Making Security Usable

Alma Whitten
May 2004

CMU-CS-04-135

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

Thesis Committee:
J. Douglas Tygar, Chair
Robert Kraut
Steven Roth
Edward Felten, Princeton University

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

© 2004 by Alma Whitten

This work was supported by grants from the NSF, DARPA, and the United States Postal Service. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed
or implied, of those organizations or of the United States government.

Keywords: security, privacy, usability, cryptography, user interfaces, learnability,
electronic mail, conceptual models, visual metaphors, scaffolding, metaphor tailoring,
safe staging.

Abstract

Usability remains one of the most pressing and challenging problems for computer
security. Despite widespread recognition of the damage that results from configuration
errors and other user misunderstandings, little progress has been made toward making
verifiably usable security a reality. In this dissertation, we propose that the usability
problem for security is difficult to solve precisely because security presents qualitatively
different types of usability challenges from those of other types of software, and suggest
that making security usable will require the creation of user interface design methods that
address those challenges.

We begin by presenting an analysis of security as a usability domain. Our analysis is
founded on the identification of five characteristics of computer security which
distinguish the problem of creating usable security from the general problem of creating
usable consumer software. Working from those characteristics, we establish a set of
guidelines for determining when security can safely be automated and hidden from the
user versus when it must be made visible and usable. We argue for a design philosophy
that considers the benefits of presenting a security mechanism as a general purpose tool
rather than an application specific appliance, and discuss some of the additional ethical
and pragmatic issues raised by questions of visibility. Our analysis concludes with the
identification of a design principle for usable security, well-in-advance, that stands in
contrast to the general user interface design practice of providing just-in-time
information.

In order to ground our analysis with some empirical data, we describe a case study that
we conducted using PGP 5.0 for the Apple Macintosh. PGP is a commercial product for
adding cryptographic security to electronic mail. Marketing literature for PGP 5.0
claimed that its user interface had been substantially improved and was highly usable,
and it was often mentioned in the security community as an example of a good user
interface for a security program. We agreed that the PGP 5.0 user interface appeared
good by conventional standards, but suspected that it would fail to meet the special
challenges posed by security. A cognitive walkthrough analysis and an extensive user
test demonstrated that this was indeed the case.

We next present two specialized user interface design techniques that we have developed.
Safe staging is founded on the well-in-advance principle, and combines the concept of
staged user interfaces with a safety template derived from established standards for
consumer product warning labels, resulting in a technique for designing user interfaces
that allow users to safely and consciously postpone learning about the use of particular
security mechanisms until they decide they are ready to do so. Metaphor tailoring uses
conceptual model specifications that have been augmented with security risk information
to create visual representations of security mechanisms and data that incorporate as many
desirable visual cues as possible. We demonstrate the use of both these techniques by
applying them to the design of a user interface for a hypothetical secure electronic mail
program called Lime.

i

To evaluate the success of our techniques as represented in our user interface design, we
first performed comparative user tests using paper presentations. Two versions of these
tests were conducted, each using three presentation variants. The first version of the test
was designed to compare a design that used safe staging to present the mechanism of key
certification against two other variants that did not use staging. This version yielded a
strong positive result for staging: 45% participant success versus 10% and 0% for the
unstaged variants. The second version of the test was designed to compare two variants
of the tailored metaphors used to present public key cryptography in Lime against the
standard images used in PGP 5.0. This test was judged to be a failure due to a problem in
the test design, and did not yield useful results.

For the next part of our evaluation, we created a complete working software
implementation of the Lime design, with simulated cryptographic and electronic mail
functionality, and used it to conduct an extensive user test. Results from this test were
good: not only were nearly all participants were able to use the basic cryptographic
functions successfully and appropriately, but most were also able to make appropriate use
of key certification, which is one of the most difficult cryptographic concepts to make
usable. The combined results of the first comparative test and the software user test
support our thesis that it is possible to make security usable for general consumer
software, when user interface design techniques developed for the specific needs of
security are used.

i\/

This dissertation is dedicated to my father, Franklin Cacciutto.

Acknowledgements

First and foremost, a multitude of thanks are due to my thesis advisor, Doug Tygar, for
his support, patience, insight, creativity and open-mindedness during the long course of
my thesis work. I have been fortunate to have the support and mentoring of exceptional
advisors throughout my academic career, and would also like to thank Joseph Bates, who
was my original advisor at CMU, and Robert McCartney and Neal Alderman, who
guided and encouraged me at the University of Connecticut.

I am especially grateful to Doug for his guidance in choosing my thesis committee. Steve
Roth, Bob Kraut and Ed Felten all provided generous encouragement and invaluable
feedback, and they have my deepest thanks. Heartfelt thanks also go to Sharon Burks for
all of her advocacy, sensible advice and warm support, which made a tremendous
difference to me at many points in my graduate school career.

My fellow security graduate students were a wonderful resource for me, both at CMU
and at Berkeley. Howard Gobioff, Michael Harkavy, Jean Camp, Bennet Yee, Adrian
Perrig, Rachna Dhamija, Dawn Song, Monica Chew and Mahad Ibrahim: thank you for
your encouragement and friendship. Thank you also to Barbara Goto, whose competence
and good cheer should be an inspiration to us all. And special thanks are due to Ka-Ping
Yee for his assistance as a second coder for my user study results — thanks Ping!

Working with the Postage Technology Management group from USPS has been one of
the most enjoyable aspects of my time in graduate school. I’d like to thank all of them
for their support and for being such a pleasure to work with, but most especially Wayne
Wilkerson, Roy Gordon, and Dan Lord.

I have also been fortunate to have the unstinting support and encouragement of my
colleagues at Google throughout my final thesis revisions. Thanks to Fritz Schneider,
Bill Coughran, Niels Provos, Jun Luo, Bryan Olson, and once again, Howard Gobioff and
Bennet Yee, all of whom repeatedly reassured me that finishing my thesis was a perfectly
valid use of Google 20% time.

Thanks also to the many other graduate students and members of the CMU SCS
community who made my time there memorable: Joseph O’Sullivan, Paul Placeway,
Daniel Tunkelang, Prem Janardhan, Morgan Price, Rowan Davies, Ralph Melton, Corey
Kosak, Nick Thompson, and above all Sedn Slattery. And thanks to Karl Wurst and Amy
West, without whom I would not have made it to CMU in the first place.

Special thanks to my wonderful in-laws, Karen and David Willmott, for sheltering,

encouraging, and insisting on feeding me while I wrote the last chapters of my thesis
draft; this document should definitely be stamped “Made in New Zealand.”

vi

My father, Franklin Cacciutto, earned the first doctorate in our family in 1991, and raised
me to believe that the only things a little ingenuity can’t fix are the crack of dawn and a
broken heart. This dissertation is dedicated to him.

Finally and always, my thanks and love to Andrew Willmott, whose unwavering support
and faith in me makes all things possible.

Contents

CHAPTER 1 INtrOUCHIONeeiiiiieiiiieiiieeeit ettt st e e 1
1.1 The need for usable COMPULET SECUTILYcccerruviiieeeiiiieeeeiiiieeeeiiieeeeeiieeeeeiieeee e 1
1.2 Overview of research on usable SECUTIILYcuveiieeiiiiieiiiiiiee et 2
1.3 Summary of our CONtIIDULIONSvviiieiiiiiieeiiiiiee et ettt e e e e eiaeeee e 3
1.4 Contents of diSSETtAtIONccc.ueieiiiiiriieiiiiie ittt 5

CHAPTER 2 Analysis, principles and guidelinescccccoeeeviiiiieiiiiiieeeniiiiee e 6
2.1 Security compared to other types of software............ccceeeeviiiiiiiiniiiiieeiiieeee, 6
2.2 Properties that make security difficult.............ccccoeiiiiiiiiiiini e, 7
2.3 Making security INVISIDIC..........oiiiiiiiiiiiiiiiiie e 8
2.4 Generality: tools, appliances and hierarchies............cccoceeeviiiiniiiiniiiiiieciiee 11
2.5 The well-in-advance principle...........ooeeruiiieiiiiiiee et 12
2.0 SUITIMATY ..eeeiiiiiiiiiieeeee e e ettt e e e e e e ettt e e e e e e e ettt e eeeeeessaaanabaaeeeeeesssannnnseseees 13

CHAPTER 3 Case study: PGP 5.0coooiiiiiiiiiiee et 14
3.1 Case StUAY OALS ...cceeiiiiiieieiiiie e e et 14
3.2 MEthOAOIOEY ...t e e et e e 15
3.3 RESUILS. ..ttt e 18
3.4 CONCIUSIONS ..ottt ettt et et st st e e 21

CHAPTER 4 Design technique: safe Staging...........cccceeeeveiiiieiiiiiieeeniiieeeeeiiee e 23
4.1 A brief history of staged user interfaces...........ccceeeeeviiirieniiiiee e 23
4.2 Adapting staging for COMPULET SECUTILYccevrriireeriiiiireeeiiiieeeeiieeeeeiieeee e 24
4.3 The design teCRNIQUEccoouiiiiiiiiiiee ettt e e s 25
4.4 Example: staging applet SECUTTLY......oeieiriiiieeiiiiieeeeiiie et et e e 27
4.5 Variant: staging for the abstraction propertyccccceeeeevciiieeeniiiieeeeniiiee e 29
4.6 Safe staging demonstrated in Limeccceeeeviiiiiiiiiiiiiieiiiiee e 30

CHAPTER 5 Design technique: metaphor tailoring.........coccueeevieeeniiiiniieeniieeniieeeee. 40
5.1 RiSK @NUMETATION. ...c.utiiiiiiiieiiiee et 40
5.2 Metaphor taIlOTINgc..vviieeeiiiiie ettt e et e e e e eettaee e eenaeee s 43
5.3 Metaphor tailoring demonstrated in Limeccooveiiiiiiniiiiieiniiiee e 45
5.4 Additional example: firewall port management..............cccccuveeeeriiieeeenciieee e 52
5.5 SUIMMATY .ttt e e e e ettt e e e e e e e sttt et e e e e e e s ssnnabbbeeeeeeens 53

CHAPTER 6 Experimental T€SUILSccueeiiiriiiiiiiiiiiie e 54
6.1 Staged user iNterface COMPATISON.........ceruuiiieeeiiiiieeeeiiiee ettt e e et e e e eieeeeeeeaeeees 55
6.2 Visual metaphor Set COMPATISONeeeeeiiviiieeeiiiieeeeiiiee ettt e e et e e e eieeeeeeeneeees 59
6.3 Proof of CONCEPL USET tEStING.....ceviuviiieeiiiiiieeeiiiiee et e ettt e e e eiaee e e e eieee e e e eneeee s 63
6.4 Evaluation SUMMATYccocuiiiiiiiiiiiieeeiieeeeeriieeeeeiteeeeeseiteeessntaeeeessnssaeeesnnneeeens 79

CHAPTER 7 Conclusions and future Worki.............occcveiiiniiiiiinniiiiieeiieee e 81
7.1 CONITDULIONS ...ttt ettt ettt et et e sttt e st e st e e s e e eaeees 81
7.2 FULUIE WOTK c...eiiiiiiiiiice et s e e 82
7.3 Concluding re€MATKS.coeiuiiieiiiiiiieeeiieee et e et e et e e e e etaree e s enaaaeeeesnnaaeees 84

APPENDIX A PGP case study materials and data.............ccooeeeeniiiiniiiiniiienieciieee 85
A.1 Description of test PartiCiPaANtS...........eeeeereuiiereeriiieeeeriiieeeeeiieeeeeeiieeeeeeireeeeeeneees 85
A.2 Description Of tESHING PrOCESSeeeeruurrreeeriiiieeeiiiieeeeaiireeeeairreeeesnrreeeesnsreeesnnnens 87
A.3 Summaries of test SESSION trANSCIIPLS ..eeeeruvrrereeriiiieeeeiiieeeeeiieeeeeeireeeeeeieeeeeeeaeees 90
A4 Test MALETIALS ...eeiiiiiiiiii ittt s e e 103

viii

APPENDIX B Staging comparison test materials and data.............ccoceeeriieeiiiecinneen. 106

B.1 Participant SCIeeNing QUESTIONSeeeeerurreeeeriiieeeeniireeeenirreeeesnrreeessnseeessnnnns 107
B.2 Briefing given to PartiCiPantsc..eeeerevieeeeriuiieeeeniieeeeeiiieeeesineeeeesneeeeeeennes 108
B.3 Presentation VAITANEScccuuiiieiiiiiieeeeriiieeeeeiiieeeeeiiteeeesibeeeeesnareeeesenssaeesennnns 108
B.4 Questions and collated resultscccouviiiiiiiiiiiiiiiee e, 116
APPENDIX C Metaphor comparison test materials and data.............cccceevveeriieinnneenn. 156
C.1 Presentation VATTIANTSc..eeeeeruiieeeeniiieeeeiiieeeeeiiteeeeeiteeeeeeaseeeesessneeesnnnsneeas 156
C.2 Questions and collated resultsc.eeeeiiiiiiiiiiiiiiiiiee e 166
APPENDIX D Lime user test materials and data.............cccoeeevviiiiiiiiiiiiiiiieeeeieee e 204
D.1 Participant intake qUESHIONNAITEceruviieeeriiiieeeiiiieeeeeiiieeeeeiieeeeeeareeeeeeneeis 205
D.2 Participant initial briefing materialsccoocueirriiiiiiiiiniiieee e 206
D.3 Scenario descriptions given to participantocevvererriieeeeeniiieeeesiieeeeennnnes 207
D.4 POSt-teSt QUESTIONNAITEeeeuviieeeeiiiieeeeeiiieeeeeiiteeeeeirreeeeenbeeeeesnnraeeessnnsreeeennnnns 211
D.5 Collated results for true/false qUESHIONS.........cccuvvieeeiiiiiireeiiiiee e 214
RETRIEIICESviiieeiiiiie e ettt et e e e et e e e e e ibaee e e e abaeeeeeneees 216

CHAPTER 1 Introduction
1.1 The need for usable computer security

Most computer security is not easy for people to use. Even before the Internet became a
household word, security failures were more likely to be caused by user errors than by
weak cryptography or bad protocol design. This was true even when networked
computers were used primarily by people who had some degree of technical skill or
professional training; it is overwhelmingly more true now that a personal computer with
an Internet connection has become a standard consumer good. Hundreds of millions of
people now use the Internet to communicate, find information, and conduct financial
transactions on a regular basis. Ideally, they should be empowered to make and enforce
their own security and privacy decisions, but the usability barrier has so far made this
implausible.

This is all the more frustrating because a wealth of knowledge already exists on how to
make software usable. Literature on human-computer interaction, user-centered design,
and usability engineering is readily available and widely used in software development.
Web browsers, electronic mail, instant messaging, and many other software applications
are used daily and successfully by people who have very little technical background. But
when similar user interfaces have been created for security, they have had little or no
success.

There are several possible explanations for this. Perhaps the designers simply did not do
a good job of applying standard usability design techniques. Maybe most people just are
not interested in security, and do not want to use it, regardless of how well it is presented.
Possibly the security in question is inherently too difficult and can never be made usable
for non-experts. Each of these explanations may be true to some degree for some cases.
Another possible explanation, which we explore in this dissertation, is this:

Many crucial usability problems in computer security are fundamentally
different from those in most other consumer software, and usability design
techniques need to be carefully adapted and prioritized in order to solve
them successfully.

By examining the ways in which security goals and tasks differ from those of most
consumer software applications, we identify common problems that are not well
addressed by standard usability design techniques'. This enables us to develop and
evaluate modified and enhanced techniques that are much more effective for designing
usable security. These techniques may not be equally applicable to all aspects of
computer security; indeed, as we acknowleged earlier, some security may be inherently
unusable, and some security may already be usable enough, at least for particular sets of
users in particular concepts. However, we argue that they are broadly applicable to many
of the most pressing usability problems in security for personal computing, and thus are a
significant contribution toward the general problem of making security usable.

1.2 Overview of research on usable security

Up until about five years ago, there was little research directly investigating usability for
security. [Anderson94] helped to provoke awareness that security tends to fail where it
interacts with the messiness of the real world, rather than because of weaknesses in the
underlying protocols. A few years later, [Davis96] provided an analysis of the ways in
which public key cryptography was often deployed with extremely unrealistic
expectations about how the people in the system could be expected to behave, and
[Zurko96] began calling for a user-centered design approach to computer security. Soon
after that, we conducted the study that is discussed in Chapter 3 of this dissertation
[Whitten98, Whitten99], finding that even though a well-known security program had
been given what appeared to be a very nice user interface, it remained unusable for
people who did not have substantial prior knowledge of the security technology involved.

Over the next few years, interest in usability for security grew steadily, to the point where
mailing lists and workshops devoted entirely to that topic have come into being. Much
interesting work has been done during that time, taking a variety of approaches to the
problem, most of which are dissimilar but complementary to our own. These approaches
might be categorized as follows:

* Ethnographic or similar investigation into how people currently think about
security and privacy, both in terms of how they make sense of the technology and
in terms of what concerns them most. [Adams99, Adams99-2, Adams00,
Dourish03, Friedman02, Friedman02-2, and Karvonen99] have taken this
approach. Dourish in particular has argued that computer security must be
redefined and redeployed to better match the actual concerns of real people; we
completely agree. After that has been done, however, the problem of how to

' One might ask whether the failing is not in the technique, but in the designer who fails to apply it with
enough insight and creativity. After all, it is standard in usability engineering to carefully consider the
goals and tasks that the user will need to perform. Our response is that if a few designs fail, perhaps those
products need better designers, but if all designs fail, then the designers probably need better techniques.

present the necessary technology will remain, and our work contributes
techniques and guidelines for solving that problem effectively.

Investigation of ways to greatly reduce the need for the user to understand
security, either by making the security entirely invisible and automated, or by
making the choices available to the user very coarse-grained and basic. Examples
of this approach include [Brown99 and Garfinkel03, Garfinkel03-2] who propose
to automate key distribution and management for email security, and [Balfanz00],
who reduces desktop computer security management to a choice between several
predefined virtual desktops with different security policies, leveraging the fact
that people have a good understanding of security through physical separation.
Again, we consider these approaches valuable both for reducing the user interface
design problem to be solved, and for raising the default level of security available.
However, we consider them to be fundamentally limited and also not always in
the best interests of the user, for reasons that we discuss in Chapter 2.

Analyses of the usability needs of security from a standard usability engineering
perspective [Adams99-3, Dufft99, Laukka00, Shen92, Wolf99 and Zurko96],
from the perspective argued in our earlier work [Holmstrém99, Karvonen99], and
from a security perspective [Yee03].

Experiments in designing improved user interfaces for particular security
problems, including the design of security and privacy wizards [Cranor99,
Damker99, Friedman02-3, Jendricke00, Lau99, Ye02, Zurko99].

Research into new security technologies that are inherently easier to use, such as
biometric authentication and various kinds of graphical passwords, such as
[Brostoff00, Coventry02, Dhamija00, Dhamija00-2 and Jermyn99].

Research into how to evaluate the usability of security applications
[Ammenwerth99 and Karat89].

1.3 Summary of our contributions

This dissertation is based on the thesis that many of the usability requirements of
computer security are fundamentally different from those of general end-user software,
and that analysis of those requirements can lead to new design principles and techniques
that are effective for creating usable security software when standard techniques fail. The
contributions of the research include the following:

Concepts and techniques:

An analysis of the particular usability requirements of computer security.

A set of usability design principles particular to computer security.

s S i et it el

Fie Edd Mezage

@ == _Illnltzr

II;

[Ermeicon | Duate] Sutgect I

Wik 100 L St Il i ot ol ol

Welcome to Lime! ———

This short introduction will help you set up Lime for secure e ectronic
madl. The first thing you need to do 12 to enter your badc ema] acoount
informsaiion bedow.

When you've done that, press the Next bulfon, and Lime will get you
started on securily by helping you ereate vour own key pair. After that,
Limwe vl show you how bo use your Key pair bo creabe locks to protect
your emall messages agsn forgers and eavesdroppers, and how to safely
tradke keys with your fends and coll cagues

Theat "z dll you need for secume electron ¢ madl?

Ermwyoublieams [
R
Eiwtermsec e [

R | |

Figure 1-1: Opening screen of Lime (50% scale)

A technique called safe staging that allows the user to safely postpone learning
how to use a security mechanism.

A technique for designing effective visual representations of security
mechanisms.

Artifacts:

Lime (see Figure 1-1), which is a working implementation of a user interface
design for usable public key cryptography-based secure electronic mail software,
coded in Visual C++ and executable in most versions of Microsoft Windows.

Limeserver, a combination mail and key server simulator, coded in C++,
executable in UNIX and intended for use in conducting user tests with Lime.

A hierarchical design for the visual representation of public key cryptography
operations, which may be further specialized and extended for use in a wide
variety of security applications.

Experimental results:

A case study, with formal user testing, of the usability of a commercial security
software product which claimed to be highly usable, showing that despite its

conventionally friendly graphical user interface, most test participants were
unable to use it successfully for basic security tasks.

* A paper-based user test of the effectiveness of presenting public key cryptography
using safe staging for the mechanism of key certification, compared to that of two
variant presentations that did not use staging, showing that participants who were
given the staged variant performed significantly better at describing how key
certification would be used.

* An extensive formal user test of Lime, showing that almost all participants were
able to successfully use it for most security tasks, and that most participants were
able to successfully use it for advanced security tasks.

1.4 Contents of dissertation

We begin in the next chapter with an analysis of what it must mean for security to be
usable, and of how the most important usability problems in security differ from those in
more standard varieties of consumer software. Chapter 3 then presents our preliminary
case study of PGP 5.0 for the Apple Macintosh, chosen because it was advertised and
frequently cited as having an excellent user interface. Our testing showed that the
majority of our test participants were unable to use PGP to correctly sign and encrypt an
email message, despite the fact that they were all experienced email users.

In the second part of this dissertation, we present two usability design techniques that are
specialized for computer security, and demonstrate them with a user interface design for a
secure email program called Lime. Chapter 4 introduces safe staging, which takes the
basic concept of multi-level user interfaces, which are usually designed to aid learning
and to support both novice and expert users, and enhances it by providing a clear theory
of how to design levels and transitions that preserve the user’s security at all times.
Chapter 5 introduces metaphor tailoring, which begins with existing techniques for
designing visual user interface metaphors and adds a new technique, risk enumeration,
that enables us to tailor our visual representation to the most important aspects of the
security in a methodical and prioritized way.

Chapter 6 presents the results of several user tests of Lime. Compared against existing
ways of presenting public key cryptography, Lime’s safe staging presentation yielded
significantly better results for user understanding of key signing. Proof of concept testing
with a Windows implementation of Lime showed that most participants were able to
successfully sign and encrypt email, and many were also able to use key signing to
securely identify the owners of cryptographic keys, despite having no knowledge of
public key cryptography prior to the test. Finally, Chapter 7 summarizes the
contributions and conclusions of this thesis.

CHAPTER 2 Analysis, principles and guidelines

In this chapter, we present an analysis of the similarities and differences between
computer security and other types of software from a usability perspective. We identify
five special properties of computer security that make usability difficult, which will form
the starting motivation for much of our work. We address the fundamental question of
whether the usability problems in computer security can be resolved by making security
invisible and automated, and present a set of rules for determining whether invisible
security is a valid approach for a particular software application. Exploring the question
of visibility further, we then discuss a number of ethical and pragmatic considerations to
be taken into account when deciding how to present a particular security mechanism to
users. Finally, we argue for a security-specific design principle, well-in-advance, which
will be important in later chapters.

2.1 Security compared to other types of software

End-user computer security has qualities in common with general consumer software,
with safeware such as the software used to control medical systems and airplanes
[Leveson95], and with educational software. A graphical representation of the
overlapping sets of usability challenges for these different types of software is shown in
Figure 2-1.

As with safeware, computer security users must avoid making a variety of dangerous
errors, because once those errors are made, it is difficult or impossible to reverse their
effects. Safeware, however, may be expected to be used by a preselected and trained
group, to achieve goals defined by experts; none of those expectations hold for end-user
computer security, which in those respects is more like general consumer software.

Safeware

_ .. * No undo for dangerous error
* No training/supervision g Ors

* All kinds of users
* Goals set by user /

\\\ * Learnability is high priority
End-user
Computer
Security

General
Consumer
Software

/' Educational
Software

-~ -

Figure 2-1: Security in relation to other types of software

Finally, because computer security badly needs to be learnable, we may attempt to draw

on techniques developed for educational software, but we will be constrained by the

limits of user willingness to cooperate with tutorials for the sake of safety rather than as a

means to accomplishing their primary goals.

2.2 Properties that make security difficult

The secondary goal property

Security is usually a secondary goal. People do not generally sit down at
their computers wanting to manage their security; rather, they want to send
email, browse web pages, or download software, and they want security in
place to protect them while they do those things. It is easy for people to

put off learning about security, or to optimistically assume that their

security is working, while they focus on their primary goals. Designers of
user interfaces for security should not assume that users will be motivated
to read manuals or to go looking for security controls that are designed to

be unobtrusive. Furthermore, if security is too difficult or annoying, users

may give up on it altogether.

The hidden failure property

The need to prevent dangerous errors makes it imperative to provide good
feedback to the user, but providing good feedback for security
management is a difficult problem. The state of a security configuration is
usually complex, and attempts to summarize it are not adequate.
Furthermore, the correct security configuration is the one which does what
the user “really wants”, and since only the user knows what that is, it is
hard for security software to perform much useful error checking.

The abstraction property

Computer security management often involves security policies, which are
systems of abstract rules for deciding whether to grant accesses to
resources. The creation and management of such rules is an activity that
programmers take for granted, but which may be alien and unintuitive to
many members of the wider user population. User interface design for
security will need to take this into account.

The barn door property

The proverb about the futility of locking the barn door after the horse is
gone is descriptive of an important property of computer security: once a
secret has been left accidentally unprotected, even for a short time, there is
no way to be sure that it has not already been read by an attacker. Because
of this, user interface design for security needs to place a very high
priority on making sure users understand their security well enough to
keep from making potentially high-cost mistakes.

The weakest link property

It is well known that the security of a networked computer is only as
strong as its weakest component. If a cracker can exploit a single error,
the game is up. This means that users need to be guided to attend to all
aspects of their security, not left to proceed through random exploration as
they might with a word processor or a spreadsheet.

2.3 Making security invisible

One fatalistic view among computer security professionals holds that the only way to
make security truly reliable is to make it completely automated and invisible to users,
thereby removing user error as a source of security failures. Unfortunately, in practice,
making a particular component of the security invisible will often lead to a different set
of security risks, equally as serious as any that were prevented. These new risks are of
two types: risks that a user will be led to take actions based on inaccurate expectations

Rules for making security invisible

1. If auser action in the application depends on a particular security function for
protection, and there is any possibility that the security function may sometimes not
be able to be executed, then, in the case that the security function cannot be executed,
one of the following clauses MUST be met:

a. The user action MUST be completely disallowed, both inside and outside the
application.

b. Or, the lack of protection for the user action MUST be made visible to the user,
and tools for remedying the problem that prevents the execution of the security
function SHOULD be made available to the user.

2. If a security policy in the application determines who is granted access to resources
that the user owns, then both of the following clauses apply:

a. That security policy MUST be made visible to the user.
b. Tools for modifying that security policy SHOULD be made visible to the user.

Figure 2-2: Invisibility rules

about whether they will be invisibly protected while doing so, and risks that a user will be
regrettably pushed toward taking unprotected actions in the event that the only presented
alternative is to refrain from the actions altogether.

Figure 2-2 presents a set of rules which can be used to determine whether a particular
component of the security for a specific software application, intended to be run in a
particular setting, can be safely made invisible. Note that, since the first type of risk
described involves the software failing to be honest toward its users, the rules that relate
to that risk use the word “must”, while those relating to the second type of risk are less
ethically imperative and thus use the word “should”.

In practice, the first rule requires that if a security function that protects a particular user
action is to be made invisible, and if that function depends on the availability of any
additional data, such as keys or policies, then the software application in question must be
one which runs strictly within a closed environment such as a set of corporate offices, so
that an expert support staff will be present to attend to security configuration and
maintenance for all the computers in the system, and also so that users can be restricted
from using alternative software programs to attempt disallowed actions. Otherwise, user

actions will regularly be disallowed, and users will, quite understandably, turn to some
more accomodating software program to accomplish their goals. Furthermore, the
invisibly secured software program should not be designed to resemble any non-secure
software program intended for more general use, lest it lead its users to expect invisible
protection in other circumstances where none exists.

As for the second rule, it requires that security policies that control access to resources
must always be visible to the owners of those resources, so that they are able to make
informed decisions about whether to keep the resources in the system at all. This does
not mean that such policies can never be made invisible, since in many systems users
may be working with corporate resources that they do not own, but it does effectively
rule out making access control policies invisible in software intended for home users.

Note that these rules in fact apply to any software that has the potential to create security
or privacy risks for its users, and that obedience to the rules need not, in fact, involve any
security technology at all, as the rules’ fundamental requirement is simply that software
provide its users with accurate information for risk assessment.

On the topic of making security visible, several issues remain that ought to be addressed.
There are a number of arguments that are commonly made against visibility, with the
implication that, despite whatever risks may be created by making security completely
invisible, the alternatives are inevitably worse. We will briefly discuss the two such
arguments that we have most often seen made, and point out practical and ethical issues
that ought to be taken into account before accepting either of them. We will then
conclude this section with an argument that, in some cases, it may be worth increasing
the visibility of the security in an application even beyond that which is required by the
visibility guidelines for that particular application and setting, because doing so may
contribute to the usability and general effectiveness of security in a wider context.

As we briefly mentioned earlier, the most commonly made argument against visible
security is that users are too ignorant and fallible to be able to protect themselves
effectively, and that therefore the only real way to protect users’ privacy and security is to
design software that does it for them, invisibly and automatically. In addition to the risks
delineated by our invisibility guidelines, there are several other reasons to be concerned
about this argument. The first such reason is that this argument is self-perpetuating: if
security is hidden from users, then users will remain ignorant about security technology,
and their continuing ignorance will be used to justify continuing to hide security from
them. The second such reason is one of conflict of interest: to argue that users cannot
manage their own security is to argue that software manufacturers must manage users’
security for them. Those same software manufacturers often have a strong financial
interest in collecting data on users’ habits, actions and preferences, and in privileging
their own software over that of competitors in matters of access control. To put them in
control of the very security policies that are intended to guard user privacy and resources
is thus to put the fox in charge of the henhouse. These points should be kept in mind
when the “ignorant users” argument for invisible security is made by representatives of
software manufacturers.

10

Another, somewhat similar, argument that is often made is that, because security goals
are not primary goals for users, software which makes security visible will annoy users,
who just want to get on with their primary goals and expect invisible protection while
they do so. Again, this is a self-perpetuating argument, in which software manufacturers
make security invisible, despite the risks that creates, market their products as protecting
user security, and thus generate and support a widespread user expectation that security
can be provided invisibly.” It is also the case that to date there has been relatively little
creative experimentation with ways of presenting security to users; that users have been
annoyed by the security demands of existing software does not mean that it is impossible
to present security in a way that is attractive and gives users a pleasurable feeling of
understanding and control.

A final point, which applies to both of the arguments addressed above, is that in the case
of software designs that make security invisible, we need to be wary of assuming success
based on a lack of negative feedback. This is true for security software designs in
general, but it is particularly true when the security is made invisible, because users who
are not seeing their security while it functions will also not see their security fail, and will
thus have been removed as a potentially valuable source of feedback about any security
failures that occur.

2.4 Generality: tools, appliances and hierarchies

The invisibility guidelines presented earlier can be used to determine whether a particular
security function must be made visible for a given software program in a given setting. It
may often be the case, however, that the desirability of promoting the usability of security
in a wider context and over the longer term should also be taken into account, as shown
in Figure 2-3, and that doing so will lead us to choose to implement a greater degree of
security visibility than is actually required for our particular application and setting.

To see how this might be, it is useful to bring in the concept of tools vs. appliances
[Kolojejchick97]. Briefly, a tool is a low-level, general purpose technology which
requires skill to use, but which can be used flexibly and applied usefully in a wide range
of situations. An appliance, by contrast, is a high-level, usually single-purpose device,
which incorporates its own intelligence about its designated task and thus requires very
little skill to use. A paintbrush is a tool; a photocopier is an appliance.

* This phenomenon was frequently observed during the software user testing that will be described later in
this dissertation; when presented with a software program incorporating visible public key cryptography,
users often complained during the first 10-15 minutes of the testing that they would expect “that kind of
thing” to be handled invisibly. As their exposure to the software continued and their understanding of the
security mechanisms grew, they generally ceased to make that complaint.

11

Ideal visibility
boundary from

application
All security perspective
functionality in
application ._>
Ideal visibility
boundary from
wider perspective

Figure 2-3: Different perspectives on visibility for security

For many security applications, it may well be the case that the locally ideal security
interface design, one which meets the visibility guideline requirements and also achieves
maximum simplicity and usability, is one which takes a standard, widely used security
technology and conceals it within an appliance. Any design which presents standard
security functions via metaphors that are tightly linked to a particular application domain
would likely fall into that category of “security appliance” designs. An example would
be an electronic mail security program that presented the use of its encryption function as
“sending the message via the secured outbox”.

Looking at the problem of creating usable security from a wider perspective, however, it
is clear that there are significant benefits to supporting users in developing a certain base
level of generalizable security knowledge. A user who knows that, regardless of what
application is in use, one kind of tool protects the privacy of transmissions, a second kind
protects the integrity of transmissions, and a third kind protects access to local resources,
is much more empowered than one who must start fresh in each new application context.
Because of this, it is worth considering, as we search for ways to present security
functions to users, whether we are better served in the long run by presenting widely used
security technologies, such as access control lists and public key cryptography, as tools
that can be generally applied rather than as appliance components that appear differently
in each application where they are encountered, even if the price for this is to have to
support an expanded degree of security visibility in the design task at hand.

2.5 The well-in-advance principle

The concept of “just-in-time” help has become a popular usability design strategy
[Collins97, Mandel97]. Its prescription is that the coaching necessary to enable a user to
perform a particular task should be triggered when the user begins to attempt that task.
This is a fine strategy when the task is the user’s primary goal, or when the task is
unimportant, but it is a bad strategy when the task is a secondary goal that must be

12

attended to in order to accomplish the primary goal safely, as is very often the case in
computer security.

To see why this is, consider the well-known and frequently lamented tendency of users,
when presented with a dialog requesting them to grant some risky permission, to blindly
press the “Okay” button and proceed. It should not surprise us that, when users are
already focused on some primary task, they will be reluctant to grant much attention to an
interruption that tells them they must now learn some new concepts before they can
proceed safely.

For security, then, we need a principle of “well-in-advance” help. When some primary
user task requires that some security tasks be attended to in order to be safe, then the user
needs to have a reasonable idea of the complexity and effort required to achieve those
security tasks, well in advance of deciding to tackle that primary task.

2.6 Summary

In this chapter, we have presented an analysis of some important ways in which the
usability requirements of computer security differ from those of most other types of
software applications. We have presented a set of rules and an accompanying design
philosophy for determining when it is valid and desirable to try to make security
invisible, and have identified a general design principle that is part of the groundwork for
the techniques we will present in later chapters.

13

CHAPTER 3 Case study:

3.1 Case study goals

PGP 5.0

In order to get some concrete data to back up our analysis, we looked for an existing
software program that was representative of the best current user interface design for
security, an exemplar of general user interface design as applied to security software.
The best candidate appeared to be PGP 5.0 for the Macintosh. Its marketing literature
stated that the “significantly improved graphical user interface makes complex
mathematical cryptography accessible for novice computer users,” and it was frequently
mentioned on computer security discussion lists as an example of security software with

a nice graphical user interface.

PGPkeys =] =]

PGPkeys

Hame Yalidity Trust Creation Size
= B ama whitten <almMes omuedus AN AS] s/24/98 1024 /2048 |&]
A El' Alrna Whitten <alma@cs crnu.edu: [=

W Al whitten calma@os omu,edu? 9F24 /98

B 0= gl Blanke owib@pop comn® 1 [sf4097 1024 /4096
b ®= gratt A, Thomas <bal@paop.com® C— 0 L ss1ed97 1024 /2048
b @== Jacon Bobier <jazon@pgp.com:] R /4797 1024 /2059
B = Jeff Harrell <jeff@pgp.com? 0 B si2047 1024 /2048
B 0= Jeffrey |, Schiller <jis@mmit.edus]) s/27/v4 1024
b 3= jude shabry <judd PGPtools =l
B Ljoyd L. Chamber 3
b= park B, Elrod] I
b Mark H. Weaver %% % @ % @ E"_T—

PGPkeys Encrypt

Sign Encrypt & Sign

Decrypt 7Y

erify

Figure 3-1: PGP 5.0 for the Macintosh

We conducted a formal user test of PGP 5.0, designed to determine whether it was in fact
usable enough that people who were reasonably experienced with computers and
electronic mail, but unfamiliar with computer security, could successfully use it to send
and receive secure electronic mail within a reasonable period of time. A further goal of
the study was to determine whether any usability problems evidenced in PGP 5.0
appeared to be standard usability failures or whether they were better explained as
failures to design to the special usability requirements of security.

3.2 Methodology

We next describe the standard of usability that PGP 5.0 would need to achieve, our user
test design for evaluating its success at achieving that standard, and our set of test
participants.

Usability requirements

The first step in our test methodology was to create an informal statement of the usability
standard that PGP 5.0 would need to achieve in order to enable people to successfully use
it to secure their electronic mail. At minimum, PGP 5.0 would have to be usable enough

that its users would be able to do the following:

* understand that privacy is achieved by encryption, and figure out how to encrypt
email and how to decrypt email received from other people;

* understand that authentication is achieved through digital signatures, and figure
out how to sign email and how to verify signatures on email from other people;

* understand that in order to sign email and allow other people to send them
encrypted email a key pair must be generated, and figure out how to do so;

* understand that in order to allow other people to verify their signature and to send
them encrypted email, they must publish their public key, and figure out some
way to do so;

* understand that in order to verify signatures on email from other people and send
encrypted email to other people, they must acquire those people’s public keys,
and figure out some way to do so;

* manage to avoid such dangerous errors as accidentally failing to encrypt, trusting
the wrong public keys, failing to back up their private keys, and forgetting their

pass phrases; and

* Dbe able to succeed at all of the above within a few hours of reasonably motivated
effort.

15

This is a minimal list of items that are essential to correct use of PGP. It does not include
such important tasks as having other people sign the public key, signing other people’s
public keys, revoking the public key and publicizing the revocation, or evaluating the
authenticity of a public key based on accompanying signatures and making use of PGP’s
built-in mechanisms for such evaluation.

Test design

Our test scenario was that the participant had volunteered to help with a political
campaign and had been given the job of campaign coordinator (the party affiliation and
campaign issues were left to the participant’s imagination, so as not to offend anyone).
The participant’s task was to send out campaign plan updates to the other members of the
campaign team by email, using PGP for privacy and authentication. Since presumably
volunteering for a political campaign implies a personal investment in the campaign’s
success, we hoped that the participants would be appropriately motivated to protect the
secrecy of their messages.

Since PGP does not handle email itself, it was necessary to provide the participants with
an email handling program to use. We chose to give them Eudora, since that would allow
me to also evaluate the success of the Eudora plug-in that is included with PGP. Since
we were not interested in testing the usability of Eudora (aside from the PGP plug-in), we
gave the participants a brief Eudora tutorial before starting the test, and intervened with
assistance during the test if a participant got stuck on something that had nothing to do
with PGP.

After briefing the participants on the test scenario and tutoring them on the use of Eudora,
they were given an initial task description which provided them with a secret message (a
proposed itinerary for the candidate), the names and email addresses of the campaign
manager and four other campaign team members, and a request to please send the secret
message to the five team members in a signed and encrypted email. In order to complete
this task, a participant had to generate a key pair, get the team members’ public keys,
make their own public key available to the team members, type the (short) secret message
into an email, sign the email using their private key, encrypt the email using the five team
members’ public keys, and send the result. In addition, we designed the test so that one
of the team members had an RSA key while the others all had Diffie-Hellman/DSS keys,
so that if a participant encrypted one copy of the message for all five team members
(which was the expected interpretation of the task), they would encounter the mixed key
types warning message. Participants were told that after accomplishing that initial task,
they should wait to receive email from the campaign team members and follow any
instructions they gave.

Each of the five campaign team members was represented by a dummy email account
and a key pair which were accessible to the test monitor through a networked laptop. The
campaign manager’s private key was used to sign each of the team members’ public
keys, including her own, and all five of the signed public keys were placed on the default
key server at MIT, so that they could be retrieved by participant requests.

16

Under certain circumstances, the test monitor posed as a member of the campaign team
and sent email to the participant from the appropriate dummy account. These
circumstances were:

1. The participant sent email to that team member asking a question about how to do
something. In that case, the test monitor sent the minimally informative reply
consistent with the test scenario, i.e. the minimal answer that wouldn’t make that
team member seem hostile or ignorant beyond the bounds of plausibility”.

2. The participant sent the secret in a plaintext email. The test monitor then sent
email posing as the campaign manager, telling the participant what happened,
stressing the importance of using encryption to protect the secrets, and asking the
participant to try sending an encrypted test email before going any further. If the
participant succeeded in doing so, the test monitor (posing as the campaign
manager) then sent an updated secret to the participant in encrypted email and the
test proceeded as from the beginning.

3. The participant sent email encrypted with the wrong key. The test monitor then
sent email posing as one of the team members who had received the email, telling
the participant that the team member was unable to decrypt the email and asking
whether the participant had used that team member’s key to encrypt.

4. The participant sent email to a team member asking for that team member’s key.
The test monitor then posed as that team member and sent the requested key in
email.

5. The participant succeeded in carrying out the initial task. They were then sent a
signed, encrypted email from the test monitor, posing as the campaign manager,
with a change for the secret message, in order to test whether they could decrypt
and read it successfully. If at that point they had not done so on their own, they
received email prompting to remember to back up their key rings and to make a
backup revocation certificate, to see if they were able to perform those tasks. If
they had not sent a separately encrypted version of the message to the team
member with the RSA key, they also received email from the test monitor posing
as that team member and complaining that he couldn’t decrypt the email message.

6. The participant sent email telling the team member with the RSA key that he
should generate a new key or should upgrade his copy of PGP. In that case the

? This aspect of the test may trouble the reader in that different test participants were able to extract different amounts
of information by asking questions in email, thus leading to test results that are not as standardized as we might like.
However, this is in some sense realistic; PGP is being tested here as a utility for secure communication, and people
who use it for that purpose will be likely to ask each other for help with the software as part of that communication.
We point out also that the purpose of this test was to locate extreme usability problems, not to compare the
performance of one set of participants against another, and that while inaccurately improved performance by a few
participants might cause us to fail to identify some usability problems, it certainly would not lead us to identify a
problem where none exists.

17

test monitor continued sending email as that team member, saying that he
couldn’t or didn’t want to do those things and asking the participant to please try
to find a way to encrypt a copy that he could decrypt.

Each test session lasted for 90 minutes, from the point at which the participant was given
the initial task description to the point when the test monitor stopped the session.
Manuals for both PGP and Eudora were provided, along with a formatted floppy disk,
and participants were told to use them as much as they liked.

Test participants

The user test was run with twelve different participants, all of whom were experienced
users of email, and none of whom could describe the difference between public and
private key cryptography prior to the test sessions. The participants all had attended at
least some college, and some had graduate degrees. Their ages ranged from 20 to 49, and
their professions were diversely distributed, including graphic artists, programmers, a
medical student, administrators and a writer. More detailed information about participant
selection and demographics is available in Appendix A.

3.3 Results

For the purposes of this chapter, we summarize the most significant results observed from
the test sessions, again focusing on the usability standard for PGP as stated in 3.1.
Detailed transcripts of the test sessions can be found in Appendix A.

Avoiding dangerous errors

Three of the twelve test participants (P4, P9, and P11) accidentally emailed the secret to
the team members without encryption. Two of the three (P9 and P11) realized
immediately that they had done so, but P4 appeared to believe that the security was
supposed to be transparent to him and that the encryption had taken place. In all three
cases the error occurred while the participants were trying to figure out the system by
exploring.

One participant (P12) forgot her pass phrase during the course of the test session and had

to generate a new key pair. Participants tended to choose pass phrases that could have
been standard passwords, eight to ten characters long and without spaces.

Basic encryption

One of the twelve participants (P4) was unable to figure out how to encrypt at all. He
kept attempting to find a way to “turn on” encryption, and at one point believed that he
had done so by modifying the settings in the Preferences dialog in PGPKeys. Another of

1R

the twelve (P2) took more than 30 minutes” to figure out how to encrypt, and the method
he finally found required a reconfiguration of PGP (to make it display the PGPMenu
inside Eudora). Another (P3) spent 25 minutes sending repeated test messages to the
team members to see if she had succeeded in encrypting them (without success), and
finally succeeded only after being prompted to use the PGP Plug-In buttons.

Using the correct key

Among the eleven participants who figured out how to encrypt, failure to understand the
public key model was widespread. Seven participants (P1, P2, P7, P8, P9, P10 and P11)
used only their own public keys to encrypt email to the team members. Of those seven,
only P8 and P10 eventually succeeded in sending correctly encrypted email to the team
members before the end of the 90 minute test session (P9 figured out that she needed to
use the campaign manager’s public key, but then sent email to the the entire team
encrypted only with that key), and they did so only after they had received fairly explicit
email prompting from the test monitor posing as the team members. P1, P7 and P11
appeared to develop an understanding that they needed the team members’ public keys
(for P1 and P11, this was also after they had received prompting email), but still did not
succeed at correctly encrypting email. P2 never appeared to understand what was wrong,
even after twice receiving feedback that the team members could not decrypt his email.

Another of the eleven (P5) so completely misunderstood the model that he generated key
pairs for each team member rather than for himself, and then attempted to send the secret
in an email encrypted with the five public keys he had generated. Even after receiving
feedback that the team members were unable to decrypt his email, he did not manage to
recover from this error.

Basic decryption

Five participants (P6, P8, P9, P10 and P12) received encrypted email from a team
member (after successfully sending encrypted email and publicizing their public keys).
P10 tried for 25 minutes but was unable to figure out how to decrypt the email. P9
mistook the encrypted message block for a key, and emailed the team member who sent it
to ask if that was the case; after the test monitor sent a reply from the team member
saying that no key had been sent and that the block was just the message, she was then
able to decrypt it successfully. P6 had some initial difficulty viewing the results after
decryption, but recovered successfully within 10 minutes. P8 and P12 were able to
decrypt without any problems.

Publishing own public key

Ten of the twelve participants were able to successfully make their public keys available
to the team members; the other two (P4 and P5) had so much difficulty with earlier tasks

4 This is measured as time the participant spent working on the specific task of encrypting a message, and does not
include time spent working on getting keys, generating keys, or otherwise exploring PGP and Eudora.

19

that they never addressed key distribution. Of those ten, five (P1, P2, P3, P6 and P7) sent
their keys to the key server, three (P8, P9 and P10) emailed their keys to the team
members, and P11 and P12 did both. P3, P9 and P10 publicized their keys only after
being prompted to do so by email from the test monitor posing as the campaign manager.

The primary difficulty that participants appeared to experience when attempting to
publish their keys involved the iconic representation of their key pairs in PGPKeys. Pl,
P11 and P12 all expressed confusion about which icons represented their public keys and
which their private keys, and were disturbed by the fact that they could only select the
key pair icon as an indivisible unit; they feared that if they then sent their selection to the
key server, they would be accidentally publishing their private keys. Also, P7 tried and
failed to email her public key to the team members; she was confused by the directive to
“paste her key into the desired area” of the message, thinking that it referred to some area
specifically demarcated for that purpose that she was unable to find.

Getting others’ public keys

Eight of the twelve participants (P1, P3, P6, P§, P9, P10, P11 and P12) successfully got
the team members’ public keys; all of the eight used the key server to do so. Five of the
eight (P3, P8, P9, P10 and P11) received some degree of email prompting before they did
so. Of the four who did not succeed, P2 and P4 never seemed aware that they needed to
get the team members’ keys, P5 was so confused about the model that he generated keys
for the team members instead, and P7 spent 15 minutes trying to figure out how to get the
keys but ultimately failed.

P7 gave up on using the key server after one failed attempt in which she tried to retrieve
the campaign manager’s public key but got nothing back (perhaps due to mis-typing the
name). P1 spent 25 minutes trying and failing to import a key from an email message;
he copied the key to the clipboard but then kept trying to decrypt it rather than import it.
P12 also had difficulty trying to import a key from an email message: the key was one
she already had in her key ring, and when her copy and paste of the key failed to have
any effect on the PGPKeys display, she assumed that her attempt had failed and kept
trying. Eventually she became so confused that she began trying to decrypt the key
instead.

Creating digital signatures

All the participants who were able to send an encrypted email message were also able to
sign the message (although in the case of P35, he signed using key pairs that he had
generated for other people). It was unclear whether they assigned much significance to
doing so, beyond the fact that it had been requested as part of the task description.

Verifying digital signatures

20

Again, all the participants who were able to decrypt an email message were by default
also verifying the signature on the message, since the only decryption operation available
to them includes verification. Whether they were aware that they were doing so, or paid
any attention to the verification result message, is not something we were able to
determine from this test.

Revocation

We would have liked to know whether the participants were aware of the good reasons to
make a backup revocation certificate and were able to figure out how to do so
successfully. Regrettably, this was very difficult to test for. We settled for direct
prompting to make a backup revocation certificate, for participants who managed to
successfully send encrypted email and decrypt a reply (P6, P8 and P12).

In response to this prompting, P6 generated a test key pair and then revoked it, without
sending either the key pair or its revocation to the key server. He appeared to think he
had successfully completed the task. P8 backed up her key rings, revoked her key, then
sent email to the campaign manager saying she didn’t know what to do next. P12
ignored the prompt, focusing on another task.

Trust evaluation

Of the eight participants who got the team members’ public keys, only three (P1, P6, and
P11) expressed some concern over whether they should trust the keys. P1’s worry was
expressed in the last five minutes of his test session, so he never got beyond that point.
P6 noted aloud that the team members’ keys were all signed by the campaign manager’s
key, and took that as evidence that they could be trusted. P11 expressed great distress
over not knowing whether or not she should trust the keys, and got no further in the
remaining ten minutes of her test session. None of the three made use of the validity and
trust labeling provided by PGPKeys.

3.4 Conclusions

The results of the user test appear to support my thesis that the standard model of user
interface design, represented here by PGP 5.0, is not sufficient to make computer security
usable for people who are not already knowledgeable in the area. The twelve test
participants were generally educated and experienced at using email, yet only one third of
them were able to use PGP 5.0 to correctly sign and encrypt an email message when
given 90 minutes in which to do so. Furthermore, one quarter of them accidentally
exposed the secret they were meant to protect in the process, by sending it in email they
thought they had encrypted but had not.

Many test participants did not understand the necessary conceptual model of public key

cryptography well enough to be able to figure out which public key to use when
encrypting a message for a particular recipient. Many participants who knew which key

21

they needed to use still had substantial trouble figuring out how to acquire it. A
substantial minority of participants accidently sent their secret messages without
encryption, and many participants expressed serious frustration to the point where it
seems unlikely that they would have persisted in trying to use PGP 5.0 if they had been
doing so in their own lives rather than in the test session.

77

CHAPTER 4 Design technique: safe staging

Chapter 2 of this dissertation discussed some reasons why invisibility may not be a valid
or desirable design strategy for creating usable security, and Chapter 3 demonstrated
some of the ways in which an apparently user friendly interface can fail to make a
computer security technology usable. In this chapter, we will present the first of two
design techniques that we will argue are generally applicable to the challenge of making
computer security usable while retaining visibility. This technique is an elaboration of
the idea of staged user interfaces. We will demonstrate that it can be a powerful method
for bringing users to an intuitive understanding of the usefulness of computer security
mechanisms that would otherwise seem foreign and opaque.

4.1 A brief history of staged user interfaces

A staged user interface is one that is intentionally designed to shepherd the user through a
sequence of stages of system use, in order to increase user understanding and protect
against errors. [Carroll84] introduced the idea of a training wheels user interface,
modifying a commercial word processor to create an initial stage that disabled those
functions that led to common new user error states. Results of user testing that asked
novices to begin with the initial stage and then gave them eventual access to the full
program showed significant gains in performance and understanding. That paper and its
several related publications are almost universally referenced in surveys of human
computer interaction literature, but little research has been done that builds on it directly.

More recent examples of research on staged user interfaces, such as [Guzdial95], come
from the domain of educational and tutoring software, where the concept of scaffolding
has been brought in from educational theory. In scaffolding, the user interface or
instructor supports the novice user through active help and examples that are gradually
withdrawn as the user acquires skill. The withdrawal process is referred to as fading.
The existing research on software scaffolding has primarily remained within the domain

of explicitly pedagogical software’, in which the user is intentionally participating in a
tutorial experience, and thus the techniques developed are not designed to generalize to
other types of software.

4.2 Adapting staging for computer security

Security is often too complicated, but simplifying by hiding security mechanisms from
the user carries its own risks and drawbacks, as we discussed in Chapter 2. Fortunately,
staging, if properly designed, can allow us to reduce the initial complexity that the user
must face, without sacrificing either immediate safety or the visibility that will be needed
for informed use. There are many ways to interpret the concept of staging, so we will
begin by defining a number of terms that can be used to classify different staging
methods, and will briefly discuss some of the strengths and weaknesses of each of the
resulting classes.

In any staged user interface design, there is the question of how and when the user’s
progress to the next stage is triggered or permitted. The first pair of terms that we define
classifies staging on the basis of whether it is the software that enforces when and
whether the user may progress, or the user who decides when progress is desired:

hard staging: a user interface design in which the software explicitly enforces a
set of requirements for when and whether the user may progress to the next stage,
possibly via the implementation of training wheels or a required interactive
tutorial.

soft staging: a user interface design that allows the user freedom to decide when
to progress to the next stage, and encourages progression by establishing a context
in which it is a conceptually attractive path of least resistance.

It is generally not realistic or appropriate to design hard staging into security for
consumer software. That kind of explicit control over the user’s options and progress is
acceptable for business software, where an employee may be directed to work through a
training wheels phase, and it is expected in educational software that functions in the role
of a tutor or classroom instructor. It is unlikely to be appreciated by consumers who are
using software on their own computers for their own purposes. We will thus be focusing
here primarily on the design of soft security staging.

The next useful distinction classifies security staging on the basis of what is restricted in
the beginning stage or stages, using the following pair of terms:

> Scaffolding has also become a sufficiently fashionable term that it is often used to refer to any form of
interactive help built into a software program, but we have not been able to locate any serious research on
how to implement real software scaffolding outside of an explicitly educational context.

4

function restricted staging: a user interface design in which the use of
potentially dangerous functions is avoided until a stage when the user is
competent to manage the security necessary for protection.

data restricted staging: a user interface design in which exposure of private data
or other valuable resources to the software is avoided until a stage when the user
is competent to manage the security necessary for protection.

The biggest obstacle to function restricted staging is the fact that, as security designers,
we are often attempting to enable the adoption of security by people who are already
accustomed to using the dangerous functions without protection. Obviously, we cannot
realistically expect users to accept security software that asks them to suspend or even
delay their access to instant messaging, downloadable executables and electronic mail,
yet those are some of the applications for which we would most like to design truly
usable security.

Another reason why we may often prefer data restricted staging over function restricted
staging is that the former permits the possibility of encouraging people to use dummy
data in order to explore the potentially dangerous functions and the security needed for
protection. Function restricted staging does not offer a comparable opportunity for safe
exploration and practice. It may still be useful for some applications, however, either
alone or in combination with data restriction.

4.3 The design technique

In this section we will discuss how to determine whether a particular security mechanism
within an application is a good candidate for staging, and, once a candidate security
mechanism has been identified, how to design soft staging which is effective and safe.
We will also briefly discuss intermediate stages and multiple staging paths and the types
of applications for which each is most likely to be useful.

Deciding which security mechanisms to stage

Given a particular security mechanism, the following guidelines are useful for deciding
whether it is an appropriate candidate for staging:

o Can it be presented in a clear and usable way without staging? If so, then there is
little benefit to staging it.

o Is it expected that, once the user is comfortable with the mechanism, they will be
making active use of it on a constant basis? If so, then it probably should be
visibly represented in the main program window, which means that staging will
not offer as much reduction of initial complexity as it otherwise might.

75

o Can an initial stage be designed that safely postpones the user’s need to
understand the security mechanism, in accordance with the requirements
described in the next section? If not, then it cannot be safely staged.

Creating soft stages that are safe

A security mechanism can be safely postponed by a stage if the user interface can be
designed to meet all of the following requirements as soon as the stage begins:

1. The user knows which of the available actions are dangerous.
2. The user knows what bad consequences might result from the danger.
3. The user understands how to use a temporary strategy for avoiding the danger.

4. The user understands how to learn about the postponed security mechanism
when the limitations imposed by the temporary strategy become unacceptable.

Meeting these requirements does not present a difficult design problem; in fact, this set
of requirements corresponds closely to the ANSI specification for a standard consumer
product warning label [ANSI98], so it is reasonable to expect that the necessary
information can be successfully conveyed in a brief and immediate fashion. Furthermore,
presentation of this amount of information is unlikely to significantly delay or annoy a
user who already understands the security mechanism.

The temporary strategy for avoiding the danger may be based on either data restriction or
function restriction, keeping in mind that data restriction also has the desirable result of
supporting learnability via the ability to practice safely with dummy data. The success of
the security user interface as a whole also requires that the security mechanism, once the
user decides to investigate it, be presented in a usable and learnable manner, but that is
true regardless of whether or not staging is used. Finally, note that the requirement of
these points at the beginning of the stage is in accordance with the well-in-advance
principle discussed in Chapter 2, so that the user is never surprised by a warning that the
action they are about to take is dangerous.

Intermediate stages and multiple staging paths

Intermediate stages are most likely to be appropriate in the case when multiple security
mechanisms combine to provide protection for one dangerous action. In such a case the
staging might be designed to introduce an additional security mechanism at each stage,
reestablishing the safety requirements to reflect the danger that remains. An example of
such a design will be discussed in the next section.

76

An application that contains multiple security mechanisms for protection against multiple
dangers might conceivably have multiple, separate staging paths. Few applications
present that degree of security complexity, but general operating system level security
certainly does. A detailed investigation of how to create such staging is beyond the scope
of this thesis, but may be addressed in future work.

4.4 Example: staging applet security

An interesting example of what may be considered to be a sort of staged security user
interface can be seen in the HotJava web browser [Sun95, Fritz98]. When Java applets
were first introduced, it was expected that they would be used for a wide variety of non-
trivial applications, to the point that there were predictions that web browsers would, in
effect, replace desktop operating systems. Some applets would be harmless bits of web
page decor, but others, accessed by subscription at the software publisher’s web site,
would serve as word processors, desktop publishing software, and checkbook balancers.
This prospect required security that could allow known, authorized applets to access
resources on the user’s machine such as files, directories and printers, while blocking
randomly encountered applets from doing anything dangerous or perhaps even from
executing at all.

The HotJava applet security user interface

In HotJava, the user is not initially presented with any information about applet security.
The default security configuration, which may be considered to represent the initial stage,
allows all applets to run, but does not give them access to local system resources such as
files. Applets that are digitally signed, however, can request access to those resources by
invoking a dialog that asks the user to grant permission.

Figure 4-1 shows the Advanced Security Administration Mode of the Security
Preferences dialog, with the default settings still in place. A user who is viewing this
screen may be considered to be in the second stage, in which they have the option of
choosing from several predefined security policies to assign to signed applets and to
unsigned applets, still as two indivisible groups.

Finally, in the third stage, the user explores the Special Cases Panel, which allows the
creation of detailed, individual security policies to be applied to applets signed with
particular keys.

This security user interface has an immediate serious problem which can be directly
related to violation of the requirements for safe staging. In the initial stage, the
dangerous action is that of running an applet with access to system resources such as the
user’s private files. The user is unlikely to see any information about this danger until the
first time that a signed applet requests access permission, at which point they would have
to immediately learn the basics of digital signature based authentication and make an

217

HotJava Browser: Secunty Preferences |

Security Administration Mode: " Basic

Cookies Signed Applets

Applets/JavaScript
A signed Java applet containg the digital signature and cedificate aof
the software distributor. This protects the code fram tampering. It
Signed Applets does not guarantes thatthe code will work or be safe to use.

Applets and JavaScript

(" Blocked:
Do not run signed Java applets.

(" Restricted:

Fun sighed Java applets within secure constraints. Block restricted
actions such a5 reading of wiiting a file on your system.

(& AskFirst

Run signed Java applets within secure canstraints. Ask me far
permission hefore performing restricted actions.

To override this setting, oo to the Special Cases panel.

| ok || appy || cancel || Hew |

Figure 4-1: Applet security management in HotJava

informed judgement about the risks of granting the access. This violates most of the safe
staging requirements as well as the well-in-advance principle, and will almost certainly
lead to the blind granting of dangerous permissions by users.

An improved design using soft, data restricted staging

By contrast, following the design method for safe soft staging yields a much more
attractive solution. There are two security mechanisms here: digital signature based
authentication, and access control lists. They are combined to provide protection for the
dangerous action of running an applet with access to local system resources such as the
user’s files. This suggests a design with three stages: initial, intermediate, and final.

A data restricted strategy can make it safe for the user to postpone learning about either
of those mechanisms, if the default security policy is set to allow applets to access only a
single, dedicated directory that has been created for that use alone and contains no
preexisting files. The initial stage would then be designed to meet the safety
requirements by conveying the following to the user:

7R

1. That allowing an applet access to their data is dangerous.
2. That an applet might steal, damage, or otherwise misuse their data.

3. That they can avoid the danger by withholding any data that they consider
valuable or private both from the dedicated applet directory and from any
direct interaction with the applets.

4. That when they wish to consider whether a particular applet may be trusted
with certain valuable or private data, they can investigate the digital signature
based authentication mechanism.

In the intermediate stage, the user would have the option of granting a digitally signed
applet its own dedicated directory, similarly created for that use alone, and accessible
only by applets signed with that particular key. Then the new set of safety requirements
would require the following to be conveyed to the user:

1. That allowing an applet access to data that it did not store itself is dangerous.
2. That an applet might steal, damage, or otherwise misuse data it does not own.

3. That they can avoid the danger by continuing to withhold any data that they
do not specifically want a particular applet to have.

4. That when they wish to allow an applet limited, specific access to data outside
its own directory, they can investigate the access control list mechanism.

In the final stage the user would be able to define fine grained access control policies for
applets signed with particular keys, just as they would in the final stage of the original
HotJava security user interface, but in this design they would have travelled a much safer
and more plausible path to arrive at that destination.

4.5 Variant: staging for the abstraction property

It is also interesting to consider how staging might be used to address the abstraction
problem discussed in Chapter 2. That is, we recall that security is often confusing to
novices not only because of the number of new mechanisms to be understood, but also,
and perhaps even more importantly, because many security mechanisms represent pared
down abstractions of messy, human social processes such as trust, identification and
permission.

One way to help users become comfortable with those abstractions might be to design an
initial stage that encourages the use of a temporary protection strategy that combines data
restriction with an intuitive, social approach to protecting against the danger. This would
allow users to practice thinking about the process for which the security mechanism is an

79

abstraction, preparing them to recognize the mechanism itself as sensible and useful once
they decide to investigate it. The intuitive, social approach will probably provide only
weak security at best, but that is not a safety issue as long as it is combined with data
restriction and accurate presentation of the remaining danger, in accordance with the safe
staging requirements. In the remaining section of this chapter, we present a detailed
design and implementation of this type of staging strategy as applied to the highly
abstract mechanism of key certification.

4.6 Safe staging demonstrated in Lime

In order to demonstrate and evaluate the success of both the staging design method
presented in this chapter and the metaphor design method that we will present in Chapter
5, we designed and implemented a complete software simulation of a user interface for a
public key based secure electronic mail application, which we named Lime. In the
remainder of this chapter, we will present and discuss the components of Lime that
implement soft staging of the mechanism of key certification. This will necessarily
involve some exposure to the set of visual metaphors used to present public key
cryptography in Lime; those visual metaphors will be fully presented and discussed in
Chapter 5, along with the rest of the Lime user interface design. Evaluation of the
staging, the metaphors, and the overall success of the Lime design will be covered in
Chapter 6.

In Lime, only key certification is staged; the mechanisms of encryption and basic digital
signatures are not. It would have been possible to design an interface in which those
mechanisms were also staged, with an initial stage in which the user would send only
plaintext email, using data restriction as a protection strategy, and investigating the use of
cryptography at the point when they decided they wanted to send something private in a
mail message. However, the other two guidelines for deciding whether or not to stage a
security mechanism suggested that it was better not to stage them: first, it is possible to
present them in a clear and usable way without staging, as will be shown in Chapters 5
and 6, and second, they may be actively used whenever an email message is sent and thus
should be visible in the main window, which limits the advantages of staging them. Key
certification, by contrast, is extremely confusing and difficult to present clearly, and does
not need to be visible in the main window since we expect that it will be used only when
public keys are traded.

Key certification is confusing in large part because of the abstraction problem, so my
staging design incorporates a strategy designed to familiarize the user with the process of
trying to verify the identity of a correspondent who can’t be met with in person. In the
absence of a security mechanism for verifying identity, an informal, intuitive strategy is
to look for familiar writing style and mention of personal information that an imposter
would be unlikely to know. For the purpose of this discussion, I will refer to that strategy
as social authentication.

N

In staging key certification, the initial stage may be considered to begin when the user
decides to use cryptography and needs to attend to the prerequisite task of trading public
keys. At that point, the user interface must meet the following safety requirements:

1. The user knows that sending private data in email is dangerous if you are not
sure that you have the right public key to encrypt it with.

2. The user knows that an attacker might be able to spy on them if they use the
wrong public key.

3. The user knows that they can get some assurance that they have the right
public key if they use social authentication when trading keys by email, but
that it is only enough to protect against a random attack.

4. The user knows how to investigate key certification when they decide that
they need stronger security.

As previously mentioned, Lime begins with an initialization sequence, the first screen of
which was depicted in Chapter 1, Figure 1-1. The second screen helps the user generate a
key pair, and the third screen helps them store it securely with a pass phrase. The fourth
and fifth screens introduce digital signatures and encryption, and will be shown in
Chapter 5. The sixth screen gives a quick briefing on the need to trade public keys, as
shown in Figure 4-2. In its first paragraph it presents the information necessary for the
first and second safety requirements.

Figure 4-3 depicts the Lime key trading screen, which reiterates the danger, establishes
and reinforces a context in which methods for trading public keys are associated with the
level of security that they provide, and mentions key certification for the first time, using
the metaphor of certification locks. 1t steers the user toward safe practice with social
authentication by setting up trading public keys by email as the easiest and most inviting
option, with a helpful form to use in order to perform it safely. While it is possible to
trade keys directly in email without first having recourse to this screen, the Lime
interface has been designed to shepherd the user toward this screen at every possible
opportunity. It is accessible directly from the last screen of the initialization sequence,
using the button marked “Trade keys now”, from the Help menu on both the main
window and on any message composition window, under “Help on trading public keys”,
and from the Public Key Rolodex using the large button that resembles a space bar and is
labeled “Need a key that isn’t in your rolodex?” as shown in Figure 4-4.

31

%¢ All about trading public keys

How to trade public keys

Before you can gend someone secure email, you need to trade public keys with them. Because public
keys are public, you don’t need to be careful about who else might see them, but you do need to have
some way to make sure that you really get the right public key for each person. Otherwise, someone
who wanted to forge messages or spy on email conversations could just make a public key in the name
of the person they wanted to pretend to be, and trick people into using it. Similarly, you need to give
other people some way to make sure that they really have the right public key for vou.

Lime has a special help screen that you can use to choose the right way to trade public keys to get the
level of security that is right for your needs. You can use the button at the bottom of this page to go to
that screen now. You can alzo go to that help screen at any time from vour Public Key Rol odex by
using the button marked “Need a key that isn’t in your rolodex?”

You can access your Public Key Rolodex from the button on the main toolbar. It’s where you
store and manage your copies of other people’s public keys.

If you need to see the information from these introductory pages again, you can always view it by
going to the Help menu at the top of the main Lime window. Happy emailing!

Previous page Trade keys later

Figure 4-2: Sixth and last screen in the Lime initialization sequence

Use of the “Compose Email” form causes the help screen shown in Figure 4-5 to display,
accompanied by a fresh message composition window like the one shown in Figure 4-6.
This help screen, which is also always available from the Help menus under “Help on
trading public keys by email”, details the use of social authentication, and again offers the
opportunity to investigate certification locks if stronger security is needed. At this point
all of the information specified in the safety requirements has been conveyed.

This set of screens contains rather a lot of text, but the information that is necessary to the
safety requirements is generally contained in the first few sentences, and the gist of the
dangers and the protection strategy can be gathered from even a cursory scan.

When the user is ready to investigate certification locks, they can access the screen
shown in Figure 4-7 from the public key trading screen, from the Help menus, or from
the help screen for trading public keys by email. Further information on how to get one’s
own key validly certified and how to validly provide certification to others is given in the
additional screens shown in Figure 4-8 and Figure 4-9, respectively.

R

%% Wayps to trade public keys

The best way to make absolutely sure that you really have
the right public key for someone is to meet that person
face to face and have them hand you their public key on a
floppy disk.

If wou have the public key you need on a disk file, you can
uze this form to importitinto your Public Eey Eolodex.

Browse |

File name to import from:

i

Irmpart key

Sometimes it’s not practical to meetin person to trade
public keys. In that case, you may decide to simply trade
keys by email Email is easy to forge, however, 0 you
will need to be careful to make sure that you are really
trading keys with the right person. You can use this form
to have Lime help vou find ways to do that

Erail address of the perzon to trade keys with:

Inciude the public key from

I wour default key pair

|

Compoze emnai

.

A third option 18 to use a public key databasze called a
key server. Y ou can put your public key on the key
server, and you can search the key server to find other
people’s public keys. Because anvone can put any key
of1 a key server, you will need some additi onal way to
check that the public keys you find really do belong to
the nght people. The usual way to do this 1s to use
certificati on locks.

Tou can use this form to search the key server, and the
button at right to get help on using certification locks.

F.ey gerver:

j Mew I

Mame or email address to search for;

Search key server |

Help on certification lacks |

I keyserver. lime.org

Cloze |

Figure 4-3: The public key trading screen

23

4 Public Key Rolodex !IEIE

'ﬁ Frevious | I et |

AB|CIDIEFIGIH]I |J KL MINO|PIQIR]S T UV W XY |2
[

1] _'Illﬂ_l i

Mo key present. r'ou can also do:
 Vemsure T Somewhat sure ™ Not sure Helpl | Wigw mare key infa
Reazor: I Export key ta file

Block key from uze

Delete key from rolodes

Meed a key that izn't in pour mlodex’? |

Figure 4-4: The public key rolodex

24

%% How to trade keys by email

How to trade keys by email

Are you sending your own public key in this email? If so, thenyou need to give the person on the
other end some way to make sure that this email message really did come from you. It’s not enough
for them to just check the “From:” line in the email, because it is easy for an attacker to fake that.

The casual way to do that is for you to write a few personal sentences in your message that mention
details that vou and the other person both know, but that an attacking stranger would not be able to
fake. This will only give you a weak level of security, because a skilled attacker could still intercept
wvour email and replace your key with his own, but it will be enough to protect you from random
attacks and casual eavesdroppers.

If you need a stronger level of security, but can’t meet with the other person to trade keys face to face,
then you may want to try using certification locks to prove that this is really your key. Press the button
below for help on using certifi cati on locks.

If you are asking for the other person’s key, then you will need some way to make sure that the email
vou receive really came from them. When vou write your message, you should tell the other person
that you need their public key in order to send them secure email, and you should ask them to include a
personal message that will help you make sure that the email really came from them and not from an
attacker.

Again, this will only give you enough security to protect against random, casual attacks. Ifyou need
stronger security, but can’t meet to frade keys face to face, then you may want to try to use certification
locks. Press the button below for help on using certificati on locks.

Certification lock help |

Figure 4-5: Safe presentation of social authentication strategy

25

s FMEK|

File Edit Help
feoelr—
Sul:ui:;t.:
oct.
=)
[

Figure 4-6: A blank message composition window

3A

4¢ All about certification locks

All about certification locks

A certification lock is a special kind of content lock that iz made to be put on a public key. Ithasa
very specific meaning: it states that the person who created the lock has made abgzolutely sure that
this public key really does belong to the person whose name is on it.

Thig iz what a public key with a certification lock on itlooks like:

PUELIC KEY CERTIFICATE

On this public key certifi cate, the certification e
1= public ke elongs to
lock means that Trusted Certifier claims to have @;l el reen ckelDImergy
personally verified that this public key really . __ _
does belong to Kelly Green. [B e |

If you get someone’s public key with a certifi cation lock on it, then you will need to consider two
questions. First, do you trust the person who applied the certification lock to have really verified the
owner of the public key? Second, are you absolutely sure that you have the right public key for the
person who applied the certification lock? If the answer to both those questions is yes, then you can be
confident that the certification locked public key really does belong to the person whose name is on it,
and vou can use it to get a high level of security for your email messages.

Az vou can gee, in order to use certification 1ocks, vou need to already have at least one person’s public
key that vou can be absolutely sure of, so that that person can be the trusted certifier for other people’s
public keys.

Ugze the Help menu or the buttons below to get instructi ons on getting and creating certification locks.

Help on getting Help on creating
certification locks certification locks

Figure 4-7: Presentation of certification lock mechanism

37

% How to get a certification lock

How to get a certification lock

To get a certification lock put on your public key, you must find someone
who will meet you face to face to trade public keys. You can then ask that
person to put a certification lock on your public key, and send it back to
you. Once you have the certification locked copy of your public key in an
email, or on a floppy disk, you can import it back into your Key Pair Vault
and the certification lock will be added to your copy of your public key.

You can use the “Export public key™ button in your Key Pair Vault to put
vour public key onto a floppy disk for trading.

Figure 4-8: Guidance on getting a certification lock for one’s own key

%% How to create a certification lock

How to create a certification lock

If vou have traded public keys face to face with someone, and you want to put a
certification 1 ock on their public key for them, there are two ways to do zo.

The first way iz to turn your Public Key Rol odex to the public key that you want
to certify. Once you have done that, you can use the certification lock button in
the lower left corner of your Rolodex.

The second way is to paste the public key that vou want to certify into an email
message. Once you have done that, sel ect the public key by clicking once on it,
and then use the content lock button on the toolbar. Because you have selected
a public key, rather than some text, it will assume that you want to create a
certification 1 ock.

Once you have added your cerfification lock to the public key, send it back to its
owner, so that they can publish it with its new lock.

Figure 4-9: Guidance on creating a certification lock for someone else’s key

3R

We have now presented and described the implementation of safe staging for key
certification in Lime. In the next chapter, more images of Lime will be presented and
discussed as we describe and demonstrate our second design technique. Chapter 6 will
then present experimental results for the effectiveness of the design techniques and the
usability of the security in Lime.

29

CHAPTER 5 Design technique: metaphor tailoring

In this chapter we present our enhanced and specialized design technique for creating
graphical representations of security state and mechanisms. Extensive literature already
exists on how best to design user interface metaphors and their graphical representations,
but really good visual metaphors for security have remained elusive. We suggest that this
is because such metaphors would need to map very tightly to the information that is most
crucial for the user to be aware of in order to maintain their security, and the techniques
outlined in the existing literature do not provide designers with enough guidance to help
them target the right mapping. This leads to faulty metaphors such as the digital
signature with quill pen that we saw in PGP 5.0, which did nothing to evoke the actual
security provided by digital signatures.

To remedy this, we take a well-known design technique, conceptual model specification
[Liddle96, Johnson02], and enhance it to explicitly capture the security information that
is most important for the user to understand. This enhancement is somewhat similar to
the standard security practice of specifying an explicit threat model, but is focused on the
risks of usability failures rather than on the risks of external attacks. We call this
enhancement risk enumeration. We then describe how to design visual metaphors that
map tightly to these enhanced conceptual model specifications, using standard user
interface design heuristics but prioritizing them toward qualities like reassurance and
accuracy which are particularly important for usable security. We refer to this entire
enhanced and prioritized process as metaphor tailoring. We conclude this chapter with
an example of firewall port management as a second illustration of metaphor tailoring.

5.1 Risk enumeration

Many usability engineers recommend the creation of an explicit conceptual model
specification before any user interface screens or dialogs are designed. A conceptual
model specification is generally considered to be a high-level description of the data and

functions that are presented to the user, and of the conceptual objects or mechanisms that
are used to represent them. This specification can then be used, when designing the
actual user interface, as a guide to make sure that those concepts are presented clearly,
consistently and coherently.

In the case of security, one of our most imperative user interface design goals is to avoid
usability failures that cause the user’s private data or other resources to be exposed or
damaged. We can extend our conceptual model specification to explicitly support that
goal by including an enumeration of the possible risks of user misunderstanding that our
design must guard against. To generate such an enumeration in a systematic way, we
propose that it is useful to consider these risks as falling into three categories:

Accident risks are risks that the user will forget that a security task needs to be
attended to, will fail to realize that taking a particular action is dangerous, or will
fail to notice that their system is in an insecure state.

Frustration risks are risks that the user will find it too difficult or time
consuming to figure out how to accomplish a primary task in a secure manner,
and will choose to forego security as a result.

Bad citizen risks are risks that the user will misunderstand the system in ways
that may not necessarily imperil their own security, but which may lead them to
damage the integrity of a larger system that they are participants in.

Table 5-1 shows a conceptual model specification, enhanced with risk enumeration, for
the secure electronic mail program that we are using as a design example. To develop
this specification, we had to first identify the visibility requirements and decide whether
to design for a tool or an appliance, as discussed in Chapter 2. We briefly cover each of
those points here.

Visibility requirements

Lime is intended to be a secure electronic mail application for general home use, in which
messages may be sent to anyone who has a valid email address, regardless of whether
they have made a public key available. We consider it unrealistic to assume the
availability of a reliable, centralized key certification authority for individual users’
public keys, so Lime is also intended to support a “web of trust” model in which users
must decide which other users they trust as certifiers of public keys.

Under those circumstances, Lime has the following visibility requirements:

* The presence or absence of encryption on a message must be visible, because it
cannot be guaranteed that every message can and will be encrypted, since some
message recipients may not be using secure mail software.

* The process of public key acquisition and distribution must be visible, because
there are likely to be cases in which getting the public keys necessary to send an

41

encrypted message is only possible if the user is capable of directly negotiating a
key exchange with the intended recipients.

Objects

Key pairs, each consisting of a secret key and a
public key

states

Messages may be encrypted or plaintext.

Message text may be signed or unsigned.

Public keys may be signed or unsigned.

Signatures may be valid, invalid, or unverifiable
(when matching public key is not available).

Public keys may be valid, revoked, or expired.

operations

Generation of key pairs

Protection of key pairs with pass phrase
Encryption of plaintext messages
Decryption of encrypted messages
Signing of text

Signing of public keys

Deleting signatures from text or public keys
Verifying of signatures

Exporting public keys to files

Sending public keys to key servers
Attaching public keys to messages
Importing public keys from files
Retrieving public keys from key servers
Importing public keys from messages
Deleting public or secret keys
Revoking public keys

frustration risks

Difficulty generating own key pair

Difficulty protecting own key pair with pass phrase

Difficulty encrypting messages

Difficulty choosing correct public key with which to
encrypt message

Difficulty getting other people’s public keys

Difficulty giving own public key to other people

Difficulty signing messages

Difficulty signing public keys

Difficulty getting own public key signed by an
appropriate person

Difficulty verifying signatures on messages or
public keys

Difficulty revoking public keys

bad citizen risks

Ill-considered signing of other people’s public keys

accident risks

Accidental exposure of secret key

Accidental exposure of private message by emailing
it without encryption

Accidental acceptance of unsigned message as
authentic

Accidental acceptance of unauthenticated public
key as authentic

logical model concepts

Everyone has their own key pair.

Each person keeps the secret half of their key pair
secret.

Each person gives the public half of their key pair to
everyone else.

Each person verifies the identity of the owner of
each public key they are given.

Any security operation performed using one half of
a key pair can only be reversed by using the
other half.

Any security operation that can be reversed using
one half of a key pair must have been originally
performed using the other half.

Table 5-1: An enhanced conceptual model specification for the Lime secure electronic mail program,
with risk enumeration

47

* The process of digitally signing a message must be visible if we wish to support
digital signatures that count as intentional legal signatures.

Generality decision

Public key cryptography is a very powerful general purpose tool within computer
security, and is employed in a wide variety of applications. If key pairs and their basic
uses could be established as familiar concepts to most computer users, at the same
application-neutral level as files, windows and trash cans have been, that would make it
much easier to design effective user interfaces for many different kinds of security
applications. We therefore chose to design tailored metaphors for Lime that present
public key cryptography as a general purpose tool rather than a dedicated component of
an electronic mail appliance.

5.2 Metaphor tailoring

We next want to design visual metaphors that map tightly to the information in our
enhanced conceptual model specification and convey it to the user as effectively as
possible. To do so, we will rely on well-established design principles and heuristics, but
we will pick and choose among them to identify and highlight the ones that are most
important for usable security. These will tend to be the ones that are most relevant to
observability, predictability and learnability [Nielsen94]; since other generally desirable
qualities like efficiency and flexibility are of secondary importance for our purposes. We
propose that the following five principles and heuristics should stand as our most
important design goals.

Provide visual cues that evoke correct assumptions

[Norman94] presented an enormously influential argument that consumer objects
should be designed so that people’s first guesses about how to use them would be
the correct ones. One of his most compelling examples was that of different
designs of door handles that make it visually obvious whether the door should be
pushed or pulled to open it, by making it physically easy to do the right thing and
physically difficult to do the wrong thing. Designs that have this quality are
especially robust, because people’s ability to do the right thing does not depend
on having a correct logical model of how the object works, but only on whether
their instinctive reaction to the object cues them correctly. This is very desirable
for security, since it is probably unrealistic to expect that all users will construct a
logical model. We want to design our visual metaphors so that important security
tasks “look like” the right thing to do at the right time.

Support learning correct logical models

There is a great deal of literature discussing what it means for a user interface
metaphor to have a good mapping to the functionality that it represents. We here

43

cite [Carroll85, Kuhn91, Nardi93, Apple96, Mandel97 and Neale97] as influential
and representative examples. Since we think that some users will construct a
logical model, we think that it is important that the visual metaphors we develop
are consistent with a correct logical model and not a misleading one.

Provide a shorthand for communicating about the system

We want our user interface metaphors to provide the user with a set of cleanly
encapsulated and informatively named conceptual objects that can then serve as part of
the vocabulary for explaining the more complicated details of the security system. If we
can do this well, it becomes much easier to communicate effectively in our help screens
and warning messages.

Provide visual reassurance

Most computer users have “security anxiety.” They are predisposed to see
computer security as a confusing, complicated matter in which they are doomed
to flounder and make fatal mistakes. To ameliorate this, it is important that
security mechanisms be presented using images that suggest that they are simple,
easy and pleasant to use. One strategy for accomplishing this is to use the clear,
bright colors and simple, blocky shapes associated with children’s toys, which
also provides the benefit of implying that the user’s “beginner” status is
welcomed and expected.

Do not mislead

Security user interfaces must, of course, present the user’s security configuration
and settings accurately, but some less obvious kinds of accuracy should also be
taken into account. In particular, two pitfalls to be avoided are that of making the
security appear more sophisticated or absolute than it actually is, and that of
making security mechanisms appear to more exactly analogous to real world
objects than they actually are.

To accomplish our metaphor tailoring for a particular security application, we first
develop an enhanced conceptual model specification with risk enumeration, and then
attempt to design a set of named graphical symbols for those conceptual objects, such
that the graphical symbols visually convey or suggest as many of the states, operations,
logical concepts and risks in our specification as possible. To do this, we iterate through
the following steps®:

Step one: Identify the set of conceptual objects to be represented. In doing so,
look for potentially useful concept hierarchies, so that variations on a concept
may be reflected by variants of a basic graphical symbol.

% We have not explicitly addressed the importance of preliminary user testing and other forms of evaluation
as part of this process, but our intent is that such evaluation should be considered to be an inherent part of
steps two and three.

44

Step two: Construct a basic symbol to evoke the necessary qualities and
associations for each conceptual object.

Step three: Design variations and decorations for those symbols to signal context-
specific operations, states, and risks.

When it appears that further iteration will not achieve any additional coverage of the
conceptual model specification, the set of tailored metaphors is complete. It may be
useful to then annotate the conceptual model specification to show which items are well
supported by the tailored metaphors and which are not, for later use in designing help
screens and other components of the user interface.

5.3 Metaphor tailoring demonstrated in Lime

Earlier in this chapter we created the extended conceptual model specification for our
example security application, the Lime secure electronic mail program (Table 5-1). We
now work from that specification to create our set of tailored visual metaphors.

Conceptual object set

The first step is to choose the set of conceptual objects to be represented, and to look for
potentially useful concept hierarchies. Within the electronic mail application, the
important conceptual objects are the key pairs, consisting of a public key and a secret
key, the operations of encrypting and signing, and the corresponding states of being
encrypted or signed. Encryption and signing can also be seen as part of a useful
conceptual hierarchy of cryptographic operations, like this:

base concept: cryptographic operation
subtypel: encryption
subtype2: signing
subsubtypel: tamperproofing
subsubtype2: signing legally
subsubtype3: certifying a key

Developing a base graphical symbol for cryptographic operations that can be varied to
depict the different subtypes will be very helpful to the presentation of public key
cryptography as a tool rather than an appliance, since it might be extended in future to
cover other semantic meanings for digital signatures, or to depict encryption as one of a
variety of ways of controlling access to data.

In the next two subsections we will describe how steps two and three of our technique
were applied to produce the tailored metaphors first for key pairs, and then for
cryptographic operations, the latter of which is then specialized for encryption and for
digital signatures, following the conceptual hierarchy outlined above.

45

Tailored metaphor for key pairs

In step two of the metaphor tailoring technique, a basic graphical symbol is constructed
to evoke the important qualities and associations for the conceptual object. For key pairs,
those are:

* The object is a tool for achieving security.

* The object has two halves that uniquely match each other.

* The two halves of the object have opposite qualities and can reverse each other’s
operations.

* One half of the object must be kept secret.

* The other half of the object should be given out freely.

The yin-yang key pair image depicted at the top of Figure 5-1 covers all of those points.
Both the combined key pair and the individual halves resemble keys, suggesting security.
The two halves fit together like puzzle pieces, suggesting the unique match. The two
halves are oppositely colored, black and white, and incorporate the yin-yang symbol,
which not only evokes oppositeness, but also the appropriate qualities for each half:
privacy and hiddenness for the black, secret key, and aggressive activeness for the white,
public key. The design principle of accuracy is reflected in the fact that the image, while
having a key shape, is clearly a more abstract object than a house key, and the principle
of reassurance is met by the use of simple, graceful shapes and primary colors. We retain
the names “key pair”, “public key” and “secret key” as reasonably simple and
informative.

In step three, the basic symbol is elaborated to signal the important context-specific
operations, states, and risks. Another important quality of key pairs is the fact that a key
pair belongs to a particular person, and that the identity of that person is explicitly
attached to the public key. The next image shown in Figure 5-1 is the elaborated visual
symbol for a key pair in certificate form, as it would appear in the user’s key pair storage
(which in Lime is called the Key Pair Vault). This symbol reinforces the association
between the two halves, by repeating the key ID for each, and emphasizes the
identification of the owner of the public key, by displaying it in text that takes up as much
space as the key itself. By depicting the certificate as having a tearable perforation
separating the top part, with the secret key, and the bottom part, with the public key, it
neatly provides for the separate depiction of public keys when they are attached to
messages or stored elsewhere.

This leads nicely to the next image in Figure 5-1, which is the toolbar button used for the
operation of attaching a public key to a mail message. The public key embedded in a
rectangle of gray is a direct depiction of the public key certificate image, and the folded
over corner, evoking the widely used icon for creating a new file, helps to emphasize that
a “new” copy of the public key certificate is being created when the key is attached.

46

The basic yin-vang key pair metaphor

S

A key pair as it appears in the Key Pair Vault

'_- Secret key #DDAIE7I6

PUEBLIC KEY CERTIFICATE
This public key #D0A38736 belongs to
Kelly Green <kg@lime.orgs
Toolbar button for attaching public key to message
ﬁ
Cursors for using keys on encrypted or sighed messages

e P

Public keys in different states

PUBLIC KEY CERTIFICATE
This public key #D0DA38736 belongs to
Kelly Green <kg@lime.org:
FUBLIC KEY CERTIFICATE
This public key #DDA38736 belongs to
Kelly Green <kg@lime.orgs
PUBLIC KEY CERTIFICATE
oy This public key #DDA38736 belangs to
@O NOT USE D Kelly Green <kg@lime.orgs

Figure 5-1: tailored metaphor for key pairs

The next pair of images in Figure 5-1 show secret and public keys as cursors, which will
be used in context to signal that those types of keys should be applied to encrypted
messages and to signed text, respectively. Finally, variations of the public key certificate
image are created to visually signal that public keys are expired or retired, and, because

47

we thought users might find it useful, to support an additional state of being “blocked
from use” at the user’s discretion.

Another important state for public keys is that of being signed or unsigned; that is not
depicted here because it will be covered under the tailored metaphors for cryptographic
operations.

Tailored metaphors for cryptographic operations

Beginning at the top of the concept hierarchy, the qualities that need to be suggested for
the generic cryptographic operation are that it provides security and that it requires a key.
The top set of images in Figure 5-2 show the resulting tailored metaphor as a toolbar
button, for the generic operation, and as a smaller, button-like object for the state that
results from the operation. The style of the images continues the simple, cartoon-like
theme established by the key pair tailored metaphor.

Generic cryptographic operation and resulting state

@ @

Encryption operation and encrypted state

@ e

Envelope lock on electronic mail message

Figure 5-2: tailored metaphor for encryption

Next, the tailored metaphor for the generic operation is specialized for encryption, by
making it black, which suggests both secrecy and a correct association with the secret
key. In combination with the key cursors discussed in the previous section, this graphical
image for the encrypted state can be used to strongly reinforce the user’s understanding
that encrypted data is decrypted using a secret key.

4R

Finally, the tailored metaphor is specialized further to make both the purpose and the
presence of encryption for email messages as clear and visual as possible, and the name
“envelope lock™ is coined for the resulting specialized conceptual object. When the user
encrypts a message, the text disappears and is replaced by the envelope lock image,
graphically demonstrating the information hiding that the encryption provides. To open
the envelope lock and restore access to the text, the user must apply the appropriate secret
key to the lock which is depicted as sealing the envelope closed. Moving the mouse over
the image of the locked envelope causes the secret key cursor to appear, cueing the user
to apply the key to open the lock.

The visual assertiveness of the envelope helps to ensure that the user will notice its
absence as well as its presence, protecting against the accidental sending of private
messages in plain text. The attractiveness of the image, suggesting the use of personal
stationery, should encourage the user to view the use of encryption as a pleasant step in
personal correspondence rather than an irritating burden.

Figure 5-3 shows the specialization from the tailored metaphor for the generic
cryptographic operation to those for digital signatures. Note that, unlike most current
visual metaphors for digital signatures, the use of the lock image as a base preserves the
visual association with the use of keys. At the top level, the generic lock image is
specialized by making it white, to suggest something that operates in the open, and that
invites the application of a public key. The state image is further specialized to cover the
cases of a signature for which no matching public key is available, indicated with a blue
question mark, and of an invalid signature when the signed data has been tampered with,
indicated by a red ‘X’.

For the three actual uses of digital signatures in the Lime electronic mail application, the
white lock image is further elaborated to represent three variant conceptual objects:
“content locks” and “signature locks” which are applied to text, and “certification locks”
which are applied to public keys. All three depict the signed data as an uneditable
graphical image, sealed within a gray rectangle that suggests laminating. The white lock
image is applied to the bottom of the gray rectangle, suggesting a “personal seal”, and is
shown as affixing a green ribbon on which is displayed the identifier associated with the
public key that “fits the lock™, as well as a statement of the intent that the lock represents.
This tailored metaphor thus illustrates all of the following:

* That a digital signature is a secure state/operation requiring a key.

* That a digital signature prevents modification of the data to which it is applied.

* That a digital signature identifies the owner of the key used to apply it.

* That a digital signature requires a matching public key for verification.

* That a digital signature breaks if the data to which it is applied is modified.

* That a digital signature may convey only that data is authentic, meaning
tamperproofed, or it may also convey intent to supply a legal signature, or a
testimonial as to the ownership of a public key.

49

Signature operation and possible signed states

B o0&

Content lock on message text

CONTENT LOCKED TEXT
This iz the test that has been content locked. Anyone

can read it, but if anyone makes any changes to it, then
the lock will break.

0O

Signature lock on message text

COMNTENT LOCKED TEXT
This iz the test that has been signature locked. Anyone

can read it, but if anyone makes any changes ta it, then
the lock will break.

0T

Certification lock on public key

PUBLIC KEY CERTIFICATE
This public key #C 1678816 belongs to
Kelly Green <kg@lime.org:

Figure 5-3: tailored metaphor for digital signatures

Conceptual model specification coverage

Table 5-2 shows the extended conceptual model specification again, this time with the
items that are not addressed by the tailored metaphors indicated by italics. These will
need to be given extra attention to ensure that they are well supported in the remainder of
the design process.

50

objects

Key pairs, each consisting of a secret key and a
public key

states

Messages may be encrypted or plaintext.

Message text may be signed or unsigned.

Public keys may be signed or unsigned.

Signatures may be valid, invalid, or unverifiable
(when matching public key is not available).

Public keys may be valid, revoked, or expired.

operations

Generation of key pairs

Protection of key pairs with pass phrase
Encryption of plaintext messages
Decryption of encrypted messages
Signing of text

Signing of public keys

Deleting signatures from text or public keys
Verifying of signatures

Exporting public keys to files

Sending public keys to key servers
Attaching public keys to messages
Importing public keys from files
Retrieving public keys from key servers
Importing public keys from messages
Deleting public or secret keys

Revoking public keys

frustration risks

Difficulty generating own key pair

Difficulty protecting own key pair with pass phrase

Difficulty encrypting messages

Difficulty choosing correct public key with which to
encrypt message

Difficulty getting other people’s public keys

Difficulty giving own public key to other people

Difficulty signing messages

Difficulty signing public keys

Difficulty getting own public key signed by an
appropriate person

Difficulty verifying signatures on messages or
public keys

Difficulty revoking public keys

bad citizen risks

1ll-considered signing of other people’s public keys

accident risks

Accidental exposure of secret key

Accidental exposure of private message by emailing
it without encryption

Accidental acceptance of unsigned message as
authentic

Accidental acceptance of unauthenticated public
key as authentic

logical model concepts

Everyone has their own key pair.

Each person keeps the secret half of their key pair
secret.

Each person gives the public half of their key pair to
everyone else.

Each person verifies the identity of the owner of
each public key they are given.

Any security operation performed using one half of
a key pair can only be reversed by using the
other half.

Any security operation that can be reversed using
one half of a key pair must have been originally
performed using the other half.

Table 2: Extended conceptual model specification, with gaps in
tailored metaphor coverage indicated by italics

51

5.4 Additional example: firewall port management

This chapter has illustrated metaphor tailoring using the example of Lime secure
electronic mail. However, metaphor tailoring is a general technique useful for secure
software. In this section, we illustrate metaphor tailoring with a completely different
example: managing ports on a firewall.

Consumer oriented routers have become popular for supporting home networks with a
broadband internet connection. One advantage of these types of routers is that they allow
the user to specify security parameters and thus act as a simple firewall protecting the
home network. Virtually all routers support some type of Network Address Translation
(NAT) which allows a single broadband IP address to be multiplexed across the home
network. Individual ports on home machines are dynamically mapped to unused ports on
the router, effectively disrupting attacks which depend on access to particular ports. For
example, port 23 is conventionally mapped to the telnet service, and offers outsiders an
easy way to gain access to UNIX or Linux based machines. However, the NAT service
will actually map port 23 to a random port, thus forcing the outsider to engage in a
portscan to find the vulnerable port. To completely eliminate this vulnerability,
consumer oriented routers offer further abilities to turn off access to particular ports. For
example, a user may specify a rule saying that port 23 of machines inside the home
network should never be mapped to an outside port unless the machine in the home
network initiates the connection.

From the standpoint of user interfaces, these rulesets pose at least two issues. First, how
can users effectively manage access to their ports? Second, if a user is using an
application that demands particular ports, how can the user create a “demilitarized zone”
that maps those ports to the machine running the application? (An example of such an
application is Microsoft NetMeeting, which supports an interactive whiteboard but
requires that users communicate over particular ports.) Conventional routers address
these interface problems using a variety of techniques ranging from checkmarks in an
array to formal rules written in a special purpose computer language. As an example of
how complex these systems can become, a consumer router manufacturer, Netopia,
publishes a router manual that is 258 pages long, and which devotes approximately 100
of those pages to specifying rules for router configuration.

The first step in metaphor tailoring is to create the enhanced conceptual model
specification for the security system, with risk enumeration. For the sake of brevity, we
present here a simplified, abbreviated risk enumeration:

Accident risks include: accidentally turning on or off the wrong ports, ignorance
of port functions, failure to include correct ports in a demilitarized zone, and

failure to understand functions associated with particular ports.

Frustration risks include: failure to be able to turn on appropriate ports to
support a function, and, as a result, opening all ports on a given computer.

32

Bad citizen risks include: allowing rogue “zombie” programs on a given
computer to send “denial of service” messages to remote machines as part of an
attempt to force the remote machine off the internet, such as flooding a remote
machine with SYN packets.

With this risk enumeration, we have in place the necessary requisite to begin metaphor
tailoring. Here is one type of metaphor that a Security-HCI engineer might propose:

First, she might design a system where ports are described both by their commonly used
Internet function, e.g. port 23 may say “telnet” together with a stoplight icon that
indicates whether allowing access to that port is advised (green); potentially dangerous
(yellow) or not advised (red). She might also propose a pictorial representation of the
network, where ports that are mapped directly to machines through the demilitarized zone
are visually attached to the representation of the machine on the diagram. A more
elaborate scheme would allow ports associated with applications (such as NetMeeting) to
be represented by a single icon which could then be attached to the representation of a
machine in the visual presentation.

While this is a simple example, metaphor tailoring gave us a start in representing the
example and the reader may enjoy completing the exercise of extending the metaphor to
support additional functions.

5.5 Summary

In this chapter, we have presented an enhanced and specialized technique called
metaphor tailoring for constructing highly effective named visual representations for
security mechanisms, states, and operations. We have then demonstrated the application
of that technique to create the set of visual metaphors for public key cryptography that
are used in our Lime secure electronic mail application. Formal evaluation of the success
of those metaphors will be presented in Chapter 6.

53

CHAPTER 6 Experimental results

In this dissertation we have argued at the most general level that computer security
requires its own theory and techniques for achieving usability, because it includes basic
qualities and challenges that are fundamentally different from those of the applications
that are the usual domain of human computer interaction research. We have then
presented two techniques that we argue are generally applicable for addressing the
usability needs of security: first, a reinvention of the technique of user interface staging,
as a method for guiding users to an intuitive understanding of the purpose of those
computer security mechanisms that would otherwise seem opaquely abstract and
divorced from human concerns; and second, an explicit tailoring of visual metaphors to
provide the particular kind of observability and predictability for which computer
security demands the highest priority.

Continuing to move from the theoretical to the concrete, we have then demonstrated the
use of both those techniques in the creation of a user interface design for electronic mail
security using visible public key cryptography, and have named this design Lime. In this
chapter we will discuss the evaluation of that design through two forms of user testing,
the results of which provide strong support for the utility of both techniques.

The goals of the user testing were first to isolate and evaluate the success of the staging at
making key certification understandable, then to do the same for the success of the visual
metaphors at conveying the basic conceptual model of public key cryptography, and
finally, to evaluate the success of the user interface design as a whole at reaching an
acceptable usability threshold. Accordingly, the first two tests conducted were designed
to separately compare the staging and the metaphors against several plausible design
alternatives. These tests were done using paper presentations, and are discussed in
sections 6.1 and 6.2. The final test was done using a full software implementation of the
Lime user interface design, and is intended as a proof of concept; it is discussed in
section 6.3. Finally, section 6.4 summarizes the results and our conclusions.

6.1 Staged user interface comparison

Since available time and resources did not permit the creation of multiple variant
software programs, paper presentations were used to represent each user interface design
to the test participants. These presentations covered briefly each of the basic concepts
necessary to the use of public key cryptography, phrasing the explanation in terms of the
conceptual model and visual metaphors of the variant being tested. Participant
understanding was then evaluated via written answers to a series of printed questions.

Objectives

The objective of this test was to evaluate the staged presentation of key authentication in
my user interface design against its equivalent from two commonly seen user interfaces
for public key cryptography, to test which best enabled users to understand key signing as
a method for authenticating public keys.

Test design and methodology

Presentation

In this test, each participant was given one variant of a 2-3 page printed presentation
explaining a security program for use with electronic mail. In order to measure the
effects of the variant presentations of key authentication in isolation from those of
particular visual metaphors, no images were used in the presentations, and cryptographic
objects and functions were referred to only in metaphor-neutral language: fokens rather
than keys, make-unreadable rather than encrypt, and make-tamperproof rather than
digitally sign. The presentations for each of the three variants were identical aside from
the points described next. Copies of the three presentation variants are in Appendix B.

The three variants were:

PGP: the presentation explained the use of a token pair consisting of a public token
and a secret token, the use of the functions make-unreadable and make-tamperproof,
the importance of making sure you really have the right public token for each person,
and certification as a mechanism for doing so. This variant has no staging.

SSL: as for PGP, but instead of explaining the token pair, the presentation explained
that each person has a security token, and presented the use of the cryptographic
functions according to that single token model. This corresponds to the way in which
browsers present SSL by explaining that each person has a certificate. This variant
also has no staging; it was included in order to evaluate a design that was simplified
by hiding more information from the user.

Lime: as for PGP, but with the addition of two paragraphs discussing the use of
social authentication methods, inserted before the explanation of certification. The

55

two additional paragraphs contained no references to key certification whatsoever, so
that the presentation of key certification was identical across all three variants. This
variant represents a design with a staged presentation of key authentication.

Data collection

After the participant had read through his or her assigned presentation and indicated
readiness to continue, they were given a series of five pages of printed questions about
how they would use the security software in five different scenarios, and asked to answer
in writing. The questions were identical for each variant except for slight changes in
wording to match the SSL variant's discussion of security tokens rather than token pairs.

Each of the five pages of questions had the following format:

1. Brief scenario description.

Question asking whether it would be worth spending time to make the message

secure, and if so, how much time.

Question asking which functions and tokens would need to be used.

4. Question asking how one would get the necessary tokens at an appropriate level
of security.

5. Question inviting the participant to make comments.

(98]

After the five pages of questions were completed, the participant was given a short
debriefing questionnaire, thanked, and paid $10. Copies of the questions and of the
debriefing questionnaire can be viewed in Appendix B.

Data analysis

In analyzing the data, it was necessary to take into account the fact that the questions did
not always make it clear to participants how much information their answers were
supposed to provide. For example, when asked which tokens and which functions would
need to be used, some participants answered with a list of tokens and a list of functions,
without any clear association between the two. Such an answer could not be taken as
evidence that the participant understood that one must use one's own secret token with
make-tamperproof, or the intended recipient's public token with make-unreadable, but it
was not necessarily indicative of lack of understanding either.

Due to this, our method of analyzing the collected data was to look for evidence of
participant understanding of each important point, provided in response to any of the
questions. Each page of questions thus represented an additional opportunity for the
participant to demonstrate understanding. No participant was ever coded as having not
understood a particular point, only as having either demonstrated or failed to demonstrate
understanding.

5A

Results were coded for demonstrated understanding of the following points (modified as
appropriate for the SSL variant):

Encryption:
1. That make-readable/unreadable are the functions for privacy.
2. That the sender uses the recipient's public token and the recipient uses his or
her own secret token.

Digital signatures:
1. That make/check-tamperproof are the functions for authentication.
2. That the sender uses his or her own secret token and the recipient uses the
sender's public token.

Key trading and authentication:
1. That the sender and recipient need to have each other's public tokens.
2. That they must make sure those are the real public tokens for each person.
3. That a trusted third party can attest to the ownership of someone's public
token for you, by using their own secret token to do make-tamperproof on it,
if you already have the trusted third party's public token.

A second coder then independently coded results for six randomly selected test
participants; 89% of those results matched exactly, and the remainder were within plus
or minus one value. A collation of the raw data and copies of the coding sheets used can
be viewed in Appendix B. The data from the debriefing questionnaire was not coded as it
did not appear to hold any significant information.

Participant selection

Participants were recruited by putting up posters on the Carnegie Mellon University
campus, and by posting an ad to the newsgroups cmu.misc.market and pgh.general. The
posters and ad offered payment of $10 for one hour of participation in a research project
for improving computer security.

Respondents to the recruitment were asked to answer a set of intake questions in order to
establish basic demographic information and to screen out those who already understood
the basics of public key cryptography (see Appendix B). Those who passed the screening
were randomly assigned to one of the three design variants for testing. The random
assignment was accomplished by assembling all the test materials needed for 30
participants, 10 for each of the three variants to be tested’, and placing them into 30
unmarked folders, which were then thoroughly shuffled. When each participant arrived
for their individual test session, they were given the test materials from the next folder at
the top of the stack, so that the monitor, conducting the test, did not know which of the

" By accident, the set of folders assembled actually contained 11 instances of the Lime variant, 10 instances
of the PGP variant, and 9 instances of the SSL variant. The results are thus analyzed and presented in
terms of percentages.

57

three variants the participant would be receiving until after the assignment had been made
and the test session had begun.

Results

Our hypothesis predicted that the Lime variant would enable more test participants to
understand key certification, due to its staged design in which participants were first
introduced to key authentication in terms of weaker, social methods. The test results
supported this, as shown in Table 6-1: 45% of the test participants who received the
Lime variant demonstrated understanding that public keys need to be traded and
authenticated, and correctly described key certification as a method for doing so, versus
10% of the test participants who received the PGP variant, and none of the participants
who received the SSL variant. Insofar as this printed presentation is an accurate stand-in
for an actual software application, this is a strong result in favor of staging.

Variants
Points correctly described by participant Lime | PGP | SSL
key trading, authentication, and certification 45% | 10% | 0%

key trading and authentication, but not certification | 36% | 50% | 89%
key trading, but not authentication or certification 18% | 40% | 0%
not even key trading 0% | 0% | 11%

Table 6-1: Participant understanding of key certification in staging test

Another interesting result from Table 6-1 is that, if we disregard certification, and look
just at participant understanding that public keys must be traded and authenticated, then
the SSL variant yielded quite good results. Our impression is that this is because the
participants who received that variant tended to think of security tokens as passwords,
which led them to make reasonably correct assumptions about trading tokens and making
sure one has the right token, but did not help them at all with the concept of certification.

Variants

Points correctly described by participant Lime | PGP | SSL
use for privacy, plus which keys are needed 73% | 80% | 56%
use for privacy, but not which keys are needed | 27% | 20% | 44%
not even that encryption is for privacy 0% | 0% | 0%

Table 6-2: Participant understanding of encryption in staging test

58

Variants
Points correctly described by participant Lime | PGP | SSL
use for authentication, plus which keys are needed 64% | 70% | 56%
use for authentication, but not which keys are needed | 36% | 20% | 44%
not even that digital signatures are for authentication 0% | 10% | 0%

Table 6-3: Participant understanding of digital signatures in staging test

In looking at the results for participant understanding of encryption (Table 6-2) and
digital signatures (Table 6-3), an important question is whether the gain in understanding
key certification that we see for the Lime variant comes at a cost of less understanding of
other points, perhaps due to overwhelming the participant with extra information.
Fortunately, this does not appear to be the case. The results for the Lime and PGP
variants are basically equivalent; the SSL variant results are basically equivalent for
digital signatures and slightly worse for encryption.

In summary, the results of this test suggest that there is significant benefit to staging the
presentation of key certification to the user, and little or no associated cost. They further

suggest that attempts to simplify by concealing the basic key pair model will not improve
user understanding of how to encrypt and digitally sign, and may even harm it somewhat.

6.2 Visual metaphor set comparison

This test again used variant paper presentations, very similar to those used in the staging
comparison test, but this time presenting the participants with visual metaphors.

Objectives
The objective of this test was to compare three different sets of visual metaphors for

public key cryptography, to see which best enabled test participants to understand the use
of encryption, digital signatures, and key management.

Test design and methodology

Presentation

The design of this test was very similar to that of the previous test. Each participant was
given one variant of a 2-3 page printed presentation explaining a security program for use
with electronic mail. The presentation text was taken from the Lime variant presentation
of the previous test, so that all three metaphor set variants for this test were accompanied

59

by text that presented explicit key pairs and staged key authentication. Aside from
necessarily metaphor-specific terminology, such as references to encrypting versus to
applying an envelope lock, that text was identical for all three metaphor set variants.
Copies of the three presentation variants are in Appendix C.

The three metaphor set variants were:

PGP: the brass keys, envelope/padlock, quill pen, and ASCII representations
taken directly from PGP 5.0.

Basic Lime: the yin-yang key pair, envelope locks, and content locks.

Extended Lime: the yin-yang key pair, envelope locks, content locks, signature
locks and certification locks.

Data collection

Again, the data collection performed was very similar to that of the previous test. After
reading through the assigned presentation, the participant was given a series of six pages
of printed questions about how they would use the security software in six different
scenarios, and asked to answer in writing. Five of the six pages were, aside from
metaphor-specific terminology, identical to those used in the previous test; the sixth was
added in order to include a scenario that would require the participant to describe a way
to indicate a legal signature.

After the six pages of questions were completed, the participant was given a short
debriefing questionnaire, thanked, and paid $10. Copies of the questions and of the
debriefing questionnaire can be viewed in Appendix C.

Data analysis

Analysis of the collected data and coding of results was performed exactly as for the
previous test, except for one additional coded point, which was whether the participant
described a valid method for distinguishing an intended legal signature from basic
tamperproofing. Second coder results for six randomly selected participants matched at
92%.

Participant selection

Participants were recruited and selected exactly as described for the previous test, using
the same advertisements, screening process, and randomized assignment to variants.
Several data sets had to be destroyed due to our having forgotten to screen out minors,
whom the terms of my human subjects authorization did not permit us to test. The results

A0

presented next are thus based on a testing set of 26 participants: 8 who received the PGP
variant, 9 who received the basic Lime variant, and 9 who received the extended Lime
variant.

Results

Tables 6-4, 6-5, and 6-6 show the results of this test. They do not support our hypothesis,
as the PGP visual metaphors yielded better results than either of the Lime metaphor sets
on all points except key certification and indication of a legal signature. However, there
is something else interesting here: with the single exception of the PGP variant results
for encryption, all of the results for all three variants are substantially worse than the
results for the staged variant in the previous test. Since there were only three differences
between this test and the test of that variant, it appears that one or more of those
differences had a negative effect on participant understanding. Those differences were:

1. The addition of one more page of questions, with a scenario designed to require
the indication of intent to provide a legal signature. Since this page of questions
was given to the participants last, it could not have affected their answers to the
earlier questions, and thus cannot have caused the difference in participant
understanding.

2. The addition of pictures, representing visual metaphors for the cryptographic
objects and functions, to the variant presentations. It is possible that this caused
the participants to be distracted or confused and thus contributed to their
achieving lower levels of understanding than those who were given a text-only
presentation.

3. The change from the metaphor-neutral terms, such as make-unreadable, to the
terms of the variant metaphor sets, such as encrypt or envelope lock. When we
consider this change alongside the fact that the single improved result was that of
the PGP variant for encryption, it suggests that the results of this test can be
explained as corresponding to the familiarity of the test participants with the
terminology used in the presentations. That is, in the test of the PGP metaphor
variant, it is very likely that most if not all of the participants had previous
exposure to the term encryption and knew basically what it is for, even though
they did not know how public key cryptography works. In the previous test of the
staged, metaphor-neutral variant, the terms used were very literally informative:
make-unreadable and make-tamperproof. It makes sense that the change to less
literal, more unfamiliar terminology would cause participant understanding to
worsen.

A1

Variants
Points correctly described by participant PGP | Lime basic | Lime ext
key trading, authentication, and certification 0% 11% 22%
key trading and authentication, but not certification | 88% 67% 56%
key trading, but not authentication or certification 13% 22% 11%
not even key trading 0% 0% 11%
Table 6-4: Participant understanding of key certification in metaphor test
Variants
Points correctly described by participant PGP | Lime basic | Lime ext
use for privacy, plus which keys are needed 88% 44% 44%
use for privacy, but not which keys are needed | 13% 44% 33%
not even that encryption is for privacy 0% 11% 22%
Table 6-5: Participant understanding of encryption in metaphor test
Variants
Points correctly described by participant PGP | Lime basic | Lime ext
use for authentication, plus which keys are needed 50% 33% 33%
use for authentication, but not which keys are needed | 50% 56% 67%
not even that digital signatures are for authentication 0% 11% 0%
also indicating intent as legal signature 13% 11% 89%

Table 6-6: Participant understanding of digital signatures in metaphor test

Our main conclusion here is that this was not a successful test design: it did not do a
good job of measuring the relative value of the different visual metaphor sets. A better
test design would have changed only the pictures and not the terminology, in order to
isolate the usefulness of the visual metaphors and prevent the test from reducing to
familiarity with their labels. An ideal test design would have incorporated the
terminology changes, but would also have given the participants the experience of
interacting with the visual metaphors in some way equivalent to that which occurs in a

real software program.

We do not conclude from these results that the best design solution would be one which
used the metaphor-neutral, literally informative terminology from the previous test. If we
were constrained to design a text-only interface to a public key cryptography system, then
that terminology might well be ideal. In a graphical user interface, however, metaphors
may allow us to provide users with visual objects that are directly manipulable in ways

that significantly support user understanding, and it is not clear whether, in that context,
the most usable names for those metaphors are those that correspond to the appearance of
the object or those that correspond to its function. We therefore chose to proceed with

(29

the implementation of our extended metaphor set in the Lime software, and to see how
the test participants interacted with it in the proof of concept test described in the next
section.

Finally, there was one additional minor result from this test, regarding the advanced uses
of digital signatures. When provided with the metaphor of signature locks for use in
indicating a legal signature rather than just tamperproofing, nearly all of the test
participants correctly described the use of a signature lock when given the appropriate
scenario and questions. Very few of the participants who received the PGP variant or
basic Lime variant were able to come up with and describe a method for securely
specifying a legal signature. This is not a surprising result, but it does support the
hypothesis that the distinction between content and signature locks makes sense to people
and would be practically useful. The Lime metaphor variants also appeared to have a
small edge over the PGP variant in participant understanding of key certification, but the
percentage differences are too small to be clearly significant.

6.3 Proof of concept user testing

In order to conduct the next phase of testing, we used Visual C++ to implement a
complete simulation of our hypothetical Lime electronic mail security program. This
simulation, which we will refer to as Lime, resembled a basic version of the Netscape or
Mozilla mail client, but presented public key cryptography using our extended visual
metaphor set and staged introduction to key certification. Network communication
protocols were included to allow Lime to connect to the Limeserver, another small
software program that ran on a UNIX workstation and provided mail server and key
server functionality during the user tests.

It must be acknowledged that, since Lime is a complete user interface, its presentation of
public key cryptography necessarily includes some other user interface design elements
beyond those that directly relate to my staging and metaphor hypotheses. These other
elements are neither extensive nor unusual, however, and thus are unlikely to have much
impact on participant success. We also wish to stress here that this implementation of
Lime is not intended to represent the best possible attempt at making public key
electronic mail security usable. Such an attempt would at minimum incorporate good
warning messages and a more extensive help system, and would probably benefit from
various methods of scaffolding, such as those we will discuss in our chapter on future
work.

In discussing this user test, we will use the terminology that corresponds to the Lime

metaphors, i.e. envelope locks rather than encryption, and content locks and signature
locks rather than digital signatures.

A3

Objectives
The objectives of this user test were:

1. To observe the test participants' interaction with the staged introduction to key
certification, to see whether they made use of social authentication methods when
given a scenario where weak security was appropriate, and to see whether they
then successfully made use of key certification when given a scenario calling for
stronger security.

2. To observe the test participants' interaction with the visual metaphors used to
present public key cryptography, and in particular, to see whether they were
successful at using the right public keys to create envelope locks and at using
envelope, content and signature locks correctly when it was appropriate to do so.

3. To observe the test participants' overall level of success at using public key
cryptography with the Lime user interface design, and to identify remaining
usability problems and possible future solutions.

These observations will be the basis on which we assess whether the Lime user interface
design reaches a usability threshold that is sufficient to enable most electronic mail users
to successfully make use of public key encryption, digital signatures, and decentralized
key certification.

Test design and methodology

Basic test format

This test was based on the PGP usability test discussed in Chapter 3, but was more
extensive, incorporating three scenarios rather than one, and with a time limit of three
hours rather than 90 minutes®. Twelve participants were tested”.

Test sessions were conducted in a small private lab in Soda Hall on the U.C. Berkeley
campus. The participant was seated at a networked computer running a fresh,
uninitialized copy of Lime, and we, as the test monitor, were seated approximately four

¥ The time allotted for the test itself was actually closer to two hours and thirty minutes, because the three
hours allotted included briefing and debriefing. The testing began as soon as briefing was accomplished,
and continued until all scenarios were complete or until there were only fifteen minutes remaining for
debriefing, whichever occurred first. This is in contrast to the PGP test, which continued until the scenario
was complete or until 90 minutes had elapsed, measured from the end of the initial briefing.

? There were also two discarded test sessions: those of participants P2 and P3. P2 did not cooperate with
the test scenarios, treating the test session instead as a software quality control exercise and focusing on
design issues such as button layout. P3 repeatedly triggered a previously unidentified software bug that
caused Lime to crash whenever a content lock was used; after several occurrences of this we terminated
the test session.

A4

feet behind them and to the left, positioned to observe their actions on the screen.
Participants were requested to think aloud as much as possible.

We used a laptop both to take detailed notes on the test session and to play the roles of
the various scenario characters, using our own copy of Lime to connect to the Limeserver
and to send and receive messages. The test session was also recorded by a videocamera
positioned on a table behind the participant.

Scenario and questionnaire design

The design of the test itself was based on the PGP usability test discussed in Chapter 3,
but with a number of important modifications and elaborations. Instead of the single
scenario in the PGP test, the Lime test used a sequence of three scenarios:

1. An initial, low security scenario in which the participant was told that they had
acquired the Lime email security software and should try to use it to send a
secure message to an old friend, “Steve”. The scenario description provided
enough background information about Steve for the participants to attempt social
authentication, if they chose to do so.

2. A higher security scenario similar to the main scenario in the PGP test, in which
the participant was told that they were volunteering for a political campaign and
had been given the duty of securely disseminating information to the campaign
team members, beginning with the provided secret memo. In the Lime test,
however, this scenario was elaborated to include the following events:

a. At the start of the scenario, the participant was given a floppy disk
containing the public key of the campaign manager, “Maria”. The
scenario description stated that Maria had exchanged public keys with
the participant, in person and using floppy disks, at the time that the
participant was hired.

b. If the participant sent the secret memo to the campaign team members
without using a content or signature lock, a campaign team member
responded with a complaint that they “couldn't be sure that message
really came from you.”

c. Ifthe participant sent the secret memo to the campaign team members
with a content or signature lock, but had not provided the team members
with a certified copy of their public key, then a campaign team member
responded with a complaint that they “couldn't be sure that was really
your public key.”

d. If the participant sent email to Maria requesting that she certify their
public key, Maria complied.

AS

e. When the scenario was otherwise complete, the participant was sent an
email purporting to come from one of the campaign team members,
offering a new, uncertified public key and saying “I've made myself a
new key, please use this one from now on.” This will be referred to as
the “Attacker-Sam” message in the discussion of results to follow. Its
purpose was to provide an additional opportunity for the participant to
require that the new key be certified.

f. In the first test sessions, this scenario ended with a message from Maria
saying that a hacker had broken into the office machines and that
everyone needed to retire their key pairs and make new ones. In some
sessions this created problems when participants reacted by deleting their
copies of the team members' public keys, which were needed for the third
scenario. Due to this, the retirement subscenario was moved to the very
end of the test for the remaining test sessions.

An addendum to the previous scenario, in which the participant was told that
their volunteer duties would now include the processing of requisitions from the
campaign team members, and was given a brief set of rules for rejecting or
approving those requisitions. Requisitions were to be rejected if they did not
carry the submitting team member's signature lock, and the participant was told
to approve acceptable requisitions by adding their own signature lock.

After the test scenarios were completed, or in some cases halted as the allotted time
expired, participants were asked to fill out a debriefing questionnaire that contained the
following sections:

1.

2.

3.

A series of fourteen randomized statements about the correct use of the security
functions in Lime, to be marked true or false.

A series of hypothetical security scenarios, for each of which the participant was
asked to state how important security would be to them and whether they thought
they would be able to use Lime to get the desired level of security with a
reasonable amount of effort.

A request for the participant to add any comments that they would like to make.

Data collection

The raw data collected consisted of the following:

1. The detailed notes we made while observing each test session.

6A

2. The email messages sent and received by the participants and by us in the
roles of the various scenario characters.

3. The videotapes of the test sessions.

4. Answers to the debriefing questionnaire given to the participants at the end of
the test session.

Data analysis

The raw data was processed into results using the coding book of boolean and multiple
choice questions shown in Appendix D. A second coder also independently processed
the data from two randomly selected test sessions for comparison, showing an exact
match rate of 84%.

Participant selection

Participants were recruited by posting an ad to the local community web site Craig's
List'®, offering $10/hour for 2-3 hours of participation in a research study to improve
computer security. Respondents were screened using an intake questionnaire, and those
who had prior experience with PGP or could roughly explain the difference between
public and private key cryptography were excluded.

A note regarding comparison to the PGP case study

Although the design and goals of this user test are very similar to those of the PGP case
study discussed in Chapter 3, it is important to stress that the results of the Lime and PGP
tests cannot validly be held to direct comparison. The PGP test results demonstrated that
significant usability problems existed for the PGP 5.0 user interface at that time. The
Lime test results demonstrate that, with the Lime user interface at the present time, public
key cryptography for electronic mail is usable for most security novices. Neither set of
results rules out the possibility that the user population has changed enough that even
security novices would now be equally successful with the PGP user interface; however,
there is no anecdotal evidence suggesting that to be the case.

% http://www.craigslist.org

a7

Results

Our discussion of the results will be separated into those which relate directly to key
authentication and certification and thus are relevant to the staged components of our
design, and those which relate to use of the basic functions of public key cryptography
and are expected to reflect the usability of the visual metaphors. Following that we will
then also discuss individually those participants who encountered serious difficulties, and
touch briefly on potential design solutions that could have averted those problems.

Key certification results

In this section we present and discuss those test results that are relevant to the staged
presentation of key certification in my user interface design. Those results are primarily
drawn from participant actions in the second, higher security test scenario, and record the
following:

o Whether the participant successfully authenticated their own public key by
first getting Maria to certify it and then sending the certified key to the team
members.

o Whether the participant required the campaign team members to provide
certified copies of their public keys, first during the exchange of public keys
preparatory to sending out the envelope locked secret memo, and second,
upon receipt of the new uncertified key sent by Attacker-Sam.

o Whether the participant certified any keys inappropriately, or requested
certification of their own public key from team members who could not
validly comply.

o Participant scores on the true/false questions in the debriefing questionnaire
that relate to key certification.

Because our hypothesis is that the staging has a significant positive effect on participant
success at those tasks, we present the results with the participants grouped according to
the best available measure of their interaction with that staging, which is whether or not
they made use of social authentication when exchanging public keys with Steve in the
first scenario.

In these results only nine of the twelve test participants had the opportunity to fully
attempt the certification tasks. The three who did not were P7, P10, and P11, who for
that reason are shown marked with an asterisk in the tables that follow. P7 and P10 did
not succeed at the prerequisite task of trading public keys with the campaign team

AR

members'', and P11 misunderstood a directive about the scenario description as telling
her to ignore all key authentication issues'?.

Results for authenticating own public key

Table 6-7 shows the results for whether the participant got Maria to certify their own
public key. The surprising success of P10 here appears to have been accidental, as he
requested certification for his key while trying to figure out why the team members
couldn’t open his envelope locked messages.

Used social auth | No social auth | Total
Immediate success - P10* 1
Success after complaint | P4, P6, P9, P12, P13 P5, P14
Success after direction P1 -
Failure or not applicable P7*, P8, P11* -

W=

Table 6-7: Participant success at getting own public key certified

More promising are the results for the participants listed as “Success after complaint.”
These participants initially sent their public key to the team members without
certification, and then received a complaint in response saying that the team member
“needed a way to make sure that key really came from you,” after which they
successfully got the key certified by Maria. The single participant listed as “Success after
direction” did the same, except that the complaint he received said “you should have
Maria certify your key.”"

P7 and P11 failed for the reasons described earlier. The other failure, P8, clearly
understood that certification was needed, but not how to validly acquire it, as he
repeatedly responded to key authentication complaints by certifying and sending out
copies of his own public key and, when that did not work, of the other public keys in his
possession.

" The reasons for their difficulty will be discussed later in this chapter. Both did successfully trade public
keys with Steve in the first scenario.

' Several participants began the second scenario by attempting to make up some shared personal data that
they could use for social authentication with the campaign team members, such as the color of the shirt they
were wearing on the day they were hired, or the correct pronunciation of their last name. For those who did
this, we verbally clarified the scenario by telling them that they had never met the campaign team members
in person or talked to them before. Participant P11 appeared to interpret our direction as meaning that key
authentication issues were to be disregarded for that scenario: she ignored all authentication related tasks
and complaints from the campaign team from that point on. It did not appear to us that there was any good
way to correct the misunderstanding without inappropriately stressing the importance of authentication, so
we did not try to do so.

" This was an error on our part, as our intent was to have the team members only make complaints in terms
of the desired end goal, such as “I need a way to make sure this is really your key,” and to avoid any
reference to the tasks required to achieve that goal. There were no other instances of this error.

A0

Next, Table 6-8 shows the results for whether the participant successfully provided the
certified copy of their public key to the campaign team members. The six participants in
the top two rows are considered to have succeeded, since they sent their certified keys
either to the whole team or at least to the team member who made the key authentication
complaint.

Used social auth | No social auth | Total
Sent to all P1, P6, P13 - 3
Sent to some P9, P12 P14 3
Tried to send P4 - 1
Did not try to send - P5, P10* 2
Not applicable P7*, P8, P11* - 3

Table 6-8: Participant success at sending certified copy of own public key to team members

P4, who is listed under “Tried to send”, had some difficulty getting his certified key
imported from Maria’s response and pasted into his outgoing message; he resolved that
problem quickly, but then, before sending out the certified key, began rechecking the
certification locks on all the team members’ keys and never returned to the task of
sending out his own.

PS5 and P10 got Maria to certify their keys, but then never tried to pass on the certified
key to the campaign team members. P5 appeared to think that when Maria certified his
key the certification somehow took effect globally, since upon receiving her reply he
immediately sent out the envelope locked secret memo again, but without attaching a
copy of his certified key. When he then received another key authentication complaint,
he expressed worry that there was something wrong with the certification, or that he had
accidentally used the wrong key. P10 never attempted to trade public keys with the
campaign team members at all. Lastly, the participants listed under “Not applicable” are
those who did not succeed in getting their own public keys certified, as seen in the
previous table.

These are very promising results. In only one case, that of P8, did we observe a real
failure to understand how to validly get certification for one’s own public key. P4’s
failure to send the certified key to the team members appeared to be a lapse of attention
and not of understanding. P5’s failure to realize that he needed to send out his key again
to publicize the certification represents a problem, but one that should be easy to address
by adding reinforcement at appropriate points, such as when a newly acquired
certification lock is imported into the Key Pair Vault. Since all but one of the
participants for whom this part of the scenario was applicable were able to get their own
public keys certified, and most then successfully provided their certified public keys to
the complaining team member, the Lime design appears to meet the target usability
threshold with regard to use of certification to authenticate one’s own public key.

70

Results for requiring authenticated public keys from others

Table 6-9 shows the results for whether the participant withheld the secret memo until the
team members provided certified copies of their public keys. Only P8 and P9 did so, and
each under special circumstances. P8 chose the creative but acceptable solution of
envelope locking and sending the secret memo to the certified key owners only, with a
request that they pass on the information to the remaining team member. As for P9, the
special circumstance is that he received an authentication complaint about his own public
key from a team member before he had sent out any copies of the secret memo, and thus
had that example to reinforce the idea that authenticating keys was to be treated as
important.

The majority of the participants envelope locked the secret memo with the public keys as
they were sent by the team members, without complaining about the uncertified key. P7
and P10 did not trade public keys with the team members and thus never reached this
task.

Used social auth No social auth | Total
Certified keys only P8, P9 - 2
Uncertified keys P1, P4, P6,P11*, P12, P13 P5, P14 8
Not applicable P7* P10* 2

Table 6-9: Participant insistence on certified public keys for putting envelope lock on secret memo

A participant who understood that, ideally, public keys should be certified might still be
unsure as to whether they were meant to aggressively insist that the team members
provide certified keys or to passively accept the keys they were given. To take this into
account, the test scenario gave participants a second chance, by having Attacker-Sam
send a new, uncertified public key after the participant received and resolved any key
authentication complaints from the team members. Table 6-10 shows participant
reactions to receiving Attacker-Sam’s uncertified public key.

Used social auth No social auth | Total
Demanded certification | P1, P4, P6, P9, P12, P13 - 6
Accepted uncertified P11* P14 2
Unclear reaction - P5 1
Not applicable P7*, P8 P10* 3

Table 6-10: Participant insistence on certification for new public key sent by Attacker-Sam

Now we have six participants responding to Attacker-Sam with a request for key
certification. As for the others, P14 imported Attacker-Sam’s key and appeared to accept
it as valid. P11 responded with an apparently unserious “this is you, right?”” message
with a smiley face, and imported the new key. PS5, who appeared to be fairly tired and
frustrated by this point in the session, responded with a message saying “what hardware

71

store did you go to, to make your new key?” and is thus listed above under “Unclear
reaction.” P7, P8 and P10 did not receive the message from Attacker-Sam.

Ideally, we would like to see all participants proactively require validly certified public
keys from the start, but that may never be realistic in a test that asks participants to use
their own judgement within a social situation. What we do see here is that when
participants were given the small social reinforcement of having a team member
complain that a public key was not authenticated, and then were offered an
unauthenticated public key, a strong majority responded by requiring certification. This
suggests that, in real world situations, most users would be able to require and evaluate
key certification once they decide that strongly authenticated keys are called for.

Results for inappropriate use of key certification

Another useful measure of participant understanding of key certification can be taken
from whether they also used it in inappropriate ways. The first three rows of Table 6-11
show the participants who certified other people’s public keys when they had not met
with those people to exchange keys in person, and the last row shows those who asked
for certification for their own public key from people other than Maria, who was the only
person who could validly provide it.

Used social auth | No social auth | Total

Certified Steve’s public key in P7, P8, P9 P10, P14 5
first scenario

Certified campaign team P11* P14 2
member’s otherwise uncertified

public key

Certified campaign team P8, P9, P11%*, P13 - 4

member’s public key that had
previously been certified by
Maria

Requested certification for own - P10 1
public key from someone other
than Maria

Table 6-11: Inappropriate use of key certification by participants

While quite a few participants did inappropriately certify other people’s public keys,
none of them mailed out or otherwise publicized the resulting certification. By contrast,
participants who took the valid step of certifying Maria’s public key often sent a copy to
her afterwards. Because of this, we do not consider the inappropriate certifications to be
a serious problem, but do consider this an appropriate area for added warning messages.
As for P10, he sent an email message to the entire team, including Maria, asking for his
key to be certified, so it is unclear whether his intent was really to ask each team member

72

to provide the certification, or just to generally signal that he needed help getting it. We
therefore do not consider his action to represent a serious problem either.

Certification related scores on debriefing questionnaire

Table 6-12 shows the results for the three true/false statements in the debriefing
questionnaire that referred to key authentication and certification. All participants agreed
that “You can trade public keys by email and be fairly sure that you are getting the right
public key, as long as both people include personal messages that talk about things a
stranger wouldn’t know.” Ten participants correctly disagreed that “You can tell whether
you have the right public key for someone by checking the name and email address
attached to it,” and ten correctly disagreed that “Putting your certification lock on a
public key means that you are the owner of that public key.” These are very positive
results, as we would not expect the participants to have understood those points prior to
the test session. We note also that the four who missed a question are all participants
who had some trouble with the certification related tasks.

Used social auth No social auth
3/3 correct | P1, P4, P6, P7, P9, P12, P13 P5
2/3 correct P8, P11 P10, P14

1/3 correct - -
none correct - -

Table 6-12: Participant scores on certification related questions in debriefing test

Results for use of basic cryptographic functions

In this section we present and discuss those test results that are relevant to the visual
metaphors used to present the cryptographic objects and functions to the user. These
results record the following:

o Whether the participant succeeded at the “primary task” of sending the secret
memo out to all the campaign team members, correctly content locked and
envelope locked with all the correct public keys.

o Whether the participant successfully avoided ever sending anything private
without an envelope lock.

o Whether the participant successfully avoided the error of using one’s own

public key to envelope lock a message meant for others, and if not, how
quickly the participant was able to recover.

73

o Whether the participant always used a correctly applied content lock when
sending out the secret memo.

o Whether the participant successfully evaluated and made use of signature
locks in the requisition scenario.

Results for primary task

Table 6-13 shows the results for participant success at sending out the secret memo to the
campaign team with a correctly applied content lock and envelope locked with all the
correct public keys. A solid majority of the participants achieved complete success for
this task. Of the others, P9 used all the correct keys to envelope lock, but content locked
only her name at the end of the message, and not the content of the secret memo itself.
P11 used all the correct keys to envelope lock, but did not use a content lock. P7 and P10
did not succeed in trading public keys with the campaign team, and thus could not
complete this task.

Participants
Used correct envelope and content locks P1, P4, P5, P6, P8, P12, P13, P14
Used correct envelope lock but bad content lock P9
Used correct envelope lock but no content lock P11
Sent without envelope lock or did not send P7, P10

Table 6-13: Participant final success at securely sending secret memo to team

Given that every participant who successfully traded public keys was also able to
successfully send out the secret memo to all the team members with a correct envelope
lock, and that almost all of those also used a correct content lock, the results for this task
certainly meet the usability threshold previously specified.

Other results for use of envelope locks

Table 6-14 shows the results for participant success at avoiding exposure of private
information. Nine of the twelve participants always used an envelope lock on all private
messages. Of the other three, P7 sent a message in the first scenario that might have been
intended as private, without using an envelope lock, but always used an envelope lock
when sending the secret memo. Only P10 and P14 ever sent the secret memo without an
envelope lock.

Participants
Always envelope locked private messages | P1, P4, P5, P6, P§, P9, P11, P12, P13
Always envelope locked secret memo P7
Sent secret memo without envelope lock P10, P14

Table 6-14: Participant success at protecting secrets

74

Both of the participants who sent the secret memo without an envelope lock appeared to
be doing so in the belief that use of a different cryptographic object had provided
encryption. In the case of P10, it was attaching a public key to the message, and in the
case of P14, it was use of a content lock. Both of these potential misunderstandings may
thus need to be more explicitly addressed. However, the high percentage of participants
who avoided ever making this error supports the conclusion that the envelope lock
metaphor is a good one.

Table 6-15 shows the results for participant success at avoiding the standard error of
using one’s own public key to envelope lock messages meant for others. Five
participants avoided this error entirely and always used the correct public keys to encrypt.
Another five did initially made this error, but recovered quickly after receiving a reply
stating only that the recipient “can’t open that last message you sent,” and used the
correct public keys from then on. The remaining two are P7 and P10, who never got the
correct public keys at all.

Participants
Always used the correct public keys P4, P5, P6, P12, P13
Used an incorrect public key but recovered quickly | P1, P§, P9, P11, P14
Not applicable P7,P10

Table 6-15: Participant success at using the correct public keys to envelope lock

This is the result that most reflects whether the yin-yang key pair metaphor and its
presentation were successful in getting users to understand the complementary nature of
key pairs, and to avoid the problems with repeated use of the wrong public key that
caused so much trouble in the PGP case study. Since all but two participants either never
encountered the problem or were able to quickly correct it after the most minimal of
feedback, and at least one of the remaining two participants appears to have been derailed
by an unrelated usability problem, this is a very good result.

Other results for use of content locks and signature locks

Table 6-16 shows the results for participant success at consistent correct use of a content
lock when sending out the secret memo. Seven of the participants always used a
correctly applied content lock. Participants P6 and P10 initially did not use a content
lock, but began using content locks correctly once they received a complaint from a team
member saying “how do I know that message really came from you?”

75

Participants
Always used correct content lock P1, P4, P5, P8, P12, P13, P14
Used correct content lock after complaint P6, P10
Used faulty content lock P9
Did not use content lock P11
Content locked under someone else’s name P7

Table 6-16: Participant use of content lock to authenticate secret memo

As was discussed earlier for Table 6-13, participant P9 used content locks when
appropriate, but applied them incorrectly, so that they protected only her name at the end
of the message. She did not receive any feedback from the team members on that point,
and continued to make that error throughout the test session. P11 did not use a content
lock and did not receive a complaint from a team member to that effect, as she was
already ignoring a key authentication complaint due to the misunderstanding discussed
earlier. P7 actually applied a content lock using a secret key that she had created in
Maria’s name; the details of how that came to happen will be discussed shortly.

This result suggests that the content lock metaphor, and the directly manipulable object
that it provides, are generally quite successful with users. Only P9’s faulty content lock
use suggests a usability problem that ideally should be corrected, perhaps through a
fadable warning the first time a partially content locked message is sent.

Table 6-17 shows participant success at evaluating whether a requisition had been legally
signed by the submitter, meaning that it was protected using a signature lock rather than a
content lock. Five participants made the correct decision and approved only the signature
locked requisition. Four correctly rejected the plaintext requisition, but erroneously
approved the requisition that had only a content lock and not a signature lock. The
remaining three either were not given the requisition scenario at all, due to running out of
time, or did not have the correct public keys, due to the sequencing problem described
earlier.

Participants
Approved signature locked requisition only | P1, P4, P11, P12, P14
Rejected plaintext requisition only P5, P6, P9, P13
Not applicable P7, P8, P10

Table 6-17: Participant success at evaluating signature locks

This is a somewhat disappointing result, since close to half the participants for this
scenario failed to distinguish the content lock from the signature lock. However, most
participants were noticeably weary and frustrated by the time they reached this final test
scenario, and we suspect that results for this task would have been better if it had been
encountered earlier in the test session.

76

Participants
Tried to get “hidden” message out of content lock P7
Applied a content lock that did not cover the important data | P1, P4, P9, P13

Table 6-18: Significant content lock related errors by participants

Table 6-18 shows results for two participant errors that show some problems with the
usability of the content and signature lock metaphor as currently implemented. It is
probable that the first one, made by P7, relates to previous exposure to the image of a
lock as signaling encryption, or to security in general as being about information hiding.
It could probably be ameliorated by adding a corrective message to the verification dialog
that appears when a content lock is clicked on. The second error, which we also saw
earlier for P9 on the task of sending out the secret memo, appears to have two
components: first, that it is not sufficiently clear that a content lock only protects the
information that is within its borders, and second, that it is not sufficiently clear how to
add one’s own content lock to an already content locked text. Both of those problems
should be addressable through fadable warnings and other minor scaffolding.

Metaphor related scores on debriefing questionnaire

Table 6-19 shows the metaphor relevant results from the debriefing questionnaire,
grouped by concept. For basic key trading, it is interesting that the participants who
scored badly on the questionnaire were often those who performed well on the
corresponding scenario tasks, and vice versa.

Concept Score Participants

Basic key trading (3 questions) | 3/3 PS5, P10, P12, P13
2/3 P4, P6, P7, P8, P9, P11, P14
1/3 -
0/3 Pl

Envelope locks (4 questions) 4/4 P5, P6, P12
3/4 P4, P7, P8, P10
2/4 P1, P9, P13, P14
1/4 P11
0/4 -

Content locks (3 questions) 3/3 P1, P5, P9, P13
2/3 P4, P6, P7, P8, P10, P12, P14
1/3 P11
0/3 -

Signature locks (1 question) 1/1 P6, P10, P11
0/1 | P1,P4,P5,P7,P8, P9, P12, P13, P14

Table 6-19: Participant scores on metaphor related questions in debriefing test

77

Four participants agreed with the statement “You should give your secret key to the
people you want to exchange secure email with,” and five agreed that “You should give
your public key only to people you know you can trust,” but they were almost all
successful at trading keys during the test. P10, who did not appear to understand key
trading at all during the test session, scored perfectly here, while P1, who was one of the
most successful participants, scored zero out of three.

As for envelope locks, all participants agreed that “If a message has an envelope lock on
it, no-one can read it unless they have the right key.” Five, however, disagreed that
“Envelope locks don’t tell you anything about who applied the lock,” and four disagreed
that “If you use my public key to put an envelope lock on a message, then no-one can
read that message unless they have my matching secret key.” Only half the participants
disagreed with the statement, “If I want to put an envelope lock on a message so that only
you can read it, I should use my secret key.”

Content locks fared better. All participants correctly disagreed with the statement
“Content locks don’t tell you anything about whether a message has been modified since
the lock was applied,” and all but two correctly disagreed that “Content locks don’t tell
you anything about who applied the lock.” Only five, however, correctly agreed that
“Content locks that you make are only useful to people who have your public key.”

Only one of the statements directly addressed signature locks, and nine out of the twelve
participants erroneously agreed with it: “If you want to put your legal signature on a
secure message, you need to use both a content lock and a signature lock.”

Significant usability failures

P7 fatal key import misunderstanding

P7 actually did quite well in the first test scenario, and appeared to be developing a good
understanding of key pairs, envelope locks, and content locks. Her fatal problem arose
when she began the second test scenario by attempting the task of importing Maria’s
public key from the floppy disk. She mistook the “Generate new key pair” button in the
Key Pair Vault as being the mechanism for importing a key from the disk, which led her
to generate a new key pair under Maria’s name and email address, while maintaining the
mistaken belief that she had imported Maria’s public key from the floppy disk. She was
never able to correct that misunderstanding, and her possession of a secret key in Maria’s
name then contradicted the logic of the system for her and appeared to be the direct cause
of her further problems, including her failure to then go on and get public keys from the
other team members.

The fatal error here was due to a serious usability flaw; however, this flaw did not relate
directly to either the metaphor set or to the staging, but only to the presentation of basic
key import and generate functions. It should be correctable by adding stronger
reinforcing messages to the dialog boxes encountered for each of those functions.

7R

P10 general misunderstanding

If there was a test participant who was representative of those people that the Lime user
interface does not help, it was P10, who, among other problems, did not ever appear to
understand that he needed to get the campaign team members’ public keys in the second
test scenario. Factors that appeared to contribute to his struggles are as follows:

o This participant actually had some prior exposure to public key based
electronic mail security, as he worked in an office that made some use of the
security functions in Microsoft Outlook. This appears to have predisposed
him to think that one encrypts by attaching a key to the message.

o Possibly also due to his prior experiences with encryption software, when he
received feedback that the recipient could not open his envelope locked
message, he simply repeated the locking and sending process over and over
again, once commenting that this kind of problem happened sometimes in his
office too. He never explored the information available to him or appeared to
try to correct his understanding of the system.

P10, then, might be a datapoint in support of the argument that the best security system is
an invisible one. On the other hand, had P10’s previous exposure to security software not
led him to expect to proceed with limited understanding, he might have had more success
here.

6.4 Evaluation summary

The results of the three user tests discussed in this chapter support the following
conclusions:

Staged key certification

The results of the paper-based comparison test and the proof of concept software
test both support the usefulness of staging in making key certification manageable
for the majority of electronic mail users. In the comparison test, 45% of those
who received the staged variant correctly described key certification, versus 10%
for the next most successful variant. In the proof of concept test, a solid majority
of participants used key certification successfully, and most of those who did not
failed because of earlier difficulties not directly related to key certification. Also,
those who engaged with the staged aspects of the user interface tended to do well
at using key certification.

79

Lime visual metaphor set

The paper-based comparison test for metaphors was judged to be a failure of test
design, without useful results except perhaps for some degree of validation of the
signature lock concept. The evaluation of the Lime visual metaphor set thus rests
on the results of the proof of concept test, which appear to be very good. With
only two exceptions, one of which appeared to be due to a separate usability
failure, participants had little difficulty trading public keys and choosing the
correct public keys to create envelope locks with. Nearly all were also able to use
content locks correctly, and results from the debriefing questionnaire indicate a
high level of understanding of the purpose of content locks. The results for use of
signature locks were less promising; however, this may be because those results
reflect participant behavior in the final minutes of a lengthy and frustrating test
session.

Usability of visible public key cryptography for electronic mail

The results of the proof of concept test strongly support the argument that visible
public key cryptography, if presented using appropriate usability design for
security, can be a useful and manageable tool for nearly all electronic mail users.
The test conducted here was designed to be challenging: participants were not
given a manual, nor were they able to get any help or advice from their
correspondents beyond the minimum feedback necessary to tell them that a
message they had sent was not authenticated or could not be opened. Those same
correspondents set bad examples as well as good ones, sending unauthenticated
keys and accepting unauthenticated messages. Despite all this, nearly all the
participants were able to use the cryptographic functions appropriately and
succeed at the major tasks. It is reasonable to expect that, with the correction of
design flaws such as the one that caused trouble for P7, and the addition of good
warning messages and other forms of scaffolding, an even higher level of
usability may be achieved.

RN

CHAPTER 7 Conclusions and future work

We briefly recap the contributions of this thesis, then outline a variety of interesting
approaches for future work.

7.1 Contributions

In this dissertation, we have presented an analysis of the particular usability requirements
of of computer security, and have shown how those requirements differ significantly
from those of general end-user software. Using that analysis, we have derived and
presented a number of design principles and two specialized design techniques for
creating usable security, and have demonstrated the use of those principles and
techniques in the creation of a new user interface for public key cryptography based
electronic mail security, called Lime. We have demonstrated through formal user testing
that Lime meets a usability threshold sufficient to make sophisticated and flexible
security mechanisms manageable by ordinary computer users.

A detailed restatement of the contributions of this thesis is as follows:
Concepts and techniques:

* An analysis of the particular usability requirements of computer security.

* A set of usability design principles particular to computer security.

* A technique called safe staging that allows the user to safely postpone learning
how to use a security mechanism.

* A technique for designing effective visual representations of security
mechanisms.

Artifacts:

Lime, which is a working implementation of a user interface design for usable
public key cryptography-based secure electronic mail software, coded in Visual
C++ and executable in most versions of Microsoft Windows.

Limeserver, a combination mail and key server simulator, coded in C++,
executable in UNIX and intended for use in conducting user tests with Lime.

A hierarchical design for the visual representation of public key cryptography
operations, which may be further specialized and extended for use in a wide
variety of security applications.

Experimental results:

A case study, with formal user testing, of the usability of a commercial security
software product which claimed to be highly usable, showing that despite its
conventionally friendly graphical user interface, most test participants were
unable to use it successfully for basic security tasks.

A paper-based user test of the effectiveness of presenting public key cryptography
using safe staging for the mechanism of key certification, compared to that of two
variant presentations that did not use staging, showing that participants who were
given the staged variant performed significantly better at describing how key
certification would be used.

An extensive formal user test of Lime, showing that almost all participants were
able to successfully use it for most security tasks, and that most participants were
able to successfully use it for advanced security tasks.

7.2 Future work

This thesis presents a set of design principles and techniques that are applicable to the
general problem of creating usable security and thus provides a foundation for a wide
variety of future work. We will briefly discuss some of the more interesting research
directions that might next be pursued.

Additional work with Lime

The software implementation of Lime is a valuable tool that could be exploited to get a
wide variety of further user test results. Some tests that would be interesting to perform
include:

Additional testing with Lime in its present form, designed for a more focused and
thorough evaluation of user understanding of certification locks. For example, we
might design a scenario to include an explicit test of whether users understand

R?

that two keys which certify each other are not necessarily any better authenticated
than a key with no certification at all.

* Additional testing with slightly modified versions of Lime, to see if identified
usability pitfalls can be easily fixed, or to compare various approaches.

* Asafield test, Lime could be turned into a fully functional software program and
released as shareware, in order to evaluate whether it appeals to the general
population.

Extension to other security applications

Moving beyond public key cryptography for electronic mail security, future research
might look to other security applications. Since our tailored metaphor set for public key
cryptography was purposely designed as an application-neutral tool, one interesting
approach would be to explore further extensions of the lock metaphor to depict other
security states, such as access control settings in filesystem security, or the creation of
accounts in a networked system.

Another potential ready-made project would be to flesh out, implement and test the
staged design for applet security that was discussed in Chapter 4. Staging and metaphor
tailoring could also be applied to a wide variety of other security applications.

Development of additional design techniques

The design principles and techniques that we have presented are not intended to be all
that is needed to bridge the gap between general usability design and the usability design
needs of computer security. It is likely that there are additional security-specific
principles and techniques that need to be developed in order to create a more complete
methodology. We think it is likely that some of the those techniques will need to address
at least the following:

* Guidelines for creating good warning messages for computer security.

* Designing good scaffolding and context help for computer security.

* Moving beyond end-user security to consider how the principles and techniques
we have presented are best used or modified for business or other types of
organizational security.

* Moving beyond security for PC applications to consider how the principles and

techniques we have presented might be translated for user interface design in
more constrained environments, such as cell phone displays.

R3

7.3 Concluding remarks

Computer security presents a particularly difficult challenge to human computer
interaction because many of its usability requirements are fundamentally different from
those of other types of end-user software. The failure of naive user interface designs for
security, such as we saw in PGP 5.0, has contributed to widespread pessimism about
whether security can ever be made accessible and manageable for most people. Based on
the research presented in this thesis, we consider that pessimism to be premature.

If it is possible to make security usable, then it is important to do so. [Norman94]
directed our attention to the importance of designing tools that make their users smart
rather than stupid. We agree, and further argue that tools should be designed to make
their users wise rather than naive, and empowered rather than dependent.

R4

APPENDIX A PGP case study materials and data

A.1 Description of test participants

A.1.1 Recruitment

The test participants were recruited through advertising posters on the CMU campus and
posts on several local newsgroups (cmu.misc.market, pgh.general, and pgh.jobs.offered)
with the exception of P11 and P12, who were recruited through personal contacts. The
text of the poster and newsgroup posts read:

Earn $20 and help make computer security better!

I need people to help me test a computer security program to see how
easy it is to use. The test takes about 2 hours, and should be fun to do.

If you are interested and you know how to use email (no
knowledge of computer security required), then call Alma
Whitten at 268-3060 or email alma@cs.cmu.edu.

More than 75 people responded to the advertisements, and 38 people completed the
background interview. From those 38, we disqualified 8 who already had some
knowledge of public key cryptography. We then chose 12 participants based on age,
gender, education level and area of education/work experience, trying for the widest and
most evenly distributed range available.

A.1.2 Participant demographics

This table describes the demographic distribution of the twelve test participants:

Gender 6 female
6 male
Age 3 age 25 or younger

3 age 26 to 35

3 age 36 to 45

3 age 45 or older

2 had some college

4 had undergraduate degrees

4 had some graduate school

2 had graduate degrees

Education or career area”” | 2 did computer programming

4 did biological science (pharmacy, biology,
medicine)

4 did humanities or social science (education,
business, sociology, English)

2 did fine arts (graphic design)

Highest education level”

' The original test plan called for some participants with only a high school education, but none responded
to the advertisements.

'* This categorization was biased toward familiarity with computer programming and then toward training
in hard science, so that the psychology grad student who works as a research programmer is classified as a
computer programmer, and the business/biology major is classified as having a biological science
background.

RA

A.2 Description of testing process

A.2.1 Test environment

The testing was done in a small lab set up as depicted below.

Macintosh
with PGP—>| B\\ Manuals,
and Eudora pad, pen and
flobov disk
File cabinets O -
Test
participant Door to

Test monitorQ corridor

Camcorder

PGP and Eudora were both installed on the Macintosh, and Eudora was configured to
properly access an email account set up for test participants, and to use the PGP Plug-In.
PGP was put into the state it would be in right after installation, with one exception: we
deleted all the keys that ordinarily come with PGP and let the participants begin with an
empty key ring. We put complete printouts of the PGP and Eudora manuals into labeled
3-ring binders and pointed them out to the participants at the beginning of the test
sessions.

Our test set-up had one additional peculiarity worth mentioning, which is that in our
efforts to remove extraneous programs that might distract the participants during the test,
we inadvertently removed SimpleText, which meant that test participants were unable to
read the “Phil's Letter,” “PGPFreeware 5 README,” and “QuickStart” documents. As
we described in our analysis, we strongly doubted that those three documents had the
potential to be of much help to novice users, so we chose to maintain consistency over
the test sessions and did not restore SimpleText for later participants.

R7

A.2.2 Greeting and orientation

Each participant was met in the building lobby, and escorted from there to the lab for the
test session.

The orientation for the test had four components:

1)

2)

3)

4)

The participant was given two copies of the consent form, and asked to read it and
sign one copy.

The written briefing was read aloud to the participant, and then the written document
was given to the participant for his or her own reference during the test. This briefing
explained the following:

a) that they were helping test Eudora and PGP, not being tested themselves;

b) that it would be extremely helpful if they could “think aloud” as much as possible
during the test;

c) that the premise of the test was that they were volunteering for a political
campaign, and that their task would be to send email updates to the members of
the campaign team, using encryption and digital signatures to ensure that the
email was kept secret and wasn’t forged;

d) what their email address and password would be for the purposes of the test;

e) that Eudora and PGP were already installed, and that the manuals, pad, pen and
floppy disk were there for them to use as much as they liked;

f) that they’d be given a 5 minute tutorial on basic use of Eudora before we began
the actual testing.

They were given the 5 minute Eudora tutorial, and it was verified that they
understood how to use it for sending and receiving email.

The initial task description was read aloud to the participant, and then they were

given the written document for their own use. This document gave them the

following information:

a) Names and email addresses for the campaign manager and four members of the
campaign team;

b) The text of a message giving a series of speaking dates and locations for the
candidate;

c) A request that they please use PGP and Eudora to send the message in a secure,
signed email to the campaign manager and all the other campaign team members;

d) A further request to then wait for any email responses from the team members and

to follow any instructions they might give.

A.2.3 Testing

The participant’s actions during the actual testing were recorded both by the camcorder,
which was focused on the monitor screen, and by the test monitor. During the test the
test monitor was seated as shown in the test environment diagram, about six feet away

KR

from the participant, behind them and to the side. The test monitor used a laptop
computer equipped with a WaveLAN network connection both to take monitoring notes
and to remotely play the roles of the various campaign team members (by reading and
replying to the participant’s email) as necessary.

The original test design called for the testing to be done in two parts: a 45 minute session
with the task and test scenario described above, to be followed by a debriefing and then
another 45 minute session in which the test monitor would directly ask the participant to
try to perform specific tasks, such as revoking their public key or signing someone else’s
public key. In practice, we quickly found that most of the participants could not succeed
at the initial task of sending signed and encrypted email within 45 minutes, and that it
made more sense to let them continue with that task for up to the full 90 minutes. When
a participant did succeed at the initial task, we found it seemed more natural to have the
fictional campaign manager prompt them by email to attempt additional tasks, rather than
to stop the test and start a second session in which the test monitor prompted them
directly. In only one case did we follow the original test design, with a participant (P6)
who did succeed at the initial task within 45 minutes.

In order to succeed at the initial task of sending signed and encrypted email to all the
members of the campaign team, the participant needed to accomplish the following:

* Generate a key pair of their own.

* Make their public key available to the campaign team members, either by sending
it to the key server, or by emailing it to them directly.

* Get the campaign team members’ public keys, either by fetching them from the
key server or by sending email directly to the team members to request their
public keys.

* Encrypt the secret message using the team members’ public keys, sign it using
their own private key, and send it.

Email that was encrypted with the wrong key(s) caused the participant to get replies from
the team members complaining that they couldn’t decrypt the message; repeated
occurrences caused the team members to also ask if the participant was using their keys
to encrypt.

If the participant succeeded at the initial task, they received several email responses:

* A signed and encrypted email from the campaign manager giving them an update
to the secret message; this tested whether they could decrypt and read the email
successfully.

* An email from the campaign manager reminding them to back up their key rings
and make a backup revocation certificate; this tested whether they could do those
things.

* An email from a member of the campaign team whose key pair was RSA rather
than Diffie-Hellman/DSS, complaining that he was unable to decrypt their email;
this tested whether they could identify the mixed key types problem and use the

RO

correct solution of sending that team member email encrypted only with his own
public key.

A.2.4 Debriefing

After stopping the test, the test monitor turned off the camcorder and turned on the audio
tape recorder, and then verbally asked the participant the questions in the document titled
Questionnaire to follow part one of PGP Usability Test. The test monitor then thanked
the participant for their help, paid them the $20 in cash, and ended the test session.

A.3 Summaries of test session transcripts

Times are rounded to nearest 5 minutes. “Maria” is the fictional campaign manager,
“Ben” and “Paul” are fictional campaign team members (and Ben’s key is RSA rather
than Diffie-Hellman/DSS); email from them is actually sent by the test monitor using a
laptop as a remote link.

P1: male, age 29, grad degree in education, now university administrator

00:00 to 00:05

Typed in the secret email message.

00:05 to 00:10

Tried to figure out how to encrypt his message, explored PGP.

00:10 to 00:15

Generated a key pair for himself.

00:15 to 00:20

Read manual, focused on how to get other people’s public keys.

00:20 to 00:25

Backed up his key rings on the floppy disk.

00:25 to 00:35

Sent his public key to the key server.

00:35 to 00:40

Sent email to the team members asking for their public keys, but
encrypted it with his own public key.

00:40 to 00:45

Got email from the test monitor posing as Maria, saying she can’t
decrypt his email.

00:45 to 00:50

Sent email to team members, encrypted with his own public key again.

00:50 to 00:55

Got email from the test monitor posing as Maria, saying she still can’t
decrypt his email, and enclosing her public key.

00:55t0 01:20

Tried to import Maria’s public key from her email message.

01:20 to 01:25

Fetched team members’ public keys from the key server.

01:25t0 01:30

Tried to figure out whether to trust the public keys from the key server.

Comments:

* He was able to successfully generate his own key pair, send his public key to the
key server, and get the team members’ public keys from the key server.

e He tried (for 25 minutes) and failed to import a key from an email message.

* He did not successfully send signed and encrypted email to the team members
before the end of the 90 minute test session.

an

He did also successfully back up his key rings onto a floppy disk.

When preparing to send his key to the key server, he expressed worry that he
couldn’t tell whether the key in the PGPKeys display was his public key or his
private key.

When trying to request the team members’ public keys by email, he didn’t
understand that encrypting with his own key (only) would prevent them from
being able to read his message.

When trying to get Maria’s public key out of her email message and into his key
ring, he copied the key onto the clipboard and then repeatedly tried to decrypt it,
rather than using the Import Key command or simply pasting it into PGPKeys.

P2: male, age 38, IS major with some grad school, now database programmer

00:00 to 00:05 | Set up Eudora mail aliases for the campaign team members.

00:05 to 00:20 | Looked at manuals and explored PGP.

00:20 to 00:25 | Generated a key pair for himself.

00:25 to 00:55 | Tried to figure out how to encrypt an email message. Reconfigured

PGP to display the PGPMenu on the Eudora menu bar.

00:55 to 01:00 | Sent his public key to the key server.

01:00 to 01:05 | Sent email to team members, but encrypted it with just his own public

key.

01:05to 01:10 | Got email from the test monitor posing as Maria, saying that she can’t

decrypt his email.

01:10 to 01:20 | Again sent email to team members encrypted with just his own public

key, but this time also signed the message after encrypting it.

01:20 to 01:30 | Got another email from the test monitor posing as Maria, saying that she

still can’t decrypt his email; didn’t make any further progress.

Comments:

He was able to successfully generate his own key pair and send his public key to
the key server.

He was unable to discover any of the direct routes to encrypting his email (using
the PGP Eudora plug-in buttons or pull-down menu, or using the clipboard with
PGPTools) and instead used the Preferences dialog in PGP to add the generalized
PGPMenu to the Eudora menu bar.

He did not successfully get any of the team members’ public keys; in fact, he
never appeared to realize that he needed to do so.

He did not successfully send signed and encrypted email to the team members
before the end of the 90 minute test session.

He never appeared to understand the need to exchange public keys, or to have a
clear sense of how the keys were to be used.

91

P3: female, age 49, grad degree, business/biology major, now computer operator

00:00 to 00:05

Generated a key pair for herself.

00:05 to 00:15

Sent a plain text email to the team members asking for their public keys.

00:15 to 00:20

Got email from the test monitor posing as Maria, with Maria’s public
key and the suggestion to get the other team members’ public keys from
the key server.

00:20 to 00:55

Tried to get the other team members public keys from the key server and
eventually succeeded.

00:55to 01:05

Sent a test email message to the team members to see if she’d
successfully encrypted and signed it (no).

01:05to 01:10

Got email from the test monitor posing as Maria, telling her the test
email wasn’t signed or encrypted.

01:10to O1:15

Sent another test message, but still wasn’t successful at signing or
encrypting it.

01:15t0 01:20

Got email from the test monitor posing as Maria, telling her that the test
message still wasn’t signed or encrypted, and asking if she’s pushing the
encrypt and sign buttons on the message before sending it.

01:20 to 01:25

Sent signed and encrypted email to Maria successfully.

01:25t0 01:30

Sent her public key to the key server (after a prompt from the test
monitor posing as Maria).

Comments:

* She was able to successfully generate her own key pair and send her public key to
the key server.

* With some prompting from the test monitor posing as Maria, she was able to get
the team members’ public keys from the key server, and finally send correctly
signed and encrypted email to the team members.

* Although she asked for the team members’ public keys via email, she did not, or
was not able to, import Maria’s key from the email message; instead she spent 35
minutes figuring out how to fetch the public keys from the key server.

* She didn’t manage to find the Sign and Encrypt plug-in buttons on her own, nor
did she figure out (in 25 minutes of working on it) any of the alternative ways to
get her message signed and encrypted.

P4: male, age 39, undergrad degree in English, now writer

00:00 to 00:05

Sent the secret message to the team members in a plain text email.

00:05 to 00:10

Got email from the test monitor posing as Maria, pointing out the error,
reiterating the importance of signing and encrypting, and asking him to
try to send a signed and encrypted test message before going any
further.

00:10 to 00:20

Tried to figure out how to encrypt; looked at manual and opened PGP.

00:20 to 00:25

Generated a key pair for himself.

92

00:25 to 00:30

Quit PGPKeys and saved backup of his key rings (in the PGP folder).

00:30 to 00:40

Continued trying to figure out how to encrypt, sent a test email message.

00:40 to 00:45

Got email from the test monitor posing as Maria, telling him the test
message wasn’t signed or encrypted either.

00:45 to 01:05

Continued trying to figure out how to encrypt, sent another test message
but seemed to already know he hadn’t succeeded in signing or
encrypting it.

01:05t0 01:20

Continued trying to figure out how to encrypt. Sent another test
message after modifying the settings in the PGPKeys Preferences
dialog.

01:20 to 01:25

Got email from the test monitor posing as Maria, telling him his test
message still isn’t signed or encrypted, and asking him to please keep
trying even though it must be frustrating.

01:25t0 01:30

Continued trying to figure out how to encrypt, without success.

Comments:

* He was able to successfully generate his own key pair.

* He accidentally sent the secret message in a plain text email.

* He was not able to figure out how to encrypt and sign his email message within
the 90 minute test session (the test monitor posing as Maria didn’t prompt him
beyond offering encouragement).

* He never appeared aware of the need to get the team members’ public keys or the
need to make his own public key available.

* He did back up his key rings, but did so within the same folder as the originals.

* He seemed to expect to be able to “turn on” encryption and then have it happen
invisibly; at one point toward the end he thought he had done so by modifying
the settings in the PGPKeys Preferences dialog. Furthermore, it appeared that his
expectation that it would be invisible caused him to have no sense of whether or
not he had managed to sign or encrypt his messages.

* He seemed to know he needed keys for the team members (after encountering the
“please drag recipients from this list” dialog) but appeared to think that the keys
he needed must be around somewhere in PGP and that he was just having trouble
finding them.

P5: male, age 47, sociology major with some grad school, now clerical worker

00:00 to 00:05

Typed the secret message into Eudora and saved it in a file.

00:05 to 00:15

Tried to sign and encrypt his saved file using PGPTools, cancelled when
he got to the dialog that asks for the public keys to encrypt with.

00:15 to 00:20

Repeated the above.

00:20 to 00:25

Read the manual, realized he needed to generate keys.

00:25 to 00:35

Generated a key pair for each of the campaign team members, not for
himself.

03

00:35 to 00:45 | Signed and encrypted his saved file using PGPTools, seemed to think

that completing this process caused his email message to be sent.

00:45 to 00:50 | Exported his five key pairs to a file.

00:50 to 00:55 | Checked for new mail, wondered aloud if his email was sent. I

intervened to show him how to tell if a Eudora message was sent or not.

00:55 to 01:05 | Used the Eudora plug-in menu to access the PGP plug-in and signed and

encrypted his email message using the five key pairs, then sent it to the
team members.

01:05to 01:10 | Got email from the test monitor posing as Maria, saying she can’t

decrypt his message and asking if he used her public key to encrypt it.
Figured out that something’s wrong.

01:10 to 01:30 | Experimented with trying to send himself encrypted email, but couldn’t

figure out what the problem was. Eventually seemed to conclude that
the PGP plug-in must not be installed.

Comments:

He was unable even to generate a key pair for himself, since he mistakenly
thought he needed to generate key pairs for each of the campaign team members
instead.

He never figured out that he needed to get pre-existing public keys for the
campaign team members.

He never figured out that he needed a key pair of his own, much less that he
would need to make his public key available to the campaign team members.

He verbally expressed a lot of worry about the security of the keys stored on the
hard drive.

He did not succeed at sending the signed and encrypted message to the members
of the campaign team within the 90 minute test session, nor did he succeed at any
of the prerequisite tasks.

He clearly did not understand the basic model of public key cryptography and key
distribution, and his understanding did not seem to increase over the course of the
test session. He understood that he needed keys for the people he wanted to send
encrypted email to, but apparently nothing beyond that.

He had some trouble figuring out how to get his message signed and encrypted,
which appeared to eventually be compounded by his attributing Maria’s inability
to decrypt his email to a problem in the signing and encryption process rather than
a problem with the keys used.

94

P6: male, age 31, psychology grad student, also research programmer

00:00 to 00:05

Typed message into Eudora, tried to sign and encrypt it using the PGP
plug-in buttons, cancelled when he got to the dialog that asks for public
keys to encrypt with.

00:05 to 00:15

Figured out that he needed to generate a key pair for himself and did so.

00:15 to 00:20

Backed up his key rings on the floppy disk.

00:20 to 00:25

Tried again to sign and encrypt his message, dragged his own public key
to the recipients’ list, then realized he needed the team members’ public
keys and cancelled.

00:25 to 00:30

Sent his public key to the key server.

00:30 to 00:35

Fetched the team members’ public keys from the key server.

00:35 to 00:40

Noted all the team members’ public keys are signed with Maria’s
private key, decided it was okay to trust them.

00:40 to 00:45

Sent the secret message to each team member in an individually
encrypted and signed email.

At this point the test monitor stopped the test and debriefed, then proceeded to ask him to
perform specific tasks directly, following the original test design.

00:45 to 00:50

The test monitor asked him to send a signed and encrypted email to Paul
and Ben, to see what he’d do about the mixed key types warning. He
sent the message despite the warning, commenting that they could
always send him email if there was a problem.

00:50 to 01:00

The test monitor, posing as Maria, sent him a signed and encrypted
message to see if he could decrypt and verify it; he had some initial
trouble getting the results after decryption, but succeeded.

01:00 to 01:15

The test monitor asked him to create a backup revocation certificate; he
made a test key pair and then revoked it. He thought that fulfilled the
task, so the test monitor went on.

01:15t0 01:20

The test monitor asked him to label Maria’s public key as completely
trusted. PGP wouldn’t let him do that, since her public key had not been
signed by some completely trusted public key.

01:20 to 01:25

The test monitor asked him to sign Maria’s public key. PGP wouldn’t
let him sign it because he had no default key pair set (as a result of
having generated and revoked that test key pair), but didn’t tell him that
was the problem, so he gave up.

01:25t0 01:30

The test monitor asked him to revoke his public key. He did so, but
didn’t send the revocation to the key server.

Comments:

* He successfully generated a key pair for himself, sent his public key to the key
server, got the campaign team members’ public keys from the key server, and
correctly signed, encrypted and sent the secret message, all in the first 45 minutes
of the test session.

05

* He sent an individual signed and encrypted message to each member of the
campaign team, so he didn’t encounter the mixed key types warning until the test
monitor made him do so in the second half of the test.

* He backed up his key rings onto the floppy disk.

* He understood that the public keys he retrieved were signed with Maria’s key and
stated that as evidence they could be trusted.

* He successfully decrypted and verified a message from the test monitor posing as
Maria, although it was unclear how aware of the signature verification he was.

* Evaluating his understanding of revocation is problematic, since we weren’t really
able to fit it believably into the test scenario; he might not have publicized the
revocation at the end simply because he didn’t think that’s what the the test
monitor was asking for.

* It looked like he would have been able to sign Maria’s key easily except for the
unexpected default key problem (see below).

* Creating and revoking a test key pair caused him to have no default key pair set;
PGP then refused to let him sign a key, and offered no explanation for the refusal
nor any information to alert him that he needed to set a new default key pair.

P7: female, age 40, undergrad degree in biology, now clerical worker

00:00 to 00:20

Explored, tried to figure out how to sign and encrypt.

00:20 to 00:25

Generated a key pair for herself.

00:25 to 00:30

Tried to figure out how to distribute her public key.

00:30 to 00:40

Tried to figure out how to paste her public key into an email message.

00:40 to 00:50

Sent email to team members encrypted just with her own public key.

00:50 to 00:55

Sent her public key to the key server.

00:55t0 01:00

Continued trying to figure out how to email her public key to the team
members.

01:00 to 01:05

Sent her public key to the team members in a plain text email.

01:05t0 01:20

Tried to figure out how to get the team members’ public keys.

01:20 to 01:25

Tried to figure out how to back up her key rings.

01:25t0 01:30

Tried to figure out how to sign and encrypt.

Comments:

* She successfully generated a key pair for herself, sent her public key to the key
server, and emailed her public key to the members of the campaign team.

* She was not able to find a way to get the team members’ public keys, and this
prevented her from being able to send encrypted email.

* She seemed to understand the basic public key model, but was unsure of the

validity of her understanding, and was easily put off and confused by small errors.
She appeared to confuse the “please drag recipients” encryption dialog box with
an address book, not realizing that it was prompting her for keys for the
recipients.

0A

* She was confused by the manual directive to paste her key into the “desired area”
of the email message, thinking that it specified some exact location that she was
unable to find.

* When her initial attempt to fetch Maria’s key from the key server failed (due to
mis-typing?) she took that as evidence that she was on the wrong track and never
tried again.

P8: female, age 20, undergrad student, business major

00:00 to 00:05

Explored, generated a key pair for herself.

00:05 to 00:10

Looked at PGPKeys display, read manual.

00:10 to 00:15

Sent email message to team members encrypted just with her own
public key.

00:15 to 00:20

Got email from the test monitor posing as Maria, saying she can’t
decrypt that email.

00:20 to 00:25

Tried sending the email again, still encrypted just with her own public
key.

00:25 to 00:30

Got email from the test monitor posing as Maria, saying she still can’t
decrypt it, and asking if she’s using Maria’s public key.

00:30 to 00:35

Sent her public key in an email, still encrypted just with her own public
key.

00:35 to 00:40

Got email from the test monitor posing as Maria, saying she still can’t
decrypt it, and asking if she needs to get Maria’s public key.

00:40 to 00:45

Fetched team members’ public keys from the key server after referring
to manual.

00:45 to 00:50

Sent secret to team members in signed and encrypted email.

00:50 to 00:55

Got email from the test monitor posing as Maria, requesting an update to
the secret.

00:55t0 01:00

Got email from the test monitor posing as Ben, saying he can’t decrypt
her email, sent him a message saying “Your key is blue! Let me see
what I should do.”

01:00 to 01:05

Decrypted Maria’s message and sent the updated secret to the team
members in signed and encrypted email. Didn’t appear to react to the
mixed key types warning.

01:05to 01:10

Got email from the test monitor posing as Ben, saying he can’t decrypt
that one either.

01:10to O1:15

Sent email to Ben telling him the problem is that his key is RSA, and
that he should update his copy of PGP.

01:15t0 01:20

Got email from the test monitor posing as Ben, saying that he can’t
update right now and asking her to find a way to send him email that he
can decrypt. Sent him an email encrypted just with his public key.

97

01:20 to 01:30

Got email from the test monitor posing as Maria, reminding her to back
up her key rings and make a backup revocation certificate. Backed up
her key rings and then revoked her key; sent email saying that she made
a backup but couldn’t figure out how to do the backup revocation
certificate.

Comments:

* She was able to generate a key pair for herself and to send her public key to the
team members via email.

* She figured out that she needed to get keys for the team members only after three
successively stronger hints from the test monitor posing as Maria, but then was
able to figure out how to get the keys quickly and easily.

* She was able to send signed and encrypted email to the team members once she
understood that she needed their public keys.

* She was able to figure out why Ben couldn’t decrypt her message and find the
solution to the problem.

* She was able to decrypt and read Maria’s message easily.

* She was able to back up her key rings when prompted to do so.

* She didn’t understand that she needed to use the team members’ public keys to
encrypt until she’d received multiple explicit prompts from the test monitor
posing as Maria.

* She didn’t understand the directive to make a backup revocation certificate, and it
might have taken her a while to recover from the results of her attempt to do so.

P9: female, age 24, medical student

00:00 to 00:05

Emailed the secret to the campaign team members in plain text.

00:05 to 00:10

Got email from the test monitor posing as Maria, pointing out the error,
reiterating the importance of signing and encryption, and asking her to
send a signed and encrypted test message before going any further.

00:10 to 00:30

Tried to sign and encrypt a test message, got stuck at the dialog that asks
for the public keys to encrypt with.

00:30 to 00:35

Generated a key pair for herself. Sent a test message encrypted with just
her own public key.

00:35 to 00:40

Got email from the test monitor posing as Maria, saying she can’t
decrypt that and asking if she’s using Maria’s key to encrypt.

00:40 to 00:45

Sent two more messages encrypted just with her own public key. Got
another email from the test monitor posing as Maria, saying she can’t
decrypt those and asking if she’s using Maria’s key to encrypt.

00:45 to 00:50

Tried to figure out how to get Maria’s public key.

00:50 to 00:55

Fetched Maria’s public key from the key server. Sent a signed and
encrypted test message.

OR

00:55t0 01:00

Got email from the test monitor posing as Maria, saying that was good
work and reminding her to give Maria her public key. Emailed her
public key to Maria.

01:00 to 01:05

Got signed and encrypted email from the test monitor posing as Maria,
with an updated secret.

01:05t0 01:10

Sent email to Maria asking if the block of text in the last message is a
key.

01:10to O1:15

Got email from the test monitor posing as Maria, saying she didn’t send
a key and that the block is just the message.

01:15t0 01:20

Decrypted Maria’s message, sent email saying the updated secret is on
the way.

01:20to 01:25

Sent updated secret to all team members encrypted just with Maria’s
public key. Got email from the test monitor posing as Paul, saying he
can’t decrypt that message.

01:25t0 01:30

Sent updated secret to all team members encrypted just with Maria’s
public key and her own public key, then began fetching the other team
members’ public keys from the key server.

Comments:

* She sent the secret in plain text initially, but realized her error before being told.

* She was able to generate a key pair for herself successfully.

* She was able to get Maria’s key and send signed and encrypted email successfully
after two fairly explicit prompts from the test monitor posing as Maria.

* She was able to send her key to Maria in email after being prompted by the test
monitor, posing as Maria, to give Maria her key.

* She accidentally sent the secret in a plain text email.

¢ She didn’t understand the public key model well: she tried sending email to
Maria encrypted only with her own key until the test monitor, posing as Maria,
repeatedly prompted her to get Maria’s key, and then after successfully sending
signed and encrypted email to Maria, she tried to send signed and encrypted email
to the whole team using only her key and Maria’s.

* She mistook the encrypted block she received in email for a key.

P10: male, age 45, some undergrad work in pharmacy, now does human resources

00:00 to 00:15

Generated a key pair for himself, looked at it in PGPKeys, experimented
with generating another key pair but then cancelled.

00:15 to 00:25

Emailed the secret to Paul, encrypted just with his own public key.

00:25 to 00:30

Got email from the test monitor posing as Paul, saying he can’t decrypt
that, and asking if he used Paul’s key to encrypt.

00:30 to 00:35

Fetched team members’ public keys from the key server. Backed up his
key rings.

00:35 to 00:40

Sent the secret to the team members in a signed and encrypted email.

99

00:40 to 00:45

Got email from the test monitor posing as Maria, thanking him and
reminding him that now they need his public key.

00:45 to 00:50

Got email from the test monitor posing as Ben, saying he can’t decrypt
that message.

00:50 to 00:55

Sent email to Ben correctly explaining the key type problem.

00:55t0 01:00

Emailed his public key to the team members. Got email from the test
monitor posing as Ben, saying his copy of PGP won’t do DSS keys, and
asking him to send a copy that Ben can decrypt with his RSA key.

01:00 to 01:05

Got signed and encrypted email from the test monitor posing as Maria,
thanking him for sending his key and giving him an updated secret to
send out.

01:05t0 01:30

Tried to figure out how to decrypt Maria’s email.

Comments:

* He was able to generate a key pair for himself successfully.

* He initially sent the secret encrypted only with his own key.

* After prompting, he was able to get the team members’ keys from the key server.

* He was able to send his public key to the team members via email.

* He didn’t figure out how to send email that Ben could decrypt.

* He was unable to figure out how to decrypt Maria’s email within the 25 minutes
before the test ended.

* Initial trouble with sending email encrypted only with his own key.

* Bothered when PGP didn’t match some of the team members’ keys with their
grayed out representations in the “please drag recipients” dialog.

* Didn’t figure out that he should send Ben email encrypted only with Ben’s key.

* Didn’t figure out how to decrypt an encrypted message in 25 minutes of trying.

P11: female, age 33, undergrad degree in fine arts, now graphic designer

00:00 to 00:05

Sent the secret out in a plain text email, but realized the error on her
oWn.

00:05 to 00:10

Got email from the test monitor posing as Maria, reiterating the
importance of signing and encryption and asking her to send a signed
and encrypted test message.

00:10 to 00:20

Generated a key pair for herself.

00:20 to 00:25

Tried to figure out how to distribute her public key and get the team
members’ public keys.

00:25 to 00:30

Tried to figure out how to back up her key rings. Sent her public key to
the key server.

00:30 to 00:40

Emailed her public key to Maria.

00:40 to 01:00

Tried to figure out how to encrypt. Sent email to team members
encrypted just with her own public key.

01:00 to 01:05

Got email from the test monitor posing as Maria, saying she can’t
decrypt that and asking if she used Maria’s key to encrypt.

100

01:05 to 01:10 | Sent email to Maria asking for Maria’s public key.

01:10 to 01:20 | Fetched the team members’ public keys from the key server. Read

about trusting keys and checking fingerprints.

01:20 to 01:25 | Got email from the test monitor posing as Maria, with Maria’s public

key.

01:25 to 01:30 | Worried about how to check the validity of the team members’ public

keys.

Comments:

She sent the secret in plain text initially, but realized her error without being told.
She was able to generate a key pair for herself, send her public key to the key
server, send her public key in an email message, and fetch the team members’
public keys from the key server.

She initially encrypted her email to the team members with just her own key.

She figured out that Ben’s key was blue because it was an RSA key.

She didn’t successfully send signed and encrypted email because she was afraid to
trust the keys she got from the key server.

Bothered by not being able to figure out which of the icons in the PGPKeys
display was her public key and which was her private key; afraid of accidentally
sending her private key.

Initial trouble with sending email encrypted only with her own key.

Afraid that sending her key to the key server had failed because all she got was
the “receiving data...” message.

Confused the Eudora signature button with the PGP plug-in signature button.
Worried that the PGP plug-in buttons weren’t connected to anything because
nothing seemed to happen when she clicked them.

Nervous about publicizing her public key, it seemed to be at odds with her
expectation that keys need to be kept secret, was afraid that she was
misunderstanding and making a mistake.

Too afraid of making a mistake to trust the keys that she got from the key server,
alarmed by the default “untrusted” key properties, didn’t appear to notice that the
keys were all signed by Maria.

101

P12: female, age 22, undergrad degree in fine arts, now graphic designer

00:00 to 00:10

Generated a key pair for herself.

00:10 to 00:15

Sent her public key to the key server.

00:15 to 00:20

Created an email message and pasted her public key into it. Fetched
team members’ public keys from the key server.

00:20 to 00:25

Created another email message and typed the secret into it.

00:25 to 00:45

Sent the secret to the team members in a signed and encrypted email.

00:45 to 00:50

Got signed and encrypted email from the test monitor posing as Maria,
reminding her to back up her key rings and make a backup revocation
certificate. Decrypted it.

00:50 to 00:55

Got email from the test monitor posing as Ben, saying he can’t decrypt
her email. Decided it’s because his public key is a different type from
hers.

00:55t0 01:00

Sent email to Ben asking if he can create a new key pair for himself.

01:00 to 01:05

Tried to generate a RSA key pair for herself so that her key would be the
same type as Ben’s (PGP wouldn’t let her). Tried changing the validity
and trust settings on Ben’s public key.

01:05t0 01:10

Got email from the test monitor posing as Ben, saying there’s nothing
wrong with his key pair and he doesn’t want to generate a new one right
now. Sent Ben email asking if he has her public key and if they can set
up a file somewhere so that she can import his public key.

01:10 to 01:20

Got email from the test monitor posing as Ben, giving her his public key
and saying that he has hers. Repeatedly copied Ben’s public key from
the email and pastes it into her key ring (PGPKeys) but assumed it
wasn’t working because the display didn’t change.

01:20 to 01:25

Sent email to Ben saying she’s stuck.

01:25t0 01:30

Tried to decrypt Ben’s public key block.

Comments:

* She successfully generated a key pair for herself, sent her public key to the key
server, pasted her public key into an email message, fetched the team members’
public keys from the key server, sent the secret to the team members in a signed
and encrypted email, and decrypted and read Maria’s reply.

* She figured out that Ben couldn’t decrypt because his key was RSA, but wasn’t
able to figure out the solution to the problem.

* She was bothered by not being able to tell which icon in PGPKeys represented her
public key and which her private key, and afraid to send her key to the key server
for fear of accidentally sending her private key.

* She decided after experimentation that the key pair icon was her public key, and
the icons below it (the signature info) were her private key.

* Concluded erroneously that the PGP plug-in wasn’t installed, and used PGPTools
and the clipboard instead.

* Forgot her initial pass phrase and had to generate and publicize a second key pair.

* Initially understood why Ben couldn’t decrypt her message, but went on to a
series of erroneous explanations while trying to figure out a solution.

1072

A.4 Test materials

A.4.1 Initial briefing document

What you need to know

This is a test of the design of PGP and of PGP as an addition to the email program
Eudora. You are not being tested; you are helping me test PGP. At some points you may
feel frustrated and stuck, but please do keep trying and don’t feel bad, because seeing
where people get stuck and what they do to get unstuck is exactly the kind of data I need
from this testing.

If you can manage it, it is extremely useful to me if you “think aloud” during the test.
The camcorder has a microphone that will pick up what you say, and I’ll be taking notes
as well. The more informative you can be about what you are doing and thinking, the
better my data will be.

The scenario for the first part of the test is that you are volunteering for a political
campaign, and the role that you have been given is that of Campaign Coordinator.

Your task is to send updates about the campaign plan out to the members of the campaign
team by email. It is very important that the plan updates be kept secret from everyone
other than the members of the campaign team, and also that the team members can be
sure that the updates they receive haven’t been forged. In order to ensure this, you and
the other team members will need to use PGP to encrypt and digitally sign your email
messages.

Your email address for the purposes of this test is ccoord@wanton.trust.cs.cmu.edu, and
your password is volnteer. You should use the title “Campaign Coordinator” rather than
using your own name.

Eudora and PGP have both been installed, and Eudora has been set up to access your
email account. Manuals for both Eudora and PGP are in the black binders to your right;
use them as much as you like. The pad, pens, and floppy disk are also there for you to
use if you want them.

Before we start the test itself, I’ll be giving you a very basic demonstration of how to use
Eudora. The goal is to have you start out the test as a person who already knows how to
use Eudora to send and receive email, and who is just now going to start using PGP as
well to make sure your email can’t be forged or spied on while it’s being delivered over
the network. The Eudora tutorial will take about 5 minutes, and then we’ll begin the
actual testing.

103

A.4.2 Initial task description

The campaign manager is Maria Page, mpage@wanton.trust.cs.cmu.edu.
The other members of the campaign team are:

Paul Butler, butler@wanton.trust.cs.cmu.edu
Ben Donnelly, bend@wanton.trust.cs.cmu.edu
Sarah Carson, carson@wanton.trust.cs.cmu.edu
Dana Mclntyre, dmi@wanton.trust.cs.cmu.edu

Please use PGP and Eudora to send the following message in a secure, signed email to
Maria and all the other campaign team members:

Speaking dates for Pennsylvania:

7/10/98 Harrisburg
7/15/98 Hershey
7/18/98 Philadelphia
7/23/98 Pittsburgh

Once you have done this, wait for any email responses from the team members, and
follow any directions they give you. I’ll stop the test in about 45 minutes'®. Don’t forget
to “think aloud” as much as you can.

'® Our initial plan was to conduct the test in two 45 minute parts, but in practice it turned out to work better
not to stop in the middle. After the first couple of sessions the test monitor started telling them that
although this document said 45 minutes the test monitor would probably have them just continue for the
full 90 minutes.

104

A.4.3 Debriefing questionnaire

Questionnaire to follow part one of PGP Usability Test

1.

On a scale of 1 to 5, how important did you think the security was in this
particular test scenario, where 1 is least important and 5 is most important?

1 2 3 4 5

If you generated a key pair during this portion of the test, was there any particular
reasoning behind your choice of key type and key size? If so, what was it?

Was there anything you thought about doing but then decided not to bother with?

Is there anything you think you would have done differently if this had been a real
scenario rather than a test?

Were there any aspects of the software that you found particularly helpful?
Were there any aspects of the software that you found particularly confusing?

Are there any other comments you’d like to make at this time?

105

APPENDIX B Staging comparison test materials and
data

This appendix contains test materials and collated data from the comparison of my staged
user interface design against two alternatives, as described in 6.1. The contents are as
follows:

Questions used to screen recruited participants.

Participant initial briefing.

Presentation for staged (Lime) variant

Presentation for PGP variant

Presentation for hidden key pair (SSL) variant

Questions given to participants, with collated responses, including debriefing
questionnaire.

B.1 Participant screening questions

Your age:

Your education level (HS diploma, some college, BS/BA, MS/MA, PhD):
Your major or profession or main field of expertise:

How long you've been using email:

The name of any computer security software you've used in the past:
Have you ever studied number theory or cryptography?

Are you familiar with the difference between public and private key
cryptography? If yes, please describe briefly.

107

B.2 Briefing given to participants

The purpose of this test is to compare different ways of explaining a computer security
system to see which way people understand it best.

The test will have three parts. First, I will give you a two page description of a software
program for computer security, and ask you to read over the description until you feel
like you understand how it works, taking as much time as you need.

Second, I will give you, one at a time, five sets of questions about how to use the
software, and ask you to answer them in writing, again taking as much time as you need.
You will still be able to look at the written description while you are answering the
questions. Please assume, when answering the questions, that individual computers are
reasonably secure, but that the network is not: there are no secure servers or secure
intranets available, so all the security must come from the program you have been given.

Third, I will give you a short questionnaire that asks you about your reactions to the
description.

While we are doing the test, remember that you are helping us test this design — you
yourself are not being tested, so please do not worry about whether you are doing well.
Also, please do not feel any pressure to answer as if you like or dislike the design you are
shown — what is important to us is to get accurate information, not to prove that a
particular design is good or bad.

I will now give you the description of the software; please read it over and let me know
when you are ready for the first question.

B.3 Presentation variants

This section reproduces the three variant presentations given to the user. The first is the
staged variant that corresponds to Lime, the second is the unstaged variant that
corresponds to PGP, and the third is the unstaged variant that conceals the key pair,
corresponding roughly to SSL.

108

YOUR ELECTRONIC MAIL SECURITY SOFTWARE

Security functions

Your electronic mail security software provides functions for protecting your mail
messages against unauthorized reading (eavesdropping) and unauthorized modification
(tampering or forgery).

To protect a message against unauthorized reading, use the make-unreadable function
on it. Then an authorized person will need to use the matching make-readable function
in order to read the message, and no-one else will be able to read it at all.

To protect a message against unauthorized modification, including forgery, use the
make-tamperproof function on it. People who view the message will then be able to use
the matching check-tamperproofing function to see who tamperproofed the message
and to verify that no later modification has occurred.

Each of these four functions must be used with a security token.

Security tokens

Each person who uses the security software must have their own matched pair of security
tokens, consisting of one secret token and one public token. Secret tokens must be
carefully protected so that only their owners have access to them. Public tokens,
however, are meant to be freely distributed and traded, so you should give your public
token to everyone you send messages to and get their public tokens in return. You can
use the generate-tokens function to make a token pair for yourself.

Secret tokens are used for proving identity. They can be used this way while still
remaining secret because of the special power of a matched token pair. If a public token
is used to do make-unreadable on a message, then only someone with the matching secret
token can make that message readable again. Likewise, if a public token can be used to
do check-tamperproofing on a message, then that proves that the tamperproofing was
made with the matching secret token.

* To protect a message so that only a specific person can read it, use that person’s
public token to do make-unreadable on it.

* To read a protected message that has been sent to you, use your secret token to do
make-readable on it.

e To protect a message so that people can be sure it hasn’t been forged, or changed
since you protected it, use your secret token to do make-tamperproof on it.

* To verify that no-one has changed a message that has been sent to you since it
was tamperproofed, and to verify the identity of the person who tamperproofed it,
use that person’s public token to do check-tamperproofing on it.

109

Protecting vour secret token

Because your secret token is your proof of identity, you need to carefully protect it
against theft or loss. When you create your token pair, your software will ask you to
choose a pass phrase (like a password, but longer, since it has multiple words). Your
software will not let anyone access your secret token unless they have that pass phrase, so
choose something that you will find easy to remember, but that other people won’t be
able to guess. Then make a backup copy of your token pair and store it in a safe place.

Trading public tokens to get basic security

The security of your messages depends on having the right public token for each person.
If an attacker can trick you into thinking their public token belongs to someone you send
messages to, then the attacker can read protected messages you send to that person, and
forge tamperproofed messages from that person to you. When you trade public tokens,
you need to take precautions to make sure you aren’t being tricked.

The simplest way to trade public tokens is usually to send them in mail messages or put
them up on personal web pages for downloading. The risk is that an attacker could set up
a fake web page or forge an email message so that it appears to be from someone you
know. For basic security, protect yourself against these kinds of tricks by asking
common sense questions. Have you been to this person’s web page before, and is it at a
web address you know that person uses? Does the message with the token in it sound
like that person, and mention things that person would know? Does it come from an
email address that you know that person uses? Likewise, when you send your public
token to other people, include a note that will help them be sure the message came from
you.

This level of security is enough to protect your messages against random eavesdropping
and simple forgery, and against attackers who are looking for general vulnerabilities and
have no reason to work hard to target your messages in particular. If your messages
contain very sensitive or valuable data, or if you have some other reason to think an
attacker might want to single you out as a target, then you should consider a stronger
level of security. You may also need to use the stronger level if you do not know the
other person well enough for the common sense questions to be useful.

Trading public tokens to get stronger security

The most secure way to trade public tokens is to put them on floppy disks and meet in
person to trade them, so that you can be absolutely sure that the public token you get does
belong to the person who handed it to you. Once you have at least one public token
whose ownership you are absolutely sure of, you can use that to help you get public
tokens through a second way that is only slightly less secure.

This second way involves trusting the owner of that public token to tell you who other
public tokens belong to, via tamperproofed messages. If you are absolutely sure you

110

have the right public token for person A, and you trust person A’s judgement, then a
tamperproofed message from person A stating that person A has made absolutely sure
that the included public token belongs to person B may be considered almost as secure as
meeting with person B yourself. And as long as the message containing person B’s token
and statement from person A is tamperproofed by person A, it can be distributed through
any web page or public database without worrying about further security.

YOUR ELECTRONIC MAIL SECURITY SOFTWARE

Security functions

Your electronic mail security software provides functions for protecting your mail
messages against unauthorized reading (eavesdropping) and unauthorized modification
(tampering or forgery).

To protect a message against unauthorized reading, use the make-unreadable function
on it. Then an authorized person will need to use the matching make-readable function
in order to read the message, and no-one else will be able to read it at all.

To protect a message against unauthorized modification, including forgery, use the
make-tamperproof function on it. People who view the message will then be able to use
the matching check-tamperproofing function to see who tamperproofed the message
and to verify that no later modification has occurred.

Each of these four functions must be used with a security token.

Security tokens

Each person who uses the security software must have their own matched pair of security
tokens, consisting of one secret token and one public token. Secret tokens must be
carefully protected so that only their owners have access to them. Public tokens,
however, are meant to be freely distributed and traded, so you should give your public
token to everyone you send messages to and get their public tokens in return. You can
use the generate-tokens function to make a token pair for yourself.

Secret tokens are used for proving identity. They can be used this way while still
remaining secret because of the special power of a matched token pair. If a public token
is used to do make-unreadable on a message, then only someone with the matching secret
token can make that message readable again. Likewise, if a public token can be used to
do check-tamperproofing on a message, then that proves that the tamperproofing was
made with the matching secret token.

* To protect a message so that only a specific person can read it, use that person’s
public token to do make-unreadable on it.

* To read a protected message that has been sent to you, use your secret token to do
make-readable on it.

e To protect a message so that people can be sure it hasn’t been forged, or changed
since you protected it, use your secret token to do make-tamperproof on it.

* To verify that no-one has changed a message that has been sent to you since it
was tamperproofed, and to verify the identity of the person who tamperproofed it,
use that person’s public token to do check-tamperproofing on it.

112

Protecting vour secret token

Because your secret token is your proof of identity, you need to carefully protect it
against theft or loss. When you create your token pair, your software will ask you to
choose a pass phrase (like a password, but longer, since it has multiple words). Your
software will not let anyone access your secret token unless they have that pass phrase, so
choose something that you will find easy to remember, but that other people won’t be
able to guess. Then make a backup copy of your token pair and store it in a safe place.

Trading public tokens

The security of your messages depends on having the right public token for each person.
If an attacker can trick you into thinking their public token belongs to someone you send
messages to, then the attacker can read protected messages you send to that person, and
forge tamperproofed messages from that person to you. When you trade public tokens,
you need to take precautions to make sure you aren’t being tricked.

The most secure way to trade public tokens is to put them on floppy disks and meet in
person to trade them, so that you can be absolutely sure that the public token you get does
belong to the person who handed it to you. Once you have at least one public token
whose ownership you are absolutely sure of, you can use that to help you get public
tokens through a second way that is only slightly less secure.

This second way involves trusting the owner of that public token to tell you who other
public tokens belong to, via tamperproofed messages. If you are absolutely sure you
have the right public token for person A, and you trust person A’s judgement, then a
tamperproofed message from person A stating that person A has made absolutely sure
that the included public token belongs to person B may be considered almost as secure as
meeting with person B yourself. And as long as the message containing person B’s token
and statement from person A is tamperproofed by person A, it can be distributed through
any web page or public database without worrying about further security.

113

YOUR ELECTRONIC MAIL SECURITY SOFTWARE

Security functions

Your electronic mail security software provides functions for protecting your mail
messages against unauthorized reading (eavesdropping) and unauthorized modification
(tampering or forgery).

To protect a message against unauthorized reading, use the make-unreadable function
on it. Then an authorized person will need to use the matching make-readable function
in order to read the message, and no-one else will be able to read it at all.

To protect a message against unauthorized modification, including forgery, use the
make-tamperproof function on it. People who view the message will then be able to use
the matching check-tamperproofing function to see who tamperproofed the message
and to verify that no later modification has occurred.

Each of these four functions must be used with a security token.

Security tokens

Each person who uses the security software must have a security token, which can be
freely distributed and traded. You should give your token to everyone you send
messages to and get their tokens in return. You can use the generate-token function to
make a security token for yourself.

* To protect a message so that only a specific person can read it, use that person’s
token to do make-unreadable on it.

* To read a protected message that has been sent to you, use your token to do make-
readable on it.

e To protect a message so that people can be sure it hasn’t been forged, or changed
since you protected it, use your token to do make-tamperproof on it.

* To verify that no-one has changed a message that has been sent to you since it
was tamperproofed, and to verify the identity of the person who tamperproofed it,
use that person’s token to do check-tamperproofing on it.

Protecting vour security token

You can trade tokens freely, but in order to use a token to do make-readable or make-
tamperproof, you have to prove to the software that it belongs to you. When you create
your token, your software will ask you to choose a pass phrase (like a password, but
longer, since it has multiple words). No one can use your token to do make-readable or
make-tamperproof unless they know that pass phrase, so choose something that you will
find easy to remember, but that other people won’t be able to guess. Then make a backup
copy of your token and store it in a safe place.

114

Trading security tokens

The security of your messages depends on having the right token for each person. If an
attacker can trick you into thinking their token belongs to someone you send messages to,
then the attacker can read protected messages you send to that person, and forge
tamperproofed messages from that person to you. When you trade tokens, you need to
take precautions to make sure you aren’t being tricked.

The most secure way to trade tokens is to put them on floppy disks and meet in person to
trade them, so that you can be absolutely sure that the token you get does belong to the
person who handed it to you. Once you have at least one token whose ownership you are
absolutely sure of, you can use that to help you get tokens through a second way that is
only slightly less secure.

This second way involves trusting the owner of that token to tell you who other tokens
belong to, via tamperproofed messages. If you are absolutely sure you have the right
token for person A, and you trust person A’s judgement, then a tamperproofed message
from person A stating that person A has made absolutely sure that the included token
belongs to person B may be considered almost as secure as meeting with person B
yourself. And as long as the message containing person B’s token and statement from
person A is tamperproofed by person A, it can be distributed through any web page or
public database without worrying about further security.

B.4 Questions and collated results

Participant demographics

Hidden key pair (SSL) variant

P# age |education

P9 20 in college
P35 |28 M.3. degree
P6 20 in college
P34 |22 some college
P18 |45 M.3. degree
P41 |19 some college
P12 |27 B.5. degree
P27 |21 some college
P15 |20 some college
PGP variant

P# age |education
P29 20 some college
P32 19 some college
P36 20 some college
P38 19 some college
P31 24 B.A.

P17 21 some college
P8 19 some college
P30 27 B.S. degree
P11 18 some college
P13 24 M.S. degree

Staged (Lime) variant

P#
P10
P4
P5
P42
P33
P37
P16
P14

age
30
20
19
19
24
18
19
41

education

M.S. degree
some college
some college

some college

some graduate school

some college
some college

M.A. degree

expertise

Information Systems

Electrical Engineering

Electrical and Computer Engineering
Mathematics

Industrial Engineering, Information Science
Chemistry/Biology

technical writing

chemical engineering

public policy and management

expertise

Mechanical Engineering

architecture

computer science

electrical and computer engineering
architecture

business administration

business
Physics/Chemistry/Languages
Psychology and English

Chemical engineering

expertise

Public Policy and Management
computer science

computer science

Mechanical Engineering
Physical Biochemistry
computer science

Bio/Psych

Administration

11A

P7 18 some college Chemical Engineering
P40 23 B.S. degree Neuroscience and Psychology

P28 30 M.A. degree History

Time spent on each portion of test session (minutes), not including debriefing
questionnaire

Hidden key pair (SSL) variant

P# |reading prior Question |[Question |Question Question Question
to requesting first |1 2 3 4 5
question

P9 |4 5 8 3 2 4

P35 |6 4 10 6 6

P6 |6 4 12 7 5 9

P34 |7 4 6 15 3 7

P18 |7 1 10 5 5 5

P41 |4 1 7 6 6 7

P12 1 1 6 3 11

P27 |2 2 4 3 2 2

P15 |3 4 3 1 2 2

PGP variant

P# |reading Question |Question |Question Question Question
presentation prior 1 2 3 4 5
to requesting first
question

P29 |4 2 8 2 3 3

P32 |9 6 4 8 10

P36 |5 4 2 3 3 3

P38 |7 8 3 3 2 3

P31 |9 2 9 13 4 7

P17 |4 2 1 5 6 4

P8 |4 2 3 2 3 3

P30 |4 <1 10 7 7 3

P11 |5 2 8 4 5 5

P13 |8 2 8 6 8 5

Staged (Lime) variant

P# |reading Question |Question |Question Question Question
presentation prior 1 2 3 4 5
to requesting first
question

117

total

26
41
43
42
33
31
26
15
15

total

22
41
20
26
44
22
17
31
29
37

total

P10
P4

P5

P42
P33
P37
P16
P14
P7

P40
P28

[
N
=
N

71
24
39
15

S W oy
= P W W W
e) T - TN}

26
28
29

~N o o oo o N

I =

34
40

~N o o o1 O
= 0o
~
S 00 o U1 DY W o W
s 0o o0 9 o W o U W

27

N W B oY O O

ISy
[
[
ISy
w

15

Question 1

You need to send an email message to your housemates reminding them to buy
lightbulbs, since your household is nearly out.

(1) Would you, in real life, think it was worth putting in some extra time to make this
message secure, rather than simply sending it in a regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

Hidden key pair (SSL) variant

P9

P35
P6

P34
P18
P41

P12
P27

P15

It isn't worth making the message secure because you just need extra
lightbulbs. 1It's easier to just send a regular email to the other
housemates.

It's not worthy to waste time on it.
No

Yes, it would be worth 1 minute.

No.

No... it's lightbulbs... if someone else wants to hear about our plight,
let them.

no, not worth it

I wouldn't worry about making this email secure. The information being
sent is not important to worthy security.

It depends who it was going to the content of the email. 10 seconds.

PGP variant

P29

P32
P36

in real life, it is not worth putting extra time to make the message
secure. lightbulbs are not that important and you can always make a quick
trip to the store if they forget.

no, it's not anything private or personal.

Personally, I would send this kind of message w/regular email. Since I
will not be specifically mentioning the address of my house, I don't think

118

a simple "buy me a light bulb" email needs security.
P38 |No
P31 |It is not worth for this particular occasion (to buy lightbulbs)
P17 |No
P8 |I do not think it needs to be made secure. 1I'd use regular email.
P30 |No.
P11 No, I do not find it especially necessary.

P13 |No

Staged (Lime) variant

P10 |[No, I don't think it was worth putting in some extra time for this kind of
message.

P4 |Not worth putting extra effort to make it secure.
P5 |No: Not worth it.

P42 |No

P33 |No.

P37 |I would not be willing to spend extra time to secure an email about buying
lightbulbs.

P16 |[No, this is not a personal email.
P14 |[No, not really.

P7 |Making a message about buying lightbulbs secure wouldn't be a priority for
me. If making it secure took seconds, however, then I would probably do
it.

P40 no I would not think it was worth making it secure.

P28 |No

(2) If you answered “yes” to question 1, then can you tell, from the software description
you were given, which tokens and which functions you and your housemates would each
need to use? If yes, please list them.

Hidden key pair (SSL) variant
P9 |<blank>

P35 <blank>
P6 | <blank>

P34 |I would need to use his/her token w/make-unreadable and my token w/make-
tamperproof.

P18 <blank>
P41 <blank>
P12 [<blank>
P27 X

P15 /make-unreadable, make-readable, make-tamperproof, check-tamperproof

119

PGP variant
P29 |N/A

P32 [<blank>
P36 [<blank>
P38 |<blank>
P31 <blank>
P17 |<blank>
P8 |<blank>
P30 [<blank>
P11 |N/A

P13 <blank>

Staged (Lime) variant

P10 [<blank>

P4 |Use my housemate's public token & make-unreadable function.
P5 |<blank>

P42 [<blank>

P33 |<blank>

P37 |<blank>

P16 <blank>

P14 <blank>

P7 |I would use my housemates public token to "make unreadable" (making it
tamper-proof wouldn't seem worth the effort). then my housemates would use
their secret tokens to "make readable".

P40 <blank>
P28 <blank>

(3) If you answered “yes” to question 1, then can you tell, from the software description
you were given, what steps you and your housemates would each need to take to get
those tokens? If yes, please list them.

Hidden key pair (SSL) variant

P9 |You would have to make the token, and then pass it along ot the others.
But if you have to go see them just to pass along a token, then why not
just tell them when you see them?

P35 |<blank>
P6 |<blank>
P34 \We would have to have swapped tokens back at the house on floppy.
P18 <blank>
P41 <blank>

120

P12 <blank>
P27 |X

P15 \make a pass phrase (or a long password)

PGP variant
P29 |N/A

P32 [<blank>
P36 [<blank>
P38 |<blank>
P31 <blank>
P17 |<blank>
P8 |<blank>
P30 [<blank>
P11 |N/A

P13 <blank>

Staged (Lime) variant
P10 [<blank>

P4 |I can d/L his public token on the web & send email to him w/that token &
then make-unreadable function.

P5 |<blank>
P42 [<blank>
P33 |<blank>
P37 |<blank>
P16 <blank>
P14 [<blank>

P7 |We would use the "generate-tokens" function to first make the token pair.
Then, since we live together, we would exchange public tokens on floppy
disks to ensure maximum token security.

P40 <blank>
P28 <blank>

(4) Are there any comments you would like to make?

Hidden key pair (SSL) variant

P9 |For simple things like passing on a message to get lightbulbs, it isn't
necessary to use these tokens. Maybe in top secret business deals, but
even in those, it's always best to meet in private to assure that it's
confidential.

P35 |[Maybe when you create a new mail you can have it set to make it secure by
default for anyone (or selected persons) in your personal mailing list.

P6 |No

121

P34
P18
P41l
P12
P27
P15

No

Sort of trivial.
<blank>

<blank>

<blank>

Nope

PGP variant

P29

P32
P36

P38
P31
P17

P8
P30
P11

P13

There are something that should be secured, but other simple messages are
fine.

<blank>

In general, I would say less than 10% of my outgoing email so far needed
some kind of protection (over 90% I was comfortable sending w/out using any
security program)

The secure process is really long and annoying for just this simple notes.
<blank>

It doesn't seem worthwhile to make the message secure if its merely about
lightbulbs.

No :)
<blank>

This software is too complicated for simple, day-to-day communications such
as the task/errand stated above.

No

Staged (Lime) variant

P10

P4

P5

P42
P33
P37
P16
P14

P7

P40

I think it would be worth securing my message only if when I think the
cost of my message being tempered is larger than the value of time I put in
it. Since lightbulbs is not worthy very much, if somebody temped the
message, and my housemates didn't buy any, I can send him email several
days later to ask him to do it. If he buy more than we need, it can be
stored as supplies. If he buys less, he can buy some next time. And I
don't think such kind of message will become a target of tampering.

no.

The sentence "If a public token is used to do make-unreadable on a
message..." confused me a few times when I read it, in part because you end
the line with 'make-' and also the 'do make' is a bit awkward. Other than
this the reading was understandable and clearly written.

<blank>
<blank>
I might be interested in secure email for other types of email however.
<blank>
<blank>

Using security software for something like this doesn't seem all that
important.

<blank>

122

P28 <blank>

Question 2

You want to send an email message to an old friend from school to bring them up to date
on some stressful developments in your personal life. You haven’t talked to them in a
year or so, since they now live on the other side of the country, but you have their email
address at the company they currently work for.

(5) Would you, in real life, think it was worth putting in some extra time to make this
message secure, rather than simply sending it in a regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

Hidden key pair (SSL) variant

P9 |Yes, depending on how personal these situations were and how it would
affect you if the info got out, I would spend enough time to make it
secure. If it was very private, I would spend up to days making it secure.

P35 Yes, I would take some seconds (5-15) to make sure it is secure.
P6 |yes, 10 sec

P34 Yes, 10 minutes

P18 |Yes 30 min.

P41 Maybe... but first I would have to get the tokens to + from them + since
they live on the other side of hte country - that would take a while - I
could just send them a regular letter - but if they already had the tokens
- I would

P12 |it would only be worth it if I felt that an unauthorized party could cause
me harm & grief by having that information. unless I was some kind of
celebrity, it's probably not worth it.

P27 |I would put in a few extra minutes (2-4) to protect the info, since some of
it may be of personal manner.

P15 Yes, 10 seconds.

PGP variant

P29 |It may be worth to put in extra time for security. About a couple of
minutes, maybe.

P32 Yes. 30 minutes.

P36 |I really don't worry about my casual personal life being public knowledge
so I guess I would send this message w/regular email

P38 |Yes, less than an hour.

P31 Assuming that after the first effort, the next times will be easier, I
would spend the necessary extra time (1-2 hour at most!) to set it up.

P17 |No
P8 |Yes, I'd spend an extra 5 minutes

P30 |perhaps, if I had some reason to be concerned about, e.g. my partner, boss
or the press having details of my personal life. five minutes

P11 |Yes, I might consider putting in a slight amount of extra time -- i.e. no

123

more than a minute or so.

P13 Yes, 10 minutes

Staged (Lime) variant

P10 |I think it is worth putting in some extra time to protect it from
eavesdropping. Maybe less than 10 minutes. If more than that, I rather
send them an email to ask their tel. no and mail address so as I can talk
or write to them other than by email.

P4 |no. probably not.

P5 |Yes. 1If it were the 1lst time and I had to set things up I'd spend maybe 5-
10 minutes max. As a routine thing to do I'd only spend 10-30 seconds max
each time.

P42 Yes, 30 seconds.

P33 |yes <= 1 min

P37 |I would probably be willing to spend an extra 5 minutes or so to secure the
email.

P16 |Yes, I would spend about 2 minutes.

P14 |Yes, several minutes would be acceptable. More time than that, I would
just email a simple greeting and request a telephone number or for them to
call me at work to exchange home telephone numbers.

P7 |Maybe a few seconds extra time, but I wouldn't go too far out of my way
unless I suspected that someone was stalking me or something.

P40 |yes I would. since it is very personal I would take a day to be sure it
was secure if I needed to, but not much longer.

P28 |No

(6) If you answered “yes” to question 5, then can you tell, from the software description
you were given, which tokens and which functions you and your friend would each need
to use? If yes, please list them.

Hidden key pair (SSL) variant

P9 |You would have to use the make-unreadable function and the friend make-
readable function. To make sure that no-one can tamper with the letter you
would use the make-tamperproof function. And the friend, the check-
tamperproofing function. Then you would generate a token, make a password,
tell the friend the password and then pass the token along.

P35 |I will use the make-unreadable function. I would need to have in advance
my old friend's token to be able to write him the mail. My friend only
needs his token to be able to read the mail.

P6 |Me: My friend's token as input of "make-unreadable" function | My
friend: His own token as input of "make-readable" function.

P34 |T would have to use my friend's token w/make-unreadable and my token with
make-tamperproof.

P18 |Yes. Need to give that person your token, and to get that person's token
from them. Need functions make-unreadable and make-readable.

P41 |- set the makeunreadable function - set the make tamperproof function

174

P12
P27

P15

<pblank>

I would need my friend's token to make-unreadable on the message. The
friend would also have my token to make sure it was not tampered with.

make readable, make unreadable

PGP variant

P29

P32

P36

P38

P31
P17

P8

P30

P11

P13

Public tokens. Me: to protect my message. Use public token to make-
unreadable. Friend: wuse his secret token to make the message readable.

me - my friend's public token, make-unreadable. my friend - secret token,
make-readable.

<blank>

Yes, I need to use make-unreadable, he need to use make-readable and
generate token, he need to have secret token, I use his public token for
make unreadable, he use his secret token for make readable.

I would need his 'public token'. He would need his 'public token'.
<blank>
I'd make it make-unreadable by using his/her's public token, and ask them

to use their secret token to protect it after they get it.

I'd need my friend's public token to "make-unreadable". He/she'd need
his/her private token to read it. If I also wanted to tamperproof the
message, 1'd need my private token and the friend would need my public
token.

I would need to find someone trustworthy to send me one of my friend's
public tokens in order for her (friend) to read the mail I sent, we sould
use the make-unreadable (me)/readable (her) and make-tamperproof (me)/check
tamperproofing (her) functions.

I would need to use: my friend's public token to make-unreadable, my
secret token to make-tamperproof. He/she would need to use: my public
token to check-tamperproof, his/her secret token to make-readable.

Staged (Lime) variant

P10

P4

P5

P42

P33

P37

P16

P14

For me: wuse my friend's public token to do an make-unreadable function on
it. For my friend: He use his secret token to do make-readable function
on this email.

use his public token and make-unreadable function.

Yes. I would have to have my friend's public token, and I would need to
'make-unreadable' with that token. My friend would need their private
token, and would 'make-readable' with it.

I would have to use the make-unreadable function w/his public token so that
he can only read it w/his private token using make-readable function.

yes. I would use my friend's public token to "make unreadable". He would
use his own private token to "make readable"

I would use generate-tokens to get my pair, and I would use the make-
unreadable function. My friend would use make-readable to view the email.

Yes, I would have to use my friend's public token to make it unreadable. *
woutd—atso—have—to—u the—+tamper I would have to use the make-unreadable
function.

I would at least generate a token pair in order to make-unreadable, if not
also make-tamperproof. Then I would priority-mail or UPS a diskette with

125

my public token to my friend at his business address, requesting that he
create a token pair, and send me his/her public token back to me on
diskette so I could read their responses.

P7 |I would use my friend's public token to 'make-unreadable', and my friend
would use his/her secret token to 'make readable'. Making it tamperproof
doesn't seem worth it.

P40 |tokens: me - her public, my secret. her - my public, her secret.
functions - make uinreadable, make readable, make tamperproof, check
tamperproofing. I would want us both to have a public + secret token. I
would need her public token to make the message unreadable and she would
need a secret token. When she responds she would need my public token + I
would need a secret token.

P28 <blank>

(7) If you answered “yes” to question 5, then can you tell, from the software description
you were given, what steps you and your friend would each need to take to get those
tokens at an appropriate level of security? If yes, please list them.

Hidden key pair (SSL) variant

P9 |The best way is to put the on disk and pass it along in person.

P35 |To get my friend's token I would have to either: 1) send an unsecure mail
asking my friend to send the token in a floppy disk through certified mail,
2) Ask my friends, for which I already have tokens, if any of them has the
token of my old friend so that they will forward it to me in a secured
make-unreadable message.

P6 Me: I can get his token from him personally or by a secure trusted
intermediate person. | My friend meet with me or give his token to a
secure trusted entity.

P34 | (If I knew some else (B) who knew my friend's token and my friend knew that
person's (B's) token) Then I could send them (B) a message securely with my
token asking for my friend's token. Otherwise I'd have to meet them (my
friend) in person.

Pl8 13 Als: 21 ol o e o + P Mizot oo PRI I SN SNE N I + RV ES SN

You—ean't—physiealtly hange—tokens—Must—o ar—intermediat T that
aan el 17+ e ! + 1 . el szons pana o b o g 5 13 1 EENE PN
STl re—you—th ther—person token—and—youmust—ot rour—token—+to—an
other <---> A <-———-- > B <---> you Connection must be setup first

between A & B. You can give your token to B, B can transmit it to A and A
can give it to that other person. And in reverse to setup the scheme.
Fhis—has—+te Fhe Connection other <-->A A <--> B and B <--> you has to
be setup before this can happen.

P41 |- use my token w/the "make readable" function - if they want to check for
forgery - use my token w/the "check tamperproofing" function

P12 <blank>

P27 |Maybe a registered letter if you can't meet with that person. But that may
take too much time, and if you're sending a letter, you might as well just
write the info in the letter and not in the e-mail.

P15 |No.

PGP variant

P29 |Best way would be in person, but because we are far away that's not
possible. I would send my friend a tamperproof message stating that I am

176A

P32

P36
P38
P31

P17
P8

P30

P11

P13

sure that included is the public token to my friend. A - me, B - friend.

Before I send, I should use my friend's public token to make-unreadable.
Then after he receives it, he needs to use his secret token to make-
readable.

<blank>
No

We would individually put our 'public tokens' on separate floppy disks and
meet to exchange them (but that wouldn't be possible!). We would mail each
other (regular mail) the floppies. Actually, it would be enough when one
of us receives the other's 'public token' so that he can securely e-mail
his 'public token' fo rme to be able to e-mail him. (So, he should send me
first).

<blank>
use the generate-tokens function to make for ourselves a pair

I would need to meet my friend to get their public token from them on
floppy disc (-- inappropriate if we live so far apart). Alternatively we
could rely on a mutually trusted friend who already has the public token of
the friend I wish to write to and who has my public token, so can send me a
secure e-mail containing the public token I require.

1) Once we had exchanged tokens, a) I would use her P. token to make
unreadable the mail, b) I'd use my S. token to make-tamperproof, c) She'd
use her secret token to make readable the received mail, d) She'd use my P.
token to check identity of tamperproofing.

First, since we live far away, I would have to get his public token from a
common friend whose public token we both know. And he will get my public
token from that friend. We both use tamperproofed messages.

Staged (Lime) variant

P10

P4

P5

P42

P33

P37

P16

Because my friends now live on the other side of the country, I can't trade
the public token with them in person. So I have to trade the token via
another person who I already have his public token. Let's see I choose Mr.
A and Mr. A know my friend's public token. Then Mr. A send me a message
which he does an make-tamperproof function in stating that he is sure that
included public token belongs to my friend. Then since it was tamperproof,
I can be sure the public token included belongs to my friend.

same as previous question, I'll probably just d/L his public token from the
web.

The best way would be to get the token from them in person, i.e. on a
floppy. Other ways would be to get it from his/her web page (one that I've
visited before) or have it emailed to me with some sort of note or message
which verifies that it is my friend. -- also make sure that it's from the
correct email address.

I would send him an email telling him to write things in it to prove its
himself then send me his public token, so that I could make the following
private message unreadable.

We—woutd—meed—=E hange—th pub I would need to obtain my friend's
private token. Either he & I would have to visit, send it through the
mail, or use a mutual friend to transfer a copy of this token.

For a low level of security, I could email my public token to my friend.
For higher security I should send the token by snail mail. Also would
include some info that would give my friend confidence that it was me.

Yes, my friend would need the matching make readable function to read the

127

P14

P7

P40

P28

email.
See above.

Since I know my friend's email address, my friend could send a
tamperproofed message containing his/her token. I could then check that
the email had not been tampered with using my friend's public token.

I would want this to be pretty secure, but she is far away. (1) send her
my public token by e-mail. (2) have her send me her public token by e-
mail.

<blank>

(8) Are there any comments you would like to make?

Hidden key pair (SSL) variant

P9 |Make-readable and make-tamperproof commands should be conjoined somehow.
If you want it to be unreadable + tamperproof until the right person gets
it, it's simpler to make it one command.

P35 |If I use option (2), my other friends might be curious of why I need to
send a secure message to my old friend.

P6 |It makes no sense to meet with my friend, Jjust to exchange our tokens since
I can tell him orally the message I wanted to tell him.

P34 |No

P18 |<blank>

P41 |<blank>

P12 |<blank>

P27 |<blank>

P15 |No.

PGP variant

P29 |--

P32 |<blank>

P36 |I think w/this kind of message, worrying about the public token-secret
tokens would give me more of a headache than worrying about some stranger
reading my mail.

P38 |The process is kind of confusing and time consuming, if it takes too long,
I would not use 1it.

P31 |--

P17 |<blank>

P8 |no

P30 |Not viable for friend's/acquaintances/business partners living far apart.
Alternative strategy involves asking a favour of a third party, which may
not be desirable.

P11 |Switching 'tokens' and different passwords in this manner can be confusing;
not conducive if in a hurry/not thinking, etc.

P13 |It will obviously take up more than 10 minutes for the whole procedure.

128

Staged (Lime) variant
P10 |<blank>
P4 |maybe in corporate security would I need to put more security into this.

P5 |I didn't choose to make this tamperproof because it seemed the focus was on
confidentiality rather than verifying my identity.

P42 <blank>

P33 |Physically exchanging tokens seems to be quite an effort. I would rather
do so electronically.

P37 <blank>

P16 |This part is a little confusing as to when you need to use your security
token. I'm not sure if my friend would need it to read, or if I would need
mine to send it. I'm also unclear on if he needs my public security token
to read the mail

P14 |In reality, I'd probably go with the telephone conversation route.

P7 |--

P40 |I would do this by floppy (exchange tokens) if she weren't so far away.
P28 |<blank>

Question 3

Your Internet Service Provider (ISP) sometimes needs to send you email messages telling
you to make certain changes in your software. If a hacker was able to forge one of those
messages to you, so that you believed it had come from your ISP, then he or she might be
able to break into your computer.

(9) Would you, in real life, think it was worth putting in some extra time to make sure
this message was secure, rather than simply trusting a regular email? If yes, how much
extra time (in seconds, minutes, hours, or days) would you think it was worth?

Hidden key pair (SSL) variant

P9 |I would spend up to days to make sure it was secure so they can't break
into my computer or anyone else's.

P35 |Yes, I would be willing to invest some minutes (up to 2-3 minutes per
message) .

P6 |yes, 1 hour for first time, 10 sec for each message
P34 [Yes. It would be worth 5 minutes.
P18 Yes, 15 min

P41 |10 minutes... but then I don't have a multitude of
personal/private/important files on my home PC

P12 Yes, it's worth it. at least a minute or two.

P27 |Very worth the time. Possibly I would spend a day or two if I really had
to.

P15 |Yes. 10 sec.

129

PGP variant

P29 |Yes! 10-15 min to make sure everything is ok.

P32 [Yes. 20 minutes.

P36 |Yes, I would want this message secure. I don't want any hacker into my
computer. I would say this is worth about 15 min extra time to secure the
email.

P38 |Yes, a day or two.

P31 |I would put an extra 1 hour at most.

P17 |Yes, days.

P8 |Yes, half an hour

P30 |Yes. Half an hour.

P11 |Yes, this is worth a few moments (up to ~5 minutes)

P13 Yes, 5 hours.

Staged (Lime) variant

P10 |Yes. It can be worth a week (7 days) to make sure I get the correct
message.

P4 |I'd make it more secure. Probably 10-15 minutes.

P5 |Yes: setup (1 time) - 1 hour max. time taken for each individual email:
30 seconds max.

P42 Yes, 2 min.

P33 |Yes. A few minutes (< 30) to set up and then < 1 min every time I use that
feature.

P37 | I would not bother to use secure email here.
P16 Yes, 15 minutes
P14 Yes: hours.

P7 |Yes. If I had to I would spend days setting up a system to make sure the
emails I was receiving were valid, and not tampered with.

P40 |yes. since there is a lot of important stuff etc on my computer I would
take a lot of effort - a few days if needed - no more than a week.

P28 |yes 1 minute

(10) If you answered “yes” to question 9, then can you tell, from the software description
you were given, which tokens and which functions you and your ISP would each need to
use? Ifyes, please list them.

Hidden key pair (SSL) variant

P9 |You would use all the functions. Make-unreadable, tamper-proofing, putting
the tokens on disk and then passing them along in a secure way.

P35 |[My ISP would use the make-unreadable function and will use my token when
creating the message. It will also use the make tamperproof function with
its own token. I would use the check-tamperproofing function to verify the
mail was sent by the ISP, so I need the ISP's token. I would also use the
make-readable function with my token to be able to read the mail.

130

P6

P34

P18

P41

P12

P27

P15

Me - my token and ISP's token - make-readable - check-tamperproofing |
ISP - iden - make-unreadable - make-tamperproof

I would need to use their token with check-tamperproofing (and my token
with make-readable)

You need your ISP's token. They need to use make-tamperproof and you need
to use check-tamperproof.

- The ISP would have to set the "make unreadable" (using my token) + "make
tamperproof" (using its token) functions on the email. Then I would use
the "make-readable" (using my token) + the "check tamperproof" (using its
token) .

ISP would use make-unreadable & make-tamperproof to send it to me. They
would need my token to do so. I would need make-readable & check-
tamperproof to read the message my ISP sent. I would need my token to do
so.

We would need to know each other's tokens to make my message unreadable and
to have them know it hasn't been tampered with.

make tamperproof, check tamperproof

PGP variant

P29 |ISP -> make-tamperproof & make-unreadable, me -> check-tamperproof and make
readable

P32 |ISP - secret token, tamper proof. me - ISP's public token, check-
tamperproof.

P36 |tokens: public, secret. function: make tamperproof, check tamper-
proofing.

P38 |I need to have ISP's public token and use check-tamperproofing. ISP need

P31

P17
P8

P30

P11

P13

to have it's secret token & use make-tamperproof.

generate-tokens (one secret token, one public token). I use my secret
token to make-readable the message ISP sent me. ISP should use my public
token to make it readable for me specifically. (I am not clear the ISP

already has my public token or will I have to give it to them!)
Make-tamperproof and Check-tamperproofing. Also a secret and public token.
need to use ISP's public token to see if it was tampered with

ISP must "tamperproof" its messages to me using its secret token and might
also "make unreadable" to everyone but me using my public token. To "check
tamperproofing” I need the public token of the ISP.

Yes, my ISP would need to know my public token to make mail to me
unreadable, and their s. token to make-tamperproof it. I would, in turn,
use my s. token to read message and their p. token to check tampering.

my pair of tokens, my ISP's pair of tokens. functions: make-unreadable,
make-tamperproof, make-readable, check-tamperproof

Staged (Lime) variant

P10

P4

P5

ISP: wuse 1ts own secret token to do make-tamperproof on the email he is
going to send me. Me: use ISP's public token to do check-tamperproof
function when I get the email.

use my public token & make-unreadable and use their secret token to make it
make-tamperproof. then I'd use their public token to do check-tamperproof.

tokens: ISP would need to have my public token, and their own private.

131

I'd need their public token, & my private. functions: ISP would "make-

unreadable" with my token and "make-tamperproof" with their own token. I
would "make-readable" with my token, and "check-tamperproofing" with their
token.

P42 |The ISP would need my public token to make-tamperproof then I would read
the message with my private token.

P33 |I would only need my own private token. The ISP would need a copy of my
public token so it could be used to "make tamperproof" the message. I
would use my private token to "check-tamperproofing).

P37 <blank>

P16 |security token, make tamperproof function, check tamperproof function,
public token, make unreadable, make readable

P14 |At least "make-tamperproof", but in this case make-unreadable would be an
added check or precaution.

P7 |The 'make tamperproof' function would be most useful here. My ISP would
'make tamperproof' using their secret token, then send me the public token
to check that the message had not been tampered with.

P40 |[ISP - needs a secret token. me - I need my ISP's public token. function -
make tamperproof, check tamperproofing.

P28 |I would need to use their make-readable + check tamperproofing with their
public token. They would need to have used make-unreadable + make-
tamperproof with their secret token.

(11) If you answered “yes” to question 9, then can you tell, from the software description
you were given, what steps you and your ISP would each need to take in order to get
those tokens at an appropriate level of security? If yes, please list them.

Hidden key pair (SSL) variant

P9 |Putting them on disk, with a private password and then passing it securely
to the receiver.

P35 |When subscribing to the ISP, the ISP will send me a floppy with their
token. I will then send them my token through an e-mail with the make-
unreadable function.

P6 |- the ISP should send its token in physical form by secure express mail -
once I've got its token I can send him my token by "secure" email

P34 |* If they don't care whether anyone can read the message, i.e. if it is
general FYI stuff, then they needn't do *. So if I could get their token
from someone else using the same ISP then this could work.

P18 |You'd probably have to gauge the likelihood of this threat mentally. It's
probably real low. Your ISP would have sent you a token when it setup your
account, either by email or possibly in the mail. Then all you'd do is use
this token to check-tamperproof when you get this sort of message from your
ISP. Threat is probably unlikely though.

P41 |I would probably want to go to the offices of the ISP to drop my token off
+ get one of it's.

P12 |I would get my token by choosing a pass phrase with the security software.
Then I would put my token on a disk and give it to the appropriate person
at the ISP.

P27 |If I could I would go to my ISP. If not I would probably call them.

132

P15

No.

PGP variant

P29

P32

P36
P38
P31

P17

P8

P30

P11

P13

P10

P4

P5

P42

P33

P37

Staged (Lime) variant

The best way would be to exchange them by person or by mail if it's
relatively close.

ISP needs to use their secret token to tamper proof the email first. Then
after I receive the mail, I use the ISP's public token to check-tamperproof
and see if it is the ISP who tamper proofed the message last.

No, I think this information is lacking.
We should meet in person and ISP should create token before hand.

ISP sends me a public token (their public token for individual
correspondence) I trust them that it belongs to a certain ISP
representative. I e-mail to that representative my 'public token'. They
e-mail me with that public-token.

- My ISP would need to use its secret token. - I would need to use my
ISP's public token.

need to exchange public tokens and ISP need to use secret token to make-
tamperproof it

A representative of the ISP and I would have to meet to exchange public
tokens on floppy disc or choose a trusted intermediate who has both public
tokens and of whom both the ISP and I already have the public token to
transmit the information by email.

1) ISP obtains my p. token, 2) ISP sends mail to me, made unreadable (using
my p. token), 3) ISP uses its s. token for anti-tampering, 4) I receive
mail; use s. token to make readable, 5) I use their p. token to check
tampering status.

Exchange public tokens. My ISP uses my public token to make-unreadable and
his secret token to make-tamperproof. I use my secret token to make-
readable and my ISP's public token to check-tamperproof.

T =z EEs Tz e ot (1) PECEE SIS Tl 2N B I N PN I n £ PEETN a3 1 e
I—ha Ewe—way First {1} —putmy publictokeninaon fleppy disks—and

m + TOD T £ | . a + 13 + 1 SN SN 2 + SV + 1 + 1 n g2+ TOD (T £
meet—ISP T —still need—to—u the—+third sidetotradethetoken—with ISP H{I£
I —eaprmeet—himinpersen—F+ 1 have two options. First (1) put my public
token on floppy disks first time when I meet my ISP and get their—preovider

its public token in same way. Or I can use the third side to trade the
token. If I have a person A's public token and he knows for sure the ISP's
token, then A will send me a message on which he does tamperproof function.
When I receive it I use A's public token to do check-tamperproof function
to make sure the ISP's public token given by A is not tempered.

we would d/L each other's token off the web

I think the most workable way would be to download it from the ISP's
homepage. www.myisp.com since all ISP customers *should* know the web page
of their own ISP.

I would give them my public token thourgh email I—make—tamperproof—w/—my

Byrisrat + 1 PN T wrer1a
PrxrvatT cOXKCH—= THCy wWouTrt

I would need to give my public token to a representative of ISP (in
physical form). Presumably the ISP & I would verify each other's identity
during the exchange.

<blank>

133

P16

P14

P7

P40

P28

My ISP server would have to use my public token, so that only I could read
it. I would need my security token so I could read it. They would have to
use their secret token to make the email tamperproof, and I would have to
use their public token to check-tamperproof to make sure no one has
tampered with it between them and me.

I would contact my ISP on the phone, and set up a token-pair, ground
mailing my public token to them on diskette while requesting they do the
same with their public token to me, and in the future only send update
requests in unread, untamper secure formats.

The best way would be to get a floppy disc with the token on it from the
ISP, preferably in person from their office or something. (I don't know
much about ISPs, do they have offices?) If this wasn't possible, the next
best thing would be sending a tamperproofed message containing the token.

+ T eerld 141
tE—F—wotbTa—T 17 £

I would like to get a floppy disk with the public token if possible. *£
A +

They could have included their public token to me in the original written
literature. Or maybe I'd get it from a friend who had used it
successfully.

(12) Are there any comments you would like to make?

Hidden key pair (SSL) variant

P9

P35

P6

P34
P18
P41
P12

P27
P15

<blank>

I am concerned if the token I have from the ISP is also the same that
everybody else has.

<blank>
<blank>
<blank>
<blank>

To ensure maximum security, the disk I give the ISP would have to be locked
away where only the responsible person could access it.

<blank>

No.

PGP variant

P29
P32
P36
P38
P31

P17
P8

P30

<blank>
<blank>
It might take a very long process to meet ISP.

The first e-mail the ISP sends me is an unsecure one, since the proceeding
correspondence depends on 'trust', I would expect to receive a 'trustful'
e-mail, provided by interface, etc.

<blank>
<blank>

Sounds unworkable.

134

P11 |seems practical for this purpose, but 2 tokens is still an oddly complex
method for communicating.

P13 |No

Staged (Lime) variant
P10 <blank>
P4 |<blank>
P5 |<blank>
P42 [<blank>

P33 |It would make the most sense to give this token as I'm purchasing the
software (at a store...not just downloading it with a fee).

P37 My ISP doesn't send me instructions on changing software, and if they did,
I would know what the instructions did.

P16 |I would say if you were making this a manual on the security system, you
may want to add an example or two of the use of the tokens and functions so
that people can understand it a little better.

P14 |Normally, I would contact my ISP by telephone and ask them about any email
that requested me to change settings, rather than do anything via email.

P7 |Can you make a message both unreadable and tamperproof? The description
isn't clear on that point. Also, couldn't a hacker provide a false public
token and a false message that was tamperproofed using the hacker's secret
token?

P40 <blank>
P28 <blank>

Question 4

You have started a small company, with about 30 employees, which is busy developing a
new product line, the details of which must be kept secret from the public and from your
competitors. Your employees all need to communicate regularly with each other by
email to keep each other up to date on the product strategy and progress. You are hiring
additional people at the rate of one or two per week, and the new people need to be
integrated into the email communications as quickly as possible.

(17) Would you, in real life, think it was worth putting in some extra time to make these
messages secure, rather than simply relying on regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

Hidden key pair (SSL) variant

P9 |Yes it has to in order to keep the product secure you should spend up to
days.

P35 |Yes, for the initial setup I would spend up to 4-6 hours.
P6 |yes, 1 hour for first use, 10 sec/message

P34 |Yes. Personally it would be worth 1 minute for each message depending on
subject. Setup would be worth 1 week.

135

P18
P41
P12

P27
P15

YES 1 DAY
Yes - 20 minutes per message + token making time

Yes, though since there are so many communicating with each other, sending
so many messages, to ensure efficiency the process should ideally only take
a few seconds per message.

Yes, days.

Yes. 1 min.

PGP variant

P29
P32
P36

P38
P31
P17
P8

P30

P11

P13

Yes! A couple of minutes.
1 hour

I think a secure message in this case would be beneficial because it
involves company secrets. An hour of extra time to insure security would
be good.

Yes, a day.

Days.
Yes, days.
I'd spend a week making them secure

Yes. I have no experience of business finance but probably a number of
working weeks.

Yes, up to 10 min, but not willing to do these steps EVERY time email is
used.

Yes, 2-3 days.

Staged (Lime) variant

P10

P4

P5
P42
P33

P37

P16
P14
P7

P40
P28

Definitely. Maybe 1—heurs—Reean one week's training is necessary.

probably a couple hours or a few days since it's essential to make sure
documents don't leak out.

Yep. setup: 4 hours max. for each message: 10 seconds.
Yes, 5 min.

Yes. A day to set up, < 30 min to add a new employee and < 10 sec for them
to use it each time (or they won't do so).

Yes, I would be willing to spend a day or two to initially setup it up for
the company. I would spend an hour or so to set up for each new employee.

I woudl not want more than 5 min to be added to the time for sending each
email.

Yes, about a week.

Yes, days, in advance.

Yes, although doing this would be rather difficult and would take days.
Yes. As much as needed -- weeks if necessary.

yes, 5 seconds/message

13A

(18) If you answered “yes” to question 17, then can you tell, from the software
description you were given, which tokens and which functions you and your employees
would each need to use? If yes, please list them.

Hidden key pair (SSL) variant

P9 |make—unreadabler—make—readakle, make-tamperproof, check-tamperproofing,

setting token, password so everyone knew it and then distributing it
through the web page.

P35 |All the messages would be sent with the make-unreadable option. Each
employee needs his own token and everybody else token.

P6 |- everyone in the company's token - make readable/unreadable - make/check
tamperproofing

P34 |For employee A, In sending a message to Emp. B, A would need to use B's
token to make-unreadable and A's token to make tamper---, B would need to
use A's token to check-tamper--- and B's token to make-read---

P18 |The new employee needs to have the tokens from his "Need to Know" group.
Use all 4 functions.

P41 |Write a message to someone - secure it using his token - make it
tamperproof using yours. Read a message - unsecure it using your token -
check for tamperproofing using his.

P12 |each employee would need a list of all tokens belonging to everyone
currently employed at the company, as well as their own token. They would
be using all four functions on every message which contained information
about the product line.

P27 |I would use make-unreadable and make-tamperproof. Receiver would use make-
readable and check-tamperproofing.

P15 \make-unreadable, make-readable, make-tamperproof, check-tamperproof

PGP variant

P29 |New Employees - Generate-tokens to receive token. send -> make tamperproof
& make unreadable. receive -> check tamperproof & make readable.

P32 \me - secret, public, employee's public tokens, tamperproof, check
tamperproof. employee - secret, public, each other's public token, my
public token, tamperproof, check tamperproof.

P36 |tokens: public. function: make tamperproof, make unreadable.

P38 |I should create tokens and use make-unreadable, employees should have
public token to use make-readable and check-tamperproof.

P31 |The firm (I) would generate-tokens (private & public token). Every
employee individually would generate tokens (public & private).

P17 Make-unreadable and Make-readable. Make-tamperproof and Check-
tamperproofing. Secret and public token.

P8 |Everyone will be told to use the generate-token function within the
company. The make-unreadable, make-tamperproof, and check-tamperproof
function will always be used.

P30 |The messages need to be tamperproofed and made unreadable to all but the
destinee. The sender/s requires the public token/s of the recipient/s to
do "make unreadable" and his/her/their own private token/s to "make
tamperproof". The recipient/s require/s the public token/s of the sender/s
to check the tamperproofing and their own private token to make readable.

137

P11

P13

1) Each employee has her own s. token; and her own p. token -> made public
to all. 2) s. tokens used to make mail readable, make tamperproof. 3) p.
tokens used for make mail unreadable, check tamperproofing.

I would need to use: my public and secret token, the public tokens of my

employees. They would need to use: their pair, the public tokens of the

other employees and mine. Function: make-readable, make-unreadable, make
tamperproof, check-tamperproof.

Staged (Lime) variant

P10

P4

P5

P42

P33

P37

P16

P14

P7

P40

P28

For me: For every important email I send, I'll use my employee's token to
make unreadable function and when I get email from my employees I will
verify this identity by using his public token to do check-tamperproofing.

For my employees, for every important email they send to me, he/she use
his secret token to do make-unreadable and make-tamperproof on it. When I
receive them I use my secret token to do make-readable on it, and use their
public tokens to do check-tamperproofing.

sender - use receiver's pub token - make-unreadable, use their own secret
token - make-tamperproof. receiver - use sender's public token - check-
tamperproof, use their own secret token - make-readable.

Everyone would need their own private token, and everyone else's public
token. To send "make-unreadable" with recipient's public token and "make-
tamperproof”" with one's own private token. To read "make-readable" with
one's own private token and "check-tamperproof" with sender's public token.

we would need all each other's public keys and use all 4 functions
mentioned in the description.

Yes. We'd need to use both the tamperproofing & readability features so as
the boss, I would need to maintain a library of public tokens that all
employees would have access to for the purposes of sending email. They
would use their private tokens to read it.

Everyone would use all the functions - generate-tokens first, then make-
unreadable + make-tamperproof to send and make-readable + check-
tamperproofing to receive. Also, everyone would be instructed to use good
pass phrases and not to write them down anywhere.

generate tokens, security token, public token, make unreadable, make
readable, make tamperproof, check tamperproof

Secret + public token for everyone, make-unreadable + readable definitely,
advise make-tamperproof, check-tamperproof. In previous answers, I wasn't
as detailed with this listing of functions as I should have been.

We would probably need to all use the 'make unreadable' function so that
company outsiders would not be able to read our messages if they
intercepted them.

all tokens + functions. all employees would need everyone else's public
tokens + everyone would need a secret token. all functions - make
readable/unreadable, make/check tamperproof.

Any sender needs to use make unreadable + make tamperproof with their
private token. Any receiver needs to use make readable + check
tamperproofing with the sender's public token.

138

(19) If you answered “yes” to question 17, then can you tell, from the software
description you were given, what steps you and your employees would each need to take
to get those tokens at an appropriate level of security? If yes, please list them.

Hidden key pair (SSL) variant

P9 |The first person would tamperproof the message passing it to the next with
absolute sureness that it belonged to the first person, it then can be
passed along to the web.

P35 |When hiring a new employee, human resources will provide the new employee
either with a floppy disk with all the tokens, or just give him his new
computer with everyone's tokens already copied. Human resources would also
send all the old employees a make-unreadable mail with the token of the new
employee.

P6 |- every existent user must receive by secure email an updated list of token
every time some new people must be integrated in the communication. -
every new user must receive by hand on a floppy a list of token of all the
user (himself included).

P34 One way would be to have lots of employees meet with each new hire to
exchange tokens on labeled floppy. Less securely, you could do this
through interoffice mail (we're all one happy family after all).

P18 |You would exchange tokens with the employee physically (on a disk). Then
you could transmit the token of his Need-To-Know group via email using
make-unreadable and make-readable. Probably not more than 5 people in a
particular product group.

P41 |Some trustworthy person in the company would give out their token to new
members - then these people could go to a web page and download the secure
tokens of other people in the company.

P12 |If I was the boss, I would tell everyone to give me in person their token
on a disk. Then I would compile them in a list (along with my token) and
hand them back out to all the employees on disks, so everyone would have
the complete list of tokens.

P27 |[Meet with the people in person to exchange tokens.

P15 |No.

PGP variant

P29 |If all employees are working in the same building definitely by person
exchanging disks.

P32 \When someone sends a message, (to all other employees, including me), they
should use their own secret token to tamper proof it. Then when everyone
receives the mail we use check-tamperproof by the sender's public token to
see i1f it has been changed.

P36 |protect a message w/public tokens of all workers inside company. Then only
the workers will be able to read the files.

P38 |Yes, handle in person and make sure no token had been used by non employer.

P31 |The firm (I) e-mail my public-token tothe new employee. He would e-mail me
his public-token to me, Then I would e-mail him the 'public-tokens' of the
rest of the people. And I would e-mail the rest of the people his 'public
token' since I already have the other people's 'public tokens'
individually.

P17 |I would need to use my employee's public token. My employee would need to
use their secret token. I would need to use my secret token. My employee

139

P8

P30

P11

P13

would need to use my public token.

and our public tokens can only be exchanged within the company, by having
people come in and tell us themselves

The employer would have to distribute floppy discs with his/her public
token to all new employees, and receive from each new employee a floppy
disc with the employee's public token.

1) Each employee's p. tokens make public, known (to company). 2)
Employees use p. token to make mail unreadable. 3) Employees use their
s. tokens to tamperproof. 4) You (receiver) use your s. token to make
readable. 5) You (receiver) use their p. token to check for tampering.

Create the token pair and secure it. The employees create their own token
pair and secure it. Exchange public tokens.

Staged (Lime) variant

P10

P4

P5

P42

P33

P37

P16

P14

P7

P40

Each of us put our own public tokens on floppy disks and trade them in the
first-week training program.

use a local intranetwork to distribute the employee's public tokens. that
way, no one from the outside can access the local network.

Using the 2nd method through a trusted 3rd party. For instance the boss
(me) could send everyone a tamperproofed message with the public token(s)
of new employee(s) .

We would exchange them by using discs. The new workers would get discs
w/everyone's token (public) on them amd—weutd—then Freh Fervon tse—a I
would get their public tokens and send a tamperproofed email from to
everyone else in the office!

Yes. When they're hired, I would create a token pair for them. I would
retain a copy of their public token (and private, too?) and give them a
disk with an up to date list of everyone else's public tokens.

All employees would need to have everyone else's public token. Public
tokens could be exchanged in person, since presumably everyone works in the
same place.

You would have to use the generate tokens function for each new employee.
When sending an email, you will have to use that person's public token to
make the email unreadable, and the people who are receiving the email have
to use their security token to make it readable again. The person sending
the email would have to use their security token to make the email
tamperproof and the people who are receiving the email has to use the
check-tamperproof function and know the public token of the person they are
receiving the email from.

On at least a weekly basis, I think one designated "security officer" would
generate secret + public tokens for all employees, possibly generating the
passwords for the secret tokens as well. That person would distribute all
public tokens + the specific secret token to each employee, and "archive"
in some secure, offline place old token pairs.

The best way to be both maximally secure, and to get new employees
integrated as soon as possible would be to make a master disk of all
employees' tokens and copy them for new employees. I could then send the
new employees' public tokens to the old employees using 'make-tamperproof'.

I would give my public token on a floppy to each employee + then send a
tamperproof message with all the other public tokens. I am not sure of a
secure enough + efficient way to do this. The person would have to give
everyone his public token too which would be time consuming.

140

p28

Put public tokens at bottom of emails you send.

(20) Are there any comments you would like to make?

Hidden key pair (SSL) variant

P9
P35
P6
P34
P18
P41

P12

P27
P15

<blank>
<blank>
<blank>
No

<blank>

I don't know how well this system would work after the company got beyond a
certain size - it seems to cause logistical problems.

yes, several. 1) the functions should be automatic to save time. 1i.e.,
when sending a message (with token) it should be automatically made
unreadable and tamperproofed. when reading a message (with a token) it
should be automatically made readable and check tamperproofed. 2)
functions should be disabled for nonessential messages. 3) this whole
system becomes more & more difficult to keep secure based on 2 factors - a)
the increasing numbers of people who need each other's tokens, and b) the
frequency of people joining & leaving the company. Probably the best
solution to this is to 1) change everyone's tokens at random intervals and
2) change everyone's tokens whenever an employee leaves the company.

<blank>

likewise, I don't really understand this question.

PGP variant

P29
P32

P36
P38

P31
P17
P8

P30
P11

P13

Since there shouldn't be private messages sending between the employees, I
won't let them use make-unreadable. However, there is the problem of being
seen by public/competitors.

<blank>

It is not that secure, each person need to have their own token because the
information could get loss to non-company people.

No.

<blank>

<blank>

This might work.

** strong chance of public tokens being incorrect/complications arising. --
Many people! -> = delays in production. * P. tokens -- necessary? Sound
like overly complex user id's/email addresses.

No.

Staged (Lime) variant

P10

P4

<blank>

no.

141

P5 |I was thinking that in a small company situation, you'd want to send 1
message to multiple recipients. The security software description doesn't
address this. Would the software take multiple recipients and encrypt &
send it for each person? or would I need to do it manually.

P42 <blank>

P33 [What would I do if someone left? Reassign all the tokens? vyuk. What
about separation of work & personal email?

P37 <blank>

P16 [You would have to make the company public tokens readily accessible in
order to keep communications up. Is there any way to have the public token
attached to an email so as to save time?

P14 In this situation, I would look into an off-line, in house server as a
better, long-term solution.

P7 |--
P40 <blank>
P28 <blank>

Question 5

You are involved in a fairly high-stakes lawsuit, and you need to communicate regularly
with your lawyer about it by email. You have told your lawyer things about the
circumstances of the suit that you expect to be covered by attorney-client privilege, and
you need to discuss those things in your email messages.

(13) Would you, in real life, think it was worth putting in some extra time to make these
messages secure, rather than simply relying on regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

Hidden key pair (SSL) variant

P9 |It is very important to keep this secure, so it's worth spending up to
days.

P35 |It is worth a couple of hours for the initial (one time only) setup. Then
a couple of seconds per message.

P6 |yes, 1 hour/first time, 10 sec/per message
P34 |Yes. It would be worth 10 minutes.

P18 |DAYS! Would have to be set up or would not use. Maybe not even use it
anyway.

P41 |Yes -> probably 20 minutes for a message (+ the original token making +
exchanging time)

P12 |yes, 1-2 minutes per message
P27 |Security 1is very important here. Days i1f necessary.

P15 |Yes. 20 sec.

142

PGP variant
P29 Yes! 15-20 min.

P32 |yes, 1 hour

P36 |Definitely need security with this case. I think it's worth at least a
good 1 hour to get message secured.

P38 |Yes, few days.

P31 Days.

P17 |Yes, days.

P8 |I'd spend a couple of days doing that

P30 |Yes. A week of evening -- 20 hours +

P11 |Yes -- few minutes, but NOT each time I read/sent mail -- a hassle.

P13 |Yes, 1 day.

Staged (Lime) variant

P10 |Definitely. Even more than 10 days.

P4 |yes. 20 minutes.

P5 |Yes: setup - 3 hours max. time for each message - 3 minutes max.
P42 Yes, 5 minutes

P33 |Yes. An hour or two to set up and then <15 min each time it's used.

P37 |I would be willing to spend up to an hour to secure the email. I would be
willing to spend an extra 5 min each time I sent an email.

P16 |Yes. 15 minutes.

P14 |Yes. Years.

P7 |Yes. I would spend days to make a system that would make my emails secure.
P40 |Yes. a few days jus tlike the other. no more than a week.

P28 |yes 1 minute

(14) If you answered “yes” to question 13, then can you tell, from the software
description you were given, which tokens and which functions you and your lawyer
would each need to use? If yes, please list them.

Hidden key pair (SSL) variant

P9 |All the functions described, make-unreadable, make-readable, make-
tamperproof, check-tamperproofing, setting a password, and then passing the
tokens on in a secret way.

P35 |I would use the make-unreadable and the make-tamperproof functions. I need
my token and that from my lawyer. My lawyer would use the make-readable
and check-tamperproof function. He needs both my token and his token.

P6 |Me - My own token - My lawyer's token - make readable/unreadable -
make/check tamperproofing | Lawyer - his/her token - My token - make
readable/unreadable - make/check tamperproofing

P34 |In sending him stuff, I'd need to use his/her token with make-unreadable
and my token with make-tamperproof. In receiving stuff, I'd need to use

1473

P18

P41l

P12

P27

P15

his token with check-tamper--- and my token to make-readable.

You would physically exchange the tokens. Both ends would use make-
unreadable and make-readable.

If I wrote a message I would use the lawyer's token to make it unreadable,
my token to tamperproof it. Then he or she would have to use his/her token
to make it readable + mine to check the tamperproofing.

My lawyer would both need to use make-unreadable & make-readable, make-
tamperproof & check-tamperproof. We would need each other's tokens as well
as our own.

Exchange tokens to make messages unreadable and to know they haven't been
tampered with.

make unreadable, make-readable

PGP variant

P29 |sending -> make-tamperproof & make-unreadable. receiving -> check-
tamperproof & make-readable.

P32 lme - secret token, public token, other's public, make-readable, unreadable,

P36

P38

P31
P17

P8

P30

P11

P13

check-tamperproof, tamperproof. lawyer - same.

get from the lawyer his public token and make it unreadable w/that public
token. token: public token. function: unreadable.

Yes, both of us should create token, use make-unreadable, make readable,
make-tamperproof, check-tamperproof.

Both sides generate-tokens & have a pair of private & public tokens.

Make-unreadable and Make-readable. Make tamperproof and Check-
tamperproofing. Secret and public token.

we both need to use out secret & public tokens, exchange public tokens in
person. Dboth use make tamperproof functions and make-unreadable functions
for the emails we send to each other. and I'd use the check-tamperproof
using his public token.

We would each need the other's public token, in addition to our own secret
token, so as to both "make unreadable" and "tamperproof" our email.

1) My p. token - used by lawyer to send unread. mail. 2) Lawyer's p.
token - to check tampering status. 3) My s. token - to make-readable
mail. 4) Their s. token - to make tamperproof.

my pair of tokens, my lawyer's pair of tokens. We would use all the
functions described in the software description.

Staged (Lime) variant

P10

P4

P5

For me: (1) I use my lawyer's public token to do make-unreadable. (2) I
also use my secret token to do make-tamperproof on it. (3) After I receive
the email from my lawyer, I use my secret token to do make-readable and use
my lawyer's public token to do check-tamperproofing on it to make sure it
hasn't been forged. For my lawyer, he does exactly things that I need to
do.

my lawyer - use his secret token to make msg make-tamperproof, use my
public token - make unreadable. me - use his (lawyer) public token -
check-tamperproof, use my secret token to make-readable.

me: I need the lawyer's public key*, and my own private key. When sending
I'd "make-unreadable" with his *key and "make-tamperproof" with my key.
When reading his messages, I'd "make-readable" with my token and "check-

144

tamperproofing" with his public token. Lawyer: same thing as me, just
switching roles. (* key = token)

P42 \We would both need each others public tokens. We would use make-
(un) readable + make-tamperproof + check tamperproof functions.

P33 My lawyer and I would need to exchange our public tokens (perhaps even make
a set just for the purposes of this lawsuit). We would use the public
tokens to "make-unreadable" and the private tokens to "make-readable"

P37 |We would both use generate-tokens and exchange public tokens. When sending
email, we would both use make-unreadable and make-tamperproof. We would
use make-readable and check-tamperproofing when receiving email.

P16 make unreadable, security token, public token, make-readable, make
tamperproof, check tamperproof

P14 Make unreadable, make "", make tamperproof, check "", generate tokens.

P7 |We would most likely use 'make unreadable'. I would use my lawyer's token
ot make the message unreadable, and my lawyer would use his/her secret one
to read it, and vice versa.

P40 |I would like to make everything secure due to the situation (high-stakes

lawsuit). tokens - each have each other's public. each have a secret
token. functions - all (unreadable/readable) (tamperproof) check
tamperproof

P28 |Before sending, we would each use make unreadable + make tamperproof using
private tokens. To read, we would each use make readable + check
tamperproofing with the other's public token.

(15) If you answered “yes” to question 13, then can you tell, from the software
description you were given, what steps you and your lawyer would each need to take to
get those tokens at an appropriate level of security? If yes, please list them.

Hidden key pair (SSL) variant

P9 |To hand them over in person only.

P35 We will personally exchange floppy disks with the tokens.

P6 |Meet "physically" and exchange our tokens

P34 |[We could meet and exchange tokens on floppy.

P18 |You would physically exchange the tokens. You would exchange floppy disks.
P41 |I would meet w/my lawyer + trade disks containing tokens.

P12 Meet in person & exchange tokens on disk.

P27 |Go visit w/my lawyer to swap tokens.

P15 |No.

PGP variant
P29 By person! You would eventually meet your lawyer in person.

P32 |yes. before each of us sends the message, we should use the other person's
public token to make unreadable, then also use our own secret token to make
tamperproof. After we receive mail, we use our secret tokens to make
readable and use the others public token to check-tamperproof.

P36 |yes. I think I answered question above.

1415

P38
P31

P17

P8
P30
P11

P13

Yes, we should meet in person to trade tokens.

The attorney sends me his public token in a floppy disk. Then with his
public token, I send him my public token (via e-mail).

- I would need to use my lawyer's public token. - My lawyer would need to
use his secret token. - I would need to use my secret token. - My lawyer
would need to use my public token.

exchange public tokens in person after we each made up our own tokens
Meet in person to exchange floppy discs containing our public tokens.

1) Lawyer gets my p. token, sends unread. mail to me. 2) Lawyer uses his
s. token to tamperproof. 3) I use my s. token to make readable. 4) I
use their p, token to check for tampering.

Create my pair, choose a pass phrase, so that I can access my pair only
with this phrase. Make a back-up copy of pair and store in a safe place.

Same procedure for my lawyer. Exchange public tokens in person or using a
third person that uses the software and we know his public token and he
knows ours.

Staged (Lime) variant

P10

P4

P5

P42
P33
P37

P16

P14

P7

P40
P28

We can put our own public token on floppy disks and trade them in person.
Or via one of my friend and he is also the client of my lawyer. If I know
my friend's token. And he sends me an tamperproofed email to tell me my
lawyer's token. And he can also give my public token to my lawyer in the
same way.

I'd d/L from a "secure server" on the web if possible or else probably
exchange token in person.

I'd say the floppy disk would be the way to do it.
I would exchange discs w/our public keys on them.
Yes. When we meet, we exchange our public tokens on disk.

For ideal security, we should meet in person and swap public tokens. It
also might be sufficient security to exchange tokens via email.

Whoever is sending the email would have to use the other person's public
token to make it unreadable. The person would then need to use their
security token to make it readable. The person sending the email would
have to use their security token to make the email tamperproof. The person
receiving the email can check-tamperproof by using the check tamperproofing
function and by knowing the public token of the person sending the email.

I would want to generate a new set of tokens for each separate day if not
each individual message, but no more than 3 or 4 tokens in advance. Once a
week, I would exchange public tokens with my lawyer on diskette, with a
verbal understanding on what order they would be used in. I would
physically destroy the diskettes once the tokens had been used.

Meeting in person, and conducting a floppy disk exchange of public tokens
would make the most sense from a security standpoint.

definitely exchange public tokens by floppy and meet in person

I would ask him to write it down.

144

(16) Are there any comments you would like to make?

Hidden key pair (SSL) variant
P9 |<blank>

P35 |The reason I use both functions is to make sure my lawyer cannot alter the
contents of my mail after he opens it.

P6 | <blank>
P34 No

P18 |[If someone can get access to your hardware or his, No scheme will work.
You'd need to exchange verbal passwords to augment this as well.

P41 |This is pretty private stuff - I don't know if I'd trust it to email even
if I was pretty certain the system was secure.

P12 |Again, disks would need to be locked where only my lawyer & I could get to
them.

P27 <blank>

P15 I really don't understand the question before (#15).

PGP variant
P29 |--

P32 <blank>

P36 <blank>

P38 This software would be useful in this situation.

P31 --

P17 <blank>

P8 <blank>

P30 <blank>

P11 See above (#13) - Bad for frequent, gquick messages.

P13 No.

Staged (Lime) variant

P10 |[Maybe trading token is a little bit troublesome. After all, it can't be as
easily as exchanging email address.

P4 no
P5 |<blank>
P42 <blank>

P33 |Does the tamperproof feature let you know if the email has been read by a
third party?

P37 <blank>
P16 <blank>

P14 |In reality, I would never discuss anything with my lawyer via email.
Period.

P7 |---

P40 <blank>

147

P28 <blank>

Debriefing Questionnaire

1) Do you think the description provided the right amount of information about how the
security worked? (circle one)

(a) Not nearly enough information

(b) Almost enough information

(c) Just the right amount of information
(d) Slightly too much information

(e) Way too much information

Hidden key pair (SSL) variant
P9 |b

P35
P6

P34

o| o| o o

P18
P41l

Q

P12 |c
P27 |b
P15 |b

PGP variant
P29 b
P32

Q

P36

o| o

P38
P31

Q

P17 |c
P8 |b
P30 |c
P11 b
P13 |c

Staged (Lime) variant
P10 |c
P4 d
P5 |c

P42 |c

148

P33
P37
P16
P14
P7

P40
P28

2)

o| o ©O

Q

What was the most confusing part of the description?

Hidden key pair (SSL) variant

P9 |trading the tokens (the second way)

P35 |It wasn't clear when I should use one option over the other, or if I could
use both functions simultaneously (which I did assume).

P6 |the "protecting your security token" part

P34 |Security functions

P18 |[Exchange of token with trusted 3rd party.

P41 |How security tokens are traded

P12 |I had to read the "security tokens" a couple times because the sentences
seemed a little dense & convoluted.

P27 |the token part. Not sure if there is one or two or a token and a password.

P15 |the token-thing is pretty confusing

PGP variant

P29 |The second way to trade public token. Very hard to understand. Has to be
more specific with examples.

P32 |the second way of trading...

P36 |generate tokens and the relationship of public + secret tokens.

P38 \Who use what token to use function

P31 |In 'Protecting your secret token' part: ...to choose a pass phrase (like a
password, but no longer, since it has multiple words). I am not clear
about this.

P17 |The description about the tokens took some time to understand and I still
wasn't 100% sure if I understood them fully.

P8 |People who don't know anything about the program must be told how the
system must work, and each step to achieving those functions

P30 None

P11 |Using public + secret tokens in same application, yet differing ways for
receiving vs. sending mail --> had to reread.

P13 [Which token to use for each function.

149

Staged (Lime) variant

P10
P4

P5

P42
P33

P37

P16

P14

P7

P40
P28

3)

Trading—publice—token—~viaWhy i3s3t danger Trading public token via third
party.

extra words added in the paragraphs. in trading public tokens to get basic
security.

First page under 'security tokens' 2nd paragraph: "If a public token is
used to do make-unreadable..." the "to do make <newline> unreadable" was
confusing.

the names of the functions + the method of obtaining tokens

- unanswered questions... I expected the program to have more
options/features.

The section on how an attacker could trick people into using incorrect
tokens. It's a little confusing to understand exactly how an attacker
would intercept emails.

how exactly the public tokens work, and is it like the email addresses now.
that was not very clear.

I think you need to emphasize that tokens are only secure if traded on
diskette or otherwise "off-line". Mention this first, and emphasize all
other methods (email, etc) can be "hacked".

The part about the tokens took me a while to understand. I'm still not
sure what exactly a 'token' is. 1Is it a password? Some kind of program
part?

understanding what functions required which type of token

I think a token is just an ASCII string, but am not sure. The whole token
concept may be overly mysterious/vague.

What was the clearest part of the description?

Hidden key pair (SSL) variant

P9 security functions

P35 |what each function did

P6 the bulleted list in "security tokens" part

P34 |Trading Security Tokens

P18 |First part about generation of token, and the 4 functions.
P41 |Setting the passwords on your security tokens

P12 |"security functions"

P27 |make-unreadable and make-readable

P15 |what each function does

PGP variant

P29 functions - make readable, make unreadable

P32 |the security tokens. the bullet points clarify everything well.
P36 |security functions

P38 |Security functions

150

P31
P17

P8

P30
P11
P13

'Trading public tokens' part.
The explanation of each of the 4 functions.

The number of functions that are available for security and the necessity
of a secret and public token

The "bulleted" list of instructions
Secret tokens -- most beneficial to your security.

the security functions

Staged (Lime) variant

P10
P4

P5

P42
P33
P37
P16
P14
P7

P40
p28

Second part regarding how the security token works.

- protecting your own secret key. - security function.

The purpose of the product

the way the functions work, which function to use how

The bulleted list that summarized how to use the tokens.

The security functions section (description of what the functions do)
the functions and how to use them

How to use security tokens.

Everything else was very easy to understand.

explanations of how to trade tokens

It's well-organized. I do understand.

4) What question about the description would you most like answered?

Hidden key pair (SSL) variant

P9 |'how do you post it on the web securely

P35 |Can I use both options (make-unreadable and make-tamperproof)
simultaneously?

P6 |How can I recover my token from a backup copy

P34 |It would have been nice if it more eleardiystated specifically described
how to handle the previous situation

P18 |[How can trading security tokens be made secure?

P41 |How are the security tokens used to secure information distributed on a
database/web page?

P12 lwouldn't it even more secure just to verbally inform people of their token
passwords?

P27 lhow would you swap tokens with someone if they are across the country?

P15 how exactly does the receiving person use their token?

PGP variant

P29 |Second way to trade public tokens. Why is "pass phrase"?

P32 |If I want to send an email to multiple recipients, can I make it readable

151

P36
P38

P31

P17

P8

P30

P11

P13

to only those recipients? Because in the description it says "only a
specific person", what about persons?

I think the lawyer question, in terms of security was the most important.

Could you explain the part talking about public token transfer via
tamperproofed message?

Questions related to 'Trading public tokens'.

If you wanted to protect the security of a message, I wasn't sure why you
wouldn't always want to use the 4 security functions and the 2 tokens like
the previous 5 question had asked for.

what if our password phrase for the secret tokens was forgotten, how do we
find out and how can we make sure it's secure

What constitutes a "safe" place to store the token pair backup (and what do
you need it for?)

-> Not practical: physically meeting a person to exchange public tokens...
must be easier electronic method (published directory of p. tokens?)

If I create my own token pair, do I know that the certain token is not
already used by some other person?

Staged (Lime) variant

P10

P4

P5

P42

P33

P37

P16

P14

P7

P40

P28

How do I and my partners need to do to protect my message
pretty clear for the most part. I understood the descriptions.

If I have 1 message to send to 10 people all of whom I have a public key
for, do I send it 10 times manually? or just once & let the software
encrypt it 10 times for each person?

An easier (secure) way to give someone a public token safely w/out physical
contact

Can you make multiple token pairs for the same person? How reliable is the
system?

What type of software would be used and would it be easy to use and
stable/reliable. Also, could public tokens be sent by snail mail on paper
(without using a disk).

Why 1is trading public tokens such a security risk, the security token is
used for most of the important tasks

<blank>

What exactly is a token? Can you make a group token pair for sending mass,
but secure, emails to a group of people? If you do this, do you still
retain the security? Also can you both make something unreadable and
tamperproof?

Is there a safe way to give many people your public token and to get theirs
on a regular basis (company question in previous task)

what's a token?

5) Do you think you would make use of security software like this for your email
messages if it was available? (circle one)

(a)
(b)

Not at all
Once in a while

182

(c) Frequently
(d) Almost always
(e) Always

Hidden key pair (SSL) variant
P9 b

P35 b

6 b

P34 |c

P18 b

|P41|b (for important, private emails but I only write those once in a while!

P12 b

P27 |c

|P15|a

PGP variant

|P29|b -> Don't have much need of secure email yet!

P32 c

P36 |b

P38 |b

P31 |d

P17 |a

|P8 |b - in the future

P30 |b

|P11|c --> If made less complex.

P13 |b

Staged (Lime) variant

P10 |b

P4 b only for very private emails & only if sniffing programs become more

widely used

PS5 b

P42 |b

P33 c

P37 b

|P16|c

P14 |c

|P7 |b

P40 |b

P28 |b

153

6) Do you have any other comments you’d like to make?

Hidden key pair (SSL) variant

P9 |<blank>

P35 |It would be useful to provide some example in the description, as to make
it easier to understand (or to decide) when you should use one function
over the other.

P6 |I think the last sentence of the first paragraph in "security tokens"
section, would better go at the end of that section (on a line by itself)

P34 |I wish I had read the last line of Trading Security Tokens more carefully.

I can see how that would be useful. You can send a public message
readable to all with your otken which has been tamperproofed with it. You
then can include text which everyone knows is from you, including the token
which can then be used to send unreadable messages to you.

P18 |[If you set this scheme up ahead of time and the software automatically
enforced the security restrictions, it would work. Otherwise, you'd
probably forget about how it worked, and never take the time to use it.

The likelihood of someone targeting me for this is unlikely.

P41 |<blank>

P12 |Just that the more people involved, the harder it is to maintain the same
level of security using this system.

P27 |<blank>

P15 Nope.

PGP variant

P29 |secret & public token system seems pretty clever but trading those public
token might be a bit confusing.

P32 |Overall efficient. Should verify that each person can only generate one
pair of tokens?

P36 |1like I have mentioned over 90% of my email, I don't mind being read by
others.

P38 |This software is not very useful to me, but for some other situation, it is
useful. But it takes a long time to understand and get used to it.

P31 |No.

P17 |If I had to talk to someone about an important issue and was worried about
security, I would call them and not e-mail them.

P8 |<blank>

P30 |The floppy disc trading is a big problem.

P11 |Public tokens seem, in some ways, to serve same function as your user
id/password (i.e. to read mail only for you).

P13 |No.

Staged (Lime) variant

P10

P4

<blank>

I forgot to use the generate-token function each time I want to make more

154

P5

P42
P33
P37

P16

P14

P7

P40
P28

of my own public tokens.
<blank>

nope

see #2

I think secure email is still very important. Email communication is
outgrowing other forms of communication and there needs to be a way to
secure 1it.

If this is for general consumption, use laymen terms and examples. It
would make it easier for most people to understand.

You might want you use "real world" situations to illustrate use of tokens:
it may double length of readings, but help people to understand them
better.

no

<blank>

155

APPENDIX C Metaphor comparison test materials
and data

This appendix contains test materials and collated data from the comparison of two
variants of my visual metaphor set against the visual metaphors from PGP 5.0, as
described in Section 6.1.2 of Chapter 6. The contents are as follows.

C.1: Reproductions of the three variant metaphor set presentations that were
given to the test participants.

C.2: Questions given to participants, with collated responses, including
debriefing questionnaire. The questions are phrased here as they were given for
the Lime metaphor variants; the actual questions given for the PGP variant
referred to functions rather than locks.

The screening questions, consent form, and initial briefing are not included in this
appendix because they were the same as those for the previous test; see Appendix B for
copies.

C.1 Presentation variants

This section reproduces the three variant presentations given to the user. The first is the
PGP metaphor set variant, the second is the basic Lime metaphor set variant, and the
third is the extended Lime metaphor set variant, with signature locks and certification
locks.

YOUR ELECTRONIC MAIL SECURITY SOFTWARE

Security functions

Your electronic mail security software provides functions for protecting your mail
messages against unauthorized reading (eavesdropping) and unauthorized modification
(tampering or forgery).

@ To protect a message against unauthorized reading, use the encrypt function on it.
Then an authorized person will need to use the matching decrypt function in order to
read the message, and no-one else will be able to read it at all.

gANQR1DBwU4D3aRT5ugDyhwQCACPaEyliP+nkQI+L90VhIY6QMSayQDTTSX/nrPo
s3KUD90cyAeMOWtZAgICZ442gVzWgOu9cgC2elKeFYI8yQ3Z4wT4R+mSoY1CAgzcC
tRSbJANoMIyPesDNXt+gY¥YXvQZ7eFOrOsRv2j5PNNkVGRaXgNXvzNNdhrDYj4dYRk
twOn22KVK1gjAMhnyogoYXG31PEp2atIh07hgNyGw+sO9HbkNReONWdh3WuhZYpw
37t99TUmjDR1sHF4eJyN51NHREewM] 90LYsYJAywe YNrpQcHHU/30eG]j /Ks7PPgV
ezykK+XmF26gMcC6reYEzmU6xddgj40voV+bC7cWUhbNrJOVCACNAW+9z /NzHONQ
ne81J4zyH8cTy5SvcGOdk7U76rMaC+3hIgsml 9uU8GIONhuoVYKaBPPWXR56L9Hbs
PaF9S4LeQr7gusybY054ghf21U0VROUxqhOxndEafI763k1VKaBD/cerMG/ fWhh+
B15fVdknZKPLDFAgUa7Pdm60F7sNtDjxpU7aXY7QakHZLHIE++Ulx/7nSwj2mEBp
aUV9PZUYo/a+93gX1VglvbXu+gQagq2Ec3qgrKQJIkhp+Z250A00NKGp5ZnupZIM7jY
FvNa+rgcoA9t9iGYSxZQ1WgTir/14vZDDS3+SmZVu8QNr3ZWopF1PMAMPZjb69yN
ukI5HLZxycHpOC/tJRsJ9scD061gDFNOril7s5nR3511GHgZRLsaa6BgdMikIiDk
ABg4tkOfn0ehnW+JVAdM4XHZRDyouZ408ceAhiHOhgBwUTXdzfgrlUf£fN8GlnzY1lg
————— END ENCRYPTED MESSAGE-----

An encrypted message

‘@ To protect a message against unauthorized modification, including forgery, use the
digital signature function on it. People who view the message will then be able to use
the matching verify-signature function to see who signed the message and to verify that
no later modification has occurred.

1QEVAWUBOdtEbXjichGj2glzAQEmM5QgApgkBziwAYh0/k01i5IHQpF8gPppi001th
qVRmMtE9XzGwiWcGlsocEyJ2p5udasVaxapaSDwS9Q0hrkiRW/8PY4EONM2 ZbyW7qwE
GBOY/LCL1WrbhrQkw9kXecDWH704QJTacmjuhOp+mPwpvQmRICIp66RBCCOWEQRX
rxKkpKZuIRgTgqt SRPDGWNNI2wT100E3FhQS290G/R/GElxmb+eYmzwIk/gNKmrH8
02Xp0AQONSd4M3JSWv+XNE7BK8gsSOrIml ZbDRvdO2igwHByw8GU+gH3wOBxBE31j
IZMravzi6ygZN+ksXWbz9wyl/g8r1lhYEHo/UzDbcX1hfCrBSAOQNdg==

=IcGR

A digital signature on a message

Each of these four functions must be used with a key.

1587

Keys

1\5@; Each person who uses the security software must have their own matched pair of
keys, consisting of one secret key and one public key. Secret keys must be carefully
protected so that only their owners have access to them. Public keys, however, are meant
to be freely distributed and traded, so you should give your public key to everyone you
send messages to and get their public keys in return. You can use the generate-keys
function to make a key pair for yourself.

Secret keys are used for proving identity. They can be used this way while still
remaining secret because of the special power of a matched key pair. If a public key is
used to encrypt a message, then only someone with the matching secret key can make
that message readable again. Likewise, if a public key can be used to do verify-signature
on a message, then that proves that the message was signed with the matching secret key.

* To protect a message so that only a specific person can read it, use that person’s
public key to encrypt it.

* To read a protected message that has been sent to you, use your secret key to
decrypt it.

* To protect a message so that people can be sure it hasn’t been forged, or changed
since you protected it, use your secret key to digitally sign it.

* To verify that no-one has changed a message that has been sent to you since it
was signed, and to verify the identity of the person who signed it, use that
person’s public key to do verify-signature on it.

Protecting vour secret key

o= Because your secret key is your proof of identity, you need to carefully protect it
against theft or loss. When you create your key pair, your software will ask you to
choose a pass phrase (like a password, but longer, since it has multiple words). Your
software will not let anyone access your secret key unless they have that pass phrase, so
choose something that you will find easy to remember, but that other people won’t be
able to guess. Then make a backup copy of your key pair and store it in a safe place.

Trading public keys to get basic security

o= The security of your messages depends on having the right public key for each
person. If an attacker can trick you into thinking their public key belongs to someone
you send messages to, then the attacker can read protected messages you send to that
person, and forge digitally signed messages from that person to you. When you trade
public keys, you need to take precautions to make sure you aren’t being tricked.

The simplest way to trade public keys is usually to send them in mail messages or put
them up on personal web pages for downloading. The risk is that an attacker could set up

158

a fake web page or forge an email message so that it appears to be from someone you
know. For basic security, protect yourself against these kinds of tricks by asking
common sense questions. Have you been to this person’s web page before, and is it at a
web address you know that person uses? Does the message with the key in it sound like
that person, and mention things that person would know? Does it come from an email
address that you know that person uses? Likewise, when you send your public key to
other people, include a note that will help them be sure the message came from you.

This level of security is enough to protect your messages against random eavesdropping
and simple forgery, and against attackers who are looking for general vulnerabilities and
have no reason to work hard to target your messages in particular. If your messages
contain very sensitive or valuable data, or if you have some other reason to think an
attacker might want to single you out as a target, then you should consider a stronger
level of security. You may also need to use the stronger level if you do not know the
other person well enough for the common sense questions to be useful.

Trading public keys to get stronger security

o= The most secure way to trade public keys is to put them on floppy disks and meet
in person to trade them, so that you can be absolutely sure that the public key you get
does belong to the person who handed it to you. Once you have at least one public key
whose ownership you are absolutely sure of, you can use that to help you get public keys
through a second way that is only slightly less secure.

This second way involves trusting the owner of that public key to tell you who other
public keys belong to, via digitally signed messages. If you are absolutely sure you have
the right public key for person A, and you trust person A’s judgement, then a digitally
signed message from person A stating that person A has made absolutely sure that the
included public key belongs to person B may be considered almost as secure as meeting
with person B yourself. And as long as the message containing person B’s key and
statement from person A is digitally signed by person A, it can be distributed through any
web page or public database without worrying about further security.

159

YOUR ELECTRONIC MAIL SECURITY SOFTWARE

Locks

Your electronic mail security software provides two kinds of locks for protecting your
mail messages against unauthorized reading (eavesdropping) and unauthorized
modification (tampering or forgery).

@ To protect a message against unauthorized reading, put an envelope lock on it.
Then only an authorized person will be able to open the envelope lock and read the
message.

An envelope locked message

@ To protect a message against unauthorized modification, including forgery, put a
content lock on it. People who view the message will then be able to see who locked the
message and to verify that no later modification has occurred.

O

A content lock on a message

Both kinds of locks must be used with a key.

Keys

; Each person who uses the security software must have their own

matched pair of keys, consisting of one black secret key and one white public key.
Secret keys must be carefully protected so that only their owners have access to them.
Public keys, however, are meant to be freely distributed and traded, so you should give
your public key to everyone you send messages to and get their public keys in return.
You can use the generate-keys function to make a key pair for yourself.

160

Secret keys are used for proving identity. They can be used this way while still
remaining secret because of the special power of a matched key pair. If a public key is
used to put an envelope lock on a message, then only the matching secret key can open
that envelope lock. Likewise, if a public key matches a content lock on a message, then
that proves that the content lock was created with the matching secret key.

* To protect a message so that only a specific person can read it, use that person’s
public key to put an envelope lock on it.

* To open an envelope lock on a message that has been sent to you, use your secret
key.

* To protect a message so that people can be sure it hasn’t been forged, or changed
since you protected it, use your secret key to put a content lock on it.

* To verify that no-one has changed a message that has been sent to you since it
was content locked, and to verify the identity of the person who content locked it,
use that person’s public key to check the content lock.

Protecting vour secret key

‘ Because your secret key is your proof of identity, you need to

carefully protect it against theft or loss. When you create your key pair, your software
will ask you to choose a pass phrase (like a password, but longer, since it has multiple
words). Your software will not let anyone access your secret key unless they have that
pass phrase, so choose something that you will find easy to remember, but that other
people won’t be able to guess. Then make a backup copy of your key pair and store it in
a safe place.

Trading public keys to get basic security

£ The security of your messages depends on having the right public

key for each person. If an attacker can trick you into thinking their public key belongs to
someone you send messages to, then the attacker can open envelope locked messages you
send to that person, and forge content locked messages from that person to you. When
you trade public keys, you need to take precautions to make sure you aren’t being tricked.

The simplest way to trade public keys is usually to send them in mail messages or put
them up on personal web pages for downloading. The risk is that an attacker could set up
a fake web page or forge an email message so that it appears to be from someone you
know. For basic security, protect yourself against these kinds of tricks by asking
common sense questions. Have you been to this person’s web page before, and is it at a
web address you know that person uses? Does the message with the key in it sound like
that person, and mention things that person would know? Does it come from an email
address that you know that person uses? Likewise, when you send your public key to
other people, include a note that will help them be sure the message came from you.

161

This level of security is enough to protect your messages against random eavesdropping
and simple forgery, and against attackers who are looking for general vulnerabilities and
have no reason to work hard to target your messages in particular. If your messages
contain very sensitive or valuable data, or if you have some other reason to think an
attacker might want to single you out as a target, then you should consider a stronger
level of security. You may also need to use the stronger level if you do not know the
other person well enough for the common sense questions to be useful.

Trading public keys to get stronger security

£ The most secure way to trade public keys is to put them on floppy

disks and meet in person to trade them, so that you can be absolutely sure that the public
key you get does belong to the person who handed it to you. Once you have at least one
public key whose ownership you are absolutely sure of, you can use that to help you get
public keys through a second way that is only slightly less secure.

This second way involves trusting the owner of that public key to tell you who other
public keys belong to, via content locked messages. If you are absolutely sure you have
the right public key for person A, and you trust person A’s judgement, then a content
locked message from person A stating that person A has made absolutely sure that the
included public key belongs to person B may be considered almost as secure as meeting
with person B yourself. And as long as the message containing person B’s key and
statement from person A is content locked by person A, it can be distributed through any
web page or public database without worrying about further security.

167

YOUR ELECTRONIC MAIL SECURITY SOFTWARE
Locks
Your electronic mail security software provides two kinds of locks for protecting your

mail messages against unauthorized reading (eavesdropping) and unauthorized
modification (tampering or forgery).

@ To protect a message against unauthorized reading, put an envelope lock on it.
Then only an authorized person will be able to open the envelope lock and read the
message.

An envelope locked message

@ To protect a message against unauthorized modification, including forgery, put a
content lock on it. People who view the message will then be able to see who locked the
message and to verify that no later modification has occurred.

O

A content lock on a message

You can also use a special kind of content lock, called a signature lock, which provides
all the protection of a content lock but also counts as your legal signature when you put it

on a message.

A signature lock on a message

Both kinds of locks must be used with a key.

1A%

; Each person who uses the security software must have their own

matched pair of keys, consisting of one black secret key and one white public key.
Secret keys must be carefully protected so that only their owners have access to them.
Public keys, however, are meant to be freely distributed and traded, so you should give
your public key to everyone you send messages to and get their public keys in return.
You can use the generate-keys function to make a key pair for yourself.

Secret keys are used for proving identity. They can be used this way while still
remaining secret because of the special power of a matched key pair. If a public key is
used to put an envelope lock on a message, then only the matching secret key can open
that envelope lock. Likewise, if a public key matches a content lock on a message, then
that proves that the content lock was created with the matching secret key.

* To protect a message so that only a specific person can read it, use that person’s
public key to put an envelope lock on it.

* To open an envelope lock on a message that has been sent to you, use your secret
key.

* To protect a message so that people can be sure it hasn’t been forged, or changed
since you protected it, use your secret key to put a content lock on it.

* To verify that no-one has changed a message that has been sent to you since it
was content locked, and to verify the identity of the person who content locked it,
use that person’s public key to check the content lock.

Protecting vour secret key

‘ Because your secret key is your proof of identity, you need to

carefully protect it against theft or loss. When you create your key pair, your software
will ask you to choose a pass phrase (like a password, but longer, since it has multiple
words). Your software will not let anyone access your secret key unless they have that
pass phrase, so choose something that you will find easy to remember, but that other
people won’t be able to guess. Then make a backup copy of your key pair and store it in
a safe place.

Trading public keys to get basic security

£ The security of your messages depends on having the right public

key for each person. If an attacker can trick you into thinking their public key belongs to
someone you send messages to, then the attacker can open envelope locked messages you
send to that person, and forge content locked messages from that person to you. When
you trade public keys, you need to take precautions to make sure you aren’t being tricked.

164

The simplest way to trade public keys is usually to send them in mail messages or put
them up on personal web pages for downloading. The risk is that an attacker could set up
a fake web page or forge an email message so that it appears to be from someone you
know. For basic security, protect yourself against these kinds of tricks by asking
common sense questions. Have you been to this person’s web page before, and is it at a
web address you know that person uses? Does the message with the key in it sound like
that person, and mention things that person would know? Does it come from an email
address that you know that person uses? Likewise, when you send your public key to
other people, include a note that will help them be sure the message came from you.

This level of security is enough to protect your messages against random eavesdropping
and simple forgery, and against attackers who are looking for general vulnerabilities and
have no reason to work hard to target your messages in particular. If your messages
contain very sensitive or valuable data, or if you have some other reason to think an
attacker might want to single you out as a target, then you should consider a stronger
level of security. You may also need to use the stronger level if you do not know the
other person well enough for the common sense questions to be useful.

Trading public keys to get stronger security

£ The most secure way to trade public keys is to put them on floppy

disks and meet in person to trade them, so that you can be absolutely sure that the public
key you get does belong to the person who handed it to you. Once you have at least one
public key whose ownership you are absolutely sure of, you can use that to help you get
public keys through a second way that is only slightly less secure.

This second way involves trusting the owner of that public key to tell you who other
public keys belong to, via another special kind of content lock called a certification lock.
If you are absolutely sure you have the right public key for person A, and you trust
person A to make sure that they themselves have the right public key for person B, then
getting a public key for person B that has been certification locked by person A may be
considered almost as secure as meeting with person B yourself. As long as person B’s
public key is certification locked by person A, it can be distributed through any web page
or public database without worrying about further security.

PUBLIC KEv CERTIFICATE
Thi= public kew belongs ta
Kelly Green <kelli@lime. net
Alize Trustwarthy < alice@trusted.org:
key cwnership certified herein.

A certification lock on a public key

165

C.2 Questions and collated results

Participant demographics (8 participants)

PGP metaphors

p# age |education expertise

P66 |52 M.S. degree Real estate

P61l |22 some college drama (acting)

P60 |41 some college administration

P56 |19 some college engineering

P55 |20 some college psychology

P51 |29 some graduate school business

P52 |24 M.S. degree physics

P46 |24 B.S. degree electrical & computer engineering

Basic Lime metaphors

P#

P67
P54
P68
P43
P44
P50
P59
P57
P63

age
52
19
23
22
21
18
19
21
26

education

J.D. degree

some college

some college

B.S.

degree

some college

some college

some college

some college

M.A. degree

Extended Lime metaphors

P#

P45
P47
P48
P49
P53
P58
P64
P65
P62

age
27
25
21
21
23
20
24
21
19

educa
M.S.
some
some
some
B.A.
some
M.S.
some

some

tion

degree

graduate school
college

college

college
degree
college

college

expertise

lawyer

information systems

mechanical engineering

civil and environmental engineering
civil engineering

managerial economics

political science

business

foreign language education

expertise

environmental science/engineering/policy
systems engineering

information and decision systems

history and education

chemistry

psychology

materials science and engineering
natural sciences

business

16A

Time spent on each portion of test session (minutes), not including debriefing
questionnaire

PGP metaphors

P#

P66
P61l
P60
P56
P55
P51
P52
P46

reading prior |Question

to requesting |1

first
question

8
s
s
€
7
10
7
10

Basic Lime metaphors

P#

P67
P54
P68
P43
P44
P50
P59
P57
P63

Extended Lime metaphors

P#

P45
P47
P48
P49
P53
P58

reading prior |Question

to requesting |1

first
question

8
€

()]

\e}

reading prior |Question

to requesting |1

first
question

¢
s
s
8
8

€

~

N Rw N

Question Question Question Question |Question |total

2

S0 o W

Question
2

S 01 o o

[€)]

Question
2

o R VS I \ O B O B o

3

Question

3

[Is

S w w w3 o oy

Question

3

~N U1 o N Ul W

1A/7

Question
4

NN Wl WUl

Question
4

S W D

5

Question
5

N W ooy Wb 0o B

s

Question
5

w w o w

6

o oo N w N

[}

S o

Question
6

[an]

N W W oYy W W ©

Question
6

N W

s

57
30
28
30
50
62
39
42

total

34
30
51
24
44
30
24
22
27

total

28
29
24
36
26
29

P64 |7 <1 6 5 5 5 4 32
P65 |8 4 6 5 4 5 4 36
P62 |4 2 3 3 2 4 2 20

Question 1

You need to send an email message to your housemates reminding them to buy
lightbulbs, since your household is nearly out.

(1) Would you, in real life, think it was worth putting in some extra time to make this
message secure, rather than simply sending it in a regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

PGP metaphors

P66 |yes, 2 minutes or whatever it would take to secure their privacy on matters
of where they live or any information that someone might use to deduce
their life style

P61 [No I wouldn't secure it. If there was a situation where I didn't want
someone to know who I lived with, I might but I wouldn't want to spend more
than 30 seconds on it.

P60 |[No I would just use regular email
P56 |Yes 1if it takes less than 30 seconds

P55 |Yes, I would want to make sure that everything I send, no matter how
unimportant it is, is only read by who it is written to. I would spend
more time protecting more important messages, but one about lightbulbs I'd
spend an extra 5 minutes on.

P51 No
P52 Yes, 5 seconds or less.

P46 |[No, I don't think it's worth to put in extra time for this message

Basic Lime metaphors
P67 |No.

P54 [No I don't feel it is worth putting in extra time to make this message
secure.

P68 Well since I want my housemates to be the only part to receive the email, I
do feel one should put a little time into securing the message. How much
time? ... Probably an hour or two.

P43 |No

P44 |Highly doubt it is worth the time.
P50 |Yes. No more than 10 extra seconds.
P59 |[No. Regular email would be fine.
P57 |NO

P63 |No

1AR

Extended Lime metaphors

P45
P47

P48
P49

P53
P58

P64
P65

P62

No

in the case of lightbulbs, I would use security measures if it no more than
an extra 30-45 seconds (good habits)

regular e-mail

I don't think any extra security is necessary. The worst that could happen
is someone else knows I need bulbs.

no

No, I wouldn't bother securing this message. I wouldn't care if someone
knew about our lack of lightbulbs.

no

For something as basic and general as buying lightbulbs, I wouldn't go to
any extra trouble to secure it. A few seconds, at most.

No b/c if another person reads this email its not like they would be
lightbulbs for you anyways.

(2) If you answered “yes” to question 1, then can you tell, from the software description
you were given, which keys and which functions you and your housemates would each
need to use? If yes, please list them.

PGP metaphors

P66 |Send by public key - secret key to sign. Read by secret key - public key
to verify.

P61 |I would need their public keys to encrypt the message and they would use
their secret keys to decrypt it.

P60 |<blank>

P56 |you: encrypt, housemates public key. housemates: decrypt, private key.

P55 |I would have to get public keys from both my housemates I think using their

P51
P52

P46

public key to send a message encrypts the message and digitally signs it
for me so that only they can decrypt and verify the signature.

<blank>

(1) use my housemates public key to encrypt message (2) sign it using my
secret key

<blank>

Basic Lime metaphors

P67
P54
P68

P43
P44

<blank>
<blank>

We would all have our secret keys in which we would know each other's
identity, also with our public keys we would be able to know from who the
particular email was sent from. In terms of locks, I would provide the
message with both types of locks, i.e., envelope lock & content lock.

<blank>

If I did send this message, I would simply use an envelope lock. This
would require me having the public keys to my housemates and all of them

160

having my key.
P50 |Yes. I can put a content lock on the email. I can use a public key.
P59 <blank>
P57 |<blank>
P63 |<blank>

Extended Lime metaphors
P45 [<blank>

P47 |I would need my housemates' public key, my housemate would need his private
key.

P48 [<blank>
P49 <blank>
P53 |<blank>
P58 <blank>
P64 [<blank>

P65 |I would secure it with my secret key so they can open it with my public
key.

P62 <blank>

(3) If you answered “yes” to question 1, then can you tell, from the software description
you were given, what steps you and your housemates would each need to take to get
those keys? If yes, please list them.

PGP metaphors
P66 |Send an email message a person you know well. "If the shoe fits well, buy
it." If the shoes are a gift include a card so they know who to thank.

P61l |Since I would see them all the time, we would exchange public keys in
person. We could send them in a mail message as it would be reasonably
easy to trust that it's them. We would need to think up pass phrases for
our own secret keys.

P60 <blank>

P56 |You could send them to each other in a mail message or put them up on
personal web page for downloading.

P55 |To receive an email from me, I don't think my housemates need to "get" any
keys from me. They would need to create a set of keys, then trade the
public keys w/me. They could save them onto disks + trade them with me, or
only one housemate could do that and since I trust that person, they could
email me my other housemates public key.

P51 <blank>

P52 | (1) I will ask my housemate for his public key meeting in person by a
regular email (2) will tell him my public key either by meeting him or by
regular email

P46 <blank>

170

Basic Lime metaphors

P67
P54
P68

P43
P44

P50

P59

P57
P63

<blank>
<blank>

From the software description, my housemates and I would need to provide
each other with our corresponding public keys. According to the
description the best way to achieve this would be to physically hand one of
my housemates say a disk with my public key information since I have
complete confidence in my housemates, there would be no problem in
obtaining the other public keys. This would be the safest way to achieve
this task.

<blank>

Basically, we could trade keys via disks or download. Trust factor would
be very high, as we all live together.

I would have to use the generate-keys function. For my secret key, I have
to come up with a pass phrase, something like a password, but with many
words instead of one.

<blank>
<blank>

<blank>

Extended Lime metaphors

P45
P47

P48
P49
P53
P58
P64
P65

P62

<blank>

1. Each generate a key pair. 2. Exchange public keys. 3. I would need to
enter his/her public key as part of the message. 4. He would need to use
his private key to obtain the message.

<blank>
<blank>
<blank>
<blank>
<blank>

They wouldn't necessarily need their own secret key, but would need a copy
of my public key. I would have to create a matched set of keys and give
them a copy via floppy disk or downloading.

<pblank>

(4) Are there any comments you would like to make?

PGP metaphors

P66

P61l

There seems to be too much confusion in the clips involved. It reminds me
of a WWII information pass off.

I had questions...what exactly is the exchange of a public key? Would it
be a password? A code or i.d. #? Also, after verifying the digital
signature, does that then go away to show that the message has been looked
at or tampered with? As a computer illiterate, I don't have the resources
to make assumptions to answer these questions.

171

P60 <blank>
P56 <blank>

P55 |I don't understand whether or not someone with the same public key as I
have could read a message that I send the person with a secret key that
matches it.

P51 <blank>

P52 |These encryption/decryptions are not so important for buying "lightbulbs"
or like!!

P46 <blank>

Basic Lime metaphors

P67 |The information is trivial and of value to no one.

P54 [<blank>

P68 |<blank>

P43 [<blank>

P44 |Seems that such difficult encryption would be better employed elsewhere.

P50 |It takes reading through twice to understand the description. Add more
pictures to follow along with the description.

P59 <blank>
P57 <blank>
P63 <blank>

Extended Lime metaphors
P45 [<blank>

P47 |If this process were automated, so that I would only need to enter a key
once, I would use this method frequently.

P48 <blank>
P49 <blank>
P53 |<blank>
P58 |No.
P64 <blank>
P65 |No

P62 |Sending lightbulbs is not private.

Question 2

You want to send an email message to an old friend from school to bring them up to date
on some stressful developments in your personal life. You haven’t talked to them in a
year or so, since they now live on the other side of the country, but you have their email
address at the company they currently work for.

(5) Would you, in real life, think it was worth putting in some extra time to make this

172

message secure, rather than simply sending it in a regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

PGP metaphors

P66 |no

P61 |[If the stressful developments were personal enough, then yes. I would give
it a few minutes of my time.

P60 |I would use the secure method but spend no more than 10 minutes trying to
implement it.

P56 |Yes 1if it took less than 30 seconds

P55 |If I haven't talked to them in a year, I would be willing to put off
mailing the message a few days to make sure it was secure.

P51 |No

P52 |1-1.5 minutes

P46

Yes, up to 10 min.

Basic Lime metaphors

P67

P54
P68

P43

P44

P50
P59

P57
P63

Possibly yes. I would expect to spend perhaps 30 minutes initially
learning the system. Gradually I would want each application to take less
than 30 seconds.

Yes, an extra 3-5 min.

Yes. This situation here is much more personal and would need to be
received by your friend and only your friend. One would need to provide a
lot more time, say one to four days at least.

Yes, a few (<5) minutes

Yes, depends on how personal the developments were. I'd spend 5-10
minutes.
I would say extra minutes.

Yes, I would want to make this message safe. I would take 5 extra minutes
to make it secure.

Yes, 30 seconds to 1 minute

Yes, in 30 seconds

Extended Lime metaphors

P45
P47

P48
P49

P53
P58

P64
P65

Yes, 5 min.

no. many companies dislike using secure methods of email -- I'd email
him/her and ask for address for private/social email.

15 min

I don't think extra security is needed. The worst case is someone I don't
know finds out some personal info about me.

no

I suppose 1f the email was very personal then I would take maybe 2 minutes
to secure it.

yes. 2 minutes

Since I don't see this person everyday, I might be willing to spend a few

173

minutes securing it.

P62 Yes, about an extra 10 minutes.

(6) If you answered “yes” to question 5, then can you tell, from the software description
you were given, which keys and which functions you and your friend would each need to
use? Ifyes, please list them.

PGP metaphors
P66 [<blank>

P61 |I would need her public key and she would need her private key to decrypt.
I would encrypt it.

P60 |secret key for me public key for person I am sending to to encrypt message
P56 |you: encrypt, friend's public key. friend: decrypt, secret key.

P55 |I need to get her public key, and then send her a message using that and
only she has the secret key to match, so only she could read it.

P51 <blank>

P52 | (1) I need to use my friend's public key to encrypt the message. (2) I
need to use my secret key to sign it. (3) My friend needs his secret key
to decrypt. (4) My friend need my public key to verify signature.

P46 |Functions I will be using are encrypt, digital signature and generate keys.
The keys are secret key. My friend will be using decrypt and verify-
signature fn, and public key

Basic Lime metaphors

P67 lenvelope lock. He/she would need to give me his/her public key. He/she
would use his/her private key to open it.

P54 |I would have to use either his public and he would use his private if I
found a way to get his public or he could use my public and I would use my
private.

P68 |Again, since you would like to have your mail (message) received by the
party that you intended to receive it, one would need to use both locks,
envelope and content, on the mail message. For this particular question,
the importance and significance of the message is not relevant. All mail
should be considered secret.

P43 |Envelope lock - use their public key to lock message, they will need their
secret key to open message. Content lock - use my secret key to lock
message, they will use my public key to open message.

P44 \We would each need our own secret keys, of course, and the public keys of
each other. Both types of locks could be employed but primarily the
envelope lock.

P50 |I would need both kinds of locks and a secret key.
P59 |Yes, envelope + content lock

P57 \We would use public and private keys, and there would be envelope and
content locks.

P63 |public key

174

Extended Lime metaphors

P45
P47
P48
P49
P53
P58

P64

P65

Envelope lock with a public key & secret key
<blank>

envelope lock

<blank>

<blank>

- envelope lock to secure message. - I would need their public key to lock
it. - they would need their secret key to read it.

yes - I would use my secret key to lock the content of the message, so that

my friend was
public key to
would have to

sure that it hadn't been tampered with + I would use their
envelope lock the message so only they could read it. They
use their secret key to open it.

I would secure it
he can open it

and a content lock on it.
assuming he can obtain one,

I would put an
with my secret

envelope lock
lock so that,

with a copy of

my public key.

P62 |Signature lock and send them a secret key.

(7) If you answered “yes” to question 5, then can you tell, from the software description
you were given, what steps you and your friend would each need to take to get those keys
at an appropriate level of security? If yes, please list them.

PGP metaphors

P66 <blank>

P61l |First I would email her and asked questions in order to verify that it's
her. Then when I knew and she knew it was me, we would exchange public
keys through email w/out identifying them within the email in case of

eavesdropping.

P60 |secret key for me public key on a floppy and meeting the person to make

sure

P56 will suffice. Therefore

be an appropriate level.

Because it is not that important, basic security
posting them on a web page for downloading would

P55

)]
L
)]
B
qr
-

T

g
i
P
»
]
H

T e e 14 £ ot A K led e
I o4 = per 7 worutd—first rd—ean—emait—asking
heowr P P I I, N N 14 lermeacs Jart T otz £~ o oo] A
her—a—euestion—thateonty shewould know- £ I rifiedheremail—addres
5 PP T 121 A e hheor + PPN B B TMhoar +o77 oo e+ e
i rreet;—Tf—woultd—askher—+ st Then—tell her awebsite—wher B
= 1d A] a il 3~] N +h o
wtd—dewntead—my—publtie—tkey No—then
P51 <blank>
P52 | (1) I will exchange some general emails talking about old school days to be

(2)

comfortable that he is the genuine person and is interested still.
will send him the public key on regular email.

P46 |I will send a email to him and get his phone no.

public key to him and will ask his public key.

and then will tell him my

Basic Lime metaphors

P67 |[Exchange in person if possible. Exchange through downloading if necessary
would be ok, most likely, since need is only for basic security.

P54 |I could either e-mail him my public key and he could email me his public or
if I had a webpage set up he could download it from there.

175

P68

P43

P44

P50

P59

P57

P63

In this case, it would be expensive (flight) to personally hand someone a
disk with my public key and what not. The approach which needs to be taken
would be to simply send the email with both types of locks to the friend.

We could exchange our public keys using e-mail. In the email message we
should start a conversation that would verify us. This would involve
something that only we might know such as a knickname.

Technically, we could mail disks to each other. We could also trade via
unsecured e-mail, using verification phrases first to make sure these
friends are who they say they are.

We have to generate keys. But first, I would write a regular email and ask
if they cared to hear my problems. After keys are generated, we exchange
public keys.

I would need my friend's public key for envelope lock. He would need his
secret key to open the envelope lock. I would have to use my secret key
for the content lock. He would use my public key to check the content
lock.

The secret keys are only ours, but we must trade public keys. I would
trade the public key through an email message, with something to let them
know it was from me, that is something that I do differently than others,
and vice-versa

I will send the public key in mail message.

Extended Lime metaphors

P45
P47
P48
P49
P53
P58

P64

P65

P62

Not really

<blank>

- would need to trade public keys - friend must have secret key

<blank>

<blank>

- she could either email me her public key, put it on a webpage, or give it

to me in person.

yes - my friend would've had to generated their own set of keys + then
would have had to email their public key to me.

I would have to create a matched key set and, since they are far apart, put
a copy on a website for downloading.

Secret key along with a certification lock.

(8) Are there any comments you would like to make?

PGP metaphors

P66

P61l

P60

Any matters that would cause stress in my life would be of public record,
and I would not use a business ? mail to disclose anything of a private
matter. Privacy laws are not universal.

This seems complicated! Really with this amount of beforehand preparation,
I would have to be sending something really secret to want to do this. I
don't really care that much if a stranger finds out I can't pay my cable
bill or I'm failing history.

It seems too much like a James Bond movie

17A

P56 <blank>

P55 |Well, if email is not secure, how can I stop people from getting my public
key that I send out if I can't see them in person.

P51 <blank>

P52 |I will be rather careful discussing issues in personal 1life at the risk of
eavesdropping.

P46 After answering (7), I think, I will rather talk to him on my personal life
on phone, rather than doing what I mentioned in (7).

Basic Lime metaphors
P67 [<blank>

P54 <blank>
P68 <blank>
P43 <blank>

P44 the content lock seems useless. why would you want to bother content
locking something that people could still read when you could simply
envelope lock it and nobody could read it without a key. And as for the
forgeries, unless you are sure of key sources, anyone could steal a key and
envelope lock a message that's a forgery. Actually scratch all that, I
just re-read that you need your secret key to set up a content lock. That
would be harder to forge.

P50 Nope

P59 [<blank>
P57 |<blank>
P63 |<blank>

Extended Lime metaphors
P45 [<blank>

P47 |It seems that if you were able to obtain (reliably) a public key from a
friend, you could also get a private email.

P48 [<blank>
P49 <blank>
P53 |<blank>
P58 |No.

P64 [<blank>

P65 |I wouldn't know if my friend has a copy of the key without having read the
email, which needs a key to be opened. Knowing this, I might not secure
it.

P62 |Seems like a few options are available.

Question 3

Your Internet Service Provider (ISP) sometimes needs to send you email messages telling
you to make certain changes in your software. If a hacker was able to forge one of those

177

messages to you, so that you believed it had come from your ISP, then he or she might be
able to break into your computer.

(9) Would you, in real life, think it was worth putting in some extra time to make sure
this message was secure, rather than simply trusting a regular email? If yes, how much
extra time (in seconds, minutes, hours, or days) would you think it was worth?

PGP metaphors

P66 yes 2 days if the material sent were sensitive

P61l Yes. Fifteen minutes.

P60 |15-20 minutes

P56 |Yes. 2 minutes.

P55 |Yes, I'd spend a day or two verifying that the message was from my ISP.
P51 |Yes, minutes

P52 2-10 minutes

P46 Yes, couple of days.

Basic Lime metaphors

P67 |Yes. One hour initially; gradually working down to 30 seconds or less per
use.

P54 |Yes, take a couple of hours to meet in person.

P68 |Definitely. Computers are expensive and need to be protected. I would
suggest putting in about 21 days. Much more than the previous two
situations.

P43 Yes, 10 minutes.

P44 |Yes, I would definitely be worth it. Time, I would say as long as
necessary, but in reality, anything over say 20-30 minutes will get old if
you do this a lot.

P50 It would be worth extra hours. I would hate for someone to be able to
break into my computer.

P59 |Yes. I would put an hour into protection if there were possibility of
someone's breaking into my computer.

P57 Yes, 1 minute - 2 minutes

P63 |Yes, 1 minute.

Extended Lime metaphors
P45 Yes, 30 min.

P47 |Yes. I would spend at most 10 extra minutes.
P48 |1.5 hours

P49 |Yes, perhaps a few minutes at most.

P53 |yes, 1-2 min.

P58 |I guess I would spend maybe 5 minutes to secure the message. I tend to
think that no one would want to break into my computer though.

P64 |yes -10 minutes

178

P65 |I would spend a longer time securing this. Up to several hours.

P62 |Yes, all the time so it does not happen.

(10) If you answered “yes” to question 9, then can you tell, from the software description
you were given, which keys and which functions you and your ISP would each need to
use? Ifyes, please list them.

PGP metaphors
P66 | (1) the person public key to encrypt message sent, secret key to sign
message. (2) Secret key to decrypt, use public to verify signature.

P61l |If I had already given my public key to my ISP or if I had theirs? then I
would expect messages to be digitally signed and poss. also encrypted. If
we had not already exchanged is some secure way, then I don't know how I
would verify the identity of the sender.

P60 |Digital signature function to make sure from a legitimate source

P56 |you: decrypt, secret key, verify-signature. ISP: encrypt, your public key,
digital signature.

P55 |They (my ISP) would need to get my public key in order to send email that
only I could read. I would need their public key to verify the signature.

P51 |verify-signature, public key

P52 |I would need (1) ISP's public key to encrypt my message to them and to

verify the signature. ISP needs (1) my public code to encrypt the message
to me (2) a secret code to sign it.
P46 same as answer 6. Instead of a friend, there will be someone from ISP.

Basic Lime metaphors

P67 |Both envelope lock and content lock needed. You would need each other's
public keys.

P54 Whoever was sending the message would use their private key to ensure a
content lock. And, the receiver of the mail would use the other person's
private key.

P68 One would need to have the paired keys, secret and public. Since this
situation deals with breaking into a system one would need to have the mail
message with both envelope and content locks.

P43 |Content lock - they use their secret key to lock - use their public key to
be sure message hasn't changed.

P44 My ISP would need their secret key to content lock and my public key to
message lock. I would need my secret key to unlock the message and the
ISP's public key to verify that it hasn't been changed.

P50 |Locks: 1) content lock 2) envelope lock. Keys: 1) public key for
everyone with the same ISP 2) secret key for your personal email
instructions.

P59 |ISP would need to put a content lock on it so it couldn't be forged.
Eavesdropping is unimportant in this case.

P57 |Public/private, content, envelope

P63 |An envelope lock & secret key

179

Extended Lime metaphors

P45
P47

P48

P49

P53

P58

P64

P65

P62

Content lock with public key & secret key

I would need the sysadmins public key. The email would require a content
lock.

envelope, content, and signature lock

I would want to use a signature lock so that if there was a problem they
would be liable. This would be used w/my—seeret—key their pubtie secret
key.

yes. ISP: secret key - content lock. me: ISP public key - content lock.

- the ISP would need to put a content lock on the message. - I would need
the ISP's public key to verify that there were no changes.

yes - I would need a public key from the ISP in order to check that their
message had not been tampered with. The ISP would need my public key to
lock the message so that only I could read it.

I would want the envelope and content locks put on. They would send it
using my public key and I would open it with my secret key.

content lock

(11) If you answered “yes” to question 9, then can you tell, from the software description
you were given, what steps you and your ISP would each need to take in order to get
those keys at an appropriate level of security? If yes, please list them.

PGP metaphors

P66
P61l

P60
P56
P55

P51

P52

P46

<blank>

Not really. Exchange at the very beginning when I am signing up and know
for sure I am talking to my ISP I guess.

secret key, public key
At this level of security I would trade public keys on floppy disks.

maybe when they set up the internet in my house they would give me a disk
with their public key on it and then I could email them my public key

Use the public key to encrypt the message then use the secret key to
decrypt the message. Use the secret key to digital signature the message.
Finally use the public key to verify signature.

I will talk to an authorized representative of the ISP in person or will
tell them my public key while signing out for their service in the
beginning.

Instead of conversation on phone, I will like to meet the person personally
will like to verify the security of my public key.

Basic Lime metaphors

P67
P54

P68

Exchange floppy disks in person containing public keys.

I believe the only way to be sure would be to put the keys on disk and
trade them in person.

Since one might not know very well (say on a personal level) ones ISP, the
safest step would be to actually meet with the ISP.

1R0

P43
P44

P50

P59

P57

P63

Their public key could be sent to you in an ordinary message.

Hopefully, my ISP would mail me a disk with their public key, so that I
could send a secure message to them using the message lock containing my
key. I could also download their key from a secure website, requiring
passwords to log into.

1) Both my ISP and I have to generate keys. 2) My ISP and I have to trade
public and secret keys, via disk exchange.

ISP would use their secret key for a content lock. I would need to get
their public key to check the content lock.

We might have to meet to exchange the public key, since I don't know
anything about the ISP, maybe we could exchange at the time I se-up my
account with my ISP.

make up a pass phrase

Extended Lime metaphors

P45
P47

P48

P49

P53

P58

P64

P65

P62

Not really

1. public & private keys for the ISP sysadmin are generated. 2. public key
is mailed on a CD or some other read-only media. 3. I would use the key
to verify identity.

- both have a secret key - meet to exchange public key

ISP would need to signature lock the message w/their secret key and opened
and verified w/my public key.

no

- the ISP needs their secret key to put a content lock on it. - I would
need the ISP's public key. They could email it to me, I could download it
from a website, or they could give it to me on disk.

for the appropriate level of security our public keys should be traded by
floppy in person.

I would have to create the keys and they would download my public key from
an agreed upon website.

secret key, to prove identity that it is not a hacker

(12) Are there any comments you would like to make?

PGP metaphors

P66

P61l
P60
P56
P55

P51
P52

The wording ran to confusing when reading I found myself constantly
verifying my terms.

<blank>
<blank>
<blank>

Can I create as many sets of keys as I want? I could email someone my
public key, then have them email me their public key, then I could send
them a new public key now that I know only they can read it?

<blank>

<blank>

1R1

P46 I think this software could be useful in the above case, if the ISP is an
reputed company, so that a person from that company can be trusted.

Basic Lime metaphors
P67 [<blank>

P54 <blank>
P68 <blank>
P43 <blank>

P44 |Yeah, this is becoming more clear after 2 examples. Could probably use
this now with very minimal screw-ups.

P50 Nope
P59 <blank>
P57 |<arrow to above>

P63 <blank>

Extended Lime metaphors
P45 [<blank>

P47 |this type of security would have to be arranged when you set up an account
w/an ISP.

P48 [<blank>
P49 <blank>
P53 |<blank>
P58 |No.

P64 public keys in this case would be difficult to trade securely over email or
the web because of the impersonable nature of the ISP-me relationship.

P65 <blank>

P62 |good use for this system is this example

Question 4

You are involved in a fairly high-stakes lawsuit, and you need to communicate regularly
with your lawyer about it by email. You have told your lawyer things about the
circumstances of the suit that you expect to be covered by attorney-client privilege, and
you need to discuss those things in your email messages.

(13) Would you, in real life, think it was worth putting in some extra time to make these
messages secure, rather than simply relying on regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

PGP metaphors
P66 <blank>

P61l |yes - 30 minutes

1R2

P60 |yes 30 minutes
P56 Yes. 5 min.

P55 |I would spend as much time as I could. I'd spend a few days if I didn't
need to get a response immediately.

P51 Yes, minutes.
P52 10-15 minutes

P46 |Yes, maybe up to a month if required.

Basic Lime metaphors

P67 |Yes. However much time it took to learn how to use the system and however
much time it took to use it -- assuming that it would not take an excessive
amount of time each use (say 120 seconds)

P54 Yes, as much time as needed.

P68 |Yes. Again since the information being provided via email could dictate
one's personal life and future I would say 21 days again.

P43 Yes, 10 minutes

P44 |Same as the last one, as much time as necessary. If it seriously took
longer than 20-30 minutes, I'd meet him somewhere.

P50 Days
P59 |Yes. I would put a few hours in for security.
P57 |Yes, possibly a few days

P63 Yes, in 30 seconds

Extended Lime metaphors
P45 |Yes, 1 hr.

P47 |Yes. As much time as it takes.

P48 |2 hrs

P49 |Yes. Upwards to around a 1/2 hour.
P53 |yes, 5 min

P58 |Yes. I might take 10 minutes to secure the mail. Otherwise I would just
use the phone.

P64 |yes - 10

P65 |Yes, very important that it is secure. As long as it takes. Days, if
necessary.

P62 |yes, all the time necessary

(14) If you answered “yes” to question 13, then can you tell, from the software
description you were given, which keys and which functions you and your lawyer would
each need to use? If yes, please list them.

PGP metaphors
P66 |Trade public keys of floppy disk. Send on public key P, sign with secret

1R%3

P61l

P60
P56

P55

P51
P52

P46

S. Read with secret S using pass phrase to access, public to verify P
using pass key to verify it.

each other's public keys, our own secret keys. Encryption + digital
signature.

trading keys, secret key, public key put on floppy and meet in person

You: encrypt, lawyer's public key, digital signature. Lawyer: decrypt,
secret key, verify-signature.

My lawyer needs my public key to email me securely and I'd need his to
email him. I'd also need his to verify his signature and vice versa.

encrypt/decrypt and digital, verify signature, and secret and public keys

I need (1) My lawyer's public key to encrypt my message to him. (2) My
secret code to sign my message. My lawyer needs (1) his secret code to
decrypt my message. (2) My public key to verify that the message has not

been tampered.

same as in 6 or 10

Basic Lime metaphors

P67

P54

P68

P43

P44

P50
P59

P57
P63

Use both envelope and content lock. You and he/she would need to exchange
public keys on disk.

The person sending the mail could use their private key while the person
receiving the mail would use the senders public key.

I suggest having both secret and public keys used. Again having both types
of locks (envelope and content on it).

Both content and envelope lock. Content lock - they use their secret key
to lock, you use their public key to verify. Envelope lock - they use your
public key to lock, you use your secret key to open.

We need our own secret keys and each other's public keys to use both the
envelope lock and the content lock.

We would need public + secret keys and envelope + content locks.

envelope + content locks. We would need our own public keys + private
keys.

Public/private, content/envelope

envelope lock

Extended Lime metaphors

P45
P47

P48
P49

P53

P58

P64

Envelope lock & content lock. With their public & secret keys.

we would each need a unique key pair. Both signature and content locks
would be used.

need secret key & public key, would use envelope, content & signature lock

I would use a signature lock in conjunction w/our traded public keys on
floppy disks.

yes. me: lawyer's public key - envelope lock. lawyer: secret key to open
envelope lock.

- The lawyer would need my public key to envelope lock it. - I would need
my secret key to read it.

yes - messages would need to be both enveloped + content locked so we would
both need our own set of secret/public keys as well as each other's public

1R4

keys

P65 |I would use envelope, content, and signature locks. I would send an email
with my secret key, and my lawyer could open it with my public key.

P62 |envelope lock so only lawyer can read

(15) If you answered “yes” to question 13, then can you tell, from the software
description you were given, what steps you and your lawyer would each need to take to
get those keys at an appropriate level of security? If yes, please list them.

PGP metaphors

P66 [<blank>

P61l |[Exchange disks in person.

P60 |secret key on floppy meet to exchange

P56 |Trading public keys on floppy disks would be appropriate for this level of
security.

P55 |We could trade disks with our public keys on them. From what I understand,
that is the most secure way.

P51 |first, get the lawyer's public key by meeting in person. Once I get his
public key, I encrypt it. The same for my lawyer. I and my lawyer must
use our secret key to decrypt it. To verify that the message has not been
changed, we use our secret key to digitally sign it, and to verify it was
send for that person we use the other people (in this case, my lawyer's
public key) to verify the signature

P52 |I will meet my lawyer in person to exchange the public keys. I will see
him in person.

P46 |I will meet him personally and exchange the keys

Basic Lime metaphors
P67 |[Exchange on floppy in person.

P54 |I believe meeting in person, with your public keys on disk would be
appropriate.

P68 |Since the situation deals with one's lawyer the level in which one knows
each other is much higher than with some other person like one's ISP. One
could send information and ask specific questions in order to know if the
person that is sending you their public key information is that person (in
this case your lawyer).

P43 |This would be worth an in-person meeting to exchange keys.

P44 |Hopefully, we could exchange disks up front, otherwise, my lawyer sending
me his key via e-mail would be sufficient. I could then envelope lock him
a key of mine and begin messaging securely.

P50 |First, make sure you can trust the other person. If you can, then you
generate keys and exchange public + secret key info via disk transferral.

P59 |I need his public key for the envelope lock, as well as my private key for
content lock. He would need his private key to open envelope locked
message + my public key to check content lock.

P57 |Here again, I might have to fly into his city, so we can make the exchange
of public keys in private.

1RS

P63

Just hand in my lawyer the public key

Extended Lime metaphors

P45

P47

P48

P49

P53
P58

P64

P65

P62

Using generate-keys function, make a pair of keys. Meet in person with the
lawyer to hand over the public key.

1. generate keys. 2. meet, exchange media w/public keys. 3. use keys to
verify.
- make a key pair (both lawyer and myself) - each personalize secret key

with password - trade public keys

Our public keys would need to be swapped on floppy disks and then those
keys would be used to lock and open the signature locks.

yes. meet in person + trade disks.

he would need my public key. I could email it, post online, or give it to
him via disk.

we would definitely want to exchange keys on floppies in person because of
the sensitive nature of the pending case but because the circumstances of
the case are known by both parties it may be possible to exchange public
keys via email since key details could be mention to prove the emailer's
identity.

Even if I already had a set of keys, I would create a new set, so that only
my lawyer has my public key. I would meet with my lawyer and give him a
floppy disk with a copy of my public key on it.

a secret key so only lawyer can open

(16) Are there any comments you would like to make?

PGP metaphors

P66 |[I'm not sure when to use the pass phrase or if I need to once it's
established and do the secret keys match

P61l <blank>

P60 |I think it would be easier to meet face to face or take the chance on using

P56
P55
P51
P52
P46

regular email. Going through all the security channels seems quite
cumbersome.

<blank>
<blank>
<blank>
The lawyer should be trustworthy.

I am not sure if the software is that secure, so that I can trust it for
such email. I am mainly worried about my public key. Although I think
knowing my public key alone will not help anyone.

Basic Lime metaphors

P67

P54

This sort of security use would be valuable to me. I have clients who are
afraid to communicate by email or cell phone for security reasons.

<blank>

1RA

P68 <blank>
P43 <blank>

P44 Nah. I have said a lot. Would be interesting to see the software
introduced. See how popular it is, that sort of thing.

P50 |There should be ways to create secret keys for different groups or b-boards
w/0 giving out one's main secret key.

P59 <blank>
P57 <blank>
P63 <blank>

Extended Lime metaphors
P45 [<blank>
P47 |<blank>

P48 |I just realized I answered the previous questions inaccurately - didn't
read the questions carefully.

P49 <blank>
P53 |<blank>
P58 |No.

P64 [<blank>
P65 [<blank>

P62 |Not sure about key but envelope lock would be good in this situation

Question 5

You have started a small company, with about 30 employees, which is busy developing a
new product line, the details of which must be kept secret from the public and from your
competitors. Your employees all need to communicate regularly with each other by
email to keep each other up to date on the product strategy and progress. You are hiring
additional people at the rate of one or two per week, and the new people need to be
integrated into the email communications as quickly as possible.

(17) Would you, in real life, think it was worth putting in some extra time to make these
messages secure, rather than simply relying on regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

PGP metaphors

P66 60 seconds

P61 |yes 10 minutes each new employee

P60 2-3 hours in training. 10-15 in sending message.

P56 |Yes. 1 min.

P55 I would put in a few days trying to secure our messages.

P51 Yes, hourse

1R7

P52 15-30 minutes per person.

P46 Yes, a month or so.

Basic Lime metaphors

P67 |Same as prior

P54 |Yes, I would spend a couple days to ensure new employees were set up
properly and old employees were updated with all the new employees
information.

P68 |Yes, in this case I would suggest putting in about 14 days of extra time.
P43 Yes, 10 minutes

P44 |Still think its important, but 5-10 minutes tops on the time. They gotta
get working to produce our product line before someone else does.

P50 YEARS
P59 |Yes, I would put days worth of work into security.
P57 |yes, possibly a few days

P63 Yes, in 1 minute

Extended Lime metaphors

P45 |Yes. 5 min.

P47 Yes. I would spend an extra 10 min/day.

P48 5 hrs

P49 Yes, no significant amount, maybe 15 seconds a message.
P53 yes, 1 hr.

P58 Yes. I'd say about 10 minutes.

P64 yes - hours or possibly even days

P65 Yes. I would spend a few hours securing the messages.

P62 Yes, a few days

(18) If you answered “yes” to question 17, then can you tell, from the software
description you were given, which keys and which functions you and your employees
would each need to use? If yes, please list them.

PGP metaphors

P66 (Use receipts public key, read secret key (access to pass phrase). Use your
secret to sign (using pass phrase to access), verify identity? with public

key

P61 |They + I would need to exchange public keys all around. We would encrypt
messages, possibly dig. signing. if someone left the company.

P60 |public keys for the group

P56 |You: encrypt, employee's public key, digital sig. Employees: decrypt,
secret key, verify-sig.

P55 |[My employees would need to use the generate-keys function and they would

1RK

have to know everyone else's public keys.

P51 |public and secret keys, encrypt and decrypt function, digital and verify
signature

P52 |I need: (1) My employees public key to encrypt my mails to him (2) my
secret key to sign it. My employee needs: (1) my public code to verify
the signature (2) A secret code to read my messages.

P46 |same as before

Basic Lime metaphors
P67 |Same as prior

P54 |The senders of the e-mail would put the receivers public key on there so
only a specified person can open it with their private key.

P68 |Again, both types of locks (envelope and content) and use both keys secret

and public.

P43 |Content locking - you use your secret key when sending - others verify
using your public key

P44 \We would all need our own secret keys and the public keys to everyone in

the place. Message lock and content lock would both be employed to assure

some outsider doesn't send forgeries.

P50 |Public key for all employees. Secret key for anyone faithful longer than 6

months. Content locks on info from me to employees. Envelope locks on
sensitive info.

P59 |All messages would have to be envelope + content locked. We would need to

share public keys + have private keys to ourselves.
P57 |public/private, content, envelope

P63 |envelope lock and secret key

Extended Lime metaphors
P45 |Envelope lock, content lock & certification lock with public key.

P47 |[Each person would need a unique key pair. Mail messages would have content

locks and certification locks.

P48 |all employees key pair: secret & public key. could use certification,
envelope, content & signature lock

P49 |I would use content locks w/public keys. Forgery of keys wouldn't be a
problem since all of the keys would be use internally within the company.

P53 |yes. me: employee's public key - env lock. employees: secret key to open

env. lock

P58 |- I would need everyone's public key to envelope lock the message. -

everyone would need their secret key to read the message. - everyone else

would need everyone's public keys so they can send mail to each other.

P64 |yes - everyone needs their own set of keys as well as everyone else's
public keys. all emails would need to be content + envelope locked -

public key of the sender used to verify no tampering + secret key of sender

used to open

P65 |Definitely use an envelope lock. Also, a content lock and a signature
lock. Each employee would need his own set of keys. Everyone's public
keys would be traded with all.

P62 |[Envelope lock so only people in company can open. Public key.

1R9

(19) If you answered “yes” to question 17, then can you tell, from the software
description you were given, what steps you and your employees would each need to take
to get those keys at an appropriate level of security? If yes, please list them.

PGP metaphors
P66 |no

P61 They would be given disks at work in person. If someone left, pass phrases
would be changed.

P60 |secret keys, public keys

P56 |Trading keys via floppy disk would be appropriate. the disk could contain
others in the company and their public keys could be considered as secure
as the person you've traded with.

P55 |I guess you would need to make sure everyone knew everyone elses public
keys. Since my old employees trust me + know my public key, I could email
them the new employee's public key as I got it. I'd get it from the
employee on a disk. Then I could email the new employee all the other
employees' public keys. The new employee would have to trust me.

P51 |Meet with each person to receive their public key, and each person receive
my public key. to protect an information, I use the person (or people)
public key to encrypt it. To read an inf send to me I use my secret key.

to make sure that my message has not been changed or forged, I use my

secret key to digitally sign it. to verify a message, that has been sent
to me, to verify the identity I use his public key to verify-signature on
it.

P52 |I will exchange public keys in person and hold the employee responsible for
any leak of information due to his negligence with secret codes.

P46 Whoever is recruited to the company will be given the public key, which
will be changed every month or two and will be told to them in a joint
meeting.

Basic Lime metaphors
P67 |Same as prior

P54 |TI believe the most effective way would be for the employees to give their
private keys to myself (the Boss) and I would be the secure middle man to
make sure the appropriate people had received the proper keys.

P68 |Since the situation is of great importance to the company and being a small
company (one headquarters in which all employees are in one building, one
location) the idea of physically handing them a disk with the necessary
information would apply in this situation.

P43 |The best way is to provide new employees with your public key. Then you as
the boss can send an email (content locked) that contains others public
keys.

P44 |I'd say a Master Disk with all keys could be issued upon employment. The
person responsible for the network could message lock new employee keys to
the existing workers.

P50 |1) Generate keys 2) Give out keys to employees on a disk.

P59 |Public keys could be distributed on the company website. Since individuals

190

P57

P63

are the only ones using private keys, they need to be careful to protect
them.

I may put the public key on an intranet, where only employees have access
to. (i.e. a webpage)

create a pass phrase

Extended Lime metaphors

P45
P47

P48

P49

P53

P58
P64

P65

P62

Not exactly.

1. Generate key pairs. 2. Exchange (via media) the public keys w/the new
person. 3. Use this person's other keys for people.

make key pairs. have one person personally obtain/exchange public keys.
distribute certification lock to all employees.

Each employee is assigned a key and whenever e-mailing uses content locks.
Secret keys would not be practical as that would require every employee to
know all other employees.

yes, trade in person @ work
- email, online, disk.

keys would need to be traded in person or by a designated key trader who
certifies + passes on employees public keys to new employees

Each of us would have to own own set of keys. The public keys need to be
traded. Since we all work together and see each other every day, we should
copy the public keys to a floppy disk and trade each disk with everyone
else. When someone new joins, they create their keys, pass their floppy to
everyone, and borrow everyone's.

Public keys would need to be sent out to allow all the workers to access
files.

(20) Are there any comments you would like to make?

PGP metaphors

P66 \[what seems to work well with one party involved seems cumbersome with more
than one and less secure.

P61 [Would changing pass phrases + digitally signing emails be security enough
if an ex employee had our public keys?

P60 |<blank>

P56 |<blank>

P55 |Is it possible to set up a bboard with one set of keys? Like, everyone

P51
P52

P46

would know the bboard public key. You would still need everyone's public
keys (who's posting to it) so you could verify their signature.

<blank>

How about this. I am the boss and I automatically change the secret key of
my employees often each message they send to me or I send to them, they
will be told use a particular secret key each time.

<blank>

101

Basic Lime metaphors

P67
P54

P68
P43
P44

P50
P59
P57
P63

<blank>

The security would probably only be as good as the least trustworthy
employee.

<pblank>
<blank>

This seems kinda shaky. What if someone quit and took the master disk or
key list with them. Competitors then could tap into e-mail and use the
keys to read it.

Nope
<blank>
<blank>

<blank>

Extended Lime metaphors

P45
P47

P48

P49
P53
P58
P64

P65
P62

<blank>
<blank>

oops. did I have signature lock on the lawyer question. because I should
have included it.

<blank>
<blank>
No.

are there any restrictions to envelope locking an email for numerous
individuals?

<blank>

Also good for this situation.

Question 6

You are arranging to have some work done on a house that you own, but you have to be
out of town at the time when the contractor is ready to submit a signed bid to you. You
don’t have a fax readily available, so you want the contractor to submit the bid to you in
an email message, but you also need the message to be evidence that the contractor
legally signed the bid.

(21) Would you, in real life, think it was worth putting in some extra time to make these
messages secure, rather than simply relying on regular email? If yes, how much extra
time (in seconds, minutes, hours, or days) would you think it was worth?

PGP metaphors

P66
P61l
P60

no, I would not use this
yes 20 minutes

yes 10-15 minutes

192

P56
P55

P51
P52
P46

Yes. 1 hour.

In real life, I would do this in person, but if I had to, I'd spend a day
on making it secure.

Yes, minutes
An hour!

Yes, a day or two

Basic Lime metaphors

P67
P54
P68
P43
P44
P50
P59
P57
P63

30 minutes to learn, 30 seconds to use.

Yes, an hour or so.

Yes, I would put about 7 to 14 days of extra time in this situation.
Yes, 10 minutes

Yes definitely worth the effort. Back to the 20-30 minute time frame.
Couple hours

Yes. An hour.

yes, maybe a few minutes

yes, in 30 seconds

Extended Lime metaphors

P45
P47
P48
P49
P53
P58

P64
P65
P62

Yes. 30 min.

yes. 30 minutes or so.

40 min

Yes. Around two minutes to assure the contractual bid is legal.

yes 5 min

I might spend a minute or 2 on this one. I probably would just have
someone else pick up the bid.

yes - 10 minutes
I would put in some extra time, but only up to an hour or two.

Yes a few hours.

(22) If you answered “yes” to question 21, then can you tell, from the software
description you were given, which keys and which functions you and your contractor
would each need to use? If yes, please list them.

PGP metaphors

P66
P61l

P60
P56

<blank>

I would give my public key to a notary public and have them sign with the
contractor and send it digitally signed by the notary.

public key to contractor, verify his signature

You: secret key, decrypt, verify-sig. Contractor: my public key, encrypt,
digital sig.

103

P55

P51

P52

P46

If all I want is to verify that my contractor signed the bid, I would just
need to get from him his public key. I could use that to verify-signature.

encrypt and decrypt function, verify and digital signature function, and
public and secret keys

I need (1) contractor's public key to verify that the message is real. (2)
my secret key to read the contractor's encrypted message. My contractor
would use (1) my public key to encrypt the message (2) a secret key to
sign it.

same as before

Basic Lime metaphors

P67

P54
P68

P43

P44

P50

P59

P57
P63

You would need to be absolutely sure that the user was the contractor if
you have prior agreement that use of the system constituted a binding
agreement, equivalent to a signature on a printed document. If so, public
keys should be exchanged in advance, with signature agreement. Use content
lock to protect message and signify content in same way as signature.

The contractor would use his private key and I would use his public key.

I would provide the mail message with both locks, envelope and content plus
use secret and public key.

The contractor should content lock the message with his secret key and also
envelope lock it with your public key.

We would need our own secret keys and I would need his public key. I don't
think its necessary to envelope lock this, just to content lock it. That's
why I only need his key.

Public key, content lock

Only a content lock b/c you can't have message or signature forged. No
envelope lock needed b/c eavesdropping isn't a concern.

public/private, content/envelope. content lock will be very important.

an envelope lock & public key

Extended Lime metaphors

P45
P47

P48
P49

P53

P58

P64

P65

Content lock & signature lock with public key & secret key.

1. a unique public/private key pair. 2. a content lock (to prevent later
tampering), a signature lock.

envelope lock, content, signature lock. wuse key pair: public & secret.

A signature lock would insure authenticity, and a public key would provide
enough security.

contractor: secret key - signature lock. me: contractor's public key ->
check signature lock.

- The contractor would need to put a signature lock on the mail. -
Assuming that signature lock falls under content lock, they would need
their secret key. - I would need their public key to read the message.

yes - both parties need their own set of keys + each other's public keys.
actually the contractor would only need to give out their public key since
the email doesn't need to be envelope locked. the email from the
contractor would need to be only signature locked to protect the contents +
to be a legal signature.

I would definitely use a content lock. Maybe an envelope lock. I could
make a set of keys and give my contractor my public key.

104

P62

Signature lock to prove who it is from, with a secret key b/c you and
contractor are only 2 people to open.

(23) If you answered “yes” to question 21, then can you tell, from the software
description you were given, what steps you and your contractor would each need to take
to get those keys at an appropriate level of security? If yes, please list them.

PGP metaphors

P66
P61l
P60
P56

P55

P51

P52

P46

<blank>
I would take the disk with my public key to the notary in person.
public key, secret key, trade key

You would need to trade keys on floppy disk to achieve appropriate level of
security.

I assume that I have seen him in person before, so we could exchange disks
with our public keys. If I only want to verify that he sent the email, I
would just need his public key - he wouldn't need mine.

I send an email with my public key, as same as the contractor. To protect
the message, I would use the contractor's public key to encrypt it. To
read his message, I would use my private key to decrypt. To protect the
message for being forged, each would use our secret key to digitally sign
it. To verify that the message has been send for that person I would use
his public key to verify-signature.

Will meet in person and get a legal document signed from him that he uses
specific secret and public keys and he is responsible for the message sent
using them!!

I will talk to him on phone and can exchange public keys.

Basic Lime metaphors

P67

P54

P68

P43

P44

P50

P59

P57

Same as prior cases where disks were exchanged. Downloading would be
unsatisfactory.

Have the contractor hand you a copy of his public key the first time he
comes to your home.

Since one is out of town the idea of physically handing a disk of
information is out of the question. The solution for this particular
situation would be to consider the possibility of asking question about the
contractor that only the contractor would know. One must develop a close
relationship prior to the business transaction.

This would best be done with an in-person meeting to exchange public keys.

Assuming I didn't get it from him earlier, I could make sure his e-mail
address is the same as before, or ask him specific questions to verify it
came from him and have him e-mail it to me.

Generate keys. Exchange public keys via telephone or however. Use content
lock to make sure no one tampers with contractor's email to you.

He would use his secret key for a content lock. He would need to send his
public key to me so that I could check the content lock.

I would arrange a meeting ahead of time, (when we discuss what needs to be
done), and get his public key then.

105

P63

just give the contractor the public key

Extended Lime metaphors

P45
P47
P48
P49

P53
P58
P64
P65

P62

Not really.
1. generate keys. 2. get his public key from a website.
each have key pair. meet & exchange public key.

The contractor would need to signature lock the email and then send it. I
would access it using the public key.

yes, trade in person
- email, online, floppy. he would have his secret lock.
the contractor should put his public key on his web site for easy access.

I would make the set of keys, copy the public key to a floppy disk, and
give him the disk before I left town.

Need to send a certification lock with an envelope locked message, so with
the secret key only the you and the contractor can open.

(24) Are there any comments you would like to make?

PGP metaphors

P66
P61l
P60
P56
P55

P51
P52
P46

<blank>
Are we allowed to add extra people?
<blank>
<blank>

If I traded my public key w/contractors or online businesses when shopping,
I bet they would start selling them to solicitors like they do addresses,
phone #'s + email addresses.

<blank>

I i) ESIEVSE I |] T

Leook—triekyl—Th

I am not sure about how much imp. a signed bid is?

Basic Lime metaphors

P67
P54
P68
P43
P44

P50

P59
P57

<blank>
<blank>
<blank>
<blank>

e-mailing public keys unsealed seems unsafe. Couldn't someone intercept
one and masquerade as you? well, they could send private mail as you I
guess

Think about ability to create group public keys w/secret keys to certain
sections.

<blank>

<blank>

10A

P63 <blank>

Extended Lime metaphors
P45 <blank>

P47 |<blank>
P48 [<blank>
P49 <blank>
P53 |<blank>
P58 |No.

P64 [<blank>
P65 [<blank>

P62 (/A little confusing on exact method for this one, but idea sounds
interesting.

Debriefing questionnaire

1) Do you think the description provided the right amount of information about how the
security worked? (circle one)

(a) Not nearly enough information

(b) Almost enough information

(c) Just the right amount of information
(d) Slightly too much information

(e) Way too much information

PGP metaphors
P66 b

P61l |b
P60 e
P56 |c
P55 |b
P51 |c
P52 |c
P46 |c

Basic Lime metaphors
P67 |b

P54 b
P68 b
P43 |c

P44 |c

197

P50
P59

o Q o

P57
P63

Q

Extended Lime metaphors
P45 |a

P47 |c
P48 |c
P49 |c
P53 |c
P58 |c
P64 |b
P65 |c
P62 |b

2) What was the most confusing part of the description?

PGP metaphors

P66 Trading public keys and access to these keys and its changeable public
secret

P61l lassuming a layperson would understand the exchange of intangible objects
like "a public key". 1Is that a password or an id or something?

P60 |the trading of the keys became confusing to me and having to keep adding on
to get more security

P56 |Trading public keys to get basic security.

P55 |The description wasn't confusing, but it needed more information.
P51 |the secret and public key related of how you can trade them

P52 |Trading to get the keys for stronger security.

P46 |Trading public keys

Basic Lime metaphors

P67 Description was clear enough, but could profit from more graphics and
examples.

P54 |Understanding which key to put on a message isn't confusing, but it just
takes a few glances before you can remember which key performs which lock.

P68 |Trading public keys to get basic security & keys
P43 |The description of how others might try to obtain your public key.

P44 |Exactly which keys locked and unlocked which documents. After a time or
two, I got the hang of it though.

P50 |The last paragraph when talking about using person A to get person B's
info.

108

P59 |Trading keys for stronger security.
P57 |How the attacker set up web pages, or forged emails.

P63 |There are too many ways to trade public keys

Extended Lime metaphors
P45 How the keys are obtained & shared

P47 |which keys were necessary for which locks

P48 |\ways to get a public key

P49 |The description of keys and how they are used.

P53 [trading keys to get basic/stronger security. certification lock.

P58 |the types of keys needed to open the specific locks was hard to keep
straight.

P64 |what to do with the backup key pair
P65 |Discussing what each key should be used for. Trading public keys.

P62 |Too many options a little. Might want to narrow down how many combinations
there are.

3) What was the clearest part of the description?

PGP metaphors
P66 |protecting the secret key

P61 \What you would use the functions for.
P60 the encrypted message part I could follow that
P56 |encrypt-decrypt, digital-sig - verify sig.

P55 |The first page and beginning of the second - the function descriptions.
"Security functions" and "Keys".

P51 |the functions
P52 |keys descripts on page 2.

P46 |The use of encrypt & decrypt fn

Basic Lime metaphors

P67 |See above.

P54 |Proper ways to trade keys.

P68 |Locks & trading public keys to get stronger security

P43 |The keys section was very clear and easy to reference.

P44 |The description of the locks and what each lock did.

P50 |The part with pictures.

P59 |Keys + locks; i.e. how to read + check locks of email

P57 |How to read a message, or to put a lock on it. (bulleted senternces)

P63 |There are two pictures to describe the functions of the locks

199

Extended Lime metaphors

P45
P47
P48
P49
P53
P58
P64
P65
P62

The function of different types of locks.

how the keys are distributed

different kinds of locks

The section on locks is very straight forward.

1st page: locks

the descriptions of the locks were clear.

the locks description + the outline of how to use the keys
"Protecting your secret key", but it was all pretty clear.

Description of locks, but not keys.

4) What question about the description would you most like answered?

PGP metaphors

P66

P61l
P60

P56
P55
P51
P52

P46

Does the code phrase change or is it a constant. Does your secret key
change for different situation, persons

please see #2!

Is this necessary for the average person or is it more for people doing
extremely confidential work

Don't understand the ways to transfer keys for basic security.
Can I make more than one set of keys?
the functions and what are the secret and public keys

How is it different from the regular concept of a login name (public key)
and password (secret key)

How much difficult is it to forge a digital signature?

Basic Lime metaphors

P67

P54

P68
P43

P44

P50
P59
P57
P63

How do I know that security of messages I have sent has not been
compromised?

Would you be able to put multiple locks on a message if you were sending it
to a group of people?

In general, how can people get into your mail message?

I think a bit more might needs to be added about why this security is
needed. How easy can someone forge a message?

How exactly you can ensure your secret key is safe? Is it kept on disk and
never down loaded? Couldn't a hacker access your system and download it?

Will this software be affordable to the average Jane?
Why do you need stronger security?
<arrow to #2>

I will list a simple procedure steps about how to trade the keys.

200

Extended Lime metaphors

P45
P47
P48
P49
P53
P58
P64
P65
P62

5)

The time you are willing to spend to secure a particular kind of message.
none

do both parties need this software?

when and how to use what key

explain certification lock better

what if a stranger needed to send you email? how could you read it?
<blank>

Secure ways to trade your public key without having to use a floppy disk.

Why some many keys? How about one key?

Do you think you would make use of security software like this for your email

messages if it was available? (circle one)

(a)
(b)
(c)
(d)
(e)

Not at all

Once in a while
Frequently
Almost always
Always

PGP metaphors

P66
P61l
P60
P56
P55
P51
P52
P46

C

b
b
b

Q

o| o| o

Basic Lime metaphors

P67
P54
P68
P43
P44
P50
P59
P57
P63

c
b

e

201

Extended Lime metaphors

P45 |b

P47 b

P48 |a

P49 |b

P53 (e

P58 |a

P64 |b

P65 |b

P62 |b

6) Do you have any other comments you’d like to make?

PGP metaphors

P66 |[I think the use of public is confusing many people would assume it is
public and open to all. I think a more useful tool such as private or
personal might work better. As it stands the description would not induce
me to use software. It would not suggest the security I would need!

P61l |Overall the description was very clear + concise. I was confused on the

P60
P56
P55

P51
P52

P46

points I brought up on the last question of the 1lst set. That is, what
exactly is being exchanged and does the message remain securely digitally
signed after verification?

A security software that has less steps might be better
<blank>

Getting keys and verifying you are getting keys from the right person
sounds like a huge hassle.

<blank>

For security as suggested, I still have to interact with the person and ask
personal questions which I can anyway do on regular email. what's the big
advantage here?

Maybe a few more explanations are needed to trust the software.

Basic Lime metaphors

P67

P54
P68
P43
P44
P50
P59

"Each person who uses the security software must have" his/her own matched
keys, not "their". This error appears several places in the questions,
too.

<blank>

<blank>

<blank>

it's available when?

Use step-by-step pictures.

It seems sort of a complex system for protecting email privacy. Being
careful to protect keys could be complicated sometimes. Key distribution

20?2

P57
P63

could be somewhat confusing also.
<blank>

<blank>

Extended Lime metaphors

P45
P47
P48
P49

P53

P58
P64
P65

P62

<blank>
<blank>
<pblank>

I imagine the software would be easier to understand if I were using it and
not just reading about it.

put the keys + locks into a chart that might make it easier. examples are
good.

this system seems impractical
<blank>

I generally don't care if others read my email because it never says
anything important. But, if I used it to contact a lawyer, I would
definitely want it to be more secure.

Interesting if we are dealing with very confidential files for example
government but not for ordinary emails.

203

APPENDIX D Lime user test materials and data

This appendix includes the following test materials and data from the Lime software user
test:

D.1 Participant intake questionnaire
D.2 Participant initial briefing materials
D.3 Scenario descriptions given to participants
D.4 Post-test questionnaire
D.5 Collated results for true/false questions
I have not included the transcripts of the test sessions here because they would increase

the size of this document by several hundred pages; instead, I will make them available
separately upon request.

204

D.1 Participant intake questionnaire

Thank you for your interest in participating in the testing! Here is the intake
questionnaire. The answers will be used to select a set of test participants that has the
particular demographic characteristics needed for this research study. All information
you give will be kept private, and will only be included in research results in anonymized
form.

1. Are youa U.S. citizen? If not, do you have an employment authorization card? (If
the answer to both those questions is no, then unfortunately I am prohibited from using
you for the testing because of the payment.) If you are not a U.S. citizen, but you do
have a green card, then I will need to get a photocopy of your green card at the time of
the testing, due to university regulations.

2. How old are you?

3. What is your highest education level (high school, some college, undergrad degree,
some grad school, grad degree)?

4. What is your profession or main area of expertise (for example: arts, science,
medicine, business, engineering, computers, administration...)?

5. For how long have you been using electronic mail?

6. Have you ever studied number theory or cryptography?

7. Have you ever used security software, such as secure email in Netscape or Microsoft
Outlook, or PGP, or any other software that involved data encryption? If yes, what was
the name of the software?

8. Do you know the difference between public (asymmetric) key cryptography and
private (symmetric) key cryptography? If yes, please explain briefly.

Thanks again, and I look forward to hearing from you.

205

D.2 Participant initial briefing materials
Lime Secure Electronic Mail Test: Set-up info

Here is the information you should enter when setting up Lime:
Your full name: enter anything you like here

Your email address: tester@lime.org
Your mail server: lime.org

20A

D.3 Scenario descriptions given to participant

Lime Secure Electronic Mail Test: Scenario #1

For the first part of this test, please imagine that you have been seeing
articles in the news about how insecure email is, and that you have become
curious about software products that offer to protect your privacy on-line.
You have acquired a copy of Lime, which is a free software program that is
supposed to protect your email, and you want to try it out.

You decide to try sending secure email to your friend Steve. You and Steve
have been friends ever since you were kids, and you have fond memories of
assembling giant rock collections together when you were ten. You get
along really well with his wife Laura, too, although there was a tense
moment when you broke one of her favorite wine glasses. Steve works for
an advertising agency these days, and you usually use his address there when
you email him: steve@highconcept.com.

You have a copy of Lime on your computer. Please use it to send a private,
unforgeable email message to Steve. You will need to do some set-up, and
you may also receive email that you need to respond to. The test monitor
will let you know when the scenario ends.

207

Lime Secure Electronic Mail Test: Scenario #2

For the second part of this test, please imagine that you have decided to do
volunteer work for a political campaign. The campaign manager, Maria
Simmons, has given you the job of campaign coordinator. It is your
responsibility to keep the campaign team members up to date on all aspects
of the campaign plan.

You will use Lime to communicate with the campaign team members by
email. It is very important that no information about the campaign plan gets
leaked to the media or to the opposing campaigns. You will therefore need
to be very careful to make sure that all your email messages are as private
and unforgeable as you can make them.

You have a floppy disk that Maria gave you with her public key on it, and
you gave Maria your public key on a floppy disk at the same time. Maria
also gave you a printed memo that contains the first campaign plan update.

The campaign team members are:

Ben Dawson (daws@camp2002.org)

Judy Rivera (judy@camp2002.org)

Sam Tyler (samt@camp2002.org)

Maria Simmons (manager@camp2002.org)

Please send the update information to all of the campaign team members in a
private, unforgeable email. When you have done that, follow the directions
in any email you receive from a campaign team member. The test monitor
will let you know when the scenario ends.

208

MEMO

TO: Campaign coordinator
FROM: Maria Simmons

Please send this update information out to the members of the campaign
team. Remember to use secure, unforgeable email. Thanks!
Update information as follows:
New dates and times for speeches:
March 7, San Jose

March 9, Palo Alto
March 14, Sacramento

209

Lime Secure Electronic Mail Test: Scenario #3

For the third part of the test, please imagine that you are still volunteering
for the political campaign from Scenario #2, but that the campaign manager
has decided to give you some additional responsibility. Your job now
includes approving requisitions that are emailed to you by members of the
campaign team, as long as they do not exceed $100 for any one campaign
team member.

Here are your detailed instructions for what to do when you receive a
requisition by email:

1. Is the requisition unforgeably signed by the campaign team member
who is submitting it? If no, send a reply rejecting the requisition for
that reason. If yes, go to 2.

2. Does the amount of this requisition, plus the amounts of any previous
requisitions you have approved for this campaign team member,
exceed $100? Ifyes, send a reply rejecting the requisition for that
reason. Ifno, go to step 3.

3. Approve the requisition by putting your own unforgeable signature on
it, and send the approved copy to the campaign team member who
submitted it.

Please wait for email messages from the campaign team members and

respond to them according to the above directions. The test monitor will let
you know when the scenario ends.

210

D.4 Post-test questionnaire

Lime User Test: Post Test Questionnaire

Thank you for participating in the user test of Lime! Please use your experience from the
test to label the following statements as either true or false:

1.

10.

11.

12.

13.

14.

You cannot exchange secure email messages with someone unless each of you
has a key pair.

You should give your secret key to the people you want to exchange secure email
with.

You should give your public key only to people you know you can trust.

If a message has an envelope lock on it, no-one can read it unless they have the
right key.

Envelope locks don’t tell you anything about who applied the lock.
Content locks don’t tell you anything about who applied the lock.

Content locks don’t tell you anything about whether a message has been modified
since the lock was applied.

If you use my public key to put an envelope lock on a message, then no-one can
read that message unless they have my matching secret key.

If I want to put an envelope lock on a message so that only you can read it, |
should use my secret key.

Content locks that you make are only useful to people who have your public key.

If you want to put your legal signature on a secure message, you need to use both
a content lock and a signature lock.

You can tell whether you have the right public key for someone by checking the
name and email address attached to it.

You can trade public keys by email and be fairly sure that you are getting the right
public key, as long as both people include personal messages that talk about

things a stranger wouldn’t know.

Putting your certification lock on a public key means that you are the owner of
that public key.

211

Additional questions

1) You are emailing your doctor to tell her or him some information about your medical

history. Which of these most accurately describes the security you would want for your
email message?

No need for security

Would want protection against random eavesdroppers/forgers, but not worried
about a targeted attack.

Would want the strongest possible protection.

Do you think you would be able to use Lime to get the security you would want, or do
you think it would be too difficult, or too much work?

2) You are emailing the IRS to tell them some of your tax information. Which of these
most accurately describes the security you would want for your email message?

No need for security

Would want protection against random eavesdroppers/forgers, but not worried
about a targeted attack.

Would want the strongest possible protection.

Do you think you would be able to use Lime to get the security you would want, or do
you think it would be too difficult, or too much work?

3) You are emailing a friend to suggest movie showtimes for a weekend outing. Which
of these most accurately describes the security you would want for your email message?

No need for security

Would want protection against random eavesdroppers/forgers, but not worried
about a targeted attack.

Would want the strongest possible protection.

Do you think you would be able to use Lime to get the security you would want, or do
you think it would be too difficult, or too much work?

212

4) You are emailing a merchant to give them your credit card information. Which of
these most accurately describes the security you would want for your email message?

No need for security

Would want protection against random eavesdroppers/forgers, but not worried
about a targeted attack.

Would want the strongest possible protection.

Do you think you would be able to use Lime to get the security you would want, or do
you think it would be too difficult, or too much work?

5) You are emailing a family member to remind them to buy bread. Which of these most
accurately describes the security you would want for your email message?

No need for security

Would want protection against random eavesdroppers/forgers, but not worried
about a targeted attack.

Would want the strongest possible protection.
Do you think you would be able to use Lime to get the security you would want, or do

you think it would be too difficult, or too much work?

6) Are there any other comments you would like to make?

213

D.5 Collated results for true/false questions

You cannot exchange secure email messages with someone unless each of you has a key
pair.

Correct (T): P4, P5, Po, P7, P8, P9, P10, P11, P12, P13, P14
Incorrect (F): P1

You should give your secret key to the people you want to exchange secure email with.

Correct (F): P4, P5, Po, P8, P10, P11, P12, P13
Incorrect (T): P1, P7, P9, P14

You should give your public key only to people you know you can trust.

Correct (F): P5, P7, P9, P10, P12, P13, P14
Incorrect (T): P1l, P4, Po6, P8, P11

If a message has an envelope lock on it, no-one can read it unless they have the right key.

Correct (T): P1, P4, P5, P6, P7, P8, P9, P10, P11, Pl2, P13, P14
Incorrect (F):

Envelope locks don’t tell you anything about who applied the lock.

Correct (T): P5, Po6, P7, P8, P9, P10, P12,
Incorrect (F): P1l, P4, P11, P13, P14

Content locks don’t tell you anything about who applied the lock.

Correct (F): p1, P4, P5, P6, P7, P9, P10, P12, P13, P14
Incorrect (T): P8, P11l

Content locks don’t tell you anything about whether a message has been modified since
the lock was applied.

Correct (F): P1, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14
Incorrect (T):

If you use my public key to put an envelope lock on a message, then no-one can read that
message unless they have my matching secret key.

Correct (T): P11, P5, P6, P7, P10, P12, P14
Incorrect (F): P8, P9, P11, P13
***Other: P4 answered as “false, as other approved keys can also read”

If I want to put an envelope lock on a message so that only you can read it, I should use
my secret key.

214

Correct (F): P4, P5, Po, P8, P12, P13,
Incorrect (T): P1, P7, P9, P10, P11, P14

Content locks that you make are only useful to people who have your public key.

Correct (T): P1, P5, P8, P9, P13
Incorrect (F): P4, Po, P7, P10, P11, P12, P14

If you want to put your legal signature on a secure message, you need to use both a
content lock and a signature lock.

Correct (F): Po6, P10, P11,
Incorrect (T): P1, P4, P5, P7, P8, P9, P12, P13, Pl4

You can tell whether you have the right public key for someone by checking the name
and email address attached to it.

Correct (F): P1, P4, P5, P6, P7, P8, P9, P12, P13, Pl4
Incorrect (T): P10, P11

You can trade public keys by email and be fairly sure that you are getting the right public
key, as long as both people include personal messages that talk about things a stranger
wouldn’t know.

Correct (T): P1, P4, P5, P6, P7, P8, P9, P10, P11, Pl2, P13, P14
Incorrect (F):

Putting your certification lock on a public key means that you are the owner of that
public key.

Correct (¥F): P11, P4, P5, P6, P7, P9, P10, P11, P12, P13,
Incorrect (T): P8, P14

215

References

[Adams00] Anne Adams. Multimedia information changes the whole privacy ballgame.
In Proceedings of the Conference on Computers, Freedom and Privacy 2000, ACM
Press.

[Adams99] Anne Adams. The implications of users’ privacy perception on
communication and information privacy policies. In Proceedings of Telecommunications
Policy Research Conference, Washington, DC, 1999.

[Adams99-2] Anne Adams and Martina Angela Sasse. Privacy issues in ubiquitous
multimedia environments: Wake sleeping dogs, or let them lie? In Proceedings of
INTERACT ’99, Edinburgh, pp. 214—221.

[Adams99-3] Anne Adams and Martina Angela Sasse. Users are not the enemy: Why
users compromise security mechanisms and how to take remedial measures.
Communications of the ACM, 42 (12), pp. 40—46, December 1999.

[Ammenwerth99] Elske Ammenwerth, Anke Buchauer, Hans-Bernd Bludau, Alexander
RoBnagel. Simulation studies for the evaluation of security technology. Multilateral

Security in Communications, Vol. 3 — Technology, Infrastructure, Economy. Guenter
Mueller and Kai Rannenberg (Eds.), Addison-Wesley, 1999.

[Anderson94] Ross Anderson. Why Cryptosystems Fail. Communications of the ACM,
37(11), 1994.

[ANSI98] American National Standards Institute. ANSI Z535.4 Product Safety Signs
and Labels, 1998.

[Apple96] Apple Computer. Macintosh Human Interface Guidelines. 1996.

[Balfanz00] Dirk Balfanz and Dan Simon, WindowBox: A Simple Security Model for
the Connected Desktop. In Proceedings of the 4" USENIX Windows Systems
Symposium, August 2000.

[Brostoff00] Sacha Brostoff and Martina Angela Sasse. Are passfaces more usable than
passwords? A field trial. In S. McDonald, Y. Waern & G. Cockton [Eds.]: People and
Computers XIV - Usability or Else! Proceedings of HCI 2000 (September 5th - 8th,
Sunderland, UK), pp. 405-424. Springer.

[Brown99] Ian Brown and Richard Snow. A proxy approach to e-mail security.
Software - Practice and Experience, 29(12) 1049-1060, October 1999.

214

[Carroll84] J.M. Carroll and C. Carrithers. Training Wheels in a User Interface.
Communications of the ACM, Vol. 27(8):pages 800--806, August 1984.

[Carroll85] Carroll, J.M. and Mack, R.M. Metaphor, computing systems, and active
learning. [International Journal of Man-Machine Studies, 22, 39-58, 1985.

[Collins97] Collins, J.A., Greer, J.E., Kumar, V.S., McCalla, G.I., Meagher, P., and
Tkatch, R. Inspectable User Models for Just-In-Time Workplace Training. In User

Modeling: Proceedings of the Sixth International Conference. Springer Wien. New York.
1997.

[Coventry02] Lynne Coventry, Antonella De Angeli and Graham Johnson, Honest it’s
me! Self service verification. Presented at the CHI 2003 Workshop on Human-Computer
Interaction and Security Systems, April 2003.

[Cranor99] Lorrie Cranor and Mark Ackerman. Privacy Critics: UI Components to
Safeguard Users’ Privacy. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI'99), short papers (v.2.), p. 258-259.

[Damker99] Herbert Damker, Ulrich Pordesch and Martin Reichenbach. Personal
Reachability and Security Management -- Negotiation of Multilateral Security.

Multilateral Security in Communications, Volume 3 - Technology, Infrastructure,
Economy. Guenter Mueller and Kai Rannenberg (Eds.), Addison Wesley 1999.

[Davis96] Don Davis. Compliance Defects in Public-Key Cryptography. Proceedings
of the 6th USENIX Security Symposium, 1996.

[Dhamija00] Rachna Dhamija. Hash Visualization in User Authentication. In CHI 2000
Extended Abstracts, April 2000, The Hague, Netherlands.

[Dhamija00-2] Rachna Dhamija and Adrian Perrig. Deja Vu: A User Study. Using
Images for Authentication. In Proceedings of the 9th USENIX Security Symposium,
August 2000, Denver, Colorado.

[Dourish03] Paul Dourish, Jessica Delgado de la Flor, and Melissa Joseph, Security as a
Practical Problem: Some Preliminary Observations of Everyday Mental Models.
Presented at the CHI 2003 Workshop on Human Computer Interaction and Security
Systems, April 2003.

[Dufft99] Cornelius C. Dufft, Juergen Espey, Hartmut Neuf, Georg Rudinger and Kurt
Stapf. Usability and Security. Multilateral Security in Communications, Volume 3 -

Technology, Infrastructure, Economy. Guenter Mueller and Kai Rannenberg (Eds.),
Addison Wesley 1999, pp.531-545.

[Friedman02] Friedman, B., Nissenbaum, H., Hurley, D., Howe, D.C., and Felten, E.,
Users’ conceptions of risks and harms on the Web: A comparative study. CHI 2002

217

Extended Abstracts of the Conference on Human Factors in Computing Systems (pp. 614-
615).

[Friedman02-2] Friedman, B., Hurley, D., Howe, D.C., Felten, E., and Nissenbaum, H.,
Users’ conceptions of Web security: A comparative study. CHI 2002 Extended Abstracts
of the Conference on Human Factors in Computing Systems (pp 746-747).

[Friedman02-3] Friedman, B., Howe, D.C., and Felten, E., Informed Consent in the
Mozilla Browser: Implementing Value-Sensitive Design. Proceedings of the Thirty-fifth
Annual Hawai’l International Conference on System Sciences, 2002.

[Fritz98] J. Steven Fritzinger and Marianne Mueller. Java Security. Sun Microsystems
White Paper, 1998.

[Garfinkel03] Simson Garfinkel, Email-Based Identification and Authentication: An
Alternative to PK1? [EEE Security and Privacy, November/December 2003.

[Garfinkel03-2] Simson Garfinkel, Enabling Email Confidentiality through the use of
Opportunistic Encryption. Presented at the 2003 National Conference on Digital
Government Research, May 2003.

[Guzdial95] Guzdial, M. Software-realized Scaffolding to Facilitate Programming for
Science Learning. Interactive Learning Environments, Vol. 4, No. 1, 1995, 1-44.

[Holmstrom99] Ursula Holmstrom. User-centered design of security software. Human
Factors in Telecommunications, May 1999, Copenhagen, Denmark.

[Jendricke00] Uwe Jendricke and Daniela Gerd tom Markotten. Usability meets
Security - The Identity-Manager as your Personal Security Assistant for the Internet. In

Proceedings of the 16th Annual Computer Security Applications Conference, December
2000.

[Jermyn99] Jermyn, 1., Mayer, A., Monrose, F., Reiter, M.K., Rubin, A.D. The Design
and Analysis of Graphical Passwords. Proceedings of the 8th USENIX Security
Symposium, August 23-36, 1999.

[Johnson02] Jeff Johnson and Austin Henderson. Conceptual Models: Begin by
Designing What to Design. Interactions, January & February 2002.

[Karat89] Claire-Marie Karat, Iterative Usability Testing of a Security Application.
Proceedings of the Human Factors Society 33rd Annual Meeting, 1989.

[Karvonen99] Kristiina Karvonen. Enhancing Trust Online. Proceedings of PhDIT'99:

Ethics in Information Technology Design. Second International Workshop on Philosophy
of Design and Information Technology, 16-17 December, 1999, Saint-Ferréol, Toulouse,
France.

218

[Kolojejchick97] J. Kolojejchick, S.F. Roth, and P. Lucas, Information Appliances and
Tools in Visage. IEEE Computer Graphics and Applications, Vol. 17, No. 4, July, 1997,
pp. 32-41.

[Kuhn91] W. Kuhn and A. Frank, A Formalization of Metaphors And Image-Schemas in
User Interfaces. In Cognitive and Linguistic Aspects of Geographic Space (D.M. Mark &
A.U. Frank, eds.) Kluwer Academic Publishers, Netherlands, pp. 419-434.

[Lau99] Tessa Lau, Oren Etzioni and Daniel S. Weld. Privacy Interfaces for Information
Management. Communications of the ACM, 42(10), October 1999.

[Laukka00] Markku Laukka. Criteria for Privacy Supporting System, Proceedings of the
fifth Nordic Workshop on Secure IT systems (Nordsec 2000), October 12-13, 2000,
Reykjavik, Iceland.

[Leveson95] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley Publishing Company, 1995.

[Liddle96] David Liddle, Design of the Conceptual Model. Interview by Barry Polley,
Andrew Singer, Suzanne Stefanac and Terry Winograd, in Bringing Design to Software,
Addison-Wesley, 1996.

[Mandel97] Theo Mandel. The Elements of User Interface Design. John Wiley & Sons,
February 1997.

[Nardi93] Nardi, B. and Zarmer, C. Beyond models and metaphors: Visual formalisms
in user interface design. Journal of Visual Languages and Computing 4, 5-33, 1993.

[Neale97] Dennis C. Neale and John M. Carroll. The Role of Metaphors in User

Interface Design. In Handbook of Human-Computer Interaction, 2" Edition, M.
Helander, T.K. Landauer, P. Prabhu (eds.). North-Holland, 1997.

[Nielsen94] Jakob Nielsen. Heuristic Evaluation. In Usability Inspection Methods, John
Wiley & Sons., Inc., 1994.

[Norman94] Donald A. Norman, Things that make us smart: Defending human
attributes in the age of the machine. Perseus Publishing, 1994.

[Shen92] HongHai Shen and Prasun Dewan. Access Control for Collaborative
Environments. Proceedings of CSCW '92.

[Sun95] Sun Microsystems. HotJava Browser: A White Paper. Sun Microsystems
White Paper, 1995.

219

[Whitten99] Alma Whitten and J.D. Tygar, Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. Proceedings of the 9" USENIX Security Symposium, August
1999.

[Whitten98] Alma Whitten and J.D. Tygar, Usability of Security: A Case Study.
Technical Report CMU-CS-98-155, Carnegie Mellon University School of Computer
Science, December 1998.

[Wolf99] Gritta Wolf and Andreas Pfitzmann. Empowering Users to Set Their
Protection Goals. Multilateral Security in Communications, Volume 3 - Technology,
Infrastructure, Economy. Guenter Mueller and Kai Rannenberg (Eds.), Addison Wesley
1999, pp.113-135.

[Ye02] Zishuang Ye and Sean Smith, Trusted Paths for Browsers. 7/ " USENIX Security
Symposium, August 2002.

[Yee03] Ka-Ping Yee, Secure Interaction Design and the Principle of Least Authority.
Presented at CHI 2003 Workshop on Human-Computer Interaction and Security System:s,
April 2003.

[Zurko96] Mary Ellen Zurko and Richard T. Simon. User-Centered Security. New
Security Paradigms Workshop, 1996.

[Zurko99] Mary Ellen Zurko, Richard T. Simon and Tom Sanfilippo, A User-Centered,
Modular Authorization Service Built on an RBAC Foundation. Proceedings of IEEE
Security and Privacy, 1999.

220

