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Abstract 
Accurate pointing is an obstacle to computer access for individuals with motor 

impairments. One of the main barriers to assisting individuals with pointing problems is a 

lack of frequent and low-cost assessment of those pointing problems. We are working to 

build technology to automatically assess pointing problems during every day (or real 

world) computer use. To this end, we have studied real world pointing use from older 

adults and individuals with motor impairments and developed novel techniques to 

analyze their performance. Our investigation contributes to a better understanding of real 

world pointing performance, and how to assess pointing performance with machine 

learning. 
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1. Introduction  
Computer technology has become an integral component in people’s lives. Computers are 

used in many domains, such as employment, recreation, and socializing. However, 

computers are not universally accessible and there is a growing population of people who 

are motivated to use computers, but who find it physically difficult to do so. Over the 

years, many types of accessibility software, including pointer configuration utilities, 

screen magnifiers, speech recognition systems, and onscreen keyboards have been 

developed to support computer access problems. Even though these technologies may be 

pre-installed on a computer or available online, many individuals with computer access 

problems do not use them.  
 

This technology may go unused for many reasons, including lack of knowledge about 

what technology would make a computer accessible, or how to configure that technology. 

Appropriate technology can be selected with the help of a friend, teacher or caregiver, but 

this is not always the most accurate approach. A better solution to this problem is to have 

a trained assistive technology clinician assess a user’s ability and help to select and 

configure software for them. Assessments may include computer-pointing tasks and 

possibly physical measures of dexterity. After the assessment, the clinician writes a 

prescription for the assistive hardware or software the individual needs to access a 

computer. Unsurprisingly, professional assessments are expensive and may not be 

covered by insurance. As a result, it is common for people to end up using either no 

accessibility tools, or tools that are not suited for their current pointing abilities. 

Additionally, the few who are assessed rarely get follow-up assessments, which are 

important as many users’ abilities change over time. 

 

We have spent two years collecting data about computer use from individuals with motor 

and cognitive impairments. Pointing, or moving the cursor to indicate a particular 

position or on-screen object (often called a target) is one of the major problems these 

individuals encounter when trying to access a computer (Brownlow, N., et al. 1989; 

Riviere and Thackor 1996; Trewin and Pain 1999). Pointing problems include activating 
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unintended targets (or interactive regions), difficulty pressing the desired button on a 

mouse or other pointing device, difficulty correctly clicking on the desired target, and 

lacking the freedom of motion to control the device. One example of a commonly 

observed pointing problem is difficulty activating a desktop icon – we have observed 

participants who spent over two minutes trying to double-click a desktop icon before they 

were successful.  

 

The goal of this thesis is to enable automatic assessment of an individual’s pointing 

performance during everyday computer tasks. Automatic assessment has many potential 

applications that may dramatically increase computer access for many individuals. Some 

possible benefits include increased awareness, automatic configuration, and performance 

tracking. To this end, we have developed software to observe and analyze pointing use 

and assess it with predictive models created with machine learning. While the end goals 

of our research have the possibility to affect many people, we are focusing on individuals 

who have pointing problems due to age or to a motor impairment.  

 
Our assessment technique is divided into several steps. Real world pointing data is 

collected with logging software that captures application and operating system events. 

Pointing data is then segmented into usable chunks for assessment. Finally, performance 

metrics are calculated from the user’s recorded actions and these calculations are used to 

assess performance using predictive models to provide an assessment. This technique can 

be extended with computer vision techniques to identify the targets clicked on by the 

user. 
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1.1. Thesis Contributions  
The goal of this thesis is to assist individuals with pointing problems by addressing a 

major obstacle to computer access: frequent and low-cost pointing performance 

assessment. Specifically, we are working to build a system to automatically assess 

pointing performance during real world use.  

 Our contributions are  

(1) A tool for simplifying collection field data and a field data set containing multiple 

months of data from 4 individuals with motor impairments, 4 without, and 8 older 

adults, that can be used by ourselves and others to learn about the performance 

characteristics of individuals with pointing problems and the viability of novel 

interactive techniques. 

(2) An analysis of our substantial real-world data set demonstrating that it is possible 

to assess computer pointing metrics on real world data. We also found the 

following three trends: 1) Older adults and individuals with motor impairments 

have “better” performance during games than other applications; 2) Individuals 

with motor impairments had more targeting problems than older adults or able 

bodied participants; and 3) Able bodied participants have faster movement than 

older adults or individuals with motor impairments. 

(3) A tool capable of detecting problematic pointing performance using predictive 

models constructed using machine learning techniques. We demonstrate which 

features are important for the prediction of pointing performance and show that 

we are able to detect problematic pointing performance while surfing the web and 

using the Microsoft Office suite with high accuracy.  

(4) A technique that lays the groundwork to improve analysis of real world data by 

automatically identifying targets (or interactive regions) collected by our logging 

tool. Our target identification technique found 15% more targets than the standard 

accessibility API. 

 

This thesis is written in eight chapters. Chapters 2 and 3 set the scene for the primary 

research contributions. Chapter 2 discusses related research to study pointing 

performance and real world use. This chapter also includes a description of the machine 
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learning methodology we use to assess performance. Chapter 3 presents a pilot study we 

did to automatically assess performance based on pointing behavior. In this pilot study, 

we distinguish between novice and skilled use without a task model and built a system 

that used real time assessment to assist the user.  

 

Chapters 4 through 7 describe each research contribution in depth. Chapter 4 describes a 

study protocol and tools we developed to collect a large dataset of real world pointing 

behavior from these individuals. This chapter includes a description of our logging 

software, participants recruited and limitations and lessons learned from this technique. 

Chapter 5 presents our results analyzing real world data in two evaluations that analyze 

real world pointing use. In this chapter we describe the data we collected and present how 

we used performance metrics traditionally used to study pointing performance collected 

in a laboratory study to better understand user ability and natural tendencies during real 

world use. In Chapter 6 we discuss how pointing performance can be frequently and 

unobtrusively assessed with predictive models created with machine learning techniques. 

Chapter 7 describes new techniques we have that will likely improve automatic 

assessment through improved target recognition and prediction of whether a particular 

adaptation will improve performance. Chapter 8 concludes by summarizing the work 

presented in this thesis.  
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2. Related Work 
We discuss work related to this thesis in four sections. The first section defines laboratory 

and real world data collection and discusses the tradeoffs of both. The second section two 

discusses foundational studies of pointing performance that were conducted in the 

laboratory. Next, we present studies investigating real world computer use and pointing 

performance and the tools used to collect this data.  We discuss the limitations of these 

tools and how we adapted one of them to create our own logging software. The third 

section presents some common pointing problems that older adults and individuals with 

disabilities have exhibited in laboratory studies, and that we wanted to measure in our 

own analysis of real world use. Following a description of common pointing problems, 

we discuss software adaptations other researchers have developed to address these 

problems.  One of the main gaps in the literature is matching pointing problems to 

existing adaptations in real world use. We envision using predictive models to fill this 

gap, and discuss some of the machine learning methods we draw from in this thesis to 

detect real world pointing problems.  

2.1. Tradeoffs Between Laboratory and Real World Data Collection 
As we will discuss in this thesis, studying real world data produces a more realistic 

understanding than laboratory data, but it is more difficult to collect and understand this 

data than laboratory data. Collecting large datasets of from individuals with pointing 

problems can be challenging because these individuals may have limited ability to 

participate in a research study. Specifically limitations from fatigue may prevent an 

individual from participating for long uninterrupted sessions. In this section we will 

describe the tradeoffs between real world and laboratory evaluations and why we have 

chosen to collect real world pointing data.  

 

Studies conducted in a laboratory setting are normally intended to simulate or mimic key 

features of real world, or natural, interactions. However, to improve control and increase 

the quantity of data collected, laboratory tasks frequently have users repetitively perform 

unrealistic tasks such as moving a target to a particular target dozens or even hundreds of 

times. In addition to collecting data from unrealistic tasks, laboratory data may not be 
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representative of natural behavior. Issues may arise related to: 1) taking place in a 

location unfamiliar to the participant (possibly with equipment the participant hasn’t used 

before), 2) performing actions while being observed by the experimenter, 3) completing 

tasks for compensation – which can affect motivation as some studies reward accuracy 

while others reward speed, and/or 4) variability in performance as the participant may 

become fatigued and not take necessary rest.  

 

Since better assessments can be made from more examples of performance, it is 

important to also take the participant’s abilities and needs into consideration to collect 

more data. Conducting research with individuals with disabilities in a laboratory can be 

more burdensome and less realistic for the participants than conducting the research in 

their home or office. Conducting research in environments participant are familiar with 

can be easier for the participant because they are more likely to have a physical 

environment that fits their needs (Coyne and Nielsen 2001). Additionally, putting study 

logistics (such as travel) on the experimenter, rather than the participant can reduce 

barriers to participation.  

 

As predicted by the Hawthorne Effect, a user’s performance may change simply because 

they are being observed (Mayo 1933). Additionally, laboratory studies can be negatively 

impacted by the demand effect, wherein a participant assumes the role of trying to please 

the experimenter (Orne 1962). In a performance study with individuals with limited 

mobility, this could manifest itself as the participant ignoring fatigue, pushing through the 

study without breaks or stopping. These influences as well as issues of motivation, task 

comprehension, and familiarity with an input device have the potential to negatively 

impact performance. Finally, laboratory studies have a resource limitation since most 

require the experimenter to observe the participant complete the tasks. This limits the 

amount of data that can be collected.  

 

Studying real world pointing performance can help an experimenter overcome many of 

the limitations of laboratory studies. However, real world evaluations have their own 

limitations. One such limitation is not knowing a user’s intent. In a laboratory study, the 
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participant is given a very specific task, such as “move the cursor to the box and click” 

and is scored on how long it took to do that task and how accurate they performed. 

However, real world computer use can be much more ambiguous as there is seldom only 

one possible correct action. One example is when the cognitive components of 

interaction, which are usually controlled for in a laboratory study, further confuse the 

data (such as deciding at the last minute that a button being moved towards should not be 

pressed). With real world data the experimenter must divine what action was completed 

and whether that was the user’s intent.  

 

We chose to study pointing performance during real world use instead of through 

laboratory studies so we could collect a large and realistic dataset from individuals with 

limited abilities. Our data collection approach reduces study logistics for our participants, 

allows them to participate with minimal changes to their pre-existing routines, and 

maximizes the amount of data we can get per person. Part of the contribution of this 

thesis is a set of techniques which (partially) overcome the limitations and difficulties of 

real world data collection while retaining the benefits. The next section describes related 

studies of computer use, and how this data was analyzed in both laboratory and real 

world evaluations. 

2.2. Related Real World and Laboratory Studies of Pointing 
Performance and Computer Use 
This subsection describes previous studies of both real world and laboratory-based 

pointing performance and computer use related to the work presented here. We will 

briefly describe some of the many laboratory studies of pointing use, then summarize a 

few related studies of real world computer use and one study of real world pointing 

performance. Next, we will focus on tools and techniques that have been developed to 

evaluate pointing performance (in both laboratory and real world studies): such as tools 

used to collect user events, detect targets selected, and segment event streams.  
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2.2.1. Laboratory Studies of Computer Use 
There is a long history in the field of Human Computer Interaction (HCI) of studying 

pointing performance in a laboratory setting. Performance data is frequently collected in 

the laboratory by instructing participants to perform repetitive pointing tasks and 

measuring the movement time and accuracy of each trial. In these studies, it is not 

unusual for the experimenters to use custom software developed to execute and collect 

data for pointing performance studies. Examples of two common tasks users perform in 

these studies are illustrated in Figure 1. Figure 1A illustrates a task where the user is 

asked to move between a series of circular targets arranged in a circle in a predefined 

sequence. Figure 1B illustrates a task where the user moves between square targets of 

varying size and distance from each other.  During this task each new target appears after 

the user clicks on the current target.  

Pointing studies conducted in the laboratory have resulted in models of human 

performance that have been proven to be robust across many conditions. Some of the 

many findings include equations that predict the movement time between two targets in 

one dimension (Fitts 1954; Douglas et al. 1999), two dimensions (Mackenzie and Buxton 

1992), in human movement within constrained paths (Accot and Zhai 1997), and while 

scrolling (Hinckley et al. 2002). These models of pointing performance have been used to 

investigate how tradeoffs in pointing device technology design affect performance, and 

 
A)                         B) 

Figure 1 Examples of software typically used to measure pointing performance. A) 
Software used by Keates to develop cursor measures for individuals with motor 
impairments. Participants moved cursor between circles in a pre-defined sequence 
(Keates et al. 2002). B) Software used by Keates to measure effect of age and 
Parkinsonʼs disease while pointing (Keates and Trewin 2005). Participants moved cursor 
to targets of varying size as they appeared in a pre-defined sequence and pressed the 
mouse button when they reached the target.   
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how Graphical User Interface (GUI) design and interaction can improve or hinder 

performance.  

2.2.2. Studies of Real World Computer Computer Use 
Studying real world computer use can help to evaluate new or existing software for 

usability problems, learn what tasks the software is being used to accomplish, or identify 

patterns and trends in current application use. As mentioned in Section 1.2, the findings 

of real world studies often go beyond what can be evaluated in the laboratory as 

conditions and constraints are less artificial than evaluations in the laboratory. 

 

Studies of real world use range from studying general computer use, to analyzing patterns 

of use with text editors and document readers, to studying pointing behavior. Beauvisage 

has studied computer use in daily life in a long (19 months) field study (Beauvisage 

2009). In this work he collected a huge dataset of computer use from over 600 homes that 

included over 1400 users. Log files of application and operating system events were 

analyzed to uncover five profiles of software preferences and usage frequency. His study 

illustrates some of the routine behaviors in computer usage at home.  

 

Bingham studied the web browsing behaviors of sighted and blind users during one week 

of real world use (Bingham et al. 2007). They used this data to understand the differences 

in websites visited by these populations, how blind individuals coped with content that 

was inaccessible through their screen readers. They also found that blind participants 

surfed the web much more slowly than sighted participants.  

 

Studies looking at single application use can reveal surprising patterns of use that can be 

applied to the design of future systems. Alexander and Cockburn have studied document 

navigation in Microsoft Word and Adobe Reader and uncovered surprising trends in use 

(Alexander and Cockburn 2008). They found that half of documents opened had already 

been opened by the user, and that users rarely used document lists (i.e. menus listing most 

recently used documents) to reopen a document. Whiteside studied how people used 

early text editors (Whiteside et al. 1982), examining the use of text editors for knowledge 

workers and secretaries. They found that text entry only accounted for half of all 
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keystrokes in those early systems, another quarter was accounted for by cursor 

movements, an eighth by deletion and the rest by miscellaneous functions. Based on 

these findings, the authors made suggestions for editor and keyboard design. 

 

Chapuis has conducted one of the few investigations of real world pointing performance 

(Chapuis et al. 2007). They collected several months of pointing data from individuals as 

they performed their own tasks. The logging system the authors used took advantage of 

an accessibility Application Programming Interface (API) (facility built by the major 

software vendors to report low-level application information) to get the size and location 

of many of the targets in their dataset. This dataset was used to analyze the movement 

time between targets to evaluate how well Fitts’ Law held up during real world computer 

use in XWindows and OSX. The authors found Fitts’ Law performance studied in the lab 

can apply to movement in the field.  

 

These areas of real world computer use illustrate some of the benefits of studying 

computer use outside the lab: learning more about what features in an application are 

used, identifying patterns of use, and validating a performance model developed from 

laboratory use transfers in the real world.  However, to our knowledge, this research was 

not conducted with individuals with pointing problems due to motor or cognitive 

impairments. One of our goals with this work is to better understand the pointing abilities 

of individuals with pointing problems, and how performance fluctuates during real world 

use. Gaining a better understanding of their abilities will help design systems that can 

accommodate their pointing problems.  

2.2.3. Tools Developed to Study Real World Computer Use 
In order to study real world use, software that captures and records user actions is needed. 

One of the main obstacles to studying real world computer use is finding logging tools, or 

software that records information about user actions, that capture enough information 

about interactions for a given study. For example data collection may only be needed for 

one application, or it may need to work across applications or operating systems. The 

level of detail needed about user actions may also vary according to the study goals. This 

may range from merely needing general, or high-level logs of the applications used, to 
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more detailed, or low-level logs that include the size and location of all buttons the user 

interacts with. This section presents software for three main problems encountered when 

trying to collect and analyze real world data: logging user events, identifying target sizes, 

and segmenting real world data.  

2.2.3.1. Tools to Capture User Events  
Many tools have been developed to capture event streams from input devices such as 

mice and keyboards, as well as windowing system events and operating system events. 

Typically these logging solutions are tied to a specific operating system or windowing 

system. One example of this kind of system is DART which runs as a background 

process, and logs the name, size, and location of all windows on a computing system, 

noting the opening and closing of windows (Iqbal and Horvitz 2007). Another similar 

system is RUI, a keystroke and mouse event logger that has been written for both the 

Windows and OSX operating system (Kukreja et al. 2006).  

 

In addition to collecting low level event streams from user interactions, there has also 

been research to collect higher-level information about real world use. Hilbert surveys 

some of the technology as of 2000 to extract usability information from user interface 

events (Hilbert and Redmiles 2000). This includes analyzing logs of interactions for 

sequence detection, sequence comparison, counts and summary statistics, search 

techniques and synchronization with other data sources such as video, images, or audio). 

Kim developed the TRUE software to track real time user experience (Kim et al. 2008). 

This software was developed to collect real time information in video games, such as 

Halo 2. TRUE logs sequences of events, collections of events that are combined into 

“sets”, attitudinal data from participants collected via popup surveys, and collects video 

that is synced to log files. In order to investigate the web browsing behaviors of sighted 

and blind users, Bingham extended UsaProxy (a tracking proxy). This proxy recorded the 

content the user saw, and statistics about interactions by that records key presses, mouse 

events, and focus events. (Bingham et al. 2007)  
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These data collection tools were developed to study large datasets of both pointing 

behavior and more general computer use. Of these tools, we found DART to be the most 

application independent and unobtrusive logging system. As a result, we chose to extend 

DART to create CRUMBS (described in Section 4.2), which we used to collect our 

dataset.  

2.2.3.2. Tools Developed to Automatically Identify Targets 
The software described in the previous section is useful to learn low-level information 

about mouse, keyboard and operating system events, all of which are relatively easy to 

analyze and collect. However these tools are not sufficient to use to automatically detect 

pointing performance because they are either application specific, or they do not provide 

enough information about pointing actions. One solution is to also collect higher-level 

information about the user’s actions, such as application independent information about 

the targets the user interacted with.  

 

Targets are the interactive regions in a graphical user interface that a user can click or 

hover over to fire an action. An example of a frequently used target is the Start Button in 

the Windows operating system. Having access to the size and location of interactive 

targets (or the specific targets a user interacted with) is necessary to study pointing, as 

performance depends on target size.  

 

There are several pre-existing techniques to find targets in a GUI, but these are usually 

application or toolkit specific. One technique is to enable target identification in the 

software development phase through API support. The Microsoft Active Accessibility 

(MSAA) is one of several APIs that could be used to find targets (Microsoft Active 

Accessibility, www.msdn.microsoft.com), including the JAVA (Java Accessibility, 

www.java.sun.com) and Flash Accessibility APIs (Adobe Accessibility, 

www.adobe.com). Unfortunately, using these APIs is not always possible because they 

require the developer to compile the program with accessibility included. Additionally, 

once compiled, these often have runtime limitations (the Flash API only works in 

Microsoft Explorer and requires ActiveX). Another major limitation to these APIs is that 

they may not support all targets in a given application or toolkit. Frequently, these APIs 
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are released with tools that make it easy to determine what targets are supported. For 

example, Microsoft has released the inspect32.exe program (inspect32.exe 2004) for the 

MSAA API. This is an application that can display all API information available about a 

target currently under the cursor.  

 

Given the limitations of using accessibility APIs to identify targets, a less restricted 

solution is desirable. Instead of using programmatic controls or hooks to find the targets, 

another approach is to analyze the visual components of the screen. One set of solutions 

that does this requires the user to manually identify targets. For example, the Eggplant 

Functional Tester allows users to manually select targets for a scripting application to 

interact with (Redstone Automated Software Application Testing Tools, 

http://www.redstonesoftware.com/). Users define targets by dragging the cursor 

diagonally from the upper left corner of a target to the lower left. After a target has been 

defined, Eggplant automatically scans the GUI for any regions of the screen that exactly 

match this selection. Any targets that are similar but not identical (for example buttons of 

the same size but different text) to a selection are not matched by Eggplant. Another tool 

that which uses the same strategy to let users manually define targets is Sikuli, which 

allows users to graphically write GUI automation scripts (Yeh et al. 2009).  

 

Additionally, there has been success in using computer vision techniques to analyze 

onscreen content for potential targets. However, the accuracy of these techniques is very 

tied to a-priori information about the types of interactors (or interactive regions) the user 

will encounter and may not be able to easily handle new examples easily. While 

successful solutions for scripting applications, these target recognizers are limited in that 

they can only identify targets that a user pre-defined. Instead, a more generalizable 

approach to visual target identification is desirable. Seminal work in the area of visual 

analysis for identifying user interface targets has been done by Amant to support 

cognitive modeling and programming by example tools (Zettlemoyer and Amant 1999, 

Amant et al. 2000A, Amant et al. 2000B). More recently Fogarty and Dixon developed 

PreFab (Fogarty and Dixon 2010) to recognize interactors in interfaces to apply pointing 

assistance. Both of these techniques recognize targets by searching the screen for targets 



 

 14 

based on a set of generic targets that are in a database (rather than searching for exact 

matches). Unfortunately, it is difficult to understand how well these techniques would 

work with real world datasets because no accuracy numbers are available, and these 

researchers tested limited applications.  

 

These pre-existing techniques illustrate that while Accessibility APIs can provide much 

target information, they are not a complete solution, as they do not support all interactors. 

Additionally, there has been success in using computer vision techniques to analyze 

onscreen content for potential targets. However, the accuracy of these techniques is very 

tied to a-priori information about the types of interactors the user will encounter and may 

not be able to easily handle new examples. In Section 5.2 we present a technique we 

developed to automatically detect targets that combines an Accessibility API with visual 

GUI analysis to correctly recognize 15% more targets than the accessibility API did alone 

(an improvement from 74% to 89% accuracy).  

2.2.3.3. Segmenting the Event Stream to Reveal Recognizable Interactions  
Data must be segmented into recognizable interactions, or user actions (or portions of 

user actions), which can be readily isolated. These are indicative of the phenomena 

needed to study, model or predict, and can be easily and accurately labeled. Many 

common interactions can be modeled as one of a small class of well-understood 

movement types. Examples include moving the thumb of a scrollbar, steering through a 

menu, and acquiring a target such as a button or checkbox with the mouse. Each of these 

activities is well defined, the first is a crossing task, (Apitz and Guimbretiere 2004), the 

next is a steering task (Accot and Zhai 1997), and the third is a pointing task (Mackenzie 

and Buxton 1992). Abstract and/or “realistic” versions of these interactions are often used 

in lab studies. Because these are well defined, with known targets or well-described tasks, 

they can easily be used to measure user performance.  

 

Segmenting real world data into potentially meaning subunits is less straightforward than 

segmenting data collected in the laboratory. This is due to the semi-ambiguous nature of 

real world data (i.e. the experimenter does not know the task the user intended to 

perform). In order to compensate for not knowing user intent, real world data should be 



 

 15 

segmented according to meaningful subunits in the event stream (such as pointing, 

window, or keyboard events and pauses). Given our interest in studying pointing 

performance, we are interested in segmentation strategies that are based on pointing use 

such as button events, and cursor movement. The type of segmentation strategy used 

depends on the kind of analysis being performed. 

 

Segmentation by Button Event: Segmentation by pointer button events is a very simple 

segmentation algorithm to execute as it simply cuts the data at button up and button down 

events. This simple strategy can be very useful for automatic target identification since 

pointer button events are usually executed over a target. Segmentation by button events is 

also useful for metrics of performance that are focused on target selection. These methods 

of performance include measuring how long it takes a user to move between targets, the 

time to press a target, or if they slipped off the target while trying to activate it (Keates 

and Trewin 2005, Hurst et al. 2008B).  

 
Segmentation by Movement: Not all interactions in real world pointing use involve 

clicking on a target, nor do they all start or end with the user pressing or releasing a 

button on the pointer, so it is important to also consider segmenting the event stream with 

other events. For example, there are several intentional interactions that do not require the 

user to press the mouse button, such as hovering or pausing over a target (perhaps to 

activate a tooltip) or changing speed to move to a target (perhaps in a video game). 

Additionally, paying extra attention to these actions may help with assessment because 

these actions maybe indicative that the user is having pointing problems, such as drastic 

changes in cursor direction frequently occur when a user overshoots a target (Hwang 

2003, Phillips and Triggs 2001). Finally, segmentation by button events alone does not 

help to identify the start of a targeting motion, so it is important to also consider 

segmenting the event stream by cursor pauses. 

 

Segmenting cursor movement by pauses or movement changes can be very informative. 

The duration of a pause (or period without cursor movement) is one piece of information 

that may be able to distinguish between able bodied and motor impaired use. In a 
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laboratory pointing evaluation, Keates found that able bodied users have an average 

pause duration during pointing tasks is around 70 milliseconds, while the average pause 

time for motor impaired individuals pause is longer (110 milliseconds) (Keates et al. 

2002B). Furthermore pauses longer than 250 milliseconds likely represent approximate 

reaction time to a stimulus (Keates and Trewin 2005) and may be a good pause threshold 

to segment actions. Cursor movements have been defined to begin with at least 100 

milliseconds of pointer motion with a speed greater than zero (Hwang 2003; Walker et al. 

1993). 

 

Due to the freeform nature of real world data, segmentation may need to be different 

from what is typically done in the lab. Specifically, real world data is much more likely to 

have more pauses during movement data, because the user isn’t forced to complete a 

sequence of movements. Common potential causes of additional pauses include when the 

user is reading the screen, wiggles the mouse to “wake up” the screen or simply walks 

away from the computer. When segmenting real world pointing data, Chapuis looked at 

both button events and movement metrics to segment their data. Specifically, they 

segmented data into samples of movement that ended with a button down event. They 

further segmented their data so it only included movements that were at least 10 pixels 

long, and did not have any pauses longer than 300 milliseconds. 

2.2.4. Summary of Related Real World and Laboratory Studies of Pointing 
Performance and Computer Use 
In this subsection we have described related studies of pointing performance and 

computer use in both laboratory and real world settings. While we have only found one 

related example of studying real world pointing across multiple applications, these related 

studies are useful resources to learn how to collect and analyze computer use. In fact, 

much of our study design and analysis tools draw on this body of related work for 

inspiration. The following section describes some of the pointing metrics that were used 

in laboratory evaluations of pointing performance that could also be used to assess 

pointing performance. 
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2.3. Common Pointing Problems and Existing Adaptations 
Physical difficulty accessing a computer can be caused by many factors including a 

physical impairment or age-related changes in motor coordination. Pointing errors often 

occur when the user knows what he or she wants to do but has difficulty completing the 

physical action. Figure 2 illustrates some of the differences between an ideal pointing 

motion (Figure 2A) and some common errors that may happen during that action (Figure 

2 B-D). Below is a list that describes many common pointing problems reported in the 

literature (adapted from Paradise et al. 2005) and some of the software solutions that 

have been designed to minimize those problems. This list is divided into three categories 

of pointing subtasks: clicking, targeting, and moving. Our list focuses on errors that could 

be easily addressed with software. The problem is listed in italics followed by possible 

software solutions to that problem.  

2.3.1. Clicking Errors 
A user “clicks” when they press and release the button on a pointer device to interact with 

a target. There are several possible problems an individual can encounter while 

interacting with the buttons on a pointing device, such as a mouse.  

 

Pressing the incorrect physical button can happen for many reasons including not 

knowing which button to press or not noticing that one’s finger is on the wrong button. In 

addition to pressing the wrong button it is not uncommon for an individual with pointing 

problems to unintentionally press multiple buttons at once. For example, in a laboratory 

 

     
A)           B)        C)   D) 

Figure 2  Examples of ideal pointing A and pointing problems (B-D). A) An example of error-free 
pointing where the user moves the cursor to the blue square (in a straight line) and clicks on the 
square with the left pointer button. B) Clicking Errors occur when the user fails to press a single 
button on a pointing device without moving the pointer. C) Targeting problem occurs when the 
user has difficulty pressing the mouse button while the cursor is on a target.  D) Movement 
problems occur when the trajectory between the start and end of a movement are far from optimal.  
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study of the effect of an adaptation to assist in clicking on performance, Trewin used 

clicking errors (when the wrong mouse button is pressed) as a metric of performance. In 

her control condition, with no adaptation present she observed 27 clicking errors, and in 

13 of those errors both buttons were pressed (Trewin et al. 2006). Solutions to help with 

this problem include remapping button functions or replacing clicking with another style 

of activation such as crossing, where the user does not need to press any pointer button 

(Accot and Zhai 2002).  

 

Accidental clicks occur when a user presses a pointer button when he or she did not 

intend to. For example, a user may click partway through a mouse motion to a target, or 

may click the mouse button without moving the pointer (Trewin and Pain 1999). One 

possible solution to help an individual who has problems accidentally clicking is to 

ignore pointer button events when the cursor is moving.  

 

Repeated clicks are additional clicks made during a single click. One strategy to assist 

users with this problem is to ignore multiple clicks on the same target, or set an upper 

bound for the clicking rate.  

 

Double click timing errors can be frequent as double clicking is a common task in 

modern GUIs, especially when interacting with items on a desktop. Double clicking is 

more difficult than single clicking for individuals with pointing problems. For example, 

in a laboratory study of multiple clicking (Trewin and Pain 1999), Trewin asked motor 

impaired users to perform six double clicks and two triple clicks. Participants had an 

error rate of 39.5%. Trewin also found a median error rate of 28.3% for single clicks. 

Able-bodied users had a much lower error rate on multiple clicks (9%), and a median 

error rate of 6.3% for single clicks. Across participants, these errors were the result of 

positioning errors, moving during a click, or long delays between clicks. In this study, the 

delay between clicks in the motor impaired group ranged from 100 milliseconds to 333 

milliseconds. Click times for the able bodied group were between 50 milliseconds and 

100 milliseconds. Fortunately, adjusting the time between clicks required to make a 

double click is a common accessibility option in modern operating systems.  
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2.3.2. Targeting Errors 
Difficulty with target acquisition is a common problem as most of the interaction in a 

Modern GUI involves targets, or regions of the interface for the user to interact with. The 

following subsection describes some of the many target acquisition techniques that have 

been developed. All of these techniques require complete knowledge of available targets, 

something that is easy to achieve in a laboratory study, but much harder to do in the wild. 

According to Balakrishnan, Object Pointing (Guiard et al. 2004) has the best performance 

gains when trying to radically help with target acquisition, or beat Fitts’ Law 

(Balakrishnan 2004). This technique removes the time a user spends moving to a target, 

by allowing a user to “jump” to any onscreen target. Sutherland’s thesis includes the first 

published example of a technique, now termed snapping, for making it easier to acquire 

targets (Sutherland 1964). He computes a “pseudo pen location” by moving the pen (a 

pointing device) to an object of interest if it is within a certain radius of that object. Since 

then, a range of related techniques that manipulate the control-display gain (ratio between 

the physical distance moved by the pointer and the effect on the pointer) have been 

developed and tested (Balakrishnan 2004). For example, Snap-and-go supports snapping 

to a target by increasing the virtual size of the target by slowing down the cursor when it 

is over the target, thus creating the illusion that the pointer stops on the target before 

moving forward again (Baudisch et al. 2005).  

 

Pseudo-haptic and haptic approaches support target acquisition using a force model (i.e. 

changing how the cursor behaves with software or a physical device). Oakley laid out 

empirically based guidelines for the design of haptic user interfaces, and what the user 

should be able to configure (Oakley et al. 2002). Most work in this area has focused on 

the design of haptic interactors, and thus assumes that the location, use, and shape of 

those interactors are known. 

 

Predicting the target of cursor motion (based on a known set of targets) also relies on 

knowing the location of targets). While an exciting area of research, target prediction 

(Lank et al. 2007) can be error prone, and not always useful as it may not be able to 

correctly detect the desired target until the user is more than halfway towards it. Despite 
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these drawbacks, target prediction research has matured sufficiently to be deployed 

successfully in carefully designed adaptations supporting target acquisition (e.g., (Lane et 

al. 2005; Rogers et al. 2005). These applications were designed around constraints of 

their recognition system (accuracy, and time required to make target prediction) and 

evaluated in laboratory studies. 

 

Difficulty staying on target can occur when the user moves the mouse during the button 

press and falls off the target. Trewin has developed an adaptation that freezes the cursor 

while the button is pressed to help with this type of error (Trewin et al. 2006). Trewin’s 

“Steady Click” adaptation was developed to assist users with problems slipping off a 

target by disabling dragging during a click (i.e. the user is not able to move the pointer, or 

slip, while one of the buttons is pressed). It was found that this adaptation significantly 

reduced slipping errors for 8 of the 11 participants, and lead to significantly improved 

target acquisition times for 5 of the 8 participants. For some participants, suppression of 

slipping errors did not significantly improve performance because other targeting errors 

remained. For others, target acquisition times were reduced, but the improvement was not 

statistically significant perhaps due to not collecting enough examples of slips.  

2.3.3. Movement Problems 
Some individuals may experience difficulty keeping mouse motion steady, which may be 

the result of tremor or spasticity. Not being able to keep steady motion can make target 

acquisition difficult, particularly if the desired target is small. Path navigation, or 

movement towards a target, has received far less attention than target acquisition in the 

literature. However, Jul’s work on lodestones and leylines demonstrates that the 

combination of attractive targets and constrained motion to those specific targets 

significantly decreases time to acquire a target (Jul 2003). Additionally, work has shown 

the value of force fields (directing or pulling the cursor in a given direction) for 

supporting menu navigation (Ahlström 2005). Koester has explored the effects of 

tailoring the cursor’s gain (a measure of how far the cursor moves relative to the amount 

of physical movement sensed by the input device) to a user’s pointing performance based 

on movement during target acquisition tasks. They saw that cursor gain had a positive or 

negative effect on the following features (based on the individual’s ability): percent of 
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error free trials, cursor entries and overshoot (Koester et al. 2005). Finally, movement 

problems could be addressed by filtering spurious pointer movements and smoothing all 

pointer motion (Levine and Schappert 2002). 

2.3.4. Changing the Interface to Meet User Needs 
Another alternative to the assistive software described above (none of which alter the 

appearance of the GUI) is to change the interface to suit a user’s ability.  For example, all 

the interactors of a software application could be replaced with ones tailored for the 

user’s input device. Carter demonstrated this technique in a reconfigurable system that 

could automatically replace the interactors in any JAVA application with interactors 

appropriate for users with a variety of input constraints. They demonstrated this tool by 

modifying GUIs to meet the needs of the following four configurations: 1) keyboard and 

mouse, 2) only a keyboard, 3) only a mouse, 4) or a single switch button (Carter et al. 

2006). An alternative approach to tailoring interactors to a specific device is to tailor 

them to a user’s ability. Gajos has developed a technique that chooses an interactor, its 

size, and the distance between interactors based on the outcomes of a pointing 

performance test (Gajos et al. 2008).  

2.3.5. Summary of Common Pointing Problems and Existing Adaptations 
In this subsection we presented some of the commonly studied pointing errors individuals 

with pointing problems encounter and several of the existing techniques to support 

individuals with these problems. While many of these techniques have the potential to 

dramatically improve computer access for individuals with pointing problems, one of the 

main obstacles to adoption is assessment, or knowing when to apply any given technique 

and how to configure it for current performance. In this thesis, we aim to use predictive 

models created with machine learning techniques on real world pointing data to identify 

problematic pointing behavior. The next section gives a brief summary of the machine 

learning techniques we use to assess pointing.  

2.3.6. Machine Learning Methodology Used In This Thesis 
In this thesis we use machine learning techniques to automatically classify user 

performance data into specific categories.  We use these techniques because they are 

often able to produce classifiers of higher quality than those created using heuristics or 
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simple decision procedures. The following section describes some of the machine 

learning methods we use to assess pointing performance. 

 

Assessment of pointing performance can be described as identifying particular patterns of 

interaction as belonging to specific categories. In fact, this is similar to many other 

problems that can be represented as deciding whether some input data belongs in a 

specific category. A category, or class, is a collection of instances that share some 

common characteristics that identify them as members of the class. Instances that lack 

these characteristics belong to another class. A classifier is an algorithm that is able to 

identify whether a given instance belongs to a given class. Machine learning techniques 

are used to train classifiers to make these categorizations from example data.  

 

For any given dataset we segment it into training instances (or simply instances for 

short). For example, if we were going to classify levels of pointing performance we 

would define an instance as movement followed by a click on the target. Each such 

instance is labeled with an indication of the properties of that motion. One example of a 

label could be an indicator of whether the user who performed it had known pointing 

problems or not. It is these labels that our statistical models, or classifiers, attempt to 

predict. The best way to build models that will generalize to a range of situations is to use 

large datasets that represent a wide range of data behaviors.  

 

Information associated with the details of each movement instance is summarized into a 

set of features that quantify the performance of each interaction. Examples of potential 

features to describe a pointing task include the amount of time it took to perform the 

instance, the number of pauses during movement, or a count of the number of times the 

mouse button was pressed.  

 

A statistical model works by finding what amount to correlations between the occurrence 

of certain features and the occurrence of the property it tries to predict (the label for each 

instance). Once a statistical model has been created (learned), it can be used to classify 

new data. For example, we could use a statistical model with features associated with a 
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new motion and make a prediction about the properties of the user who made that motion 

and if they would benefit from a particular adaptation (which we do in Section 7.2).  

 

Since not all features necessarily contribute to creating a good classifier, we employ 

feature selection algorithms to provide an indication of how useful each feature may be 

for constructing a classifier. To select features that are finely tuned to a particular 

learning algorithm, while taking into account any information overlap, we frequently 

employ a wrapper-based feature selection approach (Kohavi and John 1997). This 

approach performs a combinatoric optimization to choose the subset of features that 

produces the best accuracy for a given type of classifier. This technique is called 

wrapper-based because it can be “wrapped around” any existing learning algorithm. 

Although this technique is typically computationally expensive – it creates and evaluates 

a very large number of different classifiers – it tends to do a very good job of feature 

selection. The additional computational expense is irrelevant during our model building 

because we build these models offline and the reuse the resulting model many times at 

run-time. 

 

Many of our classifiers are built with the C4.5 Decision Tree learning algorithm (Quinlan 

1993) as implemented in the WEKA machine learning environment (Witten and Frank 

2005). 

 

These classifiers are evaluated with their classification accuracy, or the number of 

classifications that were correct (or we expect to get correct). In addition to classification 

accuracy, we use the Kappa Statistic to measure the agreement between predicted and 

observed classifications of the dataset (Witten and Frank 2005). This measure corrects for 

agreement that occurs by chance, and is reported as a number between 0 and 1, where 1 is 

100% agreement, and a value of 0.7 is often considered acceptable agreement 

(Krippendorf 1980). The prior probability, or simply prior, is also important to 

understanding the accuracy of a prediction. The prior is the accuracy one would obtain 

using a trivial classifier that always selected the most frequent class as its prediction. 
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We can estimate a classifier’s generalizability, or how it will perform on new data, using 

cross validation, a technique that simulates the evaluation of a trained model’s 

performance with previously unseen data. During cross validation, a test set of data is 

withheld from the total collection of example data. The remainder, or training set, is used 

to build a model. This model is then used to predict labels for each sample in the test set, 

producing an accuracy measurement for the trained model. This process is repeated 

several times with different testing and training splits, and an average of the performance 

values is taken as an estimate of a trained model’s performance in the real world. 

 
We used two different methods for generating test and training sets, random and per-

person hold out. The random holdout method creates a test set by randomly selecting 

samples from the entire dataset. Random holdout ensures that samples from all 

participants are represented in both training and test sets, but it may produce artificially 

high accuracies as samples from a single session may end up in both the test and the 

training sets. The per-person holdout method creates a test set from all samples from one 

or more participants. This holdout method simulates how the classifier will perform on 

data from a new person, eliminating the bias from splitting a single person’s data across 

training and testing sets. However, per-person holdout may leave certain populations 

underrepresented in training data, thus reducing classifier performance for members of 

that population.  

2.4. Summary of Related Work 
This related work section described a wide range of related work that we will draw on 

throughout this thesis. We began with a discussion of the tradeoffs between laboratory 

and real world data collection and described why we chose to focus on studying real 

world data. Next we presented related studies of both laboratory and real world computer 

use and pointing performance, which we used as inspiration when designing our study 

protocol to gather real world data (Chapter 4). This section also included a discussion of 

the tools used to collect and analyze pointing data. This thesis will use much of the work 

described in the second subsection to develop our own data logging tool (Section 4.3), 

segment our real world data (Section 5.1.1.2 and 5.2.1.3), and understand what target a 

user selected (Chapter 7).  
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In the third subsection we described pointing performance metrics that will be used to 

detect specific pointing problems, and assess pointing performance (Chapter 5). The final 

subsection discussed the machine learning techniques we will use to assess real world 

pointing data. These techniques will be used throughout this thesis in Section 3.2, 

Chapter 6 and chapter 7.1.3. 
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3. Automatically Assessing Pointing Behavior: Pilot 
Software to Distinguish Between Novice and Expert Use 
This section discusses work to 

automatically assess pointing behavior in 

near-real world use, without using a task 

model (Hurst et al. 2007A). Our results 

show that it is possible to automatically 

distinguish between novice and skilled use 

by observing user actions. We present this 

work to illustrate our process to collect, 

analyze, and assess performance data in a 

real world application. This work also 

shows how performance assessments can 

be made in real time and used to assist the 

user. This work is limited as it only looks at one model of performance and uses limited 

collection software that is restricted to one software toolkit.   

In this work we built a learned statistical model to distinguish between novice and expert 

use with 91% accuracy. This model was used in an adaptive application that tailored help 

messages to current expertise. This section describes how data was collected to build 

these models, how the models were built, and how an adaptation was deployed and 

integrated into a pre-existing application. Finally, this section discusses the limitations of 

studying menu use in an image manipulation program and describes how these 

limitations suggested the need to study more general real world use.  

3.1. Data Collection 
To produce a predictive model that will classify real world use, it is important to collect 

data that is representative of real world behavior. Additionally, in order to build robust 

learned statistical models, we need to collect a large number of labeled examples (to 

serve as ground truth) of the behavior we want to classify (expertise). Users may not be 

able to label their actions as novice or skilled, and would likely find it burdensome to 

 
Figure 3 Prototype system that tailors a 
help information tool that is tailored to the 
user based on whether they were detected 
an expert or a novice. 
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report this frequently (e.g. after every action). Our solution for this proof of concept pilot 

work was to have users perform realistic activities in a real world application, but in a 

laboratory setting where we could ensure that users passed through a learning curve to 

provide both novice and skilled data for similar actions (at different points in time). In 

this study, we had users interact with the GNU Image Manipulation Program (GIMP 

2.2.8, www.gimp.org), a widely used open source image manipulation and editing 

application. 

 

Data was collected from 44 participants (19 female) whose average age was 25.3 years 

(SD = 8.37, Min = 19, Max = 59). All but two used Windows as their primary operating 

system. The majority of these participants reported that they were novice users of image 

editing and drawing manipulation programs. For example, the average participant used 

Microsoft Paint between two and three times per month. None had used GIMP before.  

 

In this study, participants completed two multi-step image-manipulation tasks seven 

times. Participants were given sequential instructions for each task on paper, which they 

could write on to keep track of their progress. These instructions were formatted so the 

goal of each step would be clear. In the first task participants drew a new transparent 

shape and changed the background pattern on the canvas for each trial. In the second task 

they drew a new letter or shape and colored it with a solid color or gradient (Figure 4).  

3.1.1. Collection Software 
The collection software used in this study was designed to only use information that is 

easy to gather in an application independent way (such as the specific width and height of 

    
   A)    B)     C) 
Figure 4 Examples of one of the tasks users completed in the study where they drew 
transparent shapes and changed the background texture, seven times.  These images 
show their progress after completing the task A) once (one shape) B) twice (two shapes)  
and C) Seven times (seven shapes).  
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a menu item). Data was collected with a slightly modified version of the GNU Image 

Manipulation Program, which is built with the Gnome Tool Kit (GTK+ 2.6.10, 

www.gtk.org). Menu bars and toolboxes were removed so participants could only use the 

GIMP’s popup menus, accessible with a right click. This ensured that users interacted 

only with menu selections so that data collection would proceed quickly. The GTK was 

modified to log the appearance and disappearance of all menus and submenus, all menu 

selections and deselections (when the mouse entered or left a menu item) and all mouse 

button interactions with the menus.  

3.1.2. Data Segmentation 
Data was segmented into recognizable interactions, or user actions (or portions of user 

actions) which can be readily isolated, are indicative of the phenomena we wish to study, 

model or predict, and can be easily and accurately labeled. Recognizable interactions for 

this study consisted of menu operations (starting from the right click to open a pop-up 

menu and ending with the left click to select a menu item or dismiss the menu without a 

selection). While other potential recognizable interactions were considered, menu use 

was selected because it proved very predictive and it is one of the most ubiquitous 

interactions in current interfaces. 

3.2. Automatically Distinguishing Between Novice and Skilled Use  
We labeled the first trial of each task as novice use, and the last was labeled as skilled; 

the other trials were not used in model building. To test the effectiveness of our classifier 

we employed a C4.5 decision tree and validated it with a 10 fold cross-validation test 

with random holdout using Weka (http://www.cs.waikato.ac.nz/~ml/weka/) data mining 

software. Using this validation measure our classifier achieved an accuracy of 91%, using 

the following five features selected from the wrapper-based feature selection: average 

cursor acceleration in the Y axis, total number of menu item visited, depth of the menu 

item that was selected, ratio between the time taken to select the menu item and the depth 

of that item, and a count of the unique menu items visited. Of these five features, the ratio 

of the time taken to make a menu selection and the depth of that menu selection was the 

most predictive feature, (it had the most impact on classification). 
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3.3. Closing the Loop: Deploying an Assistive Adaptation 
To begin to explore the use of our classifier in real applications we developed a simple 

adaptive tool that can function across any GTK application. Our tool shows an on-screen 

window (top of Figure 3) with an expertise-tailored description (obtained from live 

classification of menu and pointer movement) of the currently highlighted menu item. 

This description is tailored to the classification provided by our trained statistical model.  

 

Descriptions for novices include examples of what would happen if the menu item were 

selected and attempts to minimize the use of domain specific knowledge, i.e. information 

that has been shown to improve novice performance (Dumas and Landauer 1983). 

Descriptions for users displaying skilled behavior include alternative names for different 

functions, and also included the keyboard shortcuts for different menu items. For 

example, a description of the freehand selection tool for a novice said “Use this tool to 

draw the shape of the area that you want to select” rather than a more complicated 

description “Lasso: use this tool to make a free-hand selection. Either close a selection by 

ending in the point you started from, or let the tool automatically close an open shape.” 

The set of descriptions could be configured by providing a data file with alternate text for 

each classification associated with each menu item.  

 

We implemented a real-time “live” classifier in Java to parse data about mouse and menu 

interactions and predict if an action was skilled or novice. Real time data was gathered 

using the same tools developed for our study. To reduce "jitter", we aggregated the 

classifier’s predictions using an exponentially decaying average (with a decay factor of 

0.5). The aggregated prediction was reported to the adaptive tool, which monitored the 

currently highlighted menu item and selected the appropriate description of that menu 

item to display. 

 

A preliminary evaluation of the “live” classifier and its use for adaptation was conducted 

with 4 participants (2 female, ages = 21, 24, 32, 34) who did not participate in the first 

round of data collection. To familiarize themselves with the GIMP, participants first 

completed the same scripted task of drawing shapes and changing the background (the 
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same task used in the data collection study) seven times. Next they worked on a free-form 

task where they were told to draw a scene. Half of their time on the freeform task was 

with the live adaptation. During the scripted task, the classifier correctly identified that all 

participants started as novices and exhibited skilled behavior by the end of the trials. 

However, the four participants had different learning curves and chose different strategies 

for the free-form task. In a post study interview, all participants said that they found the 

example descriptions in the adaptive help system extremely useful. They all responded 

positively towards the application’s awareness of their activities and needs, and had no 

reservations about automatic evaluation of their performance. However, they expressed 

concern about having the ability to control the adaptation if it was based on an incorrect 

classification or if it hindered their activity.  

3.4. Lessons Learned 
This work was a proof of concept illustrating that it is possible to make accurate 

assessments with learned statistical models from simple user input trace data, and 

respond to those assessments in real time. While this was an important step towards the 

goal of automatically assessing pointing performance during real world use, it did have 

several limitations that to generalizability. 

 

One of the major limitations of this work was all of our participants were novices. 

Although this made it easy to label them (based on their learning curve of our task), it did 

not give us a picture of true expert behavior in GIMP. The GIMP is not a commonly used 

program (it requires XWindows, which is not commonly used with the most widely 

deployed operating systems), and this made it difficult to recruit anyone but novices. 

Another limitation was that collecting data from a scripted task limited the types of errors 

we saw. Collecting real world data would broaden the pointing actions individuals would 

do, and would also give a much more realistic dataset.  

 

In the following sections we present our progress towards building software to 

automatically adapt to pointing problems during real world use. Specifically, our 

techniques to collect data, segment and analyze it, build and choose features that indicate 

the presence of pointing problems.  
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4. Collecting Real World Data  
To fully understand and detect the wide 

range of abilities individuals have and 

problems they encounter during real 

world computer use, we need a wide 

variety of data. Specifically, we need to 

collect examples of pointing use from 

individuals with a range of abilities doing 

tasks that are representative of common 

real world interactions. One of the 

limitations from our work distinguishing 

between novice and skilled actions 

(Chapter 3) was the lack of variety in the 

data collected. Specifically, all data was 

collected from one application from 

novice users during one session.  

 

Real world data can provide a more 

accurate picture of an individual’s 

everyday use than performance data 

collected from a laboratory study (see 

Section 1.2). Specifically, studying real 

world use can uncover variances in 

performance that can be caused by a 

number of external factors such as 

fatigue, mood changes, a degenerative 

disease or a major change in medication.  

 

 

 
Figure 5 Real world pointing data was collected 
from individuals with motor impairments at 
Pittsburghʼs United Cerebral Palsy Center.  
 

 

 Figure 6 Real world pointing data collected from 
older adults in collaboration with Blueroof 
Technology.  These photos taken during a data 
collection session at Blueroof Technology. 
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An effective strategy to collect both short and long-term performance changes is through 

a long-term deployment to collect pointing performance that captures variance in 

performance.  

 

In addition to understanding the variance of one person during real world use, it is 

important to understand the variance across users. The best way to understand variance 

across groups is to collect examples from many different groups. To accomplish this, we 

collect pointing data from individuals with and without pointing problems and we collect 

data from individuals with different kinds of pointing problems. Examples of some of the 

different pointing problems that we would want to include are limited motion, spastic 

motion, and tremor.  

 

In this chapter we describe two real world data collection deployments we have 

performed: one with desktop machines and one with laptops. We present details about 

our study protocols including recruitment, user tasks, and equipment. We also discuss 

lessons we learned while running these multi-month studies. 

4.1. Data Collection Deployments 
We began collecting real world pointing data in early 2008. To date, we have collected 

hundreds of hours of real world data from 28 people with and without pointing problems 

(Table 1). Examples of activities they engaged in during collection include web surfing, 

socializing (email, instant messaging, social networking websites), homework, and video 

games. This data was collected through desktop and laptop deployments that logged 

pointing related input events.  

 

Desktop 
Chapter 5.1 

Individuals with Motor Impairments  
12 (4 female), 40.5 mean age  

  
Laptop 
Chapter 5.2 

Individuals with Motor 
Impairments  
4 (2 female) 
43.3 mean age 
2 were also in desktop 
study 

Older Adults 
8 female 
67.6 mean age 

Able Bodied 
Adults 
4 (1 female) 
29.5 mean 
age 

Table 1 Summary of participants in all real world data collection deployments. More 
details about laptop participants can be found in Appendix 10.3. 
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4.2. Study Protocols for Desktop and Laptop Deployments 

4.2.1. Participant Recruitment 
When gathering real world data, it is important to gather a wide range of data from 

individuals with varying abilities. Two dimensions of diversity we are interested in to 

assess pointing performance are motor abilities and age range. In our studies we recruit 

participants with and without motor impairments, age 22 to 80. In order to recruit this 

range of participants we worked with several different organizations, and used a different 

recruitment technique for each.  

 

We recruited three groups of participants for our studies including: 1) 14 individuals with 

motor and cognitive impairments from United Cerebral Palsy Pittsburgh (UCP 

Pittsburgh, http://www.ucppittsburgh.org), 2) 8 older adults who meet monthly in a group 

to talk about technology at Blueroof Technology (http://www.bluerooftechnologies.com), 

and 3) 4 students and staff members from Carnegie Mellon. None of the participants from 

groups 2 or 3 had any visible cognitive or motor impairments that would affect pointing 

performance, nor did they indicate any in our pre-test questionnaire. The exclusion 

criteria for our studies were minimal: participants must be at least 18 years old, and able 

or willing to use a mouse. Since we had limited equipment, and wanted to collect as 

much data as possible, we sought participants who we thought would use this computer 

as their primary machine.  

4.2.1.1. Recruiting Individuals with Motor Impairments 
Finding individuals with motor impairments who are interested and able to participate in 

research can be difficult. Since we were interested in maximizing participation from this 

population, we put a lot of effort into building a relationship with UCP Pittsburgh, a local 

center which teaches individuals with motor and cognitive impairments a wide range of 

life skills including computer use. In order to meet these individuals and their instructors, 

the author spent two half years volunteering weekly in UCP’s computer classes to both 

meet potential participants and to observe this population’s existing computer practices.  
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We recruited participants at UCP for both our laptop and desktop deployments. For both 

studies we met with the director of center services and the curriculum specialist to 

describe all of the details of our study, and get recommendations for potential 

participants. We began our first desktop deployment after volunteering at the center for a 

few months. In addition to helping with recruitment, regularly volunteering at the center 

where we were running our study gave us an opportunity to observe how the computers 

were being used and made it easy to quickly answer questions participants had. We 

installed these desktops in one of the computer rooms at UCP (Figure 7). Participants 

were allowed to use these machines during classes (with instructor’s permission) and 

during their free time.  

 

Our laptop study began approximately one year after the desktop study. In many ways 

recruiting for this study was easier because we had a well-established rapport with the 

instructors and participants. Two of the participants from our earlier desktop study 

wanted to participate in this study. The rest of the participants were people whom the 

instructors at UCP thought would be interested in the study or who would benefit from 

having access to a laptop. One unexpected problem with recruitment for this study was 

concern instructors had about participants taking equipment out of the center. The 

instructors wanted to minimize the chance that the participant would be put at a safety 

risk for carrying around new laptop as they might get stolen. To solve this problem, 

instructors negotiated with the participants’ families and/or care givers if the participant 

would take the laptops home with them, or only use them at the center.  

 
Figure 7 Our desktop deployment was conducted at United Cerebral Palsy (UCP) Pittsburgh.  
In this deployment we installed two desktop computers in a pre-existing computer lab.  
Participants were free to use these computers during their classes or free time. 
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4.2.1.2. Recruiting Older Adults 
We recruited older adults for our laptop deployment through Blueroof Technologies, a 

partner of the Quality of Life Technology center (qolt.org), a National Science 

Foundation Engineering Research Center whose mission is to enable older adults and 

individuals with disabilities to live independently. Similar to our approach at UCP, we 

did not seek out individuals with specific diagnosis or problems using a pointing device. 

Instead, we were looking for individuals who could physically use a mouse and we 

thought would actually use the computer.  

 

All of our participants in the older adult group are termed “Research Associates” at 

Blueroof Technology, and have known each other for years and all live in the same area 

of Pittsburgh.  The research associates are a group of older adults (mostly women, but 

some men) who meet in Blueroof’s smart cottage once a month for several hours to 

discuss new technology that has been designed or is currently under development for 

older adults. In addition to learning about new technology, this group also works together 

(under guidance of several staff at Blueroof) to learn how to use computers. This group 

had existed for at least a year before we recruited them as participants for the study. 

 

We attended one of these meetings and discussed the study protocol, and asked anyone 

interested to fill out a questionnaire about their computer experience (a combination of 

questions from Appendix 11.1 and 11.2). Fortunately, everyone at that meeting was 

interested in participating, so we admitted the whole group into our study. While several 

of our older adult participants already had home computers, none of them had laptops, 

and they were all excited about having access to a faster computer with Internet. 

4.2.1.3. Recruiting Able-Bodied Indivdiuals 
Recruitment of able-bodied individuals was the simplest. We did this by posting an 

advertisement on our Carnegie Mellon’s message board that participants could participate 

in a study and borrow a new laptop for the summer. Our advertisement asked potential 

participants to answer the same questionnaire (Appendix 11.1) about computer use and 

experience we asked our older adults for. We received many replies and chose four 
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participants whose answers to our questions convinced us that they would use these 

laptops as their primary machines. 

4.2.2. Deployment Equipment 
Desktop Deployment: This deployment was installed in one of the computer labs at UCP 

Pittsburgh (Figure 7). For this deployment, we installed two DELL desktop computers 

with the default DELL mice and keyboard, 15” LCD flat panel monitors and color 

printers. At the time of our deployment, having access to a color printer was attractive to 

many of our participants. Due to external constraints, our computers differed from those 

already in the laboratory in that they were not connected to the Internet due to a 

networking limitation.  Our computers had the same productivity tools as the other 

computers in the laboratory, but different games. Participants could use the study 

machines as they pleased, however, we did require them to use the USB mouse and 

keyboard provided by DELL with the machines. These computers were restricted to 

participants in our study.  

 

Laptop Deployment: We purchased 16 DELL Inspiron 15” widescreen laptops for this 

deployment. We sent 15 into the field and kept one as a test machine. Participants were 

allowed to install any software on these computers, but we gave them to them with 

Windows XP, Microsoft Office, Firefox, and VLC media player pre-installed. Since we 

were studying mouse use (and the laptops had touch pads on them) we disabled the touch 

pads on these laptops and gave our participants identical USB optical mice.  

4.2.3. Initial Meeting 
Since we were studying real world pointing data, we had our participants complete some 

traditional laboratory tasks during our first meeting. We had them perform these standard 

tasks so we could have some baseline data, and also to verify that they were able to use a 

computer and manipulate the mouse. This session took participants about an hour, and 

they were compensated $25 for their time. During this session participants filled out a 

questionnaire about demographics and answered questions about their computer 

experience (Appendix 11.2). 
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In both deployments we collected laboratory, or baseline performance data using the IDA 

software suite (http://www.kpronline.com/), developed to support clinical evaluation of 

problems with keyboard and pointer use (Koester et al. 2005). This software is designed 

for use by clinicians as part of their assessment process for determining assistive 

technology needs. We had participants perform 30 trials of the AIM task, a standard task 

included with IDA. In the AIM task, participants were given two minutes to move the 

cursor to a blue square and click the left button for each trial. The software let them work 

on the task until they reached the two-minute time limit, and did not alert them if they 

made errors. IDA automatically varied the size and location of the targets throughout all 

of the tasks. The mouse gain during the baseline trials was set to the default value (10) 

and Enhanced Pointer Precision was turned on.   

 

After initial tests, participants in the study were allowed to use the computers (either 

desktop or laptops) at their own pace and on their own schedule. Participants could use 

the computers for any task they wanted, and all of the computers had access to the 

Internet. Participants were required to use the input devices we gave them: USB mouse 

and keyboard provided by DELL with the desktops, and an external USB mouse for the 

laptops. Participants were permitted to change the pointing settings (such as mouse 

acceleration) on the computers; however none chose to do so. 

 

To motivate participants to use our computers, a raffle was held every month for 

participants who logged into the machines at least once during that time period. Raffle 

winners received $25, and we did this for both the laptop and desktop deployments.  

4.2.4. Data Collection and Storage 
There are many possible data storage solutions when collecting large amounts of data. An 

ideal solution is easy to populate, robust against theft, and failure-safe. Since our dataset 

was very likely to include sensitive and private information about our participants, we 

prioritized having a solution that would be robust to intruders or hackers. To this end, all 

of our data was stored on redundant external hard drives that were encrypted and stored 

in a secure location. Choosing to store data on these external drives meant that all data 

collection had to happen in person. While a remote solution that would upload data to a 
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remote server (such as using Dropbox https://www.dropbox.com/) we did not want to risk 

storing data on another company’s server, or worry that uploads could be intercepted.  

 

We met with our participants once a month to collect data from their machines and 

answer any questions participants had about the computers (and perform system updates 

if needed). The majority of participants appreciated these frequent meetings to get help 

installing new software or answer questions about how to use certain programs or 

websites. During these meetings we would compress and move all logging data off each 

computer’s hard drive and put it on an external drive.  

4.3. CRUMBS Collection Software  
The CRUMBS (Capture Real-world User Mouse BehaviorS) software was developed to 

capture real world user actions. CRUMBS is application independent software that logs 

information about user events in real time. This software extends DART (Disruption and 

Recovery Tracker) a suite of system monitoring components that run in the background 

to log pointing, keyboard, and window events (Iqbal and Horvitz 2007). We extended 

dart to probe the MSAA API for the Role (or type), location and size of the interactor that 

received a button event. The API returns the Role of interactors it supports and returns 

“client” for ones that are unsupported.  

We also extended DART to capture full screen images immediately after both button 

press and release events but before the windowing system makes a visual change. These 

screen captures were called through a hook to the API that receives the button press and 

release events, and these captures were taken before visual changes are fired due to the 

button event. This code is written in C++.  

    
Figure 8 Examples of screenshots captured by our logging software, CRUMBS. CRUMBS is 
able to capture mouse, windows and keyboard events from any application in Windows XP. It 
also captures information about targets from the MSAA API (when available) and takes full 
screen screenshots immediately before all button events.    



 

 39 

We used two slightly different versions of CRUMBS in the desktop and laptop 

deployments. An early version of CRUMBS was used in the desktop study that only 

captured 300x300 pixel images (centered on the cursor), and did not record target size 

and location information. After collecting this data, we added fullscreen image capture 

and target information from the MSAA API to CRUMBS, and used this improved 

version in the laptop evaluation.  

Since CRUMBS logged use in any application, it was very likely to capture sensitive 

data. To help participants remember that CRUMBS was running and collecting data, a 

small window appeared at the top of the screen reminding participants CRUMBS was 

recording with a button that lets them log out. Additionally in the desktop deployment we 

put up signs near the computers that all data on these computers was being recorded, and 

participants could ask the experimenter if they would like any of their sessions to be 

removed from the dataset. 

 

Participants activated CRUMBS by logging into the software. We used slightly different 

versions of a login screen for our two deployments (Figure 9). In the desktop deployment, 

participants were assigned unique numbers that were used to identify data and for login 

purposes. When a user wanted to log in, they would first enter their number, then 

CRUMBS would verify that it was a valid number (if it were, it would appear in the 

textbox in the blue region), and then the participant could log in.  

          
  A)              B) 
Figure 9 CRUMBS login screens for desktop (A) and laptop (B) deployments.  Participants 
logged in with a unique number in the desktop deployment because multiple people used the 
same computer, but in the laptop deployment participants didnʼt share equipment with anyone 
else. In laptop deployment participants were asked to provide details about where they were 
with the laptops and anything unusual (such as not using a mouse pad). 
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For the laptop study, participants were differentiated by the names of the laptops (named 

after famous composers). Instead of entering a number in the laptop deployment, 

participants were asked to give additional information about their context such as their 

location (if they were in a still or moving location such as a train or airplane), and to 

provide a description of their environment (such as whether or not they were using a 

mouse pad). 

4.4. Lessons Learned by Studying Real World Data with This Protocol 
Our deployments were overall successful in achieving our primary goal (gathering a large 

and realistic data set of real world pointing behavior). Below are a few of the lessons we 

learned from our experiences. 

4.4.1. Tradeoffs Between Using Desktops Vs. Laptops 
Our shared-computer desktop protocol worked well for collecting data at UCP, because 

the computers were placed in a computer lab that was already busy, and gave our 

participants access to new technology (printers). However, because we did not have a 

private location for deployment, and because many of the people we wanted to recruit 

already had a computer, we decided that we could collect more data and recruit from a 

wider population by studying laptop use instead of desktops in a public lab.  

 

One of our goals with our laptop study was for participants to use these computers as 

their primary machines, so we could maximize the data we collected. We were optimistic 

that laptops would also be attractive to participants since they could take them home, to 

work, or class. During our laptop deployment we saw overwhelming evidence that 

participants did use these computers as their primary machines and thought of them as 

their own. The most dramatic response to the laptops was from the older adults. We heard 

many stories of how these machines changed our participants’ lives as they had 

something exciting to do other than watch television. Additionally, we observed that most 

of these participants purchased fashionable bags to carry these computers in, and some of 

them even personalized the outside of these computers. One of our most extreme 

examples was from one participant who liked her computer so much that she would write 

little notes to it in the text box on the CRUMBS login screen. This participant would 
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greet the laptop differently most days and write a cheerful sentence about how her day 

had gone so far. For example: “this is a good day, [the laptop] is here”. 

 

 

4.4.2. Additional Data Collection Support 
We found our desktop data collection model worked better in environments where people 

were motivated to use computers and there was pre-existing support for them to learn 

how to use them. At UCP, we had an amazing amount of support from instructors who 

would encourage participants to complete in-class assignments on our computers, or 

answer their technical questions.  

 
Unfortunately, not all of our deployments were successful. We deployed a second 

desktop deployment in the common area in apartment building for older adults. However, 

 
Figure 10 Many of the older adults embraced these laptops as if they were their own, and 
personalized them with stickers, or comics, and bought fashionable bags for them. 
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we only two participants signed up for the study, and therefore we did not gather as much 

data from this deployment. We hypothesize that this deployment was not as successful 

because the participants were computer novices and did not have as much external 

support as the UCP participants for computer training.  

4.4.3. Data Management and CRUMBS problems 
One of the difficulties of collecting large amounts of data is the storage and management 

of terabytes of data. While the log files generated by CRUMBS are relatively small, the 

full sized screenshots taken during each button press can take a lot of space. Fortunately, 

storage is currently very affordable, as multiple terabytes of data storage can be easily 

purchased for a few hundred dollars. However, we did spend more time than we initially 

expected moving and compressing data from the laptops onto our external data storage 

drives.  

 

While we designed CRUMBS to easily give participants full control over recording, 

some participants would not log out of CRUMBS when they finished using the computer. 

This was problematic for purposes of analysis because these files would be extremely 

long, and contain performance data from multiple sessions of use. Most of the 

participants from the UCP group always turned off the computer when they were finished 

(thus logging themselves out). However, several participants in both the older adult and 

able groups closed the laptop instead of logging themselves out. In the future this can be 

fixed by automatically logging users out after being away from the computer for a 

significant time or if a long time has elapsed since the last event we recorded. 
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5. Real World Pointing Performance 
Little is known about pointing performance in the real world. Performance metrics 

traditionally used to study pointing performance collected in a laboratory can also help us 

to better understand user ability and natural tendencies during real world use. This 

chapter discusses performance across the pointing data we gathered from our laptop and 

desktop deployments with a high level description of the data we collected, segmentation 

technique we used, and some key targeting and pointing performance metrics. Together, 

the analyses presented in this chapter illustrate the real world properties of movement and 

targeting performance during real world tasks.  

 

Our desktop deployment was a pilot for the laptop deployment. For the desktop 

deployment, we set up two computers at United Cerebral Palsy in Pittsburgh and gathered 

data from 16 motor impaired individuals over nine months. In this pilot, showed that we 

could collect and analyze real world pointing data from individuals with motor 

impairments. We developed an improved collection method and analysis based on it 

(summarized in Section 4.2). The analysis of data from our desktop deployment 

highlights the dramatic range of real world pointing performance for individuals with 

pointing problems.  

 

In our laptop deployment we recruited a wider range of participants (older adults, 

individuals with motor impairments, and able bodied adults) and loaned them laptops for 

multiple months. We also used an improved version of CRUMBS that logged target size 

and location when clicked on, and a segmentation technique that used pause information. 

We found that our laptop protocol enabled us to collect a large amount of data, from a 

wide variety of applications. The analysis of the data from our laptop deployment 

illustrates the differences in targeting and movement performance across our three groups 

of participants.  
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5.1. Targeting in Desktop Deployment: Pointing Measures and 
Performance from Indviduals with Pointing Problems  
In this section we present clicking and pointer motion problems that we assessed from 

our desktop deployment collecting real world use from individuals with motor 

impairments. These problems are drawn from, the list of errors described in Section 2.3. 

To understand actual pointing problems we looked at performance from individuals with 

pointing problems who used the computers multiple times during a four month period. 

We collected this data using the study protocol presented in Section 4.1, from participants 

using shared computers at United Cerebral Palsy Pittsburgh. Data was collected with our 

CRUMBS software. This data includes use interacting with desktop icons, playing one of 

two clicking games, and using Microsoft Word (Hurst et al. 2008B). 

5.1.1. Distribution of Data 
Using our desktop protocol, we collected real world data from 11 participants starting in 

January 2008, and data collection is still ongoing (as of publication date). In the 

following subsections, we present a subset of our total dataset from 6 participants (4 

female) who used the computers at least twice in a four-month period from 1/08 to 5/08. 

The mean age of our participants was 40.5 years (SD = 7.77) and 2 of them used a mouse 

with their left hand. Activity and frequency of use varied widely across participants, but 

ranged from 2 sessions to 120 sessions of length 2 minutes to 74 minutes. For participants 

who logged many sessions, we randomly selected 9 sessions (and relabeled them 1-9) for 

this analysis.   

5.1.1.1. Applications 
Our participants used these computers for a variety of tasks including playing clicking 

games and card games, solving jigsaw puzzles, making greeting cards and typing 

documents. Overall, the majority of the data we collected was from clicking games, 

specifically a matching game called the “Same Game”, and a memory game called 

“Memory Blocks”. While Microsoft Word was the third most popular application, we 

collected eight times more data from the two clicking games than Microsoft Word. 

Participants P2 and P6 did not use the computers as frequently as the other participants 

and did not play either popular clicking game; however they did interact with the desktop 

and Microsoft Word.  
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5.1.1.2. Segmentation of Pointing Data 
One of the disadvantages to studying real world data is it is less straightforward to 

analyze than data collected in the laboratory. Before we can detect problems in 

performance, we must put the data into a form that we can easily analyze. The biggest 

obstacle to doing this is making sense of enormous streams of real world computer use 

collected by CRUMBS. Specifically, tools are needed to segment long event streams into 

useful samples that represent single actions (such as selecting a target). Since we 

collected data during real world computer use, we did not have a task model for the 

user’s actions, nor did we know what tasks the user intend to perform. 

 

CRUMBS data is organized into “sessions” which start when the participant logs in and 

end when they log out. For this analysis, we divided data into samples by button events. 

Specifically, these samples describe everything that happens between two button up 

events. We used this segmentation technique because it was straightforward, has been 

used in laboratory evaluations to segment data, and we thought it would best match the 

data. This dataset contained 11,811 samples. 

5.1.2. Targeting Performance Errors 
In this dataset we looked at two targeting, or clicking metrics that are target agnostic, or 

do not require the size and width of the target for calculation. All of the performance 

metrics presented here have to do with types of errors that may occur during targeting.  

       
      A)             B)        C)    D) 
Figure 11 Screenshots from the two most popular games A & B) Same Game, where 
participants need to click on a connected group of blocks with matching colors and letters. B 
shows the currently selection of connected blocks.  If user clicks on selected area, all 
highlighted blocks will disappear. C & D) Screenshots of the Memory Blocks Game where 
participants click on blocks to flip them over and match blocks with identical icons.  This is a 
memory game because tiles are flipped back over after two have been viewed, so 
participants must remember the location of the icons. 
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5.1.2.1. Pressed Too Many Buttons 
Some participants have difficulty pressing only one button on a mouse, and instead press 

both the left and right mouse buttons. Pressing both buttons is an error because none of 

the applications that our participants chose to use handle this event. This is an interesting 

feature to analyze because it is easy to detect through log file analysis and may be an easy 

way to detect pointing problems. 

 
Of our six participants, only P1 and P2 had overlapping button presses from pressing 

multiple buttons during a click. Figure 12 illustrates the frequency of this performance 

problem across 9 login sessions for all applications. In this figure, P1 only exhibited this 

problem during sessions 2,4,6 and 8. Participant P2 had three overlapping button presses, 

which happened while using Microsoft Word during sessions 4 and 5.  

5.1.2.2. Slipping During a Button Press 
We define a slip as any distance a pointing device moves while a pointer button is 

pressed. When analyzing slipping performance in real world data, we have to 

differentiate between drags (intentionally holding down the mouse button and moving the 

mouse to manipulate an object) and slips (unintentionally moving the mouse while the 

mouse button is pressed). One simple technique to do this is to declare a cutoff distance 

between slips and drags. This technique is used by Trewin in Steady Clicks (Trewin et al. 

2006), where they use a cutoff of 100 pixels to distinguish between drags and slips. 

 
Figure 12 Plot of number of clicks with too many buttons across all logins and sessions.   
Login 0 is from the baseline task.   
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While this technique may work in many cases, it misses all short drags and classifies 

them as slips. Another approach is to look at the type of the interactor clicked on and 

decide if it is draggable or not. Of course, this technique only works on targets that are 

supported by Accessibility APIs. For this data, we only analyze applications that do not 

include drags. To this end, we also hand coded and removed all drags due to menu use. 

For each click, we calculate the “slip” as the Euclidean distance between button up and 

down events.  

 

The mean slip distance ranged from 0 pixels to over 20 pixels across all users, the mean 

slip distance for all participants across all samples was 5.9 pixels (SD = 19.45). 

Participants P4 and P5 had the most problem with slips {P4 mean = 21.34 pixels,  

SD =43.96; P5 mean = 10.25 pixels, SD = 24.49}. Large slips can cause a click to fail 

because the pointer moves off the selected interactor before it is released. 

5.1.3. Movement Performance Metrics 
In addition to features that describe clicking performance, we evaluate pointer motion. In 

this section we describe two target agnostic performance metrics we use to evaluate 

pointer motion. 

5.1.3.1. Changes in Direction 
Mackenzie defines Movement Direction Change (MDC) as the number of times the 

pointer path changes direction relative to the task axis and Orthogonal Direction Change 

(ODC) as the number of times the change in pointer path is orthogonal to the task axis 

(Mackenzie et al. 2001). For our analysis, rather than calculating the task axis and the 

amount of movement direction change/orthogonal direction change, we focused on the 

simpler measures of number of X direction changes and Y direction changes from one 

click to the next.  
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Figure 13 illustrates the average number of direction changes per motion along the X and 

Y-axis. The 0th session shown for each participant is the baseline session, and the 

following are from real world use. In this figure, there is data from 10 sessions from P1, 1 

from P2, and so on. Participants P1, P4 and P5 experienced high numbers of direction 

changes most frequently, with means ranging from more than 30 to 0 across different 

sessions. Total scores for these individuals across all sessions for X direction changes 

were {P1 Mean = 4.8, SD = 8.62; P4 Mean = 2.8, SD = 7.45; P5 Mean = 3.17, SD = 

5.14} and Y direction change were {P1 Mean = 2.14, SD = 3.13; P4 Mean = 3.11, SD = 

7.51; P5 Mean = 3.63, SD = 7.47}. This analysis highlights that P1 had more direction 

changes in the X direction (with a large SD) than in the Y, and there was not much 

difference between X and Y direction changes for participants P4 and P5. P1’s X and Y 

frequency direction changes may be due to this participant’s intermittent tremor. 

 

 
 Figure 13 Comparison of the difference between the mean number of direction changes in the X (top) and Y 
(bottom direction by each user across login sessions.  Login 0 was from a baseline clicking task, all other data is 
from double clicking a desktop icon or one of the clicking games. 
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5.1.3.2. Excess Distance Traveled 

 
Keates defines the excess distance traveled as the ratio of the actual distance traveled 

relative to the minimum straight line distance to a target (Keates et al. 2002A). The actual 

distance traveled becomes higher when the cursor wanders. We calculate the ratio of the 

total distance traveled and the minimal Euclidean distance between each pair of clicks. 

This ratio represents the efficiency of the trajectory; it is 1 when the cursor moved in a 

straight line from the source point to the target, and larger otherwise. One limitation to 

analyzing cursor trajectories in real world data is that we cannot determine if the path 

data is a long or curvy movement made because the user was having a pointing problem 

or rather they changed their mind during the movement and selected a different target 

than their initial intent. 

 

Figure 14 shows how the average excess distance traveled varied unpredictably between 

different sessions for some participants in our study. When this value is close to 1, the 

user moved in a straight line from the source to the target. P1’s mean excess distance 

traveled ratio is low (below 2.02-2.11) in the baseline session and real world sessions 4 

and 6. However P1’s performance on this metric rises as high as 6.9 in session 1 and 

15.86 in session 9.  

5.1.4. Summary: Desktop Performance 
This desktop deployment proved that we could calculate useful pointing performance 

measures from individuals with motor impairments while they performed real world 

 
Figure 14 Comparison of the mean excess distance traveled by each user across login sessions. Login 0 
was from a baseline clicking task, all other data is from double clicking a desktop icon or a clicking game. 
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tasks. However, open questions remain about how real world pointing performance 

differs across a wider variety of individuals, and with a wider variety of applications 

(including Internet use). Additionally, our desktop data lacks information about the size 

of the target users clicked on, making it impossible to analyze target size affected 

performance in real world use. The laptop deployment addresses these issues. 

5.2. Targeting in Laptop Deployment: Pointing Measures and 
Performance from Indviduals with Pointing Problems, Older Adults, 
and Able-bodied users  
Using our laptop protocol we collected over 360,000 samples of real world targeting 

motions from 16 (11 female) participants over a 9-month time period. As in section 5.1, 

these samples contain keyboard, mouse and window events that happen between press 

events. Demographic information about our participants is summarized in our appendix 

(Section 11.3). Performance from our participants is organized according to three groups: 

able bodied (4 participants), older adults (8 participants), and individuals with motor 

impairments (4 participants). As mentioned in our study protocol, participant actions 

were recorded at the participant’s discretion and they were free to use the laptops when 

and how they chose.  We collected roughly 83,000 samples from able-bodied individuals, 

251,000 from older adults, and 29,000 from individuals with motor impairments. Note 

that a refined segmentation approach for samples is introduced and used below, however, 

this does not dramatically change the number or distribution of samples. 

 

The large volume of data we collected allowed us to look at subsets of data, from which 

we could more unambiguously infer intent. We did this by subdividing data by the 

application the participant was using, and then selecting specific applications that were 

used by all or most of our participants.  

 

We determined what application the user was interacting with by analyzing the titles of 

the windows they were interacting with. This process helped us identify the applications 

used in 90% of the samples. The remaining 10% of samples were not assigned to any 

application. The most frequent applications used in our data across all participants were 

Firefox (23% of all data), Spider Solitaire (20%), and Mahjongg (19%) and FreeCell 
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(14%). In the able bodied group Firefox was by far the most common application 

(accounting for 75% of their data) other popular applications were File Explorer (1.7%) 

and Microsoft Word (1.7%). Games were extremely popular with our older adults (at 

least 82% of their data) specifically Mahjongg (27%), Spider Solitaire (25%), and 

FreeCell (18%). Internet use accounted for only 8% of their data. Spider Solitaire was the 

most popular application with the participants with motor impairments 38%, Solitaire and 

FreeCell were the next most popular (both at 18%), and Internet accounted for only 12%. 

In all, games accounted for 64% of all the data we collected in this deployment. 

 

Underrepresented applications in our dataset (which we expected to be more generally 

popular, based on our own computer use) include Instant Messaging (0.3%), Microsoft 

Outlook Email Client (< .01%) and Microsoft Outlook Calendar (< .01%). The lack of 

use of these applications could have been caused in part by our study design. Participant 

may have chosen not to set up and use these applications because they were borrowing 

the laptops and their information would be recorded locally. While we did not see much 

Instant Messaging or Calendar use, we did see a lot of webmail usage in all three groups.   

 

Because many of the aspects of pointing motion that we analyzed depend on target size, 

we also looked at what target each sample ended on. We used the MSAA API to obtain 

the width and height of the interactors users clicked on. As mentioned earlier, the MSAA 

API is far from perfect at recognizing all targets, but it is a fast way to get this 

information. The MSAA API was able to recognize about 25% of all targets clicked on in 

our dataset (the MSAA API returns nothing, “(null)”, or “client” for targets it does not 

recognize). Approximately 60% of the unsupported targets in this dataset came from 

games that older adults played: such as Spider Solitaire, Solitaire, FreeCell and Mahjong.  

 

For our analysis, we created three subsets of data from Microsoft Office (MS Office), 

Internet, and game use. All of our analyses use one or more of those subsets.  The rest of 

this paragraph describes the distribution of applications across these three subsets.  The 

MS Office subset included use from Microsoft Word (.6%), Excel (.09%) and 

PowerPoint (.01%).  The Internet subset was data from both Mozilla Firefox (26.34%) 
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and Internet Explorer (.02%). We obtained data from all three groups during MS Office 

and Internet use. However, we only observed instances of game use from older adults and 

individuals with motor impairments. The games they played included Spider Solitaire 

(23.1%), Mahjong (21.3%), FreeCell (15.8%), Scrabble (8.6%), Solitaire (3.2%), 

Minesweeper (0.4%), Wheel of Fortune (.01%), and Pinball (.01%).  We include pointing 

performance from games for features that do not require target size information because 

they represent a large portion of the data, and we see performance differences between 

games and other applications for older adults and motor impaired individuals.  

5.2.1.1. Segmentation of Pointing Data 
We used a more sophisticated segmentation technique for our real world laptop data than 

we used to analyze our desktop data (Section 5.1). In addition to segmenting by button 

events, we divide each sample into segments at each pause of greater than 200 ms. The 

last segment (with at least 10 pixels of movement) before the end of the sample is kept 

for analysis and the others are discarded. If there are no pauses, or less than 10 pixels of 

movement, the entire sample is used. The earlier segments are presumed to be non-

targeting motions since they do not end in a click. For example, the user may move the 

mouse along words while reading, pause, then move it over a link and click. 

 

This technique is based on prior work by Chapuis on real world pointing (Chapuis et al. 

2007), as well as our own investigation of segmentation using 200ms, 300ms and 500ms 

cutoffs. Confirming Chapuis’ findings, we found that longer cutoffs for able bodied users 

incorrectly included more samples that were non-targeting motions such as movements to 

a target and back (possibly to check a value) and moving the cursor to refresh the screen. 

The best single segmentation threshold for our older adult and motor impaired 

participants was less clear. The 200ms cutoff worked for most of them, however a few 

participants in these groups may have needed a longer cutoff. In order to determine the 

optimal segmentation cutoffs, (and determine if these should be individual or group 

based) we feel that much more investigation is required. Since the 200ms cutoff was no 

worse than the other options across all users, we kept it. 
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5.2.1.2. Outliers 
We performed an outlier analysis of our data that looked at several timing features, 

window sizes and API target sizes. This outlier analysis was based on entire samples 

(click to click), instead of the last segment of a sample. Samples with more than 10 

minutes of pauses were considered outliers and were removed. This removed 485 

samples of our data. These long timing events were created when participants were not 

actively using the mouse, which happened most frequently while participants were 

watching videos or while on the web. Window dimension and target size features were 

capped at 2,000 pixels (which is larger than the maximum window resolution of these 

laptops). Our outlier analysis removed less than 1% of the data. 

5.2.2. Distribution of Data Across Independent and Dependent Variables 
Once we had selected which subsets of the data we would use for analysis, we examined 

several independent variables to better understand the distribution of the data. These 

include the target sizes that participants interacted with, and the index of difficult (target 

size combined with distance to target). We also looked at a set of dependent variables, 

including motion metrics and targeting metrics. Below we briefly summarize both sets of 

variables before jumping into a detailed analysis of the dependent variables. 

5.2.2.1. Distribution of Target Sizes 
We analyze target sizes by using the smaller of the width or height of the selected target, 

a frequently used technique in Fitts’ Law analysis (MacKenzie and Buxton 1992). Table 

2 and Figure 15 (below) show the distribution of targets selected across our three groups 

both across Internet and MS Office use. We include all of the interactor types returned by 

the MSAA API in our analysis except for “client” and “(null)” types (values this API 

returns when it does not know the target size).   

 

 Mean  Std Dev Median 
Able 114.17 177.71 24 
Older Adult 144.53 225.54 24 
Motor Impaired  111.00 188.21 26 

Table 2 Distribution of target sizes across all three groups for Internet and MS Office use. This 
data excludes game use since targets in games were rarely detected by MSAA API.  
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A) Target sizes selected by able bodied participants 

 
B) Target sizes selected by older adults 

 
C) Target sizes selected by participants with motor impairments 

Figure 15 Selected target sizes (in pixels) reported by the MSAA API for our three groups for 
Internet and MS Office Use A) able bodied B) older adults, C) individuals with motor impairments. 
This reported target size is the smaller of either the height or width of the target.  Note that the Y-
axis is different for each group because the sample sizes are different for each group. 
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Note that older adults and motor impaired users preferentially used applications for which 

target sizes were not available in the MSA API (games, in particular). The extremely 

large target sizes in Figure 15 were from fullscreen images on a webpage, clicking on 

whitespace on a webpage, or the “list” widget (a widget that contains a scrollable list of 

options, such as a font list). For the “list” interactor type, the MSAA API returns the size 

of the container (bounding box of list), not the smallest targets (list items). Overall for 

some of these target types it could be argued that the actual object being selected by the 

user is actually a smaller subcomponent of the object being reported by the API (e.g., as 

in the case of lists).  This represents a source of noise in our data. 
 

5.2.2.2. Index of Difficulty 
We can use the Shannon formulation of Index of Difficulty (ID) as a measure of how 

difficult a movement to a target was (MacKenzie and Buxton 1992).  ID is calculated 

using the Euclidean Distance to a target and the smaller dimension of the target (either 

width or height) (Equation 1).  Smaller IDs represent easier movements either because 

the target is large or nearby.  Likewise, larger IDs represent targets that are harder to 

reach because they are either far away or small. Figure 16 shows the histograms of Index 

of Difficulty across our three groups (for both Internet and MS Office use) and across 

Internet and MS Office use.  We see a trend across all participants that the most common 

ID was 1 (after binning to the nearest integer).  However, the frequency of the other 

Index of Difficulties varies across groups.   

 

 
Equation 1 Index of Difficulty is a measure of the distance moved and the target size 
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          A) Able            B) Older Adult           C) Motor Impaired 

 
         D) Internet                  E) MS Office 
Figure 16 Distribution of Index of Difficulty across group (A-C) and application (D and E).  We do 
not report the Index of difficulty for game data because so few of the targets were supported. 
Note that the Y-axis is different for each group because the sample sizes are different for each 
group.  Also, there were zero targets at ID = 7 in MS Office. 
 

 Index of Difficulty 
Variable Estimate Std Error Prob>|t|  
Intercept 2.2888 0.1153 <.0001 *** 
Group: Older Adult 0.0105 0.1503 0.9454   
Group: Motor Impaired -0.4169 0.1713 0.0315 * 

 R2 = .04 
Table 3: Model of Index of Difficulty by group: older adult, motor impaired, able bodied (omitted). 
*p < .05, **p < .01, ***p < .001. 
 
We investigated whether ID varied across group by building a hierarchical linear model, 

treating participant as a random effect (this analysis method is explained in Section 

5.2.2.4).  Table 3 presents the results of this model, which illustrates that targets selected 

by able bodied participants were significantly more difficult (had higher IDs) than those 

selected by motor impaired participants (p < .05).  There was no significant difference in 

the difficulty of targets selected by older adults and able bodied participants (p = .945). 
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Computer expertise is likely one cause (more experienced users may know about the 

function of smaller, and hence more obscure targets) for this difference. It is also possible 

that able-bodied participants were more confident in their ability to select these targets, 

and were more willing to select them while the other participants found another way to 

perform a task. If so, application developers may want to design interfaces with larger 

targets for older adults and individuals with motor impairments. 

5.2.2.3. Relationships Between Metrics 
We calculated the following raw performance metrics from the segmented samples in our 

Internet, Microsoft Office (MS Office), and games data sets: 

1. Too many buttons (were two buttons pressed simultaneously during the button down 

to button up period?) 

2. Click duration (time from button down to button up in milliseconds) 

3. Distance slipped (distance traveled between button down and up event in pixels) 

4. Movement time (from start of segment to click) 

5. Total distance (distance traveled by the cursor in pixels) 

6. Euclidean distance (distance between the start position of the cursor and the location 

of the button down event in pixels) 

7. Time to peak velocity (time passed before peak velocity is reached in milliseconds) 

8. Direction changes in X and Y direction (count of direction changes in movement in 

both X and Y direction) 

To understand the relationship between these eight performance variables, we conducted 

a multivariate principal component analysis.  Three groups of correlated features arose 

from this analysis: clicking measures (metrics 1 and 2), slipping (metric 3), and moving 

(metrics 4-8). We will describe our real world pointing performance using these metrics 

groupings.  Section 5.2.3 focuses on “targeting metrics” which includes these click 

metrics and the distance slipped.  Section 5.2.4 presents “movement metrics” that 

describe how the cursor moved between targets.  This section uses combined metrics 

such as velocity, throughput, and efficiency instead of raw metrics such as time and 

distance.  
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5.2.2.4. Data Analysis Method 
In the following subsections we discuss three targeting and five movement features and 

how their performance varied across application and group, and difficulty of the targeting 

task (measured by Index of Difficulty).  We investigate targeting performance by 

analyzing the frequency of pressing too many buttons, duration of clicks, and distance 

slipped during a button press.  We investigate movement by looking at the number of 

direction changes (in both the X and Y directions), efficiency of movement to a target, 

velocity, and peak velocity.   

 

We analyzed our data using multiple linear regression, a method which lets us investigate 

the effect of multiple independent variables (participant, group, application type, and 

difficulty of movement) on a given targeting or movement metric. We include participant 

in these models as a random variable to account for non-independence of participant 

observations (we have much more data from some participants than others).  

 

We present the results for each metric with one or two models, depending on the 

complexity of interactions we are investigating.  In each, we include the coefficient of 

determination, R2, which is the amount of variability explained by the model, and a 

measure of model fit. We include both main effects (attributable to one dependent 

variable, holding all others constant) and interactions (between two dependent variables). 

In this document, we do not present the results of all of the steps in the regressions we 

did, but instead report only the significant ones. In general, our simple model reports the 

main effects of all dependant variables, and an interaction between group (able bodied, 

older adult, or motor impaired) and application type (Internet, MS Office, or game).  In 

our more complex models, we include an interaction between difficulty, (measured as 

either ID or distance moved and size of target), with group.  

 

Categorical variables (such as group and application type) have been transformed into 

standard dummy variables, such that there are N-1 binary variables representing the N 

categories. For example, the variable Group has three categories: Able-bodied, Older 

Adult, and Motor Impaired. It is represented as two binary variables, Older Adult and 
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Motor-Impaired, and the third, “omitted” category, Able-bodied, is represented by setting 

the two dummy variables to zero. 

 

In the models below, the intercept represents the estimated value of the model when all 

continuous independent variables have a value of zero, and all categorical values are set 

to the omitted category (e.g., the intercept in Table 4 represents the estimated click 

duration of an able bodied adult using MS Office). For most of our models these are the 

omitted values, but we specify the omitted values for each regression. 

 

The columns in these tables include the estimate, standard error, and probability that this 

was a significant finding.  The estimate for an independent variable is the amount added 

or subtracted from the intercept every time the independent variable is increased by one 

unit (for continuous variables) or is equal to 1 (for dummy variables). 

 

We take the logarithm (base 10, after adding a start value of 0.001) to features that 

roughly follow a power law distribution to control for skew.  We indicate which metrics 

were normalized this way in both the regression table and in our description of our 

results.  Note that in order to calculate the estimated values for these normalized 

variables, one must use the inverse log.  

5.2.3. Targeting Performance Metrics 
In this section we discuss targeting performance metrics. These metrics evaluate how 

long users took to click on targets, how frequently they pressed too many buttons on the 

mouse, and slipped during a click. Our principal component analysis (Section 5.2.2.3) 

found click duration and pressing too many buttons to be in the same factor, and the 

distance slipped to be in its own.  The following section will show how click durations 

varied across groups, and how three groups experienced errors slipping off targets   
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5.2.3.1. Click Duration 
Metric description and calculation: We calculate click duration as the amount of time  (in 

milliseconds) the mouse button was held down during a click.  

 

Divisions of data: In our base statistics we compared click duration across Internet, MS 

Office and game use. In our more detailed regression analysis, due to the lack of game 

data from able bodied participants we only looked at this metric for Internet and MS 

Office use across our three groups. We also performed a second regression analysis to see 

how game data from older adults and individuals with motor impairments was different 

from MS Office and Internet. 

 

Since click duration is naturally longer during drags, we only looked at click duration 

where the mouse did not move during the button press.  

 
 

 Game Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able   147.236 15.912 128.526 10.1733 
Older Adult 226.845 72.801 221.076 63.239 163.282 30.4858 
Motor 
Impaired 

406.756 285.245 391.059 128.410 290.252 74.4451 

Figure 17 Mean and standard deviation of click duration in milliseconds organized by group and 
application. Able bodied participants had the shortest click duration, and individuals with motor 
impairments had the longest. 
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 Click Duration 
Variable Estimate Std Error Prob>|t|  
Intercept 2.2786 0.0321 <.0001 *** 
Group: Older Adult -0.0117 0.0417 0.7845  
Group: Motor Impaired 0.1822 0.0473 0.0023 ** 
Application: Internet 0.0050 0.0043 0.2468  
Older Adult X Internet 0.0116 0.0064 0.0689  
Motor impaired X Internet -0.0260 0.0070 0.0003 *** 
 R2 = .21 

Table 4: This model presents estimated click duration (log base 10 of milliseconds) by group: 
older adult, motor impaired, able bodied (omitted), and application type: Internet or MS Office 
(omitted).  *p < .05, **p < .01, ***p < .001. 
 

Regression results for click duration during Internet and MS Office use: We created a 

hierarchical linear model treating participant as a random effect. Table 4 presents the 

results of a model of click duration. This model presents the main effects and interactions 

between user group (able bodied adults, motor impaired adults, and older adults) and 

application type (MS Office, Internet) (R2 = .21).  

 

We can use this regression table to calculate the estimated click duration for any group of 

participants using either application type. We can calculate the estimated click duration 

for motor impaired participants using MS Office (the omitted, or default application 

category) as the intercept (2.2786) plus the estimated value for motor impaired 

participants (0.1822) which equals 2.4608.  We use the logarithm (base 10) in this metric, 

so estimated click durations are calculated with the inverse log (10^2.4608) = 288.94ms 

(.289 seconds). Likewise, the estimated click duration for motor impaired participants 

during Internet use is the intercept (2.2786) plus the estimated value for motor impaired 

participants (0.1822), plus the estimated value for internet use (0.005), which equals 

2.4658 or 10^2.4658 = 292.28ms (.292 seconds). The estimated click duration for able 

bodied participants using MS office is the intercept 2.2786 or 10^2.2786 = 189.93ms 

(.190 seconds), and the estimated click duration for this group using the Internet is the 

intercept (2.2786) plus the estimated value for internet use (0.005) which equals 2.2836 

or 10^2.2836 = 192.13ms (.192 seconds). 
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This model illustrates the following trends: 

• Across all applications, motor impaired participants had significantly longer click 

durations than able bodied users (p < .01) across all application types, but there was 

no difference between older adults and able bodied users (p = .785).  

• There was no main effect for application type on click duration (p = .247). 

o There was an interaction effect between able bodied and motor impaired 

participants during Internet use (p < .001). Able bodied participants had 

significantly shorter estimated click durations (10^(2.2786+0.005-0.026) = 

180.97 ms (.181 seconds) than participants with motor impairments 

(10^(2.2786+0.005+.1822-0.026) = 275.30 ms (.275 seconds). 

 
Regression results for click duration during Internet, MS Office, and game use: To 

understand how click duration varies during Internet, MS Office, and game use we 

created a second hierarchical linear model (that also treats participant as a random effect). 

Table 5 presents the results of the model of click duration. This model presents the main 

effects between user group (older adults and motor impaired adults (omitted category)) 

and application type (MS Office, Internet, and games (omitted). (R2 = .54).  

 
 Click Duration  
Variable Estimate Std Error Prob>|t|  
Intercept 2.3885 0.0520 <.0001 *** 
Group: Older Adult -0.0756 0.0520 0.1771  
Application MS Office 0.0241 0.0075 0.0014 ** 
Application: Internet 0.0108 0.0040 0.0072 ** 
Older Adult X MS Office -0.0253 0.0075 0.0007 *** 
Older Adult X Internet 0.0199 0.0040 <.0001 *** 
 R2 = .54 

Table 5: This model presents estimated click duration (log base 10 of milliseconds) by group: 
older adult, motor impaired (omitted), and application type: Internet, MS Office, and games 
(omitted). *p < .05, **p < .01, ***p < .001. 
 
This model illustrates the following trends: 

• There was no significant difference in click duration between older adults and 

participants with motor impairments (p = .177). 
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• Click durations were significantly shorter in games than they were in MS Office (p < 

.01) or during Internet use (p < .01).  

o Click durations for older adults were significantly shorter during games than 

MS Office (p < .001) and during Internet use (p < .001).  

 

Summary of regression results: We found that able bodied participants had the shortest 

click durations of our three groups. Our regression analysis on Internet and MS Office 

use across our three groups showed that motor impaired participants had statistically 

longer click durations than able bodied participants across both applications.  A 

regression analysis on Internet, MS Office and game data from our older adult and motor 

impaired participants showed that click durations during games were significantly shorter 

than during Internet or MS Office for both groups.  

 

Comparison of results to related work: Our findings are consistent with Keates’ 

investigation of the click durations across four diverse user groups (Keates et al. 2005). 

In their analysis they found the following mean click duration times across all trials in a 

laboratory tests: Young Adults = 123ms (.123 seconds), Adults = 102ms (.102 seconds), 

Older Adults = 271ms (.271 seconds), and individuals with Parkinson’s disease = 316ms 

(.316 seconds).  

 

Design implication for assistive adaptations: Individuals who have difficulty quickly 

pressing and releasing a button may benefit from changing the default click duration 

settings.  However, given that we observed significant differences in this metric across 

applications, these individuals may benefit most if this setting is based on trends in their 

behavior, or application specific instead of across all applications.  

5.2.3.2. Too Many Buttons 
Metric description and calculation: This metric indicates if the participant pressed both 

buttons on the mouse during a click. This is easily calculated by analyzing the button 

event log stream for occurrences where a button (either the left or right) gets pressed 

before the other has been released. We consider pressing too many buttons to be an error, 
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because this is not a recognized action in the Internet and MS Office data sets, or in any 

of the games we tested (FreeCell, Spider Solitaire, Solitaire, Pinball, and Minesweeper). 

 

Divisions of data: In our base statistics we compared the frequency of pressing too many 

buttons across Internet, MS Office and games. In our more detailed regression analysis, 

due to the lack of game data from able bodied participants we only looked at this metric 

for Internet and MS Office use across our three groups.  Note older adults and able 

bodied participants never pressed both buttons during MS office use.  

 
 

 Games Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able   2.75% 0.0147 10.14% 0.1828 
Older Adult 6.06% 0.0360 5.04% 0.0877 0.00% 0.0000 
Motor Impaired 6.50% 0.1264 9.80% 0.0405 0.00% 0.0000 

Figure 18 Mean and standard deviation of frequency of pressing too many buttons organized by 
group and application. Note that this error never happened for older adults or able bodied 
participants during MS Office use. 
 

 Frequency of Pressing  
Too Many Buttons  

Variable Estimate Std Error Prob>|t|  
Intercept 0.0465 0.0185 0.0330 * 
Group: Older Adult -0.0204 0.0250 0.4341   
Group: Motor Impaired 0.0025 0.0274 0.9301   
Application: Internet 0.0121 0.0173 0.5028   
Older Adult X Internet 0.0122 0.0235 0.6167   
Motor impaired X Internet 0.0369 0.0257 0.1856   
 R2 = .32 

Table 6: This model presents estimated number of times both mouse buttons were pressed by 
group: older adult, motor impaired, able bodied (omitted) and application type: Internet or MS 
Office (omitted). *p < .05, **p < .01, ***p < .001. 
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Regression results for pressing too many buttons in Internet and MS Office use: We 

created a hierarchical linear model treating participant as a random effect. Since this is a 

binary variable, we aggregated the frequency each participant made this error across all 

sessions by application, thus providing a frequency of this error for each participant 

during all Internet and all MS Office use. Table 6 presents a model of the frequency both 

buttons were pressed aggregated by all data from each participant. This model presents 

the main effects between user group (able bodied adults, motor impaired adults, and older 

adults) and Application (Internet or MS Office) (R2 = .32).  

 

This model did not find a significant difference in number of times both buttons were 

pressed between older adults and able bodied users (p = .434) or between motor impaired 

users and able bodied users (p = .9301) across both application types. There was no 

significant difference across applications, and no interaction between Application type 

and Group. 

 

Summary of regression results: Participants from all three groups pressed both buttons on 

the mouse occasionally. All but one of our participants experienced this problem in one 

of these three applications. Although not statistically significant, we saw a trend in Figure 

18 that older adults and individuals with motor impairments experienced this problem 

more frequently than able bodied participants. Though not represented in the model 

above, in our laptop deployment we saw more cases where participants clicked both 

mouse buttons than we did in our desktop deployment.  

 

Performance across sessions: Figure 19 plots the frequency of pressing too many buttons 

across all of our able bodied and motor impaired participants (and 4 of our older adults) 

from 10 randomly selected sessions of Internet and MS Office use. Appendix 10.4.1 

shows data from all participants. These charts illustrate that some participants never 

experienced this problem, while some individuals experienced it more frequently.  It also 

illustrates how this was an intermittent problem, and that some participants (especially 

from the motor impaired group) experienced it very frequently in a session.  
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Figure 19 Frequency of pressing too many buttons in ten randomly selected sessions.  These 

charts are organized by group (A = able bodied, OA = older adult, MI = motor impaired) and 

within each group, participant and session number.  
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Comparison of results to related work: Our analysis is consistent with findings from our 

desktop deployment and research by Trewin, which showed that motor impaired 

individuals have difficulty pressing too many buttons (Trewin et al. 2006).  Additionally, 

our laptop results show that able bodied individuals and older adults also occasionally 

have this problem (which was not investigated in our desktop deployment or by Trewin).  

 

Design implication for assistive adaptations: While we did not observe that this problem 

happened frequently, we still believe that it is still a useful metric for assessment since it 

is an indication of a clicking problem.  As we mentioned in Section 2.3.1, individuals 

who frequently experience this problem could be assisted by remapping button functions, 

or replacing clicking with another interaction style, such as crossing (Accot and Zhai 

2002).  

5.2.3.3. Slipping During a Button Press 
Metric description and calculation: Slipping occurs when a user unintentionally moves 

the cursor during a click (accidentally executing a drag). This metric is calculated by 

measuring the Euclidean distance traveled while a mouse button is pressed. Because past 

work shows that movements during a click under 100 pixels tend to be slips and not 

drags, we labeled movements as drags using this threshold. (Trewin et al. 2006). 

 

Divisions of data: To help distinguish between accidental slips and intentional drags, we 

limit our slip analysis by interactor type and distance moved. In our slip analysis, we only 

looked at the distance slipped and frequency of slips on interactors that are not draggable 

in our MS Office and Internet data sets.  These interactors were check boxes, push 

buttons and radio buttons.  These interactors came in a wide range of sizes. Check boxes 

and radio buttons were the smallest of these interactors when we took the mean of the 

smaller dimension of each target in pixels (check box mean = 13.28, SD = 1.42, radio 

button mean = 13.00, SD = 0), and push buttons were the largest (mean = 26.3,  

SD = 7.3).  This analysis was performed on Internet and MS Office data since these 

interactors were rarely found in our game data.  
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 Check Box Push Button Radio Button 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able 0.1473 0.06092 0.3509 0.303198 0.4751 0.726288 
Older Adult 0.9005 0.59192 0.7335 0.565243 0.1420 0.14226 
Motor Impaired 0.7148 1.23803 1.1878 0.54802 2.2361 . 

Figure 20 Mean and standard deviation of distance slipped in pixels organized by group and 
application.  Note that there was only one interaction with a radio button from the motor impaired 
group, and it was 2 pixels of slip.  
 

 Distance Slipped 
Variable Estimate Std Error Prob>|t|  
Intercept -1.8077 0.2036 <.0001 *** 
Group: Older Adult -0.1241 0.2460 0.6187   
Group: Motor Impaired 1.0130 0.3455 0.0049 ** 
Interactor: Push Button -0.3375 0.1325 0.0109 * 
Interactor: Radio Button 0.3994 0.2564 0.1193   
Push Button X Older Adult 0.2196 0.1390 0.1141   
Push Button X Motor Impaired -0.5830 0.2613 0.0257 * 
Radio Button X Older Adult -0.9087 0.2687 0.0007 *** 
Radio Button X Motor Impaired       
 R2 = .13 

Table 7: This model presents estimated distance slipped (as a log base 10 of pixels) group: older 
adult, motor impaired, able bodied (omitted), and interactor type: push button or radio button or 
check box (omitted).  *p < .05, **p < .01, ***p < .001.   
 
Regression results for distance slipped across interactors for Internet and MS Office use: 

We created a hierarchical linear model treating participant as a random effect. Table 7 

presents a model of distance slipped. This model presents the main effects and 

interactions between user group (able bodied adults, motor impaired adults, and older 

adults) and interactor type (check box, push button and radio button) (R2 = .13). Since the 

distance slipped is a continuous variable that roughly followed a Power Law distribution, 

we use the log of it in this analysis.   
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We have omitted the interaction of radio buttons for motor impaired participants because 

we only had one sample with a participant slipping on a radio button.  

 

This model illustrates the following trends: 

• There was a significant difference in distance slipped between participants with motor 

impairments and able bodied users (p < .01) across all interactor types, but not 

between able bodied users and older adults (p = .619).  

• Across all groups, slips were longer on check boxes than push buttons (p < .05), but not 

significantly different between check boxes and radio buttons (p = .119).  

• There was a main effect for interactor type on distance slipped across all groups.  For 

all of the interactor types listed below (with a significant difference), able bodied 

participants had shorter slips than either older adults or motor impaired participants. 

o For push buttons, there was a significant difference in distance slipped between 

able bodied and motor impaired participants (p < .05), but not between able 

bodied and older adults (p = .114). 

o For radio buttons there was a significant difference in the distance slipped 

between able bodied participants and older adults (p < .001).  We do not 

include the results for motor impaired participants since there was only one 

interaction with a radio button. 

 

Regression results for frequency of slips across interactors for Internet and MS Office 

use: In addition to analyzing the distance slipped, we also investigated the frequency of 

slips (any slip with a distance greater than 0) across the same interactors.  Figure 21 

shows the mean frequency of slips by each interactor type and across groups.   
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 Check Box Push Button Radio Button 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able 3.92% 0.017585 2.53% 0.022553 9.71% 0.157522 
Older Adult 35.53% 0.37758 13.85% 0.147341 6.11% 0.053576 
Motor Impaired 12.82% 0.222058 27.16% 0.133552 . . 

Figure 21 Mean and standard deviation of frequency of slips (under 100 pixels) organized by 
group and application.  Note that there was only one sample with a slip from the motor impaired 
group on a radio button. 
 

 Frequency of Slips 
Variable Estimate Std Error Prob>|t|  
Intercept 0.2477 0.0430 <.0001 *** 
Group: Older Adult -0.0462 0.0516 0.3777   
Group: Motor Impaired 0.2637 0.0740 0.0007 *** 
Interactor: Push Button -0.1008 0.0294 0.0006 *** 
Interactor: Radio Button 0.1576 0.0570 0.0057 ** 
Push Button X Older Adult 0.0651 0.0309 0.035 * 
Push Button X Motor Impaired -0.1688 0.0581 0.0037 ** 
Radio Button X Older Adult -0.2514 0.0597 <.0001 *** 
Radio Button X Motor Impaired     
 R2 = .80 

Table 8: This model presents estimated frequency of slips by group: older adult, motor impaired, 
able bodied (omitted), and interactor type: push button or radio button, and check box (omitted).  
*p < .05, **p < .01, ***p < .001. 
 
We created a hierarchical linear model treating participant as a random effect. Table 8 

presents the model of frequency of slips. This model presents the main effects and 

interactions between user group (able bodied adults, motor impaired adults, and older 

adults) and interactor type (check box, push button and radio button) (R2 = .80).  We have 

omitted the intersection of radio buttons for motor impaired participants because we only 

had one sample with a participant slipping on a radio button.  
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This model illustrates the following trends: 

• Motor impaired participants were significantly more likely to slip during a button press 

than able bodied adults (p < .001); however, older adults were not (p = .377). 

• Across all groups, participants were more likely to slip on radio buttons than check 

boxes (p < .01).  Likewise, they were more likely to slip on check boxes than push 

buttons (p < .001). This is likely because radio buttons are smaller than checkboxes, 

which are smaller than push buttons.  

• There was a main effect for interactor type on frequency of slips across all groups.   

o For push buttons, motor impaired and older adults were more likely to slip than 

able bodied participants (older adults p < .05; motor impaired p < .01). 

o For radio buttons, older adults were more likely to slip than able bodied 

participants (p < .001). 

 

Summary of regression results: Our regression analysis found that motor impaired 

participants slipped farther than able bodied users.  We also found that there were longer 

slips on checkboxes than on push buttons across all participants.  Finally, we found that 

able bodied participants tended to have shorter slips than older adults or participants with 

motor impairments. 

 

Our regression on frequency of slips showed that motor impaired participants 

experienced more slips than our able bodied group.  Across all participants, slips were 

more likely to occur on checkboxes than on push buttons.  This was most likely because 

check boxes were so much smaller than these other interactors.  When we looked at the 

interaction between group and interactor type, we saw that older adults were more likely 

to slip on radio buttons than able bodied participants.  Motor impaired participants were 

more likely the slip on push buttons than able bodied participants.  

 

Comparison of results to related work: Trewin and Keates have studied slipping 

problems in laboratory tasks (Keates et al. 2005, Trewin et al. 2006). In these studies 

they found slipping errors to be one of the problems encountered by individuals with 

motor impairments.  In an exploratory study of pointing behavior from individuals with 
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motor impairments, they found slipping account for 15% of all clicking errors (Keates et 

al. 2005).  In a study of individuals who had slipping problems, 55% of all clicking errors 

(Trewin et al. 2006) were slips. In both of these studies, participants interacted with push 

buttons.  In our data, we found that 27.17% of clicks on push buttons by individuals with 

motor impairments were slips. Unfortunately, we cannot directly compare our mean slip 

distance results to theirs because they do not report the mean distance slipped. 

 

Design implication for assistive adaptations: As we have mentioned in Section 2.2.3, the 

Steady Click adaptation (Trewin et al. 2006) can help individuals who have difficulty 

slipping by temporarily disabling dragging.  Given the frequency of this problem for 

motor impaired participants, we believe this adaptation could greatly benefit individuals 

who slip off a target, causing a failed click attempt.  

5.2.4. Movement Performance Metrics 
In this section we discuss movement performance metrics. These metrics evaluate how 

the cursor moved between targets, and measure efficiency and speed. Given that many of 

these metrics use movement time and distance traveled (both total distance and Euclidean 

distance to a target) our principal component analysis (Section 5.2.2.3) found them to be 

in the same factor. The following section will show that some of these metrics varied 

dramatically across groups and applications, and some did not.  

5.2.4.1. Efficiency, or Excess Distance Traveled 
Metric description and calculation: The ratio between the distance traveled and the 

Euclidean distance between targets is a measure that has been used to quantify motor 

impaired use  (Keates et al. 2002A, Keates et al. 2005). We use a normalized version of 

this ratio in our analysis to account for overall movement length. When looking at this 

ratio, values closer to 0 indicate perfect (or efficient movement) because there is little 

difference between the total distance and Euclidean distance moved. Values larger than 

one represent a less direct path. 

€ 

Efficiency =
DistanceToT arget − EuclideanDistanceToT arget

EuclideanDistanceToT arget
 

Equation 2 Normalized efficiency or excess distance traveled to target (values closer to 0 
indicate the most efficient movement) 
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Divisions of data: In our base statistics we compared efficiency of movement across 

Internet, MS Office and games. In our more detailed regression analysis, due to the lack 

of game data from able bodied participants we only looked at this metric for Internet and 

MS Office use across our three groups. 

 
 

 Games Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able     1.4494 1.7060 3.0319 3.6843 
Older Adult 2.8176 3.5989 2.2446 2.8889 1.2919 0.7801 
Motor Impaired 1.0853 0.6883 1.4406 1.0596 2.1192 1.4497 

Figure 22. Mean and standard deviation of movement efficiency (total distance / Euclidean 
distance traveled) organized by group and application 
 

 Efficiency of Movement  
(simple) 

Efficiency of Movement  
(complex) 

Variable Estimate Std Error Prob>|t|  Estimate Std Error Prob>|t|  
Intercept 4.2355 0.5254 <.0001 *** 4.2629751 0.554074 <.0001 *** 
Group: Older Adult 0.0906 0.8649 0.9166  0.022951 0.866704 0.9789  
Group: Motor Impaired -0.4547 0.7095 0.5217  -0.303703 0.718586 0.6726  
Application: Internet 0.0679 0.5030 0.8927  0.0313966 0.50307 0.9502  
Older Adult X Internet 0.6436 0.8513 0.4496  0.571869 0.851655 0.5019  
Motor impaired X Internet -0.0764 0.6943 0.9124  -0.052887 0.694319 0.9393  
Index of Difficulty -0.8721 0.0457 <.0001 *** -0.857124 0.104975 <.0001 *** 
Older Adult X  
Index of Difficulty 

    
-0.357855 0.128008 0.0052 ** 

Motor impaired X  
Index of Difficulty 

    
0.3305785 0.194645 0.0895  

 R2 = .00 R2 = .00 
Table 9:  Our simple model presents estimated normalized efficiency of movement (total distance 
traveled divided minus Euclidean distance traveled, divided by Euclidean distance traveled) by 
group: older adult, motor impaired, able bodied (omitted), and application type: Internet or MS 
Office (omitted). Our complex model includes interactions between user group and Index of 
Difficulty. *p < .05, **p < .01, ***p < .001. 
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Regression results for normalized movement efficiency for Internet and MS Office use: 

We created a hierarchical linear model treating participant as a random effect. Table 9 

presents the results of two models of efficiency of movement. The simple model presents 

the main effects for user group (able bodied adults, motor impaired adults, and older 

adults), application (MS Office, Internet), and Index of Difficulty, as well as interactions 

between user group and application (R2 = .00. Overall this regression analysis showed no 

significant effects (the R2 of the model was extremely low). The complex model adds an 

interaction between user group and ID, with no change (R2 = .00).   

 

Summary of regression results: Overall, there is not a clear trend for which group was the 

most efficient. We expected that able bodied participants would have been the most 

efficient, however we did not see this effect.  

 

Comparison of results to related work: This metric can be highly affected by individual 

difference, and is especially affected by spastic movements (which none of our 

participants had). In a laboratory study, Keates et al. found that older adults had the least 

efficient movement (1.7874) when compared to young adults (1.3762), adults (1.4111), 

and individuals with Parkinson’s Disease (1.213) (Keates et al. 2005). They found the 

mean of this metric to be significantly different across groups at p < .05. Note that Keates 

used the ratio between distance traveled and Euclidean distance, and did not control for 

overall movement length as we did.  

 

Performance across sessions: Figure 23 plots the mean normalized efficiency across all 

of our able bodied and motor impaired participants (and 4 of our older adults) from ten 

randomly selected sessions of Internet and MS Office use. Data from all participants is in 

Appendix 10.4.2. These charts show that efficiency varied across sessions and 

participants, suggesting a possible reason our regression provide inconclusive results.  

This variance is especially clear for older adults, a group where we see that some 

individuals (OA3 and OA4) were efficient with little variance across sessions, and others 

(A2 and MI4) are less efficient, and varied across sessions.  
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Figure 23 Normalized efficiency across ten randomly selected sessions.  These charts are 
organized by group (A = able bodied, OA = older adult, MI = motor impaired) and within each 
group, participant and session number.  
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Design implication for assistive adaptations: Individuals who have extremely inefficient 

movement may benefit from adaptations that help them acquire targets.  Examples of 

these adaptations include automatically jumping or “snapping” the cursor to a target 

(Sutherland 1964), or changing how the cursor behaves near a target (Balakrishnan 

2004).  However, given the high potential cost of errors (placing a user on an unintended 

target) the effectiveness and configuration of these adaptations in real world interfaces 

needs to be investigated.  We also believe further investigation is needed to distinguish 

between inefficient movements caused by pointing problems, versus inefficient 

movements caused by “meandering” behavior.  

5.2.4.2. Changes in Direction 
Metric description and calculation: The number of direction changes during a sample is 

another metric to describe movement and give an estimate of efficiency (in addition to 

excess distance traveled). There are many potential reasons an individual may experience 

a large number of direction changes, such as a tremor that makes straight movement 

difficult. Another potential cause for a large number of direction changes is wiggling the 

cursor to either wake up the screen (if it has fallen asleep), or when the user can’t 

immediately find the cursor.  We investigate direction change by normalizing it by the 

Euclidean distance traveled since it is likely that longer motions will have more direction 

changes.  

 

Divisions of data: In our base statistics we compared the number of normalized X and Y 

changes across Internet, MS Office and games. In our more detailed regression analysis, 

due to the lack of game data from able bodied participants we only looked at this metric 

for Internet and MS Office use across our three groups. We did not include Index of 

Difficulty in this model because these metrics are normalized by the Euclidean distance 

traveled (the log of which is used in the calculation of ID), instead we included log (base 

10) of the target size. 
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 Games Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able   0.026371 0.005735 0.032231 0.012941 
Older Adult 0.029234 0.019546 0.041493 0.014466 0.026964 0.009523 
Motor Impaired 0.092916 0.085009 0.073792 0.048513 0.069344 0.026817 

Figure 24 Mean and standard deviation of X direction changes (normalized by Euclidean 
distance traveled) organized by group and application (direction changes / pixel). 
 

 X Direction Change 
(simple) 

X Direction Change 
(complex) 

Variable Estimate Std Error Prob>|t|  Estimate Std Error Prob>|t|  
Intercept -1.7778 0.0467 <.0001 *** -1.7860 0.0499 <.0001 *** 
Group: Older Adult -0.0220 0.0630 0.7312   -0.0385 0.0635 0.5531   
Group: Motor Impaired 0.2314 0.0674 0.0050 ** 0.2439 0.0681 0.0038 ** 
Application: Internet -0.0167 0.0189 0.3772   -0.0162 0.0189 0.3910   
Older Adult X Internet 0.0355 0.0298 0.2330   0.0514 0.0298 0.0842   
Motor impaired X Internet  -0.0408 0.0290 0.1590  -0.0551 0.0291 0.0582  
Log10(Target Size) 0.0509 0.0049 <.0001 *** 0.0549 0.0120 <.0001 *** 
Older Adult X  
Log10(Target Size) 

    
-0.1344 0.0140 <.0001 *** 

Motor impaired X  
Log10(Target Size) 

    
0.1176 0.0226 <.0001 *** 

 R2 = 0.05 R2 = 0.06 
Table 10: Our simple model presents estimated count X direction changes normalized by 
Euclidean distance traveled (log base 10) by group: older adult, motor impaired, able bodied 
(omitted), and application type: Internet or MS Office (omitted) and log10(target size).  Our 
complex model includes interactions between user group and log10(target size).   
*p < .05, **p < .01, ***p < .001. 
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Regression results on normalized X direction changes for Internet and MS Office use: 

We created a hierarchical linear model treating participant as a random effect. Table 10 

presents the results of two models of X direction changes. The simple model presents the 

main effects and interactions between user group (able bodied adults, motor impaired 

adults, and older adults) and application type (MS Office, Internet) and a main effect for 

the target size (log base 10) (R2 = .05). Our regression analysis uses the log (base 10) of 

the normalized number of X direction changes.   

 
Our simple model illustrates the following trends: 

• Individuals with motor impairments had significantly more X direction change per 

Euclidean distance traveled than able bodied participants (p < .01) across application 

type with constant target size, however there was no significant difference in 

performance in this metric between older adults and able bodied users (p = .731).  

• There was no main effect for application type on number of X direction changes  

(p = .377) across all groups controlling for target size. Likewise there were no 

interactions between application and group.  

• Target size has a significant impact on the number of X direction changes (p < .001) 

across all application types and groups. Larger targets are associated with more X 

direction changes. 

 

To understand the effect of target size on X direction changes across groups, our more 

complex model adds an interaction between user group and target size (R2 = .06). 

• There was a significant interaction between target size and user group.  Though all 

groups had more X direction changes for larger targets, the effect was larger for 

motor impaired individuals (p < 0.001) and not as large for older adults (p < .001) 

when compared to able bodied individuals (illustrated in table 11). 

• Table 11 shows the estimated number of X direction changes for a small target (10 

pixels in the smallest dimension) and a large target (100 pixels in the smallest 

dimension) during Internet use.  For these targets, motor impaired participants had the 

most direction changes per distance traveled, and able bodied adults had the fewest. 
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 Target Size = 10 pixels  Target Size = 100 pixels  

Able .0110 (changes/pixel) .0130 (changes/pixel) 
Older Adults .0221 (changes/pixel) .0184 (changes/pixel) 

Motor Impaired .0235 (changes/pixel) .0350 (changes/pixel) 
Table 11 estimated number of normalized X direction changes during Internet use for a target 
whose size is either 10 or 100 pixels.  

 
 

 Games Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able   0.0268 0.0041 0.0316 0.0062 
Older Adult 0.0427 0.0503 0.0403 0.0134 0.0293 0.0132 
Motor Impaired 0.0380 0.0217 0.0511 0.0171 0.0468 0.0203 

Figure 25 Mean and standard deviation of Y direction changes (normalized by Euclidean 
distance traveled) organized by group and application (direction changes / pixel). 
 

 Y Direction Change (simple) Y Direction Change (complex) 
Variable Estimate Std Error Prob>|t|  Estimate Std Error Prob>|t|  
Intercept -1.7256 0.0442 <.0001 *** -1.7441 0.0475 <.0001 *** 
Group: Older Adult -0.0383 0.0603 0.5337   -0.0473 0.0608 0.4474   
Group: Motor Impaired 0.1962 0.0636 0.0089 ** 0.2037 0.0642 0.0076 ** 
Application: Internet 0.0130 0.0196 0.5083   0.0131 0.0196 0.5044   
Older Adult X Internet 0.0572 0.0312 0.0671   0.0654 0.0313 0.0366 * 
Motor impaired X Internet -0.0316 0.0297 0.2882   -0.0391 0.0298 0.1899   
Log10(Target Size) -0.0077 0.0049 0.1164   0.0037 0.0120 0.7580   
Older Adult X  
Log10(Target Size) 

    
-0.0766 0.0140 <.0001 *** 

Motor impaired X  
Log10(Target Size) 

    
0.0783 0.0226 0.0005 *** 

 R2 = 0.05 R2 = 0.06 
Table 12: Our simple model presents estimated count Y direction changes normalized by 
Euclidean distance traveled (log base 10) by group: older adult, motor impaired, able bodied 
(omitted), and application type: Internet or MS Office (omitted) and log10(target size).  Our 
complex model includes interactions between user group and log10(target size).   
*p < .05, **p < .01, ***p < .001. 
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Regression results on normalized Y direction changes for Internet and MS Office use:  

We performed the same analysis on Y direction changes that we used for X direction 

changes.  We created a hierarchical linear model treating participant as a random effect. 

Table 12 presents the results of two models of Y direction changes. Our simple model 

presents the main effects and interactions between user group (able bodied adults, motor 

impaired adults, and older adults) and application type (MS Office, Internet) and a main 

effect for the target size (log base 10) (R2 = .05). We also created a more complex model 

that adds an interaction between user group and target size (R2 = .06). Our regression 

analysis uses the log (base 10) of the normalized number of Y direction changes.   

 

Results for Y direction changes were qualitatively similar to X direction changes, with 

the exception of no main effect for target size. 

 

Summary of regression results: Our regression analysis showed that motor impaired 

participants had significantly more direction changes (both X and Y) per distance 

traveled than able bodied users. When we looked at the interaction of group on target 

size, we found that both older adults and motor impaired individuals had more direction 

changes per distance moved than able bodied adults.  The estimates from this model 

showed that motor impaired individuals had more than twice as many direction changes 

per pixel traveled than able bodied participants (for both small and large targets).  

 

Performance across sessions: Figure 26 plots the mean number of X and Y direction 

changes (normalized by Euclidean distance traveled) across all of our able bodied and 

motor impaired participants (and 4 of our older adults) in ten randomly selected sessions 

of Internet and MS Office use. Appendix 10.4.3 shows data from all participants. In these 

charts X direction changes are indicated red, and Y direction changes with a blue.  These 

charts illustrate that the number of direction changes appear to vary more across sessions 

for older adults and motor impaired participants than able bodied individuals. 

Additionally, there was variability across participants in the older adult group in this 

metric (OA4 and OA8) had few direction changes and little variability, while OA1 and 

OA5 had more direction changes and variability.  
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Figure 26 Normalized number of direction changes across ten randomly selected sessions.  
These charts are organized by group (A = able bodied, OA = older adult, MI = motor impaired) 
and within each group, participant and session number.  
 

 

Comparison of results to related work: Related work by Keates has explored the 
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difference in the raw count of direction changes for both individuals with and without 

pointing problems (Keates et al. 2002A, Keates et al. 2005).  They also observed that 

older adults and individuals with motor impairments had more direction changes than 

able bodied individuals (Keates et al. 2005). However, since they did not take the 

Euclidean distance traveled into account, there may be a slight difference in our results. 

 

Design implication for assistive adaptations:  Poor performance for this metric (high 

ratios between number of direction changes and distance traveled) can occur for a variety 

of reasons.  Two likely reasons we observed poor performance include difficulty moving 

in a straight line (possibly due to an intermittent tremor) or difficulty selecting a target 

(possibly due to a slipping problem).  Appropriate adaptations depend on the cause of this 

performance problem.  Individuals who have difficulty moving in a straight line would 

most likely benefit from an adaptation that smoothes the cursor movement (to remove a 

tremor or sporadic movement) (Levine and Schappert 2002).  Individuals who have 

difficulty targeting may benefit more from an adaptation that is designed to help with 

targeting problems such as steady clicks (Trewin et al. 2006) or changing how the cursor 

interacts with a target (Worden et al. 1997, Balakrishnan 2004). Further investigation is 

required to automatically detect which kind of efficiency problem an individual is 

experiencing.  

5.2.4.3. Throughput 
Metric description and calculation: Throughput, or Index of Performance, is a common 

metric that describes movement speed, independent of target size and distance to the 

target (ISO 9241-9:2000(E) 2002). Generally speaking, movement time should increase 

as index of difficulty increases (i.e. it should take individuals longer to reach harder 

targets than easy ones) (ISO). Throughput is computed by dividing the Index of 

Difficulty (ID) by movement time to a target (Equation 2). ID (Section 5.2.1.2) is a 

measure of how difficult a movement is based on the target size and distance to that 

target. 

 
Equation 3 Throughput (bits per millisecond) is a combined speed/accuracy metric 

Divisions of data: In our base statistics we compared throughput across Internet, MS 
! 

Throughput =
ID

Time
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Office and games. In our more detailed regression analysis, due to the lack of game data 

from able bodied participants we only looked at this metric for Internet and MS Office 

use across our three groups. It is important to note that when we look at throughput, we 

are only able to evaluate performance on targets that are supported by the accessibility 

API. This includes the Microsoft Word and Internet data but not the games data, and thus 

excludes a majority of the motions logged for elders and motor impaired users. 

 
 

 Internet MS Office 
 Mean Std Dev Mean Std Dev 
Able 0.0047 0.0038 0.0035 0.0012 
Older Adult 0.0031 0.0013 0.0026 0.0011 
Motor Impaired 0.0019 0.0006 0.0021 0.0008 

Figure 27 Mean and standard deviation of throughput organized by group and application  
(throughput is in bits per millisecond). 
 
 

 Throughput 
(simple) 

Variable Estimate Std Error Prob>|t|  
Intercept -1.9029 0.0054 <.0001 *** 
Group: Older Adult -0.0026 0.0074 0.723  
Group: Motor Impaired -0.0248 0.0078 0.006 ** 
Application: Internet -0.0060 0.0022 0.007 ** 
Older Adult X Internet 0.0011 0.0036 0.762  
Motor impaired X Internet 0.0002 0.0033 0.942  
 R2 = .04 

Table 13:  Our simple model presents estimated throughput (log base 10) in milliseconds by 
group: older adult, motor impaired, able bodied (omitted), and application type: Internet or MS 
Office (omitted). *p < .05, **p < .01, ***p < .001. 
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Regression results for throughput for Internet and MS Office use: We created a 

hierarchical linear model treating participant as a random effect. Table 13 presents the 

results of a model of throughput.  Our model presents the main effects and interactions 

between user group (able bodied adults, motor impaired adults, and older adults) and 

application type (MS Office, Internet) (R2 = .04).  

 

Our model illustrates the following trends: 

• Motor impaired participants had a lower throughput than able bodied users (p < .01) 

across all application types, and there was no significant difference between older 

adults and able bodied users (p = .72).  

• There was a main effect for application on throughput (p < .01) across all groups where 

throughput was higher in MS Office than during Internet use.   

o There was no significant interaction in throughput between application and 

group for able bodied users compared to older adults (p = .762) or motor 

impaired users (p = .942).  

 
Summary of regression results: Able bodied participants had higher throughput than 

motor impaired participants. This means that able bodied participants were moving the 

fastest for any given ID. Additionally, our regression analysis showed that there was a 

main effect for application across group, where participants had higher throughput during 

MS office use than Internet use.  

 

Comparison of results to related work: Throughput has been well investigated for able 

bodied individuals.  In a laboratory study investigating throughput across pointing 

devices, MacKenzie found a mean throughput of 4.9 bits per second (MacKenzie et al. 

2001).  This value is very similar to our throughput for able bodied participants during 

Internet use (4.7 bits per second).  In a laboratory investigation, Wobbrock and Gajos 

found higher throughput for able bodied users (5.79 bits per second) than individuals with 

motor impairments (3.07 bits per second) (Wobbrock and Gajos 2008).   

 
Performance across sessions: Figure 28 plots the mean throughput across all of our able 

bodied and motor impaired participants (and 4 of our older adults) in ten randomly 
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selected sessions of Internet and MS Office use. Appendix 10.4.4 shows data from all 

participants. These charts illustrate that throughput varied more for some individuals 

(OA6, OA7) than others (A2, A4) across sessions. 

 

 

 
Figure 28 Mean throughput across ten randomly selected sessions.  These charts are organized 
by group (A = able bodied, OA = older adult, MI = motor impaired) and within each group, 
participant and session number.  
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Design implication for assistive adaptations: Individuals who have a low throughput may 

benefit from adaptations that dynamically increase the control-display gain (ratio between 

the physical distance moved by the pointer and the effect on the pointer) to make their 

movements have a bigger impact (Balakrishnan 2004, Koester et al. 2005).  As Koester 

showed, care must be made when adjusting this parameter since it can easily have 

negative as well as positive effects on performance.  Alternatively, individuals who have 

low throughput may benefit from simply augmenting an interface to make the targets 

larger or closer together (Gajos et al. 2008). 

5.2.4.4. Movement speed: velocity and peak velocity 
Metric description and calculation: We present metrics about overall velocity and also 

look at where in the movement the peak velocity was reached. Velocity is calculated by 

dividing the Euclidean Distance moved by how long it took to make that movement (in 

milliseconds). Peak Velocity is the highest velocity a participant experienced between 

two mouse move events, we investigate both the absolute peak velocity in a given 

movement, and where in the movement the participant reaches this peak velocity.   

 

Divisions of data: In our base statistics we compared velocity, peak velocity and relative 

time to peak velocity across Internet, MS Office and games. In our more detailed 

regression analysis, we use the log (base 10) of the velocity and peak velocity. 

 

For both velocity and peak velocity we first present regression models across our three 

groups during Internet and MS Office use. We then present regression models 

investigating how game data differed from MS Office and Internet use for older adults 

and individuals with motor impairments.  Finally, we investigate relative time to peak 

velocity during Internet and MS Office use.  
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 Games Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able   0.270518 0.052330 0.271869 0.079846 
Older Adult  0.248280 0.102295 0.182916 0.059150 0.229581 0.063095 
Motor Impaired 0.133242 0.055645 0.100271 0.037953 0.115208 0.016822 

Figure 29 Mean and standard deviation of velocity (pixels/ms) organized by group and 
application 
 
 
 Velocity (simple) Velocity (complex) 
Variable Estimate Std 

Error 
Prob>|t|  Estimate Std 

Error 
Prob>|t|  

Intercept -4.4737 0.0491 <.0001 *** -4.2530 0.0535 <.0001 *** 
Group: Older Adult -0.0575 0.0650 0.3888  -0.0127 0.0667 0.8519  
Group: Motor Impaired -0.1676 0.0701 0.0316 * -0.2603 0.0724 0.0029 ** 
Application: Internet -0.0253 0.0170 0.1362  -0.0171 0.0170 0.3144  
Older Adult X Internet 0.0202 0.0273 0.4577  0.0111 0.0272 0.6816  
Motor Impaired X Internet -0.0112 0.0254 0.6587  0.0042 0.0254 0.8675  
Log10(Target Size) 0.0630 0.0045 <.0001 *** 0.0529 0.0106 <.0001 *** 
Log10(Euclidean Distance) 1.1874 0.0037 <.0001 *** 1.0630 0.0069 <.0001 *** 
Log10(Target Size) X  
Older Adult 

    
-0.0146 0.0126 0.2796  

Log10(Target Size) X  
Motor Impaired 

    
-0.0048 0.0199 0.8081  

Log10(Euclidean Distance) X 
Older Adult 

    
0.0381 0.0086 <.0001 *** 

Log10(Euclidean Distance) X 
Motor Impaired  

    
-0.1995 0.0125 <.0001 *** 

 R2 = .67 R2 = .68 
Table 14: Our simple model presents estimated velocity (log base 10 of pixels per millisecond) by 
group: older adult, motor impaired, able bodied (omitted), and application type: Internet or MS 
Office (omitted) and log10(Target Size) and log10(Euclidean Distance). Our complex model 
includes interactions between user group and Index of Difficulty (ID).    
*p < .05, **p < .01, ***p < .001. 
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Regression results for velocity for Internet and MS Office use: We created a hierarchical 

linear model of velocity treating participant as a random effect. Table 14 presents the 

results of two of these models.  Our simple model presents the main effects and 

interactions between user group (able bodied, motor impaired, and older adults) and 

application type (MS Office, Internet) and a main effect for target distance (log10 of 

Euclidean distance) and target size (log10 of smaller target size dimension) (R2= .67).  In 

this analysis, we have isolated the components of Index of Difficulty (distance and target 

size) so we can understand the effect of movement difficulty on velocity metrics.   

 

Our simple model illustrates the following trends: 

• Motor impaired participants had lower velocity than able bodied users (p < .05), and 

there was no significant difference in velocity between older adults and able bodied 

users (p = .388) across all application types, holding target size and distance constant.  

• There was no main effect for application on velocity (p = .136).  

• As one would expect based on Fitts’ Law (Fitts 1954), there was a main effect for 

target size and distance on velocity (both p < .001) across all application types and 

groups. Velocity increased with target size and distance. 

 

Our complex model adds an interaction between user group and target size, and user 

group and target distance (R2 = .68). 

• There was no significant interaction between target size and user group.   

• There was a significant interaction between target distance and user group. Table 15 

shows the estimated velocities using MS Office for a small target (10 pixels) when 

that target is 100 pixels (near) and 700 pixels (far) away. 

o As target distance increases (holding target size constant), able bodied adults 

have a higher velocity than older adults (p < .001).  For both groups, velocity 

increases as target distance increases.  
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o As target distance increases (holding target size constant), able bodied adults 

have a higher velocity than individuals with motor impairments (p < .001).  

However, for target distances less than 3 pixels, motor impaired participants 

have higher estimated velocity than able bodied participants. For both groups, 

velocity increases as target distance increases. 
 Target Size = 10 pixels  

Distance: 100 pixels  
Target Size = 10 pixels  

Distance: 700 pixels  

Able 0.0162 pixels per millisecond 
(16.22 pixels per second) 

.1758 pixels per millisecond 
(175.75 pixels per second) 

Older 
Adults 

.0084 pixels per millisecond 
(8.41 pixels per second) 

.0717 pixels per millisecond 
(71.67 pixels per second) 

Motor 
Impaired 

.0049 pixels per millisecond 
(4.94 pixels per second) 

.0265 pixels per millisecond 
(26.5 pixels per second) 

Table 15 Estimated velocities using MS Office for a target whose size is 10 pixels, and is 
either 100 or 700 pixels away.  
 
 
 
 
 

 
 

 Games Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able   1.13536 0.325628 1.54139 0.992193 
Older Adult 0.932058 0.44551 0.85402 0.579987 1.04040 0.234322 
Motor Impaired 0.980048 1.01222 0.52889 0.298059 0.76626 0.323082 
Figure 30 Mean and standard deviation of peak velocity (pixels/ms) organized by group 
and application 
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 Peak Velocity (simple) Peak Velocity (complex) 
Variable Estimate Std 

Error 
Prob>|t|  Estimate Std 

Error 
Prob>|t|  

Intercept -1.4525 0.0335 <.0001 *** -1.4411 0.0334 <.0001 *** 
Group: Older Adult -0.0201 0.0440 0.655  -0.0118 0.0430 0.7879  
Group: Motor Impaired -0.0502 0.0488 0.3249  -0.0613 0.0477 0.2246  
Application: Internet -0.0165 0.0080 0.0377 * -0.0170 0.0080 0.0328 * 
Older Adult X Internet 0.0010 0.0128 0.4482  0.0053 0.0128 0.68  
Motor Impaired X Internet 0.0113 0.0118 0.3404  0.0147 0.0119 0.2157  
Log10(Target Size) 0.0155 0.0021 <.0001 *** 0.0147 0.0046 0.0016 ** 
Log10(Euclidean Distance) 0.5737 0.0009 <.0001 *** 0.5660 0.0017 <.0001 *** 
Log10(Target Size) X  
Older Adult 

    
0.0220 0.0055 <.0001 *** 

Log10(Target Size) X  
Motor Impaired 

    
-0.0199 0.0087 0.0219 * 

Log10(Euclidean Distance 
Traveled) X Older Adult 

    
0.0003 0.0021 0.8969  

Log10(Euclidean Distance 
Traveled) X Motor Impaired 

    
-0.0105 0.0031 0.0007 *** 

 R2 = .89 R2 = .89 
Table 16: Our simple model presents estimated peak velocity (log base 10 per millisecond) by 
group: older adult, motor impaired, able bodied (omitted), and application type: Internet or MS 
Office (omitted) and log10(Target Size) and log10(Euclidean Distance). Our complex model 
includes interactions between user group and Index of Difficulty (ID).  
*p < .05, **p < .01, ***p < .001. 
 
Regression results for peak velocity for Internet and MS Office use: We created a 

hierarchical linear model of peak velocity treating participant as a random effect. Table 

16 presents two of these models.  Our simple model presents the main effects and 

interactions between user group (able bodied, motor impaired, and older adults) 

application type (MS Office, Internet) and a main effect for the target distance (log10 of 

Euclidean distance) and target size (log10 of smaller target size dimension) (R2 = .89).  

 

Our simple model illustrates the following trends: 

• There was no significant difference in peak velocity between older adults and able 

bodied users (p = .655) or between motor impaired adults and able bodied users 

across application types (p = .325) while holding target size and distance constant. 

• There was a main effect for application on peak velocity (p < .05) across all groups. 

Peak velocity was slower for Internet use than for MS Office use. 

• There was a main effect for target size and distance on peak velocity (both p < .001).  
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Our complex model adds an interaction between user group and target size, and user 

group and target distance (R2 = .89). Table 17 shows the estimated peak velocities using 

MS Office for 10 and 100 pixel targets 100 pixels away.  

• There was a significant interaction between user group and target size.   

o As target size increases (holding target distance constant), able bodied adults 

have a higher peak velocity than older adults (p < .001). 

o As target size increases (holding target distance constant), able bodied adults 

have a higher peak velocity than motor impaired participants (p < .05).  Peak 

velocity for motor impaired participants decreases as target size increases, 

which we found to be an unexpected result.  
 Target Size = 10 pixels  

Distance: 100 pixels  
Target Size = 100 pixels  

Distance: 100 pixels  

Able .6594 pixels per millisecond 
 (659.43 pixels per second) 

.6789 pixels per millisecond 
 (678.88 pixels per second) 

Older 
Adults 

.4914 pixels per millisecond 
(491.44 pixels per second) 

.5347 pixels per millisecond 
 (534.70  pixels per second) 

Motor 
Impaired 

.4544 pixels per millisecond 
 (454.37 pixels per second) 

.4489 pixels per millisecond 
 (448.89 pixels per second) 

Table 17 Estimated peak velocities using MS Office for a target whose size is either 10 or 
100 pixels, and is 100 pixels away.  
 

• There was a significant interaction between user group and target distance between 

able bodied and motor impaired individuals.   

o As target distance increases (holding target size constant), able bodied adults 

have higher peak velocity than individuals with motor impairments (p < .001). 

 
 Velocity  Peak Velocity 
Variable Estimate Std 

Error 
Prob>|t|  Estimate Std 

Error 
Prob>|t|  

Intercept -1.8764 0.0343 <.0001 *** -1.4847 0.0308 <.0001 *** 
Group: Older Adult 0.0107 0.0343 0.7618  -0.0023 0.0308 0.9425  
Application MS Office -0.0585 0.0094 <.0001 *** -0.0070 0.0108 0.5167  
Application: Internet -0.0230 0.0049 <.0001 *** -0.0194 0.0056 0.0005 *** 
Older Adult X MS Office -0.0127 0.0094 0.1765  -0.0038 0.0108 0.7264  
Older Adult X Internet 0.0056 0.0049 0.248  -0.0135 0.0056 0.0158 * 
Log10(Euclidean Distance) 0.2166 0.0004 <.0001 *** 0.2469 0.0003 <.0001 *** 
 R2 = .58 R2 = .73 
Table 18: This model presents estimated velocity and peak velocity (log base 10) in pixels per 
millisecond, by group: older adult and motor impaired (omitted), and application type: Internet, MS 
Office, or games (omitted).  *p < .05, **p < .01, ***p < .001. 
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Regression results for velocity and peak velocity for game, Internet and MS Office use: 

We created two hierarchical linear models treating participant as a random effect. Table 

18 presents the results of velocity and peak velocity models. This model presents the 

main effects between user group (motor impaired adults and older adults) and application 

type (MS Office, Internet, games) (velocity R2 = .54, peak velocity R2 = .73).  

 

This model illustrates the following trends: 

• There was no significant difference between motor impaired participants and older 

adults in velocity (p = .762) or peak velocity (p = .9526) across application types. 

• Velocity was higher in games than during Internet (p < .001) or MS Office  

(p < .001) use, across both groups. 

• Peak velocity was higher during game use than Internet use (p < .001), but peak 

velocity during game use was not statistically different from MS office use, across 

both groups. 

• The only interaction effect we found between application type and group was that older 

adults had a significantly higher peak velocity than motor impaired users during 

Internet use (p < .05). 

• There was a main effect for target distance on both velocity and peak velocity  

(p < .001) across all application types and both groups.  Velocity and peak velocity 

increase with target distance. 

 

Relative time to peak velocity: The relative time to reach peak velocity is another 

interesting movement metric to investigate. Pointing motions can be modeled as having 

two phases: a rapid ballistic motion towards the target, followed by one or more, typically 

overlapping, corrective motions. The second phase of motion consists of corrections to 

the inaccuracies the user finds in their initial ballistic movement towards the target.  This 

phase of motion can itself be modeled as a series of smaller ballistic motions, but it is 

most typically done in an overlapped form which appears more as an extended tail on the 

initial ballistic motion, hence this phase is often called the corrective tail.   
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If the initial ballistic motion were perfect (with no corrective tail) then we would expect 

the peak velocity to be at the center of the motion (center of the bell shaped min-jerk 

curve) in both time and distance.  Since the corrective motions are smaller and slower 

than the initial ballistic motion, the peak still occurs within that first part of the motion.  

As more correction occurs, the corrective tail becomes longer as a proportion of the 

overall motion.  This stretches the motion out in time and proportionally makes the peak 

occur earlier in the overall motion. Hence, a proportionally earlier peak velocity 

corresponds to a proportionally longer corrective tail.  (Grossman and Balakrishnan 2005; 

Meyer et al. 1990).  

 

In our data, we compute relative time to peak velocity using the time when peak velocity 

was reached and the total time for the motion. Figure 31 illustrates the relative time to 

peak velocity across groups and organized by application. Figure 32 illustrates that peak 

velocity was reached earlier in the movement (or, equivalently, corrective tails were 

proportionally longer) as ID increased.   

 
 

 Games Internet MS Office 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Able   0.322302 0.089189 0.357881 0.056031 
Older Adult 0.336674 0.095072 0.310913 0.097031 0.311174 0.112251 
Motor Impaired 0.394898 0.134229 0.362295 0.106406 0.417937 0.130663 

Figure 31 Mean and standard deviation of relative time to peak velocity (pixels/ms) organized by 
group and application.  
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Figure 32 Chart of means and standard deviations for relative time to peak velocity (in 
percentage) by Index of Difficulty for Internet use. Smaller IDs represent targets that are easier to 
reach, while larger IDs are harder (farther away or smaller).  
 
 Relative Time to  

Peak Velocity (simple) 
Relative Time to  

Peak Velocity (complex) 
Variable Estimate Std Error Prob>|t|  Estimate Std Error Prob>|t|  
Intercept 0.542 0.0104 <.0001 *** 0.5496 0.0127 <.0001 *** 
Group: Older Adult -0.0329 0.0145 0.0272 * -0.0268 0.0142 0.0646  
Group: Motor Impaired 0.0455 0.0135 0.0023 ** 0.0351 0.0133 0.013 * 
Application: Internet 0.0003 0.0069 0.9693  -0.0006 0.0069 0.9315  
Older Adult X Internet 0.0212 0.0114 0.0624  0.0195 0.0114 0.0866  
Motor Impaired X Internet -0.0235 0.0098 0.017 * -0.0225 0.0098 0.0221 * 
Log10(Target Size) 0.0148 0.0019 <.0001 *** 0.0260 0.0045 <.0001 *** 
Log10(Euclidean Distance 
 to Target) -0.0969 0.0016 <.0001 

*** 
-0.1117 0.0030 <.0001 *** 

Log10(Target Size) X  
Older Adult    

 
0.0018 0.0054 0.7381  

Log10(Target Size) X  
Motor Impaired 

    
0.0122 0.0085 0.1498  

Log10(Euclidean Distance 
Traveled) X Older Adult 

    
0.0071 0.0037 0.0557  

Log10(Euclidean Distance 
Traveled) X Motor Impaired 

    
-0.0253 0.0054 <.0001 * 

 R2 = .07 R2 = .07 
Table 19: Our simple model presents estimated relative time to peak velocity by group: older 
adult, motor impaired, able bodied (omitted), and application type: Internet or MS Office (omitted) 
and log10(Target Size) and log10(Euclidean Distance). Our complex model includes interactions 
between user group and Index of Difficulty (ID). *p < .05, **p < .01, ***p < .001. 
 

Regression results for relative time to peak velocity for Internet and MS Office use: We 

created a hierarchical linear model of relative time to peak velocity treating participant as 

a random effect. Table 19 presents the results of two of these models.  Our simple model 

presents the main effects and interactions between user group (able bodied, motor 

impaired, and older adults) application type (MS Office, Internet) and a main effect for 
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target distance (log10 of Euclidean distance) and target size (log10 of smaller target size 

dimension) (R2 = .07).  

 

Our simple model illustrates the following trends: 

• We found that older adults reached peak velocity before able bodied adults, and motor 

impaired participants reached it last. There was a significant difference in relative 

time to peak velocity between older adults and able bodied users (p < .05) and 

between motor impaired adults and able bodied users across all application types (p < 

.01), while holding target distance and size constant.   

• There was no main effect for application on relative time to peak velocity  

(p = .97) across all groups, while holding target distance and size constant. 

o However there was a significant interaction between able bodied and motor 

impaired relative time to peak velocity during Internet use, where able bodied 

participants reached peak velocity first (p < .05). 

• There was a main effect for target size on relative time to peak velocity  

(p < .001) across all application types, groups, while holding target distance constant.  

As target size increases (and target distance is controlled for), relative time to peak 

velocity increases, indicating shorter corrective tails. 

• There was a main effect for target distance on relative time to peak velocity (p< .001) 

across all application types and groups while holding target size constant.  As target 

distance increases (and target size is held constant), relative time to peak velocity 

decreases, indicating longer relative corrective tails on far targets.  

 

Our complex model adds an interaction between user group and target size, and user 

group and target distance (R2 = .07).  Table 20 shows the estimated relative time to peak 

velocity for small and large targets, and short and long distances. 

• There was a significant interaction between target distance and user group, such that 

relative time to peak velocity decreases more for motor-impaired participants headed 

to farther away targets, than it does for able bodied participants headed to far away 

targets  (p < .001). 

• There was no significant interaction between target distance and user group.  



 

 96 

 Target Size = 10 pixels  
Distance: 100 pixels  

Target Size = 100 pixels  
Distance: 100 pixels  

Target Size = 100 pixels  
Distance: 700 pixels  

Able 34.9% 36.07% 28.18% 
 

Older  
Adults 

30.5% 33.28% 24.41% 

Motor  
Impaired 

40.4% 44.29% 32.72% 

Table 20 estimated relative time to peak velocity using MS Office for a target whose size is either 
10 or 100 pixels, and is 100 or 700 pixels away.  
 

Summary of regression results: We found a main effect of target distance and target size 

on velocity, peak velocity, and relative time to peak velocity. For velocity, there was an 

interaction between group and the target distance, but not the target size.  There was also 

an interaction between group and target distance and target size for peak velocity.  This 

suggests that able bodied participants’ velocity and peak velocity were significantly 

higher than motor impaired and older adult velocity when target distance was controlled 

for.  However, when we controlled for target size we found that able bodied participants’ 

peak velocity was significantly higher than the other two groups, while their velocity was 

not.   

 

We found that older adults’ relative time to peak velocity was lower than able bodied 

participants’, and motor impaired participants had the highest relative time to peak 

velocity. Note that while we might expect the corrective tail component of able bodied 

motion to be proportionally smaller, indicating greater accuracy in their initial ballistic 

movement, this is not the case.  Combined with the observed higher peak velocities, this 

might indicate that able bodied individuals are choosing higher velocity for their initial 

ballistic motion at the expense of lower precision, when compared to our other participant 

groups. 

 
Comparison of results to related work: We found that our able bodied participants moved 

faster than any other group with a higher velocity and peak velocity. This finding is 

consistent with Ketcham’s results (Ketcham et al. 2002), likewise higher peak velocity 

for able bodied participants than older adults or individuals with Parkinson’s Disease is 

consistent with Keates’ results (Keates and Trewin 2005). 
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When investigating relative time to peak velocity, Ketcham found that younger adults 

reached peak velocity proportionally earlier (after 45% of their movement, SD = 3.4) 

than older adults (peak velocity reached after 48.1% of movement, SD = 6) (Ketcham et 

al. 2002). In an evaluation of pointing by individuals with and without motor 

impairments, Hwang saw great variability in where peak velocity was reached across 

participants (Hwang et al. 2004). In a laboratory task, Keates and Trewin found that 

adults reached peak velocity after 19.86% (SD = 10.70), older adults reached it after 

26.17% of their movement (SD = 16.98) and individuals with Parkinson’s Disease 

reached it after 25.25% of their movement (SD = 25.25) (Keates and Trewin 2005).  Our 

finding that able bodied adults reached peak velocity before motor impaired participants 

is consistent with this related work, but our finding that older adults reached peak 

velocity first (out of all three groups) is surprising.  We do not know why this happened 

in our data, but feel it is an important question to investigate in future work. 

 

Our findings that the relative time to peak velocity decreases (or corrective tail increases) 

with ID is consistent with findings from Ketcham (Ketcham et al. 2002).  

 
Design implication for assistive adaptations: As with throughput, participants who 

experience low velocity or peak velocity may benefit from adaptations that increase the 

cursor gain.  Given that we found significant differences for older adults and motor 

impaired participants’ velocity and peak velocity across applications, these adaptations 

should likely be application specific. Individuals who reach peak velocity early due to a 

long corrective tail may be experiencing targeting problems.  If this is the case, they may 

benefit from one of the targeting adaptations we have already discussed.  However, the 

key to successful adaptation is to determine why the corrective tail is happening early or 

late in the movement. 
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5.2.5. Summary: Laptop Study Performance  
In our analysis of laptop data we focused on differences across our three groups of 

participants. While this is a relatively simple way to analyze the data, we found some 

dramatic trends in pointing performance across these groups. We used the following 

trends in our data for our automatic assessment of pointing performance using this data 

(Chapter 6.3).  

5.2.5.1. Individuals with motor impairments had most targeting and movement problems 
Not surprisingly, in our analysis we consistently observed that our participants with 

motor impairments had more targeting and movement performance problems than the 

other two populations, and able bodied participants had the fewest problems. This 

confirms our impression that this demographic could benefit from automatic assessment 

and adaptive systems. 

5.2.5.2. Able bodied participants moved the fastest, yet didn’t have the longest relative 
time to peak velocity. 
Able bodied participants consistently had the highest overall velocity and peak velocity 

of our three groups, while our participants with motor impairments were the slowest.  

This also held true when we accounted for target size and Euclidean distance traveled.  

However, we observed that older adults reached peak velocity first, and motor 

impairments reached it last.  

5.2.5.3. Older adults and motor impaired participants have “better” performance during 
games than in Internet or MS Office  
We saw statistically significant better performance for both click duration, peak velocity 

and velocity older adults and motor impaired participants during games than during 

Internet or MS Office use. Across these two groups there was faster velocity, faster peak 

velocity, and shorter click durations while playing games than while using MS Office or 

the Internet. Improved performance during games could be due to high motivation to 

complete the task, practice in selecting these targets (since pointing tasks in games can be 

very repetitive), or confidence in knowing what to do next.   
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6. Assessing Performance with Predictive Models 
This chapter demonstrates that pointing performance can be frequently and unobtrusively 

assessed with predictive statistical models constructed with machine learning techniques. 

Assessment (or classification) can be done by building learned statistical models of 

distinct categories of performance found during real world use. With high accuracy, we 

were able to distinguish between performance by older adults and individuals with 

disabilities from performance by individuals without. We were also able to predict with 

high accuracy when current performance would be followed by problematic performance.  

 

In this chapter we will first discuss our success building three learned statistical models 

that are able to distinguish between different groups of individuals having pointing 

problems during a single laboratory study. We next discuss how our investigation of real 

world data has shown that pointing performance from a single laboratory session may not 

be sufficient to fully understand a particular user’s pointing ability. Instead multiple 

sessions of real world use need to be evaluated. In the third section of this chapter, we 

present our results investigating pointing performance across multiple sessions of use 

while using Microsoft Word and/or while browsing the Internet from our laptop 

deployment that included able bodied individuals, older adults, and individuals with 

motor impairments. 

6.1. Classifying Pointing Behavior During Pointing Performane during 
a Single Session of Laboratory Use 
To test the feasibility of building learned statistical models of pointing performance to 

detect pointing problems (going beyond the scope of the work in Chapter 3) we started 

with laboratory data. In this section we will describe learned statistical models we 

constructed from three datasets to distinguish between pointing performance in different 

populations. All three of these datasets were collected in independent laboratory studies 

(Koester et al. 2005), (Keates and Trewin 2005), and (Trewin et al. 2006) and reanalyzed 

here to test the feasibility of creating predictive models, as described in (Hurst et al. 

2008A). Participants in all of these studies performed Fitts’ law style pointing tasks 

where they were told to move a mouse to a specific target and click on it. 
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Machine learning techniques were employed to build models to distinguish between 

different levels of performance. Each dataset was segmented into a set of movement trials 

that served as training instances. All three of the datasets we analyzed define an instance 

as mouse movement followed by a click on the target. Each such instance is labeled with 

an indication of the properties of the user who performed it, such as if they had a motor 

impairment or not. 

 
All of our predictive models in this chapter used C4.5 decision trees that were validated 

with a 10 fold cross-validation test on wrapper-selected features in Weka. The features 

used to build the models are organized into four categories in all three datasets. These 

categories are features calculated from the movement that are specific to the task, features 

that describe what happened during the click, features that describe the pointer’s motion, 

and features that describe pauses in the pointer’s motion. 

6.1.1. Distinguishing between Movement Behaviors of People With Pointing 
Difficulties  
Our first analysis focused on performance differences between people who have pointing 

and clicking difficulties and those who do not. We used the dataset described in (Koester 

et al. 2005) which was gathered from individuals who had physical impairments that 

affected their ability to use a mouse.  To complement this dataset, we collected a 

corresponding new dataset from students at our university. The combined dataset 

included data from 33 participants (21 able bodied, 17 female). The diagnoses in the 

motor impaired group varied included the following conditions {6 Spinal Cord Injury (2 

C4/5, 2 C5/6, 1 C7, 1 unknown), 1 Traumatic Brain Injury, 2 Cerebral Palsy, 1 

Friedrich’s Ataxia, 1 Multiple Sclerosis, 1 Muscular Dystrophy}. All but two of the 

motor impaired participants completed these trials using a standard mouse, and the other 

two used a trackballs.  

 

In both the original study and the companion data collection we performed, participants 

completed Fitts’ Law-style pointing tasks using the IDA Software Suite (Koester et al. 

2005). IDA is a software tool to assess an individual’s ability to access a computer based 

on performance on a range of computer skills tasks. To evaluate pointing performance, 
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all participants completed 32 trials of a pointing task with at least 10 different mouse gain 

settings. Each trial presented the user with a square box that varied in size and distance 

from the box in a previous trial. All participants started the tasks with a mouse gain of 10, 

with Enhanced Pointer Precision set to “on". After each block of 32 targets at a given 

gain setting, IDA would calculate the user’s performance using an algorithm described in 

(Koester et al. 2005) and would then try another gain setting until it had enough data to 

predict the “best” one. 

6.1.1.1. Features Available for this Dataset 
Task Specific Features 
• Did the user correctly select the target? 

• How long did it take to finish the trial? 
• How many times did the cursor enter the target? 

• Maximum distance traveled beyond the target, or “Overshoot” 
Features Related to the Click 
• Count of “Missed” or accidental clicks 
Features Related to Movement 
• Deceleration time, or how long it took to move from peak velocity to maximum 

displacement, divided by total movement duration 

• Total distance traveled during trial 
• Mean instantaneous velocity during initial movement towards target 

• Number of direction changes 
Pause Features 
• Time spent before first movement of the trial, or “Reaction Time” 

6.1.1.2. Predictive Model Results 
Using decision trees with random 10 fold cross validation and wrapper selected features, 

we were able to distinguish between pointing behaviors from individuals with pointing 

problems vs. individuals without for the combined Koester dataset with 92.7% accuracy 

(Kappa = .85) as estimated by per-person hold out. Since many separate models were 

constructed (one for each person held out) slightly different feature sets were selected for 

each of these models. All of the individual feature selection runs selected these two 

features as predictive: the total time it took to complete the action and the number of 

clicks that occurred during the action.  
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We also conducted analysis with decision trees and random 10-fold cross validation and 

wrapper selected features which correctly classified the test instances with 94.5% 

accuracy (Kappa = .89). This feature selection also chose the following features as 

predictive: the same two selected during the individual model runs (the total time to 

complete the action, number of clicks that occurred during the action), and in addition, 

the number of times the cursor entered the target.  

6.1.2. Distinguishing Between Movement Behaviors of Young Adults, Adults, 
Older Adults and Individuals with Parkinson’s Disease 
The previous section indicated that statistical models are capable of identifying user’s 

ease of pointing with high accuracy. While it is an important and valuable first step to 

distinguish between groups with and without pointing difficulties, this classification may 

be too broad to make many accommodations. Instead, we may want to be able to make a 

finer distinction based on what kinds of errors those individuals are making. 

Unfortunately, the dataset discussed in the previous section does not have enough 

examples of particular types of motor impaired performance to confidently distinguish 

multiple classes of performance. To address this limitation, we looked at another dataset 

from four groups of users, three of which have significantly different performance 

abilities (Keates and Trewin 2005).  

 

This data was gathered in a study that examined the effects of age and Parkinson’s 

Disease on a point-and-click task using a mouse. It includes pointing performance from 

the following four groups: Young Adults (8 participants, ages 20-30), Adults (8 

participants, ages 35-65), Older Adults (7 participants, ages 70 and older), and 

individuals with Parkinson’s Disease (6 participants, ages 48-63). A more detailed 

summary of this population is described in their paper (Keates and Trewin 2005).  

6.1.2.1. Features Available for this Dataset 
This data set provided detailed recordings of point-and-click task performances, allowing 

a more sophisticated set of features to be employed. This feature set differs from the 

previous one because it has more features describing when the pauses occurred, as well 

as features related to acceleration and velocity changes. Having these additional features 

enabled us to build a more detailed picture of the difference between groups. 
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Task Specific Features 
• Total time trial time 

• Number of times the cursor entered the target 
Features Related to the Click  
• Length of click 
• Distance and angle moved during the click, or “slips” 

• Time between mouse down event and preceding movement 
• Count of “missed” or accidental clicks 

Features Related to Movement 
• Average and peak velocity and acceleration during the movement phase of the trial. 

• Number of direction changes 
• Total distance traveled during trial 

• Movement error, offset and variability 
Pause Features 
• Count of the number of pauses of different lengths (from 0 milliseconds to 2500+ 

milliseconds) during the trial 

6.1.2.2. Predictive Model Results 
Two-way classification: We were able to reproduce the high accuracy of distinguishing 

motor impaired from able-bodied use in this dataset even though it involved a slightly 

different task and feature set. In a two-way classification between a group of adults and 

young adults versus a group of older adults and Parkinson’s individuals a learned 

statistical model gave a classification accuracy of 94.6% (Kappa = .89) using a decision 

tree and validated with random 10-fold cross validation and using wrapper selected 

features. 

  

Labels Classification 
Accuracy 

Kappa 

A, P 97.6 .95 
A, OA 93.8 .87 
A, YA 59.3 .19 
P, OA 91.4 .83 
P, YA 96.7 .93 

OA, YA 93.3 .86 
Table 21 Classification results for all pairings {YA = Young Adult, A = adult, OA = Older 
Adult, P = Individual with Parkinsonʼs Disease}  
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In order to further understand how well learned statistical models behaved on this dataset, 

we built models to distinguish between each pairing of the groups. We used features 

selected with a wrapper based feature selection to build a statistical model using a 

decision tree and random 10-fold cross validation for each paring of the groups (Table 

21). These models found the highest accuracy when distinguishing between the Adult and 

Parkinson’s (96.7%, Kappa = .95), and the lowest accuracy at distinguishing between the 

Adult and Young Adults (59.3%, Kappa = .19). The low accuracy at distinguishing 

between the young adult and adult groups suggests (not surprisingly) that these groups 

perform very similarly and are hard to distinguish. 

 

Three-way classifications: We were able to build a learned statistical model with a 

decision tree and wrapper-based feature selection that performed with 91.6% accuracy 

(Kappa = .85) as validated with random 10-fold cross validation. Table 22 shows the 

results of other possible three-way pairings.  

 

Unfortunately, this level of accuracy did not appear for this dataset when we employed 

per-person holdout. We conducted a three-way classification of this data using per-person 

holdout using 7 randomly selected young adults or adults, the 7 older adults, and the 6 

individuals with Parkinson’s Disease as testing data. Predictions were made with a 

decision tree using wrapper selected features, and validated with 10-fold cross validation. 

The models were able to predict the test participant’s class with 74.1% accuracy (Kappa 

= .58). The performance of this model is probably not as high as with the random holdout 

because there was high variability in the data due to the small number of participants in 

Labels Classification 
Accuracy 

Kappa 
Statistic 

YA + A, P, OA 91.6 .85 
A, P, OA 89.7 .84 

YA, P, OA 98.9 .85 
 
Table 22 Performance of statistical models 
using 3-way analysis  {YA = Young Adult, A = 
Adult, OA = Older Adult, P = Individual with 
Parkinsonʼs Disease} 
 

 Classified as 
Actual YA + A OA P 
YA + A 977 17 8 

OA 105 533 207 
P 182 306 439 

Accuracy: 74.1%   
Prior 36.1% 

Table 23 Per-person holdout confusion 
matrix {YA = Young Adult, A = Adult, OA = 
Older Adult, P = Individual with Parkinsonʼs 
Disease} 
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each group, and variability in performance differences between a few of the older adults 

and individuals with Parkinson’s Disease (Table 23).  

 

Four-way classification: We were able to use decisions tree with random 10-fold cross 

validation and wrapper selected features to distinguish between the four groups with 

70.0% accuracy (Kappa = .59). Not surprisingly, analysis of the confusion matrix (Table 

24) for this classification problem shows that the classifier had the most difficulty 

distinguishing between the young adult and adult groups. 

 

The wrapper based feature selection selected the following features for all pairs: length of 

the click, a count of amount of continuous movement, and a count of pauses between 

1500 and 2000 milliseconds before pressing the target.  

6.2. High Variability in Pointing Performance Confirms Need for 
Frequent Assessments 
In the previous section we described models we were able to build that could accurately 

distinguish between different groups of pointing performance that could be used for 

automatic assessments. However, one key question for the design of an assessment 

system is how frequently assessments should be made. To explore this question, we 

analyzed data from our desktop deployment of real world pointing performance to see 

how performance changed across sessions. We analyzed data from six individuals with 

pointing problems (4 female, mean age 40.5 years) who used our computers between 3 

and 120 sessions. We compared pointing performance in a controlled pointing task to 

their pointing performance during multiple sessions of real world use. This comparison 

 Classified as 

Actual YA A OA P 
YA 711 352 38 8 
A 498 599 53 18 

OA 58 48 755 61 
P 22 13 45 770 

Accuracy: 70.0%   
Prior: 28.8% 

Table 24 Random 10-fold 4-way prediction {YA = Young Adult, A = adult, OA = Older Adult,  
P = Individual with Parkinsonʼs Disease}. Note the confusion between Adult and Young Adults. 
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helps illustrate how much an individual’s performance can vary and points to the need to 

assess performance at least once a session.  

 

Across all participants, there was high variability across and within sessions. Levene’s 

test, a test for homogeneity of variance, found unequal variance across all measures (p < 

.001) across sessions and across participants (p <  .001). Participants experienced an 

unpredictably wide range of performance across sessions. This extreme variability is 

visible in our data: there are several instances where performance during baseline 

collection (done as a laboratory study) differed dramatically from real world use. For 

example, Figure 33 illustrates how one participant did not have a problem with 

overlapping button presses during the baseline task, but did several times during real 

world sessions. There was no significant correlation between the session number and 

performance for any participant across any of the measures (Desktop deployment 

measures are summarized in Section 5.1). 

In addition to high variance across sessions, there was also high variation within sessions, 

as evidenced by the wide error bars in Figures 13 and 14 (Section 5.1.3), especially 

prominent on sessions with worse performance. Variance was correlated among three of 

our measures, providing evidence that in bad sessions, users experienced multiple types 

of difficulties. For a given participant, a cross correlation showed that the variance of 

distance slipped is highly correlated with the variance of the number of direction changes 

 
Figures 33 This graph shows the frequency of one user accidentally pressing both buttons on 
a mouse, when they should only press one, by login session.  Note the variation between login 
0 (laboratory session), and real world use (login 1-9).   
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in the Y direction (r = .90, p < .05) and the variance of the excess distance travelled 

between targets (r = .82, p < .05). Other pairings of our measures were not significantly 

correlated.  

 

Given the high variance we saw amongst individuals during real world use, even within 

sessions, one interpretation of our analysis is that any system that will assess and adapt to 

pointing problems must frequently assess use (i.e. at least once during each session, and 

ideally more often). In the following section we describe our work on building predictive 

models that can assess real world pointing performance across multiple sessions of use. 

To improve computer access, these classifiers should be utilized in a system as frequently 

as possible to assess performance, to enable just-in-time intervention. 

6.3. Classifying Pointing Behavior During Multiple Sessions of Real 
World Use 
This section describes our success at classifying pointing behaviors using real world 

pointing data that was collected in our laptop deployment (described in Chapter 4 and 5) 

with 12 participants: 4 able bodied, 8 older adults, and 4 individuals with motor 

impairments. We will first describe the data we used to classify performance; next we 

will describe what metrics or features we used to classify performance; and finally we 

will describe our two-level classifier that distinguishes between performance groups with 

high accuracy. 

6.3.1. Data Subsets and Labels  
This analysis uses data collected in our laptop deployment (described in Chapter 4 and 5). 

We collected over 400,000 samples from a wide range of applications (see section 5.2.1.1 

for a detailed list of the applications we gathered), but we only used a subset of this data 

to build performance models because we wanted to ensure the generality of our 

performance models by using data from applications that were used by almost all of our 

participants. The two applications most commonly used were web browsers and the 

Microsoft Office Suite.  This subset of data was about 80,000 samples (with about 2,500 

from MS Office and the remainder from web browsing). 
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The distribution of data across our three groups was very skewed for this subset of our 

data (able bodied participants had almost 3-times as much data as any other group). This 

skew is because the able group spent most of their time on the Internet, while most of the 

older adults spent their time playing games. In order to have a more evenly distributed 

dataset, we combined the data from older adults and individuals with motor impairments 

(accounting for 30% of the data). Our model building on real world data makes a two-

way classification between able bodied participants and our other participants, which is 

very similar to the work we did in Section 6.1. 

6.3.2. Wrapper Selected Features on MS Office Data 
We generated 77 features that describe our real world data, using both segmentation 

techniques (by click only, and with click and pauses).  This set includes movement, 

clicking, targeting, keyboard, and window event features. Since not all features 

necessarily contribute to a good classifier, we used wrapper-based feature selection. 

The following features were selected from the dataset of MS Office use: 

• Width and height of target selected 

• Duration of click 

• Count of X direction changes in entire sample (when segmented by click) 

• Count of X direction changes in segmented sample (when segmented by pause) 

• Efficiency of movement in entire sample (when segmented by click)  

• Count of times “tab” key was pressed during between clicks (these events were most 

frequently the user switching between applications).  

 

The following features were selected from the dataset of Internet use: 

• Width and height of target selected 

• Duration of click 

• Interactor type 

• Time between clicks 

• Pause time between clicks 

• Frequency of pressing too many buttons 

• Count of times arrow keys were pressed 

• Count of Minimize/Maximize window events fired 
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Of the features chosen, only target size and click duration were selected in both datasets. 

Of the differing features between data sets, the features selected from MS office measure 

efficiency (minimizing unnecessary movement) and the number of times the “tab” key 

was pressed, while features from Internet data tended to measure timing, frequency of 

pressing too many buttons, frequency of using arrow keys, and maximizing and 

minimizing windows. 

6.3.3. Two Level Classifier Results 
We used a two level classifier to predict if a particular motion was performed by a 

participant in either the able bodied group, or the group that combined older adults with 

individuals with motor impairments. The first level is a two-way decision tree that 

classified each motion as belonging to either the able bodied group or the group which 

combined older adults and individuals with motor impairments. In the MS office data, 

our tree correctly classified 90.15% of the data (kappa = .71). For the Internet only data, 

our tree correctly classified 92.04% of the data (kappa = .80). We also built a model on a 

combined dataset using the union of the selected features from each application. We 

tested this model against the combined dataset it correctly classified 91.94% of the data 

(kappa = .80).  

 

These results prove that it is possible to distinguish between these two groups with high 

accuracy by looking at a single pointing action.  However, as we have already shown, 

there can be a lot of variance in real world data.  Our second model minimizes the effect 

of a single action by looking at a group (or window) of consecutive actions and uses 

those to generate a prediction.   

 

The second level of our classifier aggregated successive predictions over several 

movements, this is known as a “sliding window”. We aggregated predictions from a 

variety of window sizes (1, 5,10, 20, 40, 80,160, 320 samples) and used a voting model to 

classify predictions of able-bodied vs. OA or MI use. As we increased the window size, 

we got better estimates.  Given that we are studying real world use, it is relatively easy 

for us to collect dozens or hundreds of examples of use for these windows. Note that as 

we increase our window size, we require more samples before we can make our first 
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prediction.  Additionally, there is a diminishing returns effect where adding more samples 

provides a smaller improvement to accuracy. 

 

Figure 34 shows the accuracy of this second level classifier. In the MS Office dataset, we 

quickly improved our accuracy from 90% on a per-movement classification to 100% 

accuracy with a window of size 40, a 10% increase. In both the Internet and combined 

datasets we improved performance from 92% to 99% with a window of 320 samples.  In 

all three datasets, we saw substantial improvements using a window size of 5 (5% in MS 

Office, and 3% in Internet and the combined dataset).  

 
Figure 34 Plot of accuracies of 2nd level model by window size for Internet use, MS office use, 
and use from both applications.  
 

6.3.4. Assessing Real World Pointing Performance 
The results from our two level model show that it is possible to accurately distinguish 

between these two groups of pointing performance with high accuracy.  We believe that 

these models could be easily used in an assistive adaptation to support individuals who 

experience pointing problems.  When designing these adaptive systems, application 

designers will need to evaluate the tradeoffs between variability, accuracy, and number of 

predictions required to make a prediction when configuring these models.  Applications 

that need frequent predictions (and can handle high variability) may be best served with 
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our first level models, but applications that need less variability and higher accuracies 

may be better with our second level models and large window sizes.  

6.4. Summary Assessing Performance with Predictive Models 
This chapter described how we assessed pointing performance using predictive models. 

The first section described our success at distinguishing between performance from 

individuals with and without motor impairments, and then our results distinguishing 

between young adults, adults, older adults, and individuals with Parkinson’s Disease 

using one session of laboratory data. In the next section we presented findings from our 

desktop deployment that individuals with motor impairments can have highly variable 

pointing performance during real world tasks. Based on this variability, we argued that 

these assessments should be made on real world data (which has higher variability). In 

the last section of this chapter we discussed our ability to successfully assess performance 

during real world Internet and MS Office use. The work described in this section proves 

that it is possible to make performance assessments on both real world and laboratory 

pointing performance. 
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7. Improvements to Our Automatic Assessment 
Techniques 
The previous two chapters have described how we have analyze real world pointing data 

to learn about trends in performance (Chapter 5) and how we have used predictive 

models to identify information about the individual performing the action. While these 

results are novel and exciting, we were interested in investigating additional techniques 

that could improve automatic assessment. In the following chapter we describe two 

unrelated techniques that we have developed that can improve automatic assessment.  

The first section describes an approach to automatic target identification that combines 

the Microsoft Active Accessibility (MSAA) API with computer vision and predictive 

models, in a hybrid technique that can recognize more targets a user selected than the 

MSAA API can alone (Hurst et al. 2010). In the second section, we take our predictive 

model work further than only detecting pointing problems by building a model that 

predicts whether or not a participant would benefit from a specific adaptation (Hurst et al.  

2008A).  

7.1. Improving Target Identification 
Knowledge of the targets a user interacts with can be used for many potential 

applications. In our case, this information can be useful in the automatic assessment of a 

user’s movement performance and the deployment of appropriate software to improve 

this performance. Access to the size and location of targets could also be used for 

usability evaluations to analyze sequences of buttons used in an application, similar to the 

analysis described by (Hilbert and Redmiles 2000). A history of target interactions could 

also be used to create assistance software that automatically creates or suggests shortcuts 

or macros to automate a sequence of tasks.  

 

We are interested in automatic solutions to target identification since most real world 

computer use involves interacting with many targets, and it would be unrealistic to hand 

label targets in these extremely large datasets, or worse, to ask the user to do it. In the 
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previous chapter, we used a software hook to the interface or application through an 

Accessibility Programming Interface (API) to get target information. Accessibility APIs 

can be used to automatically identify some of the targets in a graphical user interface. 

Specifically the Microsoft Accessibility API (or MSAA API) gives programmers access 

to many application and Windows operating system events and interactors. This API can 

be used to get the size and type of many interactors such as push buttons, menus, and 

icons.  

 

Unfortunately, this API only provides access to some of the interactors a user may 

encounter during real world use. Variations in toolkits, cross-application compatibility 

(such as web content presented in different web browsers), legacy as well as custom 

code, and new interactors are some of the reasons not all targets are supported. For 

example, the MSAA API does not support many specialty interactors including the 

drawing area of Microsoft PowerPoint, pre-loaded Windows games, and specialty dialogs 

including the Character Map, custom color selector panels, and the Microsoft Paint 

controls.  

 

An additional drawback to relying only on accessibility APIs for automatic target 

identification is that not all applications are equally supported. For example, two popular 

web browsers, Microsoft’s Internet Explorer and open source Firefox, treat content in a 

very different way, limiting the API’s access to them. Internet Explorer treats embedded 

Flash applets in such a way that the API is able to access most of the targets; however 

these targets are not accessible through the API in Firefox. Additionally, the AJAX web 

development techniques used by many of the Google widgets (i.e. Google Mail, Google 

Maps, and Google Calendar) is supported by the API in some browsers (e.g. Firefox), but 

not all (e.g. Internet Explorer). In our real world dataset discussed in chapters 4 and 5, the 

MSAA API only covered 68.5% of all the targets we collected during Internet use, 39.5% 

of targets in MS office, and only 2% of targets in Games (our most popular application 

type). 
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In order to increase the number of real world targets whose size we know, we developed 

a novel technique to automatically identify most of the targets a user would encounter 

during real world use. Our solution leverages information from the MSAA API combined 

with one of three techniques that leveraged visual information interaction with a GUI. 

This set of four techniques complement each other as each was chosen to detect certain 

types of targets. Since the techniques may yield multiple target hypotheses, we use a two-

level classifier to choose one hypothesis to use as the predicted target. This technique 

currently runs offline from data collected by our logging software CRUMBS (Section 

4.3), but future work for this component is to update it so it can run immediately after 

target acquisition. 

 

This section first discusses accessibility APIs and their limitations for automatic target 

identification during real world use. The following section describes our technique that 

leverages visual cues from interaction in a GUI to detect the targets a user interacted 

with. These visual cues are analyzed using computer vision techniques to identify targets. 

One of these techniques leverages the visual cues from interaction (e.g., change in button 

color) by subtracting the image captured during the button press from the image captured 

during the button release to determine the correct size and location of the target.  

 

We conclude this section by describing how we leveraged predictive models to combine 

the information available from the vision techniques and the information from the MSAA 

      
       A)            B)              C) 

Figure 35 Our hybrid technique is able to identify significantly more targets than the Accessibility 
API alone. A) A screenshot of an open dropdown calendar object in Microsoft Outlook 2003.  
Interactive targets visible in (A) include: two textboxes (with dates); two dropdown handles next to 
the textboxes; arrows on either side of the month; the month and year; any of the dates in the 
calendar; and the Today button. B) The Microsoft Accessibility API found 4 targets correctly (shown 
with a framed rectangle) and 46 targets incorrectly (shown with a filled gray rectangle). C) Our 
hybrid technique found all but one target correctly. 
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API to estimate the size and location of the target. The current implementation of this 

technique correctly identified 89% of the targets in a real world dataset where the MSAA 

API only correctly identified 74% of the targets. Figure 35 illustrates the representative 

differences in target accuracy that we were able to achieve in one panel in Microsoft 

Outlook using our hybrid technique (Figure 35C), compared to the performance of the 

MSAA alone (Figure 35B).  

7.1.1. Leveraging Visual Cues To Automatically Identify Additional Targets with 
Computer Vision  
We use three computer vision techniques that process captured screen images taken 

before and after a button press to find the target a user interacted with. These computer 

vision techniques use the full-screen screenshots from CRUMBS that were collected on 

the pointer button up and down events. Difference Images are used to detect the visual 

change caused by a button press. Template Matching (Forsyth and Ponce 2002) is used to 

detect interactors with similar borders such as buttons, boxes and even playing cards in a 

game. Color Matching is used to find selected items. 

 

The template matching, difference image, and color matching techniques are written in 

JAVA and use the JAVA Advanced Image Library (JAI Library 

https://jaistuff.dev.java.net). Our implementation currently runs offline, but could easily 

be augmented to run as the data was collected. 

7.1.1.1. Comparing the Difference Image  
In the difference image technique, targets that produce a salient visual change upon 

interaction are detected by calculating the difference image before and after the click. 

This technique uses the images captured before the button press and after to identify 

targets by calculating and analyzing the difference image between those two images 

(Figure 36).  

 

Image Preparation. To minimize difference image processing time, we automatically 

crop full screen images collected by CRUMBS to a smaller size. Since it is common for 

users to slip, or accidentally move the pointing device a few pixels during the click, we 

cannot simply crop images to a certain size around the location of the cursor. Instead we 
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must align the images taken during the button down and up events according to the length 

of the slip. We align these images by calculating the difference between the capture 

coordinates for the images taken during both events, and crop any overlap to produce 

new images that are the same size. Image preparation is done with PERL scripts that call 

the ImageMagick software suite (ImageMagick www.imagemagick.org).  

 

After we have identified the size of the difference image, and cropped the two input 

images, a Gaussian blur is applied to both images. Applying this blur helps minimize the 

likelihood of very small differences being incorrectly identified as several discrete targets 

when they are actually part of the same target. This additional step is most helpful when 

the user clicked on text, and helps the connected component algorithm (below) find 

words instead of single characters.  

 

After the images have been prepared, we iterate through each image and literally subtract 

the pixel values from one image to another at the corresponding locations. This 

subtraction yields an output image with only the differences between the two images. 

This difference image is then analyzed to identify the size of any potential targets. 

Since not all image pairs have only one visual change, we perform an additional step to 

account for multiple visual changes, as illustrated in Figure 37. These changes are 

frequently caused when tooltips are displayed, interactors lose their focus, or visual 

changes unrelated to the pointing device occur. We handle these cases by analyzing the 

difference image with a connected component filter (Forsyth and Ponce 2002). This filter 

is applied to the difference image to group it into “blobs”. Next, the bounding box of each 

    
       A)           B)             C) 

Figure 36 A) The user is pressing on the “Back” button in Firefox (the cursor here is for 
illustration only and not captured in our data). B) The image captured after the user 
releases the locator. C) The bounding box around the resulting difference is the correct 
target.  

 



 

 117 

connected component is calculated. To minimize false positives, any potential targets 

smaller than 5x5 pixels are discarded. When this algorithm finds multiple connected 

components, we only choose the potential target that contains the cursor, and if there 

happen to be two of these we choose the one with the smallest area. If the connected 

component algorithm does not find any potential rectangles larger than 5x5 pixels, the 

bounding box of the full difference image is set as the target’s size.  

 

Difference Image Errors. A difference image can only reveal the target when there is a 

clear visual change after the button press. Difference images consistently failed to find 

the target when the button press triggers visual changes to non-target pixels that overlap 

the target or the target is replaced with new interactors on the button release event. 

Examples when this type of error occurs include tooltips (Figure 37), dropdown menus, 

tabs and popup menus.  

 

The difference image technique also fails to identify the correct target size when there is 

no visual feedback indicated by a button press, so the up and down image are identical. 

Identical images most frequently occur when the target is already highlighted before the 

button press, such as the dropdown menus found in Microsoft Word and the message list 

in Google’s online email. Fortunately our color matching technique (discussed next) is 

able to handle many of the cases when difference imaging is not able to identify the target 

in identical images. 

   
A)        B)       C) 

Figure 37 Example of a visual change error in difference imaging: New visual content appears 
that overlaps or touches target. A) When the user presses the pointer button, a tooltip appears 
overlaps the target.  B) When the pointer button is released, the tooltip disappears. C) When the 
two images are subtracted from each other the resulting difference region includes both the target 
and the tooltip, which is incorrect. 
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7.1.1.2. Color Matching 
We use a color matching technique to find targets that are predominantly one color. This 

technique applies a median blur on an image and selects the color at the pixel under the 

cursor to use as the color to match (Figure 38) The image is then searched for this color 

and a corresponding blob of that color is found. We use the same blob finding techniques 

used with difference imaging to identify the target from the color blob. This technique 

works well when difference imaging fails because there is no visual change on a click as 

long as the item stays highlighted before and after the button press.  

 

Color Matching Errors. Color Matching complements difference imaging because it 

works even when there is no visual change. It works best when there are separable blobs 

of the same color and does not support targets with a multi-color background (such as a 

    
A)   B)    C) 

Figure 38 Target identified using color matching.  Difference imaging failed to find this target 
because images captured from the button down and button up events were identical. A) Original 
image. B) Image after median blur. The color over the cursor (dark blue) is selected for color 
matching C) The matching algorithm selects the smallest blob of that color over the cursor (the 
correct target). 

 

   
      A)       B)        C) 

Figure 39 Example of false positive from color matching from Microsoft PowerPoint.  Target in 
image A) was the thumbnail of slide 1 which is highlighted by the interface with a blue square. B) 
Color chosen to use for color matching after applying median blur to A. C) Results of color 
matching. In this example, choosing the color at the pixel under the cursor after applying the 
median blur was incorrect because the bounds of the selected color were much smaller than the 
target size.  
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gradient or shading as found on the Microsoft Windows Start Button). Additionally, it 

does not support targets that are not surrounded by a differently colored background 

(such a list items or checkboxes that share the same background). Figure 39 illustrates an 

example where color matching failed to identify the correct target because it matched a 

color that was connected to a smaller shape within the target.  

7.1.1.3. Template Matching 
 

Template matching is a relatively simple computer vision technique that takes in two 

images, a source image and a template image, and tries to find occurrences of the 

template in the source (example in Figure 40). The algorithm does this by convolving (a 

process that is similar to taking the moving average of a subset of pixels over the whole 

image) the source image with the template. This technique quickly identifies all regions 

of the source where template pixels match the target image. Template matching can be 

very accurate, with few false positives, on templates it knows about. Figure 40 illustrates 

the process of matching edges and templates from a source image and a type template. 

 

Corner and Edge Detection. Since template matching is being used to identify common 

visual cues, specifically rectangular borders, we use templates of corners and edges. 

These edges and corners (Figure 40B and 40C) are automatically extracted from a type 

template (Figure 40A), which is described later in this section. Potential corners and 

edges are restricted to locations that are valid within the parameters of the image capture. 

Specifically, any potential top left corners must be above and to the left of the cursor, etc.  

 

         
        A)        B)           C)   D)   E) 
Figure 40 Example of template matching. A) Image that the template is formed from B) Corner 
templates: 5x5 pixels C) Edge templates 6x6 Pixels D) Source image with found corners marked with 
squares E) Source image with line around found target. Note that this technique is size independent, as 
the aspect ratio in E is different from A. 
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Rectangle Algorithm. The matched edges and corners are combined to build rectangles. 

Our rectangle algorithm creates potential corners out of two strong adjacent edges (lines 

which had 2 or more edge template matches). Next the algorithm takes all corner 

template matches and corners created from adjacent edges, and searches the set for 

possible rectangles. Finally, the rectangle algorithm chooses the rectangle with the 

smallest area when it finds multiple possible rectangles (Figure 41).  

 

Template Acquisition. Templates are systematically added when the other two vision 

techniques (difference image and color matching) fail to identify a target. To create an 

initial set of templates, we consider each target that failed the preliminary version of the 

system without template matching (on data that was hand labeled with ground truth). For 

each of these failures we semi-automatically create a set of edge and corner templates. 

Edge and corner templates are created from a template example image (Figure 40A). 

Currently, this image is acquired semi-automatically by first cropping an image of a 

sample target to appropriate boundaries manually. Once this image has been identified, 

the corners and edges of these targets are automatically extracted to form the template.  

 

Template Matching Errors. Fixed size template matching (a.k.a. icon matching) works 

best on icons or unique targets that do not have a border. Variable size template matching 

(a.k.a. corner matching) works best on targets with distinct borders and is able to handle 

 

Figure 41 Corner and edge template matching algorithm takes in a source image and a template, 
extracts the edges and corners from the template, and searches the source for them with the 
template.  Finally, rectangles are formed from matched corners and edges. 
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items that differ in size from the original template, something icon matching cannot do. 

Thus the two techniques complement each other. However, both have difficulty finding 

the correct target in cases where an animation has not completed when the screenshot is 

taken, because in that case the screenshot may not contain the final image that the 

template matches.  

7.1.2. Choosing Amongst Multiple Targets  
The four automatic target identification techniques described above (accessibility API 

and 3 computer vision techniques) are each well suited to identify different types of 

targets. However, there are some cases where multiple techniques will each identify 

targets, but with slightly different size or position. Thus, it is difficult to know in advance 

which recognition technique will best identify the target. Instead of developing heuristics 

or rules to determine which technique to use for a given target, we built a two-level 

machine learning based classification scheme that is able to predict which technique 

should be used.  Figure 42 illustrates the architecture of our two-level recognizer.  
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7.1.2.1.  Structure of Two-Level Classifier  
The first level of our classification scheme uses a set of classifiers each of which 

identifies some types of targets well, and others less well. We refer to these as 

recognizers to distinguish them from the learned classifier that intelligently picks from 

among these results based on features from the interaction. We use ADABoosting 

(Freund and Schapire 1996) on a decision tree, created with a variant of the well known 

C4.5 algorithm (Quinlan 1993), to implement this second level classifier. Our 

architecture is sufficiently general that first level recognizers can be added over time. 

Figure 43 illustrates the accuracy of each technique independently, plus the hybrid 

approach including the second-level classifier architecture on our simulated real world 

dataset (Section 7.1.2.2). 

 

 

Figure 42 The architecture of our two-level recognizer.  Thick gray lines represent target 
hypotheses, while thin black lines are features. Boxes at left represent feature generators. 
Middle column boxes are first level recognizers. The right hand box is the second level 
recognizer (classifier). 
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Features used by the first level classifier are extracted from the input event stream, 

MSAA API, and computer vision techniques. These features include the number and size 

of potential targets found, details from the computer vision calculations (such as whether 

or not the target was found using the connected component algorithm, or using a 

bounding box), timing information about the user’s clicking actions, and information 

about window interactions. 

7.1.2.2. Evaluation  
In order to evaluate this technique a dataset with validated ground truth is required that 

contains the size and location of all targets. To do this, we evaluated our hybrid technique 

on a dataset we generated to be realistic and representative. Specifically, we carried out 

the exact steps specified in a set of tutorials for Windows and Microsoft products (called 

the Step By Step Tutorials). These tutorials give clear, step-by-step instructions for how 

to accomplish common tasks. Hand labeling data from these tutorials was much easier 

than labeling real world data because we had script of tasks and the targets that were 

selected, and never had to guess what targets users were trying to click on.  

 

Because they provide the instructions for what to do, the tutorials remove any potential 

bias on the part of the experimenters in selecting targets. Because they focus on common 

tasks for common products, they provide reasonably representative data. We used 

 
Figure 43 Raw accuracies of four first level recognizers (API, Difference Image, Template Matching, 

Color Matching) and the overall accuracy of our hybrid technique. 
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portions of the following tutorials to create our initial dataset: Microsoft Outlook 

(Outlook Step by Step 2003), PowerPoint 2003 (PowerPoint Step by Step 2003) 

Microsoft Word 2003 (Word Step By Step 2003), and Learning Windows XP (Windows 

XP Step by Step 2005).  

7.1.2.3. Evaluation: Results 
In assessing accuracy we considered the size and position of each classification made by 

the system. We considered a classification to be correct if it contained the click point of 

the interaction and was within 15% or 5 pixels (which ever was larger) of both the width 

and height of our human labeled ground truth.  

 

To estimate the overall accuracy of the resulting classifier we used the common 10-fold 

stratified cross validation method. We estimated the accuracy of the final classifier as the 

average accuracy found in 10 classifiers, each built from 90% of the test data and tested 

against the remaining 10%. Since the Accessibility API recognizer has the highest overall 

accuracy, we handle cases where the second level recognizer cannot make a clear choice 

by giving preference to the API result. This caused a 1% improvement in our final 

results, but slightly increased the number of false positives. Our tests indicate an overall 

accuracy of 89% (kappa = .8), and Figure 43 illustrates the overall accuracy of our hybrid 

approach compared the accuracy of each individual recognizer.  

 

The logging software used for this analysis only captured 300x300 pixel images. 

Fortunately, this covered 92% of our targets. However, this limitation did cause some 

misclassification, since in the end 7.9% of the targets in our dataset ended up being larger 

than 300 pixels in some dimension (and so were clipped in the images our classifier 

uses). Of these 2.6% were actually misclassified (with the remaining 5.3% being 

correctly identified by the API without the need for images). However, CRUMBS now 

captures full size images, so we can avoid this hit in accuracy for future use.  

 

Because templates may be added over time, it is useful to consider the impact of 

templates on overall accuracy. Our intuition was that a fairly small number of templates 

will provide sufficient accuracy benefits, and that this will allow us to distribute a 
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manageable library of initial templates with a system and still get high accuracy from the 

beginning. As we progressed through 154 initial error cases (in random order) we 

eventually created 22 distinct templates. These templates successfully covered 102 of the 

initial 154 error cases, illustrated in Figure 44. In this figure we show that a small number 

of templates is sufficient to cover a majority of the missing targets (65 targets were 

solved with only 1 template).  

 

7.2. Analyzing Movement Behaviors To Predict if an Adaptation is 
Needed 
Given our goal of using automatic assessments to improve computer access for 

individuals who experience pointing problems, we were interested in using predictive 

models to choose appropriate adaptations based on performance. Specifically, we wanted 

to build on our success at predicting with high likelihood which group a given movement 

came from (Section 6.1), and predict whether or not an individual would actually benefit 

from a specific adaptation based on data from their unadapted use. This classification is 

exactly what a full-featured accessibility adaptation system would need to assess whether 

or not an adaptation should be deployed.   

 
In order to investigate this problem, we looked at a dataset that had data from individuals 

with and without a pointing adaptation. This dataset was collected to evaluate the 

performance of the “Steady Click” (Trewin et al. 2006) adaptation that was designed to 

 
Distribution of number of targets covered by a single template 

Figure 44 Most templates (11) found only one target (the one they were created from). The 
most successful template of the 22 we created found 65 targets, and the rest found four or 
fewer targets. While a relatively small number of targets were found by each template, the cost 
of creating each one is small. 
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minimize pointer slips during a click. This adaptation creates a “Steady Click” by 

disabling dragging during a click (i.e. the user is not able to move the pointer, or slip, 

while one of the buttons is pressed). In that work, it was found that this adaptation 

significantly reduced slipping errors for 8 of the 11 participants, and lead to significantly 

improved target acquisition times for 5 participants. For some participants, suppression of 

slipping errors did not significantly improve performance because other targeting errors 

remained. For others, target acquisition times were reduced, but the improvement was not 

statistically significant, perhaps due to insufficient data. The work presented in this thesis 

uses error rates as the fundamental measure of the “helpfulness” of Steady Clicks. 

 

The Steady Click dataset consists of 18 participants performing clicking tasks. This 

previously collected dataset consists of 11 motor impaired adults (5 female, mean age 49) 

who were pre-screened as having slipping problems, or self reported such problems, and 

7 able-bodied adults (4 female, mean age 41) who did not. Two of the participants with 

disabilities had Parkinson’s Disease, two had Cerebral Palsy, three had impairments 

results from a stroke, one had Multiple Sclerosis, another had spinal cord damage 

resulting from a gunshot accident, and two had impaired manual dexterity caused by 

unspecified neuromuscular conditions. All were familiar with a standard mouse and used 

that as their input device. All participants completed a task where they were presented 

with a 19-column and 30-row grid of rectangles. Each rectangle was 52 pixels wide and 

22 pixels tall and contained a 2 to 5 character word in it. For each trial, one of the 

rectangles would be highlighted in blue and the user would need to move their mouse to 

that target and click in the rectangle (Figure 45). 

 

 
Figure 45 Screen shot of study task showing how target cell is highlighted and how the 
userʼs current location is also highlighted. 
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7.2.1.1. Fetaures available for this dataset 
Task Specific Features 
• Was the click on the target? 

• How long did it take to complete the move-click sequence? 
Features Related to the Click  
• Duration of click 
• Number of other button events that occurred during a click 

• Distance pointer moved during the click 
Features Related to Movement  
• Velocity and acceleration at mouse down and mouse up events. 
• Peak velocity reached during the movement 

• How far did the pointer travel during movement? 
Pause Features 
These features measure the state of the cursor at the time of the last pause before the 
click. There are 5 categories of features, with individual features varying the definition of 
a pause (in 50 milliseconds increments between 100 and 300 milliseconds). 
• How long was the last pause prior to the click? 

• How far away was the cursor from the target at the start of the pause? 
• How much time was spent moving between the pause and the click? 

• How far did the cursor move between the end of the pause and the click? 
• What was the peak velocity between the pause and the click? 

7.2.1.2. Predictive Model Results 
All the participants were grouped into three categories based on whether or not they had a 

motor impairment and whether the Steady Clicks adaptation significantly reduced their 

slip errors: Group 1: (H-I) Steady Clicks helped and they were motor impaired (8 

participants) Group 2: (NH-I) Steady Clicks did not help and they were motor impaired 

(3 participants) Group 3: (NH-A) Steady Clicks did not help and no motor impairment (7 

participants). There were no instances of users without motor impairment for whom 

Steady Clicks did help. Essentially, those who were helped by Steady Clicks were those 

who frequently slipped while clicking the mouse. We divide this data into three groups 

(instead of two purely based on Steady Clicks helping vs. not helping) because early 

analysis indicated that the NH-I and NH-A had fairly different characteristics. Attempting 

to treat these disparate groups as a single category proved problematic for the classifier. 
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The disabilities of the three participants for whom Steady Clicks was not helpful were 

Parkinson’s Disease (2 individuals) and Cerebral Palsy.  

 

We used a two-level classifier to predict if individuals would benefit from the Steady 

Click adaptation. The first level of this classifier is a three-way decision tree 

classification. The results of this three-way classification, performed on each instance, are 

then used to classify each person (as “helped” or “not helped”) by considering whether 

the majority of their movement trials predicted them to be in the H-I group vs. the NH-I 

or NH-A groups. 

 

Predicting need for Steady Clicks Level One: First we employed per-person hold out to 

build train/test sets, which were used to build decision trees using wrapper based feature 

selection. The most common features selected by the wrapper-based feature selection 

algorithm were: 1) the distance the participant slipped, 2) the total time it took to 

complete the trial, and 3) the length of the click. This three-way classification 

distinguished between instances from these three groups with 82.7% accuracy  

(Kappa = .71). 

 

Predicting need for Steady Clicks Level Two: As indicated above, since our goal is to 

predict if Steady Clicks would help a given individual, in the second level of our model, 

we aggregated the results for the NH-I and NH-A groups, and then classified each person 

based on the most frequently predicted group among their individual movements. Using 

this technique, we were able to correctly predict if Steady Clicks would reduce the user’s 

clicking errors for 17 out of 18 people, or 94.4% accuracy.  

7.2.2. Discussion on How to Extend Steady Click Results to Other Adaptations 
The strategy we took to predict whether or not an individual’s performance would 

improve with a specific adaptation requires performance data with and without that 

adaptation. In order to make more performance-based predictions about the need for an 

adaptation, we will need real world data with and without specific adaptations. The study 

protocols we have used for real world data collection do not work for these predictions 
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because they do not require participants to use adaptations. As a result, there is no ground 

truth measure of whether an adaptation would have helped. 

 

In order to use this technique to predict the need for more adaptations, we would need 

more examples of adapted and unadapted use. It would be possible to repurpose more 

pre-existing datasets that were collected to measure performance benefits with a 

particular adaptation to perform this investigation. However, we would like to understand 

the relationship of real world GUIs to these adaptations and then determine if these 

models should be built from real world data instead of laboratory data. Our current 

protocols could be easily modified to support this kind of collection by automatically 

deploying certain adaptations for a given time period to collect enough data to do this 

analysis. 

7.3. Summary of Improved Automatic Assesment Techniques 
This section discussed two extensions to the core work of this thesis: improving 

automatic target identification and predicting the need for a specific adaptation. As we 

discuss in future work, there is more to be done before we fully achieve our vision of 

automatic assessment of real world pointing data.  



 

 130 

8. Dissertation Summary 
This thesis has made important strides towards making automatic assessments of real 

world pointing performance. In the previous chapters, we have described a body of work 

that has produced a novel, large corpus of real world pointing data and described pointing 

in terms of targeting and movement performance metrics. We have also described 

success at assessments of pointing behavior on both laboratory and real world data. The 

four main contributions of this thesis are summarized below. 

 
Collected Large Dataset of Real World Data with Custom Logging Tool from 

Individuals with and Without Pointing Problems: We developed collection tools 

to capture real world pointing use. These tools were used to collect a dataset of more 

than 400,000 real world clicking tasks from individuals with and without motor 

impairments over two years. Data was collected from both laptops and shared 

computers in community centers from 13 individuals with motor impairments, and 8 

older adults, and 4 individuals without motor impairments. 

Novel Analysis of Real World Data: We analyzed real world data in terms of 

performance metrics, software applications covered, and distribution of target sizes 

according to the MSAA API. We investigate these measures by group {older adult, 

able bodied, or motor impaired individuals}. We found that 1) older adults and motor 

impaired individuals had better clicking and movement performance during games 

than Internet or MS Office tasks, 2) individuals with motor impairments had the most 

difficulty with clicking tasks, and 3) able bodied individuals had the fastest 

movements. Previously, there had been little investigation of these issues for these 

individuals performing real world tasks. 

Accurate Assessment of Pointing Behavior: We demonstrated that we can detect 

problematic pointing performance using predictive models constructed using machine 

learning techniques. We demonstrated that target size, click duration, and number of 

X direction changes are important to predicting pointing performance in real world 

data. Using these features, we were able to detect problematic pointing performance 

while surfing the web and using the Microsoft Office suite with over 90% accuracy.  
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Improved Automatic Detection of Interactive Targets in Real World Applications: 

We demonstrated that accessibility APIs are able to accurately detect the size and 

location of about70% of all targets during real world use. While this number may 

seem large, it leaves many applications unsupported (of specific interest to our target 

populations are games). To improve the number of targets identified, we developed a 

technique that combines information from Accessibility APIs with computer vision 

techniques to automatically identify targets. Our target identification technique finds 

15% more targets than the standard accessibility API alone. 

8.1. Reflection about Limitations of Real World Data 
Throughout this thesis we have discussed the many benefits to moving away from 

laboratory pointing tasks to study real world use. However, we did observe our share of 

limitations with this dataset. Unlike laboratory evaluations, when studying real world use 

the experimenter can never know fully know the user’s intent, making it difficult to 

calculate a performance-based error metric. When analyzing CRUMBS logs, it is not 

possible to tell if the user slipped off a target, tried to drag it, or was just idly playing with 

the cursor. Of course, the only way to really know the user’s intent is to ask them. 

However, it is unlikely that users would be happy with (or even tolerate) a system that 

constantly probed them and asked about their performance whenever there was a change.  

 
Another major problem that with real world deployments is the lack of control over what 

tasks users perform, and how much data will be collected. All of our participants started 

with the same set of applications on their computers, but all of them used these computers 

differently. In general, the able bodied group used the computers to surf the web and 

watch movies, older adults used them to play games, and participants from UCP used 

them to complete class assignments. Depending on participant usage patterns, this 

approach may result in collecting a small number of samples from any single application. 

For example, as mentioned in Chapter 7, out of more than 360,000 samples, only 2,500 

were of MS Office use. Experimenters who wish to use this approach might need to plan 

for longer deployments in order to ensure a large enough sample size from the desired 

applications. 



 

 132 

8.2. Future Work 
This thesis has laid much of the necessary groundwork 

to automatically assess pointing performance during real 

world computer tasks. Here we discuss some ways in 

which our tools and data could be extended, used, and 

applied. 

8.2.1. Real Time Automatic Assessment During 
Real World Use  
In this thesis we have shown how we can collect, 

analyze and classify real world pointing data, but we 

haven’t yet tested our technique in a real time 

application. We have designed our assessment approach so it can be easily adapted to run 

in real time. We expect this pipeline to be similar to what we did when assessing menu 

actions in real world data (Section 3.2 and 3.3). In order to build a real time assessment 

system, CRUMBS data will need to be analyzed periodically during real world use, and 

then this recent data will be given to a predictive model to classify. These classifications 

could then be used to inform an adaptation of a user’s current ability so assistive software 

can be deployed or configured. 

8.2.2. Designing Interfaces that use Automatic Assessments to Improve Computer 
Access 
Automatic assessments of pointing performance can be used to improve accessibility 

problems. However, it is unclear how these assessments should be used to best serve 

individuals with pointing problems. Approaches we have considered range from 

informing the user about the problem they are experiencing to deploying an adaptation 

specifically designed for their pointing problem. Another application of this technology 

would be to create reports about an individual’s performance over time that could be 

shared with their caregiver. 

 

However, we recommend that any investigation into the design of these systems should 

be user-focused. Specifically, we advocate the use of participatory design between the 

 
Figure 42  Our goal is to 
improve computer access 
for individuals with pointing 
problems, however the 
contributions of this thesis 
have much broader 
applications. 
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individual having pointing problems, their caregivers, instructors, and assistive 

technology specialists due to the highly personal nature of disability and impairments. 

One of the issues that needs to be explored in these design sessions includes how much 

should the user be made aware of their performance? Do people want to be told that their 

performance was worse today than it was yesterday? Additionally, there are many 

questions about how much control the user wants to have over any automatic adaptations, 

particularly considering that this kind of system will make errors. Our intuition is that 

some of these issues will vary by individual and their ability, but it is important to 

investigate these issues thoroughly before building and deploying automatically adapting 

systems.  

8.2.3. Automatic Target Recognition 
Our hybrid target recognition technique was more successful at detecting targets in an 

interface than the Accessibility API was alone. However, this technique has many 

applications beyond our initial motivation for creating it. Below we describe how this 

technology could be used to support automatic usability analysis of pre-existing software 

and how it could be used in end-user programming systems.  

8.2.3.1. Supporting Automatic Extraction of a Task Sequence 
In usability evaluations, having a list, or task sequence, of the targets a user interacted 

with to achieve a goal is desirable. Task sequences can be analyzed to reveal differences 

between steps a user performed and some pre-defined sequence, or to compare the 

actions of multiple users. Experimenters typically generate a task sequence through 

logging software built into a custom application (Findlater and McGrenere 2004) or by 

hand coding video logs (Kaufman et al. 2003). Our automatic target identification 

technique (discussed in Section 7.1) could help usability specialists by automatically 

extracting these sequences from real world use, and could be used in existing video 

annotation tools such as Transana (http://www.transana.org). 

8.2.3.2. Automatically Scripting Common Actions 
During real world use, it is common to encounter repeated sequences of UI interactions. 

Tools such as Automise (http://www.automise.com) enable users to easily generate 

scripts to perform multiple UI tasks. We envision automatic target identification being 
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incorporated into these tools to automatically identify targets in frequently performed 

task sequences and suggest scripts to automate these tasks. Yeh et al. have begun to 

explore this domain with a system called Sikuli, which allows users to graphically write 

GUI automation scripts (Yeh et al. 2009), a form of end-user programming.  

8.2.4. Future Analysis of Real World Pointing Data 
The analysis in this paper highlights the performance difference between our three 

participant groups using a few clicking, targeting and movement metrics that were easily 

collected. While our analysis is informative of real world pointing behavior, there are still 

numerous other metrics that can be investigated. A few examples of these metrics would 

include looking at how many times the cursor entered a target’s boundaries, detecting 

frequency of accidental clicks, and more sophisticated analysis of pauses during 

movement.  

 
Additionally, we see a range of work that needs to be done in segmenting real world data 

into samples that describe a particular movement. In this thesis, we were interested in 

targeting movements and segmenting data by button events and pause durations (using a 

single pause threshold for all our participants). An important area of future work is to 

investigate how this threshold should be determined and individually tailored for users 

who may have pointing problems. Another promising area of future work is an 

investigation of detecting and segmenting pointing actions other than targeting such as 

dragging and steering.  

8.2.5. Future Uses of our Real World Dataset 
For this thesis, we collected a novel and large dataset of real world computer use that we 

analyzed to assess pointing performance. However, this dataset can be useful for many 

other analyses. Two promising areas of investigation are typing performance and 

understanding usability problems in pre-existing interfaces. For example, this dataset 

could be used to analyze typing behaviors during real world use. It could also be used to 

understand real world task sequences (by analyzing the screenshots captured during 

mouse events).  
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In the future, we hope to release this dataset to other researchers. However, in order to do 

so, we would need to scrub the data for anonymity. Cleaning the mouse data is 

straightforward as it does not have much personal information: however, the keyboard 

and image data are more complicated. Currently our keyboard data contains passwords, 

usernames, email addresses, and private emails. One simple technique to make this data 

available for other researchers would be to omit the keycodes in the data, and merely 

report the keyboard timings. However not having the exact keycodes makes many types 

of keyboard analysis tricky. Anonymizing the image data is tricky because both pictures 

and on-screen text can reveal sensitive information. The best way to tackle this problem 

would be to detect text and images and blur or replace this information.  
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10. Appendix 

10.1. Advertisement used to recruit participants for laptop study at 
Carnegie Mellon (posted to a campus message board). 
Participate in research to collect a dataset of real world computer use. 
This dataset will be used to analyze real world pointing use to develop software that is 
able to automatically detect pointing problems. 
 
Requirements: Participants must be 18 years or older and be able to use a computer 
mouse. 
 
Compensation: In addition to using a new laptop for the summer, you will be entered into 
a periodic raffle to win cash. 
 
Schedule: This study to start in the middle of June. Before receiving the laptop you will 
participate in a one hour lab study (for which you will be compensated twenty five 
dollars). 
 
Privacy: As part of this study we will record everything that you do on these computers 
(keystrokes, screenshots and operating system event logs). 
 
As a participant in this study, you will have the ability to remove datasets that are 
sensitive and you do not want included in the dataset, or you will have the ability to 
periodically turn off the logging software. 
 
To apply, please email amy@cmu.edu and answer the following questions: 
• Please describe your computer use experience. 
• How often do you use a computer? 
• What do use computers for? 
• What applications do use most frequently on a computer? 
• What would change about your computer use if you had access to a laptop for the 
summer? 
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10.2. Questions about computer use that were asked in both laptop and 
desktop deployments 
1. How long have you been using a computer? 
 
 1 Less than 6 months 
 2 About 1 year 
 3 2-3 years  
 4 3-5 years  
 5 5-10 years 
 6 10 or more years  
 
2. On average, how many hours per week do you use your computer? (If you are having 
trouble thinking of an average, think back over the last two weeks.)  
 
 1 Less than 2 hours per week 
 2 2 to 5 hours per week 
 3 6 to 10 hours per week 
 4 11 to 20 hours per week 
 5 21 or more hours per week 
 
3. Have you ever had any computer training? 

 1 Yes  
 2 No 
 If Yes, what kind?  
 
4. For each of the following options, please indicate the extent to which you used a computer 
within the past 3 months. 
 

 Not sure what it is1 Never2 Sometimes3 Often4 
a. Email     
b. Getting information     
c. Conducting business (e.g., online 

purchasing, banking, bill-paying) 
    

d. Writing reports     
e. Preparing presentations     
f. Entertainment (games)     
g. Other Task you do often:     

     
 
5. Do you ever have difficulties reading information on a computer screen? If yes, please 
describe them.  
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6. Does the pointing device you most frequently use look like the one on the desk? If no, 
please describe the pointing device you use, and discuss why you don’t use a mouse. 
 
7. How long have you been using this pointing device? 
 
8. If the pointing device you use most frequently isn’t a mouse, have you used a mouse 
before?  
 
 1 Yes 
 2 No 
 If Yes, please describe why you don’t usually use a mouse.   
 
9. Have you ever changed any of the pointing device settings for your primary pointing 
device (movement speed, click lock, click speed)? If yes, please describe any of the 
settings that you prefer to use.  
 
10. Which hand do you use to hold the mouse? 

 1 Left 
 2 Right 
 
11. Would you say you are Left or Right-handed? 

 1 Left 
 2 Right 
 
12. Does the keyboard you use most frequently look the same as the one on the desk? If 
no, please describe how the keyboard that you most frequently use is different. 
 
13. How long have you used this keyboard? 
 
14. Have you ever changed any of the keyboard typing settings (such as sticky keys, key 
repeat delay or repeat rate)? If yes, please describe any of the settings that you prefer to 
use. 
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10.3. Demographic Information for Participants in Laptop Deployment 
Able Bodied Adults     

 

Gender Age 
Years using a 
Computer  

Hours of 
Computer Use 
(per week) 

Dominant 
Hand 

Known Medical 
Conditions 

A1 M 22 5-10 years 21+ right   
A2 M 26 10+ years 6 to 10 right   
A3 F 47 10+ years 21+ right some arthritis 
A4 M 22 10+ years 11 to 20 right   

       
Older Adults      

 

Gender Age 
Years using a 
Computer  

Hours of 
Computer Use 
(per week) 

Dominant 
Hand 

Known Medical 
Conditions 

OA1 F 80 
less than 6 
months 

less than 2 
hours right   

OA2 F 58 1 year 6 to 10 right used to have arthritis 
OA3 F 66 10+ years 21+ right arthritis 

OA4 F 62 1 year 
less than 2 
hours right arthritis 

OA5 F 74 1 year 
less than 2 
hours right arthritis 

OA6 F 66 10+ years 6 to 10 

left handed, 
uses mouse 
with right arthritis 

OA7 F 69 5-10 years 6 to 10 right arthritis 
OA8 F 66 10+ years 11 to 20  right arthritis 

       
Individuals with Motor Impairments    

 

Gender Age 
Years using a 
Computer  

Hours of 
Computer Use 
(per week) 

Dominant 
Hand 

Known Medical 
Conditions 

MI1 F 20 10+ years 21+ left 

Cerebral Palsy, arthritis, 
upper extremity 
impairment, cannot move 
right limb. 

MI2 F 47 3-5 years 2 to 5 right 

Cerebral Palsy, Spinal 
Cord Injury, Traumatic 
Brain Injury 

MI3 M 45 5-10 years 2 to 5 right 
Traumatic Brain Injury, 
occasional tremor 

MI4 M 55 3-5 years 11 to 20 right 

Paralyzed from the waist 
down, memory and motor 
impairments (including an 
intermittent tremor).  
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10.4. Laptop performance metrics across sessions 

10.4.1. Frequency of pressing too many buttons 
These four charts show the frequency of pressing too many buttons in ten randomly 
selected sessions. These charts are organized by group (A = able bodied, OA = older 
adult, and MI = motor impaired) and within each group, participant, and session number. 
Details about each participant are available in appendix 10.3.  
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10.4.2. Normalized efficiency 
These four charts show the mean normalized efficiency (equation 2) in ten randomly 
selected sessions. These charts are organized by group (A = able bodied, OA = older 
adult, and MI = motor impaired) and within each group, participant, and session number. 
Details about each participant are available in appendix 10.3.   
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10.4.3. Normalized X and Y direction changes 
These four charts show the mean number of X and Y direction changes (normalized by 
the Euclidean distance) traveled in ten randomly selected sessions.  In these charts, the 
red line represents the mean number of direction changes in the X axis, and the blue line 
represents direction changes in the Y axis. These charts are organized by group (A = able 
bodied, OA = older adult, and MI = motor impaired) and within each group, participant, 
and session number. Details about each participant are available in appendix 10.3.   
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10.4.4. Throughput 
These four charts show the mean throughput (equation 3) in ten randomly selected 
sessions. These charts are organized by group (A = able bodied, OA = older adult, and 
MI = motor impaired) and within each group, participant, and session number. Details 
about each participant are available in appendix 10.3.   Note that we do not have 
throughput data for OA4 because we only collected game data from them. 
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