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Abstract
After correctness, the most important properties of programs concern their re-

source requirements, like how much time they take to run or how much memory
they need. It is therefore desirable to automate the derivation of a program’s re-
source requirements. One successful approach to such automatic derivation is the
type system known as Automatic Amortized Resource Analysis (AARA). AARA
finds polynomial bounds on resource usage by using its types to apply the physi-
cist’s method of amortized cost analysis. Type inference in AARA can be reduced to
linear programming, thereby automating resource analysis. This balance of expres-
sive bounds and efficient analysis has brought AARA success in analyzing various
programs of interest.

Unfortunately, deriving a program’s resource usage (i.e., costs) can be difficult—
in fact it is generally not computable. Thus, despite AARA’s success, it is not sur-
prising that there are many natural program patterns that it cannot analyze well.
Sometimes AARA finds loose cost bounds, other times it finds bounds slowly, and
sometimes it cannot find any bounds at all.

This thesis addresses such shortcomings by developing a variety of upgrades
to the AARA type system that allow the efficient derivation of tight cost bounds for
more programs. The key theme underlying these upgrades is the leveraging of linear
reasoning principles. These ideas integrate well with AARA because AARA exists
in the intersection of various forms of linearity: the linear flavor of its type system,
the linear relations of its cost bound templates, and the linear physicality behind the
physicist’s method of amortized cost analysis.

This work first upgrades the type system’s infrastructure with remainder contexts
to better reason about reusable resources like memory. Then the class of AARA’s
bounding functions is enlarged to include, e.g., exponential bounds, which can pro-
vide resource bounds for programs with multiple recursive calls. This class of func-
tions is further enlarged to be multivariate, allowing dependence on products of data
structure sizes, which is critical for analyzing functions with accumulators. Next,
this work provides a more efficient, matrix-based approach to inferring the cost-free
AARA types needed for, e.g., non-tail recursion. Finally the physicist’s method of
amortized cost analysis is refined into the quantum physicist’s method, which pro-
vides an automatable framework for reasoning about resource reallocation, while
also allowing resource bounds to depend on the height of data structures.

Each of these upgrades is proven sound with respect to an operational cost se-
mantics, and various implementations are made to empirically evaluate their efficacy.
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Chapter 1

Introduction

This thesis is about improving the capabilities of the automatic cost analysis tool known as
Automatic Amortized Resource Analysis (AARA) by leveraging a variety of the tool’s intrinsic
features. What follows is an exploration of the interplay between cost reasoning, logic, and
automation, all under the banner of “linearity”. In this chapter, I set up the thesis statement and
give the structure of the rest of the thesis.

1.1 Setup
After writing some piece of code, one of the first questions someone might ask is ”How fast does
it run?” Such questions about the time1 usage of programs are central to the study of computer
science—and for good reason: Programs execute in the real world, and that execution accrues
real costs. In today’s world, where more programs are being run than ever before, it is especially
important that one can reason about a program’s resource usage.

This thesis focuses on automatic resource analysis. Such automation is both intellectually
satisfying as a computer scientist, and also perhaps practically necessary to deal with the sheer
amount of code today. Unfortunately,2 general cost analysis is the hardest kind of problem that
there is: uncomputable[135]. Thus, every approach to cost analysis must make some tradeoff
between its level of automation and its level of completeness. Approaches to cost analysis exist
everywhere across this spectrum of tradeoffs. Toward the complete extreme, one finds mecha-
nized proof frameworks requiring heavy user guidance such as calf [114] or implementations of
separation logic with time credits[66]. Toward the automatic extreme, one finds approaches such
as Metric[140], COSTA[3, 4], SPEED[69], LOOPUS[130], KoAT[21], or CHORA[20], that at-
tempt to reduce the problem of cost analysis to some tractible domain. The work in this thesis
focuses on a tool positioned toward the automatic extreme called Automatic Amortized Resource
Analysis (AARA).

AARA is a type system originating from Hofmann and Jost’s work on automatic derivation
of heap requirements for functional progams [85]. The approach bookkeeps resource usage using
the physicist’s method of amortized cost analysis [133]. The physicist’s method presumes that

1or memory, or space, or energy, etc.
2or perhaps fortunately for the job security of future computer scientists
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data structures carry some amount of potential energy, and that energy can be freed to pay for
costs. The types of AARA provide templates for how that potential energy is carried, e.g., the
type L5(Z) indicates an integer list that holds 5 units of energy per element. Functions typed
with potential energy then provide the cost information of interest: the potential energy of the
function’s input bounds the function’s peak execution cost, and the difference in energy between
the input and output bounds the net execution cost. Crucially, linear programming can be used
to efficiently infer AARA types, which automates the cost analysis.

These features place AARA at an interesting intersection between many forms of linearity,
which this thesis aims to exploit. AARA uses linear3 type features because energy cannot be
freely duplicated. AARA uses linear programming for automation. Even the physical reasoning
principles introduced by the physicist’s method come with linearity in the form of, e.g., quantum
superposition. Perhaps AARA has found the success it has because all its different forms of
linearity mesh well with one another— certainly, this thought underpins the work of this thesis.

Of course, despite AARA’s success, the approach is not immune to the obstacles of uncom-
putability. Therefore AARA’s analysis must make some tradeoffs. By favoring automation,
AARA sacrifices the ability to analyze some programs well. For example, prior to the work of
this thesis, AARA struggled to reuse resources like memory and could be easily counfounded by
common program patterns like tree traversals.

This thesis will address these problems and others while maintaing AARA’s high level of au-
tomation. In particular, this work shows how to improve AARA on multiple axes: better support
for reusable resources, more expressive cost bounds, and more efficient analysis performance.
And this work does so by leveraging AARA’s aforementioned linearity. In a nutshell, the work
can be summarized with the following thesis statement:

Thesis Statement:
1. AARA’s state-of-the-art automatic capabilities can be improved to derive tighter cost

bounds more efficiently for more kinds of programs and more kinds of resource costs.
2. Such improvements can be made by leveraging key features of linearity intrinsic to

the AARA type system.

1.2 Thesis Structure
The remainder of this thesis is organized into three parts:

Part 1 lays out the formal groundwork of AARA for the rest of the thesis to build upon. This
part is made up of the following chapters:

• Chapter 2 lays out the formal language and operational semantics for the programs ana-
lyzed in this thesis. This chapter is where the notion of cost is defined.

• Chapter 3 describes the state-of-the-art in AARA prior to the work of this thesis and lays
out the base type system that this thesis uses. This base type system is essentially the

3More specifically, the type features are usually affine. However, this thesis explores extensions which bring out
more fully linear features as well.
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polynomial cost bounds system of [77].
• Chapter 4 goes over related work in the domain of cost analysis.

Part 2 contains the key contributions of this thesis. Each of Part 2’s chapters builds upon the
AARA system of the previous chapters, is structured in a problem-solution format, and includes
a formal proof of the new AARA system’s soundness.

• Chapter 5 presents a formal account of remainder contexts, which improve reasoning about
reusable resources like memory in AARA. In the process, remainder contexts simplify the
AARA type system and introduce some new symmetries into the typing rules. These
remainder contexts are related to I/O contexts[28, 75] from linear logic proof search and
uncomputation[17] from reversible computing.

• Chapter 6 explains how to generalize the kinds of cost bounds inferrable in AARA by
assigning potential energy according to linear recurrences. An optimal set of such potential
assignments is characterized, and a specialized system based on Stirling numbers of the
second kind is set up for exponential bounds specifically. Special rules are provided to mix
this system with the preexisting polynomial bound system.

• Chapter 7 delves into multivariate4 exponential bounds, extending the key contribution of
the Chapter 6. Such bounds are not only more expressive, but also should help to put expo-
nentials on equal footing with polynomials. The most developed existing implementation
of AARA, Resource Aware ML (RaML), uses multivariate polynomials, and the results of
this chapter alongside those of Chapter 6 should allow RaML to be extended in the future
to cover exponential bounds.

• Chapter 8 presents an alternative, significantly more efficient way to infer cost-free types
in AARA by deducing linear functional transformations from matrix inequalities. This
approach also enables cost-free type inference for non-polynomial bounds, particularly
exponential bounds like those of Chapter 6. Cost-free types are special AARA types used
to describe how excess energy is reallocated across different data structures, and they are
critical for cost bound composition and non-tail recursion, among other applications.

• Chapter 9 refines the physicist’s method of amortized cost analysis into the quantum physi-
cist’s method, which leverages similar linear structures as are present in quantum physics
to reason about the physcist’s method’s “potential energy”. A novel bookkeeping princi-
ple called resource tunneling is presented to reallocate resources around potential barriers,
similarly to quantum tunneling. Using remainder contexts, the result is incorporated into
AARA to obtain tighter cost bounds based on resource reallocation. This system is then
further adapted to reason about the depth of data structures, which enables reasoning about,
e.g., tree traversals.

Finally, part 3 concludes with Chapter 10.

4Multivariate in this context refers to bounds with terms that are products of functions of the sizes of input data
structures. For example, x · y is multivariate, but x + y is merely univariate. These definitions are at odds with
more typical usage of the words ”univariate” and ”multivariate”, but these definitions have already been established
in work prior to this thesis [80].
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Chapter 2

Language

Before one can derive a program’s execution costs, one must actually specify what is meant by
“program”, “execution”, and “cost”; i.e., one must formalize the language. This chapter does
so by formalizing the expressions, values, operational semantics, and cost constructs that will
be used throughout this thesis. No chapter deviates from this language. I also set up a new,
simplified approach for reasoning about the costs of nonterminating programs in Section 2.4.

2.1 Expressions

For the purposes of this thesis, the expressions of AARA’s language can be given by the grammar
of Figure 2.1, where r is a rational number and the symbols f, x are used for variables. These
expressions are mostly comprised of the basic features of a functional language with algebraic
types and pattern matching (casing), and the syntax used is relatively normal. However, there are
still a few details of note, which I go over in the following paragraphs.

Firstly, the language contains no expressions for data like Booleans or integers, e.g., no arith-
metic operations or if-then-else statements. While an implementation of AARA should probably
include such expressions, they are omitted here because they do not meaningfully interact with
the type system, and because they can be simulated using the provided algebraic constructors (or

e ::= x | let x = e1 in e2 variables

| fun f x = e | f x functions

| ⟨x1, x2⟩ | case xp of ⟨x1, x2⟩ → e products

| l(x) | r(x) | (case xs of l(x1) → e1 | r(x2) → e2) sums

| [ ] | x1 ::x2 | (case xℓ of [ ] → e1 | x1 ::x2 → e2) lists

| leaf | node(x1, x2, x3) | (case xt of leaf → e1 | node(x1, x2, x3) → e2) trees

| tick{r} cost

Figure 2.1: Let-normal form expression grammar
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v ::= C(V ; f, x. e) | ⟨v1, v2⟩ | l(v) | r(v) | [ ] | v1 :: v2 | leaf | node(v1, v2, v3) | ⟨⟩

Figure 2.2: Value grammar

even simulated just as the unit value). I assume such encodings for Booleans, integers, etc. and
their corresponding operations throughout this thesis.

Secondly, this language fixes lists and binary trees as the only inductive data types. This
restriction makes it easier to present the technical development of this thesis. However, this
restriction is not essential to AARA, as other work has shown how to extend AARA with various
user-defined inductive data types [65, 82].

Next, the given expression grammar in Figure 2.1 is for a language in let-normal form. This
normal form requires that every subexpression is a variable as much as possible. Let-normal
form is very similar to A-normal form[57] except that A-normal form allows subexpressions to
be both variables and constants; let-normal expressions do not allow such constants.

Finally, there is a special “tick” expression tick{r}. This expression is used to define costs.
Executing this expression consumes r resources and returns the unit value ⟨⟩. If r is negative,
the expression corresponds to r resources being created instead. Such ticks can either be inserted
manually for fine-grained control of the cost model, or inserted automatically through some
predefined syntactic transformation. For example, to measure the cost in terms of recursive calls
for id in Section 3.1, one can insert “let y = tick{1} in” before line 5 of Figure 3.2
where the recursive call is made. Alternatively, to measure cost in terms of call stack frames1,
one adds the same expression before line 5 and also the expression “let z = tick{-1} in”
after line 5 to respectively allocate and free the stack frame. Costs in terms of the sizes of data
structures can be encoded by adding more complex auxiliary code that recurses over those data
structures while ticking.

2.2 Values
The values of this language are given by the grammar of Figure 2.2. These values include pairs,
sums, lists, binary trees, the unit value, and closures. The only interesting value is that for func-
tion closures, C(V ; f, x. e), which represents a recursive function f that has formal parameter
x, has the body expression e, and has captured the value environment V .

2.3 Operational Cost Semantics
Both execution and cost are formalized via a big-step operational semantics equipped with re-
source counters. These big-step evaluation rules are given in Figures 2.3 and 2.4 and make use
of the following evaluation judgment:

V ⊢ e ⇓ v | (p, q)
1without tail-recursion optimization
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E-VAR

V, x 7→ v ⊢ x ⇓ v | (0, 0)

E-LET
V ⊢ e1 ⇓ v′ | (p, q) V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)

V ⊢ let x = e1 in e2 ⇓ v | (p+max(0, r − q), s+max(0, q − r))

E-FUN

V ⊢ fun f x = e ⇓ C(V ; f, x. e) | (0, 0)

E-APP
V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)
V, x 7→ v′, f 7→ C(V ′; g, y. e) ⊢ f x ⇓ v | (p, q)

E-PAIR

V, x 7→ v1, y 7→ v2 ⊢ ⟨x, y⟩ ⇓ ⟨v1, v2⟩ | (0, 0)

E-CASEP
V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (p, q)

V, x 7→ ⟨v1, v2⟩ ⊢ case x of ⟨y, z⟩ → e ⇓ v | (p, q)

E-SUML

V, x 7→ v ⊢ l(x) ⇓ l(v) | (0, 0)

E-CASES-L
V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (p, q)

V, xs 7→ l(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

E-SUMR

V, x 7→ v ⊢ r(x) ⇓ r(v) | (0, 0)

E-CASES-R
V, x 7→ r(v′), z 7→ v′ ⊢ e2 ⇓ v | (p, q)

V, xs 7→ r(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

Figure 2.3: Big-step cost evaluation rules 1
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E-NIL

V ⊢ [ ] ⇓ [ ] | (0, 0)

E-CONS

V, x 7→ v1, y 7→ v2 ⊢ x :: y ⇓ v1 :: v2 | (0, 0)

E-CASEL-NIL
V, x 7→ [ ] ⊢ e1 ⇓ v | (p, q)

V, x 7→ [ ] ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

E-CASEL-CONS
V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)

V, x 7→ v1 :: v2 ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

E-LEAF

V ⊢ leaf ⇓ leaf | (0, 0)

E-NODE

V, x 7→ v1, y 7→ v2, z 7→ v3 ⊢ node(x, y, z) ⇓ node(v1, v2, v3) | (0, 0)

E-CASET-LEAF
V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)

V, t 7→ leaf ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

E-CASET-NODE
V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)

V, t 7→ node(v1, v2, v3) ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

E-TICK

V ⊢ tick{r} ⇓ ⟨⟩ | (max(0, r),max(0,−r))

E-SHARE
V, x1 7→ v′, x2 7→ v′, x3 7→ v′ ⊢ e ⇓ v | (p, q)

V, x1 7→ v′ ⊢ share x1 as x2, x3 in e ⇓ v | (p, q)

Figure 2.4: Big-step cost evaluation rules 2
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This judgment means that, given the value environment V :
• the expression e evaluates to v
• the evaluation of e requires p ≥ 0 resources to run
• the evaluation of e leaves q ≥ 0 resources leftover
I call the pair (p, q) the cost behaviour for simplicity. The latter two bullet points in the

evaluation judgment description explain how cost behaviours capture the notion of execution
costs: The value p is the peak cost,2 and the value of p − q is the net cost. These are the costs
that AARA aims to bound using its potential method bookkeeping.

The actual evaluation dynamics expressed by the rules of Figures 2.3 and 2.4 are relatively
standard for an eager functional language. Most rules also do not meaningfully interact with
resources, with the exceptions of the rules E-Tick and E-Let. I explain the operation of each of
these in the subsequent paragraphs.

The rule E-Tick is the only rule that directly alters the amount of resources. This rule uses
max to encode the cost behaviour described in Section 2.1, where positive values of r encode
consumption of resources, and negative values of r encode the release of resources. When
r ≥ 0, the cost behaviour reduces to to (r, 0), indicating that r resources are consumed to eval-
uate tick{r}. Otherwise the cost behaviour reduces to (0, |r|), indicating that the evaluation of
tick{r} requires no resource payment and in fact leaves |r| additional resources available. Such
giving of additional resources would occur for a resource like money where change is given back
or a resource like memory which can be freed and reused.

The rule E-Let is the only rule that otherwise interacts with resources. All this rule does cost-
wise is use max to compose the cost behaviours of two expressions e1 and e2. Intuitively, this
composition reuses the q leftover resources from evaluating e1 for the evaluation of e2. There are
two cases to consider depending on whether those q leftover resources cover the peak cost r of
evaluating e2. When q ≥ r so that the peak cost is fully covered, the cost behaviour reduces to
(p, q − (r − s)), which corresponds to paying e2’s net cost r − s out of the q leftover resources
from evaluating e1. For example, a cost behaviour of (3, 10) followed by (5, 1) is represented
by the cost behaviour of (3, 6), where the net cost of 5 − 1 = 4 is taken out of the leftover
10. Otherwise, when q < r, the cost behaviour reduces to (p + (r − q), s), which corresponds
to evaluating e1 with r − q extra resources available so that afterward exactly r resources are
available to cover the peak cost of evaluating e2. For example, a cost behavour of (5, 1) followed
by (3, 10) is represented by the cost behaviour of (7, 10), where 3 − 1 = 2 additional resources
are added to the starting amount of 5 to leave enough for the second cost behaviour.

2.4 Nontermination
So far, using the rules of Figures 2.3 and 2.4, one can only define the evaluation and cost of a ter-
minating program execution. However, nonterminating programs can still have interesting cost
bounds. While net costs are only sensible for terminating computations, one can still meaning-
fully consider the peak cost of a nonterminating computation. For example, it could be useful to
ensure that some indefinitely running computational service will only ever require finite memory.

2or “high-water mark” of cost, as described by other sources
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E-NONT

V ⊢ e ⇓ • | (0,∞)

Figure 2.5: Nontermination evaluation rule

The only way that previous work on AARA has handled nontermination is by defining a set
of partial big-step evaluation rules to augment the (total) evaluation rules [78].3 This setup gives
every expression in the language multiple ways to evaluate: either do so totally as in Figures 2.3
and 2.4, or abort evaluation partway through and record the peak cost. As a result, every finite
prefix of a computation can be given an evaluation judgment assigning a peak cost. A uniform
bound on the peak cost of every finite prefix of a computation then yields a bound on the peak
cost of the entire computation, even if that computation is nonterminating.

While partial evaluation rules do indeed allow for reasoning about the costs of nonterminat-
ing executions, the existing literature does so in a rather verbose way: providing a new partial
evaluation rule (sometimes more) for most expressions of the language [78]. As a result, proving
statements about the total and partial evaluations of a program requires roughly double the proof
cases of proving statements only about the total evaluations. I would like to avoid such long
proofs.

To avoid ballooning proof obligations, I introduce the following simplification for the work
of this thesis: Instead of adding a new nontermination rule for each expression, I introduce the
single new rule given in Figure 2.5 alongside a special new dummy value •. The rule E-Nont
takes the form a total evaluation rule and simulates aborting evaluation by returning the value •
and leaving infinitely many resources leftover. This infinity absorbs future costs, thus rendering
the cost behaviour dependent only on computation up to the abort.

One way to see why this infinity is the right choice is to treat the leftover count like a ghost
variable in a Hoare logic postcondition [74]. The leftover count is usually supposed to be mea-
sured after the total evaluation of e, but aborting evaluation means e does not totally evaluate,
rendering the postcondition false. Therefore, the condition in which one considers leftover re-
sources is false, and falsum implies anything. Having infinitely many resources leftover is an
equivalently strong condition.

Because my introduction of dummy values allow the rule E-Nont to take the form of a total
evaluation rule, it seamlessly integrates with the existing total evaluation rules of Figures 2.3
and 2.4. In particular, no other nontermination rules are needed— the rule E-Nont naturally
induces the correct behaviour through the other terminating rules. One simply interprets a cost
behaviour of the form (p,∞) as coming from an evaluation that achieves a peak cost of p before
later aborting. I formalize this notion in Lemma 2.4.2, but for now consider the example of
how the cost behaviour of (0,∞) interacts in the evaluation rule E-Let. When evaluating the

3In principle, small-step semantics would also suffice for reasoning about nontermination. However, such an
approach had not been used with AARA by the start of my thesis work. It is not completely trivial to compare
AARA against small-step semantics as such comparison raises questions concerning the potential energy of un-
evaluated expressions.
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expression let x = e1 in e2, if evaluation immediately aborts while evaluating e1, before
e2 should be evaluated, then the cost behaviour of the whole expression should be (0,∞). The
rule E-Let gives exactly this result no matter the cost behaviour of e2, successfully ignoring
computation after aborting.4 Alternatively, if e1 evaluates with cost behaviour (p, q), and then
evaluation is aborted at the start of e2, then the cost behaviour of the whole expression should
be (p,∞). The rule E-Let gives exactly this result, and thus the peak cost behaviour of e1 is
successfully recorded.

If the evaluation of e1 is aborted during the evaluation of the expression let x = e1 in e2,
one might be concerned about the presence of the dummy value bound to x when attempting to
derive an evaluation judgment for e2. For instance, no evaluation rules cover pattern matching
a dummy value •. However, there always exists at least one cost behaviour assignable to e2 via
the rule E-Nont, and it would not matter if any other cost behaviour was assignable to e2 because
it would be ignored as described previously. Without loss of generality, one could therefore
assume that e2 is always evaluated using E-Nont whenever e1 is. Thus, the dummy value causes
no problems for the evaluation rules.

One might also be concerned about arithmetic using ∞. While there are no problems with
statements like ∞ ≥ q and ∞ + q = ∞ +∞ = ∞ (where q ∈ Q), indeterminate expressions
like ∞−∞ could potentially be problematic. It turns out, however, that such problems can be
avoided, so the evaluation judgment is well-defined. One proves this property by simultaneously
proving a fact about the restricted form of cost behaviours: in cost behaviours (p, q), the value of
p is not ∞. The well-definedness of the evaluation judgement is formalized in Lemma 2.4.1.

Lemma 2.4.1 (well-definedness and form of evaluation cost). The evaluation judgment given
by V ⊢ e ⇓ v | (p, q) is well-defined. That is, even though the rule E-Nont introduces ∞, the
evaluation rules never produce indeterminate arithmetic expressions like ∞−∞. Moreover, in
such judgments, p ̸= ∞.

Proof. The well-definedness and inequality statements are proved simultaneously by induction
over the derivation of the judgment V ⊢ e ⇓ v | (p, q). Every case of the induction is trivial
except for the rule E-Let, where the inductive hypothesis that p ̸= ∞ ensures that the rule’s
subtraction is well-defined.

Now that the arithmetic has been confirmed to be well-defined, one can formally capture the
intuition that cost behaviours of the form (p,∞) correspond precisely to aborting computation.

Lemma 2.4.2 (cost behaviour of abort). Let D be a derivation of V ⊢ e ⇓ v | (p, q). Then D
uses E-Nont iff q = ∞.

Proof. The backward implication is trivial because only the rule E-Nont introduces ∞.

4Put another way, each cost behaviour (p,∞) is a left annihilator in the “resource monoid” sometimes used
for defining AARA’s operational semantics [76]. This monoid’s notion of multiplication is the E-Let rule’s cost
behaviour composition, and (p,∞) · (q, r) = (p,∞).
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The forward implication holds via induction. Every case is trivial except for E-Let:

E-LET
V ⊢ e1 ⇓ v′ | (p, q) V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)

V ⊢ let x = e1 in e2 ⇓ v | (p+max(0, r − q), s+max(0, q − r))

For the derivation D to contain the rule E-Nont, one of the derivations for its premisses must.
Then one of s or q is ∞ by the inductive hypothesis. Because Lemma 2.4.1 ensures r ̸= 0, it
follows that s+max(0, q − r) = ∞, completing the case.

I complete the formal treatment of the new dummy value • in Section 3.6 so that AARA
can be proved sound with respect to both termination and nontermination in a succinct, uniform
manner throughout this thesis.
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Chapter 3

Automatic Amortized Resource Analysis

This chapter describes the type system of Automatic Amortized Resource Analysis (AARA).
While many extensions of AARA exist in the literature, I fix one version here to provide this
thesis with a clear base to build upon. This base version is essentially the polynomial cost bound
system of Hoffmann and Hofmann[77] but with uniform notation that will be used throughout
this thesis. To keep matters simple, I do not set up this system to use polymorphic types. I
also include a few extra components to simplify reasoning about the costs of nonterminating
computations, as set up in Chapter 2 —this is the only part of this section that is at all novel.
Section 3.8 concludes by explicitly highlighting some of the ways that linearity plays a role in
AARA, which will help prime the reader for future chapters.

3.1 Overview

This section gives an overview of the Automatic Amortized Resource Analysis type system and
its workings. Following sections formalize the ideas of this section and lead up to a formal
statement of AARA’s soundness.

Introducing AARA

AARA is a type system for the automatic, static derivation of cost bounds. These cost bounds
are expressed as concrete (non-asymptotic) functions of the sizes of a program’s data structures,
and they can be in terms of various user-defined costs models, including time, space, energy,
and money. No matter the chosen cost model, a soundness proof guarantees that AARA’s cost
bounds are accurate, so that type derivations are cost bound certificates. AARA type inference
is reducible to linear programming, which allows such cost bounds certificates to be found effi-
ciently. And through the composition of function types, these bounds can be composed, allowing
for a modular cost analysis.

Hofmann and Jost originally developed AARA for the automatic derivation of worst-case,
linear heap space requirements for first-order functional programs [85]. Later work (includ-
ing some of the work of this thesis) has extended that original work in a variety of ways.
Some work has extended AARA to reason about other resources[93] and non-linear cost bounds
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such as polynomials[77, 80], exponentials[95], and logarithms[89]. Other work has derived
lower cost bounds[51] and cost bounds based on various features of data types [26, 65, 82, 96].
Still other work has adapted the approach to other programming domains, including higher-
order polymorphic programs[94], probabilistic programs[112, 138], parallel programs[79], im-
perative programs[27], object-oriented programs[86], smart contracts[45, 46, 47], and CUDA
kernels[109].

Physicist’s Method

AARA performs its cost analysis by relying on the physicist’s method of amortized analysis
[133]. This method posits that data structures hold some amount of potential energy. When a
data structure is destructed, this energy is freed and can be used to pay for costs. Similarly, when
a data structure is constructed, it can store more energy away for later. AARAs types dictate
just how much energy is stored on each data structure as a function of that data structure’s size.
For example, the type L5(Z) is the type of an integer list holding 5 units of potential energy
per element. The key to the physicist’s method is that the amount of energy initially present
is an upper bound on the peak execution cost, and the difference in energy between the initial
and final program state is an upper bound on the net execution cost. These bounds are really
just reformulations of the law of conservation of energy from the first law of thermodynamics,1

hence the name “phycisist’s method”.
One can see the power of the physicist’s method by examinining AARA’s function types.

By interpreting function types using the physicist’s method, one can obtain bounds on both the
peak and net cost of running that function. The potential energy of the function argument gives
the peak cost bound and the difference between the energy of the argument and return gives the
net cost bound. Thus, a function type like L5(Z) → Z represents a linear net execution cost
bound—specifically a bound of 5n where n is the length of the input list. Crucially, functions
can be given different types to specialize to the amount of energy initially present, which is key
to AARA’s compositionality.

Because AARA uses the physicist’s method for reasoning about cost, the cost bounds it pro-
vides are naturally amortized. For example, consider the 2-stack queue, which is a classic target
of amortized analysis that implements a queue using two stacks (lists). Code implementing the
interface to such a 2-stack queue can be found in Figure 3.1. If the function reverse spends 1
unit of time per element of the input list, then a classic amortized analysis result is that dequeue
runs in amortized constant time. This result is proven by storing 1 time prepayment with every
enqueue operation. Because there is 1 prepayment stored per element of in stack, the pre-
payment covers the eventual costly call to reverse, leaving only a constant marginal time cost.
When analyzed with AARA, the type assigned to in stack is indeed of the form L1(τ), which
matches the 1-per-element prepayment.

1To spell out this reformulation in more detail: treat the potential energy of a program state be the energy of a
physical system, and treat the program cost as some amount of useful work to accomplish using the system. The
first law of thermodynamics states that the change in the system’s energy is equal to the useful work done plus some
amount of energy that is lost due to heat. Thus the system’s change in energy is in general an upper bound on the
work done. In the programmatic setting, the inevitable heat loss seems to correspond to the inevitable imprecision
arising from the uncomputability of general cost analysis.
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1 fun enqueue (q, x) = case q of
2 | (in_stack, out_stack) -> (x::in_stack, out_stack)
3
4 fun dequeue q = case q of
5 | ([], []) -> None
6 | (in_stack, x::out_stack) -> Some (x, (in_stack, out_stack))
7 | (in_stack, []) -> dequeue ([], reverse in_stack)

Figure 3.1: Code for the 2-stack queue

Polynomial Bounds

To represent more interesting cost bounds than the linear bounds used thus far, AARA just needs
a way to express potential energy as more interesting functions of the size of its data structures.
That is, AARA must represent a more interesting set of resource functions.

The base system used in this thesis represents polynomial resource functions in the following
way: First, AARA adds additional annotations to the types of its data structures. These additional
annotations can be grouped as an annotation vector, like a⃗ in the type La⃗(Z). Then, AARA
interprets the vector to give the coefficients of a polynomial, i.e., to give a linear combination
of basis polynomials. However, these basis polynomials are not the standard linear basis for
polynomial functions λn. nk— It turns out to be more convenient to use binomial coefficients
λn.

(
n
k

)
for reasons discussed in the next paragraph. Thus the energy on a list typed L6,3(Z) is

6 ·
(
n
2

)
+ 3 ·

(
n
1

)
= 3 · n2, where n is the length of the list.2 Because λn.

(
n
k

)
∈ Θ(λn. nk), I refer

to
(
n
k

)
potential energy as degree-k potential energy, e.g., L6,3(Z) indicates 6 units of quadratic

(degree-2) energy and 3 units of linear (degree-1) energy.
Binomial coefficients are useful for representing polynomial resource functions for a variety

of reasons:

• The binomial coefficent
(
n
k

)
counts the number of ways to pick k objects out of n without

replacement. This combinatorial interpretation allows one to, e.g., treat the base-k energy
of a list of length n as counting the number of ordered k-tuples of list elements. Thus, the
potential energy can be given a natural semantic meaning.

• The value of
(
0
k

)
is 0 for k ≥ 1, so no potential energy assigned to empty data structures.

• The function λn.
(
n
k

)
is nonnegative for n ≥ 0, so nonnegative scalars of this function yield

nonnegative amounts of energy. This circumstance makes it simple to ensure energy is
nonnegative without needing to concretely know the size of the data structure n. Negative
amounts of energy are to be avoided because they ruin physicist’s method reasoning about
peak costs—more energy than the initial energy can be spent if negative energy is allowed.

• While both λn. nk and λn.
(
n
k

)
can generate all polynomials with their linear combinations,

they have distinct conical combinations (i.e., linear combinations over nonnegative coef-
ficients). In particular, the conical combinations of λn. nk are strictly included within the
conical combinations of λn.

(
n
k

)
. As a result, λn.

(
n
k

)
is a more expressive function basis.

2In some other AARA literature, the order of annotations is reversed.
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1 fun id lst = (* lst : 1 per element, 0 free *)
2 case lst of
3 | [] -> [] (* return : 0 per element, 0 free *)
4 | x::xs -> (* xs : 1 per element, 1 free *)
5 let tmp = id xs in (* tmp : 0 per element, 0 free *)
6 x::tmp (* return : 0 per element, 0 free *)

Figure 3.2: Code for id with concrete energy comments

• Using binomial coefficients, there is an easy way to redistribute energy from a list of size
n+ 1 to a list of size n and vice versa. This circumstance is because binomial coefficients
follow the linear recurrence of Pascal’s identity:

(
n+1
k+1

)
=
(

n
k+1

)
+
(
n
k

)
. It is useful to have

such a way to redistribute energy as data structures of varying sizes are constructed and
destructed. For example, Pascal’s identity tells us that 6·

(
n+1
2

)
+3·
(
n+1
1

)
= 6·

(
n
2

)
+9·
(
n
1

)
+3,

so if the list x::xs: L6,3(Z) is destructed, then AARA can conserve energy by leaving 3
units of energy free and typing xs as L6,9(Z).

More generally, one of the key benefits of representing cost bounds with resource functions
is that AARA does not need to reason deeply about the sizes of data structures. In contrast, many
other approaches to cost analysis, like solving recurrence relations, depend on size analyses. In
AARA, each resource function acts as an energy density function by describing a distribution of
resources over a data structure. That distribution is constant for linear resource functions, linearly
increasing for quadratic resource functions, etc. As long as AARA can reason appropriately in
terms of these densities, a direct size analysis is never required. Intuitively, such reasoning works
as follows: energy density is total energy over size, so doubling size while total energy remains
unchanged results in halving energy density. Such reasoning works no matter the size involved.
For the polynomial case given here, the correct density reasoning is given by Pascal’s identity,
which holds for all n.

Using the setup described here, AARA can find so-called univariate polynomial cost bounds.
A univariate polynomial in this setting is a polynomial where each term is a function of at most
one unknown. Thus, despite having two variables, x + y is univariate. Univariate bounds like
x+ y can arise because each inductive data structure contributes potential energy based only on
its own size, but multiple such data structures can exist in a piece of code. Most of this thesis
will only consider univariate bounds, but I do consider multivariate bounds in Chapter 7. In
multivariate expressions, terms can be functions of the sizes of multiple data structures, like x ·y.

The Feel of AARA

To get a more concrete feel of how AARA’s energy bookkeeping works, consider the code for
id in Figure 3.2. This code implements the identity function on lists by fully destructing and
then reconstructing the input list. Because the code recurses over the entire input list, one should
expect it to make 1 recursive call per element of the input list. By assigning 1 unit of cost to
every recursive call, AARA can represent a bound on the number of recursive calls using a type
like L1(Z) → L0(Z), which perfectly matches the desired cost of 1 recursive call per element
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1 fun id lst = (* lst : a per element, 0 free *)
2 case lst of
3 | [] -> [] (* return : b per element, 0 free *)
4 | x::xs -> (* xs : a per element, a free *)
5 let tmp = id xs in (* tmp : b per element, a-1 free *)
6 x::tmp (* return : b per element, a-b-1 free *)

Figure 3.3: Code for id with symbolic energy comments

τ, σ ::= 1 | τ ⊗ σ | τ ⊕ σ | L(τ) | T (τ) | τ a⃗|⃗b→ σ

Figure 3.4: AARA unannotated type grammar

of the input list. Figure 3.2 includes comments showing the bookkeeping that justifies this type.
Note how in line 4, the input list lst is divided into a head element x and tail list xs, which
frees the unit of energy stored with the head. That free energy then pays for the recursive call in
line 5.

Of course L1(Z) → L0(Z) is not the only type one could have assigned to id. If one instead
were to consider the symbolic function type template La(Z) → Lb(Z), one should expect that
any choices of a and b would work if a − 1 ≥ b ≥ 0. One can symbolically justify such a type
as indicated by the comments of Figure 3.3, where the condition a − 1 ≥ b ≥ 0 simply ensures
that all amounts of energy are nonnegative.

Having access to multiple function types allows AARA to assign types to compositions like
id ◦ id by assigning the left instance of id the type L1(Z) → L0(Z) and the right instance the
type L2(Z) → L1(Z). Then function type composition directly yields the type L2(Z) → L0(Z),
which represents the bound of twice the length of the input list. This bound is exactly the cost
one should expect for applying the function id twice.

The symbolic energy bookkeeping of Figure 3.3 also suggests how AARA type inference
is automated. The only symbolic expressions are linear combinations of a, b, and 1; and the
condition a − 1 ≥ b ≥ 0 can be recovered by ensuring that every amount of symbolic energy
is nonnegative. Because only linear expressions and inequalities arise, a linear program can
efficiently find the best choices of a and b. Because Pascal’s identity is a (2-dimensional) linear
recurrence, this same approach also works with polynomial bounds.

3.2 Type System

This subsection presents the formal polynomial AARA type system. This system is composed
of the AARA types and typing rules, as well as an index system for the annotations.
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Ind(1) = ∅ Ind(τ
a⃗|⃗b→ σ) = ∅ Ind(τ ⊗ σ) = 1st.Ind(τ) ∪ 2nd.Ind(σ)

Ind(τ ⊕ σ) = l.Ind(τ) ∪ r.Ind(σ) Ind(L(τ)) = {dk | 1 ≤ k ≤ Dmax} ∪ e.Ind(τ)

Ind(T (τ)) = {d′k | 1 ≤ k ≤ Dmax} ∪ e′.Ind(τ) Ind(Γ) = {c} ∪
⋃

x∈dom(Γ)

x.Ind(Γ(x))

Figure 3.5: AARA annotation indices

3.2.1 Types
Thus far, this work has referred to AARA types like L5(Z) with the annotation 5 representing a
list carrying 5 units of potential per element. While this notation will continue to be used in less
formal prose, it is more convenient in the type system formalization to separate types from their
annotations, at least for non-function types. In particular, this separation will make later chapters
of this thesis much easier to implement. For this reason, I give unannotated types of AARA
by the grammar of Figure 3.4, where L(−) and T (−) are the list and tree type constructors,
respectively. Note that unannotated function types do still carry annotations, represented by the
vectors a⃗ and b⃗. I describe how this annotation system works in the following subsection.

Additionally, to keep matters simple, this work does not use polymorphic types. AARA has
no problem handling polymorphic types[94], but they play no role in the contributions of this
thesis and complicate some technical details in type inference.

3.2.2 Annotation Indices
Annotations are associated to types via a special index system. An index is a string of symbols
concatenated by the symbol “.”, and this string is essentially a pathname for a particular location
that an annotation could appear on a type.3 To annotate a type, one simply provides a map from
the type’s indices to the rationals that should annotate the type at those indices. Throughout this
thesis, such maps are usually represented by vectors of rationals with the appropriate indices,
where subscripting is application.

The indices of a type τ are given by Ind(τ) as defined in Figure 3.5, which also extends
the notation over type contexts Γ. To simplify notation, Figure 3.5 uses the convention that
operations like concatenation distribute pointwise over sets. The components of these indices
pick out the following locations for annotations:

• 1st, 2nd — locations on the first or second type in a product, respectively
• l, r — locations on the left or right member of a sum, respectively
• dk , d

′
k — locations of the degree-k potential annotations of lists and trees, respectively, up

to some pre-determined maximum degree Dmax .

3This pathname addressing is comparable to that of SNAX [52]. Such SNAX addresses indicate the data layout
of type contexts in derivations for a similar sort of let-normal form as AARA.
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• e, e′ — locations on the elements contained in lists and trees, respectively
• x — locations on the type associated to the variable x
• c — the location of the free energy for a type context that is used to pay for costs

Using this index system, a variable x of annotated type L5(1) can be equivalently typed using
the unannotated type L(1) and annotation mapping x.d1 7→ 5.

I treat the annotation vectors a⃗, b⃗ in the type τ
a⃗|⃗b→ σ as if they were maps annotating type

contexts for the function’s argument and return, respectively. To this end, I introduce two spe-
cial variable names: arg, which represents the otherwise-anonymous function argument, and
ret, which represents the otherwise-anonymous function return. Thus, a⃗ is a vector of rationals
indexed by {c} ∪ arg.Ind(τ), and b⃗ is a vector of rationals indexed by {c} ∪ ret.Ind(σ).

Because these full function types include free energy annotations, additional notation is re-
quired to be able to conveniently write out full function types in prose. For this purpose, an
annotation map with nonzero free energy like c 7→ 2, arg · d1 7→ 7 is associated to a unit list
L(1) using the notation ⟨L7(1); 2⟩. An identity function type might then be represented by
⟨L7(1); 2⟩ → ⟨L7(1); 2⟩. This function type takes a list carrying 7 units of energy per element
and 2 units of free energy as input and then returns the same as output.

3.2.3 Typing Rules
The type system is given by its structural rules4 in Figure 3.6 and its remaining rules in Figure 3.7.
These rules use the following typing judgment:

Γ | a⃗ ⊢ e : τ | b⃗

This judgment means that, in type context Γ annotated by a⃗ ≥ 0, the expression e is typed
τ , where both τ and the leftover energy are annotated by b⃗ ≥ 0. To be explicit, a⃗ is indexed by
Ind(Γ) and b⃗ is indexed by {c} ∪ ret.Ind(τ).

The typing rules use a number of notational conventions for annotation maps to keep the
rules succinct: Comparisons between annotation maps are all pointwise. Annotation maps (with
disjoint indices) are combined using a comma. The domains of annotation maps are kept implicit,
though they must comport with the domains specified by the typing judgment. Finally, a special
substitution over indices may be used on annotation maps, as if manipulating the keys in a map
represented by key-value pairs.

The structural typing rules of the AARA type system include weakening (T-Weak) and con-
traction (T-Contract). The presence of such rules would appear to make the type system expressly
nonlinear, but the contraction rule is somewhat special. While this rule does essentially duplicate
the variable x as x1 and x2, it does so via providing new variable bindings x1, x2. As a result,
no variable is used more than once, so the type system is affine, despite allowing contraction in
spirit. At the same time, the contraction rule does not duplicate the potential energy held by x.
Instead, AARA uses a form of contraction called “sharing”, which splits the energy of x between

4To keep matters simple, I exclude some more complicated structural rules that are present in other AARA
literature. These rules include subtyping for functions and a “relax” rule that allows additional free energy to be
passed through turnstiles. However, such rules could be adapted here without issue.
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T-WEAK

Γ | a⃗ ⊢ e : τ | b⃗
Γ, x : σ | a⃗ ⊢ e : τ | b⃗

T-CONTRACT

Γ, x1 : σ, x2 : σ | a⃗ ⊢ e : τ | b⃗
Γ, x : σ | ⋎x1,x2

x (⃗a) ⊢ [x/x1, x/x2]e : τ | b⃗

T-SUB

Γ | a⃗′ ⊢ e : τ | b⃗′ a⃗ ≥ a⃗′ b⃗ ≤ b⃗′

Γ | a⃗ ⊢ e : τ | b⃗

Figure 3.6: AARA structural typing rules

x1 and x2. This is formalized by the sharing operator ⋎−,−
− defined in Definition 3.2.1. Because

this operator splits energy instead of duplicating it, potential energy is treated affinely. Some
other AARA literature introduces a special sharing expression through a syntactic transforma-
tion to make contraction syntax-directed, but this rule accomplishes the same purpose just as
well.

Definition 3.2.1 (sharing). The sharing operator ⋎x,y
z combines the annotations of indices pre-

fixed by x and y pointwise into new annotation bindings for the indices prefixed by z (which
requires that the indices prefixed x, y, and z match).5 This destroys the original bindings for x
and y. Formally, given a map a from indices to rationals, sharing is defined by:

⋎x,y
z (a) = λi.

{
a(x.j) + a(y.j) i = z.j

a(i) otherwise

The remaining structural typing rule, T-Sub concerns subtyping. The intuition behind sub-
typing is that a type like L5(τ) is a subtype of L3(τ) because anywhere that 3 potential energy
per element is enough to cover costs, 5 potential energy will also be enough. In effect, this leaves
subtyping as a form of weakening for potential energy. One could include additional subtyping
rules for functions, but such rules are not so important and complicate matters beyond what are
necessary for this thesis.

Finally it is time for the meat of the AARA type system: the typing rules of Figure 3.7. The
majority of these rules simply relabel annotations in an unsurprising way. For instance, when
a pair is typed by T-Pair, the indices of the pair elements are reassigned to the appropriate pair
indices. However, a few rules have some interesting components that I discuss in the following
paragraphs.

The rule T-Tick is the rule that actually accounts for paying costs. This rule takes r units of
energy out of the pool of free energy annotated at index c.

The rules for lists and trees make use of a special “shifting” operator ◁. This operator
is defined in Definition 3.2.2. This shifting is the mechanism by which AARA reasons about
polynomial costs. The pattern matching rules T-CaseL, T-CaseT each simulate Pascal’s identity
by adding the annotation degree-(k+1) potential energy to the existing annotation of the degree-k
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T-VAR

x : τ | a⃗ ⊢ x : τ | [ret/x]⃗a

T-LET

Γ | a⃗ ⊢ e1 : σ | d⃗ ∆, x : σ | b⃗, [x/ret]d⃗ ⊢ e2 : τ | c⃗
Γ,∆ | a⃗, b⃗ ⊢ let x = e1 in e2 : τ | c⃗

T-FUN

Γ, x : τ, f : τ
c⃗|d⃗→ σ | 0 · a⃗, [x/arg]⃗c ⊢ e : σ | d⃗

Γ | a⃗, b⃗ ⊢ fun f x = e : τ
c⃗|d⃗→ σ | a⃗, b⃗

T-APP

x : τ, f : τ
a⃗|⃗b→ σ | [x/arg]⃗a ⊢ f x : σ | b⃗

T-PAIR

x : τ, y : σ | a⃗ ⊢ ⟨x, y⟩ : τ ⊗ σ | [ret.1st/x, ret.2nd/y]⃗a

T-CASEP
Γ, y : σ, z : ρ | [y/x.1st, z/x.2nd ]⃗a ⊢ e : τ | b⃗
Γ, x : σ ⊗ ρ | a⃗ ⊢ case x of ⟨y, z⟩ → e : τ | b⃗

T-TICK

a⃗c = b⃗c + r

· | a⃗ ⊢ tick{r} : 1 | b⃗

T-SUML

x : τ | a⃗ ⊢ l(x) : τ ⊕ σ | [ret.l/x]⃗a, b⃗

T-SUMR

x : σ | a⃗ ⊢ r(x) : τ ⊕ σ | [ret.r/x]⃗a, b⃗

T-CASES
Γ, y : σ | a⃗, [y/x.l]⃗b ⊢ e1 : τ | d⃗ Γ, z : ρ | a⃗, [z/x.r]⃗c ⊢ e2 : τ | d⃗

Γ, x : σ ⊕ ρ | a⃗, b⃗, c⃗ ⊢ case x of l(y) → e1 | r(z) → e2 : τ | d⃗

T-NIL

· | a⃗ ⊢ [ ] : L(τ) | a⃗, b⃗

T-CONS

x : τ, y : L(τ) | ◁ret
x,y (⃗a) ⊢ x :: y : L(τ) | a⃗

T-CASEL
Γ | a⃗ ⊢ e1 : τ | c⃗ Γ, y : σ, z : L(σ) | ◁x

y,z (⃗a, b⃗) ⊢ e2 : τ | c⃗
Γ, x : L(σ) | a⃗, b⃗ ⊢ case x of [ ] → e1 | y :: z → e2 : τ | c⃗

T-LEAF

· | a⃗ ⊢ leaf : T (τ) | a⃗, b⃗

T-NODE

x : T (τ), y : τ, z : T (τ) | ◁ret
x,y,z (⃗a) ⊢ node(x, y, z) : T (τ) | a⃗

T-CASET
Γ | a⃗ ⊢ e1 : τ | c⃗ Γ, x : T (σ), y : σ, z : T (σ) | ◁t

x,y,z (⃗a, b⃗) ⊢ e2 : τ | c⃗
Γ, t : T (σ) | a⃗, b⃗ ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | c⃗

Figure 3.7: AARA non-structural typing rules
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energy (or to that for c where k would be 0). On the flip side, the constructor rules T-Cons,
T-Node each invert this process.

Definition 3.2.2 (shifting). The shifting operator◁ transforms an annotation map to redistribute
the potential of a list or tree over its constitutent parts. Here, that means applying Pascal’s
identity to the degree-k potential annotations and copying the annotations for elements. This
operator is overloaded across both lists and trees, but to disambiguate whenever necessary, the
following explicit definitions are provided:
◁ℓ

x,y acts on the annotation map a for a list ℓ where ℓ = x :: y. Formally:

◁ℓ
x,y(a) = λi.



a(ℓ.e.j) i = x.j ∨ i = y.e.j

a(ℓ.d1 ) + a(c) i = c

a(ℓ.dk+1 ) + a(ℓ.dk) i = y.dk ∧ k < Dmax

a(ℓ.dDmax ) i = y.dDmax

a(i) otherwise

◁t
x,y,z acts on the annotation map a for a tree t where t = node(x, y, z). Formally:

◁t
x,y,z(a) = λi.



a(t.e′.j) i = x.e′.j ∨ i = y.j ∨ i = z.e′j

a(t.d′1 ) + a(c) i = c

a(t.d′k+1 ) + a(t.d′k) (i = x.d′k ∨ i = z.d′k) ∧ k < Dmax

a(t.d′Dmax
) i = x.d′Dmax

∨ i = z.d′Dmax

a(i) otherwise

When unambiguous, one may simply write ◁.

The remaining rules for lists and trees, T-Nil and T-Leaf, do not use shifting, but are still
interesting. Empty lists and trees may be annotated with any annotation vector. This is allowed
because the resource functions AARA uses are all 0 given an input of size 0, and scaling 0 by any
annotation is still 0. Thus, any annotation is as good as any other for these empty data structures.

Finally, the rule T-Fun is the only rule that scales an annotation vector. Specifically, it scales
the annotation vector for the closure’s type context by 0 so that the function closure cannot cap-
ture any potential energy from its environment.6 This zeroing makes it feasible to use functions
an arbitrary number of times, as is necessary to support recursive functions. Without such zero-
ing, closures would hold energy that function calls could spend, and such spending could only be
done so many times until the closure would have no energy left to give. Thus, these hypothetical
functions might have limited numbers of uses, preventing arbitrary depth recursion. To avoid
this issue, closures carry no energy.

6Conveniently, because the annotations of a function are stored on the function’s type, the annotations of func-
tions in closures avoid this zeroing. Thus functions can be captured in closures without clobbering their energy
behaviour.
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V-UNIT

⟨⟩ : 1

V-FUN

V : Γ Γ | c⃗ ⊢ fun f x = e : τ
a⃗|⃗b→ σ | d⃗

C(V ; f, x. e) : τ
a⃗|⃗b→ σ

V-PAIR
v1 : τ v2 : σ

⟨v1, v2⟩ : τ ⊗ σ

V-SUML
v : τ

l(v) : τ ⊕ σ

V-SUMR
v : σ

r(v) : τ ⊕ σ

V-NIL

[ ] : L(τ)

V-CONS
v1 : τ v2 : L(τ)

v1 :: v2 : L(τ)

V-LEAF

leaf : T (τ)

V-NODE
v1 : T (τ) v2 : τ v3 : T (τ)

node(v1, v2, v3) : T (τ)

V-CONTEXT
∀x ∈ dom(Γ). V (x) : Γ(x)

V : Γ

Figure 3.8: AARA value well-formedness rules

3.3 Well-formed Values

The notion of the well-formedness of a value is formalized in Figure 3.8, and this notion is
extended over contexts as well. These rules simply state that well-formed values are structurally
consistent with their type, and most rules do not have any interaction with AARA’s potential
energy system. The one exception is that the well-formedness of a function closure at some type
requires that the closure is actually typable as that type in the AARA type system.

While the well-formedness of values might be easily taken for granted, this property does
play an important role in the typical formulation of AARA’s soundness. One reason for this
importance is simply to be able to ensure potential energy is well-defined (Section 3.4). But also,
it is important to proving the soundness of AARA that well-formed function closures have well-
typed function bodies. This importance is because a function’s cost behaviour must be recovered
when reasoning about the function’s application. The function type alone does not carry the
function’s source code, but well-formedness assures us that such source code exists, and that the
code comes with a type derivation.

3.4 Potential Energy

Now that the well-formedness of values has been defined, potential energy can be assigned to
such well-formed values. To assign potential energy to some well-formed values v : τ according
the annotation a⃗, AARA makes use of the potential function Φ(v : τ | a⃗) defined in Figure 3.9,
which in turn makes use of a special shifting operator defined via Definition 3.4.1. The potential
function only assigns nonzero potential energy to lists, trees, values built out of lists or trees,
and the free energy of contexts. Note that the annotation a⃗ may annotate more than just the type
τ in the potential assignment Φ(v : τ | a⃗). The potential function is also extended to act over
well-formed contexts.
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Φ(⟨⟩ : 1 | a⃗) = 0 Φ(C(V ; f, x. e) : τ
b⃗|⃗c→ σ | a⃗) = 0

Φ(⟨v1, v2⟩ : τ ⊗ σ | a⃗) = Φ(v1 : τ | λi. a⃗1st.i) + Φ(v2 : σ | λi. a⃗2nd.i)

Φ(l(v) : τ ⊕ σ | a⃗) = Φ(v : τ | λi. a⃗l.i) Φ(r(v) : τ ⊕ σ | a⃗) = Φ(v : σ | λi. a⃗r.i)

Φ(v1 :: v2 : L(τ) | a⃗) = a⃗d1 +Φ(v1 : τ | λi. a⃗i.e) + Φ(v2 : L(τ) | ◀(⃗a)) Φ([ ] : L(τ) | a⃗) = 0

Φ(node(v1, v2, v3) : T (τ) | a⃗) = a⃗d′1 +Φ(v1 : T (τ) | ◀(⃗a))+Φ(v2 : τ | λi. a⃗i.e′)+Φ(v3 : T (τ) | ◀(⃗a))

Φ(leaf : T (τ) | a⃗) = 0 Φ(V : Γ | a⃗) = a⃗c +
∑

x∈dom(Γ)

Φ(V (x) : Γ(x) | λi. a⃗x.i)

Figure 3.9: Potential energy definition

Definition 3.4.1 (potential shifting). The potential shifting operator◀ mirrors the critical action
of the shifting operator ◁ over indices like di , d′i , c, e.i, e

′.i, but where no labels are present like
x in x.di .
For lists annotated by a, let b(ℓ.i) = a(i). Then formally:

◀(a) = λi.◁ℓ
x,y (b)(y.i)

For trees annotated by a, let b(t.i) = a(i). Then formally:

◀(a) = λi.◁t
x,y,z (b)(x.i) = λi.◁t

x,y,z (b)(z.i)

By design, the amount of potential energy assigned by the potential function aligns well with
the typing rules of Figure 3.4. To yield tight cost bounds, the physicist’s method must conserve
as much energy as possible. In AARA, most (but not all) rules exhibit perfect conservation of
energy. This conservation is straightforward when indices are simply relabelled. Then for the
more intersting manipulations of sharing and shifting, the following lemmas show that energy is
conserved:

Lemma 3.4.1 (sharing conserves energy[76]).

Φ((x 7→ v, y 7→ v) : (x : τ, y : τ) | a⃗) = Φ((z 7→ v) : (z : τ) | ⋎x,y
z (⃗a))
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Lemma 3.4.2 (shifting conserves energy[76]).

Φ((x 7→ v1 :: v2) : (x : L(τ)) | a⃗) = Φ((y 7→ v1, z 7→ v2) : (y : τ, z : L(τ)) | ◁x
y,z (⃗a))

Φ((t 7→ node(v1, v2, v3)) : (t : T (τ)) | a⃗)

= Φ((x 7→ v1, y 7→ v2, z 7→ v3) : (x : T (τ), y : τ, z : T (τ)) | ◁t
x,y,z (⃗a))

Nonetheless, there are a few rules that do not conserve energy: in T-Tick, the energy differs
by r across the turnstile; each of the forms of weakening (T-Weak,T-Sub) allow energy to be
lost; and T-App can lose energy if the function typing does not preserve energy. Because T-Tick
records the actual cost and T-App simply reifies the typing of a function’s body, this means that
the weakening rules are fundamentally the only source of “extra” energy loss and thus are the
only source looseness in AARA’s cost bounds. (However, the weakening rules are still important
for, e.g., keeping the annotations of branches identical in rules like T-CaseS, so the weakening
rules cannot be removed.)

Because the potential energy held by lists and trees is defined inductively, it might be hard to
immediately tell whether the definition successfully assigns polynomial amounts of energy. In
the case of lists at least, the following results exist in the literature:7

Lemma 3.4.3 (list potential energy [77]). The potential energy of a list v with annotation a⃗ is a
polynomial function of v’s length n plus the potential energy of v’s elements.

Φ(v : L(τ) | a⃗) =
Dmax∑
i=1

a⃗di ·
(
n

i

)
+
∑
v′∈v

Φ(v′ : τ | λi. a⃗e.i)

Lemma 3.4.3 shows that the annotations of lists faithfully act as coefficients of linear combi-
nations of binomial coefficients. This property allows AARA to capture polynomial amounts of
energy because binomial coefficients are a linear basis for the space of polynomial functions.

Lemma 3.4.4 (tree potential energy [76]). Let v be a tree of height h. The potential energy of v
with annotation a⃗ is a polynomial function the number of nodes ni at level i of v plus the potential
energy of v’s elements.

Φ(v : T (τ) | a⃗) =
h∑

i=1

ni ·

(
Dmax∑
j=1

a⃗d′j ·
(
i− 1

j − 1

))
+
∑
v′∈v

Φ(v′ : τ | λi. a⃗e′.i)

The expression for the potential energy of trees in Lemma 3.4.4 is less intuitive than that for
lists. Nonetheless, the expression is still a naturally-arising polynomial amount. In particular, the
expression coincides with the potential energy of lists for trees where every node includes a leaf,
such as a tree of all left nodes. Such trees are morally just lists, so in this sense, the expression

7When I write v′ ∈ v for a list v, I treat v as a multiset to allow for repetition.

25



naturally generalizes the “nice” expression of Lemma 3.4.3. Other work [65] generalizes poly-
nomial resource functions over trees in further ways, but the definition here is sufficient for this
thesis.

To conclude this section, I state Lemmas 3.4.5 and 3.4.6, which are simple, related properties
that are useful for reasoning about potential energy in AARA. Both these lemmas also hold over
entire contexts, but are stated here for single values.

Lemma 3.4.5 (pointwise monotonicity of potential energy).

a⃗ ≥ b⃗ =⇒ Φ(v : τ | a⃗) ≥ Φ(v : τ | b⃗)

Because the annotation of all zeros assigns zero potential energy, a direct consequence of
Lemma 3.4.5 is that nonnegative annotations always assign nonnegative potential energy.

Lemma 3.4.6 (linearity of potential energy).

Φ(v : τ | a⃗+ b⃗) = Φ(v : τ | a⃗) + Φ(v : τ | b⃗)

In Lemma 3.4.6 the expression a⃗ + b⃗ is the pointwise addition of the a⃗ and b⃗ where both
have the same indices. This lemma expresses another form of the conservation property of
Lemma 3.4.1 but for a form of sharing over all indices at once.

3.5 Soundness

The soundness of the AARA type system amounts to the correctness of its energy bookkeeping
with respect to actual execution costs. This property is formalized via Theorem 3.5.1 alongside
the property that the return value of the expression’s evaluation is well-formed.8 One can see
the physicist’s method in this soundness theorem. The energy of the initial program environment
gives an upper bound on the peak cost. The difference in energy between the initial program
environment and that of the progam’s return value bounds the net cost.

8The well-formedness of the value returned by the expression’s evaluation is often elided in AARA literature.
This property follows almost entirely for the same reasons as type preservation in the Hindley-Milner type system
that AARA is built upon, and therefore the property is not a particularly interesting part of AARA’s soundness.
However, I take the time to explicitly include it here for completeness.
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V-NONT

• : τ
Φ(• : τ | a⃗) = ∞

Figure 3.10: Additional nontermination rules and definitions

Theorem 3.5.1 (polynomial AARA soundness[77]). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | a⃗ ⊢ e : τ | b⃗ (AARA types the expression in that environment)

then
• v : τ (return well-formed)
• Φ(V : Γ | a⃗) ≥ p (initial bounds peak)
• Φ(V : Γ | a⃗)− Φ((ret 7→ v) : (ret : τ) | b⃗) ≥ p− q (difference bounds net)

I attribute this theorem to Hoffmann and Hofmann [77] (see [76] for a detailed proof). While
my statement here uses a slightly different formalization, there is no major conceptual difference
between the two results. Hoffmann and Hofmann prove the soundness theorem by lexicographic
induction over the evaluation judgment followed by the typing judgment. This approach to prov-
ing soundness will be repeated in later chapters.

As a result of this soundness theorem, one can be assured that AARA’s cost analysis is accu-

rate. That is, whenever AARA assigns the type of τ
a⃗|⃗b→ σ to some function, that function requires

no more than Φ((arg 7→ v) : (arg : v) | a⃗) resources to run given input value v, and spends no
more than Φ((arg 7→ v) : (arg : τ) | a⃗)− Φ((ret 7→ v′) : (ret : σ) | b⃗) resources in net given
output value v′.

3.6 Nontermination

To derive the peak costs of nonterminating computations, other AARA literature usually extends
Theorem 3.5.1 over a set nontermination judgments as discussed in Section 2.4. However, I
simplify the work of this thesis by using one new “terminating” evaluation judgement given in
Figure 2.5. This evaluation simulates nondeterministically aborting computation and returning
the dummy value •.

To go along with this new evaluation judgment, I now provide the corresponding well-
formedness rule and the definition of potential energy for the value • in Figure 3.10. The value
• is well-formed at any type and carries infinitely much potential energy. It should be noted that
these definitions maintain many of the properties of AARA pointed out before, such as evaluation
maintaining well-formedness, the pointwise monotonicity of potential energy (Lemma 3.4.5),
and the nonnegativity of potential energy.

Using these rules, nontermination can incorporated into AARA’s soundness theorem, and
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with far less work than the large set of rules from the literature. However, one additional adjust-
ment must be made to the soundness theorem to avoid any issues arising from arithmetic with
infinity. This adjustment is simply the arithmetic rearrangement of the expression of the net cost
bound to avoid subtraction, and thus avoid the indeterminate expression ∞−∞. Instead of

Φ(V : Γ | a⃗)− Φ((ret 7→ v) : (ret : τ) | b⃗) ≥ p− q

I use
Φ(V : Γ | a⃗) + q ≥ Φ((ret 7→ v) : (ret : τ) | b⃗) + p

With this formulation of net cost bounds, I now show Theorem 3.6.1 to emphasize how the
net cost reasoning of Theorem 3.5.1 can elegantly be fully maintained in the presence of the new
nontermination rule.

Theorem 3.6.1 (AARA net cost soundness with nontermination). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | a⃗ ⊢ e : τ | b⃗ (AARA types the expression in that environment)

then Φ(V : Γ | a⃗) + q ≥ Φ((ret 7→ v) : (ret : τ) | b⃗) + p (difference bounds net)

Proof. The statement is proven by cases:

• If the derivation of V ⊢ e ⇓ v | (p, q) does not use E-Nont, then Theorem 3.5.1 suffices.
• If the derivation of V ⊢ e ⇓ v | (p, q) does use E-Nont, then q = ∞ by Lemma 2.4.2,

which trivializes the net cost inequality.

More generally, the peak cost bounds found by AARA also hold in the presence of the rule
E-Nont. This fact can be proven with the essentially the same proof cases as are present in the
original proof of Theorem 3.5.1 plus one new trivial proof case for E-Nont. However, it would
not be instructive to reproduce the the original proof here. Instead, I provide only the new proof
case here, and I let the soundness proofs of later chapters (particularly Chapter 5) serve as full
witnesses of the soundness of AARA with these rules for potentially nonterminating programs.

The new case of the soundness proof goes as follows: Suppose the last rule applied for
the evaluation judgment is E-Nont. Then the cost behaviour is (0,∞), so the peak cost bound
inequality is an upper bound on 0, and the net cost bound inequality is a lower bound on ∞.
Because potential is always nonnegative, the peak cost bound is satisfied. And because ∞ is
greater than or equal to everything, the net cost bound is also satisfied.

3.7 Automation
A type-inference algorithm is used to automate the AARA analysis. This algorithm uses standard
type-inference techniques to derive a typing skeleton and then adds annotations to that skeleton.
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After fixing a max polynomial degreeDmax for the analysis, the AARA type-inference algorithm
takes the following steps:

1. identify contraction and weakening for variables

2. basic type inference

3. collect and solve linear contraints

The first step of type inference is to set up a basic type derivation skeleton. To set up this
skeleton, one must first identify all places in the code where variables are used more than once
or not at all. Each of these places requires a use of either the contraction rule T-Contract or the
weakening rule T-Weak, respectively. These structural rules are not idempotent, so they must
be carefully inserted in the correct places in the derivation skeleton. (In contrast, the subtyping
rules are idempotent and can be handled by blindly inserting them between the uses of any
other typing rules.) With the use of the non-idempotent structural rules identified, a basic type
derivation skeleton can be set up that does not use annotations.

The next step of type inference is to infer non-AARA types for the program, without any
annotations. Typically this typing is accomplished via some form of unification such as Hindley-
Milner type inference [72, 106]. After this step is complete, every subexpression and variable of
the program will have been assigned some concrete type.

The final step of type inference is to decorate the type derivation with linear constraints and
solve those constraints. Because every subexpression and variable has been assigned a concrete
type, the indices annotating those expressions and variables can be computed using Ind(−).
After generating fresh annotation vectors with the appropriate indices everywhere on the type
derivation skeleton, all that remains is relating those vectors according to the AARA typing
rules and solving the resulting linear program. If the AARA typing rules justify any type, this
linear progam will find one. To optimize the tightness of that type, AARA type inference uses
an objective function which first minimizes the annotations of the type context (especially for
energy of high degree), then maximizes the annotations of the expression being typed, (including
the associated leftover resources at the index c).

Each step of AARA type inference is efficient in practice. In the first step, the uses of weak-
ening and contraction can be identified in linear time. In the second step, Hindley-Milner type
inference[72, 106] is sufficient for AARA and efficient in practice.9 In the final step, the linear
progam takes at worst polynomial time in the number of constraints [103], and this number of
constraints turns out to be polynomial in both the chosen maximum degree Dmax and the size of
the source code,10 Thus, the final inference step runs in polynomial time overall, so each step of
the inference process is efficient.

Note that AARA type inference cannot always succeed. If AARA could always assign a
type, then AARA could be used to decide the undecidable halting problem[135]. For similar
reasons, AARA cannot always assign a tight cost bound, even for polynomial-time functions.
Nonetheless, if the AARA typing rules can justify any types for a given program, this infer-
ence algorithm picks one of those types yielding an optimally tight cost bound (in the sense of
”optimal” corresponding to the linear program’s optimization).

9However, pathological cases do show that Hindley-Milner inference is DEXPTIME-complete [99, 105]
10I revise this polynomial complexity in Chapter 8 where some additional language features are introduced.
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3.8 Linearity
I take a moment now to emphasize some of the ways that linearity shows up in AARA and how
such linearity can be leveraged. I hope that this will prime the reader for later chapters, where
leveraging such linear features plays a central role.

While many of the forms of linearity in AARA are interrelated, I identify at least four avenues
through which linearity arises. These linear features are what this thesis will leverage to improve
AARA.

• logical linearity — AARA’s type system has the flavor of linear logic[63]. More specifi-
cally, the type system is affine. AARA variables and potential energy can be used at most
once (affinely), but AARA does not require that they are used at least once (relevantly);
both are needed for full linearity. Regardless, the fact that a resource-analysis type sys-
tem has a linear flavor is not really that surprising because linear logic is well established
as a logic of resources [1, 29, 63]. AARA’s logical linearity plays some role in all this
thesis’s contributions, but is especially apparent in Chapter 5’s adaptation of linear-logic
proof-search techniques and in Chapter 9’s affine and relevant flavor of type system.

• linear progamming — Linear programming automates AARA’s type inference and is the
key to AARA’s success as an automatic cost-analysis tool. Linear programming is both
efficient and expressive, which in turn allows AARA to be efficient and expressive. It
is a powerful coincidence that the contraction rule of AARA can be expressed with only
linear constraints, allowing AARA’s otherwise affine type system to type non-affine code.
It is an important theme throughtout this thesis to express my contributions’ new reasoning
principles in terms of linear constraints so that my AARA extensions can continue to be
efficienty automated.

• linear recurrences — AARA uses the linear recurrence of Pascal’s identity to derive poly-
nomial cost bounds. It is yet another powerful coincidence that such linear recurrences fit
into the framework of linear programming so that AARA can infer polynomial cost bounds
just as easily as linear cost bounds. This power is expanded in Chapter 6 to express and
efficiently derive even more kinds of cost bounds.

• the physcisist’s method — The physicist’s method that powers AARA’s reasoning allows
for physical principles to seep into the AARA type system. So far the only principle that
has really come into play is conservation of energy. However, both Chapters 5 and 9 show
that other interesting physical principles have parallels in the domain of cost analysis,
including, e.g., the highly linear domain of quantum mechanics.

It is instructive to point out that AARA itself was born out of leveraging linearity. The orig-
inal AARA type system was developed by Hofmann and Jost [85] by leveraging the synergistic
linearity of the following key ideas:

1. The first key idea was to build their heap analysis upon Hofmann’s linearly typed functional
(programming) language (LFPL) [83]. Programs typeable in this system are guaranteed
to require no additional heap memory beyond that provided by the input. The type sys-
tem ensures this property by explicitly passing around heap rights in the form of tokens
represented by ⋄. These tokens are introduced to programs through input data stuctures
and nowhere else, which ensures that the only heap cells that can be used are those of the
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input. Critically, this means such tokens are affine, and this affine nature is the eponymous
element of linearity in LFPL.

2. The second key idea was that numerical-optimization techniques could greatly simplify
the handling of LFPL-style tokens. One might initially observe that groups of tokens can
be summarized as natural numbers, like representing 3 tokens simply with the number 3.
This transformation naturally reduces type inference to NP-hard integer linear program-
ming (ILP). However, Hofmann and Jost’s work went a bit further: they leveraged the
simplifying linear-programming technique of linear relaxation to the ILP, which places
the integer optimization problem into a rational optimization space where efficient linear
programming can be applied. Crucially, the rational linear programming solutions were
easily adapted into their LFPL-style type system and were just as useful for heap anal-
ysis. Thus, type inference could be efficiently automated in polynomial-time via linear
programming.

Thus, from the beginning of AARA, leveraging linearity has been important. For Hofmann
and Jost, this leveraging of linearity played out in the adaptation of techniques from linear pro-
gramming into their type system. Later work has continued the tradition by leveraging other
forms of linearity, including the introduction of a linear recurrence to represent polynomials
[77]. This thesis aims to show that leveraging linearity has not yet been exhausted.
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Chapter 4

Related Work

This chapter presents a brief description of some alternative approaches to cost analysis. These
alternatives have been organized along three axes that should contextualize the reader’s introduc-
tion to AARA in Chapter 3. Section 4.1 exhibits other type-based approaches to cost analysis,
many of which make use of linear flavors of typing. Section 4.2 describes some techniques that
focus on amortized cost analyses specifically, showing that there exist other techniques using the
physicist’s method. Section 4.3 shows alternative approaches to automatic cost analysis, many
of which rely on the existence of some solver.

Each of this thesis’s chapters also provides more close comparisons between their contribu-
tions and other related work.

4.1 Type Systems

Outside of AARA, there are many other type systems that perform cost analysis. These type
systems take various approaches to cost analysis and have various levels of automation. Most are
not nearly as automated as AARA, but many exchange such automation for more power and can
be used to verify more interesting cost bounds than AARA.

A variety of type systems for cost analysis get their power from implicit computational com-
plexity, wherein the typeability of a program implies that the program (or the function it com-
putes) has a certain complexity. Typically, these type systems operate via some form of logical
linearity, wherein a program value can only be used so many times. Such type systems include
non-size-increasing types [84], those based on light linear logic [13], those based on bounded
linear logic [42, 61], and linear dependent types [11, 41, 43]. AARA descends from such work
through LFPL [83].

Modal type systems can also enable cost analysis [44, 118, 124]. Usually, modal type systems
perform cost analysis by encoding amounts of resources or costs via grades, which can take the
form of numerical annotations. AARA can be expressed this way too [125]. Temporal type
systems can also express time usage more directly [45, 92].

Other type systems make use of the power of dependent types, wherein types can depend on
program values. These types have already been mentioned for their use in implicit complexity
results [11, 41, 43], but their use ranges widely. At one extreme, dependent types might only
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show up to allow costs to depend on arguments [39, 64]. Such simple dependent type systems
often admit some level of automation. At the other extreme, the use of dependent types goes
beyond mere cost analysis and takes the form of a general-purpose proof assistant [108, 134].
The CALF system [114] specializes this general approach for the purposes of finding cost bounds
by introducing a special modality that distinguishes extensional behaviour (like correctness) and
intensional behaviour (like cost). These proof systems are usually too powerful to fully automate
their type inference.

Like dependent types, refinement types also allow the relation of types and values. However,
refinement types do so in lighter-weight way, making them easier to automate. Systems like
Liquid Haskell have used specialized refinement types for checking resource usage [71].

The TiML type system [139] is another type system which has been specialized for automat-
ically verifying time complexity. Similarly to AARA, TiML uses type annotations to facilitate
its cost reasoning. However, unlike AARA, these annotations are user-provided and must be
discharged by an SMT solver. While this circumstance makes TiML harder to automate, it also
affords more expressive power to TiML.

An indirect approach to cost analysis is to track the sizes of data structures. Sized types are
capable of such tracking with some level of automation [32, 90, 137]. While data structure size is
not directly related to cost, many times costs of interest are parameterized on such sizes. AARA
skips reasoning directly about size and instead reasons directly about resource densities in data
structures.

4.2 Amortized Analyses

Amortized cost analysis originates from the analysis of algorithms [133] and is a technique by
which prepayments smooth over costs. Amortized costs are more natural for reasoning about
the accumulated cost of series of operations because they can amortize the costs of rare but
expensive operations that might otherwise inflate the bounds found by a more naive method of
accumulating costs. Because amortization is so well-suited to composing the costs of series of
operations, it also serves as a strong foundation for programmatic cost analysis.

Many different approaches to cost analysis provide amortized analyses. AARA of course
does, as do various AARA-based systems [27, 47], some of which are in settings like program
logic [10] and term rewriting [107]. There are additionally amortized techniques based on re-
currence solving [40], cost relations [58, 59], separation logic [66], ranking functions for lossy
vector addition systems [131], and more [15, 56, 104, 113].

Amortized analyses typically approach cost analysis via resource analysis. That is, these
analyses track some resource that gets spent, rather than track some cost that gets accumulated.
While it usually equivalent to track cost or resources, this distinction does mean that a resource
analysis might care more about where resources are located and what form they take. As a
result, amortized analyses tend to use the abstraction of resource credits or potential energy.
Such analyses often focus on how to move or store such credits where they are needed. Allowing
such accounting to happen smoothly is a major theme of this thesis.
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4.3 Automatic Approaches

There are many different techniques one could use to automate cost analysis, some of which have
already been mentioned in previous sections. In this section, I briefly describe some remaining
categories of automatic techniques, of which there are many. The categories I mention here are
by no means exhaustive, or even mutually exclusive.

Recurrence Solving One common approach to automatic cost analysis is recurrence solving.
This approach aims to extract recursive functional relations between various program properties,
including cost, data-structure size, recursion depth, etc. Then these techniques solve for the
functions involved, disentangling cost from its relations with other program properties. Such a
solution can come easily for certain solvable forms of recurrences, such as linear recurrences1

or the master theorem [18]. However, recurrence solving in general is not computable, and
thus more powerful recurrence-based approaches must rely on the strength of more sophisticated
techniques.

The use of recurrence solving for automatic cost analysis goes all the way back to Wegbreit’s
1975 work on METRIC [140]. The METRIC system approaches cost analysis by gathering and
solving recurrence relations using difference equations. Modern techniques improve upon this
early work by using sophisticated solution methods. For example, techniques like PILAT [48]
deal with systems of polynomial equations that arise from recurrences by computing Gröbner
bases [22]. Other modern techniques gain more power by using SMT solvers to deal with more
difficult recurrences [20, 55, 101, 126]. Machine learning has even been used to guess recurrence
solutions which can then be checked by an SMT solver [100].

Cost Relations A more directed framework for cost analysis following the Metric framework
[140] is the use of cost relations, which are specialized recursive equations and constraints de-
scribing the cost behaviours of programs. Tools like CoFloCo [59], and PUBS [5] have been
developed for the purposes of solving such cost relations. Other tools use cost-relation solvers
as part of their cost analysis algorithms [4, 7, 9]. Many times cost relations are combined with
other techniques, like the ranking functions I discuss in the following paragraphs.

Ranking Functions Ranking functions are a key method of proving program termination.
Ranking functions operate by identifying decreasing measures that must eventually reach zero.
Tools for the inference of ranking functions have been adapted to reason about computational
complexity by translating ranking functions into bounds, often in combination with other tech-
niques [5, 8, 21, 31, 130, 131, 141].

Ranking functions are particularly prevalent for proving the termination of term-rewrite sys-
tems, which describe computation via string derivations. Some automatic complexity analysis
tools in this domain find ranking functions using specialized term-rewriting techniques like the
dependency-pair method [12, 62, 73, 115].

1See Chapter 6 for linear recurrences being used in AARA.
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Invariant Generation An alternative method of cost analysis treats a program’s cost as an
invariant. Such an invariant might relate the size of a program’s input with the value of some step
counter. Invariant-finding techniques can then be employed to obtain cost bounds. Invariants can
either be directly related to cost or leveraged through techniques like Speed [69].

Some techniques for finding invariants come from linear algebra. Such techniques are based
upon the invariant kernels or eigenspaces of linear (or affine) program operations [49, 97].

Finally, abstract interpretation is a major technique for finding program invariants. I discuss
abstract interpretation more in the following paragraphs.

Abstract Interpretation Abstract interpretation is a technique for approximating program be-
haviour, especially behaviour like the aforementioned invariants. Abstract interpretation typi-
cally operates using iterative techniques to approach fixed points in some abstraction of program
behaviour [37, 54]. By selecting the correct abstract domain, invariants such as linear and poly-
nomial (in)equalities can be found effectively [23, 38, 110, 128].

Abstract interpration is often combined with other techniques to make a complete cost anal-
ysis. Sometimes the role of abstract interpretation in such tools is just to simplify the problem
enough enough that other kinds of solvers can take over [68, 69]. Other times abstract domains
can more directly aid in cost in reasoning, such as combining size-change abstraction with rank-
ing functions [141].

Program Logic Some specialized program logics have been introduced for the purposes of
automatic cost analysis rather than mere verification. Some example of automated logics include
an AARA-based separation logic [10], an energy-aware Hoare logic that builds off of other loop
analyses [98], and the separation-logic tool Infer, which is powered by bi-abduction [24].
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Chapter 5

Remainder Contexts

This chapter lays out remainder contexts,1 which are this thesis’s first extension to the AARA
type system. Remainder contexts are additional type contexts that capture the remaining energy
of the context after program execution. These new contexts allow AARA to better conserve
reusable resources like memory. Further, because remainder contexts only require linear con-
straints, AARA type inference can be efficiently automated via linear programming as before.

Remainder contexts operate through a combination of principles originating from linear logic
and quantum computing. Remainder contexts are AARA’s analogues of the I/O contexts from
linear-logic proof search [28, 75], and like those I/O contexts, they allow for deeper reasoning
about leftover resources. Then, to better reuse those resources, remainder contexts engage in
a form of uncomputation [17]. Reversible computing uses uncomputation to recover and reuse
bits assigned as temporary memory, whereas AARA uses uncomputation to recover and reuse
leftover potential energy assigned to temporary variables. Together, these ideas allow AARA to
recover leftover resources more effectively, which is the crux of working with reusable resources
like memory.

As a result of introducing remainder contexts, AARA’s structural rules no longer make use
of T-Contract or T-Weak. This change makes the type-inference process simpler because the
algorithm no longer needs to identify the uses of such rules (step one in Section 3.7).

5.1 The Problem: Keeping the Change

For AARA to provide tight cost bounds, it is critical that its type system is able to conserve
potential energy as much as possible. However, there are various ways that the type system can
lose energy. One source of loss in particular harms AARA’s ability to reason about reusable re-
sources like memory: AARA does not recover potential energy left on temporary data structures.
If potential energy were money,2 it would be as if AARA (over)pays with a large bill and does
not bother to recieve the change. As a result, such potential energy is lost rather than reused,
inflating the cost bounds found by AARA.

1I first published remainder contexts in [96] in service of the work I will present separately in Chapter 9.
2In fact, potential energy might literally be money if money is the resource tracked by ticks.
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1 let a = len lst
2 let b = mem (5, lst)

Figure 5.1: Code sequentially calling len and mem

1 fun len lst = case lst of
2 | [] -> 0
3 | x::xs -> let () = tick{1} in
4 let subsoln = len xs in
5 let () = tick{-1} in
6 1 + subsoln
7
8 fun mem (y, lst) = case lst of
9 | [] -> false

10 | x::xs -> if x = y then true
11 else let () = tick{1} in
12 let subsoln = len xs in
13 let () = tick{-1} in
14 subsoln

Figure 5.2: Code for len and mem with ticks for naive stack frames

To see how AARA fails to keep the change, consider the call-stack usage3 for sequential
calls to functions in Figure 5.1. Each of len and mem are functions that operate by recursing
over their input lists and thus make a worst-case number of recursive calls equal to their inputs’
lengths (plus one to account for the initial non-recursive call). One can therefore expect these
functions might each use a number of stack frames equal to the length of lst plus one. Critically,
however, these stack frames are freed after each function returns, so the stack frames for the call
to len can be reused by the call to mem. Thus, in total, the code of Figure 5.1 should require a
peak cost of |lst|+1 call stack frames to run. The code should also require a net cost of 0 stack
frames because all stack frames are returned.

The cost bounds found by AARA do not agree with this analysis. After instrumenting the
code for len with ticks to count stack frames (Figure 5.2), AARA assigns len the annotated
type L1(Z) → Z. This type does show that one stack frame per element of the input list is
required, but does not indicate in any way that these stack frame are later returned. AARA types
mem similarly. As a result, AARA cannot reuse these stack frames in its bookkeeping and finds
that each function call in Figure 5.1 requires a fresh set of stack frames to run. The peak cost
bound found by AARA is 2 · |lst|+ 1 stack frames4 and the net cost bound is 2 · |lst|.

The situation is actually worse than it might appear. AARA’s bounds can be made arbitrarily

3To keep examples simple, this work only considers naive call stack usage, wherein every function call causes
a new call stack frame to be allocated. This work ignores optimizations like tail-call optimization, and this work
ignores the possibility of memory leaks where the call stack is not freed after a function returns.

4This bound is not 2 · |lst| + 2 because AARA actually can reuse the single stack frame needed for the initial
function calls without any alteration.
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Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

⊗R

Figure 5.3: Right rule for multiplicative product

loose simply by calling more functions on the list lst. If k such sequential function calls are
made, the calls still only require a peak cost of |lst| + 1 stack frames due to reuse, but AARA
finds a peak cost bound of k · |lst| + 1, which is about k times worse. The net cost situation is
worse still: in actuality, k sequential function calls incur a net cost of 0 stack frames because all
stack frames are returned, but AARA finds a net cost bound of k · |lst|. And if calls are made to
superlinear-cost functions rather than linear-cost functions like len and mem, these bounds will
also become superlinear.

Thus, as it stands, AARA is poorly suited for deriving cost bounds for reusable resources like
memory. AARA’s analysis does not take advantage of when such resources could be reused—
does not keep the change— and therefore often finds much looser cost bounds than the actual
cost. This is the problem addressed by the current chapter of this thesis.

5.2 The Linear Ideas: I/O Contexts and Uncomputation
To address the problem described in Section 5.1, I follow the theme of this thesis and look to
how similar problems have been addressed in other linear domains. For this problem, I look
to practices in both linear logic and reversible computation. Linear logic proof search can be
made more efficient through the use of I/O contexts to organize leftover propositions [28, 75];
a similar construction allows AARA to express leftover potential energy. Reversible computing
uses uncomputation to recover and reuse bits assigned as temporary memory [17]; a similar
process allows AARA to recover leftover potential energy from temporary variables. This section
describes both of these techniques in more detail to give a taste of how the patterns of remainder
contexts naturally arise in other linear settings.

5.2.1 I/O Contexts
The basic inference rules for linear logic [63] are not so easy to use algorithmically. The problem
stems from rules for the multiplicative connectives such as the sequent calculus rule in Figure 5.3
for the multiplicative product ⊗. Linear logic does not allow the free duplication (contraction) of
propositions in its logical context, so it is critical that proofs properly allocate such propositions
between premiss judgments. However, there are 2|Γ,∆| different ways to split up the logical
context Γ,∆ between the two premisses in the rule ⊗R. Thus any linear logic proof search
procedure that naively applies the rule ⊗R may have to backtrack to the application of this rule
exponentially many times to try each way of splitting the context.

I/O contexts provide a different formulation of rules to mitigate such expensive backtracking
during proof search. An example proof rule using I/O contexts is given in Figure 5.4, where the
rightmost symbol in each judgment is the new logical context for leftover propositions. The key

39



Γ ⊢ A | Ω Ω ⊢ B | ∆
Γ ⊢ A⊗B | ∆ ⊗R

Figure 5.4: Right rule for multiplicative product using I/O contexts

to using I/O contexts is that such rules do not split the logical context at all. Instead, the rules pass
the entire context to their first premiss, where I/O contexts then are used to dynamically track
which propositions gets used and which propositions are leftover. The leftovers from deriving
the first premiss may then be passed wholesale to the second premiss.

The dynamic tracking enabled by I/O contexts is a more efficient because it provides a flex-
ible, lazy way of determining where propositions get used in linear logic proofs. Rules without
I/O contexts must eagerly commit to how propositions get used through splitting their contexts,
and this is a major source of backtracking during proof search. While using I/O contexts does
not completely eliminate the need for backtracking—there may be multiple ways to derive the
first premiss— it does have the effect that only those context splits satisfying the first premiss are
ever considered, cutting down the proof search space significantly. As a result, linear logic proof
search is more efficient when using such I/O contexts.

The intention of adapting I/O contexts to AARA is to gain the ability to reason about leftovers
effectively. However, the adaptation is not completely trivial. In AARA, these leftovers take the
form of potential energy rather than propositions, and potential energy is a continuous quantity
that can be split up, whereas propositions are used discretely and completely. The programmatic
context of AARA also means that AARA can only easily reason about the data structures existing
in a given program context, whereas logical propositions can be introduced and passed around
more freely. Nonetheless, both of these hurdles can be overcome, especially with the help of
uncomputation.

5.2.2 Uncomputation
The physical concerns of computation come up against various limitations. Some of the most
important concerns are about information-theoretical physical consequences of irreversible com-
putation. Physics typically assumes that all phenomena are reversible so that information can
never be destroyed and symmetrically can never be created—in other words, information is log-
ically linear. However, irreversible computations, like the non-invertible constant function λx. 0,
are ubiquitous in computer science. The study of physical computation has therefore introduced
special techniques to reconcile the linearity of physics and the nonlinearity of general computa-
tion.

One limitation of physical computation is the amount of energy dissipated through irre-
versible computation [102]. The energy bottleneck is actually the creation of entropy through the
erasure of memory: each bit of memory at room temperature requires approximately 3 · 10−21

Joules of energy to erase. This energy cost arises because, while the memory might be erased,
the information it represents cannot be. Instead, that information is sent out into the environ-
ment in a form such as heat, and any computational device that pumps out heat must take in
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energy. Unfortunately, clearing memory is incredibly common in computation because mem-
ory is usually reused, especially between different computations. It therefore would appear that
general-purpose computation is inherently entropic and there are limits on how energy efficient
it can be.

To address such concerns, Bennett showed how to perform general-purpose computation in
a fully reversible manner, allowing the plausibility of arbitrarily energy-efficient computation
[17]. The key to this result is to record the intermediate computation states necessary to perform
uncomputation.5 Rather than erase bits, uncomputation reverses the process used to compute
those bits. This process leaves the bits back in the state they started in, changing no information
content along the way.

One simple way to make the computation of any function f reversible is to lift its action to
pairs of inputs and outputs. Specifically, if f(x) = y for bit strings x and y, then the function
g(x, z) = (x, z ⊕ f(x)) simulates f , where z is arbitrary and ⊕ is pointwise exclusive-or. This
choice of g is then its own inverse. This chapter makes a similar change to function types, pairing
up arguments with their returns.

Uncomputation has only gained stronger interest with the advent of modern quantum com-
putation. Quantum mechanics has much of the same linear informational concerns, except with
higher computational stakes. Erasing quantum bits (qbits) willy-nilly does not simply have an en-
ergy cost, but rather completely ruins the computation. This ruination occurs because the benefits
of quantum computation rely on qbits existing in certain correlated states, i.e., on qbits being en-
tangled. Erasing an entangled qbit collapses the entanglement, ruining the quantum correlations
for qbits that were not erased. To avoid this problem, uncomputation is used pervasively. High
level quantum languages like QCL[117] and Silq[19] even automatically use uncomputation to
remove temporary variables from scope at the end of their lifetimes.

The use of uncomputation in AARA is also for handling temporary variables at the end of
their lifetimes. This uncomputation is not actually performed by the program execution, but
simulated in the potential energy bookkeeping. Such simulation returns leftover potential energy
carried by temporary variables back to the data structures involved in their creation. As a result,
less potential energy is lost to being stranded on such variables, resulting in tighter cost bounds.
While not every operation in the language is uncomputed in this manner, enough potential energy
can be recovered to obtain tighter cost bounds for reusable resources.

This uncomputation could not be performed without also incorporating the leftover tracking
of I/O contexts. Such leftovers are what is uncomputed. At the same time, tracking the leftover
potential energy would not be meaningful unless it could be recovered. Thus, both ideas are
necessary for the success of remainder contexts.

5.3 Type System
I now proceed to adapt the ideas of I/O contexts and uncomputation into AARA via remainder
contexts. The resulting type system is able to maintain leftover potential energy on data struc-
tures, just as I/O contexts maintain leftover propositions. The type system is then further able to

5Uncomputation is not to be confused with uncomputability. The former is the undoing of computation, and the
latter is the inability to algorithmically create.
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recover that potential energy for reuse, just as uncomputation recovers memory for reuse. My
adaptations require only a few systematic changes to the type system, which I explain in this
section.

5.3.1 Types
There is precisely one change to the types represented in the AARA system with remainder
contexts: function types have slightly augmented annotations. In Chapter 3, the function type

τ
a⃗|⃗b→ σ required the domain of the annotation map b⃗ to be {c} ∪ ret.Ind(σ). With remainder

contexts, the required domain is instead {c} ∪ ret.Ind(σ) ∪ arg.Ind(τ). This change just adds
indices for the function argument to the return’s annotations.

The intention of these new function indices to represent the amount of potential energy left-
over on the function argument after the function is run. This notion is formalized by the typing
rules of section 5.3.2, where such leftover tracking is pervasive.

To express these new function types conveniently in prose, the function notation is extended
so that annotation for the return is added onto the end. Such a function type might look like
⟨L3(Z); 1⟩ → ⟨Z; 4⟩ ∼ L1(Z), where L1(Z) has the same base type as the argument, just with
different remainder annotations. This type indicates a function taking an integer list with 3 units
of energy per element and 1 unit of free energy as input and returning an integer alongside 4 units
of free energy, where 1 unit of energy per element is also restored to the input after running.

5.3.2 Typing Rules
The remainder context typing rules are given across Figures 5.5 to 5.7. These new typing rules
make use of a similar typing judgment to that used in Chapter 3, except the judgment has an
additional set of annotations for the type context. This extra set of annotations lets the typing
judgment act in a way reminiscent of Hoare triples[74], or a two-vocabulary relation over anno-
tation indices, or (most pertinently) I/O contexts.

The new typing judgment is:
Γ | a⃗ ⊢ e : τ | b⃗

This typing judgment means that, in type context Γ annotated by a⃗ ≥ 0, the expression e is typed
τ , where both τ and the leftover energy of the whole type context Γ are annotated by b⃗ ≥ 0. To
be explicit, a⃗ is indexed by Ind(Γ) and b⃗ is indexed by Ind(Γ, ret : τ).

The only difference between this typing judgment and that of Chapter 3 is that here b⃗ also
annotates the type context Γ. This additional annotation of Γ is how I/O contexts show up and is
where uncomputation occurs. For convenience, I refer to a⃗ as the initial annotation and b⃗ as the
remainder annotation.

Unlike the rules of Section 3.2, remainder contexts do not require any typing rules for the
contraction or weakening of variables. Instead, the only structural rule used here is the subtyping
rule R-Sub of Figure 5.5, which as before is a weaking rule for potential energy. In both cases, the
reason that the other structural rules are no longer necessary is that the remaining rules perform
their functions better. The reason that variable contraction is no longer necessary is that remain-
der contexts have the same lazy context usage of I/O contexts, and therefore the eager duplication
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R-SUB

Γ | a⃗′ ⊢ e : τ | b⃗′ a⃗ ≥ a⃗′ b⃗ ≤ b⃗′

Γ | a⃗ ⊢ e : τ | b⃗

Figure 5.5: Remainder context structural typing rule

of variables using the rule T-Contract is unnecessary. The reason that variable weakening is no
longer necessary is that the rule T-Weak does not conserve potential energy as well as remainder
contexts’ syntax-directed uncomputation.

The behaviour of I/O contexts shows most clearly in the rule R-Let. Because the AARA
language is in let-normal form, the previous let rule T-Let was the only rule displaying the linear
multiplicative connective behaviour of splitting the context. The new version with remainder
contexts, R-Let, exhibits the characteristic I/O context behaviour of passing the whole type con-
text to the first premiss (annotated by a⃗), then passing all the leftovers to the second premiss
(annotated by c⃗).

To see how I/O contexts’ lazy context usage comes into play, one can look at how variables
get used in the typing rules. Whenever a variable x is used, the potential energy on x is split
between the use of x and the remainder left on x. This splitting is accomplished via sharing
and is most clear in the rule R-Var, where no other complicated behaviour occurs. Because this
splitting occurs lazily just before x gets used, it is capable of more flexibility than the eager
splitting performed by the rule T-Contract. Remainder contexts are the perfect way to capture
this flexibility.6

The uncomputation of remainder contexts is the final piece of the puzzle, and this feature
can be seen in any destructor expression. For example, look at the rule R-CaseP. This rule per-
forms exactly the same operation on the annotation vectors a⃗ and b⃗ for its initial and remainder
annotations. For the initial annotation, this transformation has the effect of annotating the de-
constructed parts of a data structure from the data structure’s initial annotations, as might be
expected. However, for the remainder annotation, this transformation has the effect of annotat-
ing the reconstructed original data structure from the remainder annotations of its parts. This
perfect symmetry between destruction and reconstruction allows leftover potential energy to be
recaptured on data structures that remain in scope.

Uncomputation makes the new remainder context function types a natural reification of the
typing rules. Because the typing rules have leftovers, it is only natural that the function types
do. In particular, the rule for typing functions R-Fun already uncomputes the formal argument
parameter x in its premiss, so maximal potential energy can be reclaimed by having function
types record that leftover. This reclaimation plays out in the application rule R-App, where
sharing is used to restore leftover potential energy to the argument.

Note that not every rule performs uncomputation in this remainder context system. Firstly,
only temporary variables are ever uncomputed. Thus, for instance, expressions that construct

6A similar flexible reasoning principle for Hoare-triples might be something like separation logic’s frame rule
[120].
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R-VAR

Γ, x : τ | ⋎x,ret
x (⃗a) ⊢ x : τ | a⃗

R-LET

Γ | a⃗ ⊢ e1 : σ | c⃗ Γ, x : σ | [x/ret]⃗c ⊢ e2 : τ | b⃗, d⃗
Γ | a⃗ ⊢ let x = e1 in e2 : τ | b⃗

R-FUN

Γ, x : τ, f : τ
c⃗|d⃗→ σ | 0 · a⃗, [x/arg]⃗c ⊢ e : σ | 0 · a⃗, [x/arg]d⃗

Γ | a⃗, b⃗ ⊢ fun f x = e : τ
c⃗|d⃗→ σ | a⃗, b⃗

R-APP

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ⋎x,arg

x (⃗a, b⃗) ⊢ f x : σ | ⋎x,arg
x (⃗a, c⃗)

R-TICK

a⃗c = b⃗c + r ∀i ̸= c. a⃗i = b⃗i

Γ | a⃗ ⊢ tick{r} : 1 | b⃗

R-PAIR

Γ, x : τ, y : σ | ⋎x,ret.1st

x (⋎y,ret.2nd

y (⃗a)) ⊢ ⟨x, y⟩ : τ ⊗ σ | a⃗

R-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ | a⃗ ⊢ e : τ | b⃗

Γ, x : σ ⊗ ρ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (⃗a)) ⊢ case x of ⟨y, z⟩ → e : τ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (⃗b))

R-SUML

Γ, x : τ | ⋎x,ret.l
x (⃗a) ⊢ l(x) : τ ⊕ σ | a⃗, b⃗

R-SUMR

Γ, x : σ | ⋎x,ret.r
x (⃗a) ⊢ r(x) : τ ⊕ σ | a⃗, b⃗

R-CASES
Γ, x : σ ⊕ ρ, y : σ | a⃗, b⃗, c⃗′ ⊢ e1 : τ | d⃗, e⃗, f⃗ ′ Γ, x : σ ⊕ ρ, z : ρ | a⃗, b⃗′, c⃗ ⊢ e2 : τ | d⃗, e⃗′, f⃗

Γ, x : σ ⊕ ρ | a⃗,⋎x.l,y
x.l (⃗b),⋎x.r,z

x.r (c⃗) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | d⃗,⋎x.l,y
x.l (e⃗),⋎x.r,z

x.r (f⃗)

Figure 5.6: Remainder context typing rules 1
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R-NIL

Γ | a⃗ ⊢ [ ] : L(τ) | a⃗, b⃗

R-CONS

Γ, x : τ, y : L(τ) | ⋎x,x′

x (⋎y,y′

y (◁ret
x′,y′ (⃗a))) ⊢ x :: y : L(τ) | a⃗

R-CASEL
Γ, x : L(σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, x : L(σ), y : σ, z : L(σ) | ◁x′

y,z (⃗a, b⃗) ⊢ e2 : τ | ◁x′

y,z(c⃗, d⃗)

Γ, x : L(σ) | a⃗,⋎x,x′

x (⃗b) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | c⃗,⋎x,x′

x (d⃗)

R-LEAF

Γ | a⃗ ⊢ leaf : T (τ) | a⃗, b⃗

R-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (◁ret
x′,y′,z′ (⃗a)))) ⊢ node(x, y, z) : T (τ) | a⃗

R-CASET
Γ, t : T (σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁t′

x,y,z (⃗a, b⃗) ⊢ e2 : τ | ◁t′

x,y,z(c⃗, d⃗)

Γ, t : T (σ) | a⃗,⋎t,t′

t (⃗b) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | c⃗,⋎t,t′

t (d⃗)

Figure 5.7: Remainder context typing rules 2
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1 (* lst:1,0 *) fun len lst = case lst of (* lst:1,0 *)
2 (* []: 1,0 *) | [] -> 0 (* lst:1,0 *)
3 (* xs: 1,1 *) | x::xs -> (* lst:1,0 *)
4 (* xs: 1,0 *) let () = tick{1} in (* xs: 1,1 *)
5 (* xs: 1,0 *) let subsoln = len xs in (* xs: 1,1 *)
6 (* xs: 1,1 *) let () = tick{-1} in (* xs: 1,1 *)
7 (* xs: 1,1 *) 1 + subsoln (* xs: 1,1 *)

Figure 5.8: Code for len with energy comments

data structures do not simulate the subsequent destruction of those data structures. Then the only
rule without uncomputation is the rule R-Let. This rule creates a binding for the variable x from
the expression e1 but never uncomputes x despite x having a clear scope. The problem here is
that it is not clear how to properly invert the computation of e1 to determine how to transform the
remainder. Despite these exceptions, there is still enough uncomputation throughout the system
to allow many functions to be meaningfully assigned leftover potential energy on their inputs,
improving the AARA analysis.
Example 5.3.1. Recall the code for the length function len in Figure 5.2. Using the remainder
context type system, len can be typed as L1(Z) → Z ∼ L1(Z), which properly shows that all
stack frames are returned.

This typing is witnessed by the amounts of energy annotated in Figure 5.8. For notational
convenience, annotations belonging to the initial context are commented on the left of the code,
and annotations belonging to the remainder context on the right. The initial context’s comments
go down as the computation progresses, and the remainder context’s comments go up to reverse
the process. Note that additionally, I abbreviate “x units of linear energy on list y and z units of
free energy” as just y : x, z.

The key lines to look at in Figure 5.8 are as follows, starting with the initial annotations. At
line 3, one unit of free energy is released through the pattern match of the argument lst and all
energy is stored on xs. Subsequent lines do not change the amount of energy on xs, particularly
line 5, which leaves xs unchanged due to the remainder matching the argument (L1(Z)) in the
type of len. For the remainder annotations, no changes are made to the energy going up from
line 7 until line 3. This lack of change is because the action of ticks are not uncomputed; only
data structures are. Then at line 3, the free energy and xs are repackaged back into the argument
lst, leaving the argument holding the same linear energy it begain with.

Sequential calls to functions of this type (like in Figure 5.1) can reuse the resources left on
the function argument.

5.4 Soundness

The soundness of AARA with remainder contexts is similar to Theorems 3.5.1 and 3.6.1 in that
the initial potential energy of a context bounds the peak cost of evaluation, and the difference
between initial and final energies bounds the net cost. However, the notion of final energy now
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takes into account the new presence of leftover potential energy in the context by adding it to
the potential energy of returned value. This change results in Theorem 5.4.1, where the con-
sequent concerning the net cost is changed from Theorems 3.5.1 and 3.6.1. (Also note that
Theorem 5.4.1’s proof takes into account potentially non-terminating execution.)

Theorem 5.4.1 (remainder context soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | a⃗ ⊢ e : τ | b⃗ (AARA types the expression in that environment)

then
• v : τ (return well-formed)
• Φ(V : Γ | a⃗) ≥ p (initial bounds peak)
• Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p (diff. bounds net)

Proof. The soundness proof proceeds by lexicographic induction over the derivation of the eval-
uation judgment followed by the typing judgment.

Because this proof has many cases, here are some points and patterns of interest:

• First this proof deals with non-syntax-directed rules so that each subsequent proof case
only needs to cover syntax-directed options. Otherwise there would always be multiple
cases for how to match up typing and evaluation judgments to a given expression.

• The tick and let expressions are the only expressions with interesting cost behaviour. These
proof cases show the essence of how cost is paid and composed, respectively.

• The function application case makes nontrivial use of the well-formedness of function val-
ues to obtain a typing judgment for the function being applied. This judgment is necessary
to apply the inductive hypothesis.

• The construction of every data structure has cost behaviour (0, 0) and perfectly conserves
potential, so the cost bounds follow directly. Specifically, the peak cost is always satisfied
here because potential energy is nonnegative, and the net cost bound is always satisfied
with a tight equality.

• The destruction of every data type (except for function types) has the same cost behaviour
as its premisses. These cases all follow from applying the inductive hypothesis and then,
similarly to the construction cases, using the facts that sharing and data structure destruc-
tion perfectly conserve potential.

Now each case in the induction is given in more detail:

R-Sub This case deals with the structural typing rule R-Sub so that future considerations of
typing judgment derivation structure need not consider the case that the derivation ends with the
application of R-Sub.
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Suppose the last rule applied for the typing judgment is R-Sub.

R-SUB

Γ | a⃗′ ⊢ e : τ | b⃗′ a⃗ ≥ a⃗′ b⃗ ≤ b⃗′

Γ | a⃗ ⊢ e : τ | b⃗

Then the premisses of this rule hold by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | a⃗′ ⊢ e : τ | b⃗′ to learn:

(1) v : τ

(2) Φ(V : Γ | a⃗′) ≥ p

(3) Φ(V : Γ | a⃗′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. These remaining cost bounds can be obtained from inequalities (2)
and (3) by applying the pointwise monotonicity of potential energy (Lemma 3.4.5) alongside the
pointwise annotation inequalities a⃗ ≥ a⃗′ and b⃗ ≤ b⃗′.

E-Nont Suppose the last rule applied for the evaluation judgment is E-Nont.

E-NONT

V ⊢ e ⇓ • | (0,∞)

Then p = 0, q = ∞, and v = •. Because • : τ by V-Nont, the needed well-formedness judgment
holds. Then because potential energy is always nonnegative, the peak cost bound is satisfied.
And finally, because ∞ is greater than or equal to anything, the net cost bound also satisfied.

E-Tick Suppose the last rule applied for the evaluation judgment is E-Tick.

E-TICK

V ⊢ tick{r} ⇓ ⟨⟩ | (max(0, r),max(0,−r))

Then only one typing rule remains that could be used to conclude the typing derivation:

R-TICK

a⃗c = b⃗c + r ∀i ̸= c. a⃗i = b⃗i

Γ | a⃗ ⊢ tick{r} : 1 | b⃗

The premisses of this rule hold by inversion.
Because ⟨⟩ : 1 by V-Unit, the needed well-formedness judgment holds.
Then the following inequalities confirm the peak cost bound:

Φ(V : Γ | a⃗) ≥ a⃗c def

= b⃗c + r a⃗c = b⃗c + r

≥ max(0, r) a⃗, b⃗ ≥ 0
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Finally, let s =
∑

x∈dom(Γ)Φ(V (x) : Γ(x) | λi. a⃗x.i). Then the following inequalities confirm
the net cost bound.

Φ(V : Γ | a⃗) + max(0,−r) = a⃗c + s+max(0,−r) def

= b⃗c + r + s+max(0,−r) a⃗c = b⃗c + r

= b⃗c + s+max(0, r) algebra

= b⃗c + s+ Φ(⟨⟩ : 1 | ·) + max(0, r) 0 potential

= Φ((V, ret 7→ ⟨⟩) : (Γ, ret : 1) | b⃗) + max(0, r) def

E-Var Suppose the last rule applied for the evaluation judgment is E-Var

E-VAR

V, x 7→ v ⊢ x ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-VAR

Γ, x : τ | ⋎x,ret
x (⃗a) ⊢ x : τ | a⃗

Then p = q = 0 and (V, x 7→ v) : (Γ, x : τ). Because v : τ follows from inverting V-
Context, the needed well-formedness judgment holds. Then because potential energy is always
nonnegative, the peak cost bound is satisfied. And finally, because sharing perfectly conserves
potential (Lemma 3.4.1), the net cost bound is also satisfied with the following equality:

Φ((V, x 7→ v) : (Γ, x : τ) | ⋎x,ret
x (⃗a)) = Φ((V, x 7→ v, ret 7→ v) : (Γ, x : τ, ret : τ) | a⃗)

E-Let Suppose the last rule applied for the evaluation judgment is E-Let.

E-LET
V ⊢ e1 ⇓ v′ | (p, q) V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)

V ⊢ let x = e1 in e2 ⇓ v | (p+max(0, r − q), s+max(0, q − r))

Then only one typing rule remains that could be used to conclude the typing derivation:

R-LET

Γ | a⃗ ⊢ e1 : σ | c⃗ Γ, x : σ | [x/ret]⃗c ⊢ e2 : τ | b⃗, d⃗
Γ | a⃗ ⊢ let x = e1 in e2 : τ | b⃗

The premisses of both of these rules hold by inversion.
Because V : Γ holds by assumption, the inductive hypothesis can be applied with the judg-

ments V ⊢ e1 ⇓ v′ | (p, q) and Γ | a⃗ ⊢ e1 : σ | c⃗ to learn:

(1) v′ : σ
(2) Φ(V : Γ | a⃗) ≥ p
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(3) Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + p

Because v′ : σ holds as (1) from the previous induction and both V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)
and Γ, x : σ | [x/ret]⃗c ⊢ e2 : τ | b⃗, d⃗ hold from inversion, the inductive hypothesis can be
applied again to learn:

(4) v : τ

(5) Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) ≥ r

(6) Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c)+s≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ) | b⃗, d⃗)+r

The well-formedness judgment (4) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. To do so, proceed by cases on whether q ≥ r.

If q ≥ r, then the cost behaviour to consider is (p, s + (q − r)). Then (2) confirms the peak
cost bound, and the following inequalities confirm the net cost bound:

Φ(V : Γ | a⃗) + s+ (q − r)

≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + p+ s− r (3)

= Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) + p+ s− r relabelling

≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) | b⃗, d⃗) + p (6)

≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p energy ≥ 0

If q < r, then the cost behaviour to consider is (p + (r − q), s), and q ̸= ∞ (so can be
subtracted). Then the following inequalities confirm the peak cost bound:

Φ(V : Γ | a⃗)
≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + p− q (3)

= Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) + p− q relabelling

≥ p+ (r − q) (5)

And finally, the following inequalities confirm the net cost bound:

Φ(V : Γ | a⃗) + s

≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + s+ p− q (3)

= Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) + s+ p− q relabelling

≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) | b⃗, d⃗) + p+ (r − q) (6)

≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p+ (r − q) energy ≥ 0

E-Fun Suppose the last rule applied for the evaluation judgment is E-Fun.

E-FUN

V ⊢ fun f x = e ⇓ C(V ; f, x. e) | (0, 0)
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Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-FUN

Γ, x : τ, f : τ
c⃗|d⃗→ σ | 0 · a⃗, [x/arg]⃗c ⊢ e : σ | 0 · a⃗, [x/arg]d⃗

Γ | a⃗, b⃗ ⊢ fun f x = e : τ
c⃗|d⃗→ σ | a⃗, b⃗

The assumed typing judgment for the expression being evaluated therefore takes the form of this
rule’s conclusion.

Because C(V ; f, x. e) : τ
c⃗|d⃗→ σ follows from V-Fun and the assumed typing judgment, the

needed well-formedness judgment holds. Then because potential energy is always nonnegative,
the peak cost bound is satisfied. And finally, because the initial and remainder annotations are
identical and functions carry no potential energy (Figure 3.9), the net cost bound is also satisfied
with the following equality:

Φ(V : Γ | a⃗, b⃗) = Φ((V, ret 7→ C(V ; f, x. e)) : (Γ, ret : τ
c⃗|d⃗→ σ) | a⃗, b⃗)

E-App Suppose the last rule applied for the evaluation judgment is E-App.

E-APP
V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)
V, x 7→ v′, f 7→ C(V ′; g, y. e) ⊢ f x ⇓ v | (p, q)

Then this rule’s premiss holds by inversion and only one typing rule remains that could be used
to conclude the typing derivation:

R-APP

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ⋎x,arg

x (⃗a, b⃗) ⊢ f x : σ | ⋎x,arg
x (⃗a, c⃗)

Because (V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) by assumption, the rule

V-Context can be inverted to learn C(V ′; g, y. e) : τ
b⃗|⃗c→ σ. Then further, the rule V-Fun can be

inverted to learn that this function body can be typed in some context Γ′ where V ′ : Γ′. Using
V-Context, one can then use this well-formedness judgment to derive

(V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ)

Now inspect the derivation of the type of the function closure’s body. Only structural rules
(like R-Sub) and R-Fun can conclude a typing derivation for a function, and the application a
structural rule itself requires another typing derivation for the same function. Thus it can be
shown by induction that the typing derivation must conclude by the rule R-Fun followed by
some number of uses of structural rules. The typing derivation therefore contains the following
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rule application:

R-FUN

Γ′, y : τ, g : τ
b⃗|⃗c→ σ | 0 · a⃗′, [y/arg]⃗b ⊢ e : σ | 0 · a⃗′, [y/arg]⃗c

Γ′ | a⃗′, b⃗′ ⊢ fun g y = e : τ
b⃗|⃗c→ σ | a⃗′, b⃗′

This rule’s premiss holds by inversion.
Each of the following judgments have now been found:

• V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)

• (V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ)

• Γ′, y : τ, g : τ
b⃗|⃗c→ σ | 0 · a⃗′, [y/arg]⃗b ⊢ e : σ | 0 · a⃗′, [y/arg]⃗c

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : σ

(2) Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ) | 0 · a⃗′, [y/arg]⃗b) ≥ p

(3) Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ) | 0 · a⃗′, [y/arg]⃗b) + q

≥ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e), ret 7→ v) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ, ret : σ) | 0 · a⃗′, [y/arg]⃗c) + p

The well-formedness judgment (1) v : σ is what this case needs, so only this case’s cost
bounds remain to be proven. To do so, first simplify inequalities (2) and (3) into inequalities (4)
and (5), respectively, by removing bindings that carry no potential energy:

(4) Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) ≥ p

(5) Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) + q ≥ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | [y/arg]⃗c) + p

Now let r = Φ((V, f 7→ C(V ′; g, y. e)) : (Γ, f : τ
b⃗|⃗c→ σ) | a⃗). Then the following

inequalities confirm the peak cost bound:

Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ⋎x,arg

x (⃗a, b⃗))

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (⃗a, b⃗)) def

= r + Φ((x 7→ v′) : (x : τ) | a⃗) + Φ((arg 7→ v′) : (arg : τ) | b⃗) Lemma 3.4.1

= r + Φ((x 7→ v′) : (x : τ) | a⃗) + Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) relabelling

≥ Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) algebra

≥ p (4)

And the following inequalities confirm the net cost bound:
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Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ⋎x,arg

x (⃗a, b⃗)) + q

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (⃗a, b⃗)) + q def

= r + Φ((x 7→ v′) : (x : τ) | a⃗) + Φ((arg 7→ v′) : (arg : τ) | b⃗) + q Lemma 3.4.1

= r + Φ((x 7→ v′) : (x : τ) | a⃗) + Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) + q relabelling

≥ r + Φ((x 7→ v′) : (x : τ) | a⃗) + Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | [y/arg]⃗c) + p (5)

= r + Φ((x 7→ v′) : (x : τ) | a⃗) + Φ((arg 7→ v′, ret 7→ v) : (arg : τ, ret : σ) | c⃗) + p relabelling

= r + Φ((x 7→ v′, ret 7→ v) : (x : τ, ret : σ) | ⋎x,arg
x (⃗a, c⃗)) + p Lemma 3.4.1

= Φ((V, x 7→ v′, f 7→ C(C ′; g, y. e), ret 7→ v) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ, ret : σ) | ⋎x,arg

x (⃗a, c⃗)) + p def

E-Pair Suppose the last rule applied for the evaluation judgment is E-Pair.

E-PAIR

V, x 7→ v1, y 7→ v2 ⊢ ⟨x, y⟩ ⇓ ⟨v1, v2⟩ | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-PAIR

Γ, x : τ, y : σ | ⋎x,ret.1st

x (⋎y,ret.2nd

y (⃗a)) ⊢ ⟨x, y⟩ : τ ⊗ σ | a⃗

Because ⟨v1, v2⟩ : τ ⊗ σ follows from V-Pair and the assumed well-formedness judgment
(V, x1 7→ v1, x2 7→ v2) : (Γ, x : τ, y : σ), the needed well-formedness judgment holds. Then
because potential energy is always nonnegative, the peak cost bound is satisfied. Finally, because
sharing perfectly conserves potential energy (Lemma 3.4.1) and the potential energy of a pair is
the sum of its parts’ (Figure 3.9), the net cost bound is also satisfied with the following equality:

Φ(V, x 7→ v1, y 7→ v2 : Γ, x : τ, y : σ | ⋎x,ret.1st

x (⋎y,ret.2nd

y (⃗a)))

= Φ(V, x 7→ v1, y 7→ v2, ret 7→ ⟨v1, v2⟩ : Γ, x : τ, y : σ, ret : τ ⊗ σ | a⃗)

E-CaseP Suppose the last rule applied for the evaluation judgment is E-CaseP.

E-CASEP
V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (p, q)

V, x 7→ ⟨v1, v2⟩ ⊢ case x of ⟨y, z⟩ → e ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ | a⃗ ⊢ e : τ | b⃗

Γ, x : σ ⊗ ρ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (⃗a)) ⊢ case x of ⟨y, z⟩ → e : τ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (⃗b))

Both of these rules’ premisses hold by inversion.
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Because (V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ⊗ ρ) by assumption, the rule V-Context can be inverted
to learn ⟨v1, v2⟩ : σ ⊗ ρ. Then further, the rule V-Pair can be inverted to learn both v1 : σ and
v2 : ρ. Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)

Each of the following judgments has now been found:

• V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (p, q)
• (V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)

• Γ, x : σ ⊗ ρ, y : σ, z : ρ | a⃗ ⊢ e : τ | b⃗

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | a⃗) ≥ p

(3)
Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | a⃗) + q

≥ Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | b⃗) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because sharing perfectly conserves potential energy
(Lemma 3.4.1) and the potential energy of a pair is the sum of its parts’ (Figure 3.9), both these
cost bounds follow from (2) and (3) using the following equalities:

Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | a⃗)

= Φ((V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ ⊗ ρ) | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (⃗a)))

Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | b⃗)

= Φ((V, x 7→ ⟨v1, v2⟩, ret 7→ v) : (Γ, x : σ ⊗ ρ, ret : τ) | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (⃗b)))

E-SumL Suppose the last rule applied for the evaluation judgment is E-SumL.

E-SUML

V, x 7→ v ⊢ l(x) ⇓ l(v) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-SUML

Γ, x : τ | ⋎x,ret.l
x (⃗a) ⊢ l(x) : τ ⊕ σ | a⃗, b⃗

Because l(v) : τ ⊕ σ follows from V-SumL and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : τ), the needed well-formedness judgment holds. Then because potential
energy is always nonnegative, the peak cost bound is satisfied. Finally, because sharing perfectly
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conserves potential energy (Lemma 3.4.1) and the potential energy of a variant is that of its
tagged value (Figure 3.9), the net cost bound is also satisfied with the following equality:

Φ((V, x 7→ v) : (Γ, x : τ) | ⋎x,ret.l
x (⃗a))

= Φ((V, x 7→ v, ret 7→ l(v)) : (Γ, x : τ, ret 7→ τ ⊕ σ) | a⃗, b⃗)

E-SumR Suppose the last rule applied for the evaluation judgment is E-SumR.

E-SUMR

V, x 7→ v ⊢ r(x) ⇓ r(v) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-SUMR

Γ, x : σ | ⋎x,ret.r
x (⃗a) ⊢ r(x) : τ ⊕ σ | a⃗, b⃗

Because r(v) : τ ⊕ σ follows from V-SumR and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : σ), the needed well-formedness judgment holds. Then because potential
energy is always nonnegative, the peak cost bound is satisfied. Finally, because sharing perfectly
conserves potential energy (Lemma 3.4.1) and the potential energy of a variant is that of its
tagged value (Figure 3.9), the net cost bound is also satisfied with the following equality:

Φ((V, x 7→ v) : (Γ, x : σ) | ⋎x,ret.r
x (⃗a))

= Φ((V, x 7→ v, ret 7→ r(v)) : (Γ, x : σ, ret 7→ τ ⊕ σ) | a⃗, b⃗)

E-CaseS-L Suppose the last rule applied for the evaluation judgment is E-CaseS-L.

E-CASES-L
V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (p, q)

V, x 7→ l(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-CASES
Γ, x : σ ⊕ ρ, y : σ | a⃗, b⃗, c⃗′ ⊢ e1 : τ | d⃗, e⃗, f⃗ ′ Γ, x : σ ⊕ ρ, z : ρ | a⃗, b⃗′, c⃗ ⊢ e2 : τ | d⃗, e⃗′, f⃗

Γ, x : σ ⊕ ρ | a⃗,⋎x.l,y
x.l (⃗b),⋎x.r,z

x.r (c⃗) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | d⃗,⋎x.l,y
x.l (e⃗),⋎x.r,z

x.r (f⃗)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ l(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumL can be inverted to learn v′ : σ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)

Each of the following judgments have now been found:
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• V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)

• Γ, x : σ ⊕ ρ, y : σ | a⃗, b⃗, c⃗′ ⊢ e1 : τ | d⃗, e⃗, f⃗ ′

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | a⃗, b⃗, c⃗′) ≥ p

(3) Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | a⃗, b⃗, c⃗′) + q

≥ Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | d⃗, e⃗, f⃗ ′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because sharing perfectly conserves potential energy
(Lemma 3.4.1) and the potential energy of a variant is that of its tagged value (Figure 3.9),
both these cost bounds follow from (2) and (3) using the following equalities:

Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | a⃗, b⃗, c⃗′)

= Φ((V, x 7→ l(v′)) : (Γ, x : σ ⊕ ρ) | a⃗,⋎x.l,y
x.l (⃗b),⋎x.r,z

x.r (c⃗))

Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | d⃗, e⃗, f⃗ ′)

= Φ((V, x 7→ l(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, ret : τ) | d⃗,⋎x.l,y
x.l (e⃗),⋎x.r,z

x.r (f⃗))

E-CaseS-R Suppose the last rule applied for the evaluation judgment is E-CaseS-R.

E-CASES-R
V, x 7→ r(v′), z 7→ v′ ⊢ e2 ⇓ v | (p, q)

V, xs 7→ r(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-CASES
Γ, x : σ ⊕ ρ, y : σ | a⃗, b⃗, c⃗′ ⊢ e1 : τ | d⃗, e⃗, f⃗ ′ Γ, x : σ ⊕ ρ, z : ρ | a⃗, b⃗′, c⃗ ⊢ e2 : τ | d⃗, e⃗′, f⃗

Γ, x : σ ⊕ ρ | a⃗,⋎x.l,y
x.l (⃗b),⋎x.r,z

x.r (c⃗) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | d⃗,⋎x.l,y
x.l (e⃗),⋎x.r,z

x.r (f⃗)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ r(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumL can be inverted to learn v′ : ρ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)

Each of the following judgments have now been found:

• V, x 7→ r(v′), z 7→ v′ ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)
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• Γ, x : σ ⊕ ρ, z : ρ | a⃗, b⃗′, c⃗ ⊢ e2 : τ | d⃗, e⃗′, f⃗

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | a⃗, b⃗′, c⃗) ≥ p

(3) Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | a⃗, b⃗′, c⃗) + q

≥ Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | d⃗, e⃗′, f⃗) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because sharing perfectly conserves potential energy
(Lemma 3.4.1) and the potential energy of a variant is that of its tagged value (Figure 3.9),
both these cost bounds follow from (2) and (3) using the following equalities:

Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | a⃗, b⃗′, c⃗)

= Φ((V, x 7→ r(v′)) : (Γ, x : σ ⊕ ρ) | a⃗,⋎x.l,y
x.l (⃗b),⋎x.r,z

x.r (c⃗))

Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | d⃗, e⃗′, f⃗)

= Φ((V, x 7→ r(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, ret : τ) | d⃗,⋎x.l,y
x.l (e⃗),⋎x.r,z

x.r (f⃗))

E-Nil Suppose the last rule applied for the evaluation judgment is E-Nil.

E-NIL

V ⊢ [ ] ⇓ [ ] | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-NIL

Γ | a⃗ ⊢ [ ] : L(τ) | a⃗, b⃗

Because [ ] : L(τ) follows from V-Nil, the needed well-formedness judgment holds. Then
because potential energy is always nonnegative, the peak cost bound is satisfied. And finally,
because the initial and remainder annotations are identical except for the empty list annotations
b⃗ and empty lists carry no energy regardless of annotation (Figure 3.9), the net cost bound is also
satisfied with the following equality:

Φ(V : Γ | a⃗) = Φ((V, ret 7→ [ ]) : (Γ, ret : L(τ)) | a⃗, b⃗)
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E-Cons Suppose the last rule applied for the evaluation judgment is E-Cons.

E-CONS

V, x 7→ v1, y 7→ v2 ⊢ x :: y ⇓ v1 :: v2 | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-CONS

Γ, x : τ, y : L(τ) | ⋎x,x′

x (⋎y,y′

y (◁ret
x′,y′ (⃗a))) ⊢ x :: y : L(τ) | a⃗

Because v1 :: v2 : L(τ) follows from V-Cons and the assumed well-formedness judgment
(V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)), the needed well-formedness judgment holds. Then
because the potential energy is always nonnegative, the peak cost bound is satisfied. Finally,
because sharing perfectly conserves potential energy (Lemma 3.4.1) and shifting conserves the
potential energy of a list (Lemma 3.4.2), the net cost bound is also satisfied with the following
equality:

Φ((V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)) | ⋎x,x′

x (⋎y,y′

y (◁ret
x′,y′ (⃗a))))

= Φ((V, x 7→ v1, y 7→ v2, ret 7→ v1 :: v2) : (Γ, x : τ, y : L(τ), ret : L(τ)) | a⃗)

E-CaseL-Nil Suppose the last rule applied for the evaluation judgment is E-CaseL-Nil.

E-CASEL-NIL
V, x 7→ [ ] ⊢ e1 ⇓ v | (p, q)

V, x 7→ [ ] ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-CASEL
Γ, x : L(σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, x : L(σ), y : σ, z : L(σ) | ◁x′

y,z (⃗a, b⃗) ⊢ e2 : τ | ◁x′

y,z(c⃗, d⃗)

Γ, x : L(σ) | a⃗,⋎x,x′

x (⃗b) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | c⃗,⋎x,x′

x (d⃗)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ [ ]) : (Γ, x : L(σ)) holds by assumption, each of the following judgments

have now been found:

• V, x 7→ [ ] ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ [ ]) : (Γ, x : L(σ))

• Γ, x : L(σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | a⃗, b⃗′) ≥ p
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(3) Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | a⃗, b⃗′) + q

≥ Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | c⃗, d⃗′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because empty lists carry no potential energy regardless
of annotation (Figure 3.9) both these cost bounds follow from (2) and (3) using the following
equalities:

Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | a⃗, b⃗′) = Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | a⃗,⋎x,x′

x (⃗b))

Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | c⃗, d⃗′)

= Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | c⃗,⋎x,x′

x (d⃗))

E-CaseL-Cons Suppose the last rule applied for the evaluation judgment is E-CaseL-Cons.

E-CASEL-CONS
V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)

V, x 7→ v1 :: v2 ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-CASEL
Γ, x : L(σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, x : L(σ), y : σ, z : L(σ) | ◁x′

y,z (⃗a, b⃗) ⊢ e2 : τ | ◁x′

y,z(c⃗, d⃗)

Γ, x : L(σ) | a⃗,⋎x,x′

x (⃗b) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | c⃗,⋎x,x′

x (d⃗)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ v1 :: v2) : (Γ, x : L(σ)) by assumption, the rule V-Context can be inverted

to learn v1 :: v2 : L(σ). Then further, the rule V-Cons can be inverted to learn both v1 : σ and
v2 : L(σ). Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

Each of the following judgments has now been found:

• V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)
• (V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

• Γ, x : L(σ), y : σ, z : L(σ) | ◁x′
y,z (⃗a, b⃗) ⊢ e2 : τ | ◁x′

y,z(c⃗, d⃗)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | ◁x′
y,z (⃗a, b⃗)) ≥ p

(3) Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | ◁x′
y,z (⃗a, b⃗)) + q

≥ Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) | ◁x′
y,z(c⃗, d⃗)) + p
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The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because sharing perfectly conserves potential energy (Lemma 3.4.1)
and shifting conserves the potential energy of a list (Lemma 3.4.2), both these cost bounds follow
from (2) and (3) using the following equalities:

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | ◁x′

y,z (⃗a, b⃗))

= Φ((V, x 7→ v1 :: v2) : (Γ, x : L(σ)) | a⃗,⋎x,x′

x (⃗b))

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) | ◁x′

y,z(c⃗, d⃗))

= Φ((V, x 7→ v1 :: v2, ret 7→ v) : (Γ, x : L(σ), ret : τ) | c⃗,⋎x,x′

x (d⃗))

E-Leaf Suppose the last rule applied for the evaluation judgment is E-Leaf.

E-LEAF

V ⊢ leaf ⇓ leaf | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-LEAF

Γ | a⃗ ⊢ leaf : T (τ) | a⃗, b⃗

Because leaf : T (τ) follows from V-Leaf, the needed well-formedness judgment holds.
Then because potential energy is always nonnegative, the peak cost bound is satisfied. And
finally, because the initial and remainder annotations are identical except for the leaf annotations
b⃗ and leaves carry no energy regardless of annotation (Figure 3.9), the net cost bound is also
satisfied with the following equality:

Φ(V : Γ | a⃗) = Φ((V, ret 7→ leaf) : (Γ, ret : T (τ)) | a⃗, b⃗)

E-Node Suppose the last rule applied for the evaluation judgment is E-Node.

E-NODE

V, x 7→ v1, y 7→ v2, z 7→ v3 ⊢ node(x, y, z) ⇓ node(v1, v2, v3) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (◁ret
x′,y′,z′ (⃗a)))) ⊢ node(x, y, z) : T (τ) | a⃗
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Because node(v1, v2, v3) : T (τ) follows from V-Node and the assumed well-formedness
judgment (V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)), the needed well-
formedness judgment holds. Then because the potential energy is always nonnegative, the peak
cost bound is satisfied. Finally, because sharing conserves potential energy (Lemma 3.4.1) and
shifting conserves the potential energy of a tree (Lemma 3.4.2), the net cost bound is also satisfied
with the following equality:

Φ((V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (◁ret
x′,y′,z′ (⃗a)))))

= Φ((V, x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ node(v1, v2, v3)) : (Γ, x : T (τ), y : τ, z : T (τ), ret : T (τ)) | a⃗)

E-CaseT-Leaf Suppose the last rule applied for the evaluation judgment is E-CaseT-Leaf.

E-CASET-LEAF
V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)

V, t 7→ leaf ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-CASET
Γ, t : T (σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁t′

x,y,z (⃗a, b⃗) ⊢ e2 : τ | ◁t′

x,y,z(c⃗, d⃗)

Γ, t : T (σ) | a⃗,⋎t,t′

t (⃗b) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | c⃗,⋎t,t′

t (d⃗)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ leaf) : (Γ, t : T (σ)) holds by assumption, each of the following judgments

have now been found:

• V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)
• (V, t 7→ leaf) : (Γ, t : T (σ))

• Γ, t : T (σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | a⃗, b⃗′) ≥ p

(3) Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | a⃗, b⃗′) + q

≥ Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | c⃗, d⃗′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because leaves carry no potential energy regardless of an-
notation (Figure 3.9) both these cost bounds follow from (2) and (3) using the following equali-
ties:

Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | a⃗, b⃗′) = Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | a⃗,⋎t,t′

t (⃗b))
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Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | c⃗, d⃗′)

= Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | c⃗,⋎t,t′

t (d⃗))

E-CaseT-Node Suppose the last rule applied for the evaluation judgment is E-CaseT-Node.

E-CASET-NODE
V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)

V, t 7→ node(v1, v2, v3) ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

R-CASET
Γ, t : T (σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁t′

x,y,z (⃗a, b⃗) ⊢ e2 : τ | ◁t′

x,y,z(c⃗, d⃗)

Γ, t : T (σ) | a⃗,⋎t,t′

t (⃗b) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | c⃗,⋎t,t′

t (d⃗)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) by assumption, the rule V-Context can

be inverted to learn v1 :: v2v3 : T (σ). Then further, the rule V-Node can be inverted to learn all
of v1 : T (σ), v2 : σ, and v3 : T (σ). Using V-Context, one can then use these well-formedness
judgments to derive

(V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

Each of the following judgments has now been found:

• V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)
• (V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

• Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁t′
x,y,z (⃗a, b⃗) ⊢ e2 : τ | ◁t′

x,y,z(c⃗, d⃗)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | ◁t′
x,y,z (⃗a, b⃗))

≥ p

(3)
Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | ◁t′

x,y,z (⃗a, b⃗)) + q

≥ Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) | ◁t′
x,y,z(c⃗, d⃗))

+ p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because sharing perfectly conserves potential energy (Lemma 3.4.1)
and shifting conserves the potential energy of a tree (Lemma 3.4.2), both these cost bounds fol-
low from (2) and (3) using the following equalities:

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | ◁t′

x,y,z (⃗a, b⃗))

= Φ((V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) | a⃗,⋎t,t′

t (⃗b))
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Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) | ◁t′

x,y,z(c⃗, d⃗))

= Φ((V, t 7→ node(v1, v2, v3), ret 7→ v) : (Γ, t : T (σ), ret : τ) | c⃗,⋎t,t′

t (d⃗))

5.5 Automation
One of the key benefits of remainder contexts is their effect on AARA-style type inference. Be-
cause remainder contexts only require linear relations between annotations, remainder context
type inference can be automated via linear program in much the same way as described in Sec-
tion 3.7. However, remainder contexts also make the type inference simpler. This simplicity
arises because remainder contexts remove the need for weakening and contraction rules, and
these rules require a variable-usage analysis during typing inference. Thus, type inference for
remainder contexts is a simple two step process:

1. basic type inference

2. collect and solve linear contraints

While basic type inference is the theoretical complexity bottleneck as described in Sec-
tion 3.7, the linear constraint solving is the more practically relevant bottleneck. For AARA
as described in Chapter 3, linear programming takes polynomial time in the size of the source
code. This circumstance is still the case for remainder contexts, even though remainder con-
texts generate more constraints than Chapter 3’s AARA. At worst, the number of constraints is
only increased by a factor of around 2 due to mirroring the relations of the initial and remain-
der annotations in rules that perform uncomputation. As a result, remainder contexts still induce
polynomial time constraint solving, and therefore remainder contexts continue to enable efficient
type inference.

5.6 Non-Recursive Functions
Using remainder contexts, there is one additional trick one can consider: in certain circum-
stances, non-recursive function closures can be allowed to capture potential energy from their
environment. Right now, AARA requires that function closures capture no potential, as can be
gleaned from the 0 scalar in R-Fun and the function energy definition in Figure 3.9. The result of
relaxing this requirement is that some functions can be typed as if they have a lower peak cost.
This typing flexibility has some utility and might be of use for future research. Thus I lay out the
details of such typing in this section. However, this flexibility is also an unecessary complication
for the remainder of this thesis, and thus I limit its description to this section.

This new typing power is useful for analyzing code like Figure 5.9. As it stands, the typing
rules provided so far can type the application f b as ⟨1; 2⟩ → ⟨1; 2⟩ ∼ 1. This type signals
that 2 additional units of energy are needed to run the function. Using the new rules provided
in this section, the application f b can instead be typed as ⟨1; 0⟩ → ⟨1; 0⟩ ∼ 1, which signals
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1 fun f b = case b of
2 | inl(_) -> fun g _ = tick{0}
3 | inr(_) -> let _ = tick{-2} in
4 fun h _ = let _ = tick{2} in
5 tick{-2}
6
7 fun getLen _ = len lst

Figure 5.9: Code that can make use of energy-capturing non-recursive function typing

R-NONRECFUN

Γ, x : τ | ⋎y,c
c ([y/c]⃗b, [x/arg]⃗c) ⊢ e : σ | ⋎y,c

c ([y/c]⃗b, [x/arg]d⃗)

Γ | a⃗+ b⃗ ⊢ fun f x = e : τ
c⃗|d⃗→ σ | a⃗

Φ(C(V ; f, x. e) : τ
c⃗|d⃗→ σ | a⃗)

=

{
0 f ∈ e

minb⃗Φ(V : Γ | b⃗) s.t. Γ, x : τ | ⋎y,c
c ([y/c]⃗b, [x/arg]⃗c) ⊢ e : σ | ⋎y,c

c ([y/c]⃗b, [x/arg]d⃗) f ̸∈ e

Figure 5.10: Typing rule and energy definition for non-recursive functions

that no additional energy is needed to run the function. Then assuming len has a type like
L1(Z) → Z ∼ L1(Z) and lst has a type like L1(Z), the function getLen cannot be typed at
all by the rules provided so far. However, with the new rules provided in this section, getLen
could be typed as 1 → Z ∼ 1. In these ways, the rules of this section allow for tighter and more
robust AARA-style cost analysis in the presence of non-recursive functions.

To unlock this power in AARA, the typing rules and energy definition need some small
updates. The new typing rule and energy definition for non-recursive functions are given in
Figure 5.10. Each of these formalisms are explained in the following paragraphs.

The typing rule R-NonRecFun types a non-recursive function by first splitting the entire initial
context annotation pointwise into a⃗ and b⃗ and then using the annotation b⃗ to help type the function
body. The caveat is that the function body must leave all of b⃗ as remainder. This set up simulates
setting aside a personal store of fully reusable resources annotated by b⃗ for the function. With
these resources set aside, such a function can be run arbitrarily often without requiring new
resources. This set up is a more permissive alternative to requiring that zero energy is captured
from the environment while still ensuring that the closure does not exhaust its resources over
many function executions.

The energy of a function then reflects that some energy might be set aside in the function
closure. For recursive functions f (i.e., those where f occurs in the body e), the energy is still 0.
Alternatively, for non-recursive functions, this energy is equal to the minimum potential energy
of the closure Φ(V : Γ | b⃗) over any annotation b⃗ ≥ 0 such that the function body can still be
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1 fun f x = let _ = tick {-1} in
2 let ret = f x in
3 let _ = tick{1} in
4 ret

Figure 5.11: Problem case for recursive functions capturing energy

typed. This amount of energy is necessary to cover the peak costs of running such functions.
As a result of these changes, the interpretation of function types is slightly more nuanced than

before. The function type τ
a⃗|⃗b→ σ previously indicated a peak execution cost bound of Φ((arg 7→

v) : (arg : τ) | a⃗) to run the function on input v. In this new setting, this interpretation is
still essentially the same, except that the bounded cost must be understood as the peak marginal
execution cost. This intepretation takes into account that some cost might have been “prepaid”
through energy captured in the function closure.

One might wonder why this section restricts its upgrades to non-recursive functions. This
restriction is imposed because the execution of a recursive function closure C(V ; f, x. e) creates
a program context in which both V and the closure itself are live. The problem is that this
circumstance unsoundly duplicates energy since it allows the program to access to V ’s captured
energy twice, both through the closure and through V itself. This duplication can be abused
through code like Figure 5.11 where capturing just 1 unit of energy would appear to successfully
prepay an infinitely large peak cost. Thus, without further adjustment, the ideas of this section
are restricted to non-recursive functions.

I now conclude this section by providing the missing soundness proof cases for the new
typing rule and energy definition. As a result, Theorem 5.4.1 continues to hold in their presence.
The key new ideas used in these proof cases concern carefully accounting for the energy of
functions, which now may be nonzero.

Non-Recursive E-Fun Suppose the last rule applied for the evaluation judgment is E-Fun.

E-FUN

V ⊢ fun f x = e ⇓ C(V ; f, x. e) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

R-NONRECFUN

Γ, x : τ | ⋎y,c
c ([y/c]⃗b, [x/arg]⃗c) ⊢ e : σ | ⋎y,c

c ([y/c]⃗b, [x/arg]d⃗)

Γ | a⃗+ b⃗ ⊢ fun f x = e : τ
c⃗|d⃗→ σ | a⃗

This rule’s premiss holds by inversion and the assumed typing judgment for the expression being
evaluated therefore takes the form of this rule’s conclusion.

Because C(V ; f, x. e) : τ
c⃗|d⃗→ σ follows from V-Fun and the assumed typing judgment, the

needed well-formedness judgment holds. Then because potential energy is always nonnegative,
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the peak cost bound is satisfied. And finally, the following inequalities confirm that the net cost
bound is satisfied:

Φ(V : Γ | a⃗+ b⃗) = Φ(V : Γ | a⃗) + Φ(V : Γ | b⃗) Lemma 3.4.6

≥ Φ(V : Γ | a⃗) + Φ(C(V ; f, x. e) : τ
c⃗|d⃗→ σ | ·) def

= Φ((V, ret 7→ C(V ; f, x. e)) : (Γ, ret : τ
c⃗|d⃗→ σ) | a⃗) def

Non-Recursive E-App Suppose the last rule applied for the evaluation judgment is E-App.

E-APP
V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)
V, x 7→ v′, f 7→ C(V ′; g, y. e) ⊢ f x ⇓ v | (p, q)

Then this rule’s premiss holds by inversion and only one typing rule remains that could be used
to conclude the typing derivation:

R-APP

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ⋎x,arg

x (⃗a, b⃗) ⊢ f x : σ | ⋎x,arg
x (⃗a, c⃗)

Because (V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) by assumption, the rule

V-Context can be inverted to learn C(V ′; g, y. e) : τ
b⃗|⃗c→ σ. Then further, the rule V-Fun can be

inverted to learn that this function body can be typed in some context Γ′ where V ′ : Γ′. Using
V-Context, one can then use this well-formedness judgment to derive

(V ′, y 7→ v′) : (Γ′, y : τ)

Now inspect the derivation of the type of the function closure’s body. Only the rules R-
Fun, R-Sub, and now R-NonRecFun can conclude a the typing derivation for a function, and the
application R-Sub itself requires another typing derivation for the same function. Thus it can be
shown by induction that the typing derivation must conclude by the rule R-Fun or R-NonRecFun
followed by some number of uses of the rule R-Sub. As the case for R-Fun has already been
considered, all that remains to be considered is that the typing derivation contains the following
rule application:

R-NONRECFUN

Γ′, y : τ | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗b) ⊢ e : σ | ⋎z,c

c ([z/c]b⃗′, [y/arg]⃗c)

Γ′ | a⃗′ + b⃗′ ⊢ fun g y = e : τ
b⃗|⃗c→ σ | a⃗′

Because any derivation exist at all that uses this rule in this way, choose the derivation that
minimizes the value of Φ(V ′ : Γ′ | b⃗′) without loss of generality. This rule’s premiss holds by
inversion.
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Because R-NonRecFun types the expression e, the function g cannot be used in e. Thus the
for g can be weakened away in the E-App’s premiss to obtain

V ′, y 7→ v′ ⊢ e ⇓ v | (p, q)

Each of the following judgments have now been found:

• V ′, y 7→ v′ ⊢ e ⇓ v | (p, q)
• (V ′, y 7→ v′) : (Γ′, y : τ)

• Γ′, y : τ | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗b) ⊢ e : σ | ⋎z,c

c ([z/c]b⃗′, [y/arg]⃗c)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : σ

(2) Φ((V ′, y 7→ v′) : (Γ′, y : τ) | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗b)) ≥ p

(3) Φ((V ′, y 7→ v′) : (Γ′, y : τ) | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗b)) + q

≥ Φ((V ′, y 7→ v′, ret 7→ v) : (Γ′, y : τ, ret : σ) | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗c)) + p

The well-formedness judgment (1) v : σ is what this case needs, so only this case’s cost
bounds remain to be proven.

Let r = Φ(V : Γ | a⃗) and s = Φ((x 7→ v′) : (x : τ) | a⃗). Then the following inequalities
confirm the peak cost bound:

Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ⋎x,arg

x (⃗a, b⃗))

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (⃗a, b⃗)) + Φ(C(V ′; g, y. e) : τ

b⃗|⃗c→ σ | ·) def

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (⃗a, b⃗)) + Φ(V ′ : Γ′ | b⃗′) def

= r + s+ Φ((arg 7→ v′) : (arg : τ) | b⃗) + Φ(V ′ : Γ′ | b⃗′) Lemma 3.4.1

= r + s+ Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) + Φ(V ′ : Γ′ | b⃗′) relabelling

= r + s+ Φ((V ′, y 7→ v′) : (Γ′, y : τ) | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗b)) def , Lemma 3.4.1

≥ Φ((V ′, y 7→ v′) : (Γ′, y : τ) | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗b)) algebra

≥ p (2)

And the following inequalities confirm the net cost bound:
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Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ⋎x,arg

x (⃗a, b⃗)) + q

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (⃗a, b⃗)) + Φ(C(V ′; g, y. e) : τ

b⃗|⃗c→ σ | ·) + q def

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (⃗a, b⃗)) + Φ(V ′ : Γ′ | b⃗′) + q def

= r + s+ Φ((arg 7→ v′) : (arg : τ) | b⃗) + Φ(V ′ : Γ′ | b⃗′) + q Lemma 3.4.1

= r + s+ Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) + Φ(V ′ : Γ′ | b⃗′) + q relabelling

= r + s+ Φ((V ′, y 7→ v′) : (Γ′, y : τ) | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗b)) + q def , Lemma 3.4.1

≥ r + s+ Φ((V ′, y 7→ v′, ret 7→ v) : (Γ′, y : τ, ret : σ) | ⋎z,c
c ([z/c]b⃗′, [y/arg]⃗c)) + p (3)

= r + s+ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | [y/arg]⃗c) + Φ(V ′ : Γ′ | b⃗′) + p def , Lemma 3.4.1

= r + s+ Φ((arg 7→ v′, ret 7→ v) : (arg : τ, ret : σ) | c⃗) + Φ(V ′ : Γ′ | b⃗′) + p relabelling

= r + Φ((x 7→ v′, ret 7→ v) : (x : τ, ret : σ) | ⋎x,arg
x (⃗a, c⃗)) + Φ(V ′ : Γ′ | b⃗′) + p Lemma 3.4.1

= r + Φ((x 7→ v′, ret 7→ v) : (x : τ, ret : σ) | ⋎x,arg
x (⃗a, c⃗)) + Φ(C(V ′; g, y. e) : τ

b⃗|⃗c→ σ | ·) + p def

= Φ((V, x 7→ v′, f 7→ C(C ′; g, y. e), ret 7→ v) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ, ret : σ) | ⋎x,arg

x (⃗a, c⃗)) + p def

5.7 Related Work
While remainder contexts are novel in their construction from I/O contexts and uncomputation,
other work in AARA has made similar constructions. I take a moment here to compare and
contrast this similar work. I follow this with a discussion of how program logics compare with
remainder contexts. Otherwise, related work has already been discussed earlier in this chapter,
particularly in Section 5.2.

Parallel Leftovers

Hoffmann and Shao develop a similar judgment for capturing leftovers in their work on extend-
ing AARA to parallel programs [79]. Just like remainder contexts, their judgment provides an
additional annotation for the context which represent the leftover resources after evaluation. The
purpose of their judgment is to help reconcile the costs of parallel evaluation against the forking
context’s single shared pool of potential energy. The authors also take advantage of their left-
over judgment to type let expressions in the same way as R-Let (though they do not get rid of
structural rules for weakening and contraction).

Nonetheless, remainder contexts differ significantly from Hoffmann and Shao’s development.
The main differences boil down to the fact that their system does not try to reuse resources at
all—it is simply convenient to have a small amount of leftover reasoning for their parallel cost
analysis. As a result, their work does not include features such as remainder contexts’ new
function types or uncomputation.

Give-Back Annotations

Campbell develops a give-back system for the purpose of recapturing leftover potential energy
in AARA [25]. This purpose is almost the same as that of remainder contexts, except that the
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give-back system is more specialized to reclaiming memory in particular. As a result, these two
systems do share many similarities, even though they operate by very different means.

While remainder contexts change the function types, the give-back system changes the non-
function types. These give-back types come with two sets of annotations that are similar to—but
distinct from— the two sets of annotations in the remainder-context typing rules. The key dis-
tinction is that give-back typing provides two sets of annotations for the expression being typed,
while remainder contexts only provide one. The additional give-back annotation represents the
amount of potential energy that might be restored to the expression’s value after its later uses in
computation. The conditions under which such potential energy is reclaimed roughly amount to
the value no longer being used in the computation, but the precise conditions are different than
those used by remainder contexts’ uncomputation. For example, the give-back system reasoning
extends through let expressions, which remainder contexts do not do.

Give-back reasoning also comes with more analysis overhead than remainder contexts. To
properly formalize the reclaimation of potential energy, the give-back system makes use of mul-
tiple auxiliary analyses including heap separation and benign sharing. The give-back system type
inference also still needs the variable analysis described in Section 3.7 to determine how to use
its weakening and contraction rules—these rules are still needed because the give-back system
uses different leftover reasoning than remainder contexts.

Program Logics

Remainder contexts do have some similarity to Hoare logic triples [74]. These triples take a
form like {P}e{Q} and mean that, whenever the precondition P holds, the postcondition Q will
hold upon the termination of the expression e’s execution. Initial and remainder contexts have a
similar sort of interpration.

It is possible that remainder contexts could be recast as a program logic. Interestingly, mul-
tiple lines of work have already developed AARA-inspired program logics [10, 27]. However,
these program logics have been targeted at imperative programs rather than functional progams.
As a result, they focus on integers and pointers, and these do not benefit from uncomputation to
the same extent that data structures do.
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Chapter 6

Exponentials and Linear Recurrences

This chapter lays out a recipe for integrating exponential resource functions into AARA [95],
forming this thesis’s second contribution to the AARA type system. These resource functions
are key to bolstering a blindspot in the polynomial AARA analysis: functions making multi-
ple recursive calls. Such code patterns are natural in functional programming, especially for
brute-force algorithms, but could not before be analyzed by AARA. Automatically providing
exponential upper bounds on cost is the focus of this chapter’s work, but these bounds may also
be of interest for other reasons, such as analyzing lower cost bounds[112] to find complexity
bugs—such other applications will not be explored in this chapter, however.

Exponential functions are represented using Stirling numbers of the second kind
{
n
k

}
[132],

which count the number of ways to divide n elements into k partitions. These combinatorial
functions follow a linear recurrence similar to Pascal’s identity. As a result, these new resource
functions only require linear constraints, so AARA type inference can be efficiently automated
via linear programming as before. It is also proven that Stirling numbers are the “best” way of
representing exponential functions.

In fact, this chapter contributes more generally than just exponential resource functions. The
main AARA system developed in this chapter is set up to be parameterized by a linear recur-
rence defining some basis of resource functions. Given the recurrence for Pascal’s identity, it
recovers the polynomial system, and, given the recurrence for Stirling numbers, it generates an
exponential system. Thus, this setup uniformly represents both polynomials, exponentials, and
more.

This chapter also includes some additional results concerning how to combine (“mix”) dif-
ferent resource functions. In particular, demotion is provided as a special optimization for inte-
grating exponential and polynomial resource functions.

Notably, the contributions of this chapter are orthogonal to the remainder contexts of the
previous chapter, Chapter 5, and therefore could be implemented in AARA without remainder
contexts. However, this chapter builds its contributions on top of remainder contexts to present a
more coherent and complete AARA system.
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1 fun d0 lst = tick{1}
2
3 fun d1 lst = case lst of
4 | [] -> ()
5 | _::t -> let _ = d0 t in d1 t
6
7 fun d2 lst = case lst of
8 | [] -> ()
9 | _::t -> let _ = d1 t in d2 t

10
11 fun d3 lst = case lst of
12 | [] -> ()
13 | _::t -> let _ = d2 t in d3 t

Figure 6.1: Degree-k cost functions up to degree 3

6.1 The Problem: Multiple Calls
It is very convenient that AARA is able to infer polynomial bounds, as polynomial costs describe
some of the most common programs of interest. Indeed, typical code patterns of functional
programs tend to encourage polynomial runtimes: functions that make one recursive call tend
to be like those in Figure 6.1, where each function dk accrues cost in Θ(nk) for inputs lists of
length n. This tendency can actually be made more precise. For example, non-size-increasing
types use functions making one recursive call to help characterize exactly the polynomial time
computable functions [84].1

Of course, there are other common code patterns that do not yield polynomial time computa-
tions. Most notably, programs with more than one recursive call are completely natural to write
in a functional language, and they tend to have exponential costs. Consider, for example, any
existing solution to an NP-complete problem like subset sum (Figure 6.22), which asks if there
exists a subset of some multiset of numbers nums that sum to a given target. Such a solution
takes O(2n) time for input lists of length n, and it naturally makes two recursive calls. More
generically, consider Figure 6.3, where each program bk makes k recursive calls and accrues
cost in Θ(kn) for inputs lists of length n. This tendency can also be made more precise. For
example, LFPL is a type system for functional languages making possibly-many recursive calls,
and it precisely characterizes the exponential time computable functions [83].3

AARA with polynomial cost bounds simply cannot analyze such functions as in Figure 6.3
nor other exponential-cost functions, such as brute-force approaches to NP-complete problems
like subset sum. This chapter focuses not only on expanding AARA to cover exponential costs,
but also on making the approach general so that other kinds of cost bounds can be more easily

1Interestingly, this work uses a linear typing discipline and is related to the same line of research as AARA.
2For clarity, the code for subset sum given here makes use of the ”or” operator ||, which can be implemented

with the algebraic types provided in this thesis. For ease of providing examples, I continue to use similar shorthand
for Boolean and numerical operators throughout this work.

3Interestingly, this work uses a linear typing discipline and is a direct precursor to AARA.
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1 fun subSum (nums, target) = case nums of
2 | [] -> target = 0
3 | n::ns ->
4 let with_n = subSum (ns, target - n) in
5 let without_n = subSum (ns, target) in
6 with_n || without_n

Figure 6.2: Code for subset sum

1 fun b0 lst = cast lst of
2 | [] -> tick{1}
3 | _::t -> tick{1}
4
5 fun b1 lst = case lst of
6 | [] -> tick{1}
7 | _::t -> let _ = tick{1} in
8 b1 t
9

10 fun d2 lst = case lst of
11 | [] -> tick{1}
12 | _::t -> let _ = tick{1} in
13 let _ = b2 t in
14 b2 t
15
16 fun b3 lst = case lst of
17 | [] -> tick{1}
18 | _::t -> let _ = tick{1} in
19 let _ = b3 t in
20 let _ = b3 t in
21 b3 t

Figure 6.3: Base-k cost functions up to base 3
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incorporated into AARA as desired.

6.2 The Linear Ideas: Bases and Recurrences
To address the problem described in Section 6.1, I tease out and generalize the ideas that led to
the success of AARA’s polynomial resource functions[77]. These ideas boil down to using linear
recurrences to represent new cost bounds of interest using linear combinations. To set up the
background for working with with these objects, this section describes their key features in more
detail.

6.2.1 Bases
The key way that AARA forms resource functions is through linear combinations of basis re-
source functions. I include this subsection only to ensure that certain terminology and concepts
are clear concerning linear/conical bases and spans.

A linear combination of elements ei is a sum of the form
∑k

i=0 ai ·ei for some coefficients ai.
The linear span of some set ei is the set of values expressible via the linear combinations of that
set. An element e is linearly independent from a set of elements ei if e is not in the linear span of
ei. A set of elements is called linearly independent if each of its elements is linearly independent
from the rest of the set. A set of elements is a linear basis for a space if it is linearly independent
and its linear span coincides with the space.

Each of the above linear concepts can be further refined into conical concepts. The only
difference is that where linear combinations may be formed using any coefficients ai, conical
combinations require such coefficients to be nonnegative.

A linear map f is a function that distributes over sums and commutes with scalars. That is,
f(x + y) = f(x) + f(y) and f(a · x) = a · f(x). Such a function behaves nicely with linear or
conical combinations, which are made up of sums and scalar coefficients.

Linear maps and spans correspond nicely to matrices and vector spaces. Given a space that
can be represented uniquely by the linear (or conical) combinations of some basis (as well as an
ordering on the basis elements), elements of that space

∑k
i=0 ai · ei correspond exactly to vectors

b⃗ where b⃗i = ai. Then any linear map on such a space can be represented as a matrix such that
function application corresponds to matrix multiplication. Both this chapter and Chapter 8 make
heavy use of this correspondence.

This vector construction always works for the spans of linear bases, but not conical ones.
Whereas a collection of linearly independent elements spans a space uniquely, a collection of
conically independent elements may not. For example, ⟨1, 0⟩, ⟨−1, 0⟩, ⟨0, 1⟩ and ⟨0,−1⟩ are con-
ically independent, but ⟨0, 0⟩ can be obtained as either of conical combinations ⟨1, 0⟩+⟨−1, 0⟩ or
⟨0, 1⟩+ ⟨0,−1⟩. Thus, when developing a conical space, this work tends to consider the conical
span of a linear basis, so that the conical space is represented uniquely with conical combinations.
Such uniqueness removes any need for conversion between equivalent representations.

Finally, I conclude this subsection with some additional properties concerning matrices with
linearly independent rows: Such a matrix’s row echelon form (or a prefix thereof) is an upper
triangular matrix. The row echelon form of a matrix is obtained by adding linear combinations of
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matrix to rows to other matrix rows in order to cancel out leading nonzero entries. Formally, this
process is known as Gaussian elimination and is a standard matrix manipulation from linear
algebra. A row echelon form of a non-empty matrix with linearly dependent rows is never
upper triangular. The row echelon form of linear bases plays a useful role in the construction
of maximally expressive resource function bases in this chapter.

6.2.2 Recurrences
A linear recurrence is a numerical function defined recursively in terms of a linear combination
of other functions calls. For example, the Fibonacci sequence follows a linear recurrence because
the nth Fibonacci number F (n) is equal to F (n− 1)+F (n− 2). This expression is a 2-element
linear combination over the calls F (n − 1) and F (n − 2) where both coefficients are 1. More
generally, a linear recurrence for a function f might look like f(n) =

∑k
i=1 ai ·f(n− i) for some

set of coefficients ai that do not depend on the function argument n.
For a linear recurrence to uniquely define a function, some initial values must be given. For

the Fibonacci sequence, these values are F (0) = F (1) = 1. If the same recurrence is taken with
the initial values F (0) = 2 and F (1) = 1, then the Lucas sequence would be defined instead.

One nice way to represent a linear recurrence is with a matrix equation. If T (n) is defined by
a linear recurrence over calls down to T (n − j), let the j-element vector b⃗ be defined such that
b⃗i = T (i) (0-indexed). One can then represent the recurrence T (−) using an equation involving
the following j × j matrix, where 0⃗ is the column vector of zeros, I is the identity matrix, and a⃗
is the column vector of coefficients in the linear recurrence.

T (n) =

0⃗ I

a⃗T

n

b⃗


1

That is, the recurrent sequence T (−) coincides with the first element of the vector given by
the matrix multiplication. To see an example of this matrix equation, consider the Fibonacci
recurrence, which assigns coefficients of 1 to its previous two values (F (n) = 1 · F (n− 1) + 1 ·
F (n − 2)) and also has initial values of 1. Then a⃗ and b⃗ are both vectors of ones, yielding the
following identity:

F (n) =

([
0 1
1 1

]n[
1
1

])
1

These linear recurrences can also be given closed forms without matrices. While it is not
so important to this work how such a closed form is derived, the form of such closed forms
are useful to know. The general solution to a linear recurrence T (n) takes the form of a linear
combination of terms nci · dni , for some set of constants ci, di. Thus, these linear recurrences
naturally generate polynomials (where di = 1), exponentials (where ci = 0), and mixes between
the two. This natural synergy between polynomials and exponentials is suggestive of the work
in this chapter, which uses linear recurrences to create a hybrid polynomial and exponential cost
bound system.

Despite having closed forms, the behaviour of functions following linear recurrences are not
always easy to determine. It is not even known whether it is decidable if a sequence given
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by a linear recurrence ever contains a 0 (Skolem’s problem) or a negative value (the positivity
problem) [119]. The latter would pose a problem for AARA because energy must be nonnegative.
The linear recurrences in this chapter avoid this problem by only considering cases where initial
values and coefficients ci are nonnegative, ensuring that the whole sequence is nonnegative.

So far, this section has only considered 1-dimensional linear recurrences. However, this thesis
mostly works with multi-dimensional recurrences. The dimension of a recurrence refers to the
nuber of arguments it takes. Pascal’s identity

(
n+1
k+1

)
=
(

n
k+1

)
+
(
n
k

)
is a 2-dimensional recurrence

because the binomial coefficient function takes two arguments: n and k.
In this work, multidimensional recurrences take a form like T (n, k) =

∑k
i=0 ai · T (n− 1, i),

where ai does not depend on n. This independence of n lets this chapter’s work use n to stand for
the size of a data structure. Such sizes are not usually statically knowable, but the recurrence’s
independence of size allows it to be used regardless.

One important way to think of these multi-dimensional linear recurrences is as a collection
of mutually defined 1-dimensional linear recurrences Tk(n) indexed by k. This view allows one
to represent a linear combination of such recurrences with a nice matrix equation, which will be
used repeatedly throughout this chapter. Collect the values of Ti(n) as a column vector T⃗ (n),
and let column vector b⃗i give the coefficient of Ti(n) in the linear combination. Then there exists
a matrix A such that

b⃗ · T⃗ (n) = (A⃗b) · T⃗ (n− 1)

where the symbol “·” is the dot product. In particular, column k (0-indexed) of the matrix A
gives the coefficients ai such that Tk(n) =

∑k
i=0 ai · Ti(n− 1). An example of such a matrix A

for binomial coefficients is: 
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


I will make use of such matrix representations in both this chapter and Chapter 8 to parame-

terize shifting operations like ◁ and ◀.

6.3 Setting Up

The goal of this chapter is to modularize the resource functions that AARA uses so that different
classes of cost bounds can be derived without any fundamental changes to the type system. In
particular, the only the change this chapter makes to AARA is to the shifting operators ◁ and ◀.

To accomplish this goal, this section first identifies the key properties needed to represent
polynomial cost bounds and explains their use. Then these properties are abstracted, and Stirling
numbers of the second kind are introduced to form exponential resource functions. Section 6.4
then shows how to integrate such resource functions into AARA given the properties explained
here. Later sections provide additional variations of this basic setup.
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Polynomials

The key properties of binomial coefficients that AARA uses to represent polynomial resource
functions are the following:

1.
(
n
k

)
≥ 0 for all n, k ≥ 0

2.
(
n
0

)
= 1 for all n ≥ 0

3.
(
0
k

)
= 0 for all k ≥ 1

4.
(
n+1
k+1

)
=
(

n
k+1

)
+
(
n
k

)
5. the set of

(
n
k

)
form a linear basis for the space of polynomials over n

These properties come together in support of the following features:

• Because
(
n
k

)
form a linear basis for the space of polynomials over n, AARA can represent

polynomials using their linear combinations. Such linear combinations are represented in
AARA via the annotations of indices of the form di , d′i , or c. These annotations represent
coefficients in the linear combinations. These linear combinations are key to the remaining
features.

• Because each
(
n
k

)
≥ 0 for all n, k ≥ 0, one can ensure that the polynomial energy of

a linear combination is nonnegative by constraining the coefficients to be nonnegative.
Nonnegative energy is needed for reasoning about peak costs using the physicist’s method.

• Because binomial coefficients follow a linear recurrence, their linear combinations can
be converted between functions of n and n − 1 while conserving energy. In particular,
the fact that shifting conserves energy (Lemma 3.4.2) is a consequence of the equality
b⃗ · T⃗ (n) = (A⃗b) · T⃗ (n− 1) described in Section 6.2.2 where the shifting operator ◁ takes
the role of the linear map A and

(
n
k

)
takes the role of Tk(n). (This property is explained

further later via Definition 6.3.1.)
• Because the coefficients in the linear recurrence of Pascal’s identity are nonnegative, the

matrix representing the shifting operation ◁ is nonnegative. Thus, this matrix preserves
conical combinations and can always be safely applied to obtain new annotations when
destructing a data structure.

• Because
(
n
0

)
= 1 for all n ≥ 0, the linear combinations naturally include constant or free

energy tracked at index c. This inclusion explains how constructing or destructing data
structures interacts with the free energy of a context when applying the shift operator.

• Because
(
0
k

)
= 0 for all k ≥ 1, empty data structures carry no energy. This property

is important because it allows the empty data structures to have any annotation. If empty
data structures had fixed annotations, so would every inductive data structure because every
such data structure’s annotations are determined from the annotations of the data structures
it is built out of.

• All the matrix operations and constraints mentioned here are representable as linear con-
straints, and thus can be handled by linear programming.

In addition to the aforementioned five key properties of binomial coefficients, there are also
two other properties of binomial coefficients worth mentioning. These additional properties
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allow AARA’s system to not only work, but work well:

6. Not only do binomial coefficients form a linear basis for polynomials, but also their con-
ical span forms a maximally large space of nonnegative polynomials. That is, no other
linear basis for polynomials can express a strict superset of the nonnegative polynomials
using only nonnegative linear combinations. The standard polynomial basis λn.nk is not
maximal in this way because it is strictly contained within the conical span of binomial
coefficients. Thus, binomial coefficients are a maximally expressive basis for representing
nonnegative polynomials.

7. Binomial coefficients can be given a natural combinatorial meaning with respect to lists.
Specifically,

(
n
k

)
counts the number of ordered k-tuples of list elements of a list of length

n. Such combinatorial meaning can provide more natural approaches for reasoning about
resource functions. For example, Grosen et al. have used the patterns of binomial coeffi-
cients to extend polynomial resource functions beyonds lists and trees to regular recursive
types [65].

Before moving on, it is useful to make the connection between the shift operator◁ and linear
maps more formal. To do this, Definition 6.3.1 is provided for a parameterized version of the

shift operator
A
◁ . The parameterized shift only differs from the polynomial shift for indices like

di , d′i , or c (such indices are described in Section 3.2.2). On these indices, the parameterized shift
applies a linear map A. If A is the matrix for Pascal’s identity (like that given in Section 6.2.2),

then in fact
A
◁ = ◁ and Definition 3.2.2 is recovered. This redefinition exhibits how ◁ behaves

like a linear map over the annotations.

Likewise, a parameterized potential shifting operator
A
◀ can be defined as in Definition 6.3.2.

Then similarly, if A is the matrix for Pascal’s identity,
A
◀ = ◀, recovering Definition 3.4.1. This

potential shifting thus behaves like the linear map A for similar reasons as
A
◁ does, so that

over indices like di , d
′
i , or c, where di/d

′
i corresponds to i and c corresponds to 0 for indexing

purposes,
A
◀ (⃗a) = A · a⃗.
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Definition 6.3.1 (parameterized shifting). The parameterized shifting operator
A
◁ transforms an

annotation map for a list or tree according to a linear map A. Here, that means applying A to
a vector of particular annotations b⃗ and copying the annotations for elements. The parameter-
ized shifting operator is overloaded across both lists and trees, but to disambiguate whenever
necessary, the following explicit definitions are provided alongside explicit selections of b⃗.
A
◁ ℓ

x,y acts on the annotation map a for a list ℓ where ℓ = x :: y. Let c act as 0 and ℓ.di act as i
for vector indexing, and fix b⃗ such that b⃗i = a(i). Then, formally:

A
◁ ℓ

x,y(a) = λi.


a(ℓ.e.j) i = x.j ∨ i = y.e.j

(A · b⃗)ℓ.dj i = y.dj

(A · b⃗)c i = c

a(i) otherwise

A
◁ t

x,y,z acts on the annotation map a for a tree t where t = node(x, y, z). Let c act as 0 and t.d′i
act as i for vector indexing, and fix b⃗ such that b⃗i = a(i). Then, formally:

A
◁ t

x,y,z(a) = λi.


a(t.e′.j) i = x.e′.j ∨ i = y.j ∨ i = z.e′j

(A · b⃗)t.d′j i = x.d′j ∨ i = z.d′j
(A · b⃗)c i = c

a(i) otherwise

When unambiguous, one may simply write
A
◁ .

Definition 6.3.2 (parameterized potential shifting). The parameterized potential shifting opera-

tor
A
◀ mirrors the critical action of the shifting operator

A
◁ over indices like di , d

′
i , c, e.i, e

′.i,
but where no labels are present like x in x.di .
For lists annotated by a, let b(ℓ.i) = a(i). Then formally:

A
◀ (a) = λi.

A
◁ ℓ

x,y(b)(y.i)

For trees annotated by a, let b(t.i) = a(i). Then formally:

A
◀ (a) = λi.

A
◁ t

x,y,z(b)(x.i) = λi.
A
◁ t

x,y,z(b)(z.i)
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Beyond Polynomials

To represent other kinds of cost bounds, I consider different families of basic resource functions
that satisfy the same key properties as binomial coefficients. Let Rk(n) be a family of resource
functions indexed by k for data structures of size n. For AARA to best use the family Rk(n)
to represent resource functions, it would be ideal if the functions satisfied the all the following
properties identified in the previous subsection:

1. Rk(n) ≥ 0 for all n, k ≥ 0

2. R0(n) = 1 for all n ≥ 0

3. Rk(0) = 0 for all k > 0

4. Rk+1(n+ 1) =
∑k+1

i=0 ai ·Ri(n) for constants ai ≥ 0

5. the set of Rk(n) form a linear basis for the space of desired resource functions over n

6. optionally, the conical span of Rk(n) forms a maximal conical space of nonnegative re-
source functions

7. optionally, Rk(n) can be given a natural combinatorial meaning

Various functions satisfying some or all of these properties are given in Section 6.7.
The key family of basic resource functions that I consider in this chapter meets all of these

properties and is given by Rk(n) =
{
n+1
k+1

}
, where

{
n
k

}
is the Stirling number of the second kind

[132]. The Stirling number
{
n
k

}
counts the number of ways to partition a set of n elements into k

nonempty subsets, and the “offset” Stirling numbers of the second kind
{
n+1
k+1

}
count the number

of ways to pick k nonempty disjoint subsets out of n elements.
Conical combinations of offset Stirling numbers represent exponential resource functions of

the form
∑k

i=0 ai · (i + 1)n. Such functions include 2n, 3n, 4n, etc. This work refers to linear
combinations of these exponential functions as “exponentials”.

Offset Stirling numbers have the closed form
{
n+1
k+1

}
= 1

(k+1)!

∑k+1
i=1 (−1)k+1−i ·

(
k+1
i

)
· in+1

which shows
{
n+1
k+1

}
∈ O(k + 1n). For this reason, this work refers to the coefficient of

{
n+1
k+1

}
as

as the “base-(k+1)” annotation, similarly to how the annotation of
(
n
k

)
is the degree-k annotation.

Stirling numbers of the second kind also satisfy a recurrence. This recurrence is given with
initial values as follows:

{
n+ 1

k + 1

}
=


1 k = 0

0 k ̸= 0, n = 0

(k + 1) ·
{

n
k+1

}
+
{
n
k

}
otherwise

This recurrence corresponds to the columns in a matrix like the following, which may be
used to define a parameterized shift operator.

1 1 0 0
0 2 1 0
0 0 3 1
0 0 0 4
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I establish the maximality of Stirling numbers in Section 6.5. That is, I establish that the
conical combinations of Stirling numbers of the second kind form a maximally large space of
nonnegative exponentials.

6.4 Parameterized System
Given the setup of Section 6.3, relatively little remains to adapt AARA to handle the modular-
ization of resource functions via linear recurrences. Let such resource functions be given by
the conical span of some basis Rk(n) which satisfies all the non-optional properties described
in Section 6.3. Let A be the pointwise nonnegative matrix corresponding to the recurrence for
Rk(n). That is, the matrix A satisfies

b⃗ · R⃗(n) = (A⃗b) · R⃗(n− 1)

where the functions Rk are collected as the vector R⃗, b⃗ is any vector of coefficients, and n ≥ 1.
Then all that remains is to replace the shifting operations ◁,◀ with parameterized versions
A
◁ ,

A
◀ . This section makes all those replacements explicit.

6.4.1 Typing Rules

To generalize the type system sufficiently to accept new resource functions given by Rk(n), only
one change needs to be made to the typing rules. That change is to replace all the polynomial

shifts ◁ in the typing rules with parameterized shifts
A
◁ . Such changes only apply to the rules

R-Cons, R-CaseL, R-Node and R-CaseT. The replacement rules are provided in Figure 6.4. Oth-
erwise, every typing rule remains as given in Figures 5.6 and 5.7.
Example 6.4.1. To see how these typing rules allow the use of, e.g., expontential resource func-
tions, recall the code for subset sum in Figure 6.2. Suppose one is interested in bounding the
number of arithmetic and Boolean operations performed when calling this function. It can be
shown by induction that the number of such operations is 3 · 2n − 2 = 3 ·

{
n+1
2

}
+ 1.

To derive a bound on the number of operations using AARA, the code is first put into let-
normal form and ticks are added before each operation. By then using the recurrence for Stirling
numbers of the second kind with this chapter’s typing rules, the function subSum can be given
the type ⟨L3(Z) ⊗ Z; 1⟩ → ⟨B; 0⟩ ∼ L0(Z) ⊗ Z. This type corresponds exactly to the desired
bound.

The typing derivation of subSum is witnessed by the energy comments given in Figure 6.5.
As there is no remainder energy, I elide any comments for the remainder annotations. For no-
tational brevity, I write “a : x, y” in a given line to indicate that there are y units of free energy
available and list a has x units of base-2 energy at that line.

The key line to look at in Figure 6.5 is line 3 where the argument nums is pattern matched.
In this line, energy is distributed over ns, the tail of nums, by releasing three units of energy
and doubling the base-2 energy. This corresponds exactly to the recurrence

{
n+1
2

}
= 2 ·

{
n
2

}
+ 1

(scaled up by 3).
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P-CONS

Γ, x : τ, y : L(τ) | ⋎x,x′

x (⋎y,y′

y (
A
◁ ret

x′,y′ (⃗a))) ⊢ x :: y : L(τ) | a⃗

P-CASEL
Γ, x : L(σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, x : L(σ), y : σ, z : L(σ) |
A
◁ x′

y,z (⃗a, b⃗) ⊢ e2 : τ |
A
◁ x′

y,z(c⃗, d⃗)

Γ, x : L(σ) | a⃗,⋎x,x′

x (⃗b) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | c⃗,⋎x,x′

x (d⃗)

P-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (
A
◁ ret

x′,y′,z′ (⃗a)))) ⊢ node(x, y, z) : T (τ) | a⃗

P-CASET
Γ, t : T (σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) |
A
◁ t′

x,y,z (⃗a, b⃗) ⊢ e2 : τ |
A
◁ t′

x,y,z(c⃗, d⃗)

Γ, t : T (σ) | a⃗,⋎t,t′

t (⃗b) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | c⃗,⋎t,t′

t (d⃗)

Figure 6.4: New typing rules using parameterized shift

1 fun subSum (nums, target) = case nums of (* nums: 3,1 *)
2 | [] -> let _ = tick{1} in target = 0 (* []: 0,0 *)
3 | n::ns -> (* ns: 6,4 *)
4 let _ = tick{1} in let tmp = target - n in (* ns: 6,3 *)
5 let with_n = subSum (ns, tmp) in (* ns: 3,2 *)
6 let without_n = subSum (ns, target) in (* ns: 0,1 *)
7 let _ = tick{1} in with_n || without_n (* ns: 0,0 *)

Figure 6.5: Code for subset sum with energy comments
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Φ(v1 :: v2 : L(τ) | a⃗) = δ(A, a⃗) + Φ(v1 : τ | λi. a⃗e.i) + Φ(v2 : L(τ) |
A
◀ (⃗a))

Φ(node(v1, v2, v3) : T (τ) | a⃗) = δ(A, a⃗) + Φ(v1 : T (τ) |
A
◀ (⃗a)) + Φ(v2 : τ | λi. a⃗e′.i) + Φ(v3 : T (τ) |

A
◀ (⃗a))

Figure 6.6: New potential energy definitions using parameterized shift

6.4.2 Potential Energy

Similarly to the typing rules, the definition of the potential function also only requires swapping

polynomial shifts ◀ with parameterized ones
A
◀ . The new definitions of potential energy for

nonempty lists and trees are given in Figure 6.6. Otherwise, the definitions are unchanged from
Figure 3.9. These definitions also make use of the “constant difference” operator δ defined in
Definition 6.4.1 to pick out a particular value that arises during shifting.

Definition 6.4.1 (constant difference operator). The constant difference operator δ picks out the
change in free energy when shifting a⃗ with the linear map A.

δ(A, a⃗) =
A
◀ (⃗a)c − a⃗c

By convention, if c does not index a⃗, then it is treated as if a⃗c = 0.

By construction, this definition of potential energy results in Lemmas 6.4.1 and 6.4.2. These
lemmas are generalizations of Lemma 3.4.2 and Lemma 3.4.3, respectively.

Lemma 6.4.1 (parameterized shifting conserves energy).

Φ((x 7→ v1 :: v2) : (x : L(τ)) | a⃗) = Φ((y 7→ v1, z 7→ v2) : (y : τ, z : L(τ)) |
A
◁ x

y,z (⃗a))

Φ((t 7→ node(v1, v2, v3)) : (t : T (τ)) | a⃗)

= Φ((x 7→ v1, y 7→ v2, z 7→ v3) : (x : T (τ), y : τ, z : T (τ)) |
A
◁ t

x,y,z (⃗a))

Proof. First, in case c does not already index a⃗, temporarily let a⃗c = c for some c. The result
will be independent of this mapping.

Both the case for lists and trees can be shown to hold directly just by following definitions.

lists For the list case, the following equations hold:
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Φ((y 7→ v1, z 7→ v2) : (y : τ, z : L(τ)) |
A
◁ x

y,z (⃗a))

=
A
◁ x

y,z (⃗a)c + Φ(v1 : τ | λi. (
A
◁ x

y,z (⃗a))y.i) + Φ(v2 : L(τ) | λi. (
A
◁ x

y,z (⃗a))z.i) def

= a⃗c+
A
◁ x

y,z (⃗a)c − a⃗c + Φ(v1 : τ | λi. (
A
◁ x

y,z (⃗a))y.i) + Φ(v2 : L(τ) | λi. (
A
◁ x

y,z (⃗a))z.i) algebra

= a⃗c+
A
◀ (λi. a⃗x.i)c − a⃗c + Φ(v1 : τ | λi. (

A
◁ x

y,z (⃗a))y.i) + Φ(v2 : L(τ) | λi. (
A
◁ x

y,z (⃗a))z.i) def

= a⃗c + δ(A, λi. a⃗x.i) + Φ(v1 : τ | λi. (
A
◁ x

y,z (⃗a))y.i) + Φ(v2 : L(τ) | λi. (
A
◁ x

y,z (⃗a))z.i) def

= a⃗c + δ(A, λi. a⃗x.i) + Φ(v1 : τ | λi. (λ(y.j). a⃗x.e.j)y.i) + Φ(v2 : L(τ) | λi. (
A
◁ x

y,z (⃗a))z.i) def

= a⃗c + δ(A, λi. a⃗x.i) + Φ(v1 : τ | λj. (λi. a⃗x.i)e.j) + Φ(v2 : L(τ) | λi. (
A
◁ x

y,z (⃗a))z.i) =β

= a⃗c + δ(A, λi. a⃗x.i) + Φ(v1 : τ | λj. (λi. a⃗x.i)e.j) + Φ(v2 : L(τ) |
A
◀ (λi. a⃗x.i)) def

= a⃗c + Φ(v1 :: v2 : L(τ) | λi. a⃗x.i) def

= Φ((x 7→ v1 :: v2) : (x : L(τ)) | a⃗) def

trees For the tree case, the following equations hold:

Φ((x 7→ v1, y 7→ v2, z 7→ v3) : (x : T (τ), y : τ, z : T (τ)) |
A
◁ t

x,y,z (⃗a))

=
A
◁ t

x,y,z (⃗a)c + Φ(v1 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))x.i) + Φ(v2 : τ | λi. (
A
◁ t

x,y,z (⃗a))y.i) + Φ(v3 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))z.i) def

= a⃗c+
A
◁ t

x,y,z (⃗a)c − a⃗c + Φ(v1 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))x.i) + Φ(v2 : τ | λi. (
A
◁ t

x,y,z (⃗a))y.i) + Φ(v3 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))z.i) algebra

= a⃗c+
A
◀ (λi. a⃗t.i)c − a⃗c + Φ(v1 : T (τ) | λi. (

A
◁ t

x,y,z (⃗a))x.i) + Φ(v2 : τ | λi. (
A
◁ t

x,y,z (⃗a))y.i) + Φ(v3 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))z.i) def

= a⃗c + δ(A, λi. a⃗t.i) + Φ(v1 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))x.i) + Φ(v2 : τ | λi. (
A
◁ t

x,y,z (⃗a))y.i) + Φ(v3 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))z.i) def

= a⃗c + δ(A, λi. a⃗t.i) + Φ(v1 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))x.i) + Φ(v2 : τ | λi. (λ(y.j). a⃗t.e′.j)y.i) + Φ(v3 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))z.i) def

= a⃗c + δ(A, λi. a⃗t.i) + Φ(v1 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))x.i) + Φ(v2 : τ | λj. (λi. a⃗t.i)e′.j) + Φ(v3 : T (τ) | λi. (
A
◁ t

x,y,z (⃗a))z.i) =β

= a⃗c + δ(A, λi. a⃗t.i) + Φ(v1 : T (τ) |
A
◀ (λi. a⃗t.i)) + Φ(v2 : τ | λj. (λi. a⃗t.i)e′.j) + Φ(v3 : T (τ) |

A
◀ (λi. a⃗t.i)) def

= a⃗c + Φ(node(v1, v2, v3) : T (τ) | λi. a⃗t.i) def

= Φ((t 7→ node(v1, v2, v3)) : (x : T (τ)) | a⃗) def

Lemma 6.4.2 (list potential energy using parameterized shift). The potential energy of a list v
with annotation a⃗ is a function of v’s length n plus the potential energy of v’s elements.

Φ(v : L(τ) | a⃗) =
Dmax∑
i=1

a⃗di ·Ri(n) +
∑
v′∈v

Φ(v′ : τ | λi. a⃗e.i)

Proof. The proof of this statement proceeds by induction over n, the length of v.
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n=0 In this case, the list v is the empty list [ ] and the following equalities hold:

Φ([ ] : L(τ) | a⃗) = 0 def

=
Dmax∑
i=1

a⃗di ·Ri(0) Ri(0) = 0

=
Dmax∑
i=1

a⃗di ·Ri(0) +
∑
v′∈v

Φ(v′ : τ | λi. a⃗e.i) v empty

n+1 In this case, the list v takes the form v1 :: v2 and the following equalities hold. For these
equalities, if c does not already index a⃗, temporarily let a⃗c = c for some c. The result will be
independent of this mapping.

Φ(v1 :: v2 : L(τ) | a⃗)

= δ(A, a⃗) + Φ(v1 : τ | λi. a⃗i.e) + Φ(v2 : L(τ) |
A
◀ (⃗a)) def

= δ(A, a⃗) + Φ(v1 : τ | λi. a⃗i.e) +
Dmax∑
i=1

A
◀ (⃗a)di ·Ri(n) +

∑
v′∈v2

Φ(v′ : τ | λi.
A
◀ (⃗a)e.i) IH

= δ(A, a⃗) + Φ(v1 : τ | λi. a⃗i.e) +
Dmax∑
i=1

A
◀ (⃗a)di ·Ri(n) +

∑
v′∈v2

Φ(v′ : τ | λi. a⃗e.i) def

= δ(A, a⃗) +
Dmax∑
i=1

A
◀ (⃗a)di ·Ri(n) +

∑
v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) algebra

=
A
◀ (⃗a)c − a⃗c +

Dmax∑
i=1

A
◀ (⃗a)di ·Ri(n) +

∑
v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) def

=
A
◀ (⃗a)c ·R0(n)− a⃗c +

Dmax∑
i=1

A
◀ (⃗a)di ·Ri(n) +

∑
v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) R0(n) = 1

= −a⃗c + (A · b⃗) · R⃗(n) +
∑

v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) def

= −a⃗c + b⃗ · R⃗(n+ 1) +
∑

v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) def

= a⃗c ·R0(n+ 1)− a⃗c +
Dmax∑
i=1

a⃗di ·Ri(n+ 1) +
∑

v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) def

= a⃗c − a⃗c +
Dmax∑
i=1

a⃗di ·Ri(n+ 1) +
∑

v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) R0(n+ 1) = 1

=
Dmax∑
i=1

a⃗di ·Ri(n+ 1) +
∑

v′∈v1 :: v2

Φ(v′ : τ | λi. a⃗e.i) algebra
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Lemma 6.4.2 explains how the parameterization on A allows the AARA type system to rep-
resent resource functions that are linear combinations of Rk(n). In particular, when letting A be
the matrix for the Stirling numbers of the second kind, exponentials are representable.

While I do not include any explicit closed form for the potential energy of trees analagous to
Lemma 3.4.4,4 I do note that a tree’s energy is related to a list’s energy like before. In particular,
they coincide when every node of the tree includes a leaf.

Finally, by design, the helpful principles given by Lemmas 3.4.5 and 3.4.6 still hold in this
new setting with Rk(n) resource functions. Lemma 3.4.6, the linearity of energy with respect to
annotations, continues to hold because the potential function continues to be defined via linear
combination. Lemma 3.4.5, the monotonicity of energy with respect to annotations, continues
to hold because Rk(n) ≥ 0. Further, the annotation of all zeros continues to assign zero energy
because Rk(0) = 0; thus, like before, a direct consequence of Lemma 3.4.5 is that nonnegative
annotations always assign nonnegative potential energy.

6.4.3 Soundness

The soundness of AARA parameterized on matrices like A is given as Theorem 6.4.3. This
theorem is fundamentally no different than in previous chapters, and in fact is the same statement
as Theorem 5.4.1. The only difference is that the soundness proof here must take into account
the new presence of paramaterized shifts in rules related to the construction or destruction of lists
or trees. Otherwise, it is still the case that the initial potential energy of the context bounds the
peak cost of evalution, and the difference between initial and final energies bounds the net cost.

Theorem 6.4.3 (parameterized soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | a⃗ ⊢ e : τ | b⃗ (AARA types the expression in that environment)

then
• v : τ (return well-formed)
• Φ(V : Γ | a⃗) ≥ p (initial bounds peak)
• Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p (diff. bounds net)

Proof. The soundness proof proceeds by lexicographic induction over the derivation of the eval-
uation judgment followed by the typing judgment.

In all but four cases, the proof is identical to that for Theorem 5.4.1. Those four exceptions
follow similarly to Theorem 5.4.1, but now are parameterized on a matrix A. By design, this
parameterization can be covered entirely by using Lemma 6.4.1 instead of Lemma 3.4.2 in the
proof cases. The four exception cases are given as follows:

4Even if such a closed form exists, I do not believe it would be particularly illuminating.
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E-Cons Suppose the last rule applied for the evaluation judgment is E-Cons.

E-CONS

V, x 7→ v1, y 7→ v2 ⊢ x :: y ⇓ v1 :: v2 | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

P-CONS

Γ, x : τ, y : L(τ) | ⋎x,x′

x (⋎y,y′

y (
A
◁ ret

x′,y′ (⃗a))) ⊢ x :: y : L(τ) | a⃗

Because v1 :: v2 : L(τ) follows from V-Cons and the assumed well-formedness judgment
(V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)), the needed well-formedness judgment holds. Then
because the potential energy is always nonnegative, the peak cost bound is satisfied. Finally,
because sharing perfectly conserves potential energy (Lemma 3.4.1) and shifting conserves the
potential energy of a list (Lemma 6.4.1), the net cost bound is also satisfied with the following
equality:

Φ((V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)) | ⋎x,x′

x (⋎y,y′

y (
A
◁ ret

x′,y′ (⃗a))))

= Φ((V, x 7→ v1, y 7→ v2, ret 7→ v1 :: v2) : (Γ, x : τ, y : L(τ), ret : L(τ)) | a⃗)

E-CaseL-Cons Suppose the last rule applied for the evaluation judgment is E-CaseL-Cons.

E-CASEL-CONS
V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)

V, x 7→ v1 :: v2 ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

P-CASEL
Γ, x : L(σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, x : L(σ), y : σ, z : L(σ) |
A
◁ x′

y,z (⃗a, b⃗) ⊢ e2 : τ |
A
◁ x′

y,z(c⃗, d⃗)

Γ, x : L(σ) | a⃗,⋎x,x′

x (⃗b) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | c⃗,⋎x,x′

x (d⃗)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ v1 :: v2) : (Γ, x : L(σ)) by assumption, the rule V-Context can be inverted

to learn v1 :: v2 : L(σ). Then further, the rule V-Cons can be inverted to learn both v1 : σ and
v2 : L(σ). Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

Each of the following judgments has now been found:

• V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)
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• (V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

• Γ, x : L(σ), y : σ, z : L(σ) |
A
◁ x′

y,z (⃗a, b⃗) ⊢ e2 : τ |
A
◁ x′

y,z(c⃗, d⃗)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) |
A
◁ x′

y,z (⃗a, b⃗)) ≥ p

(3) Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) |
A
◁ x′

y,z (⃗a, b⃗)) + q

≥ Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) |
A
◁ x′

y,z(c⃗, d⃗)) + p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because sharing perfectly conserves potential energy (Lemma 3.4.1)
and shifting conserves the potential energy of a list (Lemma 6.4.1), both these cost bounds follow
from (2) and (3) using the following equalities:

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) |
A
◁ x′

y,z (⃗a, b⃗))

= Φ((V, x 7→ v1 :: v2) : (Γ, x : L(σ)) | a⃗,⋎x,x′

x (⃗b))

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) |
A
◁ x′

y,z(c⃗, d⃗))

= Φ((V, x 7→ v1 :: v2, ret 7→ v) : (Γ, x : L(σ), ret : τ) | c⃗,⋎x,x′

x (d⃗))

E-Node Suppose the last rule applied for the evaluation judgment is E-Node.
E-NODE

V, x 7→ v1, y 7→ v2, z 7→ v3 ⊢ node(x, y, z) ⇓ node(v1, v2, v3) | (0, 0)
Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

P-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (
A
◁ ret

x′,y′,z′ (⃗a)))) ⊢ node(x, y, z) : T (τ) | a⃗

Because node(v1, v2, v3) : T (τ) follows from V-Node and the assumed well-formedness
judgment (V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)), the needed well-
formedness judgment holds. Then because the potential energy is always nonnegative, the peak
cost bound is satisfied. Finally, because sharing conserves potential energy (Lemma 3.4.1) and
shifting conserves the potential energy of a tree (Lemma 6.4.1), the net cost bound is also satisfied
with the following equality:

Φ((V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (
A
◁ ret

x′,y′,z′ (⃗a)))))

= Φ((V, x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ node(v1, v2, v3)) : (Γ, x : T (τ), y : τ, z : T (τ), ret : T (τ)) | a⃗)
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E-CastT-Node Suppose the last rule applied for the evaluation judgment is E-CaseT-Node.
E-CASET-NODE

V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)
V, t 7→ node(v1, v2, v3) ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:
P-CASET

Γ, t : T (σ) | a⃗, b⃗′ ⊢ e1 : τ | c⃗, d⃗′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) |
A
◁ t′

x,y,z (⃗a, b⃗) ⊢ e2 : τ |
A
◁ t′

x,y,z(c⃗, d⃗)

Γ, t : T (σ) | a⃗,⋎t,t′

t (⃗b) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | c⃗,⋎t,t′

t (d⃗)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) by assumption, the rule V-Context can

be inverted to learn v1 :: v2v3 : T (σ). Then further, the rule V-Node can be inverted to learn all
of v1 : T (σ), v2 : σ, and v3 : T (σ). Using V-Context, one can then use these well-formedness
judgments to derive

(V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

Each of the following judgments has now been found:

• V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)
• (V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

• Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) |
A
◁ t′

x,y,z (⃗a, b⃗) ⊢ e2 : τ |
A
◁ t′

x,y,z(c⃗, d⃗)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) |
A
◁ t′

x,y,z (⃗a, b⃗))
≥ p

(3)
Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) |

A
◁ t′

x,y,z (⃗a, b⃗)) + q

≥ Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) |
A
◁ t′

x,y,z(c⃗, d⃗))
+ p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because sharing perfectly conserves potential energy (Lemma 3.4.1)
and shifting conserves the potential energy of a tree (Lemma 6.4.1), both these cost bounds fol-
low from (2) and (3) using the following equalities:

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) |
A
◁ t′

x,y,z (⃗a, b⃗))

= Φ((V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) | a⃗,⋎t,t′

t (⃗b))

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) |
A
◁ t′

x,y,z(c⃗, d⃗))

= Φ((V, t 7→ node(v1, v2, v3), ret 7→ v) : (Γ, t : T (σ), ret : τ) | c⃗,⋎t,t′

t (d⃗))
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6.4.4 Automation
By design, the resource function abstraction described in this chapter does not significantly im-
pact how AARA is automated. Thus, type inference still follows the following two steps:

1. basic type inference

2. collect and solve linear contraints

The collected constraints are still largely the same as from previous chapters. These con-
straints are just those dictated by the typing rules, with the addition that all annotations are
nonnegative. By design, ensuring all annotations are nonnegative is sufficient to ensure that po-
tential energy is nonnegative. This nonnegativity is ensured because the values scaled by the
annotations, specifically the resource functions Rk(n), are each nonnegative.

The only difference between the automation of this chapter and previous chapters is that
some of the linear constraints associated with shifting are changed. Rather than shift according
to the matrix for Pascal’s identity, this chapter’s version of AARA shifts according to a provided
matrix parameter. The number of collected constraints is only dependent upon the parameter
Dmax giving the dimension of the matrix, not on the matrix contents.

In total then, type inference in this system is efficient. After basic type inference, the rest
of type inference can be reduced to collecting and solving linear constraints, which only takes
polynomial time in the size of the source code.

6.5 Maximality
There are many families of functions Rk(n) that satisfy the non-optional properties of Sec-
tion 6.3, and many such families even form bases for the same space of resource functions.
For example, Both λn.

(
n
k

)
and λn.nk are linear bases for polynomials, and both λn.

{
n+1
k+1

}
and

λn. (k + 1)n are linear bases for exponentials. However, there are good reasons to favor using
the bases λn.

(
n
k

)
and λn.

{
n+1
k+1

}
over other options. One reason is non-technical: both have

nice combinatorial interpretations. But the main technical reason to favor them is their maximal
expressivity. In this section, I provide both sufficient conditions for maximal expressivity and a
simple algorithm that can transform linear bases into maximally expressive ones.

This chapter uses a given collection of functions Rk(n) to form a linear basis for a space
of resource functions, but AARA only expresses these resource functions using conical com-
binations of Rk(n). This mismatch between linearity and conicity is important—a linear basis
gives a unique representation, and a conical combination ensures nonnegativity. However, this
mismatch also fundamentally means that the resource functions expressed via conical combi-
nations only cover a portion of the whole linear space of resource functions. For a family of
resource functions Rk(n) to be maximally expressive, this portion should be maximally large so
that the most resource functions possible can be expressed with conical combinations of Rk(n).
In other words, no alternative linear basis for the resource function space should have a strictly
larger conical span. Both binomial coefficients and offset Stirling numbers of the second kind
are maximally expressive in this sense.

It might not be easy to determine if a given nonnegative basisRk(n) is maximally expressive.
To aid in this determination, I provide a simple characterization of Rk(n) which ensures maxi-
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mal expressivity. This characterization applies to both binomial coefficients and offset Stirling
numbers of the second kind, explaining generally why they are good choices of basis. Intuitively,
the characterization is that each function Ri has a distinct asymptotic growth5 and is 0 on its first
i inputs. I formally state this characterization as Theorem 6.5.1.

Theorem 6.5.1 (maximally expressive characterization). Let the finite function families Rk and
Sk both be nonnegative linear bases for the same space of functions F over N. Let their conical
spans be C and D, respectively.
If Rk ∈ o(Rk+1) and Rk(n) = 0 until n ≥ k, then it cannot be that C ⊊ D.

Proof. Let the highest index of the family Rk be p, and suppose for the sake of contradiction that
C ⊊ D.

To begin, observe the following 1:1 correspondence between Rk and Sk: For each i, there
is a unique j such that Sj ∈ O(Ri) − O(Ri−1) if i > 0, or simply Sj ∈ O(Ri) if i = 0. This
correspondence can be shown to hold by comparing the growth rate of each Ri to the conical
combination of Sk assumed to exist that equals Ri. Such a conical combination cannot be made
with any functions outside of O(Ri), else the conical combination would be outside of O(Ri),
but Ri ∈ O(Ri). Further, for i > 0, such a conical combination cannot be made solely out of
functions in O(Ri−1), else the conical combination would be in O(Ri−1), but Ri is in the disjoint
set ω(Ri−1). Thus there must be at least one such function Sj where Sj ∈ O(Ri) − O(Ri−1) if
i > 0, or Sj ∈ O(Ri) if i = 0. Finally, because both Sk and Rk are linear bases for F , they must
have the same finite cardinality p+ 1, rendering the correspondence 1:1.

For simplicity, index Sk from now on to match Rk’s indexing, so that Si ∈ O(Ri)−O(Ri−1)
for i > 0. This growth rate correspondence ensures that any representation of Ri as a conical
combination of Sk only requires indices of Sk up to i.

Now recall the supposition that C ⊊ D. In other words, there is some function f ∈ D such
that f ̸∈ C. Without loss of generality, this f can be chosen as one of the basis functions Sk;
pick such a basis function Sℓ that mimimizes ℓ. The following implications then hold for some
coefficient vector a⃗ and index i:

C ⊊ D =⇒ Sℓ ∈ D ∧ Sℓ ̸∈ C def

=⇒ Sℓ ∈ F ∧ Sℓ ̸∈ C D ⊆ F
=⇒ Sℓ = a⃗ · R⃗ ∧ a⃗i < 0 Rk linear basis of F , conical basis of C

Let i be chosen as the lowest such index where a⃗i < 0.
It must be that ℓ ≥ i. If instead ℓ < i, the nonnegative weight a⃗i ofRi would cause Sℓ to be in

Ω(Ri), while also Sℓ ∈ O(Rℓ) ⊆ o(Ri) from known growth rate correspondences and orderings.
Because Ω(Ri) and o(Ri) are disjoint, it must therefore be that ℓ ≥ i.

5Likely this part of the condition could be replaced with some other way of forcing alternative bases to corre-
spond nicely with Ri. However, having distinct asymptotic growths is a sufficient condition for polynomials and
exponentials.
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Now consider evaluating Sℓ on i. This reveals some more information about representing Sℓ

as a linear combination of the functions Rk.

Sℓ(i) ≥ 0 Sk ≥ 0

=⇒
p∑

j=0

a⃗j ·Rj(i) ≥ 0 Sℓ = a⃗ · R⃗

=⇒
i∑

j=0

a⃗j ·Rj(i) ≥ 0 j > i =⇒ Rj(i) = 0

=⇒ a⃗i ·Ri(i) +
i−1∑
j=0

a⃗j ·Rj(i) ≥ 0 algebra

=⇒
i−1∑
j=0

a⃗j ·Rj(i) > 0 a⃗i < 0 ∧Ri(i) > 0

=⇒ ∃j < i. a⃗j > 0 Rk ≥ 0

Let m be the minimal witnessing index j of the last implication. Because m is the index
of the first positive entry and i is the index of the first negative entry, where m < i, the vector
of coefficients a⃗ is known to have the following form: only 0 as entries until index m, where
a⃗m > 0, then only nonnegative entries up through index i, where a⃗i < 0.

Next consider representing Rℓ as a linear combination of Sk, which must be possible because
Rℓ ∈ F and Sk is a linear basis for F . Then the following inequalities hold for some vectors b⃗, c⃗.

Rℓ =

p∑
j=0

b⃗j · Sj (⃗b ≥ 0) Rℓ ∈ C ⊊ D

=
ℓ∑

j=0

b⃗j · Sj (⃗bℓ > 0) growth rate

= b⃗ℓ · Sℓ +
ℓ−1∑
j=0

b⃗j · Sj algebra

= b⃗ℓ · (
p∑

j=0

a⃗j ·Rj) +
ℓ−1∑
j=0

b⃗j · Sj Sℓ = a⃗ · R⃗

= b⃗ℓ · (
p∑

j=m

a⃗j ·Rj) +
ℓ−1∑
j=0

b⃗j · Sj j < m =⇒ a⃗j = 0

= b⃗ℓ · a⃗m ·Rm + b⃗ℓ · (
p∑

j=m+1

a⃗j ·Rj) +
ℓ−1∑
j=0

b⃗j · Sj algebra

= b⃗ℓ · a⃗m ·Rm + b⃗ℓ · (
n∑

j=m+1

a⃗j ·Rj) +
ℓ−1∑
j=0

c⃗j ·Rj (c⃗ ≥ 0) j < ℓ =⇒ Sj ∈ C
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Finally, examine the last of these equalities. The righthand side expression is a linear combi-
nation of Rk where the coefficient of Rm, b⃗ℓ · a⃗m + c⃗m, is strictly positive. However, the lefthand
side expression Rℓ is also a linear combination of Rk (a trivial singleton combination) where the
coefficient of Rm is 0, as m < i ≤ ℓ. Because the functions Rk are linearly independent, such
an equality is impossible. Thus the original assumption is false and it is not the case that C ⊊ D.

The characterization of Theorem 6.5.1 is useful not only because it applies to binomial coeffi-
cients and Stirling numbers of the second kind, but also because it is relatively straightforward to
transform a linear basis of functions to have the second property. Such a transformation yielding
Rk(n) = 0 until n ≥ k is given by the well-studied algorithm of Gaussian elimination, putting
the functions into a row echelon form.

To see an example of this transformation, consider the standard basis for polynomials, the
functions λn. nk. These can be put into a matrix as follows, where index i, j contains the value
ji (letting 00 = 1). 

1 1 1 1 . . .
0 1 2 3 . . .
0 1 4 9 . . .
0 1 8 27 . . .
...

...
...

... . . .


Putting this matrix into row echelon form yields:

1 1 1 1 . . .
0 1 2 3 . . .
0 0 2 6 . . .
0 0 0 3 . . .
...

...
...

... . . .


This new matrix’s rows corresponds to the functions λn. 1, λn. n, λn. n2−n, λn. n3−3n2+

2n, etc. Notably, all these functions are constant scalars of binomial coefficients. Removing
these scalars to get the binomial coefficients exactly corresponds to normalizing the leading
coefficients of each row to 1. This natural matrix transformation emphasizes just how natural
binomial coefficients are for representing polynomial resource functions.

If one similarly puts functions of the form λn. (k + 1)n into row echelon form with leading
coefficients of 1, one performs the following matrix transformation:

1 1 1 1 . . .
1 2 4 8 . . .
1 3 9 27 . . .
1 4 16 64 . . .
...

...
...

... . . .

⇝

1 1 1 1 . . .
0 1 3 7 . . .
0 0 1 6 . . .
0 0 0 1 . . .
...

...
...

... . . .


At index i, j, the latter matrix contains the value

{
j+1
i+1

}
, the offset Stirling numbers of the second

kind. Thus, these offset Stirling numbers are the natural choice for representing exponential
resource functions.
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6.6 Mixing
Now that this chapter has established the basics of modularizing resource functions using linear
recurrences, an additional recipe can be laid out to combine such resource functions. In particu-
lar, if Rk(n) and Sℓ(n) are two families of resource functions, this recipe allows multiplicatively
mixing the two families to obtain a resource basis of the form Rk(n)Sℓ(n). This section includes
both this mixing recipe as well as a deeper dive on the specific mix between polynomial and
exponential resource functions.

6.6.1 General Mixing
The key to generally mixing resource functions given by linear recurrences is to simply apply
each recurrence separately.6 To exemplify this process, consider the following identity for the
mix between polynomials and exponentials:(
n+ 1

k + 1

){
n+ 2

j + 2

}
= (

(
n

k + 1

)
+

(
n

k

)
)((j + 2)

{
n+ 1

j + 2

}
+

{
n+ 1

j + 1

}
)

= (j + 2)

(
n

k + 1

){
n+ 1

j + 2

}
+

(
n

k + 1

){
n+ 1

j + 1

}
+ (j + 2)

(
n

k

){
n+ 1

j + 2

}
+

(
n

k

){
n+ 1

j + 1

}
This identity simply applies the recurrence for binomials and exponentials separately, then

distributes. The resulting expression is just a linear combination of mixed polynomial and ex-
ponential terms with no dependence on the size n. As a result, the identity expresses another
linear recurrence, and can in principle be expressed with a matrix equation just as described in
Section 6.7.

More generally, the product between any two valid resource function bases meeting the prop-
erties of Section 6.3 yields another valid resource function basis meeting the properties of Sec-
tion 6.3. This property can be formally stated as Lemma 6.6.1.

Lemma 6.6.1 (mixed resource functions). If
1. Rk(n) ≥ 0 and Sℓ(n) ≥ 0 for all n, k, ℓ ≥ 0

2. R0(n) = S0(n) = 1 for all n ≥ 0

3. Rk(0) = Sℓ(0) = 0 for all k, ℓ > 0

4. Rk+1(n + 1) =
∑k+1

i=0 ai · Ri(n) and Sℓ+1(n + 1) =
∑ℓ+1

i=0 bi · Si(n) for constants ai ≥ 0
and bi ≥ 0

then
5. Rk(n)Sℓ(n) ≥ 0 for all n ≥ 0 and ⟨k, ℓ⟩ ≥ ⟨0, 0⟩ (here ≥ is pointwise)
6. R0(n)S0(n) = 1 for all n ≥ 0

7. Rk(0)Sℓ(0) = 0 for all ⟨k, ℓ⟩ > ⟨0, 0⟩ (here > means ≥ and ̸=)
8. Rk+1(n+ 1)Sℓ+1(n+ 1) =

∑⟨k+1,ℓ+1⟩
⟨i,j⟩=⟨0,0⟩ ci,j ·Ri(n)Sj(n) for constants ci,j ≥ 0

Proof. This lemma is proved by cases.

6To the more linear-algebra-minded reader, this process is a sort of tensor construction.
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Property 5 Property 5 follows from property 1 because the product of nonnegative numbers is
nonnegative.

Property 6 Property 6 follows from property 2 because 1 · 1 = 1.

Property 7 Property 7 follows from property 3 because 0 · 0 = 0.

Property 8 Property 8 is the only interesting case. It follows from the following equations:

Rk+1(n+ 1)Sℓ+1(n+ 1) = (
k+1∑
i=0

ai ·Ri(n))(
ℓ+1∑
j=0

bi · Si(n)) property 4

=

⟨k+1,ℓ+1⟩∑
⟨i,j⟩=⟨0,0⟩

ai · bj ·Ri(n)Sj(n) algebra

Thus ci,j = ai · bj is sufficient, where ci,j ≥ 0 because each of ai and bj are nonnegative.

To successfully use resource functions derived from Lemma 6.6.1 in the parameterized sys-
tem of Section 6.4 and Section 6.5, there is only one wrinkle: Whereas the original functions
were indexed in a total order, the mixed functions are only indexed by a lattice. However, this
wrinkle turns out to not be an issue because no property developed in this chapter really depends
on total ordering over lattice ordering. Simply identify 0 with the bottom element ⟨0, 0⟩, Dmax

with the top element, interpret inequalities between lattice elements as described in Lemma 6.6.1,
etc., and then everything developed in this chapter applies just as well to these new mixed re-
source functions. Or one can extend every lattice into a total order via topological sorting—this
treatment also allows 1-dimensional indices like di to enumerate multidimensional lattice in-
dices. Section 6.6.2 takes this latter approach, allowing annotation indices to appear as pairs of
numbers for notational convenience.

This mixing recipe can also be repeated to obtain mixes between more than two resource
functions. While the appropriate matrix representing such recurrences might grow complicated,
they can always be recovered from the coefficients ci,j constructed in Lemma 6.6.1.

6.6.2 Mixing Polynomials and Exponentials
Now I turn the focus to mixes between polynomial and exponential functions specifically. A
basis for such functions takes the form of λn.

(
n
k

){
n+1
j+1

}
. These functions can represent linear

combinations of functions of the form λn. nk(j + 1)n, which include polynomials when j = 0
and exponentials when k = 0.

When mixing polynomial and exponential resource functions, there is one particular opti-
mization that can be introduced. This optimization makes use of the following identity:{

n+ 1

2

}
= 2n − 1 =

∞∑
k=1

(
n

k

)
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Ind(L(τ)) = {dm,n | 0 ≤ m ≤ Dmax ∧ 1 ≤ n ≤ Bmax ∧m = 0 → n ̸= 1} ∪ e.Ind(τ)

Ind(T (τ)) = {d′m,n | 0 ≤ m ≤ Dmax ∧ 1 ≤ n ≤ Bmax ∧m = 0 → n ̸= 1} ∪ e′.Ind(τ)

Figure 6.7: Mixed annotation indices

As a result, one unit of base 2 potential energy can be converted to one unit of every kind of
base-k potential energy. In the rest of this subsection, I make this notion formal through a special
structural rule for “demotion”, alongside additional index support in the type system.

Annotation Indices

To better organize the naturally 2-dimensional space of mixed polynomial/exponential resource
functions, I refine the annotation index system here to explicitly give two subscripts to indices
like d−. These subscripts are explicitly exhibited in Figure 6.7, where only the new indices for
lists and trees are included; all other indices remain the same. Note that these “new” indices are
just a notational convenience; the system presented so far in this chapter already can accept such
2-dimensional lattice annotation indices.7

With these subscripts, di ,j can be used to represent the basis resource function λn.
(
n
i

){
n+1
j

}
.

Note that j here is not incremented; I include this minor reindexing for notational ease so that,
e.g., d0 ,3 represents base-3 potential energy without off-by-one confusion. This figure also uses
a new designated maximumBmax for the largest base of exponential potential energy considered,
in addition to Dmax giving the largest degree of polynomial potential considered. As a formal
lattice, the maximum element is therefore the pair ⟨Dmax , Bmax ⟩.

Finally, there is one new condition included in the indices: m = 0 → n ̸= 1. This condition
just ensures that not both m and n are their minimal values, as such an index d0 ,1 already exists
as the free energy index c. This avoidance of duplication is not really new, but previously indices
like d0 were avoided simply by restricting the 1-dimensional range.

Typing Rules

The system of mixed polynomials and exponentials uses all the typing rules of Section 6.4.1 with
parameterized shifts instanced at the appropriate matrix for the mixed polynomial/exponential
recurrence. In addition, this system introduces one additional structural rule given in Figure 6.8.
This new rule is for “demoting” p units of base-2 exponential potential energy into p units of
each degree-k potential energy, and takes the form of a subtyping rule with a more complicated
relation than pointwise comparison. This subtyping is given by the relation <:, which is also

7More explicitly, these pairs of indices can be given the lexicographic linear ordering of the size of the second
element followed by the size of the first. An enumeration according to this order not only can be fit into a 1-
dimensional index system, but also respects asymptotic growth ordering for the applicability of Theorem 6.5.1. As
Section 6.6.1 has shown, this setup still follows a linear recurrence, and so shifting, potential energy, etc. are all
well-defined as given earlier in this chapter.
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D-DEMOTE

Γ | a⃗′ ⊢ e : τ | b⃗′ a⃗′ <: a⃗ b⃗ <: b⃗′

Γ | a⃗ ⊢ e : τ | b⃗

D-LIST

dom(⃗a) = dom(⃗b) = {i.d0 ,2} ∪ {i.dk ,1 | 1 ≤ k ≤ Dmax}
a⃗i.d0 ,2 − b⃗i.d0 ,2 = p ∀k. b⃗i.dk,1 − a⃗i.dk,1 = p p ≥ 0

a⃗, c⃗ <: b⃗, c⃗

D-TREE

dom(⃗a) = dom(⃗b) = {i.d′0 ,2} ∪ {i.d′k ,1 | 1 ≤ k ≤ Dmax}
a⃗i.d′0 ,2 − b⃗i.d′0 ,2 = p ∀k. b⃗i.d′k,1 − a⃗i.d′k,1 = p p ≥ 0

a⃗, c⃗ <: b⃗, c⃗

Figure 6.8: Demotion rules

formalized in Figure 6.8. (While I do not formulate demotion to be idempotent here to keep the
rules simple, it is easy to create an idempotent version for actual implementations.)

Intuitively, due to the aforementioned relation between
{
n+1
2

}
and binomial coefficients, de-

motion can lose energy, but never can gain energy; it is therefore a safe manipulation of annota-
tions. This safety will be made formal in Lemma 6.6.2.

This demotion rule also allows the system to support negative annotations for the first time.
Previously the typing judgment Γ | a⃗ ⊢ e : τ | b⃗ was defined so that a⃗ ≥ 0 and b⃗ ≥ 0, but this
condition can now be relaxed to allow more flexible AARA typing. Because demotion can only
lose energy, if all annotations are nonnegative after demotion, the annotations before demotion
must have expressed nonnegative total energy. Thus, rather than require that each annotation
like dk ,1 is individually nonnegative in a⃗, it instead suffices to require that a⃗i.d0 ,2 + a⃗i.dk,1 ≥ 0
for each k. The index a⃗i.d0 ,2 must still be nonnegative on its own, but this relaxed condition
now allows indices like a⃗i.dk,1 to be negative. Such annotations could demote into nonnegative
annotations, and therefore express a nonnegative total amount of energy, as is necessary for
physicist’s method peak-cost reasoning. (This same relaxation applies to b⃗ and d′− in place of
d− as well.) The benefits of the additional flexibility afforded by demotion are shown later in
Example 6.6.1.

Potential Energy

The potential function is not changed, but rather specialized to the mix of polynomials and ex-
ponentials. As a result, the same properties hold as before. For example, the potential of a list
can be given by the following due to Lemma 6.4.2:

Φ(v : L(τ) | a⃗) =
Dmax∑
i=1

Bmax∑
j=2

a⃗di,j ·
(
|v|
i

){
|v|+ 1

j

}
+
∑
v′∈v

Φ(v′ : τ | λi. a⃗e.i)
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However, there is one new useful comment to make about potential energy: Demotion does
not gain energy. This property is formalized as Lemma 6.6.2.

Lemma 6.6.2 (demotion energy). Demotion does not gain energy.

a⃗ <: b⃗ =⇒ Φ(V : Γ | a⃗) ≥ Φ(V : Γ | b⃗)

Proof. This statement is proven by cases over which rule is used to obtain the relation<: between
a⃗ and b⃗. Becauses lists have a nice closed form for potential energy given by Lemma 6.4.2, the
list case is straightforward. The tree case, however, is more involved.

D-List Suppose this rule was used to infer the subtyping relation:

D-LIST

dom(⃗a) = dom(⃗b) = {i.d0 ,2} ∪ {i.dk ,1 | 1 ≤ k ≤ Dmax}
a⃗i.d0 ,2 − b⃗i.d0 ,2 = p ∀k. b⃗i.dk,1 − a⃗i.dk,1 = p p ≥ 0

a⃗, c⃗ <: b⃗, c⃗

Then its premisses hold by inversion. Further there is some list in V , typed by Γ, at index i, and
annotated by a⃗ and b⃗. Let that list be given by v : L(τ). Because the potential energy is linear
with respect to the annotation (Lemma 3.4.6), it suffices to consider only a⃗ and b⃗, as c⃗ remains
constant. That is, it suffices to show the following, where a⃗′, b⃗′ extend a⃗, b⃗ respectively with zeros
for indices in the domain of c⃗.

Φ(v : L(τ) | λj. a⃗′i.j) ≥ Φ(v : L(τ) | λj. b⃗′i.j)
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This inequality can be shown as follows:

Φ(v : L(τ) | λj. a⃗′i.j)

= a⃗i.d0 ,2 ·
{
|v|
2

}
+

Dmax∑
k=1

a⃗i.dk,1 ·
(
|v|
k

)
Lemma 6.4.2, zeroing

= (⃗bi.d0 ,2 + p) ·
{
|v|
2

}
+

Dmax∑
k=1

(⃗bi.dk,1 − p) ·
(
|v|
k

)
D − List premisses

= b⃗i.d0 ,2 ·
{
|v|
2

}
+ p ·

{
|v|
2

}
+

Dmax∑
k=1

(⃗bi.dk,1 − p) ·
(
|v|
k

)
algebra

= b⃗i.d0 ,2 ·
{
|v|
2

}
+ p ·

∞∑
k=1

(
|v|
k

)
+

Dmax∑
k=1

(⃗bi.dk,1 − p) ·
(
|v|
k

)
identity

≥ b⃗i.d0 ,2 ·
{
|v|
2

}
+ p ·

Dmax∑
k=1

(
|v|
k

)
+

Dmax∑
k=1

(⃗bi.dk,1 − p) ·
(
|v|
k

) (
|v|
k

)
≥ 0

= b⃗i.d0 ,2 ·
{
|v|
2

}
+

Dmax∑
k=1

b⃗i.dk,1 ·
(
|v|
k

)
algebra

= Φ(v : L(τ) | λj. b⃗′i.j) Lemma 6.4.2, zeroing

D-Tree Suppose this rule was used to infer the subtyping relation:

D-TREE

dom(⃗a) = dom(⃗b) = {i.d′0 ,2} ∪ {i.d′k ,1 | 1 ≤ k ≤ Dmax}
a⃗i.d′0 ,2 − b⃗i.d′0 ,2 = p ∀k. b⃗i.d′k,1 − a⃗i.d′k,1 = p p ≥ 0

a⃗, c⃗ <: b⃗, c⃗

Then its premisses hold by inversion. Further there is some tree in V , typed by Γ, at index i, and
annotated by a⃗ and b⃗. Let that tree be given by v : T (τ). Because the potential energy is linear
with respect to the annotation (Lemma 3.4.6), it suffices to consider only a⃗ and b⃗, as c⃗ remains
constant. That is, it suffices to show the following, where a⃗′, b⃗′ extend a⃗, b⃗ respectively with zeros
for indices in the domain of c⃗.

Φ(v : T (τ) | λj. a⃗′i.j) ≥ Φ(v : T (τ) | λj. b⃗′i.j)
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To show this inequality,first note the following identity:

δ(A, λj. a⃗′i.j) =
A
◀ (λj. a⃗′i.j)c − λj. a⃗′i.j(c) def

=
A
◀ (λj. a⃗′i.j)c zeroing

= a⃗i.d0 ,2 + a⃗i.d1 ,1 def

= (⃗ai.d0 ,2 − p) + (⃗ai.d1 ,1 + p) algebra

= b⃗i.d0 ,2 + b⃗i.d1 ,1 D − Tree premisses

=
A
◀ (λj. b⃗′i.j)c def

=
A
◀ (λj. b⃗′i.j)c + λj. b⃗′i.j(c) zeroing

= δ(A, λj. b⃗′i.j) def

Then note the following relation between
A
◀ (λj.a⃗′i.j) and

A
◀ (λj.b⃗′i.j). Specifically, let

d⃗ match
A
◀ (λj.b⃗′i.j) except at index dDmax ,1 , where d⃗dDmax ,1

=
A
◀ (λj.b⃗′i.j)dDmax ,1

+ p. Then
A
◀ (λj.b⃗′i.j) ≤ d⃗ <:

A
◀ (λj.a⃗′i.j). The demotion part of this relation can be checked by considering

the values of these annotation maps at each kind of index where 2 · p units of base-2 energy get
demoted.

At index dc:

d⃗c =
A
◀ (λj.b⃗′i.j)c def

= b⃗i.d0 ,2 + b⃗i.d1 ,1 def

= (⃗ai.d0 ,2 − p) + (⃗ai.d1 ,1 + p) D − Tree premisses

= a⃗i.d0 ,2 + a⃗i.d1 ,1 algebra

=
A
◀ (λj.a⃗′i.j)c def

At index d0 ,2 :

d⃗d0 ,2 =
A
◀ (λj.b⃗′i.j)d0 ,2 def

= 2 · b⃗i.d0 ,2 def

= 2 · (⃗ai.d0 ,2 − p) D − Tree premiss

= 2 · a⃗i.d0 ,2 − 2 · p algebra

=
A
◀ (λj.a⃗′i.j)d0 ,2 − 2 · p def
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At index dDmax ,1 :

d⃗dDmax ,1
=

A
◀ (λj.b⃗′i.j)dDmax ,1

+ p def

= b⃗dDmax ,1
+ p def

= (⃗adDmax ,1
+ p) + p D − Tree premiss

= a⃗dDmax ,1
+ 2 · p algebra

=
A
◀ (λj.a⃗′i.j)dDmax ,1

def

At index dk ,1 for k < Dmax :

d⃗dk,1 =
A
◀ (λj.b⃗′i.j)dk,1+

A
◀ (λj.b⃗′i.j)dk+1 ,1

def

= b⃗i.dk,1 + b⃗idk+1 ,1
def

= (⃗ai.dk,1 + p) + (⃗aidk+1 ,1
+ p) D − Tree premiss

= a⃗i.dk,1 + a⃗idk+1 ,1
+ 2 · p algebra

=
A
◀ (λj.a⃗′i.j)dDmax ,1

+ 2 · p def

And at other indices, each map is just 0 by definition. Thus, D-Tree applies, deriving that

d⃗ <:
A
◀ (λj.a⃗′i.j).

With these relations in mind, this case can finally be finished as follows:

Φ(node(v1, v2, v3) : T (τ) | λj. a⃗′i.j)

= δ(A, λj. a⃗′i.j) + Φ(v1 : T (τ) |
A
◀ (λj. a⃗′i.j)) + Φ(v2 : τ | λi. 0) + Φ(v3 : T (τ) |

A
◀ (λj. a⃗′i.j)) def

= δ(A, λj. b⃗′i.j) + Φ(v1 : T (τ) |
A
◀ (λj. a⃗′i.j)) + Φ(v2 : τ | λi. 0) + Φ(v3 : T (τ) |

A
◀ (λj. a⃗′i.j)) identity

≥ δ(A, λj. b⃗′i.j) + Φ(v1 : T (τ) | d⃗) + Φ(v2 : τ | λi. 0) + Φ(v3 : T (τ) | d⃗) IH

≥ δ(A, λj. b⃗′i.j) + Φ(v1 : T (τ) |
A
◀ (λj. b⃗′i.j)) + Φ(v2 : τ | λi. 0) + Φ(v3 : T (τ) |

A
◀ (λj. b⃗′i.j)) Lemma 3.4.5

= Φ(node(v1, v2, v3) : T (τ) | λj. b⃗′i.j) def

Soundness

The soundness of mixed polynomial/exponential AARA is given as Theorem 6.6.3. This theo-
rem only needs to take into account the new demotion rule, and otherwise proceeds exactly as in
Theorem 6.4.3, just specialized to the particular recurrence for mixed polynomials and exponen-
tials. Otherwise, it continues to be the case that the initial potential energy of the context bounds
the peak cost of evalution, and the difference between initial and final energies bounds the net
cost.
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Theorem 6.6.3 (demotion soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | a⃗ ⊢ e : τ | b⃗ (AARA types the expression in that environment)

then
• v : τ (return well-formed)
• Φ(V : Γ | a⃗) ≥ p (initial bounds peak)
• Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p (diff. bounds net)

Proof. This proof proceeds by induction exactly as Theorem 6.4.3, but with one new structural
typing rule to consider for demotion. I only show that new rule here.

Demotion Suppose the last rule applied for the typing judgment is D-Demote.

D-DEMOTE

Γ | a⃗′ ⊢ e : τ | b⃗′ a⃗′ <: a⃗ b⃗ <: b⃗′

Γ | a⃗ ⊢ e : τ | b⃗

Then the premiss of this rule holds by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | a⃗′ ⊢ e : τ | b⃗′ to learn:

(1) v : τ

(2) Φ(V : Γ | a⃗′) ≥ p

(3) Φ(V : Γ | a⃗′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. These remaining cost bounds can be obtained from from inequali-
ties (2) and (3) by applying the demotion energy lemma Lemma 6.6.2 alongside the annotation
subtyping relations a⃗′ <: a⃗ and b⃗ <: b⃗′.

Example 6.6.1. To demonstrate the utility of mixed polynomial exponential resource functions,
consider the function subSum’ in Figure 6.9. This function solves the NP-complete problem
subset sum by brute force for sets represented by lists with repetition. Subset sum asks if a subset
of a given finite set8 of numbers sums to some target. The code for subSum’ assumes this set is
represented by a list with possible repetitions, so to consider each number in a set only once, it
filters these repititions out dynamically. This filtering occurs by iterating over the list using the
function remove.

Now consider the cost of running subSum’ on a list of length n. If each Boolean or arith-
metic operation accrues one unit of cost, then its brute force approach has at least exponential
cost. However, the use of the function remove makes the cost more complicated. Letting

8Often subset sum is formulated using a multiset instead of a set. However, both definitions are NP-complete.
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1 fun subSum’ (nums, target) = case nums of
2 | [] -> target = 0
3 | n::ns ->
4 let ns’ = remove n ns in
5 let with_n = subSum’ (ns’, target - n) in
6 let without_n = subSum’ (ns’, target) in
7 with_n || without_n

Figure 6.9: Code for subset sum not counting repetitions

1 fun subSum’ (nums, target) = (* nums: 1,2,0,1 *)
2 | [] -> (* []: 0,0,0,1 *)
3 let _ = tick{1} in target = 0 (* []: 0,0,0,0 *)
4 | n::ns -> (* ns: 2,6,1,4 *)
5 let ns’ = remove n ns (* ns’: 2,6,0,4 *)
6 let _ = tick{1} in let t = target - n (* ns’: 2,6,0,3 *)
7 let with_n = subSum’ (ns’, t) in (* ns’: 1,4,0,2 *)
8 let without_n = subSum’ (ns’, target) in (* ns’: 0,2,0,1 *)
9 let _ = tick{1} in with_n || without_n (* ns’: 0,2,0,0 *)

Figure 6.10: Let-normal code for subSum’ with energy comments and no demotion

remove consume cost equal to the length of its input list, one can prove by induction that run-
ning the total cost of running subSum’ is at worst 4 · 2n − n− 3.

Because the exact cost bound involves both exponential and polynomial terms, itcannot be
tightly bounded by an AARA system without exponentials and polynomials. This subsection
now proceeds to type this function using mixed exponential and polynomial AARA both with and
without demotion, demonstrating how demotion is necessary for achieving a tight cost analyis.

First consider typing subSum’ without demotion. This AARA system finds a net cost bound
of n · 2n + 2 · 2n − n − 1 =

(
n
1

){
n+1
2

}
+ 2 ·

{
n+1
2

}
+ 1. Such a cost corresponds to subSum’

having an AARA type like ⟨L1,2,0(Z) ⊗ Z; 1⟩ → ⟨B; 0⟩ ∼ L0,0,0(Z) ⊗ Z, where the 1, 2, 0
refers to the units of linear-base-2 energy, base-2 energy, and linear energy, respectively. The
annotation bookkeeping in the comments of of Figure 6.10 shows that (the let-normal version
of) subSum’ can indeed be assigned this type, where the the comment x : a, b, c, d represents
the context at that line of the program having d units of free energy and a list x with a units of
linear-base-2 energy, b units of base-2 energy, and c units of linear energy. The bound found
here is not tight, which can be seen because the last line leaves two units of base-2 energy which
must be weakened away and wasted. (This energy cannot be recovered because unshifting the
annotation map for ns’ would result in negative entries.)

Now consider typing subSum’ with demotion. This AARA system finds a net cost bound
of 4 ·

{
n+1
2

}
−
(
n
1

)
+1 = 4 ·2n−n−3, which is the exact bound of interest. To do so, this system

makes use of the fact that it can use negative annotations for polynomial resource functions so
long as they do not exceed the base-2 annotation in magnitude. Indeed, 4 ≥ |−1|, so this system
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1 fun subSum (nums, target) = (* nums: 4,-1,1 *)
2 | [] -> (* []: 0,0,1 *)
3 let _ = tick{1} in target = 0 (* []: 0,0,0 *)
4 | n::ns -> (* ns: 8,-1,4 *)
5 let ns’ = remove n ns (* ns’: 8,-2,4 *)
6 let _ = tick{1} in let t = target - n (* ns’: 8,-2,3 *)
7 let with_n = subSum (ns’, t) in (* ns’: 4,-1,2 *)
8 let without_n = subSum (ns’, target) in (* ns’: 0,0,1 *)
9 let _ = tick{1} in with_n || without_n (* ns’: 0,0,0 *)

Figure 6.11: Let-normal code for subSum’ with energy comments and demotion

may consider a type of ⟨L4,−1(Z) ⊗ Z; 1⟩ → ⟨B; 0⟩ ∼ L0,0(Z) ⊗ Z, where the 4,−1 refers
to having four units of base-2 energy and −1 units of linear energy. This type can be justified
by the energy accounting of Figure 6.11, which uses a similar comment notation to the previous
example. This bound can also be seen to be tight because the energy accounting wastes no energy
through weakening, unlike the previous example. Thus, demotion is a useful optimization to the
mixed polynomial/exponential system of AARA.

6.7 Additional Recurrences

I now show three additional examples of potentially useful linear recurrences beyond those for
binomial coefficients and Stirling numbers of second kind. Some of these recurrences are not
directly integrable into AARA without additional work but are still provided to show that this
chapter’s techniques show promise for further development of AARA’s resource functions.

Harmonic Numbers

It is possible to get a linear recurrence for harmonic numbers Hn by mixing them with polyno-
mials, letting Rk(n) =

(
n
k

)
·Hn. The recurrence for such resource functions is given as follows:

Rk(n) =


Hn k = 0

0 n = 0
1
k

(
n−1
k−1

)
+Rk(n− 1) +Rk−1(n− 1) otherwise

However, note this recurrence has a dependence on both the binomial coefficient
(
n−1
k−1

)
and

the harmonic numberHn, which does not fit the recurrence pattern laid out in this chapter. While
binomial coefficients can be handled using the recurrence of Pascal’s identity, Harmonic num-
bers are harder to pin down. Nonetheless, Hn ∈ Θ(log(n)) and there has been work on logarith-
mic resource functions [89]. This recurrence therefore shows a plausible route to representing
quasipolynomial cost bounds like n · log(n), which currently do not exist in the AARA literature.
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Factorials

It is possible to get a linear recurrence for factorials n! by mixing them with polynomials, letting
Rk(n) =

(
n
k

)
n!. The recurrence for such resource functions is given as follows:

Rk(n) =


1 k = 0

0 k ̸= 0 ∧ n = 0

(k + 1) ·Rk+1(n− 1) + (2k + 1) ·Rk(n− 1) + k ·Rk−1(n− 1) otherwise

However, note that this recurrence for Rk(n) depends on the higher-index term Rk+1(n− 1).
The dependence on increasing indices makes it difficult to finitely bound how many such indices
should be considered by the AARA index system. Perhaps future work can find a way around
this obstacle.

Step Functions

It is possible to get a linear recurrence giving a step function, providing energy only for data
structures exceeding a certain size. By mixing such step functions with other resource functions,
costs can be found that depend only on the sizes of larger data structures. To develop such a
recurrence for a size cutoff k, let Rk(n) be defined as follows:

Rk(n) =


1 k = 0

0 k ̸= 0 ∧ n = 0

Rk−1(n− 1) otherwise

6.8 Related Work
While this work seems to be the first to use Stirling numbers as a basis for exponential functions,
various work has previously considered exponential functions.

In AARA

Aside from logarithms [89], there has not really been other work in AARA concerned with
deriving non-polynomial cost bounds.9

The one place that exponential resource functions were previously mentioned in the context
of AARA was the in the work of Hofmann and Moser [88]. This work adapts AARA to term
rewriting and uses tree automata to generate multivariate resource functions (which I discuss
more in Chapter 7). They briefly point out that exponential cost bounds can be generated by
such tree automata, but this idea is explored no further. It is not clear if their resource functions
actually subsume the range of resource functions generated by Stirling numbers of the second
kind (which are proven to be maximally expressive in Section 6.5).

9I speculate that this lack of development could be because there are not many other common classes of cost
functions outside of (mixes of) polynomials, exponentials, and logarithms. Perhaps the next most likely cost bounds
of interest would be factorials, roots, or—in a multivariate setting—maxima.
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Outside of AARA

Outside of AARA, many other automatic cost analysis systems have harnessed the power of
linear recurrences for exponential cost analyses. This ubiquity is because linear recurrences are
easily solvable, and much work in automatic cost analysis is based on solving recurrences, as
discussed in Chapter 4. Other approaches also come upon exponential cost bounds from other
angles, like ranking functions [31].
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Chapter 7

Multivariate Exponentials

This chapter is a direct continuation of Chapter 6, extending the support of exponential cost
bounds to the multivariate setting. So far, this thesis has only dealt with so-called univariate
AARA, where resource functions are linear combinations of single-variable terms like x2+5 · y.
However, this chapter (and this chapter alone) now makes the foray into multivariate resource
functions [65, 80], which are linear combinations of products of single-variable terms like x ·
y2 + x+5 · z · y. Such multivariate resource functions are not only more expressive, but also are
critical for reasoning about key invariants between multiple data structures, such as between an
argument and accumulator in a tail-recursive function.

Some observations of Chapter 6 are key to making this chapter’s multivariate system work.
This chapter relies intimately on the properties of offset Stirling numbers of the second kind. In
particular, this work makes indispensable use of offset Stirling numbers’ combinatorial interpre-
tation.

This chapter is terminal work in this thesis. That is, no other chapter builds off of this chap-
ter’s system.

7.1 The Problem: Tail Recursion and Accumulators
While multivariate cost bounds might seem rather exotic, they can turn out to be critical for

reasoning about how some simple code transforms potential energy. This importance is espe-
cially apparent when observing the analysis behaviour on common tail-recursive code patterns
making use of accumulators. For an example, consider the reversing function rev in Figure 7.1.

1 fun revApp (a,b) =
2 case a of
3 | [] -> b
4 | x::xs -> revApp (xs, x::b)
5
6 fun rev lst = revApp (lst, [])

Figure 7.1: Code for rev and revApp
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This code is a standard1 tail-recursive implementation of such a function and uses a helper func-
tion revApp with a list accumulator.

Suppose that rev incurs no cost, and thus only transforms potential energy. If one calls rev
on a list of length n carrying n2 units of energy, then one should expect the output list to also
carry n2 units of energy, as the output has the same length. However, this expectation is trickier
than it seems. To assign n2 energy to the output list, it would be necessary for intermediate
program states in revApp to represent this quantity in terms of the sizes of the lists a and b.
Since |a|+|b| = n, this representation takes the form of n2 = (|a|+|b|)2 = |a|2+2·|a|·|b|+|b|2,
which includes the multivariate term 2 · |a| · |b|. Thus, to analyze such functions, Hoffmann et al.
have introduced multivariate polynomial resource functions [80]. This work has since become
the base of the most developed implementation of an AARA typechecker at the time of writing,
Resource Aware ML.

The same problem arises using exponential energy. Suppose rev is called on a list of length
n carrying 2n units of energy. Then intermediate lists a and b need to represent 2n = 2|a|+|b| =
2|a| · 2|b| units of energy, which also is multivariate. Thus, support of multivariate exponential
energy is needed for exponential AARA to analyze code like rev.

Much of the development of multivariate cost bounds can follow exactly as in the work
of Hoffmann, Aehlig, and Hofmann [80]. However, there are two key wrinkles to using their
work approach: in their work, both sharing and the definition of potential energy are intimately
intertwined with properties of binomial coefficients. These are the two main problems that my
work must overcome to adapt the approach to multivariate exponentials.

Sharing Sharing is tricky to define in a multivariate setting. For example, if some data structure
x with quadratic energy is split between x’s identical copies y and z, then the energy quantity
|x|2, could be represented by either one of the univariate polynomials |y|2 or |z|2, or by the
multivariate polynomial |y| · |z|. The multivariate option depends heavily on the fact that the
product of linear functions is a quadratic function. For the best results, it is important that AARA
can make use of all such relations between polynomials of any degree.

It turns out that the the best way to accomplish this goal is to show that the conical space of
resource functions is closed under the introduction of products. For polynomials, this property
boils down to showing that

(
n
i

)
·
(
n
j

)
is always equal to the conical combination

∑
k ck.

(
n
k

)
for

some coefficients ck ≥ 0 independent of n. This choice of ck is actually unique because binomial
coefficients are linearly independent functions. As a result, conical combination of resource
functions of the form

(
n
i

)
·
(
n
j

)
can be mapped in one and only one way to equivalent conical

combinations of resource functions of the form
(
n
k

)
. This mapping yields the annotation map for

sharing⋎y,z
x , where n = |x| = |y| = |z|. The trick in this chapter will be to show the that conical

space of exponential resource functions is likewise closed under the introduction of products.

Potential Energy Definition The only preexisting multivariate versions of AARA [65, 80] as-
sign potential energy via an intricate pattern-matching annotation index system. For example, the
quadratic potential energy of a unit list x is represented with an annotation index of a matching
type, in this case a list of two units, [⟨⟩, ⟨⟩]. This annotation index represents energy counted by

1The standard library of, e.g., OCaml implements rev in exactly this way.
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the number of ways the index can pattern match the list using a special notion of matching. In
this case, this index matches any ordered sequence of two (possibly-non-adjacent) unit values in
the list. That is, it counts the number of ways to select two units in the list x, which is

(|x|
2

)
as

desired. In general, a list of k units gives the annotation index for
(|x|
k

)
.

While the previous pattern-match counting is not too bad, it can quickly get complicated. For
example, [[⟨⟩, ⟨⟩], [⟨⟩]] counts a rather exotic property of unit list lists depending upon both outer
and inner list lengths. More specifically, for a list x, it counts

∑
0≤i<j<|x|

(|xi|
2

)
·
(|xj |

1

)
, where xi is

the ith (0-indexed) list in x. This kind of complex dependence is important to support because it
arises naturally when breaking up nested lists into a head and tail—there should be multivariate
annotations concerning, e.g., the product of the sizes of the head list and tail list.

Unfortunately, these systems rely heavily on combinatorial properties of binomial coeffi-
cients. Thus they are unsuited for the Stirling numbers that represent exponentials. A new
annotation index system must be developed based combinatorial properties of Stirling numbers
to properly support multivariate exponentials.

7.2 The Linear Idea: More Recurrences

In this section I provide the key ideas to solve the problems identified in Section 7.1. These ideas
both work by leveraging the recurrence for Stirling numbers. Later sections of this chapter use
these ideas to define the desired multivariate exponential system.

7.2.1 Conical Closure

To begin to solve the problems around sharing, I provide Lemma 7.2.1. This lemma gives the nec-
essary relation between conical combinations of products of offset Stirling numbers and conical
combinations of Stirling numbers simpliciter. The provided proof relies on the linear recurrence
for Stirling numbers given in Chapter 6. More specifically, it relies on the recurrence for mixing
Stirling numbers with themselves.

Lemma 7.2.1 (offset Stirling number conical products). For all finite sets of coefficients ai,j ≥ 0
there exists a unique finite set of coefficients bk ≥ 0 such that∑

i,j≥0

ai,j ·
{
n+ 1

i+ 1

}
·
{
n+ 1

j + 1

}
=
∑
k≥0

bk ·
{
n+ 1

k + 1

}

Proof. To prove this statement, it suffices to show that it holds for the singleton conical combi-
nation of one basis resource function

{
n+1
i+1

}
·
{
n+1
j+1

}
. This simplified statement suffices because
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of the following:

∑
i,j≥0

ai,j ·
{
n+ 1

i+ 1

}
·
{
n+ 1

j + 1

}
=
∑
i,j≥0

ai,j · (
∑
k≥0

ci,j,k

{
n+ 1

k + 1

}
) singleton case

=
∑
k≥0

(
∑
i,j≥0

ai,j · ci,j,k) ·
{
n+ 1

k + 1

}
algebra

The uniqueness of this representation follows because offset Stirling numbers are linearly inde-
pendent. Thus, bk =

∑
i,j≥0 ai,j · ci,j,k suffices.

It now remains to be shown that for all i, j, there exists a finite set of coefficients ci,j,k ≥ 0
such that {

n+ 1

i+ 1

}
·
{
n+ 1

j + 1

}
=
∑
k≥0

ci,j,k ·
{
n+ 1

k + 1

}

To show that this property holds, define ci,j,k inductively as follows. It can then be checked
that this definition suffices, where higher lines take priority if multiple cases match.

ci,j,k =



1 i = 0 ∧ j = k

1 j = 0 ∧ i = k

0 i = 0 ∨ j = 0 ∨ k = 0

0 (i+ 1) · (j + 1) ≤ k

((i+ 1) · (j + 1)− k − 1) · ci,j,k−1

+(i+ 1) · ci−1,j,k−1 + (j + 1) · ci,j−1,k−1 + ci−1,j,k−1 otherwise

To check this definition’s sufficiency, it must be shown that ci,j,k ≥ 0 for all i, j, k ≥ 0 and
that these coefficients induce the equality

{
n+1
i+1

}
·
{
n+1
j+1

}
=
∑

k≥0 ci,j,k ·
{
n+1
k+1

}
To show nonnegativity, one can induct on the definition of ci,j,k. The only nontrival case is

the final one where (i + 1) · (j + 1) ≥ k + 1, which leaves every coefficient nonnegative in the
linear combination of subcases. By induction, the subcases are also nonnegative, so the whole
linear combination is also nonnegative. Thus the only nontrivial case of the induction holds,
completing the nonnegativity proof.

To continue, observe that i and j are treated symmetrically, so it suffices to consider only the
cases where i ≤ j. Finally, this definition’s sufficiency can be confirmed by inducting on n and
i to show that the needed equality holds.
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n≥0,i=0

{
n+ 1

i+ 1

}
·
{
n+ 1

j + 1

}
=

{
n+ 1

1

}
·
{
n+ 1

j + 1

}
i = 0

=

{
n+ 1

j + 1

} {
n+ 1

1

}
= 1

= c0,j,j ·
{
n+ 1

j + 1

}
c0,j,j = 1

=
∑
k≥0

c0,j,k ·
{
n+ 1

k + 1

}
j ̸= k =⇒ c0,j,k = 0

n=0,i>0 This case works as follows, recalling that j > 0 since j ≥ i.

{
n+ 1

i+ 1

}
·
{
n+ 1

j + 1

}
=

{
1

i+ 1

}
·
{
n+ 1

j + 1

}
n = 0

= 0 i > 0 =⇒
{

1

i+ 1

}
= 0

=
∑
k>0

ci,j,k

{
1

k + 1

}
k > 0 =⇒

{
1

k + 1

}
= 0

=
∑
k>0

ci,j,k

{
n+ 1

k + 1

}
n = 0

=
∑
k≥0

ci,j,k

{
n+ 1

k + 1

}
i, j > 0 =⇒ ci,j,0 = 0

n>0,i>0 This case works as follows, recalling that j > 0 since j ≥ i.
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{
n+ 1

i+ 1

}
·
{
n+ 1

j + 1

}
= (i+ 1) · (j + 1) ·

{
n

i+ 1

}
·
{

n

j + 1

}
+ (i+ 1) ·

{
n

i

}
·
{

n

j + 1

}
+ (j + 1) ·

{
n

i+ 1

}
·
{
n

j

}
+

{
n

i

}
·
{
n

j

}
recurrence

= (i+ 1) · (j + 1) ·
∑
k≥0

ci,j,k ·
{

n

k + 1

}
+ (i+ 1) ·

∑
k≥0

ci−1,j,k ·
{

n

k + 1

}
+ (j + 1) ·

∑
k≥0

ci,j−1,k ·
{

n

k + 1

}
+
∑
k≥0

ci−1,j−1,k ·
{

n

k + 1

}
IH

=
∑
k≥0

(((i+ 1) · (j + 1)− k − 1) · ci,j,k + (i+ 1) · ci−1,j,k + (j + 1) · ci,j−1,k + ci−1,j−1,k) ·
{

n

k + 1

}
+
∑
k≥0

ci,j,k · (k + 1) ·
{

n

k + 1

}
algebra

=
∑
k≥0

ci,j,k+1 ·
{

n

k + 1

}
+
∑
k≥0

ci,j,k · (k + 1) ·
{

n

k + 1

}
def

=
∑
k≥1

ci,j,k ·
{
n

k

}
+
∑
k≥0

ci,j,k · (k + 1) ·
{

n

k + 1

}
reindexing

=
∑
k≥0

ci,j,k ·
{
n

k

}
+
∑
k≥0

ci,j,k · (k + 1) ·
{

n

k + 1

}
i, j > 0 =⇒ ci,j,0 = 0

=
∑
k≥0

ci,j,k · ((k + 1) ·
{

n

k + 1

}
+

{
n

k

}
) algebra

=
∑
k≥0

ci,j,k ·
{
n+ 1

k + 1

}
recurrence

Using the construction for coefficients defined in Lemma 7.2.1, one can find that, e.g.,
{
n+1
2

}2
is equivalent to 6 ·

{
n+1
4

}
+ 6 ·

{
n+1
3

}
+
{
n+1
2

}
. Moreover, as guaranteed by the lemma, every

coefficient in this linear combination of Stirling numbers is nonnegative, so it lies in the conical
space of offset Stirling numbers.

Because the full space of resource functions in this multivariate system includes at least the
offset Stirling numbers, Lemma 7.2.1 suggests that sharing could be possible to define using only
conical combinations. However, the full multivariate system includes complicated variations of
resource functions that do not clearly reduce to the case handled by this lemma. Thus, the general
case must be proven in Section 7.6.

7.2.2 Combinatorial Counting

To find a replacement for the pattern-match counting of previous multivariate work, it is neces-
sary to take a deeper look at the combinatorial interpretation afforded by offset Stirling numbers.
Only then can one properly extend the Stirling-number recurrence to the multivariate setting. I
give the high-level overview of my solution here, and the formal development in Section 7.5.

The development of the multivariate polynomial pattern-match counting is motivated by the
combinatorial interpretation of binomial coefficients and their recurrence

(
n+1
k+1

)
=
(

n
k+1

)
+
(
n
k

)
.
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Because
(
n
k

)
counts the number of ways to select k elements out of n, the ideas of previous work

is to develop a mechanism that naturally picks out this selection. The trick is then to extend this
mechanism in a principled manner so it can be recursively applied over all the various values that
might arise in the system. One can develop a natural mechanism for this purpose by studying the
binomial coefficient recurrence. Indeed, generalizing this recurrence has been key to extending
multivariate AARA to regular recursive types [65].

In the end, the right mechanism turns out to be a flavor of pattern-matching. List matching
in particular just selects list elements, and these list elements can then be recursively matched at
their types. The resulting counting method closely matches how Pascal’s identity for

(
n+1
k+1

)
can

be derived:
• skip the first element and select all k + 1 elements from the remaining n (counting

(
n

k+1

)
)

• select the first element and then select k elements from the remaining n (counting
(
n
k

)
)

When an element is selected, the pattern-matching can then naturally recurse on that element,
extending to nested lists in a principled manner.

For multivariate exponentials, a similar mechanism is needed to count offset Stirling num-
bers. Using the combinatorial understanding of Stirling numbers, the offset Stirling number{
n+1
k+1

}
counts the number of ways to partition all n + 1 elements into k + 1 disjoint nonempty

subsets. However, this interpretation does not map well onto the task at hand because
{
n+1
k+1

}
is

the resource function for a list of length n—there is an off-by-one issue, and thus this interpreta-
tion cannot naturally select elements of the list to recurse on.

A better interpretation to use is the combinatorial interpretation specific to offset Stirling
numbers:

{
n+1
k+1

}
counts the number of ways to select k nonempty disjoint subsets of n elements.2

Then the idea should be to recursively match list elements according to which of these selected
subsets they belong to (if any). For ease of reference, consider these subsets in the order of their
highest-index list elements. This ordering means that the “first” subset is the first to be exhausted
when consuming list elements in their natural order. This interpretation yields the following way
of deriving the recurrence

{
n+1
k+1

}
= (k + 1) ·

{
n

k+1

}
+
{
n
k

}
:

• do not put the first element in any subset, so that all k nonempty subsets come from the
remaining n elements (counting

{
n

k+1

}
, giving the 1 in (k + 1) ·

{
n

k+1

}
)

• pick the first element as an element of one of the k subsets, but not as the last element,
so that the remaining n− 1 elements must still be distributed among k nonempty subsets,
(counting

{
n

k+1

}
a total of k times, giving the k in (k + 1) ·

{
n

k+1

}
)

• pick the first element as the last element of some subset—this subset must be the first in
subset order—and then the remaining n − 1 elements must be distributed among k − 1
nonempty subsets (counting

{
n
k

}
)

7.3 Annotation Indices
The multivariate annotation indices of a type τ are given by the set MInd(τ) defined in Fig-
ure 7.2. To simplifiy presentation, this definition uses the same convention from Figure 3.5

2This interpretation can be derived from the previous by discarding the partition that contains the n+1st element.
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MInd(1) = {⟨⟩} MInd(τ
a⃗|⃗b→ σ) = {⟨⟩} MInd(τ ⊗ σ) = ⟨MInd(τ), MInd(σ)⟩

MInd(τ ⊕σ) = l(MInd(τ))∪r(MInd(σ)) MInd(L(τ)) = {[ ]}∪MInd(τ) ::MInd(L(τ))

MInd(T (τ)) = {[ ]} ∪MInd(τ) ::MInd(T (τ))

MInd(Γ) =
∏

x∈dom(Γ)

{x 7→ i | i ∈ MInd(Γ(x))}

Figure 7.2: Multivariate annotation indices

that operations distribute over sets. The annotation indices for a type τ take the form of val-
ues of the type τ (with a few exceptions), which differs from the path-based indices used in
the rest of this thesis. These values are used in Section 7.5 to dictate patterns for combinatorial
pattern-matching. The number of ways these patterns match define the resource functions these
annotations indices correspond to.

The exceptions to the rule that MInd(τ) gives the values of τ are functions and trees. These
exceptions occur for two distinct reasons which I outline in the following paragraphs.

For functions, I use the unit value ⟨⟩ because otherwise there would be many function values
that all behave identically. Functions do not carry any potential energy, so the choice of index
does not matter.

For trees, I use indices that coincide with list values rather than tree values. This choice
follows the development in Hoffmann’s thesis3 [76], where trees are treated as lists of their ele-
ments in preorder for potential energy purposes, as defined in Definition 7.3.1. The later work of
Grosen et al. shows that trees (and regular recursive types in general) can be given natural multi-
variate annotation indices that coincide with their values [65], but I leave such generalization for
future work. Further, the most mature AARA implementation Resource Aware ML (RaML) [81]
supports multivariate resource functions using the trees-as-lists method, so this chapter’s work is
suited for implementation in RaML.

Definition 7.3.1 (preorder). The preorder traversal of a tree is given by the map pre from trees
to lists. Letting @ be the list append operation, pre is defined by the following:

pre(leaf) = [ ]

pre(node(v1, v2, v3)) = v1 :: (pre(v2)@pre(v3))

Despite being modeled after values instead of paths, the multivariate annotation indices given
in Figure 7.2 are all quite close to their univariate counterparts. I detail the interesting differences
in the following paragraphs.

3Hoffmann’s thesis gives the tree details that are missing from Hoffmann, Aehlig, and Hofmann’s work [80].
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The first key difference is that products, and by extension whole type contexts, are essen-
tially indexed by Cartesian products of their elements’ indices. Because these structures index
multiple elements, these annotation indices have the ability correspond to resource functions that
depend on the properties of multiple values. This dependency on multiple values is what makes
multivariate resource functions possible.

Another point of interest is that type contexts do not have any special annotation index for
free energy like c. This circumstance occurs because all types already naturally include their own
indices for that purpose, and the labelled collection of these indices is the appropriate such index
for the type context. For example, the free energy index of 1 is ⟨⟩, and that of 1⊗1 is ⟨⟨⟩, ⟨⟩⟩. In
turn, the free energy index of the context x : 1, y : 1⊗1 is the value context x 7→ ⟨⟩, y 7→ ⟨⟨⟩, ⟨⟩⟩.
The free energy indices of an arbitrary type/context are given by C in Definition 7.3.2. The fact
that these indices pick out constant resource functions comes to fruition with the definition of
potential energy in Section 7.5.

Definition 7.3.2 (free energy annotation indices). The function C(τ) gives the set of annotation
indices yielding the constant resource function for a given type τ .

C(τ) =


{⟨⟩} τ = 1 ∨ τ = σ

a⃗|⃗b→ ρ

⟨C(σ), C(ρ)⟩ τ = σ ⊗ ρ

l(C(σ)) ∪ r(C(ρ)) τ = σ ⊕ ρ

{[ ]} τ = L(σ) ∨ τ = T (σ)

Additionally, to extend over contexts, C(Γ) =
∏

x∈dom(Γ){x 7→ i | i ∈ C(Γ(x))}.

Finally, one might notice that the definition of Figure 7.2 actually yields infinitely many
annoation indices for a given list or tree. In other chapters of this thesis, the systems bake in
a finite cutoff like Dmax . In this chapter, however, the cutoff is left implicit. There are more
parameters one might consider to bound the multivariate annotation indices, and determining the
best cutoff can be left up to the user. It only matters that some cutoff is used, as AARA’s current
method of automation can only handle the inference of finitely many annotations.

7.4 Types

The types for multivariate AARA are almost identical to the univariate types from Section 5.3.1.

However, there is one change concerning function types τ
a⃗|⃗b→ σ. This change is that the an-

notation indices in the domains of the annotation vectors a⃗ and b⃗ need to account for the new
annotation index system. For this purpose, a⃗ is indexed by MInd(arg : τ) and b⃗ is indexed by
MInd(arg : τ, ret : σ). There is no more need for a free energy index like c for the same
reasons discussed in Section 7.3.
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Φ(V : Γ | a) =

{
∞ • used in V∑

i∈MInd(Γ) a(i) ·
∏

x∈dom(V ) ϕi(x)(V (x)) otherwise
ϕ⟨⟩(v) = 1

ϕr(i)(r(v)) = ϕi(v) ϕl(i)(l(v)) = ϕi(v) ϕr(i)(l(v)) = 0 ϕl(i)(r(v)) = 0

ϕ⟨i, j⟩(⟨v1, v2⟩) = ϕi(v1) · ϕi(v2) ϕ[ ](v) = 1 ϕj :: js([ ]) = 0

ϕj :: js(v :: vs) = ϕj :: js(vs) + ϕj(v) · ϕjs(vs) +
∑

i∈j :: js

ϕi(v) · ϕj :: js(vs)

ϕi(v) = ϕi(pre(v)) (for v : T (τ))

Figure 7.3: Multivariate potential energy definition

7.5 Potential Energy
The potential energy of a well-formed context V : Γ with annotation map a is given by the
expression Φ(V : Γ | a) defined in Figure 7.3. Because of the multivariate nature of this energy,
it does not make as much sense to talk of the energy of a single value as is done in other chapters;
the energy depends on all values that exist in a context.

As a technical detail, this definition first includes a singular special case4 for handling the
nonterminal dummy value • (see Sections 2.4 and 3.6). With this case handled, I assume that no
other values are or contain the dummy value for the remainder of this section.

The definition in Figure 7.3 is then further broken down by annotation index—rather than
by value as in other chapters—to better show off the way that each annotation index contributes.
This contribution is formalized by ϕi(v), which is a heavily value-dependent resource function.
One should think of ϕi(v) as something like

{
v+1
i+1

}
, a generalization of the offset Stirling numbers

over arbitrary programatic values rather than just numbers. Indeed, letting N = L(1) recovers
the numerical offset Stirling numbers.

Despite the different presentation from other chapters, one still finds that this definition is
linear and monotone in its annotation values. The linearity is structurally apparent, as Φ(V : Γ |
a) is defined as a linear combination with coefficients from a. The monotonicity then follows
because the elements of the linear combination are all inductively constructed out of sums and
products of nonnegative numbers. Thus, suitable analogues of Lemmas 3.4.5 and 3.4.6 still
apply.

The resource functions for lists in Figure 7.3 generate the desired exponential functions by
following the combinatorial meaning of the recurrence for offset Stirling numbers discussed in
Section 7.2. (Note that in this definition, I write i ∈ j :: js as shorthand for i in the multiset of
list elements in j :: js, which may include repetitions.) One can see exactly how these resource

4This special case avoids concerns about the well-definedness of 0 · ∞. However, I believe it would also work
to define 0 · ∞ = ∞ for the purposes of resource functions, so that the results of this section would follow with no
special cases.
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functions generalize the desired exponential resource functions via Lemma 7.5.1.

Lemma 7.5.1 (multivariate list energy). Let Sk(n) give the set of k-element sets of nonempty,
disjoint subsets of integers in [1, n]. Order the integer sets in each set of sets s ∈ Sk(n) according
to the order of their largest elements, and let sj pick out the jth smallest such integer set in s.
Then the energy of a list [v1, ..., vn] at a given multivariate annotation index [i1, ..., ik] can be
given the following closed form:

ϕ[i1,...,ik]([v1, ..., vn]) =
∑

s∈Sk(n)

k∏
j=1

∏
m∈sj

ϕij(vm)

Proof. This identity is proven by induction on n and k.

n≥0,k=0 In this case, S0(n) = {∅} because ∅ is the unique 0-element set.

ϕ[ ]([v1, ..., vn]) = 1 def

=
0∏

j=1

∏
m∈∅

ϕij(vm) empty product

=
∑
s∈{∅}

0∏
j=1

∏
m∈∅

ϕij(vm) singleton sum

n=0,k>0 In this case, S = ∅ because there are no nonempty subsets of the empty range.

ϕ[i1,...,ik]([ ]) = 0 def

=
∑
s∈∅

k∏
j=1

∏
m∈sj

ϕij(vm) empty sum
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n>0,k>0 This case follows from some bound manipulation alongside the inductive hypothesis.

ϕ[i1,...,ik]([v1, ..., vn])

= ϕ[i1,...,ik]([v2, ..., vn]) + ϕi1(v1) · ϕ[i2,...,ik]([v2, ..., vn])

+
k∑

ℓ=1

ϕiℓ(v1) · ϕ[i1,...,ik]([v2, ..., vn]) def

=
∑

s∈Sk(n−1)

k∏
j=1

∏
m∈sj

ϕij(vm+1) + ϕi1(v1) ·
∑

s∈Sk−1(n−1)

k−1∏
j=1

∏
m∈sj

ϕij(vm+1)

+
k∑

ℓ=1

ϕiℓ(v1) ·
∑

s∈Sk(n−1)

k∏
j=1

∏
m∈sj

ϕij(vm+1) IH

=
∑

s∈Sk(n)
s.t. ∀j. 1̸∈sj

k∏
j=1

∏
m∈sj

ϕij(vm) + ϕi1(v) ·
∑

s∈Sk(n)
s.t. {1}=s1

k∏
j=2

∏
m∈sj

ϕij(vm)

+
k∑

ℓ=1

ϕiℓ(v1) ·
∑

s∈Sk(n)
s.t. {1}≠s1∧∃j. 1∈sj

k∏
j=1

∏
m∈sj

s.t.m ̸=1

ϕij(vm) add & avoid v1

=
∑

s∈Sk(n)
s.t. ∀j. 1̸∈sj

k∏
j=1

∏
m∈sj

ϕij(vm) +
∑

s∈Sk(n)
s.t. {1}=s1

k∏
j=1

∏
m∈sj

ϕij(vm)

+
k∑

ℓ=1

∑
s∈Sk(n)

s.t. {1}≠s1∧∃j. 1∈sj

ϕiℓ(v1) ·
k∏

j=1

∏
m∈sj

s.t.m ̸=1

ϕij(vm) distribution

=
∑

s∈Sk(n)
s.t. ∀j. 1̸∈sj

k∏
j=1

∏
m∈sj

ϕij(vm) +
∑

s∈Sk(n)
s.t. {1}=s1

k∏
j=1

∏
m∈sj

ϕij(vm)

+
∑

s∈Sk(n)
s.t. {1}≠s1∧∃j. 1∈sj

k∑
ℓ=1

ϕiℓ(v1) ·
k∏

j=1

∏
m∈sj

s.t.m ̸=1

ϕij(vm) commute sums

=
∑

s∈Sk(n)
s.t. ∀j. 1̸∈sj

k∏
j=1

∏
m∈sj

ϕij(vm) +
∑

s∈Sk(n)
s.t. {1}=s1

k∏
j=1

∏
m∈sj

ϕij(vm)

+
∑

s∈Sk(n)
s.t. {1}≠s1∧∃j. 1∈sj

k∏
j=1

∏
m∈sj

ϕij(vm) distribution

=
∑

s∈Sk(n)

k∏
j=1

∏
m∈sj

ϕij(vm) disjoint domains
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Additionally, it can now be shown via Lemma 7.5.2 that the free energy annotation indices act
as desired. Note that, due to sum types, it may be that the sum of multiple indices’ contributions
is what yields the constant resource function λx. 1, as opposed to just a singular annotation index.

Lemma 7.5.2 (free energy annotation indices yield constant). If v : τ , then∑
i∈C(τ)

ϕi(v) = 1

Proof. This statement is proven by induction over the derivation of the well-formedness state-
ment v : τ .

units and functions Suppose the well-formedness statement v : τ concludes with one of the
rules V-Unit or V-Fun. Then C(τ) = {⟨⟩}, and the following equalities hold:

∑
i∈C(τ)

ϕi(v) =
∑
i∈{⟨⟩}

ϕi(v) def

= ϕ⟨⟩(v) substitution

= 1 def

lists and trees Suppose the well-formedness statement v : τ concludes with one of the rules
V-Nil,V-Cons,V-Leaf, or V-Node. Then C(τ) = {[ ]}, and the following equalities hold:

∑
i∈C(τ)

ϕi(v) =
∑
i∈{[ ]}

ϕi(v) def

= ϕ[ ](v) substitution

= 1 def
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V-Pair Suppose the well-formedness derivation concludes with V-Pair so that v = ⟨v1, v2⟩ and
τ = σ ⊗ ρ. Then v1 : σ and v2 : ρ by inversion, and the following equalities hold:

∑
i∈C(σ⊗ρ)

ϕi(⟨v1, v2⟩) =
∑

i∈⟨C(σ), C(ρ)⟩

ϕi(⟨v1, v2⟩) def

=
∑

i∈C(σ),j∈C(ρ)

ϕ⟨i, j⟩(⟨v1, v2⟩) substitution

=
∑

i∈C(σ),j∈C(ρ)

ϕi(v1) · ϕj(v2) def

=
∑
i∈C(σ)

ϕi(v1) ·
∑
j∈C(ρ)

ϕj(v2) algebra

= 1 · 1 IH

= 1 algebra

V-SumL Suppose the well-formedness derivation concludes with V-SumL so that v = l(v′)
and τ = σ ⊕ ρ. Then v′ : σ by inversion, and the following equalities hold:

∑
i∈C(σ⊕ρ)

ϕi(l(v
′)) =

∑
i∈l(C(σ)∪r(C(ρ)))

ϕi(l(v
′)) def

=
∑

i∈l(C(σ))

ϕi(l(v
′)) +

∑
i∈r(C(ρ))

ϕi(l(v
′)) algebra

=
∑
i∈C(σ)

ϕl(i)(l(v
′)) +

∑
i∈C(ρ)

ϕr(i)(l(v
′)) substitution

=
∑
i∈C(σ)

ϕi(v
′) +

∑
i∈C(ρ)

0 def

= 1 +
∑
i∈C(ρ)

0 IH

= 1 algebra
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Sh(⟨⟩, ⟨⟩) = {⟨⟩} Sh(l(i), l(j)) = l(Sh(i, j)) Sh(r(i), r(j)) = r(Sh(i, j))

Sh(l(i), r(j)) = ∅ Sh(r(i), l(j)) = ∅ Sh(⟨i1, i2⟩, ⟨j1, j2⟩) = ⟨Sh(i1, j1), Sh(i2, j2)⟩

Sh([i1, ..., im], [j1, ..., jn]) = seli,j(shuff(m,n)) seli,j(l(p)) = {ip}

seli,j(r(p)) = {jp} seli,j(⟨p, q⟩) = Sh(ip, jq)

Figure 7.4: Sharing annotation index definition

V-SumR Suppose the well-formedness derivation concludes with V-SumR so that v = r(v′)
and τ = σ ⊕ ρ. Then v′ : ρ by inversion, and the following equalities hold:∑

i∈C(σ⊕ρ)

ϕi(r(v
′)) =

∑
i∈l(C(σ)∪r(C(ρ)))

ϕi(r(v
′)) def

=
∑

i∈l(C(σ))

ϕi(r(v
′)) +

∑
i∈r(C(ρ))

ϕi(r(v
′)) algebra

=
∑
i∈C(σ)

ϕl(i)(r(v
′)) +

∑
i∈C(ρ)

ϕr(i)(r(v
′)) substitution

=
∑
i∈C(σ)

0 +
∑
i∈C(ρ)

ϕi(v
′) def

=
∑
i∈C(σ)

0 + 1 IH

= 1 algebra

One effect of this way of setting up potential energy is that values of types that do not nor-
mally carry any energy, like functions and units, now appear to do so, as they have free energy
annotations. However, this appearance does not take into account the multiplicative nature of
the multivariate setting. Because resource functions are constructed through multiplication, the
correct way for a value to contribute no energy is to multiply by 1 rather than to add 0.

7.6 Sharing
This section is set aside to provide the machinery needed to formalize sharing. The key is to
be able to properly show that the space of resource functions is closed under products, which is
mostly a matter of combinatorial algebra.

Figure 7.4 contains the definition of the sharing annotation index function Sh, which takes
i, j ∈ MInd(τ) and returns a multiset of annotation indices. These indices are eventually
used to determine how to properly share energy through manipulating annotations, as proven
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in Lemma 7.6.2. The function Sh plays the same role for annotation indices as ci,j,k did in
Lemma 7.2.1, which is proven formally in Lemma 7.6.1.

As a notational convention, all operations in the definition of the function Sh are treated as if
they distribute over multisets. For example, a list containing a multiset should be interpreted as
a multiset of lists. The definition case for lists makes use of this notational convention, as well
as the the special shuffle function defined in Definition 7.6.1 to appropriately shuffle list indices,
as well as the function sel to map these list indices to corresponding annotation indices.

Definition 7.6.1 (special shuffle). The special shuffle function shuff is used to “shuffle” ele-
ments of two lists in a special way to include pairs of the two lists’ elements. The function shuff

accomplishes this goal by giving the appropriate shuffles of the list indices, either paired or
tagged to indicate which list they should be associated with. Additionally, not every shuffle is
desirable—shuff must satisfy certain ordering conditions.
Formally, the function shuff takes two numbers n and m and returns all lists of elements from
l([1,m]) ∪ r([1, n]) ∪ ⟨[1,m], [1, n]⟩ that satisfy the following conditions:

• the list contains no repetitions
• each element p ∈ [1,m] is present somewhere, either as l(p) or as ⟨p, −⟩
• each element q ∈ [1, n] is present somewhere, either as r(q) or as ⟨−, q⟩
• for p < m, the last time l(p) or some ⟨p, −⟩ is present in the list is prior to the last time
l(p+ 1) or some ⟨p+ 1, −⟩ is

• for q < n, the last time r(q) or some ⟨−, q⟩ is present in the list is prior to the last time
r(q + 1) or some ⟨−, q + 1⟩ is

This definition is motivated by the proof of Lemma 7.6.1.

Example 7.6.1. To exemplify shuff, consider shuff(1, 2). This set contains the following lists
up to length 3. It also contains many more lists of lengths 4 through 6.

[⟨1, 1⟩, r(2)] [r(1), ⟨1, 2⟩] [⟨1, 1⟩, ⟨1, 2⟩] [l(1), r(1), r(2)] [r(1), l(1), r(2)]

[r(1), r(2), l(1)] [⟨1, 1⟩, r(1), r(2)] [r(1), ⟨1, 1⟩, r(2)] [⟨1, 1⟩, l(1), r(2)]

[⟨1, 1⟩, r(2), l(1)] [l(1), ⟨1, 1⟩, r(2)] [⟨1, 2⟩, r(1), r(2)] [r(1), ⟨1, 2⟩, r(2)]

[r(1), r(2), ⟨1, 2⟩] [r(1), ⟨1, 2⟩, l(1)] [r(1), l(1), ⟨1, 2⟩] [l(1), r(1), ⟨1, 2⟩]

[⟨1, 1⟩, ⟨1, 2⟩, r(2)] [⟨1, 1⟩, r(2), ⟨1, 2⟩] [r(2), ⟨1, 1⟩, ⟨1, 2⟩] [⟨1, 1⟩, r(1), ⟨1, 2⟩]

[r(1), ⟨1, 1⟩, ⟨1, 2⟩] [⟨1, 1⟩, ⟨1, 2⟩, l(1)] [⟨1, 1⟩, l(1), ⟨1, 2⟩] [l(1), ⟨1, 1⟩, ⟨1, 2⟩]

Lemma 7.6.1 (resource function product closure). For any v : τ and i, j ∈ MInd(τ),

ϕi(v) · ϕj(v) =
∑

k∈Sh(i,j)

ϕk(v)
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Proof. This statement is proven by induction over the type τ .

units and functions Suppose τ is a unit or function type. Then MInd(τ) = {⟨⟩}, so i = j = ⟨⟩
and the following equalities then hold:

ϕ⟨⟩(v) · ϕ⟨⟩(v) = 1 · ϕ⟨⟩(v) def

=
∑

k∈{⟨⟩}

ϕk(v) algebra

=
∑

k∈Sh(⟨⟩,⟨⟩)

ϕk(v) def

products Suppose τ = σ ⊗ ρ. Then i, j ∈ MInd(σ ⊗ ρ) ensures that i is some ⟨i1, i2⟩ and j
is some ⟨j1, j2⟩. Further, only rule that could conclude v : σ ⊗ ρ is V-Pair, so v = ⟨v1, v2⟩, and
both v1 : σ and v2 : ρ hold by inversion. Finally, the following equalities hold:

ϕ⟨i1, i2⟩(⟨v1, v2⟩) · ϕ⟨j1, j2⟩(⟨v1, v2⟩) = ϕi1(v1) · ϕi2(v2) · ϕj1(v1) · ϕj2(v2) def

= (ϕi1(v1) · ϕj1(v1)) · (ϕi2(v2) · ϕj2(v2)) algebra

= (
∑

k∈Sh(i1,j1)

ak · ϕk(v1)) · (
∑

ℓ∈Sh(i2,j2)

bℓ · ϕℓ(v2)) IH

=
∑

k∈Sh(i1,j1)
ℓ∈Sh(i2,j2)

ϕk(v1) · ϕℓ(v2) algebra

=
∑

k∈Sh(i1,j1)
ℓ∈Sh(i2,j2)

ϕ⟨k, ℓ⟩(⟨v1, v2⟩) def

=
∑

k∈⟨Sh(i1,j1), Sh(i2,j2)⟩

ϕk(⟨v1, v2⟩) def

=
∑

k∈Sh(⟨i1, i2⟩,⟨j1, j2⟩)

ϕk(⟨v1, v2⟩) def

sums Suppose τ = σ ⊕ ρ. Then MInd(σ ⊕ ρ) says that i is either l(i′) or r(i′) and j is either
l(j′) or r(j′). Further, only two rules that could conclude v : σ ⊗ ρ: V-SumL where v = l(v′)
for v′ : σ, or V-SumR where v = r(v′) for v′ : ρ.

Consider the subcase where all of i, j, v have the same tag out of l(− ), r(− ). These options

123



are symmetric, so without loss of generality, let it be l(− ). Then the following equalities hold:

ϕl(i′)(l(v
′)) · ϕl(j′)(l(v′)) = ϕi′(v

′) · ϕj′(v
′) def

=
∑

k∈Sh(i′,j′)

ϕk(v
′) IH

=
∑

k∈Sh(i′,j′)

ϕl(k)(l(v
′)) def

=
∑

l(k)∈l(Sh(i′,j′))

ϕl(k)(l(v
′)) def

=
∑

k∈Sh(l(i′),l(j′))

ϕk(l(v
′)) def

Now consider the subcase where i and j have matching tags, but v does not. In particular, The
available options are symmetric, so without loss of generality, let it be that i = l(i′), j = l(j′),
and v = r(v′). Then the following equalities hold:

ϕl(i′)(r(v
′)) · ϕl(j′)(r(v′)) = 0 def

=
∑

k∈Sh(i′,j′)

0 algebra

=
∑

k∈Sh(i′,j′)

ϕl(k)(r(v
′)) def

=
∑

l(k)∈l(Sh(i′,j′))

ϕl(k)(r(v
′)) def

=
∑

k∈Sh(l(i′),l(j′))

ϕk(r(v
′)) def

Finally, consider letting i and j have mismatched tags, so Sh(i, j) = ∅. Because they differ, v
cannot match both tags. This circumstance allows the needed finite sets to be chosen to be empty
as follows:

ϕi(v) · ϕj(v) = 0 def

=
∑
k∈∅

ϕk(v) algebra

=
∑

k∈Sh(i,j)

ϕk(v) def

trees This case reduces to the list case in particular. Suppose τ = T (σ). Then i, j ∈ MInd(T (σ))
iff i, j ∈ MInd(L(σ)) because the set MInd(T (σ)) is equal to MInd(L(σ)). Finally, the follow-
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ing equalities hold:

ϕi(v) · ϕj(v) = ϕi(pre(v)) · ϕj(pre(v)) def

=
∑

k∈Sh(i,j)

ϕk(pre(v)) IH

=
∑

k∈Sh(i,j)

ϕk(v) def

lists Suppose τ = L(σ). Then i, j ∈ MInd(L(σ)) ensures that i = [i1, ..., ip] for some p ≥ 0.
and j = [j1, ..., jq] for some q ≥ 0. Further, the well-formedness rules V-Cons and V-Nil entail
that v = [v1, ..., vn] for some n ≥ 0.

Now let ⊓s,s′(l(p)) = sp \
⋃
s′, ⊓s,s′(r(q)) = s′q \

⋃
s, and ⊓(⟨p, q⟩) = sp ∩ s′q. Then the

following equalities hold:

ϕ[i1,...,ip]([v1, ..., vn]) · ϕ[j1,...,jq ]([v1, ..., vn])

=

 ∑
s∈Sp(n)

p∏
p′=1

∏
r∈sp′

ϕip′
(vr)

 ∑
s′∈Sq(n)

q∏
q′=1

∏
r∈sq′

ϕjq′
(vr)

 Lemma 7.5.1

=
∑

s∈Sp(n)
s′∈Sq(n)

 ∏
p′∈[1,p],r∈sp′

ϕip′
(vr)

 ∏
q′∈[1,q],r∈s′

q′

ϕjq′
(vr)

 distribution

=
∑

s∈Sp(n)
s′∈Sq(n)

 ∏
p′∈[1,p],q′∈[1,q]

r∈sp′∩s′q′

ϕip′
(vr) · ϕjq′

(vr)


 ∏

p′∈[1,p],r∈sp′\
⋃

s′

ϕip′
(vr)

 ∏
q′∈[1,q],r∈s′

q′\
⋃

s

ϕjq′
(vr)

 disjoint domains

=
∑

s∈Sp(n)
s′∈Sq(n)

 ∏
p′∈[1,p],q′∈[1,q]

r∈sp′∩s′q′

∑
k∈Sh(ip′ ,jq′ )

ϕk(vr)


 ∏

p′∈[1,p],r∈sp′\
⋃

s′

ϕip′
(vr)

 ∏
q′∈[1,q],r∈s′

q′\
⋃

s

ϕjq′
(vr)

 IH
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=
∑

s∈Sp(n)
s′∈Sq(n)

 ∏
p′∈[1,p],q′∈[1,q]
r∈⊓s,s′ (⟨p′, q′⟩)

∑
k∈seli,j(⟨p′, q′⟩)

ϕk(vr)


 ∏

p′∈[1,p]
r∈⊓s,s′ (l(p

′))

∑
k∈seli,j(l(p′))

ϕk(vr)


 ∏

q′∈[1,q]
r∈⊓s,s′ (r(q

′))

∑
k∈seli,j(r(p′))

ϕk(vr)

 def

=
∑

s∈Sp(n)
s′∈Sq(n)

∏
ℓ∈l([1,p])∪r([1,q])∪⟨[1,p], [1,q]⟩

r∈⊓s,s′ (ℓ)

∑
k∈seli,j(ℓ)

ϕk(vr) disjoint domains

Now observe that the set of pairs s ∈ Sp(n), s
′ ∈ Sq(n) is in bijection with the set of

pairs t ∈ Su(n), [ℓ1, ..., ℓu] ∈ shuff(p, q). (In fact, the number of such length-u element of
shuff(p, q) is cp,q,u as defined in Lemma 7.2.1.) This bijection can be shown as follows:

First one can construct t, ℓ from s, s′. Given s ∈ Sp(n), s
′ ∈ Sq(n), the appropriate t can be

constructed by the following:

t =
⋃
ℓ s.t.

⊓s,s′ (ℓ)̸=∅

⊓s,s′(ℓ)

and the corresponding ℓ ∈ shuff is just the list of the union’s domain under the usual ordering.
Then to show the reverse, it suffices to construct s and s′ via their intersections according to
tu′ = ⊓s,s′(ℓu′). Specifically,

sp′ =
⋃
u′ s.t.

ℓu′=l(p′)

tu′ ∪
⋃
u′ s.t.

ℓu′=⟨p′, q′⟩

tu′ s′q′ =
⋃
u′ s.t.

ℓu′=r(q′)

tu′ ∪
⋃
u′ s.t.

ℓu′=⟨p′, q′⟩

tu′
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The previous equality chain can then be completed as follows:

=
∑

s∈Sp(n)
s′∈Sq(n)

∏
ℓ∈l([1,p])∪r([1,q])∪⟨[1,p], [1,q]⟩

r∈⊓s,s′ (ℓ)

∑
k∈seli,j(ℓ)

ϕk(vr)

=
∑

t∈Su(n)
[ℓ1,...,ℓu]∈shuff(p,q)

∏
u′∈[1,u]
r∈tℓ′u

∑
k∈seli,j(ℓu′ )

ϕk(vr) correspondence

=
∑

ℓ∈shuff(p,q)

∑
t∈S|ℓ|(n)

|ℓ|∏
u′=1

∏
r∈tu′

∑
k∈seli,j(ℓu′ )

ϕk(vr) algebra

=
∑

ℓ∈shuff(p,q)

∑
k∈seli,j(ℓ)

∑
t∈S|ℓ|(n)

|ℓ|∏
u′=1

∏
r∈tu′

ϕku′
(vr) distribution

=
∑

k∈seli,j(shuff(p,q))

∑
t∈S|k|(n)

|k|∏
u′=1

∏
r∈tu′

ϕku′
(vr) algebra

=
∑

k∈seli,j(shuff(p,q))

ϕk(v) Lemma 7.5.1

=
∑

k∈Sh(i,j)

ϕk(v) def

As a consequence of Lemma 7.6.1, conical combinations of resource functions are closed
under products. This property can be directly extended to define a sharing relation

Definition 7.6.2 (multivariate sharing). The multivariate sharing function ⋎̂x,y
z is a multivari-

ate generalization of the previous univariate sharing function ⋎x,y
z . The multivariate shar-

ing function is used to transform an annotation map a with domain elements of the form
(V, x 7→ i, y 7→ j) from MInd(Γ, x : τ, y : τ) to annotation map with domain elements of
the form (V, z 7→ k) from MInd(Γ, z : τ) in a way that conserves potential energy. This function
is defined as follows:

⋎̂x,y
z (a)(V, z 7→ k) =

∑
i,j s.t. k∈Sh(i,j)

a(V, x 7→ i, y 7→ j)

Lemma 7.6.2 (multivariate sharing conserves energy).

Φ((V, x 7→ v, y 7→ v) : (Γ, x : τ, y : τ) | a) = Φ((V, z 7→ v) : (Γ, z : τ) | ⋎̂x,y
z (a))
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Proof. If the dummy value • is used in V or v, then this equality holds with both sides ∞.
Otherwise, let pV ′ stand for

∏
w∈dom(V ) ϕV ′(w)(V (w)). Then the following equalities hold:

Φ((V, x 7→ v, y 7→ v) : (Γ, x : τ, y : τ) | a)

=
∑

i∈MInd(Γ,x:τ,y:τ)

a(i) · ϕi(x)(v) · ϕi(y)(v) ·
∏

w∈dom(V )

ϕi(w)(V (w)) def

=
∑

V ′,i,j s.t.
(V ′,x 7→i,y 7→j)∈
MInd(Γ,x:τ,y:τ)

a(V ′, x 7→ i, y 7→ j) · ϕi(v) · ϕj(v) · pV ′ def

=
∑

V ′,i,j s.t.
(V ′,x 7→i,y 7→j)∈
MInd(Γ,x:τ,y:τ)

a(V ′, x 7→ i, y 7→ j) ·

 ∑
k∈Sh(i,j)

ϕk(v)

 · pV ′ Lemma 7.6.1

=
∑

V ′,k, s.t.
(V ′,z 7→k)∈
MInd(Γ,z:τ)

 ∑
i,j s.t k∈Sh(i,j)

a(V ′, x 7→ i, y 7→ j)

 · ϕk(v) · pV ′ distribution

=
∑

V ′,k, s.t.
(V ′,z 7→k)∈
MInd(Γ,z:τ)

⋎̂x,y
z (a)(V ′, z 7→ k) · ϕk(v) · pV ′ def

=
∑

i∈MInd(Γ,z:τ)

⋎̂x,y
z (a)(i) · ϕi(z)(v) ·

∏
w∈dom(V )

ϕi(w)((V, z 7→ v)(w)) def

= Φ((V, z 7→ v) : Γ, z : τ | ⋎̂x,y
z (a)) def

7.7 Shifting

This section is set aside to provide the machinery needed to formalize shifting. The key is to
be able to properly show that the space of resource functions is closed under the shift operation,
which is mostly a matter of combinatorial algebra.

Firstly, some special setup is needed for trees. Because a tree acts like the list of its elements
in preorder, breaking up a tree into its two subtrees is like splitting a list into two. There are many
ways such a split could occur, whereas the analagous breaking up of a list always gives a list of
size exactly one less. Luckily, there is a way to shift tree annotations that works independently
of the sizes of the subtrees. This method is given across Lemmas 7.7.1 and 7.7.2, and it is a
generalization of the identity

{
n+1
k+1

}
=
∑

i,j∈[0,k]
i+j≥k

{
n+1−m

i+1

}
·
{
m+1
j+1

}
·
(

i
i+j−k

)
·
(

j
i+j−k

)
· (j+ i−k)!

which holds for any m ∈ [0, n]. First, this method uses a special “list cutting” operation cut in
Definition 7.7.1 that enumerates pairs of lists of indices that divide a list of a given size into two.
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Then these indices are used similarly to the indices in the function shuff from Section 7.6 to
constructively show the needed closure properties.

Definition 7.7.1 (special cutting). The special cutting operation cut is used to “cut” a list into
two lists in a special way to allow both parts to share some elements. The function cut accom-
plishes this goal by taking some number n and returning all pairs of lists a, b of indices up to n
that satisfy the following properties, where @ is the append operation for lists:

• each list contains no repetitions
• each element i ∈ [1, n] is present in either a or b (or both)
• for i < n, the last time i is present in a@b is prior to the last time i+ 1 is

This definition is motivated by the proof of Lemma 7.7.1

Example 7.7.1. To exemplify cut, consider cut(2). This set contains the following pairs of
lists:

⟨[1], [1, 2]⟩ ⟨[2], [1, 2]⟩ ⟨[1, 2], [1, 2]⟩ ⟨[2, 1], [1, 2]⟩ ⟨[1, 2], [2]⟩ ⟨[2, 1], [2]⟩

⟨[ ], [1, 2]⟩ ⟨[1], [2]⟩ ⟨[1, 2], [ ]⟩

Lemma 7.7.1 (list cutting). Let @ be the append operation for lists. Further let
pick[j1,...,jn]([i1, ..., im]) = [ji1 , ..., jim ] for m ≤ n, and let it distribute over sets and pairs.
Then for any pair of lists v1 : L(τ) and v2 : L(τ) and annotation index i ∈ MInd(L(τ)),

ϕi(v1@v2) =
∑

⟨j, k⟩∈picki(cut(|i|))

ϕj(v1) · ϕk(v2)

Proof. This statement is proven by induction on the structure of v1.

v1 = [ ] If v1 = [ ], then ϕj(v1) = 0 for all j except for j = [ ], where ϕ[ ]([ ]) = 1. Moreover,
the only pair of lists j, k from cut(|i|) where j = [ ] has k contain exactly the elements of [1, |i|]
in order, as all elements must be present with no repetitions. Then the following equalities hold:

ϕi([ ]@v2) = ϕi(v2) [ ]@v2 = v2

= ϕ[ ]([ ]) · ϕi(v2) def

=
∑

⟨[ ], k⟩∈picki(cut(|i|))

ϕ[ ]([ ]) · ϕk(v2) ⟨[ ], k⟩ ∈ picki(cut(|i|)) =⇒ picki(k) = i

=
∑

⟨j, k⟩∈picki(cut(|i|))

ϕj([ ]) · ϕk(v2) j ̸= [ ] =⇒ ϕj([ ]) = 0

v1 = v ::vs If v1 = v :: vs, then there are two cases to consider depending on whether i = [ ].
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If i = [ ], the following equalities hold:

ϕ[ ]((v :: vs)@v2) = 1 def

= ϕ[ ](v :: vs) · ϕ[ ](v2) def

=
∑

⟨j, k⟩∈pick[ ]({⟨[ ], [ ]⟩})

ϕj(v :: vs) · ϕk(v2) algebra

=
∑

⟨j, k⟩∈pick[ ](cut(0))

ϕj(v :: vs) · ϕk(v2) cut(0) = {⟨[ ], [ ]⟩}

Alternatively, if the annotation index in question is some i :: is, then the following equalities
hold:

ϕi :: is((v :: vs)@v2)

= ϕi :: is(v :: (vs@v2)) (v :: vs)@v2 = v :: (vs@v2)

= ϕi(v) · ϕis(vs@v2) + ϕi :: is(vs@v2) +
∑

i′∈i :: is

ϕi′(v) · ϕi :: is(vs@v2) def

= ϕi(v) ·
∑

⟨j, k⟩∈pickis(cut(|is|))

ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2)

+
∑

i′∈i :: is

ϕi′(v) ·
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2) IH

= ϕi(v) ·
∑

⟨j, k⟩∈pickis(cut(|is|))

ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2)

+
∑

i′∈i :: is

ϕi′(v) ·
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))
s.t. i′∈j

ϕj(vs) · ϕk(v2)

+
∑

i′∈i :: is

ϕi′(v) ·
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))
s.t. i′ ̸∈j

ϕj(vs) · ϕk(v2) disjoint domains
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=
∑

⟨j, k⟩∈pickis(cut(|is|))

ϕi(v) · ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈j

ϕj′(v) · ϕj(vs) · ϕk(v2)

+
∑

i′∈i :: is

∑
⟨j, k⟩∈picki :: is(cut(|i :: is|))

s.t. i′ ̸∈j

ϕi′(v) · ϕj(vs) · ϕk(v2) distribution

=
∑

⟨j, k⟩∈pickis(cut(|is|))

ϕi(v) · ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈j

ϕj′(v) · ϕj(vs) · ϕk(v2)

+
∑

i′∈i :: is

∑
⟨i′ :: j, k⟩∈picki :: is(cut(|i :: is|))

s.t. i′∈k

ϕi′(v) · ϕj(vs) · ϕk(v2) i′ ∈ j@k, no repetitions

=
∑

i′∈i :: is

∑
⟨i′ :: j, k⟩∈picki :: is(cut(|i :: is|))

s.t. i′ ̸∈k

ϕi′(v) · ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈j

ϕj′(v) · ϕj(vs) · ϕk(v2)

+
∑

i′∈i :: is

∑
⟨i′ :: j, k⟩∈picki :: is(cut(|i :: is|))

s.t. i′∈k

ϕi′(v) · ϕj(vs) · ϕk(v2)
⟨i′ :: j, k⟩∈cut(|i :: is|)

∧ i′ ̸∈k =⇒ i′ = 1

=
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈j

ϕj′(v) · ϕj(vs) · ϕk(v2)

+
∑

i′∈i :: is

∑
⟨i′ :: j, k⟩∈picki :: is(cut(|i :: is|))

ϕi′(v) · ϕj(vs) · ϕk(v2) disjoint domains
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=
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(vs) · ϕk(v2)

+
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈j

ϕj′(v) · ϕj(vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

ϕj(v) · ϕjs(vs) · ϕk(v2) algebra

=
∑

⟨[ ], k⟩∈picki :: is(cut(|i :: is|))

ϕ[ ](vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

ϕj :: js(vs) · ϕk(v2)

+
∑

⟨[ ], k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈[ ]

ϕj′(v) · ϕ[ ](vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈j :: js

ϕj′(v) · ϕj :: js(vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

ϕj(v) · ϕjs(vs) · ϕk(v2) dijoint domains

=
∑

⟨[ ], k⟩∈picki :: is(cut(|i :: is|))

ϕ[ ](vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

ϕj :: js(vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

∑
j′∈j :: js

ϕj′(v) · ϕj :: js(vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

ϕj(v) · ϕjs(vs) · ϕk(v2) j′ ̸∈ [ ]

=
∑

⟨[ ], k⟩∈picki :: is(cut(|i :: is|))

ϕ[ ](v :: vs) · ϕk(v2)

+
∑

⟨j :: js, k⟩∈picki :: is(cut(|i :: is|))

ϕj :: js(v :: vs) · ϕk(v2) distribution, def

=
∑

⟨j, k⟩∈picki :: is(cut(|i :: is|))

ϕj(v :: vs) · ϕk(v2) disjoint domains

With that setup out of the way, this section can progress to defining the shifting operation in
Definition 7.7.2. Just as in other chapters, shifting is designed to be energy-conserving. This fact
is proven in Lemma 7.7.2. Later sections can then make successful use of multivariate shifting.
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Definition 7.7.2 (multivariate shifting). The multivariate exponential shifting operator ◁̂ is the
multivariate exponential version of the shifting operator ◁, and it is used to relate the annota-
tions of a context with a list or tree to those of the same context with the list or tree’s parts.
For lists, ◁̂x

y,z takes an annotation map a with domain of indices in MInd(Γ, x : L(τ)) and
returns an annotation map b with domain of indices in MInd(Γ, y : τ, z : L(τ)). Let #(i, j) give
the number of times the annotation index i occurs in the annotation index list j. Then, formally:

◁̂x
y,z(a)(V, y 7→ i, z 7→ j) = a(V, x 7→ i :: j) +#(i, j) · a(V, x 7→ j) +

{
a(V, x 7→ j) i ∈ C(τ)

0 i ̸∈ C(τ)

For trees, ◁̂t
x,y,z takes an annotation a with domain of indices in MInd(Γ, t : T (τ)) and returns

an annotation map b with domain of indices in MInd(Γ, x : T (τ), y : τ, z : T (τ)). This case of
the shifting definition makes use of the previous case for lists. Formally:

◁̂t
x,y,z(a)(V, x 7→ i, y 7→ j, z 7→ k) =

∑
ℓ s.t.

⟨i, k⟩∈pickℓ(cut(|ℓ|))

◁̂t
y,w(a)(V, y 7→ j, w 7→ ℓ)

Lemma 7.7.2 (multivariate shifting conserves energy).

Φ((V, x 7→ v1 :: v2) : (Γ, x : L(τ)) | a) = Φ((V, y 7→ v1, z 7→ v2) : (Γ, y : τ, z : L(τ)) | ◁̂x
y,z(a))

Φ((V, t 7→ node(v1, v2, v3)) : (Γ, t : T (τ)) | a)

= Φ((V, x 7→ v1y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)) | ◁̂t
x,y,z(a))

Proof. This statement is proven directly for lists, and via lists for trees.

lists If the nonterminal • is used in V, v1, or v2, then this equality holds with both sides ∞.
Otherwise, let pV ′ =

∏
w∈dom(V ) ϕV ′(w)(V (w)). Then the following equalities hold:

Φ((V, x 7→ v1 :: v2) : (Γ, x : L(τ)) | a)

=
∑

i∈MInd(Γ,x:L(τ))

a(i) · ϕi(x)(v1 :: v2) ·
∏

w∈dom(V )

ϕi(w)(V (w)) def

=
∑

V ′,k s.t.
(V ′,x 7→k)∈

MInd(Γ,x:L(τ))

a(V ′, x 7→ k) · ϕk(v1 :: v2) · pV ′ def
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=
∑
V ′ s.t.

(V ′,x 7→[ ])∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ [ ]) · ϕ[ ](v1 :: v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · ϕi :: j(v1 :: v2) · pV ′ disjoint domains

=
∑
V ′ s.t.

(V ′,x 7→[ ])∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ [ ]) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) ·

(
ϕi :: j(v2) + ϕi(v1) · ϕj(v2) +

∑
k∈i :: j

ϕk(v1) · ϕi :: j(v2)

)
· pV ′ def

=
∑
V ′ s.t.

(V ′,x 7→[ ])∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ [ ]) · pV ′ +
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · ϕi :: j(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) ·
∑
k∈i :: j

ϕk(v1) · ϕi :: j(v2) · pV ′ algebra

=
∑
V ′ s.t.

(V ′,x 7→[ ])∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ [ ]) ·
∑
i∈C(τ)

ϕi(v1) · ϕ[ ](v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) ·
∑

k∈C(τ)

ϕk(v1) · ϕi :: j(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) ·
∑
k∈i :: j

ϕk(v1) · ϕi :: j(v2) · pV ′ Lemma 7.5.2

=
∑

V ′,j s.t.
(V ′,x 7→j)∈

MInd(Γ,x:L(τ))

a(V ′, x 7→ j) ·
∑
i∈C(τ)

ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) ·
∑
k∈i :: j

ϕk(v1) · ϕi :: j(v2) · pV ′ disjoint domains
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=
∑

V ′,j s.t.
(V ′,x 7→j)∈

MInd(Γ,x:L(τ))

∑
i∈C(τ)

a(V ′, x 7→ j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,x 7→i :: j)∈
MInd(Γ,x:L(τ))

∑
k∈MInd(τ)

#(k, i :: j) · a(V ′, x 7→ i :: j) · ϕi(v1) · ϕi :: j(v2) · pV ′ algebra

=
∑

V ′,i,j s.t.
(V ′,y 7→i,z 7→j)∈

MInd(Γ,y:τ,z:L(τ))
∧ i∈C(τ)

a(V ′, x 7→ j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,y 7→i,z 7→j)∈

MInd(Γ,y:τ,z:L(τ))

a(V ′, x 7→ i :: j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,k,j s.t.
(V ′,y 7→k,z 7→j)∈

MInd(Γ,y:τ,z:L(τ))
∧ j ̸=[ ]

#(k, j) · a(V ′, x 7→ j) · ϕi(v1) · ϕj(v2) · pV ′ substitution

=
∑

V ′,i,j s.t.
(V ′,y 7→i,z 7→j)∈

MInd(Γ,y:τ,z:L(τ))
∧ i∈C(τ)

a(V ′, x 7→ j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,y 7→i,z 7→j)∈

MInd(Γ,y:τ,z:L(τ))

a(V ′, x 7→ i :: j) · ϕi(v1) · ϕj(v2) · pV ′

+
∑

V ′,i,j s.t.
(V ′,y 7→i,z 7→j)∈

MInd(Γ,y:τ,z:L(τ))

#(i, j) · a(V ′, x 7→ j) · ϕi(v1) · ϕj(v2) · pV ′ #(i, [ ]) = 0

=
∑

V ′,i,j s.t.
(V ′,y 7→i,z 7→j)∈

MInd(Γ,y:τ,z:L(τ))

◁̂x
y,z(a)(V

′, y 7→ i, z 7→ j) · ϕi(v1) · ϕj(v2) · pV ′ distribution, def

=
∑

i∈MInd(Γ,y:τ,z:L(τ))

◁̂x
y,z(a)(i) · ϕi(y)(v1) · ϕi(z)(v2) ·

∏
w∈dom(V )

ϕi(w)(V (w)) def

= Φ((V, y 7→ v1, z 7→ v2) : (Γ, y : τ, z : L(τ)) | ◁̂x
y,z(a)) def
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M-SUB

Γ | a⃗′ ⊢ e : τ | b⃗′ a⃗ ≥ a⃗′ b⃗ ≤ b⃗′

Γ | a⃗ ⊢ e : τ | b⃗

Figure 7.5: Multivariate structural typing rule

trees If the nonterminal • is used in V, v1, v2, or v3, then this equality holds with both sides ∞.
Otherwise, let pV ′ =

∏
u∈dom(V ) ϕV ′(u)(V (u)). Then the following equalities hold:

Φ((V, t 7→ node(v1, v2, v3)) : (Γ, t : T (τ)) | a)

=
∑

i∈MInd(Γ,t:T (τ))

a(i) · ϕi(t)(node(v1, v2, v3))
∏

u∈dom(V )

ϕi(u)(V (u)) def

=
∑

i∈MInd(Γ,t:L(τ))

a(i) · ϕi(t)(pre(node(v1, v2, v3)))
∏

u∈dom(V )

ϕi(u)(V (u)) def

= Φ((V, t 7→ pre(node(v1, v2, v3))) : (Γ, t : L(τ)) | a) def

= Φ((V, t 7→ v1 :: pre(v1)@pre(v3)) : (Γ, t : L(τ)) | a) def

= Φ((V, y 7→ v2, w 7→ pre(v1)@pre(v3)) : (Γ, t : L(τ)) | ◁̂
t
y,w(a)) list case

=
∑

i∈MInd(Γ,y:τ,w:L(τ))

◁̂t
y,w(a)(i) · ϕi(w)(pre(v1)@pre(v3))

∏
u∈dom(V )

ϕi(u)(V (u)) def

=
∑

V ′,j,ℓ s.t.
(V ′,y 7→j,w 7→ℓ)∈

MInd(Γ,y:τ,w:L(τ))

◁̂t
y,w(a)(V

′, y 7→ j, w 7→ ℓ) · ϕℓ(pre(v1)@pre(v3)) · pV ′ def

=
∑

V ′,j,ℓ s.t.
(V ′,y 7→j,w 7→ℓ)∈

MInd(Γ,y:τ,w:L(τ))

◁̂t
y,w(a)(V

′, y 7→ j, w 7→ ℓ) ·

 ∑
i,k∈pickℓ(cut(|ℓ|))

ϕi(pre(v1)) · ϕk(pre(v3))

 · pV ′ Lemma 7.7.1

=
∑

V ′,i,j,k s.t.
(V ′,x 7→i,y 7→j,z 7→k)∈

MInd(Γ,x:L(τ),y:τ,z:L(τ))

∑
ℓ s.t.

⟨i, k⟩pickℓ(cut(|ℓ|))

◁̂t
y,w(a)(V

′, y 7→ j, w 7→ ℓ) · ϕi(pre(v1)) · ϕk(pre(v3)) · pV ′ distribution

=
∑

V ′,i,j,k s.t.
(V ′,x 7→i,y 7→j,z 7→k)∈

MInd(Γ,x:L(τ),y:τ,z:L(τ))

◁̂t
x,y,z(a)(V

′, x 7→ i, y 7→ j, z 7→ k) · ϕi(pre(v1)) · ϕk(pre(v3)) · pV ′ def

=
∑

i∈MInd(Γ,x:L(τ),y:τ,z:L(τ))

◁̂t
x,y,z(a)(i) · ϕi(x)(pre(v1)) · ϕi(z)(pre(v3)) ·

∏
u∈dom(V )

ϕi(u)(V (u)) def

=
∑

i∈MInd(Γ,x:T (τ),y:τ,z:T (τ))

◁̂t
x,y,z(a)(i) · ϕi(x)(v1) · ϕi(z)(v3) ·

∏
u∈dom(V )

ϕi(u)(V (u)) def

= Φ((V, x 7→ v1y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)) | ◁̂t
x,y,z(a)) def
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M-VAR

Γ, x : τ | ⋎̂x,ret
x (⃗a) ⊢ x : τ | a⃗

M-LET

Γ | a⃗ ⊢ e1 : σ | c⃗ Γ, x : σ | [x/ret]⃗c ⊢ e2 : τ | extx:σ b⃗
Γ | a⃗ ⊢ let x = e1 in e2 : τ | b⃗

M-FUN

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b) ⊢ e : σ | ext
Γ,f :τ

b⃗|c⃗→σ
([x/arg]⃗c)

Γ | a⃗ ⊢ fun f x = e : τ
b⃗|⃗c→ σ | ext

ret:τ
b⃗|c⃗→σ
a⃗

M-APP
a⃗ ≥ 0

Γ, x : τ, f : τ
b⃗|⃗c→ σ | a⃗+ ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b) ⊢ f x : σ | extret:σ (⃗a) + ext
Γ,f :τ

b⃗|c⃗→σ
([x/arg]⃗c)

M-TICK

∀i ∈ C(Γ). a⃗i = b⃗i,ret7→⟨⟩ + r ∀i ̸∈ C(Γ). a⃗i = b⃗i,ret7→⟨⟩

Γ | a⃗ ⊢ tick{r} : 1 | b⃗

M-PAIR

Γ, x : τ, y : σ | ⋎̂x,x′

x (⋎̂y,y′

y (unpretx′,y′ (⃗a))) ⊢ ⟨x, y⟩ : τ ⊗ σ | a⃗

M-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ | unpx′

y,z (⃗a) ⊢ e : τ | unpx′

y,z (⃗b)

Γ, x : σ ⊗ ρ | ⋎̂x,x′

x (⃗a) ⊢ case x of ⟨y, z⟩ → e : τ | ⋎̂x,x′

x (⃗b)

M-SUML

Γ, x : τ | ⋎̂x,x′

x (unlretx′ (⃗a)) ⊢ l(x) : τ ⊕ σ | a⃗

M-SUMR

Γ, x : σ | ⋎̂x,x′

x (unrretx′ (⃗a)) ⊢ r(x) : τ ⊕ σ | a⃗

M-CASES
Γ, x : σ ⊕ ρ, y : σ | unlx′

y (⃗a) ⊢ e1 : τ | unlx′

y (⃗b)

Γ, x : σ ⊕ ρ, z : ρ | unrx′

z (⃗a) ⊢ e2 : τ | unrx′

z (⃗b)

Γ, x : σ ⊕ ρ | ⋎̂x,x′

x (⃗a) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | ⋎̂x,x′

x (⃗b)

Figure 7.6: Multivariate typing rules 1
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M-NIL

Γ | unnret(⃗a) ⊢ [ ] : L(τ) | a⃗

M-CONS

Γ, x : τ, y : L(τ) | ⋎̂x,x′

x (⋎̂y,y′

y (◁̂ret

x′,y′ (⃗a))) ⊢ x :: y : L(τ) | a⃗

M-CASEL
unnx(unnx

′
(⃗a)) = unnx(c⃗) unnx(unnx

′
(⃗b)) = unnx(d⃗)

Γ, x : L(σ) | c⃗ ⊢ e1 : τ | d⃗ Γ, x : L(σ), y : σ, z : L(σ) | ◁̂x′

y,z (⃗a) ⊢ e2 : τ | ◁̂x′

y,z (⃗b)

Γ, x : L(σ) | ⋎̂x,x′

x (⃗a) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | ⋎̂x,x′

x (⃗b)

M-LEAF

Γ | unnret(⃗a) ⊢ leaf : T (τ) | a⃗

M-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎̂x,x′

x (⋎̂y,y′

y (⋎̂z,z′

z (◁̂ret

x′,y′,z′ (⃗a)))) ⊢ node(x, y, z) : T (τ) | a⃗

M-CASET
unnx(unnx

′
(⃗a)) = unnx(c⃗) unnx(unnx

′
(⃗b)) = unnx(d⃗) Γ, t : T (σ) | c⃗ ⊢ e1 : τ | d⃗

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁̂t′

x,y,z (⃗a) ⊢ e2 : τ | ◁̂t′

x,y,z (⃗b)

Γ, t : T (σ) | ⋎̂t,t′

t (⃗a) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | ⋎̂t,t′

t (⃗b)

Figure 7.7: Multivariate typing rules 2
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7.8 Typing Rules

The exponential multivariate typing rules are given across Figures 7.5 to 7.7. These new typing
rules make use of the essentially the same typing judgment as in the previous chapters, except
now it uses multivariate annotations. The typing judgment is:

Γ | a⃗ ⊢ e : τ | b⃗

This typing judgment means that, with an initial type context Γ annotated by a⃗ ≥ 0, the expres-
sion e is typed τ and the remainder context (Γ, ret : τ) is annotated by b⃗ ≥ 0. To be explicit, a⃗
is indexed by MInd(Γ) and b⃗ is indexed by MInd(Γ, ret : τ).

To write down the typing rules, other chapters use notation like a, b where a and b annotated
disjoint contexts. However, this notation is not appropriate here because every multivariate an-
notation involves the entire context, so annotations just from the context a are not compatible
with combined context of a and b. Instead, it is necessary to introduce different notation for how
properly manipulate contexts. I explain these notational differences in the following definitions,
starting with Definition 7.8.1.

Definition 7.8.1 (annotation extension). The operation ext is used to extend annotation maps
over new variables. Given an annotation map a for a type context Γ, extx adds annotations for
a variable x of type τ as follows:

extx:τ (a)(V, x 7→ i) =

{
a(V ) i ∈ C(τ)

0 otherwise

This operation may be used to extend contexts with multiple variables at once by replacing x : τ
with a type context.

Lemma 7.8.1 (extension conserves energy). Context extension perfectly conserves energy. That
is, for all v : τ ,

Φ(V : Γ | a) = Φ(V, x 7→ v : Γ, x : τ | extx:τ (a))

Proof. This identity is proven directly.
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Φ(V : Γ | a) =
∑

i∈MInd(Γ)

a(i) ·
∏

y∈dom(V )

ϕi(y)(V (i)) def

=
∑
j∈C(τ)

ϕj(v) ·
∑

i∈MInd(Γ)

a(i) ·
∏

y∈dom(V )

ϕi(y)(V (i)) Lemma 7.5.2

=
∑

i∈MInd(Γ)
j∈C(τ)

a(i) · ϕj(v) ·
∏

y∈dom(V )

ϕi(y)(V (i)) distribution

=
∑

i∈MInd(Γ)
j∈C(τ)

a(i) · ϕj(v) ·
∏

y∈dom(V )

ϕi(y)(V (i))

+
∑

i∈MInd(Γ)
j ̸∈C(τ)

0 · ϕj(v) ·
∏

y∈dom(V )

ϕi(y)(V (i)) algebra

=
∑

i∈MInd(Γ)
j∈MInd(τ)

extx:τ (a)(i, x 7→ j) · ϕj(v) ·
∏

y∈dom(V )

ϕi(y)(V (i)) def

=
∑

i∈MInd(Γ,x:τ)

extx:τ (a)(i)
∏

y∈dom(V,x7→v)

ϕi(y)(V (i)) def

= Φ(V, x 7→ v : Γ, x : τ | extx:τ (a)) def

Aside from context extension, there are just a few additional annotation-manipulating oper-
ations defined across Definitions 7.8.2 to 7.8.4. These operations are all designed to adjust the
domain of annotation maps to properly account for the contruction of pairs, variants, and empty
data structures, respectively.

Definition 7.8.2 (annotation unpairing). The operation unp is used to ungroup the parts of an-
notations associated with a pair. Given a pair x = ⟨y, z⟩, the operation creates an appropriate
annotation for its parts as follows:

unpxy,z(a)(V, y 7→ i, z 7→ j) = a(V, x 7→ ⟨i, j⟩)
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Definition 7.8.3 (annotation untagging). The operations unl, unr are used to remove the tag
from the parts of annotations associated with a variant. Given a variant labelled x these opera-
tions create appropriate annotations for the variants l(y) = x and r(z) = x as follows:

unlxy(a)(V, y 7→ i) = a(V, x 7→ l(i))

unrxz(a)(V, z 7→ i) = a(V, x 7→ r(i))

Definition 7.8.4 (annotation un-nil-ing). The operation unn is used to ignore higher-order an-
notations for empty list and trees. Given an annotation map a for a type context (Γ, x : τ),
where τ = L(σ) or τ = T (σ), unnx accomplishes this task as follows for the list x = [ ] or tree
x = leaf:

unnx(a)(V ) = a(V, x 7→ [ ])

Lemma 7.8.2 (unp, unl, unr, unn conserve energy). Each of the operations unp, unl, unr, unn
perfectly conserve energy for their intended values.

Φ((V, x 7→ ⟨v1, v2⟩) : (Γ, x : τ⊗σ) | a) = Φ((V, y 7→ v1, z 7→ v2) : (Γ, y : τ, z : σ) | unpxy,z(a))

Φ((V, x 7→ l(v)) : (Γ, x : τ ⊕ σ) | a) = Φ((V, y 7→ v) : (Γ, y : τ) | unlxy(a))

Φ((V, x 7→ r(v)) : (Γ, x : τ ⊕ σ) | a) = Φ((V, y 7→ v) : (Γ, y : σ) | unrxy(a))

Φ((V, x 7→ [ ]) : (Γ, x : L(τ)) | a) = Φ(V : Γ | unnx(a))

Φ((V, x 7→ leaf) : (Γ, x : T (τ)) | a) = Φ(V : Γ | unnx(a))

Proof. Each of these identities is proven directly.
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pair unp

Φ((V, x 7→ ⟨v1, v2⟩) : (Γ, x : τ ⊗ σ) | a)

=
∑

(V ′,x 7→⟨i, j⟩)
∈MInd(Γ,x:τ⊗σ)

a(V ′, x 7→ ⟨i, j⟩) · ϕ⟨i, j⟩(⟨v1, v2⟩) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

(V ′,y 7→i,z 7→j)
∈MInd(Γ,y:τ,z:σ)

unpxy,za(V
′, y 7→ i, z 7→ j) · ϕi(v1) · ϕj(v2) ·

∏
w∈dom(V )

ϕV ′(w)(V (w)) def

= Φ((V, y 7→ v1, z 7→ v2) : (Γ, y : τ, z : σ) | unpxy,z(a)) def

variant unl

Φ((V, x 7→ l(v)) : (Γ, x : τ ⊕ σ) | a)

=
∑

(V ′,x 7→i)
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ i) · ϕi(l(v)) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

(V ′,x 7→l(i))
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ l(i)) · ϕl(i)(l(v)) ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→r(i))
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ r(i)) · ϕr(i)(l(v)) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) disjoint domains

=
∑

(V ′,y 7→i)
∈MInd(Γ,y:τ)

unlxy(a)(V
′, y 7→ i) · ϕi(v) ·

∏
w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→r(i))
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ r(i)) · 0 ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

(V ′,y 7→i)
∈MInd(Γ,y:τ)

unlxy(a)(V
′, y 7→ i) · ϕi(v) ·

∏
w∈dom(V )

ϕV ′(w)(V (w)) algebra

= Φ((V, y 7→ v) : (Γ, y : τ) | unlxy(a)) def
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variant unr

Φ((V, x 7→ r(v)) : (Γ, x : τ ⊕ σ) | a)

=
∑

(V ′,x 7→i)
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ i) · ϕi(r(v)) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

(V ′,x 7→l(i))
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ l(i)) · ϕl(i)(r(v)) ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→r(i))
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ r(i)) · ϕr(i)(r(v)) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) disjoint domains

=
∑

(V ′,y 7→i)
∈MInd(Γ,y:σ)

unr(a)(V ′, y 7→ i) · ϕi(v) ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→r(i))
∈MInd(Γ,x:τ⊕σ)

a(V ′, x 7→ r(i)) · 0 ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

(V ′,y 7→i)
∈MInd(Γ,y:σ)

unr(a)(V ′, y 7→ i) · ϕi(v) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) algebra

= Φ((V, y 7→ v) : (Γ, y : σ) | unrxy(a)) def

empty list unn

Φ((V, x 7→ [ ]) : (Γ, x : L(τ)) | a)

=
∑

(V ′,x 7→i)
∈MInd(Γ,x:L(τ))

a(V ′, x 7→ i) · ϕi([ ]) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

(V ′,x 7→[ ])
∈MInd(Γ,x:L(τ))

a(V ′, x 7→ [ ]) · ϕ[ ]([ ]) ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→i :: j)
∈MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · ϕi :: j([ ]) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) disjoint domains

=
∑

V ′∈MInd(Γ)

unnx(a)(V ′) · 1 ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→i :: j)
∈MInd(Γ,x:L(τ))

a(V ′, x 7→ i :: j) · 0 ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

V ′∈MInd(Γ)

unnx(a)(V ′) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) algebra

= Φ(V : Γ | unnx(a)) def
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leaf unn

Φ((V, x 7→ leaf) : (Γ, x : T (τ)) | a)

=
∑

(V ′,x 7→i)
∈MInd(Γ,x:T (τ))

a(V ′, x 7→ i) · ϕi(leaf) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

(V ′,x 7→[ ])
∈MInd(Γ,x:T (τ))

a(V ′, x 7→ [ ]) · ϕ[ ](leaf) ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→i :: j)
∈MInd(Γ,x:T (τ))

a(V ′, x 7→ i :: j) · ϕi :: j(leaf) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) disjoint domains

=
∑

(V ′,x 7→[ ])
∈MInd(Γ,x:T (τ))

a(V ′, x 7→ [ ]) · ϕ[ ]([ ]) ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→i :: j)
∈MInd(Γ,x:T (τ))

a(V ′, x 7→ i :: j) · ϕi :: j([ ]) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

V ′∈MInd(Γ)

unnx(a)(V ′) · 1 ·
∏

w∈dom(V )

ϕV ′(w)(V (w))

+
∑

(V ′,x 7→i :: j)
∈MInd(Γ,x:T (τ))

a(V ′, x 7→ i :: j) · 0 ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) def

=
∑

V ′∈MInd(Γ)

unnx(a)(V ′) ·
∏

w∈dom(V )

ϕV ′(w)(V (w)) algebra

= Φ(V : Γ | unnx(a)) def

Aside from the aforementioned notation and operations, the meaning of each of the typing
rules is essentially no different than in other chapters. However, there are some details of the rule
M-App worth discussing, which I explain in the next paragraphs.

The subtlety of the function application rule M-App is that the multivariate nature of the
annotation indices prevents one from directly working with only the annotations of the function
argument—annotations apply to whole contexts. For this reason, the only annotations to get

transformed according to the function type are those where the context (Γ, f : τ
b⃗|⃗c→ σ) is assigned

its indices for the constant resource function. Otherwise, the rule is relatively straightforward;
it uses pointwise addition to separate out annotations that do not get transformed, as well as the
annotation extension operation defined in Definition 7.8.1 to properly handle annotation map
domains.

Now, in principle, one could do better than the rule M-App through using cost-free types. In
fact, every chapter’s function-application rule could, but there is even more utility to be gained
in the multivariate setting, so I take the time to explain that extra utility here. The multivariate
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1 fun revApp (a,b) = (* 1,1,1,0 *)
2 case a of
3 | [] -> b (* 0,0,1,0 *)
4 | x::xs -> (* 2,2,2,1 *)
5 let tmp = x::b in (* 1,1,1,0 *)
6 revApp (xs, tmp) (* 0,0,1,0 *)

Figure 7.8: Code for revApp with energy comments

AARA literature uses cost-free types to handle annotation transformations for other context in-
dices [65, 80]. Such an approach considers each way that the annotations of the argument could
extend to the rest of the context, and then each of these ways are individually transformed accord-
ing to the cost-free type. This technique allows all resource functions that partially depend on
the function’s argument to change their dependence to the function’s return, which enables more
kinds of cost-bound relations. The operation of this approach is similar to how, if p · x ≥ q · x
for x ≥ 0, then r + p · x + p · y ≥ r + q · x + q · y, where r plays the role of a⃗ and y ≥ 0
plays the role of a resource function’s contribution from the rest of the context aside from the
argument. The reason cost-free types are needed is because costful types only give inequalities
like p · x ≥ q · x+ s, and this extra difference of s (which may be positive or negative) prevents
the same reasoning. However, this thesis purposely has confined cost-free types to Chapter 8, so
such optimizations are not present in M-App.
Example 7.8.1. The typing rules in this section can be used to type the tail-recursive revApp
from Figure 7.1 using exponential energy. This code does not exhibit any cost,5 so the ideal
AARA type should reallocate all the energy on the input lists a, b to the output. Such a type is
key to allowing the AARA analysis to find tight cost bounds when composing with revApp.

Using the multivariate exponential system, revApp can be typed as L(1)
c⃗|d⃗→ L(1) where

c⃗ assigns an annotation of 1 for each of the following argument indices: ⟨[⟨⟩], [ ]⟩, ⟨[ ], [⟨⟩]⟩,
and ⟨[⟨⟩], [⟨⟩]⟩. All other indices in c⃗ can be given an annotation of 0. The indices assigned 1
correspond to the resource functions

{|a|+1
2

}
,
{|b|+1

2

}
, and

{|a|+1
2

}
·
{|b|+1

2

}
, respectively. Then the

return annotation d⃗ can be given an annotation of 1 for the index [⟨⟩], corresponding to
{|ret|+1

2

}
,

and all other indices can be given an annotation of 0. This return annotation for revApp is the
correct one desired for use in the typing of rev, as it successfully assigns base-2 energy to the
returned list. Indeed,

{|a|+1
2

}
+
{|b|+1

2

}
+
{|a|+1

2

}
·
{|b|+1

2

}
=
{|a|+|b|+1

2

}
.

The thrust of the type derivation for revApp can be witnessed by the energy comments given
in Figure 7.8. Notationally, I write w, x, y, z to indicate the annotations for indices correspond-
ing to the resource functions

{|a|+1
2

}
·
{|b|+1

2

}
,
{|a|+1

2

}
,
{|b|+1

2

}
, and the constant 1, respectively.

Because there is no energy in the remainder, I elide any comments concerning the remainder.
Some key lines to view in Figure 7.8 include lines 4 and 5 where shifting and unshifting

occur. Additionally, lines 3 and 6 are where the amount of
{|b|+1

2

}
energy is given for the return.

There would be some reindexing in these lines to remove dependence on other indices, but I do
not reflect that in the comments aside from weakening other annotations to 0. This weakening

5In principle one could add ticks to apply costs to revApp, but I do not do so to keep the example simple.
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does not actually lose any energy because the list a is empty at the point of return, so each
resource function depending on a is 0.

7.9 Soundness
The soundness of AARA with multivariate exponential resource functions is similar to Theo-
rems 5.4.1 and 6.4.3 in that the initial potential energy of a context bounds the peak cost of
evaluation, and the difference between initial and final energies bounds the net cost. However,
some additional care must be taken to work the multivariate annotations, as opposed to the pre-
vious univariate annotations. This additional care results in Theorem 7.9.1.

Theorem 7.9.1 (exponential multivariate soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | a⃗ ⊢ e : τ | b⃗ (AARA types the expression in that environment)

then
• v : τ (return well-formed)
• Φ(V : Γ | a⃗) ≥ p (initial bounds peak)
• Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p (diff. bounds net)

Proof. The soundness proof proceeds by lexicographic induction over the derivation of the eval-
uation judgment followed by the typing judgment.

Much of this proof is closely analogous to that for Theorem 6.4.3. However, this proof also
begins with a special case for the nonterminal dummy value • to match the special case of the
definition for potential energy.

Now each case in the induction is given in more detail:

nonterminal This case deals with the cost bounds where the nonterminal dummy value • is
present in V so that other cases need not consider the dummy value in V . However, this case
does not cover the derivation of v : τ , which can still be handled by the other cases.

Suppose that the nonterminal dummy value • is present in V . Then Φ(V : Γ | a⃗) =

Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) = ∞. Because ∞ is greater than or equal to anything,
both the peak and net cost bounds are satisfied.

M-Sub This case deals with the structural typing rule M-Sub so that future considerations of
typing judgment derivation structure need not consider the case that the derivation ends with the
application of M-Sub.

Suppose the last rule applied for the typing judgment is M-Sub.

M-SUB

Γ | a⃗′ ⊢ e : τ | b⃗′ a⃗ ≥ a⃗′ b⃗ ≤ b⃗′

Γ | a⃗ ⊢ e : τ | b⃗
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Then the premisses of this rule hold by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | a⃗′ ⊢ e : τ | b⃗′ to learn:

(1) v : τ

(2) Φ(V : Γ | a⃗′) ≥ p

(3) Φ(V : Γ | a⃗′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. These remaining cost bounds can be obtained from inequalities
(2) and (3) by applying the pointwise monotonicity of potential energy alongside the pointwise
annotation inequalities a⃗ ≥ a⃗′ and b⃗ ≤ b⃗′.

E-Nont Suppose the last rule applied for the evaluation judgment is E-Nont.

E-NONT

V ⊢ e ⇓ • | (0,∞)

Then p = 0, q = ∞, and v = •. Because • : τ by V-Nont, the needed well-formedness judgment
holds. Then because potential energy is always nonnegative, the peak cost bound is satisfied.
And finally, because ∞ is greater than or equal to anything, the net cost bound also satisfied.

E-Tick Suppose the last rule applied for the evaluation judgment is E-Tick.

E-TICK

V ⊢ tick{r} ⇓ ⟨⟩ | (max(0, r),max(0,−r))

Then only one typing rule remains that could be used to conclude the typing derivation:

M-TICK

∀i ∈ C(Γ). a⃗i = b⃗i,ret7→⟨⟩ + r ∀i ̸∈ C(Γ). a⃗i = b⃗i,ret7→⟨⟩

Γ | a⃗ ⊢ tick{r} : 1 | b⃗

The premisses of this rule hold by inversion.
Because ⟨⟩ : 1 by V-Unit, the needed well-formedness judgment holds.
Then the following two inequalities confirm the peak cost bound. Firstly, Φ(V : Γ | a⃗) ≥ 0
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because a⃗ ≥ 0. Then also:

Φ(V : Γ | a⃗) =
∑

i∈MInd(Γ)

a⃗i ·
∏

x∈dom(V )

ϕi(x)(V (x)) def

≥
∑
i∈C(Γ)

a⃗i ·
∏

x∈dom(V )

ϕi(x)(V (x)) C(Γ) ⊆ MInd(Γ)

=
∑
i∈C(Γ)

(⃗bi,ret7→⟨⟩ + r) ·
∏

x∈dom(V )

ϕi(x)(V (x)) def

= r ·
∑
i∈C(Γ)

∏
x∈dom(V )

ϕi(x)(V (x))

+
∑
i∈C(Γ)

b⃗i,ret7→⟨⟩ ·
∏

x∈dom(V )

ϕi(x)(V (x)) distribution

= r +
∑
i∈C(Γ)

b⃗i,ret7→⟨⟩ ·
∏

x∈dom(V )

ϕi(x)(V (x)) Lemma 7.5.2

≥ r b⃗ ≥ 0

Thus, Φ(V : Γ | a⃗) ≥ max(0, r).

Finally, the following inequalities confirm the net cost bound.

Φ(V : Γ | a⃗) + max(0,−r)

= max(0,−r) +
∑

i∈MInd(Γ)

a⃗i ·
∏

x∈dom(V )

ϕi(x)(V (x)) def

= max(0,−r) +
∑
i∈C(Γ)

a⃗i ·
∏

x∈dom(V )

ϕi(x)(V (x))

+
∑

i∈MInd(Γ)\C(Γ)

a⃗i ·
∏

x∈dom(V )

ϕi(x)(V (x)) disjoint domains

= max(0,−r) +
∑
i∈C(Γ)

(⃗bi,ret7→[ ] + r) ·
∏

x∈dom(V )

ϕi(x)(V (x))

+
∑

i∈MInd(Γ)\C(Γ)

b⃗i,ret7→⟨⟩ ·
∏

x∈dom(V )

ϕi(x)(V (x)) premiss

= max(0,−r) + r ·
∑
i∈C(Γ)

·
∏

x∈dom(V )

ϕi(x)(V (x))

+
∑

i∈MInd(Γ)

b⃗i,ret7→⟨⟩ ·
∏

x∈dom(V )

ϕi(x)(V (x)) algebra

= max(0,−r) + r +
∑

i∈MInd(Γ)

b⃗i,ret7→⟨⟩ ·
∏

x∈dom(V )

ϕi(x)(V (x)) Lemma 7.5.2
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= max(0, r) +
∑

i∈MInd(Γ)

b⃗i,ret7→⟨⟩ ·
∏

x∈dom(V )

ϕi(x)(V (x)) algebra

= max(0, r) +
∑

(i,ret7→⟨⟩)∈MInd(Γ,ret:⟨⟩)

b⃗i,ret7→⟨⟩ · ϕ⟨⟩(⟨⟩) ·
∏

x∈dom(V )

ϕi(x)(V (x)) def

= max(0, r) + Φ(V, ret 7→ ⟨⟩ : Γ, ret : ⟨⟩ | b⃗) def

E-Var Suppose the last rule applied for the evaluation judgment is E-Var

E-VAR

V, x 7→ v ⊢ x ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

M-VAR

Γ, x : τ | ⋎̂x,ret
x (⃗a) ⊢ x : τ | a⃗

Then p = q = 0 and (V, x 7→ v) : (Γ, x : τ). Because v : τ follows from inverting V-
Context, the needed well-formedness judgment holds. Then because potential energy is always
nonnegative, the peak cost bound is satisfied. And finally, because sharing perfectly conserves
potential (Lemma 7.6.2), the net cost bound is also satisfied with the following equality:

Φ((V, x 7→ v) : (Γ, x : τ) | ⋎̂x,ret
x (⃗a)) = Φ((V, x 7→ v, ret 7→ v) : (Γ, x : τ, ret : τ) | a⃗)

E-Let Suppose the last rule applied for the evaluation judgment is E-Let.

E-LET
V ⊢ e1 ⇓ v′ | (p, q) V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)

V ⊢ let x = e1 in e2 ⇓ v | (p+max(0, r − q), s+max(0, q − r))

Then only one typing rule remains that could be used to conclude the typing derivation:

M-LET

Γ | a⃗ ⊢ e1 : σ | c⃗ Γ, x : σ | [x/ret]⃗c ⊢ e2 : τ | extx:σ b⃗
Γ | a⃗ ⊢ let x = e1 in e2 : τ | b⃗

The premisses of both of these rules hold by inversion.
Because V : Γ holds by assumption, the inductive hypothesis can be applied with the judg-

ments V ⊢ e1 ⇓ v′ | (p, q) and Γ | a⃗ ⊢ e1 : σ | c⃗. to learn:

(1) v′ : σ
(2) Φ(V : Γ | a⃗) ≥ p

(3) Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + p

Because v′ : σ holds as (1) from the previous induction and both V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)
and Γ, x : σ | [x/ret]⃗c ⊢ e2 : τ | extx:σ (⃗b) hold from inversion, the inductive hypothesis can be
applied again to learn:
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(4) v : τ

(5) Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) ≥ r

(6) Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) + s

≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ) | extx:σ (⃗b)) + r

The well-formedness judgment (4) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. To do so, proceed by cases on whether q ≥ r.

If q ≥ r, then the cost behaviour to consider is (p, s + (q − r)). Then (2) confirms the peak
cost bound, and the following inequalities confirm the net cost bound:

Φ(V : Γ | a⃗) + s+ (q − r)

≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + p+ s− r (3)

= Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) + p+ s− r relabelling

≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) | extx:σ (⃗b)) + p (6)

= Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p Lemma 7.8.1

If q < r, then the cost behaviour to consider is (p + (r − q), s), and q ̸= ∞ (so can be
subtracted). Then the following inequalities confirm the peak cost bound:

Φ(V : Γ | a⃗)
≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + p− q (3)

= Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) + p− q relabelling

≥ p+ (r − q) (5)

And finally, the following inequalities confirm the net cost bound:

Φ(V : Γ | a⃗) + s

≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | c⃗) + s+ p− q (3)

= Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]⃗c) + s+ p− q relabelling

≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) | extx:σ (⃗b)) + p+ (r − q) (6)

≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p+ (r − q) Lemma 7.8.1

E-Fun Suppose the last rule applied for the evaluation judgment is E-Fun.
E-FUN

V ⊢ fun f x = e ⇓ C(V ; f, x. e) | (0, 0)
Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-FUN

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b) ⊢ e : σ | ext
Γ,f :τ

b⃗|c⃗→σ
([x/arg]⃗c)

Γ | a⃗ ⊢ fun f x = e : τ
b⃗|⃗c→ σ | ext

ret:τ
b⃗|c⃗→σ
a⃗
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The assumed typing judgment for the expression being evaluated therefore takes the form of this
rule’s conclusion.

Because C(V ; f, x. e) : τ
b⃗|⃗c→ σ follows from V-Fun and the assumed typing judgment, the

needed well-formedness judgment holds. Then because potential energy is always nonnegative,
the peak cost bound is satisfied. And finally, because context extension does not perfectly con-
serve potential energy (Lemma 7.8.1), the net cost bound is also satisfied with the following
equality:

Φ(V : Γ | a⃗) = Φ((V, ret 7→ C(V ; f, x. e)) : (Γ, ret : τ
b⃗|⃗c→ σ) | ext

ret:τ
b⃗|c⃗→σ
a⃗)

E-App Suppose the last rule applied for the evaluation judgment is E-App.

E-APP
V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)
V, x 7→ v′, f 7→ C(V ′; g, y. e) ⊢ f x ⇓ v | (p, q)

Then this rule’s premiss holds by inversion and only one typing rule remains that could be used
to conclude the typing derivation:

M-APP
a⃗ ≥ 0

Γ, x : τ, f : τ
b⃗|⃗c→ σ | a⃗+ ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b) ⊢ f x : σ | extret:σ (⃗a) + ext
Γ,f :τ

b⃗|c⃗→σ
([x/arg]⃗c)

Because (V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) by assumption, the rule

V-Context can be inverted to learn C(V ′; g, y. e) : τ
b⃗|⃗c→ σ. Then further, the rule V-Fun can be

inverted to learn that this function body can be typed in some context Γ′ where V ′ : Γ′. Using
V-Context, one can then use this well-formedness judgment to derive

(V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ)

Now inspect the derivation of the type of the function closure’s body. Only structural rules
(like R-Sub) and R-Fun can conclude a typing derivation for a function, and the application a
structural rule itself requires another typing derivation for the same function. Thus it can be
shown by induction that the typing derivation must conclude by the rule M-Fun followed by
some number of uses of structural rules. The typing derivation therefore contains the following
rule application:

M-FUN

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b) ⊢ e : σ | ext
Γ,f :τ

b⃗|c⃗→σ
([x/arg]⃗c)

Γ | a⃗ ⊢ fun f x = e : τ
b⃗|⃗c→ σ | ext

ret:τ
b⃗|c⃗→σ
a⃗

This rule’s premiss holds by inversion.
Each of the following judgments have now been found:
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• V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)

• (V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ)

• Γ′, y : τ, g : τ
b⃗|⃗c→ σ | ext

Γ′,g:τ
b⃗|c⃗→σ

([y/arg]⃗b) ⊢ e : σ | ext
Γ′,g:τ

b⃗|c⃗→σ
([y/arg]⃗c)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : σ

(2) Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ) | ext

Γ′,g:τ
b⃗|c⃗→σ

([y/arg]⃗b)) ≥ p

(3)
Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ

b⃗|⃗c→ σ) | ext
Γ′,g:τ

b⃗|c⃗→σ
([y/arg]⃗b)) + q

≥ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e), ret 7→ v) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ, ret : σ) | ext

Γ′,g:τ
b⃗|c⃗→σ

([y/arg]⃗c))

+p

The well-formedness judgment (1) v : σ is what this case needs, so only this case’s cost
bounds remain to be proven. To do so, first simplify inequalities (2) and (3) into inequalities (4)
and (5), respectively, via the following steps:

For inequality (4):

p ≤ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ) | ext

Γ′,g:τ
b⃗|c⃗→σ

([y/arg]⃗b)) (2)

= Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) Lemma 7.8.1

=
∑

(y 7→i)∈MInd(y:τ)

[y/arg]⃗by 7→i · ϕi(v
′) def

=
∑

i∈MInd(τ)

b⃗arg7→i · ϕi(v
′) def

And for inequality (5):

Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ) | ext

Γ′,g:τ
b⃗|c⃗→σ

([y/arg]⃗b)) + q

≥ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e), ret 7→ v) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ, ret : σ) | ext

Γ′,g:τ
b⃗|c⃗→σ

([y/arg]⃗c)) + p (3)

⇐⇒ Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) + q ≥ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | [y/arg]⃗c) + p Lemma 7.8.1

⇐⇒ q +
∑

(y 7→i)∈MInd(y:τ)

[y/arg]⃗by 7→i · ϕi(v
′) ≥ p+

∑
(y 7→i,ret7→j)∈MInd(y:τ,ret:σ)

[y/arg]⃗cy 7→i,ret7→j · ϕi(v
′) · ϕj(v) def

⇐⇒ q +
∑

i∈MInd(τ)

b⃗arg7→i · ϕi(v
′) ≥ p+

∑
i∈MInd(τ), j∈MInd(σ)

c⃗arg7→i,ret7→j · ϕi(v
′) · ϕj(v) def

Now define r to be Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | a⃗), which

must be nonnegative because a⃗ ≥ 0.
Then the peak cost bound follows via the following inequalities:
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Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | a⃗+ ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b))

= r + Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b)) linearity

= r + Φ((x 7→ v′) : (x : τ) | [x/arg]⃗b) Lemma 7.8.1

= r +
∑

x 7→i∈MInd(x:τ)

[x/arg]⃗bx 7→i · ϕi(v
′) def

= r +
∑

i∈MInd(τ)

b⃗arg7→i · ϕi(v
′) def

≥ r + p (4)

≥ p r ≥ 0

And finally, the net cost bound follows via the following inequalities:

Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | a⃗+ ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b)) + q

= r + q + Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗b)) linearity

= r + q + Φ((x 7→ v′) : (x : τ) | [x/arg]⃗b) Lemma 7.8.1

= r +
∑

x 7→i∈MInd(x:τ)

[x/arg]⃗bx 7→i · ϕi(v
′) def

= r + q +
∑

i∈MInd(τ)

b⃗arg7→i · ϕi(v
′) def

≥ r + p+
∑

i∈MInd(τ), j∈MInd(σ)

c⃗arg7→i,ret7→j · ϕi(v
′) · ϕj(v) (5)

= r + p+
∑

(x 7→i,ret7→j)∈MInd(x:τ,ret:σ)

[x/arg]⃗cx7→i,ret7→j · ϕi(v
′) · ϕj(v) def

= r + p+ Φ((x 7→ v′, ret 7→ v) : (x : τ, y : σ) | [x/arg]⃗c) def

= r + p+ Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e), ret 7→ v) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ, y : σ) | ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗c)) Lemma 7.8.1

= Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e), ret 7→ v) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ, y : σ) | a⃗+ ext

Γ,f :τ
b⃗|c⃗→σ

([x/arg]⃗c)) + p linearity

E-Pair Suppose the last rule applied for the evaluation judgment is E-Pair.

E-PAIR

V, x 7→ v1, y 7→ v2 ⊢ ⟨x, y⟩ ⇓ ⟨v1, v2⟩ | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-PAIR

Γ, x : τ, y : σ | ⋎̂x,x′

x (⋎̂y,y′

y (unpretx′,y′ (⃗a))) ⊢ ⟨x, y⟩ : τ ⊗ σ | a⃗

Because ⟨v1, v2⟩ : τ ⊗ σ follows from V-Pair and the assumed well-formedness judgment
(V, x1 7→ v1, x2 7→ v2) : (Γ, x : τ, y : σ), the needed well-formedness judgment holds. Then
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because potential energy is always nonnegative, the peak cost bound is satisfied. Finally, because
unp and sharing both perfectly conserve potential energy (Lemmas 7.6.2 and 7.8.2), the net cost
bound is also satisfied with the following equality:

Φ(V, x 7→ v1, y 7→ v2 : Γ, x : τ, y : σ | ⋎̂x,x′

x (⋎̂y,y′

y (unpretx′,y′ (⃗a))))

= Φ(V, x 7→ v1, y 7→ v2, ret 7→ ⟨v1, v2⟩ : Γ, x : τ, y : σ, ret : τ ⊗ σ | a⃗)

E-CaseP Suppose the last rule applied for the evaluation judgment is E-CaseP.

E-CASEP
V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (p, q)

V, x 7→ ⟨v1, v2⟩ ⊢ case x of ⟨y, z⟩ → e ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

M-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ | unpx′

y,z (⃗a) ⊢ e : τ | unpx′

y,z (⃗b)

Γ, x : σ ⊗ ρ | ⋎̂x,x′

x (⃗a) ⊢ case x of ⟨y, z⟩ → e : τ | ⋎̂x,x′

x (⃗b)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ⊗ ρ) by assumption, the rule V-Context can be inverted

to learn ⟨v1, v2⟩ : σ ⊗ ρ. Then further, the rule V-Pair can be inverted to learn both v1 : σ and
v2 : ρ. Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)

Each of the following judgments have now been found:

• V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (p, q)
• (V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)

• Γ, x : σ ⊗ ρ, y : σ, z : ρ | unpx′

y,z (⃗a) ⊢ e : τ | unpx′

y,z (⃗b)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | unpx′

y,z (⃗a)) ≥ p

(3)
Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | unpx′

y,z (⃗a)) + q

≥ Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | unpx′

y,z (⃗b)) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because unp and sharing both perfectly conserve potential
energy (Lemmas 7.6.2 and 7.8.2), both these cost bounds follow from (2) and (3) using the
following equalities:

Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | unpx′

y,z (⃗a))
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= Φ((V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ ⊗ ρ) | ⋎̂x,x′

x (⃗a))

Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | unpx′

y,z (⃗b))

= Φ((V, x 7→ ⟨v1, v2⟩, ret 7→ v) : (Γ, x : σ ⊗ ρ, ret : τ) | ⋎̂x,x′

x (⃗b))

E-SumL Suppose the last rule applied for the evaluation judgment is E-SumL.

E-SUML

V, x 7→ v ⊢ l(x) ⇓ l(v) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-SUML

Γ, x : τ | ⋎̂x,x′

x (unlretx′ (⃗a)) ⊢ l(x) : τ ⊕ σ | a⃗

Because l(v) : τ ⊕ σ follows from V-SumL and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : τ), the needed well-formedness judgment holds. Then because potential
energy is always nonnegative, the peak cost bound is satisfied. Finally, because unl and sharing
both perfectly conserve potential energy (Lemmas 7.6.2 and 7.8.2), the net cost bound is also
satisfied with the following equality:

Φ((V, x 7→ v) : (Γ, x : τ) | ⋎̂x,x′

x (unlretx′ (⃗a)))

= Φ((V, x 7→ v, ret 7→ l(v)) : (Γ, x : τ, ret 7→ τ ⊕ σ) | a⃗)

E-SumR Suppose the last rule applied for the evaluation judgment is E-SumR.

E-SUMR

V, x 7→ v ⊢ r(x) ⇓ r(v) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-SUMR

Γ, x : σ | ⋎̂x,x′

x (unrretx′ (⃗a)) ⊢ r(x) : τ ⊕ σ | a⃗

Because r(v) : τ ⊕ σ follows from V-SumR and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : σ), the needed well-formedness judgment holds. Then because potential
energy is always nonnegative, the peak cost bound is satisfied. Finally, because unr and sharing
both perfectly conserve potential energy (Lemmas 7.6.2 and 7.8.2), the net cost bound is also
satisfied with the following equality:

Φ((V, x 7→ v) : (Γ, x : σ) | ⋎̂x,x′

x (unrretx′ (⃗a)))

= Φ((V, x 7→ v, ret 7→ r(v)) : (Γ, x : σ, ret 7→ τ ⊕ σ) | a⃗)
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E-CaseS-L Suppose the last rule applied for the evaluation judgment is E-CaseS-L.

E-CASES-L
V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (p, q)

V, x 7→ l(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

M-CASES
Γ, x : σ ⊕ ρ, y : σ | unlx′

y (⃗a) ⊢ e1 : τ | unlx′

y (⃗b)

Γ, x : σ ⊕ ρ, z : ρ | unrx′

z (⃗a) ⊢ e2 : τ | unrx′

z (⃗b)

Γ, x : σ ⊕ ρ | ⋎̂x,x′

x (⃗a) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | ⋎̂x,x′

x (⃗b)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ l(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumL can be inverted to learn v′ : σ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)

Each of the following judgments have now been found:

• V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)

• Γ, x : σ ⊕ ρ, y : σ | unlx′
y (⃗a) ⊢ e1 : τ | unlx′

y (⃗b)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | unlx′
y (⃗a)) ≥ p

(3) Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | unlx′
y (⃗a)) + q

≥ Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | unlx′
y (⃗b)) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because unl and sharing both perfectly conserve potential
energy (Lemmas 7.6.2 and 7.8.2), both these cost bounds follow from (2) and (3) using the
following equalities:

Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | unlx′

y (⃗a))

= Φ((V, x 7→ l(v′)) : (Γ, x : σ ⊕ ρ) | ⋎̂x,x′

x (⃗a))

Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | unlx′

y (⃗b))

= Φ((V, x 7→ l(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, ret : τ) | ⋎̂x,x′

x (⃗b))
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E-CaseS-R Suppose the last rule applied for the evaluation judgment is E-CaseS-R.

E-CASES-R
V, x 7→ r(v′), z 7→ v′ ⊢ e2 ⇓ v | (p, q)

V, xs 7→ r(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

M-CASES
Γ, x : σ ⊕ ρ, y : σ | unlx′

y (⃗a) ⊢ e1 : τ | unlx′

y (⃗b)

Γ, x : σ ⊕ ρ, z : ρ | unrx′

z (⃗a) ⊢ e2 : τ | unrx′

z (⃗b)

Γ, x : σ ⊕ ρ | ⋎̂x,x′

x (⃗a) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | ⋎̂x,x′

x (⃗b)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ r(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumL can be inverted to learn v′ : ρ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)

Each of the following judgments have now been found:

• V, x 7→ r(v′), z 7→ v′ ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)

• Γ, x : σ ⊕ ρ, z : ρ | unrx′
z (⃗a) ⊢ e2 : τ | unrx′

z (⃗b)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | unrx′
z (⃗a)) ≥ p

(3) Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | unrx′
z (⃗a)) + q

≥ Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | unrx′
z (⃗b)) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because unr and sharing both perfectly conserve potential
energy (Lemmas 7.6.2 and 7.8.2), both these cost bounds follow from (2) and (3) using the
following equalities:

Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | unrx′

z (⃗a))

= Φ((V, x 7→ r(v′)) : (Γ, x : σ ⊕ ρ) | ⋎̂x,x′

x (⃗a))

Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | unrx′

z (⃗b))

= Φ((V, x 7→ r(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, ret : τ) | ⋎̂x,x′

x (⃗b))
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E-Nil Suppose the last rule applied for the evaluation judgment is E-Nil.

E-NIL

V ⊢ [ ] ⇓ [ ] | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-NIL

Γ | unnret(⃗a) ⊢ [ ] : L(τ) | a⃗

Because [ ] : L(τ) follows from V-Nil, the needed well-formedness judgment holds. Then
because potential energy is always nonnegative, the peak cost bound is satisfied. And finally,
because unn perfectly conserves potential energy (Lemma 7.8.2), the net cost bound is also
satisfied with the following equality:

Φ(V : Γ | unnret(⃗a)) = Φ((V, ret 7→ [ ]) : (Γ, ret : L(τ)) | a⃗)

E-Cons Suppose the last rule applied for the evaluation judgment is E-Cons.

E-CONS

V, x 7→ v1, y 7→ v2 ⊢ x :: y ⇓ v1 :: v2 | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-CONS

Γ, x : τ, y : L(τ) | ⋎̂x,x′

x (⋎̂y,y′

y (◁̂ret

x′,y′ (⃗a))) ⊢ x :: y : L(τ) | a⃗

Because v1 :: v2 : L(τ) follows from V-Cons and the assumed well-formedness judgment
(V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)), the needed well-formedness judgment holds. Then
because the potential energy is always nonnegative, the peak cost bound is satisfied. Finally,
because shifting and sharing both perfectly conserve potential energy (Lemmas 7.6.2 and 7.7.2),
the net cost bound is also satisfied with the following equality:

Φ((V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)) | ⋎̂x,x′

x (⋎̂y,y′

y (◁̂ret

x′,y′ (⃗a))))

= Φ((V, x 7→ v1, y 7→ v2, ret 7→ v1 :: v2) : (Γ, x : τ, y : L(τ), ret : L(τ)) | a⃗)

E-CaseL-Nil Suppose the last rule applied for the evaluation judgment is E-CaseL-Nil.

E-CASEL-NIL
V, x 7→ [ ] ⊢ e1 ⇓ v | (p, q)

V, x 7→ [ ] ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)
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Then only one typing rule remains that could be used to conclude the typing derivation:

M-CASEL
unnx(unnx

′
(⃗a)) = unnx(c⃗) unnx(unnx

′
(⃗b)) = unnx(d⃗)

Γ, x : L(σ) | c⃗ ⊢ e1 : τ | d⃗ Γ, x : L(σ), y : σ, z : L(σ) | ◁̂x′

y,z (⃗a) ⊢ e2 : τ | ◁̂x′

y,z (⃗b)

Γ, x : L(σ) | ⋎̂x,x′

x (⃗a) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | ⋎̂x,x′

x (⃗b)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ [ ]) : (Γ, x : L(σ)) holds by assumption, each of the following judgments

have now been found:

• V, x 7→ [ ] ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ [ ]) : (Γ, x : L(σ))

• Γ, x : L(σ) | c⃗ ⊢ e1 : τ | d⃗

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | c⃗) ≥ p

(3) Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | c⃗) + q

≥ Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | d⃗) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because unn and sharing both perfectly conserve potential
energy (Lemmas 7.6.2 and 7.8.2), unnx(unnx′

(⃗a)) = unnx(c⃗), and unnx(unnx
′
(⃗b)) = unnx(d⃗),

both these cost bounds follow from (2) and (3) using the following equalities:

Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | c⃗) = Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | ⋎̂x,x′

x (⃗a))

Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | d⃗)

= Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | ⋎̂x,x′

x (⃗b))

E-CaseL-Cons Suppose the last rule applied for the evaluation judgment is E-CaseL-Cons.

E-CASEL-CONS
V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)

V, x 7→ v1 :: v2 ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

M-CASEL
unnx(unnx

′
(⃗a)) = unnx(c⃗) unnx(unnx

′
(⃗b)) = unnx(d⃗)

Γ, x : L(σ) | c⃗ ⊢ e1 : τ | d⃗ Γ, x : L(σ), y : σ, z : L(σ) | ◁̂x′

y,z (⃗a) ⊢ e2 : τ | ◁̂x′

y,z (⃗b)

Γ, x : L(σ) | ⋎̂x,x′

x (⃗a) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | ⋎̂x,x′

x (⃗b)

Both of these rules’ premisses hold by inversion.

159



Because (V, x 7→ v1 :: v2) : (Γ, x : L(σ)) by assumption, the rule V-Context can be inverted
to learn v1 :: v2 : L(σ). Then further, the rule V-Cons can be inverted to learn both v1 : σ and
v2 : L(σ). Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

Each of the following judgments has now been found:

• V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)
• (V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

• Γ, x : L(σ), y : σ, z : L(σ) | ◁̂x′

y,z (⃗a) ⊢ e2 : τ | ◁̂x′

y,z (⃗b)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | ◁̂x′

y,z (⃗a)) ≥ p

(3) Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | ◁̂x′

y,z (⃗a)) + q

≥ Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) | ◁̂x′

y,z (⃗b)) + p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because shifting and sharing both perfectly conserve potential
energy (Lemmas 7.6.2 and 7.7.2), both these cost bounds follow from (2) and (3) using the
following equalities:

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | ◁̂x′

y,z (⃗a))

= Φ((V, x 7→ v1 :: v2) : (Γ, x : L(σ)) | ⋎̂x,x′

x (⃗a))

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) | ◁̂x′

y,z (⃗b))

= Φ((V, x 7→ v1 :: v2, ret 7→ v) : (Γ, x : L(σ), ret : τ) | ⋎̂x,x′

x (⃗b))

E-Leaf Suppose the last rule applied for the evaluation judgment is E-Leaf.
E-LEAF

V ⊢ leaf ⇓ leaf | (0, 0)
Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-LEAF

Γ | unnret(⃗a) ⊢ leaf : T (τ) | a⃗

Because leaf : T (τ) follows from V-Leaf, the needed well-formedness judgment holds.
Then because potential energy is always nonnegative, the peak cost bound is satisfied. And
finally, because unn perfectly conserves potential energy (Lemma 7.8.2), the net cost bound is
also satisfied with the following equality:

Φ(V : Γ | unnret(⃗a)) = Φ((V, ret 7→ leaf) : (Γ, ret : T (τ)) | a⃗)
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E-Node Suppose the last rule applied for the evaluation judgment is E-Node.

E-NODE

V, x 7→ v1, y 7→ v2, z 7→ v3 ⊢ node(x, y, z) ⇓ node(v1, v2, v3) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

M-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎̂x,x′

x (⋎̂y,y′

y (⋎̂z,z′

z (◁̂ret

x′,y′,z′ (⃗a)))) ⊢ node(x, y, z) : T (τ) | a⃗

Because node(v1, v2, v3) : T (τ) follows from V-Node and the assumed well-formedness
judgment (V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)), the needed well-
formedness judgment holds. Then because the potential energy is always nonnegative, the peak
cost bound is satisfied. Finally, because shifting and sharing both perfectly conserve potential
energy (Lemmas 7.6.2 and 7.7.2), the net cost bound is also satisfied with the following equality:

Φ((V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)) | ⋎̂x,x′

x (⋎̂y,y′

y (⋎̂z,z′

z (◁̂ret

x′,y′,z′ (⃗a)))))

= Φ((V, x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ node(v1, v2, v3)) : (Γ, x : T (τ), y : τ, z : T (τ), ret : T (τ)) | a⃗)

E-CaseT-Leaf Suppose the last rule applied for the evaluation judgment is E-CaseT-Leaf.

E-CASET-LEAF
V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)

V, t 7→ leaf ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

M-CASET
unnx(unnx

′
(⃗a)) = unnx(c⃗) unnx(unnx

′
(⃗b)) = unnx(d⃗) Γ, t : T (σ) | c⃗ ⊢ e1 : τ | d⃗

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁̂t′

x,y,z (⃗a) ⊢ e2 : τ | ◁̂t′

x,y,z (⃗b)

Γ, t : T (σ) | ⋎̂t,t′

t (⃗a) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | ⋎̂t,t′

t (⃗b)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ leaf) : (Γ, t : T (σ)) holds by assumption, each of the following judgments

have now been found:

• V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)
• (V, t 7→ leaf) : (Γ, t : T (σ))

• Γ, t : T (σ) | c⃗ ⊢ e1 : τ | d⃗

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ
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(2) Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | c⃗) ≥ p

(3) Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | c⃗) + q

≥ Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | d⃗) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, both unn and sharing both perfectly conserve potential
energy (Lemmas 3.4.1 and 7.8.2), unnx(unnx′

(⃗a)) = unnx(c⃗), and unnx(unnx
′
(⃗b)) = unnx(d⃗),

both these cost bounds follow from (2) and (3) using the following equalities:

Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | c⃗) = Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | ⋎̂t,t′

t (⃗a))

Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | d⃗)

= Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | ⋎t,t′

t (⃗b))

E-CaseT-Node Suppose the last rule applied for the evaluation judgment is E-CaseT-Node.

E-CASET-NODE
V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)

V, t 7→ node(v1, v2, v3) ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

M-CASET
unnx(unnx

′
(⃗a)) = unnx(c⃗) unnx(unnx

′
(⃗b)) = unnx(d⃗) Γ, t : T (σ) | c⃗ ⊢ e1 : τ | d⃗

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁̂t′

x,y,z (⃗a) ⊢ e2 : τ | ◁̂t′

x,y,z (⃗b)

Γ, t : T (σ) | ⋎̂t,t′

t (⃗a) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | ⋎̂t,t′

t (⃗b)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) by assumption, the rule V-Context can

be inverted to learn v1 :: v2v3 : T (σ). Then further, the rule V-Node can be inverted to learn all
of v1 : T (σ), v2 : σ, and v3 : T (σ). Using V-Context, one can then use these well-formedness
judgments to derive

(V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

Each of the following judgments has now been found:

• V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)
• (V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

• Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | ◁̂t′

x,y,z (⃗a) ⊢ e2 : τ | ◁̂t′

x,y,z (⃗b)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | ◁̂t′

x,y,z (⃗a))
≥ p
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(3)
Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | ◁̂t′

x,y,z (⃗a)) + q

≥ Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) | ◁̂t′

x,y,z (⃗b))
+ p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because shifting and sharing both perfectly conserve potential
energy (Lemmas 7.6.2 and 7.7.2), both these cost bounds follow from (2) and (3) using the
following equalities:

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | ◁̂t′

x,y,z (⃗a))

= Φ((V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) | ⋎̂
t,t′

t (⃗a))

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) | ◁̂t′

x,y,z (⃗b))

= Φ((V, t 7→ node(v1, v2, v3), ret 7→ v) : (Γ, t : T (σ), ret : τ) | ⋎̂t,t′

t (⃗b))

7.10 Automation
By design, the multivariate resource functions described in this chapter are still expressible as
linear combinations of basis resource functions, and therefore they do not significantly impact
how AARA is automated. Thus, type inference still follows the following two steps:

1. basic type inference

2. collect and solve linear contraints

The main difference between type inference here and in other chapters lies in the details of
step 2, where the number of linear constraints generated is related to the number of resource
functions considered. This number is highly dependent upon how the user might choose to limit
the resource functions considered, but there are a few features to be aware of that encourage large
numbers of resource functions: The number of resource functions for a given context grows mul-
tiplicatively with the number of resource functions for a variable in the context, and both sharing
and tree shifting involve combinatorially defined objects (shuff and cut). This circumstance
could potentially pressure a user to support many more resource functions than a comparable
univariate system. But in practice, this situation is not much of a concern. While many wild and
complex resource functions are possible, usually only relatively simple ones like

{
n+1
i+1

}
·
{
m+1
j+1

}
are needed. The AARA implementation Resource Aware ML also uses multivariate polynomial
resource functions with similar pressures, and it is still practical and efficient.

In total then, type inference in this system is efficient. After basic type inference, the rest of
type inference can be reduced to collecting and solving linear constraints, which—given a fixed
collection of resource functions—only takes polynomial time in the size of the source code.
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7.11 Related Work
This chapter presents a multivariate variant of AARA, but multivariate AARA has been devel-
oped before. After discussing these multivariate works, this section goes on to discuss multivari-
ate analyses in other domains.

Hoffmann et al.

This chapter’s work should be seen as the exponential counterpart to Hoffmann et al.’s devel-
opment [80], as both only cover lists and trees, and both treat trees as lists of their elements.
However, Hoffmann et al.’s system predates remainder contexts, and so it does not use them,
unlike the exponential system presented in this chapter. Another difference is that Hoffmann
et al.’s work includes the cost-free type optimizations for function applications that I discuss in
Section 7.8.

It is likely that the work of this chapter can be directly combined with Hoffmann et al.’s
system through some sort of mixing construction, as in Section 6.6. This mixing might also
enable more kinds of optimizations like demotion rules. However, I leave such mixing for future
work.

Grosen et al.

Grosen et al.6 have shown that the multivariate polynomial system can be extended naturally over
arbitrary regular recursive data structures so that the indices of data structures correspond almost
perfectly to their values [65]. This extension generates natural notions of resource functions for
all such data structures, including the existing resource functions for lists and more interesting
ones for mutually-recursive data structures like rose trees (see, e.g., Figure 1 in that work for
some rose tree examples). Such resource functions can correspond to properties like how left-
tilted a tree is by using an annotation index that counts the total number of left descendants from
all nodes. Such an annotation index looks like node(node(end, ⟨⟩, end), ⟨⟩, end), which uses
features this chapter’s annotation index system does not have, including tree structure and the
index end that matches against recursive type constructors.

It is likely that a similar generalization exists for the exponential system of this chapter. How-
ever, I leave this development for future work. One key hurdle that would need to be overcome
is to find the proper generalizations of the definitions of sharing and shifting, which are already
rather involved just for lists.

Hofmann and Moser

Hofmann and Moser provide a different approach in their multivariate AARA-based system for
term rewriting [88]. In their system, resource functions are defined via tree automata. It seems
likely that such a setup could also be applied in traditional AARA.

The tree automata of Hofmann and Moser are bottom-up and nondeterministic. They con-
sume abitrary constructor-defined data structures and generate resource functions based on the

6One of the authors is myself.
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number of accepting runs of the automaton on a given value. These automata can generate multi-
variate polynomial resource functions of Hoffmann et al. as well as exponentials like this chapter.
It is not clear how their work compares to Grosen et al.’s multivariate resource functions.

However, it is less clear how to select automata measuring meaningful properties of data
structures. Whereas the pattern-matching approach employed by other multivariate AARA sys-
tems yields a clear combinatorial interpretation in terms of values’ structures, the properties
counted by tree automata are somewhat opaque. Hofmann and Moser do explain how one could
use, e.g., ranking functions on automaton state to ensure polynomial resource functions, but it
would appear additional techniques would be needed to pick out, e.g., exponentials.

Other Automatic Multivariate Techniques

Other automatic cost analyses do not usually infer multivariate cost bounds. There are a variety
of reasons for this circumstance, a few of which I mention here.

One reason is simply that automatic cost analysis is a relatively young area of research, and
so only a few systems are mature enough to care about solving the problems that multivariate
bounds solve. Hoffmann et al.’s work came out in 2012 claiming to be the first to provide such
bounds, and this thesis is only being written in 2024. Many alternative approaches still only
focus on the derivation of univariate cost bounds.

Another reason could be that the use of multivariate bounds could be somewhat specific to
functional programming. The accumulator code pattern for tail-recursion is clearly not relevant
to imperative programs, but most work in automatic program analysis targets imperative pro-
grams.

Regardless of these reasons, some other automatic techniques should in principle be able to
approach multivariate bounds. For example, techniques making use of Gröbner bases [48, 128]
should already be able to handle multivariate polynomials.
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Chapter 8

Linear Maps for Cost-Free Typing

This chapter1 grapples with a technical complication to AARA that concerns the tradeoffs AARA
makes between efficiency and analytical power: cost-free types. These are types which are de-
rived in cost model with no cost. Such cost-free types are surprisingly useful across many facets
of the AARA analysis, ranging from compositional or non-tail recursive code patterns[78] to log-
arithmic or multivariate resource functions [80, 89] to parallel execution models[79] and more.
However, the established method of inferring and using cost-free types, particularly for non-tail
recursive code, is quite computationally expensive due to a phenomenon known as resource-
polymorphic recursion [78]. This method is also specialized to polynomial AARA, and thus
it is not applicable to exponential AARA or other systems from Chapter 6. Thus, the use of
cost-free types involves multiple tradeoffs between analytical power and efficiency. The work of
this chapter aims to allow for different tradeoffs by laying out an alternative method of cost-free
type inference. Where applicable, this new method provides an exponential speedup over the
established method.

The new method of cost-free type inference presented in this chapter is based on linear maps,
i.e., matrices. Many of AARA’s basic annotation manipulations are linear maps. This fact is
already used in other chapters, especially Chapter 6 where shifting is explicitly represented with a
linear map. The idea of this chapter is to directly infer such linear maps for entire functions, rather
than inferring the annotation vectors that such maps act upon. Such a functional transformation
of annotations only needs to be inferred once to cover essentially all annotation-to-annotation
mappings that could be desired. The established method of cost-free type inference does not
have this once-and-done property.

This chapter’s work is terminal in this thesis, so no other chapter builds off of it. Moreover,
this is the only chapter in this thesis to use cost-free types.

8.1 Cost-Freedom
Before one can understand the contributions of this chapter, it is necessary to understand what
cost-free types are and how AARA can use them. Thus, I provide this section to define cost-free
types and describe some of their uses.

1This chapter is based on joint work between myself, Jan Hoffmann, Thomas Reps, and Jessie Grosen.
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Definition 8.1.1 (cost-free type). A cost-free type is an AARA type τ derived in the trivial cost
model where no resources are ever spent or accumulated. For example, cost-free types include τ
derived by

Γ | a⃗ ⊢ e : τ | b⃗

where every type in Γ is cost-free and where every tick{r} in e has r = 0.

Cost-free types are defined in Definition 8.1.1. In contrast, I use the term “costful” to describe
types which AARA derives in an arbitrary cost model. As a result, cost-free types are a special
case of costful types.

Despite the unassuming definition of cost-free types, they encode a lot of useful information
about the behaviour of the underlying code that general costful types do not. For example, sup-
pose that a function can be assigned the cost-free type L1(Z) → L2(Z) ∼ L0(Z) in polynomial
AARA. The input list has one unit of energy per element and the output has two. Because energy
cannot be gained in a cost-free cost model, this change in density can only mean that the output
list is no more than half the length of the input list. As a result, the cost-free cost analysis can act
as a sort of size analysis.

However, the most important use of cost-free types is for function specialization, which is an
important ingredient in deriving tight cost bounds. When a function is assigned a type, that type
fixes the energy annotations of its inputs. Thus, to get the best cost bounds, this function type
should be specialized to the arguments that the function actually takes at its call sites. However,
if a function is called in multiple places, those argument typings may differ, so no single function
typing would be optimal. It would therefore be valuable to be able to type functions in a more
flexible manner.

Cost-free types enable more flexible function typing. Because cost-free function types de-
scribe functions without costs, such cost-free types only describe how potential energy can get
moved around. That is, cost-free function types describe how AARA can reallocate potential en-
ergy from input to output data structures. This ability is perfect for specializing function types to
the excess potential energy on input data structures, as all excess can be reallocated to the output
according to the cost-free function type. Formally, if the function f can be given the costful type

τ
a⃗|⃗b→ σ and the cost-free type τ

c⃗|d⃗→ σ, then τ
a⃗+k·⃗c|⃗b+k·d⃗→ σ is also a valid costful type for k ≥ 0.2

Thus, cost-free types serve much the same role as, e.g., homogeneous solutions to differential
equations. Just as any of the solutions of the homogeneous equation can be added to the solution
of the inhomogeneous equation to obtain another solution to the inhomogeneous equation, any
cost-free type can be added to a costful type to obtain another valid costful type.

To see the use of cost-free types, consider an identity function on integer lists which is cost-
fully typed L1(Z) → L0(Z) ∼ L0(Z) so that it takes one unit of energy per element of the
input list. This type alone is insufficient to find a good costful type for the simple function com-
position id ◦ id. This composition should have the costful type L2(Z) → L0(Z) ∼ L0(Z)
because one unit of energy per element is taken twice from the input list. However, deriving

2It is critical that k ≥ 0 so that cost-free types are added and not subtracted. Among other reasons, repeatedly
subtracting a cost-free type that lossily reallocates potential energy can unsoundly result in an arbitrarily low, even
negative, net cost bound.
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1 fun half lst = case lst of
2 | [] -> []
3 | x1::xs1 -> case xs1 of
4 | [] -> []
5 | x2::xs2 -> let tmp = half xs2 in x1::tmp

Figure 8.1: Code for half

this type requires the additional costful typing id : L2(Z) → L1(Z) ∼ L0(Z) for the righthand
instance of id. This new costful type can be obtained from the first by adding the cost-free type
L1(Z) → L1(Z) ∼ L0(Z), indicating extra input energy can be reallocated to the output at a 1:1
rate.

While that example was rather easy, by far the most pathological sort of function specializa-
tion concerns a phenomenon known as resource-polymorphic recursion. Resource-polymorphic
recursion refers to situations in which the type annotations required of a recursively called func-
tion differ from those used at the function entry.3 This situation typically occurs when the call
is non-tail-recursive and uses non-linear resource functions (but may still occur even with only
linear resource functions [77]).

The difficulty with resource-polymorphic recursion is that typing a function itself requires a
different specialization of that same function type, which in turn requires its own specialization,
ad infinitum. To see this phenomenon in action, consider what happens to quadratic potential in
the function half for halving the length of a list from n to ⌊n/2⌋, given in Figure 8.1. After, I
will discuss how cost-free types solve the problem of resource-polymorphic recursion.

One can start by reasoning semantically about how the input’s energy should be transformed
by the function half. Initially, type the function half to take in a list lst : L1,0(Z) with one
unit of quadratic energy, i.e.,

(
n
2

)
total energy. The code contains no “tick” expressions, so no

energy is ever consumed to pay for costs. If no energy is lost, then a good AARA type should
attempt to reallocate all the energy from the input to the output, and should thus re-express the
amount in terms of ⌊n/2⌋ because the output list is half the length of the input. This goal is
accomplished best when the output list is given the type L4,1(Z), having 4 units of quadratic
energy and 1 unit of linear energy, because

(
n
2

)
≥ 4

(⌊n/2⌋
2

)
+
(⌊n/2⌋

1

)
, and this inequality is

actually tight for even n. So one would like to show that half : L1,0(Z) → L4,1(Z) ∼ L0,0(Z),
with no remainder necessary. (I therefore elide remainders for the rest of this section.)

Now compare this result to how potential energy is actually transformed by AARA’s typing
rules in lines 3 to 5 of Figure 8.1:

• From line 3 to the start of line 5, the input list lst gets broken up into two head elements
(x1 and x2) and a tail list xs2. To transfer all potential to the tail, AARA makes use of
Pascal’s identity twice:

(
m+2
k+2

)
=
(
m+1
k+2

)
+
(
m+1
k+1

)
=
(

m
k+2

)
+ 2
(

m
k+1

)
+
(
m
k

)
. Reallocating

potential according to this rule turns 1 unit of quadratic potential on lst into 1 unit of
quadratic potential, 2 units of linear potential, and 1 unit of constant potential on xs2,
because xs2 has two fewer elements than lst. This allocation results in the type of xs2

3This issue could be characterized as a sort of frame problem like that solved by separation logic’s frame rule
[120].
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being L1,2(Z) and 1 unit of free potential being leftover. This result makes sense because(
m
2

)
+ 2
(
m
1

)
+ 1 =

(
m+2
2

)
.

• The next part of line 5 performs a recursive call on xs2 and binds it to tmp. However, the
function type assigned to half by the above semantic reasoning has an argument type of
L1,0(Z), while xs2 : L1,2(Z). AARA needs a different type for half to justify the current
one! It turns out that the required new typing for half is ⟨L1,2(Z); 1⟩ → ⟨L4,5(Z); 1⟩.
One can see that this is semantically valid by noting that

(
2m
2

)
+ 2
(
2m
1

)
+ 1 = 4

(
m
2

)
+

5
(
m
1

)
+ 1.

• Finally, the rest of line 5 adds x1 onto the front of the list. In terms of potential, this action
corresponds to inverting Pascal’s identity. This process leaves the output list typed L4,1(Z)
as desired, because 4

(
m
2

)
+ 5
(
m
1

)
+ 1 = 4

(
m+1
2

)
+ 1
(
m+1
1

)
.

This typing therefore works out consistently with the given semantic reasoning, at least as
long as there is that additional typing for half at the recursive call. However, it is justifying that
additional typing half : ⟨L1,2(Z); 1⟩ → ⟨L4,5(Z); 1⟩ that is the problem. If one naively tries to
justify this new type syntactically with AARA’s typing rules, one would find that another new
type is needed, half : ⟨L1,4(Z); 6⟩ → ⟨L4,9(Z); 6⟩, at the point of the recursive call. Justifying
this type would then need yet another new type half : ⟨L1,6(Z); 15⟩ → ⟨L4,13(Z); 15⟩, which
would need still another type half : ⟨L1,8(Z); 28⟩ → ⟨L4,17(Z); 28⟩, and so on.

Cost-free types can solve the problem of resource-polymorphic recursion. The pointwise
difference between the desired type ⟨L1,0(Z); 0⟩ → ⟨L4,1(Z); 0⟩ and the first additional type
⟨L1,2(Z); 1⟩ → ⟨L4,5(Z); 1⟩ is ⟨L0,2(Z); 1⟩ → ⟨L0,4(Z); 1⟩. Thus, if this pointwise-difference
type can be justified as a cost-free type, it can be added to the desired type to obtain the needed ad-
ditional type. This cost-free addition avoids needing to derive the additional type directly, which
is where resource-polymorphic recursion turns into infinite regress. And indeed, this cost-free
type can be justified directly through typing without resource-polymorphic recursion, providing
a finite means of deriving good AARA types for non-tail recursive functions like half.

Finally, note that resource-polymorphic recursion arises the same way when using exponen-
tial resource functions instead of polynomial. In the exponential setting, one can use the identity{
2n+1

2

}
= 6

{
n+1
4

}
+ 6
{
n+1
3

}
+ 3
{
n+1
2

}
to guess that half can be typed as ⟨L0,0,1(Z); 0⟩ →

⟨L6,6,3(Z); 0⟩. However, just like in the polynomial case, a different type for half is needed to
justify the typing of the recursive call. Specifically, that type is ⟨L0,0,4(Z); 3⟩ → ⟨L24,24,12(Z); 3⟩,
which in turn requires the type ⟨L0,0,16(Z); 15⟩ → ⟨L96,96,48(Z); 15⟩ to be justified, and so on.

8.2 The Problem: Costly, Specialized Inference
As explained in Section 8.1, cost-free types are critical for many purposes in AARA, espe-
cially for the purpose of sidestepping infinite regress in resource-polymorphic recursion. Thus,
a mature AARA cost-analysis system is inclined to infer cost-free types. However, the existing
approach to cost-free type inference is problematic in two ways: Firstly, the cost-free inference
algorithm can be quite inefficient. Secondly, it is specialized to polynomial resource functions,
and so does not apply to, e.g., the exponential resource functions of Chapter 6.

The existing method of inference with cost-free types stems from Hoffmann and Hofmann
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[77]. However, the version given there is not general enough to handle many high-degree exam-
ples. Improvements were made in later work [80], but the full picture has never been published.
Here I sketch the full picture to highlight the innovations of this chapter’s new cost-free typing
method.

The basic idea behind the existing inference method is to use brute force to infer a new
cost-free type for the excess potential present at each and every function call site. Recall that
annotations in AARA are initially symbolic during type inference and are only concretized after
solving a linear program. Thus, this process of retyping amounts to assuming that the annotations
at every function call are of the form a⃗ + b⃗, where a⃗ matches the costful typing of the function
argument, and b⃗ is some amount of excess. Then the function is retyped using the cost-free
typing rules to accept an input annotated b⃗. Even if it would happen to be the trivial case that
the excess b⃗ is the zero vector, AARA would not be able to take advantage of this fact until after
the system of linear inequalities is generated and solved. Thus, the types of functions with trivial
cost behavior can be equally expensive to infer as those with nontrivial resource-polymorphic
recursion.

However, brute-force retyping alone is not sufficient for typing recursive functions. Retyping
any function at its recursive call will cause the process to loop. To avoid looping indefinitely, the
existing inference method introduces an additional assumption about the structure of potential
annotations at recursive calls. Specifically, it is assumed that the highest-degree annotation in
the excess vector b⃗ is 0. This assumption reduces the degree of potential represented by the
annotation vectors at each iteration until the base case of linear excess potential. Under the given
assumption, the linear case’s recursive calls to a function are assumed to precisely match the
assumed type of that function,4 and therefore exhibit no resource-polymorphic recursion. This
process mirrors how repeatedly taking the (discrete) derivative of a polynomial eventually yields
the constant 0 function.

The function half from Section 8.1 is an example of a resource-polymorphic typing for
which this algorithm works perfectly. At half’s recursive call, the needed cost-free type was
⟨L0,2(Z); 1⟩ → ⟨L0,4(Z); 1⟩, which indeed has a 0 in the first position. This type only uses linear
energy and does not require any resource-polymorphic recursion to typecheck successfully. In
this case, the key heuristic used in the existing inference method allows the algorithm to converge
to the desired solution. Using higher-degree resource functions would require more iterations to
converge.

Here is a more formal description of the inference algorithm. Let Dmax be the greatest
degree of polynomial resource functions being considered and a⃗ be the annotation of the type
of some recursive function f. The linear program generated by the existing inference algorithm
is constructed as follows:

1. If Dmax = 1 so that a⃗ only annotates linear resource functions, assume that a⃗ is also used
for f’s recursive call.

2. If Dmax > 1 for the resource functions annotated by a⃗, assume a cost-free type annotated
b⃗ of degree Dmax − 1 is needed at the recursive call. Attempt to type f using the cost-free
annotation b⃗, then use the annotation a⃗+ b⃗ at f’s recursive call.

4That is, the type matches modulo constant potential. AARA can already freely pass extra constant potential
through functions, so constant potential can be excluded from the concerns of resource-polymorphic recursion.
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1 fun dbl lst = case lst of
2 | [] -> []
3 | x::xs -> x::x::(dbl xs)
4
5 fun round lst = case lst of
6 | [] -> []
7 | x::xs -> x::dbl(round(half xs))

Figure 8.2: Code for dbl and round

In step 2, the annotation at the call is divided into a⃗ + b⃗ so that the “extra” potential energy
annotated by b⃗ is retyped in a cost-free manner. Note how step 2 will be repeated for each internal
recursive call to f and for each degree of polynomial energy being used to type f . Thus, if f has
b recursive calls and potential energy is of degree d, each external call to f results in retyping
f approximately bd times. Every retyping of f entails retyping each helper function called in
f , resulting in a combinatorially explosive cascade of retyping. This cost profile is revisited
quantitatively in Section 8.9.

While this algorithm works for half and many other functions, it is somewhat lucky that
it finds any solutions at all. This circumstance is because the key assumption that the algorithm
relies on is not guaranteed to be true. Rather, the assumption is just often true when dealing
with simple pattern matching and polynomial resource functions because Pascal’s identity does
not change the coefficient of the highest degree binomial coefficient. Thus, that coefficient gets
cancelled out when expressing a cost-free type as the difference of types.

Using polynomial resource functions, a counterexample to the assumption can be found in
round in Figure 8.2. This function computes a list of length equal to the largest number of the
form 2x − 1 that is less than or equal to the input list’s length. The code makes use of half
in addition to pattern matching to shrink the size of the list before the recursive call, which
increases the energy density. As a result, using only linear energy to type function round as
⟨La(Z); 0⟩ → ⟨La(Z); 0⟩ requires a type of ⟨L2a(Z); 1⟩ → ⟨L2a(Z); 1⟩ at the recursive call.
The linear annotation increases by a factor of two with each round, violating the assumption
needed for convergence.

While round is somewhat contrived, one does not need to look far to find counterexamples
when using non-polynomial cost-bound templates. Unlike the annotation for the highest-degree
polynomial resource function, the annotation for the highest-base exponential resource function
rarely remains constant, so it cannot usually be cancelled out by taking differences. This vari-
ation is caused by the linear recurrence for Stirling numbers

{
n+1
k+1

}
= (k + 1)

{
n

k+1

}
+
{
n
k

}
,

which includes the scalar k + 1, whereas Pascal’s identity does not. When typing half with
exponential energy, the different form of the recurrence causes a scaling factor of 4 between
the desired type of ⟨L0,0,1(Z); 0⟩ → ⟨L6,6,3(Z); 0⟩ and the type needed at the recursive call of
⟨L0,0,4(Z); 3⟩ → ⟨L24,24,12(Z); 3⟩. Thus, the existing approach cannot find good exponential-
cost bounds for half.
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8.3 The Linear Idea: Linear Maps
To deal with the problems of of the inference method laid out in Section 8.2, this chapter develops
an alternative cost-free typing approach based on linear maps, i.e., matrices. This method follows
from the observation that all the needed cost-free types may often be summarized with a single
linear map M . In this sense, these matrices are essentially summary functions [37, 38, 121]
describing how a function transforms annotations.

In the case for half with polynomial or exponential potential, the desired cost-free matrices
would be the following:

polynomial :
(

4 0 0
1 2 0
0 0 1

)
exponential :

(
505/12 206/3 6 0
10 22 6 0
0 1 3 0
0 0 0 1

)
By associating ⟨La,b(Z); c⟩ to the vector

(
a
b
c

)
, one finds that, e.g., the polynomial map M

is consistent with each of the polynomial cost-free types found for half in Section 8.1. For
instance, the types ⟨L1,2(Z); 1⟩ → ⟨L4,5(Z); 1⟩ and ⟨L0,2(Z); 1⟩ → ⟨L0,4(Z); 1⟩ are encoded
by the mappings (

4 0 0
1 2 0
0 0 1

)(
1
2
1

)
=
(

4
5
1

) (
4 0 0
1 2 0
0 0 1

)(
0
2
1

)
=
(

0
4
1

)
Crucially, these matrices are invariant across recursive calls, which avoids infinite regress.

And unlike the existing cost-free typing algorithm, inferring these matrices does not require
additional typings of half, so type checking/inference with them can be made efficient (Sec-
tion 8.7).

In Section 8.4, I define a declarative type system to justify matrices like these, and in Sec-
tion 8.5 I prove that their use is sound. While there are many subtleties, the thrust of this approach
is to treat annotation transformations algebraically and identify matrices that satisfy certain in-
equalities. For example, the polynomial matrix M for half satisfies the following inequalities,
which correspond to the action that half takes on inputs of length 0, 1, or greater, respectively.
To clarify notation, the symbol ∗ stands in for the angelic nondeterministic choice of an arbitrary
number throughout this chapter, so that, e.g., ∗ · 0 = 0, ∗+ ∗ = ∗, and n ≤ ∗ for any n.

M ≤
( ∗ ∗ ∗

∗ ∗ ∗
0 0 1

)
M ≤

( ∗ ∗ ∗
∗ ∗ ∗
0 0 1

)(
1 0 0
1 1 0
0 1 1

)
M ≤

(
1 0 0
1 1 0
0 1 1

)−1

M
(

1 0 0
1 1 0
0 1 1

)2
Similarly, the exponential matrix satisfies the following inequalities:

M ≤
( ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 1

)
M ≤

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 1

)( 4 0 0 0
1 3 0 0
0 1 2 0
0 0 1 1

)
M ≤

(
4 0 0 0
1 3 0 0
0 1 2 0
0 0 1 1

)−1

M

(
4 0 0 0
1 3 0 0
0 1 2 0
0 0 1 1

)2

To ensure soundness, the full system of Section 8.4 adds a few extra inequalities beyond
these.

I also preemptively note that this matrix method of cost-free typing is not a strict improve-
ment over the existing method. While type inference is usually faster with the matrix method,
the matrix method cannot type all functions as well as the previous approach. For example,
because the matrix method represents cost-free types with linear maps, it cannot express reallo-
cation of potential energy based on a nonlinear function like min, nor can it express multiple
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τ, σ ::= 1 | τ ⊗ σ | τ ⊕ σ | L(τ) | τ M→ σ

Figure 8.3: Cost-free type grammar

choices of potential reallocation. I document all the various concessions that this system makes
in Section 8.10, and a comparison between this system and the established cost-free approach is
provided in Section 8.9.

Because each cost-free typing approach has its pros and cons, an implementation of cost-
free typing should employ each inference approach tactically to achieve the best tradeoffs. A
reasonable hybridization is to first attempt the more efficient matrix approach and then default
to the previous approach should the matrix approach fail. This hybridization would allow many
simpler functions to be handled quickly while still providing the robust coverage of the previous
approach. In particular, if a helper function is amenable to the matrix new approach, then that
function need not be retyped repeatedly when retyping its callers, cutting short the expensive
cascade of retyping described in Section 8.2.

8.4 Type System

This section lays out this chapter’s new matrix-based cost-free type system. To describe the
new cost-free type system, this section first describes a collection of primitive linear maps in
Section 8.4.2. These maps are used by the typing rules (Section 8.4.3) to construct collections
of matrices that correspond to how annotations are manipulated along different paths through
function bodies. A collections of such matrices can then be summarized with a single matrix to
yield the new matrix-based cost-free function type (Section 8.4.1). Such cost-free function types
are intended to be used alongside a usual costful AARA type system in the manner described in
Section 8.6.

8.4.1 Types

The types supported for the matrix-based cost-free type system are given in Figure 8.3. These
types include most of the AARA types that are present in the rest of this thesis, but do not include
trees. The reasons for this exclusion are discussed in Section 8.10.

The cost-free function types displayed in Figure 8.3 have a different form than the function
types in other chapters. Rather than have two annotation vectors for argument and return, a
function is decorated with a matrix describing the transformation of argument annotation vectors
into return (and remainder) annotation vectors. For the type τ M→ σ, this matrix M is indexed by
pairs of indices i, j where j ∈ arg.Ind(τ)∪{c} and i ∈ arg.Ind(τ)∪ret.Ind(σ)∪{c}, where
Ind(−) is defined according the index system of Figure 3.5.
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Movx
y =

x.d2 x.d1


x.d2 0 0
x.d1 0 0
y.d2 1 0
y.d1 0 1

A
◁ x

y =

x.d2 x.d1 c


x.d2 0 0 0
x.d1 0 0 0
y.d2 1 0 0
y.d1 1 1 0
c 0 1 1

A
▷ x

y =

x.d2 x.d1 c


x.d2 0 0 0
x.d1 0 0 0
y.d2 1 0 0
y.d1 −1 1 0
c 1 −1 1

π¬x =

x.d2 x.d1 y.d2 y.d1 c


x.d2 0 0 0 0 0
x.d1 0 0 0 0 0
y.d2 0 0 1 0 0
y.d2 0 0 0 1 0
c 0 0 0 0 1

Havx =

x.d2 x.d1 c( )x.d2 ∗ ∗ ∗
x.d1 ∗ ∗ ∗
c 0 0 1

Figure 8.4: Selected primitive maps with explicit indices for polynomial potential up to degree 2
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8.4.2 Primitive Maps

To simplify the presentation of maps in the cost-free type system, more complex maps are built
out of a primitive set of maps. Such maps are exemplified in Figure 8.4, whereA is the matrix for
Pascal’s identity as described in Chapter 6. These primitive maps correspond to the annotation
manipulations induced by basic evaluation steps and are often representable as simple numerical
matrices. The matrix dimensions (and the matrices for “shift” and “unshift” in particular) are
implicitly parameterized by Dmax , the maximum resource function index. Furthermore, every
matrix M is implicitly treated as the direct sum M ⊕ I , so that every matrix acts as the identity
on indices it would otherwise neglect. Each primitive map is explained in detail as follows:

• I — This map is just the identity map. It is used when the potential-carrying variables
remain unchanged by a program action. (I is not shown in Figure 8.4.)

• Movx
y — This map moves all energy on the variable x to y. Each value at index x.i ends up

at index y.i after application. It is assumed that this map is only used when y is an unused
name or a variable with zero energy. By avoiding name collisions, this map acts as a form
of relabelling.

•
A
◁ x

y — This “shift” map applies a transformation to the list indices of x and puts the results
under the new name y, adjusting the constant amount as appropriate. This matrix typically
appears at a list pattern-matching operation. The particular transformation applied is given
by A, which is a shifting matrix from Chapter 6. Depending on the choice of A, one
can obtain various resource functions, including polynomials and exponentials. As with
Movx

y , it is assumed that the name y is unused. Notably, unlike other shift operations in this

thesis,
A
◁ x

y does not handle the annotation indices of a list’s elements (i.e., those annotation
indices with a prefix like e).

To be explicit, entry (y.di , x.dj ) of
A
◁ x

y is Ai,j , where both x.d0 and y.d0 are identified
with the free energy annotation index c.

•
A
▷ x

y — This “unshift” map acts as the inverse of
A
◁ y

x. This map adjusts a list’s annotations
when an element is added to its front. To properly define this map, it is critical that A is
chosen to be an invertible matrix. (Luckily, a sensible choice of A is typically invertible.
Such invertible choices of A include those generating polynomials and exponentials.)

To be explicit, entry y.dix.dj of
A
▷ x

y is A−1
i,j , where both x.d0 and y.d0 are identified

with the free energy annotation index c.
• Havx — This map is a special havoc operation used when pattern matching or instantiating

the empty list or a variant. This havocking is represented by putting the symbol ∗ across
each row x.i. In this work, ∗ stands for an arbitrary choice of number, so that, e.g., ∗·0 = 0
and ∗+ r = ∗ · ∗ = ∗.

• πx — This map projects onto indices of the form x.i if x is a variable name, or the index
c if x is c. This projection is accomplished by zeroing all other indices. This notation is
extended to sets so that π{x,y} projects onto both x and y.

One writes π¬x for the complement projection that projects away indices of the form x.i.
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The map π¬x is used when variable x leaves or (freshly) enters a scope.
Example 8.4.1. In Section 8.1, the last step of typing half creates the return value by attaching
x1 to the front of list tmp. The informal reasoning about this step transformed annotations using

the identity 4
(
m
2

)
+ 5
(
m
1

)
+ 1 = 4

(
m+1
2

)
+ 1
(
m+1
1

)
. Using the unshift map

A
▷ tmp

ret where A is the
matrix for Pascal’s identity, this step is represented with primitive map composition as follows:

A
▷ tmp

ret ·

( )
tmp.d2 4
tmp.d1 5

c 1 =

tmp.d2 tmp.d1 c


tmp.d2 0 0 0
tmp.d1 0 0 0
ret.d2 1 0 0
ret.d1 −1 1 0

c 1 −1 1

·

( )
tmp.d2 4
tmp.d1 5

c 1 =




tmp.d2 0
tmp.d1 0
ret.d2 4
ret.d1 1

c 0

8.4.3 Typing Rules
While the cost-free types of functions are the main goal, one must build up to those types com-
positionally by typing all subexpressions. This typing is formalized using the rules in Figures 8.5
and 8.6. To ease notation, these rules implicitly extend matrix operations pointwise over sets. In
particular, S ≥ M means ∀S ∈ S , the matrix S is a pointwise upper bound on the matrix M .
The rules also use the following typing judgement:

Γ ⊢cf e : τ ⇝ S | C

This typing judgment means:
• in typing context Γ, the expression e has type τ
• the evaluation of e might manipulate annotations according to any of the maps in S and C,

detailed in this section as follows
The basic approach of the cost-free analysis is to use the type system to assign two sets of

linear maps, S and C, to each program subexpression. (I refer to these sets as S and C throughout
this work.) The maps in S are used to generate the matrix inequalities exemplified in Section 8.3,
and there is one map in S for each possible path through a function’s source code to the return.
Once a function’s body is fully typed, these paths are approximated by the single matrix that
annotates the cost-free function type.

The maps in C are used to generate some additional matrix inequalities to ensure that energy
is properly conserved. There is one map in C for each possible path through the program’s source
to a function application or to the end of certain variables’ scopes—those that get bound from
let expressions or matched as list elements. The role of C is to address the following problem:
if a variable has negative annotations when it falls out of scope, then dropping that variable
unsoundly gains energy. In other words, weakening is not generally allowable, as is typical for
a linear type system. To salvage the ability to weaken, the annotation transformations in C are
used to check that certain annotations are nonnegative at key points. The role of C is discussed
more in Section 8.5.

One might wonder why a set of matrices S is tracked, rather than one single matrix. If a set
of matrices can be approximated by a single matrix for typing a function, why can’t the same be
done to simplify down to a single matrix at every branch? The answer is that such a design makes
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CF-LET
Γ ⊢cf e1 : σ ⇝ S | C Γ, x : σ ⊢cf e2 : τ ⇝ T | D

Γ ⊢cf let x = e1 in e2 : τ ⇝ π¬x · T ·Mov retx · S | C ∪ (πx · T ∪D) ·Mov retx · S

CF-VAR

Γ, x : τ ⊢cf x : τ ⇝ {Movx
ret} | ∅

CF-TICK

Γ ⊢cf tick{0} : 1⇝ {I} | ∅

CF-FUN

Γ′, y : τ, g : τ
M→ σ ⊢cf e : σ ⇝ S | C π¬{y,ret,c} · S · π¬dom(Γ′) ≥ 0

π{y,ret,c} · S · π¬dom(Γ′) ≥ π{y,ret,c} ·Mov argy ·M ·Mov y
arg C · π¬dom(Γ′) ≥ 0

Γ′ ⊢cf fun g y = e : τ
M→ σ ⇝ {I} | ∅

CF-APP

Γ, f : τ
M→ σ, x : τ ⊢cf f x : σ ⇝ {Mov argx ·M ·Movx

arg} | {π{x,c}}

CF-PAIR

Γ, x : τ, y : σ ⊢cf ⟨x, y⟩ : τ ⊗ σ ⇝ {Mov y
ret.2nd ·Movx

ret.1st} | ∅

CF-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ ⊢cf e : τ ⇝ S | C

T = Mov y
x.1st ·Mov z

x.2nd · S ·Movx.2nd

z ·Movx.1st

y D = C ·Movx.2nd

z ·Movx.1st

y

Γ, x : σ ⊗ ρ ⊢cf case x of ⟨y, z⟩ → e : τ ⇝ T | D

CF-SUML

Γ, x : τ ⊢cf l(x) : τ ⊕ σ ⇝ {Movx
ret.l · Hav ret.r} | ∅

CF-SUMR

Γ, x : σ ⊢cf r(x) : τ ⊕ σ ⇝ {Movx
ret.r · Hav ret.l} | ∅

CF-CASES
Γ, x : σ ⊕ ρ, y : σ ⊢cf e1 : τ ⇝ S | C Γ, x : σ ⊕ ρ, z : ρ ⊢cf e2 : τ ⇝ T | D

U = Havx.r ·Mov y
x.l · S ·Movx.l

y · Havx.r V = Havx.l ·Mov z
x.r · T ·Movx.r

z · Havx.l

E = C ·Movx.l
y · Havx.r F = D ·Movx.r

y · Havx.l

Γ, x : σ ⊕ ρ ⊢cf case x of l(y) → e1 | r(z) → e2 : τ ⇝ U ∪ V | E ∪ F

Figure 8.5: Linear-map-based, cost-free typing rules 1
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CF-NIL

Γ ⊢cf [ ] : L(τ)⇝ {π¬ret.e · Hav ret} | ∅

CF-CONS

Γ, x : τ, y : L(τ) ⊢cf x :: y : L(τ)⇝ {
A
▷ t

ret · π¬y.e} | {πy.e}

CF-CASEL
Γ, x : L(σ) ⊢cf e1 : τ ⇝ S | C

Γ, x : L(σ), y : σ, z : L(σ) ⊢cf e2 : τ ⇝ T | D U = π¬x.e · Havx · S · π¬x.e · Havx

V = π¬y·
A
▷ z

x · T ·
A
◁ x

z · π¬{y,x.e} E = C · π¬x.e · Havx

F = D·
A
◁ x

z · π¬{y,x.e} G = πy·
A
▷ z

x · T ·
A
◁ x

z · π¬{y,x.e} H = {πx.e}
Γ, x : L(σ) ⊢cf case x of [ ] → e1 | y :: z → e2 : τ ⇝ U ∪ V | E ∪ F ∪G ∪ H

Figure 8.6: Linear-map-based, cost-free typing rules 2

the system more difficult to automate. Approximating the matricesM andN by some P ≤M,N
introduces the unknown matrix P , which must be solved for. Having multiple such unknown
matrices around can introduce nonlinear constraints, rendering automation impractical. This
problem is minimized by not using such P and instead tracking sets of matrices in Figures 8.5
and 8.6, which reduces the number of unknown matrices during type inference. These effects are
discussed more in Section 8.7.

One intentionally missing typing rule is the structural rule for weakening. This rule is missing
for the same reasons discussed in the previous paragraph. As a result of this rule’s exclusion,
even the form of weakening typically allowed by AARA is not allowed here. That is, freely
throwing away energy is not allowed. This lack of energy weakening is part of a larger pattern:
the restrictions of linearity appear stronger in this system so that the usual ways of sidestepping
them (annotation weakening and sharing) no longer work as well.

Another missing feature in this cost-free type system is sharing, AARA’s specialized form of
contraction. Usually AARA allows multiple choices for how energy is allocated via sharing, but
the typing rules of this section codify one particular choice. In these cost-free rules, all energy
is allocated to a variable’s first use, leaving 0 potential for future additional uses. By fixing this
arbitrary sharing decision, this system avoids full sharing while still remaining able to type many
functions of interest. Supporting full sharing would yield nonlinear annotation relations and thus
prevent the analysis from being captured with simple linear maps and from being automated via
a linear program (see Section 8.10).

Nonetheless, remainder contexts do recover some feaures of sharing. For example, if a data
structure is pattern-matched and its pieces are never used, the uncomputation of remainder con-
texts restores the pieces’ energy to the original data structure at the end of the pattern match’s
scope. This restoration allows the data structure to then carry energy for additional uses. As
a result, the problematic code patterns concerning sharing are those where a variable is used
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multiple times with overlapping scopes of use. Additionally, the uncomputation of remainder
contexts lessens the amount of variables that must be tracked by C, as those that are uncomputed
are guaranteed to have zeros for annotations.

With those structural features out of the way, the syntax-directed typing rules in Figures 8.5
and 8.6 are mostly direct encodings of the typing rules of the system of Chapter 6. Many rules
merely transform S via the primitive map appropriate for the kind of expression being typed. For
example, the typing rule CF-Pair merely remaps annotations to pair annotations. However, there
are a few typing rules of interest which I go over in the following paragraphs.

The rules CF-Let makes nontrivial use of C. Specifically, CF-Let adds matrices to C that give
the annotations of x at the end of expression e2. These matrices are used to ensure that x has
nonnegative annotations at the end of its scope.

The rule CF-CaseL makes similar use of C to ensure the binding of the list head is nonneg-
ative. Further this rule adds constraints to C to ensure that list element annotations are nonneg-
ative, then adds a map to S to force the list element annotations to actually be zero. Alongside
a similar setup in the rules CF-Cons and CF-Nil, it can be inductively ensured that list elements
never carry energy. The reasons for forcing list element energy to be zero is discussed more in
Section 8.10.

The rule CF-App also uses C nontrivially. This rule includes the matrix π{x,c} in C, which
gives the annotation of x (and the free energy) before a function application. These matrices are
used to ensure that x has nonnegative annotations before a function application.

Another typing rule of interest is CF-Tick because tick expressions define the cost model
being used. Fundamentally, there are two ways one could treat tick expressions so as to force
a cost-free cost model for cost-free typing. The first way is to simply treat the tick parameter
as zero regardless of what it actually is. While this approach is often taken in implementations
of cost-free type inference, this approach is inconsistent with the cost semantics provided here,
and thus it would require additional tinkering to work with. Instead, the rule CF-Tick takes the
alternative approach, which is to require that the tick parameter is zero. Because ticks express
zero cost, the tick expression is just syntactic sugar for a unit expression ⟨⟩.

The function-typing rule CF-Fun contains the most interesting change from standard AARA.
This rule makes use of three special matrix-inequality premisses that no other rule has, and these
premisses are used to allow the sound approximation of sets of linear maps with a single matrix.
The use of these inequalities can be seen in Section 8.5. Intuitively, these premisses encode the
following additional information, assuming that annotations are initially non-negative:

• π{y,ret,c} · S · π¬dom(Γ′) ≥ π{y,ret,c} · Mov argy ·M · Mov y
arg — The matrices in S yield a

pointwise upper bound on the matrix M (modulo some index manipulation).
• π¬{y,ret,c} · S · π¬dom(Γ′) ≥ 0 — Variables captured in the function’s closure5 do not have

negative annotations when the function body finishes evaluating.
• C · π¬dom(Γ′) ≥ 0 — Arguments to functions and certain variables that fall out of scope in

the course of evaluating the function body do not have negative annotations.

5That is, those variables bound outside the function but referred to in the function body. These variables should
not contribute energy during the course of function evaluation.
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Example 8.4.2. Consider typing half from Figure 8.1 as L(Z) M→ L(Z) with polynomial po-
tential. The typing rule CF-Fun can be used to justify that the following matrix from Section 8.1
works for M . To simplify this example, the entries and matrices involved in uncomputation are
elided, as well as manipulations of list element annotations, as all matrix entries involved in these
operations are zero here.

arg.d2 arg.d1 c( )
ret.d2 4 0 0
ret.d1 1 2 0

c 0 0 1

There are three paths through the body of half, so the typing rules will generate three matrices
in the set S. The first two of these paths return the empty list for inputs of length zero or one and
correspond to the following matrix products6 (where ∗ represents havocked matrix entries):

Havret ·Havlst =

lst.d2 lst.d1 c


lst.d2 ∗ ∗ ∗
lst.d1 ∗ ∗ ∗
ret.d2 ∗ ∗ ∗
ret.d1 ∗ ∗ ∗

c 0 0 1

π¬{xs1,x1} ·Havret ·Havxs1·
A
◁ lst

xs1 ·π¬x1 =

lst.d2 lst.d1 c


lst.d2 0 0 0
lst.d1 0 0 0
ret.d2 ∗ ∗ ∗
ret.d1 ∗ ∗ ∗

c 0 1 1

The remaining path through half is that which makes a recursive call on inputs of length
greater than one. Using the given choice of M , the typing rules generate the following matrix
product:

π¬{xs1,x1} · π¬{xs2,x2} · π¬tmp·
A
▷ tmp

ret ·Movrettmp ·M ·Movxs2arg·
A
◁ xs1

xs2 · π¬x2·
A
◁ lst

xs1 · π¬x1 =

lst.d2 lst.d1 c


lst.d2 0 0 0
lst.d1 0 0 0
ret.d2 4 0 0
ret.d1 1 2 0
ret 0 0 1

The typing rule CF-Fun then requires that, for each of these S ∈ S , two sets of inequalities
hold.

The first set of inequalities specifies that, after identifying the labels lst and arg, each
matrix S is a pointwise upper bound on M over the indices for lst, ret, and c, i.e., π{lst,ret,c} ·
S · π¬dom(Γ) ≥ π{lst,ret,c} · Mov arglst ·M · Mov lstarg. These inequalities simplify to those given in
Section 8.3, which M satisfies.

The second set of inequalities specifies that each matrix S ∈ S avoids negative entries over
indices for captured variables, i.e., π¬{lst,ret,c} · S · π¬dom(∅) ≥ 0. These second inequalities are
trivial because there are no captured variables in half, so the inequalities only need to hold on
a space of dimension 0.

6Recall that each matrix N is implicitly extended to N ⊕ I , so matrices of mismatched dimensions can be
multiplied.
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The typing rules also generate the following matrices in C for variables that leave scope.

π{xs1,x1} ·Havret ·Havxs1·
A
◁ lst

xs1 · π¬x1 =

lst.d2 lst.d1 c( )x1.Ind(Z) 0 0 0
xs1.d2 ∗ ∗ ∗
xs1.d1 ∗ ∗ ∗

π{xs1,x1} · π¬{xs2,x2} · π¬tmp·
A
▷ tmp

ret ·Movrettmp ·M ·Movxs2arg·
A
◁ xs1

xs2 · π¬x2·
A
◁ lst

xs1 · π¬x1 =

lst.d2 lst.d1 c( )x1.Ind(Z) 0 0 0
xs1.d2 0 0 0
xs1.d1 0 0 0

π{xs2,x2} · π¬tmp·
A
▷ tmp

ret ·Movrettmp ·M ·Movxs2arg·
A
◁ xs1

xs2 · π¬x2·
A
◁ lst

xs1 · π¬x1 =

lst.d2 lst.d1 c( )x2.Ind(Z) 0 0 0
xs2.d2 0 0 0
xs2.d1 0 0 0

πtmp·
A
▷ tmp

ret ·Movrettmp ·M ·Movxs2arg·
A
◁ xs1

xs2 · π¬x2·
A
◁ lst

xs1 · π¬x1 =

lst.d2 lst.d1 c( )
tmp.d2 0 0 0
tmp.d1 0 0 0

And one last matrix is generated in C for function arguments:

π{arg,c} ·Mov xs2arg·
A
◁ xs1

xs2 · π¬x2·
A
◁ lst

xs1 · π¬x1 =
lst.d2 lst.d1 c arg.d2 1 0 0

arg.d1 2 1 0
c 1 2 1

The rule CF-Fun then requires that, for each C ∈ C, the matrix C is non-negative, i.e.,
C · π¬dom(∅) ≥ 0. This condition holds for all of the matrices in C (which were shown above),

finishing the justification for typing half as L(Z) M→ L(Z).

8.4.4 Well-Formed Values
The notion of well-formed values must be altered to account for this chapter’s cost-free typing
rules. Only one change needs to be made: the well-formedness of functions must account for the
cost-free typing of the function. Morally speaking, however, nothing has changed about the well-
formedness of values since Figure 3.8; function closures still are only well-formed if they admit
a typing derivation. For completeness, I provide the changed rule as V-FunCF in Figure 9.11
alongside all the other unchanged rules.

These cost-free well-formedness rules are specialized to the cost-free system presented in
this chapter. However, in a more general costful setting, the well-formedness rule for functions
would need to be combined with its costful analogue. This combination is discussed further in
Section 8.6.

8.5 Soundness
The notion of soundness for the cost-free system of this chapter differs somewhat from other
chapters of this thesis because peak and net costs are (mostly) irrelevant in a cost-free setting.
Additionally, the cost-free system does not deal directly with annotation vectors, so more indirect
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V-UNIT

⟨⟩ : 1

V-FUNCF
V : Γ Γ ⊢cf fun f x = e : τ

M→ σ ⇝ S | C

C(V ; f, x. e) : τ
M→ σ

V-PAIR
v1 : τ v2 : σ

⟨v1, v2⟩ : τ ⊗ σ

V-SUML
v : τ

l(v) : τ ⊕ σ

V-SUMR
v : σ

r(v) : τ ⊕ σ

V-NIL

[ ] : L(τ)

V-CONS
v1 : τ v2 : L(τ)

v1 :: v2 : L(τ)

V-NONT

• : τ

V-CONTEXT
∀x ∈ dom(Γ). V (x) : Γ(x)

V : Γ

Figure 8.7: Cost-free value well-formedness rules

means must be employed to relate cost-free types back to potential energy. These indirect means
take the form of additional conditions in the theorem concerning matrix inequalities.

The important soundness property here is that the annotation maps do not cause an increase
in potential energy. This property is the correct notion of soundness because it ensures that, at
best, the maps used can only move energy around. The effects of this notion of soundness are
discussed more in Section 8.6, wherein it is made clear how this cost-free soundness interacts
with costful AARA.

The soundness property is non-trivial due to the unavoidable presence of negative matrix

entries, like in the primitive map
A
▷ x

y for the polynomial system. Such entries can create negative
annotations, posing two problems:

• Negative annotations on a variable could mean negative potential on that variable, so that
if that variable were to fall out of scope potential would be gained.

• Linear maps that merely safely lose potential when applied to positive annotations will
symmetrically gain potential when applied to negative annotations.

The former of these issues is not new to amortized-cost-analysis systems that allow negative
potential energy, and has been handled previously by checking that energy is nonnegative before
it is dropped [67, 96]. This chapter’s cost-free system takes the same approach, but must do so
indirectly because the system does not work directly with annotations. Instead this system uses
the principle that if both the matrix C ∈ C and annotation vector a⃗ are nonnegative, then so is
C · a⃗. The latter issue is new to the setting of linear maps, but can be handled similarly.

Forcing some matrices to be pointwise nonnegative might seem to be a heavy-handed way
of ensuring nonnegative annotation vector entries, and one might wonder if some more relaxed
conditions exist—maybe negative entries could be fine for certain vectors. However, it turns
out to be a rather difficult to characterize which relations between matrices and vectors ensure
repeated matrix multiplication never yields negative entries.7 This problem is actually an instance

7Such repeated application arises when repeatedly applying a recursive function during evaluation.
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of the positivity problem. Like its cousin the Skolem problem, the positivity problem is not
known to be decidable [119]. Thus, pairing nonnegative matrices with nonnegative vectors is
essentially the best available solution.

The soundness theorem is stated in Theorem 8.5.1. This theorem makes use of the potential
function defined in Chapter 6. Because this setting allows negative annotations, these definitions
can result in negative energy. This theorem also makes use of the evaluation rules of Chapter 2
(excluding those for trees). Notably, because all tick parameters are 0, it is guaranteed that p = 0
whenever it holds that V ⊢ e ⇓ v | (p, q). Moreover, q is almost always 0 as well, with the
exception being q = ∞ when nontermination applies (Lemma 2.4.2).

Theorem 8.5.1 (cost-free soundness). If
• V ⊢ e ⇓ v | (0, q) (the expression e evaluates to v in context V with q leftover energy)
• V : Γ (V is well-formed with respect the type context Γ)
• Γ ⊢cf e : τ ⇝ S | C (Γ types e cost-freely as τ with maps S and C)
• C · a⃗ ≥ 0 (C only maps a⃗ to non-negative vectors)
• a⃗ annotates Γ

then
• v : τ (the return value is well-formed)
• ∃M ∈ S.Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) |M · a⃗)

(for terminating evaluation, converting the initial annotation a⃗ to an annotation of the
result by applying M does not gain potential energy)

Proof. This proof proceeds by induction on the evaluation judgment. First, however, the case
where q = ∞ is covered in the E-Nont proof case so that all other cases may assume q = 0.

The most interesting proof case is that for the creation of a function, E-App, which is where
the setup of these typing rules actually pays off. The rule E-Let is also somewhat interesting for
how it uses C.

E-Nont Suppose that E-Nont is used anywhere in the evaluation judgment. Then Lemma 2.4.2
applies and q = ∞. Because ∞ is greater than or equal to anything and S is always nonempty,
the energy bound is then satisfied.

To prove the well-formedness conclusion, there are two cases to consider:
Firstly, suppose the last rule applied for the evaluation judgment is E-Nont.

E-NONT

V ⊢ e ⇓ • | (0,∞)

Then v = •. Because • : τ by V-Nont, the needed well-formedness judgment holds.
Secondly, suppose the last rule applied for the evaluation judgment is any other rule. Then

well-formedness follows as in that rule’s proof case.
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E-Tick Suppose the last rule applied for the evaluation judgment is E-Tick.

E-TICK

V ⊢ tick{0} ⇓ ⟨⟩ | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-TICK

Γ ⊢cf tick{0} : 1⇝ {I} | ∅

Thus, S = {I}.
Because ⟨⟩ : 1 by V-Unit, the needed well-formedness judgment holds. Finally, the energy

bound holds with the following identity at M = I ∈ S because units carry no energy and have
no annotation indices.

Φ(V : Γ | a⃗) = Φ(V, ret 7→ ⟨⟩ : Γ, ret : 1 |M · a⃗)

E-Var Suppose the last rule applied for the evaluation judgment is E-Var

E-VAR

V, x 7→ v ⊢ x ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-VAR

Γ, x : τ ⊢cf x : τ ⇝ {Movx
ret} | ∅

Then (V, x 7→ v) : (Γ, x : τ). This well-formedness judgment must have been concluded from
the well-formedness rule V-Context, which means v : τ must hold as a premiss via inversion.
Thus the needed well-formedness judgment holds.

Finally, because the move map just moves the energy to a new label, the energy bound is also
satisfied at M = Movx

ret ∈ S with the following identity:

Φ((V, x 7→ v) : (Γ, x : τ) | a⃗) = Φ((V, x 7→ v, ret 7→ v) : (Γ, x : τ, ret : τ) |M · a⃗)

E-Let Suppose the last rule applied for the evaluation judgment is E-Let.

E-LET
V ⊢ e1 ⇓ v′ | (0, 0) V, x 7→ v′ ⊢ e2 ⇓ v | (0, 0)

V ⊢ let x = e1 in e2 ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-LET
Γ ⊢cf e1 : σ ⇝ S | C Γ, x : σ ⊢cf e2 : τ ⇝ T | D

Γ ⊢cf let x = e1 in e2 : τ ⇝ π¬x · T ·Mov retx · S | C ∪ (πx · T ∪D) ·Mov retx · S
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The premisses of both of these rules hold by inversion.
Because (C ∪ (πx · T ∪ D) · Mov retx · S) · a⃗ ≥ 0 by assumption, it true in particular that

C · a⃗ ≥ 0.
Each of the following judgments has now been found:

• V ⊢ e1 ⇓ v′ | (0, 0)
• V : Γ
• Γ ⊢cf e1 : σ ⇝ S | C
• C · a⃗ ≥ 0
• a⃗ annotates Γ

With these judgments, the inductive hypothesis can be applied to learn the following for some
M1 ∈ S:

(1) v′ : σ
(2) Φ(V : Γ | a⃗) ≥ Φ((V, ret 7→ v′) : Γ, ret : σ |M1 · a⃗)

Because V : Γ by assumption and v′ : σ by (1), (V, x 7→ v′) : (Γ, x : σ) follows by V-Context.
Next, via relabelling with Mov retx , the inequality of (2) can be extended to the following:

Φ(V : Γ | a⃗) ≥ Φ((V, x 7→ v′) : (Γ, x : σ) | Mov retx ·M1 · a⃗)

Now because (C ∪ (πx · T ∪D) ·Mov retx · S) · a⃗ ≥ 0 by assumption and M1 ∈ S, it is the
case that πx · T ·Mov retx ·M1 · a⃗ ≥ 0 and D ·Mov retx ·M1 · a⃗ ≥ 0.

Each of the following judgments has now been found:

• V, x 7→ v′ ⊢ e2 ⇓ v | (0, 0)
• (V, x 7→ v′) : (Γ, x : σ)
• Γ, x : σ ⊢cf e2 : τ ⇝ T | D
• D ·Mov retx ·M1 · a⃗ ≥ 0
• Mov retx ·M1 · a⃗ annotates Γ

With these judgments, the inductive hypothesis can be applied to learn the following for some
M2 ∈ T :

(3) v : τ

(4) Φ((V, x 7→ v′) : (Γ, x : σ) | Mov retx ·M1 · a⃗)
≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) |M2 ·Mov retx ·M1 · a⃗)

The well-formedness judgment (3) v : τ is what this case needs, so only this case’s energy
bound remains to be proven. This bound follows from the following inequalities, where the
needed witness matrix is π¬x ·M2 ·Mov retx ·M1.

Φ(V : Γ | a⃗)
≥ Φ((V, ret 7→ v′) : Γ, ret : σ |M1 · a⃗) (2)

= Φ((V, x 7→ v′) : Γ, x : σ | Mov retx ·M1 · a⃗) relabelling

≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) |M2 ·Mov retx ·M1 · a⃗) (4)

≥ Φ((V, ret 7→ v) : (Γ, x : σ, ret : τ) | π¬x ·M2 ·Mov retx ·M1 · a⃗)
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The last inequality follows because the assumption (C∪ (πx · T ∪D) ·Mov retx ·S) · a⃗ ≥ 0 ensures
πx ·M2 ·Mov retx ·M1 · a⃗ ≥ 0 and energy is monotone (Lemma 3.4.5).

E-Fun Suppose the last rule applied for the evaluation judgment is E-Fun.

E-FUN

V ⊢ fun f x = e ⇓ C(V ; f, x. e) | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-FUN

Γ, f : τ
M→ σ, x : τ ⊢cf e : σ ⇝ S | C π{x,ret,c} · S · π¬dom(Γ) ≥ π{x,ret,c} ·M ·Movx

arg

π¬{x,ret,c} · S · π¬dom(Γ) ≥ 0 C · π¬dom(Γ) ≥ 0

Γ ⊢cf fun f x = e : τ
M→ σ ⇝ {I} | ∅

Thus, S = {I}.

Because C(V ; f, x. e) : τ
M→ σ follows from V-FunCF and the assumed typing judgment, the

needed well-formedness judgment holds. Finally, the energy bound is satisfied by the following
identity at M = I ∈ S because functions carry no energy and have no annotation indices.

Φ(V : Γ | a⃗) = Φ((V, ret 7→ C(V ; f, x. e)) : (Γ, ret : τ
M→ σ) | I · a⃗)

E-App Suppose the last rule applied for the evaluation judgment is E-App.

E-APP
V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (0, 0)
V, x 7→ v′, f 7→ C(V ′; g, y. e) ⊢ f x ⇓ v | (0, 0)

Then this rule’s premiss holds by inversion and only one typing rule remains that could be used
to conclude the typing derivation:

CF-APP

Γ, f : τ
M→ σ, x : τ ⊢cf f x : σ ⇝ {Mov argx ·M ·Movx

arg} | {π{x,c}}

Thus π{x,c} · a⃗ ≥ 0 by assumption.

Because (V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗→ σc⃗) by assumption, the rule

V-Context can be inverted to learn C(V ′; g, y. e) : τ
b⃗→ σc⃗. Then further, the rule V-FunCF can

be inverted to learn that this function body can be typed in some context Γ′ where V ′ : Γ′. Using
V-Context, one can then use this well-formedness judgment to derive

(V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
M→ σ)
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Now inspect the derivation of the type of the function closure’s body. Only CF-Fun can
conclude a typing derivation for a function. Thus the following rule applies:

CF-FUN

Γ′, y : τ, g : τ
M→ σ ⊢cf e : σ ⇝ S | C π¬{y,ret,c} · S · π¬dom(Γ′) ≥ 0

π{y,ret,c} · S · π¬dom(Γ′) ≥ π{y,ret,c} ·Mov argy ·M ·Mov y
arg C · π¬dom(Γ′) ≥ 0

Γ′ ⊢cf fun g y = e : τ
M→ σ ⇝ {I} | ∅

This rule’s premisses hold by inversion.
Now note the inequality resulting from the following chain of implications:

π{x,c} · a⃗ ≥ 0 assumption

=⇒ Movx
y · π{x,c} · a⃗ ≥ 0 Movx

y ≥ 0

=⇒ C · π¬dom(Γ′) ·Movx
y · π{x,c} · a⃗ ≥ 0 C′ · π¬dom(Γ′) ≥ 0

Each of the following judgments has now been found:

• V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (0, 0)
• (V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ

M→ σ)

• Γ′, y : τ, g : τ
M→ σ ⊢cf e : σ ⇝ S | C

• C · π¬dom(Γ′) ·Movx
y · π{x,c} · a⃗ ≥ 0

• π¬dom(Γ′) ·Movx
y · π{x,c} · a⃗ annotates (Γ′, y : τ, g : τ

M→ σ)

With these judgments, the inductive hypothesis can be applied to learn the following for some
N ∈ S:

(1) v : τ

(2) Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
M→ σ) | π¬dom(Γ′) ·Movx

y · π{x,c} · a⃗)
≥ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e), ret 7→ v) : (Γ′, y : τ, g : τ

M→ σ, ret : σ) | N · π¬dom(Γ′) ·Movx
y · π{x,c} · a⃗)

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s energy
bound remains to be proven.

Then the needed bound can start to be derived from the following inequalities, where the
needed witness matrix is Mov argx ·M ·Movx

arg.

Φ(V, x 7→ v′, f 7→ C(V ′; g, y. e) : Γ, x : τ, f : τ
M→ σ | a⃗)

= Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | π¬{x,c} · a⃗)

+ Φ((x 7→ v′) : (x : τ) | π{x,c} · a⃗) def

= Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | π¬{x,c} · a⃗)

+ Φ((y 7→ v′) : (y : τ) | Movx
y · π{x,c} · a⃗) relabelling

= Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | π¬{x,c} · a⃗)

+ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
M→ σ) | π¬dom(Γ′) ·Movx

y · π{x,c} · a⃗) zeroed

≥ Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | π¬{x,c} · a⃗)

+ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e), ret 7→ v) : (Γ′, y : τ, g : τ
M→ σ, ret : σ) | N · π¬dom(Γ′) ·Movx

y · π{x,c} · a⃗) (2)
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Now note that N ∈ S , so a premiss of CF-Fun ensures that π¬{y,ret,c} · N · π¬dom(Γ′) ≥ 0.
Moreover, Movx

y ≥ 0 by construction, and π{x,c} ·a⃗ ≥ 0 by assumption. The following inequality
therefore follows:

π¬{y,ret,c} ·N · π¬dom(Γ′) ·Movx
y · π{x,c} · a⃗ ≥ 0

Another premiss of CF-Fun yields π{y,ret,c} ·N ·π¬dom(Γ′) ≥ π{y,ret,c} ·Mov argy ·M ·Mov y
arg.

The following inequality therefore follows similarly:

π{y,ret,c} ·N · π¬dom(Γ′) ·Movx
y · π{x,c} · a⃗ ≥ π{y,ret,c} ·Mov argy ·M ·Mov y

arg ·Movx
y · π{x,c} · a⃗

The chain of inequalities can then be continued as follows, starting using these new inequal-
ities alongside the monotonicity of energy with respect to annotations:

≥ Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | π¬{x,c} · a⃗)

+ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | π{y,ret,c} ·N · π¬dom(Γ′) ·Movx
y · π{x,c} · a⃗) Lemma 3.4.5

≥ Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | π¬{x,c} · a⃗)

+ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | π{y,ret,c} ·Mov argy ·M ·Mov y
arg ·Movx

y · π{x,c} · a⃗) Lemma 3.4.5

= Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | π¬{x,c} · a⃗)

+ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | Mov argy ·M ·Movx
arg · π{x,c} · a⃗) simplification

= Φ(V, f 7→ C(V ′; g, y. e) : Γ, f : τ
M→ σ | Mov argy ·M ·Movx

arg · π¬{x,c} · a⃗)
+ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | Mov argy ·M ·Movx

arg · π{x,c} · a⃗) unused indices

= Φ((V, y 7→ v′, f 7→ C(V ′; g, y. e), ret 7→ v) : (Γ, y : τ, f : τ
M→ σ, ret : σ) | Mov argy ·M ·Movx

arg · a⃗) algebra

= Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e), ret 7→ v) : (Γ, x : τ, f : τ
M→ σ, ret : σ) | Mov argx ·M ·Movx

arg · a⃗) relabelling

E-Pair Suppose the last rule applied for the evaluation judgment is E-Pair.

E-PAIR

V, x 7→ v1, y 7→ v2 ⊢ ⟨x, y⟩ ⇓ ⟨v1, v2⟩ | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-PAIR

Γ, x : τ, y : σ ⊢cf ⟨x, y⟩ : τ ⊗ σ ⇝ {Mov y
ret.2nd ·Movx

ret.1st} | ∅

Because ⟨v1, v2⟩ : τ ⊗ σ follows from V-Pair and the assumed well-formedness judgment
(V, x1 7→ v1, x2 7→ v2) : (Γ, x : τ, y : σ), the needed well-formedness judgment holds. Finally,
the energy bound is satisfied by the following identity at M = Mov y

ret.2nd · Movx
ret.1st ∈ S

because the energy of pair is the sum its parts’.

Φ((V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : σ) | a⃗)

= Φ((V, x 7→ v1, y 7→ v2, ret 7→ ⟨v1, v2⟩) : (Γ, x : τ, y : σ, ret : τ ⊗ σ) |M · a⃗)
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E-CaseP Suppose the last rule applied for the evaluation judgment is E-CaseP.

E-CASEP
V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (0, 0)

V, x 7→ ⟨v1, v2⟩ ⊢ case x of ⟨y, z⟩ → e ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ ⊢cf e : τ ⇝ S | C

T = Mov y
x.1st ·Mov z

x.2nd · S ·Movx.2nd

z ·Movx.1st

y D = C ·Movx.2nd

z ·Movx.1st

y

Γ, x : σ ⊗ ρ ⊢cf case x of ⟨y, z⟩ → e : τ ⇝ T | D

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ⊗ ρ) by assumption, the rule V-Context can be inverted

to learn ⟨v1, v2⟩ : σ ⊗ ρ. Then further, the rule V-Pair can be inverted to learn both v1 : σ and
v2 : ρ. Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)

Each of the following judgments has now been found:

• V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (0, 0)
• (V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)
• Γ, x : σ ⊗ ρ, y : σ, z : ρ ⊢cf e : τ ⇝ S | C
• C ·Movx.2nd

z ·Movx.1st

y · a⃗ ≥ 0

• Movx.2nd

z ·Movx.1st

y · a⃗ annotates (Γ, x : σ ⊗ ρ, y : σ, z : ρ)

With these judgments, the inductive hypothesis can be applied to learn the following for some
N ∈ S.

(1) v : τ

(2) Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | Movx.2nd

z ·Movx.1st

y · a⃗)
≥ Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | N ·Movx.2nd

z ·Movx.1st

y · a⃗)

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s energy
bound remains to be proven. Finally, the energy bound is satisfied by the following inequalities
where the needed witness matrix is M = Mov y

x.1st ·Mov z
x.2nd ·N ·Movx.2nd

z ·Movx.1st

y ∈ T .

Φ((V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ ⊗ ρ) | a⃗)
= Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | Movx.2nd

z ·Movx.1st

y · a⃗) def

≥ Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | N ·Movx.2nd

z ·Movx.1st

y · a⃗) (2)

= Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) |M · a⃗) def

= Φ((V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) |M · a⃗) zeroed
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E-SumL Suppose the last rule applied for the evaluation judgment is E-SumL.

E-SUML

V, x 7→ v ⊢ l(x) ⇓ l(v) | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-SUML

Γ, x : τ ⊢cf l(x) : τ ⊕ σ ⇝ {Movx
ret.l · Hav ret.r} | ∅

Because l(v) : τ ⊕ σ follows from V-SumL and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : τ), the needed well-formedness judgment holds. Then because the potential
energy of a variant is that of its tagged value, ignoring the other tag’s energy annotations, the
energy bound is also satisfied at M = Movx

ret.l · Hav ret.r ∈ S with the following equality:

Φ((V, x 7→ v) : (Γ, x : τ) | a⃗) = Φ((V, x 7→ v, ret 7→ l(v)) : (Γ, x : τ, ret 7→ τ ⊕ σ) |M · a⃗)

E-SumR Suppose the last rule applied for the evaluation judgment is E-SumR.

E-SUMR

V, x 7→ v ⊢ r(x) ⇓ r(v) | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-SUMR

Γ, x : σ ⊢cf r(x) : τ ⊕ σ ⇝ {Movx
ret.r · Hav ret.l} | ∅

Because r(v) : τ ⊕ σ follows from V-SumR and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : σ), the needed well-formedness judgment holds. Then because the potential
energy of a variant is that of its tagged value, ignoring the other tag’s energy annotations, the
energy bound is also satisfied at M = Movx

ret.r · Hav ret.l ∈ S with the following equality:

Φ((V, x 7→ v) : (Γ, x : σ) | a⃗) = Φ((V, x 7→ v, ret 7→ r(v)) : (Γ, x : τ, ret 7→ τ ⊕ σ) |M · a⃗)

E-CaseS-L Suppose the last rule applied for the evaluation judgment is E-CaseS-L.

E-CASES-L
V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (0, 0)

V, x 7→ l(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:
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CF-CASES
Γ, x : σ ⊕ ρ, y : σ ⊢cf e1 : τ ⇝ S | C Γ, x : σ ⊕ ρ, z : ρ ⊢cf e2 : τ ⇝ T | D

U = Havx.r ·Mov y
x.l · S ·Movx.l

y · Havx.r V = Havx.l ·Mov z
x.r · T ·Movx.r

z · Havx.l

E = C ·Movx.l
y · Havx.r F = D ·Movx.r

y · Havx.l

Γ, x : σ ⊕ ρ ⊢cf case x of l(y) → e1 | r(z) → e2 : τ ⇝ U ∪ V | E ∪ F

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ l(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumL can be inverted to learn v′ : σ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)

Each of the following judgments have now been found:

• V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (0, 0)
• (V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)
• Γ, x : σ ⊕ ρ, y : σ ⊢cf e1 : τ ⇝ S | C
• C ·Movx.l

y · Havx.r · a⃗ ≥ 0
• Movx.l

y · Havx.r · a⃗ annotates (Γ, x : σ ⊕ ρ, y : σ)

With these judgments, the inductive hypothesis can be applied to learn the following for some
N ∈ S.

(1) v : τ

(2) Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | Movx.l
y · Havx.r · a⃗)

≥ Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | N ·Movx.l
y · Havx.r · a⃗)

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s energy
bound remains to be proven. Finally, the energy bound is satisfied by the following inequalities
where the needed witness matrix is M = Havx.r ·Mov y

x.l ·N ·Movx.l
y · Havx.r ∈ U .

Φ((V, x 7→ l(v′)) : (Γ, x : σ ⊕ ρ) | a⃗)
= Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | Movx.l

y · Havx.r · a⃗) def

≥ Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | N ·Movx.l
y · Havx.r · a⃗) (2)

= Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) |M · a⃗) def

= Φ((V, x 7→ l(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) |M · a⃗) zeroed

E-CaseS-R Suppose the last rule applied for the evaluation judgment is E-CaseS-L.

E-CASES-R
V, x 7→ r(v′), z 7→ v′ ⊢ e2 ⇓ v | (0, 0)

V, xs 7→ r(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:
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CF-CASES
Γ, x : σ ⊕ ρ, y : σ ⊢cf e1 : τ ⇝ S | C Γ, x : σ ⊕ ρ, z : ρ ⊢cf e2 : τ ⇝ T | D

U = Havx.r ·Mov y
x.l · S ·Movx.l

y · Havx.r V = Havx.l ·Mov z
x.r · T ·Movx.r

z · Havx.l

E = C ·Movx.l
y · Havx.r F = D ·Movx.r

y · Havx.l

Γ, x : σ ⊕ ρ ⊢cf case x of l(y) → e1 | r(z) → e2 : τ ⇝ U ∪ V | E ∪ F

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ r(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumR can be inverted to learn v′ : ρ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)

Each of the following judgments have now been found:

• V, x 7→ l(v′), z 7→ v′ ⊢ e1 ⇓ v | (0, 0)
• (V, x 7→ l(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)
• Γ, x : σ ⊕ ρ, z : ρ ⊢cf e2 : τ ⇝ T | D
• D ·Movx.r

z · Havx.l · a⃗ ≥ 0
• Movx.r

z · Havx.l · a⃗ annotates (Γ, x : σ ⊕ ρ, z : ρ)

With these judgments, the inductive hypothesis can be applied to learn the following for some
N ∈ T .

(1) v : τ

(2) Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | Movx.r
z · Havx.l · a⃗)

≥ Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | N ·Movx.r
z · Havx.l · a⃗)

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s energy
bound remains to be proven. Finally, the energy bound is satisfied by the following inequalities
where the needed witness matrix is M = Havx.l ·Mov z

x.r ·N ·Movx.r
z · Havx.l ∈ V .

Φ((V, x 7→ r(v′)) : (Γ, x : σ ⊕ ρ) | a⃗)
= Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | Movx.r

z · Havx.l · a⃗) def

≥ Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | N ·Movx.r
z · Havx.l · a⃗) (2)

= Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) |M · a⃗) def

= Φ((V, x 7→ r(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) |M · a⃗) zeroed

E-Nil Suppose the last rule applied for the evaluation judgment is E-Nil.

E-NIL

V ⊢ [ ] ⇓ [ ] | (0, 0)
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Then only one typing rule remains that could be used to conclude the typing derivation:
CF-NIL

Γ ⊢cf [ ] : L(τ)⇝ {π¬ret.e · Hav ret} | ∅
Because [ ] : L(τ) follows from V-Nil, the needed well-formedness judgment holds. Finally,

because the initial and remainder annotations are identical except for the empty list annotations
and empty lists carry no energy regardless of annotation, the energy bound is also satisfied with
the following equality at M = π¬ret.e · Hav ret ∈ S:

Φ(V : Γ | a⃗) = Φ((V, ret 7→ [ ]) : (Γ, ret : L(τ)) |M · a⃗)

E-Cons Suppose the last rule applied for the evaluation judgment is E-Cons.
E-CONS

V, x 7→ v1, y 7→ v2 ⊢ x :: y ⇓ v1 :: v2 | (0, 0)
Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

CF-CONS

Γ, x : τ, y : L(τ) ⊢cf x :: y : L(τ)⇝ {
A
▷ t

ret · π¬y.e} | {πy.e}
Because v1 :: v2 : L(τ) follows from V-Cons and the assumed well-formedness judgment

(V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)), the needed well-formedness judgment holds. Finally,

the energy bound is also satisfied with the following inequalities where M =
A
▷ y

ret · π¬y.e ∈ S:

Φ((V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)) | a⃗)
≥ Φ((V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)) | π¬y.e · a⃗) Lemma 3.4.5

= Φ((V, x 7→ v1, y 7→ v2, ret 7→ v1 :: v2) : (Γ, x : τ, y : L(τ), ret : L(τ)) |M · a⃗) Lemma 6.4.1

The first inequality makes use of the assumption that πy.e · a⃗ ≥ 0, and the last equality makes
use of the fact that A is invertible.

E-CaseL-Nil Suppose the last rule applied for the evaluation judgment is E-CaseL-Nil.
E-CASEL-NIL

V, x 7→ [ ] ⊢ e1 ⇓ v | (0, 0)
V, x 7→ [ ] ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:
CF-CASEL

Γ, x : L(σ) ⊢cf e1 : τ ⇝ S | C
Γ, x : L(σ), y : σ, z : L(σ) ⊢cf e2 : τ ⇝ T | D U = π¬x.e · Havx · S · π¬x.e · Havx

V = π¬y·
A
▷ z

x · T ·
A
◁ x

z · π¬{y,x.e} E = C · π¬x.e · Havx

F = D·
A
◁ x

z · π¬{y,x.e} G = πy·
A
▷ z

x · T ·
A
◁ x

z · π¬{y,x.e} H = {πx.e}
Γ, x : L(σ) ⊢cf case x of [ ] → e1 | y :: z → e2 : τ ⇝ U ∪ V | E ∪ F ∪G ∪ H
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Both of these rules’ premisses hold by inversion.
Because (V, x 7→ [ ]) : (Γ, x : L(σ)) holds by assumption, each of the following judgments

have now been found:

• V, x 7→ [ ] ⊢ e1 ⇓ v | (0, 0)
• (V, x 7→ [ ]) : (Γ, x : L(σ))
• Γ, x : L(σ) ⊢cf e1 : τ ⇝ S | C
• C · π¬x.e · Havx · a⃗ ≥ 0
• π¬x.e · Havx · a⃗ annotates (Γ, x : L(σ))

With these judgments, the inductive hypothesis can be applied to learn the following for some
N ∈ S.

(1) v : τ

(2) Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | π¬x.e · Havx · a⃗)
≥ Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | N · π¬x.e · Havx · a⃗)

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s energy
bound remains to be proven. Finally, because empty lists carry no potential energy regardless
of annotation, the energy bound follows at M = π¬x.e · Havx · N · π¬x.e · Havx ∈ U using the
following inequalities:

Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | a⃗)
= Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | π¬x.e · Havx · a⃗) def

≥ Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | N · π¬x.e · Havx · a⃗) (2)

= Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) |M · a⃗) def

E-CaseL-Cons Suppose the last rule applied for the evaluation judgment is E-CaseL-Cons.

E-CASEL-CONS
V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (0, 0)

V, x 7→ v1 :: v2 ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

CF-CASEL
Γ, x : L(σ) ⊢cf e1 : τ ⇝ S | C

Γ, x : L(σ), y : σ, z : L(σ) ⊢cf e2 : τ ⇝ T | D U = π¬x.e · Havx · S · π¬x.e · Havx

V = π¬y·
A
▷ z

x · T ·
A
◁ x

z · π¬{y,x.e} E = C · π¬x.e · Havx

F = D·
A
◁ x

z · π¬{y,x.e} G = πy·
A
▷ z

x · T ·
A
◁ x

z · π¬{y,x.e} H = {πx.e}
Γ, x : L(σ) ⊢cf case x of [ ] → e1 | y :: z → e2 : τ ⇝ U ∪ V | E ∪ F ∪G ∪ H

Both of these rules’ premisses hold by inversion.
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Because (V, x 7→ v1 :: v2) : (Γ, x : L(σ)) by assumption, the rule V-Context can be inverted
to learn v1 :: v2 : L(σ). Then further, the rule V-Cons can be inverted to learn both v1 : σ and
v2 : L(σ). Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

Each of the following judgments has now been found:

• V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (0, 0)
• (V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))
• Γ, x : L(σ), y : σ, z : L(σ) ⊢cf e2 : τ ⇝ T | D
• D·

A
◁ x

z · π¬{y,x.e} · a⃗ ≥ 0

•
A
◁ x

z · π¬{y,x.e} · a⃗ annotates (Γ, x : L(σ), y : σ, z : L(σ))

With these judgments, the inductive hypothesis can be applied to learn the following for some
N ∈ T .

(1) v : τ

(2) Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) |
A
◁ x

z · π¬{y,x.e} · a⃗)

≥ Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) | N ·
A
◁ x

z · π¬{y,x.e} · a⃗)

The well-formedness judgment v : τ is what this case needs, so only this case’s energy bound
remains to be proven.

Now let M = π¬y·
A
▷ z

x · N ·
A
◁ x

z · π¬{y,x.e} ∈ V . Observe that all rules that manipulate list
element annotations inductively ensure that the element annotations are zero, so the same must be
true of the element annotations of x in the vector M · a⃗. Because these annotations are zero, they
can be ignored during shifting and unshifting. Finally, because shifting conserves the potential
energy of a list (Lemma 6.4.1), the energy bound follows using the following inequalities:

Φ((V, x 7→ v1 :: v2) : (Γ, x : L(σ)) | a⃗)
≥ Φ((V, x 7→ v1 :: v2) : (Γ, x : L(σ)) | π¬x.e · a⃗) Lemma 3.4.5

= Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) |
A
◁ x

z · π¬{y,x.e} · a⃗) Lemma 6.4.1

≥ Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) | N ·
A
◁ x

z · π¬{y,x.e} · a⃗) (2)

= Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) |
A
▷ z

x ·N ·
A
◁ x

z · π¬{y,x.e} · a⃗) Lemma 6.4.1

= Φ((V, x 7→ v1 :: v2, ret 7→ v) : (Γ, x : L(σ), ret : τ) |M · a⃗) Lemma 3.4.5

The first inequality makes use of the assumption that πx.e · a⃗ ≥ 0, the penultimate equality
makes use of the fact that A is invertible, and the last equality makes use of the assumption that

πy·
A
▷ z

x ·N ·
A
◁ x

z · π¬{y,x.e} · a⃗ ≥ 0.

8.6 Costful Integration
This section explains more formally how to make use of this chapter’s cost-free type system in
the costful setting. All the changes needed to integrate the two systems concern functions.
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I-FUN

Γ ⊢cf fun f x = [tick{0}/tick{r}]e : τ c⃗|d⃗|M→ σ ⇝ {I} | ∅

Γ, x : τ, f : τ
c⃗|d⃗|M→ σ | 0 · a⃗, [x/arg]⃗c ⊢ e : σ | 0 · a⃗, [x/arg]d⃗

Γ | a⃗, b⃗ ⊢ fun f x = e : τ
c⃗|d⃗|M→ σ | a⃗, b⃗

I-APP

a⃗ ≥ 0 d⃗ ≥ 0

Γ, x : τ, f : τ
b⃗|⃗c|M→ σ | ⋎x,arg

x (⃗a, b⃗) + d⃗ ⊢ f x : σ | ⋎x,arg
x (⃗a, c⃗) +Mov argx ·M ·Movx

arg · d⃗

V-FUNI

V : Γ Γ | a⃗ ⊢ fun f x = e : τ
a⃗|⃗b|M→ σ | b⃗

C(V ; f, x. e) : τ
a⃗|⃗b|M→ σ

Figure 8.8: Integrated costful function rules

Firstly, the types of functions themselves must be made into an amalgam of both costful and
cost-free types. Such a function type looks like the following, where the argument and remainder
annotation vectors a⃗ and b⃗ play the same role that they do in the costful system, and the cost-free
matrix M plays the same role it does in the cost-free system.

τ
a⃗|⃗b|M→ σ

These new function types are then governed by the rules in Figure 8.8, which replace previous
function and application rules. The cost-free typing judgments in these rules should also be
interpreted to ignore the new annotation vectors on functions. The idea of these new rules is to
use both the cosftul and cost-free system to type functions, where the costful type may depend
(recursively) upon the cost-free type. Both the rules I-Fun and V-FunI accomplish this goal just
by ensuring that functions are typed under both systems. (The rule I-Fun additionally imposes
the cost-free cost model for cost-free typing via substitution.) It is the application rule I-App
where the real magic happens, which I explain in the following paragraph.

The rule I-App accomplishes the main goal of cost-free typing by reallocating excess potential
energy. In the rule, that excess is given by the nonnegative annotation vectors a⃗ and d⃗. The
vector a⃗ plays the same role that it does in earlier chapters: this vector indicates excess potential
energy that should be left with the input and not taken in by the function. In contrast, the excess
energy indicated by d⃗ is passed through the function. This behaviour is shown in the type rule
by transforming d⃗ according to the function’s cost-free matrix M and incorporating the result in
the remainder via adding it to ⋎x,arg

x (⃗a, c⃗). Apart from this new option to transform d⃗’s excess
energy, the typing rule is exactly the same as in earlier chapters.

To understand why these rules are sound, one should consider Corollary 8.6.0.1, which is a
corollary to Theorem 8.5.1. This corollary just specializes the theorem to functions. As before,
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q = 0 in the corollary statement if the evaluation is terminating, and q = ∞ if the evaluation
does not terminate (Lemma 2.4.2).

Corollary 8.6.0.1 (cost-free function soundness). In a cost-free cost model, if
• V ⊢ f x ⇓ v | (0, q) (applying f to x yields v in context V )
• V : Γ (V is well-formed w.r.t. Γ)
• Γ(f) = τ

M→ σ and Γ(x) = τ (Γ gives f and x these cost-free types)
• a⃗ ≥ 0 annotates x

then
Φ(V (x) : τ | a⃗) + q ≥ Φ(v : σ | Mov argx ·M ·Movx

arg · a⃗)

the argument energy bounds the remainder energy when the annotations are transformed via M

With this corollary in hand, one can then show the soundness of the full costful system that
integrates cost-freedom via Theorem 8.6.1.

Theorem 8.6.1 (integrated costful soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | a⃗ ⊢ e : τ | b⃗ (AARA types the expression in that environment)

then
• v : τ (return well-formed)
• Φ(V : Γ | a⃗) ≥ p (initial bounds peak)
• Φ(V : Γ | a⃗) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | b⃗) + p (diff. bounds net)

Proof. This property is proven almost exactly as in Theorems 5.4.1 and 6.4.3. There are only two
new typing rules to consider: I-Fun and I-App. There is also only one new well-formedness rule,
V-FunI, which only holds when both V-Fun and V-FunCf would hold in their separate settings.

I-Fun If E-Fun concludes the evaluation judgment and I-Fun concludes the typing judgment,
then the case follows just as in Theorems 5.4.1 and 6.4.3. The new premiss may simply be
ignored, and functions still carry no energy.

I-App If E-App concludes the evaluation judgment and I-App concludes the typing judgment,
then the peak and net cost bounds hold as follows:

The peak cost bound follows from Theorem 6.4.3 by monotonicity (Lemma 3.4.5) since
d⃗ ≥ 0. New premisses in the integrated costful system can simply ignored.

To obtain the net cost bound, first note that if V ⊢ e ⇓ v | (p, q) holds in a costful setting, then
setting the tick parameters to zero allows the derivation of V ⊢ e ⇓ v | (0, q′) in a cost-free cost
model. Then there are two cases to consider depending upon whether nontermination (E-Nont)
is used in the evaluation judgment.
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If E-Nont is used, then q = q′ = ∞ by Lemma 2.4.2. In this case, the net cost bound holds
because ∞ is greater than or equal to anything.

Alternatively if E-Nont is not used, then q′ = 0. Finally, the following inequalities hold,

where W = (V, x 7→ v′, f 7→ C(V ′; g, y. e)) and ∆ = Γ, x : τ, f : τ
b⃗|⃗c|M→ σ.

Φ(W : ∆ | ⋎x,arg
x (⃗a, b⃗) + d⃗) + q

= Φ(W : ∆ | ⋎x,arg
x (⃗a, b⃗)) + q + Φ(W : ∆ | d⃗) Lemma 3.4.6

≥ Φ((W, ret 7→ v) : (∆, ret : σ) | ⋎x,arg
x (⃗a, c⃗)) + p+ Φ(W : ∆ | d⃗) Theorem 6.4.3

≥ Φ((W, ret 7→ v) : (∆, ret : σ) | ⋎x,arg
x (⃗a, c⃗)) + p

+ Φ((W, ret 7→ v) : (∆, ret : σ) | Mov argx ·M ·Movx
arg · d⃗) Corollary 8.6.0.1

= Φ((W, ret 7→ v) : (∆, ret : σ) | ⋎x,arg
x (⃗a, c⃗) +Mov argx ·M ·Movx

arg · d⃗) + p Lemma 3.4.6

8.7 Automation

This section first explains how to automate type checking in the matrix-based cost-free type
system, and then it explains how to automate type inference. In particular, this section shows how
type checking is always efficiently reducible to simple linear arithmetic and how type inference
can usually be reduced to linear programming. Obstacles to further automation are discussed in
Section 8.10.

Checking Types can be checked directly in this type system. The un-annotated base types
can be checked via standard techniques, and then all that is left is to confirm the annotations
of functions. However, once each function is annotated with a concrete matrix, confirming the
correctness of those matrices amounts to checking the three matrix inequalities over the sets S
and C in the rule CF-Fun, which is mostly a matter of linear arithmetic. In detail:

1. All the maps of S and C are generated through the typing rules’ matrix multiplications.

2. Pointwise inequalities between matrices are set up according to CF-Fun

3. Inequalities over havocked elements ∗ from Havx are filtered out, as they are trivially met.

4. The remaining inequalities are checked.

Thus, the efficiency of type checking depends only on how quickly the matrices of the sets S
and C can be generated, and how quickly those equalities can be checked.

Let the longest execution path through a function’s body be comprised of n subexpressions,
and let there be up to k lists present in scope at a time. Note the following asymptotic bounds:

• Θ(n) matrix multiplications are used to obtain each M ∈ S ∪ C

• the dimension of all matrices involved is O(k · d)
• |S|+ |C| = O(2n)
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These bounds can be combined to provide a bound on how quickly the matrix inequalities of
CF-Fun can be generated. Letting ω ∈ [2, 3] be the exponent associate with matrix multiplica-
tion, that bound is O(2n · n · (k · d)ω). Then there are only O((k · d)2) matrix elements to check
inequalities over, so O(2n ·n · (k ·d)ω) gives an upper bound on the time complexity of the entire
process.

Note that the only super-polynomial part of this complexity comes from the number of paths
through the function body being O(2n) in the worst case. In practice, people do not usually
write code in a way that hits this upper bound. In particular, if no let-bound expression involves
branching, then the number of paths is O(n), yielding a time complexity of O(n2 · (k · d)ω).

Inference The only inherent difference between type inference and checking is that the matri-
ces of S and C now include unknown variables from the function annotation being inferred. As a
result, the matrix inequalities that must hold for the rule M-Fun are no longer simple arithmetic
checks; instead they require solving systems of inequalities over polynomials. However, to min-
imize the number of unknowns involved, one should also impose the following ordering on type
inference:

1. Topologically sort functions such that f ≤ g if f is called in the body of g.

2. Infer types in an ascending order.

By inferring types in this order, the type of a function f is only inferred after all the functions
f depends on have had their types inferred. Thus, the polynomial inequalities only involve
unknowns from the matrix annotating the type of f itself (for non-mutually-recursive f ).

Such inequalities can be solved optimally in general using quadratically-constrained quadratic
programming, which is known to be NP-hard. However, it is common that such polynomials are
actually linear, allowing an optimal solution to be found in polynomial time via linear program-
ming. For example, consider the inequalities from the example typing half in Example 8.4.2—
a linear program that appropriately maximizes the higher-degree entries of M yields the exact
desired matrix for half. In such a case, the effect on time complexity is that the O((k · d)2)
inequality checks can be replaced with O((k · d)r), where r ≥ ω is the exponent associated with
linear program solving.

One can tell when linear programming is insufficient simply by checking the generated con-
straint set. In such a case, one could either default to nonlinear constraint solving or go back to
the existing cost-free approach, depending on the tradeoffs one wishes to make. However, many
cases are amenable to linear programming in practice, as validated in Section 8.8.2.

To see why linear programming commonly suffices, consider what needs to happen for non-
linear constraints to arise. Nonlinear terms can only arise in the course of multiplication between
two (possibly identical) matrices M and N both containing unknown variables. Such multiplica-
tion can only occur if, along a single path through a function’s body, two function calls are made
to functions whose types have not yet been inferred. This circumstance can occur when calling
higher-order functions or when inferring the type of recursive functions with non-linear recur-
sion schemes. Much code, including every code example given so far in this work, uses a linear
recursion scheme, and thus admits efficient type inference. (See Section 8.10 for higher-order
function discussion.)
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Further, while nonlinear recursion is necessary for nonlinear constraints in a first-order set-
ting, it is not sufficient. If M = M ′ ⊕ I and N = I ⊕ N ′, then M · N = M ′ ⊕ N ′, which has
only linear entries if M and N do. This pattern arises if two recursive calls are made to inde-
pendent arguments. Thus, nonlinear constraints require something like the chaining of function
applications to define the very function being applied. In other words, the typical example of the
problem case is recursively defining the function f by using f (f x) somewhere in its body.
This pattern arises in the Ackermann function, but this pattern almost never arises in real code.

8.8 Experiments

This section presents experiment with an implementation of the new matrix-based cost-free type
inference algorithm. First, the algorithm’s efficiency is compared to the existing approach on
parameterized synthetic code, which demonstrates the relative exponential improvement in how
the new algorithm scales. Then the new algorithm is run on a collection of realistic list functions
to obtain an absolute sense of its performance. The latter experiment also validates that the
new algorithm usually deals with only linear constraints. All experiments were implemented in
OCaml 4.12.0, run on a Mac with a 2.3 GHz Dual-Core Intel Core i5 processor, and use the
Gurobi version 9.5.1 solver [70].

8.8.1 Efficiency Comparison

To compare the matrix-based cost-free type-inference technique with the existing approach [77,
80] empirically, the efficiency of implementations of both techniques—the existing cost-free
type-inference algorithm and the new algorithm from Section 8.7—were measured. (A theoreti-
cal comparison of the two algorithms can be found in in Section 8.9.)

These algorithms were run on synthetic code to measure their efficiency. This code exhibits
relevant patterns that both algorithms are capable of analyzing. Because these algorithms’ run-
times are highly dependent on the code patterns used, the code is parameterized based on two
salient features: how many calls c are made to a function after the function is defined, and the
length ℓ of the chain of a function’s dependencies on other functions. Both c and ℓ not only
measure features salient for efficiency of the algorithms, but also naturally scale with the use
of helper functions in real code. Experiments were also performed with varying degrees d of
polynomial potential energy, which is another performance-relevant parameter of interest.

The specific code pattern generated for the experiments is exemplified in Figure 8.9, where
ℓ linearly recursive functions are defined, each of which calls the previously defined function c
times. This code is functionally equivalent to the identity function on lists.

This experiment was designed to answer the following questions:
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1 let g2 =
2 let g1 = fun f0 x0 = x0 in
3 fun f1 x1 = case x1 of
4 | [] -> []
5 | h1::t1 -> h1::(g1 (g1 (g1 (f1 t1))))
6 in fun f2 x2 = case x2 of
7 | [] -> []
8 | h2::t2 -> h2::(g2 (g2 (g2 (f2 x2))))

Figure 8.9: Synthetic code pattern example, c = 3, ℓ = 2

Q1. How well does the existing algorithm scale as a function of c, the number of calls to a
helper function; ℓ, the length of the dependency chain; and d, the degree?

Q2. How well does the new algorithm scale as a function of c, ℓ, and d?

Q3. Does the overhead of the new algorithm make it less efficient than the existing algorithm
on simple programs without challenging patterns; if so, to what extent?

The experimental findings can be summarized as follows:

A1. The existing algorithm scales poorly both in terms of the number constraints and time. Its
efficiency seems to scale exponentially in each of c, ℓ, and d. On the largest cases in the
testing range, this algorithm times out after days.

A2. In comparison, the new algorithm scales well. Its efficiency does not seem to scale expo-
nentially in any of c, ℓ, and d. The new algorithm always generates fewer constraints than
the existing algorithm and in many cases is multiple orders of magnitude more efficient in
terms of both time taken and constraints generated.

A3. Despite generating fewer constraints than the existing algorithm, the new algorithm takes
more time to solve those constraints for the smallest cases in the testing range. However,
the difference is never more than a fraction of a second.

To keep the experiments fair, a fresh implementation of the existing approach was built.
There is an available implementation of AARA called Resource Aware ML (RaML) [81], which
uses the existing approach. However, RaML implements many special features, including multi-
variate resource functions,8 which would unfairly slow down RaML’s analysis. Simultaneously,
RaML includes many optimizations to minimize memory usage and constraint generation that
the prototype does not use, unfairly advantaging RaML’s analysis. Finally, RaML does not use
remainder contexts, whereas both the implementations used in the experiment do. Thus, a fresh
implementation gives a more direct comparison.

Each of the implementations was run over the same code representations on the same com-

8Multivariate resource functions express potential energy not merely as sums of basic functions, but also as
products. This concept is discussed in Chapter 7.
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puter with the same interface to the same linear-program solver, creating a level testing ground.
These experiments measured the number of linear constraints generated, the time taken to gen-
erate the constraints, and the time taken to solve the constraints for 1 ≤ d ≤ 6 and 0 ≤ c, ℓ ≤ 5.

The complete experimental data can be found in Section 8.12. Graphs of some selected
features can be found in Figure 8.10. Each surface plot graph shows the scaling effects of two
of d, c, and ℓ while the third parameter is fixed at 3. Note that the data points occur at mesh
vertices, and that the vertical axis of each graph is on a log scale.

Even in this small domain, the experimental results show that the new algorithm scales sig-
nificantly better. While both algorithms had similar runtimes and generated similar numbers
of constraints in the smallest cases, the exponential growth of the existing algorithm took over
quickly. The implementation of the existing algorithm eventually timed out after taking days on
the largest cases, where d+ c+ ℓ ≥ 15, while the new algorithm could complete the analysis of
each of those cases in well under half a second. One of the largest tests that both of the imple-
mentations completed, with d = ℓ = 5 and c = 4, saw the new algorithm take 0.13s to create 631
constraints, which were solved in 0.19s—whereas the existing algorithm took 36s to generate 27
million constraints, which were solved in about 150000 seconds (43 hours).

8.8.2 Realistic Examples

To give an absolute sense of the kind of inference performance that could be expected on real
code, as well as to validate that nonlinear constraints do not usually arise, the inference algorithm
was run on various common list functions. This set of functions includes some higher-order
functions, map and filter, where the inference modification outlined in Section 8.10 was
taken.

This experiment was designed to address the following questions about the inference algo-
rithm for the matrix-based cost-free type system:

Q1. How often does the algorithm avoid nonlinear constraints on realistic code?

Q2. How quickly can the algorithm handle realistic code?

Q3. How often does the map inferred by the algorithm optimally reallocate potential from input
to output?

The findings can be summarized as follows:

A1. None of the code examples generated nonlinear constraints.

A2. Even while working with a high degree of potential (10), most code could be analyzed in
under a second.

A3. Non-optimal reallocation usually occurs in code that manipulates multiple lists.

The data from the experiments can be found in Table 8.1. The table data includes the time
spent to generate constraints from the source code, the time spent to solve those constraints,
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Key: orange = existing approach, blue = new approach

Figure 8.10: Surface plots of data with one of d, c, ℓ fixed at 3. (Lower is better.)
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function constr secs solve secs total secs constr count linear infer success optimal realloc.
cons 0.011 0.032 0.043 122 ✓ ✓ ✓

uncons 0.019 0.029 0.048 122 ✓ ✓ ✓
map 0.036 0.068 0.104 158 ✓ ✓ ✓
filter 0.078 0.049 0.127 278 ✓ ✓ ✓

zip 0.338 0.082 0.420 359 ✓ ✓ ✓
unzip 0.266 0.081 0.347 255 ✓ ✓ ✓
insert 0.096 0.034 0.130 278 ✓ ✓ ✓

remove 0.050 0.040 0.090 267 ✓ ✓ ✓
insertion sort 0.117 0.070 0.186 544 ✓ ✓ ✓

split 0.047 0.097 0.144 266 ✓ ✓ ✓
merge 0.750 0.091 0.841 1009 ✓ ✓ X

merge sort 2.307 0.329 2.636 1703 ✓ ✓ X

Table 8.1: Performance on list functions at max polynomial degree 10

the total time, the total number of constraints generated, whether inference successfully yields a
type, and whether the inferred linear map optimally reallocates potential.

The results of this experiment show some benefits and drawbacks of this chapter’s approach
to cost-free type inference. First, the matrix-based approach is quite efficient, even when working
with high degrees of polynomial resource functions. Second, while quadratic constraints could
theoretically arise out of the matrix-based approach, this experiment supports the claim that the
mitigating factors discussed in Section 8.7 really do keep constraints linear in practice. Even
in the case of merge sort, which does not use a linear recursion scheme, only linear constraints
arose because the recursive calls are not nested in the pathological way described in Section 8.7.
Finally, however, the analysis of merge (and thus also merge sort) shows that working with
multiple lists can be a source of non-optimal reallocation of potential energy, which results in
looser cost bounds. Specifically, the inferred cost-free matrix in these cases is only able to
reallocate constant amounts of energy, losing all higher-degree potential energy. Section 8.9
dives deeper into why this reallocation fails. Note, however, that the maps for zip and unzip both
optimally reallocate potential despite the fact that they each manipulate multiple lists.

While this experiment was only run on library code rather than large complicated algorithms,
the results are still supportive of the efficiency gains that could be expected from using the matrix-
based approach to cost-freedom in a fully-automated setting. Many real-world applications make
heavy use of such library functions [50], so even just being able to handle these functions ef-
ficiently should help to cut short the expensive cascade of retypings that would otherwise be
performed by the preexisting cost-free approach.

8.9 Further Comparison

To further compare the matrix-based cost-free type inference algorithm with the existing algo-
rithm, this section examines the theoretical behaviour of both in terms of asymptotic scaling and
cost-bound tightness.
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Asymptotics Here bounds are given on the number of linear constraints generated in terms of
d, c, and ℓ for both the existing inference algorithm and the new algorithm. These bounds can be
compared to the empirical data obtained in Section 8.8. Theoretical bounds on runtimes can be
obtained from these bounds on constraint counts by composing the bounds with the complexity
of linear program solving. As the choice of linear program solver is not essential to the type
system, runtime is not further considered in this section.

To analyze the existing algorithm, note the following recurrence for T (d, c, ℓ) which bounds
the worst-case number of constraints that the algorithm generates:

T (d, c, 0) = O(d)

T (1, c, ℓ) = c · T (1, c, ℓ− 1) +O(c)

T (d, c, ℓ) = c · T (d, c, ℓ− 1) + T (d− 1, c, ℓ) +O(c · d)

This recurrence arises because:
1. If ℓ = 0 the code generated is simply the non-recursive identity function. The number of

constraints generated is therefore proportional the size of the annotation vector O(d).

2. If d = 1 then the algorithm needs to (i) find specialized types for each of the c calls to helper
functions (with one less ℓ), as well as (ii) type its own body. In typing the body, in the worst
case, the algorithm generates constraints proportional to the body length O(c) = O(c · d).

3. In larger cases, the algorithm needs to do all that was discussed above, in addition to
retyping the function body with one less degree of potential.

While I know no closed form for this recurrence, one can count the number of occurrences
of T (d − i, c, ℓ − j) as

(
i+j
i

)
· cj ≤

(
i+j
i

)
· cℓ and overapproximate the constraints generated

per occurrence as O(c · d) (assuming c ≥ 1). Then T (d, c, ℓ) ≤ dcℓ+1
∑d−1

i=0

∑ℓ
j=0

(
i+j
i

)
=

d · cℓ+1 · (
(
d+ℓ+1

d

)
− 1) = O(d · cℓ+1 ·

(
d+ℓ+1

d

)
) gives an upper bound on the number of constraints

generated. While this is only an upper bound, its poor scaling in all three considered parameters
c, d, ℓ is qualitatively consistent with the experimental findings from Section 8.8.

Analyzing the new algorithm’s constraint generation on the same patterns is more straight-
forward. Because each function is analyzed only once, the worst-case constraints generated
are proportional to the number of functions to analyze O(ℓ). In each function, the number of
non-negativity constraints is at most proportional to the number of calls O(c) and the size of
the symbolic matrix O(d2). Thus, in the worst-case, the number of constraints generated is
O(d2 · c · ℓ).

It is also relevant to consider the behavior as c and ℓ get small to compare performance on
less extreme cases. Such a comparison is made here by analyzing the case where c = ℓ = 0,
which corresponds to a linearly recursive function calling no helper functions. In such a case, the
two algorithms both generate Θ(d2) constraints. For the existing algorithm, the constraint count
is Θ(d2) because the constraints are generated in proportion to the size of the annotation vector
being constrained, which is Θ(d) in a single typing pass, and Θ(d) passes are made. For the new
algorithm, the constraint count is Θ(d2) because the constraints generated are proportional to the
size of the matrix being constrained, which is Θ(d2).
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Bound Tightness Ideally, a cost-free function type would tightly express the cost of 0 between
its argument and return types, because no energy should be spent. However, AARA cannot al-
ways perfectly reallocate potential energy across different data structures, so some energy might
be lost instead. The less potential energy that is lost, the tighter the cost bound that AARA can
infer.

The existing approach for inferring cost-free types (when it succeeds) yields the tightest
bounds that AARA can get. This optimality occurs due to brute force: the existing approach
infers a new cost-free type wherever such a type could better specialize to the present potential.
Thus, as long as the approach’s key assumption is met and inference succeeds, the type found
allocates potential as losslessly as AARA types can represent.

In contrast, the new matrix-based approach may yield looser cost bounds. While this ap-
proach does well for code that manipulates only one list, code that manipulates multiple lists
may introduce more loss (as in Table 8.1). This loss occurs because it is easy to use multiple
lists to make certain type annotations dependent upon the minimum of the annotations across the
lists, but minimum is not a linear function. The following projection function proj provides
an example of such loss because that function would be best typed to reallocate the most energy
possible to the return with the type B ⊗ La(τ) ⊗ Lb(τ) → Lmin(a,b)(τ) ∼ B ⊗ L0(τ) ⊗ L0(τ).
However, the best possible linear transormation is the trivial type B⊗La(τ)⊗Lb(τ) → L0(τ) ∼
B ⊗ La(τ) ⊗ Lb(τ), where no energy is meaningfully reallocated, because the constant zero
function is the best linear function under-approximating the minimum. I hope such nonlinear
functions can be addressed in future work.

fun proj (b, lst1, lst2) = if b then lst1 else lst2

8.10 Limitations

To keep cost-free types inferable via linear programming, this chapter’s type system lacks cer-
tain features. Some of these have already been discussed in other sections, such as nonlinear
annotation transformations. However, other unsupported features have not yet been fully dis-
cussed. Such features include list elements, trees, full sharing, and higher-order functions. This
section discusses the extent of these remaining limitations, as well as some possible routes for
generalizing beyond them.

List Elements and Trees This chapter’s type system forces list element annotations to be zero,
as described in Section 8.4.3. The reason for forcing such annotations to be zero is that the type
system cannot support nonlinear annotation transformations. If list elements could carry energy,
then properly formalizing unshifting would require minima. Specifically, adding an element of
type La(B) to the front of a list of type L0(Lb(B)) would have the resulting list best typed as
L0(Lmin(a,b)(B)). To avoid this problem, the system forces such element annotations to be zero.
This restriction is not actually much of a detriment, as it is difficult to have resource-polymorphic
recursion affect such annotations—costful typing usually needs no help from cost-free types to
properly handle list element annotations.
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Trees have the same problem as lists, except the issue plagues all of their annotations. Com-
bining two subtrees typed using linear energy as T a(B) and T b(B) would have the resulting tree
best typed as Tmin(a,b)(B). Resolving this issue in the same way as lists would have trees only
annotated by zeros. This solution is valid but trivial, so this chapter simply ignores trees instead.

Higher-Order Functions During type inference, higher-order function arguments have both
an unknown type annotation and an unknown body. As a result, it is unclear what annotation is
appropriate to infer. However, this problem is not new in the setting of cost analysis. The cost of
running a higher-order function is usually dependent on the cost of the function it takes as input,
and therefore would require a symbolic cost bound parameterized by the input’s cost behaviour.
AARA cannot currently express such a bound.

To deal with this problem, previous AARA literature treats higher-order functions with un-
known arguments as if their argument functions have zero cost. This treatment has the effect
of only reporting the cost behaviour of the higher-order function itself. Then, when given a
concretely-typed argument function, AARA macro-expands and retype the higher-order function
to take the known cost behaviour into account. This chapter’s system can handle higher-order
functions in the same way without raising any additional conceptual issues. This approach is
taken in this chapter’s experiments to obtain the results of Section 8.8.2.

Full Sharing A variable’s energy must be split between all its uses. Thus, if costful AARA
would annotate x with a⃗, then b⃗ ≥ 0 could go to one use and c⃗ ≥ 0 to another, where a⃗ = b⃗+ c⃗.
This splitting is called “sharing.”

While such sharing constraints are linear, the corresponding map acting on a⃗ introduces non-
linearity. Such a sharing map looks like p ·Movx

y+(1−p) ·Movx
z , where y and z stand in for two

uses of x and p ∈ [0, 1]. This map involves the unknown p, which means that composing with
other matrices involving unknowns (like those for recursive calls) can result in nonlinear terms.

To avoid this problem, this chapter’s type system codifies the essentially-arbitrary choice that
all potential energy is allocated to a variable’s first use. This choice is sufficient for typing many
functions of interest. In addition, remainder contexts can recover unused potential in certain
circumstances, regaining some (but not all) of the benefits of full sharing.

Nonlinear Constraints Given how often nonlinear constraints have come up, it is natural to
ask whether nonlinear constraint solvers are efficient enough to reasonably automate this sys-
tem’s type inference. Indeed, quadratically-constrained quadratic programs (QCQPs) were ex-
plored during the development of this system for the purposes of such automation. QCQPs are
like a linear program extended to allow quadratic terms, and this power is sufficient to handle
general polynomial constraints as well. However, unlike linear programs, QCQPs are NP-hard
to solve outside of special cases, most notably semidefinite programs [136]. Unfortunately, this
system’s constraints are not semidefinite, so the efficiency of QCQP solving is a real issue. The
experiments with a general purpose QCQP solver yielded little success. On simple cases, a pro-
totype implementation ran for several days without finding a solution until it timed out. Nonethe-
less, the experiments of Section 8.8 suggest that this level of efficiency might be competitive with
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the preexisting cost-free approach, so this avenue is something to consider in the future, espe-
cially as QCQP solvers improve. Until then, maximizing the use of linear constraints is the key
to efficient inference.

A second way to handle nonlinear constraints is an iterative approach like Kleene iteration
[37] or Newton’s method [54]. Conceptually, such an algorithm obtains a solution for a set of
nonlinear constraints by creating a set of recursive equations, fixing an initial guess at a fixed
point, and iterating. Each iteration should yield a “better” approximation to the solution, as
defined by some partial order. However, attempts to devise such an iterative strategy for this type
system were unsuccessful because the system must support matrices with negative entries, like

the unshift map
A
▷ x

y . When composed, such maps transform positive entries of matrices into
negative ones, and vice versa. As a result, any partial ordering on approximate solutions that
respects iteration does not properly respect pointwise ordering. Iteration uses the former order,
but this system’s use of linear programs use the latter, so they cannot be combined.

8.11 Related Work

This section discusses related work along two major axes: How other cost analyses might use
cost-freedom, and how other approaches might deal with with inferring similar linear maps to
this chapter’s cost-free matrices.

Cost-Freedom in Other Cost Analyses Cost-freedom is only relevant in a rather restricted
set of circumstances. The main purpose of cost-freedom is to soundly describe how excess
resources should be allocated when composing cost analyses. However, it is always just as sound
to simply drop excess resources or reanalyze the composed program, so less automated or less
mature systems may not have found cost-freedom necessary. Furthermore, the stickier problem
solved by cost-freedom, resource-polymorphic recursion, only occurs when a variety of features
come together: some form of resource credits (like potential energy), nonlinear cost bounds, and
non-tail recursion. Notably, loop programs are always tail recursive, thus they never encounter
resource-polymorphic recursion.

Because resource credits are a key factor for the use of cost-freedom, amortized cost analyses
are good target for its application. There are many program analysis systems aside from AARA
that deal with amortized cost bounds. These systems include program logics augmented with
cost credits [10, 66], other type systems [125], recurrence-relation solving [40], term rewriting
[87, 107], and more [15, 56, 58, 104, 113, 131]. However, it appears that only AARA-based
systems currently exploit the ideas of cost-freedom. Some AARA-based approaches like the
program logic of Atkey [10] do not currently use cost-freedom, but they would likely need it if
extended to support nonlinear resource functions. Other AARA-based approaches like the term-
rewriting system of the work of Moser and Schneckenreither [107] do use cost-freedom, and
would likely benefit from this chapter’s matrix-based cost-free types.9

9Indeed, Moser and Schneckenreither explicitly observe that cost-freedom can make their constraint sets blow
up in size when using the preexisting method.
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As an alternative to using cost-free types, other resource-credit-based approaches seem to
favor using ideas from separation logic [120]. For example, consider the work of [30], which, like
many alternative cost-analysis techniques, uses a counter to track credits rather than structured
resource functions. Cost relations concerning this counter are then imported into a proof assistant
where a user (non-automatically) works out the needed invariants. Rather than employ cost-
free types, this system reallocates excess credits through a function call via applying separation
logic’s frame rule to the number of excess credits tracked by the counter. The effect of this frame-
rule application is that some quantity of credits r is temporarily ignored, so that if applying some
function converts p credits to q, then it also would convert p+r to q+r. This reasoning principle
is not as complicated as cost-free types because the quantities of credits may be manipulated
directly rather than indirectly via resource functions. The tradeoff is that it would be difficult
to fully automate such an approach because the quantities of credits typically depend on data
structure sizes, which are not generally computable. AARA’s indirect manipulation via resource
functions avoids most consideration of size by the type system.

Linear Fixed Points This chapter’s inference system uses linear programming to solve recur-
sive constraints over matrices, and this method constrains certain features of the system (Sec-
tion 8.10). However, there are many other approaches in program analysis that solve similar
linear, fixpoint-like problems, and it is worth considering how they might be applied to solve the
problems of this chapter. Finding such fixed points has been studied since at least the 70s when
Cousot and Halbwachs introduced the polyhedral domain for abstract interpretation, which finds
linear invariants of programs [38]. Abstract-interpretation work since then has focused more
specifically on inferring linear or affine transformations [111, 129], although nothing seems
quite sufficient for encoding the transformations in which I are interested. Some other rele-
vant work includes that of de Oliveira et al., which represents polynomials with a linear basis
much like AARA, and uses eigenvectors of linear maps to find loop invariants [49]. Unfortu-
nately, extending this idea to a domain like this chapter’s where inequalities matter quickly runs
into issues like the positivity problem [119]. As part of this work’s experiments with iterative
methods, discussed in Section 8.10, the work of Reps et al. [127] was also considered. This work
uses a tensor-product operation to transform linear context-free equations into regular-language
equations, allowing each Newton iteration of Newtonian program analysis [54] to be solved effi-
ciently. In this chapter’s setting, however, tensors do not change the linear programs that would
be solved.

8.12 Experimental Data
Tables 8.2 to 8.4 contain the data recorded from the experiments outlined in Section 8.8.
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params — new — old
d c ℓ constr secs solve secs total secs constrs constr secs solve sec total secs constrs
1 0 0 0.000042 0.016539 0.016581 4 0.000026 0.015233 0.015259 12
1 0 1 0.000099 0.029961 0.030060 14 0.000041 0.015706 0.015747 53
1 0 2 0.000170 0.045621 0.045791 24 0.000074 0.015939 0.016013 94
1 0 3 0.000284 0.062229 0.062513 34 0.000094 0.016423 0.016517 135
1 0 4 0.000335 0.086318 0.086653 44 0.000464 0.021997 0.022461 176
1 0 5 0.000380 0.089821 0.090201 54 0.000146 0.016866 0.017012 217
1 1 0 0.000025 0.014744 0.014769 4 0.000014 0.015327 0.015341 12
1 1 1 0.000107 0.032644 0.032751 17 0.000081 0.018657 0.018738 72
1 1 2 0.000209 0.045724 0.045933 30 0.000131 0.016680 0.016811 186
1 1 3 0.000268 0.057673 0.057941 43 0.000238 0.017584 0.017822 352
1 1 4 0.000389 0.087940 0.088329 56 0.000644 0.024758 0.025402 570
1 1 5 0.001474 0.114994 0.116468 69 0.000856 0.024653 0.025509 840
1 2 0 0.000019 0.015084 0.015103 4 0.000017 0.015241 0.015258 12
1 2 1 0.000119 0.030124 0.030243 21 0.000088 0.016134 0.016222 95
1 2 2 0.000212 0.042785 0.042997 38 0.000219 0.016977 0.017196 321
1 2 3 0.000308 0.056932 0.057240 55 0.000611 0.019885 0.020496 831
1 2 4 0.000543 0.083748 0.084291 72 0.001632 0.030908 0.032540 1912
1 2 5 0.000629 0.104308 0.104937 89 0.005318 0.057943 0.063261 4132
1 3 0 0.000018 0.016538 0.016556 4 0.000017 0.016756 0.016773 12
1 3 1 0.000149 0.031353 0.031502 21 0.000084 0.015582 0.015666 115
1 3 2 0.000415 0.077578 0.077993 38 0.000374 0.022728 0.023102 491
1 3 3 0.000365 0.060048 0.060413 55 0.001375 0.029278 0.030653 1691
1 3 4 0.000849 0.144139 0.144988 72 0.010170 0.184897 0.195067 5351
1 3 5 0.000605 0.091483 0.092088 89 0.016646 0.147977 0.164623 16400
1 4 0 0.000017 0.015032 0.015049 4 0.000015 0.016025 0.016040 12
1 4 1 0.000216 0.029888 0.030104 21 0.000132 0.017826 0.017958 135
1 4 2 0.000361 0.047575 0.047936 38 0.000521 0.022471 0.022992 702
1 4 3 0.000438 0.071367 0.071805 55 0.004783 0.084018 0.088801 3048
1 4 4 0.000559 0.076119 0.076678 72 0.012303 0.111350 0.123653 12510
1 4 5 0.000818 0.087661 0.088479 89 0.056572 0.602399 0.658971 50434
1 5 0 0.000019 0.015040 0.015059 4 0.000015 0.015895 0.015910 12
1 5 1 0.000225 0.036546 0.036771 21 0.000101 0.018815 0.018916 155
1 5 2 0.000290 0.043415 0.043705 38 0.000833 0.022671 0.023504 953
1 5 3 0.000583 0.061408 0.061991 55 0.006523 0.051278 0.057801 5031
1 5 4 0.003645 0.085588 0.089233 72 0.025974 0.278086 0.304060 25502
1 5 5 0.001311 0.086741 0.088052 89 0.142253 1.285613 1.427866 127944
2 0 0 0.000028 0.015328 0.015356 9 0.000029 0.015573 0.015602 20
2 0 1 0.000289 0.033261 0.033550 29 0.000131 0.019285 0.019416 129
2 0 2 0.000502 0.047067 0.047569 49 0.000160 0.017428 0.017588 238
2 0 3 0.000729 0.059772 0.060501 69 0.000223 0.017761 0.017984 346
2 0 4 0.001074 0.091373 0.092447 89 0.000325 0.022354 0.022679 454
2 0 5 0.001716 0.114943 0.116659 109 0.000558 0.024100 0.024658 562
2 1 0 0.000028 0.015250 0.015278 9 0.000017 0.015819 0.015836 20
2 1 1 0.000360 0.031529 0.031889 35 0.000136 0.017132 0.017268 193
2 1 2 0.000686 0.046000 0.046686 61 0.000500 0.021283 0.021783 623
2 1 3 0.001164 0.109110 0.110274 87 0.001144 0.027268 0.028412 1410
2 1 4 0.001434 0.076398 0.077832 113 0.003020 0.044966 0.047986 2660
2 1 5 0.001770 0.112141 0.113911 139 0.005409 0.059942 0.065351 4476
2 2 0 0.000025 0.015468 0.015493 9 0.000018 0.015634 0.015652 20
2 2 1 0.000429 0.031337 0.031766 44 0.000165 0.017853 0.018018 254
2 2 2 0.000807 0.046065 0.046872 79 0.000981 0.024991 0.025972 1204
2 2 3 0.001801 0.062295 0.064096 114 0.003758 0.052979 0.056737 4150
2 2 4 0.002516 0.080507 0.083023 149 0.013180 0.177627 0.190807 12238
2 2 5 0.002774 0.095361 0.098134 184 0.037644 0.463047 0.500691 32885
2 3 0 0.000028 0.017961 0.017989 9 0.000018 0.017703 0.017721 20
2 3 1 0.000589 0.034955 0.035544 44 0.000203 0.020655 0.020858 316
2 3 2 0.001131 0.052838 0.053969 79 0.001976 0.035812 0.037788 1989
2 3 3 0.001467 0.060390 0.061857 114 0.009366 0.106147 0.115513 9425
2 3 4 0.004764 0.078818 0.083582 149 0.047127 0.589632 0.636759 39081
2 3 5 0.002945 0.094591 0.097536 184 0.175089 1.930193 2.105282 150189
2 4 0 0.000023 0.015724 0.015747 9 0.000015 0.015552 0.015567 20
2 4 1 0.000628 0.030262 0.030890 44 0.000276 0.018271 0.018547 377
2 4 2 0.001415 0.053228 0.054643 79 0.002895 0.048787 0.051682 2970
2 4 3 0.001849 0.066815 0.068664 114 0.020787 0.248645 0.269432 18060
2 4 4 0.003051 0.079288 0.082339 149 0.121902 2.613878 2.735780 97380
2 4 5 0.003527 0.095953 0.099480 184 0.603298 10.648155 11.251453 490539
2 5 0 0.000026 0.016016 0.016042 9 0.000020 0.016125 0.016145 20
2 5 1 0.000678 0.033611 0.034289 44 0.000302 0.019871 0.020173 438
2 5 2 0.001414 0.045110 0.046524 79 0.003294 0.052815 0.056109 4154
2 5 3 0.003176 0.093567 0.096743 114 0.055972 0.501996 0.557968 30940
2 5 4 0.003303 0.081001 0.084304 149 0.240742 3.001745 3.242487 205845
2 5 5 0.006122 0.093704 0.099826 184 1.503743 17.240749 18.744492 1285286

Table 8.2: Experimental data for d = 1, 2
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params — new — old
d c ℓ constr secs solve secs total secs constrs constr secs solve sec total secs constrs
3 0 0 0.000041 0.015634 0.015675 16 0.000026 0.015668 0.015694 28
3 0 1 0.001046 0.032759 0.033805 43 0.000186 0.018984 0.019170 236
3 0 2 0.001450 0.049265 0.050715 70 0.000379 0.020762 0.021141 443
3 0 3 0.001887 0.062912 0.064799 97 0.000490 0.021987 0.022477 649
3 0 4 0.002996 0.092591 0.095587 124 0.000699 0.026594 0.027293 856
3 0 5 0.003764 0.113372 0.117136 151 0.001065 0.025972 0.027037 1063
3 1 0 0.000036 0.015988 0.016024 16 0.000020 0.016161 0.016181 28
3 1 1 0.001061 0.032295 0.033356 59 0.000331 0.018910 0.019241 357
3 1 2 0.002349 0.049491 0.051840 102 0.001315 0.031187 0.032502 1395
3 1 3 0.003493 0.063860 0.067353 145 0.003248 0.059259 0.062507 3758
3 1 4 0.008033 0.098151 0.106184 188 0.009770 0.126782 0.136552 8266
3 1 5 0.006617 0.100908 0.107525 231 0.020647 0.202641 0.223288 15948
3 2 0 0.000034 0.016045 0.016079 16 0.000017 0.015359 0.015376 28
3 2 1 0.001706 0.033962 0.035668 75 0.000358 0.020168 0.020526 479
3 2 2 0.003464 0.048022 0.051486 134 0.003168 0.046793 0.049961 2913
3 2 3 0.005143 0.069853 0.074996 193 0.014636 0.182602 0.197238 12759
3 2 4 0.008598 0.083686 0.092284 252 0.053517 1.009344 1.062861 46559
3 2 5 0.010271 0.100567 0.110838 311 0.199687 3.691999 3.891686 151105
3 3 0 0.000045 0.023406 0.023451 16 0.000021 0.021076 0.021097 28
3 3 1 0.001888 0.036658 0.038546 75 0.000878 0.022383 0.023261 601
3 3 2 0.004736 0.050563 0.055299 134 0.004270 0.074808 0.079078 5013
3 3 3 0.006328 0.068159 0.074487 193 0.037331 0.611558 0.648889 30823
3 3 4 0.018882 0.084396 0.103278 252 0.187965 5.052531 5.240496 160364
3 3 5 0.022301 0.101693 0.123994 311 0.931370 18.897349 19.828719 749203
3 4 0 0.000039 0.019391 0.019430 16 0.000026 0.017685 0.017711 28
3 4 1 0.002620 0.038494 0.041114 75 0.000599 0.025804 0.026403 721
3 4 2 0.008145 0.050352 0.058497 134 0.007200 0.110314 0.117514 7654
3 4 3 0.007776 0.068316 0.076092 193 0.055860 1.653075 1.708935 60979
3 4 4 0.008763 0.083909 0.092672 252 0.440956 14.162719 14.603675 414116
3 4 5 0.014517 0.105401 0.119918 311 3.195450 171.840712 175.036162 2537242
3 5 0 0.000036 0.015974 0.016010 16 0.000017 0.015511 0.015528 28
3 5 1 0.002837 0.033307 0.036144 75 0.000654 0.022925 0.023579 842
3 5 2 0.006123 0.050831 0.056954 134 0.019261 0.154263 0.173524 10872
3 5 3 0.011121 0.067044 0.078165 193 0.121545 2.997829 3.119374 106554
3 5 4 0.011861 0.084976 0.096837 252 1.122581 53.309085 54.431666 893955
3 5 5 0.014272 0.097983 0.112255 311 9.312985 1179.742946 1189.055931 6785087
4 0 0 0.000069 0.019897 0.019966 25 0.000044 0.016803 0.016847 36
4 0 1 0.001729 0.033189 0.034918 59 0.000337 0.019493 0.019830 365
4 0 2 0.003536 0.056949 0.060485 93 0.000665 0.022510 0.023175 694
4 0 3 0.005667 0.076041 0.081708 127 0.000871 0.027398 0.028269 1024
4 0 4 0.015344 0.128815 0.144159 161 0.001213 0.032686 0.033899 1353
4 0 5 0.010312 0.107239 0.117551 195 0.001545 0.032817 0.034362 1685
4 1 0 0.000059 0.018750 0.018809 25 0.000025 0.018959 0.018984 36
4 1 1 0.005002 0.047072 0.052074 84 0.000478 0.059413 0.059891 568
4 1 2 0.009083 0.055694 0.064777 143 0.002287 0.049415 0.051702 2606
4 1 3 0.013858 0.068480 0.082338 202 0.009116 0.121333 0.130449 8179
4 1 4 0.019216 0.092336 0.111552 261 0.025725 0.343922 0.369647 20762
4 1 5 0.029570 0.150571 0.180141 320 0.090916 1.158684 1.249600 45671
4 2 0 0.000059 0.026470 0.026529 25 0.000033 0.024135 0.024168 36
4 2 1 0.006506 0.036330 0.042836 109 0.000667 0.024205 0.024872 771
4 2 2 0.013719 0.053968 0.067687 193 0.006065 0.090156 0.096221 5731
4 2 3 0.027344 0.080500 0.107844 277 0.029282 0.640377 0.669659 30523
4 2 4 0.028854 0.091598 0.120452 361 0.134407 4.517918 4.652325 133754
4 2 5 0.037787 0.112178 0.149965 445 0.543178 24.347409 24.890587 512519
4 3 0 0.000053 0.017022 0.017075 25 0.000025 0.016221 0.016246 36
4 3 1 0.009729 0.045220 0.054949 109 0.001295 0.030739 0.032034 972
4 3 2 0.018507 0.054518 0.073025 193 0.009415 0.160940 0.170355 10074
4 3 3 0.034511 0.075975 0.110486 277 0.093669 2.533223 2.626892 76585
4 3 4 0.042081 0.087974 0.130055 361 0.612588 21.951089 22.563677 483261
4 3 5 0.051126 0.114073 0.165199 445 4.248675 448.071415 452.320090 2680916
4 4 0 0.000049 0.017285 0.017334 25 0.000021 0.016384 0.016405 36
4 4 1 0.011328 0.035795 0.047123 109 0.001075 0.028545 0.029620 1173
4 4 2 0.034361 0.053880 0.088241 193 0.026270 0.292175 0.318445 15596
4 4 3 0.038971 0.070234 0.109205 277 0.146051 7.262634 7.408685 154511
4 4 4 0.044262 0.091807 0.136069 361 1.697200 167.918893 169.616093 1276812
4 4 5 0.056506 0.141851 0.198357 445 12.724109 4700.986052 4713.710161 9301888
4 5 0 0.000057 0.017507 0.017564 25 0.000025 0.016347 0.016372 36
4 5 1 0.012953 0.034416 0.047369 109 0.001228 0.030184 0.031412 1373
4 5 2 0.028344 0.053067 0.081411 193 0.019104 0.401896 0.421000 22350
4 5 3 0.044963 0.080593 0.125556 277 0.302339 17.910969 18.213308 273266
4 5 4 0.065743 0.087002 0.152745 361 3.626365 588.597753 592.224118 2793847
4 5 5 0.069873 0.114544 0.184417 445 36.485721 70570.439041 70606.924762 25225105

Table 8.3: Experimental data for d = 3, 4
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params — new — old
d c ℓ constr secs solve secs total secs constrs constr secs solve sec total secs constrs
5 0 0 0.000077 0.017486 0.017563 36 0.000037 0.016726 0.016763 44
5 0 1 0.003436 0.039762 0.043198 83 0.000409 0.027827 0.028236 532
5 0 2 0.006980 0.061981 0.068961 130 0.000961 0.032137 0.033098 1020
5 0 3 0.024448 0.137288 0.161736 177 0.001332 0.039969 0.041301 1507
5 0 4 0.013967 0.097683 0.111650 224 0.001894 0.037573 0.039467 1995
5 0 5 0.015675 0.114982 0.130657 271 0.002366 0.041321 0.043687 2482
5 1 0 0.000066 0.017811 0.017877 36 0.000029 0.016461 0.016490 44
5 1 1 0.009268 0.036315 0.045583 119 0.000722 0.025874 0.026596 826
5 1 2 0.018078 0.056897 0.074975 202 0.004226 0.076642 0.080868 4345
5 1 3 0.029984 0.076846 0.106830 285 0.020346 0.285027 0.305373 15644
5 1 4 0.036824 0.102572 0.139396 368 0.058999 1.694275 1.753274 45265
5 1 5 0.054419 0.113217 0.167636 451 0.135150 5.011172 5.146322 112556
5 2 0 0.000076 0.017852 0.017928 36 0.000027 0.016072 0.016099 44
5 2 1 0.016984 0.044732 0.061716 155 0.000843 0.032951 0.033794 1128
5 2 2 0.029933 0.058477 0.088410 274 0.010980 0.171963 0.182943 9913
5 2 3 0.040894 0.083943 0.124837 393 0.078169 2.127854 2.206023 62382
5 2 4 0.053890 0.095180 0.149070 512 0.379000 16.143426 16.522426 320332
5 2 5 0.080353 0.129780 0.210133 631 2.058113 213.112385 215.170498 1421648
5 3 0 0.000063 0.018092 0.018155 36 0.000025 0.018186 0.018211 44
5 3 1 0.019366 0.038255 0.057621 155 0.001215 0.033221 0.034436 1432
5 3 2 0.038226 0.058702 0.096928 274 0.017728 0.349406 0.367134 17703
5 3 3 0.055996 0.082414 0.138410 393 0.189165 6.806947 6.996112 160536
5 3 4 0.081476 0.104385 0.185861 512 1.654466 225.653820 227.308286 1195445
5 3 5 0.109081 0.249445 0.358526 631 10.321564 6194.622692 6204.944256 7718071
5 4 0 0.000143 0.017999 0.018142 36 0.000036 0.016671 0.016707 44
5 4 1 0.027136 0.039636 0.066772 155 0.001423 0.034885 0.036308 1727
5 4 2 0.054744 0.057714 0.112458 274 0.034404 0.634923 0.669327 27643
5 4 3 0.073931 0.094613 0.168544 393 0.645488 36.678300 37.323788 328136
5 4 4 0.171072 0.199687 0.370759 512 5.518761 1182.287350 1187.806111 3208306
5 4 5 0.131733 0.186035 0.317768 631 35.674655 154367.904023 154403.578678 27243494
5 5 0 0.000143 0.018394 0.018537 36 0.000029 0.016771 0.016800 44
5 5 1 0.028720 0.038908 0.067628 155 0.001854 0.039140 0.040994 2029
5 5 2 0.066871 0.056814 0.123685 274 0.042691 1.075947 1.118638 39857
5 5 3 0.088594 0.132821 0.221415 393 0.581227 84.127568 84.708795 585037
5 5 4 0.435554 0.603455 1.039009 512 36.992054 5770.545060 5807.537114 7086341
5 5 5 0.155609 0.146074 0.301683 631 timeout timeout timeout timeout
6 0 0 0.000085 0.019476 0.019561 49 0.000030 0.016957 0.016987 52
6 0 1 0.006856 0.053433 0.060289 121 0.000972 0.032932 0.033904 718
6 0 2 0.010274 0.062646 0.072920 193 0.001603 0.034992 0.036595 1385
6 0 3 0.015783 0.083983 0.099766 265 0.001778 0.044023 0.045801 2052
6 0 4 0.022587 0.103950 0.126537 337 0.002568 0.049037 0.051605 2719
6 0 5 0.023988 0.124171 0.148159 409 0.003221 0.053733 0.056954 3386
6 1 0 0.000084 0.019479 0.019563 49 0.000030 0.018554 0.018584 52
6 1 1 0.010019 0.043066 0.053085 163 0.001360 0.032638 0.033998 1130
6 1 2 0.018473 0.059746 0.078219 277 0.006969 0.124090 0.131059 6710
6 1 3 0.031780 0.121696 0.153476 391 0.052798 0.826922 0.879720 27306
6 1 4 0.047615 0.106880 0.154495 505 0.150234 3.723004 3.873238 89024
6 1 5 0.042664 0.126581 0.169245 619 0.433976 9.306156 9.740132 247862
6 2 0 0.000089 0.019588 0.019677 49 0.000030 0.018670 0.018700 52
6 2 1 0.012102 0.043387 0.055489 212 0.002004 0.037488 0.039492 1550
6 2 2 0.027652 0.062923 0.090575 375 0.017866 0.324983 0.342849 15722
6 2 3 0.033779 0.084825 0.118604 538 0.133347 5.242922 5.376269 114325
6 2 4 0.056717 0.108987 0.165704 701 0.908094 67.925591 68.833685 674646
6 2 5 0.064283 0.204992 0.269275 864 5.001324 1296.569909 1301.571233 3412730
6 3 0 0.000668 0.019511 0.020179 49 0.000032 0.016984 0.017016 52
6 3 1 0.017178 0.042157 0.059335 212 0.001928 0.045486 0.047414 1969
6 3 2 0.028368 0.063418 0.091786 375 0.027076 0.725203 0.752279 28390
6 3 3 0.070527 0.114887 0.185414 538 0.438994 21.245849 21.684843 299542
6 3 4 0.058867 0.114669 0.173536 701 3.070279 906.614686 909.684965 2576633
6 3 5 0.306451 0.675611 0.982062 864 71.489372 79469.399906 79540.889278 19035507
6 4 0 0.000104 0.023031 0.023135 49 0.000032 0.018054 0.018086 52
6 4 1 0.018192 0.041655 0.059847 212 0.002206 0.046417 0.048623 2384
6 4 2 0.035369 0.063444 0.098813 375 0.040629 1.421071 1.461700 44632
6 4 3 0.054724 0.095273 0.149997 538 0.744372 73.169898 73.914270 618038
6 4 4 0.098837 0.155009 0.253846 701 8.922452 6845.493612 6854.416064 6994063
6 4 5 0.103610 0.150520 0.254130 864 timeout timeout timeout timeout
6 5 0 0.000111 0.026519 0.026630 49 0.000045 0.018480 0.018525 52
6 5 1 0.023738 0.042042 0.065780 212 0.004236 0.050720 0.054956 2804
6 5 2 0.041496 0.065930 0.107426 375 0.063495 2.458531 2.522026 64600
6 5 3 0.063459 0.091847 0.155306 538 1.080118 212.582821 213.662939 1108168
6 5 4 0.083420 0.110104 0.193524 701 timeout timeout timeout timeout
6 5 5 0.110426 0.139084 0.249510 864 timeout timeout timeout timeout

Table 8.4: Experimental data for d = 5, 6
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Chapter 9

Quantum Physicist’s Method

This chapter introduces a refinement of the physicist’s method [133] which I call the quantum
physicist’s method. This chapter then adapts this refinement into AARA to allow the system to
more flexibly allocate energy across data structures. This flexibility is enabled by considering
multiple simultaneous typings that I call worldviews and using a special bookkeeping method for
borrowing energy that I call resource tunneling.

Worldviews are this system’s version of superposition and behave like intersection types or
the additive products of linear logic. Worldviews allow choices about the allocation of energy
to be delayed, enabling more flexibility. Because each worldview behaves (mostly) like a usual
AARA typing, their inference can be automated via linear programming. Further, worldviews
enable resource tunneling.

Resource tunneling is this system’s version of quantum tunneling and allows energy to be
passed through potential energy barriers. Such a potential energy barrier might take the form of
a function typed L1(τ) → 1 ∼ L1(τ) which has a peak cost higher than its net cost, just like a
barrier’s height is higher than the ground on either of its sides. Such function types arise often in
the presence of reusable resources like memory.

The quantum physicist’s method in AARA really shines when its comes to analyzing trees.
Worldviews enable resource functions to depend on the height of trees, rather than (loosely) on
their number of nodes. Resource tunneling is critical for analyzing tree traversals in AARA.

The quantum physicist’s method would not be possible without the remainder contexts of
Chapter 5, but I build this chapter upon Chapter 6 for the extra value its generality provides.

9.1 The Problem: Nonlocal Resource Allocation

Sometimes AARA can derive poor cost bounds for the simple reason that its method of book-
keeping potential energy is not flexible enough to allocate energy where it is needed. Because
AARA cannot effectively use the energy it has, it demands more energy to cover costs, inflating
the cost bounds it finds. This problem occurs because the AARA type system developed so far
only allows for “local” energy manipulation—energy is only assigned to data structures directly
when they are created. However, sometimes code may demand “nonlocal” energy allocation.
The main offending code witnessing this problem can be boiled down to two prototypical code
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1 fun branchId lst = let lst2 = lst in
2 if f lst then lst else lst2

Figure 9.1: Code for branching problem of energy allocation

1 fun seqApp lst = let lst2 = lst in
2 let _ = f lst2 in f lst

Figure 9.2: Code for sequencing problem code of energy allocation

patterns which are exemplified in Figures 9.1 and 9.2, where f : L1(1) → B ∼ L1(1). Later I
show how these same code patterns arise in, e.g., tree traversals.

The “branching problem” of energy allocation is witnessed by the function branchId in
Figure 9.1. Intuitively, this function is the indentity on lists and accrues no net cost. Thus, it
should be able to be given a type which conserves all energy like L2(1) → L2(1) ∼ L0(1).
However, AARA can only find a type like L2(1) → L1(1) ∼ L0(1), which loses half of the
energy. This loss occurs because the body of branchId may return lst through one of two
different aliases, either lst or lst2, depending on the (unknown) return of f lst. Because
AARA can only assign energy locally in the let expression prior to the branch, AARA assigns en-
ergy to each alias to be ready for whichever branch is taken. Whichever alias is unused therefore
wastes energy.

To summarize the branching problem at a high level, the problem is that different branches of
code may use different existing data structures. Thus, because it is not generally knowable which
branch of code will be executed, energy must be set up on the data structures for all branches,
which wastes the energy on the data structures of branches not taken. It would be preferable if
there was some way to delay assigning energy to data structures when creating them, so that the
correct amount of energy could be assigned when the relevant code branch is reached. That is, it
would be preferable if energy could be assigned nonlocally.

The “sequencing problem” of energy allocation is witnessed by the function seqApp in
Figure 9.2. Intuitively, this function just acts as f and accrues no net cost. Thus, it should be able
to given a type which conserves all energy like L2(1) → B ∼ L2(1). However, AARA can only
find a type like L2(1) → B ∼ L1(1), which loses half of the energy. This loss occurs because
the body of seqApp aliases its argument lst as lst2 and calls f on each alias. The peak
cost of f is nonzero, so the first call to lst2 requires lst2 to carry some amount of energy.
Then applying f to lst2 incurs no net cost, so the leftover energy of lst2 should be able to be
reassigned to the identical value lst for the next call to f. However, AARA cannot recover the
leftover energy of lst2 because lst2 is never used in the code again. Energy is only able to be
manipulated locally, so energy can only possibly be moved between lst and lst2 when some
subexpression uses both variables. Thus the energy leftover on lst2 is lost, wasting energy.

To summarize the sequencing problem at a high level, the problem is that sequential portions
of code may use different data structures. Thus, any reusable resources allocated to the first
portion of code should be able to reallocated to the second portion of code. However, this transfer
of energy can only happen if expressions exist between the two code portions that use both
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1 fun mem (x,tr) = case tr of
2 | Leaf -> false
3 | Node (t1,y,t2) ->
4 if y = x
5 then true
6 else if y < x
7 then mem (x,t1)
8 else mem (x,t2)

Figure 9.3: Code for binary tree search

1 fun size tr = case tr of
2 | Leaf -> 0
3 | (t1,y,t2) ->
4 let t1size = size t1 in
5 let t2size = size t2 in
6 t1size + t2size + 1

Figure 9.4: Code for binary tree size

portions’ data structures. Without such expressions, the leftover energy is stranded. It would be
preferable if there was some way to more freely transfer energy from the first to second code
portion. That is, it would be preferable if energy could be transferred nonlocally.

Both of these examples are rather contrived and only lose a constant factor of energy. Thus,
they do not change the asymptotic complexity, and one might think that the problems they ex-
emplify are not particularly detrimental. However, these are just minimal examples, and the
problems run much deeper. For one thing, these examples can be iterated, pumping the constant
factor loss arbitrarily low. For another, the same code patterns arise naturally in common code
like tree manipulations. The branching problem arises during tree search (Figure 9.3), and the
sequencing problem arises during tree traversal (Figure 9.4). In both cases, code has a worst-
case peak cost equal to the depth of the trees involved, but AARA finds bounds in terms of the
number of nodes because it must keep energy on each subtree. For example, AARA types size
as T 1(Z) → Z ∼ T 1(Z), where each annotation is for the linear resource function. Such cost
bounds can be exponentially bad for balanced trees.

9.2 The Linear Ideas: Quantum Physics and Superposition
To address the problem described in Section 9.1, I make a connection between the domain of cost
analysis and the domain of quantum physics. This connection yields what I call the quantum
physicist’s method, which is a refinement of the physicist’s method of amortized cost analysis
[133]. While this might seem to be a surprising connection, it turns out to be rather natural when
considering both domains’ underpinnings in linear logic.

Like the AARA system developed so far, classical physics only allows for local manipula-
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&R
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P&Q

&L1
Γ, P ⊢ R

Γ, P&Q ⊢ R

&L2
Γ, P ⊢ R

Γ, Q&P ⊢ R

Figure 9.5: Linear logic rules for additive product

tions of energy. However, actual physical phenomena are nonlocal, as shown theoretically via
Bell’s theorem [16] and experimentally via Bell tests (e.g., [60]). Instead of classical physics,
quantum physics has been adopted (at least in part) to properly describe such nonlocality. This
section shows that a similar quantum leap can be made in AARA’s cost analysis to properly
handle the desired nonlocality of energy described in Section 9.1.

First, it is useful to note that quantum physics has long been viewed as governed by the
same linear logic that underlies AARA’s cost analysis [2, 53, 63, 122]. The clearest hint that
such a connection between the two domains exists are the no cloning and no deletion theorems,
which state that arbitrary quantum states can neither be duplicated nor thrown away, respectively.
(Some states, like classical states, can still be duplicated or thrown away; it is just impossible
for arbitrary states.) These theorems mirror linear logic’s lack of contraction and weakening,
respectively.

Of course, quantum physics is more famous for its quantum superposition. Quantum states
can be described as being in quantum superposition, which acts as a special kind of probability
distribution over classical, everyday states. This notion of probability is not ordinary probability,
but rather a special sort that makes the idea of negative probability coherent. These signed prob-
abilities can cancel each other out, allowing quantum superposition to support more interesting
correlations than a normal probability distribution. Sampling from this probability distribution
occurs via observing the state, which causes the probability distribution to collapse into a classi-
cal state.1

While quantum superposition might seem exotic, it turns out to fall squarely in the domain
of linearity. Quantum superposition is simply a specialized version of the linear principle of
superposition: for a linear operator F , if F (x) = x′ and F (y) = y′, then F (x + y) = x′ + y′.
This principle is essentially just the algebraic notion that linear operators distribute over addition,
but arranged to be suggestive of how linear relations may be “overlaid” on one another through
some notion of addition. Quantum superposition arises when different solutions to Schrödinger’s
equation are “added” to one another.

Linear algebra obviously admits the superposition principle as well. So does linear logic: if
Γ, P ⊢ Q and Γ, R ⊢ S, then Γ, P&R ⊢ Q&S. In this sense, syntactic entailment ⊢ is a linear
operator, and the notion of addition is the additive product (i.e., “with” or “&”), given by the
rules of Figure 9.5. It is this linear logical superposition that I will later adapt into AARA to
mimic some of the behaviour enabled by quantum superposition.

Quantum superposition enables some of the unusual nonlocal effects of quantum physics
through entanglement. To understand entanglement, it is helpful to understand a bit of quantum

1This description is a simplified account of the role of measurement in quantum mechanics, but is sufficient for
my purposes here.
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notation. The quantum superposition of two states ϕ and ψ is typically written as a · |ϕ⟩+ b · |ψ⟩
for some scalars a, b.2 A state with multiple components ϕ and ψ may be written as the tensor
product of each component, |ϕ⟩⊗|ψ⟩. Two quantum states |ϕ⟩⊗|ϕ′⟩ and |ψ⟩⊗|ψ′⟩ are entangled
when their sum a · |ϕ⟩ ⊗ |ϕ′⟩ + b · |ψ⟩ ⊗ |ψ′⟩ cannot be decomposed into a product of the sums
for each state component (c · |ϕ⟩ + d · |ψ⟩) ⊗ (c′ · |ϕ′⟩ + d′ · |ψ′⟩). As a result of this failure to
decompose, an entangled quantum state a · |ϕ⟩ ⊗ |ϕ′⟩+ b · |ψ⟩ ⊗ |ψ′⟩ can permit behaviour that
cannot be expressed locally in terms of its parts.

Cost analysis also has a form of entanglement that I organize with what I call “worldviews”,
which are hypothetical allocations of resources. This entanglement can be seen at a high level by
considering Alice and Bob paying a $20 bill at a restaurant when each has $20. The correspond-
ing notion of physical state is the contents of Alice and Bob’s wallets, A and B dollars respec-
tively, which can be written as |$A⟩⊗|$B⟩. In one worldview Alice pays the bill, resulting in state
|$0⟩⊗|$20⟩. In another worldview Bob pays the bill, resulting in state |$20⟩⊗|$0⟩. Thus, via su-
perposition, the state induced by paying the bill could be described as |$0⟩⊗|$20⟩+ |$20⟩⊗|$0⟩.
If this state was decomposable as (a · |$0⟩ + b · |$20⟩)⊗ (c · |$0⟩ + d · |$20⟩), then there would
be a worldview |$20⟩ ⊗ |$20⟩ where no one pays the bill,3 which should not be possible. Thus
the amount of money left in each person’s wallet is entangled.

In this way, entanglement captures the idea that certain parts of state can depend upon others.
Determining one part of a state may then have a nonlocal effect on another part. For example,
after Alice and Bob pay the bill, one can observe the contents of Alice’s wallet. This observation
determines the contents of Bob’s wallet without directly involving Bob.

One of the key nonlocal quantum phenomena enabled by quantum superposition is quantum
tunneling. Quantum tunneling occurs when a particle with passes through a potential barrier that
seems to require a higher amount of energy than the particle has. In classical physics, such a
scenario might be described using a ball and a hill. If the ball is in a valley adjacent to the hill,
a certain amount of energy would be needed to push it over the hill to the next valley. Quantum
tunneling would be where there is not enough energy to go over the hill, and yet the ball still
ends up in the next valley as if it “tunneled” through the hill.

Quantum tunneling can occur in quantum physics because there is a rule that one cannot
perfectly know a particle’s location and energy (Heisenburg’s uncertainty principle). This uncer-
tainty can be expressed via a superposition over various locations and energy amounts, where a
tighter distribution over one quantity results in a looser distribution over the other. In this way, if
a particle is well-known to be prior to a potential barrier, it actually can be ascribed a wide range
of energy values. With some small probability, it might actually have enough energy to pass the
barrier. But interestingly, passing such a barrier does not collapse the particle’s superposition; if
observed after the barrier the particle might be found to have lower energy than the barrier would
have required. In some sense, this situation can be viewed as the particle temporarily borrowing
energy from its environment. The state with high particle energy indicates that the particle can
borrow enough energy to pass the barrier, and a low-energy particle past the barrier has simply
returned this energy to wherever it came from in the environment.

2For my purposes, it is not necessary to go into what the scalars a, b are.
3One could also consider letting one of b or d be zero, but doing so would zero out the state where either Alice

or Bob pay nothing, respectively. Because there clearly are such states where the other pays the whole bill, this
circumstance can be ruled out.
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Cost analysis also exhibits quantum tunneling in a form that I call “resource tunneling”.
Resource tunneling is a way of bookkeeping the temporary borrowing of resources to overcome
potential barriers. The principle of resource tunneling is the following: as long some worldview
covers the peak cost, then all worldviews may pay only the net cost.

To see resource tunneling in action, consider Alice and Bob going to buy some chocolate and
sharing $5 between themselves. Alice wants a $3 pack of chocolates from a vending machine,
and Bob wants a $2 chocolate bar from a store shelf, so it would seem that the appropriate
worldview to use is where Alice has $3 and Bob $2. However, if the vending machine requires
$5 bills (and thus acts as a potential barrier) this split of money does not allow both people to
buy their chocolate. Nonetheless, a different worldview witnesses that Alice can use this vending
machine: the one where she holds all the money. As a result, resource tunneling concludes that
both people can buy their chocolate, as they can cover the net cost. Intuitively, if Alice were to
take all the money to use the vending machine, she would be left with $2 change that she can
give to Bob so that he can buy his chocolate.

An explicit bookkeping of the resource tunneling example is represented in Table 9.1, wherein
each line is a different worldview and A/B represents Alice’s money A and Bob’s money B in a
given state. Even though this accounting includes negative amounts of money, each column con-
tains a worldview with all nonnegative amounts of money, so the peak cost is always covered by
at least one worldview. The point where Alice gives Bob the change is where this peak-covering
worldview changes. Switching between worldviews in this way therefore implicity encodes how
resources get borrowed.

initial Alice buys change Bob buys
5/0 0/0 2/0 2/-2
3/2 -2/2 0/2 0/0

Table 9.1: Resource tunneling bookkeeping

9.3 Refining the Physicist’s Method
This section describes the quantum physicist’s method in a context divorced from the AARA
type system. The quantum phyicist’s method is not an AARA-specific technique, but rather a
refinement of the usual physicist’s method.

Classical Physicist’s Method

First it is useful to recall how the classical physicist’s method works in Sleator and Tarjan’s set up
of amortized analysis. This setup considers an abstract program state space being manipulated
by a sequence of different kinds of operations such that operation oi transforms state si into si+1.
If each operation oi has cost ci in state si, then the net cost of the sequence operations is

∑
i ci.

The hope is that the worst-case costs of each kind of operation can be combined to get a
tight bound on the worst-case net cost of the sequence of operations. However, a bound found
by adding worst-case costs is often quite loose. Suppose that some operation is performed n
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times in sequence, and that it is free in all states but one, where it costs c. Then the sequence’s
actual cost is c, and the worst-case cost of the operation is (at least) c. However, bounding the
sequence’s cost by adding the worst case cost n times yields n · c, which is much worse than the
ground truth.

The key observation of amortized analysis is that there is a different notion of worst-case cost
that yields tighter cost bounds using the above reasoning. That new notion is the amortized cost,
as defined in Definition 9.3.1. I use the word “feasible” in this definition to allow for restricting
consideration to certain sequences, but often such restriction is not considered so that operations
might come in any order.

Definition 9.3.1 (amortized cost). Let S be the set of all the program states reachable by some
feasible sequence of operations. Let Φ be some function from S to nonnegative real numbers.
Then a valid amortized cost of the operation o with respect to Φ is given by some a such that, for
every feasible sequence of operations,

∀oi = o, si ∈ S. ci − a ≤ Φ(si)− Φ(si+1)

That is, the difference between the true and amortized cost is always bounded by the difference
between each of the program state’s potential energy.

This definition of amortized cost can then be used to bound the true net cost of sequences of
operations as follows in Theorem 9.3.1. This bound makes use of s0, the initial state, and sn+1,
the final state after all n operations in the sequence.

Theorem 9.3.1 (amortized net cost bound [133]). Letting ai be the amortized cost of operation
oi,

n∑
i=0

ci ≤ Φ(s0)− Φ(sn+1) +
n∑

i=0

ai

Proof. This inequality holds directly as follows:
n∑

i=0

ci ≤
n∑

i=0

(Φ(si)− Φ(si+1) + ai) def

= Φ(s0)− Φ(sn+1) +
n∑

i=0

ai telescopic cancellation

Furthermore, while it in many contexts it is not relevant that the potential function yields
nonnegative numbers, it is important when dealing with reusable resources. In this setting, some
costs may be negative to represent the return of resources, and the peak cost maxm∈[−1,n]

∑m
i=0 ci

can be more important to know than the net cost. For example, space costs are best described
with peak cost because net space costs are zero. Luckily, peak-cost bounds may expressed with
amortized costs just as nicely as net-cost bounds, as given in Theorem 9.3.2.
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Theorem 9.3.2 (amortized peak cost). Letting ai be the amortized cost of operation oi,

max
m∈[−1,n]

m∑
i=0

ci ≤ Φ(s0) + max
m∈[−1,n]

m∑
i=0

ai

Proof. This inequality is proven by induction over the sequence length.

n=0 For empty sequences of operations, the true peak cost is 0 and the amortized peak cost is
also 0. Thus the nonnegativity of the potential function completes this case.

n+1 Assuming the inequality holds for sequences of length n, it can then be shown that it holds
for sequences of length n+ 1.

max
m∈[−1,n+1]

m∑
i=0

ci = max( max
m∈[−1,n]

m∑
i=0

ci,
n+1∑
i=0

ci) def

≤ max(Φ(s0) + max
m∈[−1,n]

m∑
i=0

ai,
n+1∑
i=0

ci) IH

≤ max(Φ(s0) + max
m∈[−1,n]

m∑
i=0

ai,Φ(s0)− Φ(sn+2) +
n+1∑
i=0

ai) Theorem 9.3.1

≤ max(Φ(s0) + max
m∈[−1,n]

m∑
i=0

ai,Φ(s0) +
n+1∑
i=0

ai) Φ(sn+2) ≥ 0

= Φ(s0) + max
m∈[−1,n+1]

m∑
i=0

ai algebra

In the classical amortized-cost framework, better choices of potential function allow for lower
amortized costs to be assigned, yielding tighter implied cost bounds for sequences of operations.
At the ideal limit, each amortized cost is zero, giving the tightest bounds possible. In this ideal
setting, Theorem 9.3.1 says that the net cost is bounded by the difference between the initial
and final states’ energies, Φ(sn+1) − Φ(s0). Similarly, Theorem 9.3.2 says that the peak cost is
bounded by the initial state’s energy, Φ(s0). Conveniently, these bounds require no consideration
of intermediate program states. AARA exists in this setting, where true costs are bound using
only potential functions of initial and final program states.

Quantum Physicist’s Method

While the classical physicist’s method is all well and good, it leaves the construction of a good
potential function Φ as a complete black box. In practice, however, there seems to be a favored
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method for constructing Φ: local construction. By “local”, I mean that energy is treated as if it
is stored locally with different parts of the program state, so that the energy of the whole state
is just the sum of the energies of its parts. This local definition of the potential function is the
approach taken by AARA in each other chapter of this thesis.

There are many benefits of locally constructed potential functions. The key is their locality:
manipulating one part of the program state in some way yields the same change in potential
energy no matter the rest of the program state. Thus, operations like AARA’s shift ◁ can be
sensibly defined, as the energy of a list in no way depends on the energy of other data structures
that may be present. Locality makes for ergonomic reasoning.

However, locally constructed potential functions are prone to the problems described in Sec-
tion 9.1. Sometimes it more desireable to not tie energy down to particular parts of the program
state, as it might not be clear which parts of the program state will need the energy.

To get the best of both local and nonlocal potential functions, I provide the quantum physi-
cist’s method as a framework for defining potential functions. This framework uses local manip-
ulations of energy augmented by the worldviews and resource tunneling described in Section 9.2.
Together, these features allow local reasoning to describe nonlocal potential functions. In some
sense, what this framework does is allow a nondeterministic choice between different potential
functions so that the best one may be used at any given point.

To describe the quantum physicist’s method, it is first necessary to divide the program state
into parts. This division can be made by treating the state as a (labelled) set of parts. A potential
function over such a state s is local when it can be written as Φ(s) =

∑
t∈s Φ(t).

It is then necessary to describe the behaviour of operations o in more detail. Before, such an
operation merely indicated a transition between states. In this new setting, this notion is refined
so that o not only transitions between states, but also are parameterized by the labels of some
particular part(s) of the state on which they act. The action of such an operation is dependent
only upon those labels on which they act. In principle, such an action can result in the creation
of new parts and the deletion of existing parts. Thus, when oi brings si to si+1, the state si+1

may have different parts than si. To ensure that operations are well-defined, feasible operation
sequences only consider those operations oi acting on labels that exist in state si.

Now consider a collection of functions Φw indexed by some w— call these w worldviews.
Moreover, consider a collection of quantum costs b, one for each kind of operation o, with respect
to that collection of Φw. These Φw are local potential functions except that they may take on
negative values. Additionally, for all feasible sequences of operations, the functions Φw and
numbers b must satisfy the following two conditions, where bi is the quantum cost of oi:

(1) For all i indexing the sequence and all t ∈ s, for some worldview w,

Φw(t) ≥ 0

(2) For all i indexing the sequence and all worldviews w,

ci − bi ≤ Φw(si)− Φw(si+1)

These conditions are the conditions of resource tunneling described in Section 9.2. When
these conditions hold, Theorem 9.3.3 follows:
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Theorem 9.3.3 (quantum physicist’s method). If Φ is defined such that

Φ(s) = max
w

Φw(s)

then the quantum cost b with respect to the collection Φw is the amortized cost with respect to
the potential function Φ.

Proof. To show the validity of this choice of potential function and amortized cost, it only needs
to be checked against Definition 9.3.1. This definition amounts to checking that Φ(si) is always
nonnegative and that ci − bi ≤ Φ(si)− Φ(si+1)

nonnegativity The nonnegativity of Φ holds as follows, letting the worldview ensured by re-
source tunneling condition (1) be w.

Φ(si) = max
u

Φu(si) def

≥ Φw(si) algebra

=
∑
t∈si

Φw(t) local

≥ 0 (1)

cost inequality The amortized cost inequality holds as follows using resource tunneling con-
dition (2), letting the worldview w be the worldview maximizing Φ(si+1).

Φ(si)− Φ(si+1) = max
u

Φu(si)−max
u

Φu(si+1) def

= max
u

Φu(si)− Φw(si+1) def

≥ Φw(si)− Φw(si+1) algebra

≥ ci − bi (2)

As a result of Theorem 9.3.3, the potential functions generated by the quantum physicist’s
method slot directly into the classical physicist’s method, and corollaries to Theorems 9.3.1
and 9.3.2 follows. However, unlike the classical physicist’s method, the quantum physicist’s
method describes a concrete way of constructing potential functions. This construction con-
servatively extends the local potential functions that are commonly used, and also allows the
creation of nonlocal potential functions via nonlocal maxima. By constructing potential func-
tions in this way and using resource tunneling, the resulting nonlocal potential functions can still
largely be manipulated locally, allowing similar ergonomic usage as local potential functions. As
this chapter will show, such ergonomic usage allows automation in AARA.
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9.4 Quantum Physicist’s Method System
This section details how to adapt AARA to use the quantum physicist’s method. The key is to
represent multiple simultaneous typings by using multidimensional maps for annotations, rather
than the “classical” annotation maps of previous chapters. These multidimensional maps are
organized to use a special namespace of worldviews, where each worldview represents a differ-
ent typing. Thus, these multidimensional maps go from annotation indices and worldviews to
annotation values.

Notationally, for these multidimensional maps, I use subscripts for worldview arguments and
function application syntax for annotation index arguments. With this notation Pw is a classical
annotation map, and P (i) is a map from worldviews to annotations for index i. I also use wv(P )
to pick out the worldviews over which such a map P is defined. Finally, let operations normally
defined over classical annotation maps, like shifting and sharing, be distributed over worldviews
so that, e.g., ⋎x,y

z (P ) = λw. ⋎x,y
z (Pw).

After replacing classical annotation maps with these new multidimensional maps, all that
remains is to handle the additional dynamics of worldviews and resource tunneling. This section
details these features are handled.

9.4.1 Typing Rules

The quantum physicist’s method typing rules are given across Figures 9.6 to 9.8. These new
typing rules make use of a similar typing judgment to those used in Chapters 5 and 6, except
that each typing judgment uses multidimensional maps for its annotations. (In particular, I con-
tinue Chapter 6’s parameterization on a matrix A for shifting some family of resource functions
Rk(n).)

The new typing judgment is:
Γ | P ⊢ e : τ | Q

This typing judgment means that, in type context Γ with initial energy annotated by P , the
expression e is typed τ , with remainder energy annotated by Q. To be explicit, Pw is indexed
by Ind(Γ) for every worldview w ∈ wv(P ), and Qw is indexed by Ind(Γ, ret : τ) for every
worldview w ∈ wv(Q). Further, call a classical annotation map classically valid when it is
nonnegative, and call a multidimensional map R quantumly valid when Rw is classically valid
for some w ∈ wv(R); the typing judgment requires that both P and Q are quantumly valid.
Note that this typing judgment allows negative annotations and does not require that P and Q be
defined over the same worldviews.

The main difference between this typing judgment and those of Chapters 5 and 6 is the use
of multidimensional maps for annotations. These multidimensional maps act similarly previous
chapters’ annotations at each worldview, and therefore they behave as if they organize multiple
simultaneous typings. A secondary difference is the allowance of negative annotations. These
negative annotations allow more flexibility in the dynamics of resource allocation.

Only a couple of rules actually change or need to be added after upgrading annotation maps
to multidimensional maps. These rules are given in Figure 9.6 and are explained more in the fol-
lowing subsections. Otherwise, every rule in Figures 9.7 and 9.8 matches the rules in Chapters 5
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Q-SUPERPOSEL
Γ | P, u 7→ Pw ⊢ e : τ | Q

Γ | P ⊢ e : τ | Q

Q-SUPERPOSER
Γ | P ⊢ e : τ | Q

Γ | P ⊢ e : τ | Q, u 7→ Qw

Q-COLLAPSEL
Γ | P ⊢ e : τ | Q

Γ | P, u 7→ a⃗ ⊢ e : τ | Q

Q-COLLAPSER
Γ | P ⊢ e : τ | Q, u 7→ a⃗

Γ | P ⊢ e : τ | Q

Q-APP

Pu ≥ 0

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ⋎x,arg

x (P, λw. b⃗) ⊢ f x : σ | ⋎x,arg
x (P, λw. c⃗)

Q-FUN

Γ, x : τ, f : τ
c⃗|d⃗→ σ | λw. (0 · Pw, [x/arg]⃗c) ⊢ e : σ | λw. (0 · Pw, [x/arg]d⃗)

Γ | P,Q ⊢ fun f x = e : τ
c⃗|d⃗→ σ | P,Q

Q-LET

Γ | P ⊢ e1 : σ | R Γ, x : σ | [x/ret]R ⊢ e2 : τ | Q,S S ≥ 0

Γ | P ⊢ let x = e1 in e2 : τ | Q

Figure 9.6: Key quantum physicist’s method typing rules

and 6.
The first four typing rules of note are the structural rules of Q-SuperposeL, Q-SuperposeR,

Q-CollapseL, and Q-CollapseR which all relate to worldview manipulation. These rules cover
each combination of two different axes: whether they affect the initial or remainder contexts,
and whether they are a form of contraction (superposition) or weakening (collapsing). The rules’
relations to contraction or weakening are reversed depending on whether they apply to the initial
or remainder context. (This reversing intuitively occurs because the remainder contexts “reverse”
computation.) Each superposing rule intuitively duplicates an existing worldview for use in the
typing derivation. These distinct worldviews can then evolve differently to satisfy typing rules
that might be derived in distinct ways. Dually, each collapsing rule throws away an existing
worldview. (As a side condition, such collapsing requires the resulting context is still quantumly
valid.) More discussion on worldviews is present in Section 9.8.

The rule Q-App is the rule responsible for reifying resource tunneling (which otherwise is
present due to worldviews and negative annotations). This rule requires that, in some worldview
u, the argument of the function is typed with enough energy to run. It then allows all worldviews
to pay only the net cost of running the function.

The rule Q-Fun is of interest because this system forces function types to be the same across
all worldviews. This restriction matches how function types have been presented throughout
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Q-SUB

Γ | P ′ ⊢ e : τ | Q′ P ≥ P ′ Q ≤ Q′

Γ | P ⊢ e : τ | Q

Q-VAR

Γ, x : τ | ⋎x,ret
x (P ) ⊢ x : τ | P

Q-TICK

P (c) = Q(c) + λw. r ∀i ̸= c. P (i) = Q(i)

Γ | P ⊢ tick{r} : 1 | Q

Q-PAIR

Γ, x : τ, y : σ | ⋎x,ret.1st

x (⋎y,ret.2nd

y (P )) ⊢ ⟨x, y⟩ : τ ⊗ σ | P

Q-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ | P ⊢ e : τ | Q

Γ, x : σ ⊗ ρ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (P )) ⊢ case x of ⟨y, z⟩ → e : τ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (Q))

Q-SUML

Γ, x : τ | ⋎x,ret.l
x (P ) ⊢ l(x) : τ ⊕ σ | P,Q

Q-SUMR

Γ, x : σ | ⋎x,ret.r
x (P ) ⊢ r(x) : τ ⊕ σ | P,Q

Q-CASES
Γ, x : σ ⊕ ρ, y : σ | P,Q,R′ ⊢ e1 : τ | S, T, U ′

Γ, x : σ ⊕ ρ, z : ρ | P,Q′, R ⊢ e2 : τ | S, T ′, U

Γ, x : σ ⊕ ρ | P,⋎x.l,y
x.l (Q),⋎x.r,z

x.r (R) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | S,⋎x.l,y
x.l (T ),⋎x.r,z

x.r (U)

Figure 9.7: Other quantum physicists method typing rules 1
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Q-NIL

Γ | P ⊢ [ ] : L(τ) | P,Q

Q-CONS

Γ, x : τ, y : L(τ) | ⋎x,x′

x (⋎y,y′

y (
A
◁ ret

x′,y′(P ))) ⊢ x :: y : L(τ) | P

Q-CASEL
Γ, x : L(σ) | P,Q′ ⊢ e1 : τ | R, S ′

Γ, x : L(σ), y : σ, z : L(σ) |
A
◁ x′

y,z(P,Q) ⊢ e2 : τ |
A
◁ x′

y,z(R, S)

Γ, x : L(σ) | P,⋎x,x′

x (Q) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | R,⋎x,x′

x (S)

Q-LEAF

Γ | P ⊢ leaf : T (τ) | P,Q

Q-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (
A
◁ ret

x′,y′,z′(P )))) ⊢ node(x, y, z) : T (τ) | P

Q-CASET
Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) |
A
◁ t′

x,y,z(P,Q) ⊢ e2 : τ |
A
◁ t′

x,y,z(R, S)

Γ, t : T (σ) | P,⋎t,t′

t (Q) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | R,⋎t,t′

t (S)

Figure 9.8: Other quantum physicists method typing rules 2
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this thesis, with classical annotations baked in. It might be possible to extend function types to
themselves make use of worldviews, where such worldviews would allow functions to be given
multiple typings similarly to cost-free typings (Chapter 8)—this direction is left for future work.

The rule Q-Let is special because it revokes the ability for the annotations of let-bound vari-
ables to be negative at the end of their scopes. This revocation is necessary because removing
a variable from scope with negative annotations is akin to erasing debts and unsoundly gains
energy.4 Thus, the conditon is left that S, the remainder annotation of the let-bound variable,
must be nonnegative.

The observations about the rule Q-Let are actually somewhat far reaching. Variables with
negative annotations cannot be removed from scope willy-nilly. As a result, this type system
does not admit weakening for variables. Weakening for variables was not needed since Chapter 5,
but has usually been admissable—it no longer is. Now, with the quantum physicist’s method,
typed variables cannot be contracted/duplicated (because positive energy cannot be duplicated)
nor weakened/discarded (because negative energy cannot be discarded).5 Moreover, worldviews
behave like the additive product, as described in Section 9.8. Thus, this type system shows more
aspects of logical linearity than any before it in this thesis.
Example 9.4.1. To demonstrate this type system, consider the scenario in which Alice and Bob
buy candy in Section 9.2. This scenario can be modeled with polynomial resource functions via
the functions in Figures 9.9 and 9.10 where a list type La(1) represents a monetary allocation
(“wallet”) of a dollars. Thus, the function aliceBuy simulates Alice’s use of the vending
machine by taking $5 from Alice and giving her back $2 in change, corresponding to the type
L5(1) → 1 ∼ L2(1). Similarly, Bob’s buying of $2 of chocolate corresponds to bobBuy’s type
of L2(1) → 1 ∼ L0(1).

As described in Section 9.2, it should be possible for Alice and Bob to buy their chocolate
with only $5, leaving no money leftover. This cost corresponds to the function typeL5(1) → 1 ∼
L0(1). Each person buying their chocolate is modeled by the function buyChoco in Figure 9.10,
and indeed, the function buyChoco can be given the desired type. Such a typing is witnessed
by the energy comments in Figure 9.10 which match the bookkeeping of Table 9.1. Notationally,
these comments use a slash to separate annotations in different worldviews. The comments also
use a to indicate Alice’s wallet contents (i.e., the linear energy on list aliceWallet), b to
indicate Bob’s wallet contents in the same way, and w to indicate an initial placeholder wallet
before Alice and Bob actually carry the money. Thus, a : x/y means that Alice has x dollars
(the list aliceWallet has x units of linear energy) in the first worldview and y in the second.
Finally, the comments elide remainder annotations because there is no remainder.

The power of resource tunneling is exhibitted in Figure 9.10 in lines 4 and 5. Line 4 is where
the first worldview justifies that Alice has enough money to buy from the vending machine, i.e.,
that the list aliceWallet has enough linear energy for the function aliceBuy. Then in line
5 the second worldview is the one where everyone is left with a sensible nonnegative amount
of money, i.e., where the worldview is classically valid. Switching between the two worldviews

4In the demotion of Chapter 6, negative annotations are not an issue because they are guaranteed to be offset by
other annotations present on the same variable.

5Of course, some forms of weakening and contraction are still present, like Q-Sub discarding energy and re-
mainder contexts keeping the bindings of used variables. These are enough to capture the nonlinear nature of real
programs, but somehow they do not suffocate the linearity of the overall typing discipline.
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1 fun aliceBuy wallet = case wallet of
2 | [] -> []
3 | x::xs ->
4 let _ = tick{5} in
5 let tmp = vend xs in
6 let _ = tick{-2} in
7 tmp
8
9 fun bobBuy wallet = case wallet of

10 | [] -> []
11 | x::xs ->
12 let _ = tick{2} in
13 bob xs

Figure 9.9: Alice and Bob buying models

1 fun buyChoco wallet = (* w:5/5 *)
2 let aliceWallet = wallet in (* a:5/3, w:0/2 *)
3 let bobWallet = wallet in (* a:5/3, b:0/2 *)
4 let _ = aliceBuy aliceWallet in (* a:2/0, b:0/2 *)
5 bobBuy bobWallet (* a:2/0, b:-2/0 *)

Figure 9.10: Buying chocolate with energy annotations
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V-UNIT

⟨⟩ : 1

V-FUN’

V : Γ Γ | P ⊢ fun f x = e : τ
a⃗|⃗b→ σ | Q

C(V ; f, x. e) : τ
a⃗|⃗b→ σ

V-PAIR
v1 : τ v2 : σ

⟨v1, v2⟩ : τ ⊗ σ

V-SUML
v : τ

l(v) : τ ⊕ σ

V-SUMR
v : σ

r(v) : τ ⊕ σ

V-NIL

[ ] : L(τ)

V-CONS
v1 : τ v2 : L(τ)

v1 :: v2 : L(τ)

V-LEAF

leaf : T (τ)

V-NODE
v1 : T (τ) v2 : τ v3 : T (τ)

node(v1, v2, v3) : T (τ)

V-CONTEXT
∀x ∈ dom(Γ). V (x) : Γ(x)

V : Γ

Figure 9.11: Quantum physicist’s method value well-formedness rules

between lines 4 and 5 corresponds to reallocating the money from Alice to Bob, i.e., reallocating
energy between the two lists.

This example also witnesses some of the trickiness of reasoning about reusable resources:
If the order of the functions aliceBuy and bobBuy is reversed, the function is no longer be
typable as L5(1) → 1 ∼ L0(1) because the peak cost goes up to 7 units of linear energy. The
consumption of partially reusable resources is not generally commutative, unlike the consump-
tion of non-reusable resources like time.

9.4.2 Well-Formed Values
Only one minor change need be made with respect to the definition of well-formed values in
AARA with the quantum physicit’s method. That change is that function closures must admit
typing derivations in the new type system, which now replaces classical annotations with multi-
dimensional maps. Because I use a slightly different syntax for these multidimensional maps, I
include a new rule for determining its well-formedness. Morally speaking, however, nothing has
changed about the well-formedness of values since Figure 3.8; function closures still are only
well-formed if they admit a typing derivation. For completeness, I provide the changed rule as
V-Fun’ in Figure 9.11 alongside all the other unchanged rules.

9.4.3 Potential Energy
The potential energy of a collection of worldviews is given the maximum energy across all world-
views. This definition is formalized in Figure 9.12, which extends the definition of the potential
function to multidimensional annotations by building upon the definition of potential energy for
classical annotations (Figure 3.9,Figure 6.6).

A key result of this definition of energy is that energy of a typing context with multidimen-
sional anntoations can no longer be decomposed as the sum of the energies of each variable.
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Φ(V : Γ | P ) = max
w∈wv(P )

Φ(V : Γ | Pw)

Figure 9.12: Energy across worldviews

This circumstance occurs because summation and maxima do not commute,
∑

i maxj ai,j ̸=
maxj

∑
i ai,j . In more concrete terms, one might distribute one unit of linear energy accross

two copies of the same list as either x : L1(τ), y : L0(τ) or x : L0(τ), y : L1(τ), putting all
energy on copy x or copy y, respectively. These differing energy allocations can be captured
accross differing worldviews, wherein the maximum energy is always one unit of linear energy.
However, the maximum energy for x across all worldviews plus the maximum energy for y is
two units of linear energy, one from each list, which is double the intended amount. This same
phenomenon occurs in quantum physics as entanglement, wherein a quantum state might not be
decomposable into the states of its parts.

9.4.4 Soundness

The soundness of AARA with the quantum physicist’s method is given in two parts as Lemma 9.4.1
and then Theorem 9.4.2. The reason for providing Lemma 9.4.1 first is to provide deeper insight
into the behaviour of the system. In particular, this lemma shows that the principle of resource
tunneling fundamentally underlies the entire system—as long as some worldview covers the
peak cost, all can pay only the net cost. The soundness statement Theorem 9.4.2 then follows
essentially as a corollary to Lemma 9.4.1.

Otherwise, the soundness statement itself is fundamentally no different than in previous chap-
ters, except that it must adapt to the new presence of multidimensional annotation maps. It is still
the case that the initial potential energy of the context bounds the peak cost of evalution, and the
difference between initial and final energies bounds the net cost.

Lemma 9.4.1 (resource tunneling soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | P ⊢ e : τ | Q (AARA types the expression in that environment)

then
• v : τ (return value is well-formed)
• ∃w ∈ wv(P ).Φ(V : Γ | Pw) ≥ p (initial energy bounds peak cost in some worldview)
• ∀u ∈ wv(Q).∃w ∈ wv(P ).Φ(V : Γ | Pw) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu) + p

(every rem. worldview has some init. worldview s.t. difference in energy bounds net cost)

Proof. The soundness proof proceeds by lexicographic induction over the derivation of the eval-
uation judgment followed by the typing judgment.
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This proof follows much the same way as that for remainder contexts’ soundness, Theo-
rem 5.4.1. Only a few cases here are of interest, which are those for the interesting typing rules
pointed out in Section 9.4.1. In particular, the key behaviours of this type system are shown in
the superposition/collapse rules and the application rule Q-App.

Now each case in the induction is given in more detail:

Q-SuperposeL This case deals with the structural typing rule Q-SuperposeL so that future
considerations the typing judgment derivation need not consider the case that the derivation ends
with application of Q-SuperposeL.

Suppose the last rule applied for the typing judgment is Q-SuperposeL.

Q-SUPERPOSEL
Γ | P, u 7→ Pw ⊢ e : τ | Q

Γ | P ⊢ e : τ | Q

Then the premiss of this rule holds by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | P, u 7→ Pw ⊢ e : τ | Q to learn:

(1) v : τ

(2) ∃w′ ∈ wv(P, u 7→ Pw).Φ(V : Γ | (P, u 7→ Pw)w′) ≥ p

(3) ∀u′ ∈ wv(Q).∃w′ ∈ wv(P, u 7→ Pw).
Φ(V : Γ | (P, u 7→ Pw)w′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. These remaining cost bounds can be obtained from inequalities
(2) and (3) by observing that if ever the quantification ∃w′ ∈ wv(P, u 7→ Pw) avoids picking
a worldview from wv(P ), then it picks worldview u, in which case it could equally well have
picked w ∈ wv(P ) because (P, u 7→ Pw)u = Pw. Thus, it suffices to pick w′ ∈ wv(P ).

Q-SuperposeR This case deals with the structural typing rule Q-SuperposeR so that future
considerations the typing judgment derivation need not consider the case that the derivation ends
with application of Q-SuperposeR.

Suppose the last rule applied for the typing judgment is Q-SuperposeR.

Q-SUPERPOSER
Γ | P ⊢ e : τ | Q

Γ | P ⊢ e : τ | Q, u 7→ Qw

Then the premiss of this rule holds by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | P ⊢ e : τ | Q to learn:

(1) v : τ

(2) ∃w′ ∈ wv(P ).Φ(V : Γ | (P )w′) ≥ p
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(3) ∀u′ ∈ wv(Q).∃w′ ∈ wv(P ).
Φ(V : Γ | (P )w′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu′) + p

The well-formedness judgment (1) v : τ and peak cost bound (2) are both what this case
needs, so only this case’s net cost bound remain to be proven. This remaining cost bound can be
obtained from inequality (3) by observing that (3) covers all worldviews of (Q, u 7→ Qw) aside
from u, in which case instantiating (3) at worldview w would suffice because (Q, u 7→ Qw)u =
Qw.

Q-CollapseL This case deals with the structural typing rule Q-CollapseL so that future consid-
erations the typing judgment derivation need not consider the case that the derivation ends with
application of Q-CollapseL.

Suppose the last rule applied for the typing judgment is Q-CollapseL.

Q-COLLAPSEL
Γ | P ⊢ e : τ | Q

Γ | P, u 7→ a⃗ ⊢ e : τ | Q

Then the premiss of this rule holds by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | P ⊢ e : τ | Q to learn:

(1) v : τ

(2) ∃w′ ∈ wv(P ).Φ(V : Γ | (P )w′) ≥ p

(3) ∀u′ ∈ wv(Q).∃w′ ∈ wv(P ).
Φ(V : Γ | (P )w′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. These remaining cost bounds can be obtained from inequalities (2)
and (3) by observing the existential quantification ∃w′ ∈ wv(P ) already suffices, so quantifying
over a larger domain wv(P, u 7→ a⃗) still suffices.

Q-CollapseL This case deals with the structural typing rule Q-CollapseR so that future consid-
erations the typing judgment derivation need not consider the case that the derivation ends with
application of Q-CollapseR.

Suppose the last rule applied for the typing judgment is Q-CollapseR.

Q-COLLAPSER
Γ | P ⊢ e : τ | Q, u 7→ a⃗

Γ | P ⊢ e : τ | Q

Then the premiss of this rule holds by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | P ⊢ e : τ | Q, u 7→ a⃗ to learn:

(1) v : τ
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(2) ∃w′ ∈ wv(P ).Φ(V : Γ | (P )w′) ≥ p

(3) ∀u′ ∈ wv(Q, u 7→ a⃗).∃w′ ∈ wv(P ).
Φ(V : Γ | (P )w′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Q) + p

The well-formedness judgment (1) v : τ and peak cost bound (2) are both what this case
needs, so only this case’s net cost bound remains to be proven. This remaining cost bound can
be obtained from inequality (3) by observing the universal quantification ∀u′ ∈ wv(Q, u 7→ a⃗)
already suffices, so quantifying over a smaller domain wv(Q) still suffices.

Q-Sub This case deals with the structural typing rule Q-Sub so that future considerations of
typing judgment derivation structure need not consider the case that the derivation ends with the
application of Q-Sub.

Suppose the last rule applied for the typing judgment is Q-Sub.

Q-SUB

Γ | P ′ ⊢ e : τ | Q′ P ≥ P ′ Q ≤ Q′

Γ | P ⊢ e : τ | Q

Then the premisses of this rule hold by inversion.
Because both V : Γ and V ⊢ e ⇓ v | (p, q) by assumption, the inductive hypothesis can be

applied with Γ | P ′ ⊢ e : τ | Q′ to learn:

(1) v : τ

(2) ∃w′ ∈ wv(P ′).Φ(V : Γ | P ′
w′) ≥ p

(3) ∀u′ ∈ wv(Q′).∃w′ ∈ wv(P ′).
Φ(V : Γ | P ′

w′) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Q′
u′) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. These remaining cost bounds can be obtained from inequalities (2)
and (3) by applying the pointwise monotonicity of potential energy (Lemma 3.4.5) alongside the
pointwise annotation inequalities P ≥ P ′ and Q ≤ Q′.

E-App Suppose the last rule applied for the evaluation judgment is E-App.

E-APP
V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)
V, x 7→ v′, f 7→ C(V ′; g, y. e) ⊢ f x ⇓ v | (p, q)

Then this rule’s premiss holds by inversion and only one typing rule remains that could be used
to conclude the typing derivation:

Q-APP

Pu ≥ 0

Γ, x : τ, f : τ
b⃗|⃗c→ σ | ⋎x,arg

x (P, λw. b⃗) ⊢ f x : σ | ⋎x,arg
x (P, λw. c⃗)
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Because (V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) by assumption, the rule

V-Context can be inverted to learn C(V ′; g, y. e) : τ
b⃗|⃗c→ σ. Then further, the rule V-Fun’ can be

inverted to learn that this function body can be typed in some context Γ′ where V ′ : Γ′. Using
V-Context, one can then use this well-formedness judgment to derive

(V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ)

Now inspect the derivation of the type of the function closure’s body. Only structural rules
(like Q-Sub) and Q-Fun can conclude a typing derivation for a function, and the application
a structural rule itself requires another typing derivation for the same function. Thus it can be
shown by induction that the typing derivation must conclude by the rule Q-Fun followed by some
number of uses of structural rules. The typing derivation therefore contains the following rule
application:

Q-FUN

Γ′, y : τ, g : τ
b⃗|⃗c→ σ | λw. (0 · P ′

w, [y/arg]⃗b) ⊢ e : σ | λw. (0 · P ′
w, [y/arg]⃗c)

Γ′ | P ′, Q′ ⊢ fun g y = e : τ
b⃗|⃗c→ σ | P ′, Q′

This rule’s premiss holds by inversion.
Each of the following judgments have now been found:

• V ′, y 7→ v′, g 7→ C(V ′; g, y. e) ⊢ e ⇓ v | (p, q)

• (V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ)

• Γ′, y : τ, g : τ
b⃗|⃗c→ σ | λw. (0 · P ′

w, [y/arg]⃗b) ⊢ e : σ | λw. (0 · P ′
w, [y/arg]⃗c)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : σ

(2) ∃w′ ∈ wv(λw. (0 · P ′
w, [y/arg]⃗b)).

Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ) | 0 · P ′

w′ , [y/arg]⃗b) ≥ p

(3) ∀u′ ∈ wv(λw. (0 · P ′
w, [y/arg]⃗c)).∃w′ ∈ wv(λw. (0 · P ′

w, [y/arg]⃗b)).

Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e)) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ) | 0 · P ′

w′ , [y/arg]⃗b) + q

≥ Φ((V ′, y 7→ v′, g 7→ C(V ′; g, y. e), ret 7→ v) : (Γ′, y : τ, g : τ
b⃗|⃗c→ σ, ret : σ) | 0 · P ′

u′ , [y/arg]⃗c) + p

The well-formedness judgment (1) v : σ is what this case needs, so only this case’s cost
bounds remain to be proven. To do so, first simplify inequalities (2) and (3) into inequalities (4)
and (5), respectively, by removing bindings that carry no potential energy in any worldview. This
removal yields inequalities that are independent of worldview.

(4) Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) ≥ p

(5) Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) + q ≥ Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | [y/arg]⃗c) + p
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Now let r = Φ((V, f 7→ C(V ′; g, y. e)) : (Γ, f : τ
b⃗|⃗c→ σ) | Pu). Then the following

inequalities confirm the peak cost bound at worldview u ∈ wv(P ) = wv(⋎x,arg
x (P, λw. b⃗)):

Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ⋎x,arg

x (Pu, b⃗))

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (Pu, b⃗)) def

= r + Φ((x 7→ v′) : (x : τ) | Pu) + Φ((arg 7→ v′) : (arg : τ) | b⃗) Lemma 3.4.1

= r + Φ((x 7→ v′) : (x : τ) | Pu) + Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) relabelling

≥ Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) algebra, Pu ≥ 0

≥ p (4)

Now let r = Φ((V, f 7→ C(V ′; g, y. e)) : (Γ, f : τ
b⃗|⃗c→ σ) | Pw′) for some arbitrary

worldview w′ ∈ wv(P ). Then the following inequalities confirm the net cost bound, where both
quantified worldviews are that same arbitrary w′. This quantification is valid for the domain
because wv(P ) = wv(⋎x,arg

x (P, λw. b⃗)) = wv(⋎x,arg
x (P, λw. c⃗)).

Φ((V, x 7→ v′, f 7→ C(V ′; g, y. e)) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ) | ⋎x,arg

x (Pw′ , b⃗)) + q

= r + Φ((x 7→ v′) : (x : τ) | ⋎x,arg
x (Pw′ , b⃗)) + q def

= r + Φ((x 7→ v′) : (x : τ) | Pw′) + Φ((arg 7→ v′) : (arg : τ) | b⃗) + q Lemma 3.4.1

= r + Φ((x 7→ v′) : (x : τ) | Pw′) + Φ((y 7→ v′) : (y : τ) | [y/arg]⃗b) + q relabelling

≥ r + Φ((x 7→ v′) : (x : τ) | Pw′) + Φ((y 7→ v′, ret 7→ v) : (y : τ, ret : σ) | [y/arg]⃗c) + p (5)

= r + Φ((x 7→ v′) : (x : τ) | Pw′) + Φ((arg 7→ v′, ret 7→ v) : (arg : τ, ret : σ) | c⃗) + p relabelling

= r + Φ((x 7→ v′, ret 7→ v) : (x : τ, ret : σ) | ⋎x,arg
x (Pw′ , c⃗)) + p Lemma 3.4.1

= Φ((V, x 7→ v′, f 7→ C(C ′; g, y. e), ret 7→ v) : (Γ, x : τ, f : τ
b⃗|⃗c→ σ, ret : σ) | ⋎x,arg

x (Pw′ , c⃗)) + p def

E-Fun Suppose the last rule applied for the evaluation judgment is E-Fun.

E-FUN

V ⊢ fun f x = e ⇓ C(V ; f, x. e) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-FUN

Γ, x : τ, f : τ
c⃗|d⃗→ σ | λw. (0 · Pw, [x/arg]⃗c) ⊢ e : σ | λw. (0 · Pw, [x/arg]d⃗)

Γ | P,Q ⊢ fun f x = e : τ
c⃗|d⃗→ σ | P,Q

The assumed typing judgment for the expression being evaluated therefore takes the form of this
rule’s conclusion.

Because C(V ; f, x. e) : τ
c⃗|d⃗→ σ follows from V-Fun’ and the assumed typing judgment, the

needed well-formedness judgment holds. Then because potential energy is always nonnegative in
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P,Q’s classically valid worldview, the peak cost bound is satisfied in that worldview. And finally,
because the initial and remainder annotations are identical and functions carry no potential energy
(Figure 3.9), the net cost bound is also satisfied with the following equality, no matter the choice
of worldview w ∈ wv(P,Q):

Φ(V : Γ | (P,Q)w) = Φ((V, ret 7→ C(V ; f, x. e)) : (Γ, ret : τ
c⃗|d⃗→ σ) | (P,Q)w)

E-Let Suppose the last rule applied for the evaluation judgment is E-Let.

E-LET
V ⊢ e1 ⇓ v′ | (p, q) V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)

V ⊢ let x = e1 in e2 ⇓ v | (p+max(0, r − q), s+max(0, q − r))

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-LET

Γ | P ⊢ e1 : σ | R Γ, x : σ | [x/ret]R ⊢ e2 : τ | Q,S S ≥ 0

Γ | P ⊢ let x = e1 in e2 : τ | Q

The premisses of both of these rules hold by inversion.
Because V : Γ holds by assumption, the inductive hypothesis can be applied with the judg-

ments V ⊢ e1 ⇓ v′ | (p, q) and Γ | P ⊢ e1 : σ | R. to learn:

(1) v′ : σ
(2) ∃w ∈ wv(P ).Φ(V : Γ | Pw′) ≥ p

(3) ∀w′ ∈ wv(R).∃w ∈ wv(P ).Φ(V : Γ | Pw)+q ≥ Φ((V, ret 7→ v′) : (Γ, ret : σ) | Rw′)+p

Because v′ : σ holds as (1) from the previous induction and both V, x 7→ v′ ⊢ e2 ⇓ v | (r, s)
and Γ, x : σ | [x/ret]R ⊢ e2 : τ | Q,S hold from inversion, the inductive hypothesis can be
applied again to learn:

(4) v : τ

(5) ∃w′ ∈ wv(R).Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]Rw′) ≥ r

(6) ∀u ∈ wv(Q,S).∃w′ ∈ R.
Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]Rw′) + s ≥ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ) | (Q,S)u) + r

The well-formedness judgment (4) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. To do so, proceed by cases on whether q ≥ r.

If q ≥ r, then the cost behaviour to consider is (p, s + (q − r)). Then (2) confirms the
peak cost bound, and the following inequalities confirm the net cost bound in some worldview
w ∈ wv(P ) given arbitrary u ∈ wv(Q):

Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu) + p

≤ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) | (Q,S)u) + p S ≥ 0

≤ Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]Rw′) + p+ s− r (6)

= Φ((V, ret 7→ v′) : (Γ, ret : σ) | Rw′) + p+ s− r relabelling

≤ Φ(V : Γ | Pw) + s+ (q − r) (3)

238



If q < r, then the cost behaviour to consider is (p + (r − q), s), and q ̸= ∞ (so can be
subtracted). Then the following inequalities confirm the peak cost bound in some worldview
w ∈ wv(P ):

p+ (r − q)

≤ Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]Rw′) + p− q (5)

= Φ((V, ret 7→ v′) : (Γ, ret : σ) | Rw′) + p− q relabelling

≤ Φ(V : Γ | Pw) (3)

And finally, the following inequalities confirm the net cost bound in some worldview w ∈
wv(P ) given arbitrary u ∈ wv(Q):

Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu) + p+ (r − q)

≤ Φ((V, x 7→ v′, ret 7→ v) : (Γ, x : σ, ret : τ) | (Q,S)u) + p+ (r − q) S ≥ 0

≤ Φ((V, x 7→ v′) : (Γ, x : σ) | [x/ret]Rw′) + s+ p− q (6)

= Φ((V, ret 7→ v′) : (Γ, ret : σ) | Rw′) + s+ p− q relabelling

≤ Φ(V : Γ | Pw) + s (3)

E-Nont Suppose the last rule applied for the evaluation judgment is E-Nont.

E-NONT

V ⊢ e ⇓ • | (0,∞)

Then p = 0, q = ∞, and v = •. Because • : τ by V-Nont, the needed well-formedness judgment
holds. The potential energy of a quantumly valid initial context P is always nonnegative because
it must be at least as much energy as bestowed by the classical (nonnegative) annotation in P ,
so therefore the peak cost bound is satisfied. And finally, because ∞ is greater than or equal to
anything, the net cost bound also satisfied.

E-Tick Suppose the last rule applied for the evaluation judgment is E-Tick.

E-TICK

V ⊢ tick{r} ⇓ ⟨⟩ | (max(0, r),max(0,−r))

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-TICK

P (c) = Q(c) + λw. r ∀i ̸= c. P (i) = Q(i)

Γ | P ⊢ tick{r} : 1 | Q

The premisses of this rule hold by inversion.
Because ⟨⟩ : 1 by V-Unit, the needed well-formedness judgment holds.
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Then the the peak cost bound can be found as follows. First, in P ’s classically valid world-
view w, the nonnegativity of Pw ensures Φ(V : Γ | Pw) ≥ 0. Then in Q’s classically valid
worldview u:

Φ(V : Γ | Pu) ≥ Pu(c) def

= Qu(c) + r P (c) = Q(c) + λw. r

≥ r Qu ≥ 0

Thus, some w′ ∈ {u,w} ⊆ wv(P ) ensures Φ(V : Γ | Pw′) ≥ max(0, r).
Finally, let s =

∑
x∈dom(Γ)Φ(V (x) : Γ(x) | λi. Pw(x.i)) for an arbitrary worldview w ∈

wv(P ) = wv(Q). Then the following inequalities confirm the net cost bound.

Φ(V : Γ | Pw) + max(0,−r)
= Pw(c) + s+max(0,−r) def

= Qw(c) + r + s+max(0,−r) P (c) = Q(c) + λw. r

= Qw(c) + s+max(0, r) algebra

= Qw(c) + s+ Φ(⟨⟩ : 1 | ·) + max(0, r) 0 potential

= Φ((V, ret 7→ ⟨⟩) : (Γ, ret : 1) | Qw) + max(0, r) def

E-Var Suppose the last rule applied for the evaluation judgment is E-Var

E-VAR

V, x 7→ v ⊢ x ⇓ v | (0, 0)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-VAR

Γ, x : τ | ⋎x,ret
x (P ) ⊢ x : τ | P

Then p = q = 0 and V, x 7→ v : Γ, x : τ . Because v : τ follows from inverting V-Context, the
needed well-formedness judgment holds. Then because potential energy is always nonnegative
in ⋎x,ret

x (P )’s classically valid worldview, the peak cost bound is satisfied in that worldview.
And finally, because sharing perfectly conserves potential (Lemma 3.4.1), the net cost bound is
also satisfied with the following equality regardless of worldview w ∈ wv(⋎x,ret

x (P )) = wv(P ):

Φ((V, x 7→ v) : (Γ, x : τ) | ⋎x,ret
x (P )w) = Φ((V, x 7→ v, ret 7→ v) : (Γ, x : τ, ret : τ) | Pw)

E-Pair Suppose the last rule applied for the evaluation judgment is E-Pair.

E-PAIR

V, x 7→ v1, y 7→ v2 ⊢ ⟨x, y⟩ ⇓ ⟨v1, v2⟩ | (0, 0)
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Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-PAIR

Γ, x : τ, y : σ | ⋎x,ret.1st

x (⋎y,ret.2nd

y (P )) ⊢ ⟨x, y⟩ : τ ⊗ σ | P

Because ⟨v1, v2⟩ : τ ⊗ σ follows from V-Pair and the assumed well-formedness judgment
(V, x1 7→ v1, x2 7→ v2) : (Γ, x : τ, y : σ), the needed well-formedness judgment holds. Then be-
cause potential energy is always nonnegative in⋎x,ret.1st

x (⋎y,ret.2nd

y (P ))’s classically valid world-
view, the peak cost bound is satisfied in that worldview. Finally, because sharing perfectly con-
serves potential energy (Lemma 3.4.1) and the potential energy of a pair with a classical anno-
tation is the sum of its parts’ (Figure 3.9), the net cost bound is also satisfied with the following
equality regardless of worldview w ∈ wv(⋎x,ret.1st

x (⋎y,ret.2nd

y (P ))) = wv(P ):

Φ(V, x 7→ v1, y 7→ v2 : Γ, x : τ, y : σ | ⋎x,ret.1st

x (⋎y,ret.2nd

y (P ))w)

= Φ(V, x 7→ v1, y 7→ v2, ret 7→ ⟨v1, v2⟩ : Γ, x : τ, y : σ, ret : τ ⊗ σ | Pw)

E-CaseP Suppose the last rule applied for the evaluation judgment is E-CaseP.

E-CASEP
V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (p, q)

V, x 7→ ⟨v1, v2⟩ ⊢ case x of ⟨y, z⟩ → e ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-CASEP
Γ, x : σ ⊗ ρ, y : σ, z : ρ | P ⊢ e : τ | Q

Γ, x : σ ⊗ ρ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (P )) ⊢ case x of ⟨y, z⟩ → e : τ | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (Q))

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ⊗ ρ) by assumption, the rule V-Context can be inverted

to learn ⟨v1, v2⟩ : σ ⊗ ρ. Then further, the rule V-Pair can be inverted to learn both v1 : σ and
v2 : ρ. Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)

Each of the following judgments have now been found:

• V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2 ⊢ e ⇓ v | (p, q)
• (V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ)
• Γ, x : σ ⊗ ρ, y : σ, z : ρ | P ⊢ e : τ | Q

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) ∃w ∈ wv(P ).Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | Pw) ≥ p
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(3) ∀u ∈ wv(Q).∃w ∈ wv(P ).
Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | Pw) + q
≥ Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | Qu) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because sharing perfectly conserves potential energy
(Lemma 3.4.1) and the potential energy of a pair with a classical annotation is the sum of its
parts’ (Figure 3.9), both these cost bounds follow from (2) and (3) using the following equalities:

Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ) | Pw)

= Φ((V, x 7→ ⟨v1, v2⟩) : (Γ, x : σ ⊗ ρ) | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (P ))w)

Φ((V, x 7→ ⟨v1, v2⟩, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : σ ⊗ ρ, y : σ, z : ρ, ret : τ) | Qu)

= Φ((V, x 7→ ⟨v1, v2⟩, ret 7→ v) : (Γ, x : σ ⊗ ρ, ret : τ) | ⋎y,x.1st

x.1st (⋎z,x.2nd

x.2nd (Q))u)

E-SumL Suppose the last rule applied for the evaluation judgment is E-SumL.

E-SUML

V, x 7→ v ⊢ l(x) ⇓ l(v) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-SUML

Γ, x : τ | ⋎x,ret.l
x (P ) ⊢ l(x) : τ ⊕ σ | P,Q

Because l(v) : τ ⊕ σ follows from V-SumL and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : τ), the needed well-formedness judgment holds. Then because potential
energy is always nonnegative in ⋎x,ret.l

x (P )’s classically valid worldview, the peak cost bound
is satisfied. Finally, because sharing perfectly conserves potential energy (Lemma 3.4.1) and the
potential energy of a variant with a classical annotation is that of its tagged value (Figure 3.9),
the net cost bound is also satisfied with the following equality regardless of worldview w ∈
wv(⋎x,ret.l

x (P )) = wv(P,Q):

Φ((V, x 7→ v) : (Γ, x : τ) | ⋎x,ret.l
x (P )w)

= Φ((V, x 7→ v, ret 7→ l(v)) : (Γ, x : τ, ret 7→ τ ⊕ σ) | (P,Q)w)
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E-SumR Suppose the last rule applied for the evaluation judgment is E-SumR.

E-SUMR

V, x 7→ v ⊢ r(x) ⇓ r(v) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-SUMR

Γ, x : σ | ⋎x,ret.r
x (P ) ⊢ r(x) : τ ⊕ σ | P,Q

Because r(v) : τ ⊕ σ follows from V-SumR and the assumed well-formedness judgment
(V, x 7→ v) : (Γ, x : σ), the needed well-formedness judgment holds. Then because poten-
tial energy is always nonnegative in ⋎x,ret.r

x (P )’s classically valid worldview, the peak cost
bound is satisfied in that worldview. Finally, because sharing perfectly conserves potential en-
ergy (Lemma 3.4.1) and the potential energy of a variant with a classical annotation is that of
its tagged value (Figure 3.9), the net cost bound is also satisfied with the following equality
regardless of worldview w ∈ wv(⋎x,ret.r

x (P )) = wv(P,Q):

Φ((V, x 7→ v) : (Γ, x : σ) | ⋎x,ret.r
x (P )w)

= Φ((V, x 7→ v, ret 7→ r(v)) : (Γ, x : σ, ret 7→ τ ⊕ σ) | (P,Q)w)

E-CaseS-L Suppose the last rule applied for the evaluation judgment is E-CaseS-L.

E-CASES-L
V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (p, q)

V, x 7→ l(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-CASES
Γ, x : σ ⊕ ρ, y : σ | P,Q,R′ ⊢ e1 : τ | S, T, U ′

Γ, x : σ ⊕ ρ, z : ρ | P,Q′, R ⊢ e2 : τ | S, T ′, U

Γ, x : σ ⊕ ρ | P,⋎x.l,y
x.l (Q),⋎x.r,z

x.r (R) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | S,⋎x.l,y
x.l (T ),⋎x.r,z

x.r (U)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ l(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumL can be inverted to learn v′ : σ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)

Each of the following judgments have now been found:

• V, x 7→ l(v′), y 7→ v′ ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ)
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• Γ, x : σ ⊕ ρ, y : σ | P,Q,R′ ⊢ e1 : τ | S, T, U ′

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) ∃w ∈ wv(P,Q,R′).Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | (P,Q,R′)w) ≥ p

(3) ∀u ∈ wv(S, T, U ′). ∃w ∈ wv(P,Q,R′).
Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | (P,Q,R′)w) + q
≥ Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | (S, T, U ′)u) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because sharing perfectly conserves potential energy
(Lemma 3.4.1) and the potential energy of a variant with a classical annotation is that of its
tagged value (Figure 3.9), both these cost bounds follow from (2) and (3) using the following
equalities:

Φ((V, x 7→ l(v′), y 7→ v′) : (Γ, x : σ ⊕ ρ, y : σ) | (P,Q,R′)w)

= Φ((V, x 7→ l(v′)) : (Γ, x : σ ⊕ ρ) | (P,⋎x.l,y
x.l (Q),⋎x.r,z

x.r (R))w)

Φ((V, x 7→ l(v′), y 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, y : σ, ret : τ) | (S, T, U ′)u)

= Φ((V, x 7→ l(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, ret : τ) | (S,⋎x.l,y
x.l (T ),⋎x.r,z

x.r (U))u)

E-CaseS-R Suppose the last rule applied for the evaluation judgment is E-CaseS-R.

E-CASES-R
V, x 7→ r(v′), z 7→ v′ ⊢ e2 ⇓ v | (p, q)

V, xs 7→ r(v′) ⊢ case x of l(y) → e1 | r(z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-CASES
Γ, x : σ ⊕ ρ, y : σ | P,Q,R′ ⊢ e1 : τ | S, T, U ′

Γ, x : σ ⊕ ρ, z : ρ | P,Q′, R ⊢ e2 : τ | S, T ′, U

Γ, x : σ ⊕ ρ | P,⋎x.l,y
x.l (Q),⋎x.r,z

x.r (R) ⊢ case x of l(y) → e1 | r(z) → e2 : τ | S,⋎x.l,y
x.l (T ),⋎x.r,z

x.r (U)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ r(v′)) : (Γ, x : σ⊕ ρ) by assumption, the rule V-Context can be inverted to

learn v′ : σ ⊕ ρ. Then further, the rule V-SumL can be inverted to learn v′ : ρ. Using V-Context,
one can then use these well-formedness judgments to derive

(V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)

Each of the following judgments have now been found:

• V, x 7→ r(v′), z 7→ v′ ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ)
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• Γ, x : σ ⊕ ρ, z : ρ | P,Q′, R ⊢ e2 : τ | S, T ′, U

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) ∃w ∈ wv(P,Q′, R).Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | (P,Q′, R)w) ≥ p

(3) ∀u ∈ wv(S, T ′, U).∃w ∈ wv(P,Q′, R).
Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | (P,Q′, R)w) + q
≥ Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | (S, T ′, U)u) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because sharing perfectly conserves potential energy
(Lemma 3.4.1) and the potential energy of a variant with a classical annotation is that of its
tagged value (Figure 3.9), both these cost bounds follow from (2) and (3) using the following
equalities:

Φ((V, x 7→ r(v′), z 7→ v′) : (Γ, x : σ ⊕ ρ, z : ρ) | (P,Q′, R)w)

= Φ((V, x 7→ r(v′)) : (Γ, x : σ ⊕ ρ) | (P,⋎x.l,y
x.l (Q),⋎x.r,z

x.r (R))w)

Φ((V, x 7→ r(v′), z 7→ v′, ret 7→ v) : (Γ, x : σ ⊕ ρ, z : ρ, ret : τ) | (S, T ′, U)u)

= Φ((V, x 7→ r(v′), ret 7→ v) : (Γ, x : σ ⊕ ρ, ret : τ) | (S,⋎x.l,y
x.l (T ),⋎x.r,z

x.r (U))u)

E-Nil Suppose the last rule applied for the evaluation judgment is E-Nil.

E-NIL

V ⊢ [ ] ⇓ [ ] | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-NIL

Γ | P ⊢ [ ] : L(τ) | P,Q

Because [ ] : L(τ) follows from V-Nil, the needed well-formedness judgment holds. Then
because potential energy is always nonnegative in P ’s classically valid worldview, the peak cost
bound is satisfied in that worldview. And finally, because the initial and remainder annotations
are identical except for the empty list annotations b⃗ and empty lists carry no energy regardless of
annotation (Figure 3.9), the net cost bound is also satisfied with the following equality regardless
of worldview w ∈ wv(P ) = wv(P,Q):

Φ(V : Γ | Pw) = Φ((V, ret 7→ [ ]) : (Γ, ret : L(τ)) | (P,Q)w)
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E-Cons Suppose the last rule applied for the evaluation judgment is E-Cons.

E-CONS

V, x 7→ v1, y 7→ v2 ⊢ x :: y ⇓ v1 :: v2 | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-CONS

Γ, x : τ, y : L(τ) | ⋎x,x′

x (⋎y,y′

y (
A
◁ ret

x′,y′(P ))) ⊢ x :: y : L(τ) | P

Because v1 :: v2 : L(τ) follows from V-Cons and the assumed well-formedness judgment
(V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)), the needed well-formedness judgment holds. Then

because the potential energy is always nonnegative in ⋎x,x′
x (⋎y,y′

y (
A
◁ ret

x′,y′(P )))’s classically valid
worldview, the peak cost bound is satisfied in that worldview. Finally, because sharing perfectly
conserves potential energy (Lemma 3.4.1) and shifting conserves the potential energy of a list
(Lemma 6.4.1), the net cost bound is also satisfied with the following equality regardless of

worldview w ∈ wv(⋎x,x′
x (⋎y,y′

y (
A
◁ ret

x′,y′(P )))) = wv(P ):

Φ((V, x 7→ v1, y 7→ v2) : (Γ, x : τ, y : L(τ)) | (⋎x,x′

x (⋎y,y′

y (
A
◁ ret

x′,y′(P ))))w)

= Φ((V, x 7→ v1, y 7→ v2, ret 7→ v1 :: v2) : (Γ, x : τ, y : L(τ), ret : L(τ)) | Pw)

E-CaseL-Nil Suppose the last rule applied for the evaluation judgment is E-CaseL-Nil.

E-CASEL-NIL
V, x 7→ [ ] ⊢ e1 ⇓ v | (p, q)

V, x 7→ [ ] ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-CASEL
Γ, x : L(σ) | P,Q′ ⊢ e1 : τ | R, S ′

Γ, x : L(σ), y : σ, z : L(σ) |
A
◁ x′

y,z(P,Q) ⊢ e2 : τ |
A
◁ x′

y,z(R, S)

Γ, x : L(σ) | P,⋎x,x′

x (Q) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | R,⋎x,x′

x (S)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ [ ]) : (Γ, x : L(σ)) holds by assumption, each of the following judgments

have now been found:

• V, x 7→ [ ] ⊢ e1 ⇓ v | (p, q)
• (V, x 7→ [ ]) : (Γ, x : L(σ))
• Γ, x : L(σ) | P,Q′ ⊢ e1 : τ | R, S ′

With these judgments, the inductive hypothesis can be applied to learn:
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(1) v : τ

(2) ∃w ∈ wv(P,Q′).Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | (P,Q′)w) ≥ p

(3) ∀u ∈ wv(R, S ′).∃w ∈ wv(P,Q′).
Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | (P,Q′)w) + q
≥ Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | (R, S ′)u) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because empty lists carry no potential energy regardless
of annotation (Figure 3.9) both these cost bounds follow from (2) and (3) using the following
equalities:

Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | (P,Q′)w) = Φ((V, x 7→ [ ]) : (Γ, x : L(σ)) | (P,⋎x,x′

x (Q))w)

Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | (R, S ′)u)

= Φ((V, x 7→ [ ], ret 7→ v) : (Γ, x : L(σ), ret : τ) | (R,⋎x,x′

x (S))u)

E-CaseL-Cons Suppose the last rule applied for the evaluation judgment is E-CaseL-Cons.

E-CASEL-CONS
V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)

V, x 7→ v1 :: v2 ⊢ case x of [ ] → e1 | y :: z → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-CASEL
Γ, x : L(σ) | P,Q′ ⊢ e1 : τ | R, S ′

Γ, x : L(σ), y : σ, z : L(σ) |
A
◁ x′

y,z(P,Q) ⊢ e2 : τ |
A
◁ x′

y,z(R, S)

Γ, x : L(σ) | P,⋎x,x′

x (Q) ⊢ case x of [ ] → e1 | y :: z → e2 : τ | R,⋎x,x′

x (S)

Both of these rules’ premisses hold by inversion.
Because (V, x 7→ v1 :: v2) : (Γ, x : L(σ)) by assumption, the rule V-Context can be inverted

to learn v1 :: v2 : L(σ). Then further, the rule V-Cons can be inverted to learn both v1 : σ and
v2 : L(σ). Using V-Context, one can then use these well-formedness judgments to derive

(V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

Each of the following judgments has now been found:

• V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2 ⊢ e2 ⇓ v | (p, q)
• (V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ))

• Γ, x : L(σ), y : σ, z : L(σ) |
A
◁ x′

y,z(P,Q) ⊢ e2 : τ |
A
◁ x′

y,z(R, S)

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ
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(2) ∃w ∈ wv(
A
◁ x′

y,z(P,Q)).

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | (
A
◁ x′

y,z(P,Q))w) ≥ p

(3) ∀u ∈ wv(
A
◁ x′

y,z(R, S)).∃w ∈ wv(
A
◁ x′

y,z(P,Q)).

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) |
A
◁ x′

y,z(P,Q)w) + q

≥ Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) |
A
◁ x′

y,z(R, S)u) + p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because sharing perfectly conserves potential energy (Lemma 3.4.1)
and shifting conserves the potential energy of a list (Lemma 6.4.1), both these cost bounds follow
from (2) and (3) using the following equalities:

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2) : (Γ, x : L(σ), y : σ, z : L(σ)) | ◁x′

y,z(P,Q)w)

= Φ((V, x 7→ v1 :: v2) : (Γ, x : L(σ)) | (P,⋎x,x′

x (Q))w)

Φ((V, x 7→ v1 :: v2, y 7→ v1, z 7→ v2, ret 7→ v) : (Γ, x : L(σ), y : σ, z : L(σ), ret : τ) | ◁x′

y,z(R, S)u)

= Φ((V, x 7→ v1 :: v2, ret 7→ v) : (Γ, x : L(σ), ret : τ) | (R,⋎x,x′

x (S))u)

E-Leaf Suppose the last rule applied for the evaluation judgment is E-Leaf.

E-LEAF

V ⊢ leaf ⇓ leaf | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-LEAF

Γ | P ⊢ leaf : T (τ) | P,Q

Because leaf : T (τ) follows from V-Leaf, the needed well-formedness judgment holds.
Then because potential energy is always nonnegative in P ’s classically valid worldview, the
peak cost bound is satisfied in that worldview. And finally, because the initial and remainder
annotations are identical except for the leaf annotations b⃗ and leaves carry no energy regardless of
annotation (Figure 3.9), the net cost bound is also satisfied with the following equality regardless
of worldview w ∈ wv(P ) = wv(P,Q):

Φ(V : Γ | Pw) = Φ((V, ret 7→ leaf) : (Γ, ret : T (τ)) | (P,Q)w)
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E-Node Suppose the last rule applied for the evaluation judgment is E-Node.

E-NODE

V, x 7→ v1, y 7→ v2, z 7→ v3 ⊢ node(x, y, z) ⇓ node(v1, v2, v3) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

Q-NODE

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (
A
◁ ret

x′,y′,z′(P )))) ⊢ node(x, y, z) : T (τ) | P

Because node(v1, v2, v3) : T (τ) follows from V-Node and the assumed well-formedness
judgment (V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)), the needed well-
formedness judgment holds. Then because the potential energy is always nonnegative in

⋎x,x′
x (⋎y,y′

y (⋎z,z′
z (

A
◁ ret

x′,y′,z′(P ))))’s classically valid worldview, the peak cost bound is satisfied in
that worldview. Finally, because sharing conserves potential energy (Lemma 3.4.1) and shifting
conserves the potential energy of a tree (Lemma 6.4.1), the net cost bound is also satisfied with

the following equality regardless of worldview w ∈ wv(⋎x,x′
x (⋎y,y′

y (⋎z,z′
z (

A
◁ ret

x′,y′,z′(P ))))) =
wv(P ):

Φ((V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (
A
◁ ret

x′,y′,z′(P ))))w)

= Φ((V, x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ node(v1, v2, v3)) : (Γ, x : T (τ), y : τ, z : T (τ), ret : T (τ)) | Pw)

E-CaseT-Leaf Suppose the last rule applied for the evaluation judgment is E-CaseT-Leaf.

E-CASET-LEAF
V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)

V, t 7→ leaf ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-CASET
Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) |
A
◁ t′

x,y,z(P,Q) ⊢ e2 : τ |
A
◁ t′

x,y,z(R, S)

Γ, t : T (σ) | P,⋎t,t′

t (Q) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | R,⋎t,t′

t (S)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ leaf) : (Γ, t : T (σ)) holds by assumption, each of the following judgments

have now been found:

• V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)
• (V, t 7→ leaf) : (Γ, t : T (σ))
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• Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) ∃w ∈ wv(P,Q′).Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,Q′)w) ≥ p

(3) ∀u ∈ wv(R, S ′).∃w ∈ wv(P,Q′).
Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,Q′)w) + q
≥ Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R, S ′)u) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because leaves carry no potential energy regardless of an-
notation (Figure 3.9) both these cost bounds follow from (2) and (3) using the following equali-
ties:

Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,Q′)w) = Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,⋎t,t′

t (Q))w)

Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R, S ′)u)

= Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R,⋎t,t′

t (S))u)

E-CaseT-Node Suppose the last rule applied for the evaluation judgment is E-CaseT-Node.

E-CASET-NODE
V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)

V, t 7→ node(v1, v2, v3) ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

Q-CASET
Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) |
A
◁ t′

x,y,z(P,Q) ⊢ e2 : τ |
A
◁ t′

x,y,z(R, S)

Γ, t : T (σ) | P,⋎t,t′

t (Q) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | R,⋎t,t′

t (S)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) by assumption, the rule V-Context can

be inverted to learn v1 :: v2v3 : T (σ). Then further, the rule V-Node can be inverted to learn all
of v1 : T (σ), v2 : σ, and v3 : T (σ). Using V-Context, one can then use these well-formedness
judgments to derive

(V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

Each of the following judgments has now been found:

• V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)
• (V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

• Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) |
A
◁ t′

x,y,z(P,Q) ⊢ e2 : τ |
A
◁ t′

x,y,z(R, S)
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With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) ∃w ∈ wv(
A
◁ t′

x,y,z(P,Q)).

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) |
A
◁ t′

x,y,z(P,Q)w)
≥ p

(3) ∀u ∈ wv(
A
◁ t′

x,y,z(R, S)).∃w ∈ wv(
A
◁ t′

x,y,z(P,Q)).

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) |
A
◁ t′

x,y,z(P,Q)w) + q

≥ Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) |
A
◁ t′

x,y,z(R, S)u)
+ p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven. Finally, because sharing perfectly conserves potential energy (Lemma 3.4.1)
and shifting conserves the potential energy of a tree (Lemma 6.4.1), both these cost bounds fol-
low from (2) and (3) using the following equalities:

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) |
A
◁ t′

x,y,z(P,Q)w)

= Φ((V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) | (P,⋎t,t′

t (Q))w)

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) |
A
◁ t′

x,y,z(R, S)u)

= Φ((V, t 7→ node(v1, v2, v3), ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R,⋎t,t′

t (S))u)

Theorem 9.4.2 (quantum physicist’s method soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | P ⊢ e : τ | Q (AARA types the expression in that environment)

then
• v : τ (return well-formed)
• Φ(V : Γ | P ) ≥ p (initial bounds peak)
• Φ(V : Γ | P ) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Q) + p (diff. bounds net)

Proof. The soundness proof follows from Lemma 9.4.1 as follows:
The well-formedness v : τ condition already is given as the first consequent of Lemma 9.4.1.
For the peak cost bound, let w be the worldview in wv(P ) guaranteed by the second conse-

quent of Lemma 9.4.1 so that the inequality wv(P ).Φ(V : Γ | Pw) ≥ p holds. Then consider the
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following inequalities:

Φ(V : Γ | P ) = max
u∈wv(P )

Φ(V : Γ | Pu) def

≥ Φ(V : Γ | Pw) w ∈ wv(P )

≥ p Lemma 9.4.1

For the net cost bound, let u be the worldview in wv(Q) maximizing the quantity of energy
Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu). Then let w be the worldview in wv(P ) that the third
consequent of Lemma 9.4.1 assures the existence of so that the inequality Φ(V : Γ | Pw) + q ≥
Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu) + p holds. Finally, consider the following inequalities:

Φ(V : Γ | P ) + q = max
w′∈wv(P )

Φ(V : Γ | Pw′) + q def

≥ Φ(V : Γ | Pw) + q w ∈ wv(P )

≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu) + p Lemma 9.4.1

= Φ((V, ret 7→ v) : (Γ, ret : τ) | Q) + p def

9.5 Tree Height

Now that this chapter has established the basics of the quantum physicist’s method, its world-
views can be leveraged to give resource functions based on tree height. Many programs, like
binary tree search, naturally have costs that depend on the height of trees. By combining such
height-based resource functions with resource tunneling, AARA can be made to automatically
infer tight peak cost bounds for the call-stack usage of tree traversals.

The trick to supporting resource functions based on tree height is based on maxima. Tree
height is defined in terms of maxima: the height of a leaf is 0 and the height of a node is the
maximum height of its subtrees plus 1. This height definition interacts nicely with the maximum
operation used to define potential energy in Figure 9.12. In particular, worldviews are useful
for reasoning about maxima: if worldviews witness distinct typings, then certainly whichever of
those typing assigns the maximum energy valid, even if one does not know which such typing
that is. These observations all lead to the following key idea for representing tree height: If the
left subtree can be given some height-based annotation in one worldview, and the right subtree
can be given the same annotation in another worldview (holding all other annotations constant),
then the full tree can be given that height-based annotation (unshifted) as well.

For the purposes of this section, the resource functions Rk(n) given by the recurrence matrix
A are assumed to be nondecreasing. Such monotonicity is a typical and desirable property of
resource functions, so monotonicity is not a significant restriction. The binomial coefficients and
offset Stirling numbers both meet this condition (and thus so do their products). This condition
guarantees the inequality a · Rk(m) + b · Rk(n) ≤ (a+ b) · Rk(max(m,n)) for a, b ≥ 0, which
is important for some of the reasoning of this section.
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Ind(T (τ)) = {d′n , hn | 1 ≤ n ≤ Dmax} ∪ e′.Ind(τ)

Figure 9.13: New annotation index definition using tree height

H-LEAF

Γ | P ⊢ leaf : T (τ) | P,Q

H-NODE

Q ∈
A

⊴ret
x′,y′,z′(P ) ∀w, j.Qw(x

′.hj ) = 0 R ∈
A

⊴ret
x′,y′,z′(P ) ∀w, j. Rw(z

′.hj ) = 0

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (Q,R))) ⊢ node(x, y, z) : T (τ) | P

H-CASET
Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

U ∈
A

⊴t′

x,y,z(R, S) ∀w, j. Uw(x.hj ) = 0 U ′ ∈
A

⊴t′

x,y,z(R, S) ∀w, j. U ′
w(z.hj ) = 0

T ′ ∈
A

⊴t′

x,y,z(P,Q) Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | T ′ ⊢ e2 : τ | U,U ′

Γ, t : T (σ) | P,⋎t,t′

t (Q) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | R,⋎t,t′

t (S)

Figure 9.14: New tree typing rules using tree height

9.5.1 Annotation Indices

First, a new annotation index must be created for resource functions based on maxima. This
new index is hk and can be assigned formally by replacing the tree case of Figure 3.5 with the
definition of Figure 9.13. resource function. The annotation at hk corresponds to the scalar of
the resource function Rk(n) in the potential energy of a tree, where the parameter n is chosen to
be that tree’s height.

9.5.2 Typing Rules

To support tree height, the typing judgment needs a slightly changed meaning from Section 9.4.1.
This change is to partially revoke the ability for annotations to be negative. In particular, there is a
new side condition that the height-based annotations are nonnegative. The reason for this restric-
tion is that the maxima that are used to define height-based potential energy in Section 9.5.3 do
not allow negative numbers to distribute over them (essentially, −1 ·max(5, 0) ̸= max(−5, 0)),
but they do allow nonnegative numbers to do so. Thus, the techniques described here work with
nonnegative height-based annotations, but not negative ones.

The new typing rules in support of tree height can be found in Figure 9.14. Otherwise,
all typing rules are the same as in Figures 9.6 to 9.8. These new typing rules make use of
Definition 9.5.1, which is an extension to the shifting operator of Definition 6.3.2.
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Definition 9.5.1 (height shifting). The height-shifting operator
A

⊴ extends Definition 6.3.2’s shift-

ing operator
A
◁ to include height-based annotation indices in its domain and to lift its codomain

from a single annotation map to a set of annotation maps.
Let c act as 0 and t.hi act as i for vector indexing, and fix b⃗ such that b⃗i = a(i) for such indices.

A

⊴t
x,y,z(a) =

λi.

c⃗i i = x.hj

d⃗i i = z.hj
A
◁ t

x,y,z(a)c + (A · b⃗)c i = c
A
◁ t

x,y,z(a)i otherwise

∣∣∣∣∣∣∣∣∣∣
⋎x,z

t (c⃗, d⃗) = A · b⃗ ∧ c⃗ ≥ 0⃗ ∧ d⃗ ≥ 0⃗


The rule H-Leaf is syntactically the same as Q-Leaf, but I include it again to emphasize that

it now must account for the new height-based annotation indices when introducing the uncon-
strained annotation map Q.

The rule H-Node for the first time introduces a many-to-one correspondence between initial
and remainder worldviews, which is key for reasoning correctly about tree height. This corre-

spondence is represented notationally by letting Q,R represent two versions of
A

⊴ret
x′,y′,z′(P ) with

distinct worldviews. For each worldview w ∈ wv(P ), there is a worldview w0 ∈ Q and world-
view w1 ∈ R representing the two extremes for how height-based energy might be allocated. In
w0, all such energy is put on the second subtree (because the first is constrainted to have 0), while
in w1, all energy is put on the first (because the second is constrainted to have 0). Even though
one cannot in general statically determine which subtree is higher, one of these two worldviews
witnesses the assignment of all height-based energy to the highest subtree, which will then cor-
rectly justify the remainder annotation P . This typing rule’s reasoning is essentially the same as
using a ≥ b and a ≥ c to conclude a ≥ max(b, c) for unknowns b and c.

The rule H-CaseT pattern matches trees with height-based energy by splitting the height-
based energy annotations across the subtrees. While there are many ways to split this annotation
up, the choice maximizing energy occurs when all energy is assigned to the highest subtree; all
other choices can only (safely) lose energy. Then for uncomputing the remainder context, the
conditions match those of H-Node.
Example 9.5.1. To see how these new rules enable height-based cost analysis, recall the binary
tree search function mem from Figure 9.3. The time it takes to perform a binary tree search is at
worst proportional to the height of the tree.

This cost model can be simulated in AARA by adding tick expressions as in Figure 9.15.
To match the desired cost bound, it should be expected that the function mem can be given the
type T 1(Z) → B ∼ T 0(Z), where here the tree’s superscript represents the height-based, linear
resource function’s annotation.

Indeed, mem can be given the desired type. This typing is witnessed by the energy comments
included in Figure 9.15. Notationally, I write t1 : p/q, t2 : r/s, c : t/u to indicate that, in the
first worldview, the trees t1 and t2 have p and r units of linear, height-based energy, respec-
tively, alongside t units of free energy. Simultaneously, in the second worldview, the trees t1
and t2 have q and s units of linear, height-based energy, respectively, alongside u units of free

254



1 fun mem (x,tr) = case tr of
2 | Leaf -> false
3 | Node (t1,y,t2) -> (* t1:1/0, t2:0/1, c:1/1 *)
4 let _ = tick{1} in (* t1:1/0, t2:0/1, c:0/0 *)
5 if y = x
6 then true
7 else if y < x
8 then mem (x,t1) (* t1:0/-1, t2:0/1, c:0/0 *)
9 else mem (x,t2) (* t1:1/0, t2:-1/0, c:0/0 *)

Figure 9.15: Code for binary tree search with energy comments

1 fun size tr = case tr of
2 | Leaf -> 0
3 | Node (t1,_,t2) -> (* t1:1/0, t2:0/1, c:1/1 *)
4 let _ = tick{1} in (* t1:1/0, t2:0/1, c:0/0 *)
5 let t1size = size t1 in (* t1:1/0, t2:0/1, c:0/0 *)
6 let _ = tick{-1} in (* t1:1/0, t2:0/1, c:1/1 *)
7 let _ = tick{1} in (* t1:1/0, t2:0/1, c:0/0 *)
8 let t2size = size t2 in (* t1:1/0, t2:0/1, c:0/0 *)
9 let _ = tick{-1} in (* t1:1/0, t2:0/1, c:1/1 *)

10 t1size + t2size + 1

Figure 9.16: Code for binary tree size with energy comments

energy. Remainder annotations are elided because there is no remainder energy.
The new height-based reasoning comes into play in line 3. There, two different worldviews

are used to capture two different shifting options from the set given by
A

⊴ (where A gives the
polynomial recurrence matrix). In the first worldview, all the energy is put onto the left subtree.
In the second worldview, all the energy is put onto the right subtree. Because each worldview
individually only considers the height-based energy assigned to one such subtree, the amount of
energy that each worldview sees is no more than that of the highest subtree (plus one for the free
energy). This maximum among subtrees yields height-based energy.

Note that lines 8 and 9 correspond to differing branches of the search, and their comments
disagree as to which worldview witnesses quantum validity. In line 8, the first worldview’s
annotations are nonnegative, whereas in line 9 the second worldview’s annotations are. This
disagreement is fine due to the ability to collapse worldviews. When typing this branch, collapse
rules would be used to remove the second worldview in line 8 and the first worldview in line 9.
After doing so, both branches are left with matching annotations, exactly as needed for typing
branches.
Example 9.5.2. These new rules also enable reasoning about height in tree traversals. Consider
the tree size function size given in Figure 9.4. If one were interested in bounding the naive call
stack usage of size, one would find that this amount is bounded by the height of the input tree.
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Φ(node(v1, v2, v3) : T (τ) | a⃗)

= δ(A, a⃗) + Φ(v2 : τ | λi. a⃗e′.i) + max
⟨⃗b,⃗c⟩∈

A
◀(a⃗)

(Φ(v1 : T (τ) | b⃗) + Φ(v3 : T (τ) | c⃗))

Figure 9.17: New potential energy definition using tree height

To find this bound with AARA, the code can be put into let-normal form and instrumented
with ticks as in Figure 9.16. Then the function size can be given the type T 1(Z) → Z ∼ T 1(Z)
where the superscript represents the annotation for the height-based, linear resource function.
This type expresses a net cost of zero (because all stack is returned), and a peak cost bound
linear in the height of the input tree (matching the desired stack bound).

To see how size can be given that type, look to the comments in the code. These comments
give the annotations of the initial type context using the same notation as in Example 9.5.1. Then
note that, at the end of the function body, the conditions are met to uncompute the subtrees t1
and t2 back into tr with a type of T 1(Z). Specifically, there are two worldviews that match
annotations everywhere aside from the two subtrees, each subtree has zero energy in one of the
worldviews, and each worldview assigns annotations to the subtrees (and free energy) according

to
A

⊴. Here, those annotations from
A

⊴ are just where all energy is assigned to one of the two
subtrees (aside from one unit of freed energy).

9.5.3 Potential Energy

Figure 9.17 formally represents the energy of trees with height-based annotations. This definition
makes use of Definitions 9.5.2 and 9.5.3 and contains a maximum operation. This maximum is
over all the ways annotations can be assigned to the subtrees when pattern matched, and it turns
out this value gets maximized when all potential energy is assigned to the highest subtree. This
relation between a tree’s potential energy and height height is formalized via Lemma 9.5.1.

Definition 9.5.2 (height potential shifting). The the height shifting operator
A
◀ extends Defini-

tion 6.3.2’s shifting operator
A
◀ to include height-based annotation indices in its domain and to

lift its codomain from an annotation map to a set of pairs of annotation maps. These pairs are
complementary maps where the annotations for the left and right subtrees are switched.
For trees annotated by a, let b(t.i) = a(i). Then formally:

A
◀ (a) = {⟨λi. c(x.i), λi. c(z.i)⟩ | c ∈

A

⊴t
x,y,z(b)}
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Definition 9.5.3 (height constant-difference operator). The height constant-difference operator δ
extends Definition 6.4.1’s constant-difference operator δ to handle the behaviour of trees’ height-
based annotation indices.
Let c act as 0 and both d′i and hi act as i for vector indexing. Let b⃗ collect those entries of a⃗ with
indices of the form c and d′i , and let c⃗ collect those entries of a⃗ with indices of the form c and hi .

δ(A, a⃗) = (A · b⃗)c + (A · c⃗)c − a⃗c

By convention, if c does not index a⃗, then it is treated as if a⃗c = 0.

Lemma 9.5.1 (tree-height potential energy). Let the entries of a⃗ be 0 except possibly at indices
of the form hi , where the entries may be nonnegative. The potential of a tree v with annotation a⃗
is a function of the v’s height h.

Φ(v : T (τ) | a⃗) =
Dmax∑
i=1

a⃗hi ·Ri(h)

Proof. The proof of this statement proceeds by structural induction over the tree v. To make
notation easier, this proof uses the convention that annotation indices like hi act as i for vector
indexing.

v = leaf In this case, the list v’s height h is 0 and the following equalities hold:

Φ(leaf : T (τ) | a⃗) = 0 def

=
Dmax∑
i=1

a⃗hi ·Ri(h) Ri(0) = 0

v = node(v1, v2, v3) In this case, let the height of the subtree v1 be h1 and the height of the
subtree v2 be h2. The list v’s height h is max(h1, h2) + 1, and the following equalities hold:
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Φ(node(v1, v2, v3) : T (τ) | a⃗)
= δ(A, a⃗) + Φ(v2 : τ | λi. a⃗e′.i) + max

⟨⃗b,⃗c⟩∈
A
◀(a⃗)

(Φ(v1 : T (τ) | b⃗) + Φ(v3 : T (τ) | c⃗)) def

= δ(A, a⃗) + max
⟨⃗b,⃗c⟩∈

A
◀(a⃗)

(Φ(v1 : T (τ) | b⃗) + Φ(v3 : T (τ) | c⃗)) a⃗e′.i = 0

= (A · a⃗)c + max
⟨⃗b,⃗c⟩∈

A
◀(a⃗)

(Φ(v1 : T (τ) | b⃗) + Φ(v3 : T (τ) | c⃗)) def

= (A · a⃗)c ·R0(h− 1) + max
⟨⃗b,⃗c⟩∈

A
◀(a⃗)

(Φ(v1 : T (τ) | b⃗) + Φ(v3 : T (τ) | c⃗)) R0(n) = 1

= (A · a⃗)c ·R0(h− 1) + max
⟨⃗b,⃗c⟩∈

A
◀(a⃗)

(
Dmax∑
i=1

b⃗hi ·Ri(h1) +
Dmax∑
i=1

c⃗hi ·Ri(h2)) IH

Consider any pair of annotation maps ⟨⃗b, c⃗⟩ in
A
◀ (a). By chasing definitions, one finds the

following invariant relating b⃗, c⃗, and a⃗.

⟨⃗b, c⃗⟩ ∈
A
◀ (a) def

=⇒ ⟨⃗b, c⃗⟩ = ⟨λi. d(x.i), λi. d(z.i)⟩ ∧ d ∈
A

⊴t
x,y,z(e⃗) ∧ e⃗t.i = a(i) def

=⇒ ⋎x,z
t (d) = A · e⃗ ∧ ∀i. di ≥ 0 def

=⇒ ∀i. d(x.hi) + d(y.hi) = (A · e⃗)t.hi ∧ d(x.hi) ≥ 0 ∧ d(y.hi) ≥ 0 def

=⇒ ∀i. b⃗hi + c⃗hi = (A · e⃗)t.hi ∧ b⃗hi ≥ 0 ∧ c⃗hi ≥ 0 def

=⇒ ∀i. b⃗hi + c⃗hi = (A · a⃗)hi ∧ b⃗hi ≥ 0 ∧ c⃗hi ≥ 0 def

With this invariant in mind, the following inequalities hold:

b⃗hi ·Ri(h1) + c⃗hi ·Ri(h2)

≤ (⃗bhi + c⃗hi ) ·Ri(max(h1, h2)) b⃗hi , c⃗hi ≥ 0, Ri(n) nondecreasing

= (A · a⃗)hi ·Ri(max(h1, h2)) b⃗hi + c⃗hi = (A · a⃗)hi
= (A · a⃗)hi ·Ri(max(h1, h2)) + 0 ·Ri(min(h1, h2)) algebra

Since either of b⃗, c⃗ could have been chosen to be A · a⃗ (leaving the other 0⃗), the maximum
value of the above expression over any such b⃗, c⃗ occurs at (A·⃗a)i scalingRi(max(h1, h2)) and and
0 scaling Ri(min(h1, h2)). Knowing this fact allows this case to be finished with the following
equalities:
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(A · a⃗)c ·R0(h− 1) + max
⟨⃗b,⃗c⟩∈

A
◀(a⃗)

(
Dmax∑
i=1

b⃗hi ·Ri(h1) +
Dmax∑
i=1

c⃗hi ·Ri(h2)) IH

= (A · a⃗)c ·R0(h− 1) +
Dmax∑
i=1

(A · a⃗)hi ·Ri(max(h1, h2)) +
Dmax∑
i=1

0 ·Ri(min(h1, h2)) max

= (A · a⃗)c ·R0(h− 1) +
Dmax∑
i=1

(A · a⃗)hi ·Ri(max(h1, h2)) algebra

= (A · a⃗)c ·R0(h− 1) +
Dmax∑
i=1

(A · a⃗)hi ·Ri(h− 1) def

= (A · a⃗) · R⃗(h− 1) algebra

= a⃗ · R⃗(h) def

=
Dmax∑
i=0

a⃗i ·Ri(h) algebra

=
Dmax∑
i=1

a⃗hi ·Ri(h) a⃗c = 0

Of course, the new shifting operators
A

⊴,
A
◀ , do not need to allocate energy annotations

according to the maximum. Such flexibility is key to automatic reasoning about height-based
potential energy because it is not generally computable which subtree is higher. Thus, shifting
may no longer perfectly preserve potential energy for trees as in Lemma 6.4.1. However, an
analogous inequality can be obtained as Lemma 9.5.2.

Lemma 9.5.2 (height shifting at most conserves energy). For all b⃗ ∈
A

⊴t
x,y,z (⃗a):

Φ((t 7→ node(v1, v2, v3)) : (x : T (τ)) | a⃗)

≥ Φ((x 7→ v1, y 7→ v2, z 7→ v3) : (x : T (τ), y : τ, z : T (τ)) | b⃗)

and this inequality is an equality for some b⃗ where either ∀j. b⃗z.hj = 0 or ∀j. b⃗x.hj = 0

Proof. To prove this statement, I first prove the inequality. Let λi. a⃗t.i = a⃗′ + a⃗′′ where a⃗′ is zero
on those entries indexed by an annotation index of the form hi and a⃗′′ is zero on the rest.
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Φ((x 7→ v1, y 7→ v2, z 7→ v3) : (x : T (τ), y : τ, z : T (τ)) | b⃗)
= b⃗c + Φ(v2 : τ | λi. b⃗y.i) + Φ(v1 : T (τ) | λi. b⃗x.i) + Φ(v3 : T (τ) | λi. b⃗z.i) def

=
A
◁ t

x,y,z (⃗a)c + (A · a⃗′′)c + Φ(v2 : τ | λi. a⃗t.e′.i) + Φ(v1 : T (τ) | λi. b⃗x.i) + Φ(v3 : T (τ) | λi. b⃗z.i) def

= (A · a⃗′)c + (A · a⃗′′)c + Φ(v2 : τ | λi. a⃗t.e′.i) + Φ(v1 : T (τ) | λi. b⃗x.i) + Φ(v3 : T (τ) | λi. b⃗z.i) def

= a⃗c + δ(A, a⃗) + Φ(v2 : τ | λi. a⃗t.e′.i) + Φ(v1 : T (τ) | λi. b⃗x.i) + Φ(v3 : T (τ) | λi. b⃗z.i) def

≤ a⃗c + δ(A, a⃗) + Φ(v2 : τ | λi. a⃗t.e′.i) + max
⟨c⃗,d⃗⟩∈

A
◀(λi. a⃗t.i)

(Φ(v1 : T (τ) | c⃗) + Φ(v3 : T (τ) | d⃗)) ⟨λi. b⃗x.i, λi. b⃗z.i⟩ ∈
A
◀ (λi. a⃗t.i)

= a⃗c + Φ(node(v1, v2, v3) : T (τ) | λi. a⃗t.i) def

= Φ((t 7→ node(v1, v2, v3)) : (t : T (τ)) | a⃗) def

Now it only remains to consider the b⃗ rendering this inequality an equality. There is only
one step introducing an inequality in the above reasoning: where the maximum over annotation

pairs ⟨c⃗, d⃗⟩ ∈
A
◀ (λi. a⃗t.i) is introduced. Let ⟨c⃗′, d⃗′⟩ be such a maximizer. By the definitions of

A

⊴,
A
◀ , the vectors c⃗′ and d⃗′ are invariant on annotation indices that are not of the form hj . Thus,

only indices of the form hj matter for the maximizer. As found in the proof of Lemma 9.5.1, this
maximization occurs when such indices of one of c⃗′, d⃗′ coincide with A · a⃗′′ and the indices of the

other are 0. Indeed, if one is 0, the other must be A · a⃗′′ by the definitions of
A

⊴,
A
◀ . Therefore,

(at least) one of the two choices for b⃗ tightens the above inequality into an equality, completing
the proof.

9.5.4 Soundness

To extend the soundness proof of Theorem 9.4.2, it is only necessary to extend the resource-
tunneling-soundness of Lemma 9.4.1. This extension is provided via Lemma 9.5.3.

Lemma 9.5.3 (height-based resource tunneling soundness). If
• V ⊢ e ⇓ v | (p, q) (an expression evaluates with some cost behavior)
• V : Γ (the environment of the evaluation is well-formed)
• Γ | P ⊢ e : τ | Q (AARA types the expression in that environment)

then
• v : τ (return value is well-formed)
• ∃w ∈ wv(P ).Φ(V : Γ | Pw) ≥ p (initial energy bounds peak cost in some worldview)
• ∀u ∈ wv(Q).∃w ∈ wv(P ).Φ(V : Γ | Pw) + q ≥ Φ((V, ret 7→ v) : (Γ, ret : τ) | Qu) + p

(every rem. worldview has some init. worldview s.t. difference in energy bounds net cost)

Proof. The soundness proof proceeds by lexicographic induction over the derivation of the eval-
uation judgment followed by the typing judgment.

Only the cases for the new height-based tree rules need to be considered, as all other cases
for of the proof are the same as in Lemma 9.4.1.
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E-Leaf This case does not actually change to consider height-based annotations, but I include
it anyway for completeness.

Suppose the last rule applied for the evaluation judgment is E-Leaf.

E-LEAF

V ⊢ leaf ⇓ leaf | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

H-LEAF

Γ | P ⊢ leaf : T (τ) | P,Q

Because leaf : T (τ) follows from V-Leaf, the needed well-formedness judgment holds.
Then because potential energy is always nonnegative in P ’s classically valid worldview, the
peak cost bound is satisfied in that worldview. And finally, because the initial and remainder
annotations are identical except for the leaf annotations b⃗ and leaves carry no energy regardless of
annotation (Figure 3.9), the net cost bound is also satisfied with the following equality regardless
of worldview w ∈ wv(P ) = wv(P,Q):

Φ(V : Γ | Pw) = Φ((V, ret 7→ leaf) : (Γ, ret : T (τ)) | (P,Q)w)

E-Node Suppose the last rule applied for the evaluation judgment is E-Node.

E-NODE

V, x 7→ v1, y 7→ v2, z 7→ v3 ⊢ node(x, y, z) ⇓ node(v1, v2, v3) | (0, 0)

Then p = q = 0 and only one typing rule remains that could be used to conclude the typing
derivation:

H-NODE

Q ∈
A

⊴ret
x′,y′,z′(P ) ∀w, j.Qw(x

′.hj ) = 0 R ∈
A

⊴ret
x′,y′,z′(P ) ∀w, j. Rw(z

′.hj ) = 0

Γ, x : T (τ), y : τ, z : T (τ) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (Q,R))) ⊢ node(x, y, z) : T (τ) | P

Because node(v1, v2, v3) : T (τ) follows from V-Node and the assumed well-formedness
judgment (V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)), the needed well-
formedness judgment holds. Then because the potential energy is always nonnegative in

⋎x,x′
x (⋎y,y′

y (⋎z,z′
z (

A
◁ ret

x′,y′,z′(Q,R))))’s classically valid worldview, the peak cost bound is satis-
fied in that worldview. Finally, note that, for any worldview w ∈ wv(P ), shifting Pw perfectly
conserves potential energy in some worldview u in wv(Q,R) by Lemma 9.5.2 because some
premisses ensure that Q and R exhaust the ways of assigning zero to the height-based annota-
tions. Then because sharing conserves potential energy (Lemma 3.4.1) and shifting conserves
the potential energy of a tree (Lemma 9.5.2) for one of Q,R, the net cost bound is also satisfied
with the following equality:
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Φ((V, x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, x : T (τ), y : τ, z : T (τ)) | ⋎x,x′

x (⋎y,y′

y (⋎z,z′

z (
A
◁ ret

x′,y′,z′(Q,R))))u)

= Φ((V, x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ node(v1, v2, v3)) : (Γ, x : T (τ), y : τ, z : T (τ), ret : T (τ)) | Pw)

E-CaseT-Leaf This case does not actually change to consider height-based annotations, but I
inlcude it anyway for completeness

Suppose the last rule applied for the evaluation judgment is E-CaseT-Leaf.

E-CASET-LEAF
V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)

V, t 7→ leaf ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

H-CASET
Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

U ∈
A

⊴t′

x,y,z(R, S) ∀w, j. Uw(x.hj ) = 0 U ′ ∈
A

⊴t′

x,y,z(R, S) ∀w, j. U ′
w(z.hj ) = 0

T ′ ∈
A

⊴t′

x,y,z(P,Q) Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | T ′ ⊢ e2 : τ | U,U ′

Γ, t : T (σ) | P,⋎t,t′

t (Q) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | R,⋎t,t′

t (S)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ leaf) : (Γ, t : T (σ)) holds by assumption, each of the following judgments

have now been found:

• V, t 7→ leaf ⊢ e1 ⇓ v | (p, q)
• (V, t 7→ leaf) : (Γ, t : T (σ))
• Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) ∃w ∈ wv(P,Q′).Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,Q′)w) ≥ p

(3) ∀u ∈ wv(R, S ′).∃w ∈ wv(P,Q′).
Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,Q′)w) + q
≥ Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R, S ′)u) + p

The well-formedness judgment (1) v : τ is what this case needs, so only this case’s cost
bounds remain to be proven. Finally, because leaves carry no potential energy regardless of an-
notation (Figure 3.9) both these cost bounds follow from (2) and (3) using the following equali-
ties:

Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,Q′)w) = Φ((V, t 7→ leaf) : (Γ, t : T (σ)) | (P,⋎t,t′

t (Q))w)

Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R, S ′)u)

= Φ((V, t 7→ leaf, ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R,⋎t,t′

t (S))u)
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E-CaseT-Node Suppose the last rule applied for the evaluation judgment is E-CaseT-Node.

E-CASET-NODE
V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)

V, t 7→ node(v1, v2, v3) ⊢ case t of leaf → e1 | node(x, y, z) → e2 ⇓ v | (p, q)

Then only one typing rule remains that could be used to conclude the typing derivation:

H-CASET
Γ, t : T (σ) | P,Q′ ⊢ e1 : τ | R, S ′

U ∈
A

⊴t′

x,y,z(R, S) ∀w, j. Uw(x.hj ) = 0 U ′ ∈
A

⊴t′

x,y,z(R, S) ∀w, j. U ′
w(z.hj ) = 0

T ′ ∈
A

⊴t′

x,y,z(P,Q) Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | T ′ ⊢ e2 : τ | U,U ′

Γ, t : T (σ) | P,⋎t,t′

t (Q) ⊢ case t of leaf → e1 | node(x, y, z) → e2 : τ | R,⋎t,t′

t (S)

Both of these rules’ premisses hold by inversion.
Because (V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) by assumption, the rule V-Context can

be inverted to learn v1 :: v2v3 : T (σ). Then further, the rule V-Node can be inverted to learn all
of v1 : T (σ), v2 : σ, and v3 : T (σ). Using V-Context, one can then use these well-formedness
judgments to derive

(V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))

Each of the following judgments has now been found:

• V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3 ⊢ e2 ⇓ v | (p, q)
• (V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ))
• Γ, t : T (σ), x : T (σ), y : σ, z : T (σ) | T ′ ⊢ e2 : τ | U,U ′

With these judgments, the inductive hypothesis can be applied to learn:

(1) v : τ

(2) ∃w ∈ wv(T ′).
Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | T ′

w) ≥ p

(3) ∀u ∈ wv(U,U ′).∃w ∈ wv(T ′).
Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | T ′

w) + q
≥ Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) | (U,U ′)u)
+ p

The well-formedness judgment v : τ is what this case needs, so only this case’s cost bounds
remain to be proven.

Because sharing perfectly conserves potential energy (Lemma 3.4.1) and shifting does not
gain energy (Lemma 9.5.2). the peak cost bound follows from (2) with the following inequality,
which holds regardless of worldview w ∈ wv(T ′) = wv((P,⋎t,t′

t (Q))):

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ)) | T ′
w)

≤ Φ((V, t 7→ node(v1, v2, v3)) : (Γ, t : T (σ)) | (P,⋎t,t′

t (Q))w)
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Finally, note that, for any worldview u ∈ wv(R, S), shifting (R, S)u perfectly conserves
potential energy in some worldview u′ in wv(U,U ′) by Lemma 9.5.2 because some premisses
ensure that U and U ′ exhause the ways of assigning zero to the height based annotations. Then
because sharing conserves potential energy (Lemma 3.4.1) and shifting conserves the potential
energy of a tree (Lemma 9.5.2) for one of U,U ′, the net cost bound follows from (3) using the
previous inequality and following equality:

Φ((V, t 7→ node(v1, v2, v3), x 7→ v1, y 7→ v2, z 7→ v3, ret 7→ v) : (Γ, t : T (σ), x : T (σ), y : σ, z : T (σ), ret : τ) | (U,U ′)u′)

= Φ((V, t 7→ node(v1, v2, v3), ret 7→ v) : (Γ, t : T (σ), ret : τ) | (R,⋎t,t′

t (S))u)

9.5.5 Demotion

There are some additional opportunities for optimizing the dynamics of height-based annotations
when using the mixed polynomial and exponential energy introduced in Section 6.6. Much like
Section 6.6, these optimizations take the form of demotion, wherein some annotations can be
converted to others. This extra flexibility allows the typing rules to more optimally allocate
potential energy, yielding tighter cost bounds.

I use this section to point out the key relations needed for demoting height-based energy.
Note, however, that the development of demotion rules based on these relations is not meaning-
fully different from the development in Section 6.6. Thus, rather than belabour the point, I only
explain the relations here, and I forgo making formal rules and proving them sound.

To begin, I recall the demotion of Section 6.6. In Section 6.6, demotion was possible due to
the relation between the offset Stirling number

{
n+1
2

}
and the sum of binomial coefficients

(
n
k

)
.

Specifically, {
n+ 1

2

}
= 2n − 1 =

∞∑
k=1

(
n

k

)
≥

Dmax∑
k=1

(
n

k

)
For height-based annotations, very similar relations hold. Here, the relevant height-based

relations derive from trees. In particular, let h be the height of a (binary) tree and let n be the
number of nodes of the tree. Then both of the following hold:(

n

1

)
= n ≥ h =

(
h

1

)
{
h+ 1

2

}
= 2h − 1 ≥ n =

(
n

1

)
Thus, one unit of node-based linear energy (d′1 ,1 ) can be safely converted to one unit of

height-based linear energy (h1 ,1 ). Likewise, one unit of height-based base-2 energy (d′0 ,2 ) can
be safely converted to one unit of node-based linear energy (h1 ,1 ).

264



9.6 Automation

While the core of the quantum physicist’s method type system induces many of the same linear
contraints as the systems of previous chapters, the system does pose a few new problems for au-
tomation. This section goes over those difficulties and provides an analysis the time complexity
of type inference, focusing on the full system with the features of Section 9.5.

The first obstacle to discuss is the inference of the shifting operator
A

⊴. However, it turns out

there is no relation in this operator that is not linear. For all b⃗ in
A

⊴, much of their entries are given
by the linear relations of previous chapters. The only new feature to inspect is the behaviour of
such vectors’ entries with height-based indices like hi . As laid out in Definition 9.5.1, these
indices lie in a sharing relation with each other and are constained to be nonnegative. The former
of these is already known to be expressible with linear constraints (specifically of the form a+b =

c), and the latter already is a linear constraint. Thus, the entire space of annotations in
A

⊴ is
expressible with linear constraints, and a linear program should be able to pick out whichever
solution is best.

The next obstacle to discuss is the use of worldviews. For the most part, type inference in a
given worldview is no different than in previous chapters. The question, then, is how properly
manage collections of worldviews. In particular, the real difficulty comes from the existential
quantification in the definition of being quantumly valid: some worldview’s annotations must all
be nonnegative. It is not completely trivial to decide which worldview this should be. Nonethe-
less, it turns out this obstacle can be handled rather simply: when in doubt, introduce a new
worldview and constrain it to be nonnegative. I discuss this solution in more detail in the follow-
ing paragraphs.

To manage collections of worldviews for type inference, it first suffices to realize that the
use of the structural rules concerning superposition and collapse can be structured in a particular
way. In particular, if ever an additional worldview might be needed for the type derivation of a
particular function, then that worldview can be introduced from the start using Q-SuperposeL.
Then all worldviews can be kept around as long as possible until each extra worldview is elimi-
nated from the remainder context using Q-CollapseR—no structural worldview rules need to be
used anywhere else. Thus the question reduces to determining how many worldviews might need
to be introduced at the start.

The number of worldviews needed is influenced by many different factors, but it is not too
difficult to get an upper bound on the maximum number that could possibly be of use. The
following paragraphs describe such a bound.

Firstly, every subexpression might need one worldview witnessing the quantum validity of
the initial context, and another worldview witnessing the quantum validity of the remainder con-
text. (Function applications can also make use of the initial context’s classically valid worldview
for resource-tunneling purposes.) These worldviews can be constrained to be nonnegative, which
is sufficient to satisfy the requirements of quantum validity. The problem of figuring out which
worldview is classically valid is thusly handled by creating a worldview specifically for that pur-
pose, even if another worldview might already suffice. This approach introduces many unneeded
worldviews but is nonetheless sufficient to allow type inference.
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Finally, the number of needed worldviews might double for typing expressions using H-Node
and H-CaseT, as each of these typing rules introduce a 2:1 relation between different contexts’
worldviews. For H-Node, each worldview assigning some height-based energy to the tree being
typed requires two worldviews in the initial context that assign all of that (shifted) energy to one
of the two subtrees. H-CaseT requires a similar relation to uncompute the tree being pattern-
matched. As a result of this doubling, the number of worldviews that might be needed for typing
a function is at worst in O(2n) where n is the size of the function body.

With this all in mind, the full type-inference algorithm can be laid out as follows:
1. basic type inference

2. set up worldviews

3. collect and solve linear contraints
After the first step (which I discuss later), the second step is to set up worldviews as de-

scribed above. This setup can be accomplished by passing over the code, calculating the worst-
case number of worldviews that could be needed, and creating a type-derivation skeleton with
these numbers. The bottleneck here is just the number of worldviews that need slots in the type
derivation, of which there may be exponentially many in the size of the function body.

Then the third step then can run in time that is polynomial in the size of the derivation skele-
ton. All this step does is set up the linear constraints and solve. Thus, the worst-case time
complexity of the second and third steps is exponential in the size of a function body.

This exponential-time complexity does not actually change the true theoretical bottleneck of
AARA type inference. That bottleneck is still using Hindley-Milner type inference [72, 106] to
complete the first step. Hindley-Milner type inference is DEXPTIME-complete [72, 106], which
already contains the complexity of the remaining inference steps.

In practice, this worst-case time complexity does not arise. Hindley-Milner type inference is
well-known to be efficient in practice. In addition, the number of worldviews needed is not usu-
ally the worst-case number because that requires code both with no helper functions and where
every operation is a tree manipulation. The practical efficiency of type inference is supported by
the experiments of Section 9.7.

9.7 Experiments
To test the efficacy of the quantum physicist’s method type system, a prototype analyzer was
implemented, and its performance was compared to the Resource Aware ML (RaML) imple-
mentation of AARA (version 1.4.2). Experiments were then run to determine both how accu-
rately and how fast the two can analyze naive stack bounds for the OCaml standard library Set
module [91]. The experiments support that the quantum physicist’s method greatly increases the
accuracy of the AARA analysis with only moderate performance tradeoff. All experiments were
implemented in OCaml 4.06.0, run on a Mac with a 2.3 GHz Dual-Core Intel Core i5 processor,
and use the Coin-Or linear program solver version 1.16 [34].

Experimental Setup The experiments of this section were designed to answer the following
questions in a real-world code environment:
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Q1. How much does the quantum physicist’s method improve the bounds AARA can find?

Q2. Is using the quantum physicist’s method practically efficient?

To set up the experiments, a prototype implementation of the quantum physicist’s method
type inference was implemented. This prototype uses the method of automation described in
Section 9.6, wherein exponentially-many worldviews might be used in the size of a function
body; it does not attempt to reduce the number of worldviews needed. The prototype supports
univariate polynomial resource functions, and it can parameterize its resource functions on tree
depth using the system of Section 9.5.2.

To evaluate the efficacy of the prototype’s bound inference, the state-of-the-art AARA imple-
mentation Resource Aware ML (RaML) was used as a control for comparison. RaML is a mature
and optimized implementation of AARA [81, 82]. It supports many features the prototype does
not, including multivariate resource functions and cost-freedom. However, this version (1.4.2)
of RaML does not use remainder contexts.

The Set module from OCaml’s standard library [91] was used as test code. This module
implements sets using binary trees. For parsing reasons, some of OCaml’s syntactic sugar was
manually desugared.

To compare both implementations’ performances, each was used to infer a naive stack bound
for the Set module functions. The naive stack-cost metric counts the number of call stack frames
needed without accounting for tail-calls or other optimization. That is, one stack frame is con-
sumed prior to each function call, and one stack frame is returned upon each function return.

Measuring naive stack bounds in the Set module should test multiple pertinent features of this
chapter’s type system. Because stack frames are a resource which is returned after use, potential
barriers naturally arise for resource tunneling to deal with. Further, because the Set module is
implemented using trees, tree depth a relevant parameter.

The recorded data from each of the implementations concern the time taken, the number
of linear constraints generated, and the resulting cost bound. When gathering the experimental
data, each implementation was run at the lowest degree Dmax that could successfully analyze the
code. In the event of failure, the data from the linear bound inference was used. As a result, each
implementation usually only searched for linear-cost bounds. When only linear resource func-
tions are used, RaML does not make use of cost-free typing or multivariate resource functions—
these features therefore do not impact RaML’s performance for most of the experimental results.
Nonetheless, the prototype implementation needs quadratic bounds for filter, and RaML needs
them for 4 functions (compare aux through subset).

When analyzing a function, each typechecker must also analyze all helper functions, which
sometimes exceeds one hundred of lines of code. To exclude performance data unrelated to the
AARA analysis, each implementation was only timed after Hindley-Milner unification assigned
base types to the code. As a result, the time data only includes the time each implementation takes
to generate and solve its linear programs. To make this comparison fair, both implementations
used the same linear program solver (COIN-OR [34]).

Findings The answers to the experimental questions can be summarized as follows:
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RaML Prototype
Function LoC Time(s) Constrs Stack Bound Returned Time(s) Constrs Stack Bound Returned

ordcompare 3 0.01 3 0 0 0.00 23 0 0
height 5 0.01 8 0 0 0.00 214 0 0
create 4 0.02 31 0 0 0.04 10722 0 0

bal 44 0.17 505 1 1 3.67 513451 1 1
add 62 1.11 1085 n + 1 1 7.33 697545 d + 1 d + 1

singleton 1 0.00 2 0 0 0.00 548 0 0
add min elt 52 0.45 532 n + 1 1 3.69 538691 d + 1 d + 1
add max elt 52 0.47 534 n + 1 1 3.85 538763 d + 1 d + 1

join 71 4.29 2197 n0 + n1 + 2 1 6.43 764565 d0 + d1 + 2 d0 + d1 + 2
min elt 9 0.01 26 n 1 0.01 3616 d d

min elt opt 9 0.01 32 n + 1 1 0.01 4224 d d
max elt 9 0.01 26 n 1 0.01 3616 d d

max elt opt 9 0.01 32 n + 1 1 0.01 4224 d d
remove min elt 54 0.46 540 n 1 3.68 539700 d d

merge 75 0.81 1124 2n1 + 1 1 6.36 601655 d1 + 1 d1 + 1
concat 102 5.96 2816 n0 + 2n1 + 1 1 10.57 903682 n0 + n1 + .5d1 + 4.5 n′

0 + 4
split 91 17.46 4447 fail fail 11.72 941207 n0 + 4 n′

0 + n′
1 + 4

is empty 1 0.01 8 0 0 0.01 160 0 0
mem 10 0.02 34 n 0 0.03 12566 d d

remove 96 5.03 2211 2n + 1 1 8.56 880667 d + 1 d + 1
union 127 164.91 15568 fail fail 25.14 1586889 fail fail
inter 137 94.03 9532 fail fail 24.33 1486736 n0 + n1 + 5 n′ + 5
diff 137 95.01 9535 fail fail 21.40 1433676 n0 + n1 + 5 n′ + 5

cons enum 7 0.01 27 n0 + 1 1 0.02 6338 d0 d0
compare aux 27 0.13 509 n0s0+n1s1+s1+1 1 0.21 61545 .5s0+1.5n0+.5s1+1.5n1+1 1

compare 30 0.17 739 n0 + 2n1 + 2 1 0.29 82131 1.5n0 + 1.5n1 + 2 2
equal 33 0.19 745 n0 + 2n1 + 3 0 0.30 87239 1.5n0 + 1.5n1 + 3 3
subset 20 0.42 1607 n0n1 0 0.61 156721 d0 + d1 d0 + d1

iter 4 0.01 28 n + 1 1 0.04 11161 d d
fold 4 0.02 28 n + 1 1 0.04 15726 d d

for all 3 0.02 32 n 0 0.04 11581 d d
exists 3 0.02 32 n 0 0.04 11581 d d

filter 115 30.88 5074 fail fail 61.35 2170433 .5n2 + .5n + 5 n′ + 5
partition 114 74.91 10076 fail fail 14.33 1158301 2n + 5 n′

0 + n′
1 + 5

cardinal 3 0.01 27 n 0 0.01 3763 d d
elements aux 4 0.01 32 n1 1 0.02 6953 d d

elements 7 0.01 36 n + 2 1 0.03 8182 d + 1 d + 1

Table 9.2: Experimental statistics and inferred stack bounds

A1. The quantum physicist’s method allowed AARA to find a tighter stack bound than RaML
in 30 out of 37 analyzed functions, which is a significant improvement. In all other cases,
the implementations find matching bounds.

A2. While the prototype implementation does have more performance overhead than RaML,
both implementations usually take similar orders of magnitude of time to run.

The results of the analysis are in table 9.2. For each of 36 functions from the Set module (and
the Ord module comparison ordcompare), the table contains the following data: the number of
lines of code in the test file (LoC), the time each implementation takes to infer type annotations
(Time), the number of linear constraints generated during inference (Constraints), the inferred
upper bound on call stack frames (Stack Bound), and the number of stack frames returned ac-
cording to the analyses (Returned). In resource bounds, n is used to describe the node count
of tree arguments, d the depth of tree arguments, and s the size of list arguments. Subscripts
disambiguate arguments by index, and a prime (’) is added to refer to function returns instead of
arguments.

The data shows that the quantum physicist’s method analysis yields significantly tighter re-
sults. In 30 cases, the prototype implementation finds a tighter bound than RaML, and in the
remaining 7 cases they find the tight bound. In one of these 7 cases (union), neither implemen-
tation finds a bound, and in the remaining 6 each finds the same tight bound. The prototype
implementation provides a tight bound on returned resources in 31 out of 37 cases, whereas
RaML never infers that more than 1 stack frame is returned (because RaML cannot make use of
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remainder contexts). The ground truth is that each function should always return all its stack.
Interestingly, the prototype finds good bounds even though the Set module performs many

tree operations based on semantic properties of the code, rather than structural. For instance, in
bal, trees are balanced by tracking their tree height. The type system completely ignores that
those integers track tree height, and is nonetheless able to infer good cost bounds.

The general trend of Table 9.2 is that the prototype can perform more accurate resource anal-
yses at the expense of slower performance. However, on difficult-to-analyze code like the join
function, the speed of the prototype’s analysis approaches RaML’s order of magnitude. This
similar time data shows that the prototype can already achieve plausible performance. Further-
more, the prototype can analyze difficult code like the split function, where RaML fails to derive
a bound. The prototype implementation is only unable to handle union, while RaML fails on 6
different functions.

The table also shows that the time taken by the prototype to generate linear constraints is
roughly equal to the time taken to solve them. This performance profile suggests that time
efficiency could be improved by either a stronger LP solver or more aggressive heuristics and
strategies for constraint generation. In particular, it may be possible to improve on the naive
generation of worldviews.

That the prototype performs as quickly as it does compared to RaML is somewhat surprising.
The prototype internally maintains a completely decorated type derivation tree, while RaML
does not. To keep up performance, RaML aggressively reuses annotations where possible, in
general aiming to generate as few linear constraints as possible. However, as Table 9.2 shows,
the multiple-orders-of-magnitude more constraints generated in this fashion did not result in
commensurate slowdown. To explore the reasons behind this lack of slowdown, the performance
statistics for some runs of the prototype were broken down further and recorded in table 9.3.

The performance statistics in table 9.3 break down the prototype implementation’s perfor-
mance data in the following way: Timing is subdivided into constraining and running the LP
solver, and the constraint count breaks down into variable identities (x = y for variables x, y),
constant offsets (x = y+ k for variables x, y and constant k), other equality constraints, and any
remaining inequalities.

It would seem that slowdown was avoided because easy constraints comprise a majority of
the implementation’s constraints, and modern LP solvers can eliminate such easy constraints
quickly. For example, constraints of the form x = y comprise 55.56% of generated constraints.

9.8 Proof-Theoretical Observations
I now take some time to briefly explore some of the deeper proof-theoretical implications of
this type system, particularly of its worldviews. In this section, I explain their connection to
the additive product and to intersection types. These connections are potentially obscured by the
way that worldviews have otherwise been presented, but this section should make the connections
clear.

Additive Products Interestingly, despite admitting a form of contraction and weakening, these
worldviews are very much linear. In particular, they behave like a connective from linear logic:
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Function Constrain Time LP Time Var IDs Offsets Eqs Other Ineqs
ordcompare 0.00 0.00 7 0 3 13

height 0.00 0.00 83 0 26 105
create 0.00 0.04 5138 0 1205 4379

bal 1.83 1.84 278669 262 49868 184652
add 3.32 4.01 391214 335 60411 245585

singleton 0.00 0.00 208 0 43 297
add min element 1.94 1.75 292062 279 50773 195577
add max element 1.96 1.89 292124 279 50773 195587

join 3.96 2.47 417754 357 64253 282201
min elt 0.00 0.01 1738 9 392 1477

min elt opt 0.00 0.01 2117 9 403 1695
max elt 0.00 0.01 1738 9 392 1477

max elt opt 0.00 0.01 2117 9 403 1695
remove min elt 2 .00 1.68 292644 284 51707 195065

merge 2.39 3.97 325913 332 56022 219388
concat 5.24 5.33 492858 427 73863 336534
split 5.81 5.91 523681 414 72934 344178

is empty 0.00 0.01 55 0 26 79
mem 0.00 0.03 7388 22 578 4578

remove 5.09 3.46 496624 414 71456 312173
union 16.24 8.90 894505 625 111227 580532
inter 14.28 10.05 840854 603 100644 544635

Table 9.3: Prototype statistic breakdown

270



the additive product (“with” or &) [63]. To see this, consider the rules for the additive product in
Figure 9.5, and note the correspondence between linear logical sequents and quantum physicist’s
method typing judgments provided via Theorem 9.8.1. The key to the this correspondence is that
worldviews act like additive products over entire typing contexts, and logical contexts can be put
into a matching normal form wherein additive products are the outermost connective.

Theorem 9.8.1 (worldviews are additive multiplicands). Additive products and typings with
worldviews have essentially the same behaviour. That is, linear logic sequents concerning ad-
ditive products (over entire contexts) and AARA typing judgments concerning worldviews each
can simulate the other.

Proof. To show this simulation, I show it for each of their characterizing rules. The simulation
is given through the correspondence where where the linear logical proposition P&Q and lin-
ear logical sequent P ⊢ Q each correspond to the collection of (individually quantumly valid)
worldviews P,Q and typing judgment Γ | P ⊢ e : τ | Q, respectively.

First, I show that the quantum physicist’s method typing rules provide corresponding impli-
cations between typing judgments that simulate each of the rules for the additive product. For
this purpose, it suffices to consider only the rules of Figure 9.5 with singleton or empty logical
contexts because of the equivalence P,Q&R ⊢ S ⇐⇒ (P ⊗Q)&(P ⊗ R) ⊢ S which lets the
additive product absorb other context members. This form gives the natural correspondence to
typing judgments, which put worldviews on the outermost level.

&L1 and &L2 Given Γ | P ⊢ e : τ | S, derive Γ | P,Q ⊢ e : τ | S and Γ | Q,P ⊢ e : τ | S.

Γ | P ⊢ e : τ | R
=⇒ Γ | P,Q ⊢ e : τ | R ∧ Γ | Q,P ⊢ e : τ | R Q − CollapseL

Note that this case uses the notation P,Q for two annotation maps P and Q with distinct world-
views.

&R Given Γ | P ⊢ e : τ | Q and Γ | P ⊢ e : τ | R, derive Γ | P ⊢ e : τ | Q,R.

Γ | P ⊢ e : τ | Q ∧ Γ | P ⊢ e : τ | R
=⇒ Γ | P, P ⊢ e : τ | Q,R simultaneous typing

=⇒ Γ | P ⊢ e : τ | Q,R Q − SuperposeL

Note that this case makes use of the fact that two typing judgments can be derived simultaneously
in one judgment across separate worldviews. Also note that this case uses the notation P, P to
stand for two maps with distinct worldviews that are otherwise copies of P .

Now I show that linear logic provides corresponding derivations simulating each of the su-
perposition/collapse rules. For this purpose, I consider the alternative forms of the superposi-
tion/collapse rules which act over arbitrary numbers of worldviews at once, rather than one at a
time. The desired derivations are the following:
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Q-SuperposeL Given P&Q&Q ⊢ R, derive P&Q ⊢ R as follows:

P ⊢ P axiom

P&Q ⊢ P &L1

Q ⊢ Q axiom
Q ⊢ Q axiom

Q ⊢ Q&Q &R

P&Q ⊢ Q&Q &L2

P&Q ⊢ P&(Q&Q)
&R

P&(Q&Q) ⊢ R
P&Q ⊢ R cut

Q-SuperposeR Given P ⊢ Q&R, derive P ⊢ Q&R&R as follows:

P ⊢ Q&R
Q ⊢ Q axiom

Q&R ⊢ Q &L1

P ⊢ Q cut

P ⊢ Q&R
R ⊢ R axiom

Q&R ⊢ R &L2

P ⊢ R cut
P ⊢ Q&R

R ⊢ R axiom

Q&R ⊢ R &L2

P ⊢ R cut

P ⊢ R&R &R

P ⊢ Q&(R&R)
&R

Q-CollapseL Given P ⊢ R, derive P&Q ⊢ R as follows:

P ⊢ P axiom

P&Q ⊢ P &L1
P ⊢ R

P&Q ⊢ R cut

Q-CollapseR Given P ⊢ Q&R, derive P ⊢ Q as follows:

P ⊢ Q&R
Q ⊢ Q axiom

Q&R ⊢ Q &L1

P ⊢ Q cut

Intersection Types Collections of worldviews can also be given another characterization as
intersection types [14, 35, 36]. Whenever Γ | P ⊢ e : τ | (w 7→ a⃗, u 7→ b⃗), it is as if the
expression e (and the remainder) could be typed with either a⃗ or b⃗ as annotations. The purpose
of intersection types is to describe such double-typings. Further, intersection types can be given
introduction and elimination rules as in Figure 9.18, and these rules are essentially the same as
the introduction and elimination rules for the additive product.

9.9 Related Work
In this section I detail some related work. While I know of no other work using comparable
cost-analysis ideas, some preexisting work does exhibit comparable results. I go over some of
those results here.
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∩ I
Γ ⊢ e : τ Γ ⊢ e : σ

Γ ⊢ e : τ ∩ σ

∩ E1
Γ ⊢ e : τ ∩ σ
Γ ⊢ e : τ

∩ E2
Γ ⊢ e : τ ∩ σ
Γ ⊢ e : σ

Figure 9.18: Typing rules for intersection types

Tree Height in AARA The ability to find stack bounds based on tree height in AARA is not
new. Campbell has already created an extension to AARA for this purpose [25, 26]. Rather than
building off of quantum physical principles, his work builds off of bunched logic [116, 123],
which is a close relative of linear logic.

Bunched typing admits two kinds of context formers (essentially products), one of which
Campbell uses to represent adding the potential energy of its multiplicands, and one of which
Campbell uses to represent taking the maximum potential energy of its multiplicands. These
context formers are much like the additive and multiplicative products represented in the quantum
physicist’s method system.

Nonetheless, bunched contexts are rather different than the worldviews of the quantum physi-
cist’s method. Bunched contexts are structured as trees, and working with this extra structure
requires additional machinery. Campbell introduces a set of axiomatic equivalences which ma-
nipulate the context structure. To infer bounds in Campbell’s system, a user initially supplies a
skeleton indicating the kinds of resource functions to consider, and then a nontrivial procedure
must handle how the context should be manipulated.

The resource tunneling of the quantum physicist’s method is also more general than the rea-
soning of Campbell’s system. Because Campbell’s system only reasons about stack and stack is
fully reusable, every net cost is 0. As a result, Campbell’s system never grapples with dynam-
ics of net costs. One of the effects of avoiding net costs is that Campbell’s system never needs
negative annotations, as such annotations only arise when net costs are subtracted. By focusing
only on stack, Campbell’s system can therefore sidestep some of the main problems that resource
tunneling solves for resources with nonzero net costs.

Maxima in AARA

Aside from this chapter’s work and Campbell’s work, there is one other AARA system that
uses maxima in its reasoning: Hoffmann and Shao’s system for parallel programs [79]. The
span (parallel cost) of a parallel program depends upon the maximum cost of a given line of
execution. Unlike any of the work discussed so far in this section, their work uses cost-free types
(see Chapter 8) to get at maxima. Their approach treats two branches of parallel execution as
if one branch accrues no cost and as if the branches are executed sequentially. This treatment
allows the system to obtain two sets of annotations, one each where cost only comes from one of
the two branches. The pointwise upper bound of these two annotations then provides an upper
bound on the maximum cost, just as it does for the typing of branches in non-parallel AARA.
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Tree Height Outside of Functional Programming

Many automatic cost analyses for non-functional progams do not focus as much on data struc-
tures, and instead provide bounds based on the integers in a program. However, it is still possible
for such analyses to provide bounds in terms of tree height. For example, SPEED allows users to
define quantitative functions that can capture tree height [69]. However, SPEED does not ensure
that such user-defined functions actually describe tree height.

Reusable Resources

One of the key uses of the quantum physicist’s method is to reallocate resource that can be
reused. However, the analysis of costs in terms of resources that can be reused is largely ignored
by many cost analysis systems in favor of analyzing time costs specifically. Reusable resources
are generally harder to reason about because their peak costs do not align with their net costs.
Those that can reason about reusable resources often reason specifically about space (e.g., [137]),
where the net cost is a priori known to be zero.

Nonetheless, at least one other line of work designed for the automatic inference of general
peak costs: that of Albert et al. [6]. This work considers abstract program executions to identify
costs at each point in the program, and then it reduces this bound by the amount of resources it
identifies that could be reused. This process leaves a bound on the maximum number of resources
in use at one time, i.e., the peak cost.

In principle, other techniques should be able to reason about peak costs as well. In particular,
by augmenting program counters with some counter to track their maximum value, numerical
techniques could be employed like the invariant-based techniques described in Chapter 4.

Hyperproperties

If one views the evolution of each worldview as a separate program trace, then the quantum
physicist’s method might be viewed in terms of hyperproperties [33]. A hyperproperty holds for
sets of program traces, while in contrast a trace property holds for singular traces. The definition
of amortized cost (Definition 9.3.1) describes a trace property, as amortized cost validity can
be considered with respect to individual traces. However, the conditions of quantum cost from
Section 9.3 describe a hyperproperty, as quantum cost validity is considered with respect to a set
of traces, one for each worldview.

It does not appear that the concerns of cost analysis have previously been expressed in terms
of hyperproperties. However, future work might apply hyperproperty techniques to the quan-
tum physicist’s method. In particular, such techniques might improve upon the naive inference
algorithm presented in Section 9.6.
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Chapter 10

Conclusion

To begin the conclusion, I first recall my thesis statement:

Thesis Statement:
1. AARA’s state-of-the-art automatic capabilities can be improved to derive tighter cost

bounds more efficiently for more kinds of programs and more kinds of resource costs.
2. Such improvements can be made by leveraging key features of linearity intrinsic to

the AARA type system.

I believe the work I have provided here has now proven both counts. Each contribution of
this thesis was motivated by a problem concerning the first count, and each solution was derived
from the second. I now recount how each chapter contributed to these counts in more detail:

• For the remainder contexts of Chapter 5, I addressed how AARA would naively lose poten-
tial energy and derive poor cost bounds for reusable resources in otherwise-simple program
examples. My solution of remainder contexts then came with deep connections to linear-
logic proof-search techniques, and introduced some beautiful symmetries into the AARA
typing rules. Furthermore, remainder contexts were also shown to have an interesting con-
nection to physical (un)computation. It is well-established that linear logic can be applied
to physical computation (like quantum computing), and I find it quite intersting that here I
have found some sort of converse: physical principles being applied to a linear type theory
(and I do so again later with the quantum physicist’s method).
Compared to their simplicity, the impact of remainder contexts has been disproprtionately
large. Not only do they solve the problem they were designed for, but also they smooth
over some rough edges of AARA surrounding sharing and let expressions. As a result,
remainder contexts have already begun to worm their way into “standard” AARA tech-
niques, showing up in Grosen et al.’s multivariate system [65] and the implementation of
the Nomos typechecker [47].

• For the exponential system of Chapter 6, I addressed the disparity between the kinds of
programs one could easily write and the kinds of bounds one could easily analyze. It is
easy to write exponential-cost programs—just use two recursive calls—but AARA could
not successfully analyze such programs. My solution to ths problem came in the form of
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Stirling numbers, which turned out to be exactly the right choice of basis resource func-
tions for exponentials. Not only were their conical combinations maximally expressive, but
also they came with a nice linear recurrence that could be handled by the linear program
solver that powers AARA. Furthermore, these results were generalized to a variety of re-
source functions satisfying a linear recurrence, allowing easy integration of other resource
functions in the future.
Of course combinatorics of Stirling numbers also played a very interesting role. When
mixed with polynomials, combinatorial properties enabled interesting demotion rules nec-
essary for tight cost bounds. Moreover, such combinatorial properties enabled my later
multivariate extension.

• In Chapter 7, I addressed AARA’s need for multivariate resource functions to handle my
new exponential resource functions in, e.g., the accumulator code pattern employed in tail-
recursive functions. I solved this by taking a deep combinatorial inspection of the linear
recurrence used by Stirling numbers and using this understanding to generalize Stirling
numbers over program values. Crucially, conical combinations of resource functions in
the resulting system are closed under products, allowing sharing to not only be defined, but
inferrable via linear programming. I also found the way that all the complex definitions
clicked smoothly together to be quite satisfying.

• In Chapter 8, I addressed a problem of efficiency: cost-free types were expensive to infer
but necessary for many of AARA’s analyses. Moreover, they could not be inferred at all
for my exponential system. To address this problem, maps over annotation vectors were
inferred, rather than the annotation vectors themselves. This kind of approach was only
possible because AARA’s annotations are often manipulated linearly at each subexpression
of a program.
While not every cost-free type could be inferred this way, empirical testing showed that
this approach could drastically improve the efficiency of the AARA analysis. In my own
experience with AARA, I have found that cost-free type inference really is one of the
slower parts of the analysis, and I am glad to have found some way to improve it.

• Finally, in Chapter 9, I addressed poor cost bounds arising from poor (re)allocation of
resources in AARA. This problem showed most strongly during a tree traversal: how
could one soundly and automatically reallocate energy stored on one subtree to a different
subtree using only local energy manipulation? Here the solution was to delve deeper into
the linear-physical connection and take a solution inspired by quantum physics. By placing
worldviews in the role of superpositions, resource tunneling could reallocate resources
around potential barriers in a similar way to quantum tunneling. The resulting system
could then not only reason about reallocating resources quite flexibly, but also enabled
cost bounds to depend on tree depth. Empirical testing also confirmed that this approach
is efficient enough to analyze real code.
While the methods of this chapter were probably the most unusual in this thesis, I do not
think the results were a fluke. It is well-established that quantum physics is governed by
a linear flavor of logic, just like the AARA type system, and worldviews are indeed just
linear additive products. There is something intrinsic about this linear behaviour, and I am
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proud to have brought it to fruition in this work.

Thusly, I have improved AARA’s handling of reusable resources, the kinds of cost bounds
AARA can infer, and even improved AARA’s efficiency. As a result, AARA can more compe-
tently handle analyses involving memory, multiple recursive calls, trees, tail recursion, non-tail
recursion, and more.

Similarly, I have shown that the many facets of linearity (logical, algebraic, etc.) form a
key route to improving AARA. In my work, I have drawn upon linear-logic proof search, linear
recurrences, linear maps, quantum mechanical principles, and more. Indeed, by always sticking
to such principles, the resulting type system has been able to be inferred efficiently by a linear-
program solver.

I now finish the conclusion with some words about the journey of this thesis. When I began
my graduate-school career, I was amazed by AARA’s ability to automatically and efficiently
derive cost bounds which, as an undergraduate, I had thought must be derived by hand. And now,
after that veil has long been lifted, after I have become well-aware of the power of automatic
cost analyses, I am still amazed by AARA. Now, however, that amazement is because of the
incredible ways in which features have coincided to allow AARA to work. Without linear types,
AARA would not be able to analyze resources at all. Without linear programming, that analysis
would not be fast. Without linear recurrences, that analysis would not yield interesting bounds.
And without the physicality of the physicist’s method of amortized-cost analysis, more linearity
would not have been able to sneak in to support reusable resources in the way that this thesis has
done. Yet somehow all this linearity has come together, and I have been able to make it into my
thesis. I hope that readers of this work will find it even half as interesting as I have.
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[59] Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex programs
with cost equations. In Asian Symposium on Programming Languages and Systems, pages
275–295. Springer, 2014. 4.2, 4.3

[60] Stuart J Freedman and John F Clauser. Experimental test of local hidden-variable theories.
Physical review letters, 28(14):938, 1972. 9.2

[61] Dan R Ghica and Alex I Smith. Bounded linear types in a resource semiring. In Pro-
gramming Languages and Systems: 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings 23, pages 331–350.
Springer, 2014. 4.1

[62] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, et al.
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[66] Armaël Guéneau, Arthur Charguéraud, and François Pottier. A fistful of dollars: For-
malizing asymptotic complexity claims via deductive program verification. In European
Symposium on Programming, pages 533–560. Springer, 2018. 1.1, 4.2, 8.11
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