an alternative1 that beats 0∗ in a pairwise
election, by Lemma 13.2.1 we get distortion:

sw(0∗)
sw(1) ≤ 21 − Wmin

Wmin
+ 1.

Let the set of such alternatives be�′ = {1 ∈ � : | { 8 ∈ # : 1 �8 0∗ } | ≥ =/2 }. Then, the distortion
of our rule is:

sw(0∗)∑
0∈� ? (0)sw(0)

≤ sw(0∗)∑
0∈�′ ? (0)sw(0)

≤ sw(0∗)
(min0∈�′ sw(0))

∑
0∈�′ ? (0)

≤ 2 sw(0∗)
min0∈�′ sw(0)

≤ 41 − Wmin
Wmin

+ 2 = 4
Wmin
− 2. �

Importantly, because Wmin is unobservable to the voting rule, implementing these piecewise vot-
ing rules (for both the randomized and deterministic cases) is not quite practicable, ut the intu-
ition— that for small<, Plurality is desirable, and for large<, Copeland is better— is.

13.4 Rankings by Value

We now move on to the more general setting of participatory budgeting (PB). To begin with,
we examine how powerful the same rankings by value ballot format is for PB. Note that while
voters still rank individual alternatives by value, the fact that a (feasible) set of alternatives can
be funded can signi�cantly a�ect the power of this ballot format.

13.4.1 Deterministic Rules

First, we show that for rbv ballots, deterministic rules must incur a distortion at least (<−1)W−1min.
The intuition for this bound is as follows: PB is easy when cheap alternatives are always ranked
higher than costly ones, there is never any reason to pick the costly alternatives. So, to construct
hard instances, have voters rank costly alternatives highly.

Theorem 13.4.1 (lower bound). For rankings by value, every deterministic rule 5 has distortion

distrbv (5 ) ≥
< − 1
Wmin

∈ Ω
(
<

Wmin

)
.

Now, we show how to build directly on results from the single-winner case to give optimal rules
for the much more general setting of PB. Speci�cally, to prove upper bounds, in both the deter-
ministic case and the randomized case, we showhow to construct a PB rule from any deterministic
single-winner rule while losing an only a factor of< on the distortion.
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Lemma13.4.2 (Single-Winner→ PB - Deterministic). For any3 ≥ 1, any deterministic rule 5 with

distortion 3 in the single-winner case has distortion distrbv (5 ) ≤ < · 3 in participatory budgeting.

Proof. Fix any instance and let 5 return the singleton set { 0 }. Let �∗ be an optimal budget-
feasible set. Then,

sw(�∗)
sw(0) =

∑
0∗∈�∗

sw(0∗)
sw(0) ≤ < · max

0∗∈�∗
sw(0∗)
sw(0) ≤ < · 3. �

We now use this lemma to translate known results from the single-winner setting to PB. In single
winner elections, Flanigan et al. [134] show that Plurality has distortion at most<(W−1min−1)+1 and
Copeland’s rule has distortion at most

(
2W−1min − 1

)2. Plugging these bounds into Lemma 13.4.2,
we conclude upper bounds for the PB setting:

Theorem 13.4.3 (upper bound). For rankings by value,

distrbv (5Plurality) ≤ <2(W−1min − 1) +<, and
distrbv (5Copeland) ≤ <

(
2W−1min − 1

)2
.

Hence, there exists a deterministic rule 5 with distortion

distrbv (5 ) ∈ $
(
<

Wmin
·min {<, 1

Wmin
}
)
.

Remark 13.4.4. Note that there remains a gap between our upper and lower bounds (in Theo-

rem 13.4.3 and Theorem 13.4.1, respectively): Plurality achieves the optimal dependence on Wmin,
Copeland achieves the optimal dependence on <, but neither achieves both. Also, the “best” rule

in Theorem 13.4.3 is again a piecewise rule that depends on Wmin to decide which of plurality and

Copeland to execute. However, it is unclear if a Wmin-agnostic rule can achieve the same (or even a

better) distortion bound.

13.4.2 Randomized Rules

Theorem 13.4.5 (upper bound). For rankings by value, there exists a randomized rule 5 with

distortion

distrbv (5 ) ≤ 4
(

2
Wmin
− 1

)
·
(
dlog2(<)e + 1

)
∈ O

(
log(<)
Wmin

)
.

To prove this bound, wewill derive another general-purpose reduction— this time for randomized
rules— from PB to :-committee selection (Lemma 13.4.6), and then from :-committee selection
to single-winner selection (Lemma 13.4.7). The �rst will su�ers O (log<) overhead; the latter
su�ers none (asymptotically). To apply this reduction, we want to plug in bounds on randomized
single-winner rules; unfortunately, no such results exist in the public spirit model.
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In response, we give in Theorem 13.3.5 a novel randomized single-winner rule with asymptoti-
cally optimal (in both< and Wmin) distortion of at most 4W−1min − 2. We now state and prove these
results in succession, before applying them to prove Theorem 13.4.5.

Lemma 13.4.6 (Committee → PB - Randomized). Fix any 3 ≥ 1. If there exists a randomized

:-committee selection rule 5<′,: with distortion at most 3 for each<′ ≤ < and : ∈ [<′], then there

exists a randomized participatory budgeting rule 5 for rankings by value with distortion at most

23 · ( dlog2(<)e + 1).

Proof. Fix any PB instance. Split the alternatives into buckets �0, �1, . . . , �dlog2 (<)e , where �0 =

{0 ∈ � : 20 ≤ 1/<} and for 8 ≠ 0, �8 =
{
0 ∈ � : 28−1/< < 20 ≤ 28/<

}
.

The randomized PB rule 5 is as follows:

1. Sample 9 ∈ { 0, 1, . . . , dlog2(<)e } uniformly.

2. Consider the restricted instance with only the alternatives in� 9 . That is, with<′ = |� 9 | and
: = min(<′,

⌊
<
29
⌋
), use the :-committee selection rule 5<′,: to pick a set of : alternatives

and return it.

Let�∗ be the optimal budget-feasible subset of the alternatives, !∗9 be the optimal
⌊
<
29
⌋
-committee

of � 9 , and ! 9 be the one selected by the :-committee rule. For 9 ≠ 0, �∗ ∩ � 9 is of size at most
<
29−1 . That means sw(�∗ ∩� 9 ) ≤ 2sw(!∗9 ) for any 9 ≠ 0.

In addition, for 9 = 0, !∗0 = �0 which implies sw(�∗ ∩ � 9 ) ≤ sw(!∗9 ). Since the :-committee
selection rule has distortion of 3 for any 9 , we have sw(!∗9 ) ≤ 3sw(! 9 ), implying that sw(�∗ ∩
� 9 ) ≤ 23sw(! 9 ). Letting X be the distribution of the mechanism output, we deduce the desired
bound:

E!∼X [sw(!)] =
1

dlog2(<)e + 1

dlog2 (<)e∑
9=0

sw(! 9 )

≥ 1
dlog2(<)e + 1

dlog2 (<)e∑
9=0

sw(�∗ ∩� 9 )
23 ≥ sw(�∗)

23 (dlog2(<)e + 1)
. �

Next, we reduce :-committee selection to single-winner selection without any asymptotic over-
head. The idea is to simply add an alternative to the committee using the single-winner random-
ized rule, then remove the selected alternative, and repeat the procedure : times.

Lemma 13.4.7 (Single-Winner→ Committee). Fix any : ∈ [<] and 3 ≥ 1. If there exists a single-
winner rule with distortion at most 3 for each <′ ≤ <, then there exists a :-committee selection

rule with distortion at most 3 . The committee selection rule is deterministic if the underlying rule is

deterministic, and it is randomized if the underlying rule is randomized.

The deterministic case is proved in Theorem 8 of Goel et al. [149]. Their key idea is to repeatedly
pick alternatives using the single winner rule : times. We extend their result to the randomized
case using the same argument. We include the proof in Appendix H.5.2.
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Having reduced the PB problem to that of single-winner selection, we now use the novel ran-
domized single-winner rule presented in Theorem 13.3.5 to prove the desired bound.

Proof of Theorem 13.4.5. Finally, we apply Lemmas 13.4.6 and 13.4.7 and theorem 13.3.5 to prove
Theorem 13.4.5. By Lemma 13.3.5, there exists a randomized single-winner rule (for any<) that
achieves distortion at most 4W−1min − 2. Thus, by Lemma 13.4.7, we get a randomized :-committee
selection rule (for any < and : ∈ [<]) that achieves distortion at most 4W−1min − 2. Finally, by
Lemma 13.4.6, we get a randomized PB rule with the desired distortion. �

Weprove that this is asymptotically optimal as a function of< in Theorem 13.4.8, thereby proving
that our reduction is, in a sense, tight. Deriving the optimal dependence on Wmin is left as an open
question.

Theorem 13.4.8 (Lower Bound). For rankings by value, every randomized rule 5 has distortion

distrbv (5 ) ≥ ln(<)/2 ∈ Ω(log(<)) .

Proof. De�ne : =
⌈√
<

⌉
− 1 and partition the alternatives into : + 1 buckets �1, . . . , �: , � such

that for ℓ ∈ [:], �ℓ consists of ℓ alternatives with cost 1/ℓ each, and � includes the rest of the
alternatives with cost 1 each. Note that each �ℓ is a feasible subset.

Suppose that all the voters have the same ranking where they rank every alternative in�ℓ higher
than every alternative in �ℓ ′ for all ℓ < ℓ′ (and breaks ties within each �ℓ arbitrarily), and rank
members of � at the end of their ranking.

Consider any aggregation rule. For each 0 ∈ �, let ?0 denote the marginal probability of alter-
native 0 being included in the distribution returned by the rule on this pro�le. For each ℓ ∈ [:],
de�ne ?̄ℓ = 1

ℓ

∑
0∈�ℓ

?0 as the average of the marginal probabilities of alternatives in �ℓ being
chosen. Since the rule returns a distribution over budget-feasible subsets of alternatives (with
total cost at most 1), the expected cost under this distribution is also at most 1. Due to additivity
of cost and linearity of expectation, the expected cost can be written as∑

0∈�
?0 · 20 ≥

∑
ℓ∈[:]

(
1
ℓ

∑
0∈�ℓ

?0

)
=

∑
ℓ∈[:]

?̄ℓ ≤ 1. (13.1)

Next, �x an arbitrary C ∈ [:]. Consider the following consistent utility function of the agent
(which, in this case, is also her PS-value function): E (0) = D (0) = 1 if 0 ∈ ∪ℓ∈[C]�ℓ and E (0) =
D (0) = 0 otherwise. It is evident that the budget-feasible subset with the highest social welfare
(i.e., one which contains the highest number of alternatives of value 1 to the agent) is �C , and
sw(�C ) = C . In contrast, using the additivity of the utility function over the alternatives and
linearity of expectation, we can write the expected social welfare under the rule as

∑
0∈∪ℓ∈[C ]�ℓ

?0 ·
1 =

∑
ℓ∈[C] ℓ · ?̄ℓ , which means the distortion is at least

�C =
C∑

ℓ∈[C] ℓ · ?̄ℓ
.
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Because C ∈ [:] was �xed arbitrarily, we get that the distortion is at least � = maxC∈[:] �C . Our
goal is to show that � = Ω(log<).

Note that for each C ∈ [:], we have
C∑

ℓ∈[C] ℓ · ?̄ℓ
≤ � ⇒

∑
ℓ∈[C]

ℓ · ?̄ℓ ≥
C

�
.

Dividing both sides by C (C + 1), we have that∑
ℓ∈[C]

ℓ

C (C + 1) · ?̄ℓ ≥
1

� · (C + 1) ,∀C ∈ [:] .

Taking the sum over C ∈ [:], the right hand side sums to (�:+1 − 1)/� . In the left hand side, the
coe�cient of each ?̄ℓ is

ℓ ·
:∑
C=ℓ

1
C (C + 1) = ℓ ·

(
:∑
C=ℓ

1
C
− 1
C + 1

)
= ℓ ·

(
1
ℓ
− 1
: + 1

)
≤ 1.

Hence, the left hand side sums to at most
∑
ℓ∈[:] ?̄ℓ ≤ 1. Since the left hand side is at least the

right hand side, we have that

1 ≥ �:+1 − 1
�

⇒ � ≥ �:+1 − 1 = �⌈√
<

⌉ − 1,
which completes the proof after observing that �⌈√

<
⌉ ≥ ln(

⌈√
<

⌉
) ≥ ln(

√
<) = 1

2 ln(<) . �

Remark 13.4.9 (Rankings by value-for-money). Another ranking-based ballot format considered

in the PB literature is rankings by value-for-money, which force voters to consider the cost-bene�t

analysis of di�erent alternatives, rather than just the bene�ts. In Appendix H.1, we give analogous

upper and lower bounds for this ballot format, showing unbounded deterministic distortion in Theo-

rem H.1.1, and randomized distortion analogous to ranking by value O ( (log<)/Wmin) in Theorem H.1.2.

We demote this ballot format to the appendix because it can be di�cult for voters to compute, and

in the deterministic case it is bad; in the randomized case, it behaves similarly to pure rankings-by-

value.

13.5 Approval-Based Ballots

Another popular type of ballot — especially in participatory budgeting— is to ask voters to sim-
ply approve their favorite items, rather than rank items relative to one another. Themost common
type of approval-based ballots in practice is the :-approval ballot, in which voters “vote” by iden-
tifying their : favorite alternatives. However, this ballot format has an important limitation in
the PB context: as we show, it allows voters to approve items or sets of items that are not budget-
feasible. In the worst case, this can leave the voting rule with little or no information about which
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budget-feasible allocations are desirable, in which case it can do nothing better than making an
arbitrary choice.

A natural potential �x for this is allowing voters to approve only sets of items that are budget-

feasible. This is can be achieved by either restricting our use to 1-approval ballots (and removing
all items which individually exceed the budget), or using Knapsack ballots, an approval-based
ballot format in which voters can approve any set of projects whose total cost does not exceed
the budget. We explore both these directions.

13.5.1 :-approval ballots

For the ballot format :-approval (k-app), the set of possible ballots Lk-app is the set of all subsets
of size : of �. That means each voter submits the set of her top : alternatives (breaking the ties
arbitrarily). We start by showing that asking voters to approve more than one alternative leads
to an unbounded distortion.

Theorem 13.5.1 (LB - Deterministic). For :-approval ballot format with : ≥ 2, any deterministic

PB rule has unbounded distortion.

Proof. Suppose we are using :-approval ballots. Let � be the alternatives, and suppose that each
0 ∈ � has cost 1

:−1 . Suppose all agents have the same utilities, where n > 0 is arbitrarily small,
giving 1 utility to 01, n utility for all of 02 . . . 0: , and 0 for all � \ {01, . . . , 0:}. Then, everyone’s
public-spirited values are identical to their utilities. All agents approve 01, . . . , 0: , and the deter-
ministic rule must pick : − 1 of these arbitrarily. Let the deterministic rule pick 02 . . . 0: . The
best possible welfare is =, achieved by any : − 1-subset including 01; the winner has welfare n=,
making the distortion 1

n
(unbounded). �

These lower bounds were for : ≥ 2; one can also realize the same bounds with : = 1, where all
voters approve items whose costs exceed 1, giving the voting rule no information about which
budget-feasible set to choose. However, an obvious �x for this is to remove all items ahead of time
that exceed the budget. If we assume every individual item has cost at most 1, then 1-approval
ballots ensure that voters can only approve budget-feasible sets, escaping the problem described
above. Then, 1-approval-based ballots are akin to plurality voting, and they permit the following
positive result:

Proposition 13.5.2 (UB, 1-app, Deterministic). If all alternatives have cost at most 1, then for

1-approval ballot format, there exists a deterministic voting rule 5 with distortion

dist1-app(5 ) ∈ O
(
<2

Wmin

)
.

Proof. Pick the most approved alternative 0. This is in fact the plurality winner and by Theo-
rem 13.4.3, the plurality rule achieves the claimed distortion. �

188



The following proposition shows that this is the best we can hope for. The full proof of Proposi-
tion 13.5.3 is available in Appendix H.6.1.

Proposition 13.5.3 (LB, 1-app, Deterministic). For 1-approval ballot format, every deterministic

rule 5 has distortion

dist1-app(5 ) ∈ Ω
(
<2

Wmin

)
.

Proof Sketch. Consider an instance with <
2 alternatives of cost 1 where each of them are approved

by 2
<

voters. In addition the remaining <
2 alternatives have cost <2 , and are never approved by

any voter, .

Any PB rule must pick one of the approved alternative, since otherwise we can take the under-
lying utility pro�le that gives the unapproved alternatives utility zero. In this case, we can make
unapproved alternatives to appear in the second to the</2 + 1-th position of every voter which
gives us the claimed bound. �

Remark 13.5.4. While not explicitly studied in Benadè et al. [45], a deterministic distortion of

Θ(<2) in the 1-approval ballot format follows from their analysis of the ranking by value ballot

format immediately, as it simply uses a plurality rule to aggregate voter preferences.

While 1-approval ballot sounds practical, it does not yield a good distortion since the basic po-
tential of PB (which is selecting multiple alternatives if the budget allows) is not used. However,
this is really the best we can hope for with :-approval ballots. This motivates the consideration
of knapsack ballots, which elicits the top budget-feasible subset from each voter’s perspective.

13.5.2 Knapsack ballots

For the ballot format knapsack (knap), the set of possible ballotsLknap = F is the set of all budget-
feasible subsets of�. Each voter 8 submits the subset she values most: d8 ∈ argmax(∈F E8 ((). This
amounts to asking each voter to solve her own personal knapsack problem.

Unfortunately, similar to what happens with 1-app ballots, an instance similar to the one in
Proposition 13.5.3 also applies to knapsack ballots, since voters are only permitted to approve
budget-feasible allocations, which all consist of one single item.

Corollary 13.5.5 (LB, knap, Deterministic). For knapsack ballot format, every deterministic rule

5 has distortion

distknap(5 ) ≥ <W−1min −< + 1 ∈ Ω
(
<

Wmin

)
.

For randomized rules, we prove a slightly weaker lower bound that is Wmin times our lower bound
for deterministic rules. As Wmin goes from 0 to 1, the lower bound for deterministic rules goes
from unbounded to 1 while that for randomized rules goes from < to 1. It is easy to observe
that both lower bounds are tight at both extremes, but there may be room for improvement for
intermediate values of Wmin. The proof is in Appendix H.7.1.
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Theorem 13.5.6 (LB, knap, Randomized). For knapsack ballot format, every randomized rules 5

has distortion

distknap(5 ) ≥ <(1 − Wmin) + Wmin.

This lower bound is trivially tight in<. We show this by having< alternatives of cost 1 each,
and =

<
voters approving each one.

Remark 13.5.7 (UB, knap, Randomized). The voting rule 5 which ignores all the ballots and simply

picks a single alternative uniformly at random trivially yields an upper bound of distknap(5 ) ≤ <.

Finally, we present upper bounds for knapsack due to its importance in the literature. In the unit-
sum model, Benadè et al. [45] give exponential lower bounds for the knapsack ballot format. We
are able to prove that in the public-spirit model, it is possible to break this exponential barrier,
showing that the worst-case instances for knapsack in the unit-sum model rely on potentially
infeasible voter preferences. In doing so, we rely on new techniques for aggregating knapsack
votes. This illustrates how public spirit can be much more powerful than that pervasive assump-
tion (which is hard to justify) in mitigating distortion, especially when the number of alternatives
is at all large.

Theorem 13.5.8 (UB, knap, Deterministic). For knapsack votes, there exists a deterministic rule 5

with distortion

distknap(5 ) ≤ 4<3(W−2min − W−1min) + 3< ∈ $
(
<3

W2min

)
.

Proof. For any subset of alternatives ( ⊆ �, let =( :=
∑
8∈# I(( ⊆ d8) be the number of voters

whose knapsack set contains ( . We use shorthand =0 := ={0} and =0,1 := ={0,1} for all 0,1 ∈ �.
Then, informally, =0,1 is the number of voters who vote for both 0 and 1.

For an arbitrary input, de�ne �0 := {0 ∈ � : =0 ≥ =
2< } and initialize �

− = �0 and �+ = ∅. We will
return �+ after running the following until �− is empty:

1. Remove the alternative 1 with the highest cost in �− and add it to �+.

2. Remove from �− all alternatives 0 such that
=0,1

=1
≤ < − 1

<
.

First, we will prove that this algorithm always returns a budget-feasible subset. Suppose for the
sake of contradiction that at some point, the max-cost item in �−, call it 0m, is no longer within
budget: i.e., 20m +

∑
1∈�+ 21 > 1. We will show that there exists some 1 ∈ �+ such that =1,0m

=1
≤ <−1

<
.

Let 1m ∈ �+ be the �rst alternative added to �+, so that it has maximum cost. Then, for all 1 ∈
�+ \ {1m}, because 1 wasn’t pruned in step 2 directly after adding 1m, it must be that =1,1m

=1m
> <−1

<
.

By the same reasoning, the same must be true for 0m — that is, =0m,1m

=1m
> <−1

<
. Summing over
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these inequalities, we get that:

=0m,1m +
∑

1∈�+\{1m}
=1m,1 > =1m

[
< − 1
<
+ < − 1

<

(
|�+ | − 1

) ]
= =1m

< − 1
<
|�+ |.

Notice that the left hand side is at most the number of voters who voted for 1m, multiplied by
the number of other alternatives in {0m} ∪ |�+ | they could have voted for. Since {0m} ∪�+ is an
infeasible set, no voter could have voted for all of them. Thus, each voter can only vote for |�+ |
alternatives in {0m} ∪ |�+ |, and so only |�+ | − 1 alternatives other than 1m. The left hand side is
then at most ( |�+ | − 1)=1m , and therefore

( |�+ | − 1)=1m > =1m
< − 1
<
|�+ |.

Simplifying, we can see that this is impossible, as this is equivalent to the inequality:

|�+ | − 1 > |�+ | − |�+ |/<.

We have encountered a contradiction, so our premise— that we added an 0 to �+ that exceeded
the budget—must have been false.

Now, we will show that if an 0 ∈ �− is pruned in Step 2, then sw(0)
sw(�+) ≤ 2<2 1−Wmin

Wmin
+ 1. Indeed,

because we prune it, there exists some 1 ∈ �+ such that:

=0,1

=1
≤ < − 1

<
.

Since 1 ∈ �0, we have =1 ≥ =/2< and so =1 − =0,1 , the number of voters that vote for 1 but not 0,
is at least =/(2<2):

=1 − =0,1 ≥ =1 −
< − 1
<

=1 ≥
=

2<2 .

Notice that because we pick the highest cost alternative1 in each iteration, any alternative pruned
later by the algorithm must have a cost lower than 21 . Therefore, any time a voter votes for 1 but
not 0, they could have replaced 1 with 0 and have gotten another feasible set. The fact that they
did not means that they prefer 1 to 0. We have at least =/(2<2) of such voters (that prefer 1 to
0), by Lemma 13.2.1 we can conclude that sw(0)

sw(�+) ≤ 2<2 1−Wmin
Wmin
+ 1, as needed.

Extending this result, de�ne<0 := |�0 |, we get that

sw(�0)
sw(�+) ≤ <0

(
2<2 1 − Wmin

Wmin
+ 1

)
.

On the other hand, for alternatives outside of �0, the distortion must be small. Let �∗ be the
optimal budget-feasible set of alternatives. Then:

sw(�∗ \�0)
sw(�+) =

sw(�∗ \�0)
sw(�0)

· sw(�0)
sw(�+) .
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It remains to bound sw(�∗\�0)
sw(�0) . Because at most =/(2<) voters include each alternative in � \ �0

in their knapsack set, and there are at most < − <0 such alternatives, we know that at most
=(< −<0)/2< voters vote for alternatives in � \ �0, that is at least =(< +<0)/2< voters only
vote for alternatives in �0. Observing that �∗ \ �0 ∈ F (since �∗ ∈ F ), it must be that for all
=(<+<0)/2< voters 8 who vote for only alternatives in�0, E8 (�0) ≥ E8 (d8) ≥ E8 (�∗ \�0) for each
0 ∈ � \�0. Therefore, by Lemma 13.2.1,

sw(�∗ \�0)
sw(�0)

≤ 2<
< +<0

· 1 − Wmin
Wmin

+ 1.

Thus,

sw(�∗)
sw(�+) ≤

sw(�0)
sw(�+) +

sw(�∗ \�0)
sw(�+) =

sw(�0)
sw(�+) +

sw(�∗ \�0)
sw(�0)

· sw(�0)
sw(�+)

≤ sw(�0)
sw(�+)

(
1 + <

<0
· 1 − Wmin

Wmin
+ 1

)
≤ <0

(
2<2 1 − Wmin

Wmin
+ 1

) (
<

<0
· 1 − Wmin

Wmin
+ 2

)
≤ 2<3

(
1 − Wmin
Wmin

)2
+ 4<3 1 − Wmin

Wmin
+<1 − Wmin

Wmin
+ 2<

≤ 4<3 (
W−2min − W−1min

)
+ 3<. �

It’s possible that for general Knapsack voting, this cannot be improved to match the lower bound
that is achieved in the case that reduces to plurality voting. This is because in the general case
where people can approve more than 1 alternative, although we have budget-feasible information,
we don’t know what people’s favorite element is in their approval set if it is greater than size 1.

Remark 13.5.9. For the special case of committee selection, we show in Appendix H.7.2 that this

bound can be improved to<2(W−1min − 1) +< ∈ $
(
<2/Wmin

)
.

Remark 13.5.10 (Threshold approvals). Another approval-based ballot format considered in the

literature is threshold approvals, which are categorically di�erent than knapsack and :-approvals:

instead of approving a limited set of alternatives, voters approve any alternative for which their

utility exceeds a certain threshold. In Appendix H.2, we give analogous upper and lower bounds for

this ballot format. For deterministic rules, we show unbounded deterministic distortion for a �xed

choice of threshold in Proposition H.2.1 and Ω(<) and O
(
<2/Wmin

)
distortion when the threshold is

variable in Theorems H.2.3 and H.2.2. For randomized rules, we show Ω(
√
<) with �xed thresholds

and Ω(log<) with variable thresholds in Theorems H.2.4 and H.2.5 using the ideas in Benadè et al.

[45]. We demote this ballot format to the appendix due to its limited practicability: even if people can

assign internally-consistent numeric values to their utilities, they may not consider their utilities on

the same scale, making it hard for people to reliably approve alternatives according a given threshold.
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13.6 A Thrifty Ordinal Ballot Gets Sublinear Distortion

Let us revisit the story so far for deterministic aggregation rules, which is the more practical case.
Rankings by value allowed us to achieve O

(
</W2min

)
distortion, and approval-based ballots, which

could outperform rankings by value in the unit-sum model [45], fail to do so in the public spirit
model, leaving our quest of achieving distortion sublinear in < (via a practical ballot format)
unful�lled.

In this section, we introduce a new (family of) ballot format(s), ranking of prede�ned bundles (rpb),
which meets both these desiderata. Not only does it allow achieving sublinear distortion via a
deterministic aggregation rule, it is also extremely practical in participatory budgeting due to
four reasons:

• Explainable: It simply asks voters to rank bundles of projects by value instead of individual
projects.

• Ordinal: It asks voters to only ordinally compare bundles of projects.

• Thrifty: The number of bundles that voters rank is at most<, making the number of bits
of information elicited from each voter polynomial in<.

• Reduction to single-winner voting: The bundles we create below are budget-feasible (so vot-
ers can realistically imagine them being implemented) and pairwise disjoint (so voters can
easily compare them). Further, the subset of projects funded in the end is precisely one of
the bundles on the ballot. This creates a reduction to single-winner voting, where voters un-
derstand that they are e�ectively expressing preferences over possible �nal outcomes. This
also opens up the possibility of using well-known aggregation rules from single-winner
voting (such as our use of Copeland’s rule below), which voters may already be familiar
with.

Speci�cally, an rpb ballot is characterized by a set P = { %1, . . . , %ℓ } of ℓ feasible subsets of �.
We suggest that ℓ should be at most polynomial in <. Thus, Lrpb(P) is the set of all rankings
over P. Each voter 8 submits a ranking d8 ∈ Lrpb(P) such that for all bundles %, % ′ ∈ P with
E8 (%) > E8 (% ′), we have % �d8 % ′. An aggregation rule 5 for this format gets ®d ∈ L=

rpb(P) as input.

We show how to use the rpb ballot to achieve O
(√
</W2min

)
distortion in a one-round voting system,

and an even better O
(
(log<)/W4min

)
distortion in a two-round voting system.

13.6.1 Sublinear Distortion in One Round

Let us describe our proposed voting system, which comprises of an rpb ballot we term high-low

bundling (HLB) along with a deterministic aggregation rule (Copeland’s rule).

Ballot: rpb with high-low bundling (HLB). We initialize an rpb ballot with the set PHLB

constructed as follows. Let ! = { 0 ∈ � : 2 (0) ≤ 1/√< } be the set of low-cost alternatives, and
� = { 0 ∈ � : 2 (0) > 1/√< } be the set of high-cost alternatives. PHLB consists of an arbitrary
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partition of ! into at most
√
< feasible bundles1 and an arbitrary partition of � into feasible

bundles.2 Note that |P | ≤ |� | + |! | = <.3 The voters are asked to rank the bundles in PHLB,
which generates an input pro�le ®d .

Aggregation rule. We simply run Copeland’s rule on ®d , treating each bundle as an alternative
in single-winner voting, to select one of the feasible bundles as the �nal output.

Theorem 13.6.1 (Upper Bound). The distortion of (deterministic) Copeland’s aggregation rule

5Copeland applied to the HLB ballot is

distrpb(PHLB) (5Copeland) ≤
2
√
<

W2min
∈ O

( √
<

W2min

)
.

Proof. Let �∗ be an optimal budget-feasible subset of alternatives. The elements of �∗ are dis-
tributed among ! and� , so sw(!∩�∗) +sw(� ∩�∗) = sw(�∗), implying that either sw(!∩�∗) ≥
1
2sw(�

∗) or sw(� ∩ �∗) ≥ 1
2sw(�

∗). We claim that there exists a bundle %∗ ∈ PHLB for which
sw(%∗) ≥ sw(�∗)

2
√
<

.

Suppose sw(!) ≥ sw(!∩�∗) ≥ 1
2sw(�

∗). Since ! is partitioned into at most
√
< bundles in PHLB,

there exists %∗ ∈ PHLB such that sw(%∗) ≥ sw(!)√
<
≥ sw(�∗)

2
√
<

.

Next, suppose sw(�∩�∗) ≥ 1
2sw(�

∗). Since each alternative in�∩�∗ has cost more than 1√
<
and

lies in the budget-feasible set �∗, we have that |� ∩ �∗ | ≤
√
<. Thus, there exists an alternative

0∗ ∈ � ∩ �∗ with sw(0∗) ≥ sw(�∩�∗)√
<

≥ sw(�∗)
2
√
<

. Hence, for the bundle %∗ ∈ PHLB containing 0∗,
we have sw(%∗) ≥ sw(�∗)

2
√
<

.

Note that Copeland’s rule receives rankings over bundles in PHLB as input to pick a bundle % .
Using its distortion bound (from single-winner voting), we know that

sw(%) ≥ W2min · sw(%∗) ≥ W2min ·
sw(�∗)
2
√
<

,

yielding distortion at most 2
√
<

W2min
∈ O

( √
<

W2min

)
. �

Remark 13.6.2. In the unit-sum model of Benadè et al. [45] (without public spirit), the distortion of

any deterministic aggregation rule on any rpb ballot remains Ω(<2) due to single-winner instances
(as a special case of PB). When each bundle is budget-feasible, this creates precisely a single-winner

1This is possible because |! | ≤ < and any subset of
√
< alternatives from ! is feasible.

2One can use this �exibility of partitioning ! and � arbitrarily to make the resulting bundles meet practical
desiderata, e.g., including a diverse set of projects. Alternatively, one can also create partitions of ! and � into the
fewest feasible bundles to reduce the size of the ballot.

3In practice, with many low-cost projects, we expect |P | to be much smaller.
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instance. And it is easy to see that grouping any two alternatives together can lead to in�nite dis-

tortion if the voters unanimously �nd that bundle the most preferable but we may pick the bad

alternative in that bundle which the voters have zero value for.

13.6.2 Logarithmic Distortion in Two Rounds

Next, we describe a two-round voting system, which beats even the sublinear distortion achieved
above and yields a logarithmic distortion.

First ballot: rankings by value. Simply use the rankings by value ballot, where voters are
asked to rank the alternatives in �.

Second ballot: rpb with tiered-cost bundling (TCB). For A ∈ { 0, 1, . . . ,
⌈
log2<

⌉
}, de�ne

tiers of costs as

)A =

{
{ 0 ∈ � : 2 (0) ≤ 1/< } if A = 0,
{ 0 ∈ � : 2A−1/< < 2 (0) ≤ 2A/< } if A > 0.

For each A ∈ { 0, 1, . . . ,
⌈
log2<

⌉
}, use the committee selection rule from Lemma 13.4.7 to pick

%A ⊆ )A of size CA = bmin( |)A |,max(1,</2A ))c. Note that each %A is budget-feasible. Our rpb ballot
in the second stage is now de�ned by PTCB = (%0, . . . , %⌈

log2<
⌉). Each voter submits a ranking d8

over PTCB.

Aggregation rule. Run (deterministic) Copeland’s rule on the input ®d and return the bundle
% ∈ PTCB that it picks.

Theorem13.6.3. The distortion of the two-round voting system that uses rankings by value, then the

rpb ballot with tiered-cost bundling, and then Copeland’s rule is at most 2(
⌈
log2<

⌉
+1) ·

(
2W−1min − 1

)4
.

Proof. Let�∗ be an optimal budget-feasible subset of the alternatives. Fix any A ∈ { 0, 1, . . . ,
⌈
log2<

⌉
}.

Let %∗A be the optimal CA -sized subset of )A (note that this is feasible by the de�nition of CA ). Us-
ing the distortion bound of the committee selection rule from Lemma 13.4.7, we have sw(%∗A ) ≤(
2W−1min − 1

)2 ·sw(%A ). Since�∗ is feasible, |�∗∩)A | ≤ 2CA , so�∗∩)A can be partitioned into two fea-
sible subsets of)A of size at most CA each, yielding sw(�∗∩)A ) ≤ 2·sw(%∗A ) ≤ 2

(
2W−1min − 1

)2 ·sw(%A ).
Since )0, . . . ,)⌈

log2<
⌉ partitions the set of alternatives �, we have

sw(�∗) = ∑
A∈{ 0,1,...,

⌈
log2<

⌉
} sw(�∗ ∩)A ) ≤ 2(

⌈
log2<

⌉
+ 1)

(
2W−1min − 1

)2 ·maxA∈{ 0,1,...,⌈log2<⌉
} sw(%A ).

Using the distortion bound of Copeland’s rule, we have that for the bundle % picked by the rule,

sw(%) ≥
maxA∈{ 0,1,...,⌈log2<⌉

} sw(%A )(
2W−1min − 1

)2 ≥ sw(�∗)
2(

⌈
log2<

⌉
+ 1) ·

(
2W−1min − 1

)4 . �
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We remark that there are no known lower bounds that prohibit one from achieving even constant
distortion using a one-round voting system that uses an rpb (or some other fully ordinal) ballot
format with only polynomially many comparisons. We leave this as a major open question that
can have implications for PB ballot design in practice.

13.7 Discussion

Our work lays out several interesting open questions as in some cases, our upper and lower
bounds do not asymptotically match (see Tables 13.1 and 13.2) in either<, Wmin or both.

Ourwork posits, based on prior research, that democratic deliberation in real-world PBmay cause
voters to be public-spirited. However, modeling the exact level of public spirit achieved and us-
ing this to in turn optimize the design of the deliberation process itself would be an important
direction for future research. More broadly, distortion has been studied in models beyond voting,
such as matching [118] and fair division [160], to which the public-spirit model can also be ap-
plied. Finally, under the public-spirit model, participants take the utilitarian welfare into account
when submitting their preferences, which works well since the goal is to optimize the utilitarian
welfare as well. But the idea of distortion has been extended to other objectives such as the Nash
welfare or proportional fairness [103], which raises the question: what form of public-spirit can
be helpful in optimizing such objectives and how can it be cultivated?
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14
Ongoing and Future Work

14.1 Public Spirit in the Wild

Chapters 12 and 13 asked the question, does public spirited voting behavior improve the social good

of democratic outcomes? We �nd that in both standard voting and the more di�cult setting of
participatory budgeting, the answer is resoundingly yes. However, these �ndings are only as
practically relevant as the model in which they were proven. Thus, we now turn to the question:
what does public spirit actually look like in practice? Though in principle public spirit could be
measured in any political context, we focus speci�cally on public spirit as cultivated by democratic

deliberation. We make this choice based on the existing evidence that deliberation cultivates
public spirit (see Chapter 12), and the fact that deliberation creates a controlled environment
whose main features can be repeated.

In guiding our measurement of public spirit in practice, our theoretical model serves an impor-
tant purpose: it decomposes “public spirited” behavior into three outcome-relevant components
that can be measured experimentally. These components are (a) the extent to which deliberants
prioritize societal bene�t over their own; (b) with what information deliberants evaluate alter-
natives’ “social bene�t”; and (c) what notion of “social bene�t” deliberants actually care about.
Regarding (c), our theoretical model assumed that people are utilitarian, by encoding the so-
ciotropic component of their preferences as the utilitarian social welfare. In reality, people may
have multiple diverse notions of social good: some people may care about minimizing inequal-
ity, or minimizing harm to the worst-o� people; others may be more deontological, caring about
upholding principles regardless of the outcome in any speci�c policy context.

In my ongoing work, I am running survey-based studies to measure changes in (a), (b), and (c)
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throughout deliberation. To deploy these surveys in real deliberative events, I am collaborating
with political scientists and groups of practitioners who are running deliberative town halls and
citizens’ assemblies. Contexts studied so far include a national-level deliberative town hall on the
reform of the Chilean constitution, a deliberation-based political science course at the University
of Houston, and a citizens’ assembly in Australia on renewable energy pricing.

14.2 Beyond a Deterministic Highest-Welfare Alternative

The question studied in Chapters 12 and 13 can be phrased as follows: when voters are public

spirited, how closely does the welfare of the outcome they collectively choose approximate that of the

highest-welfare alternative? In other words, we are assuming that there is a ground-truth best
outcome, and we are asking how well voters can recover it.

In the future work proposed here, we now consider: what if there is no single ground-truth best

outcome? There are many reasons that it is hard to imagine there being a truly “best” policy in
a real political decision. We unpack two such reasons here, showing how to extend the public-
spirited model to capture these added complexities. In these generalized models, we then propose
to study the following hypothesis: that when there are multiple alternatives that are defensibly the

best, deliberation will at least uncover one of them, eliminating the “clearly bad” alternatives.

Competing notions of “social good”. One key reason that there might be multiple defensibly
best outcomes is philosophical, boiling down to the question of whether there is one “right” way to
make di�cult trade-o�s. If all outcomes help some people and harm others, how canwe saywhich
one is best for society overall? Making these kinds of trade-o�s either implicitly or explicitly
requires committing to a notion of social good, of which there aremany that are arguably justi�ed.
For example, we can imagine versions of our model where instead of the utilitarian social welfare,
voters are concerned about inequality (E8=4@), those who are the worst o� (E<0G8<8=), or even the
Nash Welfare (E#, ):1

E8=4@ (0) := (1 − W8)D8 (0) − W8 (max
9∈[=]

D 9 (0) − min
9 ′∈[=]

D 9 ′ (0))

E<0G8<8= (0) := (1 − W8)D8 (0) + W8 min
9 ′∈[=]

D 9 ′ (0)

E#, (0) := (1 − W8)D8 (0) + W8 ©«
∏
9∈[=]

D 9 (0)ª®¬
1/=

While it may seem strange that people would be computing something as nonlinear as the Nash
product, there is some limited evidence that the Nash product is actually more aligned with peo-
ple’s intuitive conception of social good than the utilitarian social welfare [288].

Any of these models—or a convex combination of them—could be a more accurate representation
of a given voter’s considerations, and which model is truest likely depends on the voter. The

1An alternative de�nition of E#, (0) might be D8 (0)1/W8 ·
∏

9∈[=] D 9 (0), in which case W8 ∈ [0,∞).
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ongoing experiments discussed in Section 14.1 are designed to shed light on people’s conceptions
of social good in practice.

We can then address our motivating question in the following way: using formalisms like those
above, we can allow voters to form their public-spirited preferences based on diverse conceptions
of social good. Likewise, we can rede�ne the notion of distortion to quantify welfare via di�erent
notions. Then, we can ask: if voters have di�erent conceptions of social good, can we guarantee a

good approximation to at least one of them?

The unknown future. Suppose we set aside these considerations, for now maintaining the
utilitarian social welfare as our notion of social good. Even with this assumption in place, there
is another reason a single highest-welfare alternative is unrealistic: at the time of the decision,
policy impacts are not deterministic. Rather, how much a given person will harmed or bene�ted
by a given policy can depend on how the future unfolds, which may be random and unpredictable
at the time of the policy decision.

We can formalize this intuition by generalizing the latent utilities model: let utility matrix *
be a random variable, drawn from a distribution over entire = ×< matrices of utilities. We draw
entirematrices instead of individual utilities independently becausewhatever future shocks occur
will apply to everyone simultaneously, meaning that people’s utilities should be correlated. In
this generalized model, there is no longer a single outcome that is decisively the most socially
bene�cial. Rather, each alternative has some associated distribution over possible levels of societal
bene�t. Then, even if an alternative has high expected social bene�t, it may also come with
signi�cant risk, having some chance of being extremely harmful.

Now that there is no longer any single “best alternative” with respect to social good, we can again
consider our question: does deliberation at least eliminate the “obviously bad” alternatives? One
precise interpretation of this question is, suppose we design a measure of social bene�t (e.g., ex-
pected social welfare), and another of risk. Then, there is a Pareto frontier, and some alternatives
are Pareto-dominated by others. We can de�ne an “obviously bad” alternative as one that is
Pareto-dominated by another alternative (i.e., it is both higher-risk and lower bene�t).
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Part IV

Discussion
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Although this is o�cially a computer science thesis, the enclosed work has drawn heavily also
from theoretical and empirical political science. In this discussion, we delve deeper into the ways
the work in this thesis connects political science and theoretical computer science, hopefully
distilling some ideas that can help others do the same.

14.3 Translating normative ideals into computational tools

One avenue for combining political science and theoretical computer science is to implement

normative ideals frompolitical theory in the computational toolswe build, or put another
way, use computational tools in service of achieving political scienti�c ideals. An example of this
approach is our work in Part I, where we designed an algorithmic framework, plus optimization
objectives and algorithmic augmentations, that provably serve mathematical formalizations of
key sortition ideals put forth by political theorists.

The way this approach can contribute both academically and practically is illustrated by this
line of work. First, by formalizing these conceptual ideals mathematically, we proved that under
selection bias – a condition that we argue is essentially inevitable in practice (Remark 1.1.1) –
there are provable trade-o�s between ideals whose simultaneous satisfaction has often been used
to argue for sortition in the past. By illuminating, characterizing, and algorithmically optimizing
these trade-o�s, our work opens new questions about the political implications of striking these
tradeo�s in di�erent ways, and o�ers computational tools for empirically studying them. In turn,
the political science research on sortition helps clarify a broader and clearer picture of what goals
our algorithms do and do not serve, allowing users to make more informed choices.

There is already somework applying this approach to unifying political science and computer sci-
ence (e.g., see [50]). However, there are many more candidate problem settings that could bene�t
from it: algorithms are increasingly being proposed to assist with decisions impacting our politi-
cal systems (e.g., [27, 35, 191, 194, 207, 226, 264]), and formally specifying these algorithms’ goals
— or deciding whether to deploy these algorithms altogether — often requires making decisions
that encode moral trade-o�s. When making such decisions, there is work to do in understand-
ing the relevant political scienti�c frameworks and then carefully considering, from a technical
standpoint, how algorithms may serve or impact these goals. Even in cases when these political
scienti�c frameworks do not reveal a clear answer, they can clarify key trade-o�s, risks of un-
intended consequences, benchmarks for evaluation, and questions that are essential to answer
before deployment. In turn, designing tools whose exposition explicitly engages with political
science frameworks can spur richer multidisciplinary engagement with how to improve these
algorithms further.

14.4 Part II: Grounding computational social choice models in political scientific re-
search

The �elds of theoretical and computational social choice regularly rely on models of electoral
systems. These models make assumptions about how voters interact with di�erent ballots, how
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they might strategize and with what information, how their preferences may be formed (e.g.,
worst-case, with randomness, etc), or even how their cardinal preferences (captured as utilities)
might be structured. Models are necessary, even if they are always wrong in some way; however,
our work in Part II illustrates how it can be informative to investigate how to relate — and

better ground — computational social choice models in frameworks and evidence from

political science.

An example of this approach is our work in Part II, where we propose to capture voters’ di�er-
ing stakes — an idea introduced in multiple political scienti�c theories — within a computational
social choice model. In doing so, we prove an equivalence between stakes and the widely-used
computational social choice assumption that each voter’s utility sums to 1. By connecting these
literatures, our work suggests an interpretation of the unit-sum utilities assumption: that all vot-
ers have the same stakes in the decision. Although this interpretation calls into question whether
the unit-sum utilities assumption holds in practice, its equivalence with stakes gives bounds un-
der that assumption added purpose: if we can mechanistically incentivize voters to engage with
democratic systems in ways that respond to their stakes, we can (at least approximately, realisti-
cally) achieve a condition equivalent to the unit-sum utilities assumption.

Our conclusions in this paper allude to many further opportunities to apply this approach. First,
understanding how real voters might engage with our mechanism prompts deeper study of sev-
eral fundamental assumptions in voting theory: how voters decide in which elections to vote;
how they assess the degree to which they are impacted by a decision, and their own probability
of pivotality; and how we should practically interpret the utilities used in computational social
choice models. Grounding our social choice models in these aspects would serve not only the
future work proposed in this thesis, but also open up new avenues for re-examining the many
prohibitive impossibilities arising in worst-case social choice models.

One particular modeling assumption that is worth digging into further is the preference model,
encapsulating models of voters’ ballot submissions and, sometimes, the underlying utilities that
shape them. Assuming voters’ utilities preferences are adversarial potentially eliminates con-
sideration of an entire spectrum of less pessimistic, still realistic preference structures. While
beyond-worst-case models of voter preferences do exist, many assume independence between
voters (e.g., see this expected distortion model [155], or the growing line of work on smoothed
analysis of voting [132, 287]). If we believe that Part II’s motivating scenario—the tyranny of the

less a�ected majority—could be realistic, then we have reason to be suspicious of this indepen-
dence assumption: if voters’ preferences are independent, it becomes very di�cult to recover
this kind of problematic election scenario, because doing so relies precisely on the correlations
between beliefs that can emerge in practice due to homophily, segregation, and �lter bubbles. A
fundamental problem that remains open, then, is building theoretical social choice models that
more accurately replicate the problems — and the opportunities for positive results — that arise
in real elections.
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14.5 Part III: Distilling where theoretical models have a comparative advantage —
and where they should give way to support empirical research and measurement

Our work in Part III can be seen as an example of the approach discussed in the previous section:
we propose a model of voter behavior that re�ects — if coarsely, so far — evidence of voters going
beyond individual rationality in favor of sociotropism, especially under deliberative conditions.
However, Part III also exempli�es yet another way that theoretical computer science can con-
tribute to political science research, and vice versa: by helping support empirical research

and measurement. Doing so, however, requires acute attention to where theoretical models
have a comparative advantage.

Suppose for a moment that you, as a computer science researcher, had the same intuition that
inspired our work in Part III: that democratic deliberation improved democratic outcomes. In
other words, you want to study the following causal relationship:

Deliberation =⇒ Better Democratic Outcomes

Maybe you decide to approach this question in theory because you identify the same key chal-
lenge we did: in any practical case study, it is hard to argue that any given outcome is absolutely
better than another (at least in any way that avoids subjective judgement). Theory is a natural
approach, because it permits making claims about the quality of the outcome (in our case, its
utilitarian social welfare) that hold irrespective of underlying model primitives that cannot be
observed in practice (in our case, utilities).

Now that we have determined why theory may have a comparative advantage in studying this
question, we might proceed via the most direct theoretical approach: to study the entire impli-
cation, end-to-end, in theory. This means building a theoretical model of how people interact
during deliberation, and then characterizing what kinds of conditions lead to what kinds of out-
comes. While this approach is not in any way wrong, it is not clear that studying the entire

implication—from deliberation to outcome quality—maximizes theory’s comparative advantage.
After all, there are many aspects of deliberation that are so complicated that they are even di�-
cult to measure, let alone capture precisely in a theoretical model. As a result, any conclusions
we reach may be based on a model that departs from reality in ways we cannot even measure,
and it will be hard to act on them with certainty.

In Part III, we took a di�erent approach, which we now aim to generalize here. We �rst expanded
our model of this causal relationship into a more general conjectured causal graph, identifying
mediators based on existing theories and empirical evidence. In Part III, our conjectured causal
graph was quite simple:

Deliberation =⇒ Public Spirit =⇒ Better Democratic Outcomes

After expanding our causal relationship into a causal graph, we then revisited our question: which
of these implications require theory, and which are best suited for study in practice? Our re-
sponse, as discussed in Part III, was that while the second implication is better-studied in theory
due to the aforementioned challenge of measuring absolute outcome quality, the �rst implication
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is more easily measured in practice. Conveniently, the �rst implication collapses immeasurably
complicated deliberation dynamics into a much simpler condition, meaning that our theoretical
model could be considerably simpler than one capturing the entirety of deliberative dynamics.
This may in general be an advantage of the approach of identifying causal intermediates: it can
simplify the requisite theoretical models, because we can study the impacts of intermediates in
isolation — or at least be transparent about why we cannot.

Zooming out, this decomposition of into multiple logical links can be valuable in facilitating
richer interplay between empirical study and theoretical study. As was the case in Part III, our
theory informed our experiments by identifying outcome-relevant quantities to measure, and
our experiments will in turn help inform more accurate theoretical models. This can be true in
applications of this method that lead to more general causal graphs as well. In practice, a re-
search approach using this decomposition method can also lead to new outcome-based evaluation

techniques — even in settings like deliberation, where measuring the quality of outcomes directly
is challenging. As an example, consider our work in Part III: based on our approach, one could
evaluate a deliberative process on the basis of whether it cultivated public spirit — a condition
which we know leads to higher-welfare democratic outcomes, subject to whatever caveats our
theoretical study of its impact requires.
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A
Chapter 2 Appendix

A.1 Notation Glossary

Sets of Agents

# Set of agents in the population
Recipients Set of agents who receive invitation letters (random variable)
Pool Set of agents in the pool (random variable)
Panel Set of agents on the panel (random variable)
Sortition Panel Parameters

= Size of the population
A Number of invitation letters sent out
: Size of the panel
� Set of all features
+5 Set of possible values for a speci�c feature 5 ∈ �
� (8) Feature vector of agent 8
= 5 ,E Number of agents in the population with value E of feature 5
ℓ5 ,E , D 5 ,E Lower and upper quotas for every feature-value pair
@8 Probability that agent 8 ∈ # enters the pool, conditioned on being invited
@∗ Minimum value of @8 over all agents (@∗ := min8∈# @8 )
U Parameter de�ned as U := @∗ A/:
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A.2 Supplementary Material for section 2.3

A.2.1 Discussion of Theorem Preconditions

We show that pools are good with high probability under two preconditions: that each feature-
value group constitutes at least 1/: fraction of the population (so = 5 ,E/= ≥ 1/: for all 5 , E), and
that the number of recipients is su�ciently high relative to the participation probabilities and the
panel size (U = @∗ A/: →∞).

The �rst condition is natural because if a group should proportionally receive less than one seat
on the panel, any positive lower bound on selection probabilities for agents in groups would
violate proportionality.

The second condition enforces that the number of agents invited A is large enough relative to
the minimum participation probability @∗ and the size of the panel. Without this condition, there
can be a constant probability that the pool will feature zero agents with a certain feature-value:
Suppose that U is an arbitrary positive constant, set all @8 B U :/A , and consider a feature-value
pair 5 , E with = 5 ,E = =/: agents. In expectation, there will be (A/=) (=/:) = A/: agents with
feature-value 5 , E among the recipients. If A ∈ l (:), there are at most 2 A/: such recipients with
high probability. Then, the probability that the pool contains no agent with 5 , E is at least

(1 − U :/A )2 A/: = (1 − @8)2U/@8 =
(
(1 − @8)1/@8︸       ︷︷       ︸
→ 1/4 as @8 → 0

)2U → 4−2U > 0.

A.2.2 Discussion of Ties to Discrepancy Theory

In rounding agents’ marginal selection probabilities to select a panel, we round fractional vari-
ables to 0 or 1 such that the sum of certain sets of variables changed only by a small amount. This
problem is closely connected to combinatorial discrepancy [77, 253], which can be summarized in
the same words, by additionally assuming that the initial fractional values are 1/2. In fact, the
original Beck-Fiala theorem arises in the context of discrepancy, showing that, if each variable
appears in a bounded number C of sets, discrepancy Θ(C) can be achieved (where in our setting,
C corresponds to |� |, the number of features). Beck and Fiala [40] conjectured that it is actually
possible to achieve discrepancy in O(

√
C). Should this conjecture be true, similar ideas might

translate to our setting to guarantee the satisfaction of quotas closer to exact proportionality. To
this day, however, the best known bound in C is still in Θ(C) [64]. In accordance with this result,
we guarantee a relaxation of |� | from proportional representation of groups.

We note that there do exist other discrepancy results that give sub-linear dependencies on |� |,
but at the cost of introducing dependencies on other parameters. One such result is Theorem
5.3 in [34], which guarantees discrepancy a square-root dependency on |� |. However, subject to
our requirement that the per-person marginal probability must deviate from :/= by only ±X:/=
where X ∈ > (1), Bansal’s result guarantees a discrepancy bound of $ (

√
|� | log(:=/X)), which

grows in =, making it unfavorable in our setting.
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A.2.3 Proof of lemma 2.3.2

The results in this section allow : ≥ 1 and A ≥ 1 to vary arbitrarily in =; they just require that
U := @∗A/: → ∞ as = → ∞ (without requiring U to grow at a speci�c minimum rate relative to
=). All convergences are relative to = going to in�nity.

LemmaA.2.2. Suppose that U →∞ and= 5 ,E ≥ =/: for all 5 , E . Then, for all agents 8 ∈ Population ,
P[Pool is good | 8 ∈ Pool ] → 1.

In the following proofs, it is convenient to refer to 1/@∗, the largest possible value of 08 , as 0∗.
Note that 0∗ = A

U :
. We will refer to the random set of recipients with a certain feature-value pair

5 , E as Recipients 5 ,E B {8 ∈ Recipients | 5 (8) = E}.

We begin by showing in lemmas A.2.1 and A.2.3 that, conditioned on 8 being in the pool, the
following three events occur with high probability:

A. : 0∗ ≤ ∑
9∈Pool 0 9

B.

∑
9∈Pool 0 9 ∈ [(1 − U−.492) A, (1 + U−.492) A ]

C.

∑
9∈Pool :5 ( 9)=E 0 9 ∈ [(1 − U−.492)

=5 ,E

=
A, (1 + U−.492) =5 ,E

=
A ] ∀5 , E

We then show in lemma A.2.4 that, when these events occur on some pool, the pool must be good,
which concludes the proof of lemma 2.3.2.

Lemma A.2.1. Under the assumptions of lemma 2.3.2, P [Event A ∧ Event B | 8 ∈ Pool ] → 1.

Proof. Fix the set of recipients ' (including 8). With respect to the randomness in the pool self-
selection, the random variables 0 9 ·1{ 9 ∈ Pool } across all 9 ∈ ' \ {8} are independent, bounded in
[0, 0∗], and have expected value 0 9 @ 9 = 1. Thus, by a Cherno� bound, and using that 0∗ = A/(U :),

P


������ ∑
9∈Pool\{8}

0 9 − (A − 1)

������ ≥ U−.495 (A − 1)
 ≤ 2 4−U−.99

A−1
0∗ /3

= 2 4−U−.99
A−1
A
U :/3

≤ 2 4−Ω(U .01) → 0,

where the last inequality uses the fact that A ≥ 2 for large enough =1 and that : ≥ 1.

Conditioning on this high-probability event, it follows that, for large enough =,∑
9∈Pool

0 9 ≥ 1 +
∑

9∈Pool\{8}
0 9 ≥ 1 + (1 − U−.495) (A − 1) ≥ (1 − U−.492) A,

1Since A = U :/@∗ ≥ U/@∗ ≥ U →∞.
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which shows the lower bound in Event B. For the upper bound,∑
9∈Pool

0 9 ≤ 0∗ +
∑

9∈Pool\{8}
0 9 ≤ 0∗ + (1 + U−.495) (A − 1) ≤ A/(U :) + (1 + U−.495) A

≤ (1 + U−.495 + 1/U) A ≤ (1 + U−.492) A ≤ 1/(1 − U−.492) A .

This establishes Event B.

For large enough =, the lower bound on
∑
9∈Pool 0 9 can be extended as∑

9∈Pool
0 9 ≥ (1 − U−.492) A ≥ A/U ≥ : 0∗,

which shows Event A. �

For Event C, we need to show that
∑
9∈Pool :5 ( 9)=E 0 9 is concentrated for a feature-value pair 5 , E .

As an intermediate step, we �rst show that the number of pool members (“
∑
9∈Pool :5 ( 9)=E 1”) with

this feature-value pair is concentrated:

Lemma A.2.2. Under the assumptions of lemma 2.3.2, for each 5 , E ,

P
[
(1 − U−.495)

= 5 ,E

=
A ≤

��Recipients 5 ,E �� ≤ (1 + U−.495) = 5 ,E
=
A

��� 8 ∈ Pool ] → 1.

Proof. Conditioned on 8 ∈ Pool ⊆ Recipients , Recipients \ {8} is distributed as if A − 1 members
of Population \ {8} were drawn with equal probability and without replacement. Thus,

E
[��Recipients 5 ,E �� �� 8 ∈ Pool ] = {

= 5 ,E
A−1
=−1 if 5 (8) ≠ E

1 + (= 5 ,E − 1) A−1=−1 if 5 (8) = E .

In both cases, we show that E
[��Recipients 5 ,E �� �� 8 ∈ Pool ] ∈ [(1 − :/A ) = 5 ,E A= , (1 + :/A ) = 5 ,E A= ].

Indeed, for the upper bound,

E
[��Recipients 5 ,E �� �� 8 ∈ Pool ] ≤ 1 + (= 5 ,E − 1)

A − 1
= − 1 ≤ 1 + = 5 ,E

A

=
=

(
1 + =

= 5 ,E
/A

)
= 5 ,E

A

=

≤ (1 + :/A ) = 5 ,E
A

=
≤ (1 + 1/U) = 5 ,E

A

=
.

For the lower bound,

E
[��Recipients 5 ,E �� �� 8 ∈ Pool ] ≥ = 5 ,E A − 1

= − 1 =
A − 1
A

= 5 ,E
A

=
= (1 − 1/A ) = 5 ,E

A

=

≥ (1 − :/A ) = 5 ,E
A

=
≥ (1 − 1/U) = 5 ,E

A

=
.
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As the (independent) union of the deterministic set {8} and indicator variables for sampling with-
out replacement, the variables 1{ 9 ∈ Recipients} satisfy negative association and therefore Cher-
no� inequalities [273]. Thus, for the upper tail bound,

P
[��Recipients 5 ,E �� ≥ (1 + U−.497) (1 + 1/U) = 5 ,E A

=

��� 8 ∈ Pool ] ≤ 4−U−.994 (1+1/U) =5 ,E A
=
/3

≤ 4−U−.994 =5 ,E A
=
/3 ≤ 4−U−.994 A

:
/3 ≤ 4−U−.994 U/3 ≤ 4−U .006/3 → 0.

Similarly, for the lower tail bound,

P
[��Recipients 5 ,E �� ≤ (1 − U−.497) (1 − 1/U) = 5 ,E A

=

��� 8 ∈ Pool ] ≤ 4−U−.994 (1−1/U) =5 ,E A
=
/2

(U≥3)
≤ 4−U

−.994 =5 ,E
A
=
/3 ≤ 4−U .006/3 → 0.

The claim follows from observing that, for A/: large enough,

(1 − U−.497) (1 − 1/U) ≥ 1 − U−.497 − U−1 ≥ 1 − U−.495

and
(1 + U−.497) (1 + 1/U) = 1 + U−.497 + U−1 + U−1.497 ≤ 1 − U−.495. �

Lemma A.2.3. Under the assumptions of lemma 2.3.2, P [Event C | 8 ∈ Pool ] → 1.

Proof. Fix a single feature-value pair 5 , E . By lemma A.2.2, with high probability, the number of
recipients A 5 ,E with feature-value pair 5 , E is in[

(1 − U−.495)
= 5 ,E

=
A, (1 + U−.495)

= 5 ,E

=
A

]
.

Going forward, we will �x a set of recipients ', and we assume that A 5 ,E indeed falls in this range.
For large enough =, this implies that A 5 ,E is positive. For ease of notation, we will implicitly
condition on 8 ∈ Pool and these high-probability events.

The self-selection process of agents with feature-value pair 5 , E might look a bit di�erent depend-
ing on whether 5 (8) = E . If 5 (8) ≠ E , the self selection of agents with feature-value pair 5 , E is
independent from our knowledge about 8 being in the pool. Thus, the random variable

∑
9∈Pool ,
5 ( 9)=E

0 9

is the sum of independent random variables 0 9 1{ 9 ∈ Pool } for each 9 ∈ ', 5 ( 9) = E , where each

variable is bounded in [0, 0∗] and has expectation 1. In particular, E
[∑

9∈Pool ,
5 ( 9)=E

0 9

]
= A 5 ,E .

Else, if 5 (8) ≠ E , ∑ 9∈Pool ,
5 ( 9)=E

0 9 is still the sum of independent random variables 0 9 1{ 9 ∈ Pool } and

each variable is bounded in [0, 0∗]. However, the speci�c variable 08 1{8 ∈ Pool } is deterministi-

230



cally 08 (all other variables still have expectation 1). Thus, E
[∑

9∈Pool ,
5 ( 9)=E

0 9

]
= A 5 ,E − 1 + 08 .

A 5 ,E − 1 + 08 =
(
1 + 08 − 1

A 5 ,E

)
A 5 ,E ≤

(
1 + 0∗

A 5 ,E

)
A 5 ,E ≤

(
1 + A/(U :)
(1 − U−.495) A = 5 ,E/=

)
A 5 ,E

≤
(
1 + A/(U :)
(1 − U−.495) A/:

)
A 5 ,E =

(
1 + 1
(1 − U−.495) U

)
A 5 ,E

≤ (1 + 2/U) A 5 ,E . (for U .495 ≥ 2)

Thus, across both cases, the expectation E
[∑

9∈Pool ,
5 ( 9)=E

0 9

]
is at least A 5 ,E ≥ (1 − U−.495)

=5 ,E

=
A and at

most (1 + 2/U) A 5 ,E ≤ (1 + 2/U) (1 + U−.495)
=5 ,E

=
A ≤ (1 + U−.493) =5 ,E

=
A for large =, and we can use

Cherno� bounds.

For bounding the lower tail,

P


∑

9∈Pool ,
5 ( 9)=E

0 9 ≤ (1 − U−.495) (1 − U−.495)
= 5 ,E

=
A

 ≤ 4
−U−.99 (1−U−.495)

=5 ,E

=
A/(20∗)

(U .495≥3)
≤ 4−U

−.99 =5 ,E

=
A/(30∗) = 4−U

−.99 =5 ,E

=
A/(3 A/(U :)) ≤ 4−U−.99

=5 ,E

=
U :/3

≤ 4−U−.99 U/3

≤ 4−U .01/3 → 0.

For bounding the upper tail,

P


∑

9∈Pool ,
5 ( 9)=E

0 9 ≥ (1 + U−.495) (1 + U−.493)
= 5 ,E

=
A

 ≤ 4
−U−.99 (1+U−.493)

=5 ,E

=
A/(30∗)

≤ 4−U−.99
=5 ,E

=
A/(30∗) = 4−U

−.99 =5 ,E

=
U :/3 ≤ 4−U−.99 U/3 ≤ 4−U .01/3 → 0.

Note that, for large =, (1−U−.495) (1−U−.495) ≥ 1−2U−.495 ≥ 1−U−.492. Similarly, (1+U−.495) (1+
U−.493) ∈ 1 + O(U−.493)) ≤ 1 + U−.492.

This shows that, for each 5 , E , (1 − U−.492) =5 ,E
=
A ≤ ∑

9∈Pool ,
5 ( 9)=E

0 9 ≤ (1 + U−.492)
=5 ,E

=
A with high

probability. The claim follows by a union bound over all (�nitely many) feature-value pairs. �

Lemma A.2.4. For large enough =, if Events A, B, and C occur for a pool % , % is good.

Proof. Suppose that Events A, B, and C occur in a pool % .
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Condition (2.1): ∀9 ∈ % . 0 ≤ c 9,% ≤ 1. Clearly, c 9,% is nonnegative, and Event A implies that
c 9,% = : 0 9/

∑
9 ′∈% 0 9 ′ ≤ : 0∗/

∑
9 ′∈% 0 9 ′ ≤ 1.

Condition (2.2): ∀5 , E . (1 − U−.49) : = 5 ,E/= ≤
∑
9∈% :5 ( 9)=E c 9,% ≤ (1 + U−.49) : = 5 ,E/=. Fix any

feature-value pair 5 , E . Recall that, by Event B,∑
9∈%

0 9 ∈ [(1 − U−.492) A, (1 + U−.492) A ],

and, by Event C, ∑
9∈% :5 ( 9)=E

0 9 ∈ [(1 − U−.492)
= 5 ,E

=
A, (1 + U−.492)

= 5 ,E

=
A ] .

Observe that, for any G ∈ [0, 1/3],

1 + G
1 − G ≤

1 + G + G (1 − 3G)
1 − G =

1 + 2G − 3G2
1 − G = 1 + 3G .

Then, if = is large enough such that U−.492 ≤ 1/3, it follows that∑
9∈% :5 ( 9)=E

c 9,% = :

∑
9∈% :5 ( 9)=E 0 9∑

9∈% 0 9
≤ :
(1 + U−.492) =5 ,E

=
A

(1 − U−.492) A ≤ (1 + 3U−.492) :
= 5 ,E

=

≤ (1 + U−.49) :
= 5 ,E

=
.

Next, observe that, for any G ,

1 − G
1 + G ≥

1 − G − 2G2
1 + G = 1 − 2G .

Thus, ∑
9∈% :5 ( 9)=E

c 9,% = :

∑
9∈% :5 ( 9)=E 0 9∑

9∈% 0 9
≥ :
(1 − U−.492) =5 ,E

=
A

(1 + U−.492) A ≥ (1 − 2U−.492) :
= 5 ,E

=

≥ (1 − U−.49) :
= 5 ,E

=
.

Condition (2.3):
∑
8∈% 08 ≤ A/(1 − U−.49). This follows from Event B since

∑
9∈% 0 9 ≤ (1 +

U−.492) A ≤ (1 + U−.49) A = 1−U−.98
1−U−.49 A ≤ A/(1 − U

−.49) for large enough =. �
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A.2.4 Proof of lemma 2.3.3

Rounding the Linear Program Using Discrepancy Methods

In Part II of the algorithm, we need to implement the marginal probabilities c8,% from Part I by
randomizing over panels of size : . Additionally, the panels produced by this procedure should
guarantee that the number of panel members of a feature-value pair (5 , E) lies in a narrow interval
around the proportional number of panel members : = 5 ,E/=. Technically, this corresponds to
randomly rounding the fractional solution G8 B c8,% of an LP, such that afterwards all variables
are 0 or 1, i.e., indicator variables for membership in a random panel.

Formally, we prove the following lemma:

Lemma A.2.3. There is a polynomial-time sampling algorithm that, given a good pool % , produces

a random panel Panel such that (1) P[8 ∈ Panel ] = c8,% for all 8 ∈ % , (2) |Panel | = : , and (3)∑
8:5 (8)=E c8,% − |� | ≤ |{8 ∈ Panel | 5 (8) = E}| ≤

∑
8:5 (8)=E c8,% + |� |.

To round the linear program, we use an iterative rounding procedure based on the famous Beck-
Fiala theorem [40]. For ease of exposition, we �rst describe an algorithm for deterministic round-
ing and describe in the subsequent subsection how to turn it into a randomized rounding proce-
dure. From here on, we drop the index “%” from the marginal probabilities c8,% , both for ease of
notation and to emphasize that the lemma applies to any set of marginal probabilities adding up
to : (such other marginals might arise, say, from clipping and rescaling the c8,% if some of them
are greater than 1).

Lemma A.2.5. For a pool % , let (c8)8∈% be any collection of variables in [0, 1] such that
∑
8∈% c8 = : .

Then, we can e�ciently compute a deterministic 0/1 rounding (G8)8∈% such that
∑
8∈% G8 = : and such

that, for each feature-value pair 5 , E ,∑
8∈% :5 (8)=E

c8 − |� | ≤
∑

8∈% :5 (8)=E
G8 ≤

∑
8∈% :5 (8)=E

c8 + |� |.

Proof. We initialize G8 ← c8,% , and the following inequalities are therefore satis�ed:∑
8∈%

G8 = : (A.1)∑
8∈% :5 (8)=E

G8 =
∑

8∈% :5 (8)=E
c8,% ∀5 , E . (A.2)

We then iteratively update the G8 and maintain a set of equations that starts as the equations
in eqs. (A.1) and (A.2), but from which we will iteratively drop some equations of type (A.2).
Throughout this process, wemaintain that theG8 satisfy all remaining (i.e., not dropped) equations
and that G8 ∈ [0, 1] for all 8 . We call G8 ∈ (0, 1) active; once an G8 stops being active, it stays at its
value 0 or 1 to the end of the rounding. We continue our iterative process until no more active
variables remain, at which point we return our 0/1 rounding.
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Whenever the number of remaining equalities is lower than the number of active agents, the
values G8 for the active variables must be underdetermined by the equalities. More precisely, after
considering all inactive G8 as constants, the space of remaining G8 that satis�es the remaining
equalities forms an a�ne subspace of non-zero dimension. Since this subspace must intersect
the boundary of the unit hypercube, there is a way of updating the G8 such that all equalities
are preserved, such that no inactive variable gets changed, and such that at least one additional
variable becomes inactive (progress).1

Else, we know that the number of active agents =′ is at most the number of remaining equalities
<. If< = 1, i.e., if eq. (A.1) is the only remaining equation, there cannot be any active agents since
eq. (A.1) can only be satis�ed if no G8 or at least two G8 are non-integer. Thus, in the following,
< ≥ 2. For any remaining equality of type (A.2) corresponding to some feature-value pair 5 , E ,
say that it ranges over C many active variables if there are C many active variables G8 such that
5 (8) = E . Should any of the remaining constraints range over all =′ many active variables, then
this constraint must be implied by constraint (A.1) and the values of the inactive variables. We
can thus drop the redundant constraint without consequences (progress), and repeat the iterative
process.

If none of these steps apply, we show that some constraint of type (A.2) ranges over at most |� |
active variables: Clearly, this is the case if =′ ≤ |� |, and furthermore if =′ = |� | + 1 because we
removed constraints of type (A.2) ranging over all active variables. If =′ > |� | + 1, note that
every active agent appears in at most |� | many equations of type (A.2), at most one per feature.
It follows that the total number of active agents summed up over all remaining equalities of this
type is at most =′ |� | < =′ |� | − (|� | + 1) +=′ = (=′ − 1) ( |� | + 1) ≤ (< − 1) ( |� | + 1), which implies
that one of the< − 1 equalities of type (A.2) ranges over less than |� | + 1 active variables. Drop
all such equalities (progress) and repeat.

Since =′ +< decreases in every iteration, this algorithm will produce a deterministic panel in
polynomial time. Since constraint (A.1) is never dropped, the panel size must be exactly : . By
how much might the equations of type (A.2) for a feature-value pair 5 , E be violated in the result?
Clearly, they are maintained exactly up to the point where they are dropped.2 From this point on,
however, only |� | many active variables could still change the value of

∑
8∈% :5 (8)=E G8 . Since each

of these variables remains in its range [0, 1] throughout the rounding process, the �nal G8 must
satisfy ∑

8∈% :5 (8)=E
c8 − |� | ≤

∑
8∈% :5 (8)=E

G8 ≤
∑

8∈% :5 (8)=E
c8 + |� |. �

Randomizing the Beck-Fiala rounding

We give two methods of transforming the previous deterministic rounding algorithm into a ran-
domized rounding algorithm. To prove lemma 2.3.3, we can directly apply a result by Bansal [34]

1This step can be implemented in polynomial time by solving systems of linear equations.
2We do not count if the equality was dropped because it was implied by constraint (A.1), in which case it is

preserved exactly throughout the rounding.
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to our deterministic rounding procedure:

Lemma A.2.3. There is a polynomial-time sampling algorithm that, given a good pool % , produces

a random panel Panel such that (1) P[8 ∈ Panel ] = c8,% for all 8 ∈ % , (2) |Panel | = : , and (3)∑
8:5 (8)=E c8,% − |� | ≤ |{8 ∈ Panel | 5 (8) = E}| ≤

∑
8:5 (8)=E c8,% + |� |.

Proof. Weapply Theorem 1.2 by Bansal [34] to the deterministic rounding procedure of lemmaA.2.5.
To apply the theorem, we need to give a X > 0 such that, when there are =′ many active variables
left, the number of remaining equalities in the next iteration is at most (1 − X) =′ constraints. In
lemma A.2.5, we showed that< is always set to a value of at most =′ − 1. Thus, for X B 1/=, we
get that< ≤ =′ − 1 = (1 − 1/=′) =′ ≤ (1 − 1/=) =′ and can apply the theorem. �

While the previous algorithm runs in polynomial time, we found an alternative way of random-
izing the rounding to be more e�cient in practice. This technique is based on naïve column
generation, which is not guaranteed to run in polynomial time, but has the following advantages:

• it uses linear programs rather than semi-de�nite programs,

• instead of a single random panel, the column generation (deterministically) generates a
distribution over panels, which allows us to analyze the distribution after a single run, and

• there is a continuous progress measure that allows us to stop the optimization process once
we implement the c8 with su�cient accuracy.

We describe this algorithm in the proof of the following version of lemma 2.3.3, which does not
require polynomially-bounded runtime:

Lemma A.2.6. There is a sampling algorithm that, given a good pool % , produces a random panel

Panel such that (1) P[8 ∈ Panel ] = c8,% for all 8 ∈ % , (2) |Panel | = : , and (3)
∑
8:5 (8)=E c8,% − |� | ≤

|{8 ∈ Panel | 5 (8) = E}| ≤ ∑
8:5 (8)=E c8,% + |� |.

Proof. First, note that we can strengthen lemma A.2.5 slightly by giving it an arbitrary vector
®2 ∈ R|% | as part of its input and additionally requiring that 〈®2, ®G〉 ≥ 〈®2, ®c〉, where ®G is the vector of
G8 and ®c the vector of c8 . This stronger statement follows from the same proof if we require every
update of the G8 to additionally maintain that 〈®2, ®G〉 ≥ 〈®2, ®c〉. Since this intersects the non-zero
dimensional a�ne subspace formed by the constraints with a half space that contains at least the
current point ®G , the resulting intersection is still unbounded, which means that we can �nd an
intersection with the boundary of the hypercube. We refer to this procedure as the “modi�ed
lemma A.2.5.”

Now, letB ≠ ∅ be any set of panels satisfying the constraints of the lemma, possibly exponentially
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many. Consider the following linear program and its (simpli�ed) dual:

PRIMAL(B): DUAL(B):

minimize X maximize

(∑
8∈%

c8 I8

)
− Î

s.t.

�����c8 − ∑
�∈B:8∈�

_�

����� ≤ X ∀8 ∈ % s.t.

∑
8∈�

I8 ≤ Î ∀� ∈ B∑
�∈B

_� = 1 |I8 | ≤ 1 ∀8 ∈ %

X ≥ 0, _� ≥ 0 ∀� ∈ B

The primal LP searches for a distribution over the panelsB such that the largest absolute devia-
tion between the marginal

∑
�∈B:8∈� _� and the target value c8 of any 8 ∈ % is as small as possible.

Let B denote the set of panels that can be returned by the modi�ed lemma A.2.5, for any vector
®2 in its input.

Observation 1: For any B ≠ ∅, the LP has an objective value obj (B) ≥ 0. Indeed, in the
primal, the objective value is clearly bounded below by 0, and the LP is feasible for any distribution
over B and large enough X . By strong duality, the dual LP must have the same objective value.

Observation 2: obj (B) = 0. For the sake of contradiction, suppose that the objective value was
strictly positive, i.e., that ®c does not lie in the convex hull of B. Then, there must be a plane
separating ®c from this convex hull, and an orthogonal vector ®2 such that 〈®2, ®c〉 > 〈®2, ®G〉 for any ®G
corresponding to a panel inB. Applying the modi�ed lemma A.2.5 with this vector ®2 would lead
to a contradiction.

Consider algorithm 1, which iteratively generates a subset B ⊆ � by column generation.

Algorithm 1 Column generation
B← {result of running modi�ed lemma A.2.5 with arbitrary ®2} while obj (B) > 0 do

�x optimal values I8, Î for DUAL(B) � ← result of running modi�ed lemma A.2.5 with ®2 as the vector of I8
B← B ∪ {�}

return B

Observation 3: algorithm 1 terminates. It su�ces to show that, in appendix A.2.4, the gener-
ated panel � is not yet contained inB since, then, the size ofB grows in every iteration and is al-
ways upper-bounded by the �nite cardinality ofB. By the de�nition of the modi�ed lemma A.2.5,
� always satis�es

∑
8∈� I8 ≥

∑
8∈% c8 I8 . However, since the objective value is positive, any �′ ∈ B

satis�es
∑
8∈% c8 I8 > Î ≥

∑
8∈�′ I8 , which shows that � ∉ B.

Once algorithm 1 terminates with a set B, we know that obj (B) = 0, which means that, by
solving PRIMAL(B), we obtain a distribution over valid panels that implements the marginals c8 ,
which concludes the proof. �
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In practice, it makes sense to exit the while loop in appendix A.2.4 alreadywhen obj (B) is smaller
than some small positive constant, which guarantees a close approximation to the marginal prob-
abilities while reducing running time and preventing issues due to rounding errors.

A.2.5 Proof of theorem 2.3.1

Theorem A.2.1. Suppose that U → ∞ and = 5 ,E ≥ =/: for all feature-value pairs 5 , E . Consider a

sampling algorithm that, on a good pool, selects a random panel, Panel , via the randomized version

of lemma 2.3.3, and else does not return a panel. This process satis�es, for all 8 in the population, that

P[8 ∈ Panel ] ≥ (1 − > (1)) :/=.

All panels produced by this process satisfy the quotas ℓ5 ,E B (1 − U−.49) : = 5 ,E/= − |� | and D 5 ,E B
(1 + U−.49) : = 5 ,E/= + |� | for all feature-value pairs 5 , E .

Proof. The claim about the quotas immediately follows from lemma 2.3.3 and the de�nition of a
good pool. Concerning the selection probabilities,

P[8 ∈ Panel ] =
∑

good pools %
8∈%

P[8 ∈ Panel | Pool = %] P[Pool = %] =
∑

good pools %
8∈%

: 08∑
9∈% 0 9

P[Pool = %] .

Since
∑
9∈% 0 9 ≤ A/(1 − U−.49) for good pools, we continue

≥ (1 − U−.49) :/(A @8)
∑

good pools %
8∈%

P[Pool = %] = (1 − U−.49) :
A @8
P[8 ∈ Pool ∧ Pool is good]

= (1 − U−.49) :
A @8
P[Pool is good | 8 ∈ Pool ]︸                             ︷︷                             ︸

∈ 1 − > (1) by lemma 2.3.2

P[8 ∈ Pool ]︸        ︷︷        ︸
=@8 A/=

∈ (1 − > (1)) :
=
. �

A.3 Supplementary Material for section 2.4

Participation Model Let ~8 = 1 for agents who would join the pool if invited, and ~8 = 0 for
agents who would not. We want to predict @8 = P[~8 = 1] for all agents in the pool. To do so,
we learn the following parametric model, which describes the relationship between an agent’s
feature vector � (8) and value of @8 .

@8 = V0
∏
5 ∈�

V 5 ,5 (8)

This type of generative model describes a decision process known as simple independent ac-

tion [119, as cited in [280]]. To express this model in a more standard form, let G8 be a vector
describing agent 8’s values for all features in � , where each index 9 of G8 corresponds to a feature-
value 5 , E and contains a binary indicator of whether agent 8 has value E for feature 5 . Let " be
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the length of G8 , where" = 1 + #5 40CDA4-E0;D4B . We then reshape parameters V0, V 5 ,E for all 5 , E
into a parameter vector # of length" , and correspondingly, G8 must have value 1 at its �rst index
for all agents 8 , corresponding to the parameter V0. We can then write an equivalent version of
our model in more standard form. Note that @8 is technically a function of G8, # , but we omit this
notation for simplicity.

@8 =
∏
9∈["]

#
G8, 9
9

Maximum Likelihood Estimation with Contaminated Controls To estimate the param-
eters # of this model on �xed pool % and �xed background sample �, we apply the estimation
methods in Section 3 of Lancaster and Imbens [185]. We use the objective function in Equation
3.3, which is designed to perform maximum-likelihood estimation (MLE) in the setting of con-
taminated controls. Let I8 be an indicator such that I8 = 1 for 8 ∈ % and I8 = 0 for 8 ∈ �. Let
F8 be the weight of agent 8 ∈ � (for details on these weights, see Appendix A.4). Recall that @ is
the average participation probability in the underlying population. Then, the likelihood function
!(#) that we would maximize to directly learn our model is

!(#) =
∑
8∈�∪%

©«I8
∑
9∈["]

(
G8, 9 log # 9

)
−F8 log ©«@ |� |/|% | +

∏
9∈["]

#
G8, 9
9

ª®¬ª®¬
Unfortunately, !(#) is not obviously concave in # . To get around this, we re-parameterize our
model such that we can instead learn the logarithms of our parameters. De�ning a new parameter
vector \ such that \ 9 = log(# 9 ) for all 9 ∈ ["], we can rewrite our model equivalently as the
exponential model.

@8 =
∏
9∈["]

#
G8, 9
9

= exp ©«log ©«
∏
9∈["]

#
G8, 9
9

ª®¬ª®¬ = exp ©«
∑
9∈["]

G8, 9 log(#j)ª®¬ = 4\G8

By Equation 3.3 in Lancaster and Imbens [185], the likelihood function !′(\ ) we maximize is
now the following. By Theorem A.3.1, this objective function is concave, so it can therefore be
maximized e�ciently (under the constraint that \ ≤ 0).

!′(\ ) =
∑
8

(
I8\G8 −F8 log

(
@ |� |/|% | + 4\G8

))
(A.3)

Theorem A.3.1. The log-likelihood function for the simple independent action model under con-

taminated controls is concave in the model parameters.

Proof. The �rst term of the sum is linear, so both concave and convex. The second term is concave
by Lemma A.3.2, �

Lemma A.3.2. Let function 5 (\ ) = − log(2 + 4\- ), where 2 > 0 is a constant. 5 is concave.
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Proof. The 8, 9th term of the Hessian matrix � of 5 can be written as

�8, 9 = −-8- 9
24\-(

2 + 4\-
)2

Now, letk =
√
24\-

2+4\- . Noting that- is considered a column vector, we can then rewrite the Hessian
in terms of k as � = −(k- ) (k- )) . In words, the negative Hessian can be written as the outer
product of the vector k- with itself. Therefore, the negative Hessian is positive semi-de�nite,
and the Hessian is negative semi-de�nite, implying that 5 is concave. �

Discussion of Methods The reader may note that we treat @ as a known constant in our
estimation, but the objective function we use from Lancaster and Imbens is designed for the
setting inwhich@ is a variable. There is precedent in the literature for doing so [277]. As Lancaster
and Imbens discuss, using @ as a constant rather than a variable when maximizing Equation 3.3
introduces issues of over-parameterization, because it is not enforced that the average @8 over the
population be @. While we cannot estimate @8 values for the entire population for lack of data, it
would be a worrying sign if the average @8 over the background sample, a uniform sample from
the population, was far from our assumed @. However, we �nd that the average of our estimated
@8 values over the background sample is 2.9%, which matches @ = 2.9%.

A.4 Supplementary Material for section 2.5

For estimation, we use two datasets. For our positively-labeled data, we use the set of pool mem-
bers from the UK Climate Assembly (for details, see Appendix A.4.1). For our background sample,
we use the European Social Survey (ESS), which serves as an unlabeled uniform sample of the
population.

A.4.1 Climate Assembly UK Details & Pool Dataset

Our pool dataset contains the agents from the pool of the Climate Assembly UK, a national-level
sortition panel on climate change held in the UK in 2020. We use “panel” to refer to the group
of people who deliberate, and “assembly” to refer to the actual deliberation step. The panel for
this assembly as selected by the Sortition Foundation, a UK-based nonpro�t that selects sortition
panels. A document by the Sortition Foundation gives the following description of this assembly:1

This Citizens’ Assembly will meet across four weekends in early 2020 to consider how

the UK can meet the Governments legally binding target to reduce greenhouse gas emis-

sions to net zero by 2050. The outcomes will be presented to six select committees of

the UK parliament, who will form detailed plans on how to implement the assembly’s

recommendations. These plans will be debated in the House of Commons.

1https://docs.google.com/spreadsheets/d/1kwgOpxMX4pwR3Myu4pXku4gjcnOS53bPOKwOGjZNxyI/edit#
gid=0
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In the formation of the panel for this assembly, 30 000 letters were sent out inviting people to
participate. Of these letter recipients, 1 727 people entered the pool, and 110 people were selected
for the panel. The features and corresponding sets of values used for this panel are described in
Table A.1.

Feature (5 ∈ � ) Values (+5 )
Gender Male, Female, Other
Age 16-29, 30-44, 45-59, 60+
Region North East, North West, Yorkshire and the Humber,

East Midlands, WestMidlands, East of England, London,
South East, South West, Wales, Scotland, Northern Ire-
land

Education Level No Quali�cations/Level 1, Level 2/Level 3/Apprentice-
ship/Other, Level 4 and above

Climate Concern Level Very concerned, Fairly concerned, Not very concerned,
Not at all concerned, Other

Ethnicity White, Black or ethnic minority (BAME)
Urban / Rural Urban, Rural

Table A.1: Climate Assembly UK features and values.

Those with value Other for gender were dropped from the pool data because an equivalent value
could not be constructed in the ESS data. This resulted in us dropping 12 people out of the
original 1727, for a pool dataset of �nal size 1715. Note that dropping these people did not a�ect
our estimate of @ — before and after dropping these agents, it was 2.9%. The Climate Concern
Level feature was dropped altogether from the set of features used for analysis because there
were too few people in the pool with value Not at all concerned to give these agents proportional
representation on the panel.

Due to privacy agreements between the Sortition Foundation and the pool members, we are
unable to share this dataset.

A.4.2 Background Data

We de�ne the size of the ESS dataset to be the sum of the weights of the agents within it.1 For
details on weights, see the Re-weighting paragraph of this section. In order to use this data as our
background sample, we construct feature vectors for each person in the ESS data that correspond
to those used in Climate Assembly UK, as de�ned in Table A.1.

In this section, we describe how we constructed the variables corresponding to the features and
their values as speci�ed by the Sortition Foundation. We dropped 44 people out of the original

1This sum should ideally be equal to the number of people in the ESS data, but because we drop a few people,
the sum of weights no longer exactly equals the number of people.
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1959 people in the ESS dataset, and we brie�y discuss this decision and its implications. Finally,
we describe how we re-weighted the ESS data to correct for sampling and non-response bias to
approximate the scenario in which the surveyed individuals were uniformly sampled from the
population. This step is important because, in our @8 estimation procedure, we assume that our
background sample is uniformly sampled.

Variable construction Fortunately, the ESS data contained variables and categories that ei-
ther exactly or very closely corresponded to the features and values speci�ed by the Sortition
Foundation. Essentially the only modi�cation to the ESS data we made to construct valid feature
vectors was the aggregation over categories in the Education Level andUrban/Rural ESS variables,
which were broken down into more �ne-grained categories than those speci�ed in Table A.1. In
general, for features with values containing the value “other”, missing data was assigned the
value “other”. Below is a table showing which variables and values from the ESS data were used
to construct each feature from the Climate Assembly UK. Exact details on how these variables
were used is documented in the code (see Appendix A.4.3 for reference to readme).

Feature (Climate Assembly UK) Variable (ESS raw data)
Gender gndr
Age agea
Region region
Education Level edulvlb
Climate Concern Level wrclmch
Ethnicity blgetmg
Urban/Rural domicil

Dropping people As described in Table A.1, the Climate Assembly’s youngest valid age cate-
gory was 16-29. We therefore dropped all four people in the ESS data who were under 16 years
old. Dropping people who fall outside our demographic ranges of interest is not a problem for
weights, because the weights of all people of interest (who we want to be fair to) will remain the
same relative to each other, and we care only about the composition of this relevant population.
There were an additional 40 people whomay have beenwithin our demographic range of interest,
but who were missing age, race, or urban/rural data. Among these 40 people, 33, 6, and 4 people
did not have data for variables corresponding to the features age, ethnicity, and urban / rural,
respectively. While dropping these people could a�ect the weighting scheme, the distribution of
weights of those dropped is strongly right-skewed, meaning that those who we dropped belong
to groups that tended to be oversampled in the ESS data. These people are therefore likely more
numerous in the ESS data overall, and dropping some of them will have a smaller proportional
e�ect.
Finally, the ESS did not permit people to answer “other” for gender, a category permitted on the
Sortition Panel. Without any way to construct the gender = other feature-value in the ESS data,
we dropped the members of the Climate Assembly pool with this feature-value.
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Re-weighting The ESS recommends re-weighting their data to correct for bias, and they pro-
vide multiple sets of possible weighting schemes for doing so1. Of the provided options, we
elected to apply the Post-Strati�cation Weights, because these weights account for not only sam-
pling bias, but also non-response bias, by incorporating auxiliary information from other de-
mographic surveys. By this weighting scheme, each person in the ESS data is given a weight
F8 , representing how much that person should count in the analysis of the ESS data, where the
weights are normalized to 1. This weight is encoded in the ESS data as ‘pspwght’.

Estimation of q We bolster the identi�cation of our model with an estimate of @, the rate of
true positives in the population. In our setting, this is the number of people who would ultimately
enter the pool if invited. We estimate @ in Climate Assembly UK data roughly as the fraction of
people who joined the pool (1 715) out of those who were invited (30 000). These numbers seem
to imply that the @ ≈ 1 715/30 000 = 5.7%. However, there is a complication: each letter is sent
to a household, rather than an individual, and any eligible member of an invited household may
join the pool. Using the ESS data, we compute (see below) the average number of eligible panel
participants per household to be 2.00, implying that in reality, 60 000 eligible people were invited
to participate in the pool. As a result, we estimate @ to be @ = 1 715/60 000 ≈ 2.9%.

Let �(( be the set of agents in the cleaned ESS data. Computing the average number of eligible
panel participants per household from the ESS data is not entirely trivial, because sampling people
uniformly (or in the case of the ESS, approximating uniform sampling by re-weighting) is biased
toward larger households. To account for this, for each person 8 ∈ �(( , we scale their weightF8
by the inverse of the number of eligible people in their household, householdsize8 . Then,

average number of eligible people per household =

∑
8∈�((

(
F8

householdsize8

)
· householdsize8∑

8∈�((

(
F8

householdsize8

)
We compute ℎ>DB4ℎ>;3B8I48 for each person 8 ∈ �(( using the weighted ESS data. Age is the only
feature from the UK Climate Assembly for which the ESS data may contain values rendering
a person ineligible (speci�cally, the ESS data surveys people down to age 15, while the climate
assembly accepted only those over 16). To count the number of people in each household who
are eligible, we use variables ‘agea’, ‘pspwght’, and ‘yrbrn2-12’, which describe the ages of person
8’s household members (up to 12 household members).

A.4.3 Implementation Details

Our experiments were implemented in Python, using PyTorch for theMLE estimation and Gurobi
for solving the linear programs in the column generation. Our code is contained in the supple-
mentarymaterial andwill bemade available as open sourcewhen published. The �le “README.md”
in the code gives detailed instructions for reproducibility.

1https://www.europeansocialsurvey.org/docs/methodology/ESS_weighting_data_1.pdf
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We found the log-likelihood presented in eq. (A.3) to be easy to maximize. For accuracy, we chose
a small step size of 10−5 and a large number 105 of optimization steps. The �nal objective was
4157.32345, and objective changes between iterations 20 000 and 100 000 were less than 3 × 10−6.

Our experiments were run on a 13-inch MacBook Pro (2017) with a 3.1 GHz Dual-Core i5 pro-
cessor. Optimizing the log-likelihood took 46 seconds. Running the column generation took 38
minutes to reach the desired accuracy of 10−6, which is much smaller than the smallest c8,% at
around 2%. For the version including climate concern, MLE estimation took 37 seconds reaching
a log-likelihood of 4601.01427, and column generation took 26 minutes.

Sampling 100 000 pools each and simulating our algorithm for the end-to-end experiments took
30 minutes for A = 10 000, 55 minutes for A = 11 000, 61 minutes for A = 12 000, 76 minutes for
A = 15 000, and 95 minutes for A = 60 000. All running times should be seen as upper bounds
since other processes were running simultaneously. Sampling the same number of pools for
the case including the climate concern feature took around 410 minutes for A = 600 000. The
equivalent experiments with the greedy algorithm took around 19 hours (�oor and ceiling quotas)
and around 12 hours (no quotas).

A.4.4 Results and Validation of #, q i Estimation

Pool and Background Data Composition First, we examine the frequency at which each
feature-value occurs in the pool and the background data. As shown in the �gure below, those
with the most education are highly over-represented in the Climate Assembly UK pool compared
to the background sample, and people with low education are under-represented. Similarly, we
see men are slightly over-represented in the pool, and increasing age also seems to increase like-
lihood of entering the pool.
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Estimates of # We �nd that V0 = 8.8%, meaning that all agents participate with a baseline
probability of 8.8%. In the �gure below are estimates of V 5 ,E for all feature-values 5 , E . Recall that
1− V 5 ,E can be interpreted as the probability of not participating due to having value E for feature
5 ; in other words if V 5 ,E is 1, then feature-value 5 , E has no adverse e�ect on whether a person
participates.

Notably, these V estimates are consistent with the composition of the pool compared to the back-
ground data. For example, people of increasing age were increasingly over-represented in the
pool compared to the background data, and we see here that V associated with age increase with
increasing age. Similarly, we see that having low education greatly diminishes a person’s likeli-
hood of participation, corresponding to the observation that the pool contained a disproportion-
ately low number of people with the two lower levels of education. In fact, one can con�rm that
across all feature-values, V values correspond with the composition of the pool data compared
to the background data, indicating that the V values learned with our model are a good �t to the
data used to learn them.
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Estimates of q i We compute our @8 estimates based on V estimates according to the model
in Appendix A.3. We get the following distributions of @8 values in the pool and background
datasets.

The data shown in this plot is limited to density of @8 values between 1% and 8%, because bins
outside this range contain fewer than 7 people, and are withheld to avoid potential privacy issues.
Less than 0.3% of agents in either dataset are excluded for this reason.
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Not very surprisingly, we �nd that the pool overrepresents agents with higher participation prob-
ability with respect to their share in the background sample.

Test for Calibration of q i Estimates To validate whether our model �ts the data well, we
form a hypothetical pool by imagining that the weighted background sample was selected as the
set of recipients and that the members of this set participate with our estimated probability @8 .
For some attributes that agents might have or not have, the expected number of agents in the
hypothetical pool with this attribute is ∑

8∈�:8 has attribute
@8 .

1

Since the set of invitation recipients to the Climate Assembly and the background sample are
both assumed to be representative samples of the population, we would expect the above sum
to be (close to) proportional to the fraction of pool members with this attribute— at least if the
model �ts the data well.

For instance, this idea allows us to re-examine the previous plot of @8 values by letting the orange
bars not denote the (scaled) number of members in the background sample with @8 in the right
range, but instead the (scaled) sum of @8 values of members in the background sample with @8 in
this range.

The fact that these distributions align fairly well can be seen as our @8 passing a sort of cali-
bration test — of those agents with a certain @8 value, roughly a @8 proportion would participate
when invited. Relative to our background sample, the Climate Assembly pool does not seem to
untypically skew towards agents with low or high values of @8 .

1Of course, all operations on the background sample respect the weights, which we ignore here for the sake of
clarity.
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Once again, for privacy reasons we display frequencies of @8 values only between 1% and 8%.
Once again, less than 0.3% of agents in either dataset are excluded for this reason.
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Comparison of Realized Pool Composition andHypothetical Pool Composition Wenow
plot the same comparison between the Climate Assembly pool and the hypothetical pool but for
the prevalence of each feature-value pair.

The �gure below shows that if our V estimates and the@8 estimates they yield are true formembers
of the population, then if we sampled the underlying population as was done to form the Climate
Assembly UK pool, we would get in expectation a pool that looks almost identical to realized
pool. This illustrates in another way that our V estimates are a good �t to the data we provided.
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Testing Model Capture of 2-Correlations Our model assumes that each feature-value af-
fects people’s probability of participating independently of all other feature-values. This analysis
tests whether this causes our model to severely misjudge the participation probability for some
group de�ned by the intersection of two feature-value pairs, again comparing the prevalence of
these groups in the Climate Assembly UK pool vs. the hypothetical pool that would be drawn
from a population with the same composition as the background sample. On the plot below,
each point represents an intersection of two feature-values. Each point’s G and ~ coordinates are
the fraction of people with that intersection in the Climate Assembly UK pool and the fraction
of the hypothetical pool, respectively. We would hope for this relationship to be exactly linear,
illustrating that each pair of feature-values occurs at the same rate in the real vs. hypothetical
pool.
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A.4.5 Details on End-To-End Experiment

As described in the body of the paper, we generate a synthetic population by scaling up the ESS
participants to a population of 60 million individuals. The number of copies of a participant is
proportional to their weight in the ESS, and is rounded to an integer using the Hamilton ap-
portionment method. 100 000 times per experiment, we select a set of letter recipients of size A
uniformly from the population, and �ip a biased coin with probability @8 for each letter recipient
to determine whether she joins the pool. For each pool, we then obtain the selection probabil-
ities of the pool members conditioned on this being the pool (or an unbiased estimate of these
probabilities):

• For our algorithm, we check whether the pool % is good. If the pool is not good, we (con-
servatively) assume that no panel is returned, and that pool members have zero probability
of being selected. Else, we return the selection probabilities c8,% .

• We use the implementation of the greedy algorithm developed by the Sortition Foundation
and available at https://github.com/sortitionfoundation/stratification-app/tree/
4a957359b708a327aad0103ab2a59d061aeaeeb4. Since we do not have a closed form for
individual selection probabilities, we run the greedy algorithm 10 times and report the aver-
age time that each pool member was selected. While these estimates of selection probabil-
ities are noisy, they are unbiased estimates of the end-to-end probability and independent
between pools. Thus, the noise largely averages out over the 100 000 random pools. In no
case did the greedy algorithm fail to satisfy the quotas.

Each point in the diagrams corresponds to one agent in the ESS sample and indicates this agents’
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@8 as well as the average selection probability of its copies, averaged over the di�erent pools and
the di�erent copies. Since both our algorithm and the greedy algorithm treat agents with equal
feature vector symmetrically, averaging over the copies of an ESS participant is a valid way to
estimate the end-to-end probability of any single copy, which greatly reduces sample variance.

In the body of the paper, we mention the behavior of the greedy algorithm without any quotas.
In this case, the panel members seem to be sampled with near-equal probability from the pool,
which leads to end-to-end probabilities that are roughly proportional to @8 :

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

k/n

2 k/n

3 k/n

end -to-end

probability

qi

A.4.6 Additional Results for Section 2.5

End-to-End Fairness Results for Varied r Values This plot shows the end-to-end proba-
bilities for all agents in the synthetically-generated population over varied values of A . To recall,
we copied the agents in the background sample (in proportion to their weight) to obtain a syn-
thetic population of size 60 million (the order of magnitude of eligible participants for the Climate
Assembly).

We display these end-to-end probabilities for A values 11 000, 12 000, 13 000, and 60 000, where
60 000 is the A value used to form the real-life Climate Assembly UK pool. Every point in the
scatter plot corresponds to an original member of the background sample, and the point’s y-
value is the mean selection probabilities averaged over 100 000 sampled pools and over all copies
of this background agent.1

An important question is what we do when a bad pool occurs. In the corresponding �gure in
the body of the text (examining only A = 60 000), we did not credit any selection probability
to any agent when bad pools occurred. When we take this approach for multiple A values, the
result shows a sharp discontinuity between A = 11 000 (when everyone’s end-to-end probability
is essentially zero) and A = 12 000 (when it is around 95%). As it turns out, the property that makes
nearly all pools bad when A = 11 000 is eq. (2.3). Note that this property is the least consequential
of the three de�ning properties of a good pool: if we proceed with Part II of the algorithm on a
pool that satis�es only eqs. (2.1) and (2.2), we still satisfy the quotas but just can’t bound the end-
to-end probabilities. Since the end-to-end probabilities are what we are measuring here anyway,

1Averaging over the copies of an agent makes use of the fact that the selection process treats copies of the same
agent symmetrically, which makes the empirical means converge faster.
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we will in the following graph count bad pools as good pools if they only violate eq. (2.3).

As shown in the �gure below, we see a smooth transition towards the end-to-end guarantee,
where higher values of A give better guarantees. The agents with the lowest selection probabilities
are su�ering most from low values of A , with their end-to-end probability trailing that of the
majority of other agents. From A = 15 000 upwards, however, all agents in the population receive
an end-to-end probability that is very close to :/=. This threshold roughly coincides with the
point at which U becomes larger than one.
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A.4.7 Validation and Results including Climate Concern Feature

This section includes all the analysis in this paper and appendices, re-done with the climate con-
cern level feature included. Figures in this section are provided in the same order as they were
presented in the body of the paper, Appendix A.4.4, and Appendix A.4.6.

(Figures from Paper Body)

We omit the �gure showing end-to-end probabilities at A = 60, 000, because when the Climate

Concern Level feature is included, good pools are so rare at this value of A that all end-to-end
probabilities are 0. Similarly, for the greedy algorithm, the �oor and ceiling quotas are often not
satis�able. In 754 out of 1 000 random pools, this is because fewer pool members are “not at all
concerned” about climate change than the lower quota for this feature, which is 6. In 86 out of the
remaining pools, the greedy algorithm fails to identify a valid panel within the �rst 100 restarts.
Only in the remaining 160 pools did the greedy algorithm �nd a valid panel in fewer than 100
iterations.

Legend: proportional no. seats expectated no. seats range in no. seats over all panels in distribution
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(Figures from Appendix A.4.4)

Pool and Background Data Composition
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End-to-End Fairness Results for Varied r Values This �gure demonstrates that, for large
enough A , we can get :/= end-to-end probability for all agents in the synthetic population when
we include the Climate Concern Level feature. We only include analysis for only one A value
because the A values must be extremely large to give any end-to-end guarantees when the Cli-
mate Concern Feature is included, and running the analysis with such large A costs substantial
computational time.
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B.1 Illustration of Definitions with Examples

Here, we introduce the de�nitions and concepts used in this paper through an example instance,
which is composed of a pool, information about quotas, and a panel size k.

Example instance. Suppose we want to select a panel of size : = 3. Let the features on which
we want to impose quotas be female, male, young, and old; and let the lower and upper quotas
for each feature be as speci�ed below:

female male young old
lower quota 1 1 2 1
upper quota 2 2 2 1

Finally, suppose that the pool of the instance contains = = 5 pool members, which are given with
their features:

name features
Alice young, female
Bob old, male
Ciara young, female
Dan young, male
Ella old, female

Panels for the example instance. A panel for this instance is any set of 3 pool members in
which 1 or 2 are female, 1 or 2 are male, exactly 1 is old, and exactly 2 are young. Therefore, the
complete set of panels in this instance is:

P̂ = {{Alice, Bob, Ciara}, {Alice, Bob, Dan}, {Ciara, Bob, Dan},
{Alice, Dan, Ella}, {Ciara, Dan, Ella}}

Selection algorithms on this instance. In general, a selection algorithm takes in an arbitrary
instance and must (randomly) return a panel for that instance. Thus, when a selection algorithm
receives our example instance as its input, it must produce one of the panels in P̂. Now, we
compare the behavior of two selection algorithms, Legacy and Leximin , on this instance. (These
algorithms are formally de�ned in appendices B.10 and B.11, but no knowledge of the algorithms
is necessary to follow this example.)

Legacy1 and Leximin each have a di�erent output distribution on our instance, both of which are
displayed on the left-hand side of the two tables below. While both algorithms return the same

1For one speci�c way of breaking ties between features (male > female > old > young), which is left unspeci�ed
by the algorithm (see appendix B.11).
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set of panels, they di�er in how likely each panel is to be selected; for example, Legacy selects the
panel {Alice, Bob, Ciara} with probability 1/6whereas Leximin selects that panel with probability
1/3.

Each algorithm’s output distribution determines the selection probability of each pool member.
For example, the probability that Legacy selects a panel containing Ella can be calculated by
summing up the output probabilities of both panels that include her: Since Legacy selects {Alice,
Dan, Ella} and {Ciara, Dan, Ella} each with probability 1/6, Ella’s selection probability is 1/3.
We refer to agents’ collective selection probabilities as a probability allocation. The probability
allocations of the two algorithms are given on the right-hand side of the two tables below.

Fairness measures evaluate the fairness of di�erent probability allocations, which allows us to
evaluate whether Legacy or Leximin is fairer on our instance. One important fairness measure
(“egalitarian social welfare”; see appendix B.9) measures the fairness of a probability allocation
by its minimum selection probability. Using this fairness measure, the fairness of Legacy’s prob-
ability allocation is 1/3whereas the fairness of Leximin ’s probability allocation is 1/2. Since the
latter value is higher, the fairness measure judges Leximin to be fairer on the example instance
than Legacy.

In this paper, we develop maximally fair selection algorithms. As it turns out, Leximin is one
such algorithm for the fairness measure above, in the sense that, for all instances, and for all other
selection algorithms, the minimum selection probability of Leximin will be at least as large as
the minimum selection probability of the other algorithm.

Legacy
Output Distribution Probability Allocation

P[{Alice, Bob, Ciara} selected] = 1
6 Alice: 1

6 +
1
4 +

1
6 = 7

12
P[{Alice, Bob, Dan} selected] = 1

4 Bob: 1
6 +

1
4 +

1
4 = 2

3
P[{Ciara, Bob, Dan} selected] = 1

4 Ciara: 1
6 +

1
4 +

1
6 = 7

12
P[{Alice, Dan, Ella} selected] = 1

6 Dan: 1
4 +

1
4 +

1
6 +

1
6 = 1

2
P[{Ciara, Dan, Ella} selected] = 1

6 Ella: 1
6 +

1
6 = 1

3

Leximin
Output Distribution Probability Allocation

P[{Alice, Bob, Ciara} selected] = 1
3 Alice: 1

3 +
1
12 +

1
4 = 2

3
P[{Alice, Bob, Dan} selected] = 1

12 Bob: 1
3 +

1
12 +

1
12 = 1

2
P[{Ciara, Bob, Dan} selected] = 1

12 Ciara: 1
3 +

1
12 +

1
4 = 2

3
P[{Alice, Dan, Ella} selected] = 1

4 Dan: 1
12 +

1
12 +

1
4 +

1
4 = 2

3
P[{Ciara, Dan, Ella} selected] = 1

4 Ella: 1
4 +

1
4 = 1

2
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B.2 Model

An instance consists of a set of agents # = {1, . . . , =}, a desired panel size : , and a �nite set of
features. Examples of such features could be “female” or “older than 65”. Let # 5 be the set of
agents with feature 5 . Each feature 5 is furthermore associated with a lower quota ℓ5 and an
upper quota D 5 , which specify lower and upper limits on the number of panel seats to be �lled
by agents in # 5 . In a given instance, a panel % is any subset of # such that the following integer
linear program (ILP) is satis�ed by the set of 0–1 indicators G8 that specify whether agent 8 is in
panel % :

∑
8∈#

G8 = : (% contains : agents)

ℓ5 ≤
∑
8∈#5

G8 ≤ D 5 ∀ features 5 (% satis�es all lower and upper quotas)

G8 ∈ {0, 1} ∀8 ∈ # (the G8 are binary indicators).

In the context of our column-generation framework, we call a set of panels within the same
instance a portfolio.

To avoid issues of well-de�nedness, we formally restrict our de�nition of an instance to include
only those in which there exists at least one panel. (In practice, this restriction is unproblematic,
since the existence of a panel can be con�rmed by checking the satis�ability of the ILP above
with an ILP solver before applying a selection algorithm.)

A selection algorithm receives an instance as its input andmust randomly choose a panel to return.
We call the distribution describing the probability with which each panel is returned the selection
algorithm’s output distribution for this instance. If, for a given selection algorithm and input
instance, we let the random variable % denote the panel returned by the selection algorithm (its
distribution then being the output distribution), the selection probability ?8 of an agent 8 is de�ned
as P[8 ∈ %], and a probability allocation is a function mapping each agent 8 ∈ # to their selection
probability ?8 .

Finally, a fairness measure for a speci�c instance is a function � : [0, 1]= → (R∪ {−∞}) mapping
the probability allocations of that instance to a score, where larger scores denote preferable levels
of fairness. To avoid arti�cially reducing the generality of our results, this de�nition of a fairness
measure is speci�c to one instance. Where we speak of “fairness measures” in the body of the
paper and in appendix B.9 (e.g., “Nash welfare” or “Gini coe�cient”), we are formally referring to
families of fairness measures, where each family contains one fairness measure for each possible
instance.

260



B.3 Stratified Sampling

One procedure for selecting randompanels that is often discussed is strati�ed sampling. A strati�ed-
sampling procedure is de�ned by what we will call a strati�cation: a partition of the population
into disjoint subgroups (e.g., women, men, people of nonbinary gender), where each subgroup is
associated with the number of panel seats they will receive (say, 19, 19, and 2 seats). Then, from
each stratum, the procedure uniformly samples the speci�ed number of panel members. Strati-
�ed sampling and our selection algorithms similarly strive to ensure descriptive representation.
However, our algorithms accept a more �exible range of quotas for expressing constraints on
descriptive representation, making them more widely applicable than strati�ed sampling. For in-
stance, the quota constraints imposed in all ten citizens’ assemblies analyzed in this paper cannot
be expressed as strati�cations.

To understand why the quotas imposed in practice are more general than those imposed by strat-
i�ed sampling, we �rst note that the constraints expressed by a strati�cation can directly be ex-
pressed as a system of quotas. This is done by turning each stratum into a feature, and then
setting both the feature’s lower and upper quota to the desired number of panel seats. By con-
trast, not every system of quotas can be expressed as a strati�cation. This is for two reasons: �rst,
whereas practitioners often permit a bit of tolerance between a feature’s upper and lower quota,
strati�ed sampling requires specifying the exact number of people to be chosen from each stra-
tum. Second, and more fundamentally, quotas are often imposed on overlapping groups (e.g., the
groups women and young people, where individuals can belong to both groups at once), whereas
all strata must be disjoint.

To see why this restriction limits the generality of strati�ed sampling, consider an example in
which we have overlapping categories gender and age, and want to impose quotas on women,
men, people of non-binary gender, young people, and old people. In strati�ed sampling, one
would de�ne six disjoint strata: young women, young men, young people of nonbinary gender,
old women, old men, and old people of nonbinary gender. One would then have to specify some
exact number of people from each stratum; by contrast, the constraints expressed by quotas on
the feature can be much more �exible since they, for example, do not directly constrain the age
composition within the group of women.

As illustrated in the above example, one can implement quotas in practical settings by de�ning
the strata to be all intersectional groups. However, this strategy does not extend practicably
to the number of feature categories on which quotas are imposed in practice (in our instances,
between 4 and 8). This is because imposing quotas on many orthogonal features (e.g, gender,
age, region, and education level) would require setting aside a number of seats for exponentially
many combinations of these features (e.g., “female, 18–25 years old, London, no diploma”), which
would quickly exceed the number of panel seats.
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B.4 Desiderata for Sortition in the Political Science Literature

In this paper, we approach the problem of panel selection from a pragmatic angle. We ask: tak-
ing as given the overall panel selection process (sending out invitations uniformly at random,
and then using quotas to enforce representativeness), what is the best selection algorithm for
practitioners to use?

To identify desirable properties of a selection algorithm, it is natural to take inspiration from
political theory, where advantages and disadvantages of sortition have been discussed in de-
tail[86, 112, 124, 250, 258]. However, one should not expect the political theory literature to give
concrete instructions for a practical selection algorithm, since the literature focuses on an ideal-
ized sortition process that ignores the complications of the real-world settings in which panels
must be selected. In particular, the literature assumes that panels can be selected by sampling
directly from the population, whereby each member of the population is selected with equal
probability and will agree to participate if invited [71, 224, 257]. We refer to this procedure as
idealized sortition. Usually, in practice, a large majority of people decline to participate when
invited [250].

Though this literature does not immediately prescribe a practical selection algorithm, it informs
our approach by identifying the values that should be pursued when designing selection algo-
rithms. In this section, we outline several prominently advocated properties of idealized sortition,
discuss how they are or are not conducive to algorithmic implementation, and describe how these
properties complement or contradict one another. Ultimately, our approach of making selection
probabilities as equal as possible strives for promotion of equality, while guaranteeing the achieve-
ment of representativeness as implemented by practitioners via quotas.

B.4.1 Properties of Idealized Sortition

Following a model developed by Engelstad [112] and elaborated upon by others [71? ? ], sortition
should simultaneously (1) promote equality, (2) ensure representativeness, (3) maximize e�ciency,
and (4) protect against con�ict and domination.

Eqality

According to Engelstad, “The strongest normative argument in favour of sortition is linked to the
idea of social equality and individual welfare”, which stems from the fact that every constituent
has an equal selection probability. [112] Subsequent work in political theory has rea�rmed the
importance of equal selection probabilities, even if di�erent authors deduce this importance from
slightly di�erent ideals: Some [123, 124, 224, 258] see the equal selection probabilities of ideal-
ized sortition as an embodiment of democratic equality, the ideal that a democratic decision-
making process should give equal consideration to all of its constituents’ preferences. Other
authors [71, 224] stress equal probabilities as the hallmark of (prospect-regarding [234]) equality
of opportunity. A related argument is made by Stone [257, 258]. Rather than seeing equality as
the goal in its own right, he views random allocation with equal probability as the only way to
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satisfy allocative justice in the distribution of public o�ces among constituents who all have equal
claims to authority.

As we discuss in the introduction, perfect equality of selection probabilities is not attainable
within the constraints of practical sortition. In this paper, we handle this impossibility by propos-
ing a more gradual version of this goal: Subject to achieving descriptive representation, one
should make selection probabilities as equal as possible. The view of political o�ce as a good,
and of sortition as a means to allocative justice [258], is a natural foundation for the approach of
treating panel selection as a problem of fair division (see appendix B.9).

Representativeness

Another important bene�t of ideal sortition is that, with high probability, the composition of the
panel will resemble the population along all dimensions of interest [257]. Descriptive represen-
tation is a crucial assumption in Fishkin’s argument that the result of a deliberative minipublic
can reveal the likely outcome of the whole population deliberating [123, 124]. In addition to its
contribution to the quality of deliberation, descriptive representation is particularly valuable in
contexts of mistrust and marginalization [198].

As stated above, the statistical properties of idealized sortition imply that any possible division
of the population is likely to be represented close to proportionally on the panel, provided that
the panel size is su�ciently large. By contrast, no such guarantee can be provided in the realis-
tic setting where constituents decline to participate, which forces practitioners to select speci�c
features for which they want to enforce descriptive representation using quotas. Whereas our
approach focuses on making selection probabilities close to equal, we do not sacri�ce descriptive
representation for this goal. Rather, organizing bodies can still set quotas to ensure a desired level
of descriptive representation, and our methods only use the remaining freedomwithin these con-
straints to promote equality. In this way, our method allows an assembly organizer to trade o�
representation and equality by tightening or loosening the quotas.

Efficiency

In comparison to selecting representatives by election, some authors argue that sortition is more
e�cient because it requires fewer resources [71, 112]. For instance, campaigning and organiz-
ing elections are not necessary. Arguably, this argument is more speci�c to the benchmark of
elections than to sortition, and subsequent works have put little emphasis on this point [257].

When considering the design of the selection algorithm, the only major resource one might seek
to use e�ciently is time—namely, the time the algorithm takes to run. Given that the selection
of the panel from the pool is only a minor task in organizing and convening a citizens’ assembly,
as organizers spend much more time recruiting the pool and organizing the deliberation. For this
reason, reducing the running time of the algorithm seems a frivolous e�ciency. As we show in
Table 1, our algorithm Leximin runs in seconds for most instances and an hour at most. This is
signi�cantly longer than the running time of the benchmark algorithm Legacy, but much faster
than the process of executing other selection algorithms using dice and spreadsheets, as practiced
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by some organizations. We take this as an indicator that hours versus minutes of running time is
not a signi�cant consideration in terms of e�ciency.

Existing algorithms often confront practitioners with a hard trade-o� between representation
and computational e�ciency, since more numerous and tighter quotas may drastically increase
the running time of these algorithms. While such a concern cannot be theoretically ruled out for
any known algorithm (appendix B.6), our algorithms delegate the task of �nding panels to a state-
of-the-art ILP solver, a mature technology routinely used to solve much harder tasks [148] than
all panel-selection subtasks we have encountered. Therefore, we expect our algorithm to allow
for much more complex quotas without substantial increases in running time; the fundamental
trade-o�s between representativeness and equality, of course, persist. Our algorithms also have
an advantage in the (undesirable) situation where no panel formed from the pool can satisfy the
quotas. Whereas existing algorithms enter an in�nite loop in this situation until the user gives up,
our algorithms’ �rst call to the ILP solver will immediately reveal that the quotas are infeasible;
in these situations, our implementation solves a second ILP to suggest a minimal relaxation of
the quotas that can be satis�ed.

Protection against Conflict and Domination

A �nal family of arguments stresses that, if the members of a panel are chosen via idealized
sortition, this procedure prevents interested parties from swaying the selection for their bene-
�t [71, 97, 112]. Stone summarizes these arguments as follows:

“First, [sortition] can prevent wrongful action on the part of the agent who must se-
lect o�cials. [. . .] Second, it can prevent wrongful action on the part of the o�cials
selected. If the method of selection is in any way predictable, outside interests might
bribe or threaten o�cials into conformity with their wishes. If the method is unpre-
dictable, then such wishes cannot be expressed at least until the results of the lottery
become known. [. . .] Finally, competing elites unable to stack the political process in
their favor have less to �ght about.” [257]

In the practical setting of sortition, the additional stages of the selection process (as compared to
idealized sortition) inherently create opportunities for dishonest agents to in�uence the compo-
sition and the decisions of the panel in ways that cannot be remedied by a change of selection
algorithm. First, with respect to concerns about wrongful action on the part of the o�cials, the
panel organizers wield a lot of in�uence in sending out the invitations, setting the quotas, and
handling the process of selecting the panel from the pool.

More fundamentally, when any selection algorithm enforcing descriptive representation is used,
a dishonest pool member can signi�cantly increase their chances of selection by misrepresenting
their features. For example, this pool member might pretend to have a di�erent political orienta-
tion because they know that people with this orientation are unlikely to participate, and thus are
likely to be underrepresented in the pool. Since, on average, the selection algorithm must choose
pool members from this group with higher probability, reporting this feature will likely increase
the agent’s probability of being selected for the panel. So long as practitioners seek to enforce
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descriptive representation in the presence of unequal rates of participation across subgroups, this
type of manipulation seems unavoidable.

If, despite these challenges, one wanted to design a selection algorithm to discourage manipu-
lation, one would have to target a speci�c kind of manipulation. For instance, for reducing the
e�ect of bribing or intimidating pool members before they are selected, the algorithm within our
framework minimizing the largest selection probabilities might be appropriate. Such an algo-
rithm would increase the cost to the manipulator since any bribed pool member would have a
substantial chance of not being selected to the panel, rendering the bribe futile. For other threat
models, it would be natural for the selection algorithm to maximize not only the uncertainty of
each agent being selected for the panel individually but the uncertainty about the composition of
the whole panel. A selection algorithm maximizing this objective of maximum entropy could, in
principle, be implemented by uniformly drawing sets of : pool members, repeating this process
until one set satis�es all quotas. Whether this selection algorithm can be sped up to the degree
of being practically relevant is an interesting question for future work.

B.4.2 Beyond Idealized Sortition, and the Objective of Maximal Fairness

As we have described, a large body of political theory literature characterizes the desiderata and
bene�ts of idealized sortition. However, there is also research that engages, as we do in this work,
with sortition beyond the idealized assumption that everyone is willing to participate. Such work
often mentions strati�ed sampling [71, 188, 224, 250, 256] as a sampling method that can be used
to reestablish descriptive representation despite di�ering response rates across subpopulations.
For details on strati�ed sampling and how it relates to our work, see appendix B.3. In the political
theory literature touching on strati�ed sampling, several authors point out that the bene�ts of
idealized sortition do not perfectly extend to strati�ed sampling [96, 224, 250, 257]. To our knowl-
edge, however, the literature stops short of proposing more gradual ideals, such as the maximal
fairness objective we propose to approximate equality.

B.5 Related Work on Panel Selection

The algorithmic problem of selecting panels for citizens’ assemblies has motivated two previous
papers. Both previous papers consider di�erent models of sortition than does this work, and their
results are not directly applicable to the practical setting we consider here.

In the �rst paper, Benadè, Gölz, and Procaccia [46] study a setting closely resembling what we
call idealized sortition in appendix B.4— that is, Benadè et al. assume that the panel-selection
procedure can choose any constituent to participate (they assume it has full knowledge of the
population) without taking into account that some constituents might not agree to serve on the
panel. In this setting, uniform sampling without replacement is the most natural selection proce-
dure, and it provides two important bene�ts: perfect equality of selection probabilities and prob-
abilistic guarantees on the descriptive representation of any arbitrary group in the population. If
one wants deterministic guarantees on descriptive representation along one speci�c category of
attributes (say, gender), strati�ed sampling (appendix B.3) will give such guarantees. Benadè et al.
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show that such deterministic guarantees can be imposed for certain groups with only marginal
deterioration in the representation of other groups. Unfortunately, these results do not extend to
the practical setting explored in this paper because, in addition to their unrealistic assumption
that all constituents will participate, the set of quotas that can be imposed via strati�ed sampling
is much more restrictive than those imposed in practice (see appendix B.3 for details).

The second paper, by Flanigan, Gölz, Gupta, and Procaccia [127], also develops a panel selection
procedure, and, unlike Benadè et al., it accounts for the possibility that people invited to the panel
may decline to join. Flanigan et al. consider the same general panel-selection pipeline as does this
paper, with a uniform sample of the population being invited to participate, invitation recipients
self-selecting into a pool of volunteers, and then a selection algorithm choosing the panel from
the pool.

The main di�erences between the paper by Flanigan et al. and ours lies in the level of ideal-
ization of the models of sortition, and in the handling of quotas. On both of these counts, this
paper engages more directly with the practical setting than does Flanigan et al.: In the present pa-
per, we directly address the problem faced by practitioners when they sample their panel, which
means taking as already decided the set of agents who opted into the pool and the quotas im-
posed by practitioners. As we described in the introduction, with these attributes of the problem
already decided, equal selection probabilities are generally not attainable, which is why we focus
on achieving equality to the maximum degree possible. By contrast, Flanigan et al. attempt to
recover a notion of equal probabilities in an idealized probabilistic model of the panel-selection
pipeline. Speci�cally, in their model, whether an invited agent joins the pool is decided by a
biased coin �ip, where the success probability of each agent’s coin, the agent’s participation prob-
ability, is known to the selection algorithm. Furthermore, quotas are not externally given, but are
determined by what the selection algorithm can ensure for the given citizens’ assembly. Under
these assumptions and further assuming that all participation probabilities lie above a certain
minimum bound, Flanigan et al. design a selection algorithm that achieves near-equal end-to-
end probabilities, i.e., ensures that each agent reaches the panel from the population with similar
probability. To do so, it prioritizes selecting those pool members who had the lowest probability
of accepting their invitation, essentially canceling out the self-selection bias.

Note that Flanigan et al. and our paper pursue di�erent notions of equality: Their paper aims to
equalize the probability of each agent going from population to panel (calculated across all possi-
ble pools), whereas our paper aims for equality between the selection probabilities of members
of a single pool. While their notion of equality is conceptually appealing, it is well-de�ned only
relative to their modeling assumption that people decide to join the pool randomly. If one never-
theless wanted to apply their selection algorithm in practice, the agents’ “participation probabil-
ities” would have to be estimated using machine learning. Since, depending on these estimates,
the selection algorithm might select an individual with much higher or lower selection proba-
bility, determining this number based on inherently imprecise techniques raises concerns about
algorithmic bias and transparency. Finally, while their selection algorithm ensures some quotas,
these guarantees only hold in the limit of very large pools and, even then, the gap between upper
and lower quotas remains much looser than the gap between upper and lower quotas typically
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imposed by practitioners.

B.6 Computational Hardness

Here we show that, under standard complexity assumptions, there does not exist a selection
algorithm (even an unfair one) that runs in polynomial time. At its core, this impossibility is a
consequence of the following hardness result:

Theorem B.6.1. For a given set of agents, panel size, and set of features with associated quotas, it

is NP-hard to decide whether there exists a panel.

Proof. By reduction from the NP-complete problem Exact Cover by 3-Sets (X3C) [142]. Fix
an X3C instance consisting of a ground set - with |- | = 3@ and of a collection � of 3-element
subsets of - . From this instance, construct an instance of the panel-selection problem as follows:
Identify the pool members # with the 3-sets� , create one feature 5G per G ∈ - , and set the panel
size : to @. For every feature 5G , we impose quotas ℓ5G = D 5G = 1, and we set # 5G to the set of
agents whose corresponding 3-set contains G .

It remains to show that there exists a panel i� there exists an exact cover for the X3C instance:
m⇒: Suppose that there is a quota-compliant panel % ⊆ # . By the de�nition of the quotas, all
features 5G apply to exactly one agent in % . Thus, all elements G ∈ - occur in exactly one of the
three-sets corresponding to % , which means that this collection of 3-sets is an exact cover.
m⇐: Let �′ ⊆ � be an exact cover for the X3C instance. Note that |�′| = @ = : because every
set in�′ has exactly 3 elements and must cover a universe of size |- | = 3@. Set the panel % to�′.
Since �′ covers every element G ∈ - exactly once, each feature 5G applies to a single agent in % .
This shows that the quotas are satis�ed. �

Formally, the hardness of this decision problem does not immediately contradict the existence of
polynomial-time selection algorithms, since our de�nition of a selection algorithm only allows
for instances in the input of the algorithm, and instances are required to have at least one panel
(appendix B.2). Nonetheless, the non-existence of polynomial-time algorithms follows as a simple
corollary: if a selection algorithm produced a panel in polynomial time with probability 1, this
would imply P = NP (corollary B.6.2 below), and, even if a selection algorithm succeeded at
producing a panel in polynomial time only with constant probability, this would imply NP =

RP (corollary B.6.3 below). The latter consequence would in turn imply NP = RP ⊆ P/poly [18]
and thus that the polynomial-time hierarchy collapses [174], both of which are widely assumed
to be false.

Since polynomial-time selection algorithms are unlikely to exist, this paper studies algorithms
that are e�cient in practice but whose worst-case running time might scale exponentially.

Corollary B.6.2. Unless P = NP, there is no selection algorithm that �nds a panel in polynomial

time (with probability 1).
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Proof. By contrapositive. Suppose that there was a selection algorithm that would return a panel
within =2 computation steps for some constant 2 . Since our de�nition of instances assumes that
all instances possess panels, this hypothetical algorithm may behave arbitrarily when provided
with an input for which no panel exists. Still, this selection algorithm would allow to decide the
NP-hard problem from theorem B.6.1 in polynomial time: Given a set of agents, a panel size,
and a set of features, simply simulate the selection algorithm for =2 steps and check whether a
quota-compliant panel was returned. Since this polynomial-time algorithm decides an NP-hard
problem, the existence of a polynomial-time selection algorithm would imply P = NP. �

Corollary B.6.3. Unless RP = NP, there is no selection algorithm that, with constant probability,

�nds a panel in polynomial time.

Proof. By contrapositive. Suppose that there was a selection algorithm that, for each instance,
would succeed at returning a panel in =2 computation steps (for some constant 2) with constant
probability. By again simulating this selection algorithm for =2 steps and checking whether a
quota-compliant panel was returned, one de�nes an RP-acceptor for the NP-hard language de-
�ned in theorem B.6.1, implying RP = NP. �

B.7 Small Optimal Portfolios Exist

Proposition B.7.1. Fix an arbitrary instance and a fairness measure � for this instance. If there

exists any maximally fair distribution over panels for � , there exists a maximally fair output distri-

bution whose support includes at most = + 1 panels.

Proof. Consider the hypercube [0, 1]= , and associate each dimension with one agent. A panel %
can be embedded into this space by its characteristic vector ®E% ∈ {0, 1}= , whose 8th component is
one exactly if 8 ∈ % .

Fix a maximally fair panel distribution, let P denote its support, and let {_% }%∈P denote its prob-
ability mass function. Note that

®? B
∑
%∈P

_% ®E%

is a probability allocation maximizing � , and that it is a convex combination of the {®E% }%∈P . By
Carathéodory’s theorem, there is a subset P′ ⊆ P of size at most = + 1 such that ®? still lies in the
convex hull of this smaller set. Thus, there are nonnegative real numbers {_′

%
}%∈P′ adding up to

one such that
®? =

∑
%∈P′

_′% ®E% .

These _′
%
form the probability mass function of a distribution over at most = + 1 panels, which

has the same probability allocation ®? as the original maximally fair distribution, which implies
that the new distribution is also maximally fair for � . �
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B.8 Algorithmic Framework

In this section, we �rst summarize the high-level design of our algorithmic framework, how it is
situated among existing algorithms and techniques, and how the framework applies to settings
other than sortition. We then introduce the notion of a distribution-optimizer family, which
encapsulates the information that the framework needs to optimize a fairness measure, and we
formally describe the steps of the framework. Finally, we prove the correctness of the framework.

B.8.1 Algorithmic Framework Overview and Context

At the highest level, each algorithm in our framework maximizes a concave function (the fair-
ness measure). The approach our algorithms take to optimizing these concave functions gener-
alizes a form of column generation, an algorithmic technique that is commonly used for solving
linear programs with many variables and few constraints. [54] The existing column generation
approach for solving such linear programs proceeds as follows: We �rst consider a version of
the linear program in which all but a portfolio consisting of some  of the variables are as-
sumed to be non-basic and set to zero. This restricted version of the program then has only
 variables (and the same few constraints as in the original program), so its optimal primal
and dual variables can be found e�ciently. This primal solution (with zeros for the remain-
ing variables) is then checked for optimality in the entire original program. This is done by
looking for a column with negative reduced cost, i.e., a primal variable not currently in the
portfolio such that slightly increasing its value from the current value of zero would lead to
an increase in the objective. If such a column exists, it is then added to our portfolio of pos-
sibly basic variables, and the process is repeated for this slightly larger linear program. Once
no such column exists, the solution for the restricted program is already optimal for the entire
program.

Our column-generation algorithm applies the same general approach to convex programs satis-
fying strong duality. We are not aware of many previous papers applying column generation to
convex optimization, and the papers we know of use column generation to re�ne linear approxi-
mations of convex functions, rather than directly optimizing the convex function over restricted
sets of variables [54, 156]. One reason that column generation has not been applied to convex
programs themselves might be that general convex programs may not have optimal solutions
with few nonzero variables, and thus, column generation might not be faster than direct opti-
mization of the full convex program. As we discuss below, however, the optimization problems
considered in this paper have a special structure that ensures the existence of optimal solutions
with few nonzero variables, which makes column generation a promising approach.

The convex program we solve, stated in its most general form, is as follows: Let # be a �nite
set of entities (in our case: pool members), and let P̂ be an implicitly de�ned (i.e., not explicitly
given) family of subsets of # (in our case: quota-compliant panels). Then, we consider a convex
program of the following shape:

269



maximize ℎ( ®?, ®G)
subject to 6A ( ®?, ®G) ≤ 0 ∀1 ≤ A ≤ < (B.1)

®? ∈ PossibleMarginals(P̂) .

Without the constraint in the last row, this would just be a general convex program, with a con-
cave objective function ℎ,< many constraints de�ned by convex functions 6A , an arbitrary vector
of variables ®G , and a vector of special variables ®? , one per entity. What makes this convex pro-
gram special is the constraint “®? ∈ PossibleMarginals(P̂)”, which expresses that there exists some
probability distribution over P̂ such that the ?1, . . . , ?= in ®? are the entities’marginals induced by
that distribution (where an entity’s marginal is the probability that a set containing them is drawn
from that distribution over P̂). This last constraint could be easily expanded into additional lin-
ear constraints and exponentially many auxiliary variables _% , one for the probability mass of
each set % in P̂, but this would require enumerating exponentially many sets in P̂ and drastically
increasing the size of the convex program. As we show in appendix B.7, Carathéodory’s theorem
implies that an optimal solution of this expanded program (if one exists) can set all but |# | + 1 of
the _% variables to zero.

Thus, our framework applies column generation to these _% variables, repeatedly solving the
expanded convex program under the restriction that all _% except those in a small portfolio
are non-basic and set to zero. Given some additional assumptions (guaranteeing that these re-
stricted programs are solvable and satisfy strong duality), we can de�ne the reduced cost of a
set % in P̂ as a sum of Karush-Kuhn-Tucker (KKT) multipliers corresponding to the set’s ele-
ments. Thus, our framework reduces optimizing the convex program with the special constraint
“®? ∈ PossibleMarginals(P̂)” to the problem of optimizing a linear objective over P̂ (for �nding
the column with minimum reduced cost in each iteration of the column generation). When, as
in this paper, P̂ is implicitly de�ned by an ILP, the framework directly de�nes an algorithm by
using an ILP solver for these subtasks.

B.8.2 Applications of Framework to Other Problems

Solving convex programs of the form (B.1) identi�ed above has immediate applications out-
side of sortition and to combinatorial structures other than quota-compliant panels: For exam-
ple, Kurokawa, Procaccia, and Shah [182] study the problem of assigning classrooms to charter
schools, where the implicit sets in P̂ correspond to sets of schools that can simultaneously be
matched in a bipartite matching with knapsack constraints. While Kurokawa et al. give an al-
gorithm optimizing the leximin criterion in this domain, our framework immediately allows to
optimize other fairness measures such as Nash welfare.

A second application lies in kidney exchange, where Roth, Sönmez and Ünver [242] again propose
an algorithm for �nding the leximin-optimal distribution over matchings, where each edge in the
matching connects two donor–patient pairs matched for a 2-way exchange of kidneys. Not only
does our framework allow the optimization of fairness measures other than leximin, but it also
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extends to the more complex forms of kidney exchange encountered in practice, including longer
cyclical exchanges and donation chains initiated by altruistic donors. The literature proposes
multiple ILP formulations [93? ] that can be used for this purpose.

While both previous examples optimize individual fairness as their objective, our techniques ap-
ply to other convex optimization objectives as well. In appendix B.14.3, we give an example of
an objective that optimizes the descriptive representation of groups rather than aiming for equal
selection probabilities between individuals.

B.8.3 Conditions for Applying the Framework

We now specify conditions that allow a convex program to be solved using our framework.
Putting the outline in appendix B.8.1 into the language of panel selection, the column generation
repeatedly (i) optimizes the convex program with the added restriction that the output proba-
bilities of all panels not included in the current portfolio of panels P are set to zero, and then
(ii) uses the KKT multipliers and an ILP solver to identify the panel to add to P that will allow
the greatest marginal increase in fairness, until, eventually, the solution found in (i) is optimal for
the unrestricted convex program. We will refer to the restricted convex program for a portfolio
P as �P .

For the column generation to work, all programs�P it optimizes should have an optimal solution
and the KKT conditions should be necessary and su�cient. In particular, having an optimal so-
lution implies that the portfolio must be non-empty from the start (since the output probabilities
must add up to one, meaning that they cannot all be zero). We formalize these assumptions in a
structure called a distribution-optimizer family:

De�nition B.8.1 (distribution-optimizer family). A distribution-optimizer family (DOF) C for an

instance is a family of convex programs that is fully speci�ed by the tuple (Pinit , C, ℎ, {6A }A ), where
the four elements of this tuple are as follows:

• Pinit is a non-empty portfolio of panels of the instance,

• C ∈ N0 is the number of auxiliary variables in each convex program,

• ℎ : ( [0, 1]= × RC ) → R is a di�erentiable concave function (the objective of the convex pro-

grams), and

• the 6A : ( [0, 1]= × RC ) → R for 1 ≤ A ≤ < are some number < ∈ N0 of a�ne functions

(de�ning auxiliary constraints in the convex programs).
1

This tuple de�nes a family of convex programs C = {�P}P⊇Pinit , which includes one program �P
for each portfolio P in the instance such that P ⊇ Pinit . Each such convex program P has variables

{_% }%∈P (representing the output probabilities of panels % ), ®? = {?8}8∈# (representing the selection

probabilities of agents 8), and ®G (a C-dimensional vector of real-valued auxiliary variables), and the

1The functions 6A can be di�erentiable convex rather than a�ne as long as the strong duality of all convex
problems �P below is still ensured, for instance by Slater’s condition.
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convex program is de�ned as follows:

maximize ℎ( ®?, ®G)
subject to

∑
%∈P

_% = 1 (output probabilities add to 1)

?8 =
∑
%∈P
8∈%

_% ∀8 ∈ # (marginals are sums of output probabilities)

6A ( ®?, ®G) ≤ 0 ∀1 ≤ A ≤ < (auxiliary constraints)

_% ≥ 0 ∀% ∈ P (output probabilities are nonnegative).

For C to be a DOF for the instance, in addition to being de�ned by a tuple as speci�ed above, it must

hold that all convex programs �P for P ⊇ Pinit are solvable (i.e., they are feasible and the optimal

value is attained).

The algorithmic framework takes as input a speci�c instance and a DOF C for this instance, and
the framework then uses column generation to decide which convex programs from C to run in
what order to �nd the maximally fair distribution. Therefore, to use the framework to optimize a
speci�c fairness measure � on a given instance, one simply needs to �nd a DOF for that instance
that optimizes � (if one exists). The following de�nition formally connects a fairness measure
with a DOF that optimizes it:

De�nition B.8.2 (implementation of a fairness measure by a DOF). For a speci�c instance, a

fairness measure � for the instance is implemented by a DOF C = {�P}P⊇Pinit if, for any portfolio

P ⊇ Pinit , each optimal solution to�P yields the probability mass function {_∗
%
}%∈P of a distribution

that is maximally fair according to � among all distributions over the support P.

As we show below, for each DOF C of an instance, it is easy to construct a fairness measure � for
that instance that is implemented by the DOF, by setting � ( ®?) B sup{ℎ( ®?, ®G) | ®G ∈ RC ,∀1 ≤ A ≤
<. 6A ( ®?, ®G) ≤ 0}, with the convention that sup ∅ = −∞. However, C simultaneously implements
other fairness measures whose optimization leads to the same optima (for example, the same DOF
might implement the product of probabilities and the sum of their logarithms).

Proposition B.8.3. For a �xed instance, a DOF C = {�P}P⊇Pinit for this instance implements the

fairness measure � speci�ed by

� ( ®?) B sup{ℎ( ®?, ®G) | ®G ∈ RC ,∀1 ≤ A ≤ <. 6A ( ®?, ®G) ≤ 0}.

Proof. Fix an instance and �x a portfolio P ⊇ Pinit . Denote the optimal objective value of�P by
obj ∗, and note that, by the de�nition of a DOF, this optimal value is attained.

We must show that, for any optimal solution of�P , the _∗% are the probability mass function of a
distribution that is maximally fair according to � among distributions over the supportP, i.e., that
the ®?∗ optimize � . We will show this in two steps: In step (1), we show that, if ®? is the probability
allocation corresponding to an optimal solution of �P , then � ( ®?) = obj ∗. In step (2), we show
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that, for each probability allocation ®? that can be obtained by a distribution over P, it holds that
� ( ®?) ≤ obj ∗. Together, these steps imply that a probability allocation ®? is optimal according to �
(among probability allocations of distributions over P) i� � ( ®?) = obj ∗, and that this is the case
for the probability allocation of each panel distribution given by an optimal solution of �P .

Step (1). Consider an optimal solution ®_∗, ®?∗, ®G∗ to �P . Note that its objective value must be
obj ∗. Furthermore, note that if we added constraints �xing each selection probability ?8 to ?∗8
and each panel probability _% to _∗% to the convex program�P , the optimal objective value of the
restricted problem would still be obj ∗ and would still be attained. Since � ( ®?) is de�ned as the
optimal objective value of this restricted problem, � ( ®?) = obj ∗.

Step (2). Now, consider any probability allocation ®?∗ that is the result of a distribution D over
P. By �xing ®? in �P to ®?∗ and by �xing ®_ to the probability mass function of D, �P simpli�es
to the optimization problem de�ning � ( ®?), which means that the optimal objective value obj ∗ of
the full convex program �P is at least � ( ®?). �

B.8.4 Definition of Framework

As described above, the algorithmic framework is an algorithm that takes as input an instance
and a DOF of that instance. The framework then computes a distribution over panels that is max-
imally fair with respect to the fairness measure implemented by the DOF, and then samples this
distribution to select the �nal panel. The full algorithm is speci�ed below:

Algorithm 2 Framework
Input: an instance and a corresponding DOF C = {�P}P⊇Pinit
Output: a randomly chosen panel for the instance

1 P ← Pinit while true do

2 let ®_∗, ®?∗, ®G∗ denote an optimal solution for�P , and let `∗A be the dual value for each constraint
6A ( ®?, ®G) ≤ 0 at this optimum for 8 ∈ # do

3 [∗8 ← m
m?8
ℎ( ®?∗, ®G∗) −∑<

A=1 `
∗
A

m
m?8
6A ( ®?∗, ®G∗)

4 %new ← panel % maximizing
∑
8∈% [

∗
8 , found by ILP (% need not be in P) %old ←

some panel % ∈ P such that _∗
%
> 0 if

∑
8∈%old [

∗
8 ≥

∑
8∈%new [

∗
8 then

5 D ← distribution over P with probability mass function ®_∗ return panel drawn from
D

6 else

7 P ← P ∪ {%new }

B.8.5 Termination and Correctness of Framework

It remains to show that the above algorithm always terminates (theorem B.8.4) and that it se-
lects panels in a maximally fair way (theorem B.8.5). In the proofs of these theorems, we will
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extensively use the Karush-Kuhn-Tucker (KKT) conditions for the convex optimization problems
�P . Consider a speci�c instance and a speci�c DOF C = {�P}P⊇Pinit for this instance. Then, we
denote

• the dual variable of the constraint
∑
%∈P _% = 1 by [0,

• the dual variables of the constraints ?8 =
∑
%∈P:8∈% _% by [8 ,

• the dual variables of the constraints 6A ( ®?, ®G) ≤ 0 by `A , and

• the dual variables of the constraints _% ≥ 0 by a% .

Since �P satis�es strong duality, the following KKT conditions are necessary and su�cient for
optimality: ∑

%∈P
_% = 1 (B.2)

?8 =
∑
%∈P
8∈%

_% ∀8 ∈ # (B.3)

6A ( ®?, ®G) ≤ 0 ∀1 ≤ A ≤ < (B.4)
_% ≥ 0 ∀% ∈ P (B.5)
`A ≥ 0 ∀1 ≤ A ≤ < (B.6)
a% ≥ 0 ∀% ∈ P (B.7)
`A 6A ( ®?, ®G) = 0 ∀1 ≤ A ≤ < (B.8)
a% _% = 0 ∀% ∈ P (B.9)(∑
8∈%

[8

)
+ a% = [0 ∀% ∈ P (B.10)

[8 =
m

m?8
ℎ( ®?, ®G) −

<∑
A=1

`A
m

m?8
6A ( ®?, ®G) ∀8 ∈ # (B.11)

∇®G ℎ( ®?, ®G) =
<∑
A=1

`A ∇®G 6A ( ®?, ®G) (B.12)

In the following proofs, we will denote the set of all panels of the instance by P̂.

Theorem B.8.4. algorithm 2 terminates.

Proof. Fix the input instance and the DOF C = {�P}P⊇Pinit . It su�ces to show that P grows in
every iteration since it is always a subset of the �nite set P̂ of all panels of the instance. More
speci�cally, we need to show that, whenever the if branch in line 4 is not taken, %new was not yet
in P.

Note that, in line 3 of algorithm 2, the [∗8 are set equal the dual variables [8 at the optimum of�P
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by eq. (B.11).1 From complementary slackness (B.9) and the precondition _%old > 0 (line 4), we
know that a%old = 0, and thus, by eq. (B.10), that∑

8∈%old

[∗8 = [
∗
0 =

(∑
8∈% ′

[∗8

)
+ a∗% ′ ≥

∑
8∈% ′

[∗8

for all % ′ ∈ P, where the last step uses eq. (B.7). Since, by assumption, the if branch in line 4 was
not taken, we know that

∑
8∈%new [

∗
8 >

∑
8∈%old [

∗
8 ≥

∑
8∈% ′ [

∗
8 for all % ′ ∈ P, which shows that %new

was not yet in P. �

Theorem B.8.5. Fix any instance, and let a DOF C = {�P}P⊇Pinit for this instance implement a

fairness measure � . Then, when algorithm 2 is called with the instance and C, its output distribution
is maximally fair according to � .

Proof. Consider the point in the execution of algorithm 2 just before returning, when the algo-
rithm de�nes the distributionD in line 5. Since all computation steps so far are deterministic, and
since the algorithm subsequently just returns a panel drawn fromD,D is the output distribution
of the algorithm when given these inputs. It remains to show thatD is maximally fair according
to � .

Since �P (for the value of P when the algorithm is in line 5) satis�es strong duality, we know
that the variables ®_∗, ®?∗, ®G∗, ®̀∗, ®[∗ can be extended by variables (a∗

%
)%∈P and [∗0 to satisfy the KKT

conditions of �P .

We will extend these variables for �P to variables satisfying the KKT conditions for the larger
convex program �P̂ . In this extension, we preserve the values of all variables already present
from �P , and set _∗

%
B 0 and a∗

%
B [∗0 −

∑
8∈% [

∗
8 for all % ∈ P̂ \ P.

Next, we show that this assignment satis�es the KKT conditions for �P̂ . Most of the conditions
directly follow from the assumption that the KKT conditions hold for�P because all variables in
the equation remained the same (eqs. (B.4), (B.6), (B.8), (B.11) and (B.12); and eqs. (B.5), (B.7), (B.9)
and (B.10) for all % ∈ P). The �rst two conditions (eqs. (B.2) and (B.3)) are preserved because all
newly introduced _∗

%
are zero. Clearly, all _∗

%
are nonnegative (eq. (B.5)). Similarly, the added a∗

%

for % ∈ P̂ \P are nonnegative (eq. (B.7)) because the algorithm took the if branch in line 4, which
means that ∑

8∈%
[∗8 ≤

∑
8∈%new

[∗8 ≤
∑
8∈%old

[∗8 ≤
( ∑
8∈%old

[∗8

)
+ a∗%old = [∗0 .

Complementary slackness (eq. (B.9)) is satis�ed because the added _∗
%
are zero, and condition

(B.10) holds by the de�nition of the new a∗
%
. This shows that all KKT conditions for �P̂ are

satis�ed, implying the constructed assignment is optimal.
1Thus, the algorithm could alternatively have been written as taking the [∗8 directly as the optimal dual variable

values of the [8 . We do not do so to avoid ambiguity in the sign of [∗8 and to stress that
∑

8∈% [
∗
8 can be understood

as a reduced cost of the column _% , based on the gradient of the convex function.
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Since C implements the fairness measure � , the distribution whose probability mass function
is given by the constructed _∗

%
is maximally fair among distributions over the support P̂, and

therefore maximally fair among all output distributions. Since, in extending the assignment, we
only added _∗

%
variables with value 0, D is equal to this maximally fair distribution. �

B.9 Fairness Measures

In di�erent sub-areas of fair division, researchers have developed metrics measuring how fairly
utility is distributed over individuals by a given allocation of a resource [110, 206]. By casting the
problem of panel selection as a fair-division problem below, we demonstrate how these metrics
can be used to quantify the fairness of probability allocations produced by selection algorithms:

Consider each quota-compliant panel in a given instance to be a distinct public good,

and suppose that society can select exactly one of these goods, possibly through a random

lottery. Each agent in the pool has value 1 for any panel on which they are featured,

and value 0 for any panel on which they are not featured; and an agent’s utility for a

lottery over panels is their expected value for the drawn panel.

In this setup, each pool member’s utility is exactly their selection probability, which is determined
by the selected lottery over panels. Therefore, metrics for measuring the fairness of a utility
pro�le in the fair division literature can be applied to measure the fairness of a distribution over
panels by giving them a probability allocation as their input rather than a vector of utilities.

Now, we describe multiple metrics from the fair-division literature that can be used as fairness
measures in the panel-selection setting. In the subsections below, we show how each of these
fairness measures can be maximized using our framework.

Egalitarian social welfare [111]: Maximize the lowest selection probability, min8∈# ?8 .

Gini coe�cient [110, 187]: Minimize half of the relative mean absolute di�erence,∑
8∈#

∑
9∈# |?8 − ? 9 |

2=
∑
8∈# ?8

.

Atkinson indices [110, 247]: For a given parameter n ∈ (0, 1), minimize

1 − =∑
8∈# ?8

(∑
8∈# ?

1−n
8

=

)1/(1−n)
.1

Nash social welfare [206]: Maximize the product of selection probabilities,
∏
8∈# ?8 .

Recall that our de�nition of a fairness measure (appendix B.2) assumes that higher values indicate
higher levels of fairness. Thus, the sign of the Gini coe�cient and the Atkinson indices needs to
be inverted to obtain a fairness measure according to our formal de�nition.

1Note that, in our setting, minimizing the Atkinson index for n = 1 coincides with maximizing Nash welfare.
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Given that Nash social welfare and egalitarian social welfare are listed as fairness measures above,
one might expect utilitarian social welfare (i.e., the sum of selection probabilities) to also appear.
However, since the sum of selection probabilities is equal to : for all probability allocations,
utilitarian welfare is a constant function in our setting, which can hardly be considered a mea-
surement of fairness.

Another important formalization of fairness from the fair-division literature is the leximin cri-

terion [206], which we implement in our algorithm Leximin . Recall that the leximin objective
not only maximizes the lowest selection probability (as does egalitarian welfare), but then breaks
ties in favor of the second-lowest selection probability, the third-lowest selection probability and
so on. Since this objective cannot be represented as the maximization of a single real-valued
score [206], leximin cannot formally be expressed as a fairness measure according to our de�-
nition (appendix B.2). Nevertheless, the leximin criterion de�nes a weak ordering of probabil-
ity allocations, which is enough to de�ne a maximally fair probability allocation. Speci�cally, to
compare two probability allocations {?8}8∈# and {@8}8∈# , one represents each by a vector of prob-
ability values sorted in non-decreasing order and compares these vectors using the lexicographic
order.

B.9.1 Maximizing Egalitarian Welfare

For any instance, the egalitarian-welfare fairness measure is de�ned by

�egal ( ®?) = min
8∈#

?8 .

Let %> be an arbitrary panel for the instance, which can be found by ILP. We will show that the
DOF Cegal = {�P}P de�ned by the tuple

〈{%>}, 1, ( ®?, G) ↦→ G, {( ®?, G) ↦→ G − ?8}8∈# 〉

implements �egal . Since C , ℎ, and the 6A can be read from the convex optimization problem, it is
more convenient to implicitly specify them via the parametric convex program �P :

maximize G
such that

∑
%∈P

_% = 1

?8 =
∑
%∈P
8∈%

_% ∀8 ∈ #

G − ?8 ≤ 0 ∀8 ∈ #
_% ≥ 0 ∀% ∈ P .

Proposition B.9.1. For each instance, Cegal is a DOF.
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Proof. We must show that, for each P ⊇ Pinit = {%>}, the optimal value of �P is attained. Since
�P is a linear program, this reduces to showing that the program is feasible and bounded.

For any P ⊇ {%>}, �P is feasible by setting _%> B 1, _% B 0 for all other % ∈ P, by setting the
?8 according to their functional dependency on the _% , and by setting G B 0. Furthermore, the
optimal value is bounded from above since, in any valid assignment, �xing an arbitrary agent
8 ∈ # ,

G ≤ ?8 =
∑
%∈P
8∈%

_% ≤
∑
%∈P

_% = 1. �

Proposition B.9.2. For each instance, the fairness measure �egal for this instance is implemented

by the DOF Cegal for this instance.

Proof. By proposition B.8.3, Cegal implements the fairness measure � given by

� ( ®?) = sup{G | G ∈ R,∀8 ∈ # . G − ?8 ≤ 0}
= sup{G | G ∈ R,∀8 ∈ # . G ≤ ?8}
=<8=8∈#?8 . �

B.9.2 Minimizing the Gini Coefficient

For any instance, the Gini-coe�cient fairness measure is de�ned by

�gini ( ®?) = −
∑
8∈#

∑
9∈# |?8 − ? 9 |

2=
∑
8∈# ?8

.

Again, let %> be an arbitrary panel of the instance, found by ILP. We will show that the DOF
Cgini = {�P}P⊇Pinit implements �gini , where Cgini is de�ned by setting Pinit B {%>} and by
implicitly de�ning C , ℎ, and the 6A through the following convex program �P :

maximize −
∑
8< 9∈#

G8, 9

such that
∑
%∈P

_% = 1

?8 =
∑
%∈P
8∈%

_% ∀8 ∈ #

− G8, 9 + ?8 − ? 9 ≤ 0 ∀8 < 9 ∈ #
− G8, 9 − ?8 + ? 9 ≤ 0 ∀8 < 9 ∈ #
_% ≥ 0 ∀% ∈ P,

where “8 < 9 ∈ # ” is short-hand for requiring that 8, 9 ∈ # and that 8 precedes 9 in a canonical
ordering over agents.
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Proposition B.9.3. For each instance, Cgini is a DOF.

Proof. We must show that, for each P ⊇ Pinit = {%>}, the optimal value of �P is attained. Since
�P is a linear program, it su�ces to show that the program is feasible and bounded.

For any P ⊇ {%>}, �P is feasible by setting _%> B 1, _% B 0 for all other % ∈ P, by setting the
?8 according to their functional dependency on the _% , and by setting all G8, 9 to 1 (since then, e.g.,
−G8, 9 +?8 −? 9 ≤ −1+?8 ≤ 0). Furthermore, the optimal value is bounded from above since, in any
valid assignment, the G8, 9 are constrained to be at least ?8 − ? 9 and at least −?8 + ? 9 = −(?8 − ? 9 ),
which means that all G8, 9 are nonnegative and, thus, that −

∑
8< 9∈# G8, 9 cannot be positive. �

Proposition B.9.4. For each instance, the fairness measure �gini for this instance is implemented

by the DOF Cgini for this instance.

Proof. By proposition B.8.3, Cgini implements the fairness measure � given by

� ( ®?) = sup
{
−∑8< 9∈# G8, 9

���� {G8, 9 }8< 9∈# ∈ R(=2),∀8, 9 ∈ # . G8, 9 ≥ ?8 − ? 9 and G8, 9 ≥ ? 9 − ?8

}
= sup

{
−∑8< 9∈# G8, 9

���� {G8, 9 }8< 9∈# ∈ R(=2),∀8, 9 ∈ # . G8, 9 ≥ |?8 − ? 9 |

}
= −∑8< 9∈# |?8 − ? 9 |

= −
∑
8∈#

∑
9∈# |?8 − ? 9 |
2

= �gini ( ®?) =
∑
8∈# ?8

= �gini ( ®?) = :.

Thus, Cgini implements a fairness measure that is just �gini times the positive constant = : . Since
multiplying a fairness measure by a positive constant does not change which probability alloca-
tions maximize the fairness measure, Cgini also implements �gini . �

B.9.3 Minimizing the Atkinson Indices for 0 < n < 1

For a �xed instance, and a �xed constant n ∈ (0, 1), the Atkinson-index fairness measure is
de�ned by

�atkinson ( ®?) =
=∑
8∈# ?8

(∑
8∈# ?

1−n
8

=

)1/(1−n)
− 1.

Again, let %> be an arbitrary panel of the instance, found by ILP. We will show that the DOF
Catkinson = {�P}P⊇Pinit implements �atkinson , where Catkinson is de�ned by setting Pinit B {%>}
and by implicitly de�ning C , ℎ, and the 6A through the following convex program �P :
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maximize
∑
8∈#

?1−n8

such that
∑
%∈P

_% = 1

?8 =
∑
%∈P
8∈%

_% ∀8 ∈ #

_% ≥ 0 ∀% ∈ P .

Proposition B.9.5. For each instance, Cgini is a DOF.

Proof. We must show that, for each P ⊇ Pinit = {%>}, the optimal value of �P is attained. Since
there are no auxiliary constraints, feasibility is trivial given that P is nonempty. Since there are
no auxiliary variables, all variables are naturally bounded in [0, 1]. Since the domain of valid
assignments for ®_ and ®? is bounded and closed, thus compact, the continuous function ℎ attains
its maximum on this domain. �

Proposition B.9.6. For each instance, the fairness measure �atkinson for this instance is imple-

mented by the DOF Catkinson for this instance.

Proof. By proposition B.8.3, Catkinson implements the fairness measure � given by

� ( ®?) = sup{∑8∈# ?
1−n
8 }

=
∑
8∈# ?

1−n
8

= =
(
:/= (�atkinson ( ®?) + 1)

)1−n
.

Since � can be obtained by composing �atkinson with a strictly monotone function, it has the same
maximally fair probability allocations. This shows that Catkinson also implements �atkinson . �

B.9.4 Maximizing Nash Social Welfare

For a �xed instance, and a �xed constant n ∈ (0, 1), the Nash-welfare fairness measure is de�ned
by

�nash ( ®?) =
∏
8∈#

?8 .

Using an ILP solver, one can determine all agents 8 ∈ # who appear on any panel. If any agent
8 does not appear on a panel, their selection probability must be 0, which means that �nash is
constant on all probability allocations and can be maximized by deterministically returning any
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panel.1 Thus, without loss of generality, we assume that each agent 8 ∈ # is contained in a panel
%8 , which can be found by = ILP calls.

Consider the family of concave programs Cnash = {�P}P⊇Pinit where Pinit = {%8 | 8 ∈ # } and
the convex program �P is given as

maximize
∑
8∈#

log?8

such that
∑
%∈P

_% = 1

?8 =
∑
%∈P
8∈%

_% ∀8 ∈ #

_% ≥ 0 ∀% ∈ P .

We will show that, by inserting this family of concave programs into our framework, the frame-
work optimizes �nash . A formal complication is that the objective function ℎ de�ned above is
not real-valued for all probability allocations, since it is −∞ whenever one selection probability
is zero. Thus, this family does not quite �t into our de�nition of a DOF. However, the proof of
optimality of the framework still goes through given that the �% can be optimized by a convex-
program solver and that the optimal values of all �P are real-valued:

Proposition B.9.7. For each�P for some P ⊇ Pinit , the optimal objective value is real-valued and

attained.

Proof. Fix some P ⊇ Pinit . We will �rst show that the optimal objective value is not −∞. Indeed,
consider the distribution obtained by selecting each panel %8 with probability 1/|Pinit |. Since, by
construction, each agent is contained in at least one panel in Pinit , each selection probability ?8
is at least 1/|Pinit | ≥ 1/=. This means that an objective value of = log(1/=) > −∞ can be at-
tained and that the constraints are feasible. Furthermore, it shows that any probability allocation
that selects some agent 8 with probability strictly less than 1/== cannot be optimal, because its
objective value

∑
9∈# log ? 9 ≤ log?8 < = log(1/=) is lower than the previous value.

It remains to show that the optimal objective value can be attained. Consider the space of all valid
assignments ®_, ®? , which is bounded and closed. By the argument above, we do not change the
optimal objective value of �P by further restricting the program with the constraints ?8 ≥ 1/==
for all 8 , and the space of assignments for ®_, ®? still stays compact in this operation. Since ℎ( ®?) =∑
8∈# log?8 is real-valued and continuous on this space, its maximum is attained. �

Proposition B.9.8. For each instance, plugging Cnash into the framework yields an output distri-

bution that is maximally fair according to �nash .

1In practice, one would instead remove all agents from the pool who are not contained in any panel, and optimize
Nash social welfare for the resulting instance with fewer agents.
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Proof. Following the reasoning of the proof of theorem B.8.5, one shows that the probability
mass function of the output distribution is optimal according to�P̂ in Cnash . By the reasoning of
proposition B.8.3, this yields a probability allocation that maximizes the fairness measure � given
by

� ( ®?) = sup{∑8∈# log?8}
=

∑
8∈# log ?8

= log(�nash ( ®?)).

Since this is a strictly monotone transformation of �nash , the output distribution must also be
maximally fair for �nash . �

B.10 Description of Leximin

B.10.1 Overview

As we discussed in appendix B.9, leximin is not formally a fairness measure according to our
de�nition, which means that it cannot be optimized with a single application of our framework.
Instead, we repeatedly invoke the framework for di�erent auxiliary DOFs as follows: In the �rst
application of the framework, we maximize the minimum probability. Subject to �xing the se-
lection probability of a speci�c set of agents at this value (we discuss below how these agents
are chosen), we then maximize the minimum selection probability among all other agents in a
second application of the framework. We continue by �xing the selection probabilities of more
and more agents to their value in the leximin allocation until all probabilities are �xed.

The crucial step in the algorithm is knowing which agents’ probabilities to �x in each iteration.
For example, the �rst invocation of the framework, which maximizes the minimum selection
probability, might result in a probability allocation in which multiple agents have this minimum
selection probability. In this case, not all of these agents must have this minimum selection prob-
ability in the leximin-optimal distribution, so it is not obvious whose selection probability should
be �xed. As in previous work [209], complementary slackness allows us to identify at least one
agent in each iteration whose selection probability must be minimal across all distributions op-
timizing the current iteration’s DOF. Since all leximin-optimal distributions are optimal for the
current DOF, we can �x these agents’ selection probabilities.

In the following, we �rst de�ne the auxiliary DOFs and the Leximin algorithm. Then, we prove
the correctness of the algorithm.

B.10.2 Definition of Leximin

To de�ne the algorithm, wemust �rst specify the auxiliary DOFs used by it. Each auxiliary DOF is
a family Caux (', d,Pinit ) parametrized by a set ' * # of agents and by a function d : ' → [0, 1],
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which together represent that the selection probability of each agent 8 ∈ ' has been �xed to d (8);
and by an initial portfolio.

For a set of agents ' ( # , a function d : ' → [0, 1], and a non-empty portfolio Pinit , the DOF
Caux (', d,Pinit ) = {�P}P⊇Pinit for an instance is de�ned via the initial portfolio Pinit and the
following optimization problem �P :

maximize G
such that

∑
%∈P

_% = 1

?8 =
∑
%∈P
8∈%

_% ∀8 ∈ #

G − ?8 ≤ 0 ∀8 ∈ # \ '
?8 − d (8) ≤ 0 ∀8 ∈ '
d (8) − ?8 ≤ 0 ∀8 ∈ '
_% ≥ 0 ∀% ∈ P .

We will show in lemma B.10.1 below that, whenever Leximin applies the framework to such a
Caux (', d,Pinit ), it indeed de�nes a DOF. Furthermore, we show in lemma B.10.2 that this DOF
maximizes min8∈# \' ?8 among all probability allocations that select each 8 ∈ ' with probability
exactly d (8).

We now de�ne the Leximin algorithm:

Algorithm 3 Leximin
Input: an instance
Output: a randomly chosen panel for the instance

8 Plexi ← {arbitrary panel %> found by ILP} ' ← ∅ initialize empty function d : ' → [0, 1]
D ← deterministic distribution with value %> (for analysis only) while ' ( # do

9 execute algorithm 2 up to line 5 with the instance and the DOF Caux (', d,Plexi ) as input; set
®?∗, ®̀∗,D to their �nal values inside the subprocedure call; and set Plexi to the �nal value of
P in the call for 8 ∈ # \ ' do

10 if `∗A > 0 for A corresponding to constraint G − ?8 ≤ 0 then
11 ' ← ' ∪ {8} d (8) ← ?∗8

12 return panel drawn from D

Note that, since # ≠ ∅, the loop is executed at least once and the initialization of D in line 8
will never be used. However, this initialization will be convenient in the proof of correctness. In
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theorems B.10.3 and B.10.4, we prove that the selection algorithm terminates and that it is indeed
maximally fair according to the leximin criterion.

Our practical implementation of Leximin deviates from the formal speci�cation of algorithm 3
by the following modi�cations, which speed up the practical runtime while preserving optimal-
ity: (i) implementing lines 2 to 3 of algorithm 2 purely in terms of the dual linear program, by
(ii) solving these linear programs using interior-point barrier methods (which typically allow to
�x more probabilities per iteration) and by (iii) initializing Plexi in line 8 with multiple panels
found through a multiplicative-weight heuristic.

B.10.3 Proofs

Lemma B.10.1. Whenever algorithm 3 applies the framework with an instance and Caux (', d,
Plexi ), the latter is a DOF for the instance.

Proof. Fix any P ⊇ Pinit = Plexi . We must show that the optimal value of�P is attained. Because
�P is a linear program, it su�ces to show that it is feasible and bounded.

Since ' ( # , the objective value G is clearly bounded from above since, for any 8 ∈ # \ ',

G ≤ ?8 =
∑
%∈P
8∈%

_% ≤
∑
%∈P

_% = 1.

It remains to show that �P is feasible. Indeed, in the very �rst application of the framework,
Pinit is chosen to contain any arbitrary panel %> . Since ' = ∅, Caux (∅, d, {%>}) is equal to Cegal as
de�ned in appendix B.9.1 and a DOF by proposition B.9.1.

In subsequent applications, Pinit is chosen to be the portfolio Plexi produced by the previous
iteration. In this case, ' and d were updated such that the �nal values ®_∗ and ®?∗ of the previous
application of the framework are a feasible solution to the optimization problem of the current
application (setting _% of all % ∉ Pinit to zero). �

LemmaB.10.2. Whenever algorithm 3 applies the frameworkwith an instance and the DOFCaux (', d,
Plexi ), the DOF implements the fairness measure � given by

� ( ®?) =
{
min8∈# \' ?8 if ∀8 ∈ '. ?8 = d (8)
−∞ otherwise.

Proof. By proposition B.8.3, the DOF implements the fairness measure � ′ given by

� ′( ®?) = sup{G | G ∈ R,∀8 ∈ # \ '. ?8 ≥ G,∀8 ∈ '. ?8 = d (8)}.

We will show that � ′ = � , by �xing some ®? and showing that � ′( ®?) = � ( ®?). If ∀8 ∈ '. ?8 = d (8),
then

� ′( ®?) = sup{G | G ∈ R,∀8 ∈ # \ '. ?8 ≥ G} = min
8∈# \'

?8 .
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Else, i.e., if ?8 ≠ d (8) for some 8 ∈ ', then � ′( ®?) = sup ∅ = −∞. �

Theorem B.10.3. Algorithm 3 terminates.

Proof. It is enough to show that the size of ' ⊆ # grows in each iteration of the while loop.

Recall that the KKT stationarity condition on ®G (B.12) states that

∇®Gℎ( ®?, ®G) =
<∑
A=1

`A ∇®G6A ( ®?, ®G).

Note that m
mG
(G − ?8) = 1, that m

mG
(?8 − d (8)) = m

mG
(d (8) − ?8) = 0, and that m

mG
ℎ( ®?, G) = m

mG
G = 1.

Thus, the stationarity condition simpli�es to

1 =
∑

A constraint of shape G − ?8 ≤ 0
`A .

This shows that at least one of the optimal dual variables `∗A for a constraint G ≤ ?8 must be
positive, and that the size of ' increases in line 11. �

Theorem B.10.4. For any instance, the output distribution of algorithm 3 on this instance is max-

imally fair according to the leximin criterion.

Proof. We will prove the following invariant for the while loop in line 8 of algorithm 3: (1) for
all agents 8 ∈ ', d (8) is this agent’s selection probability in the leximin-optimal probability al-
location,1 and (2) D is a distribution over Plexi giving each 8 ∈ ' selection probability exactly
d (8).

Before proving the loop invariant, we show that it implies the correctness of the algorithm.
Indeed, when the while loop exits, ' = # , which means that d speci�es the whole leximin-
probability allocation by part (1) of the invariant. By part (2) of the invariant, the distribution
D, which is the output distribution of the algorithm, implements the best possible probability
allocation according to the leximin criterion and is therefore itself maximally fair.

It is easy to see that the loop invariant holds when we enter the loop for the �rst time since it is
nearly vacuous for ' = ∅. It remains to show that each iteration of the loop preserves the loop
invariant.

It follows from the de�nition of the leximin criterion and part (1) of the invariant that the leximin-
optimal probability allocation maximizes G = min8∈# \' ?8 among all possible probability alloca-
tions guaranteeing ?8 = d (8) for all 8 ∈ '. By lemma B.10.2 and theorem B.8.5, the output distribu-
tion of algorithm 2with the arguments as provided in line 9 also is a solution to this maximization
problem. Fix ?∗8 , `∗A ,D, and Plexi as in line 9, and call the optimal objective value G∗ = min8∈# \' ?∗8 .

1The leximin-optimal probability allocation is uniquely determined as shown for example in Theorem 3.7 by
Kurokawa et al. [182].
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To re-establish part (1) of the invariant, we must look at the agents 8 ∈ # \ ' whose selection
probability gets �xed to ?∗8 in line 11. Note that the dual variable `∗A is positive, and, as shown
in the proof of theorem B.8.5, that this is also an optimal assignment for the dual variable in the
problem �P̂ in Caux (', d,Plexi ), ranging over all panels. By complementary slackness (B.8), the
positivity of `∗A implies that the constraint G ≤ ?8 is tight, meaning that d (8) is set to ?8 = G∗. While
it follows from the application of our framework that some agent in # \ ' must have probability
G∗ in the leximin-optimal probability allocation, it is not immediately clear that this must be the
case for the speci�c agent 8 . However, `∗A > 0 furthermore implies that the constraint G ≤ ?8
is tight in all optimal solutions to �P̂ (see p. 95 of Schrijver [248]), and all the leximin-optimal
distributions are such optimal solutions. This shows that agent 8’s selection probability is �xed
to the probability G∗ the agent receives in the leximin-optimal probability allocation, as claimed.
Part (2) of the loop invariant follows from the fact that the distribution returned by the call to
algorithm 2 satis�es all �xed probabilities and has support Plexi . �

B.11 Description of Legacy

The Legacy algorithm proceeds in : rounds, adding one pool member to the panel per round.
Each round begins by calculating the need of each feature 5 remaining in the pool, which is
de�ned as

need 5 B
ℓ5 − (# panel members already selected with feature 5 )

# remaining pool members with feature 5 .

Note that need 5 may be negative. After calculating need 5 for all features, the algorithm chooses a
feature 5max with maximal need and draws the next panel member uniformly from the remaining
pool members with feature 5max . The selected panel member is then removed from the pool.

After adding this person to the panel, the panel might, for one or more features 5 , now containD 5
many people with feature 5 . In this case, all remaining pool members with feature 5 are removed
from the pool. If this procedure produces a quota-compliant panel after the :th round, this panel
is returned. Else, i.e., if the pool becomes empty in an earlier round or if the �nal panel violates
some quotas, the algorithm is restarted from the beginning.

For intuition, note that the panel resulting from this procedure can violate quotas for several
di�erent reasons: it could happen that the :th person is selected but not all the lower quotas are
satis�ed yet, or the algorithm could run out of people of a certain type before ful�lling a lower
quota if some of these agents were previously removed when an upper quota was reached.

The selection algorithms developed by other practitioner organizations generally follow the same
structure of selecting panel members one by one, determining which agents to choose next based
on myopic heuristics. We describe these algorithms in the following section.
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B.12 Description of Other Existing Algorithms

All existing algorithms we have heard about are listed below, and all select panel members one-
by-one, backtracking or restarting if they encounter a quota violation. In most cases, a fully
speci�ed algorithmic description was not available, but we did obtain a high-level sketch of how
each of these algorithms selects the next panel member. We list these algorithms by organization
below, and describe their basic functionality:

G1000: G1000’s algorithm works similarly to Legacy, except that it calculates the need of a
feature as a di�erence rather than as a ratio.

IFOK: IFOK’s algorithm is also generally similar to Legacy, but, rather than choosing only the
next panel member from the feature with greatest need and then recalculating need, the
entire lower quota of the feature with highest need is �lled at once.

Nexus: The algorithm used by Nexus focuses less on features but rather selects uniformly from
the pool, removing people from the pool once any of their features has reached its upper
quota.

MASS LBP: MASS LBP typically uses tight lower and upper quotas on all their features. Their
algorithm uses one bin for each feature category (e.g., gender, ethnicity, . . .), each initially
�lled with : balls labeled with the correct distribution of features of this category (e.g.,
:/2 women and :/2 men). In every round, one ball is drawn from each bin. If a member
of the pool has exactly this set of features, the pool member is chosen as the next panel
member. Since this will often not be possible, MASS LBP employs elaborate (and not fully
formalized) procedures of redrawing balls and backtracking on earlier picks. [201]

B.13 Instances where Legacy is Unfair

In this section, we de�ne a family of instances onwhich Legacy selects one individual muchmore
rarely than the others, even though it would be possible to select all agents with equal probability.
For illustration, we present one speci�c instance before de�ning the family:

Say that wewant to select an assembly of: = 200 people that includes at least 99 of each category:
women, men, liberals, and conservatives. Let the pool consist of 1,000 conservative men, 999
liberal women, and 1 conservative woman. Note that the algorithm that selects 100 uniformly
drawn women and 100 uniformly drawn men satis�es the quotas and selects each pool member
with equal probability 10%. By contrast, one can verify that the Legacy algorithm alternates
between seeing liberals and men as the categories with highest need, skipping the conservative
woman in each of the �rst 198 draws. Depending on how ties are broken for the last two panel
selections (when all lower quotas are met), the conservative woman might even be chosen with
probability 0, but with at most probability 0.2%.

De�nition B.13.1 below generalizes this example to a wide range of agent numbers and panel
sizes. In all these instances, it is possible to select all agents with equal probability :/=. At the
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same time, depending on tie breaking, Legacy might select the conservative woman with prob-
ability probability as low as zero (proposition B.13.4) or up to a selection probability in O(1/=)
(proposition B.13.5). Note that the ratio of this latter probability and the probability of equal se-
lection :/= can be made arbitrarily small by scaling up the size of the instance (corollary B.13.6).

De�nition B.13.1. Let = and : be even, positive integers, such that = ≥ 2: . De�ne the instance
Alternate (=, :) as follows:

• Set the panel size to : .

• Let there be four features: female (5 ), male (<), liberal (ℓ), and conservative (2). Let each

feature have a lower quota of :/2 − 1 and an upper quota of : (i.e., there are e�ectively no

upper quotas).

• Let the pool consist of =/2 conservative men, =/2 − 1 liberal women, and one conservative

woman.

Proposition B.13.2. For any instance Alternate (=, :), it is possible to select each agent with equal
probability :/=.

Proof. Consider the selection algorithm that chooses :/2 women and :/2 men, each uniformly
at random without replacement. It is easy to verify that this procedure will select each woman
and each man with probability :/2

=/2 = :/=. Moreover, this procedure will always select exactly
:/2 women, exactly :/2 men, between :/2 and :/2 + 1 conservatives and between :/2 − 1 and
:/2 liberals; which means that all panels produced by the procedure satisfy the quotas. �

Lemma B.13.3. When Legacy is called on Alternate (=, :),

• all picks numbered 1, 3, 5, . . . , : − 3 are liberal women, and

• all picks numbered 2, 4, 6, . . . , : − 2 are conservative men.

Proof. By strong induction on the number 8 = 0, 1, . . . , : − 3 of panel members picked so far.

Suppose that 8 is even. We will show that the next pick (the 8 + 1th) is a liberal woman. By the
induction hypothesis, Bℓ = 8/2 liberal women and B< = 8/2 conservative men have been selected
so far. The need for each of the four features is

need 5 = (:/2 − 1 − Bℓ)/(=/2 − Bℓ)
need< = (:/2 − 1 − B<)/(=/2 − B<)
need ℓ = (:/2 − 1 − Bℓ)/(=/2 − 1 − Bℓ)
need2 = (:/2 − 1 − B<)/(=/2 + 1 − B<) .

Note that all the numerators are positive and equal, and that all the denominators are positive.
Thus, the feature with highest need is the feature with lowest denominator, which is ℓ . Thus, the
algorithm selects a liberal, which can only be a woman.

288



Now, suppose that 8 is odd. We will show that the next pick (the 8 +1th) is a conservative man. By
the induction hypothesis, Bℓ = d8/2e liberal women and B< = b8/2c conservative men have been
selected so far. The need for each of the four features is

need 5 = (:/2 − 1 − Bℓ)/(=/2 − Bℓ)
need< = (:/2 − 1 − B<)/(=/2 − B<)
need ℓ = (:/2 − 1 − Bℓ)/(=/2 − 1 − Bℓ)
need2 = (:/2 − 1 − B<)/(=/2 + 1 − B<) .

It is easy to see that need< > need2 and that need ℓ > need 5 . Furthermore,

need<
need ℓ

=
(=/2 − 1 − Bℓ)/(=/2 − B<)
(:/2 − 1 − Bℓ)/(:/2 − 1 − B<)

=
(=/2 − 2 − B<)/(=/2 − B<)
(:/2 − 2 − B<)/(:/2 − 1 − B<)

=
1 − 2/(=/2 − B<)

1 − 1/(:/2 − 1 − B<)

=
1 − 2/(=/2 − B<)

1 − 2/(: − 2 − 2 B<)

≥ 1 − 2/(: − B<)
1 − 2/(: − 2 − 2 B<)

(: ≤ =/2)

> 1.

This shows that the feature with highest need is male (<), which implies that the next pick must
be a conservative man. �

Proposition B.13.4. If Legacy breaks ties between features with equal need in a worst-case way,

the conservative woman in Alternate (=, :) is selected with zero probability.

Proof. By lemma B.13.3, the conservative woman is never among the �rst : − 2 picks. For the
: − 1th pick, all features are exactly at their lower quota and therefore have a need of 0. The
implementation breaks ties in the order in which the features are speci�ed, so might break the tie
in favor of liberals (ℓ), which would mean that another liberal woman is selected. Then, in the last
pick, the categories liberal and female have negative need because they exceed their lower quota,
whereas the categories male and conservative still have a need of 0. If the tie is broken in favor
of male, the last selection is a conservative man. Since all quotas are satis�ed, the algorithm does
not restart but returns this panel. Assuming the above tie-breaking decisions, the conservative
woman will never be selected. �

Proposition B.13.5. No matter how Legacy breaks ties between features with equal need, the con-

servative woman in Alternate (=, :) is selected with probability at most 8/=.
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Proof. Again, lemma B.13.3 shows that the conservative woman is never among the �rst : − 2
picks. At the time of : − 1th pick, there are =/2 − (:/2 − 1) women left in the pool and =/2 + 1 −
(:/2 − 1) conservatives. At the time of the :th pick, these numbers are at still least =/2 − :/2
and =/2 + 1 − :/2. Since all quotas are already satis�ed by the �rst : − 2 picks, the algorithm
does not restart. Thus, by a union bound over the last two picks, the selection probability of the
conservative woman is at most

1
=/2 − (:/2 − 1) +

1
=/2 − :/2 ≤

2
=/2 − :/2 ≤

2
=/2 − =/4 =

8
=
. �

Corollary B.13.6. Even assuming best-case tie breaking between features with equal need, for every

n > 0, there is an instance where it is possible to select agents with equal probability :/=, but where
Legacy selects some agent with probability at most n :/=.

Proof. Let : be an even integer larger than 8/n , and let= = 2: . By proposition B.13.2, it is possible
to select each agent with equal probability :/=. By proposition B.13.5, the selection probability
of the conservative woman is at most 8/= ≤ n :/=. �

B.14 Comparing Legacy and Leximin on Intersectional Representation

While most of the paper is concerned with representation guarantees to individuals, in this sec-
tion, we consider how the selection algorithms Legacy and Leximin impact the representation
of groups. Note that both selection algorithms must satisfy quotas, and thus both algorithms will
proportionally represent the groups delineated by the features. Therefore, we direct our focus
to groups de�ned by the intersection of multiple features (e.g., “young woman”, where “young”
and “woman” are the features being intersected). Throughout this section, we study each group’s
panel share, which is the expected value of the fraction of the pool �lled with that group’s mem-
bers (i.e., the sum of selection probabilities of all of its members divided by :). Ideally, to provide
perfectly accurate descriptive representation, each intersectional group’s panel share would be
equal to its share in the population.

A priori, we would expect neither Leximin nor Legacy to accurately represent intersectional
groups in proportion to their population share, since neither of these algorithms has precise
information about the population shares of these groups, and they do not explicitly try to give
these groups accurate representation. Instead, the panel share of an intersectional group will
likely arise incidentally from the algorithms’ e�orts to ensure the satisfaction of quotas. The
panel shares given by Leximin may additionally be impacted by its e�ort to equalize the selection
probabilities between pool members, which could result in groups’ panel shares being closer to
their representation levels in the pool.

In this section, we investigate how accurately each algorithm represents intersectional groups
in one real-world instance, sf(e). We �nd that the algorithms give similar levels of intersectional
representation overall, and in fact, the level of representation given to each speci�c group is similar
across the two algorithms. We then �nd evidence suggesting an explanation for this similarity: for
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both algorithms, it seems that the panel shares of intersectional groups mainly re�ect the quotas,
rather than the frequency of groups in the pool. We conclude by suggesting two ways in which
our framework can be used for explicitly promoting the accurate representation of intersectional
groups.

We perform this analysis on only a single dataset because the analysis requires knowledge of the
population shares of all intersectional groups. E�ectively, this requires a separate survey dataset,
conducted on the exact population underlying the panel and including all features protected by
the assembly’s quotas. For the instance sf(e), a nation-wide panel in the UK, we make use of
the 2016 European Social Survey (ESS) [216].1 We restrict our analysis to combinations de�ned
by two features (“2-intersections”) because, for intersections of three or more features, many
intersectional groups are so small that we do not expect the ESS to represent their true population
shares.

B.14.1 Level of Intersectional Representation in Legacy versus Leximin

ED Figure 4 compares the deviation from proportional representation given to each individual
2-intersection by each respective algorithm. The histograms on the margins of the plot show
that these deviations are concentrated around zero, indicating that both algorithms give fairly
accurate representation to most intersectional groups. Nonetheless, a few 2-intersections are
misrepresented by more than 15 percentage points, i.e., their true and proportional panel shares
di�er by more than 0.15. We compare the relative performance of Legacy and LexiMin using the
mean squared error, i.e., the mean (calculated over all 2-intersections) of the squared di�erence
between the population share and the panel share. Smaller mean squared errors indicate more
accurate descriptive representation. We �nd that this error value is essentially the same for both
algorithms, indicating that they achieve essentially the same level of representation for these
intersectional groups: Legacy gives a mean squared error of 1.40 · 10−3, and Leximin one of
1.36 · 10−3.

B.14.2 Explanation for Intersectional Representation in Legacy and Leximin

As the scatter plot in the center of ED Figure 4 shows, the points track closely with a line of
slope equal to 1, indicating that not only do Leximin and Legacy achieve similar overall levels of
intersectional representation, but that they over- and underrepresent the same groups by similar
amounts. Indeed, the mean squared error between a group’s panel share for Legacy and a group’s
panel share for Leximin is 1.99 · 10−4, implying that the panel shares of a given group by the
two algorithms are more closely related to each other than to the population share. This suggests
that another property associatedwith the 2-intersectionsmight determine the group’s panel share
more accurately than the population share, across both selection algorithms.

One property of intersectional groups that might in�uence their panel shares across both al-
gorithms is their share in the pool. This is particularly relevant— and of potential concern— for

1The ESS data is preprocessed as described in Appendix D.2 of Flanigan et al. [127], and the population shares
of intersectional groups computed from this data are included in our code repository.
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Leximin , whose e�orts to equalize individuals’ selection probabilities might push it to overrepre-
sent groups that are overrepresented in the pool. Our �ndings do not substantiate these concerns:
as measured by the mean squared error, the panel share given by either algorithm is less closely
related to the pool share (Legacy: 2.60 · 10−3, Leximin : 2.37 · 10−3) than to the population share,
and, while this distance is smaller for Leximin than for Legacy, the di�erence is small.

In contrast to the pool share, we �nd that a group’s panel share as naïvely extrapolated from
the quotas does closely mirror the panel shares we observe resulting from either algorithm. We
extrapolate from the quotas to predicted panel shares by de�ning the quota share (related to the
ratio product de�ned in the methods section “Individuals Rarely Selected by Legacy”) of the
intersection of features 51 and 52 as

ℓ51 + D 51
2: ·

ℓ52 + D 52
2: .

This quota share can be understood as a naïve estimation of the population share of the 2-
intersection, assuming that features 51 and 52 are uncorrelated. We �nd that the mean squared
error between the 2-intersections’ panel shares and their quota shares (Legacy: 1.69 · 10−4, Lex-
imin : 1.76 · 10−4) are substantially smaller than the error between panel and population shares,
and on the same scale as the distance between the panel shares of both algorithms. These �ndings
suggest that the descriptive representation of an intersectional group is more directly determined
by the quotas of its constituent features rather than its share in the population or the pool. These
results also suggest that the panel produced by both selection algorithms do not automatically
replicate the correlation of features found in the population, but rather tends towards a composi-
tion in which features are closer to uncorrelated. If this phenomenon generalizes across citizens’
assemblies, this would be an argument in favor of explicitly promoting intersectional represen-
tation, as we do in the following subsection.

B.14.3 Achieving Proportional Representation for IntersectionswithOur Framework

In the above, we observed that neither selection algorithm happens to represent intersectional
groups at a high level of accuracy. This suggests that, if the accurate representation of inter-
sectional groups is an important consideration, one should attempt to incorporate this goal (and
the data about population shares) explicitly into the algorithm. Below, we present two ways
of using our framework to make the expected representation of intersectional groups closer to
proportional:

First, one could enforce hard constraints on the representation of these intersectional groups by
imposing lower and upper quotas on them, just as is traditionally done for single-feature groups.
In fact, practitioners already do this on occasion for intersectional groups of particular interest.
The downside of this approach is that it poorly scales to large numbers of intersections, because
it is di�cult to estimate how tight these quotas can be before quota-compliant panels cease to
exist. Moreover, the number and tightness of these quotas trade o� against the goal of equalizing
selection probabilities in ways that can be di�cult to predict.
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Amethod that side-steps these downsides is to promote the proportional representation of inter-
sectional groups as a soft constraint, by incorporating it into the fairness measure. Speci�cally, if
one has a collection of groups 6, each of which is associated with a set of pool members #6 and
a population share @6 ∈ [0, 1], maximizing the concave expression

−
∑

groups 6

©«@6 −
∑
8∈#6

?8/:ª®¬
2

minimizes the mean square error between the panel shares given by the algorithm and the popu-
lation shares. This term can either be turned into a distribution-optimizer family (de�nition B.8.1)
that minimizes this error without consideration for individual selection probabilities, or it can be
added to the objective function of another DOF, and the user can then optimize a linear combina-
tion of the chosen fairness measure and this mean squared error term. In de�ning this objective,
the user can choose how strongly they want to prioritize intersectional representation over indi-
vidual fairness by modifying the coe�cients of the linear combination.

B.15 Axiomatic Analysis

In searching for fair selection algorithms, we found the approach of optimizing quantitative mea-
sures of fairness more useful than the axiomatic method. The main reason for this is that a range
of standard axioms of fair division are either trivially satis�ed by all selection algorithms or im-
possible to satisfy by any selection algorithm, making them useless for delineating “good” algo-
rithms. For example, no selection algorithm can guarantee envy freeness [206] on all instances,
since the quotas of most instances preclude selecting every agent with equal probability :/=.
Pareto e�ciency [266], on the other hand, is trivially satis�ed by all selection algorithms, since
the sum of selection probabilities is always : . In appendices B.15.1 and B.15.2 below, we show
that the relational axioms population monotonicity [266] and committee monotonicity [109] are
also impossible to guarantee.

Two classical axioms that are meaningful in comparing selection algorithms are equal treatment

of equals [206] and a form of proportionality [85]. In appendices B.15.3 and B.15.4, respectively,
we show, via standard arguments, that Leximin satis�es both of these axioms.

B.15.1 Population Monotonicity

De�nition B.15.1 (population monotonicity). A selection algorithm guarantees population mono-

tonicity if, when additional agents are added to an instance, the selection probability of all previously

existing agents weakly decreases.

Theorem B.15.2. No selection algorithm can guarantee population monotonicity.

Proof. Fix a selection algorithm �, and consider an instance with six agents, : = 3, and four
features. We indicate an agent’s feature membership as a four-element Boolean vector, where
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the 8th entry of the vector indicates whether the agent exhibits feature 8 . Using this convention,
let the agents’ features be given as as agent 1: (1, 0, 0, 0), agent 2: (0, 1, 0, 0), agent 3: (1, 1, 0, 0),
agent 4: (0, 0, 1, 0), agent 5: (0, 0, 0, 1), and agent 6: (0, 0, 1, 1). For each feature 5 , set the lower
quota ℓ5 to 1 and the upper quota to 3 (i.e., there is e�ectively no upper quota). This instance has
quota-compliant panels, for example the panel {agent 1, agent 2, agent 6}. Consider the proba-
bility allocation of � on this instance. Since : = 3, agents 1, 2, 4, and 5 cannot all simultaneously
have zero selection probability. W.l.o.g., assume that agent 1 has positive selection probability.

Now, consider a modi�ed instance in which agent 6 is removed. In this instance, one veri�es that
the only quota-compliant panel is {agent 3, agent 4, agent 5}, which means that � must select
agent 1 with zero probability. This violates population monotonicity since adding back agent 6
would strictly increase the selection probability of agent 1. �

B.15.2 Committee Monotonicity

De�nition B.15.3 (committee monotonicity). A selection algorithm guarantees committee mono-

tonicity if, when an instance is modi�ed by increasing : (and remains an instance), the selection

probability of all agents weakly increase.

Proposition B.15.4. No selection algorithm can guarantee committee monotonicity.

Proof. Consider an instance with three agents and two features. De�ne the features of the agents
using the vector notation from the proof of theorem B.15.2 as agent 1: (1, 0), agent 2: (0, 1), and
agent 3: (1, 1). If the lower and upper quotas for both features are set to 1, the only panel for : = 1
is {agent 3}, and the only panel for: = 2 is {agent 1, agent 2}. Thus, any selection algorithmmust
strictly decrease agent 3’s selection probability when going from : = 1 to : = 2. �

B.15.3 Eqal Treatment of Eqals

De�nition B.15.5 (equal treatment of equals). A selection algorithm guarantees equal treatment

of equals if, for every instance and for every pair of agents 81, 82 that have exactly the same set of

features, 81 and 82 are selected with equal probability.

Theorem B.15.6. Leximin guarantees equal treatment of equals.

Proof. Fix an instance and two agents 81, 82 with equal features. LetD denote the output distribu-
tion of Leximin on this instance. For the sake of contradiction, assume that 81 is selected with a
probability ?1 strictly higher than the selection probability ?2 of 82 inD. We will show that there
exists another distributionD′ over panels whose probability allocation is leximin-fairer than the
probability allocation of D, which will contradict the optimality of Leximin .

Let 3 denote the probability mass function of D, mapping each possible panel of the instance to
the probability with which it is returned in D. Furthermore, de�ne for each panel % a second
panel swap (%), in which 81 is exchanged for 82 and vice versa:
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swap (%) B


% \ {81} ∪ {82} if 81 ∈ % and 82 ∉ %
% \ {82} ∪ {81} if 82 ∈ % and 81 ∉ %
% otherwise.

Since 81 and 82 have exactly the same features, swap (%) is also a quota-compliant panel.

Now, de�ne Dswap by the probability mass function 3swap with values

3swap (%) B 3 (swap (%)) .

For each agent 8 ∉ {81, 82}, their selection probability is equal in D and Dswap , because the agent
is included in a panel % i� they are included in swap (%). Also, the selection probability of 81 in
Dswap is ?2 and that of 82 is ?1.

Now de�ne the symmetrization D′ of D over 81 and 82 as the mixture of distributions 1
2 D +1

2 Dswap . In this distribution, each agent 8 ∉ {81, 82} is selected with the same probability as in
D, but 81 and 82 are both selected with probability (?1 + ?2)/2. This probability allocation is
leximin-fairer than that of D, contradiction. �

B.15.4 Proportionality

If a selection algorithm satis�es proportionality, each agent 8 should, on every instance, receive
at least a 1/= fraction of the selection probability they would receive under their most preferred
probability allocation for this instance (i.e., the probability allocation chosen if 8 was a dicta-
tor [85]). Note that, if 8 is contained in some panel % , the panel distribution that deterministically
outputs % gives rise to a probability allocation in which 8 is chosen with probability 1. Thus, pro-
portionality requires that 8 is selected with probability at least 1/=. Else, if 8 is not contained in
any panel, no probability allocation gives them positive selection probability, and proportionality
does not guarantee them any minimum selection probability. Consequently, proportionality in
the panel-selection setting can be de�ned as follows:

De�nition B.15.7 (proportionality). A selection algorithm guarantees proportionality if, on all

instances, each agent 8 has a selection probability of at least 1/= unless they are not contained in any
possible panel.

Theorem B.15.8. Leximin guarantees proportionality.

Proof. Fix an arbitrary instance. Partition the agents # into two sets: the agents # + that are
contained in at least one panel and the agents # − that are not contained in any panel. Since at
least one panel must exist, # + ≠ ∅.

First, consider the leximin-optimal probability allocation ®?lex . Assume for the sake of contradic-
tion that Leximin violates proportionality on this instance, i.e., that some agent in # + is selected
with probability ? < 1/=.
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Under this assumption, we will construct another panel distribution with a probability allocation
®?alt that is strictly leximin-fairer than ®?lex , which will contradict the optimality of ®?lex . For each
8 ∈ # +, let %8 be a panel such that 8 ∈ %8 . Then, consider the distribution over panels resulting
from choosing an agent 8 ∈ # + uniformly at random and returning %8 . Call the corresponding
probability allocation ®?alt . Note that each 8 ∈ # + will be contained in the panel selected in this
way with probability at least 1/|# + | ≥ 1/=.

Clearly, each agent in# −must receive selection probability 0 in both ®?lex and ®?alt . Since the next-
lower selection probability of ®?alt is at least 1/=, and since the next-lower selection probability
of ®?lex is ? < 1/=, ®?alt would be leximin-fairer than ®?lex , contradiction. �
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C.1 Panel Selection Datasets

We examine data from the following 11 real-world sortition panel selection instances, generously
provided to us by several groups that specialize in organizing citizens’ assemblies. Appendix D.4.1
shows the instance short-names we use throughout the paper, and which organization was re-
sponsible for each panel. The �nal two columns compare the values of our theoretical upper
bounds on the marginal discrepancy, illustrating that in all instances except “obf”, the bound
from Section 4.3.2 is tighter. Finally, we give some metadata about each instance, which is re-
quired for calculating the values of our theoretical upper bounds.

In particular, = = number of pool members, : = number panel members, C = set of distinct realized
feature-vectors in the pool. Precise constants used for computing exact the upper bounds are
derived in appendix C.2: the Section 4.3.1 bound is exactly :/<, the Section 4.3.2 bound is exactly√

1
2 (1 +

ln 2
ln |C| ) ·

√
|C| ln( |C|) + 1

<
,

and the Theorem C.2.8 bound is exactly 2:/=<8=+1
<

. In all instances, =<8= = 1.

Table C.1: Instance parameters and resulting theoretical bounds

Instance Organization = : |C| Thm 4.3.1 Thm 4.3.2 Thm C.2.8

sf(a) Sortition Foundation 312 35 182 35/< 24.2/< 71/<
sf(b) Sortition Foundation 250 20 92 20/< 16.5/< 41/<
sf(c) Sortition Foundation 161 44 92 44/< 16.5/< 89/<
sf(d) Sortition Foundation 404 40 108 40/< 18.0/< 81/<
sf(e) Sortition Foundation 1727 110 762 110/< 53.8/< 221/<
cca Center for Climate Assemblies 825 75 554 75/< 45.1/< 151/<
hd Healthy Democracy 239 30 202 30/< 25.6/< 61/<
mass MASS LBP 70 24 25 24/< 8.0/< 49/<
nexus Nexus 342 170 242 170/< 28.4/< 341/<
obf Of By For 321 30 294 30/< 31.6/< 61/<
ndem New Democracy 398 40 173 40/< 23.5/< 81/<

C.2 Omitted Proofs andAdditional Beyond-Worst-CaseUpper Bounds from Section 4.3

C.2.1 General Rounding Procedure

Throughout this section, we repeatedly face the task of rounding the entries of some distribution
? to some vector ?̄ that must also be a valid distribution (i.e., have entries in [0, 1] such that
‖?̄ ‖1 = 1), and have entries that are integer multiples of 1/<. However, many of the standard
rounding procedures we apply, such as randomized rounding and discrepancy-based dependent
rounding, only give guarantees for rounding probabilities to 0/1 vectors, rather than to multiples
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of 1/<. Thus, in several proofs (Section 4.3.1, Section 4.3.1, Section 4.3.2, Theorem C.2.8), we
apply these canonical rounding methods to a modi�ed version of our original vector ? , called G′.
After constructing G′, we round it to a 0/1 vector Ḡ′, from which we �nally compute ?̄ . We more
precisely de�ne this general rounding procedure, and characterize some of its useful properties,
below.

De�nition C.2.1 (Procedure for using 0/1 rounding procedure to round ? to ?̄). Let ? be a dis-

tribution, represented as a vector. Let G be the vector ? with entries scaled by<, so that G 9 :=< · ? 9 .
Then, de�ne the vector bGc, which we can think of as the “integer components” of each entry of G ,

i.e., bGc 9 :=
⌊
< · ? 9

⌋
. Finally, we de�ne G′ as the “decimal components” of the entries of G , so that

G′ := G − bGc. We will round G′ to a 0/1 vector.

Then, construct ?̄ from ? as follows:

1. Construct the vector G′ as above.
2. Round G′ to some 0/1 vector Ḡ′ via a given rounding procedure such that ‖Ḡ ‖1 = ‖G′‖1.
3. Set ?̄ such that

?̄ := bGc + Ḡ
′

<
.

At a high level, this rounding procedure can be thought of as scaling up the vector we want
to round by<, holding this scaled vector’s integer components aside and rounding its decimal
components, and then adding the integer components back in and scaling back down by<.

Now, we show that this rounding procedure produces a ?̄ with the properties we want—(a) it has
entries that are multiples of 1/< and (b) it is a valid distribution—as well as an additional property
(c), which helps translate guarantees on existing roundinig schemes to guarantees in our setting.

Lemma C.2.2. Suppose we are given a 0/1 rounding scheme which, given G′ ∈ [0, 1] |K| and con-

straint matrix" , produces some Ḡ′ which satis�es

• Ḡ′ ∈ {0, 1} |K| ,

• ‖Ḡ′‖1 = ‖G′‖1, and

• | (" (G′ − Ḡ′))8 | ≤ 6(8) for each row 8 .

Then given some distribution ? ∈ R|K|+ and< ∈ N, the procedure in De�nition C.2.1, using such a

0/1 rounding scheme, produces ?̄ such that

(a) ?̄ ∈ (Z+/<) |K| ,

(b) ?̄ is a distribution, and

(c) | (" (? − ?̄))8 | ≤ 6(8)
<

for each row 8 .

Proof. We prove each property separately:

(a) holds: ?̄ contains multiples of 1/<, since in the general procedure (De�nition C.2.1), its entries
are set to the sum of two integers divided by<.
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(b) holds: ?̄ is a valid distribution: all entries of ?̄ must be non-negative, and we have that ‖?̄ ‖1 =
‖? ‖1 = 1, as shown below.

‖?̄ ‖1 =
�������� bGc + Ḡ′<

��������
1
=

�������� bGc< ��������
1
+

��������Ḡ′< ��������
1
=

�������� bGc< ��������
1
+

��������G′< ��������
1
= ‖? ‖1

(c) holds: Fix some 8 and the corresponding row of (" (? − ?̄)), referred to as (" (? − ?̄))8 . Then,

| (" (? − ?̄))8 | =
����(" (

bGc + G′
<

− bGc + Ḡ
′

<

))
8

���� = | (" (G′ − Ḡ′))8 |<
≤ 6(8)

<

�

C.2.2 Omitted Proofs

We will make repeated use of the following generalization of Hoe�ding’s inequality (see e.g.
Proposition 5 of [101]):

Lemma C.2.3. If {b 9 } are negatively associated random variables with b 9 ∈ [0 9 , 1 9 ] and b =
∑
9 b 9 ,

then

Pr [|E[b] − b | ≥ C] ≤ 2 exp
{
− 2C2∑

9 (1 9 − 0 9 )2

}
.

Here is our �rst use:

For any realizable c , we may e�ciently randomly generate ?̄ such that its marginals c̄ satisfy

‖c − c̄ ‖∞ = $

(√
= log=
<

)
.

Proof of Section 4.3.1. Given a vector of marginals c , let ? be a basic solution to "? = c , where
" is the individual-feasible panel membership matrix, so that |BD?? (?) | ≤ =.

Then, we will construct ?̄ from ? by constructing G′, rounding it to Ḡ′ ∈ {0, 1} |K | , and then recon-
structing ?̄ as described in De�nition C.2.1. To do this 0/1 rounding, here we use any randomized
rounding procedure that satis�es the following properties: preservation of adding up constraint
‖Ḡ′‖1 = ‖G′‖1, preservation of marginals � [Ḡ′9 ] = G′9 , and that Ḡ′9 are negatively associated, as
de�ned in [56, 101]. These properties are satis�ed via any number of randomized rounding algo-
rithms [56]. Note as in De�nition C.2.1, ‖Ḡ′‖1 = ‖G′‖1 implies that ?̄ ∈ �D.

Now it remains to analyze the marginal c̄8 provided to any given individual 8 by ?̄ . Consider the
collection of Ḡ′9 for which 8 is contained in panel 9 . Then, using the negative association of these
Ḡ′9s, we have that for any C ≥ 0,

Pr[|"G′ −"Ḡ′| ≥ C] = Pr

[�����E
[∑
938
Ḡ′9

]
−

∑
938
Ḡ′9

����� ≥ C
]
, (C.1)
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by the de�nition of Ḡ′9 . Then by Hoe�ding (Lemma C.2.3),

≤ 2 exp
(
−2C2

|{ 9 : 8 ∈ 9}|

)
(C.2)

≤ 2 exp
(
−2C2
=

)
, (C.3)

where here we use that |BD?? (?) | ≤ =. Then taking C =
√

1+n
2 = log=,

≤ 2
=1+n

. (C.4)

Taking a union bound over all = rows 8 then gives

Pr

[
‖"G′ −"Ḡ′‖∞ ≥

√
(1 + n)

2 ·
√
= log=

]
≤ 2
=n

< 1.

By lemma C.2.2, we therefore have

Pr

[
‖c − c̄ ‖∞ ≤

√
1 + n
2 ·

√
= log=
<

]
≥ 1 − 2

=n
> 0. �

Note: if we are additionally guaranteed that all of the c8 = Ω(:/=), then a multiplicative form of
Cherno� yields

‖c − c̄ ‖∞ = $

(√
: log=
<=

)
with constant probability.

For any realizable c , we may e�ciently construct ?̄ such that its marginals c̄ satisfy

‖c − c̄ ‖∞ ≤ :/<.

Proof of Section 4.3.1. Here, we apply the rounding algorithmused by Flanigan et al. [128] (Lemma
9, Appendix B.4.1), which builds on a notable theorem by Beck and Fiala [40]. Since this rounding
algorithm does 0/1 rounding, we apply their algorithm to round G′, as in De�nition C.2.1, to some
0/1 vector Ḡ′, from which we construct ?̄ . By Lemma 9 in Appendix B.4.1 in [128], this algorithm
ensures the preservation of the “adding up” constraint, that is, that ‖Ḡ′‖1 = ‖G′‖1. Thus, by results
(a) and (b) of Lemma C.2.2, ?̄ ∈ �̄ .

Now, it remains to show that ‖c − c̄ ‖∞ = ‖" (? − ?̄)‖∞ ≤ :/<. Fortunately, as they prove,
the rounding procedure of Flanigan et al. [128] guarantees that when rounding G′ to Ḡ′, for a
constraint matrix " with column sparsity : , ‖" (G′ − Ḡ′)‖∞ ≤ : . By Lemma C.2.2 result (c), this
immediately implies that ‖c − c̄ ‖∞ ≤ :/<. �
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If c is anonymous and realizable, then we may e�ciently construct ?̄ such that its marginals c̄
satisfy

‖c − c̄ ‖∞ = $

(√
|C| log |C|
<

)
.

Proof of Section 4.3.2. We begin with anonymous marginals c witnessed by some distribution ?
overK. The �rst order of business is to project ? into “type space,” in order to derive a distribution
over panel types. Overloading � , we let � (%) = P denote the panel type of a given panel % , de�ned
as the multiset � (%) = {� (8) : 8 ∈ %}. Then we de�ne the distribution over panel types induced by
? as p, where the probability of drawing panel typeP from p is de�ned as pP :=

∑
%∈K:� (%)=P ?% .

This p satis�es the Panel Type LP in eq. (4.3). As an aside, note that this p has support BD?? (p) =
{� (%) : % ∈ BD?? (?)}. We will assume without loss of generality that p is a basic solution to (4.3),
so that it has at most |C| nonzero entries, where C is the set of all feature-vectors appearing in
the pool, i.e., BD?? (?) ≤ |C|. Since |BD?? (?) | ≤ = without loss of generality, |BD?? (p) | ≤ = also,
and so this basic p may be found e�ciently.

Given this distribution p over panel types, we will round it to a uniform lottery p̄ of size< over
panel typesK. Finally, we will lift this distribution over panel types p̄ back to a distribution ?̄ over
panels with the desired guarantee, and argue that this lift can be performed when the original
marginals c are anonymous.

We generate p̄, a distributionwith all probabilitiesmultiples of 1/<, fromp via randomized round-
ing, as in section 4.3.1. To produce p̄ via a 0/1 rounding algorithm, we follow the procedure given
in De�nition C.2.1, where here, p, p̄ correspond to the ?, ?̄ given in the de�nition. Via this def-
inition, we construct G, bGc , G′, Ḡ′ analogously, so that G = <p, etc. By choosing a randomized
rounding procedure that preserves ‖Ḡ′‖1 = ‖G′‖1, by Lemma C.2.2 we have that p̄ is a valid distri-
bution containing multiples of 1/<. We again assume this rounding procedure samples Ḡ′9 which
are negatively associated, and preserves that E[Ḡ′9 ] = G′9 for all panel types 9 .

Recall that type marginals g2, ḡ2 represent the expected number of panel spots allocated to each
feature vector 2 by p, p̄, respectively, and are given by g = &p and ḡ = &p̄. (Recall that & , as
described in Section 4.3, encodes the number of copies of each feature vector on each panel type.)
Wewill next analyze the proximity of the rounded typemarginals ḡ2 to the original typemarginals
g2 .

Proceeding via an analysis similar to that of Section 4.3.1, we consider the collection of random
variables Ḡ′9 for which feature vector 2 appears on panel type 9 (i.e., &2 9 > 0). We note that these
Ḡ′9 are again negatively associated, and thus all &2 9 Ḡ′9 are negatively associated, since for a �xed
instance all &2 9 are constant.

Then for any C ≥ 0,

Pr[| (&G′ −&Ḡ′)2 | ≥ C] = Pr

[�����E
[∑

9

&2 9 Ḡ
′
9

]
−

∑
9

&2 9 Ḡ
′
9

����� ≥ C
]
, (C.5)
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by the de�nition of G 9 and G̃ 9 . Then by Hoe�ding (Lemma C.2.3) with b 9 = &2 9 G̃ 9 ,

≤ 2 exp
(
−2C2∑
9 &

2
2 9

)
(C.6)

≤ 2 exp
(
−2C2

|C|<2
2

)
, (C.7)

where <2 := max 9 &2 9 , and (C.7) uses that for all 2 ,
∑
9 &

2
2 9 ≤

∑
9<

2
2 ≤ |BD?? (p) |<2

2 ≤ |C|<2
2 .

Thus, taking C2 = U ·<2 ·
√
|C| log |C|,

≤ 2
|C|2U2

. (C.8)

Taking U >

√
1
2 (1 +

log 2
log |C| ) and union bounding over all |� | feature vectors, we may therefore

guarantee that with positive probability,

| (&G′ −&Ḡ′)2 | ≤ U ·<2

√
|C| log |C|

for all 2 simultaneously. By lemma C.2.2, the derived p̄ and ḡ and therefore satisfy

|g2 − ḡ2 | ≤ U ·<2

√
|C| log |C|
<

(C.9)

for all 2 simultaneously.

Given such a p̄, ḡ over panel types, it remains to construct some uniform lottery ?̄, c̄ over the
panels in K which is consistent with ḡ and satis�es the desired guarantees on c̄ , which are:

1. each individual appears on each panel in ?̄ at most once,1

2. 0 ≤ c̄8 ≤ 1 for all 8 , and

3. |c8 − c̄8 | is small for all 8 .

We will describe a procedure for forming ?̄ and BD?? (?̄) from p̄, and then argue that it satis�es
all three of these criteria, as well as implies a valid distribution ?̄ for which all probabilities are
multiples of 1/<. At a high level, this algorithm starts with the panel types P9 which form the
support of p, and for each 2 in turn allocates spots in these panel types P9 with feature vector 2
to individuals in #2 := {8 ∈ [=] : � (8) = 2}, the =2 individuals with feature vector 2 . Given the
type marginals ḡ = &p̄ output by our rounding procedure, it �rst calculates the “ideal” number of
spots B̄8 to allocate to each individual 8 ∈ #2 across all of ?̄ . It then performs the allocation in such
a way that the guarantees above are satis�ed. Since p̄ ∈ (Z+/<) |K | and this algorithm populates
each P9 in the support to create some % 9 ∈ K, it follows that the ?̄ which it ultimately produces
is ?̄ ∈ (Z+/<) |K| also.

1We note that this is a concern because we will not simply be choosing known panels from collection K , as we
don’t see the entire collection a priori; we will instead be constructing panels that must turn out to be feasible.
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Algorithm 4 PanelPacker
Input: p̄ ∈ (Z+/<) |K | a distribution over feasible panel types, #
Output: ?̄ ∈ (Z+/<) |K | a distribution over feasible panels

13 for 9 ∈ [<] do
14 Initialize % 9 ← ∅ for eachP9 ∈ supp(p̄)
15 for 2 ∈ C do

16 Initialize spots B̄8 ∈ {b< · ḡ2/=2c, d< · ḡ2/=2e} for 8 ∈ #2 such that
∑
8∈#2

B̄8 =< · ḡ2
17 Initialize 318 ← B̄8 for 8 ∈ #2
18 for 9 ∈ [<] do
19 Let �2 9 be the �rst &2 9 many 8 ∈ #2 with largest 3 9

8

20 Update % 9 ← % 9 ∪ � 92
21 Update 3 9+1

8
← 3

9

8
− 1{8 ∈ �2 9 } for all 8 ∈ #2

22 return ?̄ the uniform distribution over % 9

For each panel type P9 in the support of p̄, algorithm 4 forms one panel in the support of ?̄ by,
for each 2 ∈ C, allocating each of panel type P9 ’s &2 9 “spots” to individuals 8 ∈ #2 . It populates
each panel typeP9 with individuals for each 2 independently. If algorithm 4 succeeds at step (20)
for all 2 ∈ C, then it produces a panel % 9 ∈ BD?? (?̄). We �rst argue that algorithm 4 succeeds in
producing feasible panels.

Proof that algorithm 4 succeeds. In particular, we will argue that algorithm 4 succeeds for every
iteration of step (20). Since

∑
8∈#2

B̄8 =
∑

P9∈p̄&2 9 , this is equivalent to showing that it assigns all
individuals 8 ∈ #2 such that 3<+18 = 0 for all 8 and no individual appears on any panel more than
once.

In each round we have
3
9

8
:=< · c̄8 −

∑
9 ′< 9

1{8 ∈ % 9 ′}

the number of spots in p̄ of type 2 on which 8 still needs to be placed at the beginning of round 9
in order to reach their allocation of B̄8 spots. (This 3 98 can be viewed as the “unsatis�ed demand”
of individual 8 at round 9 , according to the promised number of spots<c̄8 .)

Because the c̄8 are all either b<·ḡ2/=2 c<
or d<·ḡ2/=2 e

<
, the initial values of 308 for 8 ∈ #2 are all within 1

of one another. Note that step (20) preserves this property that 3 9
8
remain within 1 of one another

for all rounds, since at each step 9 it decreases some collection of maximal 3 9
8
by 1.

Suppose for the sake of contradiction that for some 2 , algorithm 4 reaches some �rst step 9 for
which a 2 position on panel % 9 cannot be allocated to any 8 ∈ #2 ; then there are not enough
individuals with remaining “unmet demand”, so &2 9 > |{8 : 3 98 > 0}|. Since &2 9 ≤ <2 ≤ =2 , it
must be the case that some 8 ∈ #2 have already been fully assigned by this step 9 (meaning that
for these 8 it is the case that 3 9

8
= 0), and so all 3 9

8
∈ {0, 1} because the 3 9

8
are within 1 of one
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another. But
∑
9 &2 9 =

∑
8 3

0
8 =< · ḡ2 , while at this point∑
9 ′≥ 9

&2 9 ′ ≥ &2 9 > |{8 : 3 98 > 0}| =
∑
8

3
9

8
,

meaning that the number of unallocated positions of type 2 remaining at step 9 exceeds the re-
maining unmet demand of the 8 ∈ #2 . This implies that strictly more than&2 9 ′ individuals 8 were
given spots on panel 9 ′ at step (20) for some earlier 9 ′ < 9 . But this is impossible by the de�nition
of algorithm 4. Therefore algorithm 4 must succeed in feasibly assigning individuals of each type
2 to panels.

Since algorithm 4 succeeds on step (20), it successfully puts &2 9 individuals in #2 onto panel % 9
for each 9 and each 2 . By the feasibility of P9 we therefore have that |% 9 | = : and % 9 is quota
feasible, since P9 is quota feasible and % 9 has the exact same numbers of individuals with each
feature vector asP9 .

Therefore algorithm 4 terminates with a collection of quota-feasible panels, with no individual
appearing on any panel more than once. �

We conclude by arguing that the output of algorithm 4 satis�es the desired guarantees.

First, it is clear that each individual 8 appears on each panel % 9 ∈ BD?? (?) at most once. This is
because for each individual 8 ∈ #2 for some 2 , 8 is assigned a position on % 9 if and only if 8 ∈ �2 9 at
step (20), and �2 9 contains each 8 at most once by de�nition. Therefore condition (1) is satis�ed.

We next show that these output c̄8 satisfy condition (2). For each 8 , its value of c̄8 in the distribution
?̄ output by algorithm 4 is precisely B̄8/<.

Therefore clearly c̄8 ≥ 0, and since condition (1) holds we have
∑
9 1{8 ∈ % 9 } ≤ <, and so c̄8 ≤ 1

also. For a more explicit proof that c̄8 ≤ 1, observe that since p is a distribution,

ḡ2 =
∑
9

p̄9&2 9 ≤ max
9
&2 9 =<2 ≤ =2,

where the last inequality follows because all P are feasible panel types, so they cannot contain
more individuals 8 ∈ #2 than exist in the pool. By algorithm 4we have B̄8 ∈ {b<·ḡ2/=2c, d<·ḡ2/=2e}.
Dividing by =2 and multiplying by< yields B̄8 ≤ <, and so c̄8 = B̄8/< ≤ 1. Thus (2) is satis�ed.

Finally, we con�rm condition (3), that the individual marginals are close. By the anonymity of
c , for all 8 with � (8) = 2 we have c8 = g2/=2 , and by its choice of B̄8 and the fact that it succeeds,
algorithm 4 guarantees that c̄8 = B̄8/< ∈ (ḡ2/=2 −1/<, ḡ2/=2 +1/<). Since<2 ≤ =2 , therefore (C.9)
implies

|c8 − c̄8 | ≤
<2

=2
· U ·

√
|C| log |C|
<

+ 1
<

= $

(√
|C| log |C|
<

)
,

for all 8 , satisfying condition (3) and showing the claim. �
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There exist ?, c for which for all uniform lotteries ?̄, c̄ ,

min
?̄∈D
‖c − c̄ ‖∞ = Ω

(√
:

<

)
.

We will make use of the following lemma:

LemmaC.2.4. Any:-uniform hypergraph on [=] is realizable via quotas as the set of feasible panels
for an instance of the panel selection problem with pool [=].

When individual membership in feasible panels is represented as " ∈ {0, 1}=×|K| , this lemma
claims that any" with uniform column norms is realizable by an instance of the panel selection
problem, meaning that there exists an instance of the panel selection problem (#,:, �, ;,D) for
which" is precisely the individual-panel membership matrix for the set of feasible panels.

Proof. Given a set system S ⊆ ( [=]
:
), we may construct a set of upper quotas such that the collec-

tion of feasible panels is exactly S.

To do this, construct a binary feature 5) for each ) ∉ S. For each 8 in [=], let 5) (8) = 1 if and
only if 8 ∈ ) ; otherwise let 5) (8) = 0. Finally, enforce the upper quota that for all feasible panels
% ⊂ [=], ∑

8∈%
5) (8) ≤ : − 1,

for all) ∉ S—that is, no feasible panel has more than : − 1members belonging to any) . Clearly
no ) ∉ S is a feasible panel. For ( ∈ S, observe that |( | = : , and so for all ) ∉ S, we have
|( ∩) | ≤ : − 1. Therefore all ( ∈ S are feasible.

Finally, it bears noting that this is also possible to execute using lower quotas: taking 5 ′
)
(8) =

1 − 5) (8), we could instead enforce for each ) ∉ S that∑
8∈%

5 ′) (8) ≥ 1.

�

Proof of Section 4.3.3. Using lemma C.2.4, our aim is to identify and deploy some matrix " ∈
{0, 1}=×|K| for which

min
Ḡ∈Δ̄
‖"Ḡ ‖∞ = Ω

(√
:

)
,

where Δ̄ := {G ∈ {. . . ,−3,−1, 1, 3, . . .}= :
∑
8 G8 = 0} and all columns of " sum to : . Translating

and scaling appropriately and applying lemma C.2.4, this will provide our desired Ω
(√

:
<

)
lower

bound.

The common instances which provide lower bounds of Ω(
√
:) for the Beck-Fiala problem are in-

su�cient for our purposes in two respects. First, while they are column-sparse, they are generally
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not uniform in column norm. Second, they are incomparable in terms of the Ḡ which they quan-
tify over: the Beck-Fiala problem considers minimizing ‖"Ḡ ‖∞ in the more restrictive rounding
setting where Ḡ ∈ {−1, 1}= , while we are concerned with Ḡ ∈ Δ̄.

We overcome these barriers by �rst modifying the Walsh matrices — a family of Hadamard ma-
trices — in order to guarantee uniform column norms, and then modifying the Beck-Fiala lower
bound proof of [253, Theorem 19] for arbitrary Hadamard matrices to apply to our matrices for
all Ḡ ∈ (2Z + 1)= .

To begin, let �C be the 2C × 2C Walsh matrix, de�ned recursively by �0 = 1 and

�C+1 =

[
�C �C
�C −�C

]
.

Let # := 2C denote its dimension.1 It is a fact that all rows (and columns) besides the �rst have an
equal number of 1 and −1 entries. Therefore we take � ′C to be the submatrix derived by dropping
the �rst two columns of �C . (We remove the �rst column so that all remaining columns have
equal sum; we remove the second so that Δ̄ is nonempty). Additionally, let ℎ8 denote the rows
of � ′C , and ℎ 9 denote its columns. Then � ′C has the property that

∑
8 ℎ

9

8
= 0, and in particular all

columns ℎ 9 have # /2 1-entries.

We have the following lemma:

Lemma C.2.5.

min
G∈Δ̄
‖� ′C G ‖∞ ≥

# − 2
√
#

,

where Δ̄ := {G ∈ {. . . ,−3,−1, 1, 3, . . .}#−2}.

Proof. This right-hand side is � ′C G = (ℎ1G, . . . , ℎ#G)) . We aim to show that there is some 8 for
which |ℎ8G | is large. Writing ‖� ′C G ‖22 two ways, we have that∑

8

(ℎ8G)2 = ‖G1ℎ1 + . . . + G#−2ℎ#−2‖22

=
∑
9

G29 ‖ℎ 9 ‖22 +
∑
9≠:

G 9G: (ℎ 9 · ℎ:).

The entries of �C are all ±1, and ℎ 9 · ℎ: = 0 for 9 ≠ : (since the columns of �C and therefore � ′C
are orthogonal), so this becomes

= (# − 2)
∑
9

G29

≥ (# − 2)2,
1Note that this # is a variable used only in this proof, and it is unrelated to the pool # and its magnitude = as

used in the paper body.
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since G28 ≥ 1 by assumption. Therefore by averaging there is some 8 for which (ℎ8G)2 ≥ (#−2)
2

#
,

and so |ℎ8G | ≥ #−2√
#
), as desired. �

Next we translate � ′C into an instance of the panel selection problem and argue it has the desired
properties. Take" := 1

2 (�C + 1
#×(#−2)) to be the {0, 1} matrix derived from � ′C .

The fact that " has uniform column norm : = # /2 directly follows from a property of Walsh
matrices. Therefore we may apply lemma C.2.4 to argue that " is realizable as the individual-
panel membership matrix for some instance of the panel selection problem, with = = # , |K| =
# − 2, and : = # /2.

To conclude, consider the uniform ? =
( 1
#−2 , . . . ,

1
#−2

)
, with< = 0(# − 2) + (# − 2)/2 for any 0 ∈

Z+. In this case, each coordinate of ? falls evenly between multiples of 1/< and must be rounded
to multiples of 1/<. Letting G := ? − b<?c/< = (1/2<, . . . , 1/2<) be this vector of remainders,
we must replace it with some Ḡ ∈ (Z/<)#−2, while maintaining that

∑
9 Ḡ 9 =

∑
9 G 9 = (# −2)/2<,

so that the resulting ?̄ = b<?c/< + Ḡ remains a distribution over panels. (Note that here negative
Ḡ 9 signify that the distribution mass on panel 9 decreases from ? to ?̄ .)

Explicitly, we then have

‖c − c̄ ‖∞ = ‖"? −"?̄ ‖∞ (C.10)
= ‖" (G − Ḡ)‖∞ (C.11)

=
1
2< ‖"~‖∞, (C.12)

where ~ := 2<(Ḡ − G).

=
1
2< ‖

1
2�
′
C~ +

1
21

#×(#−2)~‖∞ (C.13)

=
1
4< ‖�

′
C~‖∞, (C.14)

where
∑
8 ~8 = 0 because we require that ?̄ remain a distribution. Then since ~ ∈ (2Z + 1)#−2, by

lemma C.2.5 we have

≥ # − 2
4<
√
#

(C.15)

= Ω

(√
:

<

)
, (C.16)

since : = # /2.

This holds for all ~ ∈ (2Z + 1)#−2. Recall that D := {?̄ ∈ (Z+/<) |K| : ‖?̄ ‖1 = 1}, and so

D ⊆ {? + Δ̄/2<}.
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Therefore (C.16) implies that

min
?̄∈D
‖c − c̄ ‖∞ = Ω

(√
:

<

)
,

as desired. �

C.2.3 Additional Beyond-Worst-Case Upper Bounds

Since some of our beyond-worst-case upper bounds apply to anonymous realizable c , it is rea-
sonable to ask how prevalent anonymous realizable c are, for arbitrary instances of sortition.
Fortunately, we have the following claim:

Claim C.2.6. For any instance of the panel selection problem and any realizable c , let c ′ be the
“anonymized” marginals obtained by setting c ′8 to the average c8′ across all 8

′
with the same feature

vector as 8 . Then c ′ is realizable also.

Proof of Claim C.2.6. Let c∗ denote the “anonymization” of c , and take

Π :=
c ′ : realizable, and for all 2 ,

∑
8:� (8)=2

c ′8 =
∑

8:� (8)=2
c8

 .
We will show that c∗ ∈ Π.

We argue by way of contradiction. Let ĉ denote the “most anonymized” c ′ ∈ Π, in the sense that

ĉ = argmin
c ′∈Π

max
2

(
max
8:� (8)=2

c ′8 − min
8:� (8)=2

c ′8

)
.

Let 8 and 8′ be some pair of individuals with � (8) = � (8′) witnessing this maximum diameter, and
let ? be a distribution with marginals ĉ . For each such pair, we will argue that ? may be modi�ed
so that ĉ8 = ĉ8′ while leaving all other marginals unchanged. By iteratively applying this to all
such pairs, we will contradict the minimality of ĉ .

To start, observe that by assumption ĉ8 > ĉ8′ . Let ?′ be the distribution over feasible panels which
is the same as ? , except that 8 and 8′ switch places in any panel on which either of them appear. All
such panel replacements yield feasible panels, since they have the same feature vector 2 . Finally
take ?=4F = (? + ?′)/2. As promised, this distribution has the property that c8 = c8′ and all other
marginals are unchanged. �

As a belated warm-up to the beyond-worst-case guarantees, we address the case when there is
only one feature of interest, so that � = {5 }. It turns out that we can obtain strong guarantees
for this special case without using the machinery deployed in the proof of Section 4.3.2. We place
no constraints on the size of the set of feature values Ω, nor do we require that c is anonymous.
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Theorem C.2.7. If c is realizable and |� | = 1, then we may e�ciently identify ?̄ such that its

marginals c̄ satisfy

‖c − c̄ ‖∞ <
2
<
.

Proof of Theorem C.2.7. Given marginals c , let ? be a distribution over feasible panels K which
witnesses c . The �rst step of this rounding is to consider the marginals gE of each feature value
E : gE =

∑
8:5 (8)=E c8 . Note that

∑
E gE =

∑
8 c8 = : . Since there is only one feature, all feasible panels

% satisfy

;E ≤ |{8 ∈ % : 5 (8) = E}| ≤ DE , (C.17)

and taking the expectation of this over ? gives

;E ≤ E? [|{8 ∈ % : 5 (8) = E}|] ≤ DE (C.18)
;E ≤ gE ≤ DE . (C.19)

Therefore ;E ≤ bgEc and DE ≥ dgEe. We will construct a new distribution ?̄ over panels % which
satisfy bgEc ≤ |{8 ∈ % : 5 (8) = E}| ≤ dgEe for all features E , and are therefore guaranteed to be
feasible.

We will construct feasible panels via the following scheme. Consider the interval [0, :<] ⊂ R as
representing the :< spots to be allocated across the < panels which will comprise our lottery,
and let BC := [C − 1, C) denote spot C . Next observe that<

∑
8 c8 = :<, and so<c8 may be viewed

as the expected number of spots which ? would give to 8 .

First group the c8 by feature value to form gE =
∑
8:5 (8)=E c8 , and then pack them into [0, :<], so

that individuals with common feature values have contiguous sections; let (8 denote the portion
of [0, :<] allocated to 8 , so that |(8 | = c8 . We will choose an individual � (C) for each spot BC , and
then assemble the< panels that comprise ?̄ by taking

%A := {� (C) : C = F< + A forF ∈ {0, . . . , : − 1}}, (C.20)

for A ∈ {1, . . . ,<}.

How to choose which individual will get the spot C for each C? If (8 ⊇ BC then � (C) = 8 . Otherwise,
BC is split between two or more individuals, possibly with di�erent feature values, in which case
we call it contested. Observe that no matter how these contested BC are allocated (no matter the
choice of � (C) for split C ), it will be the case that |c8−c̄8 | < 2/<, since there is at most one contested
BC at each endpoint of the interval (8 .

It remains to argue that the panels chosen in (C.20) are feasible; in particular that bgEc ≤ ḡE ≤ dgEe
for all E . By construction, each panel %A has some number of spots which will necessarily be
allocated to an individual with feature value E , and some number of spots which are contested
and may or may not be allocated to an individual with feature vector E . For each value E , there
are at most two spots in all of [0, :<] which are type contested in this way. If some panel %A
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contains at most one type-contested spot for type E , then no matter which way it is allocated,
|{8 ∈ % : 5 (8) = E}| − gE | < 1, and so %A is feasible with respect to E . In the worst case, for some
given E both of the spots which are type-contested by E appear on the same panel %A . In order to
ensure that |{8 ∈ % : 5 (8) = E}| − gE | < 1, it must be the case that exactly one of these two spots
is allocated to some 8 for which 5 (8) = E . Fortunately this constraint is easily satis�able, even in
the case when a given panel %A contains both of the type-contested spots for multiple features E .

Therefore the ?̄ as constructed by (C.20) is supported by panels which are not only feasible but
respect quotas which are maximally tight, given that the input ? , c was realizable. Finally since
each 8 contests at most two spots, we have that

‖c − c̄ ‖∞ <
2
<
. �

Theorem C.2.8. Given realizable anonymous c , we may e�ciently identify ?̄, c̄ such that

‖c − c̄ ‖∞ = $

(
1
<

max
{
:

=<8=
, 1

})
,

where=<8= := min2 =2 is the minimum number of individuals in the pool which share any one feature

vector.

Proof. We proceed as in the proof of Section 4.3.2, but apply a di�erent rounding to the panel
type LP to obtain p̄. To begin, ?, c projects to some p, g . Without loss of generality assume that
it is a basic solution to the Type LP (4.4).

We will construct p̄ from p by applying 0/1 rounding as in de�nition C.2.1.

Note that the constraint matrix& in (4.3) has the property that for all columns @ 9 , ‖@ 9 ‖1 = : . As a
special case of [94, Theorem 6], applied to G′ and the panel type LP, there exists an Ḡ′ ∈ {0, 1} |K |
such that

‖& (G′ − Ḡ′)‖∞ < 2:.

and for which ‖Ḡ′‖1 = ‖G ‖1. (This follows from a generalization of the Beck-Fiala algorithm
which both respects hard constraints and applies to arbitary matrices & with bounded column
norms, and is therefore also algorithmic.)

Applying lemma C.2.2, we then have

‖g − ḡ ‖∞ <
2:
<
.

Given that such a p̄, ḡ exists, it remains to generate ?̄ and c̄ in such a way as to give the desired
bound on the discrepany in individual marginals. We proceed in a manner identical to the proof
of Section 4.3.2.
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Again we have that ḡ ≥ 0 and ḡ =
∑
9 &2 9 ?̄ 9 ≤ <2 ≤ =2 , where <2 = max 9 &2 9 and =2 is the

number of individuals 8 for which � (8) = 2 , since p̄ is a distribution over feasible panel types 9 .
Therefore dividing ḡ amongst the c̄8 as equally as possible for each 2 gives c̄8 ∈ [0, 1].

By the anonymity of c , for all 8 with � (8) = 2 , c8 = g2/=2 , and dividing the spots in p̄ for feature
vector 2 as equally as possible amongst the =2 individuals gives c̄8 ∈ {ḡ2/=2 ± 1

<
}. This equal

division of spots in order to form ?̄ from p̄ is feasible by the same algorithm 4 as in the proof of
Section 4.3.2. Therefore the resulting ?̄, c̄ satis�es

‖c − c̄ ‖∞ = max
2
|g2/=2 − c̄ |

<
1
=2
‖g − ḡ ‖∞ +

1
<

<
2:

=<8= ·<
+ 1
<
. �

C.3 Omitted Proofs from Section 4.4

There exists a Maximin-optimal ?∗ such that, for all uniform lotteries ?̄ ,

Maximin(?∗) −Maximin(?̄) = Ω

(√
:

<

)
.

Proof of Section 4.4.1. We will follow the proof of Section 4.3.3: �rst we use the Walsh matrices
to construct a matrix with the desired properties, prove a modi�ed version of Lemma C.2.5 for it,
and then appeal to lemma C.2.4 to argue that it corresponds to a realizable instance of the panel
selection problem.

In contrast to the construction in section 4.3.3, where we need only demonstrate that some c̄8 de-
viates from c8 , we must construct an instance for which (essentially) the minimum c8 necessarily
decreases. We accomplish this by �rst modifying the Walsh matrices to have uniform row norm,
so that c is uniform and all c8 are minimal. We then introduce a second set of “twin” individu-
als, each 8′ of which is a member of the panels which their twin 8 is not. This ensures that any
discrepancy in c̄ − c is witnessed in the downward direction.

To begin, again let �C be the 2C × 2C Walsh matrix, with # := 2C its dimension. This time we take
� ∗C to be the submatrix derived by dropping the �rst row of �C . By properties of Walsh matrices,
all remaining rows in� ∗C have an equal number of 1 and −1 entries, (though this is no longer true
of the columns).

Again letting ℎ8 denote the rows of � ∗C , and ℎ 9 denote its columns, we have the following new
version of lemma C.2.5, which requires the additional assumption that

∑
9 G 9 = 0:

Lemma C.3.1.

min
G∈Δ∗
‖� ∗C G ‖∞ ≥

√
#,
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where Δ∗ := {G ∈ {. . . ,−3,−1, 1, 3, . . .}# :
∑
9 G 9 = 0}.

Proof. This right-hand side is � ′C G = (ℎ1G, . . . , ℎ#−1G)) . We aim to show that there is some 8 for
which |ℎ8G | is large. Writing ‖� ′C G ‖22 two ways, we have that∑

8

(ℎ8G)2 = ‖G1ℎ1 + . . . + G#ℎ# ‖22

=
∑
9

G29 ‖ℎ 9 ‖22 +
∑
9≠:

G 9G: (ℎ 9 · ℎ:)

the entries of � ∗C are all ±1, and ℎ 9 ·ℎ: = −1 for 9 ≠ : (since the columns of �C were orthogonal),
so this becomes

= (# − 1)
∑
9

G29 −
∑
9≠:

G 9G:

= #
∑
9

G29 −
∑
9

∑
:

G 9G:

= #
∑
9

G29

≥ # 2,

since G28 ≥ 1 by assumption. Therefore by averaging, there is some 8 for which (ℎ8G)2 ≥ # 2

#−1 , and
so |ℎ8G | ≥

√
# , as desired. �

As constructed, all rows of � ∗C have the same number of 1s, so when we transform it into some
" for some instance of the panel selection problem, it will yield that the marginals c of uniform
? are uniform. However we cannot yet apply lemma C.2.4, since the columns of the resulting "
do not have constant norm; in particular, the �rst column will be all 1s.

In order to simultaneously correct for this and translate from ℓ∞ to Maximin lower bounds, we
introduce “twins” for each 8 . Letting "∗ = 1

2 (�
∗
C + 1(#−1)×# ) be this {0, 1} matrix, de�ne "̄∗ :=

1(#−1)×# −"∗ to be its complement, so that"∗8 9 = 1 − "̄∗8 9 for all 8, 9 . Finally take

" =

[
"∗

"̄∗

]
and observe that this" ∈ {0, 1}(2#−2)×# has uniform column norm # −1 because of "̄∗. We may
therefore apply lemma C.2.4 to claim that it is the individual-panel membership matrix of some
instance of the panel selection problem.

The remainder of the argument proceeds similarly to that of lemma C.2.5, with additional step of
showing that the lower bound holds for the maximin objective. We include the full argument for
completeness.
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Similarly take ? =
( 1
#
, . . . , 1

#

)) , with < = 0# + # /2 for any 0 ∈ Z+, = = 2# − 2 (the number
of individuals), and : = # − 1. This ? gives equal marginals: here c8 = ("?)8 = #−1

2#−2 = :
=
for

all 8 . Again each coordinate of ? falls evenly between multiples of 1/< and must be rounded to
multiples of 1/<. Letting G := ? − b<?c/< = (1/2<, . . . , 1/2<)) be this vector of remainders, we
must replace it with some Ḡ ∈ (Z/<)# , while maintaining that

∑
9 Ḡ 9 =

∑
9 G 9 = # /2<, so that

the resulting ?̄ = b<?c/< + Ḡ remains a distribution over panels.

Explicitly, we then have

‖c − c̄ ‖∞ = ‖"? −"?̄ ‖∞ (C.21)
= ‖" (G − Ḡ)‖∞ (C.22)

=
1
2< ‖

[
"∗

"̄∗

]
~‖∞, (C.23)

where ~ := 2<(Ḡ − G). Because ℓ∞ is a maximum, this is

≥ 1
2< ‖"

∗~‖∞ (C.24)

=
1
2< ‖

1
2�
∗
C ~ +

1
21
(#−1)×#~‖∞ (C.25)

=
1
4< ‖�

∗
C ~‖∞, (C.26)

where
∑
8 ~8 = 0 because we require that ?̄ remain a distribution. Then since ~ ∈ (2Z + 1)#−2, by

lemma C.2.5 we have

≥
√
#

4< (C.27)

= Ω

(√
:

<

)
, (C.28)

since : = # − 1. Again since D ⊆ {? + Δ̄/2<}, we then have

min
?̄∈D
‖c − c̄ ‖∞ = Ω

(√
:

<

)
.

Since c is uniform by construction (and so these ? and c are optimal with respect ot Maximin),
this is a lower bound on the discrepancy of each marginal which was minimal before deviation.
It �nally remains to show that this deviation happens in the downward direction, so that the
minimum marginal decreases by at least this amount. Observe that by the construction of "̄∗,
for all ?̄ we have ("∗?̄)8 = −("̄∗?̄)8 . Therefore for any given ?̄ , whichever coordinate 8 satis�es
| (c − c̄)8 | = Ω(

√
:/<), there is a coordinate 8′ for which (c − c̄)8′ = Ω(

√
:/<). Therefore in this

instance

Maximin(?∗) −max
?̄∈D

Maximin(?̄) = Ω

(√
:

<

)
,

as desired. �

314



For NW-optimal ?∗ over a support of panels BD?? (?∗), there exists a constant _ ∈ R+ such that,
for all % ∈ BD?? (?∗), ∑8∈% 1/c∗8 = _.

Proof of Section 4.4.2. We can write the problem of �nding the NW optimizing distribution over
a �xed panel support P ⊆ K as below on the left, where #, = (?) is equal to the product of the
c8 , the marginals implied by the panel distribution ? (in contrast, in Section 4.2, we let #, (?) be
the geometric mean—here we we take the =Cℎ power). On the right, we’ve rewritten the program
in standard form, where we set 5 (?) = −#, = (?), ℎ(?) = ?1 +?2 + · · · +? |P | − 1, and 6 9 (?) = −? 9 .
Observe that, ∀9 ∈ [|P|], ∇ℎ(?) = 1 and ∇6 9 (?) = −4 9 , where 4 9 is the vector of 0s with a 1 at
index 9 .

max
?
#, = (?) min

?
5 (?)

‖? ‖1 = 1 ℎ(?) = 0
? 9 ≥ 0 ∀9 ∈ [|P|] 6 9 (?) ≤ 0 ∀9 ∈ [|P|]

Now, let ?∗ be an optimal solution to this program, and BD?? (?∗) be its support, i.e., the set of
panels to which ?∗ assigns nonzero probability. Then, since the objective and constraints of the
above program are continuously di�erentiable over their entire support (and thus at ?∗), by the
KKT condition Stationarity, there exist some constants _ and ` 9 for all 9 ∈ [|BD?? (?∗) |] (where 0
is the zero vector) such that

∇5 (?∗) + _∇ℎ(?∗) +
∑

9∈[|BD?? (?∗) |]
` 9∇6(?∗) = 0 =⇒ (∇5 (?∗)) 9 = ` 9 − _

By dual feasibility and primal feasibility respectively, we have that ` 9 , ? 9 ≥ 0 for all 9 ∈ [|BD?? (?∗) |];
by complementary slackness, we have that

∑
9∈[|BD?? (?∗) |] ` 9?

∗
9 = 0. Thus, for all 9 , either ?∗9 = 0,

or ?∗9 > 0 and ` 9 = 0. We have restricted BD?? (?∗) to panels 9 in which ?∗9 > 0, so we conclude
that ` 9 = 0. It follows that

m#, = (?∗)
m?∗

9

= − (∇5 (?∗)) 9 = −(` 9 − _) = _ ∀9 ∈ BD?? (?∗)

Finally, we can conclude the proof by expressing this partial derivative for �xed ? 9 (which as
shown, has a constant value across all 9 in the support) in terms of the marginals c . We obtain
that for all 9 in BD?? (?∗),

_ =
m#, = (?∗)

m?∗
9

=
∑
8∈#

#, = (?∗)
c∗
8

mc∗8
m?∗

9

=
∑
8∈% 9

#, = (?∗)
c∗
8

= #, = (?∗) ©«
∑
8∈% 9

1
c∗
8

ª®¬
where % 9 is the 9Cℎ panel in BD?? (?∗). The second equality is by the product rule for derivatives,
where each term of the resulting sum is equal to the derivative of c∗8 with respect to ?∗9 multiplied
by #, /c∗8 , the NW holding out the marginal of individual 8 . The third equality is by the fact that
if 8 ∈ % 9 , then mc∗8 /m?∗9 = 1; otherwise mc∗8 /m?∗9 = 0. �
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For NW-optimal ?∗, c∗, we have that c∗8 ≥ 1/= for all 8 ∈ # .

Proof of Section 4.4.2. Let - [% 3 8] be the indicator that a panel % contains individual 8 . Then,

E%∼?∗

[∑
8∈%

1
c∗
8

]
= E%∼?∗

[∑
8∈#

- [% 3 8]
c∗
8

]
=

∑
8∈#

E%∼?∗ [- [% 3 8]]
c∗
8

=
∑
8∈#

c∗8
c∗
8

= =

By Section 4.4.2, we also have that E
[∑

8∈%
1
c∗
8

]
= _/#, = (?∗), and thus _/#, = (?∗) = =. It

follows that for all panels % ,
∑
8∈%

1
c∗
8
= _/#, = (?∗) = = and therefore c∗8 ≥ 1/= ∀8 ∈ # ; otherwise,

we would have some panel % for which
∑
8∈%

1
c8

> =, a contradiction. �

For NW-optimal ?∗, c∗, there exists a uniform lottery ?̄, c̄ that satis�es NW(?∗) − NW(?̄) ≤
: ‖c∗ − c̄ ‖∞.

Proof of Section 4.4.2. Let c∗<8= be the smallest marginal of any individual implied by the Nash-
optimal distribution over panels ?∗, i.e., c∗<8= = min8∈# c∗8 . Then, to upper-bound the loss in NW,
we assume an unattainable worst case that between ?∗, c∗ and a given uniform lottery ?̄, c̄ , all
individuals probabilities su�er the largest loss of any marginal, ‖c∗ − c̄ ‖∞, and that this loss
manifests multiplicatively as badly as if all agents had original marginal probability c∗<8= . This
�rst gives the multiplicative bound:

#, (?∗) ≥ #, (?∗)
(
c∗<8= − ‖c∗ − c̄ ‖∞

c∗
<8=

)
= #, (?∗)

(
1 − ‖c

∗ − c̄ ‖∞
c∗
<8=

)
.

Rearranging the above conclusion and then applying the facts that #, (?∗) ≤ :/= (trivially) and
c∗<8= ≥ 1/= (Section 4.4.2), we get the desired additive bound:

#, (?∗) − #, (?) ≤ #, (?∗) · ‖c
∗ − c̄ ‖∞
c∗
<8=

≤ :
=
· ‖c

∗ − c̄ ‖∞
1/= ≤ : ‖c∗ − c̄ ‖∞ �

C.4 Omitted Materials from Section 4.5

C.4.1 Algorithm Descriptions

Algorithms for calculating optimal panel distributions.

In this paper, we calculate optimal panel distributions across instances with respect to Maximin,
NW, and Leximin objectives. To do this, we build on publicly-available code [163], which imple-
ments the column generation techniques from [130].

Rounding algorithms.

At a high level, the task solved by the Pipage and Beck-Fiala rounding algorithms in Section 4.5
can be thought of as rounding an input panel distribution ? to some uniform lottery ?̄ by rounding
the Standard LP described in Section 4.3. However, neither of these rounding methods are used
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to directly round ?; rather, they are used to round a modi�ed version ?′, which transforms the
task from rounding entries of ? to multiples of 1/< to the task of rounding entries of ?′ to 0/1.
The details of this transformation are described in the proof of Section 4.3.1 in Appendix C.2.

Pipage
We round ?′ exactly according to the Pipage Rounding algorithm speci�ed in Gandhi et al [141].
We note that their algorithm is speci�ed for the task of rounding bipartite graphs; we apply their
methods by formulating our rounding problem as a star graph, where each of the |K | vertices
surrounding the central vertex corresponds to a feasible panel % . Each edge from the central
vertex 8 to a surrounding vertex % has a weight (which will ultimately be rounded to 0/1) equal to
G8,% = ?′

%
, the probability of drawing panel % from the modi�ed version of the initial distribution

?′. Gandhi et al’s degree preservation property guarantees the satisfaction of our adding up
constraint ‖?′‖ = ‖?̄′‖.

Beck-Fiala
Our Beck-Fiala implementation is identical to the deterministic implementation speci�ed in the
proof of Lemma 9, Appendix B.4.1 of [128]. For details on the mapping of their setting to ours,
see the proof of Section 4.3.1 in Appendix C.2.

Integer Programs.

IP-Maximin
The below integer program computes a lottery ?̄ ∈ (Z+/<) |K | , where the variables are ~, the
lower bound on any marginal probability; ?̄ , the uniform lottery; and c̄ , the implied vector of
marginals. The �rst constraint, along with the objective, result in the maximization of the mini-
mum marginal. The second constraint imposes the relationship between the panel distribution ?̄
and the marginals c̄ . The third constraint imposes that the resulting panel distribution G will be
a uniform lottery. The fourth and �fth constraints impose that ?̄ is a valid distribution.

Maximize ~
s.t. c̄8 ≥ ~ ∀8 ∈ #∑

%∈K,
%38

?̄% = c̄8 ∀8 ∈ #

< ?̄% ∈ Z+ ∀% ∈ K∑
%∈K

?̄% = 1

?̄% ≥ 0 ∀% ∈ K

IP-NW
This integer program is essentially the same as IP-Maximin, except that instead ofmaximizing the
lower bound on the marginals, it maximizes the geometric mean of the marginals by equivalently
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maximizing the sum of their logarithms.

Maximize
∑
8∈#

log(c̄8)

s.t.
∑
%∈K,
%38

?̄% = c̄8 ∀8 ∈ #

< ?̄% ∈ Z+ ∀% ∈ K∑
%∈K

?̄% = 1

?̄% ≥ 0 ∀% ∈ K

IP-Marginals
This IP takes as input some panel distribution ?, c to be rounded, and minimizes the largest
discrepancy of any resulting c̄8 from the corresponding c8 . Again, several of the constraints and
variables are common with IP-Maximin.

Minimize I
s.t. |c8 − c̄8 | ≤ I ∀8 ∈ #∑

%∈K,
%38

?̄% = c̄8 ∀8 ∈ #

< ?̄% ∈ Z+ ∀% ∈ K∑
%∈K

?̄% = 1

?̄% ≥ 0 ∀% ∈ K

C.4.2 Implementation Notes and Algorithm Runtimes

Our experiments were implemented in Python and run on a 13-inch MacBook Air (2018) with a
1.6 GHz Intel Core i5 processor.

Runtimes of Pipage, Beck-Fiala, and IP-NW on rounding an unconstrained distribution are
given in the table below. We optimized IP-NW with Gurobi using its built-in piecewise linear
approximation of logarithms (given that IP-NW is nonlinear) with the parameter controlling the
error in the piecewise approximation set to FuncPieceError=0.0001. This worked quite well in
most instances, getting within 1/< of optimal fairness on 10 out of 11 instances.

IP-Maximin and IP-Marginals were run in Gurobi and struggled to converge completely (even
after many hours), but showed good performance after a short time. The results in the paper
show their solutions after 30 minutes of run-time.
∗ indicates capped at 7200s (2 hours). Time is measured in seconds. All times given (except those
that timed out) represent the average over 3 runs.
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Table C.2: Run-times for Pipage, Beck-Fiala, and IP-NW

Instance Pipage Beck-Fiala IP-NW

sf(a) 1.5 1.6 17.1
sf(b) 1.3 1.3 27.8
sf(c) 1.0 1.1 33.1
sf(d) 2.1 2.3 40.6
sf(e) 17.0 28.3 7245∗
cca 4.4 6.4 7207∗
hd 1.5 1.7 120.1
mass 0.4 0.4 3.4
nexus 2.8 3.2 21.1
obf 2.3 2.4 22.3
ndem 2.2 2.6 34.8

C.4.3 Analysis of Nash Welfare Fairness Preservation (Figure corresponding to Fig-
ure 4.2)

Here we give the corresponding analysis from Figure 4.2 for NW. We see, �rst that there is
some algorithm in every instance that achieves within 0.1/< of #, (?∗), where ?∗ is the NW
optimizing unconstrained distribution. This indicates that the cost of transparency to NW in
practice is essentially 0. We note that in a few instances, IP-NW, which should theoretically
dominate all other algorithms, is outperformed by either Pipage or Beck-Fiala. As we discuss
in Appendix C.4.2, this is due to small errors in the integer optimization errors.

We �nd that our theoretical upper bounds on NW loss are less useful than those on the Maximin
loss, because they are multiplied by an additional factor of : , while the value of the NW objective
falls within a similar range to the Maximin objective. We note, however, that these bounds would
be useful for larger<: currently, the maximum possible losses implied by the bounds fall between
191/< = 0.191 and 5922/< = 5.922. If we increased < by a factor of 100 to < = 100, 000 (this
wouldmean drawing 5 lottery balls instead of 3), then our boundswould be nearly tight to optimal
in multiple instances (e.g., in “sf(a)”, this would yield a loss of 0.008), and would be meaningful in
all instances.

C.4.4 Analysis of Leximin Preservation (Figures corresponding to Figure 4.3)

Here we give the corresponding analysis from Figure 4.3 for all other instances. In all instances,
the conclusions we draw are essentially the same as those drawn from Figure 4.3: in all instances,
all algorithms almost exactly preserve the Leximin-optimal marginals. Our theoretical bounds
are meaningful, but we consistently outperform them in practice.
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Figure C.1: < = 1000. Shaded regions extend from NW(?∗), the fairness of the optimal uncon-
strained distribution, down to the minimum fairness implied by the tightest theoretical upper
bound in that instance (in all instances but “obf” Section 4.3.2 is tightest). Each algorithm or
bound’s loss relative to NW(?∗) is written above in the corresponding color. We show a repre-
sentative run of Pipage, a randomized algorithm.
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Figure C.2: sf(b)
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Figure C.3: sf(c)
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Figure C.4: sf(d)
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Figure C.5: sf(e)
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Figure C.6: cca
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Figure C.7: hd

322



agents sorted by marginal given by p *
0.00

0.25

0.50

0.75

1.00

m
ar

gi
na

l p
ro

ba
bi

lit
y

12/m
p *

IP-Marginals
Pipage
Beck-Fiala

Figure C.8: mass
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Figure C.9: nexus

agents sorted by marginal given by p *
0.00

0.25

0.50

0.75

1.00

m
ar

gi
na

l p
ro

ba
bi

lit
y

13/m

p *

IP-Marginals
Pipage
Beck-Fiala

Figure C.10: obf
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D.1 Supplemental materials from Section 5.2

D.1.1 Details of randomized rounding step of rounding-based algorithms

Inputs: The randomized rounding task takes two inputs:

– a vector of marginal probabilities, c ∈ [0, 1]= such that
∑
8∈[=] c8 = : , and

– an |�+ | + 1 × = matrix � , which can be seen as the binary matrix de�ning the adding up
constraints in opt-prob. That is, each column of � corresponds to an agent, and each row
(except the last) corresponds to a di�erent feature-value (5 , E) ∈ �+ . The 8th column has
1s in rows corresponding to feature-values possessed by 8 , and 0s elsewhere. The last row
corresponds to the adding up constraints, and so contains a 1 in every column.

Task: The goal is to round the entries of c into a vector c̃ ∈ {0, 1}= such that the three criteria
below are satis�ed. This rounding procedure will be randomized, so c̃ is a random variable.
Conceptually, c̃ will encode the selected panel  , where c̃8 = 1 ⇐⇒ 8 ∈  .

– The adding up constraint is deterministically preserved:∑
8∈[=]

c̃8 = : with probability 1

– The representation constraints satis�ed by the original selection probabilities are deter-
ministically satis�ed within a relaxation of |� |:∑

8:5 (8)=E
c̃8 ∈

∑
8:5 (8)=E

c8 ± |� | for all (5 , E) ∈ �+ with probability 1

– The selection probabilities in c are preserved:

E[c̃8] = c8 for all 8 ∈ [=]

Algorithm (Randomized-Round): This rounding algorithm is exactly the algorithm used to
prove Lemma 3 in Flanigan et al. [128]. We outline their key arguments here, rephrased in our
notation.

Lemma D.1.1 (Lemma 9 in [128]). Let (c8)8∈[=] be any collection of variables in [0, 1] such that∑
8∈[=] c8 = : . Then, we can e�ciently compute a deterministic 0/1 rounding (c̃8)8∈[=] such that∑
8∈[=] c̃8 = : and such that, for each feature-value pair (5 , E),∑

8:5 (8)=E
c̃8 ∈

∑
8:5 (8)=E

c8 ± |� |.

The proof of this lemma is based on discrepancy theorem by Beck and Fiala [41], and crucially
relies on the fact the underlying matrix� is relatively sparse: that is, each agent 8 has only |� | +1
1s in their column of the � matrix.
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The above lemma implies a deterministic rounding procedure satisfying only criteria 1 and 2
above. To transform this deterministic rounding procedure into a randomized rounding proce-
dure satisfying criteria 3, as do Flanigan et al., we can apply Theorem 1.2 from [34], which does
exactly the needed transformation. We outsource the (relatively straightforward) details of ap-
plying this theorem in our setting to Lemma 3 in Flanigan et al. [128].

D.1.2 Relationship between rounding-based andqota-based algorithms

Conceptually, opt-prob is equivalent to the relaxation of quota-based algorithms in which all
agents are treated as divisible (i.e., a panel can contain fractional agents). We formalize this
here now, de�ning all relevant programs and relaxations, and then proving the equivalence in
Proposition D.1.2.

Definition of qota-based algorithms: opt-qota. To begin, we �rst formally specify the
optimization solved by a quota-based algorithm, as used in practice and studied in Flanigan et al.
[130]. At a high level, these algorithms di�er from Equation (opt-prob) by requiring represen-
tation in a di�erent way: they impose upper and lower quotas on all (5 , E), which impose some
tolerance of error around each ? (5 ,E) · : that must satis�ed deterministically by the chosen panel
 . Formally, for all (5 , E) ∈ �+ , a lower quota is ℓ(5 ,E) , an upper quota is D(5 ,E) , and the chosen
panel  is sampled from the panel distribution d resulting from the optimization program below.
We let K be the collection of all feasible panels, that is, all subsets of [=] satisfying the following
two constraints:

K :=
{
 : | | = : ∧

∑
8:5 (8)=E

1(8 ∈  ) ∈
[
ℓ(5 ,E), D(5 ,E)

]
for all (5 , E) ∈ �+

}
.

Implicitly, the panel distribution d implies selection probabilities c : c8 is equal to the probability
of choosing any panel containing 8 , as de�ned by ? . We encode this constraint in the optimization
problem below:

min
c∈[0,1]=, ?∈[0,1] |K |

6(c) s.t.
∑
 ∈K

d = 1 ∧ c8 =
∑
 ∈K

d · 1(8 ∈  ) for all 8 ∈ [=]

(opt-qota)

Continuous relaxation of quota-based algorithms: opt-qota-continuous.

Now, we de�ne a version of opt-qota in which individuals are treated as divisible. Then, a panel
- ∈ [0, 1]= is a vector of length =, whose 8-th entry G8 speci�es the fraction of agent 8 included in
panel - . Then, the set of feasible panels is the following, uncountable in�nite set:

X :=
{
- :

∑
8∈[=]

G8 = : ∧
∑

8:5 (8)=E
G8 ∈

[
ℓ(5 ,E), D(5 ,E)

]
for all (5 , E) ∈ �+

}
.

Then, for variables c and panel density function d , we optimize

min
c∈[0,1]=, d

6(c) s.t.
∫
-∈X

d-3- = 1 ∧ c8 =

∫
-∈X

d- G83- for all 8 ∈ [=]
(opt-qota-continuous)
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Generalized version of rounding-based algorithms: opt-prob-range.

Here, we de�ne a slightly generalized version of opt-prob, in which the representation targets are
replaced with ranges (where we should think of this range encompassing the exact representation
target in opt-prob, so :? (5 ,E) ∈ [ℓ(5 ,E), D(5 ,E)]).

min
c∈[0,1]=

6(c) s.t.
∑

8:5 (8)=E
c8 ∈ [ℓ(5 ,E), D(5 ,E)] for all (5 , E) ∈ �+ ∧

∑
8∈[=]

c8 = :

(opt-prob-range)

Formal eqivalence of opt-prob-range and opt-qota-continuous. Conceptually, what
this shows is that for any quotas ℓ(5 ,E),D (5 ,E) imposed in quota-based algorithms, maximizing our
fairness objective while treating people as divisible is equivalent— from the perspective of selec-
tion probabilities— to solving our rounding-based optimization problem with the same represen-
tation target ranges. To realize exactly opt-prob, one could run a quota-based algorithm with
divisible agents and ℓ(5 ,E) = D(5 ,E) = :? (5 ,E) .

Proposition D.1.2. c is feasible in opt-prob-range ⇐⇒ there exists a panel density function d

over X which realizes c in opt-quota-continuous.

Proof. (Forward direction): c is feasible in opt-prob =⇒ there exists a panel density function d

over X which realizes c :

Fix a feasible c . De�ne a panel - ∗ such that G∗8 = c8 for all 8 ∈ [=]. By the fact that c satis�es
the constraints in opt-prob-range, it follows immediately that - ∗ ∈ X. Place all the mass in d
on - ∗, so d- ∗ = 1 and d- = 0 for all - ∈ X \ {- ∗}. Then, by de�nition, c is realized by this d ,
because for all 8 ∈ [=],

c8 =

∫
-∈X

d-G83- = G8 .

(Reverse direction): d is a valid density function over X and implies c =⇒ c is feasible in opt-

prob-range.

Fix a valid d and let it imply c . Then, we can con�rm that c satis�es the constraints of opt-prob:∑
8∈[=]

c8 =
∑
8∈[=]

∫
-∈X

d-G83- =

∫
-∈X

d-

∑
8∈[=]

G83- =

∫
-∈X

d-:3- = :.

For any (5 , E) ∈ �+ , let ∑8:5 (8)=E G8 = A (5 ,E) .∑
8:5 (8)=E

c8 =
∑

8:5 (8)=E

∫
-∈X

d-G83- =

∫
-∈X

d-

∑
8:5 (8)=E

G83- =

∫
-∈X

d-A (5 ,E)3-

∈
[
ℓ(5 ,E), D(5 ,E)

]
. �
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D.2 Supplemental materials from Section 5.3

D.2.1 Proof of Theorem 5.3.1

Proof. This result is most naturally proven using feature vector-indexed analogs of our standard
agent-indexed objects, so we de�ne them now: we use aF (# ) := |{8 : 8 ∈ [=],F (8) = F}|/|# | to
denote the fraction of the pool # containing feature vectorF , with . (# ) = (aF |F ∈ W). Noting
that all reasonable objectives (including those considered here) will give all agents with the same
vector the same selection probability, we will use @F (# ) to denote the selection probability given
to each individual agent with vector F , i.e., for all 8 ∈ # : F (8) = F , @F (# ) = c8 . We summarize
these selection probabilities in the vector q(# ).

Reformulationof optimization problem. We reformulate our optimization problem in terms
of the variables @F here, for both objectives. First our feasible set of values of @F |F ∈ W, call it
Q, is de�ned by the following constraints, analogs of those de�ning R: q ∈ Q ⇐⇒ q satis�es∑
F :F 5 =E

aF (# )@F (# ) = ? (5 ,E) ·:/= for all (5 , E) ∈ �+ ∧
∑
F

aF (# )@F (# ) = :/= ∧ q(# ) ∈ [0, 1] |W| .

(D.1)

Now, to de�ning our full optimization problems: �rst, recalling that Leximin is just a re�nement
of maximin,

maximin(?, :, # ) : max
@∈[0,1]W#

min
F∈W#

@F (# ) s.t. q ∈ Q .

For Nash , we equivalently analyze the log of the geometric mean, whose optimizer is the same
as that of the geometric mean:

Nash(?, :, # ) : min
@∈[0,1]W#

∑
F∈,#

−aF (# ) log(@F (# )) s.t. q ∈ Q .

Instance. Fix a X ∈ [1, :/2). All four claims will be proven via the same class of instances (param-
eterized by X), which has two features � = {51, 52} with binary values in {0, 1}, and as such,W
contains the feature vectors 00, 01, 10, 11. Now, to de�ne this instance ?, :, # : let the population
rates be ? 51,0 = ? 52,0 = 1/2. Let : ≥ 2. Fix a pool # of size = ≥ :2 where = is a multiple of both
X/(2:) and 1 − X/: , with the following composition: a00 = a11 = a∗ = X/(2:), a10 = 1 − 2a∗, and
a01 = 0. We note that in order for there to be enough people to �ll the panel, a∗ ≥ :/(2=).

Optimal selection probabilities in instance (with true pool). Now, we characterize the Lex-
imin and Nash -optimal selection probabilities in this instance with the true pool. They are
simple, because they are essentially determined by the constraints: notice that for any =, the con-
straints require @10(# ) = 0, because any probability mass added to a (10) will induce imbalance
in the amount of probability given to 51 = 0 versus 52 = 0, a violation of the constraints that
d 51=0 = d 52=0 = 1/2 that cannot be counteracted because the complementary vector (01) does
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not exist in the pool. Also, because vectors 00 and 11 are completely symmetric in the instance,
they must receive identical selection probabilities. Thus, @00(# ) = @11(# ); by the adding up con-
straint, we have that a∗@00(# ) + a∗@11(# ) = :/=, implying that @00(# ) = @11(# ) = 1/(2a∗) · :/=.
To recap, for any =,

@Leximin00 (# ) = @Nash00 (# ) = @Leximin11 (# ) = @Nash11 (# ) = 1/(2a∗)·:/=, @Leximin10 (# ) = @Nash10 (# ) = 0.
(D.2)

De�ning the manipulated pool. Now, de�ne the following manipulating coalition � of size
2 = :/2 − X such that F (8) = 10 for all 8 ∈ � — that is, all agents in the coalition will have true
vector 10. They will also all misreport the same vector 01, so F̃ (8) = 01 for all 8 ∈ � . We de�ne
the resulting manipulated pool as #̃ := #−� ∪ (F̃ (8) |8 ∈ �). Then, in the corresponding ã , we
have that ã00 = ã11 = a∗, ã10 = 1 − 2a∗ − 2/=, and ã01 = 2/=.

Optimal selection probabilities in the manipulated pool. Before analyzing any speci�c
objective, we reduce the constraints to be in terms of a single selection probability @01. Beginning
with the raw constraints (where all probabilities @E here are implicitly @E (#̃ ), the probabilities in
the manipulated pool):

a∗ @00 + 2/= @01 = 1/2 · :/=
a∗ @00 + (1 − 2a∗ − 2/=) @10 = 1/2 · :/=

a∗ @00 + 2/= @01 + (1 − 2a∗ − 2/=) @10 + a∗ @11 = :/=

This system of 3 linear equations and 4 unknowns simpli�es to the following expressions, where
all the selection probabilities are in terms of @01:

@00 = @11 =
1/2 · :/= − 2/=@01

a∗
and @10 =

1/2 · :/= − (1/2 · :/= − 2/=@01)
1 − 2a∗ − 2/= =

2/= · @01
1 − 2a∗ − 2/= .

Handling box constraints. Above, we expressed all agents’ selection probabilities in terms of
@01. Now, we will show that for all @01 ∈ [0, 1], all agents’ selection probabilities fall between
[0, 1] for the parameter settings above. First, this is trivially true for @01. For @00 = @11, we have
that

@00 = @11 =
1/2 · :/= − 2/=@01

a∗
=
: − 2(:/2 − X)@01

2= · X/(2:) =
: (: − (: − 2X)@01)

=X

Bounding this above and below for all @01 ∈ [0, 1]:

0 ≤ 2:
=

=
: (: − (: − 2X))

=X
≤ : (: − (: − 2X)@01)

=X
≤ :2

=X
≤ 1.

Finally, for @10,

2/=
1 − 2a∗ − 2/= · @01 =

:/2 − X
=(1 − 2X/(2:)) − (:/2 − X) =

:/2 − X
=(1 − X/:) − (:/2 − X)
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Bounding this above and below for all @01 ∈ [0, 1] (and assuming : ≥ 2, as is always the case in
real panels):

0 ≤ :/2 − X
=(1 − X/:) ≤

:/2 − X
=(1 − X/:) − (:/2 − X) ≤

:/2
=(1 − 1/2) − :/2 =

:

= − : ≤
:

:2 − : =
1

: − 1 ≤ 1.

Now, we’ve shown that in this instance, the constraints @00 ∈ [0, 1], @11 ∈ [0, 1], and @10 ∈ [0, 1] in
Equation (D.1) will never bind. This means that we have reduced the problem to a single-variable
problem of the following form:

min
@01

6(@01) such that @01 ∈ [0, 1] .

We now compute the optimizer of this program below for both 6 = Leximin and 6 = Nash,
showing that in either case, the optimizer sets @01 = 1.

Analysis of Leximin. Leximin has only one degree of freedom @01, so it will maximize the
minimum selection probability, i.e., it will set @01 to maximize the following expression:

min
{
@01,

2/= · @01
1 − 2a∗ − 2/=,

1/2 · :/= − 2/=@01
a∗

}
(D.3)

We will show that the second term in this minimum is the smallest over the entire domain of @01.
First, comparing the second term to the �rst term in (D.3), we use that 2 ≤ :/2 to show that

@01 ≥
2/= · @01

1 − 2a∗ − 2/= ⇐⇒ 1 − 2a∗ − 2/= ≥ 2/= ⇐= 1 − 2a∗ ≥ :/=.

Plugging in our parameters, we deduce that 1−2a∗ = 1−2X/(2:) ≥ 1−1/2 = 1/2 ≥ :/=, as needed.

Next, comparing the second term to the third term in (D.3), we deduce that

1/2 · :/= − 2/=@01
a∗

≥ 2/= · @01
1 − 2a∗ − 2/= ⇐⇒ (1/2 · :/= − 2/= · @01) (1 − 2a∗ − 2/=) ≥ 2/=@01 · a∗

⇐⇒ : ≥ 22 · @01(a∗ + 1 − 2a∗ − 2/=)
1 − 2a∗ − 2/=

⇐⇒ : ≥ 22 · @01(1 − a∗ − 2/=)
1 − 2a∗ − 2/= (b)

Observe that if (b) holds for @01 = 1, it holds for all @01 ∈ [0, 1]. Thus, setting @01 = 1, we deduce
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the bound in reverse:

: ≥ 22 (1 − a∗ − 2/=)
1 − 2a∗ − 2/= ⇐⇒ : ≥ 2(:/2 − X) (1 − X/(2:) − (:/2 − X)/=)

1 − 2X/(2:) − (:/2 − X)/=
⇐⇒ : (1 − X/: − (: − 2X)/(2=)) ≥ (: − 2X) (1 − X/(2:) − (: − 2X)/(2=))

⇐⇒ : − X − : (: − 2X)2= ≥ : − X/2 − : (: − 2X)2= − 2X + X2/: + 2X : − 2X2=
⇐⇒ −X ≥ X/2 − 2X + X2/: + X : − 2X

=

⇐⇒ X ≤ −X/2 + 2X − X2/: − X : − 2X
=

Using that : − 2X > 0 and = ≥ 2: ,

⇐= X ≤ −X/2 + 2X − X2/: − X : − 2X2:
⇐⇒ X ≤ X − X2/: + X2/:
⇐⇒ X ≤ X.

Then, we have that (b) is true for all @01 ∈ [0, 1].

We have shown that the second term of the minimum in (D.3) is the smallest term over the entire
support @01 ∈ [0, 1]. Because this term is increasing in @01, the Leximin optimal solution will
maximize this term by setting @01 = 1.

We conclude that in this instance, @Leximin01 (#̃ ) = 1. That is, on the manipulated pool, Leximin
will give all agents in the manipulating coalition probability 1. Given that by Equation (D.2),
@Leximin10 (# ) = 0 and F (8) = 10 for all 8 ∈ � , it follows that for any 8 ∈ � , cLeximin

8 (#̃ ) −
cLeximin
8 (# ) = 1 − 0 = 1.

Moreover, we’ve shown this for any size coalition 2 ∈ [1, :/2). Setting 2 = 1 (corresponding
setting to X = :/2 − (:/2 − 1)), this implies that manip8=C (#, Leximin, 1) = 1. For generic X , we
conclude that manip2><? (#, Leximin, :/2 − X) = :/2 − X .

Analysis of Nash. Repeating the same analysis for Nash, the function Nash maximizes in this
instance is∑
F

aF log(@F ) = 2a∗ log
(
1/2 · :/= − 2/=@01

a∗

)
+ (1 − 2a∗ − 2/=) log

(
2/=

1 − 2a∗ − 2/= · @01
)
+ 2/= log(@01)

This function is concave in @01, so it has a unique maximizer that can be found by the �rst-order
condition: Thus, taking the derivative with respect to @01 and setting it to zero, we get that this
function is maximized when

2a∗ · a∗

1/2 · :/= − 2/= · @01
· −2
=a∗
+ (1 − 2a∗ − 2/=) · 1 − 2a

∗ − 2/=
2/= · @01

· 2/=
1 − 2a∗ − 2/= +

2

= · @01
= 0.
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Dividing both sides by 2/= and making cancellations,

⇐⇒ −2a∗
1/2 · :/= − 2/= · @01

+ (1 − 2a
∗ − 2/=)/(2/=)
@01

+ 1
@01

= 0

⇐⇒ −2a∗
1/2 · :/= − 2/= · @01

+ 1 − 2a∗
2/= · @01

= 0

⇐⇒ @01 =
: (1 − 2a∗)

22
Plugging in our values for a∗, 2 ,

⇐⇒ @01 =
: (1 − 2X/(2:))
2(:/2 − X)

⇐⇒ @01 =
: − X
: − 2X > 1

Of course, we have deduced that the unconstrained optimizer places @01 > 0. By the concavity of
the objective, we know that the optimizer is then at @01 = 1, at the edge of the box constraint.

We conclude that in this instance, @Nash01 (#̃ ) = 1— that is, on themanipulated pool,Nashwill give
all agents in the manipulating coalition probability 1. Given that by Equation (D.2), @Nash10 (# ) = 0
andF (8) = 10 for all 8 ∈ � , for all 8 ∈ � , cNash

8 (#̃ ) − cNash
8 (# ) = 1 − 0 = 1.

Moreover, we’ve shown this for any size coalition 2 ∈ [1, :/2). Setting 2 = 1 (corresponding
setting to X = :/2 − (:/2 − 1)), this implies that manip8=C (#,Nash, 1) = 1. For generic X , we
conclude that manip2><? (#,Nash, :/2 − X) = :/2 − X . �

D.2.2 Proof of Proposition D.2.1

Let :/=1 be the =-length vector whose entries are all :/=.

Proposition D.2.1. Let 6 be any strongly convex (with parameter<) that, when unconstrained, is

minimized at at :/=1, the point where all agents’ selection probabilities are equalized. Let c be a set

of marginal probabilities with @ = max8 c8 . Then,

6(c) ≥ </2|@ − :/= |2.

Proof. Then, by the de�nition of strong convexity,

6(c) − 6(:/=1) + ∇6(:/=1)) (c − :/=1) ≥ </2‖c − :/=‖2 =</2
∑
8

(c8 − :/=)2

≥ </2|@ − :/= |2

Noting that ∇6(:/=1)) = 0,

⇐⇒ 6(c) − 6(:/=1) ≥ </2|@ − :/= |2.
=⇒ 6(c) ≥ </2|@ − :/= |2. �
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D.3 Supplemental materials from Section 5.4

D.3.1 Practical justification of Assumption 5.4.1

What we need is a a setW∗ of feature vectors within the pool such that each group F ∈ W∗

grows linearly in = (up to the size of the total population) and that this set of vectors is su�cient
to permit a feasible solution on their own. We cannot test this assumption directly in our data,
since we only see one realized value of =. Thus, we base our discussion here on the statistical
properties of the random pool recruitment process. Examining this process, we actually expect
something stronger to be true, at least in expectation: every vector group to grow linearly in =,
up to variance, which we will discuss at the end. This (expected) linear growth is due to how
the pool is sampled: invitation recipients are uniformly selected from the population, so at least
the expected pool composition, over the randomness of the invitation process, should be roughly
constant in = (i.e., all groups grow linearly in =). We formalize this intuition below with a simple
model of the pool formation process, which will also help us more precisely discuss the role of
variance.

To model the pool formation process with minimal assumptions, let . be the entire underlying
population, LetW. be the set of all unique feature vectors in the population, WF be the fraction of
the population with feature vectorF , and @8 be the probability that each 8 ∈ . decides to partici-
pate conditional on being invited. Let @̄F : 1

|{8:F8=F}|
∑
8:F8=F

@8 be the average rate of participation
among population members with vector F . Then, in the process of sampling the pool # (with
corresponding . (# )), there are two stages of randomness: that of inviting recipients, and their
decision of whether to participate. Regardless of the size of the pool # , E[aF (# )] = WF@̄F for
all F ∈ W. — that is, in expectation, all vector groups in the pool are growing linearly in = (and
moreover, the randomness in this process consists of Bernoulli draws, so the pool composition
should be concentrating around its expectation as = gets large). Variance in this process could be
in the @8 values of agents with vector F relative to @̄F ; variance in the sampling of who receives
letters; and variance in the Bernoulli draws by which people decide whether to participate. Based
on this process, variance will mainly be a problem for ensuring linear growth among very small
groups, particularly when = is small.

The potential e�ects of variance in small groups, especially at practical sample sizes, is precisely
themotivation for proving our results under Assumption 5.4.1— amuchweaker requirement than
the assumption that all groups are growing in =. Under this assumption, we need only that there
some set of vectors yielding a feasible solution growing linearly in=, rather than all vector groups in
the pool. For our assumption to be violated, there would need to be no such set of feature vectors,
corresponding to the unlikely case that any possible set of feature vectors supporting a feasible
solution contains a group composing only a sliver of the population.

D.3.2 Proof of

Proposition D.3.1. The example used to prove Theorem 5.3.1 satis�es Assumption 5.4.1.

Proof. The example in Theorem 5.3.1 satis�es Assumption 5.4.1 by settingW∗ = {00, 11} and
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^∗ = a∗−:/=, wherea∗ > 0 is a constant that we choose, and:/= → 0 as= grows large. For part (2)
of Assumption 5.4.1, we can easily see that a feasible solution exists overW∗ = {00, 11}: spread
all the probability equally among the agents with these vectors. For part (1) of Assumption 5.4.1,
we need to verify that ^∗ = a∗ − :/= > 0. The only tricky part is that, as the coalition size
approaches :/2, we need a∗ to get smaller. This is not a problem, though; we just need = to be
larger for the assumption to be satis�ed, which is �ne because Theorem 5.3.1 needs to hold just
for very large =.

�

D.3.3 Proof of Theorem 5.4.3

Proof. Fix an instance with one binary feature with values 0 and 1; let ? 5 ,E1 = 1/2; then we know
that the total probability given to agents with vector 0 and 1 is 1/2: . Now, suppose a0 = 7/8 and
a1 = 1/8. The probabilities are then

c0 =
1/2:
7=/8 =

4
7:/=, c1 =

1/2:
=/8 = 4:/=.

We will deal with the largest coalition size 2 = 5=/64 only; the argument for all smaller coalition
sizes follows in the same way. We assume that this coalition defects from vector 0 to vector 1.
Then, the resulting probability for vector 1 is

c̃1 =
1/2:
=/8 + 2 =

4:
= + 82 = 4:/= − 4: ∗ 82

=(= + 82) ≥ 4:/= − 32:2
=2

Now, we characterize the three types of manipulability. Within the coalition, all members receive
probability c̃1 when before they received c0, so

manip8=C (#,A, 2) ≥ c̃1 − c0 ≥ 4:/= − 32:2
=2
− 4
7:/= =

:

=

(
24
7 −

322
=

)
≥ :
=
(3 − 2.5) = 1/2 · :/=.

By joining group 1, the coalition decreases the existing members’ probabilities by making their
group more numerous:

manip4GC (#,A, 2) ≥ c1 − c̃1 = 4:/= −
(
4:/= − 4: ∗ 82

=(= + 82)

)
=

4: ∗ 82
=(= + 82) ≥

32:2
8=(= + 2) =

4: · 5=/64
=(= + 5=/64)

=
5/16 · :

=(1 + 5/64)
= 20/69 · :/=.

Then, because there are 2 true 0s impersonating 1s, the true seats given to 0 is, in expectation,
:/2 (the number of seats that must be given to them in expectation, based on the perceived pool),
plus however many seats 1-impersonators get in expectation:

manip2><? (#,A, 2) ≥ (:/2 + 2 · c̃1) − :/2 = 2 · c̃1 = 2
(
4:/= − 4: ∗ 82

=(= + 82)

)
≥ 32:/=.

Set [ = : · 20/69, and the proof is complete. �
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D.4 Supplemental materials from Section 5.5

D.4.1 Panel selection instances

Instance Organization = : # unique vectors # features Δ

sf(a) Sortition Foundation 312 35 182 6 6.08
sf(b) Sortition Foundation 250 20 92 6 11.78
sf(c) Sortition Foundation 161 44 92 7 3.18
sf(d) Sortition Foundation 404 40 108 6 8.02
sf(e) Sortition Foundation 1727 110 762 7 15.28
cca Center for Blue Democracy 825 75 554 4 10.56
hd Healthy Democracy 239 30 202 7 3.54
newd New Democracy 398 40 173 6 4.16

Table D.1: Overview of real-world instances. Δ is a measure of the self-selection bias in the
instance, as de�ned as Section 5.5.1.

D.4.2 Additional instances for Figure 5.1

Below in Figure D.1 we present plots for all 6 other instances, corresponding to those in Fig-
ure 5.1. An interesting aspect of these results results: For instances cca and sf(d), the strategyMU

is harmful for nearly all agents in the pool under all three algorithms. This is promising for prac-
titioners; although deviating to the feature vector with the most underrepresented feature values
is a strategy that is most likely to be used in practice, cca and sf(d) serve as counterexamples
where Leximin and Nash are not arbitrarily manipulable against MU.
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D.4.3 Self-selection bias experiments: methods

Here, we describe the details of the experiments used to produce plots Figure 5.2(b) and Fig-
ure 5.2(c), and correspondingly, those in Appendix D.4.4. For both SSB by interpolating and SSB
by feature dropping, we de�ne the precise sequence of instances we test, and then prove that
over the sequences of instances induced by either approach, Δ?,:,# is decreasing (Claim D.4.1 for
interpolation, and Claim D.4.2.

SSB by interpolating (corresponding to Figure 5.2(b)) Here, we studied how our selection
algorithms performed against the OPT-1 strategy over a sequence of pools with decreasing SSB.
The pools in this sequence are di�erent convex combinations of two pools: # (the original pool)
and pool # ′, de�ned as the solution of the convex program below, which �nds the pool “closest”
(by Euclidean distance) to # that has SSB Δ?,:,# = 0.

# ′ := argmax# ′′:|# ′′ |== ‖. (# ) − . (# ′′)‖2 s.t.
∑

F :F 5 =E

aF (# ′′) = ? (5 ,E) for all (5 , E) ∈ �+ .

Now, de�ne the sequence of pools #0, #1, . . . , #10 in which #ℓ is de�ned such that |#ℓ | = = and

aF (#ℓ) = (1 − ℓ/10) · aF (# ) + ℓ/10 · aF (# ′) for allF ∈ W .

In Figure 5.2(b), the U on the G axis is then the interpolation weight, ranging over U = (ℓ/10)ℓ∈[10] .
More formally, across theG axis, we’re testing the sequence of instances ?, :, #0, ?, :, #1, . . . , ?, :, #10.

Claim D.4.1. Δ?,:,# is weakly decreasing over the sequence of instances ?, :, #0, . . . , ?, :, #10.
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Figure D.1: Figures for remaining instances from analysis in Figure 5.1
.

Proof. Partition the feature-values �+ into three exhaustive subsets:

�+D=34A (# ) :=
{
(5 , E) :

? (5 ,E)

[(5 ,E) (# )
> 1

}
, �+ >E4A (# ) :=

{
(5 , E) :

? (5 ,E)

[(5 ,E) (# )
< 1

}
,

and �+ 4G02C (# ) :=
{
(5 , E) :

? (5 ,E)

[(5 ,E) (# )
= 1

}
.

Observe that for all (5 , E), by the constraints de�ning # ′, [ 5 ,E (# ′) = ? (5 ,E) . Then we have that

[ 5 ,E (#ℓ) = (1 − ℓ/10) [(5 ,E) (# ) + ℓ/10[(5 ,E) (# ′) = (1 − ℓ/10) [(5 ,E) (# ) + ℓ/10? (5 ,E)

We can see from this expression that (5 , E) ∈ �+D=34A (# ) =⇒ (5 , E) ∈ �+D=34A (#ℓ) for all
ℓ < 10, and likewise for �+D=34A , �+ 4G02C .
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Now, let ℓ′ > ℓ for ℓ ∈ 0 . . . 9. We have that for all (5 , E) ∈ �+ >E4A (# ),

? 5 ,E

[(5 ,E) (#ℓ)
>

? 5 ,E

[(5 ,E) (#ℓ ′)

This is seen by the fact that for all (5 , E) ∈ �+ , the following quantity is decreasing And similarly,
for all (5 , E) ∈ �+D=34A (# ),

? 5 ,E

[(5 ,E) (#ℓ)
<

? 5 ,E

[(5 ,E) (#ℓ ′)
.

Observing that if �+D=34A (# ) is non-empty (and thus �+ >E4A (# ) is also non-empty) the feature
values that yield the max and min terms in Δ?,:,# must come from �+D=34A (# ) and �+ >E4A (# ),
respectively. Therefore, the di�erence between the max and the min must be decreasing, and
Δ?,:,#0,Δ?,:,#1, . . . ,Δ?,:,#10 is decreasing. �

SSB by feature dropping. In a �xed instance, we de�ne the self-selection bias of a single feature
according to Δ?,:,# restricted to the values of 5 , or formally, as

Δ
5

?,:,#
:= max

E∈+5
? (5 ,E) /[(5 ,E) (# ) −min

E∈+5
? (5 ,E) /[(5 ,E) (# ).

Now, let the features be ordered in decreasing order of their self-selection bias, so Δ
51
?,:,#

≥
Δ
52
?,:,#

≥ · · · ≥ Δ
5 |� |
?,:,#

. We will decrease the self-selection bias by successively drop features
from the problem in this order.

Whenwe “drop” a feature 5 out of the problem, we are formally dropping constraints
∑
8:5 (8)=E c8 =

:? (5 ,E) for all E ∈ +5 from Equation (opt-prob) Accordingly, dropping features corresponds to
changing the instance ?, :, # by dropping entries of ? . Formally, express ? = (? (5 ,E))5 ∈�,E∈+5 . Now,
we de�ne a sequence of ?1, . . . , ? |� | where ?ℓ := (? (5 ,E))5 ∈{5ℓ ...5 |� | },E∈+5 . Then, across the G axis of
Figure 5.2(c) (and all corresponding �gures for other instances), we are testing how our selection
algorithms perform against theOPT-1 strategy over the sequence instances ?1, :, # , ?2, :, # , . . . ? |� |, :, # .

Claim D.4.2. Δ?,:,# is weakly decreasing over the sequence of instances ?1, :, # , . . . ? |� |, :, # .

Proof. Dropping constraints 5 , E out of �+ can only decrease max(5 ,E)∈�+
? (5 ,E)

[ (5 ,E) (# ) and increase
min(5 ,E)∈�+

? (5 ,E)
[ (5 ,E) (# ) . �

D.4.4 Self-selection bias experiments: supplemental empirical results

Additional instances for Figure 5.2(b). Figure D.2 shows tests decreasing self-selection bias
by interpolation for all remaining instances.

Additional instances for Figure 5.2(c). Figure D.3 shows tests decreasing self-selection bias
by feature dropping for all remaining instances.
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Figure D.2: Figures for remaining instances from analysis in Figure 5.2(b)
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Figure D.3: Figures for remaining instances from analysis in Figure 5.2(c)

D.4.5 Empirical minimum selection probabilities given by norms

Minimum probability sf(a) sf(b) sf(c) sf(d) sf(e) sf(hd) sf(newd) sf(cca)

ℓ2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ℓ∞ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table D.2: Minimum selection probability given to any agent by ℓ2, ℓ∞ across instances
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E.1 Supplemental Materials for Section 6.2

Below, we show that all of our stated equality objectives in Section 6.2 are convex and satisfy
conditional equitability and anonymity.

Proposition E.1.1. "0G8<8=,"8=8<0G, #0Bℎ, !8=40AW , and �>;38;>2:BW are all convex.

Proof. The convexity of "0G8<8= and "8=8<0G follows immediately from their de�nition: min
is concave, so −min is convex, and max is a convex function. Geometric mean is known to be
concave, and as we de�ne the #0Bℎ objective to be the negative geometric mean, it is convex.
!8=40AW is the sum of two convex functions: max and −W min for some W ≥ 0, hence it is also
convex. Finally for�>;38;>2:BW , we can rewrite the second term as W max(1/0)

=/: . 1/0 is convex as all
entries of 0 are nonnegative, and max is convex and increasing. Hence the composition of these
two functions is convex. Therefore, �>;38;>2:BW is the sum of two convex functions, and is itself
convex. �

Proposition E.1.2. "0G8<8=,"8=8<0G, #0Bℎ, !8=40AW , and �>;38;>2:BW are all conditionally eq-

uitable.

Proof. Wewill simply lower bound each objective function for any 0 ∈ Π(I) and then show that
:/=1= achieves this bound. This will imply that :/=1= ∈ ΠE (I). Fix any solution c ∈ Π(I). We
know that max(c) ≥ :/= and min(c) ≤ :/=— otherwise

∑
8∈[=] c8 ≠ : . Hence, for any feasible

solution:

"0G8<8=(0) ≥ −:/=
"8=8<0G (0) ≥ :/=

�>;38;>2:BW (0) ≥ =/: · :/= +
W

=/: · :/= = 1 + W

!8=40AW (0) ≥ :/= − W · :/= = :/= · (1 − W)

Each of these lower bounds are realized by the solution :/=1. For #0Bℎ we use the AM-GM
inequality as follows:

#0Bℎ(0) = −
(
Π8∈[=]c8

)1/= ≥ −1
=

∑
8∈[=]

c8 =
−:
=

Again, this lower bound is realized by the solution :/=1. �

We transfer the following claim about anonymity from Flanigan et al. [131] as it is relevant to the
structure of our �nal proposition proof and is of independent use in later proofs in the appendix.

ClaimE.1.3 ([131] Claim B.6). For any instanceI and any realizable 0 , let 0 ′
be the “anonymized”

marginals obtained by setting c ′8 to the average 0j across all 9 such that F ( 9) = F (8). Then 0 ′
is

realizable as well.
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PropositionE.1.4 (Adapted from [131] ClaimB.6). "0G8<8=,"8=8<0G, #0Bℎ, !8=40AW , and �>;38;>2:BW
are all anonymous.

Proof. Fix some instance I, and E ∈ {"0G8<8=,"8=8<0G, #0Bℎ, !8=40AW , and �>;38;>2:BW }. By
Assumption 6.2.3, we have that I is feasible – hence ΠE (I) is nonempty. Now we will use
a similar proof as to that of Claim E.1.3, but will pay attention to the impact of incrementally
anonymizing the panel distribution on the equality objective.

Assume for sake of contradiction that there is no anonymous 0 such that 0 ∈ ΠE (I). Let 0 be
the most anonymized optimal vector of marginals, and d be the corresponding panel distribution
inducing it. Formally:

0 = arg min
0∈ΠE (I)

max
F∈W#

(
max

8∈[=] : F (8)=F
c8 − min

8∈[=] : F (8)=F
c8

)
There must be a �nite number of pairs of marginals that are maximizing this gap. We argue that
we can equalize these pairs one-by-one without a�ecting other marginals, while never increasing
E. Let 8, 9 ∈ [=] be such thatF (8) = F ( 9) and they have themaximum gap between anymarginals
of the same feature-vector in 0 . Without loss of generality, assume 0 8 > 0 9 . We construct a new
panel distribution d′ as follows: d̂′ is identical to d̂ except that it swaps 8 for 9 and vice versa on
all panels. Then de�ne d′′ = (d + d′)/2. Let 0 ′′ be the marginals resulting from d′′. We have that
c ′′8 = c ′′9 and all other marginals remain the same. Now we consider how our equality objective,
E might be impacted.

Notice that min(0) ≤ c 9 < c ′′9 = c ′′8 < c8 ≤ max(0). Therefore, as all other marginals remain
unchanged, we have that min(0) ≤ min(0 ′′) and max(0) ≥ max(0 ′′). Therefore:

"0G8<8=(0 ′′) = −min(0 ′′) ≤ −min(0) ≤ "0G8<8=(0)
"8=8<0G (0 ′′) = max(0 ′′) ≤ max(0) ≤ "8=8<0G (0)
!8=40AW (0 ′′) = max(0 ′′) − W min(0 ′′) ≤ max(0) − W min(0) ≤ !8=40AW (0)

�>;38;>2:BW (0 ′′) = =/: max(0 ′′) − W · 1
=/: min(0 ′′) ≤ =/: max(0) − W · 1

=/: min(0) ≤ �>;38;>2:BW (0)

Finally, we just consider the case of #0Bℎ:

#0Bℎ(0 ′′) = −
(
Π0∈[=]c

′′
0

)1/=
= −

(
Π0∈[=]c0

)1/= · (c ′′8 c ′′9
c8c 9

)1/=
We have that c ′′8 c ′′9 =

(
c8+c 9
2

)2
=

c28 +2c8c 9+c29
4 . We know that (c8 − c 9 )2 ≥ 0 which implies that

c2
8 +c2

9 ≥ 2c8c 9 . So this gives us that c ′′8 c ′′9 ≥
4c8c 9
4 = c8c 9 . Returning to our analysis of #0Bℎ, we

see that we are multiplying the negative geometric mean of 0 by a value greater than or equal
to 1. So we have that:

#0Bℎ(0 ′′) ≤ −
(
Π0∈[=]c0

)1/= ≤ #0Bℎ(0)
�
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Thenwe have shown that for all equality objectiveswe’re considering, E(0 ′′) ≤ E(0). Therefore,
after repeating this adjustment for all of the �nitely many pairs enforcing this maximum gap, we
will have arrived at a more anonymized vector of marginals that has objective value at most 0 .
This is a contradiction to 0 being the most anonymized vector of marginals in ΠE (I). Therefore,
we have arrived at a contradiction and can conclude that there exists an anonymous c ∈ ΠE (I).

345



E.2 Supplemental Materials for Section 6.3

E.2.1 Proof of Theorem 6.3.1

Proof. Our original instance is I=, meaning that by Observation 6.3.2, cE
8 (I=) = :/= for all E ∈

{Maximin, Leximin,Nash}. After the coalition� of size 2 , as constructed in the body, misreports,
our resulting instance is I∗2 with associated valid panels K∗2 . By Observation 6.3.3, for any d ∈
Δ(K∗2 ) with corresponding probabilities on our two panel types 31, 32,

p00 = p11 = 31
:/2

(= − 2)/2 + 32
:/2 − 1
(= − 2)/2 , p10 = 32

1
2 − 1 , p01 = 32. (E.1)

Noting that 31 = (1 − 32) and simplifying, we get that

p00 = p11 =
:/2 − 32
(= − 2)/2 , p10 = 32

1
2 − 1 , p01 = 32. (E.2)

Now, we will argue that the optimal panel distributions for Maximin (and Leximin) and Nash
will place at least probability (2 − 1):/= probability exclusively on panels of type 2, resulting in
giving 8∗ selection probability 1. Note that this will prove the requisite lower bounds onmanip8=C

andmanip2><? : before misreporting, 8∗ received selection probability :/= after misreporting they
will have gained selection probability (2 − 1):/=, which can be driven up to 1 for a linear-size
coalition. It will follow that manip8=C is at least 1 for all algorithms considered.

Maximin (and Leximin). dMaximin maximizes the minimum selection probability subject to the
constraints in Equation (E.2) and that 32 ∈ [0, 1]. We now rewrite the objective by plugging in
the constraints:

min
{
p00, p11, p10, p01

}
= min

{
:/2 − 32
(= − 2)/2 , 32

1
2 − 1 , 32

}
.

Clearly, p01 cannot be the minimum probability for any 32 ∈ [0, 1]. Thus, the minimum term in
this objective must be between the �rst two. By arithmetic, we can derive that

:/2 − 32
(= − 2)/2 ≥ 32

1
2 − 1 ⇐⇒ 32 =

: (2 − 1)
= + 2 − 2 .

At 32 =
: (2−1)
=+2−2 , p00 = p11 = p10 = :

=+2−2 . p00 = p11 are decreasing in 32, so we if we increase 32
from here, p00 will decrease and the minimum will decrease, making the objective value worse;
p10 is increasing in 32, so if we decrease 32 from here, p10 will decrease, making the objective
value worse. We conclude that the maximin-optimal solution sets 32 = : (2−1)

=+2−2 , meaning

p01 =
: (2 − 1)
= + 2 − 2 ≥

: (2 − 1)
2= .

For a coalition of size 2=/: + 1, p01 = 1 (we can set : relative to = so that this coalition is at most
size =/2, which is su�cient).
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By misreporting their vector as part of coalition � , 8∗ went from probability :/= to probability
1, meaning that they gained probability at least 1 − :/=, giving us the requisite lower bound on
manip8=C forMaximin. Because Leximin will �rst optimizeMaximin and never decrease a selec-
tion probability in its later steps, this lower bound also applies to Leximin.

Nash. We prove this claim in much the same way. We will instead equivalently optimize the log-
arithm of Nash, de�ned as

∑
8∈[=] log(c8). The same constraints hold, but we are instead optimiz-

ing the product of probabilities, so dNash optimizes the following objective, noting the symmetry
between p00 and p11:

(= − 2) log(p00) + (2 − 1) log(p10) + log(p01)
which, by the constraints is equal to

(= − 2) log
(
:/2 − 32
(= − 2)/2

)
+ (2 − 1) log

(
32

1
2 − 1

)
+ log(32). (E.3)

Di�erentiating Equation (E.3) with respect to 32, we get

m Equation (E.3)
m 32

= − 232= − 2:
32(: − 232)

This derivative is 0 at 32 = 2:/(2=). By the concavity of the original objective function, this value
of 32 must be its unique global optimizer. It follows that at the Nash-optimal solution,

p01 = min
{
2:

2=, 1
}
.

For a coalition of size 2=/: + 1, this selection probability is 1. By misreporting their vector, 8∗ has
gained probability 1 − :/=, giving us the requisite lower bound on manip8=C for Nash. �
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E.3 Supplemental Materials for Section 6.3

E.3.1 Proof of Theorem 6.3.4 2

Truthful instance. All truthful instances we consider in this proof will have two binary features:
� = (51, 52) with +51 = +52 = {0, 1}, soW = {00, 11, 01, 10}. Our truthful pool # will have the
following composition: #00 = #11 = =/3, #01 = #10 = =/6. Our truthful instance will have quotas
that depend on the case:

• 0 ≤ W < 1: I will have quotas ℓ51,0 = D 51,0 = 2:/3 and ℓ52,0 = D 52,0 = :/3.

• 1 ≤ W < =/3−1 and W ≥ =/3−1: I′will have quotas ℓ51,0 = D 51,0 = :/2 and ℓ52,0 = D 52,0 = :/2.

Coalitions. What coalitions deviate from our truthful instance also depends on the case.

• 0 ≤ W < 1: There is no coalition; in this case, we directly analyze I, because we are
analyzing the outcome of fairness, which is measured in the absence of any manipulation.

• 1 ≤ W < =/3− 1 and W < =/3− 1: We let the pool in I′ be # ′, and let� ⊆ # ′ be of size =/6,
where for all 8 ∈ �,F (8) = 01. Let =/6 − 1 agents misreport F̃ (8) = 10, and let one agent 8∗
still report vector F̃ (8∗) = 01.

Manipulated Instances. The pools resulting from these coalitional manipulations are

• 0 ≤ W < 1: Not applicable

• 1 ≤ W < =/3 − 1 and W < =/3 − 1: Call the manipulated pool #̃ ′ and the manipulated
instance Ĩ′. #̃ ′00 = #̃ ′11 = =/3, #̃ ′10 = =/3 − 1, and #̃ ′01 = 1.

Now, we handle each case separately. For convenience, we will �rst analyze the Case 1 instance
in the relaxation of our setting studied in Flanigan et al. [135], where they study the same panel
selection task but permit agents to be divisible. We call this setting the continuous setting. For-
mally speaking, in instance I = (#,:, ℓ, u) such that ℓ, u), the set of feasible selection probability
assignments over which E(0) could be optimized was

% (I) =
0 : 0 ∈ [0, 1]= ∧

∑
8∈[=]

c8 = : ∧
∑

8∈[=]:5 (8)=E
c8 = :D 5 ,E ∀5 , E ∈ �+

 .
We analogously de�ne %E (I) := arg infc∈% (I) E(I) as the set of E-optimal selection probability
assignments over the feasible space % (I). Now we proceed with giving constructions in the
continuous setting. At the end, we will prove a general method for translating lower bounds in
the continuous setting to our setting.

Case 1: 0 ≤ W < 1.

Claim E.3.1. I satis�es Assumption 6.2.4.
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Proof. In I, we have that ℓ51,0 = D 51,0 = 2:/3 and ℓ52,0 = D 52,0 = :/3 and #00 = #11 = =/3,
#01 = #10 = =/6. First, observe that all groups are growing in =, meaning that we can set =, : so
that for some ^∗ > 0, for allF , #F ≥ ^∗= + : .

Next, observe that we can place all vectors on a valid panel: consider all panels containing :/2
agents with vector 01, and :/6 agents of each remaining vector. Panels of this composition satisfy
the quotas, and all agents can be contained on such a panel. �

Claim E.3.2. For all W ∈ [0, 1), min(0LinearW ) = 0.

Proof. Note that we only need one quota constraint per feature because the constraint for one
value implies the constraint for the other. Our constraints are then:

p01 ·
=

6 + p10 ·
=

6 + p00 ·
=

3 + p11 ·
=

3 = : (E.4)

p01 ·
=

6 + p00 ·
=

3 =
2:
3 (E.5)

p01 ·
=

6 + p11 ·
=

3 =
2:
3 (E.6)

Showing that p10 = 0 in the optimizer. By constraints E.5 and E.6 we see that p00 = p11 =

:/= − p10/2. Plugging this back into constraint E.4, we can solve for p01 and get that

p01 =
2:
=
+ p10 and p00 = p11 =

:

=
−
p10
2 .

Reducing the box constraints to constraints on p10: if p10 is close enough to 0 (or 0), clearly all
probabilities are in [0, 1].

Now, observe that p01 must be larger than both p10 and p00, so it is the maximummarginal. Then,
our objective is the following:

max
{
2:
=
+ p10 − Wp10,

2:
=
+ p10 − W

(
:

=
−
p10
2

)}
.

where the two terms in the maximum account for either p10 or p00 = p11 being the minimum
marginal probability. By the fact that 0 ≤ W < 1, both of these terms are increasing in p10. Thus,
this is minimized when p10 = 0.

We claim that this instance can be translated to our panel distribution setting. Fix the same I
and require without loss of generality that that = is divisible by 6 and : is divisible by 3. We take
the same de�nition of #, ℓ, and D. First we observe that any c ∈ Π(I) is also in % (I). Intuitively
this is because % (I) is de�ned by a relaxation of the constraints de�ning Π(I). This was shown
formally in Appendix A.2 of Flanigan et al. [135]. From above, we know that 0∗ ∈ %E (� ) is of
the following form: p10(0∗) = 0, p01(0∗) = 2:

=
, p00(0∗) = p11(0∗) = :

=
. We �rst construct a panel

distribution, d, to assign the same total probability to each feature vector group as 0∗. Let  be a
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panel populated with :/3 agents of type 01, :/3 agents of type 11 and, :/3 agents of type 00, and
let d = 1. By Claim E.1.3, we know that we can construct a new anonymous panel distribution
d′ with the same total probability assigned to each feature vector. Let 0 ′ = 0 (d′). Therefore, we
have that pF (0 ′) =

∑
8 : F (8 )=F c8 (d)

#F (8 )
for all 8 ∈ [=]. Solving this gives us:

p10(0 ′) =
∑
8 : F (8)=10 c8 (d)

#F (8)
= 0 p01(0 ′) =

∑
8 : F (8)=01 c8 (d)

#F (8)
=
:/3
=/6 =

2:
=

p00(0 ′) =
∑
8 : F (8)=00 c8 (d)

#F (8)
=
:/3
=/3 =

:

=
p11(0 ′) =

∑
8 : F (8)=11 c8 (d)

#F (8)
=
:/3
=/3 =

:

=

Therefore, we can observe that p(0 ′) = p(0∗). Hence, because both 0 ′ and 0∗ are anonymous
and on the same instance, we get that 0 ′ = 0∗. As Π(I) ⊆ % (I), and %E (I) = {0∗}, we know
that ΠE (I) = {0∗} as well — there cannot be any other optimal marginals, otherwise they would
be in %E (I) as well. Therefore, we also know that in the panel setting, optimizing LinearW will
set p10 = 0. �

Cases 2 and 3: 1 ≤ W < =/3 − 1 and W ≥ =/3 − 1.

Claim E.3.3. I′ satis�es Assumption 6.2.4.

Proof. In I′′, we have that ℓ51,0 = D 51,0 = :/2 and ℓ52,0 = D 52,0 = :/2 and #00 = #11 = =/3,
#01 = #10 = =/6. First, observe that all groups are growing in =, meaning that we can set =, : so
that for some ^∗ > 0, for allF , #F ≥ ^∗= + : .

Next, observe that we can place all vectors on a valid panel: consider all panels containing :/3
agents with 00, :/3 agents with 11, :/6 agents with 01, and :/6 agents with 10. Panels of this
composition satisfy the quotas, and all agents can be contained on such a panel. �

Claim E.3.4. For all W ∈ [1, =/3 − 1),

p10
(
0LinearW (Ĩ′)

)
=

9:
2(=2 − 9)

and for all W ≥ =/3 − 1,
p01

(
0LinearW (Ĩ′)

)
= 1.

Proof. Take the instance Ĩ′. Following Observation 6.3.3, notice that this is instance I∗
=/3. Fix any

d ∈ Δ(K∗
=/3), and let 31, 32 represent the total probability d places on panels of Types 1 and 2,

respectively. Then, by simply dividing the expected panel seats given to agents with each vector
F divided by the total number of pool members with vectorF , the resulting selection probabilities
(assumed to be anonymous) are:

p00 = p11 = 31
:/2

(= − =/3)/2 + 32
:/2 − 1
(= − =/3)/2 , p10 = 32

1
=/3 − 1 , p01 = 32. (E.7)
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Using that 31 + 32 = 1 and simplifying, we get that

p00 = p11 =
:/2 − 32
=/3 , p10 = 32

1
=/3 − 1 , p01 = 32. (E.8)

Now, we make some observations:

• p01 ≥ p10 for all 32 ∈ [0, 1]

• p01 ≥ p00 ⇐⇒ 32 ≥ 3:
6+2=

• p00 ≥ p10 ⇐⇒ 32 ≤ : (=−3)
4=−6)

LinearW is in terms of the maximum and minimum. This gives us three cases for the values of
the minimum and maximum probability:

Case 1: p00 ≥ p01 ≥ p10, which occurs when 32 ≤ 3:
6+2= . Here,

LinearW = p00 − p10 =
:/2 − 32
=/3 − W 32

=/3 − 1 =
3:
2= − 32

(
1 + W

=/3 − 1

)
.

For all W , this objective is decreasing in 32, meaning it is optimized when 32 is maximized over
the relevant domain. Then, the optimal solution over this domain is 32 = 3:

6+2= , at which point
p00 = p01, which means that this case at the optimizer over this domain is interchangeable with
Case 3.

Case 2: p01 ≥ p10 ≥ p00, which occurs when 32 ≥ : (=−3)
4=−6 . Here,

LinearW = p01 − p00 = 32 − W
:/2 − 32
=/3 = 32

(
W

=/3 + 1
)
− W3:2= .

For all W , this objective is increasing in 32, meaning it is optimized when 32 is minimized over the
relevant domain. Then, 32 = : (=−3)

4=−6 . Again, at at this point p00 = p10, which means that this case
at the optimizer over this domain is interchangeable with Case 3.

Case 3: p01 ≥ p00 ≥ p10, which occurs when 3:
6+2= ≤ 32 ≤

: (=−3)
4=−6) . Here,

LinearW = p01 − p10 = 32 − W
32

=/3 − 1 = 32

(
1 − W

=/3 − 1

)
.

When W < =/3 − 1, this objective function is increasing in 32, meaning that it is minimized by
minimizing 32 over the relevant domain; therefore, at the LinearW optimizer, 32 = 3:

6+2= . It follows
that

p10 =
3:

(6 + 2=) (=/3 − 1) =
9:

2(=2 − 9) .

WhenW ≥ =/3−1, this objective function is (weakly) decreasing in32, meaning that it isminimized
by maximizing 32 over the relevant domain; therefore, 32 = min{: (=−3)4=−6) , 1}. It follows that

p01 = min
{
: (= − 3)
2(= − 3) , 1

}
= min{:/2, 1}. �
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E.4 Supplemental Materials for Section 6.4

E.4.1 Proof of Lemma 6.4.2 for general W

Lemma E.4.1. Fix an instance I, and suppose there exists a feasible solution c ∈ Π(I) with asso-

ciated X14;>F , X01>E4 . Then, for all 8 ∈ [=],

cGoldilocksW (I)8 ∈
[
(2max{X14;>F (c), X01>E4 (c)/W})−1 :/=, 2max{W X14;>F (c), X01>E4 (c)} :/=

]
.

Proof. Fix instance I and corresponding feasible solution c with associated X14;>F (c), X01>E4 (c),
as given in the statement. Wewill use shorthand c∗ = cGoldilocksW (I) andX14;>F (c) = X14;>F ,X01>E4 (c) =
X01>E4 .

First, we upper bound the optimal objective value using our feasible solution c :

GoldilocksW (c∗) ≤ =/: max(c) + W

=/: min(c) = X01>E4 + W X14;>F

≤ 2max{W X14;>F , X01>E4}. (E.9)

Now, suppose there exists 8 ∈ [=] such that c∗8 > :/= · 2max{WX14;>F , X01>E4}. Then,

GoldilocksW (c∗) > =/: · :/= · 2max{WX14;>F , X01>E4} + 0 = 2max{WX14;>F , X01>E4},

which is a contradiction to (E.9). We conclude that c∗8 ≤ :/= ·2max{WX14;>F , X01>E4} for all 8 ∈ [=] .

Likewise, suppose that there exists 8 ∈ [=] such that c∗8 < :/= · (2max{X14;>F , X01>E4/W})−1. Then,

GoldilocksW (c∗) > 0 + W

=/: · :/= · (2max{X14;>F , X01>E4/W})−1
= 2max{WX14;>F , X01>E4}.

This is again a contradiction to (E.9), and we conclude that c∗8 ≥ :/= · (2max{X14;>F , X01>E4/W})−1
for all 8 ∈ [=], concluding the claim. �

E.4.2 Notation and preliminaries for proofs of Lemma 6.4.3 and Lemma 6.4.4

In this proof, we will work exclusively with feature-vector indexed objects, which treat individ-
uals with the same feature vector as interchangeable (this is without loss of generality because,
by Proposition E.1.4, all objectives we consider are anonymous). To begin, we will de�ne these
objects, which collapse all individuals of the same feature vector.

Pool and panel compositions: For panel  , we let its panel composition K( ) ∈ [0, 1] |W| de-
scribe the frequencies of each feature vector on a panel, withF-th entry

KF ( ) =
|{8 : 8 ∈  ∧F (8) = F}|

| | and K( ) := (KF ( ) |F ∈ W) .

We say that K contains vectorF i� KF > 0.

352



We de�ne a pool composition N(# ) ∈ [0, 1] |W| analogously, so the pool composition of # is
given by

N(# ) := (NF (# ) |F ∈ W) where NF (# ) =
|{8 : 8 ∈ # ∧F (8) = F}|

|# | .

When # or  is clear from context, or when referring to an arbitrary pool or panel composition,
we will simply use K or N respectively.

Let the set of valid panel compositions be

K(K) := {K( ) | ∈ K}.

When K is clear, we will shorten this to K.

Then, a panel composition distribution is then any distribution over the set of valid panel
compositions; that is, d ∈ Δ(K).

Vector-indexed total probabilities: Finally, for a given panel composition distribution d we
de�ne the total probabilities given to each vector t(d) ∈ [0, :] |W| as

tF (d) :=
∑
K∈K

dK · : · KF and t(d) = (tF (d) |F ∈ W) .

Notice that we can just as easily de�ne these totals for p as tF (p) = #F · pF —abusing notation,
we will allow this.

Before proceeding, we prove the following two lemmas, which show how to reconstruct a panel
distribution from a panel composition distribution while preserving the vector-indexed total
probabilities and vice versa.

Lemma E.4.2. Fix a panel composition distribution d. We will now show how to construct a corre-

sponding panel distribution d such that 0 (d) is anonymous with

c8 (d) =
tF (d)
#F

for all 8 : F (8) = F, allF ∈ W .

Proof. Fix d. We will construct d via the following algorithm.

Initialize d← 0|K | .

For all panel compositions K ∈ K such that dK > 0, do the following:

Let,K := {F : KF > 0} be the set of all feature vectors contained by K. Then, let !
be the least common multiple of #F |F ∈ ,K, i.e., the number of people in the pool
with each such vector F . Now create ! panels  (K)1 . . .  

(K)
!

, where all these panels
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contain : · KF seats reserved for people of vector F , for each F ∈,K. Populate the
seats reserved for vectorF on each panel with individuals with vectorF round-robin
style until all panels of individuals are constructed. Because ! is a multiple of #F for
allF , each 8 with vectorF will be placed on the same number of panels, and will be
placed on a total of ! · : · KF/#F panels. Also, note that because K was a valid panel
composition,  (K)1 . . .  

(K)
!

must be valid panels.

Now, for each panel  9 ∈ { (K)1 . . .  
(K)
!
}, 3

 
(K)
9

← 3
 
(K)
9

+ dK/!.

Now, it just remains to prove that for all 8 withF (8) = F , we have that c8 (d) = CF (d)/#F , for all
F ∈ W. Fix such aF and corresponding 8 withF (8). Then, based on the algorithm above,

c8 (d) =
∑

K:dK>0
! · : · KF/#F · dK/! =

∑
K∈K

: · KF · dK/#F =
tF (d)
#F

. �

Lemma E.4.3. Given a panel distribution d, we will show how to construct a corresponding panel

composition distribution d such that

tF (d) =
∑

8∈[=] : F (8)=F
c8 (d) for allF ∈ W .

Proof. Fix our panel distribution d. We will essentially just abstract it into a panel composition
distribution. Initialize d← 0|K | .

For all panels  ∈ K such that d > 0, update d as follows: dK( ) ← dK( ) +d . This is clearly a
valid distribution because all entries are non-negative and sum to 1 because we simply distribute
the probability mass of d across panel compositions.

Fix someF ∈ W. Based on the algorithm above, we have that:

CF (d) =
∑
K∈K

dK · : · KF =
∑
K∈K

∑
 ∈K : K( )=K

d · : · KF =
∑
 ∈K

d · |{8 : 8 ∈  ∧F (8) = F}|

=
∑
 ∈K

∑
8 : 8∈ ∧F (8)=F

d =
∑

8∈[=] : F (8)=F

∑
 ∈K : 8∈ 

d =
∑

8∈[=] : F (8)=F
c8 (d)

�

E.4.3 Proof of Lemma 6.4.3

Proof. Fix an instance I whose pool # satis�es Assumption 6.2.4 with constant ^∗. We will
construct d by constructing a panel composition distribution d, and then transforming it into a
panel distribution via Lemma E.4.2. Recall thatW# represents the unique set of feature vectors
in # . Note that because #F ≥ =^∗ + : for all F ∈ W# (Assumption 6.2.4), there must only exist
a constant number of unique vectors in the pool:

|W# | ≤
=

=^∗ + : ≤
1
^∗
. (E.10)
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For each F ∈ W# , by Assumption 6.2.4, there must exist some panel composition K ∈ K such
that KF > 0. Let K(F) be this identi�ed panel for each vectorF ∈ W# (these panel compositions
need not be unique). By Equation (E.10), there are only at most 1/^∗ of these panels. De�ne our
panel composition distribution d to as the uniform distribution over these panel compositions;
that is;

dK =


1���⋃F∈W#
{K(F ) }

��� if K ∈ ⋃
F∈W#

{K(F)}

0 else.
Then, the total probability given to each feature vector F ∈ W# is bounded as follows, using
that

��⋃
F∈W#

{K(F)}
�� ≤ 1/^∗ (Equation (E.10))

:^∗K(F)F ≤ :K
(F)
F��⋃

F∈W#
{K(F)}

�� ≤ tF (d) ≤ :,

Finally, use Lemma E.4.2 to transform d into a panel distribution d. Using that ^∗= +: ≤ #F ≤ =
for allF , we get that

:^∗K(F)F

=
≤ c8 (d) ≤

:

^∗= + : ≤
:

^∗=
for all 8 ∈ [=] .

Because we want bounds that re�ect the scaling in terms of : and =, we just for now treat : as an
asymptotic parameter, whose composition remains constant as : scales. Thus, we we treat K(F)F

as constant in : and =, and we get that

c8 (d) ∈
[
Ω

(
:^∗

=

)
,$

(
:

^∗=

)]
=⇒ X (I) ≤ $ (1)

concluding the proof. �

E.4.4 Formalization of observation that X (I∗2 ) ≥
√
2 − 1

Theorem E.4.4 (Lower Bound). There exists I satisfying Assumption 6.2.4 such that :/=1= ∈
Π(I) (so X (I) = 1), but there exists a coalition of size 2 which, after misreporting w̃ ∈ W2

, can

create a new instance Ĩ such that X (Ĩ) ≥
√
2 − 1.

Proof. Let our truthful instance be I=, and recall the observation Observation 6.3.2 that :/=1 ∈
Π(I), meaning that X (�̃ ) = 1. Now, de�ne a coalition � ⊆ # exactly as in the proof of The-
orem 6.3.1, so the resulting post-manipulation instance is exactly I∗2 . It follows by Observa-
tion 6.3.3 that

p10(0) · (2 − 1) = p01(0) for all 0 ∈ Π(Ĩ) . (E.11)
For any given 0 ∈ Π(Ĩ), there are then two options: either p10(0) = p01(0) = 0, or p10(0) > 0
and p01(0) > 0. For any 0 in the former category, X14;>F (0) = ∞, because :/=

0 = ∞. For any 0

in the latter category, it must be the case that max{X14;>F (0), X01>E4 (0)} ≥
√
2 − 1. If not, then it

would have to be the case thatmax(0) < :/=
√
2 − 1 and min(0) > :/=√

2−1 , and all probabilities in 0
would be bounded within less than a 2 −1 factor of each other, a contradiction of Equation (E.11).
We conclude that X (Ĩ) ≥

√
2 − 1. �
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E.4.5 Proof of Lemma 6.4.4

Proof. Fix an instance I = (#,:, ℓ, u) such that # satis�es Assumption 6.2.4 for constant ^∗. Fix
the panel distribution d ∈ Δ(K) that implies selection probability assignment 0 ∈ Π(I) giving
all agents selection probability inΘ(:/=), which we know to exist by Lemma 6.4.3. Let ^ ∈ (0, ^∗)
be a constant, let � ⊂ # be an arbitrary coalition of size |� | = 2 = ^ =/

√
: , and let this coalition

misreport feature vectors w̃ ∈ W2 . Let #̃ := # \�∪w̃ be the pool created by� misreporting their
vectors as w̃ , and let Ĩ = (#̃ , :, ℓ, u) be the resulting instance. Let K be the set of valid panels in
I and K̃ be the set of valid panels in Ĩ; likewise, let K be the set of valid panel compositions in
I, and let K̃ be the set of valid panel compositions in Ĩ.

Our approach will be to construct a panel distribution d̃ ∈ Δ( ̃) with the desired properties
from our original panel distribution d. We will do this construction in panel composition space.
We begin with Claim 1, which characterizes the space of valid panel compositions in instance I
versus Ĩ.

Claim 1: K ⊆ K̃ (the set of valid compositions only grows after � misreports).

Proof of Claim 1. Recall thatW# describes the unique feature vectors in pool # . By assumption,
we know that #F ≥ ^∗= + : for all F ∈ W# . Because our coalition is of size 2 ≤ ^=/

√
: , we

conclude the following lower bound on #̃F for eachF ∈ W# :

#̃F ≥ =^∗ + : − 2 ≥ =(^∗ − ^/
√
:) + : ≥ max{:, =(^∗ − ^/

√
:)} for allF ∈ W# (E.12)

By Equation (E.12), #̃ still contains at least : people of each feature vector present in # , meaning
that

K ∈ K =⇒ K ∈ K̃.
(End proof of Claim 1).

While the set of feasible panel compositions could not have shrunk due to � misreporting, it
could certainly have grown, as members of � may have reported vectors not present in # . We
now partition � into three mutually exclusive and exhaustive subsets:

• �1 ⊆ � contains all 8 whose feature vector F̃ (8) is contained on some panel composition
K ∈ K

• �2 ⊆ � contains all 8 whose feature vector F̃ (8) is not contained on some panel composition
K ∈ K, but is contained on some panel composition K ∈ K̃ \ K

• �3 ⊆ � contains all 8 whose feature vector F̃ (8) is not contained on any panel composition
in K̃.

By Assumption 6.2.3, we know that given instance Ĩ, the selection algorithm will ignore agents
in �3, meaning that our e�ective pool size in Ĩ is =̃ := = − |�3 |. We correspondingly rede�ne
#̃ := #̃ \ �3. Note that the lower bound from Equation (E.12) on #̃F for all F ∈ W# remains
unchanged (note that we do indeed meanW# here, rather thanW#̃ . Then, this inequality still
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holds because the number of people with any vector F ∈ W# will not be changed by dropping
people of vectors that cannot be included, which must beF ∉W# ).

Now, for each 8 ∈ �2, identify a panel  (8) ∈ K̃ such that 8 ∈  (8) (these panels needs not be
unique). Let / represent the maximum total number seats reserved for any single vector across
these panels (counting duplicates with their multiplicity):

/ := max
F∈,

#̃

∑
8∈�2

: · KF ( (8)).

Let 6 :
⋃
8∈�2{K( (8))} → Nmap a given panel composition to the number of agents in�2 whose

chosen panel have that composition. Formally, it is de�ned as 6(K) = |8 ∈ �2 : K( (8)) = K|. Note
that grouping these representative panels by panel composition is a partition of |�2 |, so∑

K∈⋃8∈�2 {K( 
(8 ) )} 6(K) = |�2 |, and additionally 6(K) ≤ |�2 | for all K.

Note that / ≥ 1, because each agent 8 ∈ �2 is given at least one seat on one panel  (8) . Also note
that / ≤ : |�2 |, as we sum over |�2 | panels that can allot at most : seats to any vector. We have
that / ≥ 6(K) for all K because if there are 6(K) many copies of the same panel composition in
the representative panels then there are at least 6(K) seats reserved for any given vector on this
panel composition.

We will now construct a new panel composition distribution d̃ from d transformed into a panel
composition distribution d as given by Lemma E.4.3. By Lemma 6.4.3, we know that

^∗ ≤ tF (d) ≤ : for allF ∈ W# . (E.13)

Colloquially, in this construction we will add the necessary newly feasible panels to the support
and redistribute some probability mass over them. De�ne panel composition distribution d̃ as
follows:

d̃K :=


dK ·

(
1 −

√
: |�2 |√
/=̃

)
if K ∈ K

6(K)
√
:√

/=̃
if K ∈ ⋃

8∈�2{K( (8))}
0 else

for all K ∈ K̃.

Claim 2: d̃ is a well-de�ned distribution.

Proof of Claim 2. First, note that for every K ∈ K̃, d̃K is set to a single value. This is because the
cases are by de�nition mutually exclusive: if K ∈ K, it cannot be among the panels compositions
K( (8)) |8 ∈ �2 by de�nition. First we show that d̃K ≤ 1 for all K ∈ K̃ using that / ≥ 1 and
6(K) ≤ |�2 | ≤ 2 − |�3 | = ^=/

√
: − |�3 |:

6(K)
√
:

√
/=̃

≤ |�2 |
√
:

√
/=̃

≤ ^= −
√
: |�3 |

= − |�3 |
≤ ^= − ^ |�3 |

= − |�3 |
≤ ^ ≤ 1
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To show that d̃K ≥ 0 for all K ∈ K̃, we can directly reuse our analysis from above:

1 −
√
: |�2 |√
/=̃

≥ 1 − ^ ≥ 0. (E.14)

Finally, we see that all probabilities in this distribution sum to 1:∑
K∈K̃

d̃K =
∑

K∈⋃8∈�2 K( 
(8 ) )

6(K)
√
:

√
/=̃

+
∑

K∈K̃\⋃8∈�2 K( 
(8 ) )

dK ·
(
1 −
√
: |�2 |√
/=̃

)

=

√
:
√
/=̃

∑
K∈⋃8∈�2 K( 

(8 ) )
6(K) +

(
1 −
√
: |�2 |√
/=̃

) ∑
K∈K̃\⋃8∈�2 K( 

(8 ) )

dK

=

√
: |�2 |√
/=̃
+

(
1 −
√
: |�2 |√
/=̃

)
· 1

= 1

(End proof of Claim 2).

In the next part, our goal will be to lower and upper bound tF (d̃) for all F ∈ W# ∪W�2 . We
begin by looking atF ∈ W�2 . We �rst make some observations about the 6(K), and in particular
their relationship to sets of agents:

1. #̃F ≤
∑

K∈⋃8∈�2 {K( 
(8 ) )∧KF>0 6(K) for all F ∈ W�2 . To see this, note that we can partition

agents in �2 according to the panel composition of  (8) , the panel we identi�ed to include
them. 6(K) is then exactly the number of agents who chose K. Adding up over all panel
compositions including vectorF will necessarily add 1 per person with vectorF , since for
each such person there is at least one panel composition containing them whose composi-
tion group they belong to.

2. 6(K)
√
:√
/=̃

=
∑
8∈�2:K( (8 ) )=K

√
:√
/=̃
; this is by de�nition of 6(K).

Now, we lower bound CF (d̃) for allF ∈ W�2 :

CF (d̃) =
∑

K∈⋃8∈�2 {K( 
(8 ) )}

6(K)
√
:

√
/=̃

· : · KF ≥
√
:
√
/=̃

#̃F ≥
1
√
2=
#̃F .

The �rst inequality comes from applying observation (1) above, noting that when KF > 0, :KF ≥
1. The the �nal step uses that / ≤ : |�2 |, implying that / ≤ : (2 − |� |3) ≤ :2 .

Now, to upper bound tF (d̃) for allF ∈ W�2 , we apply observation (2) above.

CF (d̃) =
∑

K∈⋃8∈�2 {K( 
(8 ) )}

6(K)
√
:

√
/=̃

· : · KF =

√
:
√
/=̃

∑
K∈⋃8∈�2 {K( 

(8 ) )}

∑
8∈�2:K( (8 ) )=K

: · KF
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We can condense the sums: the �rst is over all panel compositions, and the second is over all
8 ∈ �2 whose  (8) �ts that composition; therefore, this is just

=

√
:
√
/=̃

∑
8∈�2

: · KF ( (8))

This sum is by de�nition / :

=

√
:
√
/=̃

/

≤
√
:
√
/=̃

/

1
√
2=̃
#̃F ≤

√
:
√
/=̃
· #̃F ≤ tF (d̃) ≤

√
:
√
/=̃

/ ≤ :
√
2

=̃
.

We conclude that for allF ∈ W�2 ,

tF (d̃) ∈
[

1
√
2=̃
#̃F ,

:
√
2

=̃

]
. (E.15)

For all otherF ∈ W#̃ \W�2 , we deduce the following bounds on tF (d̃), where the lower bound
corresponds to the case where F occurs on no panel compositions in

⋃
F̃∈W�2

{K(F̃)}, and the
upper bound corresponds to the case where this vector occurs on all of them to an extent captured
in / . First, by Equations (E.13) and (E.14),

tF (d̃) ≥ (1 − ^)tF (d) ≥ ^∗(1 − ^)

Next, by Equation (E.13),

tF (d̃) ≤ tF (d) +
√
:
√
/=̃

/ · #̃F ≤ : +
√
:
√
/=̃

/ · #̃F = : + :
√
2

We conclude that for allF ∈ W#̃ ,

tF (d̃) ∈
[
min

{
1
√
2=̃
#̃F , ^

∗(1 − ^)
}
, : + :

√
2

]
. (E.16)

Now, we apply Lemma E.4.2 to transform our panel composition distribution d̃ into a correspond-
ing panel distribution d̃ such that for the 0̃ implied by d̃, it holds that

c̃8 =
tF (d̃)
#̃F

for all 8 : F̃ (8) = F, F ∈ W .
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First, we bound the probabilities for those whose reported vector F̃ ∈ W�2 . Here, we will use
that =̃ = = − |�3 | ∈ [= − 2, =] ∈ [=(1 − ^∗/

√
:), =] and #̃F ≥ 1. By Equation (E.15), we get that

c̃8 ∈
[

1
√
2=
,

:
√
2

=(1 − ^∗/
√
:)

]
for all 8 : F̃ (8) = F,F ∈ �2.

Similarly, we bound the probabilities for those whose reported vector F̃ ∈ W# . Here, we will
use the fact that #̃F ≥ (^∗ − ^)= by Equation (E.12), and #̃F ≤ =̃ ≤ =. By Equation (E.16), it then
follows that

c̃8 ∈
[
min

{
1
√
2=
,
^∗(1 − ^)

=

}
,
: + :

√
2

(^∗ − ^)=

]
for all 8 : F̃ (8) ∈ W# .

Taking the union of both these ranges to bound the probabilities of all agents 8 ∈ #̃ , we conclude
the following, where we use that 2 ∈ Ω(1) to eliminate the second term of the minimum above:

c̃8 ∈
[
Ω

(
1
√
2=

)
, $

(
: + :

√
2

=

)]
=

[
Ω

(
:

:
√
2=

)
, $

(
: (1 +

√
2)

=

)]
for all 8 ∈ #̃ .

So we get that X14;>F (0̃) = $ (:
√
2), and X01>E4 (0̃) = $ (

√
2).

We conclude that X (Ĩ) ≤ $ (:
√
2). �

E.4.6 Proof of Theorem 6.4.5

Proof. Let our truthful instance beI=, and let our coalition so that when theymisreport, they cre-
ate instance I∗2 . By Observation 6.3.2, 0Goldilocks1 (I=) = :/=1. Now, applying Observation 6.3.3
to analyze I∗2 , we apply that 31 + 32 = 1 to get that all selection probabilities realizable in this
instance must satisfy

p00 = p11 =
:/2 − 32
(= − 2)/2 , p10 = 32

1
2 − 1 , p01 = 32. (E.17)

Now, we establish for which domains of 32 each possible relative ordering of these terms holds,
noting that p00(0) and p11(0) must be symmetric:

• p01(0) ≥ p00(0) ⇐⇒ 32 ≥ :
=−2+2 .

• p00(0) ≥ p10(0) ⇐⇒ 32 ≤ : (2−1)
=+2−2

• p01(0) ≥ p10(0) ∀32 ∈ [0, 1].

Then, there can be three possible orderings of the selection probabilities in 0Goldilocks1 with the
following corresponding domains, which we handle separately:
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Case 1: p01(0) ≥ p10(0) ≥ p00(0) when 32 ≥ : (2−1)
=+2−2 . In this case, Goldilocks1(0) is equal

to
=/: · p01(0) +

1
=/: · p00(0)

= =/: · 32 +
(= − 2)/2

=/: (:/2 − 32)
.

This is increasing in 32 for all 32 ∈ [0, 1], so this objective is minimized when 32 is minimized
over the relevant domain. Therefore the optimal solution over this domain is32 = : (2−1)

=+2−2 , in which
case p00(0) = p10(0), and this is interchangeable with case 3.

Case 2: p00(0) ≥ p01(0) ≥ p10(0) when 32 ≤ :
=−2+2 . In this case, Goldilocks1(0) is equal

to
=/: · p00(0) +

1
=/: · p10(0)

= =/: · :/2 − 32(= − 2)/2 +
2 − 1
=/: · 32

.

This is decreasing in 32 for all 32 ∈ [0, 1], so this objective is minimized when 32 is maximized
over the relevant domain. Therefore the optimal solution over this domain is 32 = :

=−2+2 , in which
case p00(0) = p01(0), and this is interchangeable with case 3.

Case 3: p01(0) ≥ p00(0) ≥ p10(0) when :
=−2+2 ≤ 32 ≤

: (2−1)
=+2−2 . In this case, Goldilocks1(0)

is equal to
=/: · p01(0) +

1
=/: · p10(0)

= =/:32 +
2 − 1
=/: · 32

.

Taking the derivative of this function with respect to 32 and setting it equal to 0, we get that

=/: − 2 − 1
=/: · 322

= 0 ⇐⇒ (:/=)2 =
322
2 − 1 ⇐⇒ 32 = :/= ·

√
2 − 1.

Applying Equation (E.17), this setting of 3 gives us that p01 = :/= ·
√
2 − 1. It follows that

p00(0Goldilocks1 (I∗2 )) = p11 =
:/2 − 32
(= − 2)/2 ,

p10(0Goldilocks1 (I∗2 )) = :/= ·
1

√
2 − 1

,

p01(0Goldilocks1 (I∗2 )) = :/= ·
√
2 − 1.

Now, let 8∗ ∈ � be the single agent who misreported F̃ (8∗) = 01. cGoldilocks1
8∗ (I=) = :/= and

c
Goldilocks1
8∗ (I∗2 ) = :/= ·

√
2 − 1, meaning that

manip8=C (I=,Goldilocks1, 2) = :/=(
√
2 − 1 − 1).

Moreover, given that p10(0Goldilocks1 (I∗2 )) = :/= · 1√
2−1 , we immediately have that

manip-fairness(I=,Goldilocks1, 2) = :/= ·
1

√
2 − 1

. �

361



E.5 Supplemental Materials for Section 6.6

E.5.1 Investigation of alternative W values

We determine W values according to three di�erent methods; the �rst is generic across instances,
and the second two are instance-wise, aiming to respond to how quotas and self-selection bias in
a given instance necessitate practically signi�cant probability gaps.

While static W will behave well as = grows large, for practical = this may not be ideal. This is
because these instances display some necessary deviation from :/= in selection probabilities due
to the quotas, sometimes to the extent that some people must receive very higih or very low
probability. While in our theoretical analysis these constant gaps diminish in =, in these real-
world instances, = is small and these constants matter. This means we might want to tune W on
an instance-by-instance basis: for example, if the quotas require someone to receive probability
1, we are better o� setting W to be extremely large and prioritizing only low probabilities, since
we cannot gain anything on the high end.

W1: minimax/maximin-balanced. While we don’t know the best solution in any given instance,
we can try to approximately balance the terms using our knowledge of min(0Maximin(I)), the
maximal minimum probability, and max(0Minimax(I)), the minimal maximum probability. The
bounds given by our algorithm depend onmax{W3, 3′}, where :/(3=) is the minimum probability
and 3′:/= is the maximum probability in the feasible instance. To roughly balance these terms
relative to one another, we can set

:/(3=) = min(0Maximin(I)) ⇐⇒ 3 =
:

=
· 1
min(0Maximin(I))

and
3′:/= = max(0Minimax(I)) ⇐⇒ 3′ =

=

:
max(0Minimax(I)),

thereby optimistically proceeding as though there exists an instance where we can achieve the
maximal minimum probability and theminimal maximum probability simultaneously. Given that
our bounds depend on max{W3, 3′} by Lemma E.4.1 (the W-general version of Lemma 6.4.2), we
set W so that W3 and 3′ are balanced:

W3 = 3′ ⇐⇒ W =
:

=
· 1
min(0Maximin(I)) =

=

:
max(0Minimax(I))

=⇒ W =
=2

:2
·max(0Minimax(I)) ·min(0Maximin(I)) .

Some observations about this method: As we approach the ability to perfectly equalize,W → 1. As
max(0Minimax(I)) → 1 but min(0Maximin(I)) is around :/=, this gets large, approaching order
=/: and prompting us to prioritize low probabilities, as desired. Likewise, if max(0Minimax(I))
is around :/= but min(0Maximin(I)) → 0, this approaches 0, prompting us to prioritize only the
higher probabilities, as desired.
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W2 selection bias-balanced. The weakness of method 2 is that we have to optimize minimax
and maximin before we can optimize Goldilocks. We can maybe get around this by getting a
coarse-grained approximation to the above approach, which estimates how much gap must exist
in the selection probabilities to satisfy individual constraints. Building on Flanigan et al. [135]’s
measure Δ?,:,# , we set [ 5 ,E (# ) := |{8 |5 (8) = E}|/|# | and let

:/(=3) = min
(5 ,E)∈�+

(ℓ5 ,E + D 5 ,E )/2
[ 5 ,E (# )

· :/= and 3′:/= = max
(5 ,E)∈�+

(ℓ5 ,E + D 5 ,E )/2
[ 5 ,E (# )

· :/=.

Computing W to balance terms as we did in Method 2, we get that

W3 = 3′ ⇐⇒ W = min
5 ,E∈�+

(ℓ5 ,E + D 5 ,E )/2
[ 5 ,E (# )

· max
(5 ,E)∈�+

(ℓ5 ,E + D 5 ,E )/2
[ 5 ,E (# )

.

We now show that this has the same desirable behavior as Method 2: �rst, notice as the self-
selection bias goes away, both these terms approach 1 and we get W = 1. If the self-selection bias
requires very high probabilities for some feature-vector, making the max term very large, this
will make W larger, prompting us to prioritize low probabilities. If the self-selection bias requires
very low probabilities for some feature-vector, this will make W term smaller, prompting us to
prioritize high probabilities. If they depart equally from 1 (multiplicatively), then the terms will
cancel and W = 1.

Instances minimax leximin Goldilocks(1) Goldilocks(W1) Goldilocks(W2)
1 (0.0, 1.0) (1.0, 2.0) (0.73, 1.14) (0.76, 1.19) (0.77, 1.2)
2 (0.0, 1.0) (1.0, 1.33) (0.9, 1.0) (0.94, 1.03) (0.94, 1.03)
3 (0.0, 1.0) (1.0, 1.0) (0.99, 1.0) (0.99, 1.0) (0.99, 1.0)
4 (0.0, 1.0) (1.0, 1.0) (0.97, 1.0) (0.98, 1.0) (0.98, 1.0)
5 (0.0, 1.0) (1.0, 1.17) (0.92, 1.0) (0.93, 1.01) (0.93, 1.01)
6 (0.25, 1.0) (1.0, 1.11) (1.0, 1.09) (1.0, 1.09) (1.0, 1.09)
7 (0.0, 1.0) (1.0, 3.5) (0.7, 1.45) (0.74, 1.51) (0.79, 1.63)
8 (0.0, 1.0) (0.98, 1.0) (0.96, 1.0) (0.99, 1.0) (0.99, 1.0)
9 (0.0, 1.0) (1.0, 1.0) (0.94, 1.0) (0.97, 1.0) (0.98, 1.0)

Table E.1: We compare the performance of the two instance-speci�c gamma values described
above against minimax, leximin, and goldilocks with a gamma value of 1.

E.5.2 Instances

Table E.3 gives the values of =, : , and |W# | associated with our 9 instances.

E.5.3 Description of Legacy

The Legacy algorithm is a greedy heuristic that populates the panel person by person, in each of
its : steps uniformly randomizing over all remaining pool members (not yet placed on the panel)
who have value E′ for feature 5 ′, where this feature-value is de�ned by the following ratio:
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Instances

1 2 3 4 5 6 7 8 9
= 239 312 161 250 404 70 321 1727 825
: 30 35 44 20 40 24 30 110 75
|W# | 202 182 92 92 108 25 294 762 554

Table E.2: : , =, and |W# | values across all 9 instances we analyze.

5 ′, E′ := arg max
5 ,E∈�+

ℓ5 ,E − # people already selected for the panel with 5 , E
# people left in the pool with 5 , E .

Intuitively, this is computing how desperate we are for quota 5 , E : the top is how many more
people we need to �ll the quota, and the bottom is how many we have left. If this is large, then
the quota is more desperate. The algorithm proceeds this way until either a valid panel is created,
or it is impossible to satisfy the quotas with the remaining pool members, at which case it starts
over. A more detailed description of how this algorithm handles corner cases can be found in
Appendix 11 of [130]; these details are not pertinent to our results.

E.5.4 Implementation of algorithmic framework

We (will) provide our code for implementing the framework for all E we optimize. We give ap-
proximate runtimes for optimizing the objectives we study below. These runtimes were obtained
on a 13-inch MacBook Pro (2020) with an Apple M1 chip. For clarity, we select a representative
run of a smaller instance (Instance 1) as well as a representative run of a large instance (Instance
8) with all of our equality objectives.

Instance Minimax Maximin Leximin Nash Goldilocks
1 10.05 10.68 32.35 28.59 47.55
8 35.67 33.16 358.66 857.19 8473.9

Table E.3: Times (seconds) of a representative run of all of the various objective-optimizing algo-
rithms on Instances 1 and 8.

To calculate optimal distributions under various equality objectives, we used pre-existing imple-
mentations ofMaximin, Leximin,Nash, and Legacy from publicly available code [130, 131]. We
implementedMinimax and Goldilocks using the algorithmic framework provided by [130]. Im-
plementingMinimax is straightforward, as its implementation almost exactly the same asMax-
imin. To implement Goldilocks, we needed it to be di�erentiable; thus, we instead optimized
the function de�nition below:

=/: · ©«
∑
8∈[=]

c
?

8

ª®¬
1/?

+ 1/=/: · ©«
∑
8∈[=]

1/c?
8

ª®¬
1/?

.
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We characterize the relationship of this objective and our standard Goldilocks1 function in the
propositions below. With this objective in hand, we implement [130]’s framework in the follow-
ing way. In our experiments, we use an auxiliary constraint (as permitted within the framework)
to enforce that selection probabilities are anonymous within a tolerance of 0.01.

Goldilocks Primal program:

max − =
:

©«
∑
8∈[=]

c
?

8

ª®¬
1/?

− :W
=

©«
∑
8∈[=]

1
c
?

8

ª®¬
1/?

s.t. c8 =
∑

%∈K :8∈%
@% for all 8 ∈ [=]

|c8 − c 9 | ≤ 0.01 for all 8, 9 ∈ [=] : F (8) = F ( 9)∑
%∈K

@% = 1

@% ≥ 0 for all % ∈ K

With our stopping condition de�ned in terms of

[8 =
mℎ( ®c)
mc8

=
−=
:?

©«
∑
8′∈[=]

c
?

8′
ª®¬
1/?−1

· ?c?−1
8
+ :W
=

©«
∑
8′∈[=]

1
c
?

8′

ª®¬
1/?−1

1
c
?+1
8

as ∑
8∈% ′

[8 ≤
∑
8∈%∗

[8 + Y�!

where % ′ is the maximizing panel not currently in the support of the panel distribution for the
sum of [8 : 8 ∈ % ′, and %∗ is the maximizing panel currently in the support of the panel distribution
for the corresponding sum. The stopping condition as de�ned in the framework has Y�! = 0, but
for computational constraints we set Y�! = 1. We experimented with thresholds down to Y� : = 0.1
and found the degradation of the solution with Y�! = 1 to be relatively insigni�cant.

Proposition E.5.1. Fix 0 and let max := max8∈[=] c8 and likewise, min := min8∈[=] c8 .

lim
?→∞

©«
∑
8∈[=]

c
?

8

ª®¬
1/?

+ W ©«
∑
8∈[=]

1
c
?

8

ª®¬
1/?

= max+W 1
min

Proof. We’ll analyze the two terms separately, both in much the same way:

max = (max ?)1/? ≤ ©«
∑
8∈[=]

c
?

8

ª®¬
1/?

≤ ©«
∑
8∈[=]

max ?ª®¬
1/?

= =1/? max
?→∞
−−−−→ max
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1
min =

(
1

min ?

)1/?
≤ ©«

∑
8∈[=]

1
c8

?ª®¬
1/?

≤ ©«
∑
8∈[=]

1
min ?

ª®¬
1/?

= =1/?
1

min
?→∞
−−−−→ 1

min �

Lemma E.5.2. Suppose there exists a feasible solution c in which c8 ∈
[

1
3 (=)·= ,

3 (=)′
=

]
for all 8 ∈ [=],

where 3 (=), 3′(=) ∈ Ω(1). Then, let c∗ be the optimizer of the following objective in this instance:

56>;3 (c) =
©«
∑
8∈[=]

c
?

8

ª®¬
1/?

+ 1
=2

©«
∑
8∈[=]

1
c
?

8

ª®¬
1/?

.

Then, for all 8 ∈ [=], we have that

c∗8 ∈
[

1
2=1+1/?

· 1
max{3 (=), 3′(=)} ,

2
=1−1/?

·max{3 (=), 3′(=)}
]
.

Proof. First, we start with our feasible solution and upper bound the objective:

56>;3 (c) =
©«
∑
8∈[=]

c
?

8

ª®¬
1/?

+ 1
=2

©«
∑
8∈[=]

1
c
?

8

ª®¬
1/?

≤ ©«
∑
8∈[=]

(
3 (=)′
=

)?ª®¬
1/?

+ 1
=2

©«
∑
8∈[=]

(
1

3 (=) · =

)?ª®¬
1/?

=
3′(=)
=1−1/?

+ 3 (=)
=1−1/?

≤ 2
=1−1/?

max {3 (=), 3′(=)}

Now, assume for the sake of contradiction that in the optimizer c∗, someone receives higher-order
probability than 2

=1−1/?
·max{3 (=), 3′(=)}. Then,

56>;3 (c∗) >
2

=1−1/?
·max{3 (=), 3′(=)}

which is a contradiction to the optimality of this solution. Likewise, assume for the sake of
contradiction that in the optimizer c∗, someone receives lower-order probability than 1

2=1+1/? ·
1

max{3 (=),3 ′ (=)} . Then,

56>;3 (c∗) >
2=1+1/? ·max{3 (=), 3′(=)}

=2
=

2
=1−=1−1/?

·max{3 (=), 3′(=)}

Again, encountering a contradiction. We conclude the claim. �
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E.5.5 Feature Dropping Methods & Results for Additional Instances

In I, we de�ne the selection bias of feature 5 exactly as in [135]:

Δ
5

# ,:,ℓ,u
:= max

E∈+5

(ℓ5 ,E + D 5 ,E )/2
[ 5 ,E (# )

−min
E∈+5

(ℓ5 ,E + D 5 ,E )/2
[ 5 ,E (# )

where [ 5 ,E (# ) represents the fraction of people in the pool # with value E for feature 5 .

Then, we order the features in decreasing order of Δ5
# ,:,ℓ,u

as follows

Δ
51
#,:,ℓ,u

≥ Δ
52
#,:,ℓ,u

≥ · · · ≥ Δ
5 |� |
#,:,ℓ,u

And in Figure 6.1, we drop features 51 (1 feature dropped), then 51 and 52 (2 features dropped),
then 51, 52, 53 (3 features dropped), and so forth. Dropping a feature, formally speaking, means
that we are dropping their associated quota constraints; so after we have dropped ~ features, we
are imposing quotas

ℓ′ := (ℓ5 ,E |E ∈ +5 , 5 ∈ � \ {51, . . . , 5~}), and u′ := (D 5 ,E |E ∈ +5 , 5 ∈ � \ {51, . . . , 5~}).

Results for additional instances. In Figure E.1, we provide the analog to Figure 6.1 for the
remaining 6 instances omitted from the body.

E.5.6 Manipulation Robustness Experimental Methods

In our manipulability experiments, we used the high level structure implemented in [135], but
modi�ed it to be in the panel distribution setting as opposed to the continuous setting. We now
formally describe several aspects of our experimental design.

Simulating the growth of the pool via pool copies. On the horizontal axis of our plots, we
vary the number of pool copies. In an instance I = (#,:, ℓ, u), 1 pool copy means the pool is # ;
2 pool copies means that the pool is # ∪ # (that is, we duplicate each agent in the original pool
once, and leave all else about the instance the same).

The Most Underrepresented (MU) strategy Fix an I = (#,:, ℓ, u). For every feature 5 , let the
most underrepresented value be E∗

5
, de�ned as

E∗
5
:= argmax

E∈+5

(ℓ5 ,E + D 5 ,E )/2
[ 5 ,E (# )

,

with [ 5 ,E (# ) de�ned the same way as above. Then, when an agent 8 ∈ # employs the MU

strategy, they misreport the vector

F"* := (E∗
5
|5 ∈ � ).
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Figure E.1: In instances 7-9, we use Maximin instead of Leximin to indicate the optimal mini-
mum marginal probability because of computational costs due to the size of these instances. We
additionally drop only 3 features instead of 4 because instance 9 only has 4 features.

Computing the worst-case MU manipulator. Fix an I = (#,:, ℓ, u) and a maximally equal
algorithm E. As above, let Ĩ8 = (#−8∪F"* , :, ℓ, u) be the instance in which 8 has employed theMU

manipulation strategy, and all other agents are truthful. Then, we run the following algorithm
(pseudocode here) to compute the most any MU manipulator in the instance can gain.
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• max-gain← 0

• compute 0E(I)

• for all 8 ∈ # :

– compute 0E(Ĩ8)

– if cE
8 (Ĩ8) − cE

8 (I) >max-gain, set max-gain to this larger di�erence.

• return max-gain

E.5.7 Transparency Experimental Methods

Wemodel our transparency experiments after the experiments done by Flanigan et al. [131]. The
two rounding procedures that we utilize in this paper are ILP and Pipage.

Theoretical Bounds. In order to get theoretical upper bounds on the change in any individual’s
marginal probabilities as a result of rounding, we utilize the results from Flanigan et al. [131].
Theorem 3.2 gives us an upper bound of 11 B :/<, while Theorem 3.3 gives a bound of:

12 B

√
1
2 (1 +

ln 2
ln |W# | ) ·

√
|W# | ln( |W# |) + 1

<

You can �nd instance-speci�c values of =, : and |W# | in Appendix E.5.4. For our experiments,
we set the number of panels< to 1000.

Then, for a given instance I, we derived our theoretical bound on the minimum probability as
min(0Goldilocks1 (I)) − min(11, 12) and the theoretical bound on the maximum probability as
max(0Goldilocks1 (I)) +min(11, 12).

ILP Rounding. For the ILP Rounding algorithm, we implemented a new ILP based o� of the
Nash-optimizing ILP in [131] that optimized the �>;38;>2:B objective.

Due to constraints of the IP-solver, we were unable to implement the continuous version of
�>;38;>2:B used in our optimal distribution algorithm for su�ciently high values of ? . Instead,
we implemented the objective of the form �>;38;>2:B1(0) = =/: ·max(0) + 1

=/: ·min(0) .
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IP-GOLDILOCKS

max =/: ‖c ‖∞ + :/=‖1/c ‖∞
s.t. c8 =

∑
%∈K :8∈%

@% for all 8 ∈ [=]

<@% ∈ Z+∑
%∈K

@% = 1

@% ≥ 0 for all % ∈ K

It is worth noting that IP-GOLDILOCKS does not give formal guarantees on both maximum and
minimum probabilities simultaneously. In IP-MAXIMIN, for example, Flanigan et al. [131] could
give guarantees on the minimum probabilities outputted by the rounding algorithm. This is be-
cause IP-MAXIMIN optimizes solely for maximizing the minimum probability, and we have a
theoretical bound on howmuch the former minimum probability will be reduced when the panel
distribution is rounded. In contrast,�>;38;>2:B optimizes for both maximum and minimum prob-
abilities simultaneously, so it is not clear whether it will stay within the theoretical bounds for
one or the other on a given instance.

Pipage. We ran the pipage algorithm implemented by Flanigan et al. [131] for 1000 independent
repetitions for each of our instances. We stored the minimum and maximum marginals from
each repetitions and computed the average minimum and average maximum marginal. Addi-
tionally, we computed the standard deviation of minimum and maximum marginals across these
repetitions. We ultimately found that the spread of the data was very low — standard deviation
of minimum and maximum marginals across repetitions did not exceed 0.0015 across all of our
instances, and was typically much lower.
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F.1 Supplemental Materials from Section 9.1.2

F.1.1 Connections to existing results

We connect our results to those in three papers. The �rst two study distortion under the B-unit
stakes assumption, and the third assumes utility queries.

Caragiannis et al. [70] (B-unit stakes, deterministic rules)

This paper assumes sum-unit-stakes. Although this paper proves distortion bounds for both de-
terministic and randomized rules, we do not discuss their analysis of randomized rules, as such
bounds are more directly addressed in later work, described next. Another similarity between
our bounds: V 5 that our bounds depend on is similar to the dependency of their analysis on
alternatives’ plurality score.

Upper bounds (deterministic rules): Theorem 1 of their paper proves an $ (<2) upper bound on
the distortion of Plurality under sum-unit-stakes (i.e., unit-sum utilities). We can recover this
bound via our Theorem 9.3.4: First observe that ^-upper(sum) =< and ^-lower(sum) = 1 (given
by utility vectors 1 and 110<−1, respectively). Recall also that VPlurality = 1/<. By Theorem 9.3.4,
it follows that distsum(Plurality) ≤ <2.

Lower bounds (deterministic rules): Theorem 1 of their paper proves an Ω(<2) lower bound on
the distortion of any voting rule under sum-unit stakes (unit-sum utilities). We do show a lower-
bound on the distortion of all deterministic voting rules, but due to its is general across any stakes
function (not just sum), our (tight) lower bound is Ω(<) (Theorem 9.3.1). However, we can recover
the Ω(<2) bound speci�cally for B = sum for most voting rules by combining two of our results.
First, by Appendix F.2.6, many voting rules have unbounded distortion under B-unit stakes with
respect to any B , including sum. Among the remaining rules with V 5 > 0, we can recover a
lower bound of Ω(<2) (with tighter constants) for Plurality via Proposition F.2.3: We have
^-upper(sum) from above, and ˜̂-lower(sum) = 2, given by 120<−2. Then, by Proposition F.2.3,
dist

sum(Plurality) ≥ (< − 1)</2. Our bounds here are tighter, improving upon the gap from a
factor of 8 to a factor of 2.

Ebadian et al. [105] (B-unit-stakes, randomized rules)

This paper studies only randomized rules, under both the sum-unit stakes assumption and the
max-unit stakes assumption (which they call “range”).

Upper bounds (randomized rules): As discussed in Section 9.3.2, we use our reduction in Ap-
pendix F.2.8 to directly apply their upper bounds on the distortion of Stable Lottery under
the sum- and max-unit stakes assumptions (their Theorem 3.4) to prove our upper bound in The-
orem 9.3.11.

Lower bounds (randomized rules): In Theorem 3.7 of their paper, they show a lower bound of
Ω(
√
<) on the distortion of any randomized rule under max-unit-stakes. This complements a
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previously-known bound by ? ] of Ω(
√
<) on the distortion of any randomized rule under sum-

unit stakes. Our lower bound in Theorem 9.3.11 is weaker than these bounds by a log(<) factor,
but it applies to B-unit stakes for any 1-homogeneous B (which includes both sum and max). We
suspect our lower bound can be tightened to Ω(

√
<), which would make it a strict generalization

of the existing bound.

Amanatidis et al. [22] (utility queries, deterministic rules) This paper considers determinis-
tic voting rules with access to one of two kinds of queries: value queries, where the voting mech-
anism can directly ask agents about any one of their utilities; and comparison queries, where the
voting mechanism can ask agents: “for alternatives 0 and 1, is your utility for 0 at least 3 times
your utility for 1?” Stakes information according to an arbitrary B can be recovered by some
number of either type of these queries (trivially,< value queries, but in many cases, far less). De-
termining the optimal set of queries of these types to recover a given stakes function is outside the
scope of this appendix. Thus, when thinking about upper bounds, we will restrict our considera-
tion here to the stakes functionsmax, which can be recovered by 1 value query. Similar reasoning
applies for range. Finally, we remark that their permission of noisy queries (i.e., queries within a
constant factor of the truth) are related to our robustness results in Theorem 9.4.1, though due
to the generality of our class of stakes functions (and the fact that errors are occurring on stakes

functions’ output rather than utilities directly) requires us to handle additional technicalities.

Upper bounds (deterministic rules): Their upper bound in Theorem 1 shows that their mechanism
1-PRV—equivalent to Plurality under stakes-proportionality with respect to max—gives dis-
tortion $ (<). This result corresponds to our upper bound on the distortion of plurality under
max-proportionality, proven via Theorem 9.3.4.

Lower bounds (deterministic rules): Their Theorem 7 shows that any single-value query can enable
at best Ω(<) distortion. Our lower bound in Theorem 9.3.1 generalizes this lower bound, showing
that any system of queries yielding the value of a scalar-valued stakes function, when paired with a
deterministic voting rule, can achieve at best Ω(<) distortion.1 Of course, this is not to say that
we generalize all their lower bounds— they prove several other lower bounds for their setting,
which are incomparable to ours.

1A necessary step in showing that our lower bound subsumes theirs is arguing that our lower bound actually
applies to any stakes-dependent electoral recomposition, not just proportional recomposition, which we do in the body
of the paper.
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F.2 Supplemental Materials from Section 9.3

F.2.1 All deterministic rules have unbounded distortion

Proposition F.2.1. For all deterministic rules 5 , dist(5 ) = ∞.

Proof. Fix an arbitrary deterministic voting rule 5 . Consider an election with = voters and< =

2 alternatives. For n > 0, let =/2 voters have utility vector (n, 0) and let the other half have
(0, 1). Then, half of voters will vote for 0 and the other half for 1. In this example, 0 or 1 are
indistinguishable to 5 ; suppose it chooses 0. Then, the distortion in this instance is =/2

n=/2 →∞ as
n → 0. �

F.2.2 Proof of Theorem 9.3.1

Theorem 9.3.1 (lower bound). For all B and deterministic 5 ,

dist
s(5 ) ≥ < − 1.

Proof. We will de�ne two instances, * and * ′, and show that all 5 must have at least < − 1
distortion in one of these two instances. We will construct * , * ′ in the following way: �rst, set
aside one alternative 0′, and let the remaining alternatives be �ℓ = {0 9 | 9 ∈ [<] \ {ℓ}}. For all
ℓ , when we write �ℓ in a ranking it represents a ranking over all the alternatives within it, in
increasing order of index. Divide voters in into< − 1 groups, and consider a voter 8 in group ℓ :
we will assign utility vectors to these voters so that their ranking c8 = 0ℓ � 0′ � �ℓ . We display
8’s utility vectors u8 and u′8 , as given by* and* ′ respectively, in sorted order, to emphasize how
their utilities correspond to their resulting ranking:

alternative: 0ℓ � 0′ � �ℓ
sorted u8 for 8 ∈ group ℓ : 1 1 0 . . . 0
sorted u′8 for 8 ∈ group ℓ : 1 0 0 . . . 0

We now make three observations:

1. hist(* ) ≡ hist(* ′)— that is, the utilitymatrices induce the same preference histogram. This
is true because for every ℓ , voters in the ℓ-th group of* and* ′ have the same ranking.

2. hist
B (* ) ≡ hist(* ) and hist

B (* ′) ≡ hist(* ′)— that is, the B-proportional pro�les are iden-
tical to the standard pro�les for both utility matrices. This is because within each utility
matrix, all voters have the same ordered utility vector and thus have the same stakes.

3. sw(0′,* ) = = while sw(0′,* ′) = 0. Moreover, sw(0ℓ ,* ) = sw(0ℓ ,* ′) = =/(< − 1) for all
ℓ ∈ [< − 1].

We distinguish between two cases, depending on whether 5 (hist(* )) = 0′ or 5 (hist(* )) ≠ 0′.
If 5 (hist(* )) = 0′, by (1), we also have that 5 (hist(* ′)) = 0′. Then, since sw(0′,* ′) = 0,

dist
B
* ′ (5 )

(2)
= dist* ′ (5 ) =

sw(01,* ′)
sw(0′,* ′)

(3)
=
=/(< − 1)

0 = ∞.
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If 5 (hist(* )) ≠ 0′, then there must exist some ℓ ∈ [< − 1] such that 5 (hist(u)) = 0ℓ . Then, �xing
this ℓ ,

dist
s
* (5 )

(2)
= dist* (5 ) =

sw(0′,* )
sw(0ℓ ,* )

(3)
=

1
1/(< − 1) =< − 1. �

F.2.3 Theorem 9.3.4 holds when ^’s are defined with range instead of max

Observation F.2.2. The bound in Theorem 9.3.4 remains true also for a slightly di�erent de�nition

of the coe�cients ^-lower(B), ^-upper(B) where max(·) is replaced by range(·),

^-upper(B) := sup
u∈R<≥0

B (u)
range(u) , and ^-lower(B) := inf

u∈R<≥0

B (u)
range(u) .

Proof. Let * ∈ R<×=≥0 be any utility matrix. Then, let *̃ denote the utility matrix in which each
agent 8′B utility vector u8 is altered by

D̃8 (0) = D8 (0) − min
0∈[<]

D8 (0),

i.e., the utilities are shifted down such that each voter’s minimum utility is 0. Then, letting 2 :=∑
8∈[# ] min0 D8 (0), we obtain that

sw(0∗,* )
sw(0′,* ) ≤

sw(0∗,* ) − 2
sw(0′,* ) − 2 =

sw(0∗, *̃ )
sw(0, *̃ )

.

Then, we may restrict the arguments in the proof of Theorem 9.3.4 to utility vectors with zero
minimum entry. This leads to a bound where we may use, instead of ^-upper(B) and ^-lower(B)

sup
u∈R<

≥0:min0∈[<] D (0)=0

B (u)
max(u) and inf

u∈R<
≥0:min0∈[<] D (0)=0

B (u)
max(u)

in place of ^-upper(B) and ^-lower(B). We may further upper and lower bound these last two
quantities, respectively, by

sup
u∈R<

≥0:min0 D (0)=0

B (u)
max(u) = sup

u∈R<
≥0:min0 D (0)=0

B (u)
range(u) ≤ sup

u∈R<
≥0

B (u)
range(u) ,

inf
u∈R<

≥0:min0 D (0)=0

B (u)
max(u) = inf

u∈R<
≥0:min0 D (0)=0

B (u)
range(u) ≥ inf

u∈R<
≥0

B (u)
range(u) ,

and we then in particular obtain a distortion upper bound with the two expressions on the right
hand side in place of ^-upper(B) and ^-lower(B). �
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F.2.4 Proof of Lemma 9.3.6

Proof. Fix any deterministic voting rule 5 , and de�ne the quantity

^ 5 = min
h∈Δ((<)

min
0≠5 (h)

∑
c∈(<

ℎc I(5 (h) �c 0),

which captures the minimum fraction of people by whom the winner 5 (0) ranked ahead of any
other given alternative 0. In [134], it is shown that for any voting rule 5 , we have that

^ 5 ≤ ^Minimax = 1/<,

where Minimax is the voting rule which chooses the alternative 0 that su�ers the least severe
worst pairwise defeat; see [134] for details. Moreover, we have that for any histogram pro�le h
and any alternative 0 ≠ 5 (h),∑

c∈(<
ℎc I(c−1(5 (h)) = 1) ≤

∑
c∈(<

ℎc I(5 (h) �c 0)

It follows that V 5 ≤ ^ 5 ≤ 1/<, which proves the �rst part of the claim.

Now, for the second part of the claim: the fact that VPlurality ≥ 1/< follows immediately its
de�nition: there always exists an alternative which is �rst-ranked in at least a 1/< fraction of
the population – therefore, the Plurality winner also has to rank �rst at least in a 1/< fraction
of the population. �

F.2.5 Proof of Proposition F.2.3

Proposition F.2.3. For all B ,

dist
s(Plurality) ≥ (< − 1) · ^-upper(B)/ ˜̂-lower(B).

Proof. Formally, we de�ne ˜̂ lower as

˜̂ lower = inf
D∈U

B (D)
maxu , U :=

{
D ∈ R<≥0 : D1 = D2 ≥ · · · ≥ D< = 0

}
. (F.1)

We will construct an instance which exhibits distortion of the desired order.

Step 1: Designing the ordered utilities. There are two population groups: one high-stake

population group which we call �1 and on low-stake population group which we call �2. We
denote the proportional group size of �1 by ? = |�1 |/= ∈ (0, 1), 1 − ? = |�2 |/=. The exact value
of ? will be determined later in Step 3 of this proof.

Since we are considering proportional recomposition, we may assume without loss of generality
that across agents, their maximal utility is equal to 1. Suppose that Dupper is an ordered utility
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vector which maximizes the supremum in ^-upper, such that max0∈[<] Dupper(0) = 1. Similarly,
let D lower denote the utility vector in U that minimizes the in�mum in (F.1). Now, we assign to
�1 the ordered utility vector Dupper, and to �2 the ordered utility vector D lower. Then, agents in
these two population groups have respective stakes of

B (Dupper) = ^-upper, B (D lower) = ˜̂ lower.

Step 2: Designing the rankings.

• In group �1, we �rst-rank an alternative 0′ – this alternative, by appropriate choice of ? ,
will later turn out to be the winner of the plurality election. The second to last ranked
alternatives in group �1 can be chosen arbitrarily.

• In group �2, the �rst-rank positions are divided up equally between the remaining< − 1
alternatives in [<] \{0′}. Out of those<−1 alternatives, we choose an arbitrary alternative
which we will make the highest-welfare alternative, called 0∗. This alternative 0∗ is ranked
second throughout the group �2, whenever it does not rank �rst.

• Finally, we also specify that the alternative 0′ is ranked last throughout group �2. The
remaining places in �2’s preference pro�le may be �lled arbitrarily.

Step 3: Specifying the group size ?. It remains to calculate ? . Since�1 has stakes ^-upper and
�2 has stakes ˜̂ lower, the stakes-weighted plurality score obtained by 0′ is ?^-upper. Any other
alternative 0 ≠ 0′ obtains a stakes-weighted plurality score of (1 − ?) ˜̂ lower/(< − 1). Thus, 0′
winning the election amounts to the inequality

?^-upper ≥ 1 − ?
< − 1 ˜̂

lower ⇐⇒ ? (^-upper+ ˜̂
lower

< − 1 ) ≥
˜̂ lower
< − 1 ⇐⇒ ? ≥ ˜̂ lower

˜̂ lower + (< − 1)^-upper
.

Thus, let us set ? to be equal to the last expression, i.e.

? =
|�1 |
=

=
˜̂ lower

˜̂ lower + (< − 1)^-upper
.

With this choice of ? , we notice that

sw(0′,* )
=

= ?, and sw(0∗,* )
=

≥ 1
=

∑
8∈�2

D8 (0∗) = 1 − ?,

since agents in �2 have utility 1 for 0∗, and agents in �1 may have positive utility for 0∗. In
conclusion, the distortion in this instance is lower bounded by

sw(0∗,* )
sw(0′,* ) ≥

1 − ?
?

=

(<−1)^-upper
˜̂ lower+(<−1)^-upper

˜̂ lower
˜̂ lower+(<−1)^-upper

=
(< − 1)^-upper

˜̂ lower
.

�
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F.2.6 Proof: V 5 = 0 for many established voting rules

Observation F.2.4. V 5 = 0 for many established voting rules.

This observation is shown via a simple instance. Before presenting this instance, we de�ne the
voting rules we will address.

Voting rules. Borda Count and Veto are positional scoring rules, which are rules de�ned by
a scoring vector F ∈ [0, 1]< with 9-th entry F 9 . In these scoring rules, an alternative receives
F 9 points for each voter who ranks it 9-th, and the winner in a given pro�le is the alternative
with the most points. Borda Count is de�ned by the linearly-decreasing scoring vector w =

(1, (< − 2)/(< − 1), . . . , 1/(< − 1), 0), and Veto is de�ned by w = 1<−101. We also consider the
entire class of Condorcet-consistent rules. To de�ne this class, we say that 0 pairwise-dominates

0′ in h if 0 is ranked ahead of 0′ in at least half of the electorate. We say that h has a Condorcet
winner 0 if 0 pairwise-dominates all other alternatives. A Condorcet-consistent rule is one which
5 (h) will be the Condorcet winner on all pro�les h in which a Condorcet winner exists. We will
consider this large class of voting rules as a whole, but will not consider any speci�c rule in this
class.

Instance. Indeed, consider the following instance with 4 alternatives, 0,1, 2, 3 :

• 1 voter has 2 � 0 � 3 � 1

• =/3 − 1 voters have 2 � 0 � 1 � 3

• =/3 voters have 1 � 0 � 2 � 3

• =/3 voters have 3 � 0 � 1 � 2

Then, 0 is ranked ahead of any other alternative by 2/3 of voters, and is the Condorcet winner;
it will also be the Borda winner, and the Veto winner. Yet, it is never ranked �rst.

F.2.7 Proof of Theorem 9.3.11

Theorem 9.3.11 (lower bound). For all 1-homogeneous B , randomized 5 , distB (5 ) ≥
√
<

10+3 log< .

Proof. De�ne the vector 1I0I′ to be the vector consisting of I ones followed by I′ zeroes.

Case 1: Suppose that there exists some I ≤ (log<) − 1 such that B (1I+10<−I−1)/B (1I0<−I) ≤ 4.
Fix this I. We now design a utility instance and associated preference histogram which exhibits
a distortion of the order

√
</log<.

Step 1: Designing the rankings. We begin by designing the preference histogram. We divide
the population into</log< groups

�1, ...�</log< .
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Let alternatives 1, ...,</log< occupy the �rst positions in each of the groups �1, ...�</log< , re-
spectively. Similarly, we occupy the second to I-th rank of those groups by following alternatives:

Rank: 1 2 . . . z
Group �1: 1 </log< + 1 . . . (I − 1)</log< + 1

...
...

Group �</log<: </log< 2</log< . . . I</log<.

Next, we also divide the population into
√
< parts �1, ..., �√< of equal size, based on which alter-

natives occupy the (I + 1)-the position. We may design this partition in a way such that

∀: ∈ [
√
<] :

��{; ∈ [</log<] : �: ∩�; ≠ ∅}�� ≤ √<log< + 2.

Intuitively, this is because the groups �: are larger by a factor of
√
</log< than the groups �; .

We may thus pick the partition into �: such that each �: overlaps with at most
√
</log< + 2

many groups �; . For each : ∈ [
√
<], we assign the (I + 1)-th position in group �: to be occu-

pied by the alternative I</log< + : . Finally, we �ll the rest of the positions in the preference
histogram – i.e. the (I + 2)-th to last ranks – arbitrarily.

Step 2: Designing the utilities. Amongst the
√
< alternatives which are ranked in the (I+1)-th

position, there must exist one alternative which we call 0̄ which is chosen by the voting rule 5
with probability at most 1/

√
<. That is, if h denotes the preference histogram constructed in Step

1, then
50̄ (h) ≤ 1/

√
<.

Let �:̄ be the unique group which ranks 0̄ in the (I + 1)-th position. Now, we assign utilities as
follows. De�ne the following ratio of stakes:

2I :=
B (1I+10<−I−1)
B (1I0<−I)

≤ 4.

• Group �:̄ . We assign to agents in �: the ranked utilities B (1I+10<−I−1).

• Remainder. In the remaining population �2
:
, we assign the ranked utilities 2I · B (1I0<−I).

These ordered utilities, together with the rankings designed in Step 1, determine a utility matrix
which we call* .

1. The alternative 0̄ has average utility sw(0̄,* ) = 1/
√
<.

2. All other alternatives0 ≠ 0̄ have average utility atmost sw(0,* ) = 2I log</< ≤ 4 log</<.

3. By the homogeneity of the stakes function B (·), all voters have equal stakes. Therefore, we
have that histB (* ) = hist(* ) = h, and thus also

5 (histB (* )) = 5 (h).
In particular, 0̄ is chosen by the voting rule with probability at most 1/

√
< in 5 (histB (* )).
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Together, these observations yield that

E
[
sw(5 (histB (* )))

]
≤ 4 log<

<
+ 1
√
<

1
√
<

=
4 log< + 1

<
,

and thus the 5 in Case 1 is at least
max0 sw(0,* )

E
[
sw(5 (histB (* )))

] ≥ 1/
√
<

(1 + 4 log<)/< =

√
<

1 + 4 log< .

Case 2: It remains to treat the case when the premise of Case 1 is not ful�lled, that is, for every
I ≤ log< − 1, it holds that B (1I+10<−I−1)/B (1I0<−I) ≥ 4 . By multiplying this equality for all
I = 2, . . . , log< − 1, it follows that

B
(
1log(<)−10<−log(<)+1

)
B (110<−1)

≥ 2log<−2 ≥ <
42
. (F.2)

Now let us consider a histogram pro�le where the population is divided in
√
< many equal sizes

groups, which �rst-rank alternatives 1, ...
√
<, respectively. We �ll up the remaining positions in

the histogram arbitrarily. Denote this histogram by h.

We now assign utilities to induce h. There must exist one alternative among the
√
< �rst-ranked

alternatives that receives ≤ 1/
√
< probability of selection by 5 (h). Let us call this alternative 0∗,

and let us call the group which ranks 0∗ �rst � .

• Group � . In this group, we assign the ordered utility vector 110<−1.

• Group �2 . In the remainder of the population, we assign the ordered utility vector
B (110<−1)

B (1log(<)−10<−log(<)+1)
· 1log(<)−10<−log(<)+1

Let us denote the resulting utility matrix by* . We observe the following.

1. The average utility of 0∗ is at least sw(0∗,* )/= ≥ 1/
√
<.

2. By equation (F.2), the average utility of any other alternative 0 ≠ 0∗ is at most
sw(0,* )

=
≤ 4

2

<
.

3. All voters have equal stakes. Therefore 5 (h) = 5 (hist(* )) = 5 (histB (* )) and we may
estimate

E[sw(5 (histB (* )),* )] ≤ 1
√
<

1
√
<
+ 4

2

<2 ≤
10
<
.

We obtain an overall distortion of at least

dist
B
* (5 ) ≥

√
<

10 ,

and the proof is complete. �
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F.2.8 Proof of Lemma 9.3.13

Theorem F.2.5: reduction for rational-valued histograms

Here, we state and prove the reduction assuming hist
B (* ) has only rational entries, which we

ensure by restricting to rational utility matrices* ∈ Q=×<≥0 and rationality-preserving stakes func-
tions B (i.e., B (u) ∈ Q whenever u ∈ Q<≥0).

Theorem F.2.5. Let 5 be a voting rule, B a rationality-preserving and 1-homogeneous stakes func-

tion, and let UB be the set of all rational utility matrices satisfying the B-unit-stakes assumption.

Then,

sup
=≥1

sup
* ∈UB

dist* (5 ) = sup
=≥1

sup
* ∈Q=×<≥0

distB* (5 ).

Proof. We show the claimed equality by separately proving the directions ‘≤’ and ‘≥’. In order to
see the direction ‘≤’, we note that for any unit-stakes utility matrix * ∈ UB , hist(* ) = hist

B (* ):
the standard and stakes-proportional histograms are the same. Therefore, dist* (5 ) = dist

B
* (5 ).

Taking suprema over = ≥ 1 and* ∈ UB , we obtain the ‘≤’ direction.

It remains to show ‘≥’. In order to prove this direction, we �x any utility matrix * ∈ Q=×<≥0 , and
construct a unit-stakes utility matrix *̃ such that dist*̃ (5 ) = dist

B
* (5 ). We let

B̄8 =
B (u8)∑

8∈[=] B (u8)
, 8 ∈ [=]

be the weights with which voter 8 is represented in the stakes-recomposed election. Since B̄8 ∈ Q,
there exists some =̃ such that B̄8=̃ is again an integer for each 8 ∈ [=]. We �x such an =̃ and now
construct a utility matrix *̃ ∈ Q=̃×<≥0 for which 5 (without taking into account stakes) exhibits the
same distortion as* (while accounting for stakes).

• We divide the electorate of =̃ into = groups, each of them of size B̄8=̃. Call these groups
�1, ...�= .

• Within each group �8 , voters have the same ranking c8 (* ) as voter 8 in * . However, they
possess scaled utilities u8/B (u8).

Thenwe notice that by de�nition, hist(*̃ ) = hist
B (* ), and therefore also 5 (hist(*̃ )) = 5 (histB (* )).

Moreover, since B is 1-homogeneous, it holds that for all 8 ,

B

( u8
B (u8)

)
=

1
B (u8)

B (u8) = 1,

which yields thatUB satis�es the unit-stakes property. Moreover, for all alternatives 0 ∈ [<], it
holds that
sw(0,* )

=
=

∑
8∈[=]

D8 (0) =
∑
8 B (u8)
=

∑
8∈[=]

B̄8
D8 (0)
B (u8)

=
∑
8∈[=]

B (u8) ·
sw(0, *̃ )

=
=

∑
8∈[=]

B (u8)
=̃

=
· sw(0, *̃ )

=̃
.

Since
∑
8∈[=] B (u8) =̃= is a �xed constant independent of 8 and 0, it follows that the average utilities

in* and *̃ are equal up to multiplication with a �xed constant — thus distortion is preserved. �
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Theorem F.2.7: Extension of Theorem F.2.5 to real-valued histograms

Under an additional very mild restrictions on the voting rule 5 , it is possible to prove the cor-
respondence between stakes-based procedures and unit-stakes assumptions from Theorem F.2.5
not just for rational utilities, but for all real-valued utility functions. We term this assumption
for 5 to be rationally approximable, which amount to the outcome of 5 (h) for any preference
histogram being well-approximated by some preference histogram h̃ with only rational entries.

De�nition F.2.6 (Rationally approximable rules). We say that a (deterministic or randomized)

voting rule 5 : Δ((<) → Δ( [<]) is ‘rationally approximable’ if for every h ∈ Δ((<) and every

n > 0 there exists another histogram h̃ ∈ Q=×<≥0 with only rational entries such that

sup
c∈(<
|ℎc − ℎ̃c | ≤ n and sup

0∈[<]
|50 (h) − 50 (h̃) | ≤ n,

where 50 (h) denotes the win probability of 0 in 5 (h).

Theorem F.2.7. For any 1-homogeneous stakes function B and any voting rule 5 : Δ( [<!]) →
Δ( [<]), we have that

sup
=≥1

sup
* ∈UB

dist* (5 ) ≤ distB (5 ).

If additionally B is 1-homogeneous and 5 is either (i) weakly locally constant or (ii) continuous, then

the reverse inequality is also true,

sup
=≥1

sup
* ∈UB

dist* (5 ) ≥ distB (5 ).

Proof of Theorem F.2.7. The �rst inequality is immediately implied by the fact that for any * ∈
UB , the stakes-recomposed electorate is identical to the original electorate. Indeed, in this case
stakes-based election yields the same outcome as the non-stakes-based election, 5 (hist(* )) =
5 (histB (* )), so that dist* (5 ) = dist

B
* (5 ). It thus only remains to prove the reverse inequality.

Let us �x an arbitrary = ≥ 1 and utility matrix * ∈ R=×< , and let histB (* ) ∈ Δ((<) denote the
stakes-recomposed pro�le corresponding to * . Without loss of generality, we may assume both
sw(0∗,* ) > 0 (since otherwise* = 0) and

E
[
sw(5 (histB (* )),* )

]
> 0,

since otherwise distB* (5 ) = ∞ and there remains nothing to prove. By Proposition F.2.8, given
any d > 0 we may choose a unit-stakes utility matrix *̃ ∈ R=̃×<≥0 such that

sup
0∈[<]

|50 (histB (* )) − 50 (hist(*̃ )) | ≤ d and sup
0∈[<]

���sw(0,* )
=

− sw(0, *̃ )
=̃

��� ≤ d.
These two properties, taken together, imply the convergence���E[ sw(5 (histB (* )),* )

=

]
− E

[ sw(5 (hist(*̃ )), *̃ )
=̃

] ��� d→0
−−−→ 0,
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as well as the convergence �� max
0∈[<]

sw(0,* )
=

− max
0∈[<]

sw(0, *̃ )
=̃

�� d→0
−−−→ 0.

Taken together, this implies that

|distB* (5 ) − dist*̃ (5 ) |
d→0
−−−→ 0,

which proves the claim. �

Proposition F.2.8 (Approximation of social welfares). Suppose 5 is a rationally approximable

voting rule. Let * ∈ R=×< be any non-zero utility matrix. Then, for any d > 0 there exists some

large enough =̃ and a unit-stakes utility matrix *̃ ∈ R=̃×< such that

• The election outcomes are close,

sup
0∈[<]

|50 (histB (* )) − 50 (hist(*̃ )) | ≤ d.

• For all 0 ∈ [<], the average utilities in* and *̃ are close,���sw(0,* )
=

− sw(0, *̃ )
=̃

��� ≤ d.
Proof. Let n > 0 be arbitrary and �x any * . By De�nition F.2.6, we can choose some h̃ ∈ Q(<≥0
with rational coe�cients such that

sup
c∈(<
|histBc (* ) − ℎ̃c | ≤ n and sup

0∈[<]
|5

(
hist

B
c (* )

)
− 50 (ℎ̃) | ≤ n,

Step 1: Construction of utility matrix which induces h̃. Since h̃ ∈ Q(<≥0 only has rational
coe�cients, there exists some electorate with =̃ many voters and preferences (c̃8 : 8 ≤ =̃) such
that for each c ∈ (< , exactly a ℎ̃c fraction of the voters have ranking c . Now, we construct a
unit-stakes utility matrix *̃ ∈ UB∩R=̃×< which induces those rankings to the =̃ voters, and which
in turn will induce the pro�le h̃, hist(*̃ ) = h̃. To this end, let

B̄8 :=
B (D8)∑

8∈[=] B (D8)
,

∑
8∈[=]

B̄8 = 1,

denote the weights corresponding to each voter 8’s preferences in the stakes-recomposed elec-
torate. Since B is 1-homogeneous, we may assume without loss of generality that

∑
8∈[=] B (D8) = =,

by simply scaling the utilities (note that this leaves histB (* ) and also dist
B
* (5 ) unchanged). We

partition in the new ‘unit-stakes electorate’ (which consists of =̃ voters) into =+1 parts, which we
denote by �1, ...,�=+1. Within each of those groups, voters share the same ordered utility vector.
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Groups�1, ...�=. The �rst = groups�1, ...,�= are speci�ed as follows. Voters in group 8 have the
utilities D8

B (D8 ) , i.e., the same utilities as voter 8 in the original electorate, but scaled to unit-stakes.
In particular, voters in group �8 will inherit the same ranking c8 as the 8 − Cℎ voter from the
original electorate. Let the (fraction) size of the 8-th group be denoted by 68 , i.e., 68 = |�8 |/=̃. We
now determine those sizes. Since

sup
c∈(<

��h̃c − hist
B
c (* )

�� ≤ n,
we can now choose the (68 : 8 ∈ =) in such a way such that simultaneously, the following
properties are satis�ed. First, 68 ∈ [B̄8 − n, B̄8], and second, for every c ∈ (< ,∑

8∈=
68I

(
c8 = c

)
≤ h̃c . (F.3)

The �rst property states that the group size �8 does not exceed the amount of representation of
voter 8 in the stakes-recomposed electorate B̄8 . The second property states that by assigning group
sizes 68 , compared to the histogram h̃, none of the rankings is overrepresented. Note that∑

8

68 ≤
∑
8

B̄8 ≤ 1, and
∑
8

68 ≥
∑
8

B̄8 − n ≥ 1 − =n.

Group�=+1. This group constitutes the remainder of the population. Within this group, everyone
has the same ordered utility vector, but not the same rankings of alternatives. In this group, we
assign the ordered utility vector (G, 0, . . . , 0), where G is given by G = B ((1, 0, . . . , 0))−1 > 0.
Note that G is the (unique) constant such that B ((G, 0, . . . , 0)) = 1. In terms of the orderings of
alternatives in group�=+1, we assign the exact rankings which are needed to complete the correct
histogram h̃ which we aim to realize. Since from Groups �1, ...,�= , none of the rankings c ∈ (<
was overrepresented compared to h̃ – see equation (F.3) – this is possible. The group �=+1 has
size at most =n .

Let us denote the utility matrix which arises from this construction by *̃ ∈ R=̃×<≥0 .

Step 2: Approximation of social welfares. It remains to check that the distortion dist*̃ (5 )
induced by *̃ approximates the distortion dist

B
* (5 ) for the stakes-based election. To this end, we

upper and lower bound the di�erence in average utilities induced by* and *̃ , respectively. First,
recalling that

∑
8 B (D8) = =, we have the lower bound

sw(0, *̃ )
=̃

− sw(0,* )
=

≥
=∑
8=1

68
D8 (0)
B (D8)

− 1
=

=∑
8=1

D8 (0)

≥
=∑
8=1
(B̄8 − n)

D8 (0)
B (D8)

− 1
=

=∑
8=1

D8 (0)

≥
=∑
8=1

B (D8)∑
9∈[=] B (D 9 )

D8 (0)
B (D8)

− 1
=

=∑
8=1

D8 (0) −
=∑
8=1

n
D8 (0)
B (D8)

= −n
=∑
8=1

D8 (0)
B (D8)

.
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Similarly, we may derive an upper bound, recalling the constant G = B ((1, 0, ..., 0))−1:

sw(0, *̃ )
=̃

− sw(0,* )
=

≤
=∑
8=1

68
D8 (0)
B (D8)

+ =nG − 1
=

=∑
8=1

D8 (0) ≤
=∑
8=1

B̄8
D8 (0)
B (D8)

+ =nG − 1
=

=∑
8=1

D8 (0) = =n · G .

Since n > 0 was arbitrary, and since both of the latter two bounds tend to 0 as n → 0, we can
now choose n > 0 small enough to ful�ll all of the inequalities in the Proposition F.2.8 for any
prescribed threshold d > 0. This proves the claim. �

Our result shows that, from the perspective of worst-case distortion, using a stakes-based recom-
position is equivalent to assuming across the population that every voter has equal stakes.

F.2.9 Formalisms about the Stable Lottery Rule

We now de�ne the Stable lottery rule,following [105]. Since only the case of a stable lottery
of size

√
< is relevant to us, we shall restrict our de�nition to this special case. Let P√< ( [<]) be

the set of all subsets (or ‘committees’) of [<], of size
√
<, and let Δ(P√< ( [<])) be the set all of all

distributions on P√< ( [<]). Given a subset � ⊆ [<] of alternatives, an alternative 0 ∈ [<] and a
histogram pro�le h ∈ Δ((<), let us denote the fraction of voters who rank 0 ahead of all of � by

Freq0�� (h) =
∑
c∈(<

ℎc I(0 �c �).

If 0 ∈ �, then we set Freq0�� (h) = 0 for all h.

De�nition F.2.9 (Stable lottery). Given a preference histogram h, a stable lottery (of size
√
<) is a

probability distribution % (h) ∈ Δ(P√< ( [<])) (i.e., a random selection of a committee of size

√
<)

such that for all h,

max
0∈[<]

E�∼% (h)
[
Freq0�� (h)

]
<

1
√
<
.

It is well-known that a stable lottery always exists, see, e.g. [105]. Building on this de�nition, we
de�ne the Stable Lottery Rule in terms of histograms.

De�nition F.2.10 (Stable Lottery Rule). Given a histogram h, let % (h) be a stable lottery. With

probability 1/2, sample a committee � of size

√
< from % (h), and then choose an alternative uni-

formly at random from �. Else, with the remaining probability 1/2, simply choose an alternative

uniformly at random from [<].

Proof of Theorem 9.3.12.

Theorem 9.3.12 (upper bound). For B ∈ {sum,max, range}, distB (Stable Lottery) ∈ $ (
√
<).
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First, assume that B ∈ {max, sum}, and let 5 = Stable Lottery Rule. Then, by a well-established
result from Ebadian et al [105], we know that both for B = sum and B = max, the worst-case
distortion over unit-stakes instances is of the order $ (

√
<),

sup
=≥1

sup
* ∈UB

dist* (Stable Lottery Rule) ∈ $ (
√
<),

where we recall the notationUB for the set of utility matrices* where each voter has unit stakes,
B (u8) = 1. Our goal is to use Theorem F.2.5 to conclude that the stakes-proportional procedure
also has distortion of the order at most $ (

√
<). For this, we need to con�rm that the Stable

Lottery Rule is rationally approximable in the sense of De�nition F.2.6. Indeed, this is seen as
follows. Let h be an arbitrary preference histogram. In [105], it is proven not just that a stable
lottery always exists for h; indeed, a slightly stronger requirement is validated, namely, that the
lottery satis�es

max
0∈[<]

E�∼% (h)
[
Freq0�� (h)

]
≤ 1
√
< + 1

.

Now, let n > 0. Suppose that h̃ is another histogram pro�le with rational entries such that

sup
c∈(<
|ℎc − ℎ̃c | ≤ n.

Wemay also choose h̃ such that the di�erence
��
Freq0�� (h) −Freq0�� (h̃)

�� ≤ n for any 0. Choosing
n small enough, % (h) is a permissible stable lottery also for ℎ̃. Using this stable lottery, we have
that 5 (h) = 5 (ℎ̃); thus 5 is rationally approximable; the statement follows for B ∈ {max, sum}.

It remains to show the claim for B = range. Here, we argue along the same lines as Observation
F.2.2: The worst-case distortion both for B = range and for B = max can be realized while only
considering utility matrices in which each voter has minimum utility 0. Let this set of utilities be
denoted byV . Then,

sup
* ∈R=×<

≥0

dist
range

*
(5 ) = sup

* ∈V
dist

range

*
(5 ) = sup

* ∈V
dist

max

* (5 ) = sup
* ∈R=×<

≥0

dist
max

* (5 ) .

�

F.2.10 Folklore: all randomized rules have at least< distortion.

Fact F.2.11. For all voting rules 5 , dist(5 ) ≥ <.

Proof. Consider a histogram in which each of the< alternatives occupies a 1/< fraction of the
�rst positions and the second to last positions are occupied arbitrarily. There exists some alterna-
tive 0which will be chosen by the randomized rule with probability at most 1/<. Let� denote the
group in which 0 is ranked �rst. In this group, let us assign the ordered utility vector (1, 0, ..., 0).
In the remainder of the population�2 , we assign the zero utility vector. Let us denote this utility
matrix by * . Then, since 5 selects 0 with probability at most 1/<, denoting the winner of the
election by 0′, we obtain E[sw(0′,* )/=] ≤ 1/<2, while the maximum welfare alternative has
average utility sw(0,* )/= = 1/<; thus the distortion of 5 is at least<. �
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G
Chapter 12 Appendix

G.1 Supplemental Materials from Section 12.3

By convention, throughout the appendices 0′ denotes the winner of the election, i.e. 0′ = 5 (0),
and 0∗ denotes the highest-welfare alternative.

G.1.1 Explanation of instance diagrams

In this section of the appendix, we will present the utility matrices of counterexample instances
(usually for proving lower bounds) via diagrams. Below, we show the anatomy of such a diagram:

a′ 

Aa′ 

A 1
x
0

Utilities
…m − 11

Δf

1 − Δf

(A)

(B)

a*
a*

2

≻ ≻

≻ ≻

m

+ϵ

−ϵ

1/2

1/2

0

3 . . . m21

1

y
x

0

w
Utilities

(A)

(B)

(C)

4

a* a′ A Ã≻ ≻ ≻

≻ ≻ ≻

≻ ≻ ≻

a′ 

a′ a*

Ã

Ã

A a*

A+2ϵ

−ϵ

−ϵ

a* a′ A Ã

C/ m

m1

x

y
1

0

Utilities

(A)

(B)

t + 1

a*a′ A1≻

≻ ≻ ≻1 − C/ m

≻

……

a* a′ A2 A3

a′ 

a′ 

A 1
x
0

Utilities
…m − 11

1/m

1 − 1/m

(A)

(B)

m

≻

≻A

t

1

x
1

0

Utilities

(A) a′ ≻1

…

a*

m

Fraction of voters in each 
group (must add to 1)

Group labels Ranking positions

Numeric utilities 
associated with 
colored bars

2

A ≻

m − 1

Proposed ranking implied 
by the utilities

+ϵ

−ϵ

Voters. Most diagrams will have multiple rows, but this one has just a single row, re�ecting
the fact that this utility matrix has only one group of voters, labeled as group (A) on the left. All
members of a given group have the same utilities for all alternatives, and thus the same ranking
over alternatives. On the left of the box is the number 1, indicating that all voters (a 1-fraction)
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belong to group (A).

Alternatives. The alternatives are listed in the white region of the box. In this instance, there
are< alternatives: 0′, 0∗, and all alternatives in�, which represents a bloc of alternatives that are
interchangeable in the instance, i.e., treated identically by all voters.

Utilities. We encode voters’ utilities for alternatives with colored bars corresponding to the
alternative below them, where darker colors correspond to higher utilities. The utility value
associated with each color is on the right hand side of the diagram in the key labeled ‘Utilities’.
Sometimes, this key will contain variables like G , which we will set carefully in the proof, as they
are functions of W . For example, in the diagram above, every voter in group (A) has utility 1 for
alternative 0′, G for all 0 ∈ �, and 0 for 0∗. In these examples, we will occasionally set utilities to
be larger than 1 to make the math clearer because the scaling is more convenient.

Rankings. Finally, these diagrams encode the rankings that we propose are implied by the
utilities. These rankings are denoted by the list of alternatives in the box, separated by � symbols
to denote that they are ordered. For instance, the ranking proposed in the above instance is
0′ � � � 0∗, i.e., all voters in group (A) rank0′ �rst, 0∗ is last, and all other alternatives in between.
Of course, the fact that these rankings are realized by the given utilities requires proving, which
we will do when we prove our lower bounds. The ranking positions are given above the box.

Regarding the rankings of alternatives in blocs like �, we will make various assumptions about
how the alternatives within � are ranked, via arbitrarily small perturbations of the utilities of
those alternatives.1

G.1.2 Proof of Proposition 12.3.5

Proposition G.1.1. ^Plurality = 1/<, so for all $ with W<8= > 0, dist(Plurality,$ ) ≤ < 1−W<8=

W<8=
+ 1.

Proof. In light of Corollary 12.3.4, proving the claim amounts to proving^Plurality(<) ≥ 1/<. Let
5 = Plurality. For the sake of contradiction, suppose there exists a pro�le 0 and an alternative
0 such that |{8 |5 (0) �c8 0}|/= < 1/<. For shorthand, let 0′ = 5 (0). Then, 0′ must be ranked �rst
by less than a 1/< fraction of the voters in 0 , meaning 0′ receives strictly less than =/< points.
There are= total points awarded across alternatives, so by averaging, there must be an alternative
0 ≠ 0′ that receives strictly more than 1/< points, implying that 5 (0) ≠ 0′, a contradiction. �

G.1.3 Proof of Proposition 12.3.6

Proposition G.1.2. ^Borda = 1/<, so for all $ with W<8= > 0, dist(Borda,$ ) ≤ < 1−W<8=

W<8=
+ 1.

1We will usually assume that the alternatives in � are cycled symmetrically across voters’ rankings (using arbi-
trarily small epsilons to tie-break), but sometimes we will instead assume that these alternatives are always ranked
consistently. Either way, we can do this tie-breaking without a�ecting the distortion.
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Proof. Proving this claim amounts to proving that^Borda(<) ≥ 1/<. Let 5 = Borda. For the sake
of contradiction, suppose there exists a pro�le 0 and an alternative 0 such that |{8 : 5 (0) �c8
0}|/= < 1/<. For shorthand, let 0′ = 5 (0).

Now, divide voters into two groups: those who rank 0′ � 0 (an G < 1/< fraction of the voters),
and those who rank 0 � 0′ (the remaining 1 − G fraction of voters). Among all voters in the �rst
group, the point gap between 0′ and 0 is at most 1, corresponding to 0′ ranked �rst and 0 last. For
all voters in the second group, the point gap between 0′ and 0 is at most −1/(<−1), i.e., 0 receives
at least 1/(< − 1) more points than 0′ from each of these voters’ rankings. Then, denoting the
respective point totals by % (0′) and % (0),

% (0′) − % (0) ≤ G · 1 + (1 − G) · −1
< − 1 <

1
<
+

(
1 − 1

<

)
· −1
< − 1 = 0.

Therefore, 0′must receive less points than0 and cannot be the Bordawinner, a contradiction. �

G.1.4 Proof of Proposition 12.3.7

Proposition G.1.3. For all $ with (�xed) W<8= > 0, dist(Piecewise,$ ) ∈ $ (<2/3).

Proof. Let* ∈ R=×<≥0 , �x arbitrary $ with W<8= > 0 (as in the hypothesis), and let 0 ∈ Π+ ($ ,* ) . Let
0′ = Piecewise(0) and 0∗ denote the winner and the highest-welfare alternative, respectively.
Without loss of generality, let us assume that the average utility of 0∗ is sw(0∗)/= = 1. We treat
separately the scenarios where the lower bound on the social welfare of 0′ comes from 0′ having
to beat 0∗ (Case 1), and when it comes from having to beat some other alternative (Case 2).

Case 1: Suppose at least half of voters rank 0∗ in the �rst<2/3 positions. Let us call this subset
of voters

# ∗ = {8 : (c8)−1(0∗) ≤ <2/3},
satisfying |# ∗ | ≥ =/2. If 0′ ranks ahead of 0∗ in more than half of # ∗, then Lemma 12.3.1 immedi-
ately gives a constant distortion bound. If on the other hand 0′ ranks behind 0∗ in more than half
of # ∗, and since 0∗ is located in the �rst<2/3 positions where the spacing between consecutive
positions is BC − BC−1 =<−2/3, 0′ amasses a point de�cit of at least

<−2/3 · |#
∗ |
2 ≥ <−2/3 · =4 ,

relative to 0∗. Thus, in order to beat 0∗ overall, 0′ must rank ahead of 0∗ at least<−2/3 ·=/4 times.
Therefore, using Lemma 12.3.1, we obtain a distortion bound of the order $ (<2/3):

sw(0∗,* )
sw(0′,* ) ≤

1 − W<8=
W<8=

· 4<2/3 + 1.

Case 2: Now suppose 0∗ is ranked in the �rst<2/3 positions by less than 1/2 of the voters. Again
let # ∗ be again the voters where 0∗ ranks in the �rst<2/3 positions; we have that | (# ∗)2 | ≥ =/2
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(using (·)2 to denote the complement). Now, for each alternative 0, de�ne the frequency with
which 0 occurs in the �rst<2/3 positions amongst (# ∗)2 by

�0 =
|{8 ∈ (# 2)∗ : (c8)−1(0) ≤ <2/3}|

=
.

Since | (# ∗)2 | ≥ =/2, the average frequency of occurrence in the �rst<2/3 positions must satisfy

1
<

∑
0∈[<]

�0 ≥
=<2/3

2<= =
<−1/3

2 . (G.1)

Now, we need a further case distinction, based on how many alternatives have, roughly speaking,
above-average frequency of occurrence in the �rst<2/3 positions. To this end, let �̄ be the set of
alternatives that have �0 ≥ <−1/3/4:

�̄ := {0 ∈ � : �0 ≥ <−1/3/4}.

Case 2a: Suppose |�̄| > <2/3. Let us now lower bound the average utility of alternatives 0 ∈
�̄. First, since agents 8 ∈ (# ∗)2 rank 0∗ in a lower position than <2/3, the set featuring in the
de�nition of �0 is contained as follows

{8 : (# 2)∗ : (c8)−1(0) ≤ <2/3} ⊆ {8 : 0 �08
0∗}.

Therefore, we may use Lemma 12.3.1 to estimate

=

sw(0,* ) ≤
1 − W<8=
W<8=

=

{8 : 0 �08
0∗} + 1 ≤

1 − W<8=
W<8=

1
�0
+ 1 ≤ 1 − W<8=

W<8=
4<1/3 + 1, (G.2)

which leads to the lower bound

sw(0,* )
=

≥
(1 − W<8=
W<8=

4<1/3 + 1
)−1

=: F̄, satisfying F̄ = Ω(<−1/3).

Next, we deduce from this a lower bound on the social welfare of 0′. Since there are in total
=<2/3/2 points awarded in the election, 0′ has to score at least <−1/3/2 points per voter (on
average) to win. Thus, 0′ has to rank in the �rst<2/3 positions at least =/(2<1/3) many times –
denote this set of voters by

# ′ := {8 : (c8)−1(0′) ≤ <2/3}, satisfying |# ′|/= ≥ <−1/3/2.

Since |�̄| > <2/3, every time that 0′ ranks in the �rst<2/3 positions, it has to rank ahead of an
alternative 0 ∈ �̄, whose average utility is lower bounded by F̄ . Therefore, arguing as in Lemma
12.3.1, we obtain that

F̄

sw(0′,* )/= ≤
1 − W<8=
W<8=

=

|# ′| + 1,
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which implies

sw(0′,* )
=

≥ F̄
(1 − W<8=
W<8=

=

|# ′| + 1
)−1
≥ F̄

(1 − W<8=
W<8=

2<1/3 + 1
)−1

= Ω(<−2/3) .

Case 2b: Now suppose |�̄| ≤ <2/3. Using (G.1), we then obtain that

<−1/3

2 ≤ 1
<

(∑
0∈�̄

�0 +
∑
0∉�̄

�0

)
=
|�̄|
<
· 1
|�̄|

∑
0∈�̄

�0 +
|�̄2 |
<
· 1
|�̄2 |

∑
0∉�̄

<−1/3

4

≤ |�̄|
<
· 1
|�̄|

∑
0∈�̄

�0 +
<−1/3

4 .

Rearranging and using that |�̄| ≤ <2/3, we obtain that

<−1/3

4 ≤ |�̄|
<
· 1
|�̄|

∑
0∈�̄

�0 ≤
<2/3

<
· 1
|�̄|

∑
0∈�̄

�0 =<
−1/3 1
|�̄|

∑
0∈�̄

�0

=⇒ 1
|�̄|

∑
0∈�̄

�0 ≥
1
4 .

It follows that there must exist at least one alternative 0̄ ∈ �̄ such that �0̄ ≥ 1/4. Since at least
=/4 voters rank 0̄ ahead of 0∗, Lemma 12.3.1 implies that

=

sw(0̄,* ) ≤ 41 − W<8=
W<8=

+ 1,

and thus the average utility of 0̄ is lower bounded by a constant, sw(0̄,* )/= = Ω(1). We may
now complete the proof by arguing as in Case 1: Indeed, each time 0′ ranks behind 0̄, it incurs a
scoring de�cit of<−2/3. It thus must rank ahead of 0̄ at least Ω(=<−2/3) times, which, via Lemma
12.3.1, gives the desired lower bound sw(0′,* )/= = Ω(<−2/3). �

G.1.5 Proof of Proposition 12.3.8

The goal of this section is to show the following upper bound for the distortion ofMaximin.

Proposition G.1.4. ^Maximin = 1/<, so for all $ with W<8= > 0, dist(Maximin,$ ) ≤ < 1−W<8=

W<8=
+ 1.

Our high-level proof strategy is to show that ^Maximin = 1/<. Then, the proposition follows
immediately from an application of Corollary 12.3.4. Since every voting rule satis�es ^ 5 ≤ 1/<,
we only have to show that ^Maximin ≥ 1/<, which is directly implied by the following lemma.
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Lemma G.1.5. For every 0 preference pro�le, there exists some alternative 0̄ ∈ [<] such that

min
0≠0̄
{8 : 0̄ �08

0} ≥ =/<.

In particular, theMaximin winner 0′ (which is the alternative with the smallest maximum pairwise

loss) must also satisfy

min
0≠0′
|{8 : 0′ �c8 0}| ≥ =/<.

Consequently, it also holds that ^Maximin ≥ 1/<.

Proof. We de�ne a sequence of alternatives (0 9 : 9 ≥ 1) as follows. Start with an arbitrary
alternative 01. Given 0 9 , we let 0 9+1 be the alternative which pairwise-dominates 0 9 by the most,

0 9+1 := arg max
0∈[<]\{0 9 }

|{8 : 0 �c8 0 9 }|.

In this process, if we encounter an alternative that has previously been part of the sequence, i.e.
0 9+1 = 0: for some : ≤ 9 , then we exit the recursive procedure, and draw a cycle (0: , . . . , 0 9+1).
Then, the longest such cycle we can create is of length < + 1. Since 01 was arbitrary, we may
without loss of generality assume that the constructed cycle starts at : = 1, and has length !,
i.e. the cycle is (01, . . . , 0!) with 01 = 0! . Now, let # 9 ⊆ [=] denote the set of voters who rank
0 9+1 � 0 9 , i.e., who contribute to 0 9 ’s worst pairwise defeat. We now make the following claim.
Claim: There exists some 9∗ ∈ [!] such that |# 9∗ | ≤ !−2

!−1=.

To prove the claim, we �rst note that there cannot exist any voter 8 such that

01 �c8 ... �c8 0! �c8 01,

since this ranking would be cyclical. It follows that

!−1⋂
9=1

# 9 = ∅.

Now, assume for the sake of contradiction that for all 9 = 1, ..., ! it holds that |# 9 | > !−2
!−1=. Then,

this implies that. �� �⋂
9=1

# 9

�� > ! − 1 − �
! − 1 =, for all � = 1, ..., ! − 1.

Intuitively, we are saying that if all # 9 individually comprise nearly the entire set of voters, their
intersection must be somewhat large. Now, looking in particular at the case where � = ! − 1,
the above inequality implies that |⋂!−1

9=1 # 9 | > 0, which contradicts that the intersection of all
# 9 : 9 ∈ [! − 1] must be empty, as above. We conclude that the claim is true.
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Since ! − 1 ≤ <, the preceding claim implies that there exists some 0 9∗ whose worst defeat is by
less than !−1

!
≤ <−1

<
fraction of voters, i.e.,

max
0≠0 9∗

|{8 : 0 �c8 0 9∗}|
=

≤ < − 1
<

.

This proves the �rst assertion of the proposition, that is, by setting 0̄ = 0 9∗ , we obtain the desired
alternative for which at least =/< voters must rank 0̄ � 0.

Since 0′ is the Maximin winner, we further obtain that

min
0≠0′
|{8 : 0′ �c8 0}| ≥ min

0≠0 9∗
|{8 : 0 �c8 0 9∗}| ≥

=

<
.

�

G.1.6 Proof of Proposition 12.3.9

Proposition G.1.6. For all uniform $ = W1, W ∈ [0, 1], dist(Copeland,$ ) ≥
(
2(1−W)
W
+ 1

)2
.

Proof. The claim is true when W = 1 trivially, so we will consider W < 1. Let * be the utility
matrix described by the diagram (see Appendix G.1.1 for a primer on reading these diagrams),
where n > 0 and, is some su�ciently large value that depends on W (but not n).

F =,, G =
W/2

1 − W/2 , ~ =

(
W/2

1 − W/2

)2
.

a′ 

Aa′ 

A 1
x
0

Utilities
…m − 11

Δf

1 − Δf

(A)

(B)

a*
a*

2

≻ ≻

≻ ≻

m

+ϵ

−ϵ

1/2

1/2

0

3 . . . m21

1

y
x

0

w
Utilities

(A)

(B)

(C)

4

a* a′ A Ã≻ ≻ ≻

≻ ≻ ≻

≻ ≻ ≻

a′ 

a′ a*

Ã

Ã

A a*

A+2ϵ

−ϵ

−ϵ

a* a′ A Ã

C/ m

m1

x

y
1

0

Utilities

(A)

(B)

t + 1

a*a′ A1≻

≻ ≻ ≻1 − C/ m

≻

……

a* a′ A2 A3

a′ 

a′ 

A 1
x
0

Utilities
…m − 11

1/m

1 − 1/m

(A)

(B)

m

≻

≻A

t

1

x
1

0

Utilities

(A) a′ ≻1

…

a*

m

Fraction of voters in each 
group (must add to 1)

Group labels Ranking positions

Numeric utilities 
associated with 
colored bars

2

A ≻

m − 1

Proposed ranking implied 
by the utilities

+ϵ

−ϵ

Observe that 1 > G > ~ > 0, and the average utilities of alternatives are the following, where
here and throughout this analysis, we will gray out n terms, as they can be made arbitrarily small.

Now, establishing the average utilities: sw(0∗,* )/= = 1/2−n ; sw(0′,* )/= = ~/2+n (2F − ~/2);
for all 0 ∈ �, sw(0,* )/= = G (1/2 + n) = G/2+Gn ; and for all 0 ∈ �̃, sw(0,* )/= = 0.

Claim 1. The utilities imply the claimed rankings. First, observe that by virtue of having zero
social welfare, the alternatives in �̃ are always ranked last. We will consider only the other
relative rankings throughout this analysis. We con�rm each group’s ranking left to right by
comparing the values of E8 (0,$ ,* ) (Equation (12.2)), derived below.
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Let 8 ∈ Group (A) and 0 ∈ �. Then, 0∗ �c8 0′ �c8 0:

E8 (0∗,$ ,* ) = (1 − W) + W (1/2 − n) = 1 − W/2−Wn
E8 (0′,$ ,* ) = (1 − W)~ + W (~ (1/2 − n) + 2n, ) = ~ (1 − W/2)+nW (2, − ~)

E8 (0,$ ,* ) = WG (1/2 + n) = W/2 ·
(
W/2

1 − W/2

)
+nWG = ~ (1 − W/2)+nWG

Let 8 ∈ Group (B) and 0 ∈ �. Then, 0 �c8 0∗ �c8 0′:

E8 (0,$ ,* ) = G (1 − W + W (1/2 + n)) = G (1 − W/2)+WGn = W/2+WGn
E8 (0∗,$ ,* ) = W (1/2 − n) = W/2−Wn

E8 (0′,$ ,* ) = W (~ (1/2 − n) + 2n, ) = W~/2+nW (2, − ~)

Let 8 be in Group (C), and 0 ∈ �. Then, 0′ �c8 0 �c8 0∗:

E8 (0′,$ ,* ) = (1 − W), + W (~ (1/2 − n) + 2,n) = (1 − W), + W~/2+nW (2, − ~)

E8 (0,$ ,* ) = G (1 − W + W (1/2 + n)) =
(
W/2

1 − W/2

)
(1 − W/2)+nWG = W/2+nWG

E8 (0∗,$ ,* ) = W (1/2 − n) = W/2−nW

Claim 2. 0′ is the Copeland winner. To do this analysis quickly, we draw the pairwise majority
graph for this instance, where an arrow 0 → 0̃ indicates that 0 pairwise-dominates 0̃:

c* c′ C−
1 C2n /2−

n /2−

0+
C+

1 c* c′ C2

c′ 

C1c′ c* C2

3 . . . m21
1

y
x

0

Utilities

(a)

(b)
(c) -

≻

4

≻ ≻

≻ ≻ ≻

≻ ≻ ≻

n /2−

n /2−

0+

3 . . . m21

1

y
x

0

Utilities(a)

(b)

(c)

4

a* a′ A Ã≻ ≻ ≻

≻ ≻ ≻

≻ ≻ ≻

+

a′ 

a′ a*
Ã

Ã

A a*
A

a* a′ A Ã

Because we assume that items are symmetrically within�, and similarly within �̃, 0′ is the unique
Copeland winner:1

• 0′ gets< − 2 points by strictly pairwise defeating 2 items in � and< − 4 items in �̃.

• 0∗ gets< − 3 points by strictly pairwise defeating 0′ and< − 4 items in �̃.

• all 0 ∈ � get< − 3 points by strictly pairwise defeating 0∗ and< − 4 items in �̃.

• all 0 ∈ �̃ get 0 points.
1Here, we additionally assume that = is even (a similar instance, with a third identical alternative added to the

set � to form a Condorcet cycle within �, would work for odd =, see Appendix G.2.2 for a similar construction.).
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Distortion. It follows that the distortion in this instance, provided the proposed rankings are
realized, approaches the following quantity as n → 0:

sw(0∗,* )
sw(0′,* )

n→0−−−→ 1/2
~/2 =

(
1 − W/2
W/2

)2
=

(
2 − W
W

)2
=

(
2(1 − W)

W
+ 1

)2
�

G.1.7 Proof of Proposition 12.3.10

Proposition G.1.7. For all uniform $ = W1, W ∈ [0, 1], dist(Slater,$ ) ≥
(
2(1−W)
W
+ 1

)2
.

Proof. Wecan lower-bound Slater’s distortion identically toCopeland’s, as in Proposition 12.3.9,
via the same instance (with slightly di�erent treatment of the alternatives in �, �̃). In particu-
lar, where before we cycled alternatives symmetrically in these set, now assume that items are
always ordered the same way within �, and similarly within �̃. In particular, let c�, c�̃ be these
consistent sub-rankings. Fix this instance $ ,* . Then, 0′ is the unique Slater winner, by the
argument below. Note that this is all we need to prove identical distortion to Proposition 12.3.9,
because we have already con�rmed that the rankings in this instance are realized by the utilities,
as well as the distortion itself, in the proof of Proposition 12.3.9.

First, we will pare down the possible slater rankings. Observe that because items within �, �̃ are
always ranked as c�, c�̃ in 0$ ,* , the slater ranking must also rank them in this order to minimize
pairwise disagreements. Similarly, the slater ranking will always rank everything in �̃ in the last
< − 4 slots, as those items are always in those slots in 0$ ,* .

That leaves uswith the possible slater rankings listed below, using c�, c�̃ to denote all alternatives
in those sets in their �xed ordering. Note that � contains 2 alternatives and �̃ contains < − 4
alternatives. For each ranking, we tally its disagreements with the pairwise majority graph.

• 0′ � c� � 0∗ � c�̃ disagrees with 1

• 0′ � 0∗ � c� � c�̃ disagrees with 3

• 0∗ � 0′ � c� � c�̃ disagrees with 2

• 0∗ � c� � 0′ � c�̃ disagrees with 4

• c� � 0∗ � 0′ � c�̃ disagrees with 2

• c� � 0′ � 0∗ � c�̃ disagrees with 3

The slater ranking is the �rst one, so the winner is 0′. �

G.1.8 Proof of Theorem 12.3.11

Theorem 12.3.11. For all positional scoring rules 5 and uniform $ = W1 with (�xed) W ∈ [0, 1),

dist(5 ,$ ) ∈ Ω(
√
<).

395



Proof. Let s = (B1, . . . , B<) denote the (decreasing) scoring vector of 5 , and recall that B1 = 1,
B< = 0. Then, there must exist some position C ∈ {1, . . . ,

√
<} such that BC −BC+1 ≤ 1/

√
<. We then

construct a utility matrix * as pictured in the diagram below (see Appendix G.1.1 for a primer
on reading these diagrams), where

G =
1

1 − W and ~ = �′/
√
<

and �,�′ are constant to be chosen later.
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+ϵ
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For the ranking of group (A), we assume that�1 contains alternatives 1, . . . ,<−2 occupy the ranks
in cyclically, i.e. that any given alternative0 = 1, . . . ,<−2 occupies any rank A ∈ {2, . . . ,<−1} in a
1/(<− 2) fraction of group (A) (this is permitted since 0 = 1, . . . ,<− 2 are treated symmetrically,
so we may choose the preference orderings between them arbitrarily when the PS-values are
tied.) Similarly, in group (B) we may assume that the alternatives 1, . . . ,< − 2 are cycled through
the< − 2 occupied by�2 ∪�3 – this way their welfares are equal, sw(1,* ) = · · · = sw(< − 2,* ),
and the PS-values are hence always tied between the alternatives within positions�2, and within
positions �3.

We now argue that the above utilities induce the the rankings pro�le shown in the diagram. To
verify the rankings in group (A), we �rst note that

E8 (0∗,$ ,* ) = 1 ≤ (1 − W)D8 (0′) ≤ E8 (0′,$ ,* ).

Moreover, for any 1 ≤ 0 ≤ < − 2, since C ≤
√
< we have

sw(0,* )
=

≤ �

(1 − W)
√
<
+ C − 1
(1 − W) (< − 2) ≤

� + 2
(1 − W)

√
<
.

while for 0′ we have, for any< large enough such that �/
√
< ≤ 1/2,

sw(0′,* )
=

=
�

(1 − W)
√
<
+

(
1 − �
√
<

) �′
√
<
≥ �

(1 − W)
√
<
+ �′

2
√
<
.

Thus, for �′ chosen large enough (depending on W,�), we obtain that for 0 = 1, . . . ,< − 2,
sw(0′,* ) ≥ sw(0,* ). It follows that also E8 (0′,$ ,* ) ≥ E8 (0,$ ,* ), and the rankings of group
(A) are con�rmed.

We now verify the rankings in group (B). For alternatives 0 in positions �2, we have

E8 (0∗,$ ,* ) = 1 ≤ (1 − W)D8 (0) ≤ E8 (0,$ ,* ),
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so that they indeed rank ahead of 0∗. Since �′ was chosen above such that sw(0′,* ) ≥ sw(0,* )
(for all0 = 1, . . . ,<−2), 0′ is indeed ranked ahead of�3, and sw(0′,* ) = $ (1/

√
<) = > (sw(0∗,* )),

we conclude that 0′ is indeed ranked in the C + 1-st position. Thus the positions in group (B) are
con�rmed, too.

It remains to verify that in the ranking pro�le from the diagram, 0′ is indeed the positional scoring
rule winner. For 8 ∈ [=], 0 ∈ [<], let c−18 (0) denote the position that voter 8 ranks alternative 0
in. Then, we may write the point totals as

% (0) :=
∑
8∈[=]

Bc−1
8
(0), 0 ∈ [<]

Firstly, 0′ beats 0∗, since

1
=
(% (0′) − % (0∗)) = �

√
<
−

(
1 − �
√
<

)
(BC − BC+1) ≥

� − 1
√
<

> 0,

as long as we choose� > 1. Secondly, to see that 0′ beats 1, . . . ,<−2, we prove that % (0′) > % (1)
(which su�ces because % (1) = · · · = % (< − 2)). Note that the fraction of times alternative 1
occupies any position ; ∈ {1, . . . , C + 1} is bounded by

|{8 : c−18 (1) ≤ C + 1}|
=

=
�
√
<

C

< − 2 +
(
1 − �
√
<

) C − 1
<
≤ C

< − 2 .
1
√
<
,

where we again used that C ≤
√
<. Since 0′ ranks �rst a �/

√
< fraction of times, and otherwise

occupies the (C + 1)-th place, we may enforce that % (0′) > % (1), by choosing� > 0 large enough.
�

G.1.9 Proof of Lemma 12.3.12

LemmaG.1.8. For all positional scoring rules 5 and uniform$ = W1,W ∈ [0, 1], dist(5 ,$ ) ≥ 1−W
WΔ5
+1.

Proof. The claim is true when W = 1, because given that all positional scoring rules 5 are unani-
mous, dist1(5 ) = 1. For the remainder of the proof, we will thus consider W < 1.

Fix an arbitrary positional scoring rule 5 with gap Δ5 , de�ned as the gap between the scores
given to the �rst two positions (i.e., B1 − B2). Fix some W ∈ [0, 1), and let $ = W1. Now, consider
the instance ($ ,* ) depicted in the diagram below, where* is as shown in the following diagram
with n > 0 and

G =
W (1 − Δ5 )
1 − W + WΔ5

⇐⇒ G (1 − W + WΔ5 ) = W (1 − Δ5 )
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Figure G.1: � contains all alternatives other than 0′, 0∗, cycled symmetrically over rankings, and
all ±n are used for tie-breaking only.

First, we prove two necessary claims, and then analyze the distortion given that 0′ is the winner
by 5 .

Claim 1: the utilities imply the proposed rankings. Since 0′ always has PS-values which are always
greater or equal than that of any alternative in�, we may always rank 0′ ahead of all alternatives
in �, and thus the relative rankings of 0′, � are correct. Now, we verify the relative orderings of
0∗ and all other alternatives in both groups:

G =
W (1 − Δ5 )
1 − W + WΔ5

⇐⇒ G (1 − W + WΔ5 ) = W (1 − Δ5 )

=⇒ (1 − W + W (Δ5 + n))G > W (1 − Δ5 − n)
⇐⇒ E8 (0,$ ,* ) > E8 (0∗,$ ,* ) for all 0 ≠ 0∗, 8 ∈ group (A).

We now analyze group (B)’s ranking. Since D8 (0′) = D8 (0) for all 8 ∈ [=] and 0 ∈ �, it su�ces to
check that

Wsw(0′,* ) = E8 (0′,$ ,* ) ≤ E8 (0∗,$ ,* ) for all 8 ∈ group (B).

Since D8 (0′) = 0 in group (B), it su�ces to verify that sw(0′,* ) ≤ sw(0∗,* ):

sw(0′,* ) ≤ sw(0∗,* ) ⇐⇒ G (Δ5 + n) ≤ (1 − Δ5 − n)

⇐⇒
W (Δ5 + n)
1 − W + WΔ5

(1 − Δ5 ) ≤ (1 − Δ5 − n)

⇐⇒ W (1 − Δ5 ) (Δ5 + n) ≤ W (1 − Δ5 − n) (Δ5 + 1/W − 1)

Since we assumed that W < 1, clearly we may choose n > 0 small enough such that the inequality
in the last line holds true. This con�rms the rankings in group (B).

Claim 2: 0′ is the winner per the proposed rankings. 0′ is always ranked ahead of all 0 ∈ �, so 0′
must receive a higher score than all these alternatives. 0′ also receives more points than 0∗: 0′
receives Δ5 + n + (1− Δ5 − n) (1− Δ5 ) > 1− Δ5 points, which is larger than the 1− Δ5 − n points
received by 0∗.
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Now, to analyze the distortion we let n → 0:

dist$ (5 ) ≥
sw(0∗,* )
sw(0′,* )

n→0−−−→
1 − Δ5
Δ5 G

=
1 − W
WΔ5

+ 1.

�

G.1.10 Proof of Proposition 12.3.15

Proposition G.1.9. For all B ,

dist
s(Plurality) ≥ (< − 1) · ^-upper(B)/ ˜̂-lower(B).

Proof. Fix an arbitrary uniform $ = 1W and let * be the utility matrix depicted in the following
diagram, where all alternatives in � are cycled symmetrically, and

G =
W (< − 1)/<
1 − W + W/<
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The average utilities of the alternatives are then the following: sw(0′,* )/= = G (1/< + n) =

G/<+Gn , and for all 0 ∈ �, sw(0,* )/= = (< − 1)/<−n .

Claim 1. The proposed rankings are realized by the utilities. We con�rm each ranking left to right
by comparing voters’ PS-values, per Equation (12.2).

Let 8 ∈ group (A) and 0 ∈ �. Then,

E8 (0′,$ ,* ) = G (1 − W + W (1/< + n)) = G (1 − W + W/<)+Gn =
(
W (< − 1)/<
1 − W + W/<

)
(1 − W + W/<)+Gn

= W (< − 1)/<+Gn
E8 (0,$ ,* ) = W (1 − 1/< − n) = W (< − 1)/<−Wn
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Let 8 ∈ group (B) and 0 ∈ �. Then,

E8 (0,$ ,* ) = 1 − W + W (1 − 1/< − n) = 1 − W/<−Wn

E8 (0′,$ ,* ) = W (1/< + n)G = WG/<+WGn = W/< ·
(
W (< − 1)/<
1 − W + W/<

)
+WGn

= W/< ·
(

1
1 − W + W/< − 1

)
+WGn

=
W/<

1 − W + W/< − W/<+WGn

< 1 − W/<−Wn

Where the last step holds for su�ciently small n , and W/< ≤ 1 − W/< holds when< ≥ 2.

Claim 2. 0′ is the winner. 0′ is the Plurality winner because it is ranked �rst a 1/< + n fraction
of the time, while all other alternatives 0 ∈ � are ranked �rst a 1/<−n/(<−1) fraction of the time.

By Claims 1 and 2, the distortion in this instance approaches the following as n → 0 (where 0 is
an arbitrary alternative in �):

sw(0,* )
sw(0′,* ) =

(< − 1)/<
G/< = (< − 1) · 1 − W + W/<

W (< − 1)/< =
1 − W
W

< + 1.

�

G.1.11 Proof of Proposition 12.3.16

Proposition G.1.10. For all uniform $ = W1, dist(Maximin,$ ) ≥ (< − 1) · 1−W
W
+ 1.

Proof. We �rst specify a preference pro�le 0 with< alternatives in which 0′ is the winner, i.e.,
Maximin(0) = 0′; we will later show that 0 can be realized by suitable utilities.

We split the population into two groups, A and B:

• Group A is of size =/(< − 1), and voters 8 in group A rank

0′ �
8
all other< − 1 alternatives.

• Group B contains the rest of the voters, i.e. is of size =(<−2)/(<−1). In this group, voters
8 have ranking of the form

all other< − 1 alternatives �c8 0′.
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In these rankings, we assume that the< − 1 non-winning alternatives (call them 1 . . .< − 1) are
ranked cyclically – that is, each group is further divided into<−1 subgroups of equal size, where
voters 8 in the respective :-th subgroups rank

: �c8 : + 1 �c8 · · · �c8 < − 1 �c8 1 �c8 · · · �c8 : − 1.

We now verify that indeed 0′ = Maximin(0). Firstly, 0′ performs equally well in all comparisons
with other alternatives, i.e.

max
0≠0′
|{8 : 0 �c8 0′}| = |{8 : 1 �c8 0′}| = = −

=

< − 1 = =
< − 2
< − 1 .

On the other hand, for each of the remaining alternatives : = 1, . . . ,< − 1, their worst defeat
comes from the preceding alternative : − 1 (for : = 1, this alternative is< − 1) – in particular,
the cyclical rankings in both Group 1 and 2 immediately imply that

max
0≠:
|{8 : 0 �c8 :}| = |{8 : : − 1 �c8 :}| = =

< − 2
< − 1 ≥ max

0≠0′
|{8 : 0 �c8 0′}|,

con�rming that 0′ wins the election.

We now specify the utilities as follows.

• InGroup A, voters 8 haveD8 (0′) = W (<−2)
(1−W) (<−1)+W andD8 (0) = 0 for all remaining alternatives.

• In Group B, voters 8 have D8 (0′) = 0 and D8 (0) = 1 for all remaining alternatives 0 =

1, . . . ,< − 1.

The cyclical rankings amongst 0 = 1, . . . ,< − 1 can be realized since we have treated those
alternatives symmetrically, so that E8 (0,$ ,* ) are tied for all 8 ∈ [=] and 0 = 1, . . . ,< − 1. The
ranking of voters in group � is con�rmed by comparison of social welfares and utilities. 0′ is
ranked ahead of all other 0 for all 8 in Group A by the following reasoning:

E8 (0′,$ ,* ) = (1 − W)D8 (0′) + sw(0′,* )

= (1 − W) W (< − 2)
(1 − W) (< − 1) + W +

W

< − 1
W (< − 2)

(1 − W) (< − 1) + W

= (1 − W + W

< − 1 )
W (< − 2)

(< − 1) [(1 − W) + W/(< − 1)]

= W
< − 2
< − 1 = E8 (0,$ ,* ).

Since wemay assumeworst-case tie breaking, wemay rank 0′ ahead of 0. Note that in this pro�le,
all the alternatives 0 = 1, . . . ,< − 1 have equal social welfare. Fixing any such 0, the distortion in
this instance is

sw(0,* )
sw(0′,* ) =

< − 2
< − 1 ·

< − 1
W (<−2)

(1−W) (<−1)+W

=
(1 − W) (< − 1) + W

W
.

�
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G.2 Supplemental Material for Section 12.4

In this appendix, we will often apply the following lemma:

Lemma G.2.1. For any utility matrix, decreasing a voter 8’s level of public spirit cannot result in

them promoting a higher-welfare alternative over a lower-welfare alternative in their ranking.

Proof. Fix an arbitrary utility matrix * , arbitrary voter 8 , and $ , $̃ which di�er in that W̃8 < W8
(they may also di�er in other ways— it is irrelevant to this proof). Fix corresponding pro�les
0 ∈ Π+ ($ ,* ) and 0̃ ∈ Π+ ($̃ ,* ) . Let 0, 0′ be an arbitrary pair of alternatives such that 0′ �c8 0
and sw(0,* ) ≥ sw(0′,* ) (if no such pair exists, because 8’s alternatives are ranked in decreasing
order of welfare, and thus we are done because 8 cannot promote a higher-welfare alternative
over a lower-welfare alternative). We will show that 0 cannot be promoted over 0′ from c8 to
c̃8—that is, 0′ �c̃8 0, thereby showing the claim.

First, observe that because 0 has greater social welfare than 0′, 8 must have higher utility for 0′
than 0 to create their relative ranking in c8 :

0′ �c8 0 =⇒ D8 (0′) > D8 (0).

Then, by W̃8 < W8 , sw(0′,* ) − sw(0,* ) < 0 and D8 (0′) − D8 (0) > 0,

E8 (0′, $̃ ,* ) − E8 (0, $̃ ,* ) = (1 − W̃8) (D8 (0′) − D8 (0)) + W̃8 (sw(0′,* ) − sw(0,* ))
> (1 − W8) (D8 (0′) − D8 (0)) + W8 (sw(0′,* ) − sw(0,* ))
= E8 (0′,$ ,* ) − E8 (0,$ ,* ) > 0.

The inequality deduced above concludes the proof: E8 (0′, $̃ ,* )−E8 (0, $̃ ,* ) > 0 =⇒ 0′ �c̃8 0. �

G.2.1 Proof of Proposition 12.4.5

Proposition G.2.2. If< ≤ 3, then all voting rules exhibit nonuniform monotonicity.

Weprove this for< = 2 and< = 3 separately, though the arguments use the same overall strategy.
We present the proof of the < = 2 case more gently as a warm-up, to illustrate the high-level
approach; the proof of< = 3 requires more careful handling of additional technicalities.

Proposition 12.4.5(a). When< = 2, all voting rules exhibit nonuniform monotonicity.

Proof. Fix an arbitrary resolute voting rule 5 , and suppose our two alternatives are 0,1. To show
the claim, it su�ces to show that, starting with an instance$ ,* and given a $̃ which only di�ers
from $ in that W̃1 < W1 (i.e., only a single voter’s public spirit is decreased), we can �nd some *̃
with the following two properties:

• Property 1: sw(0,* ) = sw(0, *̃ ) and sw(1,* ) = sw(1, *̃ )

• Property 2: Π+ ($ ,* ) ⊆ Π+ ($̃ ,*̃ ) .

Together these properties imply that dist(5 ,$ ,* ) ≤ dist(5 , $̃ , *̃ ).
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Construction of *̃ . Note that for all 8 > 1, we immediately have that E8 (0,$ ,* ) = E8 (0, $̃ ,* )
and E8 (1,$ ,* ) = E8 (1, $̃ ,* ). Then, if it is already the case voter 1’s values under * match ordi-
nally across $ , $̃ — that is E1(0,$ ,* ) ≥ E1(1,$ ,* ) and E1(0, $̃ ,* ) ≥ E1(1, $̃ ,* ), or E1(1,$ ,* ) ≥
E1(0,$ ,* ) and E1(1, $̃ ,* ) ≥ E1(0, $̃ ,* )— then we are done: set *̃ = * , and we automatically get
properties 1 and 2.

Else, we have that E1(0,$ ,* ) ≥ E1(1,$ ,* ) and E1(1, $̃ ,* ) ≥ E1(0, $̃ ,* ), where moreover, one of
these inequalities is strict. Then, we have the following facts:

Fact G.2.3. By Lemma G.2.1 and W̃1 < W1, sw(1,* ) < sw(0,* ).

Fact G.2.4. By the fact that E1(1, $̃ ,* ) > E1(0, $̃ ,* ) and Fact G.2.3, D1(1) > D1(0).

Let # ′ be the set of all voters 8 for whom D8 (0) > D8 (1). Note that by Fact G.2.3, E8 (0,$ ,* ) >
E8 (1,$ ,* ) for all 8 ∈ # ′. We now show Equation (G.3), which states that in order for sw(0,* ) ≥
sw(1,* ), the gap between voters’ utilities for 0 and 1 in # ′ must at least compensate for the gap
between voter 1’s utilities for 1 and 0:

0 ≤ sw(0,* ) − sw(1,* ) = −(D1(1) − D1(0)) +
∑

8∈# \{1}
(D8 (0) − D8 (1))

≤ −(D1(1) − D1(0)) +
∑
8∈# ′
(D8 (0) − D8 (1)) .

and we conclude ∑
8∈# ′
(D8 (0) − D8 (1)) ≥ D1(1) − D1(0). (G.3)

Then, by Equation (G.3), there must exist some vector of non-negative real numbers % = (X8 : 8 ∈
# ′) such that

0 ≤ X8 ≤ D8 (0) − D8 (1) for all 8 ∈ # ′ and
∑
8∈# ′

X8 ≥ D1(1) − D1(0).

Fix this vector % , and use it to construct *̃ in the following way: �rst, for all voters 8 , set D̃8 (1) =
D8 (1). Then, set voters’ utilities for 0 as follows:

• D̃1(0) = D1(0) +
∑
8∈# ′ X8 ,

• for all 8 ∈ # ′, D̃8 (0) = D8 (0) − X8 , and

• for all other 8 , D̃8 (0) = D8 (0).

By inspection, per this construction we have Property 1: that sw(0,* ) = sw(0, *̃ ) and sw(1,* ) =
sw(1, *̃ ).

Finally, we show Property 2, that Π+ ($ ,* ) ⊆ Π+ ($̃ ,*̃ ) . First for all voters 8 ∈ # ′ ∪ {1}, we have by
the construction above that D̃8 (0) ≥ D̃8 (1); By Property 1, we also have that sw(0, *̃ ) > sw(1, *̃ ).
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Thus, E8 (0, $̃ , *̃ ) > E8 (1, $̃ , *̃ ). This is consistent with the fact that E8 (0,$ ,* ) > E8 (1,$ ,* ) for all
8 ∈ # ′∪{1}, as �xed earlier in the proof. For all remaining voters 8 ∉ # ′∪{1}, we did not change
their utilities from * to *̃ , so we have that E8 (0, $̃ , *̃ ) = E8 (0,$ ,* ) and E8 (1, $̃ , *̃ ) = E8 (1,$ ,* ).
We conclude that all PS-values are ordinally consistent for all voters across+ ($ ,* ) and+ ($̃ , *̃ ),
and thus Π+ ($ ,* ) ⊆ Π+ ($̃ ,*̃ ) , concluding the proof. �

Proposition 12.4.5(b). When m = 3, all voting rules exhibit nonuniform monotonicity.

Proof. Fix an arbitrary 5 . Fix* and $̃ < $ where W̃1 < W1 and W̃8 = W8 for all 8 > 1. Wewill prove the
claim by showing that we can �nd some other utilitymatrix *̃ so that dist(5 ,$ ,* ) ≤ dist(5 , $̃ , *̃ ).

For notational convenience, for any instance ($ ,* ) we will write 0$ ,* to denote a pro�le com-
patible with ($ ,* ). Fix an arbitrary 0$ ,* , and �x another pro�le 0$̃ ,* with the same tie-breaking
when PS-values are equal. Note that these two pro�les may di�er only in voter 1’s ranking (and
if they don’t, we can set *̃ = * and we are done). This proof will be conceptually similar to that
of Proposition 12.4.5(a), except that instead of correcting one pairwise ranking, we must correct
multiple in succession.

De�ne the swap(c, 0, 1) function as one that intakes a ranking and two alternatives that are
ranked adjacently in c , and outputs the ranking in which they are swapped; e.g., swap(1 �
0,1, 0) = 0 � 1. Now, de�ne a sequence of unique pairwise swaps of alternatives adjacent in c$̃ ,*1
such that, if made, would transform c

$̃ ,*
1 intoc$ ,*1 . Let this sequence be (01, 11), (02, 12), . . . , (0) , 1) )

where, by convention, we are swapping 1C � 0C → 0C � 1C . That is, if we apply swap successively
to c$̃ ,*1 for alternatives 01, 11 . . . 0) , 1) , we will get c

$ ,*
1 .

By Lemma G.2.5 (below), we can de�ne a sequence of utility matrices *̃1, *̃2, . . . *̃) such that

• Property 1: c
*̃C ,$̃
8

= c
$ ,*
8

for all 8 ≠ 1, C ∈ [) ]
(the rankings of all voters other than 1 are preserved in step C )

• Property 2 c
*̃C+1,$̃
1 = swap(c*̃C ,$̃

1 , 1C+1, 0C+1) for all C ∈ [) − 1]
(so 1’s pairwise mis-ordering of 0C+1 and 1C+1 is corrected in the C + 1-st step)

• Property 3: sw(0,* ) = sw(0, *̃C ) for all 0 ∈ [<], C ∈ [) ]
(the welfares are preserved in step C )

It follows that 0*̃) ,$̃ = 0$ ,* and sw(0,* ) = sw(0, *̃) ), together implying that

dist(5 ,$ ,* ) = dist(5 , $̃ , *̃) ),

concluding the proof. �

Lemma G.2.5. Let< = 3. Fix arbitrary * and $ > $̃ , where W̃1 < W1 but all other voters’ entries
are identical. Let alternatives 0,1 be such that 0 �

c
$ ,*
1

1 and 1 �
c
$̃ ,*
1

0, where 0 and 1 are ranked

adjacently in c
$̃ ,*
1 . Then, there exists a *̃ such that:

404



• Property 1 c$̃ ,*̃
8

= c
$ ,*
8

for all 8 ≠ 1
(the rankings of all voters other than 1 are preserved)

• Property 2 c$̃ ,*̃1 = swap(c$̃ ,*1 , 1, 0)
(so 1’s pairwise mis-ordering of 0 and 1 is corrected)

• Property 3: sw(0,* ) = sw(0, *̃ ) for all 0 ∈ [<]
(the welfares are preserved)

Proof. We begin by establishing a series of facts:

Fact G.2.6. By the fact that 0,1 were in the list of pairwise swaps, 0 �
c
$ ,*
1
1 and 1 �

c
$̃ ,*
1
0.

Fact G.2.7. By Lemma G.2.1, the fact that 1 �
c
$̃ ,*
1
0, and W̃1 < W1,

sw(1,* ) ≤ sw(0,* ) .

Fact G.2.8. By Fact G.2.6 and Fact G.2.7,
1
we have that

D1(1) > D1(0).

Now, de�ne our set of voters # ′ as in the< = 2 proof, i.e., as the set of all voters 8 ∈ [=] such that
D8 (0) > D8 (1) (and thus, given Fact G.2.7, 0 �

c
* ,$̃
8

1). Then, we know that by the same argument
as before, using Facts G.2.7 and G.2.8, that∑

8∈# ′
(D8 (0) − D8 (1)) > D1(1) − D1(0). (G.4)

Now, we have that for all 8 ∈ # ′, we have that 0 �
c
* ,$̃
8

1. Let 2 be the third, remaining alternative
that is not equal to 0 or 1. Then, a voter 8 ∈ # ′ can have one of three possible rankings in 0* ,$̃ :

(1) 0 � 1 � 2 , (2) 2 � 0 � 1, or (3) 0 � 2 � 1.

We will now prove three claims, one per ranking, which will lay the foundations for our later
construction of *̃ . We use # ′(1) to mean the set of voters in # ′ with ranking (1), and likewise for
(2) and (3).

Claim 1: For all voters 8 ∈ # ′(1) and for all X18 ∈ [0, D8 (0) − D8 (1)],

E8 (0, $̃ ,* ) ≥ (1 − W̃8) (D8 (1) + X8) + W̃8sw(1,* ) ≥ E8 (2, $̃ ,* ) .
1This is strict for the same reason as in the< = 2 case.
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The �rst inequality holds by Fact G.2.7 combined with X8 being de�ned in [D8 (1), D8 (0)]. The
second inequality is implied by the fact that E8 (1, $̃ ,* ) ≥ E8 (2, $̃ ,* ), inferred from the fact that
1 �

c
* ,$̃
8

2 (i.e., 8 ranks 1 ahead of 2).

Claim 2: For all voters 8 ∈ # ′(2) , and for all X8 ∈ [0, D8 (0) − D8 (1)],

E8 (2, $̃ ,* ) ≥ (1 − W̃8) (D8 (0) − X8) + W̃8sw(0,* ) ≥ E8 (1, $̃ ,* ).

Proof of Claim 2: The proof is essentially the same as that of Claim 1: The �rst inequality is im-
plied by the fact that E8 (2, $̃ ,* ) ≥ E8 (0, $̃ ,* ), inferred from the fact that 8 ranks 2 ahead of 0, and
the second inequality holds by Fact G.2.7 combined with X8 being de�ned in [D8 (1), D8 (0)].

Claim 3: For all voters 8 ∈ # ′(3) , there exists some D∗ in the following interval[
D8 (2) +

W̃8 (sw(2,* ) − sw(0,* ))
(1 − W̃8)=

, D8 (2) +
W̃8 (sw(2,* ) − sw(1,* ))

(1 − W̃8)=

]
,

such that D∗ is also in the interval [D8 (1), D8 (0)] and satis�es

(1 − W̃8)D∗ + W̃8sw(0)/= ≥ D$̃8 (2) ≥ (1 − W̃8)D
∗ + W̃8sw(1)/=. (G.5)

Proof of Claim 3: By Fact G.2.7, the upper end of the interval is indeed at least the lower end, so
there can exist a D∗, as this is a non-empty region of the real line. Second, �xing any D∗ in this
interval, the chain of inequalities in (G.5) is proven by simply rearranging the given fact that D∗
is in the provided interval. Finally, the given interval must overlap the interval [D8 (1), D8 (0)], so
we can choose some D∗ within both intervals. We show in two steps. First, the upper end of the
interval is weakly larger than D8 (1):

E8 (1, $̃ ,* ) ≤ E8 (2, $̃ ,* ) ⇐⇒ (1 − W̃8)D8 (1) + W̃8sw(1,* )/= ≤ (1 − W̃8)D8 (2) + W̃8sw(2,* )/=

⇐⇒ D8 (2) +
W̃8 (sw(2,* ) − sw(1,* ))

(1 − W̃8)=
≥ D8 (1).

And the lower end of the interval is at most D8 (0):

E8 (0, $̃ ,* ) ≤ E8 (2, $̃ ,* ) ⇐⇒ (1 − W̃8)D8 (0) + W̃8sw(0,* )/= ≥ (1 − W̃8)D8 (2) + W̃8sw(2,* )/=

⇐⇒ D8 (2) +
W̃8 (sw(2,* ) − sw(1,* ))

(1 − W̃8)=
≤ D8 (0).

End of proof of Claim 3.
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Claim 4 (Corollary of Claim 3). For arbitrary D∗ satisfying the conditions of Claim 3, for all
X
3,0
8
∈ [0, D8 (0) − D∗], 8 ∈ # ′(3) and all X3,1

8
∈ [0, D∗ − D8 (1)], 8 ∈ # ′(3) , we have that

(1 − W̃8) (D8 (0) − X3,08 ) + W̃8sw(0)/= ≥ (1 − W̃8)D
∗ + W̃8sw(0)/= (�.5)

≥ E8 (2, $̃ ,* )
≥ (1 − W̃8)D∗ + W̃8sw(1)/= (�.5)
≥ (1 − W̃8) (D8 (1) + X3,1) + W̃8sw(0)/=.

Choosing the %s. Taking the X1,0
8
, X2,1
8
, X3,0
8

and X3,1
8

and their domains from Claims 1, 2, and 4,
we have that

0 ≤
∑
8∈# ′(1)

X
1,0
8
+

∑
8∈# ′(2)

X
2,1
8
+

∑
8∈# ′(3)

(X3,0
8
+ X3,1

8
)

≤
∑

8∈# ′(1)∪#
′
(2)

(D8 (0) − D8 (1)) +
∑
8∈# ′(3)

(D8 (0) − D∗) + (D∗ − D8 (1))

=
∑
8∈# ′

D8 (0) − D8 (1)

> D1(1) − D1(0). (�.4)

Thus, for any constant C ∈ [0, D1(1) − D1(0)], there must exist settings of these deltas so that their
sum over 8 ∈ # ′ is equal to C . We will choose X∗ values X∗1,0

8
for all 8 ∈ #(1) , X∗2,18

for all 8 ∈ #(2) ,
X
∗3,0
8

and X∗3,1
8

for all 8 ∈ #(3) , so that they add up to

C∗ = D1(1) − D1(0) −
W̃

1 − W̃ (sw(0,* ) − sw(1,* ))/= (G.6)

Note that this value falls in the permitted range as it is clearly at most D1(1) − D1(0), and it is at
least 0 by a simple rearrangement of the known inequality E8 (1, $̃ ,* ) ≥ E8 (0, $̃ ,* ).

Construction of *̃ .

• For all 8 ∉ # ′ ∪ {1}, set 8’s utilities in *̃ as in* , i.e., D̃8 (0) = D8 (0) and likewise for 1 and 2 .

• For all 8 ∈ # ′ set D̃8 (2) = D8 (2), and

– for 8 ∈ # ′(1) , set

D̃8 (0) = D8 (0) − X∗1,08
,

D̃8 (1) = D8 (1)

– for 8 ∈ # ′(2) , set

D̃8 (0) = D8 (0)
D̃8 (1) = D8 (1) + X∗2,18
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– for 8 ∈ # ′(3) , set

D̃8 (0) = D8 (0) − X∗3,08

D̃8 (1) = D8 (1) + X∗3,18
.

• For voter 1, set D̃1(2) = D1(2), and set

D̃1(0) = D1(0) +
∑
8∈# ′(1)

X
∗1,0
8
+

∑
8∈# ′(3)

X
∗3,0
8

D̃1(1) = D1(1) −
∑
8∈# ′(2)

X
∗2,1
8
−

∑
8∈# ′(3)

X
∗3,1
8

.

By construction, all utilities are nonnegative.

*̃ satisfies Property 3. We want to show that sw(0, *̃ ) = sw(0,* ), and likewise for alterna-
tives 1 and 2. This is true for 2 by inspection, as for all 8 ∈ [=], D̃8 (2) = D8 (2). For 0 and 1, the
argument is also by inspection, noting that the utility added or subtracted among the # ′ group
for either alternative is exactly compensated by the change to voter 1’s utility for that alternative.

*̃ satisfies Property 1. We need to conclude that by our construction, all voters’ other than
1’s rankings were preserved, i.e., c$̃ ,*

8
= c

$̃ ,*̃
8

for all 8 ≠ 1. We will con�rm this by group:

• For all 8 ∉ # ′ ∪ {1}, this holds simply by the fact that *̃ satis�es Property 3, W̃8 = W8 , and
D̃8 (0) = D8 (0), D̃8 (1) = D8 (1), and D̃8 (2) = D8 (2).

• For all 8 ∈ # ′, this follows from claims 1, 2, and 3 and the fact that we set the Xs as speci�ed
according to the conditions of those claims.

*̃ satisfies Property 2. This is implied by the fact that E1(0, $̃ , *̃ ) = E1(1, $̃ , *̃ ), which we will
prove now. First, we will the following equality using (G.6):

D̃1(1) − D̃1(0) = D1(1) − D1(0) − C∗ =
W̃

1 − W̃ (sw(0,* ) − sw(1,* ))/=.

Then, applying this equality,

E1(1, $̃ , *̃ ) − E1(0, $̃ , *̃ ) = (1 − W̃1) (D̃1(1) − D̃1(0)) + W̃1(sw(1),* ) − sw(0,* ))/=

= (1 − W̃1) ·
W̃1

1 − W̃1
(sw(0,* ) − sw(1,* )/= + W̃1(sw(1),* ) − sw(0,* ))/=

= 0.

�
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G.2.2 Proof of Proposition 12.4.6

Proposition G.2.9. Copeland is nonuniform PS-monotonic.

Proof. Let 5 = Copeland. Since the case< ≤ 3 is covered by Proposition 12.4.5, we may assume
here that< ≥ 4. For notational convenience, for any instance ($ ,* ) we will write 0$ ,* to denote
a pro�le compatible with ($ ,* ).

It su�ces to show that when a single voter’s public spirit level is decreased, the worst-case dis-
tortion weakly increases. Suppose this voter is voter 1, and that their public spirit is decreased
from W1 to W̃1, corresponding to a change from PS-vector $ to $̃ (all else kept the same). To prove
monotonicity, it su�ces to prove that for an arbitrary utility matrix * , we can �nd a utility ma-
trix *̃ such that the winner 0′ remains the same (i.e., 0′ = Copeland(0$ ,* ) = Copeland(0$̃ ,*̃ )),
and such that sw(0′,* ) = sw(0′, *̃ ), sw(0∗,* ) = sw(0∗, *̃ ). We make a case distinction now on
whether 0′ pairwise-dominates 0∗ in 0$ ,* .

Case 1: If 0′ strictly pairwise-dominates 0∗ in 0$ ,* , then de�ne *̃ such that for all 8 ∈ [=],

• D̃8 (0) = 0 for all 0 ∉ {0′, 0∗}

• D̃8 (0) = D8 (0) for all 0 ∈ {0′, 0∗}

Now, we argue that dist(Copeland,$ ,* ) = dist(Copeland, $̃ , *̃ ):

Observation 1. The welfares of 0′, 0∗ are preserved across * , *̃ , i.e., sw(0′,* ) = sw(0′, *̃ ),
sw(0∗,* ) = sw(0∗, *̃ ).

Observation 2. for all voters 8 ≠ 1, 8 has the same relative ordering of 0′,0∗ in 0$ ,* and 0$̃ ,*̃ .
This is because from $ ,* to $̃ , *̃ , 0′, 0∗’s average utilities don’t change, 8’s utilities for 0′, 0∗
don’t change, and W8 doesn’t change, meaning that E8 (0′,$ ,* ) = E8 (0′, $̃ , *̃ ) and E8 (0∗,$ ,* ) =
E8 (0∗, $̃ , *̃ ).

Observation 3. In 0$̃ ,*̃ , 0′ and 0∗ pairwise-dominate all 0 ∉ {0′, 0∗}. This is because all voters
must rank 0′, 0∗ in the �rst two positions and all the other alternatives in positions 3 . . .<, by
virtue of the fact that we can wlog assume that some voter has nonzero utility for 0∗ (else the
distortion will be 0), and thus some voter has nonzero utility for 0′ (since it is sometimes ranked
ahead of 0′). In contrast, all other alternatives have average utility 0, and thus must be ranked
behind 0′, 0∗.

Observation 4. 0′ pairwise-dominates 0∗ in 0$̃ ,*̃ . If 0∗ �
c
$ ,*
1
0′, then either voter 1’s ranking is

preserved, or 0′ �
c
$̃ ,*̃
8

0∗, which can only strengthen 0′’s pairwise domination of 0∗. Conversely,
if 0′ �0$ ,* 0∗, 0∗ cannot overtake 0′ by Lemma G.2.1.
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These four observations, taken together, imply that in 0*̃ ,$̃ , 0′ still pairwise-dominates 0∗, and
moreover, both 0′ and 0∗ pairwise-dominate everything else. We conclude that the uncovered set
is {0′}, and thus 0′ is the unique winner. By Observation 1, this directly implies that the distortion
is preserved across ($ ,* ) and ($̃ , *̃ ).

Case 2: Now, suppose 0′ does not strictly dominate 0∗. We may without loss of generality
assume that 0∗ is not a Copeland winner— indeed, if it were, then for this * we would have
dist(Copeland,$ ,* ) = 1, in which case the distortion can only increase when voter 1’s PS-level
is dropped.

When 0∗ is not a Copelandwinner, it has a strictly lower Copeland score than 0′, and thus there
must exist some alternative 1 such that 0′ strictly pairwise-dominates 1 and 1 weakly pairwise
dominates 0∗. We now construct *̃ from * in three steps. In the �rst step, for all alternatives
0 ∉ {0′, 0∗, 1} and all voters 8 ∈ [=], we set D̃8 (0) = 0. For all voters 8 ≠ 1, we set their utilities in
*̃ for 0′, 0∗, 1 to be the same as in* .

In the second step, we set the utilities for 0∗, 0′, 1 for voter 8 = 1, depending on the following case
distinction.

• Suppose sw(1,* ) > sw(0′,* ).

– In this case, the social welfares are ordered sw(0∗,* ) ≥ sw(1,* ) > sw(0′,* ), while
the above pairwise wins are

0′
strictly
−−−−−→ 1

weakly
−−−−−→ 0∗.

Since dropping W1 can only promote lower-welfare alternatives, we keep the same
utilities for voter 1, and these pairwise wins will continue to hold.

– Now, suppose sw(1,* ) ≤ sw(0′,* ).

∗ In this case, we know that dropping W1 can lead to the following promotions in
1’s ranking: 1 over 0′, 1 over 0∗, or 0′ over 0∗. The last one doesn’t concern us, as
the promotion of 0′ only helps 0′ win, and the second-last one does not concern
us because it will just strengthen the existing pairwise win of 1 versus 0∗. Thus,
as long as the �rst promotion doesn’t occur, we keep the same utilities as before.

∗ If 1 is promoted over 0′, we drop its utility to D̃1(1) = 0 for voter 1 (then, it
will not be promoted, leaving only the option of promoting 0′ over 0∗). Then,
if there exists someone who ranks 1 ahead of 0′, we add this utility to someone
who ranks 1 ahead of 0′. If the person ranks 1 ahead of 0∗, this preserves their
exact ranking; if they rank 1 behind 0∗, this may result in a strengthening of the
pairwise defeat of 0∗ by 1, which does not change the Copeland winner. Else,
if there is no one who ranks 1 ahead of 0′, then 1 dominating 0′ pairwise is not
possible by changing any single person’s ranking, so add this utility arbitrarily.
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Finally, in the third step, we add identical copies of the ‘intermediate’ alternative 1, to make 0′
the unique Copeland winner. Again, we need a case distinction.

• = is even. We take an ‘empty’ alternative 1̄ ∈ [<] \ {0′, 0∗, 1} for which we previously
set the utilities to 0, and re-set its utilities to be identical to 1. We moreover choose the
preference pro�le where any individual’s preference between 0′, 0∗, 1̄ is identical to the
preference between 0′, 0∗, 1̄ (i.e. 1, 1̄ are always neighbouring in any c8 ), and that 1, 1̄ are in
a tie (i.e. |{8 : 1 � 1′}| = =/2). In this constellation, 0′ at least pairwise beats 1 and 1̄ (≥ 2
points), 1 and 1̄ at best pairwise beat 0∗ (≤ 1 point), and 0∗ at best beats 0′ (≤ 1 point), so
0′ is the winner.

• = is odd and< ≥ 5. Since we are unable to create pairwise ties when = is odd, we have
to treat this case separately. Let us assume �rst that < ≥ 5. Then, we have at least two
‘empty’ alternatives for which we previously set the utilities to 0; let us call these 1̄, 1̃ ∈
[<] \ {0′, 0∗, 1}. We then re-set the utilities for 1̄, 1̃ to be identical to 1, such that they are
ranked relative to 0′, 0∗ the same as 1 by any individual. We moreover order 1, 1̄, 1̃ in so
that they form a Condorcet cycle, and

1
strictly
−−−−−→ 1̄

strictly
−−−−−→ 1̃

strictly
−−−−−→ 1.

Note that we may do so freely, since all three alternatives are identical.

In this scenario, the Copeland scores are

– 0′ gets 3 points (for beating 1, 1̄, 1̃),

– 0∗ gets 1 point (for beating 0′),

– 1, 1̄, 1̃ get 2 points,

whence 0′ wins.

• = is odd and< = 4. The previous arguments held for the Copeland rule with arbitrary
tie-breaking between alternatives with identical Copeland score. In the speci�c case of =
being odd and< = 4, we need to make a slight re�nement to our de�nition of distortion,
namely that the distortion is a supremum over the whole Copeland set �( (0$ ,* ) for any
($ ,* )-compatible pro�le 0$ ,* .

dist(Copeland,$ ,* ) = sup
0∈�( (0$ ,* )

sw(0∗,* )
sw(0,* ) .

It then su�ces to ensure that0′ is one of theCopelandwinners under (*̃ , W̃), not the unique
one. Let the four alternatives be called 0′, 0∗, 1, 1̄. Since (i) = is odd, (ii) we assumed that
0′ does not strictly pairwise dominate 0∗ and since we assumed that 0∗ is not a Copeland
winner, we can deduce that

– 0′ has exactly Copeland score 2 (for beating 1, 1̄.)
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– 0∗ has exactly Copeland score 1 (for beating 0′.)

– There exist exactly two elements in the Copeland set (alternatives with score 2),
suppose that 1 is this element.

– Note that this 1 is an admissible choice in the second step, We assume that it was
chosen in the second step.

After the second step, we may here create a 1̄ identical to 1, and suppose that 1 pairwise
beats 1̄. Then the Copeland set will again consist of the same alternatives {0′, 1}. Since
the welfare of 1 was preserved in the second step, the proof is now complete.

�

G.2.3 Proof of Proposition 12.4.7

Proposition G.2.10. Plurality is nonuniform PS-monotonic.

Proof. For notational convenience, for any instance ($ ,* )wewill write 0$ ,* to denote any pro�le
compatible with ($ ,* ).

It su�ces to prove that when a single voter’s public spirit level is decreased, the worst-case dis-
tortion increases. Suppose this voter is voter 8 = 1, and that W1 is changed from some value W1 = d
(Scenario 1) is changed to some lower value W1 = d̃ < d (Scenario 2). Let us denote by $ the
original PS-vector (with W1 = d), and by $̃ the one which arises from lowering W1 to d̃ . To prove
monotonicity, it su�ces to prove that for any utility matrix* ∈ R=×< , we can �nd a utility matrix
*̃ such that

1. the winner remains the same, 0′ = 5 (0$ ,* ) = 5 (0$̃ ,*̃ ),

2. the social welfares of 0′, 0∗ are preserved, i.e.

sw(0′,* ) = sw(0′, *̃ ), sw(0∗,* ) = sw(0∗, *̃ ).

If voter 1’s �rst-ranked alternative remains unchanged, there is nothing to prove, so let us assume
the �rst-ranked alternative does change – let us denote by c$ ,*1 (1) = 0 the alternatives which
receive voter 1’s vote in scenario 1 such that voter 1’s rankings are of the form

• Scenario 1: 0 � all other alternatives,

• Scenario 2: alternatives �1 � 0 � alternatives �2.

Since the second ranking arises from the �rst ranking by lowering W̃ , only alternatives with lower

welfare can be promoted over 0, i.e. �1 consists of alternatives with welfare below sw(0,* ).

We construct *̃ from* in two steps. First, we set voter 1’s utility for all alternatives in�1 to zero.
Since all those alternatives have lower welfare than 0, this will restore 0 as voter 1’s �rst-ranked
alternative. Since the highest-welfare alternative 0∗ cannot have not been promoted over 0, i.e.
0∗ ∈ �2, its welfare remains unchanged.
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This second step is to restore some of the welfares of alternatives in �1 which were a�ected by
the previous step. Speci�cally, let 0̄ ∈ �1. If there is a non-empty set #0̄ ⊆ [=], |#0̄ | ≥ 1 of voters
(in Scenario 1) who rank 0̄ �rst, we add an D1(0̄)/|# 9̄ | amount of utility to all the voters in #0̄ ,

D̃8 (0̄) = D8 (0̄) +
D1(0̄)
|#0̄ |

, ∀8 ∈ #0̄ .

If on the other hand 0̄ is ranked �rst by no voter, we do not intervene.

We claim that these two steps combined restore the �rst-ranked alternatives of all voters, and
thus the winner of the election. To see this, we notice the following.

• Welfares. For any 0̄ ∈ �1 with #0̄ ≠ ∅, sw(0̄,* ) = sw(0̄, *̃ ). The other alternatives 0̄ ∈ �1
with #0̄ = ∅ may have lower welfare sw(0̄, *̃ ) ≤ sw(0̄,* ). The welfares of alternatives in
�2, in particular of 0∗ ∈ �2, remain unchanged.

• Voters with �rst-choice in �1. If a voter �rst-ranks some alternative 0̄ ∈ �̃1 in Scenario
1 ($ ,* ), then they still do so in Scenario 2 ($̃ , *̃ ), since they have added utility for 0̄ while
the welfares of all other alternatives are either the same or lower.

• Voters with �rst-choice in {0}∪�2. Suppose a voter �rst-ranks some 0̄ ∈ {0}∪�2 under
($ ,* ). Then, since both their utility and welfare for 0̄ are the same under ($̃ , *̃ ) while the
welfares of other alternatives can only have decreased, they continue to �rst-rank 0̄ under
($̃ ,* ).

This concludes the proof. �

G.2.4 Proof of Lemma 12.4.13

Lemma G.2.11. If 5 is weakly unanimous and instance-wise PS-monotonic, then it is monotonic.

Proof. Suppose that 5 is weakly unanimous but not monotonic; we will show that it is not
instance-wise PS-monotonic. Fix a pair of pro�les 0 , 0 ′ in which monotonicity is violated, i.e.,
where there exists some voter 8∗ ∈ [=] such that 0 is promoted via an adjacent swap in c ′

8∗ com-
pared to c8∗ , but 5 (0) = 0 and 5 (0 ′) = 1. Let 0̃ be the alternative over which 0 is promoted from
c8∗ to c ′8∗ .

Given that 5 (0) = 0 and the fact that 5 is weakly unanimous, for every 2 ≠ 0, there must exist
some voter 82 such that 0 �c82 2 . Arbitrarily choose one such voter per 2 and denote them 82 , for
all 2 ≠ 0. Note that it is possible that some such 82 = 8∗; we will handle this in the proof.

Now, we will construct a pair of instances $ ,* and $ ,* ′ such that $ ′ di�ers from $ only in
that W ′

8∗ > W8∗ , and that three claims hold: Claim (1): dist(5 ,$ ′,* ) > dist(5 ,$ ,* ), Claim (2):

0 ∈ Π+ ($ ,* ) , Claim (3): 0 ′ ∈ Π+ ($ ,* ′) . Together, these claims constitute a violation of instance-
wise PS-monotonicity.
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Construction of$ ,$ ′: Let$ = 0 (i.e., all voters have public spirit level 0). Let$ ′ be de�ned such
that W ′8 = W8 = 0 for all 8 ≠ 8∗, and let W ′

8∗ = n , where n > 0 is set to some number smaller than
1/2<2.

Construction of* :

• Group 1: For all voters 8 ≠ 8∗ and 8 ∉ {82 |2 ∈ [<]\{0}}, let 8 have 0 utility for all alternatives.

• Group 2: For all voters 8 ≠ 8∗ and 8 ∈ {82 |2 ∈ [<] \ {0}}, let 8 have utility 1 for 0 and all
alternatives ranked ahead of 0 in c8 , and 0 for all other alternatives.

• For 8∗: starting at the �rst-ranked alternative in c8∗ , assign utilities starting at 1 and let
them descend at intervals of 1/<2 until we reach alternative 0. Then, assign D8∗ (0) so that
D8∗ (0̃) − D8∗ (0) = n2/=. Now, continuing in order of the c8∗ after 0, continue assigning
alternatives utilities descending at intervals of 1/<2.

Proof of Claims (1), (2), and (3):

Claim (1): We prove this by proving that 0 has strictly higher social welfare than any other
alternative. Then, the winner changing from 0 to 1 from 0 to 0 ′must increase the distortion, i.e.,
dist(5 ,$ ′,* ) > dist(5 ,$ ,* ).

First, if there is no 2 such that 82 = 8∗, then for all 2 ≠ 0, we have that
∑
8∈ Group 1(D8 (0) −D8 (2)) = 0,∑

8∈ Group 2(D8 (0) − D8 (2)) ≥ 1, and D8∗ (0) − D8∗ (2) ≥ −1/<. Thus,
∑
8∈[=] (D8 (0) − D8 (2)) > 0,

equivalent to sw(0,* ) > sw(2,* ).

If there exists 2∗ such that 82∗ = 8∗, then the previous case holds for all 2 ≠ 2∗. For 2∗, we repeat the
above analysis:

∑
8∈ Group 1(D8 (0)−D8 (2∗)) = 0,

∑
8∈ Group 2(D8 (0)−D8 (2∗)) ≥ 0, andD8∗ (0)−D8∗ (2∗) ≥

1/<2, the �nal inequality by the fact that 0 �c8∗ 2∗. Thus, again
∑
8∈[=] (D8 (0) − D8 (2∗)) > 0,

equivalent to sw(0,* ) > sw(2∗,* ).

Claim (2): We have assigned voters’ utilities in weakly decreasing order according to c8 for all
8 , and $ = 0, meaning that voters’ individual utilities fully determine their rankings: thus, 0 ∈
Π+ ($ ,* ) .

Claim (3): The high level proof of this claim is the following: First, for all voters 8 ≠ 8∗, their
W8 = W

′
8 , so their rankings implied by*$ and $ ,* ′ are the same, as is consistent with c8 = c ′8 . For

voter 8∗, the separation between the utilities for all pairs of alternatives other than 0̃, 0 are too
large for an n increase in public spirit to �ip them; however, the separation between the utilities
of 0̃, 0 are small enough for this increase to �ip them, realizing the transformation from c8∗ → c ′

8∗ .

Building on the notation of 0 ∈ Π+ ($ ,* ) (meaning that the pro�le 0 is consistent with the instance
* ,$ ), we use c8 ∈ Π+8 ($ ,* ) to mean a voter 8’s ranking c8 is consistent with the vector of PS-values
implied by the 8th row of the matrix + ($ ,* ).

For all voters 8 ≠ 8∗, by construction of 0 , 0 ′ we have that c8 = c ′8 . Moreover, W8 = W ′8 implies
that Π+8 ($ ,* ) = Π+8 ($ ,* ′) . By these two equalities, c8 ∈ Π+8 ($ ,* ) (as shown in Claim (2)) implies
c ′8 ∈ Π+8 ($ ,* ′) .

414



Now, it only remains to show that c ′
8∗ ∈ Π+8∗ ($ ,* ′) . First, we observe that for all alternatives 2 ,

|E8∗ (2,$ ,* )−E8∗ (2,$ ′,* ) | = |D8∗ (2)−(1−n)D8∗ (2)−nsw(2,* )/= | = n |D8∗ (2)−sw(2,* )/= | ≤ n, (G.7)

where the �nal step holds because all utilities in* are bounded between 0 and 1.

Next, we observe that for all pairs of alternatives (2, 2′) ≠ (0̃, 0), we have that

|E8∗ (2,$ ,* ) − E8∗ (2′,$ ,* ) | = |D8∗ (2) − D8∗ (2) | ≥ 1/<2 > 2n. (G.8)

Now, �x an arbitrary pair of alternatives (2, 2′) ≠ (0̃, 0) such that 2 �c8∗ 2′, and thus E8∗ (2,$ ,* ) ≥
E8∗ (2′,$ ,* ). Then, by Equations (G.7) and (G.8) we have that E8∗ (2,$ ′,* ) ≥ E8∗ (2′,$ ′,* ):

0 < E8∗ (2,$ ,* ) − E8∗ (2′,$ ,* ) − 2n by (G.8)
≤ E8∗ (2,$ ,* ) − E8∗ (2′,$ ,* ) − |E8∗ (2,$ ,* ) − E8∗ (2,$ ′,* ) | − |E8∗ (2′,$ ′,* ) − E8∗ (2′,$ ,* ) | by (G.7)
≤ E8∗ (2,$ ,* ) − E8∗ (2′,$ ,* ) − (E8∗ (2,$ ,* ) − E8∗ (2,$ ′,* )) − (E8∗ (2′,$ ′,* ) − E8∗ (2′,$ ,* ))
= E8∗ (2,$ ′,* ) − E8∗ (2′,$ ′,* )

We conclude that for all such pairs (2, 2′),

E8∗ (2,$ ,* ) ≥ E8∗ (2′,$ ,* ) =⇒ E8∗ (2,$ ′,* ) ≥ E8∗ (2′,$ ′,* ). (G.9)

Next, we consider the remaining pair (0, 0̃). First, we observe that

sw(0,* ) − sw(0̃,* ) > n,

by the fact that
∑
8∈Group 1(D8 (0) − D8 (0̃)) = 0,

∑
8∈Group 2(D8 (0) − D8 (0̃)) ≥ 1 (note that it cannot

be that, given the existence of a 2∗ : 82∗ = 8∗, 2∗ = 0̃, because we know that 0̃ �c8∗ 0), and
D8∗ (0)−D8∗ (0̃) = −n2/=. Adding up over voters, these inequalities imply that sw(0,* )−sw(0̃,* ) ≥
1 − n2/= > n .

Then, we show the the inequality

E8∗ (0,$ ′,* ) > E8∗ (0̃,$ ′,* ) (G.10)

via the following deduction, where the �rst inequality uses that D8∗ (0) −D8∗ (0̃) = −n2/= < 0, and
the second inequality uses that sw(0,* ) − sw(0̃,* ) ≥ n :

E8∗ (0,$ ′,* ) − E8∗ (0̃,$ ′,* ) = (1 − n) (D8∗ (0) − D8∗ (0̃)) + n (sw(0,* )/= − sw(0̃,* )/=)
> −n2/= + n (sw(0,* ) − sw(0̃,* ))/=
≥ −n2/= + n · n/=
= 0.

By Equations (G.9) and (G.10), we have that any ranking c with the following two properties
must be consistent with Π+8∗ ($ ,* ′) : First, for all pairs of alternatives (2, 2′) ≠ (0, 0̃), 2 �c8∗ 2′ =⇒
2 �c 2′, and second, 0 �c 0̃. c ′8∗ satis�es these criteria by construction, and thus c ′

8∗ ∈ Π+8∗ ($ ,* ′) ,
as needed, concluding the proof. �
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G.2.5 Proof of Lemma 12.4.15

Lemma G.2.12. If 5 weakly unanimous and monotonic, then if 5 is instance-wise PS-monotonic, it

must also be swap-invariant.

Proof. We will prove the contrapositive. Suppose 5 is not swap-invariant. Then, there exists two
pro�les 0 , 0 ′ that di�er only in that for some voter 8∗, 1 and 2 are adjacently swapped in their
ranking, and 5 (0) = 0 but 5 (0 ′) = 1. By the monotonicity of 5 , we know that 2 �c8∗ 1: oth-
erwise, going from 0 ′ → 0 , 1 would be promoted over 2 but lose the winning spot, violating
monotonicity. Now, we will break into cases depending on the nature of 0 , and in either case,
show that PS-monotonicity is violated.

Case 1: 0 contains at least one voter 8 who ranks 1 �c8 2 .

Now, we will construct $ ,* ,$ ′ such that the following claims hold: Claim (1): sw(0,* ) >

sw(1,* ) > sw(2,* ); Claim (2): 0 ∈ Π+ ($ ,* ) ; and Claim (3): 0 ′ ∈ Π+ ($ ,* ′) . If these claims
are true, then by the construction of our example, we have found $ ≤ $ ′ such that by increas-
ing the public spirit from $ to $ ′, we can change the winner from 0 to 1, thereby increasing the
distortion, a violation of instance-wise PS-monotonicity.

Construction of$ ,$ ′. Let$ = 0,$ ′ such that W ′8 = W8 = 0 for all 8 ≠ 8∗, and W ′
8∗ = n for some small

n > 0 where n < 1/(16<).

Construction of * . We set the utilities according to three cases (where latter cases apply only
if earlier cases do not hold):

A. If there exists an 8 who ranks 0 �c8 1 �c8 2 , set 8’s utilities in weakly decreasing order of c8
such that 0 (and everything before it) gets utility 1, 1 (and everything after 0 and before 1)
gets utility 1/2, and 2 (and everything after) gets utility 0.

Give all remaining voters besides 8∗ utility 0 for all alternatives.

B. Else if there exists an 8 where 1 �c8 0 �c8 2 , set 8’s utilities in weakly decreasing order of
c8 : give 0 and everything ranked before it (including 1) utility 1, and everything after 0
(including 2) 0 utility.

Then, byweak unanimity of 5 , theremust be another voter 8′where 0 �c8′ 1, whose utilities
we assign based on two cases:

B1. If 8′ ≠ 8∗, set 8′’s utilities according to c8′ : give all alternatives ranked ahead of 1 utility
1/2 (this must include 0 and 2), and utility 0 to 1 and all alternatives ranked after.

B2. If 8′ = 8∗, note that 8′ must have ranking 0 �c8′ 2 �c8′ 1, because 2 and 1 must be
ranked adjacently. Then, give utility 1 to 0, 1/2 to 2 , 1/2 − n2/= to 1, and set the rest
of the alternatives’ utilities so they are decreasing at intervals of at least 1/(4<).

Give all other voters except 8∗ with thus far unset utilities 0 utility for all alternatives.
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C. Else, by the falseness of cases A and B and our assumption that there is some 8 for which
1 �c8 2 , there must exist some voter 8 who ranks 1 �c8 2 �c8 0. Set 8’s utilities in weakly
decreasing order of c8 : Give 1 and all alternatives before it utility 1/2 + n2/= (the +n2/= is
for convenience of arguments later), and all alternatives after it (including 2 and 0) utility
0.

Then, by the weak unanimity of 5 , there must exist one voter 8′ where 0 �c8′ 1 and 0 �c8′ 2 ,
in which case, by the falseness of cases A and B they must have ranking 0 �c8′ 2 �c8′ 1.1
Set 8′’s utilities in weakly decreasing order of c ′8 , based on two cases:

C1. If 8′ ≠ 8∗: let 8′ have utility 1 + n2/= for 0 (the +n2/= is for convenience of arguments
later) and all alternatives ranked before it and utility 0 for all alternatives ranked after
it (including 2 and 1).

C2. If 8′ = 8∗, set 8′’s utilities similar to how we did in B2: give utility 3/2 to 0, 1/2 to 2 ,
1/2 − n2/= to 1, and set the rest of the alternatives’ utilities so they are decreasing at
intervals of at least 1/(4<).

Give all other voters with unset utilities except 8∗ 0 utility for all alternatives.

If we have not already set 8∗’s utilities in cases B or C (we cannot set them in case A), set 8∗’s
utilities in weakly decreasing order of c8∗ : give the alternatives ahead of (and including) 2 utilities
starting at 1/4 and dropping by additive gaps of 1/(4<). Then, setD8∗ (1) such thatD8∗ (2)−D8∗ (1) =
n2/=. Then, for alternatives ranked after1, continue assigning utilities decreasing by additive gaps
of 1/(4<).

Proofs of Claims (1), (2), and (3).

Claim (1): Let #� = [=] \ {8}, #�1 = [=] \ {8} #�2 = [=], #�1 = [=] \ {8}, #�2 = [=], denote the sets
of voters whose utilities are set within cases �, � and � , depending on which cases are invoked.

Now, we will show that for any # ∈ {#�, #�1, #�2, #�1, #�2}, we have that∑
8∈#

D8 (0) >
∑
8∈#

D8 (1) >
∑
8∈#

D8 (2),

and moreover, that these inequalities hold by a margin of at least 1/2.

(Case A): letting # = #�, we have
∑
8∈# D8 (0) = 1,

∑
8∈# D8 (1) = 1/2, ∑8∈# D8 (2) = 0.

(Case B1): letting # = #�1, we have
∑
8∈# D8 (0) = 3/2, ∑8∈# D8 (1) = 1,

∑
8∈# D8 (2) = 1/2.

(Case B2): letting # = #�2, we have
∑
8∈# D8 (0) = 2,

∑
8∈# D8 (1) = 3/2 − n2/=, ∑8∈# D8 (2) = 1/2.

(Case C1): letting# = #�1, we have
∑
8∈# D8 (0) = 1+n2/=,∑8∈# D8 (1) = 1/2+n2/=,∑8∈# D8 (2) = 0.

(Case C2): letting # = #� , we have
∑
8∈# D8 (0) = 3/2, ∑8∈# D8 (1) = 1,

∑
8∈# D8 (2) = 1/2.

1The alternative would be that there would have to exist two voters, the �rst for whom 2 � 0 � 1, and the
second for whom 1 � 0 � 2 , which is not possible by the falseness of case B.
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If cases B2 or C2 was the binding case— that is, we set 8∗ while within the three cases— , then we
have already concluded the claim, and sw(0,* ) − sw(1,* ) ≥ 1/2 and sw(1,* ) − sw(2,* ) ≥ 1/2.
Otherwise, we note that for any pair of alternatives 3, 4 , |D8∗ (3) − D8∗ (4) | ≤ 1/4; therefore, these
social welfare gaps cannot be closed bymore than 1/4, andwe conclude that sw(0,* )−sw(1,* ) ≥
1/4 and sw(1,* ) − sw(2,* ) ≥ 1/4. We will use this lower bound on these gaps later, in Claim
(3).

Claim (2): We have assigned voters’ utilities in weakly decreasing order according to c8 for all
8 , and $ = 0, meaning that voters’ individual utilities fully determine their rankings: thus, 0 ∈
Π+ ($ ,* ) .

Claim (3): The proof of this claim follows the same structure as that of Claim (3) in the proof of
Lemma 12.4.13, so we will be slightly more brief here, and invoke parts of that argument when
useful. We again use the notation c8 ∈ Π+8 ($ ,* ) to mean a voter 8’s ranking c8 is consistent with
the vector of PS-values implied by the 8th row of the matrix + ($ ,* ).

First, for all voters 8 ≠ 8∗, by construction of 0 , 0 ′ we have that c8 = c ′8 . Moreover, W8 = W ′8 implies
that Π+8 ($ ,* ) = Π+8 ($ ,* ′) . By these two equalities, c8 ∈ Π+8 ($ ,* ) (as shown in Claim (2)) implies
c ′8 ∈ Π+8 ($ ,* ′) .

Now considering voter 8∗, we want to show that c ′
8∗ ∈ Π+8∗ ($ ,* ′) . To show this, �rst �x a pair of

alternatives (3, 3′) ≠ (1, 2). By the same type of reasoning as in Lemma 12.4.13, we have that
|E8∗ (3,$ ,* ) − E8∗ (3′,$ ,* ) | ≥ 1/(4<) > 4n}, and also that |E8∗ (3,$ ,* ) − E8∗ (3,$ ′,* ) | ≤ 2n and
|E8∗ (3′,$ ,* ) − E8∗ (3′,$ ′,* ) | ≤ 2n , by the fact that all utilities in * are bounded between 0 and 2.
Putting these facts together, we get that for all such pairs 3, 3′,

E8∗ (3,$ ,* ) ≥ E8∗ (3′,$ ,* ) =⇒ E8∗ (3,$ ′,* ) ≥ E8∗ (3′,$ ′,* ). (G.11)

Now, �nally considering the pair1, 2 , we have the following, using that sw(2,* )−sw(1,* ) ≥ 1/4,
as shown in the proof of Claim (1):

E8∗ (1,$ ′,* ) − E8∗ (2,$ ′,* ) = (1 − n) (D8∗ (1) − D8∗ (2)) + n (sw(1,* )/= − sw(2,* )/=)
> −n2/= + n (sw(1,* ) − sw(1,* ))/=
≥ −n2/= + n/(4=)
≥ 0.

We conclude that
E8∗ (1,$ ′,* ) − E8∗ (2,$ ′,* ) > 0. (G.12)

By Equations (G.11) and (G.12), we have that any ranking c with the following two properties
must be consistent with Π+8∗ ($ ,* ′) : First, for all pairs of alternatives (3, 3′) ≠ (1, 2), 3 �c8∗ 3′ =⇒
3 �c 3′, and second, 1 �c 2 . c ′8∗ satis�es these criteria by construction, and thus c ′

8∗ ∈ Π+8∗ ($ ,* ′) ,
as needed, concluding the proof of Case 1.

Case 2: 0 does not contain a voter 8 who ranks 1 �c8 2 .
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First, observe that 2 �c8 1 for all 8 implies that 0 contains at least one voter in which 1 �c8 0. To
see this, �rst observe that 5 (0 ′) = 1 implies that 1 cannot always be ranked behind 0 in 0 ′ by
weak unanimity; thus there must be a voter 8′ such that 1 �c ′

8′
0. Next, observe that swapping 1

and 2 from 0 → 0 ′ cannot change the relative ordering of either of these alternatives with 0, so
it must also be the case that 1 �c8′ 0 (i.e., there exists such a voter in 0 ). We let 8′ be this voter
throughout this case.

Now, we will construct $ ,* ,$ ′ such that three claims are true: Claim (1): sw(2,* ) > sw(1,* ) >
sw(0,* ), Claim (2): 0 ′ ∈ Π+ ($ ,* ′) , and Claim (3): 0 ∈ Π+ ($ ,* ) . If these claims hold, then we
will have decreased voters’ public spirit from $ → $ ′, which realizes the transformation from
0 → 0 ′. This transformation changed the winner from 0 to 1 —an increase in the social welfare
and a violation of PS-monotonicity.

Construction of $ ,$ ′. We let $ such that W8 = 0 for all 8 ≠ 8∗, and W8∗ = n for some small
0 < n < 1/<4, and let $ ′ = 0.

Construction of * . First, for 8∗, let their utility for the �rst-ranked alternative in c ′
8∗ be 1/<,

and then, in order of c8∗ , assign the alternatives utilities descending at intervals of 1/<2 until we
reach 1. Then set D8∗ (1) so that D8∗ (1) − D8∗ (2) = n2/=. Then, starting after 2 , continue down
c ′
8∗ assigning alternatives decreasing utilities at intervals of 1/<2. For the remaining voters, we

break into cases:

• If 8′ ≠ 8∗, we assign 8′’s utilities according to c ′
8′ : let 8′’s utilities be 1 for 2 and all alternatives

8′ ranks ahead of 2; 1/2 for 1 and all alternatives 8′ ranks between 2 and 1, and 0 for all
alternatives 8′ ranks after 1 (note that this includes 0, by selection of 8′). Give all other
voters besides 8∗ and 8′ 0 utility for all alternatives.

• If 8′ = 8∗, then pick another arbitrary voter 8′′ for whom 2 �c ′
8′′
1. We assign 8′′’s utilities

according to their ranking c ′
8′′ : give 2 and all alternatives ranked ahead of 2 utility 1/<3,

and give 0 utility to all alternatives they rank after 2 . Give all other voters besides 8∗ and 8′′
0 utility for all alternatives.

Proofs of Claims (1), (2), and (3).

Claim (1): If 8∗ ≠ 8′, then the only voters with any nonzero utilities are 8∗ and 8′; by their utilities,
sw(2) − sw(1) = 1/2 − n2/= and sw(1) − sw(0) ≥ 1/2 − 1/< (where the −1/< is the maximum
possible gap between D8∗ (0) and D8∗ (1)). If 8∗ = 8′, then the only voters with any nonzero utilities
are 8∗ and 8′′; by their utilities, sw(2) − sw(1) = 1/<3 − n2/=, and sw(1) − sw(0) ≥ 1/<2 − 1/<3.

Claim (2): We have assigned voters’ utilities in weakly decreasing order according to c ′8 for all 8 ,
and $ ′ = 0, meaning that voters’ individual utilities fully determine their rankings: thus, 0 ′ ∈
Π+ ($ ′,* ) .

Claim (3): The proof of this claim follows the same structure as that of Claim (3) in Case 1, so we
will be slightly more brief here, and invoke parts of that argument when useful. We again use
the notation c8 ∈ Π+8 ($ ,* ) to mean a voter 8’s ranking c8 is consistent with the vector of PS-values
implied by the 8th row of the matrix + ($ ,* ).
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First, for all voters 8 ≠ 8∗, by construction of 0 , 0 ′ we have that c8 = c ′8 . Moreover, W8 = W ′8 implies
that Π+8 ($ ,* ) = Π+8 ($ ,* ′) . By these two equalities, c ′8 ∈ Π+8 ($ ,* ′) (as shown in Claim (2)) implies
c8 ∈ Π+8 ($ ,* ) .

Now considering voter 8∗, we want to show that c8∗ ∈ Π+8∗ ($ ,* ) . To show this, �rst �x a pair of al-
ternatives (3, 3′) ≠ (1, 2). By the same type of reasoning as in Case 1, we have that |E8∗ (3,$ ′,* ) −
E8∗ (3′,$ ′,* ) | ≥ 1/<2 > 2n}, and also that |E8∗ (3,$ ,* ) − E8∗ (3,$ ′,* ) | ≤ n and |E8∗ (3′,$ ,* ) −
E8∗ (3′,$ ′,* ) | ≤ n , by the fact that all utilities in * are bounded between 0 and 1. Putting these
facts together, we get that for all such pairs 3, 3′,

E8∗ (3,$ ′,* ) ≥ E8∗ (3′,$ ′,* ) =⇒ E8∗ (3,$ ,* ) ≥ E8∗ (3′,$ ,* ). (G.13)

Now, �nally considering the pair 1, 2 , we have the following, using that sw(2,* ) − sw(1,* ) ≥
1/<4 > n , as shown in the proof of Claim (1):

E8∗ (2,$ ,* ) − E8∗ (1,$ ,* ) = (1 − n) (D8∗ (2) − D8∗ (1)) + n (sw(2,* )/= − sw(1,* )/=)
> −n2/= + n (sw(2,* ) − sw(1,* ))/=
≥ −n2/= + n2/=
= 0.

We conclude that
E8∗ (1,$ ′,* ) − E8∗ (2,$ ′,* ) > 0. (G.14)

By Equations (G.13) and (G.14), we have that any ranking c with the following two properties
must be consistent with Π+8∗ ($ ,* ′) : First, for all pairs of alternatives (3, 3′) ≠ (1, 2), 3 �c ′8∗ 3

′ =⇒
3 �c 3′, and second, 2 �c 1. c8∗ satis�es these criteria by construction, and thus c8∗ ∈ Π+8∗ ($ ,* ) ,
as needed, concluding the proof of Case 2.

�

G.2.6 Proof of Lemma 12.4.17

Lemma G.2.13. If 5 is monotonic and swap-invariant, then it is Maskin-monotonic.

Proof. Fix a monotonic and swap-invariant voting rule 5 , and �x a pro�le 0 such that 5 (0) = 0.
Let 0 ′ be an arbitrary other pro�le such that such that 0 �c ′

8
1 whenever 0 �c8 1 for every

voter 8 and for all 1 ≠ 0. Now, we will show that we can construct 0 ′ from 0 by promoting 0
and/or swapping1 with alternatives other than 0. Bymonotonicity and swap-invariance, this will
preserve the winner thus it will hold that 5 (0 ′) = 0, thereby proving the Maskin monotonicity
of 5 .

Fix an 8 , and consider c8 , fromwhichwemust construct c ′8 . First, let�1 be the set of all alternatives
ranked ahead of 0 in c8 but behind 0 in c8 . Swap the alternatives in �1 with other alternatives
ahead of 0 in c8 so that all these alternatives are ranked just ahead of 0. These swaps didn’t change
the 5 winner by the swap invariance of 5 . Then, swap 0 ahead of all alternatives in �1–this does
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not change the 5 winner by the monotonicity of 5 . Finally, swap alternatives other than 0 to
make the relative ordering of all alternatives ahead of and behind 0, respectively, match their
relative ordering in c ′8 ; by swap invariance of 5 , this again does not change the 5 winner. We can
do this procedure to the rankings if all 8 , and thereby construct 0 ′ from 0 while preserving 0 as
the winner. �
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H
Chapter 13 Appendix

Appendix

H.1 Rankings by Value for Money

In the ballot format rankings by value for money (vfm), Lvfm is still the set of all rankings over
alternatives, but now each voter 8 submits a ranking d8 of the alternatives by their PS-value divided
by cost, i.e., such that for every 0,1 ∈ �, E8 (0)/2 (0) > E8 (1)/2 (1) implies 0 �d8 1; the voter can
break ties arbitrarily.

H.1.1 Deterministic Rules

Benadè et al. [45] show that no deterministic rule for rankings by value for money can achieve
bounded distortion, even under the unit-sum assumption. Moreover, in their construction, all
voters submit the same ranking. Adding any amount of public spirit would therefore leave the
rankings and their analysis unchanged, implying that the distortion remains unbounded even
with public spirit. We formalize this in Theorem H.1.1.

Theorem H.1.1 (lower bound). For rankings by value for money, every deterministic rule 5 has

unbounded distortion: distvfm(5 ) = ∞.

Proof. We use the exact same construction used by Benadè et al. [45]. Fix 0,1 ∈ �, and let
20 = n > 0 and 2G = 1 for all G ∈ � \ {0}. Construct an input pro�le ®d where each voter has
alternatives 0 and 1 in positions 1 and 2, and let 5 be some deterministic aggregation rule.
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If 5 ( ®d, 2) ≠ 0, then construct a utility pro�le where D8 (0) = 1 and D8 (G) = 0 for all G ∈ � \ {0}.
Then the distortion is in�nite.

If 5 ( ®d, 2) = 0, then construct a utility pro�le where D8 (0) = n , D8 (1) = 1 and D8 (G) = 0 for
G ∈ � \ {0,1}. Then,

E8 (0)
20

=
(1 − W8)n + W8 (=n)=

n
=
(1 − W8) + W8

1 =
E8 (1)
21

,

and so the ranking of each voter is consistent with this utility pro�le. But, the distortion is:
=

=n
=
1
n
,

which as n → 0 tends to in�nity. �

H.1.2 Randomized Rules

For randomized rules, we show the same upper bound (up to a constant) for rankings by value
for money as for rankings by value. The result uses a similar construction, too: First, we bucket
alternatives as in Lemma 13.4.6, so that the alternatives in each bucket di�er in cost by a factor
of at most 2. Due to these similar costs, a ranking by value for money of the alternatives within
any is a good approximation of their ranking by value, allowing us to apply our reductions from
PB to committee selection to single-winner selection, except we lose an additional factor of 2.

Theorem H.1.2 (upper bound). For rankings by value for money, there exists a randomized rule 5

with distortion

distvfm(5 ) ≤ 8
(⌈
log2(<)

⌉
+ 1

) (
2W−1min − 1

)
.

Lemma H.1.3. For rankings by value for money, there exists a :-committee-selection voting rule

5 such that on all sets of alternatives with costs in [2−ℓ , 21−ℓ] for some ℓ ≥ 0, 5 has distortion

4(2W−1min − 1).

Proof. Notice that if 0 beats 1, then E8 (0)/20 ≥ E8 (1)/21 at least =/2 times. Since the costs di�er
by at most a factor of 2, 2E8 (0) ≥ E8 (1).

We can use the exact same rule as in Theorem 13.3.5. Indeed, everything is the same, except that
when 1 beats 0∗ in a pairwise election (i.e. at least =/2 times), we get the following distortion by
Lemma 13.2.1:

sw(0∗)
sw(1) ≤ 2

(
21 − Wmin
Wmin

+ 1
)
.

Then, the distortion of our rule is, by the same analysis in Theorem 13.3.5:

81 − Wmin
Wmin

+ 4.

From here, we can convert this single winner rule into a committee selection rule with the same
distortion by using Lemma 13.4.7. �
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Having proved this lemma, we utilise an argument similar to Lemma 13.4.6.

Proof of Theorem H.1.2. Let6 be the rule in LemmaH.1.3, and let the distortion it achieves,
(
41−Wmin
Wmin
+ 2

)
,

be 3 . By the same mechanism in Lemma 13.4.6, we will convert 6 to a ranking by value per cost
rule.

Indeed, divide the alternatives into buckets �0, �1, . . . , �dlog2 (<)e , where for 8 ≠ 0:

�8 =

{
0 ∈ � : 2

8−1

<
< 20 ≤

28
<

}
,

and
�0 = {0 ∈ � : 20 ≤ 1/<}.

Recall the mechanism used:

1. Pick the bucket � 9 uniformly at random.

2. Consider the restricted election with only the alternatives in � 9 .

3. Use 6 to pick the top
⌊
<
29
⌋
alternatives in the restricted election.

Consider any PB instance. Split the alternatives into buckets�0, �1, . . . , �dlog2 (<)e , where for 8 ≠ 0:

�8 =
{
0 ∈ � : 28−1/< < 20 ≤ 28/<

}
,

and
�0 = {0 ∈ � : 20 ≤ 1/<}.

The randomized PB rule 5 is as follows:

1. Pick 9 ∈ { 0, 1, . . . , dlog2(<)e } uniformly at random.

2. Consider the restricted instance with only the alternatives in � 9 .

3. With <′ = |� 9 | and : = min(<′,
⌊
<
29
⌋
), use the :-committee selection rule 5<′,: on this

restricted instance to pick a set of : alternatives and return it.

Let�∗ be the optimal budget-feasible subset of the alternatives, !∗9 be the optimal
⌊
<
29
⌋
-committee

of � 9 , and ! 9 be the one selected by the :-committee rule. For 9 ≠ 0, �∗ ∩ � 9 is of size at most
<
29−1 . That means sw(�∗ ∩� 9 ) ≤ 2sw(!∗9 ) for any 9 ≠ 0.

In addition for 9 = 0, !∗0 = �0 which implies sw(�∗ ∩ � 9 ) ≤ sw(!∗9 ). Since the :-committee
selection rule has distortion of 3 for any 9 we have sw(!∗9 ) ≤ 3sw(! 9 ) which gives us sw(�∗ ∩
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� 9 ) ≤ 23sw(! 9 ). Let X be the distribution of the output of the mechanism, we have:

E!∼X [sw(!)] =
1

dlog2(<)e + 1

dlog2 (<)e∑
9=0

sw(! 9 )

≥ 1
dlog2(<)e + 1

dlog2 (<)e∑
9=0

sw(�∗ ∩� 9 )
23

≥ sw(�∗)
23 (dlog2(<)e + 1)

,

which gives us the desired distortion bound. �

Whether this is (asymptotically) the best distortion that randomized rules for rankings by value
for money can achieve remains an open question.

H.2 Threshold Approval Votes

Finally, we investigate the distortion under the ballot format of threshold approval votes. Under
this ballot format with threshold g > 0 (g-th), each voter 8 reports the subset of alternatives
for which her PS-value is at least a g fraction of her total PS-value for all alternatives in �, i.e.,
d8 = {0 ∈ � : E8 (0) ≥ g ·

∑
1∈� E8 (1)}. Thus, Lg-th = 2�, as with knapsack votes. Benadè et al.

[45] introduce this ballot format for unit-sum utilities and our de�nition extends it to arbitrary
utilities.1

It is easy to see that without a unit sum assumption, the distortion of any deterministic rule is
unbounded, even with public-spirited voters.

Proposition H.2.1. The distortion associated with deterministic �xed thresholds (using the same

de�nition as in [45]) is unbounded for any choice of threshold.

Proof. Suppose we use a threshold of C . Then, consider an input pro�le where no voter approves
any alternative. Suppose that 5 picks 0∗ ∈ �. Then, consider a preference pro�le whereD8 (0∗) = 0
and D8 (1) = C/2 for all 8 ∈ # and all 1 ≠ 0∗.

Then, E8 (0∗) = (1 − W8) · 0 + W8 · 0= = 0 < C and E8 (1) = (1 − W8) · C/2 + W8 · =C/2= = C/2 < C , meaning
the utility pro�le is consistent with the input, but the distortion is in�nite. �

H.2.1 Deterministic Rules

By setting g = 1/<, we can achieve the following distortion upper bound.
1One could also conceive of using an absolute threshold (i.e., voter 8 asked to approve all 0 with E8 (0) ≥ g),

instead of making it relative to the total value. But in Proposition H.2.1, we show that this leads to the worst possible
distortion: unbounded for deterministic rules and< for randomized rules.
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Theorem H.2.2 (upper bound). For threshold approval votes with threshold g = 1/<, there exists

a deterministic rule 5 with distortion

dist(1/<)-th(5 ) ≤ <
(
<W−1min −< + 1

)
.

Proof. We can use the voting rule that simply picks the plurality winner: the alternative with
most approvals. Let 0 be the plurality winner.

Let (∗ be the optimal feasible subset of alternatives. Then, if voter 8 approves alternative 0:

E8 (0)∑
1∈� E8 (1)

≥ 1/<,

and so:
<E8 (0) ≥ E8 (�).

Notice that every voter must approve at least one alternative, as at least one alternative must
have value at least the average:

∑
0∈� E8 (0)
<

. Therefore, by the pigeonhole principle, the plurality
winner must appear at least =/< times, and so<E8 (0) ≥ E8 (�) for at least =/< voters 8 .

By Lemma 13.2.1,
sw(�)
sw(0) ≤ <

(
1 − Wmin
Wmin

< + 1
)
.

as claimed. �

As with rankings by value, it turns out that linear distortion is unavoidable, even when voters
exhibit perfect public spirit and submit the same vote.

Theorem H.2.3 (lower bound). For all deterministic 5 and all threshold values g > 0,

distg-th(5 ) ≥ < − 1.

Proof. Let C > 0 be the threshold.

Consider the case where alternative 0 costs 1, and alternatives 11, . . . , 1<−1 cost 1
<−1 .

Suppose all voters approve only 0. Then, we have two cases. If the voting rule 5 doesn’t pick alter-
native 0, then we incur in�nite distortion when the utility of 0 is 1, and the utility of 11, . . . , 1<−1
is 0 for all voters.

If 5 does pick 0, then it cannot pick anything else as the budget is exhausted. Let the utility of 0
be C + n and the utility of 1 9 be C − n for all voters, and any small n > 0.

Then, we could have gotten a utility of (< − 1) (C − n), but instead get C + n . As n → 0, the
distortion goes to< − 1. �
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H.2.2 Randomized Rules

Turning to randomized rules for threshold approval votes with threshold g , we get the same
results under public-spirited behavior with arbitrary utilities as Benadè et al. [45] get under the
unit-sum assumption.

Theorem H.2.4 (lower bound). For threshold approval votes with any threshold g > 0, every
randomized rule 5 has distortion

distg-th(5 ) ≥
1
2

(⌊√
<

2

⌋
+ 1

)
.

Proof. We are borrowing the construction from Theorem 3.4 in Benadè et al. [45]. Consider the
case where each alternative has cost 1. We consider two cases. First suppose that g ≤ 1/

⌊√
<

⌋
.

Fix a set ( of
⌊√
</2

⌋
+ 1 alternatives. Construct the input pro�le ®d where d8 = ( for all 8 ∈ # .

There must exist 0∗ ∈ ( where Pr[0∗] ≤ 1/|( |. Consider the utility matrix* where for all 8 ∈ # ,
D8 (0∗) = 1/2 and for 0 ∈ ( \ {0∗}, D8 (0) = 2/

⌊√
</2

⌋
and D8 (0) = 0 for 0 ∈ � \ ( . Note that

since voters have identical utilities, we have D8 (0) = E8 (0) for any alternative 0 ∈ �. We have
sw(0∗) = =/2 and for 0 ∈ � \ {0∗}, sw(0) ≤ =/

√
<. That gives us

distg -th(5 ) ≥
sw(0∗)

E0∼5 ( ®d,2) [sw(0)]

≥
=
2

1⌊√
</2

⌋
+1
=
2 +

⌊√
</2

⌋⌊√
</2

⌋
+1

=√
<

≥ 1⌊√
</2

⌋
+1 +

1⌊√
</2

⌋
+1
≥ 1

2

(⌊√
<

2

⌋
+ 1

)
.

On the other hand if g > 1/
⌊√
<

⌋
, construct the input pro�le ®d where d8 = ∅ for 8 ∈ # . In this

case there exists 0∗ ∈ �where %A [0∗] ≤ 1/<. Consider the utility matrix* where for every voter
D8 (0∗) = 1/

⌊√
<

⌋
and for 0 ∈ �\ {0∗},D8 (0) = (1−1/

⌊√
<

⌋
)/(<−1). We have sw(0∗) = =/

⌊√
<

⌋
,

and BF (0) = =(1 − 1/
⌊√
<

⌋
)/(< − 1) for 0 ∈ � \ {0∗}. That gives us:

distg -th(5 ) ≥
sw(0∗)

E0∼5 ( ®d,2) [sw(0)]

≥
=⌊√
<

⌋
1
<

=⌊√
<

⌋ + <−1
<

=

(
1− 1⌊√

<
⌋ )

<−1

≥ <⌊√
<

⌋ ≥ ⌊√
<

⌋
,

which gives us the desired bound. �

Benadè et al. [45] consider an additional source of randomness, whereby the designer samples
a threshold g from a distribution ' over support [0, 1], and then all voters are asked to submit
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their threshold approval votes using this value of g (same for all voters). We refer to this ballot
format as randomized threshold approval votes with threshold distribution � (�-rth). Note that
L�-rth = Lg-th = 2�. Since randomness is already introduced, it makes sense to also allow the
aggregation rule 5 to be randomized in this case. When de�ning the distortion of a randomized
rule 5 , we take expectation over the sampling of threshold g (before taking any worst case).

Theorem H.2.5 (lower bound). For randomized threshold approval votes with the threshold sam-

pled from any distribution � , every randomized rule 5 has distortion

dist�-rth(5 ) ≥
1
2

⌈
log2(<)

log2(2
⌈
log2(<)

⌉
)

⌉
.

Proof. We are borrowing the construction directly from Theorem 3.6 in Benadè et al. [45]. Con-
sider the case where 20 = 1 for all 0 ∈ �, and let 5 be an arbitrary rule that both returns a
threshold and a set of alternatives randomly.

Split up the (1/<, 1] interval into
⌈
log2(<)/log2(2 log2(<))

⌉
parts � 9 de�ned such that

� 9 =

( (2 log2(<)) 9−1
<

,min
{ (2 log2(<)) 9

<
, 1

}]
.

De�ne D 9 and ℓ9 to be the largest and smallest points in � 9 respectively. By construction, D 9 ≤
2 log2(<)ℓ9 for all 9 .

The key idea is to give utilities to alternatives within the interval that the threshold with least
probability is contained in, so that with high probability, the alternatives are either all approved
or all disapproved.

Indeed, let : be a value such that

Pr(C ∈ �:) ≤
⌈
log2(<)/log2(2 log2(<))

⌉−1
,

which must exist by the pigeonhole principle.

Fix a subset ( ⊆ � of size
⌈
log2(<)

⌉
, and let + = D:/2 + (

⌈
log2(<)

⌉
− 1)ℓ: .

We will give each voter the same utilities, so that D (0) := D8 (0) = E8 (0) for all 8 ∈ #, 0 ∈ �. For
all 0 ∈ ( , assign utilities so that

∑
0∈( D (0) = + , for all 0 ∉ ( , let D (0) = (1 −+ )/(< −

⌈
log2(<)

⌉
).

We can verify that ℓ: ≤ 1
2 log2 (<)

D: for all : . We can then see that the utilities sum to one, and are
all positive as:

+ =
D:

2 + (
⌈
log2(<)

⌉
− 1)ℓ: ≤

1
2 +

⌈
log2(<)

⌉
− 1

2 log2(<)
≤ 1.

We construct this so that all alternatives in ( have utilities contained in �: . Thus, when C ∉ �: , all
voters either approve ( or disapprove ( . Therefore, there must exist some 0∗ ∈ ( such that

Pr(0∗is returned | C ∉ �:) ≤ 1/
⌈
log2(<)

⌉
.
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Now, we can assign D (0∗) = D:/2 and D (0) = ℓ: for 0 ∈ ( \ {0∗}. Then, the optimal choice is
0∗ with social welfare =D:/2, but instead, since ℓ: > (1 − + )/(< − log2(<)), we pick with high
probability an alternative with at most =ℓ: utility.

Indeed, the expected social welfare of 5 is:

Pr(C ∈ �:) ·
=D:

2 +Pr(C ∉ �:)
(

1⌈
log2(<)

⌉ · =D:2 +
⌈
log2(<)

⌉
− 1⌈

log2(<)
⌉ · =ℓ:

)
≤

(⌈
log2(<)/log2(2 log2(<))

⌉−1 + 1⌈
log2(<)

⌉ + ⌈
log2(<)

⌉
− 1⌈

log2(<)
⌉ · 1

log2(<)

)
=D:

2

≤
(⌈
log2(<)/log2(2 log2(<))

⌉−1)
=D: .

The maximum social welfare that we can get is =D:/2, so the distortion is:

dist�-rth(5 ) ≥
=D:
2

=D:

⌈
log2 (<)

log2 (2 log2 (<))

⌉−1 =
1
2

⌈
log2(<)

log2(2
⌈
log2(<)

⌉
)

⌉
. �

Theorems H.2.4 and H.2.5 are corollaries of Theorems 3.4 and 3.6 of Benadè et al. [45], respec-
tively. Their lower bound, derived under the unit-sum assumption, carries over to our more
general setup. While they do not allow public-spirited behavior, in their construction the utility
of each alternative is the same across all voters, ensuring that any level of public-spirited behav-
ior does not a�ect their construction. The only reason we provide full proofs is that Benadè et al.
[45] derive only an asymptotic lower bound by making several simplifying assumptions, which
we carefully remove to derive an exact lower bound.

H.3 Proofs from Section 13.2 (Preliminaries)

H.3.1 Proof of Lemma 13.2.1

Lemma H.3.1. Let �1, �2 ⊆ � be two arbitrary subsets of alternatives. Fix any U ≥ 0 and de�ne

#�1��2 = {8 ∈ # : U · E8 (�1) ≥ E8 (�2)}. Then:

sw(�2)
sw(�1)

≤ U ·
(
1 − Wmin
Wmin

=

|#�1��2 |
+ 1

)
.

Proof. The proof is the same as the proof of Lemma 3.1 by Flanigan et al. [134]. Indeed, for each
voter 8 ∈ #�1��2 , we know that UE8 (�1) ≥ E8 (�2), and so:

U

(
(1 − W8)D8 (�1) + W8

sw(�1)
=

)
≥ (1 − W8)D8 (�2) + W8

sw(�2)
=

≥ W8
sw(�2)
=

.
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Dividing by W8 and using the fact that 1−W8
W8

is decreasing in W8 we have:

U

(
1 − Wmin
Wmin

· D8 (�) +
sw(�1)
=

)
≥ sw(�2)

=
.

Summing over all voters in #�1��2 ,

U

(
1 − Wmin
Wmin

∑
8∈#�1��2

D8 (�1) +
sw(�1) |#�1��2 |

=

)
≥

sw(�2) |#�1��2 |
=

.

Using the fact that
∑
8∈#�1��2

D8 (�1) ≤
∑
8∈# D8 (�1) = sw(�1),

U

(
1 − Wmin
Wmin

sw(�1) +
sw(�1) |#�1��2 |

=

)
≥

sw(�2) |#�1��2 |
=

,

and, after some simpli�cation, we �nally get the desired upper bound:

sw(�2)
sw(�1)

≤ U
(
1 − Wmin
Wmin

=

|#�1��2 |
+ 1

)
. �

H.3.2 Distortion Without Public Spirit

In this section, we consider the distortion that can be achieved under various ballot formats
without an assumption of public-spirited voters, or equivalently, when W8 = 0 for every voter 8 ∈
# . This serves as a benchmark and motivates the need for cultivating public spirit among voters.
It is also interesting to note that without any public spirit, the information in the ballots is useless
as rules that ignore the ballots altogether turn out to beworst-case optimal. In contrast, the worst-
case optimal rules in the presence of even a little bit of public spirit are both qualitatively and
quantitatively fairer.

Proposition H.3.2. For any ballot format X ∈ {rbv, vfm, knap, g-th, �-rth} (with any threshold g

and threshold distribution �), every deterministic rule has unbounded distortion when W8 = 0 for all
8 ∈ # .

Proof. First, consider the ballot formats other than randomized threshold approval votes. For
deterministic threshold approval votes, pick any threshold g ∈ [0, 1]. Let = be even.

Consider an instance as follows. The cost of each alternative is 1, i.e., 2 (0) = 1 for each 0 ∈ �.
Pick any two alternatives 01, 02 ∈ �, and let the input pro�le be as follows. Partition the voters
into two equal-sized groups #1, #2.

• Under X ∈ {rbv, vfm}, each voter in #1 ranks 01 at the top, 02 next, and the remaining
alternatives afterwards (arbitrarily); and each voter in #2 ranks 02 at the top, 01 next, and
the remaining alternatives afterwards (arbitrarily).

• Under X ∈ {knap, g-th} (where g ≠ 0), each voter in #1 submits { 01 } and each voter in #2
submits { 02 }.
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• Under X = g-th with g = 0, every voter approves all the alternatives.

Fix any of the above ballot formats X and consider any deterministic rule 5X. Suppose it picks
alternative 0. Note that at least one of 01 and 02 is not picked by 5X. Due to the symmetry,
assume without loss of generality that it is 01. Then, for an arbitrarily chosen n ∈ (0, 1), consider
the following consistent utility matrix* .

• Each voter in #1 has utility 1 for 01 and 0 for all other alternatives.

• Each voter in #2 has utility n for 02 and 0 for all other alternatives.

Then, the distortion of 5X is at least
sw(01,* )
sw(0,* ) =

=/2
n · =/2 =

1
n
.

Because n ∈ (0, 1) was chosen arbitrarily, we can take the worst case by letting n → 0, which
establishes unbounded distortion.

For randomized threshold approval votes with any threshold distribution � , we cannot �x the
input pro�le upfront as it depends on the threshold g sampled from � . However, we can assume
that for each g the rule sees the pro�le described above for g-th. The proof continues to work
because the consistent utility matrix * described above is independent of the value of g (and
hence, can be set upfront without knowing the value of g). �

Proposition H.3.3. For any ballot format X ∈ {rbv, vfm, knap, g-th, �-rth} (with any threshold g

and threshold distribution �), every randomized rule has distortion at least < when W8 = 0 for all

8 ∈ # and this is tight.

Proof. For the upper bound under all ballot formats, it su�ces to show that the trivial randomized
rule 5 , which does not take any ballots as input and simply returns a single alternative chosen
uniformly at random, achieves distortion at most<. Fix any instance* and let �∗ be an optimal
budget-feasible set of alternatives. Then, the expected social welfare under 5 is

1
<

∑
0∈�

sw(0,* ) ≥ 1
<
sw(�∗,* ),

which implies the desired upper bound of< on the distortion of 5 .

For the lower bound, we simply extend the argument from the proof of Proposition H.3.2. De�ne
an instance with< alternatives 01, 02, . . . , 0< , all with cost 1 (i.e., 2 (0 9 ) = 1 for all 9 ∈ [<]). Fix
any randomized rule 5X for each ballot X in the statement of the proposition.

Let us �rst consider ballot formats other than randomized threshold approval votes. Consider
the following symmetric pro�les for each ballot format. Suppose = divides < and voters are
partitioned into< equal-size groups #1, . . . , #< . Then:

• for X ∈ { rbv, vfm }, for each 9 ∈ [<], every voter in # 9 submits the ranking 0 9 � 0 9+1 �
· · · � 0< � 01 � · · · � 0 9−1, and
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• for X = { knap, g-th } (for any g), for each 9 ∈ [<], every voter in # 9 submits the set of
alternatives {0 9 }.

For g-threshold approval votes, there is an edge case where this pro�le may not be feasible with
g = 0, in which case we can set the pro�le to have every voter approving all alternatives. The
utility matrix de�ned below would still remain consistent in this case.

For each ballot formatX, the corresponding rulemust pick at least one alternativewith probability
?X ≤ 1/<. Due to the symmetry, we can assume without loss of generality that this alternative
is 01.

Fix any n ∈ (0, 1). We de�ne a consistent utility matrix * that works for all of the above ballot
formats:

• Every voter in #1 has utility 1 for 01 and 0 for all other alternatives.

• For each 9 ∈ { 2, . . . ,< }, every voter in# 9 has utility n for 0 9 and 0 for all other alternatives.

Finally, notice that the maximum possible social welfare is sw(01,* ) = 1, whereas the expected
social welfare under the rule 5X is ?X · 1 + (1 − ?X) · n ≤ 1/< + (1 − 1/<) · n . Thus, the distortion
of 5X is at least 1

1/<+(1−1/<)·n . Since n ∈ (0, 1) was chosen arbitrarily, we can take the worst case
by letting n → 0, in which case we get that the distortion must be at least<.

For randomized threshold approval votes with threshold distribution � , we cannot �x the input
pro�le as the input pro�le depends on the threshold g sampled from � . However, we can assume
that the rule sees the generic input pro�le described above (where each voter approves only
her most favorite alternative) for any g ≠ 0 and the edge-case input pro�le (where every voter
approves all the alternatives). Due to the symmetry, the rest of the argument goes through as the
�nal utility matrix* constructed above is consistent with these input pro�les for all g . �

H.4 Proofs from Section 13.3 (Single Winner)

H.4.1 Proof of Theorem 13.3.1

Theorem 13.3.1 (Lower Bound - Deterministic). Any deterministic single-winner voting rules 5

with ranked preferences has distortion

distA1E (5 ) ≥ 1 + 21 − Wmin
Wmin

· <2

2Wmin + Wmin<2 + (2 − 3Wmin)<
∈ Ω

(
1

Wmin
·min {<, 1

Wmin
}
)
.

Proof. Suppose we have < alternatives 01, . . . , 0< and = voters each with the same PS-value of
W = Wmin. For ease of exposition, let = be divisible by<. Our construction consists of< types of
voters, equally distributed with =/< voters of each type. Let #: be the set of voters of type : .
Suppose each voter type votes as follows,

432



#1 : 01 � 02 � . . . � 0<−1 � 0<
#2 : 02 � 03 � . . . � 0< � 01
...

#<−1 : 0<−1 � 0< � . . . � 0<−3 � 0<−2
#< : 0< � 01 � . . . � 0<−2 � 0<−1

so that #8 prefers alternative 08 most, and cycles through the rest.

Without the loss of generality, suppose the voting rule picks 01. We will set the utilities so that
sw(0<) > sw(0<−1) > · · · > sw(02) > sw(01). To do so, set for all voters 8 ,

D8 (0<) =


1 if 8 ∈ #<
0 if 8 ∈ #1

D8 (01) otherwise
.

For all : from 1 to< − 1 and for all 8 ∈ #1,

D8 (0:) =
W

1 − W

(
sw(0<) − sw(0:)

=

)
,

and for all 9 from 2 to<, for all 8 ∈ # 9 , for : from 1 to< − 1, when : < 9 − 1:

D8 (0:) =
W

1 − W

(
sw(0 9−1) − sw(0:)

=

)
,

and when : ≥ 9 :

D8 (0:) =
W

1 − W

(
sw(0<) − sw(0:)

=
+
sw(0 9−1) − sw(01)

=

)
,

and D8 (0 9−1) = 0.

Then, for : from 1 to< − 1,

sw(0:) =
<∑
9=1

∑
8∈# 9

D8 (0:)

=
W

1 − W ·
1
=

( ∑
8∈#1

(
sw(0<) − sw(0:)

)
+

:∑
9=2

∑
8∈# 9

(
sw(0<) − sw(0:) + sw(0 9−1) − sw(01)

)
+ 0

+
<∑

9=:+2

∑
8∈# 9

(
sw(0 9−1) − sw(0:)

))
=

W

1 − W ·
1
=
· =
<

©«(: − 1) (sw(0<) − sw(01)) − (< − 1)sw(0:) +
<∑

9=1, 9≠:
sw(0 9 )

ª®¬
=

W

1 − W ·
1
<

(
(: − 1) (sw(0<) − sw(01)) −< · sw(0:) +

<∑
9=1

sw(0 9 )
)
.
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Let ( =
∑<
9=1 sw(0 9 ). Adding

W

1−W sw(0:) to both sides of the above and rearranging, we get:

sw(0:) =
W

<
((: − 1) (sw(0<) − sw(01)) + () .

In particular, sw(01) = W

<
( , so

sw(0:) =
W

<

(
(: − 1)sw(0<) + ( ·

< − (: − 1)W
<

)
.

Via the same reasoning,

sw(0<) =
<∑
9=1

∑
8∈# 9

D8 (0<)

=
W

1 − W ·
1
=

(<−1∑
9=2

∑
8∈# 9

(
sw(0 9−1) − sw(01)

))
+ =
<

=
W

1 − W ·
1
<

(<−1∑
9=2

(
sw(0 9−1) − sw(01)

))
+ =
<

=
W

1 − W ·
1
<

(
( − (< − 2)sw(01) − sw(0<) − sw(0<−1)

)
+ =
<

=
W

1 − W ·
1
<

(
( − W (< − 2)

<
( − sw(0<) −

W

<

(
(< − 2)sw(0<) + ( ·

< − (< − 2)W
<

) )
+ =
<

=
W

1 − W ·
1
<

(
< − (< − 2)W

<
· < − W

<
( − < + W (< − 2)

<
sw(0<)

)
+ =
<

=
W

1 − W ·
1
<

(
< − (< − 2)W

<
· < − W

<
(

)
+ =
<
− W (< + W (< − 2))(1 − W)<2 sw(0<).

Adding W (<+W (<−2))
(1−W)<2 sw(0<) to both sides and rearranging:

sw(0<) =
(1 − W)<2

(1 − W)<2 + W (< + W (< − 2))

(
W

1 − W ·
1
<

(
< − (< − 2)W

<
· < − W

<
(

)
+ =
<

)
=

W<

(1 − W)<2 + W (< + W (< − 2))

(
< − (< − 2)W

<
· < − W

<
(

)
+ (1 − W)<=
(1 − W)<2 + W (< + W (< − 2))

=
W (< − (< − 2)W)

(1 − W)<2 + W (< + W (< − 2)) ·
< − W
<

( + (1 − W)=<
(1 − W)<2 + W (< + W (< − 2)) .
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Now, we can �nally solve for ( :

( =

<∑
:=1

sw(0:)

= sw(0<) +
W

<

<−1∑
:=1

(
(: − 1)sw(0<) + (

< − (: − 1)W
<

)
= sw(0<) +

W (< − 1) (< − 2)
2< sw(0<) +

W

<2(
<−1∑
:=1
(< − (: − 1)W)

=
2< + W (< − 1) (< − 2)

2< sw(0<) +
W

<2( ·
(< − 1) (2W +<(2 − W))

2

=
2< + W (< − 1) (< − 2)

2<

(
W (< − (< − 2)W)

(1 − W)<2 + W (< + W (< − 2)) ·
< − W
<

( + (1 − W)=<
(1 − W)<2 + W (< + W (< − 2))

)
+ ( · W (< − 1) (2W +<(2 − W))2<2 .

After simplifying this, we get:

( = =
2W + W<2 + (2 − 3W)<

2(1 − W)<2 + 2W (W + 1)< − 4W2 .

This then implies that

sw(0<) =
=

<
·
2<2(1 − W) +

(
<(2 − 3W) + 2W +<2W

)
W

2(1 − W)<2 + 2W (W + 1)< − 4W2 ,

and so we ultimately get the following social welfare for each alternative, for : from 1 to< − 1:

sw(0:) =
=

<
·
W

(
2(1 − W):< + W

(
<2 −< + 2

) )
2(1 − W)<2 + 2W (W + 1)< − 4W2 .

The chain of inequalities sw(0<) > · · · > sw(01) does indeed hold, and knowing this, we can
verify that the above utilities are non-negative.

This gives distortion, after simplifying:

sw(0<)
sw(01)

= 1 + 2(1 − W)<2

W (2W + W<2 + (2 − 3W)<) .

To show that this is asymptotically as desired, we can write this as:

1 + 2(1 − W)
W

(
2W + W<2 + (2 − 3W)<

<2

)−1
.
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Since, for any positive 0,1, we have that (0 + 1)−1 ≥ 1
2 min{0−1, 1−1}, this expression is in:

Ω

(
1 + 1 − W

W
min

{
<2

W (<2 + 2) ,
<2

<(2 − 3W)

})
= Ω

(
1 + 1 − W

W
min

{
1
W
,<

})
,

which in the W → 0 regime is asymptotic in Ω
(
min{1/W,<}

W

)
. �

H.4.2 Proof of Theorem 13.3.2

Theorem 13.3.2 (Lower Bound - Randomized). Any randomized single-winner voting rules 5 with

ranked preferences has distortion

distA1E (5 ) ∈ Ω
(
min

{
<,

1
Wmin

})
.

Proof. Use the same input pro�le ®d as in the proof of Theorem 13.3.1. Let ? (08) be the probability
that 08 is picked by rule 5 and without the loss of generality, suppose that 0min = argmin0 ? (0).

Then, for any 9 , 1 =
∑
8 ? (08) ≥ ? (0 9 ) + (< − 1)? (0min), so ? (0 9 ) ≤ 1 − (< − 1)? (0 9 )

By the proof of Theorem 13.3.1, sw(01) ≤ sw(02) ≤ · · · ≤ sw(0<), and so we can maximize social
welfare by picking 0< .

The expected social welfare of 5 is at most:

E0∼5 ( ®d) [sw(0)] =
1
<
sw(0<) +

< − 1
<

<−1max
:=1

sw(0:)

=
=

<(2(1 − W)<2 + 2W (W + 1)< − 4W2) ·
(2<2(1 − W) +

(
<(2 − 3W) + 2W +<2W

)
W

<

+ < − 1
<
· (W

(
2(1 − W) (< − 1)< + W

(
<2 −< + 2

) )
)
)

=
=

<
· W (W − 2) (< − 2) (< − 1) − 2<2((1 − W)< + 2W) (< − W) .

So, the distortion is:

sw(0<)
E0∼5 ( ®d) [sw(0)]

=
=

<
·
2<2(1 − W) +

(
<(2 − 3W) + 2W +<2W

)
W

2(1 − W)<2 + 2W (W + 1)< − 4W2

·
(
=

<
· W (W − 2) (< − 2) (< − 1) − 2<2((1 − W)< + 2W) (< − W)

)−1
= 1 + 2(1 − W) (< − 1) ((1 − W)< + 2W)

W (2 − W) (< − 2) (< − 1) + 2<

≥ 1 + 2(1 − W)2(< − 1)<
W (2 − W) (< − 2) (< − 1) + 2< .
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Since, for any positive 0,1, we have that (0 + 1)−1 ≥ 1
2 min{0−1, 1−1}:

sw(0<)
E0∼5 ( ®d) [sw(0)]

∈ Ω
(
(1 − W)2min

{
2(< − 1)<

W (2 − W) (< − 2) (< − 1) ,
2(< − 1)<

2<

})
∈ Ω

(
(1 − W)2min

{
1
W
,<

})
,

which in the W → 0 regime, is Ω (min {1/W,<}). �

H.5 Proofs from Section 13.4 (Rankings by Value)

H.5.1 Proof of Theorem 13.4.1

Theorem 13.4.1 (lower bound). For rankings by value, every deterministic rule 5 has distortion

distrbv (5 ) ≥
< − 1
Wmin

∈ Ω
(
<

Wmin

)
.

Proof. Consider an instancewith� = { 0,11, . . . 1<−1 }, where0 costs 1 and every other alternative
costs 1/(< − 1). De�ne ? =

1−Wmin
1−Wmin+<2 . Let #1 be a set of =(1 − ?) voters and #2 = # \ #1.

Suppose that members of #1 submit ranking (0 � 11 � . . . � 1<−1) and members of #2 vote
(11 � . . . � 1<−1 � 0).

Now consider two cases.

Case 1: If the aggregation rule selects 0, consider utility matrix * where members of #1 have
utility of Wmin?

1−?Wmin
for 0 and 0 for the rest, while members of #2 have utility of 0 for 0 and 1 for the

rest of the alternatives. This means sw(0) = =(1 − ?) Wmin?
1−Wmin?

, and sw(1) = =? for 1 ∈ � \ {0}.
Alongside with the PS-vector ®W = [Wmin]= we have value matrix +®W,* �rst of all we have to make
sure that this is consistent with the input pro�le. For 8 ∈ #1,

E8 (0) = (1 − Wmin)
Wmin?

1 − Wmin?
+ Wmin(1 − ?)

Wmin?

1 − Wmin?

= (1 − Wmin?)
Wmin?

1 − Wmin?
= Wmin?,

and E8 (1 9 ) = (1 − Wmin) × 0 + Wmin? = Wmin?. Therefore, the value matrix is consistent with the
ranking of the members of #1. On the other hand for 8 ∈ #2 we have, E8 (0) = Wmin(1 − ?) Wmin?

1−Wmin?
,

and E8 (1 9 ) = 1 − Wmin + Wmin?, where for ? =
1−Wmin

1−Wmin+<2 we have:

E8 (0) =
W2min<

2 (1 − Wmin)
(<2 + 1 − Wmin) (<2 + (1 − Wmin)2)

,

E8 (1 9 ) =
(<2 + 1) (1 − Wmin)
<2 + 1 − Wmin

.
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This gives us:

E8 (0)
E8 (1 9 )

=
W2min<

2

(<2 + 1) (<2 + (1 − Wmin)2)
≤ 1

=⇒ E8 (1 9 ) ≥ E8 (0),

and therefore the votes of voters in #2 are consistent with the value matrix +®W,* .

By picking budget-feasible set {11, . . . , 1<−1} we can get a social welfare of =(< − 1)? , while
instead we got =(1 − ?) Wmin?

1−?Wmin
by choosing 0. This leaves us with a distortion of

(< − 1) (1 − ?Wmin)
(1 − ?)Wmin

.

Since ? ≥ 0 and Wmin ≤ 1, ? ≥ ?Wmin, and so 1 − ?Wmin ≥ 1 − ? . Therefore, we get the desired
distortion:

(< − 1) (1 − ?Wmin)
(1 − ?)Wmin

≥ < − 1
Wmin

.

Case 2: If the aggregation rule does not select 0, consider the utility matrix * where members
of #1 have utility of 1 for 0 and 0 for the rest, while members of #2 have utility of 0 for 0 and
Wmin (1−?)
1−Wmin (1−?) for the rest of the alternatives. This gives us sw(0) = =(1−?), and sw(1) = =?

Wmin (1−?)
1−Wmin (1−?)

for 1 ∈ � \ {0}. Again we have to check that the value matrix +®W,* is consistent with the input
pro�le. For 8 ∈ #1 we have: E8 (0) = 1−Wmin+Wmin(1−?) = 1−Wmin? , and E8 (1 9 ) = Wmin?

Wmin (1−?)
1−Wmin (1−?) .

The value matrix is consistent with the ranking of the members of #1, i.e. E8 (0) ≥ E8 (1 9 ), as:

Wmin ≤ 1 =⇒ 0 ≤ Wmin? ≤ 1 − Wmin(1 − ?)

=⇒ Wmin?
1

1 − Wmin(1 − ?)
≤ 1

=⇒ Wmin?
Wmin(1 − ?)

1 − Wmin(1 − ?)
≤ 1 − Wmin?.

Moreover, for 8 ∈ #2 we have: E8 (0) = Wmin(1 − ?), and

E8 (1 9 ) = (1 − Wmin)
Wmin(1 − ?)

1 − Wmin(1 − ?)
+ Wmin?

Wmin(1 − ?)
1 − Wmin(1 − ?)

= (1 − Wmin(1 − ?))
Wmin(1 − ?)

1 − Wmin(1 − ?)
= Wmin(1 − ?).

So we have E8 (0) = E8 (1 9 ) which means that the value matrix is consistent with the ranking of
the members of #2 as well.
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Since0 is not picked by the aggregation rule, we get amaximum social welfare of (<−1)=? Wmin (1−?)
1−Wmin (1−?)

when we could have gotten a social welfare of =? from 0 meaning a distortion of:

distrbv (5 ) ≥
1 − Wmin(1 − ?)
Wmin? (< − 1)

≥ < − 1
Wmin

.

All the conditions above hold for< ≥ 2, so we have a distortions of at least: <−1
Wmin

. �

H.5.2 Proof of Lemma 13.4.7

Lemma H.5.1 (Single-Winner→ Committee). Fix any : ∈ [<] and 3 ≥ 1. If there exists a single-
winner rule with distortion at most 3 for each <′ ≤ <, then there exists a :-committee selection

rule with distortion at most 3 . The committee selection rule is deterministic if the underlying rule is

deterministic, and it is randomized if the underlying rule is randomized.

Proof. Let�∗ = {0∗1, . . . , 0∗:} be the optimal budget-feasible set, sorted from highest social welfare
to the lowest so that 8 < 9 =⇒ sw(0∗8 ) ≥ sw(0∗9 ). Let ( denote the set of alternatives that our
algorithm picks.

Consider the 8th iteration of the procedure. Let 0+8 be the alternative with the highest social
welfare among the remaining alternatives, and 08 be the random alternative picked by the single-
winner voting rule in this round. We know that sw(0+8 ) ≥ sw(0∗8 ) and since the single-winner
rule has expected distortion of 3 , we have E[sw(08)] ≥

sw(0+8 )
3

which implies E[sw(08)] ≥
sw(0∗8 )
3

.
Summing this over all iterations and using linearity of expectation, we get that

:∑
8=0

E[sw(08)] ≥
:∑
8=0

sw(0∗8 ) /3

=⇒ sw(�∗) /E[sw(()] ≤ 3. �

H.6 Proofs from Section 13.5.1 (:-Approvals)

H.6.1 Proof of Proposition 13.5.3

Proposition H.6.1 (LB, 1-app, Deterministic). For 1-approval ballot format, every deterministic

rule 5 has distortion

dist1-app(5 ) ∈ Ω
(
<2

Wmin

)
.

Proof. We take< to be su�ciently large. Consider an instance with <
2 alternatives 01, . . . , 0</2

of cost 1 and <
2 alternatives 11, . . . , 1</2 of cost 2

<
, and all the voters have the same PS-value of

W = Wmin. Suppose 2=
<

voters vote for each 08 .

If a PB rule picks the bundle 11, . . . , 1</2, then consider the instance where every voter assigns a
value of 1 to each 08 and a value of 0 to each 18 . This is consistent with the input, and results in
in�nite distortion.
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Instead, suppose the PB rule, without the loss of generality, picks 0</2. Then, suppose that every
voter who votes for 0</2 gives it a value of W <−2

<−2Wmin
, and everything else a value of 0, and suppose

that all other voters give their top choice a value of 1, the 18 a value of <−W (<−2)<−2W , and everything
else a value of zero.

Then, sw(18) = <−W (<−2)
<−2W · <−2

<
·= for all 8 from 1 to <

2 , and sw(08) =
2=
<

for 8 ≠ <
2 with sw(0</2) =

2=
<
· W <−2

<−2W .

Then, the utilities for voters 8 who vote for 0</2 are consistent as

E8 (0</2) = (1 − W)
< − 2
< − 2W + W

< − 2
< − 2W

2
<

=
< − 2
< − 2W

(
1 − W< − 2

<

)
=
< − 2
< − 2W

< − W (< − 2)
<

≥ W< − W (< − 2)
< − 2W

< − 2
<

= E8 (1 9 )

for all 1 9 , where the last inequality holds because< ≥ < − 2W . Similarly,

E8 (0</2) = (1 − W)
< − 2
< − 2W + W

< − 2
< − 2W

2
<

=
< − 2
< − 2W

< − W (< − 2)
<

≥ W 2
<

= E8 (0 9 )

for all 0 9 ≠ 0</2, where the last inequality holds for su�ciently large <, so 0</2 is indeed the
alternative of highest value.

The utilities of voters 8 who vote for 0 9 ≠ 0</2 is consistent as:

E8 (18) = (1 − W)
< − W (< − 2)

< − 2W + W< − W (< − 2)
< − 2W · < − 2

<

=
< − W (< − 2)

< − 2W

(
1 − W + W< − 2

<

)
=
< − W (< − 2)

<

= (1 − W) + W · 2
<

= E8 (0 9 )

for all 18 . And E8 (0 9 ) ≥ E8 (0:) for all : ≠ 9 as sw(0:) ≤ sw(0 9 ) and voter 8 gives 0: zero utility.
So, 0 9 is indeed the highest ranking alternative.
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But, the distortion we get is:∑
8 sw(18)

sw(0</2)
=
<

2 ·
< − W (< − 2)

< − 2W · = ·
(
2=
<
· W < − 2
< − 2W

)−1
=
<2

4 ·
< − W (< − 2)
W (< − 2)

=
<2

4 ·
(
1
W
· <

< − 2 − 1
)

≥ <
2

4 ·
1 − W
W

,

as claimed. �

H.7 Proofs from Section 13.5.2 (Knapsack)

H.7.1 Proof of Theorem 13.5.6

Theorem 13.5.6 (LB, knap, Randomized). For knapsack ballot format, every randomized rules 5

has distortion

distknap(5 ) ≥ <(1 − Wmin) + Wmin.

Proof. Formally, consider a case where= is divisible by<, all the voters have the same PS-value of
W = Wmin, and every alternative 0 ∈ � has a cost of 20 = 1. In this case, each vote consists of exactly
one alternative. For any alternative 0 ∈ �, let #0 be the set of voters who vote for alternative 0.
Choose the input pro�le ®d so that =/< voters vote for each alternative so that |#0 | = =

<
for all

0 ∈ �. Our randomized voting rule 5 must pick some alternative 0∗ with probability at most 1/<.

Suppose that all voters in #0∗ have a utility of <(1−W)+W
W

for 0∗ and utility zero for everything
else. Moreover, voters in #0 with 0 ≠ 0∗ have utility 1 for 0 and zero utility for the rest of the
alternatives. We can see that the social welfare of 0∗ is <(1−W)+W

W
· =
<
, and the social welfare of any

other alternative is =
<
.

First of all, we have to make sure that this utility matrix and PS-vector yield a value matrix
consistent with the input pro�le. For any 0 ≠ 0∗ and 8 ∈ #0 we have:

E8 (0∗) = W
<(1 − W) + W

W
· 1
<

=
<(1 − W) + W

<
= (1 − W) + W

<

= E8 (0).
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Furthermore, for voter 8 ∈ #0∗ and any 0 ≠ 0∗ as:

E8 (0∗) = (1 − W)
<(1 − W) + W

W
+ W<(1 − W) + W

W
· 1
<

=

(
1 − W< − 1

<

)
<(1 − W) + W

W

=
< − W (< − 1)

<
· <(< − W) + W

W

=
W

<
· (1 − W)< + W

W
· <(< − W) + W

W

≥ W

<
= E8 (0),

where the last inequality follows from the fact that W ≤ 1. That means the value matrix is consis-
tent with the input pro�le for all the voters.

After that, we can see the distortion that the rule incurs. We could have gotten a utility of =
<
·

<(1−W)+W
W

by choosing 0∗, but instead, we got the expected utility of the following

E0∼5 ( ®d,2) [sw(0)] ≤
1
<
sw(0∗) + < − 1

<
· =
<

=
1
<
· =
<
· <(1 − W) + W

W
+ < − 1

<
· =
<

= =

(
<(1 − W) + W + (< − 1)W

<2W

)
=

=

W<
,

and so the distortion is at least:

distknap(5 , ®d, 2) =
sw(0∗)

E0∼5 ( ®d,2) [sw(0)]

≥
=
<
· <(1−Wmin)+Wmin

Wmin
=

Wmin<

=<(1 − Wmin) + Wmin.

�

H.7.2 Knapsack for Committee Selection

We can improve the analysis of the knapsack voting when all alternatives have the same cost.

Theorem H.7.1. We can get a distortion of 1 + <
2 +

1−Wmin
Wmin

<2
in the deterministic knapsack setting

for</2-multiwinner elections (or equivalently when 20 =
2
<
for all 0 ∈ �).
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Proof. Recall the notation used in the proof of Theorem 13.5.8. For any subset of alternatives
( ⊆ �, let =( :=

∑
8∈# I(( ⊆ d8) be the number of voters whose knapsack set contains ( . We use

shorthand =0 := ={0} and =0,1 := ={0,1} for all 0,1 ∈ �. Then, informally, =0,1 is the number of
voters who vote for both 0 and 1.

The voting rule we will use is as follows: assign a plurality score to each alternative, where the
score is simply the number of times each alternative appears.

Pick the</2 alternatives with the largest plurality score,�. Indeed, every alternative can appear
at most = times, as every voter can vote for them only once. Therefore, in the worst case, if the
top</2− 1 alternatives appear = times there must remain =</2−=(</2− 1) = = appearances of
other alternatives. By the pigeonhole principle from here, the remaining plurality winner must
be chosen =/(</2+ 1) > =/< times. Thus, the minimum number of times a plurality winner can
appear is =/<.

Moreover, because =0 > =1 for all 0 ∈ � and 1 ∉ �, and
∑
0∈� =0 +

∑
1∉� =1 = <=/2, we get that

2
∑
0∈� =0 ≥ <=/2 and so

∑
0∈� =0 ≥ <=/4.

Then, let �∗ be the optimal set of alternatives. Note then that:

sw(�∗,* )
sw(�,* ) =

∑
0∗∈�∗ sw(0∗,* )∑
0∈� sw(0,* )

=

∑
0∗∈�∗∩� sw(0∗,* )∑

0∈� sw(0,* )
+

∑
0∗∈�∗\� sw(0∗,* )∑
0∈� sw(0,* )

≤ 1 +
∑

0∗∈�∗\�

sw(0∗,* )∑
0∈� sw(0,* )

. (H.1)

We will show that for all 0∗ ∈ �∗ \�, there exists some 0 ∈ � such that:

sw(0∗)
sw(0) ≤ 21 − Wmin

Wmin
< + 1,

by considering two cases:

1. Suppose that for all 0∗ ∈ �∗ \ �, there exists some 0 ∈ � such that =0,0∗/=0 ≤ 1/2. Then,
=0 − =0,0∗ ≥ =0/2 ≥ =/2<. Therefore, by Lemma 13.2.1:

sw(0∗)
sw(0) ≤ 21 − Wmin

Wmin
< + 1.

2. Suppose that for some0∗ ∈ �∗\�, and for all0 ∈ �,=0,0∗/=0 > 1/2. Let0max = argmax0∈� =0
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and 0min = argmin0∈� =0 . Then, in particular,

=0max < 2=0max,0∗

≤ 2=0∗
≤ 2=0min,

where the last equality holds because 0min is a plurality winner, and 0∗ isn’t

Since (</2)=0max ≥
∑
0∈� =0 ≥ =</4, =0max ≥ =/2 and so =0min ≥ =/4. Therefore, we can

improve the lower bound for plurality winners: for all 0 ∈ �, =0 ≥ =/4.

By Lemma H.7.2 below, we know that for all 0∗ ∈ �∗ \�, there exists some 0 ∈ � such that
=0,0∗/=0 ≤ (< − 2)/<. Therefore, =0 − =0,0∗ ≥ 2=0/< ≥ =/2<. Thus, by Lemma 13.2.1 in
[134]:

sw(0∗)
sw(0) ≤ 21 − Wmin

Wmin
< + 1.

From here we can prove an <2 bound easily by taking 0∗max = argmax0∗∈�∗sw(0∗,* ). Then,
continuing o� of (H.1), and using the fact that there exists some 0̂ ∈ � such that sw(0∗max,* )

sw(0̂,* ) ≤
21−Wmin
Wmin

< + 1:

sw(�∗,* )
sw(�,* ) ≤ 1 + <2 ·

sw(0∗max,* )∑
0∈� sw(0,* )

≤ 1 + <2 ·
sw(0∗max,* )
sw(0̂,* )

≤ 1 + 1 − Wmin
Wmin

<2 + <2 ,

as claimed! �

Lemma H.7.2. When �∗ is the optimal subset and � is the subset chosen by the repeated plurality

rule, for all 0∗ ∈ �∗ \�, there exists some 0 ∈ � such that:

# (0, 0∗)
# (0) ≤ (< − 2)/<.

Proof. Note that
∑
0∈� # (0, 0∗) is the number of times a voter votes for some alternative and 0∗.

Each voter can vote for at most</2 alternatives. Since there are then at most</2−1 alternatives
in � that any voter who votes for 0∗ could have voted for:∑

0∈�
# (0, 0∗) ≤ # (0∗) (</2 − 1) ≤ # (0∗) · < − 22 .
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From here, let 0min = argmin0∈�# (0, 0∗). Then, substituting this into the inequality above, and
using that |�| = <

2 :
<

2 # (0min, 0
∗) ≤ # (0∗) · < − 22 .

Since # (0∗) ≤ # (0min) as 0∗ is not in � and therefore must occur at most as many times as any
plurality winner,

<

2 # (0min, 0
∗) ≤ # (0min) ·

< − 2
2 ,

and so �nally
# (0min, 0

∗)
# (0min)

≤ < − 2
<

,

as desired! �
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