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Abstract
Advances in neural rendering techniques have led to significant progress towards

photo-realistic novel view synthesis. When combined with increases in data pro-
cessing and compute capability, this promises to unlock numerous VR applications,
including virtual telepresence, search and rescue, and autonomous driving. Large-
scale virtual reality, long the domain of science fiction [31, 62], feels markedly more
tangible.

This thesis explores the frontier of large-scale neural rendering by building upon
Neural Radiance Fields (NeRFs) [118], a family of methods attracting attention due
to their state-of-the-art rendering quality and conceptual simplicity. Since its incep-
tion, at least 3,000 papers have been proposed in less than three years by research
groups across the world across numerous use cases [135]. However, many short-
comings remain. The first is scale itself. Only a handful of existing methods capture
scenes larger than a single object or room. Those that do only handle static recon-
struction, which limits their applicability. Another is speed, as rendering falls below
interactive thresholds. Current acceleration methods remain too slow or degrade
quality at high resolution. Quality is a third issue, as NeRF assumes ideal viewpoint
conditions that are unrealistic in practice and degrades when they are violated.

We first explore scaling within the context of static reconstruction. We design a
sparse network structure that specializes parameters to different regions of the scene
that can be trained in parallel, allowing us to scale linearly as we increase model ca-
pacity (vs quadratically in the original NeRF), and reconstruct urban-scale environ-
ments orders of magnitude larger than prior work. We then address dynamic recon-
struction of entire cities, and build the largest dynamic NeRF representation to date.
To accelerate rendering, we improve sampling efficiency through a hybrid surface-
volume representation that encourages the model to represent as much of the world
as possible through surfaces (which require few samples per ray) while maintaining
the freedom to render transparency and finer details (which pure surface representa-
tions struggle to capture). We finally propose a fast anti-aliasing method that greatly
improves rendering quality when training with data collected from freeform camera
trajectories. Importantly, our method incurs a minimal performance overhead and is
compatible with the scale and speed improvements previously mentioned.
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Chapter 1

Introduction

1.1 Background

Recent technological advancements have brought the promise of virtual reality and creation of
large-scale virtual worlds, long the domain of science fiction [31, 62], closer than ever into our
everyday lives. Although many challenges remain ahead of world-scale VR, current develop-
ments are already making a notable near-term impact across numerous industries. As skilled
trade workers depart the workforce in unprecedented numbers, virtual training is becoming an
increasingly attractive solution to reskilling the workforce relative to on-the-job training that is
often ineffective due to time and resource constraints [3, 7, 10]. The imminent introduction of
photo-realistic virtual avatars, such as those developed by Meta [4], promises to revolutionize our
social interactions and the future of remote work. As autonomous vehicles expand their com-
mercial footprint [11], closed-loop simulators that mimic complex environmental interactions in
high fidelity are increasingly essential to training adequately robust agents [9, 207].

Amongst the many research efforts needed to advance the frontier of virtual reality, includ-
ing the hardware design of ergonomic headsets, accurate tracking systems, and realistic haptic
feedback, the task of efficiently rendering photo-realistic virtual worlds is a long-standing prob-
lem. Classical rendering pipelines achieve photo-realism either via painstakingly hand-crafted
scene assets, which introduces expensive and tedious manual work from artists as a bottleneck,
or through the estimation of various model parameters (camera, geometry, material and light
properties) from real-world data, also known as inverse rendering [38, 39, 69, 97, 112]. The pre-
defined physical models used in classical inverse rendering often struggle to accurately reproduce
the full complexity of real-world physical interactions due to mathematical and computational
constraints.

As an alternative to classical rendering, which projects 3D content onto 2D images, image-
based rendering methods generate novel views by transforming a reference set of images, typi-
cally by warping input pixels into a novel view based on projected geometry and camera poses [34,
158]. Although these approaches can generate high-quality renderings, they often require closely
sampled input images, which severely limits their applicability to large-scale environments [133].

More recently, the advent of neural rendering [172], an emerging field that uses neural net-
works to generate controllable, high-quality scene representations from input images and videos,
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RGB Static Dynamic

Depth Instances Flow

Figure 1.1: Applications. Current virtual world applications include walkthrough VR and virtual
telepresence [200] (left), closed-loop simulations for autonomous driving across different scene
decompositions and modalities [179] (top right), and virtual training of maintenance workflows
in the energy industry [5] (bottom right).

has seen considerable research activity. Numerous neural rendering approach address the prob-
lem of novel view synthesis [43, 122, 159], of which Neural Radiance Fields (NeRFs) [118] has
emerged as the new state-of-the-art method due to their state-of-the-art rendering quality, ease
of training, and conceptual simplicity. Since their introduction in 2020, over 3,000 follow-up
works has been proposed [135] from research groups around the world targeting various ap-
plications including robotics [84, 211, 212], astronomy [93], tomography [147], and content
creation [101, 132]. A natural question thus emerges - can NeRFs help facilitate the construction
of large-scale virtual worlds?

1.2 Challenges

Although NeRFs can generate photo-realistic renderings under ideal conditions, several chal-
lenges limit their suitability when rendering virtual worlds, which we group along three principal
axes:

Scale. The original NeRF [118] concerns itself with single-object or forward-facing scenes,
and the vast majority of follow-up works limit their scope to object-scale or room-scale captures.
The few larger-scale variants currently proposed [141, 167, 197] handle only static captures,
which limits their applicability to real-world use cases.

Speed. Conventional NeRF rendering is very slow to render, taking minutes to generate a
single 1080p image. This is far too slow for interactivity - conventional virtual-reality head-
sets such as the Meta Quest 2 require rendering at 2K×2K resolution at over 36 FPS to achieve
acceptable user latency. Accelerated NeRF variants such as Instant-NGP [120], TensoRF [26],
K-Planes [50], and Nerfacto [168] significantly improve rendering speed, but still reach <5 FPS
at 2K×2K resolution. Other methods achieve higher frame-rates by precomputing model out-
puts [28, 58, 68, 216] or via fewer model queries per pixel [65, 91, 121, 131], but noticeably
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degrade rendering quality.
Quality. NeRF methods often assume constraints that are unrealistic for real-world captures,

such as entirely static scenes (with static lighting), and only observing objects from a roughly
constant camera distance [16]. Furthermore, as NeRF methods are usually optimized on a per-
scene basis, they are unable to hallucinate accurate geometry in under-observed regions. This
is especially problematic within large-scale dynamic worlds where it is impossible to densely
sample every location at every time step.

1.3 Contributions

Static Reconstruction of City Blocks
(Chapter 2)

Dynamic City-Scale Reconstruction
(Chapter 3)

Real-Time Rendering at VR Resolution
(Chapter 4)

Fast Anti-Aliasing for Neural Radiance Fields
(Chapter 5)

Figure 1.2: Thesis contributions. We build upon NeRF and design methods suitable for city-
scale neural rendering. We explore how to scale neural representations, first to build static re-
constructions of city blocks (Chapter 2), and then to generate dynamic represntations of entire
cities (Chapter 3). We then enable real-time rendering at VR resolution in Chapter 4. We finally
improve rendering quality via a fast anti-aliasing method in Chapter 5.

This thesis aims to develop methods that address NeRF’s shortcomings along scale, speed,
and quality, thus facilitating their suitability towards city-scale neural rendering.
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Figure 1.3: Data parallelism for scalable training. Mega-NeRF [178] decomposes a scene
into a set of spatial cells (left), learning a separate NeRF submodule for each in parallel. It
trains each submodule via a geometric clustering algorithm that only makes use of pixels whose
rays intersect that spatial cell (top right). For example, pixels from image 2 are added to the
trainset of cells A, B, and F, reducing the size of each training set by 10×. To render new views,
Mega-NeRF makes use of standard raycasting and point sampling, but queries the encompassing
submodule for each sampled point (bottom right). It also makes use of temporal coherence by
caching occupancy and color values from nearby previous views to accelerate rendering by 40×
relative to the original NeRF.

1.3.1 Static Reconstruction of City Blocks

We begin by extending NeRFs from single-object or room-scale settings to modeling buildings or
entire city blocks, which requires increasing model capacity as the scene footprint increases. The
original NeRF encodes the scene representation into a monolithic MLP, which causes training
and rendering time to increase quadratically as model capacity increases.

Mega-NeRF [178] instead proposes using spatial partitioning to enable data parallelism for
scalable training (Fig. 1.3). It introduces a sparse network structure that scales linearly with
model capacity, where parameters are specialized to different regions of the scene, and a simple
geometric clustering algorithm that partitions training pixels into different NeRF submodules
that can be trained in parallel. Mega-NeRF further exploits spatial locality at render time to
implement a just-in-time visualization technique that renders 40× faster than conventional NeRF
raycasting, facilitating interactive fly-throughs of captured environments. We evaluate Mega-
NeRF on existing datasets [32, 103] along with our publicly released Mill 19 dataset (now used
across the research community [83, 98, 102, 116, 202, 226]) and measure a 3× speedup in
training time and a 12% PSNR improvement on average.
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1.3.2 Dynamic City-Scale Reconstruction

RGB Static Dynamic

Depth Instances Flow

Figure 1.4: Open-world reconstructions of dynamic cities. SUDS [179] scales neural recon-
structions to city scale by dividing the area into multiple cells and training hash table represen-
tations for each. We show the full city-scale reconstruction (left) and the derived representations
(right). Unlike prior methods, SUDS handles dynamism across multiple videos, disentangling
dynamic objects from static background and modeling shadow effects. SUDS uses unlabeled
inputs to learn scene flow and semantic predictions, enabling category- and object-level scene
manipulation.

We then extend neural radiance fields to dynamic large-scale urban scenes, and expand our
geospatial footprint from city blocks to entire cities. Prior large-scale NeRF works [116, 141,
167, 197, 202], including Mega-NeRF [178], target purely static captures. Existing dynamic
NeRF methods [41, 55, 90, 96, 126, 196] only operate on short video sequences (<1 minute)
and have memory requirements that scale on a per-frame and/or per-object basis, which quickly
becomes prohibitive. They also often require supervision via 3D bounding boxes and panoptic
labels, obtained manually or via category-specific models, which are expensive to reliably obtain
at scale in the wild.

SUDS [179] introduces two key innovations as a step towards truly open-world reconstruc-
tions of dynamic cities: (a) it factorizes the scene into three separate hash table data struc-
tures [120] (which are quicker to train and render than MLPs used by previous NeRF methods)
to efficiently encode static, dynamic, and far-field radiance fields, and (b) it makes use of unla-
beled target signals consisting of RGB images, sparse LiDAR, off-the-shelf self-supervised 2D
descriptors, and 2D optical flow. These unlabeled annotations are far easier to reliably at scale
relative to accurate 3D bounding boxes and/or panoptic segmentations, and enable SUDS to de-
compose dynamic scenes into the static background, individual objects, and their motions via
photometric, geometric, and feature-metric reconstruction losses (Fig. 1.4).

We evaluate SUDS against autonomous driving logs collected across the city of Pittsburgh.
Both the scale and the nature of this data is far more challenging than drone-collected datasets [103,
178] that are commonly used to evaluate other large-scale NeRF methods, which are largely
static and captured over the course of several hours. In contrast, this street-level footage spans
months/years, contains numerous moving vehicles and pedestrians, and is inconsistent in ar-
eas covered by overlapping logs due to transient parked cars and differing seasons and weather
conditions. We show that SUDS can be scaled to tens of thousands of objects across 1.2 mil-
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lion frames from 1700 videos spanning geospatial footprints of hundreds of kilometers, (to our
knowledge) the largest dynamic NeRF built to date.

1.3.3 Real-Time Rendering at VR Resolution

RGB Surfaceness
NeRF

(≈40 samples / ray)
HybridNeRF

(≈8 samples / ray)

Figure 1.5: Adaptive volumetric surfaces. HybridNeRF [181] trains a hybrid surface–volume
representation via surfaceness parameters that allow it to render most of the scene with few
samples. Eikonal loss is tracked during training as surfaceness increases to avoid degrading
quality near fine and translucent structures (such as wires). In the two right-most panels, we
visualize the number of samples per ray (brighter is higher).

After constructing methods that allow us to efficiently train neural scene representations at
scale, we explore how to efficiently render our trained representations. We specifically target
real-time rendering at virtual-reality resolutions, which we define to be above 36 FPS at 2K×2K
resolution.

Although both Mega-NeRF [178] and SUDS [179] render faster than the original NeRF, they
remain below the required threshold for virtual reality, as do other popular accelerated NeRF
variants such as Instant-NGP [120], TensoRF [26], K-Planes [50], and Nerfacto [168]. Other
methods do achieve acceptable speed by precomputing model outputs into a finite-resolution
caching structure such as an octree [28, 58, 68, 216], by improving NeRF’s sample efficiency [65,
91, 121, 131], or via rasterization-based techniques [81, 209], but significantly degrade rendering
quality.

HybridNeRF [181] builds upon NeRF’s raycasting paradigm and achieves real-time frame-
rates without degrading quality. We start from the observation that NeRF’s volume render-
ing method, which represents everything as volumes that can require many model queries per
ray/pixel, is computationally expensive and often unnecessary since most of the world can in-
stead be efficiently defined via surfaces (requiring as little as one sample per ray at the limit).
Signed distance functions (SDFs), which were originally proposed to improve the geometry qual-
ity of NeRFs via regularization [125, 185, 208], can therefore also be used to dramatically in-
crease efficiency by requiring fewer samples per ray. However, they often struggle to reconstruct
scenes with thin structures or view-dependent effects, such as reflections and translucency. Hy-
bridNeRF’s key innovation is to define a locally varying surfaceness parameter that allows it
to model most (>95%) of the scene as thin surfaces (needing few samples) while using with
more samples near fine and semi-opaque structures (and therefore maintain a high level of visual
fidelity) (Fig. 1.5).
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We evaluate HybridNeRF against the challenging Eyeful Tower dataset [200], designed for
walkthrough virtual reality, along with other commonly used view synthesis datasets. When
comparing to state-of-the-art baselines, including recent rasterization-based approaches [81], we
improve error rates by 15–30% while rendering over 36 FPS at 2K×2K resolution.

1.3.4 Fast Anti-Aliasing for Neural Radiance Fields

(a) NeRF (b) Mip-NeRF

(c) Grid Methods (eg: iNGP) (d) PyNeRF

Figure 1.6: Comparison of rendering methods. (a) NeRF [118] traces a ray from the camera’s
center of projection through each pixel and samples points x along each ray. Sample locations
are then encoded with a positional encoding to produce a feature γ(x) that is fed into an MLP.
(b) Mip-NeRF [16] instead reasons about volumes by defining a 3D conical frustum per camera
pixel. It splits the frustum into sampled volumes, approximates them as multivariate Gaussians,
and computes the integral of the positional encodings of the coordinates contained within the
Gaussians. Similar to NeRF, these features are then fed into an MLP. (c) Accelerated NeRF
methods, such as iNGP [120], sample points as in NeRF, but do not use positional encoding and
instead featurize each point by interpolating between vertices in a feature grid. These features
are then passed into a much smaller MLP, which greatly accelerates training and rendering. (d)
PyNeRF [180] also uses feature grids, but reasons about volumes by training separate models at
different scales (similar to a mipmap). It calculates the area covered by each sample in world
coordinates, queries the models at the closest corresponding resolutions, and interpolates their
outputs.

We finally investigate how to improve the rendering quality of our representations. As our
goal is to efficiently render large-scale virtual worlds, we explore solutions that are compatible
with the scaling and speed improvements described in previous chapters.
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We adress aliasing that occurs when training and rendering with freeform camera trajectories.
Most NeRF methods assume that training and test-time cameras capture scene content from a
roughly constant distance. They degrade and render blurry views and aliasing artifacts in less
constrained settings. This is because NeRF raycasting is scale-unaware - it samples points along
an infinitesimally thin ray and does not consider the area viewed by each pixel.

As a solution, Mip-NeRF [16] proposes to reason about the volume of the conical frustum
defined by a camera pixel. It leverages this insight to derive the approximate integral of all
NeRF-encoded coordinates contained within the conical frustum. However, this integral is only
valid for methods that apply positional encoding [118] to model inputs as in the original NeRF;
most accelerated NeRF methods (including SUDS [179] and HybridNeRF [181]) do not. Zip-
NeRF [18] also reasons about the volume of the conical frustum, but instead uses a multisampling
strategy within the volume. This strategy is compatible with accelerated NeRF methods, but
training and rendering speed decreases with the number of additional samples.

PyNeRF [180] takes inspiration from mipmaps [192] used in classical image processing and
proposes a simple modification by training a pyramid of NeRFs that divide the scene at different
spatial resolutions. Similar to Mip-NeRF, PyNeRF samples volumes within conical frustums - it
then simply maps larger volumes to coarser NeRFs and finer volumes to finer NeRFs (Fig. 1.6).

This strategy can be easily applied to most existing accelerated NeRF methods and signif-
icantly improves rendering quality (reducing error rates by 20–90% across synthetic and un-
bounded real-world scenes) while incurring minimal performance overhead (as each individual
NeRF in the pyramid is quick to evaluate). Compared to Mip-NeRF, it reduces error rates by
20% while training over 60× faster.

1.3.5 Excluded Research
Some of the research works that I have contributed to during my PhD are excluded from this
thesis, which include other contributions within the neural rendering space and the broader design
of scalable, efficient machine learning systems:

1. SplatGym: Reconstruction of Dynamic Urban Scenes using 3D Gaussians and Simu-
lation of Actors
Arun Balajee Vasudevan, Neehar Peri, Haithem Turki, Johan Vertens, Shubham Tulsiani,
Deva Ramanan
In submission

2. SpecNeRF: Gaussian Directional Encoding for Specular Reflections [111]
Li Ma, Vasu Agrawal, Haithem Turki, Changil Kim, Chen Gao, Pedro V. Sander, Michael
Zollhöfer, Christian Richardt
Conference on Computer Vision and Pattern Recognition (CVPR), 2024

3. Low-Bandwidth Self-Improving Transmission of Rare Training Data [61]
Shilpa George, Haithem Turki, Ziqiang Feng, Deva Ramanan, Padmanabhan Pillai, Ma-
hadev Satyanarayanan
Conference on Mobile Computing and Networking (MobiCom), 2023

4. Accelerating Silent Witness Storage [153]
Mahadev Satyanarayanan, Ziqiang Feng, Shilpa George, Jan Harkes, Roger Iyengar, Haithem
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Turki, Padmanabhan Pillai
IEEE Micro, 2022

5. OpenRTiST: End-to-End Benchmarking for Edge Computing [60]
Shilpa George, Thomas Eiszler, Roger Iyengar, Haithem Turki, Ziqiang Feng, Junjue
Wang, Padmanabhan Pillai, Mahadev Satyanarayanan
IEEE Pervasive Computing, 2020

6. Edge Computing for Legacy Applications [152]
Mahadev Satyanarayanan, Thomas Eiszler, Jan Harkes, Haithem Turki, Ziqiang Feng
IEEE Pervasive Computing, 2020
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Chapter 2

Static Reconstruction of City Blocks
The contents of this chapter were published as “Mega-NeRF: Scalable Construction of Large-Scale
NeRFs for Virtual Fly-Throughs” in CVPR 2022
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Figure 2.1: We scale neural reconstructions to massive urban scenes 1000× larger than prior
work. To do so, Mega-NeRF [178] decomposes a scene into a set of spatial cells (left), learning
a separate NeRF submodule for each. We train each submodule with geometry-aware pixel-data
partitioning, making use of only those pixels whose rays intersect that spatial cell (top right).
For example, pixels from image 2 are added to the trainset of cells A, B, and F, reducing the
size of each trainset by 10×. To generate new views for virtual fly-throughs, we make use of
standard raycasting and point sampling, but query the encompassing submodule for each sampled
point (bottom right). To ensure view generation is near-interactive, we make use of temporal
coherence by caching occupancy and color values from nearby previous views (Fig. 2.4).
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2.1 Introduction
We first explore the scalability of NeRFs in static settings. The vast majority of existing methods
explore single-object scenes, often captured indoors or from synthetic data. To our knowledge,
Tanks and Temples [88] is the largest dataset used in NeRF evaluation, spanning 463 m2 on
average. In this work, we scale NeRFs to capture and interactively visualize urban-scale envi-
ronments from drone footage that is orders of magnitude larger than any dataset to date, from
150,000 to over 1,300,000 m2 per scene.

Search and Rescue. As a motivating use case, consider search-and-rescue, where drones
provide an inexpensive means of quickly surveying an area and prioritizing limited first responder
resources (e.g., for ground team deployment). Because battery life and bandwidth limits the
ability to capture sufficiently detailed footage in real-time [44], collected footage is typically
reconstructed into 2D “birds-eye-view” maps that support post-hoc analysis [191]. We imagine
a future in which neural rendering lifts this analysis into 3D, enabling response teams to inspect
the field as if they were flying a drone in real-time at a level of detail far beyond the achievable
with classic Structure-from-Motion (SfM).

Challenges. Within this setting, we encounter multiple challenges. Firstly, applications
such as search-and-rescue are time-sensitive. According to the National Search and Rescue
Plan [2], “the life expectancy of an injured survivor decreases as much as 80 percent during the
first 24 hours, while the chances of survival of uninjured survivors rapidly diminishes after the
first 3 days.” The ability to train a usable model within a few hours would therefore be highly
valuable. Secondly, as our datasets are orders of magnitude larger than previously evaluated
datasets (Table 2.1), model capacity must be significantly increased in order to ensure high visual
fidelity, further increasing training time. Finally, although interactive rendering is important for
fly-through and exploration at the scale we capture, existing real-time NeRF renderers either rely
on pretabulating outputs into a finite-resolution structure, which scales poorly and significantly
degrades rendering performance, or require excessive preprocessing time.

Mega-NeRF. In order to address these issues, we propose Mega-NeRF, a framework for
training large-scale 3D scenes that support interactive human-in-the-loop fly-throughs. We begin
by analyzing visibility statistics for large-scale scenes, as shown in Table 2.1. Because only a
small fraction of the training images are visible from any particular scene point, we introduce
a sparse network structure where parameters are specialized to different regions of the scene.
We introduce a simple geometric clustering algorithm that partitions training images (or rather
pixels) into different NeRF submodules that can be trained in parallel. We further exploit spa-
tial locality at render time to implement a just-in-time visualization technique that allows for
interactive fly-throughs of the captured environment.

Prior art. Our approach of using “multiple” NeRF submodules is closely inspired by the re-
cent work of DeRF [137] and KiloNeRF [139], which use similar insights to accelerate inference
(or rendering) of an existing, pre-trained NeRF. However, even obtaining a pre-trained NeRF
for our scene scales is essentially impossible with current training pipelines. We demonstrate
that modularity is vital for training, particularly when combined with an intelligent strategy for
“sharding” training data into the appropriate modules via geometric clustering.

Contributions. We propose a reformulation of the NeRF architecture that sparsifies layer
connections in a spatially-aware manner, facilitating efficiency improvements at training and
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Scene Captured
Resolution # Images # Pixels/Rays / Image

Synthetic NeRF - Chair 400 x 400 400 256,000,000 0.271
Synthetic NeRF - Drums 400 x 400 400 256,000,000 0.302
Synthetic NeRF - Ficus 400 x 400 400 256,000,000 0.582
Synthetic NeRF - Hotdog 400 x 400 400 256,000,000 0.375
Synthetic NeRF - Lego 400 x 400 400 256,000,000 0.205
Synthetic NeRF - Materials 400 x 400 400 256,000,000 0.379
Synthetic NeRF - Mic 400 x 400 400 256,000,000 0.518
Synthetic NeRF - Ship 400 x 400 400 256,000,000 0.483
T&T - Barn 1920 x 1080 384 796,262,400 0.135
T&T - Caterpillar 1920 x 1080 368 763,084,800 0.216
T&T - Family 1920 x 1080 152 315,187,200 0.284
T&T - Ignatius 1920 x 1080 263 545,356,800 0.476
T&T - Truck 1920 x 1080 250 518,400,000 0.225

Mill 19 - Building 4608 x 3456 1940 30,894,981,120 0.062
Mill 19 - Rubble 4608 x 3456 1678 26,722,566,144 0.050
Quad 6k 1708 x 1329 5147 11,574,265,679 0.010
UrbanScene3D - Residence 5472 x 3648 2582 51,541,512,192 0.059
UrbanScene3D - Sci-Art 4864 x 3648 3019 53,568,749,568 0.088
UrbanScene3D - Campus 5472 x 3648 5871 117,196,056,576 0.028

Table 2.1: Scene properties from the commonly used Synthetic NeRF and Tanks and Tem-
ples datasets (T&T) compared to our target datasets (below). Our targets contain an order-of-
magnitude more pixels (and hence rays) than prior work. Moreoever, each image captures signif-
icantly less of the scene, motivating a modular approach where spatially-localized submodules
are trained with a fraction of relevant image data.
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Resolution # Images # Pixels/Rays
Synthetic NeRF [118] 400 x 400 400 256,000,000
LLFF [117] 4032 x 3024 41 496,419,840
Light Field [220] 1280 x 720 214 195,910,200
Tanks and Temples [88] 1920 x 1080 283 587,658,240
Phototourism [78] 919 x 794 1708 1,149,113,846

Mill 19 4608 x 3456 1809 28,808,773,632
Quad 6k [32] 1708 x 1329 5147 11,574,265,679
UrbanScene3D [103] 5232 x 3648 3824 74,102,106,112

Table 2.2: Comparison of datasets commonly used in view synthesis (above) relative to those
evaluated in our work (below). We average the resolution, number of images, and total number
of pixels across each captured scene. We report statistics for Light Field and Tanks and Temples
using the splits in [223] and [216] respectively. For Phototourism we average across the scenes
used in [113].

rendering time. We then adapt the training process to exploit spatial locality and train the model
subweights in a fully parallelizable manner, leading to a 3× improvement in training speed while
exceeding the reconstruction quality of existing approaches. In conjunction, we evaluate existing
fast rendering approaches against our trained Mega-NeRF model and present a novel method
that exploits temporal coherence. Our technique requires minimal preprocessing, avoids the
finite resolution shortfalls of other renderers, and maintains a high level of visual fidelity. We
also present a new large-scale dataset containing thousands of HD images gathered from drone
footage over 100,000 m2 of terrain near an industrial complex.

2.2 Related Work
Fast rendering. Conventional NeRF rendering falls well below interactive thresholds. Plenoc-
tree [216], SNeRG [68], and FastNeRF [58] speed up the process by storing precomputed non-
view dependent model outputs into a separate data structure such as a sparse voxel octree. These
renderers then bypass the original model entirely at render time by computing the final view-
dependent radiance through a separate smaller multi-layer perceptron (MLP) or through spheri-
cal basis computation. Although they achieve interactivity, they suffer from the finite capacity of
the caching structure and poorly capture low-level details at scale.

DeRF [137] decomposes the scene into multiple cells via spatial Voronoi partitioning. Each
cell is independently rendered using a smaller MLP, accelerating rendering by 3× over NeRF.
KiloNeRF [139] divides the scene into thousands of even smaller networks. Although similar in
spirit to Mega-NeRF, these methods use spatial partitioning to speed up inference while we use
it to enable data parallelism for scalable training. Both DeRF and KiloNERF are initialized with
a single large network trained on all data which is then distilled into smaller networks for fast
inference, increasing processing time by over 2× for KiloNeRF. Training on all available data is
prohibitive at our scale. Instead, our crucial insight is to geometrically partition training pixels
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Figure 2.2: Visualization of Mill 19 by Mega-NeRF. The top panel shows a high-level 3D ren-
dering of Mill 19 within our interactive visualizer. The bottom-left panel contains a ground truth
image captured by our drone. The following two panels illustrate the model reconstruction along
with the associated depth map.
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into small data shards relevant for each submodule, which is essential for efficient training and
high accuracy.

DONeRF [121] accelerates rendering by significantly reducing the number of samples queried
per ray. To maintain quality, these samples are placed more closely around the first surface the
ray intersects, similar to our guided sampling approach described in Sec. 2.3.3. In contrast to our
method, DONeRF uses a separate depth oracle network trained against ground truth depth data.

Unbounded scenes. Although most NeRF-related work targets indoor areas, NeRF++ [223]
handles unbounded environments by partitioning the space into a unit sphere foreground region
that encloses all camera poses and a background region that covers the inverted sphere com-
plement. A separate MLP model represents each area and performs ray casting independently
before a final composition. Mega-NeRF employs a similar foreground/background partitioning
although we further constrain our foreground and sampling bounds as described in Sec. 2.3.1.

NeRF in the Wild [113] augments NeRF’s model with an additional transient head and
learned per-image embeddings to better explain lighting differences and transient occlusions
across images. Although it does not explicitly target unbounded scenes, it achieves impressive
results against outdoor sequences in the Phototourism [78] dataset. We adopt similar appearance
embeddings for Mega-NeRF and quantify its impact in Sec. 2.4.2.

Concurrent to us, Urban Radiance Fields [141] (URF), BungeeNeRF [197], and BlockN-
eRF [167] target urban-scale environments. URF makes use of lidar inputs, while CityNeRF
makes use of multi-scale data modeling. Both methods can be seen as complementary to our
approach, implying combining them with Mega-NeRF is promising. Most related to us is Block-
NeRF [167], which decomposes a scene into spatial cells of fixed city blocks. Mega-NeRF makes
use of geometry visibility reasoning to decompose the set of training pixels, allowing for pixels
captured from far-away cameras to still influence a spatial cell (Fig. 4.1).

Training speed. Several works speed up model training by incorporating priors learned from
similar datasets. PixelNeRF [215], IBRNet [186], and GRF [174] condition NeRF on predicted
image features while Tancik et al. [166] use meta-learning to find good initial weight parameters
that converge quickly. We view these efforts as complementary to ours.

Graphics. We note longstanding efforts within the graphics community covering interactive
walkthroughs. Similar to our spatial partioning, Teller and Séquin [171] subdivide a scene into
cells to filter out irrelevant geometry and speed up rendering. Funkhouser and Séquin [52] sep-
arately describe an adaptive display algorithm that iteratively adjusts image quality to achieve
interactive frame rates within complex virtual environments. Our renderer takes inspiration from
this gradual refinement approach.

Large-scale SfM. We take inspiration from previous large-scale reconstruction efforts based
on classical Structure-from-Motion (SfM), in particular Agarwal et al’s seminal “Building Rome
in a Day,” [13] which describes city-scale 3D reconstruction from internet-gathered data.

2.3 Approach

We first describe our model architecture in Sec. 2.3.1, then our training process in 2.3.2, and
finally propose a novel renderer that exploits temporal coherence in 2.3.3.
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2.3.1 Model Architecture

Background. We begin with a brief description of Neural Radiance Fields (NeRFs) [118].
NeRFs represent a scene within a continuous volumetric radiance field that captures both ge-
ometry and view-dependent appearance. NeRF encodes the scenes within the weights of a mul-
tilayer perceptron (MLP). At render time, NeRF projects a camera ray r for each image pixel
and samples along the ray. For a given point sample pi, NeRF queries the MLP at position
xi = (x, y, z) and ray viewing direction d = (d1, d2, d3) to obtain opacity and color values σi

and ci = (r, g, b). It then composites a color prediction Ĉ(r) for the ray using numerical quadra-
ture

∑N−1
i=0 Ti(1− exp(−σiδi)) ci, where Ti = exp(−

∑i−1
j=0 σjδj) and δi is the distance between

samples pi and pi+1. The training process optimizes the model by sampling batches R of im-
age pixels and minimizing the loss function

∑
r∈R

∥∥C(r)− Ĉ(r)
∥∥2. NeRF samples camera rays

through a two-stage hierarchical sampling process and uses positional encoding to better capture
high-frequency details. We refer the reader to the NeRF paper [118] for additional information.

Spatial partitioning. Mega-NeRF decomposes a scene into cells with centroids n∈N =
(nx, ny, nz) and initializes a corresponding set of model weights fn. Each weight submodule is
a sequence of fully connected layers similar to the NeRF architecture. Similar to NeRF in the
Wild [113], we associate an additional appearance embedding vector l(a) for each input image a
used to compute radiance. This allows Mega-NeRF additional flexibility in explaining lighting
differences across images which we found to be significant at the scale of the scenes that we
cover. At query time, Mega-NeRF produces an opacity σ and color c = (r, g, b) for a given
position x, direction d, and appearance embedding l(a) using the model weights fn closest to the
query point:

fn(x) = σ (2.1)

fn(x,d, l(a)) = c (2.2)

where n =n∈N
∥∥n− x

∥∥2 (2.3)

Centroid selection. Although we explored several methods, including k-means clustering
and uncertainty-based partitioning as in [205], we ultimately found that tessellating the scene
into a top-down 2D grid worked well in practice. This method is simple to implement, requires
minimal preprocessing, and enables efficient assignment of point queries to centroids at inference
time. As the variance in altitude between camera poses in our scenes is small relative to the
differences in latitude and longitude, we fix the height of the centroids to the same value.

Foreground and background decomposition. Similar to NeRF++ [223], we further subdi-
vide the scene into a foreground volume enclosing all camera poses and a background covering
the complementary area. Both volumes are modeled with separate Mega-NeRFs. We use the
same 4D outer volume parameterization and raycasting formulation as NeRF++ but improve
upon its unit sphere partitioning by instead using an ellipsoid that more tightly encloses the cam-
era poses and relevant foreground detail. We also take advantage of camera altitude measure-
ments to further refine the sampling bounds of the scene by terminating rays near ground level.
Mega-NeRF thus avoids needlessly querying underground regions and samples more efficiently.
Fig. 2.3 illustrates the differences between both approaches.
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NeRF++ Drone-NeRF

Figure 2.3: Ray Bounds. NeRF++ (left) samples within a unit sphere centered within and
enclosing all camera poses to render its foreground component and uses a different methodology
for the outer volume complement to efficiently render the background. Mega-NeRF (right)
uses a similar background parameterization but models the foreground as an ellipsoid to achieve
tighter bounds on the region of interest. It also uses camera altitude measurements to constrain
ray sampling and not query underground regions.

2.3.2 Training
Spatial Data Parallelism. As each Mega-NeRF submodule is a self-contained MLP, we can train
each in parallel with no inter-module communication. Crucially, as each image captures only a
small part of the scene (Table 2.1), we limit the size of each submodule’s trainset to only those
potentially relevant pixels. Specifically, we sample points along the camera ray corresponding
to each pixel for each training image, and add that pixel to the trainset for only those spatial
cells it intersects (Fig. 4.1). In our experiments, this visibility partitioning reduces the size of
each submodule’s trainset by 10× compared to the initial aggregate trainset. This data reduction
should be even more extreme for larger-scale scenes; when training a NeRF for North Pittsburgh,
one need not add pixels of South Pittsburgh. We include a small overlap factor between cells
(15% in our experiments) to further minimize visual artifacts near boundaries.

Spatial Data Pruning. Note that the initial assignment of pixels to spatial cells is based on
camera positions, irrespective of scene geometry (because that is not known at initialization).
Once NeRF gains a coarse understanding of the scene, one could further prune away irrelevant
pixels/rays that don’t contribute to a particular NeRF due to an intervening occluder. For exam-
ple, in Fig. 4.1, early NeRF optimization might infer a wall in cell F, implying that pixels from
image 2 can then be pruned from cell A and B. Our initial exploration found that this additional
visibility pruning further reduced trainset sizes by 2×. We provide details in Sec. 5.4.6.

2.3.3 Interactive Rendering
We propose a novel interactive rendering method in addition to an empirical evaluation of exist-
ing fast renderers on top of Mega-NeRF in Sec. 2.4.3. In order to satisfy our search-and-rescue
usecase, we attempt to: (a) preserve visual fidelity, (b) minimize any additional processing time
beyond training the base model, and (c) accelerate rendering, which takes over 2 minutes for a
720p frame with normal ray sampling, to something more manageable.

Caching. Most existing fast NeRF renderers make use of cached precomputation to speed
up rendering, which may not be effective at our scene scale. For example, Plenoctree [216]
precomputes a cache of opacity and spherical harmonic coefficients into a sparse voxel octree.
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(a) Fixed Octree (b) Dynamically Expanded Octree (c) Reused Octree (next frame)

Figure 2.4: Mega-NeRF-Dynamic. Current renderers (such as Plenoctree [216]) cache precom-
puted model outputs into a fixed octree, limiting the resolution of rendered images (a). Mega-
NeRF-Dynamic dynamically expands the octree based on the current position of the fly-through
(b). Because of the temporal coherence of camera views, the next-frame rendering (c) can reuse
of much of expanded octree.

Generating the entire 8-level octree for our scenes took an hour of computation and anywhere
from 1 to 12 GB of memory depending on the radiance format. Adding a single additional level
increased the processing time to 10 hours and the octree size to 55GB, beyond the capacity of all
but the largest GPUs.

Temporal coherence. We explore an orthogonal direction that exploits the temporal coher-
ence of interactive fly-throughs; once the information needed to render a given view is computed,
we reuse much of it for the next view. Similar to Plenoctree, we begin by precomputing a coarse
cache of opacity and color. In contrast to Plenoctree, we dynamically subdivide the tree through-
out the interactive visualization. Fig. 2.4 illustrates our approach. As the camera traverses the
scene, our renderer uses the cached outputs to quickly produce an initial view and then performs
additional rounds of model sampling to further refine the image, storing these new values into the
cache. As each subsequent frame has significant overlap with its predecessor, it benefits from the
previous refinement and needs to only perform a small amount of incremental work to maintain
quality.

Guided sampling. We perform a final round of guided ray sampling after refining the octree
to further improve rendering quality. We render rays in a single pass in contrast to NeRF’s
traditional two-stage hierachical sampling by using the weights stored in the octree structure. As
our refined octree gives us a high-quality estimate of the scene geometry, we need to place only a
small number of samples near surfaces of interest. Fig. 2.5 illustrates the difference between both
approaches. Similar to other fast renderers, we further accelerate the process by accumulating
transmittance along the ray and ending sampling after a certain threshold.

2.4 Experiments
Our evaluation of Mega-NeRF is motivated by the following two questions. First, given a finite
training budget, how accurately can Mega-NeRF capture a scene? Furthermore, after training, is
it possible to render accurately at scale while minimizing latency?
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Standard Hierachical Sampling Guided Sampling

Figure 2.5: Guided Sampling. Standard NeRF (left) first samples coarsely at uniform intervals
along the ray and subsequently performs another round of sampling guided by the coarse weights.
Mega-NeRF-Dynamic (right) uses its caching structure to skip empty spaces and take a small
number of samples near surfaces.

Qualitative results. We present two sets of qualitative results. Fig. 2.6 compares Mega-
NeRF’s reconstruction quality to existing view synthesis methods. In all cases Mega-NeRF cap-
tures a high level of detail while avoiding the numerous artifacts present in the other approaches.
Fig. 2.7 then illustrates the quality of existing fast renderers and our method on top of the same
base Mega-NeRF model. Our approach generates the highest quality reconstructions in almost
all cases, avoiding the pixelization of voxel-based renderers and the blurriness of KiloNeRF.

2.4.1 Evaluation protocols
Datasets. We evaluate Mega-NeRF against multiple varied datasets. Our Mill 19 dataset consists
of two scenes we recorded firsthand near a former industrial complex. Mill 19 - Building con-
sists of footage captured in a grid pattern across a large 500 × 250 m2 area around an industrial
building. Mill 19 - Rubble covers a nearby construction area full of debris in which we placed
human mannequins masquerading as survivors. We also measure Mega-NeRF against two pub-
licly available collections - the Quad 6k dataset [32], a large-scale Structure-from-Motion dataset
collected within the Cornell Universty Arts Quad, and several scenes from UrbanScene3D [103]
which contain high-resolution drone imagery of large-scale urban environments. We refine the
initial GPS-derived camera poses in the Mill 19 and UrbanScene3D datasets and the estimates
provided in the Quad 6k dataset using PixSFM [104]. We use a pretrained semantic segmenta-
tion model [47] to produce masks of common movable objects in the Quad 6k dataset and ignore
masked pixels during training.

Training. We evaluate Mega-NeRF with 8 submodules each consisting of 8 layers of 256
hidden units and a final fully connected ReLU layer of 128 channels. We use hierarchical sam-
pling during training with 256 coarse and 512 fine samples per ray in the foreground regions and
128/256 samples per ray in the background. In contrast to NeRF, we use the same MLP to query
both coarse and fine samples which reduces our model size and allows us to reuse the coarse
network outputs during the second rendering stage, saving 25% model queries per ray. We adopt
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Figure 2.6: Scalable training. Mega-NeRF generates the best reconstructions while avoiding
the artifacts present in the other approaches.
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Mill 19 - Building Mill 19 - Rubble Quad 6k
↑PSNR ↑SSIM ↓LPIPS ↓Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h)

NeRF [118] 19.54 0.525 0.512 59:51 21.14 0.522 0.546 60:21 16.75 0.559 0.616 62:48
NeRF++ [223] 19.48 0.520 0.514 89:02 20.90 0.519 0.548 90:42 16.73 0.560 0.611 90:34
SVS [142] 12.59 0.299 0.778 38:17 13.97 0.323 0.788 37:33 11.45 0.504 0.637 29:48
DeepView [48] 13.28 0.295 0.751 31:20 14.47 0.310 0.734 32:11 11.34 0.471 0.708 19:51
MVS [155] 16.45 0.451 0.545 32:29 18.59 0.478 0.532 31:42 11.81 0.425 0.594 18:55
Mega-NeRF 20.93 0.547 0.504 29:49 24.06 0.553 0.516 30:48 18.13 0.568 0.602 39:43

UrbanScene3D - Residence UrbanScene3D - Sci-Art UrbanScene3D - Campus
↑PSNR ↑SSIM ↓LPIPS ↓Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h) ↑PSNR ↑SSIM ↓LPIPS ↓Time(h)

NeRF [118] 19.01 0.593 0.488 62:40 20.70 0.727 0.418 60:15 21.83 0.521 0.630 61:56
NeRF++ [223] 18.99 0.586 0.493 90:48 20.83 0.755 0.393 95:00 21.81 0.520 0.630 93:50
SVS [142] 16.55 0.388 0.704 77:15 15.05 0.493 0.716 59:58 13.45 0.356 0.773 105:01
DeepView [48] 13.07 0.313 0.767 30:30 12.22 0.454 0.831 31:29 13.77 0.351 0.764 33:08
MVS [155] 17.18 0.532 0.429 69:07 14.38 0.499 0.672 73:24 16.51 0.382 0.581 96:01
Mega-NeRF 22.08 0.628 0.489 27:20 25.60 0.770 0.390 27:39 23.42 0.537 0.618 29:03

Table 2.3: Scalable training. We compare Mega-NeRF to NeRF [118], NeRF++ [223], Stable
View Synthesis (SVS) [142], DeepView [48], and dense multi-view stereo (MVS) reconstruc-
tions from COLMAP [155] after running each method to completion. Mega-NeRF consistently
outperforms the baselines even after allowing other approaches to train well beyond 24 hours.

mixed-precision training to further accelerate the process. We sample 1024 rays per batch and
use the Adam optimizer [87] with an initial learning rate of 5 × 10−4 decaying exponentially to
5 × 10−5. We employ the procedure described in [113] to finetune Mega-NeRF’s appearance
embeddings.

2.4.2 Scalable Training
Baselines. We evaluate Mega-NeRF against the original NeRF [118] architecture and NeRF++ [223].
We also evaluate our approach against Stable View Synthesis [142], an implementation of Deep-
View [48], and dense reconstructions from COLMAP [155], a traditional Multi-View Stereo
approach, as non-neural radiance field-based alternatives.

We use the same Pytorch-based framework and data loading infrastructure across all of NeRF
variants to disentangle training speed from implementation specifics. We also use mixed preci-
sion training and the same number of samples per ray across all variants. We provide each
implementation with the same amount of model capacity as Mega-NeRF by setting the MLP
width to 2048 units. We base our DeepView baseline on a publicly available implementation and
use the official Stable View Synthesis and COLMAP implementations.

Metrics. We report quantitative results based on PSNR, SSIM [187], and the VGG imple-
mentation of LPIPS [225]. We also report training times as measured on a single machine with
8 V100 GPUs.

Results. We run all methods to completion, training all NeRF-based methods for 500,000
iterations. We show results in Table 2.3 along with the time taken to finish training. Mega-NeRF
outperforms the baselines even after training the other approaches for longer periods.

2.4.3 Interactive Exploration
Baselines. We evaluate two existing fast renderers, Plenoctree [216] and KiloNeRF [139], in
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Figure 2.7: Interactive rendering. Plenoctree’s approach causes significant voxelization and
Plenoxel’s renderings are blurry. KiloNeRF’s results are crisper but capture less detail than
Mega-NeRF-Dynamic and contain numerous visual artifacts.

addition to our dynamic renderer. We base all renderers against the same Mega-NeRF model
trained in 2.4.2 with the exception of the Plenoctree method which is trained on a variant using
spherical harmonics. We accordingly label our rendering variants as Mega-NeRF-Plenoctree,
Mega-NeRF-KiloNeRF, and Mega-NeRF-Dynamic respectively. We measure traditional NeRF
rendering as an additional baseline, which we refer to as Mega-NeRF-Full, and Plenoxels [149]
which generates a sparse voxel structure similar to Plenoctree but with trilinear instead of nearest-
neighbor interpolation.

Implementation. We bound the maximum tree size used by Mega-NeRF-Dynamic accord-
ing available GPU memory and set it to 20M elements in our experiments. We track the number
of pixels visible from each node as we traverse the tree when rendering. We then subdivide the
top k (16,384) nodes with the most pixels. We observe maximum tree depths of roughly 12 in
practice. As we track which nodes contribute to which pixels, we also prune entries that have not
recently contributed in order to reclaim space whenever we hit capacity.

Metrics. We report the same perceptual metrics as in 2.4.2 and the time it takes to render a
720p image. We evaluate only foreground regions as Plenoctree and KiloNeRF assume bounded
scenes. We also report any additional time needed to generate any additional data structures
needed for rendering beyond the base model training time in the spirit of enabling fly-throughs
within a day. As our renderer presents an initial coarse voxel-based estimate before progressively
refining the image, we present an additional set of measurements, labeled as Mega-NeRF-Initial,
to quantify the quality and latency of the initial reconstruction.

Results. We list our results in Table 2.4. Although Mega-NeRF-Plenoctree renders most
quickly, voxelization has a large visual impact. Plenoxels provides better renderings but still suf-
fers from the same finite resolution shortfalls and is blurry relative to the NeRF-based methods.
Mega-NeRF-KiloNeRF comes close to interactivity at 1.1 FPS but still suffers from noticeable
visual artifacts. Its knowledge distillation and finetuning processes also require over a day of
additional processing. In contrast, Mega-NeRF-Dynamic remains within 0.8 db in PSNR of
normal NeRF rendering while providing a 40× speedup. Mega-NeRF-Plenoctree and Mega-
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best second-best Mill 19 Quad 6k UrbanScene3D
Preprocess Render Preprocess Render Preprocess Render

↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s)
Mega-NeRF-Plenoctree 16.27 0.430 0.621 1:26 0.031 13.88 0.589 0.427 1:33 0.010 16.41 0.498 0.530 1:07 0.025
Mega-NeRF-KiloNeRF 21.85 0.521 0.512 30:03 0.784 20.61 0.652 0.356 27:33 1.021 21.11 0.542 0.453 34:00 0.824
Mega-NeRF-Full 22.96 0.588 0.452 - 101 21.52 0.676 0.355 - 174 24.92 0.710 0.393 - 122
Plenoxels [149] 19.32 0.476 0.592 - 0.482 18.61 0.645 0.411 - 0.194 20.06 0.608 0.503 - 0.531

Mega-NeRF-Initial 17.41 0.447 0.570 1:08 0.235 14.30 0.585 0.386 1:31 0.214 17.22 0.527 0.506 1:10 0.221
Mega-NeRF-Dynamic 22.34 0.573 0.464 1:08 3.96 20.84 0.658 0.342 1:31 2.91 23.99 0.691 0.408 1:10 3.219

Table 2.4: Interactive rendering. We evaluate two existing fast renderers on top of our base
model, Mega-NeRF-Plenoctree and Mega-NeRF-KiloNeRF, relative to conventional rendering,
labeled as Mega-NeRF-Full, Plenoxels, and our novel renderer (below). Although PlenOctree
achieves a consistently high FPS, its reliance on a finite-resolution voxel structure causes per-
formance to degrade significantly. Our approach remains within 0.8 db in PSNR quality while
accelerating rendering by 40× relative to conventional ray sampling.

1 Submodule 4 Submodules
Train Render Train Render

↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s)
128 Channels 21.75 0.435 0.670 18:54 2.154 22.61 0.469 0.631 18:56 2.489
256 Channels 22.60 0.471 0.622 28:54 3.298 23.63 0.521 0.551 29:09 3.427
512 Channels 23.40 0.512 0.559 52:33 6.195 24.53 0.581 0.482 52:34 6.313

9 Submodules 16 Submodules
Train Render Train Render

↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s) ↑PSNR ↑SSIM ↓LPIPS Time (h) Time (s)
128 Channels 23.08 0.495 0.594 19:01 2.633 23.34 0.513 0.568 19:02 2.851
256 Channels 24.17 0.559 0.508 29:13 3.793 24.52 0.584 0.481 29:14 3.991
512 Channels 25.11 0.625 0.438 53:36 6.671 25.68 0.659 0.407 53:45 6.870

Table 2.5: Model scaling. We scale up Mega-NeRF with additional submodules (rows) and
increased channel count per submodule (columns). Scaling up both increases reconstruction
quality, but increasing channels significantly increases both training and rendering time (as mea-
sured for Mega-NeRF-Dynamic).

NeRF-Dynamic both take an hour to build similar octree structures.

2.4.4 Diagnostics

Scaling properties. We explore Mega-NeRF’s scaling properties against the Mill 19 - Rubble
dataset. We vary the total number of submodules and the number of channels per submodule
across 1, 4, 9, and 16 submodules and 128, 256, and 512 channels respectively. We summarize
our findings in Table 2.5. Increasing the model capacity along either dimension improves ren-
dering quality, as depicted in Fig. 2.8. However, although increasing the channel count severely
penalizes training and rendering speed, the number of submodules has less impact.

Data Pruning. Recall that the initial assignment of pixels to spatial cells is based on cam-
era positions, irrespective of scene geometry (because that is not known at initialization time).
However, Sec. 2.3.2 points out that one could repartition our training sets with additional 3D
knowledge. Intuitively, one can prune away irrelevant pixel/ray assignments that don’t contribute
to a particular NeRF submodule due to an intervening occluder (Fig. 2.9).
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Figure 2.8: Model scaling. Example rendering within our Mill 19 - Rubble dataset across dif-
ferent numbers of submodules (columns) and channels per submodule (rows). Mega-NeRF
generates increasingly photo-realistic renderings as capacity increases. Increasing the number
of submodules increases the overall model capacity with little impact to training and inference
time.
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Initial Assignment

After Pruning

Figure 2.9: Data pruning. The initial assignment of pixels to cells is based purely on camera
positions. We add each pixel to the training set of all cells it traverses, leading to overlap between
sets (top). After the model gains a 3D understanding of the scene, we can filter irrelevant pixels
by instead assigning pixels based on camera ray intersection with solid surfaces (bottom).

Mill 19 Quad 6k UrbanScene3D
↑PSNR ↑SSIM ↓LPIPS ↓Pixels ↑PSNR ↑SSIM ↓LPIPS ↓Pixels ↑PSNR ↑SSIM ↓LPIPS ↓Pixels

Original Data 22.50 0.550 0.511 0.211 18.13 0.568 0.602 0.390 23.65 0.644 0.500 0.270
Pruned Data 22.76 0.571 0.488 0.160 18.16 0.569 0.593 0.149 23.87 0.656 0.483 0.163

Table 2.6: Data pruning. The initial assignment of pixels to spatial cells is based purely on rays
emanating from camera centers, irrespective of scene geometry. However, once a rough Mega-
NeRF has been trained, coarse estimates of scene geometry can be used to prune irrelevant pixel
assignments. Doing so reduces the amount of training data for each submodule by up to 2×
while increasing accuracy for a fixed number of 500,000 iterations.

To explore this optimization, we further prune each data partition early into the training
process after the model gains a coarse 3D understanding of the scene (100,000 iterations in
our experiments). As directly querying depth information using conventional NeRF rendering
is prohibitive at our scale, we instead take inspiration from Plenoctree and tabulate the scene’s
model opacity values into a fixed resolution structure. We then calculate the intersection of each
training pixel’s camera ray against surfaces within the structure to generate new assignments. We
found that it took around 10 minutes to compute the model density values and 500ms per image
to generate the new assignments. We summarize our findings in Table 2.6.

Ablations. We compare Mega-NeRF to several ablations. Mega-NeRF-no-embed removes
the appearance embeddings from the model structure. Mega-NeRF-embed-only conversely adds
Mega-NeRF’s appearance embeddings to the base NeRF architecture. Mega-NeRF-no-bounds
uses NeRF++’s unit sphere background/foreground partitioning instead of our formulation de-
scribed in 2.3.1. Mega-NeRF-dense uses fully connected layers instead of spatially-aware sparse
connections. Mega-NeRF-joint uses the same model structure as Mega-NeRF but trains all sub-
modules jointly using the full dataset instead of using submodule-specific data partitions. We
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Mill 19 Quad 6k UrbanScene3D
↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

Mega-NeRF-no-embed 20.42 0.500 0.561 16.16 0.544 0.643 19.45 0.587 0.545
Mega-NeRF-embed-only 21.48 0.494 0.566 17.91 0.559 0.638 22.79 0.611 0.537
Mega-NeRF-no-bounds 22.14 0.534 0.522 18.02 0.565 0.616 23.42 0.636 0.511
Mega-NeRF-dense 21.63 0.504 0.551 17.94 0.562 0.627 22.44 0.605 0.558
Mega-NeRF-joint 21.10 0.490 0.574 17.43 0.560 0.616 21.45 0.595 0.567
Mega-NeRF 22.34 0.540 0.518 18.08 0.566 0.602 23.60 0.641 0.504

Table 2.7: Ablations. We compare Mega-NeRF to various ablations after 24 hours of training.
Each individual component contributes significantly to overall model performance.

limit training to 24 hours for expediency.
We present our results in Table 2.7. Both the appearance embeddings and the foreground/background

decomposition have a significant impact on model performance. Mega-NeRF also outperforms
both Mega-NeRF-dense and Mega-NeRF-joint, although Mega-NeRF-dense comes close in sev-
eral scenes. We however note that model sparsity accelerates rendering by 10× relative to fully-
connected MLPs and is therefore essential for acceptable performance.

2.5 Discussion
We present a modular approach for building NeRFs at previously unexplored scale. We introduce
a sparse and spatially aware network structure along with a simple geometric clustering algorithm
that partitions training pixels into different NeRF submodules which can be trained in parallel.
These modifications speed up training by over 3× while significantly improving reconstruction
quality. Our empirical evaluation of existing fast renderers on top of Mega-NeRF suggests that
questions remain as to how to best handle interactive NeRF-based rendering at scale. We ad-
vocate leveraging temporal smoothness to minimize redundant computation between views as a
valuable first step.

2.5.1 Limitations
Dynamic objects. We did not explicitly address dynamic scenes in this chapter, a relevant fac-
tor for many real-world use cases. Several NeRF-related efforts, including NR-NeRF [173],
Nerfies [127], NeRFlow [41], DynamicMVS [56], and Neural Scene Graphs [126] focus on dy-
namism, but are non-trivial to scale to large urban scenes. We discuss this further in Chapter 3.

Rendering speed. While the dynamic renderer avoids the pitfalls of existing fast NeRF
approaches, it does not reach the throughput needed for truly interactive applications. We revisit
rendering acceleration in Chapter 4.

Training speed. Although our training process is several factors quicker than previous
works, training time remains a significant bottleneck towards rapid model deployment. One
possible improvement is to use a more efficient representation than MLPs. We propose such a
representation in Chapter 3.

Pose accuracy. Pose accuracy is amongst the largest limiting factors to rendering quality.
The initial models we trained using raw camera poses collected from standard drone GPS and
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IMU sensors were extremely blurry. Although several efforts [30, 76, 100, 114, 189] attempt
to jointly optimize camera parameters during NeRF optimization, we found the results lack-
ing relative to using offline structure-from-motion based approaches as a preprocessing step. A
hardware-based alternative would be to use higher-accuracy RTK GPS modules when collecting
footage.
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Chapter 3

Dynamic City-Scale Reconstruction
The contents of this chapter were published as “SUDS: Scalable Urban Dynamic Scenes” in CVPR
2023

RGB Static Dynamic

Depth Instances Flow

Figure 3.1: SUDS [179]. We scale neural reconstructions to city scale by dividing the area into
multiple cells and training hash table representations for each. We show our full city-scale re-
construction (left) and the derived representations (right). Unlike prior methods, our approach
handles dynamism across multiple videos, disentangling dynamic objects from static background
and modeling shadow effects. We use unlabeled inputs to learn scene flow and semantic predic-
tions, enabling category- and object-level scene manipulation.

3.1 Introduction
Chapter 2 explores how to build static neighborhood-representations to enable virtual map recon-
struction and photorealistic fly-throughs. However, these maps remain static and frozen in time.
This makes capturing bustling human environments—complete with moving vehicles, pedestri-
ans, and objects—impossible, limiting the usefulness of the representation. We now focus on
how to best contruct dynamic representations of entire cities.

Challenges. One possible solution is a dynamic NeRF that conditions on time or warps a
canonical space with a time-dependent deformation [127]. However, reconstructing dynamic
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scenes is notoriously challenging because the problem is inherently under-constrained, particu-
larly when input data is constrained to limited viewpoints, as is typical from egocentric video
capture [57]. One attractive solution is to scale up reconstructions to many videos, perhaps col-
lected at different days (e.g., by an autonomous vehicle fleet). However, this creates additional
challenges in jointly modeling fixed geometry that holds for all time (such as buildings), geome-
try that is locally static but transient across the videos (such as a parked car), and geometry that
is truly dynamic (such as a moving person).

SUDS. In this paper, we propose SUDS: Scalable Urban Dynamic Scenes, a 4D representa-
tion that targets both scale and dynamism. Our key insight is twofold; (1) SUDS makes use of a
rich suite of informative but freely available input signals, such as LiDAR depth measurements
and optical flow. Other dynamic scene representations [90, 126] require supervised inputs such
as panoptic segmentation labels or bounding boxes, which are difficult to acquire with high ac-
curacy for our in-the-wild captures. (2) SUDS decomposes the world into 3 components: a static
branch that models stationary topography that is consistent across videos, a dynamic branch that
handles both transient (e.g., parked cars) and truly dynamic objects (e.g., pedestrians), and an
environment map that handles far-field objects and sky. We model each branch using a multi-
resolution hash table with scene partitioning, allowing SUDS to scale to an entire city spanning
over 100 km2.

Contributions. We make the following contributions: (1) to our knowledge, we build the first
large-scale dynamic NeRF, (2) we introduce a scalable three-branch hash table representation for
4D reconstruction, (3) we present state-of-the-art reconstruction on 3 different datasets. Finally,
(4) we showcase a variety of downstream tasks enabled by our representation, including free-
viewpoint synthesis, 3D scene flow estimation, and even unsupervised instance segmentation
and 3D cuboid detection.

3.2 Related Work
Below, we describe a non-exhaustive list of such approaches along axes relevant to our work.

Scale. The original NeRF operated with bounded scenes. NeRF++ [223] and mip-NeRF
360 [17] use non-linear scene parameterization to model unbounded scenes. However, scaling up
the size of the scene with a fixed size MLP leads to blurry details and training instability while the
cost of naively increasing the size of the MLP quickly becomes intractable. BungeeNeRF [197]
introduced a coarse-to-fine approach that progressively adds more capacity to the network repre-
sentation. Mega-NeRF (Chapter 2) and Block-NeRF [167] partition the scene spatially and train
separate NeRFs for each partition. To model appearance variation, they incorporate per-image
embeddings like NeRF-W [113]. Our approach similarly partitions the scene into sub-NeRFs,
making use of depth to improve partition efficiency and scaling over an area 200x larger than
Block-NeRF’s Alamo Square Dataset. Both of these methods work only on static scenes.

Dynamics. Neural 3D Video Synthesis [94] and Space-time Neural Irradiance Fields [196]
add time as an input to handle dynamic scenes. Similar to our work, NSFF [96], NeRFlow [41],
and DyNeRF [55] incorporate 2D optical flow input and warping-based regularization losses to
enforce plausible transitions between observed frames. Multiple methods [127, 128, 134, 173]
instead disentangle scenes into a canonical template and per-frame deformation field. BANMo [204]
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(a) Voxel Lookup

static hash(vl,s)

dynamic hash(vl,d)

(b) Indexing

d→
AvidF(t)→

d→

(cs, σs, ϕs)

(cd, σd, ϕd, ρd, st−1, st+1)

(c) MLP Evaluation

(c, σ, ϕ, st−1, st+1)

(d) Output Blending

Figure 3.2: Model Architecture. (a) For a given input coordinate, we find the surrounding vox-
els at L resolution levels for both the static and dynamic branches (far-field branch omitted for
clarity). (b) We assign indices to their corners by hashing based on position in the static branch
and position, time, and video id in the dynamic branch. We look up the feature vectors corre-
sponding to the corners and interpolate according to the relative position of the input coordinate
within the voxel. (c) We concatenate the result of each level, along with auxiliary inputs such as
viewing direction, and pass the resulting vector into an MLP to obtain per-branch color, density,
and feature logits along with scene flow and the shadow ratio. (d) We blend color, opacity, and
feature logits as the weighted sum of the branches.

further incorporates deformable shape models and canonical embeddings to train articulated 3D
models from multiple videos. These methods focus on single-object scenes, and all but [94] and
[204] use single video sequences.

While many of the previous works use segmentation data to factorize dynamic from static
objects, D2NeRF [195] does this automatically through regularization and explicitly handling
shadows. Neural Groundplans [157] uses synthetic data to do this decomposition from a single
image. We borrow some of these ideas and scale beyond synthetic and indoor scenes.

Object-centric approaches. Several approaches [77, 123, 126, 203, 217, 219] represent
scenes as the composition of per-object NeRF models and a background model. NSG [126]
is most similar to us as it also targets automotive data but cannot handle ego-motion as our
approach can. None of these methods target multi-video representations and are fundamentally
constrained by the memory required to represent each object, with NSG needing over 1TB of
memory to represent a 30 second video in our experience.

Semantics. Follow-up works have explored additional semantic outputs in addition to pre-
dicting color. Semantic-NeRF [227] adds an extra head to NeRF that predicts extra semantic
category logits for any 3D position. Panoptic-NeRF [51] and Panoptic Neural Fields [90] extend
this to produce panoptic segmentations and the latter uses a similar bounding-box based object
and background decomposition as NSG. NeSF [182] generalizes the notion of a semantic field
to unobserved scenes. As these methods are highly reliant on accurate annotations which are
difficult to reliably obtain in the wild at our scale, we instead use a similar approach to recent
works [89, 177] that distill the outputs of 2D self-supervised feature descriptors into 3D radi-
ance fields to enable semantic understanding without the use of human labels and extend them
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to larger dynamic settings.
Fast training. The original NeRF took 1-2 days to train. Plenoxels [150] and DVGO [165]

directly optimize a voxel representation instead of an MLP to train in minutes or even seconds.
TensoRF [26] stores its representation as the outer product of low-rank tensors, reducing memory
usage. Instant-NGP [120] takes this further by encoding features in a multi-resolution hash table,
allowing training and rendering to happen in real-time. We use these tables as the base block of
our three-branch representation and use our own hashing method to support dynamics across
multiple videos.

Depth. Depth provides a valuable supervisory signal for learning high-quality geometry.
DS-NeRF [37] and Dense Depth Priors [143] incorporate noisy point clouds obtained by struc-
ture from motion (SfM) in the loss function during optimization. Urban Radiance Fields [141]
supervises with collected LiDAR data. We also use LiDAR but demonstrate results on dynamic
environments.

3.3 Approach

3.3.1 Inputs
Our goal is to learn a global representation that facilitates free-viewpoint rendering, semantic
decomposition, and 3D scene flow at arbitrary poses and time steps. Our method takes as input
ordered RGB images from N videos (taken at different days with diverse weather and lighting
conditions) and their associated camera poses. Crucially, we make use of additional data as “free”
sources of supervision given contemporary sensor rigs and feature descriptors. Specifically, we
use (1) aligned sparse LiDAR depth measurements, (2) 2D self-supervised pixel (DINO [24])
descriptors to enable semantic manipulation, and (3) 2D optical flow predictions to model scene
dynamics. All model inputs are generated without any human labeling or intervention.

3.3.2 Representation
Preliminaries. We build upon NeRF [118], which represents a scene within a continuous volu-
metric radiance field that captures both geometry and view-dependent appearance. We refer the
reader to Chapter 2 and [118] for more details.

Scene composition. To model large-scale dynamic environments, SUDS factorizes the scene
into three branches: (a) a static branch containing non-moving topography consistent across
videos, (b) a dynamic branch to disentangle video-specific objects [55, 96, 195], moving or
otherwise, and (c) a far-field environment map to represent far-away objects and the sky, which
we found important to separately model in large-scale urban scenes [141, 178, 223].

However, conventional NeRF training with MLPs is computationally prohibitive at our target
scales. Inspired by Instant-NGP [120], we implement each branch using multiresolution hash
tables of F -dimensional feature vectors followed by a small MLP, along with our own hash
functions to index across videos.

Hash tables (Fig. 5.1). For a given input coordinate (x,d, t, vid) denoting the position x ∈
R3, viewing direction d ∈ R3, frame index F ∈ {1, ..., T}, and video id vid ∈ {1, ..., N},
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we find the surrounding voxels in each table at l ∈ L resolution levels, doubling the resolution
between levels, which we denote as vl,s, vl,d, vl,e for the static, dynamic, and far-field. The static
branch makes use of 3D spatial voxels vl,s, while the dynamic branch makes use of 4D spacetime
voxels vl,d. Finally, the far-field branch makes use of 3D voxels vl,e (implemented via normalized
3D direction vectors) that index an environment map. Similar to Instant-NGP [120], rather than
storing features at voxel corners, we compute hash indices il,s (or il,d or il,e) for each corner with
the following hash functions:

il,s = static hash(space(vl,s)) (3.1)
il,d = dynamic hash(space(vl,d), time(vl,d), vid) (3.2)
il,e = env hash(dir(vl,e), vid) (3.3)

We linearly interpolate features up to the nearest voxel vertices (but now relying on quadlinear
interpolation for the dynamic 4D branch) and rely on gradient averaging to handle hash col-
lisions. Finally, to model the fact that different videos likely contain distinct moving objects
and illumination conditions, we add vid as an auxiliary input to the hash, but do not use it for
interpolation (since averaging across distinct movers is unnatural). From this perspective, we
leverage hashing to effectively index separate interpolating functions for each video, without a
linear growth in memory with the number of videos. We concatenate the result of each level into
a feature vector f ∈ RLF , along with auxiliary inputs such as viewing direction, and pass the
resulting vector into an MLP to obtain per-branch outputs.

Static branch. We generate RGB images by combining the outputs of our three branches.
The static branch maps the feature vector obtained from the hash table into a view-dependent
color cs and a view-independent density σs. To model lighting variations which could be dramatic
across videos but smooth within a video, we condition on a latent embedding computed as a
product of a video-specific matrix Avid and a fourier-encoded time index F(t) (as in [204]):

σs(x) ∈ R (3.4)
cs(x,d, AvidF(t)) ∈ R3. (3.5)

Dynamic branch. While the static branch assumes the density σs is static, the dynamic
branch allows both the density σd and color cd to depend on time (and video). We therefore
omit the latent code when computing the dynamic radiance. Because we find shadows to play a
crucial role in the appearance of urban scenes (Fig. 3.3), we explicitly model a shadow field of
scalar values ρd ∈ [0, 1], used to scale down the static color cs (as done in [195]):

σd(x, t, vid) ∈ R (3.6)
ρd(x, t, vid) ∈ [0, 1] (3.7)
cd(x, t, vid,d) ∈ R3 (3.8)

Far-field branch. Because the sky requires reasoning about far-field radiance and because
it can change dramatically across videos, we model far-field radiance with an environment map
ce(d, vid) ∈ R3 that depends on viewing direction d [66, 141] and a video id vid.
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Full RGB Depth

RGB (Without Shadow) Shadow Intensity

Dynamic RGB Static RGB

(a) Shadow Field

Full RGB Depth

Dynamic RGB Static RGB

(b) No Shadow Field

Figure 3.3: Shadows. We learn an explicit shadow field (a) as a pointwise reduction on static
color, enabling better depth reconstruction and static/dynamic factorization than without (b).
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Rendering. We derive a single density and radiance value for any position by computing
the weighted sum of the static and dynamic components, combined with the pointwise shadow
reduction:

σ(x, t, vid) = σs(x) + σd(x, t, vid) (3.9)

c(x, t, vid,d) =
σs

σ
(1− ρd)cs(x,d, AvidF(t))

+
σd

σ
cd(x, t, vid,d) (3.10)

We then calculate the color Ĉ for a camera ray r with direction d at a given frame t and video
vid by accumulating the transmittance along sampled points r(t) along the ray, forcing the ray
to intersect the far-field environment map if it does not hit geometry within the foreground:

Ĉ(r, t, vid) =
∫ +∞

0

T (t)σ(r(t), t, vid)c(r(t), t, vid,d)dt

+ T (+∞)ce(d, vid), (3.11)

where T (t) = exp

(
−
∫ t

0

σ(r(s), t, vid)ds
)
. (3.12)

Feature distillation. We build semantic awareness into SUDS to enable the open-world
tasks described in Sec. 3.4.2. Similar to recent work [89, 177], we distill the outputs of a self-
supervised 2D feature extractor, namely DINO [24], as a teacher model into our network. For
a feature extractor that transforms an image into a dense RH×W×C feature grid, we add a C-
dimensional output head to each of our branches:

Φs(x) ∈ RC (3.13)

Φd(x, t, vid) ∈ RC (3.14)

Φe(d, vid) ∈ RC , (3.15)

which are combined into a single value Φ at any 3D location and rendered into F̂ (r) per
camera ray, following the equations for color (3.10, 3.11).

Scene flow. We train our model to predict 3D scene flow and model scene dynamics. Inspired
by previous work [41, 55, 96], we augment our dynamic branch to predict forward and backward
3D scene flow vectors st′∈[−1,1](x, t, vid) ∈ R3. We make use of these vectors to enforce con-
sistency between observed time steps through multiple loss terms (Sec. 3.3.3), which we find
crucial to generating plausible renderings at novel time steps (Table 5.7).

Spatial partitioning. We scale our representation to arbitrarily large environments by de-
composing the scene into individually trained models [167, 178], each with its own static, dy-
namic, and far-field branch. Intuitively, the reconstruction for neighborhood X can be done
largely independently of the reconstruction in neighborhood Y, provided one can assign the rele-
vant input data to each reconstruction. To do so, we follow the approach of Mega-NeRF (Chap-
ter 2) and split the scene into K spatial cells with centroids k ∈ R3. Crucially, we generate
separate training datasets for each spatial cell by making use of visibility reasoning [53]. Mega-
NeRF includes only those datapoints whose associated camera rays intersect the spatial cell.
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RGB Features

Forward Flow (Input) Backward Flow (Input)

Forward Flow (Predicted) Backward Flow (Predicted)

Figure 3.4: Scene Flow. We minimize the photometric and feature-metric loss of warped render-
ings relative to ground truth inputs (top). We use 2D optical flow from off-the-shelf estimators
or sparse correspondences computed directly from 2D DINO features [15] (middle) to supervise
our flow predictions (bottom).

However, this may still include datapoints that are not visible due to an intervening occluder
(e.g., a particular camera in neighborhood X can be pointed at neighborhood Y, but may not see
anything there due to occluding buildings). To remedy this, we make use of depth measurements
to prune irrelevant pixel rays that do not terminate within the spatial cell of interest (making use
of nearest-neighbor interpolation to impute depth for pixels without a LiDAR depth measure-
ment). This further reduces the size of each trainset by 2x relative to Mega-NeRF. Finally, given
such separate reconstructions, one can still produce a globally consistent rendering by querying
the appropriate spatial cell when sampling points along new-view rays (as in Chapter 2).

3.3.3 Optimization

We jointly optimize all three of our model branches along with the per-video weight matrices
Avid by sampling random batches of rays across our N input videos and minimizing the following
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loss:
L =

(
Lc + λfLf + λdLd + λoLo

)
︸ ︷︷ ︸

reconstruction losses

+
(
Lw

c + λfLw
f

)
︸ ︷︷ ︸

warping losses

λflo

(
Lcyc + Lsm + Lslo

)
︸ ︷︷ ︸

flow losses

+
(
λeLe + λdLd

)
︸ ︷︷ ︸

static-dynamic factorization

+ λρLρ.
(3.16)

Reconstruction losses. We minimize the L2 photometric loss Lc(r) =
∥∥C(r)− Ĉ(r)

∥∥2
as in the original NeRF equation [118]. We similarly minimize the L1 difference Lf (r) =∥∥F (r)− F̂ (r)

∥∥
1

between the feature outputs of the teacher model and that of our network.
To make use of our depth measurements, we project the LiDAR sweeps onto the camera

plane and compare the expected depth D̂(r) with the measurement D(r) [37, 141]:

Ld(r) =
∥∥D(r)− D̂(r)

∥∥2 (3.17)

where D̂(r) =
∫ +∞

0

T (s)σ(r(s))ds (3.18)

Flow. We supervise our 3D scene flow predictions based on 2D optical flow (Sec. 3.4.1).
We generate a 2D displacement vector for each camera ray by first predicting its position in 3D
space as the weighted sum of the scene flow neighbors along the ray:

X̂t′(r) =
∫ +∞

0

T (t)σ(r(t))(r(t) + st′(r(t)))dt (3.19)

which we then “render” into 2D using the camera matrix of the neighboring frame index. We
minimize its distance from the observed optical flow via Lo(r) =

∑
t′∈[−1,1]

∥∥X(o)− X̂t′(r)
∥∥
1
.

We anneal λo over time as these estimates are noisy.
3D warping. The above loss ensures that rendered 3D flow will be consistent with the ob-

served 2D flow. We also found it useful to enforce 3D color (and feature) constancy; i.e., colors
remain constant even when moving. To do so, we use the predicted forward and backward 3D
flow st+1 and st−1 to advect each sample along the ray into the next/previous frame:

σw
t′ (x + st′ , t + t′, vid) ∈ R (3.20)

cwt′ (x + st′ , t + t′, vid,d) ∈ R3 (3.21)

Φw
t′ (x + st′ , t + t′, vid) ∈ RC (3.22)

The warped radiance cw and density σw are rendered into warped color Ĉw(r) and feature
F̂w(r) (3.10, 3.11). We add a loss to ensure that the warped color (and feature) match the ground-
truth input for the current frame, similar to [55, 96]. As in NSFF [96], we found it important
to downweight this loss in ambiguous regions that may contain occlusions. However, instead
of learning explicit occlusion weights, we take inspiration from Kwea’s method [8] and use the
difference between the dynamic geometry and the warped dynamic geometry to downweight the
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loss:

wt′(x, t, vid) =
∣∣∣∣σd

σ
− σw

t′

σ

∣∣∣∣ (3.23)

Ŵt′(r) =
∫ +∞

0

T (t)σ(r(t))wt′(r(t))dt (3.24)

resulting in the following warping loss terms:

Lw
c (r) =

∑
t′∈[−1,1]

(1−Wt′)(r))
∥∥C(r)− Ĉw

t′ (r)
∥∥2 (3.25)

Lw
f (r) =

∑
t′∈[−1,1]

(1−Wt′)(r)
∥∥F (r)− F̂w

t′ (r)
∥∥
1

(3.26)

Flow regularization. As in prior work [55, 96] we use a 3D scene flow cycle term to encour-
age consistency between forward and backward scene flow predictions, down-weighing the loss
in areas ambiguous due to occlusions:

Lcyc(r) =
∑

t′∈[−1,1]

∑
x

wt′(x, t)
∥∥st′(x, t) + st(x + st′ , t− t′)

∥∥
1
, (3.27)

with vid omitted for brevity. We also encourage spatial and temporal smoothness through the
same priors as NSFF [96]:

Lsm(r) =
∑

x

∑
t′∈[−1,1]

e−2

∥∥x−x′
∥∥

2

∥∥st′(x, t)− st′(x′, t)
∥∥
1

+
∑

x

∥∥st−1(x, t) + st+1(x, t)
∥∥
1
, (3.28)

where x and x′ indicate neighboring points along the camera ray r.
We finally regularize the magnitude of predicted scene flow vectors to encourage the scene

to be static through Lslo(r) =
∑

t′∈[t−1,t+1]

∑
x

∥∥st′(x, t)
∥∥
1
.

Static-dynamic factorization. As physically plausible solutions should have any point in
space occupied by either a static or dynamic object, we encourage the spatial ratio of static
vs dynamic density to either be 0 or 1 through a skewed binary entropy loss that favors static
explanations of the scene [195]:

Le(r) =

∫ +∞

0

H

(
σd(r(t))

σs(r(t)) + σd(r(t))

k
)

dt (3.29)

where H(x) = −(x · log(x) + (1− x) · log(1− x)),

and with k set to 1.75, and further penalize the maximum dynamic ratioLd(r) = max(σd(r(t))
σs+σd

)
along each ray.

Shadow loss. We penalize the squared magnitude of the shadow ratioLρ(r) =
∫ +∞
0

ρd(r(t))
2dt

along each ray to prevent it from over-explaining dark regions [195].
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RGB Static Dynamic Instances Bounding Boxes Categories

Figure 3.5: City-1M. We demonstrate SUDS’s capabilities on multiple downstream tasks, in-
cluding instance segmentation and 3D bounding box estimation without any labeled data (by
just making use of geometric clustering). In the last column, we show category-level semantic
classification by matching 3D (DINO) descriptors to a held-out video annotated with semantic
labels. Please see text for more details.

3.4 Experiments

We demonstrate SUDS’s city-scale reconstruction capabilities by presenting quantitative results
against baseline methods (Table 3.1). We also show initial qualitative results for a variety of
downstream tasks (Sec. 3.4.2). Even though we focus on reconstructing dynamic scenes at city
scale, to faciliate comparisons with prior work, we also show results on small-scale but highly-
benchmarked datasets such as KITTI and Virtual KITTI 2 (Sec. 3.4.3). We evaluate the various
components of our method in Sec. 5.4.6.

3.4.1 Experimental Setup

2D feature extraction. We use Amir et al’s feature extractor implementation [15] based on the
dino vits8 model. We downsample our images to fit into GPU memory and then upsample with
nearest neighbor interpolation. We L2-normalize the features at the 11th layer of the model and
reduce the dimensionality to 64 through incremental PCA [6].

Flow supervision. We explored using an estimator trained on synthetic data [170] in addition
to directly computing 2D correspondences from DINO itself [15]. Although the correspondences
are sparse (less than 5% of pixels) and expensive to compute, we found its estimates more robust
and use it for our experiments unless otherwise stated.

Training. We train SUDS for 250,000 iterations with 4098 rays per batch and use a proposal
sampling strategy similar to Mip-NeRF 360 [17]. We use Adam [87] with a learning rate of
5× 10−3 decaying to 5× 10−4.

Metrics. We report quantitative results based on PSNR, SSIM [187], and the AlexNet im-
plementation of LPIPS [225].
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Mega-NeRF (Chapter 2) Mega-NeRF-T Mega-NeRF-A SUDS

PSNR ↑ 16.42 16.46 16.70 21.67
SSIM ↑ 0.493 0.493 0.493 0.562
LPIPS ↓ 0.879 0.877 0.850 0.554

Table 3.1: City-scale view synthesis on City-1M. SUDS outperforms all baselines by a wide
margin.

≤ 15k 15-30k 30-45k ≥ 45k

↑PSNR 22.86 21.99 21.35 20.75
↑SSIM 0.583 0.569 0.557 0.538
↓LPIPS 0.516 0.545 0.564 0.578

Images

≤ 60 60-90 90-120 ≥ 120

↑PSNR 22.47 21.72 21.68 21.11
↑SSIM 0.587 0.556 0.559 0.555
↓LPIPS 0.526 0.557 0.557 0.565

Videos

≤ 2 km2 2-3 km2 3-4 km2 ≥ 4 km2

↑PSNR 22.73 21.47 21.53 22.18
↑SSIM 0.609 0.556 0.561 0.557
↓LPIPS 0.512 0.564 0.555 0.536

Area

Table 3.2: City-1M scaling. We evaluate the effect of geographic coverage and the number of
images and videos on cell quality. Although performance degrades sublinearly across all metrics,
image and video counts have the largest impact.

3.4.2 City-Scale Reconstruction

City-1M dataset. We evaluate SUDS’s large-scale reconstruction abilities on our collection of
1.28 million images across 1700 videos gathered across a 105 km2 urban area using a vehicle-
mounted platform with seven ring cameras and two LiDAR sensors. Due to the scale, we super-
vise optical flow with an off-the-shelf estimator trained on synthetic data [170] instead of DINO
for efficiency. We divide City-1M into 48 cells using camera-based k-means clustering. Each
cell covers 2.9 km2 and 32k frames across 98 videos on average.

Baselines. We compare SUDS to the official Mega-NeRF (Chapter 2) implementation along-
side two variants: Mega-NeRF-T which directly adds time as an input parameter to compute den-
sity and radiance, and Mega-NeRF-A which instead uses the latent embedding AvidF(t) used by
SUDS.

Results. We train both SUDS and the baselines using 48 cells and summarize our results in
Table 3.1. SUDS outperforms all Mega-NeRF variants by a large margin. We provide qualitative
results on view synthesis, static/dynamic factorization, unsupervised 3D instance segmentation
and unsupervised 3D cuboid detection in Fig. 3.5 and tracking results in Fig. 3.6. We evaluate
the effect of geographic coverage and number of frames/videos on cell quality in Table 3.2.

Instance segmentation. We derive the instance count as in prior work [157] by sampling
dynamic density values σd, projecting those above a given threshold onto a discretized ground
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Figure 3.6: Tracking. We track keypoints (above) and instance masks (below) across several
frames. As a 3D representation, SUDS can track correspondences through 2D occluders.

KI
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2

NeRF NeRF + Time NSG Ground Truth

Figure 3.7: KITTI and VKITTI2 view synthesis. Prior work fails to represent the scene and
NSG [126] renders ghosting artifacts near areas of movement. Our method forecasts plausible
trajectories and generates higher-quality renderings.

plane before applying connected component labeling. We apply k-means to obtain 3D centroids
and volume render instance predictions as for semantic segmentation.

3D cuboid detection. After computing point-wise instance assignments in 3D, we derive
oriented bounding boxes based on the PCA of the convex hull of points belonging to each in-
stance [1].

Tracking. We can compute mask and keypoint-level correspondences across frames after
detecting instances (Sec. 3.4.2) by using Best-Buddies similarity [36] on features Φ within or
between instances. As a 3D representation, SUDS can track correspondences through 2D oc-
cluders. We show an example in Fig. 3.6.

Semantic segmentation. Note the above tasks of instance segmentation and 3D cuboid
detection do not require any additional labels as they make use of geometric clustering. We now
show that the representation learned by SUDS can also enable downstream semantic tasks, by
making use of a small number of 2D segmentation labels provided on a held-out video sequence.
We compute the average 2D DINO descriptor for each semantic class from the held out frames
and derive 3D semantic labels for all reconstructions by matching each 3D descriptor to the
closest class centroid. This allows to produce 3D semantic label fields that can then be rendered
in 2D as shown in Fig. 3.5.
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KITTI - 75% KITTI - 50% KITTI - 25%

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [118] 18.56 0.557 0.554 19.12 0.587 0.497 18.61 0.570 0.510
NeRF + Time 21.01 0.612 0.492 21.34 0.635 0.448 19.55 0.586 0.505
NSG [126] 21.53 0.673 0.254 21.26 0.659 0.266 20.00 0.632 0.281
SUDS 22.77 0.797 0.171 23.12 0.821 0.135 20.76 0.747 0.198

VKITTI2 - 75% VKITTI2 - 50% VKITTI2 - 25%

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [118] 18.67 0.548 0.634 18.58 0.544 0.635 18.17 0.537 0.644
NeRF + Time 19.03 0.574 0.587 18.90 0.565 0.610 18.04 0.545 0.626
NSG [126] 23.41 0.689 0.317 23.23 0.679 0.325 21.29 0.666 0.317
SUDS 23.87 0.846 0.150 23.78 0.851 0.142 22.18 0.829 0.160

Table 3.3: Novel View Synthesis. As the fraction of training views decreases, accuracy drops
for all methods. However, SUDS consistently outperforms prior work, presumably due to more
accurate representations learned by our diverse input signals (such as depth and flow).

SRN [159] NeRF [118] NeRF + Time NSG [126] PNF [90] Ours

PSNR ↑ 18.83 23.34 24.18 26.66 27.48 28.31
SSIM ↑ 0.590 0.662 0.677 0.806 0.870 0.876

Table 3.4: KITTI image reconstruction. We outperform past work on image reconstruction
accuracy, following their experimental protocol and self-reported accuracies [90, 126].

3.4.3 KITTI Benchmarks

Baselines. We compare SUDS to SRN [159], the original NeRF implementation [118], a variant
of NeRF taking time as an additional input, NSG [126], and PNF [90]. Both NSG and PNF are
trained and evaluated using ground truth object bounding box and category-level annotations.

Image reconstruction. We compare SUDS’s reconstruction capabilities using the same
KITTI [59] subsequences and experimental setup as prior work [90, 126]. We present results
in Table 3.4. As PNF’s implementation is not publicly available, we rely on their reported num-
bers. SUDS surpasses the state-of-the-art in PSNR and SSIM.

Novel view synthesis. We demonstrate SUDS’s capabilities to generate plausible renderings
at time steps unseen during training. As NSG does not handle scenes with ego-motion, we use
subsequences of KITTI and Virtual KITTI 2 [54] with little camera movement. We evaluate
the methods using different train/test splits, holding out every 4th time step, every other time
step, and finally training with only one in every four time steps. We summarize our findings
in Table 3.3 along with qualitative results in Fig. 3.7. SUDS achieves the best results across all
splits and metrics. Both NeRF variants fail to properly represent the scene, especially in dynamic
areas. Although we provide NSG with the ground truth object poses at render time, it fails to
learn a clean decomposition between objects and the background, especially as the number of
training view decreases, and generates ghosting artifacts near areas of movement.
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↑PSNR ↑SSIM ↓LPIPS

w/o Depth loss 22.74 0.715 0.292
w/o Optical flow loss 22.18 0.708 0.302
w/o Warping loss 17.53 0.622 0.478
w/o Appearance embedding 22.54 0.704 0.296
w/o Occlusion weights 22.56 0.711 0.297
w/o Separate branches 19.73 0.570 0.475

Full Method 22.95 0.718 0.289

Table 3.5: Diagnostics. Flow-based warping is the single-most important input, while depth is
the least crucial input.

3.4.4 Diagnostics
We ablate the importance of major SUDS components by removing their respective loss terms
along with occlusion weights, the latent embedding AvidF(t) used to compute static color cs,
and separate model branches. We run all approaches for 125,000 iterations across our datasets
and summarize the results in Table 5.7. Although all components help performance, flow-based
warping is by far the single most important input. Interestingly, depth is the least crucial input,
suggesting that SUDS can generalize to settings where depth measurements are not available.

3.5 Discussion
We present a modular approach towards building dynamic neural representations at previously
unexplored scale. Our multi-branch hash table structure enables us to disentangle and efficiently
encode static geometry and transient objects across thousands of videos. SUDS makes use of
unlabeled inputs to learn semantic awareness and scene flow, allowing it to perform several
downstream tasks while surpassing state-of-the-art methods that rely on human labeling.

3.5.1 Limitations
Although SUDS scales neural rendering to (in our knowledge) the largest dynamic NeRF rep-
resentation to date, many open challenges remain. Its rendering quality, especially with regards
to dynamic objects, does not reach photorealistic levels. Its rendering speed, while faster than
Mega-NeRF (Chapter 2), does not reach real-time requirements at HD resolution. We address
this shortcoming in Chapter 4. We list additional limitations below.

Video boundaries. Although our global representation of static geometry is consistent across
all videos used for reconstruction, all dynamic objects are video-specific. Put otherwise, our
method does not allow us to extrapolate the movement of objects outside of the boundaries of
videos from which they were captured, nor does it provide a straightforward way of rendering
dynamic visuals at boundaries where camera rays intersect regions with training data originating
from disjoint video sequences.
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Flow quality. Although our method tolerates some degree of noisiness in the supervisory
optical flow input, high-quality flow still has a measurable impact on model performance (and
completely incorrect supervision degrades quality). We also assume that flow is linear between
observed timestamps to simplify our scene flow representation.

Resources. Modeling city scale requires a large amount of dataset pre-processing, includ-
ing, but not limited to: extracting DINO features, computing optical flow, deriving normalized
coordinate bounds, and storing randomized batches of training data to disk. Collectively, our
intermediate representation required more than 20TB of storage even after compression.

Shadows. SUDS attempts to disentangle shadows underneath transient objects. However,
if a shadow is present in all observations for a given location (eg: a parking spot that is always
occupied, even by different cars), SUDS may attribute the darkness to the static topology, as
evidenced in several of our videos, even if the origin of the shadow is correctly assigned to the
dynamic branch.

Instance-level tasks. Although we provide initial qualitative results on instance-level tasks
as a first step towards true 3D segmentation backed by neural radiance field, SUDS is not com-
petitive with conventional approaches.
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Chapter 4

Real-Time Rendering at VR Resolution
The contents of this chapter were published as “HybridNeRF: Efficient Neural Rendering via
Adaptive Volumetric Surfaces” in CVPR 2024

RGB Surfaceness
NeRF

(≈40 samples / ray)
HybridNeRF

(≈8 samples / ray)

Figure 4.1: HybridNeRF [181]. We train a hybrid surface–volume representation via surface-
ness parameters that allow us to render most of the scene with few samples. We track Eikonal loss
as we increase surfaceness to avoid degrading quality near fine and translucent structures (such
as wires). In the two right-most panels, we visualize the number of samples per ray (brighter is
higher). Our model renders in high fidelity at 2K×2K resolution at real-time frame rates.

4.1 Introduction
The previous chapters focused on how to efficiently neural scene representations at scale. This
chapter explores how to efficiently render such trained representations.

Efficiency We seek to construct a representation that enables high-quality efficient rendering,
which is necessary for immersive applications, such as augmented reality or virtual teleconfer-
encing.

While recent rasterization-based techniques, such as mesh baking [209] or Gaussian splatting
[81], are very efficient, they still struggle to capture transparent or fine structures, and view-
dependent effects (like reflections or specularities), respectively. Instead, we focus on NeRF’s
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Figure 4.2: Approach. In the first phase of our pipeline (a), we train a VolSDF-like [208]
model with distance-adjusted Eikonal loss to model backgrounds without a separate NeRF (Sec-
tion 4.3.3). We then crucially transition from a uniform surfaceness parameter β to position-
dependent β(x) values to model most of the scene as thin surfaces (needing few samples) with-
out degrading quality near fine and semi-opaque structures (b). Since our model behaves as a
valid SDF in >95% of the scene, we use sphere tracing at render time (c) along with lower-level
optimizations (hardware texture interpolation) to query each sample as efficiently as possible.

standard ray casting paradigm, and propose techniques that enable a better speed–quality trade-
off.

Rendering We start with the observation that neural implicit surface representations, such as
signed distance functions (SDFs), which were originally proposed to improve the geometry qual-
ity of NeRFs via regularization [185, 208], can also be used to dramatically increase efficiency
by requiring fewer samples per ray. In the limit, only a single sample on the surface is required.
In practice, renderers still need to identify the location of the target sample(s), which can be done
by generating samples via an initial proposal network [17] or other techniques, such as sphere
tracing [108].

Surfaceness While surface-based neural fields are convenient for rendering, they often strug-
gle to reconstruct scenes with thin structures or view-dependent effects, such as reflections and
translucency. This is one reason that surfaces are often transformed into volumetric models for
rendering [208]. A crucial transformation parameter is a scalar temperature β that is used to
convert a β-scaled signed distance value into a density. Higher temperatures tend to produce an
ideal binary occupancy field that can improve rendering speed but can struggle for challenging re-
gions as explained above. Lower temperatures allow the final occupancy field to remain flexible,
whereby the β-scaled SDF essentially acts as a reparameterization of the underlying occupancy
field. As such, we refer to β as the surfaceness of the underlying scene (see Fig. 4.1). Prior work
treats β as a global parameter that is explicitly scheduled or learned via gradient descent [208].
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We learn it in a spatially adaptive manner.

Contributions Our primary contribution is a hybrid surface–volume representation that com-
bines the best of both worlds. Our key insight is to replace the global parameter β with spatially-
varying parameters β(x) corresponding to the surfaceness of regions in the 3D scene. At con-
vergence, we find that most of the scene (> 95%) can be efficiently modeled as a surface. This
allows us to render with far fewer samples than fully volumetric methods, while achieving higher
fidelity than pure surface-based approaches. Additionally,

1. We propose a weighted Eikonal regularization that allows our method to render high-
quality complex backgrounds without a separate background model.

2. We implement specific rendering optimizations, such as hardware texture interpolation and
sphere tracing, to significantly accelerate rendering at high resolutions.

3. We present state-of-the-art reconstruction results on three different datasets, including the
challenging Eyeful Tower dataset [201], while rendering almost 10× faster.

4.2 Related Work
Many works try to accelerate the rendering speed of neural radiance fields (NeRF). We discuss a
representative selection of such approaches below.

Voxel baking Some of the earliest NeRF acceleration methods store precomputed non-view
dependent model outputs, such as spherical harmonics coefficients, into finite-resolution struc-
tures [28, 42, 58, 68, 216]. These outputs are combined with viewing direction to compute the
final radiance at render time, bypassing the original model entirely. Although these methods
render extremely quickly (some >200 FPS [58]), they are limited by the finite capacity of the
caching structure and cannot capture fine details at room scale.

Feature grids Recent methods use a hybrid approach that combines a learned feature grid with
a much smaller MLP than the original NeRF [26, 50, 120]. Instant-NGP [120] (iNGP), arguably
the most popular of these methods, encodes features into a multi-resolution hash table. Although
these representations speed up rendering, they cannot reach the level needed for real-time HD
rendering alone, as even iNGP reaches less than 10 FPS on real-world datasets at high resolution.
MERF [140] comes closest through a baking pipeline that uses various sampling and memory
layout optimizations that we also make use of in our implementation.

Surface–volume representations Several methods [125, 185, 208] derive density values from
the outputs of a signed distance function, which are then rendered volumetrically as in NeRF.
These hybrid representations retain NeRF’s ease of optimization while improving surface geom-
etry. Follow-ups [64, 209] bake the resulting surface geometry into a mesh that is further opti-
mized and simplified. Similar to early voxel-baking approaches, these methods render quickly
(>70 FPS) but are limited by the capacity of the mesh and texture, and thus struggle to model
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thin structures, transparency, and view-dependent effects. We train a similar SDF representa-
tion in our method but continue using the base neural model at render time. Concurrent to our
work, Adaptive shells [188] augments NeuS [185] with a spatially-varying kernel similar to our
adaptive surfaceness described in Section 4.3.2.

Sample efficiency Several approaches accelerate rendering by intelligently placing far fewer
samples along each ray than the original hierarchical strategy proposed by NeRF [17, 65, 91,
121, 131]. These methods all train auxiliary networks that are cheaper to evaluate than the base
model. However, as they are based on purely volumetric representations, they are limited in
practice as to how few samples they can use per ray without degrading quality, and therefore
exhibit a different quality–performance tradeoff curve than ours.

Gaussians Recent methods take inspiration from NeRF’s volume rendering formula but dis-
card the neural network entirely and instead parameterize the scene through a set of 3D Gaussians
[81, 85, 86, 183]. Of these, 3D Gaussian splatting [81] has emerged as the new state of the art,
rendering at >100 FPS with higher fidelity than previous non-neural approaches. Although en-
couraging, it is sensitive to initialization (especially in far-field areas) and limited in its ability
to reason about inconsistencies within the training dataset (such as transient shadows) and view
dependent effects.

4.3 Method
Given a collection of RGB images and camera poses, our goal is to learn a 3D representation
that generates novel views at VR resolution (at least 2K×2K pixels) in real-time (at least 36
FPS), while achieving a high degree of visual fidelity. As we target captures taken under real-
world conditions, our representation must be able to account for inconsistencies across training
images due to lighting changes and shadows (even in “static” scenes). We build upon NeRF’s
raycasting paradigm, which can generate highly photorealistic renderings, and improve upon its
efficiency. As the world mostly consists of surfaces, we train a representation that can render
surfaces with few samples and without degrading the rest of the scene. We outline our method
in Fig. 4.2 and present our model architecture and the first training stage in Section 4.3.1, which
is followed by finetuning of our model to accelerate rendering without compromising quality in
Section 4.3.2. We discuss how to model unbounded scenes in Section 4.3.3 and present final
render-time optimizations in Section 4.3.4.

4.3.1 Representation
Preliminaries NeRF [118] represents a scene as a continuous volumetric radiance field that
encodes the scene’s geometry and view-dependent appearance within the weights of an MLP.
NeRF renders pixels by sampling positions xi along the corresponding camera ray, querying
the MLP to obtain density and color values, σi := σ(xi) and ci := c(xi,dr), respectively
(with dr as the ray direction). The density values σi are converted into opacity values αi :=
1− exp(−σiδi), where δi is the distance between samples. The final ray color ĉr :=

∑N−1
i=0 ciwi
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NeRF (≈35 samples / ray) HybridNeRF (≈9 samples / ray)

Figure 4.3: Surfaces. Since NeRF directly predicts density, it often ‘cheats’ by modeling spec-
ular surfaces, such as floors, as semi-transparent volumes that require many samples per ray
(heatmaps shown on the right, with brighter values corresponding to more samples). Methods
that derive density from signed distances, such as ours, improve surface geometry and appear-
ance while using fewer samples per ray.

is obtained as the combination of the color samples ci with weights wi := exp(−
∑i−1

j=0σjδj)αi.
The training process optimizes the model by sampling batches of image pixels and minimizing
the L2 reconstruction loss. We refer to Mildenhall et al. [118] for details.

Modeling density The original NeRF representation has the flexibility of representing semi-
transparent surfaces, for the density field is not forced to saturate. However, the model often
abuses this property by generating semi-transparent volumes to mimic reflections and other view-
dependent effects (Fig. 4.3). This hampers our goal of minimizing the samples per ray needed
for rendering.

To address this problem, surface–volume representations [125, 185, 208] learn well-defined
surfaces by interpreting MLP outputs f(x) as a signed distance field (SDF) to represent scene
surfaces as the zero-level set of the function f .

As the norm of the gradient of an SDF should typically be 1, the MLP is regularized via the
Eikonal loss:

LEik(r) :=
N−1∑
i=0

ηi(∥∇f(xi)∥ − 1)2, (4.1)

where ηi is a per-sample loss weight typically set to 1. The signed distances are converted into
densities σSDF that are paired with color predictions, and rendered as in NeRF. Specifically, we
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Global β(x) = 100
(≈30 samples / ray)

Global β(x) = 2000
(≈6 samples / ray)

Adaptive β(x)
(≈8 samples / ray)

Figure 4.4: Choice of β. Increasing β reduces the number of samples needed to render per ray,
but negatively impacts quality near fine objects (lamp wires) and transparent structures (glass
door).

follow VolSDF’s approach [208] and define:

σSDF(x) := β(x)Ψ(f(x)β(x)), (4.2)

where β(x) > 0 determines the surfaceness of point x, i.e. how concentrated the density should
be around the zero-level set of f , and Ψ is the CDF of a standard Laplace distribution:

Ψ(s) =

{
1
2
exp(−s) if s > 0

1− 1
2
exp(s) if s ≤ 0.

(4.3)

In prior works, the surfaceness β(x) is independent of position x. We instead consider a sur-
faceness field implemented as a 5123 grid of values queried via nearest-neighbor interpolation.
We first constrain the surfaceness parameters to be globally uniform, and allow them to diverge
spatially during the finetuning stage (Section 4.3.2).

Model architecture We render color and distance as follows:

c(x,d) = MLPcol(Γcol(x),SH(d)) (4.4)
f(x) = MLPdist(Γdist(x)), (4.5)

where Γcol and Γdist are separate spatial feature encodings.
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For the encodings, we use dense multi-resolution 3D feature grids in combination with multi-
resolution triplanes [23, 50] to featurize 3D sample locations. We predict color c and signed
distance f with separate grids, each followed by an MLP, and use a small proposal network
similar to that used by Nerfacto [169] to improve sampling efficiency. For a given 3D point, we
fetch K = 4 features per level from (1) the 3D feature grids at 3 resolution levels (1283, 2563

and 5123) via trilinear interpolation, and (2) from triplanes at 7 levels (from 1282 to 8,1922) via
bilinear interpolation. We sum the features across levels (instead of concatenation [50, 120]),
and concatenate the summed features from the 3D grid to those from the 3 triplanes to obtain a
4K=16-dimensional MLP input. We encode viewing direction through spherical harmonics (up
to the 4th degree) as an auxiliary input to the color MLP. As our feature grid is multi-resolution,
we handle aliasing as in VR-NeRF [201] by dampening high-resolution grid features based on
pixel footprint. For a given sample x, we derive a pixel radius p(x) in the contracted space, and
calculate the optimal feature level L(x) based on the Nyquist–Shannon sampling theorem:

L(x) := − log2(2s · p(x)), (4.6)

where s is our base grid resolution (128). We then multiply grid features at resolution level L
with per-level weights wL:

wL =


1 if L < ⌊L(x)⌋
L(x)− ⌊L(x)⌋ if ⌊L(x)⌋ < L ≤ ⌈L(x)⌉
0 if ⌈L(x)⌉ < L.

(4.7)

Optimization We sample random batches of training rays and optimize our color and distance
fields by minimizing the photometric loss Lphoto and Eikonal loss LEik along with interlevel loss
Lprop [17] to train the proposal network:

L(r) := Lphoto(r) + λEikLEik(r) + Lprop(r), (4.8)

with λEik = 0.01 in our experiments.

4.3.2 Finetuning
Adaptive surfaceness The first stage of our pipeline uses a global surfaceness value β(x) = β̄
for all x, as in existing approaches [185, 208]. As β̄ increases, the density σSDF in free-space
areas converges to zero (Eq. (4.3)), reducing the required number of samples per ray. However,
uniformly increasing this scene-wide parameter degrades the rendering quality near fine-grained
and transparent structures (see Fig. 4.4).

We overcome this limitation by making β(x) spatially adaptive via a 5123 voxel grid. One
possible approach is to directly optimize β(x) via gradient descent, but we find that this overly
relaxes the constraint on SDF correctness such that f(x) predicts arbitrary density values as
in the original NeRF. We instead rely on the Eikonal loss as a natural indicator of where the
model cannot accurately reconstruct the scene via an SDF (and where we should therefore use
a “softer” formulation). We collect per-sample triplets (x, η, w) rendered during the finetuning
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RGB Eikonal Loss

Surfaceness

Figure 4.5: Spatially adaptive surfaceness. We make β(x) spatially adaptive by means of
a 5123 voxel grid that we increase during the finetuning stage. We track Eikonal loss as we
increase surfaceness as it is highest near object boundaries and semi-transparent surfaces (top-
right, brighter = higher loss) that degrade when surfaceness is too high (Fig. 4.4). We stop
increasing surfaceness in regions that cross a given threshold.

52



process, accumulate them over multiple training iterations (5,000), and partition them across the
voxels of the surfaceness grid. Let Λv be the subset associated with voxel v corresponding to βv.
We increase βv by a fixed increment (100) if:∑

(x,η,w)∈Λv
wη(∥∇f(x)∥ − 1)2∑
(...,w)∈Λv

w
< γ̄, (4.9)

where γ̄ := 0.25 is a predefined threshold. Fig. 4.5 illustrates our approach.

Proposal network baking Although the proposal network allows us to quickly learn the scene
geometry during the first stage of training, it is too expensive to evaluate in real time. We follow
MERF’s protocol [140] to bake the proposal network into a 10243 binary occupancy grid. We
render all training rays and mark a voxel as occupied if there exists at least one sampled point xi

such that max(wi, σi) > 0.005. We finetune our model using the occupancy grid to prevent any
loss in quality.

MLP distillation We find it important to use a large 256 channel-wide MLP to represent the
signed distance f during the first training phase in order to learn accurate scene geometry. How-
ever, we later distill f into a smaller 16-wide network (fsmall). We do so by sampling random
rays from our training set for 5,000 iterations and minimizing the difference between f(xi) and
fsmall(xi) at every sampled point:

Ldist(r) :=
N−1∑
i=0

|f(xi)− fsmall(xi)|, (4.10)

with a stop gradient applied to the outputs of f . We then discard the original SDF f and switch
to using the distilled counterpart fsmall for the rest of the finetuning stage.

4.3.3 Backgrounds
Many scenes we wish to reconstruct contain complex backgrounds that surface–volume methods
struggle to replicate [95, 185, 208]. BakedSDF [209] defines a contraction space [17] in which
the Eikonal loss of Eq. (4.1) is applied. However, we found this to negatively impact foreground
quality. Other approaches use separate NeRF background models [223], which effectively dou-
bles inference and memory costs, and makes them ill-suited for real-time rendering.

Relation between volumetric and surface-based NeRFs We discuss how to make a single
MLP behave as an approximate SDF in the foreground and a volumetric model in the back-
ground. Both types of NeRF derive density σ by applying a non-linearity to the output of an
MLP. Our insight is that although the original NeRF uses ReLU, any non-linear mapping to R+

may be used in practice, including our scaled CDF Ψ (β omitted without loss of generality).
Since Ψ is invertible (as it is a CDF), σ(x) and Ψ(f(x)) are functionally equivalent as there
exists an f such that Ψ(f(x)) = σ(x) for any given point x. Put otherwise, it is the Eikonal
regularization that causes the divergence in behavior between both methods — in its absence, an
“SDF” MLP is free to behave exactly as the density MLP in the original NeRF!
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Eikonal Loss (ηi = 1) No Eikonal Loss

Eikonal Loss (ηi = 1) in Contracted Space [209] Distance-Adjusted Eikonal Loss (ηi = d−2
i )

Figure 4.6: Backgrounds. Using standard Eikonal loss affects background reconstruction (top-
left) while applying it in contracted space [209] affects the foreground (bottom-left). Omitting
Eikonal loss entirely causes surface–volume methods to revert to NeRF’s behavior, which im-
proves background quality but degrades foreground surface reconstruction (top-right). By using
distance-adjusted sample weights ηi = d−2

i , we improve background reconstruction without im-
pacting foreground quality (bottom-right).
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Distance-adjusted loss We use a distance-adjusted Eikonal loss during training by using per-
sample loss weights ηi = 1

d2i
(where di is the metric distance along the ray of sample xi) instead

of commonly-used uniform weights (ηi = 1) to downweight the loss applied to far-field regions.
Intuitively, this encourages our method to behave as a valid SDF in the foreground (with well-
defined surfaces) and more like NeRF in the background (to enable accurate reconstruction)
without the need for separate foreground and background models. Fig. 4.6 and Table 4.6 illustrate
the different approaches.

4.3.4 Real-Time Rendering
Texture storage Our architecture enables us to use lower-level optimizations. Methods such
as iNGP [120] use concatenated multi-resolution features stored in hash tables. Since we use ex-
plicit 3D grids and triplanes, we can store our features as textures at render time, taking advantage
of increased memory locality and texture interpolation hardware. As we sum our multi-resolution
features during training, we optimize the number of texture fetches by storing pre-summed fea-
tures g′ at resolution level L (where we store g′(v) =

∑L
l=0 g(v, l) for each texel in L). For a

given sample x at render time, we obtain its anti-aliased feature by interpolating between the
two levels implied by its pixel area p(x), reducing the number of texture fetches to 8 queries
per MLP evaluation from the original 3+3×7=24 (assuming three 3D grids and seven triplane
levels), a 3× reduction.

Sphere tracing Volumetric methods that use occupancy grids [e.g. 120, 140] sample within
occupied voxels using a given step size. This hyperparameter must be carefully tuned to strike
the proper balance between quality (not skipping thin surfaces) and performance (not excessively
sampling empty space). Modeling an SDF allows us to sample more efficiently by advancing
toward the predicted surface using sphere tracing [145]. At each sample point xi and predicted
surface distance s = f(xi), we advance by 0.9s (chosen empirically to account for our model
behaving as an approximate SDF) until hitting the surface (predicted as s≤ 2×10−4). We only
perform sphere tracing where our model behaves as a valid SDF (determined by β(xi)> 350 in
our experiments), and fall back to a predefined step size of 1 cm otherwise.

4.4 Experiments
As our goal is high-fidelity view synthesis at VR resolution (≈ 4 megapixels), we primarily
evaluate HybridNeRF against the Eyeful Tower dataset [201], which contains high-fidelity scenes
designed for walkable VR (Section 4.4.2). We compare our work to a broader range of methods
on additional datasets in Section 4.4.3. We ablate our design in Section 5.4.6.

4.4.1 Implementation
We train our models in the PyTorch framework [130] and implement our renderer in C++/CUDA.
We parameterize unbounded scenes with MERF’s piecewise-linear contraction [140] so that our
renderer can query the occupancy grid via ray-AABB intersection. We train on each scene for
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Table 4.1: Eyeful Tower [201] results. We omit 3DGS results for fisheye scenes as their imple-
mentation does not handle fisheye projection. Along with 3DGS and MERF, ours is the only to
reach the 36 FPS target for VR along with a >1.5 dB PSNR improvement in quality.

Pinhole Fisheye Overall

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑FPS

iNGP* [120] 27.35 0.826 0.361 33.32 0.938 0.155 30.06 0.877 0.267 4.55
VolSDF* [208] 27.10 0.856 0.310 34.09 0.951 0.116 30.28 0.899 0.222 15.29
MERF (pre-baking) [140] 26.44 0.831 0.506 31.18 0.922 0.549 28.59 0.872 0.526 18.11
MERF (baked) [140] 25.99 0.830 0.525 31.09 0.921 0.546 28.31 0.871 0.535 60.18
3D Gaussian splatting [81] 27.42 0.877 0.291 — — — — — — 138.22
VR-NeRF [201] 28.08 0.834 0.326 34.53 0.951 0.130 31.01 0.888 0.237 6.05
Zip-NeRF [18] 29.71 0.868 0.305 34.19 0.958 0.109 31.75 0.909 0.216 <0.1

HybridNeRF 29.07 0.880 0.268 34.57 0.952 0.115 31.57 0.913 0.198 45.78

* Our implementation. VolSDF: with iNGP acceleration.

200,000 iterations (100,000 in each training stage) with 12,800 rays per batch using Adam [87]
and a learning rate of 2.5×10−3.

4.4.2 VR Rendering

Eyeful Tower dataset The dataset consists of room-scale captures, each containing high-
resolution HDR images at 2K resolution, captured using a multi-view camera rig. Although
care is taken to obtain the best quality images possible, inconsistencies still appear between im-
ages due to lighting changes and shadows from humans and the capture rig itself. We model
as much of the dynamic range as possible by mapping colors in the PQ color space [161], as
proposed in VR-NeRF [201], during training and tonemap to sRGB space during evaluation to
compare against non-HDR baselines.

Baselines We compare HybridNeRF to baselines across the fidelity/speed spectrum. We bench-
mark several volumetric methods, including (1) iNGP [120], (2) VR-NeRF [201], which extends
iNGP’s [120] primitives to better handle HDR reconstruction, (3) Zip-NeRF [18], an anti-aliasing
method that generates high-quality renderings at the cost of speed, and (4) MERF [140], a highly
optimized method that uses sampling and memory layout optimizations to accelerate rendering.
We also compare to VolSDF [208] as a hybrid surface–volume method similar to the first stage
of our method. As the original VolSDF implementation uses large MLPs that are unsuitable for
real-time rendering, we use an optimized version built on top of iNGP’s acceleration primitives
as a fairer comparison. We also benchmark 3D Gaussian splatting [81] as a non-neural approach
that represents the current state of the art with across rendering quality and speed.

Metrics We report quantitative results based on PSNR, SSIM [187], and the AlexNet imple-
mentation of LPIPS [225] and measure frame rates rendered at 2K×2K resolution on a single
NVIDIA RTX 4090 GPU.
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Figure 4.7: Eyeful Tower [201]. HybridNeRF is the only method to accurately model reflections
and shadows (first two rows), far-field content (third row) and fine structures (bottom row) at
real-time frame rates at 2K×2K resolution.

Results We summarize our results in Table 4.1 along with qualitative results in Fig. 4.7. VR-
NeRF [201], iNGP [120], and Zip-NeRF [18] render well below real-time frame rates. Our
VolSDF implementation, which uses the same primitives as iNGP, is 3× faster merely from
the benefits of using a surface representation (and fewer samples per ray). MERF [140], as
a volume representation, relies instead on precomputation to accelerate rendering by explicitly
storing diffuse color and density outputs during its baking stage and using only a small MLP
to model view-dependent effects. Although it reaches a high frame rate, it provides the least
visually appealing results amongst our baselines. 3D Gaussian splatting [81] renders the fastest,
but struggles with shadows and lighting changes across the training views and models them as
unsightly floaters. Our method is the only to achieve both high quality and real-time frame rates.

4.4.3 Additional Comparisons
Datasets We evaluate HybridNeRF on MipNeRF-360 [17] as a highly-referenced dataset eval-
uated by many prior methods, and ScanNet++ [213] as a newer benchmark built from high-
resolution captures of indoor scenes that are relevant to our goal of enabling immersive AR/VR
applications. We test on all scenes in the former and a subset of the latter.

Baselines We compare HybridNeRF to a wide set of baselines on Mip-NeRF 360. We use the
same set of baselines as in Section 4.4.2 for ScanNet++ and evaluate on the following 9 scenes:
5FB5D2DBF2, 8B5CAF3398, 39F36DA05B, 41B00FEDDB, 56A0EC536C, 98B4EC142F, B20A261FDF, F8F12E4E6B,
FE1733741F. We undistort the fisheye DSLR captures to pinhole images using the official dataset
toolkit [214] to facilitate comparisons against 3D Gaussian splatting [82] (whose implementa-
tion does not support fisheye projection). We use the official validation splits, which consist of
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Table 4.2: MipNeRF 360 [17]. Real-time methods are highlighted (best, second-best, third-
best). Baseline numbers as published [28, 140, 209]. MobileNeRF [28] was not evaluated on
indoor scenes. Our method performs similar to state-of-the-art real-time and offline methods.

Outdoor Indoor Overall

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [118] 21.46 0.458 0.515 26.84 0.790 0.370 23.85 0.606 0.451
NeRF++ [223] 22.76 0.548 0.427 28.05 0.836 0.309 25.11 0.676 0.375
SVS [142] 23.01 0.662 0.253 28.22 0.907 0.160 25.33 0.771 0.212
Mip-NeRF 360 [17] 24.47 0.691 0.283 31.72 0.917 0.180 27.69 0.791 0.237
iNGP [120] 22.90 0.566 0.371 29.15 0.880 0.216 25.68 0.706 0.302
Zip-NeRF [18] 25.46 0.747 0.170 32.29 0.931 0.106 28.49 0.829 0.142

Deep Blending [67] 21.54 0.524 0.364 26.40 0.844 0.261 23.70 0.666 0.318
MobileNeRF [28] 21.95 0.470 0.470 — — — — — —
BakedSDF [209] 22.47 0.585 0.349 29.15 0.880 0.216 25.68 0.706 0.302
MERF [140] 23.19 0.616 0.343 27.80 0.855 0.271 25.24 0.722 0.311
3D Gaussian splatting [81] 24.13 0.707 0.211 30.94 0.927 0.081 27.16 0.805 0.153

HybridNeRF 24.73 0.716 0.224 31.01 0.920 0.095 27.52 0.806 0.167

MERF (60 FPS) 3DGS (95 FPS) VolSDF (13 FPS) VR-NeRF (5 FPS) Ours (42 FPS) Ground Truth

Figure 4.8: ScanNet++ [213]. 3D Gaussian splatting [81] struggles with specular surfaces such
as whiteboards (above) and far-field content (below). Our method performs best qualitatively
while maintaining a real-time frame rate.

entirely novel trajectories that present a more challenging novel-view synthesis problem than the
commonly used pattern of holding out every eighth frame [117].

Results We list results in Table 4.2 and Table 4.3. Our method performs comparably to the
best on Mip-NeRF 360 across both real-time [81] and offline [17] methods. Although Scan-
Net++ [213] contains fewer lighting inconsistencies across training images than the Eyeful Tower
dataset [201], 3D Gaussian splatting still struggles to reconstruct specular surfaces (whiteboards,
reflective walls) and backgrounds (Table 4.3). Our method performs the best amongst real-time
methods and comparably to Zip-NeRF [18], while rendering >400× faster.

4.4.4 Diagnostics
Ablations We ablate our design decisions by individually omitting the major components of
our method, most notably: our distance-adjusted Eikonal loss, our adaptive surfaceness β(x),
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Table 4.3: ScanNet++ [213] results. Similar to Table 4.1, our method is the only to hit VR FPS
rates along with 3DGS and MERF. Our quality is near-identical to Zip-NeRF while rendering
>400× faster.

Method ↑PSNR ↑SSIM ↓LPIPS ↑FPS

iNGP* [120] 23.69 0.815 0.308 5.39
VolSDF* [208] 24.26 0.834 0.246 13.18
MERF (pre-baking) [140] 23.44 0.821 0.306 12.08
MERF (baked) [140] 23.19 0.820 0.308 60.21
3D Gaussian splatting [81] 23.76 0.830 0.248 94.95
VR-NeRF [201] 24.00 0.814 0.301 5.38
Zip-NeRF [18] 24.79 0.863 0.216 <0.1

HybridNeRF 24.64 0.835 0.236 41.90
* Our implementation. VolSDF: with iNGP acceleration.

MLP distillation, and hardware-accelerated textures (vs. iNGP [120] hash tables commonly used
by other fast NeRF methods). We also measure the effect of using only 3D or triplane features
(instead of using both).

Results We present results against the Eyeful Tower [201] in Table 5.7 and Table 4.5. Spatially
adaptive surfaceness is crucial as using a global parameter degrades either speed (when β is
optimized for quality) or rendering quality (when set for speed). Applying uniform Eikonal
loss instead of our distance-adjusted variant degrades quality in unbounded scenes. Omitting
the distillation process has a minor impact on quality relative to rendering speed. We note a
similar finding when using iNGP [120] primitives instead of CUDA textures, which suggests
that introducing hardware acceleration into these widely used primitives is a potential avenue for
future research. Similar to MERF [140], we also note that using both low-resolution 3D features
and high-resolution triplane improves rendering quality.

Geometric Reconstruction We evaluate geometric reconstruction on ScanNet++ [213] (which
has “ground-truth” laser scan depth only for foreground pixels) in Table 4.6 for the strategies in
Fig. 4.6. Using uniform Eikonal loss in contracted space degrades accuracy (0.419 m error vs
0.219 m for uniform world space and 0.221 m with our distance-adjusted method) and omitting
Eikonal loss gives the worst results (0.996 m).

Color Distillation We distill the MLP used to represent distance from our 256-wide MLP to a
16-wide network during the finetuning stage (Section 4.3.2). As a final diagnostic, we investigate
whether it is possible to further accelerate rendering by similarly distilling the color MLP. We
found this to provide a significant boost in rendering speed (from 46 to 60 FPS) at the cost of
a minor but statistically significant decrease in rendering quality (see Table 4.7). We observed
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Table 4.4: Diagnostics. A global learned β (≈ 200) produces the highest-quality renderings,
but is slow to render as much of the scene is modeled volumetrically. Increasing β improves
rendering speed but results in worse accuracy. Our full method (with spatially-varying β(x)) gets
the best of both worlds. Other innovations such as distance-adjusted Eikonal loss are crucial for
ensuring high accuracy for scenes with complex backgrounds. Finally, distillation and hardware
acceleration come at a minor quality cost while doubling rendering speed.

Methods β(x) Dist. Distill Textures ↑PSNR ↑SSIM ↓LPIPS ↑FPS

w/ Global β (learned) ✗ ✓ ✓ ✓ 31.76 0.923 0.188 28.79
w/ Global β = 2000 ✗ ✓ ✓ ✓ 27.16 0.835 0.345 47.47
w/o distance-adjusted Eik. ✓ ✗ ✓ ✓ 29.97 0.856 0.260 45.42
w/o MLP Distillation ✓ ✓ ✗ ✓ 31.65 0.915 0.193 35.25
w/o CUDA Textures ✓ ✓ ✓ ✗ 31.62 0.921 0.195 28.48

Full Method ✓ ✓ ✓ ✓ 31.57 0.913 0.198 45.78

Table 4.5: Grid feature layout. We measure the effect of using only 3D or triplane features on
the Eyeful Tower dataset [201], and note a significant drop in quality when compared to using
both.

Pinhole Fisheye Overall

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

3D Only 27.10 0.832 0.410 32.17 0.928 0.187 29.41 0.875 0.308
Triplane Only 28.24 0.843 0.312 33.16 0.938 0.150 30.47 0.886 0.238

Both 29.07 0.880 0.268 34.57 0.952 0.115 31.57 0.913 0.198

Table 4.6: Depth error on ScanNet++ [213]. Our distance-adjusted Eikonal loss degrades
geometric reconstruction less than other alternatives used to render unbounded scenes.

Method ↓Distance (m) ↓Distance (%)

Uniform Eikonal loss (world space) 0.219 8.56
Uniform Eikonal loss (contracted space) 0.419 16.11
No Eikonal loss 0.996 29.93

Distance-adjusted Eikonal loss (ours) 0.221 11.13
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Figure 4.9: Color Distillation. Distilling the color MLP to a smaller width during the finetuning
stage (Section 4.3.2) accelerates rendering at the cost of a minor decrease in quality. We observe
largely similar results when decreasing the width to 32 channels, and more noticeable changes
in color when further decreasing to 16.

Table 4.7: Color distillation. We evaluate the effect of color MLP distillation on the Eyeful
Tower dataset [201], and find a significant increase in rendering speed at the cost of quality.

Color Width ↑PSNR ↑SSIM ↓LPIPS ↑FPS

16-wide (distilled) 30.88 0.888 0.236 60.13
32-wide (distilled) 31.17 0.900 0.220 57.05
64-wide (original) 31.57 0.913 0.198 45.78
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qualitatively similar results when decreasing width from 64 to 32 channels with more notable
changes in color when decreasing the width to 16 channels (see Fig. 4.9). As our initial results
suggest that MLP evaluation remains a significant rendering bottleneck, replacing our scene-
wide color MLP with a collection of smaller, location-specific MLPs, as suggested by KiloNeRF
[139] and SMERF [42], is potential future work that could boost rendering speed at a smaller
cost in quality.

4.5 Discussion
We present a hybrid surface–volume representation that combines the best of surface and volume-
based rendering into a single model. We achieve state-of-the-art quality across several datasets
while maintaining real-time frame rates at VR resolutions. Although we push the performance
frontier of raymarching approaches, a significant speed gap remains next to splatting-based ap-
proaches [81]. Combining the advantages of our surface–volume representation with these meth-
ods would be a valuable next step.

4.5.1 Limitations
Memory Storing features in dense 3D grids and triplanes consumes significantly more memory
than with hash tables [120]. Training is especially memory-intensive as intermediate activations
must be stored for backpropagation along with per-parameter optimizer statistics. Storing fea-
tures in a hash table during the training phase before “baking” them into explicit textures as in
MERF [140] would ameliorate training-time consumption but not at inference time.

Training time. Although our training time is much faster than the original NeRF, it is about 2×
slower than iNGP due to the additional backprogation needed for Eikonal regularization (in line
with other “fast” surface approaches such as NeuS-facto [218]), and slower than 3D Gaussian
splatting.
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Chapter 5

Fast Anti-Aliasing for Neural Radiance
Fields
The contents of this chapter were published as “PyNeRF: Pyramidal Neural Radiance Fields” in
NeurIPS 2023

5.1 Introduction
After first discussing how to scale neural representations in Chapters 2 and 3, and how to ac-
celerate rendering in Chapter 4, we now turn our attention to improving rendering quality. We
first explore how to alleviate aliasing artifacts when training and rendering with freeform camera
trajectories. As our goal is to efficiently render large-scale virtual worlds, we explore solutions
that are compatible with the scaling and speed improvements described in previous chapters.

Although NeRF can provide high rendering quality, most NeRF methods assume that training
and test-time cameras capture scene content from a roughly constant distance. Rendering quality
degrades due to aliasing and excessive blurring when that assumption is violated. This is because
NeRF raycasting is scale-unaware - it samples points along an infinitesimally thin ray and does
not consider the area viewed by each pixel. Mip-NeRF [16], addresses the issue by projecting
camera frustum volumes instead of point-sampling rays. However, it relies on the MLP represen-
tation used in the original NeRF and is thus slow and incompatible with accelerated grid-based
NeRF implementations [26, 50, 120, 150], including those used by SUDS (Chapter 3) and Hy-
bridNeRF (Chapter 4). Zip-NeRF [18] instead uses a multisampling strategy to improve aliasing,
and is compatible with grid methods, but training and rendering speed decreases with the number
of additional samples.

Inspired by divide-and-conquer NeRF extensions [138, 139, 167, 178] and classical ap-
proaches such as Gaussian pyramids [12] and mipmaps [192], we propose a simple approach
(PyNeRF [180]) that can easily be applied to any existing accelerated NeRF implementation.
We train a pyramid of models at different scales, sample along camera rays (as in the original
NeRF), and simply query coarser levels of the pyramid for samples that cover larger volumes
(similar to voxel cone tracing [33]). Our method is simple to implement and significantly im-
proves the rendering quality of fast rendering approaches with minimal performance overhead.

Contribution: Our primary contribution is a partitioning method that can be easily adapted
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(a) NeRF (b) Mip-NeRF

(c) Grid Methods (eg: iNGP) (d) PyNeRF

Figure 5.1: Comparison of methods. (a) NeRF traces a ray from the camera’s center of projec-
tion through each pixel and samples points x along each ray. Sample locations are then encoded
with a positional encoding to produce a feature γ(x) that is fed into an MLP. (b) Mip-NeRF
instead reasons about volumes by defining a 3D conical frustum per camera pixel. It splits the
frustum into sampled volumes, approximates them as multivariate Gaussians, and computes the
integral of the positional encodings of the coordinates contained within the Gaussians. Similar
to NeRF, these features are then fed into an MLP. (c) Accelerated grid methods, such as iNGP,
sample points as in NeRF, but do not use positional encoding and instead featurize each point
by interpolating between vertices in a feature grid. These features are then passed into a much
smaller MLP, which greatly accelerates training and rendering. (d) PyNeRF [180] also uses fea-
ture grids, but reasons about volumes by training separate models at different scales (similar to a
mipmap). It calculates the area covered by each sample in world coordinates, queries the models
at the closest corresponding resolutions, and interpolates their outputs.

to any existing grid-rendering approach. We present state-of-the-art reconstruction results against
a wide range of datasets, including on novel scenes we designed that explicitly target common
aliasing patterns. We evaluate different posssible architectures and demonstrate that our design
choices provide a high level of visual fidelity while maintaining the rendering speed of fast NeRF
approaches.

5.2 Related Work

The now-seminal Neural Radiance Fields (NeRF) paper [118] inspired a vast corpus of follow-up
work. We discuss a non-exhaustive list of such approaches along axes relevant to our work.
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Level 1 Level 2 Level 3 Level 4

Figure 5.2: We visualize renderings from a pyramid of spatial grid-based NeRFs trained for
different voxel resolutions. Models at finer pyramid levels tend to capture finer content.

Grid-based methods. The original NeRF took 1–2 days to train, with extensions for un-
bounded scenes [17, 223] taking longer. Once trained, rendering takes seconds per frame and is
far below interactive thresholds. NSVF [106] combines NeRF’s implicit representation with a
voxel octree that allows for empty-space skipping and improves inference speeds by 10×. Follow-
up works [58, 68, 216] further improve rendering to interactive speeds by storing precomputed
model outputs into auxiliary grid structures that bypass the need to query the original model
altogether at render time. Plenoxels [150] and DVGO [165] accelerate both training and render-
ing by directly optimizing a voxel grid instead of an MLP to train in minutes or even seconds.
TensoRF [26] and K-Planes [50] instead use the product of low-rank tensors to approximate the
voxel grid and reduce memory usage, while Instant-NGP [120] (iNGP) encodes features into
a multi-resolution hash table. The main goal of our work is to combine the speed benefits of
grid-based methods with an approach that maintains quality across different rendering scales.

Divide-and-conquer. Several works note the diminishing returns in using large networks
to represent scene content, and instead render the area of interest with multiple smaller mod-
els. DeRF [138] and KiloNeRF [139] focus on inference speed while Mega-NeRF (Chapter 2),
Block-NeRF [167], and SUDS (Chapter 3) use scene decomposition to efficiently train city-scale
neural representations. Our method is similar in philosophy, although we partition across differ-
ent resolutions instead of geographical area.

Aliasing. The original NeRF assumes that scene content is captured at roughly equidistant
camera distances and emits blurry renderings when the assumption is violated. Mip-NeRF [16]
reasons about the volume covered by each camera ray and proposes an integrated positional
encoding that alleviates aliasing. Mip-NeRF 360 [17] extends the base method to unbounded
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scenes. Exact-NeRF [75] derives a more precise integration formula that better reconstructs
far-away scene content. Bungee-NeRF [197] leverages Mip-NeRF and further adopts a coarse-
to-fine training approach with residual blocks to train on large-scale scenes with viewpoint vari-
ation. LIRF [199] proposes a multiscale image-based representation that can generalize across
scenes. The methods all build upon the original NeRF MLP model and do not readily translate
to accelerated grid-based methods.

Concurrent work. Several contemporary efforts explore the intersection of anti-aliasing
and fast rendering. Zip-NeRF [18] combines a hash table representation with a multi-sampling
method that approximates the true integral of features contained within each camera ray’s view
frustum. Although it trains faster than Mip-NeRF, it is explicitly not designed for fast rendering
as the multi-sampling adds significant overhead. Mip-VoG [72] downsamples and blurs a voxel
grid according to the volume of each sample in world coordinates. We compare their reported
numbers to ours in Section 5.4.2. Tri-MipRF [74] uses a similar prefiltering approach, but with
triplanes instead of a 3D voxel grid.

Classical methods. Similar to PyNeRF, classic image processing methods, such as Gaus-
sian [12] and Laplacian [22] hierarchy, maintain a coarse-to-fine pyramid of different images
at different resolutions. Compared to Mip-NeRF, which attempts to learn a single MLP model
across all scales, one could argue that our work demonstrates that the classic pyramid approach
can be efficiently adapted to neural volumetric models. In addition, our ray sampling method
is similar to Crassin et al.’s approach [33], which approximates cone tracing by sampling along
camera rays and querying different mipmap levels according the spatial footprint of each sample
(stored as a voxel octree in their approach and as a NeRF model in ours).

5.3 Approach

5.3.1 Preliminaries
NeRF. NeRF [118] represents a scene within a continuous volumetric radiance field that cap-
tures geometry and view-dependent appearance. It encodes the scene within the weights of a
multilayer perceptron (MLP). At render time, NeRF casts a camera ray r for each image pixel.
NeRF samples multiple positions xi along each ray and queries the MLP at each position (along
with the ray viewing direction d) to obtain density and color values σi and ci. To better cap-
ture high-frequency details, NeRF maps xi and d through an L-dimensional positional encoding
(PE) γ(x) = [sin(20πx), cos(20πx), . . . , sin(2Lπx), cos(2Lπx)] instead of directly using them as
MLP inputs. It then composites a single color prediction Ĉ(r) per ray using numerical quadra-
ture

∑N−1
i=0 Ti(1− exp(−σiδi)) ci, where Ti = exp(−

∑i−1
j=0 σjδj) and δi is the distance between

samples. The training process optimizes the model by sampling batches R of image pixels and

minimizing the loss
∑

r∈R

∥∥∥C(r)− Ĉ(r)
∥∥∥2. We refer the reader to Mildenhall et al. [118] for

details.
Anti-aliasing. The original NeRF suffers from aliasing artifacts when reconstructing scene

content observed at different distances or resolutions due to its reliance on point-sampled fea-
tures. As these features ignore the volume viewed by each ray, different cameras viewing the
same position from different distances may produce the same ambiguous feature. Mip-NeRF [16]
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(a) Point Sampling

(c8, σ8) = f8(x,d)

(c9, σ9) = f9(x,d)

(b) Model Evalua-
tion

c = 0.4c8 + 0.6c9
σ = 0.4σ8 +0.6σ9

(c) Interpolation
bhaalbhansbb

Figure 5.3: Overview. (a) We sample frustums along the camera ray corresponding to each pixel
and derive the scale of each sample according to its width in world coordinates. (b) We query the
model heads closest to the scale of each sample. (c) We derive a single color and density value
for each sample by interpolating between model outputs according to scale.

and variants instead reason about volumes by defining a 3D conical frustum per camera pixel. It
featurizes intervals within the frustum with a integrated positional encoding (IPE) that approx-
imates each frustum as a multivariate Gaussian to estimate the integral E[γ(x)] over the PEs of
the coordinates within it.

Grid-based acceleration. Various methods [26, 50, 120, 150, 165] eschew NeRF’s posi-
tional encoding and instead store learned features into a grid-based structure, e.g. implemented
as an explicit voxel grid, hash table, or a collection of low-rank tensors. The features are interpo-
lated based on the position of each sample and then passed into a hard-coded function or much
smaller MLP to produce density and color, thereby accelerating training and rendering by orders
of magnitude. However, these approaches all use the same volume-insensitive point sampling
of the original NeRF and do not have a straightforward analogy to Mip-NeRF’s IPE as they no
longer use positional encoding.

5.3.2 Multiscale sampling

Assume that each sample x (where we drop the i index to reduce notational clutter) is associated
with an integration volume. Intuitively, samples close to a camera correspond to small volumes,
while samples far away from a camera correspond to large volumes (Fig. 5.3). Our crucial
insight for enabling multiscale sampling with grid-based approaches is remarkably simple: we
train separate NeRFs at different voxel resolutions and simply use coarser NeRFs for samples
covering larger volumes. Specifically, we define a hierarchy of L resolutions that divide the
world into voxels of length 1/N0, ..., 1/NL−1, where Nl+1 = sNl and s is a constant scaling
factor. We also define a function fl(x,d) at each level that maps from sample location x and
viewing direction d to color c and density σ. fl can be implemented by any grid-based NeRF;
in our experiments, we use a hash table followed by small density and color MLPs, similar to
iNGP. We further define a mapping function M that assigns the integration volume of sample x
to the hierarchy level l. We explore different alternatives, but find that selecting the level whose
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Algorithm 1 PyNeRF rendering function
Input: m rays r, L pyramid levels, hierarchy mapping function M , base resolution N0, scaling

factor s
Output: m estimated colors c

x,d, P (x)← sample(r) ▷ Sample points x along each ray with direction d and area P (x)
M(P (x))← logs(P (x)/N0) ▷ Eq. (5.1)
l← min(L− 1,max(0, ⌈M(P (x))⌉)) ▷ Eq. (5.2)
w ← l −M(P (x)) ▷ Eq. (5.5)
model out← zeros(len(x)) ▷ Zero-initialize model outputs for each sample x
for i in unique(l) do ▷ Iterate over sample levels

model out[l = i] += w[l = i]fi(x[l = i],d[l = i])
model out[l = i] += (1− w)[l = i]fi−1(x[l = i],d[l = i])

end for
c← composite(model out) ▷ Composite model outputs into per-ray color c
return c

voxels project to the 2D pixel area P (x) used to define the integration volume works well:

M(P (x)) = logs(P (x)/N0) (5.1)
l = min(L− 1,max(0, ⌈M(P (x))⌉)) (5.2)
σ, c = fl(x,d), [GaussPyNeRF]

(5.3)

where ⌈·⌉ is the ceiling function. Such a model can be seen as a (Gaussian) pyramid of spatial
grid-based NeRFs (Fig. 5.2). If the final density and color were obtained by summing across
different pyramid levels, the resulting levels would learn to specialize to residual or “band-pass”
frequencies (as in a 3D Laplacian pyramid [22]):

σ, c =
l∑

i=0

fi(x,d). [LaplacianPyNeRF]

(5.4)

Our experiments show that such a representation is performant, but expensive since it requires l
model evaluations per sample. Instead, we find a good tradeoff is to linearly interpolate between
two model evaluations at the levels just larger than and smaller than the target integration volume:

σ, c = wfl(x,d) + (1− w)fl−1(x,d), where w = l −M(P (x)). (Default) [PyNeRF]
(5.5)

This adds the cost of only a single additional evaluation (increasing the overall rendering time
from 0.0045 to 0.005 ms per pixel) while maintaining rendering quality (see Section 5.4.6). Our
algorithm is summarized in Algorithm 1.

Matching areas vs volumes. One might suspect it may be better to select the voxel level
l whose volume best matches the sample’s 3D integration volume. We experimented with this,
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but found it more effective to match the projected 2D pixel area rather than volumes. Note
that both approaches would produce identical results if the 3D volume was always a cube, but
volumes may be elongated along the ray depending on the sampling pattern. Matching areas is
preferable because most visible 3D scenes consist of empty space and surfaces, implying that
when computing the composite color for a ray r, most of the contribution will come from a few
samples x lying near the surface of intersection. When considering the target 3D integration
volume associated with x, most of the contribution to the final composite color will come from
integrating along the 2D surface (since the rest of the 3D volume is either empty or hidden). This
loosely suggests we should select levels of the voxel hierarchy based on (projected) area rather
than volume.

Hierarchical grid structures. Our method can be applied to any accelerated grid method
irrespective of the underyling storage. However, a drawback of this approach is an increased
on-disk serialization footprint due to training a hierarchy of spatial grid NeRFs. A possible
solution is to exploit hierarchical grid structures that already exist within the base NeRF. Note
that multi-resolution grids such as those used by iNGP [120] or K-Planes [50] already define a
scale hierarchy that is a natural fit for PyNeRF. Rather than learning a separate feature grid for
each model in our pyramid, we can reuse the same multi-resolution features across levels (while
still training different MLP heads).

Multi-resolution pixel input. One added benefit of the above is that one can train with mul-
tiscale training data, which is particularly helpful for learning large, city-scale NeRFs [167, 178,
179, 197, 202]. For such scenarios, even storing high-resolution pixel imagery may be cum-
bersome. In our formulation, one can store low-resolution images and quickly train a coarse
scene representation. The benefits are multiple. Firstly, divide-and-conquer approaches such as
Mega-NeRF (Chapter 3) partition large scenes into smaller cells and train using different training
pixel/ray subsets for each (to avoid training on irrelevant data). However, in the absence of depth
sensors or a priori 3D scene knowledge, Mega-NeRF is limited in its ability to prune irrelevant
pixels/rays (due to intervening occluders) which empirically bloat the size of each training par-
tition by 2× (Chapter 2). With our approach, we can learn a coarse 3D knowledge of the scene
on downsampled images and then filter higher-resolution data partitions more efficiently. Once
trained, lower-resolution levels can also serve as an efficient initialization for finer layers. In ad-
dition, many contemporary NeRF methods use occupancy grids [120] or proposal networks [17]
to generate refined samples near surfaces. We can quickly train these along with our initial
low-resolution model and then use them to train higher-resolution levels in a sample-efficient
manner. We show in our experiments that such course-to-fine multiscale training can speed up
convergence (Section 5.4.5).

Unsupervised levels. A naive implementation of our method will degrade when zooming
in and out of areas that have not been seen at training time. Our implementation mitigates this
by maintaining an auxiliary data structure (similar to an occupancy grid [120]) that tracks the
coarsest and finest levels queried in each region during training. We then use the structure at
inference time to only query levels that were supervised during training.
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Table 5.1: Synthetic results. PyNeRF outperforms all baselines and trains over 60× faster than
Mip-NeRF. Both PyNeRF and Mip-NeRF properly reconstruct the brick wall in the Blender-A
dataset, but Mip-NeRF fails to accurately reconstruct checkerboard patterns.

Multiscale Blender [16] Blender-A

↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓Train Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓ Train Time (h)

Plenoxels [150] 24.98 0.843 0.161 0.080 0:28 18.13 0.511 0.523 0.190 0:40
K-Planes [50] 29.88 0.946 0.058 0.022 0:32 21.17 0.593 0.641 0.405 1:22
TensoRF [26] 30.04 0.948 0.056 0.021 0:27 27.01 0.785 0.197 0.054 1:20
iNGP [120] 30.21 0.958 0.040 0.022 0:20 20.85 0.767 0.244 0.089 0:56
Nerfacto [168] 29.56 0.947 0.051 0.022 0:25 27.46 0.796 0.195 0.053 1:07
Mip-VoG [72] 30.42 0.954 0.053 — — — — — — —
Mip-NeRF [16] 34.50 0.974 0.017 0.009 29:49 31.33 0.894 0.098 0.063 30:12

PyNeRF 34.78 0.976 0.015 0.008 0:25 41.99 0.986 0.007 0.004 1:10

Table 5.2: Synthetic results across downsampling levels. We average results across Multiscale
Blender [16] and Blender-A and list metrics for each downsampling level. All PyNeRF variants
outperform their baselines by a wide margin.

↑PSNR ↑SSIM ↓LPIPS

Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. ↓Avg Error

Plenoxels [150] 22.61 23.68 24.54 23.62 0.767 0.768 0.784 0.789 0.307 0.265 0.200 0.161 0.102
K-Planes [50] 25.14 27.03 30.26 30.75 0.807 0.840 0.896 0.925 0.225 0.163 0.085 0.053 0.046
TensoRF [26] 25.93 28.12 31.46 30.97 0.865 0.893 0.921 0.930 0.169 0.112 0.064 0.056 0.042
iNGP [120] 26.90 29.14 30.89 28.49 0.865 0.905 0.947 0.947 0.152 0.095 0.047 0.054 0.032
Nerfacto [168] 25.35 27.26 29.78 29.09 0.809 0.840 0.893 0.917 0.214 0.158 0.094 0.068 0.049
Mip-NeRF [16] 32.07 33.65 34.76 35.00 0.952 0.959 0.961 0.960 0.048 0.036 0.028 0.021 0.020

SUDS 33.18 35.83 37.59 38.29 0.964 0.977 0.984 0.989 0.030 0.013 0.007 0.004 0.008
SUDS-K-Planes 33.12 35.18 36.45 36.94 0.963 0.973 0.980 0.985 0.028 0.014 0.009 0.005 0.008
SUDS-TensoRF 32.94 35.34 36.92 37.46 0.959 0.974 0.982 0.987 0.033 0.014 0.008 0.005 0.008

5.4 Experiments
We first evaluate PyNeRF’s performance by measuring its reconstruction quality on bounded
synthetic (Section 5.4.2) and unbounded real-world (Section 5.4.3) scenes. We demonstrate
PyNeRF’s generalizability by evaluating it on additional NeRF backbones (Section 5.4.4) and
then explore the convergence benefits of using multiscale training data in city-scale reconstruc-
tion scenarios (Section 5.4.5). We ablate our design decisions in Section 5.4.6.

5.4.1 Experimental Setup
Training. We implement PyNeRF on top of the Nerfstudio library [168] and train on each
scene with 8,192 rays per batch by default for 20,000 iterations on the Multiscale Blender and
Mip-NeRF 360 datasets, and 50,000 iterations on the Boat dataset and Blender-A. We train a
hierarchy of 8 PyNeRF levels backed by a single multi-resolution hash table similar to that used
by iNGP [120] in Section 5.4.2 and Section 5.4.3 before evaluating additional backbones in
Section 5.4.4. We use 4 features per level with a hash table size of 220 by default, which we found
to give the best quality-performance trade-off on the A100 GPUs we use in our experiments.
Each PyNeRF uses a 64-channel density MLP with one hidden layer followed by a 128-channel
color MLP with two hidden layers. We use similar model capacities in our baselines for fairness.
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Figure 5.4: Synthetic results. PyNeRF and Mip-NeRF provide comparable results on the first
three scenes that are crisper than those of the other fast renderers. Mip-NeRF does not accurately
render the tiles in the last row while PyNeRF recreates them near-perfectly.

We sample rays using an occupancy grid [120] on the Multiscale Blender dataset, and with a
proposal network [17] on all others. We use gradient scaling [? ] to improve training stability
in scenes with that capture content at close distance (Blender-A and Boat). We parameterize
unbounded scenes with Mip-NeRF 360’s contraction method.

Metrics. We report quantitative results based on PSNR, SSIM [187], and the AlexNet im-
plementation of LPIPS [225], along with the training time in hours as measured on a single
A100 GPU. For ease of comparison, we also report the “average” error metric proposed by Mip-
NeRF [16] composed of the geometric mean of MSE = 10−PSNR/10,

√
1− SSIM, and LPIPS.

5.4.2 Synthetic Reconstruction

Datasets. We evaluate PyNeRF on the Multiscale Blender dataset proposed by Mip-NeRF along
with our own Blender scenes (which we name “Blender-A”) intended to further probe the anti-
aliasing ability of our approach (by reconstructing a slanted checkerboard and zooming into a
brick wall).

Baselines. We compare PyNeRF to several fast-rendering approaches, namely Instant-NGP [120]
and Nerfacto [168], which store features within a multi-resolution hash table, Plenoxels [150]
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which optimizes an explicit voxel grid, and TensoRF [26] and K-Planes [50], which rely on low-
rank tensor decomposition. We also compare our Multiscale Blender results to those reported
by Mip-VoG [72], a contemporary fast anti-aliasing approach, and to Mip-NeRF [16] on both
datasets.

Results. We summarize our results in Table 5.1 and Table 5.2. We show qualitative examples
in Fig. 5.4. PyNeRF outperforms all fast rendering approaches as well as Mip-VoG by a wide
margin and is slightly better than Mip-NeRF on Multiscale Blender while training over 60×
faster. Both PyNeRF and Mip-NeRF properly reconstruct the brick wall in the Blender-A dataset,
but Mip-NeRF fails to accurately reconstruct checkerboard patterns.

5.4.3 Real-World Reconstruction

Datasets. We evaluate PyNeRF on the Boat scene of the ADOP [146] dataset, which to our
knowledge is one of the only publicly available unbounded real-world captures that captures its
primary object of interest from different camera distances. For further comparison, we construct
a multiscale version of the outdoor scenes in the Mip-NeRF 360 [17] dataset using the same
protocol as Multiscale Blender [16].

Baselines. We compare PyNeRF to the same fast-rendering approaches as in Section 5.4.2,
along with two unbounded Mip-NeRF variants: Mip-NeRF 360 [17] and Exact-NeRF [75]. We
report numbers on each variant with and without generative latent optimization [113] to account
for lighting changes.

Results. We summarize our results in Table 5.3 and Table 5.4 along with qualitative results
in Fig. 5.5. Once again, PyNeRF outperforms all baselines, trains 40× faster than Mip-NeRF
360, and 100× faster than Exact-NeRF (the next best alternatives).

5.4.4 Additional Backbones

Methods. We demonstrate how PyNeRF can be applied to any grid-based NeRF method by
evaluating it with K-Planes [50] and TensoRF [26] in addition to our default iNGP-based imple-
mentatino. We take advantage of the inherent multi-resolution structure of iNGP and K-Planes
by reusing the same feature grid across PyNeRF levels and train a separate feature grid per level
in our TensoRF variant.

Results. We train the PyNeRF variants along with their backbones across the datasets de-
scribed in Section 5.4.2 and Section 5.4.3, and summarize the results in Table 5.5. All PyNeRF
variants show clear improvements over their base methods.

5.4.5 City-Scale Convergence

Dataset. We evaluate PyNeRF’s convergence properties on the the Argoverse 2 [193] Sen-
sor dataset (to our knowledge, the largest city-scale dataset publicly available). We select the
largest overlapping subset of logs and filter out moving objects through a pretrained segmenta-
tion model [29]. The resulting training set contains 400 billion rays across 150K video frames.
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Table 5.3: Real-world results. PyNeRF outperforms all baselines in PSNR and average er-
ror, and trains 40× faster than Mip-NeRF 360 and 100× faster than Exact-NeRF (the next best
methods).

Boat [146] Mip-NeRF 360 [17]

↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓Train Time (h) ↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↓ Train Time (h)

Plenoxels [150] 17.05 0.505 0.617 0.185 2:14 21.88 0.606 0.524 0.117 1:00
K-Planes [50] 18.00 0.501 0.590 0.168 2:41 21.53 0.577 0.500 0.120 1:08
TensoRF [26] 14.75 0.398 0.630 0.234 2:30 18.07 0.439 0.677 0.181 1:07
iNGP [120] 15.34 0.433 0.646 0.222 1:42 21.14 0.568 0.521 0.126 0:40
Nerfacto [168] 19.27 0.570 0.425 0.135 2:12 22.47 0.616 0.431 0.105 1:02
Mip-NeRF 360 w/ GLO [17] 20.03 0.595 0.416 0.124 37:28 22.76 0.664 0.342 0.095 37:35
Mip-NeRF 360 w/o GLO [17] 15.92 0.480 0.501 0.194 37:10 22.70 0.664 0.342 0.095 37:22
Exact-NeRF w/ GLO [75] 20.21 0.601 0.425 0.123 109:11 21.40 0.619 0.416 0.121 110:06
Exact-NeRF w/o GLO [75] 16.33 0.489 0.510 0.187 107:52 22.56 0.619 0.410 0.121 108:11

PyNeRF 20.43 0.601 0.422 0.121 2:12 23.09 0.654 0.358 0.094 1:00

Table 5.4: Real-world results across downsampling level. We average results across Boat [146]
and Mip-NeRF 360 [17]. As in Table 5.2, all PyNeRF variants improve significantly upon their
baselines.

↑PSNR ↑SSIM ↓LPIPS

Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. ↓Avg Error

Plenoxels [150] 20.69 20.70 20.98 21.93 0.627 0.543 0.547 0.640 0.661 0.607 0.525 0.364 0.128
K-Planes [50] 20.53 20.55 20.84 21.85 0.618 0.525 0.512 0.602 0.655 0.587 0.488 0.328 0.128
TensoRF [26] 17.31 17.33 17.49 17.96 0.548 0.431 0.367 0.384 0.748 0.714 0.662 0.552 0.190
iNGP [120] 19.53 19.83 16.06 20.86 0.598 0.504 0.489 0.574 0.670 0.610 0.517 0.351 0.146
Nerfacto [168] 21.37 21.42 21.81 23.15 0.629 0.558 0.575 0.688 0.594 0.512 0.389 0.226 0.110
Mip-NeRF 360 w/ GLO [17] 21.73 21.72 22.13 23.65 0.650 0.597 0.628 0.736 0.518 0.427 0.309 0.165 0.100
Mip-NeRF 360 w/o GLO [17] 21.01 21.00 21.39 22.88 0.634 0.580 0.610 0.718 0.529 0.441 0.323 0.179 0.111
Exact-NeRF w/ GLO [75] 20.72 20.73 21.04 22.34 0.637 0.571 0.583 0.674 0.559 0.478 0.378 0.237 0.121
Exact-NeRF w/o GLO [75] 20.98 20.97 21.34 22.80 0.635 0.578 0.604 0.710 0.548 0.451 0.339 0.192 0.113

SUDS 22.05 22.16 22.56 23.84 0.645 0.591 0.620 0.725 0.535 0.441 0.316 0.184 0.098
SUDS-K-Planes 21.47 21.49 21.87 23.18 0.633 0.570 0.591 0.694 0.563 0.478 0.362 0.217 0.108
SUDS-TensoRF 20.82 20.89 21.25 22.48 0.594 0.521 0.528 0.630 0.648 0.558 0.438 0.284 0.122
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Figure 5.5: Real-world results. PyNeRF reconstructs higher-fidelity details (such as the spokes
on the bicycle and the lettering within the boat) than other methods.

Table 5.5: Additional backbones. We train the PyNeRF variants along with their backbones
across the datasets described in Section 5.4.2 and Section 5.4.3 All PyNeRF variants outperform
their baselines by a wide margin.

Synthetic Real-World

↑PSNR ↑SSIM ↓LPIPS ↓Avg Error ↑PSNR ↑SSIM ↓LPIPS ↓Avg Error

iNGP [120] 28.86 0.916 0.087 0.032 19.94 0.541 0.537 0.146
K-Planes [50] 27.90 0.865 0.131 0.047 20.54 0.553 0.520 0.136
TensoRF [26] 29.12 0.902 0.100 0.042 17.21 0.421 0.696 0.200

PyNeRF 36.22 0.979 0.013 0.004 22.65 0.645 0.369 0.098
PyNeRF-K-Planes 35.42 0.975 0.014 0.005 22.00 0.622 0.405 0.108
PyNeRF-TensoRF 35.67 0.976 0.015 0.005 21.35 0.568 0.482 0.122

Methods. We use SUDS (Chapter 3) as the backbone model in our experiments. We begin
training our method on 8× downsampled images (containing 64× fewer rays) for 5,000 itera-
tions and then on progressively higher resolutions (downsampled to 4×, 2×, and 1×) every 5,000
iterations hereafter. We compare to the original SUDS method as a baseline.

Metrics. We report the evolution of the quality metrics used in Section 5.4.2 and Sec-
tion 5.4.3 over the first four hours of the training process.

Results. We summarize our results in Table 5.6. PyNeRF converges more rapidly than the
SUDS baseline, achieving the same rendering quality at 2 hours as SUDS after 4.

5.4.6 Diagnostics
Methods. We validate our design decisions by testing several variants. We ablate our MLP-level
interpolation described in Eq. (5.5) and compare it to the GausssPyNeRF and LaplacianPyN-
eRF variants described in Section 5.3.2 along with another that instead interpolates the learned
grid feature vectors (which avoids the need for an additional MLP evaluation per sample). As
increased storage footprint is a potential drawback method, we compare our default strategy of
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Table 5.6: City-scale convergence. We track rendering quality over the first four hours of train-
ing. PyNeRF achieves the same rendering quality as SUDS 2× faster.

↑ PSNR

Time (h) 1:00 2:00 3:00 4:00

SUDS (Chapter 3) 16.01 17.41 18.08 18.53
PyNeRF 17.17 18.44 18.59 18.73

↑ SSIM

Time (h) 1:00 2:00 3:00 4:00

SUDS (Chapter 3) 0.570 0.600 0.602 0.606
PyNeRF 0.614 0.618 0.619 0.621

↓ LPIPS

Time (h) 1:00 2:00 3:00 4:00

SUDS (Chapter 3) 0.531 0.496 0.470 0.466
PyNeRF 0.521 0.485 0.469 0.465

↓ Avg Error

Time (h) 1:00 2:00 3:00 4:00

SUDS (Chapter 3) 0.182 0.160 0.150 0.145
PyNeRF 0.165 0.146 0.144 0.142

Table 5.7: Diagnostics. The rendering quality of our interpolation method is near-identical to the
full residual approach while training 3× faster, and is significantly better than other alternatives.
Reusing the same feature grid across levels performs comparably to storing separate hash tables
per level while training faster.

Method
Our

Interp.
Shared

Features
2D

Area ↑PSNR ↑SSIM ↓LPIPS
↓ Avg
Error

↓ Train
Time (h)

GaussPyNeRF (Eq. 5.3) ✗ ✓ ✓ 28.72 0.803 0.201 0.056 0:43
LaplacianPyNeRF (Eq. 5.4) ✗ ✓ ✓ 29.48 0.813 0.190 0.052 2:44
Feature grid interpolation ✗ ✗ ✓ 28.45 0.767 0.244 0.070 0:46
Separate hash tables ✓ ✗ ✓ 29.41 0.813 0.196 0.054 0:52
Levels w/ 3D Volumes ✓ ✓ ✗ 29.19 0.811 0.184 0.054 0:48

PyNeRF ✓ ✓ ✓ 29.44 0.812 0.191 0.053 0:48

sharing the same multi-resolution feature grid across PyNeRF levels to the naive implementa-
tion that trains a separate grid per level. We also explore using 3D sample volumes instead of
projected 2D pixel areas to determine voxel levels l.

Results. We train our method and variants as described in Section 5.4.2 and Section 5.4.3,
and summarize the results (averaged across datasets) in Table 5.7. Our proposed interpolation
method strikes a good balance — its performance is near-identical to the full LaplacianPyNeRF
approach while training 3× faster (and is significantly better than the other interpolation meth-
ods). Our strategy of reusing the same feature grid across levels performs comparably to the
naive implementation while training faster due to fewer feature grid lookups. Using 2D pixel
areas instead of 3D volumes to determine voxel level l provides an improvement.

Single-scale datasets. Although PyNeRF is designed for scenarios that capture scene content
at different distances, we also evaluate it on the original Synthetic-NeRF [118] dataset where the
camera distance remains constant to see whether we regress quality in these settings. As shown
in Table 5.8, PyNeRF performs similarly to existing SOTA.
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Table 5.8: Single-scale results. We evaluate PyNeRF on single-scale Blender [118]. PyNeRF
performs comparably to existing state-of-the-art.

PSNR Lego Mic Materials Chair Hotdog Ficus Drums Ship Mean

K-Planes [50] 35.38 33.27 29.57 33.88 36.19 30.81 25.62 30.16 31.86
TensoRF [26] 35.14 25.70 33.69 37.03 36.04 29.77 24.64 30.12 31.52
iNGP [120] 35.67 36.85 29.60 35.71 37.37 33.95 25.44 30.29 33.11
Nerfacto [168] 34.84 33.58 26.50 34.48 37.07 30.66 23.63 30.95 31.46

SUDS 36.63 36.39 29.92 35.76 37.64 34.29 25.80 30.64 33.38

5.5 Discussion
We propose a method that significantly improves the anti-aliasing properties of fast volumetric
renderers. Our approach can be easily applied to any existing grid-based NeRF, and although
simple, provides state-of-the-art reconstruction results against a wide variety of datasets (while
training 60–100× faster than existing anti-aliasing methods). We propose several synthetic scenes
that model common aliasing patterns as few existing NeRF datasets cover these scenarios in prac-
tice. Creating and sharing additional real-world captures would likely facilitate further research.

5.5.1 Limitations
Although our method generalizes to any grid-based method (Section 5.4.4), it requires a larger
on-disk serialization footprint due to training a hierarchy of spatial grid NeRFs. This can be
mitigated by reusing the same feature grid when the underlying backbone uses a multi-resolution
feature grid [50, 120], but this is not true of all methods [26, 150].
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Chapter 6

Conclusion and Future Work

In this thesis, we advance the frontier of large-scale neural rendering along multiple dimensions.
We start by addressing scalable reconstruction, first via neighborhood-scale static reconstruc-
tions, and then by designing dynamic representations of entire cities. We then introduce a method
that enables high-fidelity real-time rendering at VR resolution, and begin to address the topic of
quality via a fast anti-aliasing method. However, much work remains to be done. We list several
directions of particular interest below.

6.1 Integrating Learned Priors

Although Chapter 5 makes a first attempt at improving quality via efficient anti-aliasing, NeRF
rendering quality generally remains far below photorealistic thresholds, especially in dynamic
settings. One problem is that as NeRF methods are usually optimized on a per-scene basis, they
are unable to hallucinate accurate color and geometry in under-observed regions. This becomes a
limiting factor when reconstructing large-scale dynamic worlds where it is impossible to densely
sample every location at every time step.

A potential solution to generating plausible renderings in sparse-view situations is to in-
troduce additional regularization terms into the optimization process. RegNeRF [124], FreeN-
eRF [206], and SimpleNeRF [162] add handcrafted losses that discourage degenerate solutions in
few-shot settings, while DS-NeRF [37] and Dense Depth Priors [143] use depth as an additional
source of information. PixelNeRF [215] adopts a more data-driven approach by aggregrating
features obtained from a convolutional feature extractor trained across different datasets. While
it can generate plausible geometry across different datasets, it tends to bias towards blurry ren-
derings, especially in ambiguous regions far from source inputs.

More recent data-driven efforts [107, 151, 194, 228] leverage the popularity of diffusion
models for image generation [71, 144, 163]. These approaches use score distillation sampling
(SDS) [132] or similar methods that allow a 2D diffusion model to act as a critic and supervise the
optimization of a 3D representation. ReconFusion [194] stands out as a current state-of-the-art
method that presents results that are far visually appealing than those of prior methods that use
handcrafted regularization. However, although the use of diffusion models bears considerable
promise, current approaches suffer from several shortcomings. First, methods such as ReconFu-
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sion aggregate multi-view information (used to condition the diffusion model) via mechanisms
that are slow and extremely memory-intensive to compute (such as PixelNeRF [215] render-
ings). Second, using SDS to optimize a 3D representation is relatively slow and expensive, as it
requires repeatedly rendering sampled cameras across the scene that are then processed by the
diffusion model. This becomes increasingly expensive as the size of the scene increases, and
becomes even more intractable when optimizing dynamic 4D representations. Finally, as Poole
et al note [132], score distillation sampling (and variants) can generate oversaturated and over-
smoothed renderings. As SDS optimizes for modes of a distribution, it sometimes encourages
monochrome or grey renderings even when the underlying generative model produces diverse
images. Can we do better?

6.1.1 3D Predictions via RGB-D Diffusion Models

Most existing works rely on 2D diffusion models that are designed to generate RGB images.
Leveraging these priors for 3D reconstruction therefore requires a translation step, most often
via score distillation sampling. However, as the authors of MVD-Fusion [73] observe, RGB-
D predictions can be leveraged as 3D outputs. Within the context of 3D scene reconstruction,
an RGB-D rendering for a given posed target view can interpreted as point cloud or 3D Gaus-
sian [81] outputs, enabling the diffusion model to directly make predictions in 3D!

How to best train a RGB-D diffusion model remains a research challenge. MVD-Fusion [73]
limits its scope to synthetic object-centric renderings from Objaverse [35], limiting its appli-
cability to real-world scenes. LDM3D [164] trains an RGB-D diffusion model on real-world
data with depth maps obtained from a pre-trained monocular depth estimator [136]. However,
this provides depth estimates with unknown scale and shift factors that are inconsistent across
predictions, limiting its applicability to multi-view reconstruction.

Multi-view depth estimators traditionally perform poorly on data outside of their training
domains, and so cannot be directly applied to arbitrary real-world scenes [156]. However, the
recent DUSt3R [190] model, which can be used to infer multi-view consistent depth (amongst
other applications), shows promising results across a variety of datasets. From our preliminary
investigation on the DL3DV-10K dataset [105], it is potentially robust enough to enable us to
train a real-world RGB-D diffusion model.

6.1.2 Proposed Approach

We train a RGB-D diffusion model conditioned via pathways similar to those proposed by Re-
conFusion [194]. We generate renderings for a target view by conditioning on neighboring input
views. Instead of fusing input image data via a learned PixelNeRF [215] model suggested by
ReconFusion, we use RGB pixels of the neighboring views and depth estimates from DUSt3R
(which are consistent across the input views) to infer pixel-aligned Gaussians that we volu-
metrically render from the target view as in [80]. We found rendering via these off-the-shelf
components to be much faster and more memory-efficient than with PixelNeRF (>10× in our
experiments). We also use CLIP embeddings of the input views via cross-attention as in prior
work [107, 151, 194]. Fig. 6.1 illustrates our approach.
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Figure 6.1: Multiview RGB-D Diffusion. We generate renderings for a target view by condi-
tioning on neighboring input views (a). We use the RGB pixels of the input views and depth esti-
mates from DUSt3R [190] to infer pixel-aligned 3D gaussians [81] that we volumetrically render
from the target view as in [80]. We condition the diffusion model by channel-concatenating the
rendered color, depth, and accumulation, and use CLIP embeddings of the input views via cross-
attention (b). We generate RGB-D predictions for the target view via multi-step denoising (c).

6.1.3 Challenges

Using the diffusion model. Once trained, how best to use an RGB-D diffusion model to optimize
a 3D scene representation remains a challenge. One solution is to use SDS as in prior work [107,
151, 194], with the added benefit that our model can be used to supervise both color and depth
renderings, which may allow for quicker convergence. However, this would have our method
inherit all of the drawbacks of SDS as described at the beginning of Section 6.1.

As the outputs of our RGB-D diffusion model can be used to infer pixel-aligned 3D gaus-
sians, it is theoretically possible to optimize a gaussian-based scene representation by directly
projecting the diffusion model outputs into the scene. Once projected as 3D gaussians, these
outputs can be combined with the original set of gaussians and used to condition subsequent
model evaluations, allowing us to complete the scene in a feed-forward autoregressive manner.
The main outstanding challenge is how to best ensure that model outputs are consistent with the
rest of the scene (which the conditioning in Fig. 6.1 encourages but does not guarantee).

Depth estimation. The quality of our proposed method is heavily dependent on accurate
depth estimates. Although our preliminary experiments suggest that DUSt3R exhibits stronger
generalization than prior methods, its predictions remain imperfect. The original DUSt3R paper
derives multi-view consistent depth by minimizing the reprojection error of pairwise pointmaps
via backpropagation. We discuss how to infer pixel-aligned 3D gaussians that can be volumet-
rically rendered from these depth predictions in Section 6.1.2 - the photometric loss of these
renderings could be used to evaluate and further optimize the accuracy of the depth estimates.
Per-scene volumetric optimization has traditionally been regarded as too expensive to perform
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Figure 6.2: Limitations of pixel-wise metrics. Although ZeroNVS’s [151] rendering is far
more semantically meaningful than that of PixelNeRF [215], it scores more poorly with regards
to PSNR and SSIM. Images courtesy of [151].

at scale - however [46] suggests that the combination of DUSt3R and 3D Gaussian representa-
tions [81] may now make this feasible.

Evaluation metrics. Finding metrics that can adequately quantify the impact of generative
model is an open research question. As Sargent, Chen, et al note [25, 151], raw pixel metrics
such as PSNR and SSIM that are commonly used to evaluate NeRF methods are poorly suited
for generative solutions. They favor blurry estimates and can score monochromatic backgrounds
over more semantically meaningful renderings that are slightly misaligned (Fig. 6.2). Perceptual
measures such as LPIPS [224] and DISTS [40] that rely on learned feature extractors can more
meaningfully evaluate the texture and structure similarity of generated renderings relative to
ground truth targets. However, their utility is limited to evaluating the reconstruction quality of
renderings that cover regions close to training data. These metrics become less meaningful when
evaluating the generative capabilities of diffusion-based solutions and whether they generate
plausible renderings far from from source views.

Fréchet Inception Distance (FID) [70] and Kernel Inception Distance (KID) [20] have tradi-
tionally been used to evaluate the fidelity and diversity of generative models such as GANs [63],
but require thousands of samples to evaluate and are often too expensive to compute for SDS-
based approaches [151]. The speed benefits of our proposed approach might enable their use,
but further work remains to validate this hypothesis and whether these metrics are practical.

6.2 Accurate Camera Estimation
As mentioned in Chapter 2, NeRF rendering quality is heavily correlated with the accuracy
of the camera intrinsics and extrinsics associated with the training images. To date, the vast
majority of NeRF-related works treat camera parameter estimation as a separate pre-processing
step, often obtained via incremental (or “classical”) Structure-from-Motion (SfM) pipelines such
as COLMAP [154] and Metashape [14]. Recent methods such as Pixel-Perfect SfM [104] (which

80



we use for pose estimation in Chapter 2) further improve accuracy by aligning deep features,
but rely on the same bundle adjustment [175] pipeline as classical approaches. Although these
pipelines work well with small-scale, densely sampled, static captures, they fail to reliably infer
accurate poses in sparse view settings, struggle with moving objects, and often slow down when
processing over a thousand images.

Around the time that we first explored static reconstruction of city blocks (Chapter 2), sev-
eral NeRF efforts [30, 76, 100, 114, 189] emerged that attempted to jointly optimize camera
parameters during NeRF optimization, but we found that these methods tend to fall into local op-
tima and provide results that are lacking relative to offline SfM approaches such as Pixel-Perfect
SfM. More recently, a multitude of promising follow-up methods have emerged, some of which
directly target NeRF reconstruction [27, 80, 115, 129, 160, 176] and some of which address
camera estimation from a more general perspective [19, 99, 184, 190, 221, 222].

Once again, DUSt3R [190] stands out due to its robustness, rapid inference time, and ability
to predict dense depth (which is useful for many neural reconstruction-related tasks such as that
described in Section 6.1). First attempts at leveraging DUSt3R for neural reconstruction [46]
show promise, but work remains. Extending DUSt3R to better support large image collections
(from its current bottleneck of several hundred images), handle dynamic scenes, and directly
integrate 3DGS-style [81] volumetric rendering are all worthwhile future directions.

6.3 Simulation Frameworks
The scope of this thesis concerns itself with large-scale neural rendering, which needs to be
integrated into broader graphics and simulation frameworks in many use cases. Although the
implicit neural representations described in previous chapters have many advantages, such as
compactness and ease of optimization, they are difficult to integrate into external pipelines for
two reasons. First, although they can be rendered in real-time on a desktop workstation via the
method described in Chapter 4, they require a large amount of GPU memory to do so, which
makes it difficult to accommodate other simulation routines, especially on lower-end devices.
Second, as implicit representations backed by neural networks, they must be rendered sepa-
rately from other commonly used graphics structures (such as meshes) and are often difficult to
manipulate, especially in dynamic 4D scenes. Properly integrating them into external lighting
representations and physics engines can be extremely challenging.

The recent explosion of interest in explicit, rasterization-based techniques such as 3D Gaus-
sian splatting [81] potentially solves both of these issues. Although their rendering quality is
currently slightly worse than those of state-of-the-art implicit methods (Chapter 4), many on-
going efforts aim to minimize the quality gap [21, 49, 79, 109, 210]. Importantly, gaussian
splatting methods are extremely fast to render (>200 FPS [45]), can be designed to be reason-
ably memory-efficient [92, 119], and can reason about dynamics in a more interpretable manner
than black-box neural methods [110].

Initial results suggest that gaussian representations can be indeed be efficiently relighted [148]
and integrated into physics engines [198] for object-scale scenes. A logical next step would be
to evaluate whether this holds for larger, unbounded outdoor scenes. Validating that this is the
case would imply that the city-scale simulations we allude to in Chapter 3 are close to becoming
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a reality. A follow-up question would then arise — would it then be possible to train higher-level
planning algorithms (such as those targeted by reinforcement learning) in a truly end-to-end
manner via closed-loop simulation?
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[220] Kaan Yücer, Alexander Sorkine-Hornung, Oliver Wang, and Olga Sorkine-Hornung. Ef-
ficient 3D object segmentation from densely sampled light fields with applications to 3D
reconstruction. ACM Transactions on Graphics, 35(3), 2016. ??

[221] Jason Y. Zhang, Deva Ramanan, and Shubham Tulsiani. RelPose: Predicting probabilistic
relative rotation for single objects in the wild. In European Conference on Computer
Vision (ECCV), 2022. 6.2

[222] Jason Y Zhang, Amy Lin, Moneish Kumar, Tzu-Hsuan Yang, Deva Ramanan, and Shub-
ham Tulsiani. Cameras as rays: Pose estimation via ray diffusion. In International Con-
ference on Learning Representations (ICLR), 2024. 6.2

[223] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and
improving neural radiance fields. arXiv:2010.07492, 2020. (document), 2.2, 2.2, 2.3.1,
??, ??, 2.3, 2.4.2, 3.2, 3.3.2, 4.3.3, 4.2, 5.2

[224] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. 2018. doi: 10.1109/
CVPR.2018.00068. 6.1.3

[225] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The

99

https://github.com/scannetpp/scannetpp
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00455
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00455
https://github.com/autonomousvision/sdfstudio
https://github.com/autonomousvision/sdfstudio


unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018. 2.4.2,
3.4.1, 4.4.2, 5.4.1

[226] Yuqi Zhang, Guanying Chen, and Shuguang Cui. Efficient large-scale scene representation
with a hybrid of high-resolution grid and plane features, 2023. 1.3.1

[227] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew Davison. In-place scene
labelling and understanding with implicit scene representation. In ICCV, 2021. 3.2

[228] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distilling view-conditioned diffusion
for 3d reconstruction. In CVPR, 2023. 6.1

100


	1 Introduction
	1.1 Background
	1.2 Challenges
	1.3 Contributions
	1.3.1 Static Reconstruction of City Blocks
	1.3.2 Dynamic City-Scale Reconstruction
	1.3.3 Real-Time Rendering at VR Resolution
	1.3.4 Fast Anti-Aliasing for Neural Radiance Fields
	1.3.5 Excluded Research


	2 Static Reconstruction of City Blocks
	2.1 Introduction
	2.2 Related Work
	2.3 Approach
	2.3.1 Model Architecture
	2.3.2 Training
	2.3.3 Interactive Rendering

	2.4 Experiments
	2.4.1 Evaluation protocols
	2.4.2 Scalable Training
	2.4.3 Interactive Exploration
	2.4.4 Diagnostics

	2.5 Discussion
	2.5.1 Limitations


	3 Dynamic City-Scale Reconstruction
	3.1 Introduction
	3.2 Related Work
	3.3 Approach
	3.3.1 Inputs
	3.3.2 Representation
	3.3.3 Optimization

	3.4 Experiments
	3.4.1 Experimental Setup
	3.4.2 City-Scale Reconstruction
	3.4.3 KITTI Benchmarks
	3.4.4 Diagnostics

	3.5 Discussion
	3.5.1 Limitations


	4 Real-Time Rendering at VR Resolution
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.3.1 Representation
	4.3.2 Finetuning
	4.3.3 Backgrounds
	4.3.4 Real-Time Rendering

	4.4 Experiments
	4.4.1 Implementation
	4.4.2 VR Rendering
	4.4.3 Additional Comparisons
	4.4.4 Diagnostics

	4.5 Discussion
	4.5.1 Limitations


	5 Fast Anti-Aliasing for Neural Radiance Fields
	5.1 Introduction
	5.2 Related Work
	5.3 Approach
	5.3.1 Preliminaries
	5.3.2 Multiscale sampling

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Synthetic Reconstruction
	5.4.3 Real-World Reconstruction
	5.4.4 Additional Backbones
	5.4.5 City-Scale Convergence
	5.4.6 Diagnostics

	5.5 Discussion
	5.5.1 Limitations


	6 Conclusion and Future Work
	6.1 Integrating Learned Priors
	6.1.1 3D Predictions via RGB-D Diffusion Models
	6.1.2 Proposed Approach
	6.1.3 Challenges

	6.2 Accurate Camera Estimation
	6.3 Simulation Frameworks

	Bibliography

