

Improving Understanding and Trust
with Intelligibility

in Context-Aware Applications

Brian Y. Lim

May 2012
CMU-HCII-12-104

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Anind K. Dey (Chair), Carnegie Mellon University

Scott E. Hudson, Carnegie Mellon University
Aniket Kittur, Carnegie Mellon University

Margaret M. Burnett, Oregon State University

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Copyright © 2012 Brian Y. Lim. All rights reserved.

This work was supported by the National Science Foundation under grant 0746428 and the author's
National Science Scholarship (PhD) from the Agency for Science Technology And Research,

Singapore. Any opinions, findings, conclusions, or recommendations expressed in this material are
those of the author and do not necessarily reflect those of the funding agencies.

II

Keywords: intelligibility, explanations, context-awareness, ubiquitous computing (ubicomp),

human-computer interaction.

III

ABSTRACT

To facilitate everyday activities, context-aware applications use sensors to detect what is happening

and use increasingly complex mechanisms (e.g., by using big rule-sets or machine learning) to infer

the user's context and intent. For example, a mobile application can recognize that the user is in a

conversation and suppress any incoming calls. When the application works well, this implicit

sensing and complex inference remain invisible. However, when it behaves inappropriately or

unexpectedly, users may not understand its behavior. This can lead users to mistrust, misuse, or

even abandon it. To counter this lack of understanding and loss of trust, context-aware applications

should be intelligible, capable of explaining their behavior.

We investigate providing intelligibility in context -aware applications and evaluate its usefulness to

improve user understanding and trust in context-aware applications. Specifically, this thesis

supports intelligibility in context -aware applications through the provision of explanations that

answer different question types, such as: Why did it do X? Why did it not do Y? What if I did W,

What will it do? How can I get the application to do Y?

This thesis takes a three-pronged approach to investigating intelligibility by (i) eliciting the user

requirements for intelligibility, to identify what explanation types end-users are interested in

asking context-aware applications, (ii) supporting the development of intelligible context-aware

applications with a software toolkit and the design of these applications with design and usability

recommendations, and (iii) evaluating the impact of intelligibility on user understanding and trust

under various situations and application reliability, and measuring how users use an interactive

intelligible prototype. We show that users are willing to use well-designed intelligibility features,

and this can improve user understanding and trust in the adaptive behavior of context-aware

applications.

V

ACKNOWLEDGEMENTS

I would like to thank my advisor Anind Dey for his time, support, wisdom, and guidance. His

patience has allowed me to pursue my research interests and his comments have helped to me seek

the big picture in my research and identify implications for my findings. Likewise, I thank my thesis

committee members ɂ Scott Hudson, Niki Kittur, and Margaret Burnett ɂ to guide my research

and strengthen its technical contributions and experimental rigor.

Though the pursuit of a PhD may feel lonely at times, I am fortunate to have many friends and

colleagues supporting me, and keeping me company along the way.

To my office buddies of four years ɂ Tawanna Dillahunt and Min Kyung Lee ɂ for the fond

memories and much commemoration and commiseration of our research and PhD lives, thank you.

To my academic brother, Matthew Lee, for your listening ear and warm friendship, thank you.

To many students, faculty, and staff at CMU, the HCII and the Ubicomp Lab for your invaluable

discussions, time, feedback expertise, and help ɂ Vincent Aleven, Daniel Avrahami, Maria Brooks,

Kerry Chang, Laura Dabbish, Scott Davidoff, Christian Köhler, Chloe Fan, Denzil Ferreira, Charles

Gouin-Vallerand, Chris Harrison, Eiji Hayashi, Jin-Hyuk Hong, Gary Hsieh, Kevin Huang, Ruogu

Kang, Sara Kiesler, SeungJun Kim, Sunyoung Kim, Rebecca King, Queenie Kravitz, Andy Ko, Bertha

Lam, Ian Li, Somchaya Liemchetcharat, Bryan Low, Jen Mankoff, Gabriala Marcu, Noboru Matsuda,

Andreas Möller, Stephen Oney, Bryan Pendleton, Stephanie Rosenthal, Carolyn Rosé, John Santerre,

Aubrey Schick, Julia Schwarz, Choonsung Shin, Jessica Stanley, Kanupriya Tavri, Leonghwee Teo,

Karen Tang, Eran Toch, Dezhong Yao, Zhiquan Yeo, Haiyi Zhu, Brian Ziebart ɂ thank you.

To my friends from PCCO OIF and the Abundant Life group for welcoming me into their community

and forging meaningful relationships, thank you.

To my parents for your immeasurable sacrifices and selfless love, for nurturing me in my formative

years, and your continued support, thank you.

To my love, Huilin , for your many jia youȭÓ to encourage me, nudging me through my work, and

supporting me through many moments. Thank you for always being here for me.

VII

TABLE OF CONTENTS

Abstract .. iii

Acknowledgements .. v

Table of Contents .. vii

Figures .. xiii

Tables .. xix

1 Introduction .. 1

1.1 4ÈÅ 0ÒÏÂÌÅÍ Ʉ ,ÁÃË of Intelligibility ... 2

1.2 ! 3ÏÌÕÔÉÏÎ Ʉ %ØÐÌÁÎÁÔÉÏÎÓ ÆÏÒ)ÎÔÅÌÌÉÇÉÂÉÌÉÔÙ ... 3

1.3 Scope and Definitions ... 6

1.4 Contributions ... 8

1.5 Outline ... 8

2 Related Work: Explanations in Intelligent Systems 11

2.1 Explanations in Expert Systems ... 11

2.2 Explanations in End-User Systems .. 18

2.3 Summary .. 28

3 Explanation Types for Intelligibility .. 29

3.1 Research Questions for Intelligibility ... 30

3.2 Taxonomy of Intelligibility Explanation Types .. 35

4 Investigating the Intelligibility of Question Types 41

4.1 Introduction .. 42

4.2 Intelligibility ... 42

VIII TABLE OF CONTENTS

4.3 Intelligibility testing Platform ... 45

4.4 Method .. 48

4.5 Experiment 1 .. 52

4.6 Experiment 2 .. 55

4.7 General Discussion ... 60

4.8 Conclusions and Further Work ... 62

5 Assessing Demand for Intelligibility .. 65

5.1 Introduction .. 65

5.2 Hypotheses and Approach .. 67

5.3 Setup: Scenarios of Four Context-Aware Applications ... 67

5.4 Experiment 1: Assessing Demand for Information Types ... 71

5.5 Experiment 2: Assessing Demand for Explanation Types ... 79

5.6 Discussion .. 84

5.7 Design Recommendations .. 86

5.8 Limitations .. 92

5.9 Conclusions and Further Work ... 92

6 Intelligibility Toolkit ... 95

6.1 Introduction .. 95

6.2 Inference Models in Context-Aware Applications .. 97

6.3 Explanation Question Types ... 101

6.4 Explanation Styles of Model-Based Explanations .. 104

6.5 Requirements .. 104

6.6 Toolkit Architecture ... 106

6.7 Implementation of the Intelligibility Toolkit ... 110

6.8 Explanation Expression .. 113

6.9 Query .. 116

TABLE OF CONTENTS IX

6.10 Explainer Algorithms ... 117

6.11 Reducer .. 133

6.12 Presenter ... 137

6.13 Querier ... 138

6.14 Selector .. 139

6.15 Validation: Demonstration Applications ... 142

6.16 Limitations and Discussions ... 149

6.17 Related Work in Explaining Context .. 150

6.18 Conclusion and Future Work .. 151

7 Designing for Intelligibility .. 153

7.1 Introduction ... 153

7.2 Laʆsa Ʉ Social Awareness Application ... 154

7.3 Design of Intelligibility .. 157

7.4 LaʆÓÁ 0ÒÏÔÏÔÙÐÅ Implementation ... 161

7.5 ,ÁʆÓÁ 0ÒÏÔÏÔÙÐÅ 5ÓÁÇÅ .. 161

7.6 Scenario-Driven Think Aloud User Study .. 163

7.7 Data Analysis ... 165

7.8 &ÉÎÄÉÎÇÓ Ʉ 0ÁÔÔÅÒÎÓ ÏÆ)ÎÔÅÌÌÉÇÉÂÉÌÉÔÙ 5ÓÅ .. 166

7.9 $ÉÓÃÕÓÓÉÏÎ Ʉ 4ÈÅÍÅÓ /Æ)ÎÔÅÌÌÉÇÉÂÉÌÉÔÙ 5se ... 171

7.10 Design Recommendations For Intelligibility ... 174

7.11 Limitations and Further Work ... 176

7.12 Conclusion .. 177

8 Evaluating Intelligibility Under Uncertainty .. 179

8.1 Introduction ... 179

8.2 Intelligibility And Uncertainty ... 180

8.3 Hypotheses ... 182

X TABLE OF CONTENTS

8.4 Method ... 183

8.5 Application Platforms .. 184

8.6 Scenarios ... 185

8.7 Procedure ... 188

8.8 Participants and Data Cleansing .. 189

8.9 Data Analysis and Results .. 189

8.10 Follow-Up: Think-Aloud Study .. 197

8.11 Discussion ... 198

8.12 Design Recommendations ... 202

8.13 Conclusion and Future Work .. 203

9 Evaluating the Usage and Usefulness of Intelligibility 205

9.1 Introduction ... 205

9.2 Objectives and Approach .. 207

9.3 ,ÁʆÓÁς 0ÒÏÔÏÔÙÐÅ ... 207

9.4 Scenario-Driven Quasi-Field Study .. 212

9.5 Measures and Data Preparation .. 215

9.6 Results .. 219

9.7 Discussion, Implications, and Recommendations .. 227

9.8 Limitations and Further Work ... 231

9.9 Conclusions .. 233

10 Discussion & Conclusion .. 235

10.1 Summary of Contributions .. 235

10.2 Limitations ... 238

10.3 Additional Research Opportunities ... 238

Bibliography ... 243

TABLE OF CONTENTS XI

A Intelligibility Toolkit Software .. 267

B Intelligibility Toolkit Exp lainers .. 269

B.1 Abstract Base Explainer .. 269

B.2 Enactor Base Explainer ... 270

B.3 Weka Base Explainer.. 273

B.4 Rule Trace Explainer .. 274

B.5 Disjunctive Normal Form (DNF) Explainer .. 278

B.6 Separable-Rules DNF Explainer .. 282

B.7 Enactor Rules Explainer ... 285

B.8 Other System Rules Explainers .. 285

B.9 Decision Tree Rule Trace Explainer... 285

B.10 Other Rules Explainers .. 287

B.11 Weights of Evidence Explainer .. 287

B.12 Linear Regression Explainer ... 294

B.13 Logistic Regression Explainer .. 296

B.14 Linear Support Vector Machine (SVM) Explainer .. 300

B.15 Naïve Bayes Explainer ... 307

B.16 Hidden Markov Models (HMM) Explainer .. 308

B.17 Decision Stump Explainer .. 311

B.18 Decision Tree Evidence Explainer .. 312

B.19 k-Nearest Neighbors (kNN) Explainer .. 317

B.20 Ensemble Classifier Explainers .. 322

B.21 Boostrap Aggregation (Bagging) Explainer .. 328

B.22 AdaBoost.M1 Explainer ... 330

B.23 Ensemble Decision Trees Rule Traces Explainer ... 334

B.24 Summary of Explainers for Inference Models ... 336

XII TABLE OF CONTENTS

C Hello World Tutorial for Intelligibility Toolkit 341

D ,ÁʆÓÁ)ÎÆÅÒÅÎÃÅ -ÏÄÅÌÓ ... 347

D.1 Availability ... 347

D.2 Place .. 347

D.3 Sound Activity ... 349

D.4 Motion Activity ... 358

E ,ÁʆÓÁ %ØÐÅÒÉÍÅÎÔ -ÁÔÅÒÉÁÌÓ .. 365

E.1 Participant Reference Sheet .. 365

F Uncertainty Study Materials .. 367

F.1 Scenarios ... 368

F.2 Scenario Scripts .. 370

F.3 Survey Instrument .. 386

G ,ÁʆÓÁ 5ÓÅÒ)ÎÔÅÒÆÁÃÅ ... 419

G.1 Intelligibility User Interface .. 420

H ,ÁʆÓÁς 5ÓÅÒ)ÎÔÅÒÆÁÃÅ ... 423

H.1 Intelligibility User Interface .. 424

H.2 Control User Interfaces ... 429

H.3 Actions User Interface ... 430

H.4 ,ÁʆÓÁ)ÎÔÅÌÌÉÇÉÂÉÌÉÔÙ 'ÒÁÐÈ .. 431

I ,ÁʆÓÁς 3ÔÕÄÙ -ÁÔÅÒÉÁÌÓ .. 433

I.1 Instructions ... 433

I.2 Scenarios .. 439

I.3 Survey Instrument.. 443

J ,ÁʆÓÁς 5ÓÁÇÅ $ÅÔÁÉÌÓ .. 445

J.1 Participant Sequence Models ... 445

XIII

FIGURES

Figure 1.1. Three-stage approach to thesis with various projects connected by progression. Arrows

indicate how findings and implications from one study applies to the next. We

summarize our taxonomy for Intelligibility in Chapter 3. .. 4

Figure 4.1. Screenshot of the interface for our intelligibility testing infrastructure. 46

Figure 4.2. Visualization of the learned decision tree model used in Experiment 1. 47

Figure 4.3. Participants receiving explanations (in the Learning section) answered significantly

more questions correctly in the Fill-in-the-Blanks section. ... 54

Figure 4.4. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the

Reasoning Test section. ... 54

Figure 4.5. What If explanation facility. Participants would get to freely enter values for the inputs

A, B, and C, and get the system to simulate what the output would be..................................... 55

Figure 4.6. Participants in the How To condition view this facility. By specifying two of the input

values and an output value, they can inquire the system to indicate possible values of the

remaining input. ... 56

Figure 4.7. Percent of correct answers in the Fill-in-the-Blanks test section, by condition. Different

colors indicate statistically significant differences. .. 58

Figure 4.8. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the Fill-in-

the-Blanks Test section for each condition. .. 58

Figure 4.9. Overall understanding of the system was similar to the understanding in-situ of

individual examples, but responses were less precise (fewer correct descriptions). 58

Figure 4.10. Self-reports of (a) understanding and (b) trust, by condition. Different colors indicate

significant differences. .. 59

Figure 5.1: (Left) Screen capture of a five-second video clip for the IM Auto-Notification application

survey, showing the user rushing to meet a deadline. (Right) Screenshot of a non-work

IM message that had been suppressed, and delivered later. ... 68

XIV FIGURES

Figure 5.2: (Left) Screen capture of a five-second video clip for the Elderly Remote Monitoring

application survey, showing the user casually glancing at the display. Screenshots of a

normal event (Middle), and an anomalous event (Right)... 69

Figure 5.3: (Left) Screen capture of a five-second video clip for the Reminder application survey,

showing the phone triggering at the pantry. Screenshots of a work-related reminder

(Middle), and personal reminder (Right). ... 70

Figure 5.4: (Left) Screen capture of a five-second video clip for the Tour Guide Recommender

application survey, showing the user walking by the museum, a point of interest. (Right)

Animated screenshots recommending a dinosaur exhibit at the museum. 71

Figure 5.5: Hierarchical representation of explanation types that users want to know. 73

Figure 6.1: (Left) Counts of model types used in 109 of 114 reviewed context-aware applications

from 2003-2009. (Right) Counts for 50 recognition applications; classifiers are used

most often for applications that do recognition. .. 97

Figure 6.2: Architecture of the Intelligibility Toolkit showing functional and structural components.

 .. 106

Figure 6.3: Architecture of Enactor framework of the Context Toolkit updated to include output

values and In and Out Widgets. .. 111

Figure 6.4: Architecture of Enactor framework updated to support classifiers. Only one Reference is

used for the classifier; in contrast, for rules one Reference is needed per rule. 113

Figure 6.5: Architecture of components of the Intelligibility Toolkit integrated into the Enactor

framework for a typical context-aware application built with the Context Toolkit. 117

Figure 6.6: Diagram representation of extracting Why explanation(s) and extracting Why Not

explanations from a system of DNF trees. (Left) Explains why ░th class was inferred,

selecting conjunction traces that are satisfied by the current input values. (Middle)

Negating the DNF tree for rules inferring the ▒th class produces a tree in conjunctive

normal ÆÏÒÍ ɉ#.&Ɋ ÁÆÔÅÒ ÁÐÐÌÙÉÎÇ $Å -ÏÒÇÁÎȭÓ ,Á×ÓȢ .ÏÔÅ ÔÈÁÔ ÃÏÎÄÉÔÉÏÎ ÌÉÔÅÒÁÌÓ ÁÒÅ

negated. All disjunction traces in the CNF negated tree are satisfied, highlighting specific

negated condition literals that are satisfied by the current input values. (Right) Explains

how to infer the ░th class by returning the full DNF tree that can infer that class. 119

FIGURES XV

Figure 6.7: Conversion of a set of rule tree expressions into separate trees in disjunctive normal

form (DNF) to generate explanations from Rules. .. 122

Figure 6.8: Conversion of a decision tree into separate trees in disjunctive normal form (DNF) to

generate explanations from Decision Trees. ... 123

Figure 6.9: Automatic Room Lighting application demonstrating explanations of a rule-based

application. .. 143

Figure 6.10: IM Autostatus demonstrating explanations from an instant messaging plug-in that uses

a decision tree to predict when a buddy may respond. .. 144

Figure 6.11: Motion Recognizer demonstrating a weights of evidence explanation for a mobile

phone application inferring the physical activity of the user. ... 146

Figure 6.12: Two Why visualizations for explaining a HMM to infer domestic activity. 148

&ÉÇÕÒÅ χȢρȢ ,ÁʆÓÁ ÃÏÎÔÅØÔ ÁÒÃÈÉÔÅÃÔÕÒÅ ×ÉÔÈ ÄÉÆÆÅÒÅÎÔ ÔÉÅÒÓ ÏÆ ÃÏÎÔÅØÔ ÕÓÅÄ ÔÏ ÉÎÆÅÒ ÈÉÇÈÅÒ-level tiers.

The user sees the Availability status, and the intelligibility explanations. 155

&ÉÇÕÒÅ χȢςȢ 3ÃÒÅÅÎÓÈÏÔ ÏÆ ÔÈÅ ,ÁʆÓÁ ÓÈÏ×ÉÎÇ ÈÏ× ÔÏ ÕÓÅ ÔÈÅ ÃÏÍÐÏÎÅÎÔÓ ÉÎ ÔÈÅ ÃÏÒÅ ÁÎÄ

intelligibility user interface. ... 158

Figure 7.3. Explanation Visualizations rendered in the explanation panel. Some examples and their

interpretations. The UI uses icons derived from [Fatcow]. .. 159

Figure 7.4. Consolidated sequence models of explanation use for Fault Finding. Steps were

abstracted from individual actions that participants took across scenarios S3, S4, and S6.

 .. 168

Figure 7.5: Blame shifting during S4 about mistakenly receiving a phone call in the library. 173

Figure 7.6. Simple "bubble" components simultaneously for explaining seven questions about Place.

 .. 175

Figure 7.7. Streamlined sequence diagram for explanation use. .. 176

Figure 8.1. Hypothesis 1: Intelligibility will improve user impressions when an application is certain

of its actions, but it will harm impressions when it is uncertain. Only interaction effect

suggested, not linearity of trends. ... 182

Figure 8.2. Mean of number of correct and wrong reasons counted from participant free-text

responses of how the application made its inference in S6. Participants with Full

XVI FIGURES

intelligibility gave more correct reasons when explaining about HearMe than those with

None (p<.01); this was only marginal for participants explaining LocateMe (p=.08).

Furthermore, participants explaining LocateMe offered more wrong reasons than those

explaining HearMe (p<.01), particularly when provided with some form of intelligibility

(p<.01). ... 190

Figure 8.3. Mean number of correct Input factors in the top three choices of the Inputs ranking task

(Left), and number of fallacious factors given in all 10 choices (Right). Participants with

Full intelligibility chose more correct factors of HearMe as top three than those with

None (p=.014); this was not noticeable for LocateMe (p=n.s.). Moreover, participants

explaining HearMe chose fewer fallacious factors than those explaining LocateMe,

particularly when provided with Full intelligibility (p<.01). ... 190

Figure 8.4. Perception of Overall Certainty: combined analysis (Left), and for individual applications

(Middle and Right). Participants with Full intelligibility perceived a higher certainty

when the application had high actual certainty, but perceived a lower certainty when it

had low actual certainty. ... 192

Figure 8.5. Perceived certainty influenced by application appropriateness across scenarios. The

application behaved appropriately for at least one Certainty condition in S1, S4, S6, S8,

and S10, more so for lower certainty conditions. ... 194

Figure 8.6. Perceived certainty across actual certainty by application appropriateness. Note: no

inappropriate scenarios for 100% certainty condition. ... 194

Figure 8.7. Agreement across Perceived Appropriateness, grouped by actual certainty. The effect of

finding 4h is only significant for low actual certainty. .. 196

&ÉÇÕÒÅ ωȢρȢ 3ÃÒÅÅÎÓÈÏÔÓ ÏÆ ,ÁʆÓÁ ς ÓÈÏ×ÉÎÇ ÓÅÖÅÒÁÌ ÅØÐÌÁÎÁÔÉÏÎ ÔÙÐÅÓ ÏÆ ÔÈÅ ÕÐÐÅÒ-tier context

Availability, and lower-tier contexts Sound and Place. Arrows show how a user can

transition from one explanation to another. The bold trace indicates how a participant

may explore the intelligibility features in nine steps to troubleshoot Scenario 3 about the

phone ringing in the Library. See Section 7.3 for a description of some of the UI design.

 .. 211

Figure 9.2. Perceived Application Behavior Appropriateness (Left) and perceived Explanation

Usefulness (Right) across scenarios. We include S1 in the graph for comparison, but not

in our analysis. Error bars indicate standard errors. .. 220

FIGURES XVII

&ÉÇÕÒÅ ωȢσȢ 0ÁÒÔÉÃÉÐÁÎÔÓ ÈÁÄ Á ÈÉÇÈÅÒ 5ÎÄÅÒÓÔÁÎÄÉÎÇ 3ÃÏÒÅ ×ÈÅÎ ÔÈÅÙ ÖÉÅ×ÅÄ Іσπ ÅØÐÌÁÎÁÔÉÏÎÓ ÔÈÁÎ

ÆÅ×ÅÒ ɉÐЃȢπυȟ ,ÅÆÔɊȟ ÁÎÄ ×ÈÅÎ ÔÈÅÙ ÖÉÅ×ÅÄ ÅØÐÌÁÎÁÔÉÏÎÓ ÏÆ $ÅÅÐÅÒ ÃÏÎÔÅØÔÓ Іς ÔÉÍÅÓ

more than Shallower ones (p<.05, Right). .. 225

Figure 9.4. (Left) Control Score is higher when participants ask more explanations about Deeper

contexts (Place and Sound) than Availability. (Right) Participants who owned smart

phones also had higher Control scores. Control scores were not influenced by View

Count. ... 225

Figure 9.5. Distribution of belief types of Understanding overall, and by Context Ratio; normalized

per scenario. Similar distribution for low View Count (<30) vs. high. 226

&ÉÇÕÒÅ ωȢφȢ $ÉÓÔÒÉÂÕÔÉÏÎ ÏÆ ÅÆÆÅÃÔÉÖÅ ÓÕÇÇÅÓÔÉÏÎÓ ÐÁÒÔÉÃÉÐÁÎÔÓ ÍÁÄÅ ÔÏ ÉÍÐÒÏÖÅ ,ÁʆÓÁͻÓ ÂÅÈÁÖÉÏÒȠ

normalized for each scenario. (-) denotes partially effective suggestions with side-effects.

Note this is not the weighted Control Score. ... 226

Figure 9.7. Model of influence indicating how the usage of Intelligibility may infÌÕÅÎÃÅ Á ÕÓÅÒȭÓ

ability to Control, sense of Trust, and usage of the context-aware application. Lines in

grey were not explicitly explored in this study. ... 231

Figure B.1: Diagram representation of the Explanation Data Structure in Disjunctive Normal Form

(DNF). Each circular node represents a condition literal, each vertical column represents

a conjunction of literals, and these are joined horizontally as a disjunction. 275

Figure B.2. Recursive algorithm to convert an arbitrary Boolean expression to NNF. 277

Figure B.3. Recursive algorithm to convert a Boolean expression in NNF to DNF. 277

Figure B.4. (Left) A simple decision tree illustrating the condition literal of each edge and the class

value that will be inferred at each leaf. (Right) DNF trees for each class value that is built

after traversing the tree and collecting traces with the same inferred class value at their

leaves. Although this diagram illustrates the conversion for a binary decision tree, the

conversion is applicable to trees with more than two branches at each node. 286

Figure B.5. Algorithm to traverse the decision tree depth-first to convert it into DNF. 286

Figure B.6. Algorithm to obtain the condition literal representing an edge transition in the decision

tree. This is specifically implemented for J48 in Weka, but can be generally applicable for

other decision tree implementations. .. 287

XVIII FIGURES

Figure B.7. (Left) A decision tree illustrating probabilities at each node due to the probability

distribution in the training set satisfying the feature conditions, ╧ⱬ, at the node, and

conditional probabilities of each edge between nodes. (Right) Probabilities of nodes and

edges of the reasoning trace, assuming conditional independence between feature

conditions. Edge probabilities are used in the weights of evidence explanation. 312

Figure B.8. Modified algorithm (of Figure B.5) to traverse the decision tree depth-first to convert it

into DNF and store class probability distributions of edge conditions. 315

Figure B.9. Algorithm that implements Equation (B.105) to calculate the class probability

probability at each edge transition in the decision tree. .. 315

Figure C.1. Screenshots of the Hello Room application showing some explanations. 341

&ÉÇÕÒÅ $ȢρȢ "ÕÂÂÌÅÓ ÍÏÄÅÌ ÕÓÅÄ ÉÎ ,ÁʆÓÁ ÏÆ ÔÈÅ ÓÅÎÓÅÄ ÕÓÅÒ ÌÏÃÁÔÉÏÎ ÁÎÄ ÔÈÒÅÅ ÓÅÍÁÎÔÉÃ ÐÌÁÃÅÓ !ȟ "ȟ

and C. This indicates that the user is inferred at A because of the overlap. 348

Figure D.2. BuÂÂÌÅÓ ÍÏÄÅÌ ÕÓÅÄ ÉÎ ,ÁʆÓÁς ÏÆ ÔÈÅ ÓÅÎÓÅÄ ÕÓÅÒ ÌÏÃÁÔÉÏÎ ÁÎÄ ÔÈÒÅÅ ÓÅÍÁÎÔÉÃ ÐÌÁÃÅÓ !ȟ

B, and C. The user location is modeled as a Gaussian area from the location coordinates.

Concentric circles indicate location accuracy bounds for: 15%, 50%, 95%, 99.9% CEP.

This indicates that the user is inferred at A (most likely) followed by B, because of the

relative amounts of overlapping areas. ... 348

Figure D.3. Sampling of audio signal partitioned into Windows and Time Frames. 349

Figure D.4. Triangular overlapping filters applied to the frequency spectrum: symmetric in the Mel

Frequency domain (Left) and distorted in the Frequency domain (Right).......................... 355

Figure D.5. Sampling of an accelerometer signal partitioned into a Window for sampling. 358

XIX

TABLES

Table 3.1. Dynamic instance-based explanation types explaining the inference of a specific event.

These explanations will differ for every instance the application acts. 36

Table 3.2. Dynamic general explanation types explaining the inference model of the context-aware

application. ... 37

Table 3.3. Static general explanation types explaining the inference model of the context-aware

application. For a static (fixed) model, these explanations will always be the same. 38

Table 4.1. Summary of hypotheses and results regarding the effect of explanation type on user

experience (understanding anÄ ÔÒÕÓÔɊȢ ȬЂȭ ÍÅÁÎÓ ÎÏ ÓÉÇÎÉÆÉÃÁÎÔ ÄÉÆÆÅÒÅÎÃÅ ɉÐЀÎȢÓȢɊȠ ȬЅȭ

means we hypothesize either a lower user experience or no difference. 44

Table 4.2. Algorithms for generating different types of intelligibility explanations from a decision

tree model... 48

Table 4.3. Grading rubric for coding free-form reasons given by participants. Mental Models were

coded using this same rubric. ... 51

Table 4.4. Likert-scale questions of peÒÃÅÐÔÉÏÎ ÇÒÏÕÐÅÄ ÉÎÔÏ ÓÉØ ÆÁÃÔÏÒÓ ×ÉÔÈ #ÒÏÎÂÁÃÈȭÓ ɻ ÒÅÌÉÁÂÉÌÉÔÙ

computed. The former three factors are regarding the system, and the latter three factors

only apply to participants who viewed Intelligible versions of the system. 52

Table 5.1: Questions posed to participants for each application response scenario to find out what

they think the application response, what they think is happening, and their information

demand for each scenario. ... 72

4ÁÂÌÅ υȢςȡ #ÏÄÉÎÇ ÓÃÈÅÍÅ ÆÏÒ %ØÐÅÒÉÍÅÎÔ ρȢ 4ÈÅ ÆÉÒÓÔ Ô×Ï ÔÈÅÍÅÓ ÉÎÄÉÃÁÔÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÔÈÏÕÇÈÔÓ ÏÎ

the scenario, and the remaining themes indicate their information needs. Most of the

participant text responses were coded by one coder, with a 10% random sample of

responses coded by a second coder. Inter-ÃÏÄÅÒ ÒÅÌÉÁÂÉÌÉÔÉÅÓ ɉʆɊ ÆÏÒ ÅÁÃÈ ÔÈÅÍÅ ÁÒÅ

indicated. ... 74

Table 5.3: Results of Experiment 1. The left column shows the percentage of participants who had a

demand for various explanation types. The right columns show the effect size of whether

XX TABLES

higher moderator rating values (of each column) leads to increased (up arrows) or

decreased demand. All results indicate Bonferroni-corrected (n=78) significant

ÄÉÆÆÅÒÅÎÃÅÓ ɉÐЃȢπρȠ ɕ ÄÅÎÏÔÅÓ ÐЃȢπυɊȢ #ÏÈÅÎȭÓ Ä ÉÓ ÒÅÐÏÒÔÅÄ ÔÏ ÄÅÔÅÒÍÉÎÅ ÔÈÅ ÓÉÚÅ ÏÆ

differences rather than just whether the differences are significant. Single arrow

indicates small effect size (Ȣ ▀ Ȣ), double arrows indicates medium effect size

(Ȣ ▀ Ȣ). .. 78

Table 5.4: Sample questions and explanations of various explanation types participants received for

the Digital Family Portrait. .. 80

Table 5.5: Results of Experiment 2 and Experiment 1. eiD: elicited information demand. siD:

ÓÏÌÉÃÉÔÅÄ ÉÎÆÏÒÍÁÔÉÏÎ ÄÅÍÁÎÄȢ ЎÁ3ȡ ÄÉÆÆÅÒÅÎÃÅ ÉÎ ÁÐÐÌÉÃÁÔÉÏÎ ÓÁÔÉÓÆÁÃÔÉÏÎ ÆÏÒ ÐÒÏÖÉÄÉÎÇ

explanation type. iuR: intelligibility usefulness rating of explanation received. For

Experiment 2, left columns under Average are the mean values of the Likert scale for siD

ÁÎÄ ÉÕ2ȟ ÁÎÄ ЎÁ3ȟ ÔÈÅ ÄÉÆÆÅÒÅÎÃÅ ÉÎ ÍÅÁÎÓ ÂÅÔ×ÅÅÎ ÉÎÔÅÌÌÉÇÉÂÉÌÉÔÙ-provided (various

types) and non-intelligible. The right columns are differences in means or differences

between high and low moderator rating groups. All Experiment 2 results of each

measure are Bonferroni corrected (n=84) and significant (p<.01, * denotes p<.05). 82

Table 5.6: Design prescription of which explanation types to implement depending on the

circumstances encountered by and functionality of the candidate context-aware

application. ... 90

Table 5.7: Reference of provision types to handle tradeoffs between providing intelligibility and

other issues. ... 90

Table 5.8: Circumstances mapping for UbiGreen. .. 91

Table 5.9: Issues mapping for UbiGreen. ... 91

Table 5.10: Design prescription for UbiGreen. .. 91

Table 6.1. Summary of currently supported question types grouped by the Query class that

supports them. ... 116

Table 6.2. Pedagogical example of input conditionals and output values for rule and decision tree.

This describes an application to infer a user's availability based on his Location, Sound

activity around him, the Time of the day, his Schedule, and who is Contacting him........ 122

TABLES XXI

Table 6.3. Summary of inference models supported by the Intelligibility Toolkit grouped by style of

explanation each explainer generates. * The toolkit provides Rule Trace and Weights of

Evidence explainers for decision trees, e.g., J48 has J48RuleTraceExplainer and

J48EvidenceExplainer. ... 132

Table 6.4. Summary of explanation types grouped by dependency. Toolkit programmers only need

to implement Model and Application-dependent explanation types. 132

Table 7.1. Explanation Visualization Types for each context, and question type. Only the What value

is shown for Ringer, Schedule, and Contactor. Note that Certainty is shown together with

both What .. 162

Table 7.2. Personal availability rules participants were told were pre-ÐÒÏÇÒÁÍÍÅÄ ÉÎÔÏ ,ÁʆÓÁ ÆÏÒ

the user study scenarios. ... 164

Table 7.3. Participant results in scenarios showing how each participant performed for each

ÓÃÅÎÁÒÉÏ ÁÓ ÈÅ ÏÒ ÓÈÅ ÕÓÅÄ ÅØÐÌÁÎÁÔÉÏÎÓ ÐÒÏÖÉÄÅÄ ÉÎ ,ÁʆÓÁȢ Note that columns are

arranged in categories, not by sequence of presentation. ... 166

Table 8.1. Scenario scripts, application interfaces showing Full intelligibility, and their

interpretation of Scenario 6. .. 187

Table 8.2. Explanation types. LocateMe uses a map and bubbles visualization for its explanations

about its location inference. HearMe uses lists the current values of its sensed factors,

and their corresponding evidence to explain its sound activity inference. 188

Table 8.3. Pre-hoc contrast between Intelligibility types for low and high actual certainty. These

groups were chosen after visually inspecting the interaction graphs.................................... 192

Table 8.4. Means testing of whether perceptions of overall certainty are different from actual

certainties. t-test p-values suggest copying if p=n.s. ... 192

Table 8.5. Contrast between Intelligibility types for low and high actual certainty grouped by

application behavior. .. 195

Table 8.6. Contrast between Intelligibility types for low and high appropriateness grouped by actual

certainty. .. 196

Table 8.7. Distribution of participants in think-aloud study. Each participant saw S6 (appropriate

behavior) and S9 (inappropriate), iterated within-subjects with intelligibility types in the

order: None, Certainty, Full. ... 198

XXII TABLES

Table 8.8. Impact of Intelligibility on user impressions of a context-aware application depends on

application certainty and whether it behaved appropriately. ... 200

Table 8.9. Summary design recommendations of when and how to provide intelligibility given the

uncertainty in a context-aware application. ... 202

Table 9.1: Coding scheme for user understanding. Participants' mental models were decomposed

into beliefs based on what they explicitly said and tacitly implied. Each scenario may

have multiple codes, each either 0 or 1 indicating whether the correct corresponding

beliefs were expressed. We only cÏÄÅÄ ÆÏÒ 0ÌÁÃÅ ÁÎÄ 3ÏÕÎÄ ÆÁÃÔÏÒÓȟ ÓÉÎÃÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ

understanding of Availability can be derived from their understanding of these. Inter-

ÃÏÄÅÒ ÒÅÌÉÁÂÉÌÉÔÉÅÓ ɉʆɊ ÆÏÒ ÅÁÃÈ ÃÏÄÅ ×ÅÒÅ ÃÁÌÃÕÌÁÔÅÄ ×ÉÔÈ Á συϷ ÒÁÎÄÏÍ ÓÁÍÐÌÅ ÏÆ ÔÈÅ

scenarios by a second coder. * denotes apparent low reliability due to low count. 217

TÁÂÌÅ ωȢςȡ #ÏÄÉÎÇ ÓÃÈÅÍÅ ÆÏÒ ÃÏÎÔÒÏÌ ÓÕÇÇÅÓÔÉÏÎÓȢ 0ÁÒÔÉÃÉÐÁÎÔÓͻ ÓÕÇÇÅÓÔÉÏÎÓ ÔÏ ÉÍÐÒÏÖÅ ,ÁʆÓÁ ÆÏÒ

each scenario were coded with values: 0=Ineffective, 0.5=Partially effective, 1=Effective.

Each code may be counted multiple times depending on how many suggestions were

made. Inter-ÃÏÄÅÒ ÒÅÌÉÁÂÉÌÉÔÉÅÓ ɉʆɊ ×ÅÒÅ ÃÁÌÃÕÌÁÔÅÄ ×ÉÔÈ Á υπϷ ÒÁÎÄÏÍ ÓÁÍÐÌÅ ÂÙ Á

second coder. .. 218

Table 9.3. Summary statistics of intelligibility usage by participant scenario. ... 221

Table 9.4. Usage of explanation types: total view count of explanation types for all participant

scenarios, and median durations for respective views (for Total View Count > 15). Mean

View Count per scenario can be calculated by dividing by number of participant

scenarios, N=57. Colors show a heat map of values and relate to the numerical value. . 222

Table 9.5. Correlations between usage of, and impact due to intelligibility. Significant correlations

underlined (single: p<.05, double: p<.01). Superscript letters refer to interpretations in

text passage. .. 223

Table 9.6. Linear regression models with R2 values showing which factors better explain Control

Scores. ... 225

Table D.1. Sampling characteristics from the audio signal. .. 350

Table D.2. Summary of input features for Sound inference with simplified names, transformations,

and units used in explanations to end-users. W Low-energy frame rate is a window

feature where we only measure counts; all other features are time frame features where

we measure both Means and Standard Deviations across time frames within the window.

TABLES XXIII

P Spectral Centroid, Bandwidth, and Spectral Rolloff were aggregateÄ ÉÎ ,ÁʆÓÁ ×ÉÔÈ ÔÈÅ

pan-ÆÌÕÔÅ ÖÉÓÕÁÌÉÚÁÔÉÏÎ ɉÓÅÅ &ÉÇÕÒÅ χȢσÃɊȟ ÂÕÔ ×ÅÒÅ ÓÅÐÁÒÁÔÅÄ ÆÏÒ ,ÁʆÓÁςȢ 356

Table D.3. Summary of input features for Sound inference and expected values for different class

values (Speech, Music, and Ambient Noise). ... 357

Table D.4. Sampling characteristics from each accelerometer signal. .. 359

Table D.5. SummÁÒÙ ÏÆ ÉÎÐÕÔ ÆÅÁÔÕÒÅÓ ÉÎ ,ÁʆÓÁς ÆÏÒ -ÏÔÉÏÎ ÉÎÆÅÒÅÎÃÅ ×ÉÔÈ ÓÉÍÐÌÉÆÉÅÄ ÎÁÍÅÓȟ

transformations, and units used in explanations to end-users. .. 363

1

1 INTRODUCTION

Over the past 20 years, with the miniaturization and commoditization of computing power, we have

moved away from the desktop paradigm of computing to that of ubiquitous computing (Ubicomp).

This manifests Weiser's vision of a world with ubiquitous, invisible computing [Weiser, 1991]

embedded in smart ambient environments and carried by end-users in small devices. Anticipating,

adapting, and servicing user needs, these Ubicomp systems were envisioned to work calmly and

ÑÕÉÅÔÌÙȟ ÒÅÍÁÉÎÉÎÇ ÉÎ ÔÈÅ ÂÁÃËÇÒÏÕÎÄ ɍ7ÅÉÓÅÒ ÁÎÄ "ÒÏ×Îȟ ρωωχɎȟ ÎÏÔ ÇÅÔÔÉÎÇ ÉÎ ÔÈÅ ×ÁÙ ÏÆ ÔÈÅ ÕÓÅÒÓȭ

work or activit ies.

An important part of this Ubicomp vision is context-aware computing [Dey, Abowd, and Salber,

2001; Schilit, Adams, and Want, 1994] with applications that automatically adapt and tailor their

ÂÅÈÁÖÉÏÒ ÉÎ ÒÅÓÐÏÎÓÅ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÃÕÒÒÅÎÔ ÓÉÔÕÁÔion (or contextɊȟ ÓÕÃÈ ÁÓ ÔÈÅ ÕÓÅÒȭÓ ÁÃÔÉÖÉÔÙȟ ÌÏÃÁÔÉÏÎȟ

and environmental conditions. 5ÓÉÎÇ ÓÅÎÓÏÒÓ ÔÏ ÒÅÃÏÇÎÉÚÅ ÏÒ ÉÎÆÅÒ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÎÔ ÏÒ ÓÉÔÕÁÔÉÏÎȟ

context-aware applications do not need explicit user input to carry out their functions. Hence, these

applications implicitly ÄÅÔÅÒÍÉÎÅ ×ÈÁÔ ÉÓ ÈÁÐÐÅÎÉÎÇ ÁÎÄ ÃÏÍÐÌÅÍÅÎÔ ÔÈÅ ÕÓÅÒȭÓ ÁÃÔÉÖÉÔÙ ×ÉÔÈÏÕÔ

needing the ÕÓÅÒȭÓ attention. Examples of context-aware applications include:

¶ Mobile tour guides, e.g., CyberGuide [Abowd et al., 1997], GUIDE [Cheverst et al., 2000]),

¶ Reminder systems, e.g., CybReminder [Dey and Abowd, 2000];

¶ Monitoring and awareness systems, e.g., Digital Family Portrait [Mynatt et al., 2001],

embedded assessment of the elderly [Lee and Dey, 2010; 2011], domestic activity [van

Kasteren et al., 2008], coworker awareness [Lim, Brdiczka, and Bellotti, 2010];

¶ Interruption management, e.g., for Instant Messaging [Avrahami and Hudson, 2006], on the

mobile phone [Lim and Dey, 2011a; Rosenthal, Dey, and Veloso, 2011], and in the office

[Tullio et al., 2007];

¶ Coordination, e.g., family transportation [Davidoff et al., 2011];

¶ Service or device automation, e.g., Intelligent Office System [Cheverst et al., 2005]

2 CHAPTER 1 | INTRODUCTION

Consider using context-awareness to manage interruption on a mobile phone. With the

proliferati on of smart mobile phones, mobile applications can leverage embedded sensors in the

phones to provide context-awareness. A compelling application is for the phone to automatically

detect what the user is doing to determine whether it is an appropriate time ÆÏÒ ÔÈÅ ÕÓÅÒȭÓ ÃÏÎÔÁÃÔÓ

to call and interrupt her. For example, the application can detect if the user is in a conversation

(using the microphone for sensing and machine learning for inference) at the office (using Wi-Fi or

GPS sensing), or detect if she is driving a car (using the accelerometer for sensing and machine

learning for inference). Using a set of rules, it can infer whether the user is available.

In the previous example, as with many context-aware applications, the user does not need to

explicitly inform the application of her availability, or more generally, of her contextual situation,

and can expect the application to serve her need to be uninterrupted without her involvement . The

application uses implicit sensing , and complex inference to support context-awareness.

However, these designs and capabilities can lead to some user interaction issues.

1.1 THE PROBLEM φ LACK OF INTELLIGIBILITY

Since context-aware applications sense implicitly and act quietly, these applications lack the

affordances [Gibson, 1979] to allow end-users to be aware of what they know or what they are

doing. Bellotti et al. [2002] point out that with the vision of Ubicomp making the interface invisible,

it would become difficult for these systems to manifest themselves and allow users to make sense of

them. Dourish [1996] argues ÔÈÁÔ ÉÎÔÅÒÁÃÔÉÖÅ ÓÙÓÔÅÍÓ ÓÈÏÕÌÄ ÇÉÖÅ ȰÁÃÃÏÕÎÔÓȱ ɂ reflective

representations of their operations and externally observable states.

The complex inference mechanisms employed by context-aware applications also increase the

difficulty of understanding how these applications reason and decide. Bellotti and Edwards [2001]

propose that context-aware systems must be intelligible ɂ Ȱable to represent to their users what

they know, how they know it, and what they ÁÒÅ ÄÏÉÎÇ ÁÂÏÕÔ ÉÔȢȱ They believe that, along with

enforcing user accountabilityȟ ÉÎÔÅÌÌÉÇÉÂÉÌÉÔÙ ȰÍÕÓÔ ÂÅ ÐÒÅÓÅÎÔ ÆÏÒ ÃÏÎÔÅØÔ-aware systems to be

ÕÓÅÁÂÌÅȟ ÐÒÅÄÉÃÔÁÂÌÅȟ ÁÎÄ ÓÁÆÅȢȱ Bellotti et al. [2002] also challenge Ubicomp systems to support

alignment between the user and system, by making the system state perceivable, persistent, and

query-able, and providing timely and appropriate feedback. Indeed, this lack of intelligibility has

been empirically observed. Barkhuus and Dey [2003a, b] found that although end-users want to use

context-aware applications, they have serious issues with the lack of understandability, loss of

1.2 A SOLUTION Ʉ EXPLANATIONS FOR INTELLIGIBILITY 3

1
.2

 A
 3
Ï
Ì
Õ
Ô
É
Ï
Î

Ʉ

%
Ø
Ð
Ì
Á
Î
Á
Ô
É
Ï
Î

s
 fo

r In
te

llig
ib

ility
 3

control, loss of privacy, information overload; users find automatic behavior useful but difficult to

understand.

Trust in automation guides reliance when the complexity of the automation makes a complete

understanding impractical [Lee and See, 2004]. This lack of system intelligibility in context-aware

applications and user confusion can lead users to mistrust and misuse, and even abandon them

[Muir , 1994; Muir and Moray, 1996]. Therefore, ensuring end-users have sufficient user trust of

these systems is crucial to supporting their adoption. Lee and See [2004] described three attributes

of trust in automation: predictability, performance, and purpose. Predictability and performance are

particularly relevant to the problem of the lack of intelligibility. Without sufficient understanding of

context-aware applications, end-users will find theÓÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ behaviors less predictable, and

this can compromise user trust. Furthermore, context-aware applications are prone to ambiguity

and uncertainty [Greenberg, 2001]. This can cause them to make wrong inferences and misbehave,

compromising their performance. A common strategy for improving the performance of context-

aware applications involves user mediation, where the user resolves uncertainty [Dey et al., 2002].

Nevertheless, without intelligibility, end -users will struggle to determine the causes for uncertainty

and may not be able to improve the system performance.

1.2 A SOLUTION φ EXPLANATIONS FOR INTELLIGIBILITY

Providing explanations is a popular way to improve user understanding and user trust [Johnson,

1993] in Intelligent Systems. Dzindolet et al [2003] found that even though users lose trust in

intel ligent decision aids which make occasional errors, providing a description of why the aid might

fail can help to ÉÎÃÒÅÁÓÅ ÕÓÅÒÓȭ ÔÒÕÓÔȢ Explanations have been shown to improve user understanding

and performance in expert systems (e.g., knowledge-base systems [Davis, Buchanan, and

Shortcliffe, 1977, Gregor and Benbasat, 1999], intelligent decision aids [Glass, McGuinness, and

Wolverton, 2008; Haynes, Cohen, and Ritter, 2009]) and end-user systems (e.g., recommender

systems [Herlocker, Konstan, and Riedl, 2000], intelligent user interfaces [Myers et al., 2009]).

We employ the same strategy of providing users with explanations of application state, inference

logic, and behavior for context-aware applications. For example, a context-aware application may

mis-infer ÔÈÅ ÕÓÅÒȭÓ availability to receive phone calls, and allow a colleague to call him at the

library. Intelligibility will allow the user to learn why this apparent mistake happened. It could tell

4 CHAPTER 1 | INTRODUCTION

him that the application correctly infer red his location at the library, but that he had forgotten to

set a rule to be unavailable, or that his colleague ignored social norms and called anyway.

1.2.1 THESIS STATEMENT

In this thesis, we explore how to provide intelligibility in context-aware applications through

explanation interfaces. We aim to support both developers to design and implement intelligible

context-aware applications, and evaluate the benefits and limitations of intelligibility on end-users.

With the intelligibility explanations we develop in this thesis, we claim that:

Intelligi bility in context-aware applications can improve end-ÕÓÅÒÓȭ understanding

of how these applications work and, consequently, increase end-users' trust to use

these applications.

1.2.2 THESIS APPROACH

To prove this thesis statement, we approach the problem in three high-level stages. First, we (i)

explore what intelligibility is and define it through exploratory work, then we (ii) facilitate and

support intelligibility so that it is easier to provide it, and finally, (iii) we evaluate the usefulness of

intelligibil ity towards the thesis goals. Figure 1.1 outlines the chapters in this dissertation.

Figure 1.1. Three -stage approach to thesis with various projects connected by progression .

Arro ws indicate how findings and implications from one study applies to the next. We

summarize our taxonomy for Intelligibility in Chapter 3.

SupportRequirements Evaluation

Pilot
(Chapter 4)

Ȭ0ÁÐÅÒȭ 0ÒÏÔÏÔÙÐÅ
(Chapter 8)

Design and
Usability

(Chapter 7)

Quasi-Field
(Chapter 9)Elicitation

from Scenarios
(Chapter 5)

Literature
Review

(Chapter 2)

Implementation
with Toolkit
(Chapter 6)

Design
Recommendations

1.2 A SOLUTION Ʉ EXPLANATIONS FOR INTELLIGIBILITY 5

1
.2

 A
 3
Ï
Ì
Õ
Ô
É
Ï
Î

Ʉ

%
Ø
Ð
Ì
Á
Î
Á
Ô
É
Ï
Î
Ó

Æ
Ï
Ò

)
Î
Ô
Å
Ì
Ì
É
Ç
É
Â
É
Ì
É
Ô
Ù

 5

I) REQUIREMENTS GATHERING AND SPECIFICATION

In the first stage, we sought to define a framework for intelligibility. We accomplish this with a

literature review of explanations in intelligent systems (Chapter 2), and empirical work eliciting

what explanations potential users of context-aware applications would like to know (Chapter 5). To

this end, we have defined a taxonomy of explanation question types.

II) FACILITATION, SUPPORT, AND GUIDELINES

The next stage implements the requirements as determined from the taxonomy of intelligibilit y,

and provides generalized support for implementing intelligibility in context -aware applications

through a software toolkit and design recommendations. We facilitate the implementation of

intelligibility with the Intelligibility Toolkit (Chapter 6), and also explored and evaluated design and

usability issues to derive guidelines for providing and presenting intelligibility (Chapter 7).

III) EVALUATION

In the final stage, we evaluate intelligibility in context-aware applications. Using the toolkit and

design guidelines, we can rapidly prototype intelligibility in context-aware applications to test our

hypotheses. We investigated the impacts of different explanation types on user understanding and

tru st of context-aware intelligent systems (Chapter 4). Next, through questionnaires, we evaluated

the impact of intelligibility on user impression of context-aware applications that are uncertain or

certain of their inferences (Chapter 8). We followed this with an evaluation of an interactive

prototype of an intelligible context-aware mobile application, where we investigated the extent of

usage of intelligibility, how well or poorly users understood the application inferences, and their

perceived usefulness of the explanations (Chapter 9).

1.2.3 INTELLIGIBILITY AS EXPLANATION TYPES

We support intelligibility through an explanation query paradigm (e.g., [Wick and Slagle, 1989; Ko

and Myers, 2003], where users can obtain explanations to questions about the context-aware

applications, such as:

1. What is the current value of the context?

2. Certainty : how certain or confident is the application of this inference?

3. Why is this context the current value X?

4. Why Not : ×ÈÙ ÉÓÎȭÔ ÔÈÉÓ ÃÏÎÔÅØÔ ÖÁÌÕÅ 9ȟ ÉÎÓÔÅÁÄȩ

6 CHAPTER 1 | INTRODUCTION

5. How To: when would this context take value Y?

6. What if the conditions are different, what would this context be?

Categorizing explanations into these Explanation Types allows us to systematically investigate their

usefulness and how to support their provision in context-aware applications. We detail our

taxonomy of Explanation Types in Chapter 3.

1.3 SCOPE AND DEFINITIONS

There are several terms and concepts that are central to this dissertation and we define them here.

In this thesis, we focus on providing and evaluating explanations in context-aware applications

used by lay end-users for everyday computing activities. We use the definition of context -

awareness as defined in [Dey, Abowd, Salber, 2001; Schilit, Adams, and Want, 1994] regarding a

positivist, constructionist view of understanding of the environment and the user through

constituent contextual cues and signals that are sensed, aggregated, interpreted, and inferred.

These can include sensors around the house (e.g., thermostats, brightness sensors), in computer

software (e.g., keyboard and mouse activity), worn on the body or in mobile devices (e.g.,

accelerometers, microphones); and inferred activities and intentions such as domestic activity (e.g.,

making breakfast, using the toilet), and mobile availability and activity (e.g., driving, talking in a

meeting). On the other hand, the use of intelligibility, especially in a social application (e.g.ȟ ,ÁʆÓÁ ÉÎ

Chapter 7), can support the interactionist, phenomenological view of context [Dourish, 1994], where

context is relational, dynamic, depends on the social interactions, arises from activity, and is co-

constructed with the user. Intelligibility can provide users with more information to make better

sense of the situation.

There can be many different types of users of intelligent systems, with different relationships to the

systems and different domain expertise. We have scoped our investigation into context-aware

applications to cover Ȱeverydayȱ activities as defined in [Abowd, Mynatt, an Rodden, 2002;

Greenfield, 2006] (e.g., reminder systems, interruption management), rather than work task-

oriented or professional decision aids (e.g., medical diagnosis knowledge bases, task planning).

Finally, we target lay end-users as the consumers of the intelligibility features we seek to provide.

We do not expect these users to have technical or computer science expertise, nor will they

necessarily have deep interest in understanding the detailed operation of novel context-aware

1.3 SCOPE AND DEFINITIONS 7

1
.3

 S
C

O
P

E a
n

d
 D

e
fin

itio
n
s 7

applications. Instead, we expect these users to primarily focus on their activities and pay attention

to intelligibility occasionally, e.g., when the applications misbehave or act unexpectedly.

We intend for context-aware applications to provide intelligibility to help end-users learn and

understand them. Much research has been performed on explanations in intelligent systems, using

different terms to describe an intelligible application, such as: explainable, interpretable [Mozina et

al., 2004], transparent [Cheverst et al., 2005; Cramer et al., 2008; Höök, 2000], scrutable [Assad et

al., 2007; Barua, Kay, and Kummerfeld, 2011], palpable [Rimassa, Greenwood, and Calisti, 2005],

ȰÇÌÁÓÓ ÂÏØȱ [Höök et al., 1996], white-box [Herlocker, Konstan, and Riedl, 2000], seamful [Chalmers

and MacColl, 2003], etc. Given the complex inference mechanisms and sensors used in context-

aware applications, there will be terms and concepts central to their operation that end-users may

not understand. Therefore, intelligibility can help end-users to learn the relevant terminology and

concepts, so that they may properly scaffold and form more accurate mental models [Johnson-Laird,

1983]. We do not intend for end-users to learn these concepts to the extent which students learn

from their coursework (as is the intention of Intelligent Tutoring Systems, e.g., [Anderson et al.,

1995]), nor do we expect end-users to understand the application to be able to debug their code

(e.g., Whyline [Ko and Myers, 2003]). We aim to use intelligibility to allow end-users to understand

the factors or sensors that influence the inference and decision making in context-aware

applications, so that they may be aware of and appreciate ÔÈÅ ÃÏÍÐÅÔÅÎÃÅ ÏÆ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ

complex inference (assuming reliable performance). We also want end-users to understand the

limitations of the applications.

We aim is to improve end-user trust by improving the end-ÕÓÅÒȭÓ ȰÁÂÉÌÉÔÙ ÔÏ ÅÓÔÉÍÁÔe predictability

ÏÆ ÔÈÅ ɍÁÐÐÌÉÃÁÔÉÏÎȭÓɎ ÂÅÈÁÖÉÏÒÓȱ ÂÙ ÍÁËÉÎÇ ÔÈÅ ÂÅÈÁÖÉÏÒÓ ȰÏÂÓÅÒÖÁÂÌÅȱ ɍ-ÕÉÒȟ ρωωτɎȢ Lee and See

[2004] identified three processes underlying trust: analytic, analogical, and affective. Analogical

trust is influenced by the context, environment of use, and other social factors such as reputation.

Affective trust ÉÓ ÉÎÆÌÕÅÎÃÅÄ ÂÙ ÔÈÅ ÕÓÅÒȭÓ ÅÍÏÔÉÏÎÁÌ ÒÅÓÐÏÎÓÅ ÁÎÄ ÁÌÌÏ×Ó ÈÅÒ ÔÏ ÒÅÄÕÃÅ ÈÅÒ ÃÏÇÎÉÔÉÖÅ

burden when deciding how much to trust the application. Parasuraman and Miller [2004] found that

differences in machine etiquette (e.g., providing messages at appropriate or disturbing times, whether

polite or impolite) can influence user trust more than the automation reliability. This demonstrates

an influence of affect on user trust. Analytic tru st ÒÅÌÁÔÅÓ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÏÆ ÔÈÅ ÌÏÇÉÃ ÏÆ

ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎ ÁÎÄ ÉÓ ÉÎÆÌÕÅÎÃÅÄ ÂÙ ÔÈÅ ÕÓÅÒȭÓ ÃÏÇÎÉÔÉÏÎȢ 4ÈÏÕÇÈ ×Å ÁÃËÎÏ×ÌÅÄÇÅ ÔÈÅ ÉÍÐÏÒÔÁÎÃÅ ÏÆ

ÅÁÃÈ ÔÙÐÅ ÏÆ ÔÒÕÓÔȟ ÉÎ ÔÈÉÓ ÔÈÅÓÉÓȟ ×Å ÆÏÃÕÓ ÏÎ ÐÒÏÍÏÔÉÎÇ ÁÎÁÌÙÔÉÃ ÔÒÕÓÔ ÂÙ ÉÍÐÒÏÖÉÎÇ ÔÈÅ ÕÓÅÒȭÓ

underÓÔÁÎÄÉÎÇ ÏÆ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎȭÓ ÂÅÈÁÖÉÏÒȢ We also aim to help users to better calibrate their trust

8 CHAPTER 1 | INTRODUCTION

[Dzindolet et al., 2003] in context-aware applications with their increased understanding of the

competence and limitations of these applications.

Finally, Edwards, Newman, and Poole [2010] noted that low-level infrastructure on which

applications are built should also be made intelligible. Although we provide a toolkit to support

intelligibility, our focus in this thesis is to support intelligibility for end -user applications.

1.4 CONTRIBUTIONS

This dissertation makes a number of major contributions:

¶ Evidence that end-users want intelligibility in context -aware applications.

¶ A taxonomy of explanation types that end-users desire to have provided for context-aware

applications.

¶ A toolkit for supporting the development of intelligibility in context-aware applications.

¶ Algorithms to generate multiple explanation types from several rules and machine learning

inference models.

¶ Design recommendations for intelligibility features.

¶ A prototype of an intelligible context-aware application developed through several

iterations.

¶ Investigation of caveats and limitations of providing intelligibility (usability issues and

intelligibility of uncertain systems)

¶ Evidence that end-users can use intelligibility features to learn about context-aware

inferences and behaviors

¶ Evidence that providing intelligibility can improve end-user understanding and trust in

context-aware applications

1.5 OUTLINE

The rest of the dissertation is organized as follows:

To give a background to this dissertation, in Chapter 2, we review explanations in intelligent

systems, various taxonomies of explanations, and systems that provide explanations to users. In

Chapter 3, we give an overview of intelligibility as defined in this dissertation. We describe research

1.5 OUTLINE 9

1
.5

 O
U

T
L
IN

E 9

questions that drove various projects in the thesis and introduce a taxonomy of explanation types

that intelligible context-aware applications can provide. The following chapters are organized

chronologically and in the order that follows from the chain of reasoning in our research questions.

Chapter 4 describes early work demonstrating the usefulness of intelligibility to help end-users

understand and trust the output of a context-aware intelligent system. Particularly, we compare the

effectiveness among four explanation types. Subsequently, in Chapter 5, we describe our expansion

of the list of explanation types through an elicitation study by presenting questionnaires of various

applications and scenarios to participants.

Chapter 6 describes how we support the implementation of our taxonomy of explanation types with

an Intelligibility Toolkit to automatically generate and present explanations from multiple inference

models. However, the toolkit does not provide design recommendations on how to present

explanations to users. In Chapter 7, we describe a user study that explored design and usability

issues for intelligibility interfaces in a context-aware application prototypeȟ ,ÁʆÓÁ.

Having designed a usable, intelligible context-aware application, we evaluate the impact of

intelligibility. Chapter 8 describes a questionnaire study that investigated the positive and negative

impact of intelligibility for application inferences with high or low certainty, respectively. Chapter 9

describes a quasi-ÆÉÅÌÄ ÓÔÕÄÙ ÅÖÁÌÕÁÔÉÎÇ ÔÈÅ ÕÓÁÇÅ ÁÎÄ ÕÓÅÆÕÌÎÅÓÓ ÏÆ ÉÎÔÅÌÌÉÇÉÂÉÌÉÔÙ ÉÎ ÏÕÒ ,ÁʆÓÁ

prototype, showing how usage of intelligibility helps end-users to better understand and

troubleshoot the application inference.

In Chapter 10, we conclude the dissertation with a summary of its contributions and a discussion of

its limitations. We include several appendices describing detailed technical aspects of the

Intelligibility Toolkit, descriptions of the intelligibility user inter ÆÁÃÅ ÏÆ ÔÈÅ ,ÁʆÓÁ ÐÒÏÔÏÔÙÐÅȟ ÁÎÄ

experiment study materials.

11

2 RELATED WORK:
EXPLANATIONS IN INTELLIGENT

SYSTEMS

In this chapter, we review the explanation taxonomies developed in several research domains of

different types of intelligent systems. Research in several domains have explored the impact of

explanations to improve user trust and acceptance of intelligent systems, including knowledge-

based systems (see a review in [Gregor and Benbasat, 1999]), task processing systems (e.g., [Glass,

McGuinness, and Wolverton, 2008; Haynes, Cohen, and Ritter, 2009; McGuinness et al., 2007;

Silveira, de Souza, and Barbosa, 2001]), intelligent tutoring systems (e.g., [Graesser, Person, and

Huber, 1992; Graesser, Baggett, and Williams, 1996]), recommender systems (e.g., [Herlocker,

Konstan, and Riedl, 2000; Cramer et al., 2008]), case-base reasoning (CBR) (e.g., [Kofod-Petersen,

Cassens, and Aamodt, 2008; Sørmo, Cassens, and Aamodt, 2005]), end-user debugging (e.g., [Ko and

Myers, 2004; 2009; Myers et al., 2006]), and context-aware systems (e.g., [Assad et al., 2007;

Cheverst et al., 2005; Tullio et al., 2007; Vermeulen et al., 2009]), etc. These domains can be

categorized into two groups, namely, expert systems handling professional tasks and end-user

systems handling "everyday" activities. We discuss how we draw inspiration from these works that

have investigated explanations over the past several decades, and identify gaps and opportunities

for providing explanations for context-aware applications in ubiquitous computing (Ubicomp).

2.1 EXPLANATIONS IN EXPERT SYSTEMS

Much early research on explanations in intelligent systems were focused on expert systems to help

professionals to learn how the system makes decisions, or to help novices to learn about decision

making. As such, several frameworks of explanations have been developed.

12 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

2.1.1 KNOWLEDGE-BASED SYSTEMS

Drawing from explanation facilities of many knowledge-based systems (KBS), Gregor and Benbasat

[1999] identify three classification methods of explanation type: content , pr esentation format,

and provision mechanism. They found that KBS systems provide four content types of

explanations:

1. Trace or line of reasoning.)Î ÒÅÓÐÏÎÓÅ ÔÏ ÔÈÅ ÔÙÐÉÃÁÌ Ȱ×ÈÙȱ ÑÕÅÓÔÉÏÎȟ ÔÈÉÓ ÅØÐÌÁÎÁÔÉÏÎ ÔÙÐÅ

describes the decision processes taken by the system, why or how it came to its result.

Explanations that EMYCIN [Van Melle, Shortliffe, and Buchanan, 1984] provided are of this

type.

2. Justification or support. Introduced in the XPLAIN system [Swartout, 1983], this type of

explanation provides deeper doÍÁÉÎ ËÎÏ×ÌÅÄÇÅ ÔÏ ÊÕÓÔÉÆÙ ÔÈÅ ÓÙÓÔÅÍȭÓ ÐÒÏÃÅÓÓȢ 4ÈÅÓÅ ÄÅÅÐ

explanations can incorporate different types of knowledge such as analogies, cases, and text

books.

3. Control or strategic. Introduced in NEOMYCIN [Clancey, 1983], this type of explanation

explains tÈÅ ȰÓÙÓÔÅÍȭÓ ÃÏÎÔÒÏÌ ÂÅÈÁÖÉÏÒȟ ÁÎÄ ÐÒÏÂÌÅÍ ÓÏÌÖÉÎÇ ÓÔÒÁÔÅÇÙȢȱ 4ÈÉÓ ÐÒÏÖÉÄÅÓ ÔÈÅ

user with the design rationale that the developers employed for the application logic.

4. Terminological. Distinguished by Swartout and Smoliar [1987], this type of explanation

familiarizes users with domain terms and concepts by providing terminologies and

definitions.

There are several factors, such as user expertise , that affect when certain explanation content

types are more important. For example, novice users would use justification and terminology

explanation types more as they learn how to use the expert system; expert users would mainly use

explanations to resolve anomalies and for verification, so they would prefer reasoning traces and

control types of explanations.

Presentation styles used in KBS systems have been identified to fall into two categories: Text -

based and Multimedia . Text-based explanations can either be in the form of programming

language syntax, a canned text of the programming logic, or natural language translations of the

logic. Multimedia explanations use graphics, images, animations, or sound.

Gregor and Benbasat have also identified three types of mechanisms to provide explanations: user-

invoked , automatic , and intelligent . User-invoked (also known as on-demand, optional, or

2.1 EXPLANATIONS IN EXPERT SYSTEMS 13

2
.1

 E
X

P
L
A

N
A

T
IO

N
S in

 E
x
p

e
rt S

ys
te

m
s 1

3

voluntary) explanations can be provided through menus, commands, and hyperlinks, and users can

choose whether or when to invoke them. Automatic explanations are provided all the time, and

users do not get a choice of whether to receive them. To maximize exposure of certain explanations,

and minimize the perceived effort of obtaining these explanations, Everett [1994] recommends

making these explanations automatic. Intelligent provision of explanations depend on the system

determining when is most appropriate to provide the explanations. Gregor and Benbasat discuss

employing user modeling to track their expertise and mental model (and whether they are making

mistakes) for the system to determine when to provide explanations.

2.1.2 INTELLIGENT DECISION AID

The knowledge-based systems discussed by Gregor and Benbasat [1999] deal mainly with

supporting decisions, or helping users decide what to do, rather than acting on their behalf. On the

other hand, there is a growing number of systems that are being designed to be more proactive, and

have greater autonomy to carry out tasks. These systems, also called intelligent agents, would have

to gain the trust of users before they can be widely accepted. One way to increase user trust is to

increase transparency in these systems, such as by answering explanation questions. Haynes,

Cohen, and Ritter [2009] did an extensive review of explanations in intelligent agents (systems that

ȰÍÁËÅ ÕÓÅ Á ËÎÏ×ÌÅÄÇÅ-ÂÁÓÅ ÁÎÄ ÁÌÇÏÒÉÔÈÍ ÔÏ ÃÁÒÒÙ ÏÕÔ ÉÔÓ ÒÅÓÐÏÎÓÉÂÉÌÉÔÉÅÓȱ), using a wider scope of

systems than just KBS. They extend and reorganize Graesser et al.ȭÓ ɍρωωςɎ ÃÌÁÓÓÉÆÉÃÁÔÉÏÎ ÏÆ ρσ

explanation-seeking questions into a framework of four main explanation types: ontological,

mechanical and operational explanations, and design rationale.

¶ Ontological explanations ÐÒÏÖÉÄÅ Ȱ×ÈÁÔȱ ÉÎÆÏÒÍÁÔÉÏÎ ÔÏ ÈÅÌÐ ÕÓÅÒÓ ÍÁËÅ ÓÅÎÓÅ ÏÆ Á ÃÏÎÃÅÐÔ

or a component of the system, including:

o What ɀ identity. Basic ontological information about the existence of an agent or

agent component, or its identifier.

o What ɀ definition. Information beyond simply identifying an agent or component

and involves providing it with some meaning in context through definitions.

o What ɀ relation. Information about the static structural relation between agents or

their components, such as spatial information.

o What ɀ event. Especially distinguished, this is information about entities that are

primitives in describing causal explanations, and can provide temporal information.

14 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

¶ Mechanistic explanations deal with the how of agent behavior. The main type of question is

"How does it work?" This type of explanations provides information about how different

components interact to give rise to more complex actions.

¶ Operational explanations answer the question of "How do I (the user) use it (the system)?"

They provide instructions for the user or other agents to enact some agent behavior.

¶ Design rationale explanations deal with why questions at multiple levels from system

component constraints to designer intentions to law-like relations. In relation to the

taxonomy provided by Gregor and Benbasat, the design rationale spans reasoning trace and

strategic. Haynes et al. categorize design rationale into four parts:

o Deductive -Nomological (D -N). Explanations referring to some law or law-like

relation between entities and/or agents. This is based on the D-N model that

suggests that explanations should take the form of deductive statements predicated

on well-established truths [Hempel, 1965].

o Functional. Design intent of the function of a created agent or component.

o Structural. Explanations that refer to the structure of the system constraints that

cause an entity or event to happen.

o Pragmatic. %ØÐÌÁÎÁÔÉÏÎÓ ÔÏ ÒÅÑÕÅÓÔÓ ÔÈÁÔ ÄÅÐÅÎÄ ÏÎ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÒÅÓÔ ÖÁÌÕÅȢ 4ÈÅÓÅ

explanations are in response to either why not or what if questions.

In an empirical study using a virtual pilot cognitive model intelligent agent, Haynes et al. found that

most explanation seeking questions (58%) were ontological, followed by mechanistic (19%), then

operational (12%) and design rationale (11%).

McGuinness and colleagues have explored explanation needs for task processing systems,

particularly with the Cognitive Assistant that Learns and Organizes (CALO, 2007). Focusing on

temporal characteristics, McGuinness et al. [2007] articulated several types of explanation

questions that users of task processing systems are interested in:

¶ Motivation for tasks.)Î ÒÅÓÐÏÎÓÅ ÔÏ ÔÈÅ ÑÕÅÓÔÉÏÎ Ȱ×ÈÙ ÁÒÅ ÙÏÕ ÄÏÉÎÇ ЃÔÁÓËЄȩȱ, answer

strategies can (i) include identifying the task requestor (attribution), (ii) indicating that the

task is a subtask that supertask depends on, (iii) indicating the task is next-in-step of a task

procedure, and (iv) indicating that certain terminating conditions have not yet been met.

2.1 EXPLANATIONS IN EXPERT SYSTEMS 15

2
.1

 E
X

P
L
A

N
A

T
IO

N
S in

 E
x
p

e
rt S

ys
te

m
s 1

5

¶ Task status. This regards to (i) what tasks are being done, (ii) what the status of those

tasks are, (iii) whether certain tasks are not being done (what ÄÉÄÎȭÔ), and (iv) whether any

tasks are being hindered.

¶ Task history. This regards to (i) what the system has done recently, (ii) what it has started

recently, (iii) why it did a task (in the past, as opposed to why it is doing), (iv) why it ÄÉÄÎȭÔ

ÄÏ Á ÔÁÓËȟ ɉÖɊ ÈÏ× ÉÔ ÄÉÄ Á ÔÁÓËȟ ÁÎÄ ɉÖÉɊ ÁÎÄ ÖÁÒÉÁÎÔÓ ÏÆ ÒÅÁÓÏÎÉÎÇ ÒÅÇÁÒÄÉÎÇ ×ÈÁÔ ÄÉÄÎȭÔ

questions.

¶ Task plans. While task history looked into past actions, task plans looks into the future

planned actions. This regards to (i) what the system will do next, (ii) when it will start the

task, (iii) why, and (iv) how it expects to do it.

¶ Task ordering. This regards to (i) why a task is being done before another, (ii) why some

other task has not yet been started, and (iii) what needs to be done to complete a task.

¶ Explicit time questions. This regards to (i) when a task will begin, or (ii) end, (iii) when a

task happened, (iv) how long it took to complete, (v) why a task took so long to complete,

(vi) why a task is already being done instead of later.

While users of task processing systems may have many questions regarding time, they have other

information requirements before they can appropriately trust these applications. Through

structured interviews with users of CALO, Glass et al. [2008] investigated several factors that

influence their level of trust. They used Silveira et alȢȭÓ ÔÁØÏÍÏÎÙ ɍςππρɎ ÏÆ ÕÓÅÒÓȭ ÆÒÅÑÕÅÎÔ ÄÏÕÂÔÓ

to derive a list of question types users are interested in:

¶ Choice: What can I do right now?

¶ Procedural : How can I do this?

¶ Informative : What kinds of tasks can I accomplish?

¶ Interpretive : What is happening now? Why?

¶ Guidance: What should I do now?

¶ History : What have I already done?

¶ Descriptive : What does this do?

¶ Investigative : Did I miss anything?

¶ Navigational : Where am I?

16 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

These questions are ordered by the rated importance from the interviews. While question types

defined by McGuinness et al. [2007] were mainly about time, and about the system, these questions

are about the user and his activity.

2.1.3 INTELLIGENT TUTORING SYSTEMS

While not quite expert systems to aid workers in their work, Intelligent Tutoring Systems provide

expert knowledge (of the domain or concept being studied) to students. The knowledge or

information can be provided via explanations. Graesser et al. have explored how students ask

questions and derived several explanation types and reasons for question asking. Graesser and

McMahen [1993] four conditions when questions are asked:

¶ Anomalous event . Questions are asked about the causes and consequences of an unusual

event, e.g., if someone faints in a restaurant.

¶ Contradiction . Questions are asked to resolve a contradiction between two propositions,

e.g., two people who claim to be married but are not wearing wedding rings.

¶ Obstacle to a goal. Questions are asked to remove or circumvent an obstacle to a goal, e.g.,

when a car fails to start, the driver will ask why it will not start and how it can be fixed.

¶ Equally attractive alternatives . Questions are asked to break a tie between a set of

alternatives, e.g., pros and cons of switching jobs, choosing different products.

From empirical analyses of questions in educational settings, Graesser and Person [1994] grouped

,ÅÈÎÅÒÔȭÓ ɍρωψχɎ ρφ ÑÕÅÓÔÉÏÎ ÃÁÔÅÇÏÒÉÅÓ ÉÎÔÏ ÔÈÒÅÅ ÄÅÐÔÈ ÌÅÖÅÌÓȡ

¶ Simple / shallow questions

o Verification: invites a yes or no answer

o Disjunctive: Is X, Y, or Z the case?

o Concept completion: Who? What? When? Where?

o Example: What is an example of X?

¶ Intermediate questions

o Feature specification: What are the properties of X?

o Quantification: How much? How many?

o Definition: What does X mean?

o Comparison: How is X similar to Y?

2.1 EXPLANATIONS IN EXPERT SYSTEMS 17

2
.1

 E
X

P
L
A

N
A

T
IO

N
S in

 E
x
p

e
rt S

ys
te

m
s 1

7

¶ Complex / deep questions

o Interpretation: What does X mean?

o Causal antecedent: Why / How did X occur?

o Cause consequence: What next? What If?

o Goal orientation: Why did an agent do X?

o Instrumental / procedural: How did an agent do X?

o Enablement: What enabled X to occur?

o Expectation: 7ÈÙ ÄÉÄÎȭÔ X occur?

o Judgmental: What do you think of X?

While these questions are not specifically for end-users to ask of automated systems, many of them

are relevant (e.g., example, feature specification, comparison, causal antecedent, goal orientation,

expectation). Point and Query, an educational software [Graesser, Langston and Baggett 1993]

provides explanations to questions in terms of levels of knowledge:

¶ Taxonomic knowledge: What does X mean? What are the types of X? What are the

properties of X?

¶ Sensory knowledge: What does X look like? What does X sound like?

¶ Goal-oriented procedural knowledge: How does a person use / play X?

¶ Causal knowledge: What causes X? What are the consequences of X? How does X affect

sound? How does a person create X?

2.1.4 RELATION TO CONTEXT-AWARE APPLICATIONS

The aforementioned frameworks provide a rich design space for different types of explanations.

However, they cater to expert systems with users who carry out tasks that require expert decision

making. Context-aware applications in ubiquitous computing focus on helping lay end-users in

"everyday" activities [Abowd, Mynatt, and Rodden, 2002], so their users would require a different

set of explanations. For example, we expect the functional purpose of context-aware applications to

be clearer than expert systems because, as everyday products, their functional scope would be

limited. Therefore, we do not anticipate functional explanation types to be very necessary.

Nevertheless, some of these explanation types remain useful for context-aware applications.

In this thesis, the explanations we provide for intelligibility are mainly about the application's line

of reasoning, or mechanistic. We treat context-aware applications as inference and decision agents,

18 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

and, through intelligibility, reveal their reasoning process. We take a user-centered approach, and

therefore, also provide pragmatic design rationale explanations to explain to end-users how the

application inferred in the context of the user's goals (why not) or present understanding of the

situation (what if). While users should not have to be overly bothered by technical terminology

when using everyday applications, to explain some of the low-lying contexts and reasoning traces,

terminological explanations may be needed to help users learn relevant explanatory concepts. We

also expect users to act on the information they learn from intelligibility, but they would need to

know how they can modify or control the context-aware application. Therefore, operational

explanations would also be relevant to provide in context-aware applications.

2.2 EXPLANATIONS IN END-USER SYSTEMS

Research into explanations for KBS or task processing systems tends to focus on trained or

reasonably knowledgeable users. However, explanations can be useful for novice end-users to

understand unfamiliar programs too, even those that help with their everyday tasks.

2.2.1 RECOMMENDER SYSTEMS

Currently, explanations of end-user systems are most accessible to people through online

recommender systems like Amazon's recommendation of products, Pandora.com's song selection,

etc. Herlocker, Konstan, and Riedl [2000] described two sources of errors: model/process, and data.

¶ Model/process errors are due to the limited feature space of the computational model

used;

¶ Data errors are due to (i) not enough data, (ii) poor or bad data, or (iii) high variance data.

To support explanations, Herlocker et al. discuss white-box and black-box models. The white -box

model divides the Automated Collaborative Filtering (ACF) system into three parts: user profile

ratings, similarity measures used to compare profiles, and the model or mechanism of how the

ratings are combined to form recommendations. These explanation capabilities may help users

understand the conceptual model of the system, but this may not be desirable all the time,

especially for guarding proprietary methods. The black -box model is appropriate for such

situations, and use alternative information to explain the system. Techniques include providing

information about past performance justification (e.g. that the system was 80% correct in the past

when recommending this), and using external supporting evidence (justification type explanations).

2.2 EXPLANATIONS IN END-USER SYSTEMS 19

2
.2

 E
X

P
L
A

N
A

T
IO

N
S in

 E
n
d-U

s
e
r S

ys
te

m
s 1

9

Tintarev [2007] classifies the explanation types used in recommender systems in several types

such as case-based, content -based, collabor ative , demographic , and knowledge -based. Much

of these explain the recommendations regarding the similarity of the attributes of the entities of

interest (e.g., speed of camera), of the user (e.g., demographic information), preference similarities

between users (e.g., the user preferring low prices).

4Ï ÅØÐÌÏÒÅ ÔÈÅ ÉÍÐÁÃÔ ÏÆ ÅØÐÌÁÎÁÔÉÏÎÓ ÏÎ ÃÏÎÓÕÍÅÒÓȭ ÔÒÕÓÔÉÎÇ ÂÅÌÉÅÆÓ ÉÎ ÏÎÌÉÎÅ ÓÈÏÐÐÉÎÇ (e-

commerce) recommendation agents (RAs), Wang and Benbasat [2007] examined the effects of three

types of explanations:

¶ How explanation to reveal the line of reasoning used by the RA. This increased perceived

benevolence ÔÈÁÔ ÔÈÅ 2! ÁÃÔÓ ÉÎ ÔÈÅ ÃÏÎÓÕÍÅÒȭÓ ÉÎÔÅÒÅÓÔȢ

¶ Why explanation to justify the importance and purpose of the RA to consumers. This

increased perceived competence (performance) and benevolence in the RA.

¶ Trade-off explanation to offer objective decision guidance to help consumers identify

differences in features between products. This increased perceived integrity that the RA

adheres to a set of principles (e.g., honesty, justice, objectivity).

Note their use of the terms why and how differ from how they are used in the rest of this

dissertation.

Cramer et al. [2008a, b] investigated the effects of transparency in an art recommender, Cultural

Heritage Information Personalisation (CHIP) system, on user trust. They considered three versions

of CHIP: non-transparent, transparent (provides Why explanations listing properties the current

recommendation shares with artworks the user had previously rated positively, and ȬÓÕÒÅȭ

(showing a Confidence ÒÁÔÉÎÇ ÏÆ ÔÈÅ ÓÙÓÔÅÍȭÓ ÒÅÃÏÍÍÅÎÄÁÔÉÏÎɊȢ 4ÈÅÙ ÆÏÕÎÄ ÔÈÁÔ providing Why

explanations increased user acceptance of the system, but did not improve user trust. Furthermore,

they found that Confidence (Certainty) explanations did not improve acceptance or trust.

Even though these similarity -based approaches are highly effective for recommender systems,

context-aware applications also use context information about the physical environment and

situation. Moreover, context-aware applications can use other types of models to make inferences.

From a literature survey of context-aware applications [Lim and Dey, 2010] and in Section 6.2, we

found that the most popular models are indeed different: rules, decision trees, and naïve Bayes

20 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

classifiers. Therefore, while explanations have been richly studied for recommender systems,

research into explanations for context-aware applications remains an open problem.

2.2.2 CASE-BASE REASONING

Given the focus on unique and similar products or entities that recommender systems have,

recommender systems can also be considered as systems operating on a collection of cases. This

lends itself nicely to applying techniques in Case-Based Reasoning (CBR). For example, Top Case

[McSherry, 2005] provides explanations to discriminate between different cases and explain why

one is better than another. It explains in terms of attributes of the cases, indicating whether they

are the same or different for different cases, and which attributes do not affect the

recommendation.

Some research has sought to provide frameworks for explanations in CBR. Roth-Berghofer [2004]

describes five explanation types of [Spieker, 1991] relevant to CBR:

¶ Conceptual explanations to describe the meaning of concepts

¶ Why explanations to describe the cause or justifications for an event

¶ How explanations as a special case of Why explanations to describe the causal chain of the

decision process

¶ Purpose explanations to describe the purpose of a fact or object

¶ Cognitive explanations as a special case of Why explanations. The previous four

explanation types explain the physical world in which the CBR system operates on, while

these explain the processing and behavior of the system.

Roth-Berghofer describes knowledge containers (vocabulary, similarity measures, adaptation

knowledge, and case-base) as components of the CBR system which contribute variously to these

explanations.

Sørmo, F., Cassens, J., and Aamodt [2005] identified five goals for explanations in CBR to satisfy:

¶ Transparency to explain how the system reached the answer

¶ Justification to explain why the answer is a good one

¶ Relevance to explain why a strategy is relevant

¶ Conceptualization to clarify the meaning of concepts and vocabulary

¶ Learning to teach the user about the domain

2.2 EXPLANATIONS IN END-USER SYSTEMS 21

2
.2

 E
X

P
L
A

N
A

T
IO

N
S in

 E
n
d-U

s
e
r S

ys
te

m
s 2

1

Cassens [2008] employ problem frames [Jackson, 2000] to model explanation machines and system

knowledge to meet these goals.

CBR has also been applied to ambient intelligent systems (e.g., [Cassens and Kofod-Petersen, 2007;

Kofod-Petersen and Aamodt, 2003; Ma et al., 2005; Zimmermann, 2003]). For example, Cassens and

Kofod-Petersen [2007], added explanation capabilities the CREEK architecture [Aamodt, 2004] in a

simulated hospital ward domain. For user-centric explanations, they distinguish between context-

awareness (inferring the situation) and context-sensitivity (acting according to the situation) and

respectively provide different explanations:

¶ Elucidate why the system identifies a particular situation (context-awareness). This

explanation eØÐÏÓÅÓ ÔÈÅ ÓÙÓÔÅÍȭÓ ÁÓÓÕÍÐÔÉÏÎÓ ÏÆ ÔÈÅ ÅÎÖÉÒÏÎÍÅÎÔ ÔÏ justify what it believes.

¶ Explicate why a certain behavior was taken (context-sensitivity). This explanation points

out the relevance of the system performing a particular action.

2.2.3 END-USER PROGRAMMING

End-user programming considers users whose primary task is not to program the application, but

who still do so to facilitate their task or configure the application. For example, people who use

spreadsheets to tabulate and calculate budgets can be considered end-user programmers. Ko and

Myers [2005] found that end-user programmers of the Alice programming environment [Conway et

al., 2000] asked questions when their expectations are unmet. They asked why did questions when

something unexpected occurs and why ÄÉÄÎȭÔ questions when something expected does not

happen. Ko and Myers subsequently develop the Whyline system [2004, 2009] that traverses the

program tree to generate reasoning traces within the program code to generate why did and why

ÄÉÄÎȭÔ explanations:

¶ Why did the program do X?

¶ 7ÈÙ ÄÉÄÎȭÔ the program do Y?

Kulesza et al. [2011] developed the What You See is What You Test for Machine Learning

(WYSIWYT/ML) method that supports systematic testing of machine learning applications,

particularly for high cri ticality tasks. WYSIWYT/ML provides explanations of

¶ Confidence to indicate how certain the system was of its classification

¶ Similarity of how different the example is from previously trained data

22 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

¶ Relevance of how able the system is to perform the classification

¶ History to help users track inference changes after the users make edits

This is complementary to our approach of supporting ad hoc testing of context-aware applications,

where end-ÕÓÅÒÓ ÓÅÒÅÎÄÉÐÉÔÏÕÓÌÙ ÌÅÁÒÎ ÁÂÏÕÔ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ ÂÅÈÁÖÉÏÒȢ)Ô ÁÓÓumes that some end-

users will take the effort to perform such a rigorous test. We do not assume such enthusiasm and

effort of end-users, and explicitly measure their usage in our study described in Chapter 9. As

demonstrated with WYSIWYT/ML [Shinsel et al., 2011], explanation and testing facilities can also be

ÈÅÌÐÆÕÌ ÆÏÒ ÍÕÌÔÉÐÌÅ ÓÔÁËÅÈÏÌÄÅÒÓ ÏÒ ȰÍÉÎÉ-ÃÒÏ×ÄÓȱ ÔÈÁÔ ÓÈÁÒÅ ÔÈÅ ÕÓÅ ÏÆ ÉÎÔÅÌÌÉÇÅÎÔ ÁÇÅÎÔÓ ÔÏ

collectively improve the behavior of a machine learning system. However, we focus on single-user or

single-viewer use of intelligibility in this thesis.

Although machine learning is becoming popular for developers of intelligent adaptive systems, it still

remains difficult for developers to understand and debug their programs. Patel et al. has investigated

the classification pipeline [Patel et al., 2008], and developed several tools (e.g., Gestalt [Patel et al.,

2010], Prospect [Patel et al., 2011]) to help developers implement classifiers and analyze their data.

Although the applications investigated were for end-users, Patel et al. focused on supporting

programmers familiar with machine learning. We focus on end-users with no knowledge of machine

learning in this thesis.

2.2.4 INTELLIGENT AND ADAPTIVE USER INTERFACES

Intelligent and adaptive user interfaces are closely linked to context-aware, but typically describe

desktop-based applications, e.g., spam filters, email sorters, or office application assistants. They

typically perform user modeling to understand the user needs and adapt accordingly. To increase

their predictability to end -users, Höök [2000] argues for user-adaptive systems to be transparent.

She describes three glass box levels from [Brown, 1989]:

¶ Domain transparency for the user to see the application domain or concepts relevant to

the system,

¶ Internal transparency for the user to see the internal workings of the system, and

¶ Embedding transparency for the user to see a whole picture of how she relates to the

system.

Myers et al. [2006] apply the Whyline explanation types (why did and ×ÈÙ ÄÉÄÎȭÔ) to end-user

ȰÅÖÅÒÙÄÁÙȱ ÐÒÏÄÕÃÔÉÖÉÔÙ ÔÏÏÌÓ ×ÉÔÈ ÔÈÅ #ÒÙÓÔÁÌ ÆÒÁÍÅ×ÏÒË ÔÏ ÓÕÐÐÏÒÔ ÔÈÅÓÅ ÅØÐÌÁÎÁÔÉÏÎÓ ÉÎ Á ÓÁÍÐÌÅ

2.2 EXPLANATIONS IN END-USER SYSTEMS 23

2
.2

 E
X

P
L
A

N
A

T
IO

N
S in

 E
n
d-U

s
e
r S

ys
te

m
s 2

3

text editor that has auto-correct features. Following this question-asking approach, Kulesza et al.

[2009] investigated the provision of whyȣ and why notȣ explanations for an email client that uses

the naïve Bayes machine learning classifier to sort email. Due to the probabilistic nature (rather

than deterministic or rule-based) of the naïve Bayes classifier, reasoning traces were not used for

the explanations, but a representation of weights from various inputs (keywords). Explanations

were provided as a rich visualization of bar charts.

Kulesza et al. [2012] explored whether end-users can quickly build and recall sound structural mental

models of an intelligent music recommender system. They found that scaffolding with a human tutor

can help end-users to build mental models with greater soundness, and allow them to subsequently

better operate the system. Even though the scaffolding was not done through the system interface,

this gives evidence that end-users can learn to better and effectively understand such complex

systems. In this thesis, we minimize scaffolding via human tutors or instructions, such that end-users

learn about the system behavior and inference through the intelligibility provided via the interface.

2.2.5 RELATION TO CONTEXT-AWARE APPLICATIONS

It is intuitive that end-users would also ask why and why didn't questions for other "everyday"

applications, and, in the proposed thesis, we take this approach of providing explanations to these

questions, but generalize it for context-aware applications. Our work leverages some explanation

techniques from Kulesza et al., extending them to explain physical contexts that are more relevant

for context-aware applications. Furthermore, the overall approach in end-user programming is to

allow the end-user to debug the application when it behaves inappropriately. We broaden the use

of explanations to be used in more situations, even when the application is functioning

appropriately.

2.2.6 UBIQUITOUS AND CONTEXT-AWARE COMPUTING

Context-aware applications for ubiquitous computing present new challenges for providing

explanations to end-users. These applications would penetrate everyday life and have a wide

impact on end-users [Abowd, Mynatt, and Rodden, 2002]. Furthermore, many of these systems

would automatically gather information (contexts) about the user and environment and implicitly

take various actions [Dey, Abowd, and Salber, 2001]. (Ï×ÅÖÅÒȟ ÓÕÃÈ ÁÃÔÉÖÉÔÙ ÄÏÎÅ ȰÑÕÉÅÔÌÙȱ ×ÉÔÈÏÕÔ

ÔÈÅ ÕÓÅÒȭÓ ËÎÏ×ÌÅÄÇÅ [Weiser and Brown, 1997], without much transparency, can be disconcerting

to users who may like to know how their information is being used.

24 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

Bellotti and Edwards [2001] state that context-aware applications must be intelligible: being able to

ȰÒÅÐÒÅÓÅÎÔ ÔÏ ÔÈÅÉÒ ÕÓÅÒÓ what they know, how they know it, and what they are doing ÁÂÏÕÔ ÉÔȢȱ They

proposed a framework for intelligibility and accountability including four principles:

1. Inform the user of current contextual system capabilities and understandings.

2. Provide feedback including:

¶ Feedforward : What will happen if I do this?

¶ Confirmation : What am I doing and what have I done?

3. Enforce identity and action disclosure particularly with sharing r estricted information:

Who is that, what are they doing, and what have they done?

4. Provide control (and defer) to the user, over system and other user actions that impact her,

especially in cases of conflicts of interest.

In this thesis, we cover aspects of the first two principles exposing the application capabilities by

ÓÅÌÅÃÔÉÎÇ ÒÅÌÅÖÁÎÔ ÉÎÆÏÒÍÁÔÉÏÎ ÁÎÄ ÉÎÆÏÒÍÉÎÇ ÕÓÅÒÓ ÏÆ ÔÈÅ ÓÙÓÔÅÍÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇÓ ÔÈÒÏÕÇÈ

generating explanations. We also support feedback through various explanation types.

2.2.6.1 INTELLIGIBLE CONTEXT-AWARE APPLICATIONS

A simple form of intelligibility is to show the Certainty ÏÆ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎȭÓ ÉÎÆÅÒÅÎÃÅȢ !ÎÔÉÆÁËÏÓ ÁÎÄ

colleagues showed that uncertainty improved task performance speed of participants when

certainty is high [2004], and that participants verified automatic settings made by a context-aware

system less often when its certainty was high or medium [2005]. In studies of presenting location

information [Dearman et al., 2007; Lemelson et al., 2008], visualizations of location certainty were

found to improve user performance with location-based services.

Some early intelligible context-aware applications provide end-users with a modest amount of

explanations to give them insight mainly by providing transparency (showing the application's

underlying state) and traceability (showing reasoning trace) information. Cheverst et al. [2005]

investigated how much users would want to know about rules governing a context-aware system

and whether to control it. The system takes actions depending on context changes (and history) and

the user model (e.g. preferences), and displays to users its rules of a fuzzy decision tree and its

certainty about the inference. McCreath, Kay, and Crawford [2006] explored the difference in

scrutability of different machine learning classifiers (sender identity, keywords, TF-IDF, decision

trees, naïve Bayes) in their Intelligent-Electronic Mail Sorter. The Daily Activities Diarist [Metaxas et

2.2 EXPLANATIONS IN END-USER SYSTEMS 25

2
.2

 E
X

P
L
A

N
A

T
IO

N
S in

 E
n
d-U

s
e
r S

ys
te

m
s 2

5

al., 2007], an awareness display to support aging in place (like the Digital Family Portrait [Mynatt et

al., 2001]), employs narratives complemented with graphical visualizations to provide semantic cues

and explanations. Tullio et al.'s interruptibility displays [2007] explain how they determine a

manager's interruptibility by exposing the values of sensors in the manager's room. Panoramic

[Welbourne et al., 2010] provides reasoning trace , location status, and history explanations to

explain location events through a visualization of parallel timelines of sensed and rule-determined

events. Vermeulen et al. explored several interfaces to provide intelligibility in ambient intelligent

(AmI) environments. They projected trajectory visualizations along the wall of an AmI room,

tracing the application operation from sensor input (e.g., camera motion sensor) to actuator output

(e.g., room light) [Vermeulen et al., 2009]. The PervasiveCrystal [Vermeulen et al., 2010] also

explains for processes in a smart environment by providing Why and Why Not explanations from a

mobile screen display.

2.2.6.2 FRAMEWORKS TO SUPPORT INTELLIGIBILITY IN CONTEXT-AWARE COMPUTING

Some frameworks and toolkits have also been developed to provide wider support for intelligibility

in context-aware applications. SpeakEasy [Newman et al., 2002] supports querying and displaying

of the states of devices (PCs, printers, projectors, etc.) in an environment, allowing users to

discover if they are available, they have failed, etc. PersonisAD [Assad et al., 2007] defines a

distributed framework to support explanations by resolving iden tities and associations of

devices, locations, people, etc. It makes user models scrutable so that users can control which parts

of their user model can be private or public and visible to the sensing environment. Personis-LF

[Barua, Kay, and Kummerfeld, 2011] extends this concept of scrutability to life-long personalization

and adds capabilities to control forgetting information. While this is important for deployed

systems, this thesis does not cover the scope of longitudinal use of intelligibility. Hardian et al.

[Hardian, 2006; Hardian, Indulska, and Henricksen, 2008] added a Logging and Feedback Layer

along with a Query Interface to the Pervasive Autonomic Context-aware Environments (PACE)

middleware [Henricksen and Indulska, 2006] to reveal elements that influence application

behavior. However, as pointed out by Fong [2010], these components expose information that is

too low-level and overly technical.

Dey and Newberger [2009] provide the Enactors toolkit to support intelligibility and control in

context-aware applications by adding the Enactor component to the Context Toolkit. For

intelligibility, it allows applications to provide input context values , and reasoning traces . For

control, it exposes parameters that the UI layer of the application can allow users to interact with

26 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

and manipulate. This thesis extends the scope of intelligibility to allow users to ask more questions

of the application's state and inference mechanism. For example, users would be able to ask about

an anomaly with a Why Not question, and ask about a possible future scenario with a What If

question.

Vermeulen [2010] proposed to explore the design space for providing and presenting intelligibility

in Ubicomp systems along the dimensions of:

¶ timing ɂ before, during, or after an event

¶ generality ɂ general, or domain-specific

¶ degree of co-location ɂ whether intelligibility is provided in the same UI or separately

¶ initiative ɂ user, or system initiated

¶ modality ɂ visual, auditory, haptic

¶ level of control ɂ not controllable to fully programmable

This thesis takes a different approach to investigate intelligibility in context-aware applications.

Rather than explore multiple presentation styles for intelligibility, we have explored the provision

of intelligibility from an information-centric perspective. End-users are considered information

consumers of explanations, and intelligible applications as information providers through the

explanations they can generate, and present. Presentation styles are definitely important for the

effective assimilation of explanations and conveyance of intelligible information, but we have

treated finding the best solutions for presenting explanations in different applications mainly as a

design exercise.

Inspired by our taxonomy of explanation types (see Chapters 4 and 6), TOSExp (TinyOS Explained)

[Bucur, 2011] supports intelligibility in embedded context-aware applications by providing static

explanations to explain the Inputs values and Outputs range of the application, and What If and How

To explanations that describe hypothetical behaviors of the application. It operates at an embedded

systems level to provide bit-accurate explanations that while being very precise, may suffer from a

lack of user-friendliness by being too low level or too detailed. This thesis focuses on systems and

applications at higher programming abstraction layers (i.e., application logic) and also prioritizes

explanations that are more usable for end-users.

Targeting end-user preference models for context-aware systems, Fong et al. [2010, 2011] developed

an intelligible preference modeling approach that expresses preferences in terms of if-then-else rules.

2.2 EXPLANATIONS IN END-USER SYSTEMS 27

2
.2

 E
X

P
L
A

N
A

T
IO

N
S in

 E
n
d-U

s
e
r S

ys
te

m
s 2

7

Their system can generate explanations to questions of What , Why, Why Not, How To, and Control .

As such, this is limited to preference modeling and rules. In this thesis, we do not restrict our

contributions to just rules and include machine learning models and models for other purposes, such

as activity recognition.

Metaxas [2010] investigated supporting intelligibility in the Contextual Range Editor (CoRE) for end-

users to configure rules for awareness systems. He consider rules presented in text templates and

whether to present the rules in disjunctive normal form (DNF) or conjunctive normal form (CNF)

depending on the affinity of logical terms (e.g.ȟ ȰÄÒÉÖÉÎÇȱ ÁÎÄ ȰÒÕÎÎÉÎÇȱ ÈÁÖÅ ÈÉÇÈÅÒ ÁÆÆÉÎÉÔÙ ÔÈÁÎ

ȰÒÕÎÎÉÎÇȱ ÁÎÄ ȰÔÁÌËÉÎÇȱɊȢ In Chapter 6, we also consider DNF for representing explanations of rules,

ÁÎÄ ÃÁÎ ÉÎÔÅÇÒÁÔÅ -ÅÔÁØÁÓȭ ÆÉÎÄÉÎÇÓ ×ÉÔÈÉÎ ÔÈÅ ÆÒÁÍÅ×ÏÒË ÏÆ ÔÈÅ)ÎÔÅÌÌÉÇÉÂÉÌÉÔÙ 4ÏÏÌËÉÔȢ

2.2.6.3 INTERPRETABLE MACHINE LEARNING

Machine learning is a popular technique to enable inference and activity recognition in many

context-aware applications (see review in Chapter 6). For example, machine learning is used to

recognize what activity an occupant in the home is performing [van Kasteren et al., 2008]. To

support intelligibility in these applications using machine learning models, these inference models

will need to be intelligible too. Indeed, much work in the artificial intelligence and machine learning

computing community have sought to make these models interpretable. In this thesis, we focus on

explanations for the inference process rather than the learning or training process.

Some learned models are trivial to explain (e.g., decision trees that can be transformed into rules)

by just traversing through the program branches to provide reasoning traces. Some learned models,

in particular additive classifiers (e.g., Naïve Bayes, linear Support Vector Machine (SVM), and Linear

Regression), are less intuitive, but still relatively easy to make interpretable (e.g., Mineset [Brunk et

al. 1997], Nomograms [Mozina et al., 2004]; ExplainD [Poulin et al., 2006]). These explanation

methods present visualizations to users and indicate decision processes based on weights placed

ÏÎ ÄÉÆÆÅÒÅÎÔ ÆÅÁÔÕÒÅÓȢ 4ÈÅÒÅ ÁÌÓÏ ÒÅÍÁÉÎ ÓÅÖÅÒÁÌ ȰÂÌÁÃË-ÂÏØȱ ÃÌÁÓÓÉÆÉÅÒÓ ɉÓÕÃÈ ÁÓ !ÒÔÉÆÉÃÉÁÌ .ÅÕÒal

Networks) that are not directly interpretable. One way to try to make them reasonably

interpretable is by using case-base reasoning to provide an alternative explanation [Nugent and

Cunningham, 2005], and another way is to extract rules from them [Núñez, Angulo, and Català,

2002; Tickle et al., 1998].

28 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

2.3 SUMMARY

In summary, much research investigating the provision of explanations in intelligent systems have

demonstrated a positive impact on user understanding and trust. Research in the domain of

context-aware computing is also nascent and has shown some promise, but more work is required

to provide stronger support for intelligibility and gain better insight about how intelligibility

impacts users. This thesis proposes to deepen this research, and provide concrete contributions

towards providing intelligibility in context -aware applications. In the Chapter 3, we describe how

the nature of context-aware applications pose research questions for providing intelligibility, and

describe the taxonomy of explanations we investigated to answer these questions in the thesis.

29

3 EXPLANATION TYPES FOR

INTELLIGIBILITY

In Chapter 2, we reviewed the different types of explanations provided in various intelligent

systems. In this chapter, we introduce the research questions that have driven our investigation

and then describe the taxonomy of intelligibility explanation types we have developed to make

context-aware applications intelligible.

As mentioned in the earlier section, context-aware applications use implicit sensing, and intelligent

inference to determine the user's context so as to perform appropriate actions. For Ubicomp

systems, context-aware applications have been primarily developed to support everyday activities,

such as tracking the user's physical activity to monitor her exercise, recognizing activity in the

home to provide timely medical assistance, determining her availability to others, providing

recommendations based on where she is and what she is doing, reminding her to pick up the milk

when she is located at the grocery store, etc. They sense implicitly to minimize obtrusiveness and

interruption to the user; they automatically sense the situation rather than requiring the user to

manually tell them what is happening. Context-aware applications are increasingly using

sophisticated inference mechanisms due to the growing complexity of contexts they need to

understand, particularly for activity recognition. For inference, they use big rule sets and machine

learning algorithms to handle diverse situations, and to be more robust to exceptional cases. All

these improve the accuracy in properly and calmly understanding the user's context.

Unfortunately, these two factors of implicit sensing and intelligent inference also make context-

aware applications difficult for end-users to understand. This is particularly problematic when the

applications behave inappropriately or unexpectedly. In such cases, context-aware applications no

longer remain invisible to the user's experience; instead, they become a puzzle. The users become

frustrated if they cannot understand what has happened and why the application behaved

30 CHAPTER 3 | EXPLANATION TYPES FOR INTELLIGIBILITY

unexpectedly. Eventually, this lack of understanding would lead to a loss in trust in the system's

inference and behavior, and the eventual abandonment of them. Without a proper understanding of

how context-aware applications work, users may also not be able to effectively control them to

improve their performance for subsequent situations. Therefore, it is crucial for context-aware

applications to be intelligible, so that they can explain what they sense and how they are inferring

about the users' contexts.

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY

Starting with a broad idea of intelligibility from Bellotti and Edwards [2001], we defined

intelligibility for a context -aware application as the ability to answer or explain questions that users

could ask. Given the implicit actions that context-aware applications take, end-users may not know

what the application is doing, let alone assess whether it has performed appropriately. Hence, it is

important for applications to make their action state explicit and provide feedback of what they are

doing. This is supported by providing an explanation or answer to the question:

1. What is the current value of the context?

Continuing with the user-centric perspective of answering intuitive questions, we draw from the

question-answering approach of the Whyline [Ko and Myers, 2004, 2009], with just why and why

not questions. One can easily imagine a confused, exasperated, or inquisitive user asking the

following questions:

2. Why is this context the current value X?

3. Why Not : ×ÈÙ ÉÓÎȭÔ ÔÈÉÓ ÃÏÎÔÅØÔ ÖÁÌÕÅ 9ȟ ÉÎÓÔÅÁÄȩ

Why asks what factors caused or influenced the inference outcome, and Why Not asks why an

alternative inference was not made. In a similar manner as the Whyline, we answer these questions

by providing mechanistic explanations that specifically describe the inference over the instance the

end-user is asking about. Note that we do not enforce a particular structure of explanations to

answer these questions. They could be answered with rule traces (line of reasoning) or some other

structures. We do not explain these in terms of design rationale or purpose, which relate to the

underlying assumptions, concepts, or objectives driving how the application behaves.

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY 31

3
.1

 R
E

S
E

A
R

C
H Q

u
e

s
tio

n
s fo

r In
te

llig
ib

ility
 3

1

As an extension of Why and Why Not questions, end-users may want to ask questions relating to

the general rules or model under which the application makes inferences. This can allow the users

to generalize their understanding of how the application works to better predict future behavior.

Specifically, we provide explanations for the questions:

4. How To: when would this context take value Y?

5. What if the conditions are different, what would this context be?

How To explanations are a generalization of Why explanations, but they do not specifically target

any instance. In terms of rule traces, this explanation type can be expressed by listing all traces that

achieve the desired inference. What If explanations support the feedforward type of feedback,

where end-users can investigate what the application will do in a future or hypothetical scenario.

We began our investigation of providing intelligibility in context-aware applications with this initial

set of five explanation types. This thesis aims to show that intelligibility can improve user

understanding and trust of context-aware applications. We would especially like to show this with

the scope of intelligibility that we have defined based on multiple question types. Specifically, our

first investigation sought to answer the research question:

RQ1. DOES INTELLIGIBILITY HELP USERS IMPROVE THEIR UNDERSTANDING AND TRUST OF CONTEXT-

AWARE INTELLIGENT SYSTEMS?

Even though this has been proven true with narrower forms of intelligibility (transparency,

scrutability , etc.) in related work, we explored how supporting the various question types

independently affect user understanding and trust in context-aware applications. Our work,

presented in Chapter 4, shows that providing some explanation types (Why and Why Not) are more

effective than others in improving user understanding and trust.

These successful results from our first study showed that providing intelligibility is a promising

avenue for research. Next, we sought to carefully explore the scope of questions that users would

ask of context-aware applications. Specifically:

RQ2. WHAT ARE THE INTELLIGIBILITY NEEDS OF END-USERS IN CONTEXT-AWARE APPLICATIONS?

Answering this question will help to ensure that the intelligibility we aim to provide will be relevant

to users and can better satisfy their informational needs. In work presented in Chapter 5, we

32 CHAPTER 3 | EXPLANATION TYPES FOR INTELLIGIBILITY

conducted user-centered, empirical research to elicit what information users wanted to know of

context-aware applications, when the applications behaved under various situations. We identified

more explanation types, and expanded our taxonomy of explanation types.

To improve end-users awareness of what the application knows, much previous work in adaptive

or context-aware applications have investigated the principle of making the application

transparent. One way to support transparency is to fully reveal the internal input state of the

application. This answers the question:

6. Inputs : what factors and values affect this context?

One could distinguish between naming the input sources, and the value taken by each input at the

time of interest. Users are also interested in the range and diversity of actions or responses that

context-aware applications. Considering an application model as an input-output functional model,

this supports the explanation for the question:

7. Outputs : what other values can this context take?

Given the ambiguity and uncertainty in sensing and inference, context-aware applications are not

necessarily deterministic in their decision logic. Hence, users are also interested in asking:

8. Certainty : how confident is inference of this value?

With increased knowledge and understanding of the applications, users will also want to be able to

reconfigure or control the application to improve its behavior. This asks the question:

9. Control: how can I control the application to improve it?

Finally, we determined some circumstances in which users asked for information additional to

what the context-aware application may model for its function. For example, wanting to see a video

capture of the room where an elderly family member was detected to have fallen. Providing this

extra information helps answer the question:

10. Situation : what else is happening in this situation (not about the application, but about the

circumstance)?

Similarly, users want to know if the application has taken other actions meanwhile:

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY 33

3
.1

 R
E

S
E

A
R

C
H Q

u
e

s
tio

n
s fo

r In
te

llig
ib

ility
 3

3

11. What Else: what else did the application do?

With the study described in Chapter 5, we identified which explanation types users ask of context-

aware applications. However, it remains difficult for application developers to implement

intelligi bility in context-aware applications, especially with such a wide range of explanation types.

This brings us to the next research question:

RQ3. HOW CAN WE SUPPORT THE IMPLEMENTATION OF INTELLIGIBILITY IN CONTEXT-AWARE

APPLICATIONS?

We chose to provide toolkit support for developers to easily add intelligibility to their context-

aware applications (Chapter 6). We developed the Intelligibility Toolkit that provides extensible

components to support the automatic generation of explanations, and mechanisms to process the

explanation information into simpler forms that end-users may easily interpret. However, this

technical contribution did not provide final solutions to how the explanations should be presented

to end-users. This leaves unaddressed the next research question:

RQ4. HOW CAN WE DESIGN INTELLIGIBILITY FOR CONTEXT-AWARE APPLICATION TO BE USABLE FOR END-

USERS?

We answer this question with a think-aloud usability study described in Chapter 7, where we

designed ,ÁʆÓÁȟ a complex context-aware application that uses multiple input contexts and various

rules and machine learning classifiers. This application was implemented as an interactive

prototype for participants to engage with. In this study, we explored several design principles for

intelligibility, and evaluated how users interpret explanations from an intelligible context-aware

application. Our findings provide insights and design recommendations for providing usable

intelligibility in context -aware applications.

We considered context-aware applications with inference models that infer a certainty distribution

over multiple Outcomes. Instead of a single What value, there can be a non-zero Certainty of

inferring each of the possible Output values. We support and later manifest this as an aggregation of

explanations Outputs + Certainties. An alternative point of view is that the What explanation is

extended to include a range of output values.

12. Outputs + Certainties : how confident is inference of all possible values?

34 CHAPTER 3 | EXPLANATION TYPES FOR INTELLIGIBILITY

As we investigate providing explanations with a real-world interactive prototype, new explanation

types become more relevant and important, namely:

13. When : when was the context inferred as this value?

14. History : what was the inference at an earlier time, T? Why did it make that inference at

time T? Etc.

Historical explanations can help to provide users with a confirmation of what they and the

application have done in the past. Furthermore, explanations about history include not just the

inferred value at that time, but also any other event-dependent explanations about the event.

As context-aware applications begin to use esoteric sensors and features for inference, we also

include textual descriptive information to help end-users to learn the terminology used by the

application and key concepts.

15. Description : what is the meaning of the context terms and values?

Description explanations can also be used to justify the behavior of the application by describing the

implications of various context values, and describe the rationale for the application to consider

various features or inference mechanisms.

At this stage, we investigated how to provide intelligibility through gathering requirements,

providing technical support, and recommending design principles. This allows developers and

designers to more easily and carefully implement, provide, and present intelligibility in context-

aware applications. This also enables us to explore our hypotheses on the impact of intelligibility

with more realistic intelligible context-aware applications. Logically, we next address research

questions relevant to evaluation in light of realistic issues. One concern is that context-aware

applications are not always certain of what they infer, and providing intelligibility may not be

helpful when they are uncertain. This could be because users learn ÁÂÏÕÔ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ

weaknesses. This brings up the research question:

RQ5. WHEN IS INTELLIGIBILITY HELPFUL AND HARMFUL FOR CONTEXT-AWARE APPLICATIONS WITH

DIFFERENT CERTAINTIES?

We conducted a large online controlled study with a between-subjects experiment design to

investigate the interaction effect of providing intelligibility and of application certainty on user

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES 35

3
.2

 T
A

X
O

N
O

M
Y o

f In
te

llig
ib

ility E
x
p

la
n
a

tio
n

 T
yp

e
s

 3
5

impression of two context-aware applications. This is described in Chapter 8. We found that above

a threshold of about 80% certainty, providing intelligibility improves user impression of the

application performance. However, below that threshold, providing intelligibility harm s user

impression because it reveals the weaknesses of the application.

This result deepens our earlier findings in Chapter 4, and considers nuances in the impact of

intelligibility in context -aware applications. At this point, much of our work on evaluating

intelligibility ha s ÆÏÃÕÓÅÄ ÏÎ ÑÕÅÓÔÉÏÎÎÁÉÒÅ ÓÔÕÄÉÅÓ ÁÎÄ ȬÐÁÐÅÒȭ ÐÒÏÔÏÔÙÐÅÓ ÏÆ ÒÅÁÌÉÓÔÉÃ ÁÌÂÅÉÔ

fictitious context-Á×ÁÒÅ ÁÐÐÌÉÃÁÔÉÏÎÓȢ 7ÉÔÈ ÔÈÅ ,ÁʆÓÁ ÐÒÏÔÏÔÙÐÅ ɉ#ÈÁÐÔÅÒ 7), we sought to increase

realism in investigating intelligibility with an interactive prototype. However, intelligibility was

ÓÈÏ×Î ȰÁÌ×ÁÙÓ ÏÎȱ ÔÏ ÐÁÒÔÉÃÉÐÁÎÔÓȟ ÓÏ ÔÈÅÙ ×ÅÒÅ ÂÉÁÓÅÄ ÔÏ ÌÏÏË ÁÔ ÔÈÅ ÅØÐÌÁÎÁÔÉÏÎÓȢ 4ÈÉÓ brings

forward the question:

RQ6. EVEN IF INTELLIGIBILITY CAN IMPROVE USER UNDERSTANDING AND TRUST, WILL USERS WANT TO

USE IT, AND, IF SO, HOW MUCH?

We address this question with the study described in Chapter 9. Using a quasi-field experiment

with four scenarios, we let participants freely use a fully interactive intelligible context-aware

application on a mobile phone. We logged their usage of the intelligibility features, and interviewed

participants to evaluate their understanding of the application behavior. We found that participants

do use intelligibility without prompting, and that more extensive and deeper usage helps them to

better understand the application behavior.

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES

We have introduced several explanation types in the previous section, and in our empirical study in

Chapter 5. Here, we summarize these into a framework of explanation types for intelligible context-

aware applications.

3
6

 C
H

A
P

T
E

R
 3
 | E

X
P

L
A

N
A

T
IO

N
 TY

P
E

S
 F

O
R

IN

T
E

L
L
IG

IB
IL

IT
Y

Explanation Type Question Explanation

What

(Output
Value)

Top Value What is the inferred value? Shows the value of the inferred output.

Outputs What are the inferred values? Lists multiple other likely alternative values.

What Else What else (other actions) did the application do? Informs what other actions the application is simultaneously
doing.

Certainty Top What is the confidence of inferring the current value X? Shows the Certainty of inference.

Certainties What is the confidence of inferring all possible values? May include certainties of inferring other values.

When When was value X inferred? Indicates the time that the inference was made.

Why Why was value X inferred? With the Intelligibility Toolkit, this explanation can be provided as a
Rule Trace or as Weights of Evidence.

Describes the triggered rule(s) or weights of evidence for the
inference.

Why Not Why was value Y not inferred? Same format as Why.

Describes the un-triggered rules or difference in weights of
evidence for why an alternative value Y was not inferred.

Input Values What are the factor values / What is the input state? Describes the values of all input factors.

Situation What else is happening with the situation?

What is the ground truth?

Provides a description or playback of the recorded ground truth to
convey a richer picture or experience of the situation.

E.g., showing a video of the sensed scene, providing an audio
recording of the sound recognition source.

History* *Provides the same range of explanations, but for a historical event or inference at a specific time in the past.

Table 3.1. Dynamic instance -based explanation types explaining the inference of a specific event . These explanations will differ

for every instance the application acts.

3
.2

 T
A

X
O

N
O

M
Y o

f In
te

llig
ib

ility E
x
p

la
n
a

tio
n

 T
yp

e
s

 3
7

3
.2

 T
A

X
O

N
O

M
Y O

F
 IN

T
E

L
L
IG

IB
IL

IT
Y

 E
X

P
L
A

N
A

T
IO

N
 TY

P
E

S 3
7

Explanation Type Question Explanatio n

What If What will be the inferred value, if the input values are
W?

Provides a hypothetical What or What Else answer given user-
queried input values.

Requires user input to specify / constrain some input values.

How To How can I get the application to infer Y? Similar format as Why, but

Explains in terms of an alternative output value Y, instead of X.

How To If How can I get the application to infer Y, given a subset
of input values W?

Similar format as How To, but

Requires user input to specify / constrain some input values.

Control Parameter
Values

What parameters can I change to control the
application behavior?

Describes how to control and adjust parameters or attributes to
change the application behavior (e.g., in a manner exposed in [Dey
and Newberger, 2009]).

We do not cover this explanation type in this thesis

Rules / Model What rules or settings can I change? Describes how to add/edit rules or the model.

We do not cover this explanation type in this thesis.

Table 3.2. Dynamic general explanation types explaining the inference model of the context -aware application .

3
8

 C
H

A
P

T
E

R
 3
 | E

X
P

L
A

N
A

T
IO

N
 TY

P
E

S
 F

O
R

IN

T
E

L
L
IG

IB
IL

IT
Y

Explanation Type Question Explanation

Inputs Factors What factors / sources influence this inference? Lists all input factors / sources for the application.

Outputs (Options) What are the possible output values for this
inference?

Lists all possible values or actions that the application may
produce or perform.

Description Terminology What does this term mean? Provides a textual description of a term or concept.

Justification What is the implication of this value? Provides a textual description of the implication of a context value.

E.g.ȟ Á ÈÉÇÈ Ȱ0ÅÒÉÏÄÓ ÏÆ 3ÉÌÅÎÃÅȱ ÉÎ ÔÈÅ ÓÅÎÓÅÄ ÓÏÕÎÄ ÓÕÇÇÅÓÔÓ
talking noise because speech has more relative silence than voices.

Rationale What is the rationale for this inference? Provides a textual description of the rationale of a process, rule, or
inference mechanism.

E.g., the application considers sound activity when inferring
availability because you may be in an impromptu meeting, and it
detects your talking, even though your calendar is open (no events
scheduled).

Table 3.3. Static general explanation types explaining the inference model of the context -aware application . For a static (fixed)

model, these explanations will always be the same.

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES 39

3
.2

 T
A

X
O

N
O

M
Y o

f In
te

llig
ib

ility E
x
p

la
n
a

tio
n

 T
yp

e
s

 3
9

3
.2

 T
A

X
O

N
O

M
Y o

f In
te

llig
ib

ility E
x
p

la
n
a

tio
n

 T
yp

e
s

 3
9

In the next chapters (4 to 9), we describe in detail the pieces of work that have been completed for

this thesis.

41

4 INVESTIGATING THE

INTELLIGIBILITY OF QUESTION

TYPES

This chapter is an extension of the work presented in:

Lim, B. Y., Dey, A. K., and Avrahami, D. (2009). Why and Why Not Explanations Improve the

Intelligibility of Context -Aware Intelligent Systems. In Proceedings of the 27th international

Conference on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09, 2009).

CHI '09. ACM, New York, NY, 2119-2128.

This publication was a best paper honorable mention for a CHI '09.

ABSTRACT. Context-aware intelligent systems employ implicit inputs, and make decisions based

on complex rules and machine learning models that are rarely clear to users. Such lack of system

intelligibility can lead to loss of user trust, satisfaction and acceptance of these systems. However,

ÁÕÔÏÍÁÔÉÃÁÌÌÙ ÐÒÏÖÉÄÉÎÇ ÅØÐÌÁÎÁÔÉÏÎÓ ÁÂÏÕÔ Á ÓÙÓÔÅÍȭÓ ÄÅÃÉÓÉÏÎ ÐÒÏÃÅÓÓ ÃÁÎ ÈÅÌÐ ÍÉÔÉÇÁÔÅ ÔÈÉÓ

problem. In this chapter, we present results from a controlled study with over 200 participants in

which the effectiveness of different types of explanations was examined. Participants were shown

ÅØÁÍÐÌÅÓ ÏÆ Á ÓÙÓÔÅÍȭÓ ÏÐÅÒÁÔÉÏÎ ÁÌÏÎÇ ×ÉÔÈ ÖÁÒÉÏÕÓ ÁÕÔÏÍÁÔÉÃÁÌÌÙ ÇÅÎÅÒÁÔÅÄ ÅØÐÌÁÎÁÔÉÏÎÓȟ ÁÎÄ

then tested on their understanding of the system. We show, for example, that explanations

describing why the system behaved a certain way resulted in better understanding and stronger

feelings of trust. Explanations describing why the system did not behave a certain way, resulted in

lower understanding yet adequate performance. We discuss implications for the use of our findings

in real-world context-aware applications.

42 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

4.1 INTRODUCTION

This chapter describes an investigation of a number of mechanisms for improving system

intelligibility performed using several controlled online lab experiments. To investigate these

intelligibility factors and their effects, we defined a model-based system representing a canonical

intelligent system underlying a context-aware application, and an interface with which users could

learn how the application works. We recruited 211 online participants to interact with our system,

where each one received a different type of explanation of the system behavior. Our findings show

that explaining why a system behaved a certain way, and explaining why a system did not behave in

a different way provided most benefit in terms of objective understanding, and feelings of trust and

understanding compared to other explanation types.

In this chapter, we first define a suite of intelligibility explanations derived from questions users

may ask of a context-aware system and that can be automatically generated. We then describe an

online lab study setup we developed to compare the effectiveness of these explanation types in a

quick and scalable manner. Next we describe the experimental setup used to expose participants to

our system with different types of intelligibility and the metrics we used to measure understanding,

ÁÎÄ ÕÓÅÒÓȭ ÐÅÒÃÅÐÔÉÏÎ ÏÆ ÔÒÕÓÔȟ ÁÎÄ ÕÎÄÅÒÓÔÁÎÄÉÎÇȢ 7Å present two experiments in which we

investigated these factors, elaborating on the results and implications. We end with a discussion of

all of our results and plans for future work.

4.2 INTELLIGIBILITY

Context-aware systems can confuse users in a number of ways. For example, such systems may not

have familiar interfaces, and users may not understand or know what the system is doing or did.

Furthermore, given that such systems are often based on a complex set of rules or machine learning

models, users may not understand why the system acted the way it did. Similarly, a user may not

understand why the system did not behave in a certain way if this alternative behavior was

expected. Thus, our focus in the work presented here is on explanations that can be regarded as

reasoning traces.

While a reasoning trace typically addresses the question of why and how the application did

something, there are several other questions that end-users of novel systems may ask. We chose to

following initial set of intuitive questions (adapted from [Dourish, Adler, and Smith, 1996]):

4.2 INTELLIGIBILITY 43

4
.2

 IN
T

E
L

L
IG

IB
IL

IT
Y 4

3

4
.2

 IN
T

E
L

L
IG

IB
IL

IT
Y 4

3

1. What: What did the system do?

2. Why: Why did the system do W?

3. Why Not: Why did the system not do X?

4. What If: What would the system do if Y happens?

5. How To: How can I get the system to do Z, given the current context?

Throughout this chapter we will r efer to these as our five intelligibility question types, and the

explanation addressing each of them as an explanation type.

.ÏÒÍÁÎ ÄÅÓÃÒÉÂÅÄ Ô×Ï ÇÕÌÆÓ ÓÅÐÁÒÁÔÉÎÇ ÕÓÅÒÓȭ ÇÏÁÌÓ ÁÎÄ ÉÎÆÏÒÍÁÔÉÏÎ ÁÂÏÕÔ ÓÙÓÔÅÍ ÓÔÁÔÅ ɍNorman,

1988]. Explanations that answer questions What, Why, and Why Not address the gulf of evaluation

ɉÔÈÅ ÓÅÐÁÒÁÔÉÏÎ ÂÅÔ×ÅÅÎ ÔÈÅ ÐÅÒÃÅÉÖÅÄ ÆÕÎÃÔÉÏÎÁÌÉÔÙ ÏÆ ÔÈÅ ÓÙÓÔÅÍ ÁÎÄ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÎÔÉÏÎÓ ÁÎÄ

expectations), while explanations answering questions What If and How To address the gulf of

execution (the separation between ×ÈÁÔ ÃÁÎ ÂÅ ÄÏÎÅ ×ÉÔÈ ÔÈÅ ÓÙÓÔÅÍ ÁÎÄ ÔÈÅ ÕÓÅÒȭÓ ÐÅÒÃÅÐÔÉÏÎ ÏÆ

that). With a partial conception of how a system works, users may want to know what would

happen if there were some changes to the current inputs or conditions (What If). Similarly, given

certain conditions or contexts, users may want to know what would have to change to achieve a

desired outcome (How To).

This chapter deals with providing and comparing the value of explanations that address four of

these intelligibility questions to investigate which of these explanations benefit users more. We

label these explanation types: Why, Why Not, What If, and How To. Since the system we developed

to evaluate the value of explanations, already explicitly shows the inputs and output of the system

(see next Section on Intelligibility Testing Infrastructure), we did not investigate the What

explanation.

4.2.1 HYPOTHESES

7Å ÈÙÐÏÔÈÅÓÉÚÅ ÔÈÁÔ ÄÉÆÆÅÒÅÎÔ ÔÙÐÅÓ ÏÆ ÅØÐÌÁÎÁÔÉÏÎÓ ×ÏÕÌÄ ÒÅÓÕÌÔ ÉÎ ÃÈÁÎÇÅÓ ÉÎ ÕÓÅÒÓȭ ÕÓÅÒ

experience: understanding of the system and perceptions of trust and understanding of the system.

We will now present our hypotheses about each of these intelligibility questions.

Why explanations will support users in tracing the causes of system behavior and should lead to a

better understanding of this behavior. So, we expect:

H1: Why explanations will improve user experience over having no explanations (None).

44 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Why Not explanations should have similar benefits to Why ÅØÐÌÁÎÁÔÉÏÎÓȠ ÈÏ×ÅÖÅÒȟ ÕÓÅÒÓȭ ÁÂÉÌÉÔÙ ÔÏ

apply Why Not explanations may not be as straightforward. There may be multiple reasons why a

certain outcome did not happen; while a why explanation may be a single reasoning trace (or at

least a small number of possible traces), a why not explanation is likely to contain multiple traces.

Given this complexity, users will require more cognitive effort to understand how to apply the

knowledge, and may do so poorly. As such, we expect:

H2: Why Not explanations will (a) improve user experience over having no explanations (None),

but (b) will not perform as well as Why explanations.

Explanations for How To and What If questions would have to be interactive and dynamic, as they

depend on example scenarios that users define themselves. Receiving these explanations should be

better than receiving none at all. However, given that novice end-users are unlikely to be familiar

with a novel system, they may choose poor examples to learn from, and learn less effectively than

the Why explanations. So we expect:

H3: How To or What If explanations will (a) improve user experience over having no explanations

(None), but (b) will not perform as well as Why explanations.

 Hypotheses Experiment 1 Experiment 2

H1 None < Why None < Why None < Why

H2a None < Why Not None < Why Not None < Why Not

H2b Why Not < Why .ÏÎÅ Ђ 7ÈÙ .ÏÔ .ÏÎÅ Ѕ 7ÈÙ .ÏÔ

H3a None < (How To, What If) .ÏÎÅ Ђ ɉ(Ï× 4Ïȟ 7ÈÁÔ)ÆɊ

H3b (How To, What If) < Why (How To, What If) < Why

Table 4.1. Summary of hypotheses and results regarding the effect of explanation type on

user experience (understanding and trust) Ȣ ȬЂȭ means no significant difference (p=n.s.); ȬЅȭ

means we hypothesize either a lower user experience or no difference .

To test these hypotheses (summarized in Table 4.1), we created a test-bed that allows simulating

different types of intelligent systems and testing different explanation types. We describe this

testing infrastructure next.

4.3 INTELLIGIBILITY TESTING PLATFORM 45

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y te

s
tin

g
 P

la
tfo

rm
 4

5

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y te

s
tin

g
 P

la
tfo

rm
 4

5

4.3 INTELLIGIBILITY TESTING PLATFORM

We developed a generalizable web interface that can be applied to various application domains to

study the effect of the various mechanisms for providing intelligibility. Users interact with a

schematic, functional intelligible system that could underlie a context-aware application: it accepts

a set of inputs (e.g. Temperature, Humidity), and uses a model (for example, a decision-tree), to

produce a single output (e.g., Rain Likely, or Rain Unlikely). Users are shown different instances of

inputs and outputs and can be given various forms of explanations (or no explanations) depending

on what explanation type is being studied. To users who do not receive explanations, the system

appears as a black box (only inputs and the output are visible).

This infrastructure allows us to efficiently and rapidly investigate different intelligibility factors in a

controlled fashion and closely measure their effects; further, the online nature of the infrastructure

allowed us to collect data from over two hundred participants. The design also has the advantage of

being generalizable to a variety of different domains simply by relabeling its inputs and outputs to

represent scenarios for those domains.

4.3.1 TEST PLATFORM IMPLEMENTATION

The web interface was developed using the Google Web Toolkit [GoogleɎȢ 7Å ÌÅÖÅÒÁÇÅ !ÍÁÚÏÎȭÓ

Mechanical Turk infrastructure [Amazon] to recruit and manage participants and manage study

payments by embedding our study interface in the Mechanical Turk task interface. Users found our

study through the listings of Human Intelligence Tasks (HITs), and after accepting our HIT, they

participated in the study and interacted with the system.

The user encounters several examples of system inputs and output (see Figure 4.1). He first sees

the input values listed and has to click the Ȱ%ØÅÃÕÔÅȱ ÂÕÔÔÏÎ ÓÏ ÔÈÅ ÓÙÓÔÅÍ ȬÇÅÎÅÒÁÔÅÓȭ ÔÈÅ ÏÕÔÐÕÔȢ

7ÈÅÎ ÈÅ ÉÓ ÄÏÎÅ ÓÔÕÄÙÉÎÇ ÔÈÅ ÅØÁÍÐÌÅȟ ÈÅ ÃÌÉÃËÓ ÔÈÅ Ȱ.ÅØÔ %ØÁÍÐÌÅȱ ÂÕÔÔÏÎ ÔÏ ÍÏÖÅ ÏÎȢ $ÅÐÅÎÄÉÎÇ

on the explanation condition the user is in, he may receive an explanation about the shown

example.

46 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.1. Screenshot of the interface for our intelligibility testing infrastructure.

We modeled our testing infrastructure on typical sensor-based context-aware systems that make

decisions based on the input values of multiple sensors. Many of these sensors produce numeric

values and the applications change their behaviors based on threshold values of the sensors. For

example, a physical activity recognition system could look at heart rate and walking pace. To keep

our experiments and the task reasonably simple for participants we restricted the system to three

input sensors that produce numeric values, we used inequality-based rules to define the output

value, and constrained the output to belonging to one of two classes. In Experiment 1, for example,

we defined two inequality rules that consider two inputs at a time (see Equation (4.1)). Since we

did not want the lack of domain knowledge (e.g., that the body temperature can rise from 36.8 to

σψȢσЈ# ×ÈÅÎ ×ÅÉÇÈÔ ÌÉÆÔÉÎÇɊ ÔÏ ÁÆÆÅÃÔ ÕÓÅÒÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÏÆ ÔÈÅ ÓÙÓÔÅÍȟ ÓÏ ÔÈÅ ÉÎÐÕÔÓ use an

arbitrary scale of integer values: Body Temperature from 1 to 10, and Heart Rate and Pace from 1

to 5.

ἜἺἭἬἱἫἼἱἷἶ

ͼ%ØÃÅÒÃÉÓÉÎÇͼ ȟÉÆ "ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅφ!.$0ÁÃÅς
ͼ%ØÃÅÒÃÉÓÉÎÇͼ ȟÉÆ (ÅÁÒÔ 2ÁÔÅφ !.$0ÁÃÅσ

ͼ.ÏÔ %ØÃÅÒÃÉÓÉÎÇͼȟÏÔÈÅÒ×ÉÓÅ
 (4.1)

Equation (4.1): Inequality -based rules for the physical activity domain.

4.3 INTELLIGIBILITY TESTING PLATFORM 47

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y te

s
tin

g
 P

la
tfo

rm
 4

7

4
.3

 IN
T

E
L

L
IG

IB
IL

IT
Y te

s
tin

g
 P

la
tfo

rm
 4

7

Figure 4.2. Visualization of the learned decision tree model used in Experiment 1.

As machine learning algorithms are popular in context-aware applications, our system also uses

machine learning. Among the myriad of machine learning algorithms, decision trees and Naïve

Bayes lend themselves to be more explainable and transparent, while others are black-box

algorithms that are not readily interpretable (e.g., Support Vector Machines and Neural Networks)

[Nugent and Cunningham, 2005]. We chose to start our investigation using decision trees because

they are easier to explain, especially to end-users who may not understand the probabilistic

concepts that underlie Naïve Bayes algorithms. Using 7ÅËÁȭÓ ɍHall et al., 2009] J48 implementation

of the C4.5 Decision-Tree algorithm [Quinlan, 1993], our system learns the inequality rules from the

complete dataset of inputs (250 instances from the permutations of all inputs) and outputs and

models a decision tree (see Figure 4.2) that is used to determine the output value.

4.3.2 DECISION TREE EXPLANATIONS

While the decision tree is able to classify the output value given input values, we had to extend it to

expose how the model is able to derive its output. The decision tree model lends itself nicely to

providing explanations to the four intelligibility question types. Table 4.2 describes how the

explanations were implemented.

Not
Exercising

Exercising

Body

Pace

Heart
Rate

Pace

Exercising
Not

Exercising

Not
Exercising

Ѕσ >3

Ѕυ >5

Ѕς >2

Ѕρ >1

Temperature

48 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Why : Traverse the decision tree to trace a path of decision boundaries and values that match the instance
being looked at. Return a list of inequalities that satisfies the decision trace of the instance (e.g.ȟ Ȱ/ÕÔÐÕÔ
classified as Not ExercisinÇȟ ÂÅÃÁÕÓÅ "ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅЅυ ÁÎÄ 0ÁÃÅ ЅσȱȠ ÓÅÅ &ÉÇÕÒÅ ςɊȢ

Why Not: Traverse the whole tree initially to store in memory all the traces that can be made. Walk the tree
to find the why-trace, and find differing boundary conditions on all other traces that return the alternative
output. A why-not trace would contain the boundary conditions that match the why trace and boundary
conditions where it is different (e.g.ȟ Ȱ/ÕÔÐÕÔ not ÃÌÁÓÓÉÆÉÅÄ ÁÓ %ØÅÒÃÉÓÉÎÇȟ ÂÅÃÁÕÓÅ 0ÁÃÅЅσȟ ÂÕÔ not Body
4ÅÍÐÅÒÁÔÕÒÅЄυȱɊȢ

A full Why Not explanation will return the differences for each trace that produces the alternative output.
However, so as not to overwhelm the user, we use a heuristic to return the differences of just one why-not
trace, the one with the fewest differences from the why trace. Note that while this technique is suitable for
small trees, it is not scalable to large trees, and heuristics should be used to look at subsets of traces.

How To: Take user specified output value, and values of any inputs that were specified. Iterate through all
traces of the tree to find traces that end with the specified output value and has branches that satisfy the
specified input values. If any trace is found, it identifies the satisfying boundary conditions for the
unspecified inputs and returns them. Note that if there is a trace, there will only be one, since an instance
can only satisfy one trace in the tree. If there are no boundary conditions for the unspecified inputs, then
these inputs can take any value. If no trace is found, then there are no values for the unspecified inputs,
given values of the specified inputs, to produce the desired output value.

What If: 4ÁËÅ ÕÓÅÒȭÓ ÉÎÐÕÔÓ ÁÎÄ ÐÕÔÓ ÉÔ ÔÈÒÏÕÇÈ ÔÈÅ ÍÏÄÅÌ ÔÏ ÃÌÁÓÓÉÆÙ ÔÈÅ ÏÕÔÐÕÔȢ 2ÅÔÕÒÎ ÔÈÅ ÏÕÔÐÕÔ ÖÁÌÕÅȟ ÂÕÔ
since this is a simulation, do not take any action based on this output value.

Table 4.2. Algorithms for generating different types of intelligibility explanations from a

decision tree model.

4.4 METHOD

Given the different factors we wanted to investigate and the flexibility of our testing infrastructure,

we were able to independently test different intelligibility elements in a series of experiments. We

ran Experiment 1 to explore providing different explanation types (Why, Why Not, and the control

condition with no explanations). The system was presented in the context of the domain of activity

ÒÅÃÏÇÎÉÔÉÏÎ ÏÆ ÅØÅÒÃÉÓÉÎÇ ÁÓ ÄÅÓÃÒÉÂÅÄ ÁÂÏÖÅȢ (Ï×ÅÖÅÒȟ ÄÕÅ ÔÏ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÐÒÉÏÒ ËÎÏ×ÌÅÄÇÅ ÏÆ ÔÈÅ

domain, our results were difficult to interpret . So, we decided to subsequently run experiments

with an abstract domain. Experiment 2 compares explanations provided to address each of the four

intelligibility question types (Why, Why Not, How To, and What If) individually to investigate which

are more effective in helping users gain an understanding of how our intelligent system works

compared to not having explanations (None).

4.4.1 STUDY PROCEDURE

Our study consists of four sections. The first section (Learning) allows participants to interact with

ÁÎÄ ÌÅÁÒÎ ÈÏ× ÔÈÅ ÓÙÓÔÅÍ ×ÏÒËÓȢ 4×Ï ÓÕÂÓÅÑÕÅÎÔ ÓÅÃÔÉÏÎÓ ÔÅÓÔ ÔÈÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÏÆ

4.4 METHOD 49

4
.4

 M
E

T
H

O
D 4

9

4
.4

 M
E

T
H

O
D 4

9

the system (Fill-in-the-Blanks Test and Reasoning Test), and a final section (Survey) that asks users

to explain how the system works (to evaluate the degree to which participants have learned about

ÔÈÅ ÓÙÓÔÅÍȭÓ ÌÏÇÉÃɊ ÁÎÄ ÔÏ ÒÅÐÏÒÔ ÔÈÅÉÒ ÐÅÒÃÅÐÔÉÏÎÓ ÏÆ ÔÈÅ ÅØÐÌÁÎÁÔÉÏÎÓ ÁÎÄ ÓÙÓÔÅÍ ÉÎ ÔÅÒÍÓ ÏÆ

understandability, trust and usefulness.

4.4.1.1 LEARNING SECTION

In the Learning section, participants are shown 24 examples with inputs and output values (see

Figure 1). These examples were chosen from all possible input instances, to have an even

distributed over all branches in the decision tree, and they appear in the same order to all

participants. Examples were arranged in ascending order of Body Temperature, then of Heart Rate,

then of Pace. Participants have to spend at least 8 seconds per example (controlled by disabling the

Next Example button). Explanations are provided depending on the experimental condition. If

participants receive explanations, they will receive them automatically when executing each

example. It is important to note that explanations are only provided during the Learning section.

Participants are provided with a text box to make notes in, which persist throughout the Learning

section. At the end of the Learning section, users are told to spend some time studying their notes

as those are not available during the rest of the study.

4.4.1.2 FILL-IN-THE-BLANKS TEST SECTION

This section tests users on their ability to accurately specify a valid set of inputs or output; they are

given a single blank in one of the inputs or the output, and are given the rest of the inputs/output.

There are 15 test cases, three with blank Body Temperature, three with blank Heart Rate, four with

blank input Pace, and 5 with blank output. These test cases different from the earlier examples, and

are randomly ordered, but in the same order for all participants. On seeing each test case, users

have to fill in the missing input or output with a value that makes the test case correct. If an input is

missing, they should provide a value that causes the given output value to be produced; if the

output is missing, they provide a value that would be produced with the given input values. After

providing the missing value, they are also asked to provide a reason for their response. Participants

are not given any explanations during this test and, are not given the answer or told whether they

are correct after they finish.

50 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

4.4.1.3 REASONING TEST SECTION

This section shows users three complete examples, and, for each example, asked to give reasons

why the output was generated, and why the alternative output was not. These test case examples

are different from what users have encountered before, and are randomly ordered, but are in the

same order for all participants. To see if improved understanding can lead to improved trust, users

are also asked how much they trusted that the output of the system is correct for each example.

Participants are not given any explanations during the test and, are not given the answer after they

finish.

4.4.1.4 SURVEY SECTION

The final Survey section is used to collect self-report information from users. Users provide a more

detailed description of how they think the system works overall (i.e., an elicitation of their mental

models), and are asked 16 Likert -scale questions (see Table 4.4) to understand how users

perceived about using our system, including whether they trusted and understood the system and

explanations. The questions were randomly ordered to avoid order effects.

4.4.2 MEASURES

In order to see what types of intelligibility explanations would help users better understand the

system, and whether this improved understanding would lead to better task performance,

improved perception of the system, and improved trust in the system output, a number of measures

were collected.

Task performance was measured in terms of task completion time, and the Fill-in-the-Blanks Test

inputs and output answer correctness. Task completion time was measured with two metrics: total

learning time in the Learning section, and average time to complete each Fill-in-the-Blanks Test

question.

User understanding is measured by the correctness and detail of the reasons participants provide

when they give their answers (in the Fill-in-the-Blanks Test), explain examples (in the Reasoning

Test), or give an overall description of how the system works (mental model in the survey). The

reasons given for each answer in the Fill-in-the-Blanks Test were coded using a rubric (see Table

4.3) to determine how much the participant understands about how the system works. Reasons are

coded as Guess/Unintelligible if participants wrote they were guessing, did not write anything, or

wrote something not interpretable. Reasons are graded as Some Logic if participants provided

4.4 METHOD 51

4
.4

 M
E

T
H

O
D 5

1

4
.4

 M
E

T
H

O
D 5

1

some rules or probability statement or cited past experience (e.g., saying they saw something

similar before) that were not inequalities with fixed numeric boundaries. This includes cases such

ÁÓ Ȱ"ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅЄ(ÅÁÒÔ 2ÁÔÅȱȢ 2ÅÁÓÏÎÓ ÁÒÅ ÃÏÄÅÄ ÁÓ)ÎÅÑÕÁÌÉÔÙ ÉÆ ÐÁÒÔÉÃÉÐÁÎÔÓ ÓÐÅÃÉÆÉÅÄ ÁÎ

inequality of at least one of the inputs with a fixed numeric boundary (e.g., Body Temperature>7).

Reasons are coded as Partially Correct if participants provided only one rule with the correct input,

boundary value, and relation. Reasons are coded as Fully Correct if participants get only all the

sufficient rules correct, and did not list any extra ones. Each reason was coded with only a single

grade (i.e., the highest appropriate grade).

Understanding Code Description

GUESS/U NINTELLIGIBLE No reason given, guessed, or reason incoherent

SOME LOGIC Some math/logic rules, probability, or citing past experience

INEQUALITY Correct Type of rules which are inequalities of inputs with fixed numbers

PARTIALLY CORRECT Some, but not all, of the correct rules, or extra ones

FULLY CORRECT All correct rules, with no extra unnecessary ones

Table 4.3. Grading rubric for coding free -form reasons given by participants. Mental Models

were coded using this same rubric.

There are two inequality rules (e.g., 0ÁÃÅσ, and (ÅÁÒÔ 2ÁÔÅφ) for each test case or example, so

answer reasons for the Fill-in-the-Blanks Test have two components. We measure how many of

these components participants learn using three coding metrics that count (i) the number of inputs

the participant mentions as relevant in the reasons, (ii) the number of correct rules described, and

(iii) the number of extraneous rules mentioned (0 or 1).

The reasons for the Why and Why Not questions that participants provided in the Reasoning Test

were coded using a rubric similar to Table 4.3. We also recorded, on a five-point Likert -scale the

ÐÁÒÔÉÃÉÐÁÎÔȭÓ ÌÅÖÅÌ ÏÆ trust of the correctness of the outputs for each example in the Reasoning Test.

In the survey, we asked participants to describe their overall understanding of how the system

works. This mental model understanding is coded in a similar manner to why reasons, but not

applied to specific examples.

We did a factor analysis on the 16 Likert-scale questions of system and explanation perceptions in

the survey (see Table 4.4).

52 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Factor ɻ Likert -scale Opinions (Strongly Disagree 1 to Strongly Agree 5)

Understood System .917 I understood the relationship between inputs and output

I understood how the system works

I found the system predictable

I found the system easy to understand

I believe I did well in the test section

Found System Confusing

(Negated)

.722 I found the system confusing

I found the system complicated

I found the system hard to remember

Liked System / Found it
useful

.648 I learned something new from interacting with this system

I liked interacting with the system

Explanations Difficult

(Negated)

.529 I found the explanations insufficient

I found the explanations confusing

I found the explanations too detailed

Explanations Useful

.816 I found the explanations appropriate

I found the explanations useful

Understood Explanations

N.A. I understood the explanations

Table 4.4. Likert -scale questions of perception grouped into six factors with Cronbac ÈȭÓ ɻ

reliability computed . The former three factors are regarding the system, and the latter three

factors only apply to participants who viewed Intelligible versions of the system.

4.5 EXPERIMENT 1

Our first experiment focused on providing answers to hypotheses H1 and H2; whether Why

explanations would lead to improved user understanding, trust, perception, and performance more

than having no explanations, and H2 regarding providing Why Not explanations being better than

no explanations, but not as good as Why explanations. We chose the domain of activity recognition

of exercise, of which users would have a reasonable understanding. Mapping to the generalized

abstract system described earlier, the system takes on the role of a wearable device that can

ÍÅÁÓÕÒÅ ÔÈÅ ×ÅÁÒÅÒȭÓ "ÏÄÙ 4ÅÍÐÅÒÁÔure, Heart Rate, and walking or running Pace, and classify

whether the wearer is exercising (Equation (4.1)). The first rule can be satisfied during strength

training (e.g., weight lifting) that does not require much walking about, but can raise body

temperature, while the second rule can be satisfied by running.

4.5 EXPERIMENT 1 53

4
.5

 E
X

P
E

R
IM

E
N

T 1
 5

3

4
.5

 E
X

P
E

R
IM

E
N

T 1
 5

3

Participants in the no explanation (None) condition did not receive any explanations, and could

only execute each example and move on. Participants in the Why condition receive Why

explanations automatically along with the output value when they execute each example by clicking

ÔÈÅ Ȱ%ØÅÃÕÔÅȱ ÂÕÔÔÏÎȢ Participants in the Why Not condition receive a Why Not explanation in place

of a Why explanation.

4.5.1 PARTICIPANTS

53 participants were recruited, aged from 18 to 57 (M=29.8). There were 18 participants in the

None condition, 18 in the Why condition, and 17 in the Why Not condition. We removed from the

analysis any responses of participants who took fewer than 15 minutes (one participant in the

None condition) or longer than 50 minutes to complete the four sections. This was done to filter out

participants who just click through the steps without thinking, and to leave out participants who

may be distracted while performing the task and take too long. On average, participants took 34

minutes to complete the study. Participants were each given $3 for completing the study ($1 base

and a $2 bonus to motivate performance). A further $2 was offered to a few participants who

participated in interviews conducted soon (up to a few days) after completing the task.

4.5.2 RESULTS

4Ï ÁÎÁÌÙÚÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÁÂÉÌÉÔÙ ÔÏ ÁÐÐÌÙ ÔÈÅÉÒ ÕÎÄÅÒÓÔÁÎÄÉÎÇȟ ÔÈÅ ÎÕÍÂÅÒ ÏÆ ÃÏÒÒÅÃÔ ÁÎÓ×ÅÒÓ ÐÅÒ

participant was summed and a Tukey HSD pair-wise test was performed. The number of correct

answers was the dependent measure. The analysis showed significant differences in accuracy

between explanation types (F[2,84]=8.85, p<.001; see Figure 4.3ɊȢ 4Ï ÁÎÁÌÙÚÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÁÂÉÌÉÔÙ ÔÏ

formalize their understanding, their reasons were coded using the coding scheme in Table 4.3 and

dummy variables were generated indicating: Inequality or better (0 or 1), Partially or Fully Correct

(0 or 1), and Fully Correct (0 or 1). The analyses were done with the reason coding as the

dependent measure and with condition as a fixed effect. Participants were modeled as a random

effect and nested within condition. A Tukey HSD pairwise test of the occurrences of each coded

score shows that providing explanations leads to more correct answers than not providing any

(contrast of None with Why and Why Not: F[1,50]=15.1, p<.001). However, there was no significant

difference in the number of correct answers between Why and Why Not explanation types.

54 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.3. Participants receiving explanations (in the Learning section) answered

significantly more questions correctly in the Fill -in -the-Blanks section.

Figure 4.4. Percent of reasons coded as Inequality , Partially Correct, or Fully Correct in the

Reasoning Test section.

Using the grading coding scheme in Table 4.3 on the Why reasons provided in the Fill-in-the-Blanks

Test, we found that participants in the Why and Why Not conditions were able to produce more

Partially Correct reasons compared to those in the None condition (F[1,50]=27.4, p<.001) (see

Figure 4.4). Participants in the Why condition produced more Fully Correct reasons compared to

None and Why Not (F[1,50]=10.8, p<.002). There were no significant differences between Why and

Why Not. A similar pattern was found in the Reasoning Test section Participants in the Why

condition had a higher level of trust than those in None (F[1,49]=8.98, p<.005), while those in the

Why Not condition did not. The survey measures on overall mental model or perceptions of the

system and explanations did not reveal significant differences.

4.5.3 DISCUSSION AND IMPLICATIONS

The generally poor trust in the system could be due to occasional examples that follow the system

ÒÕÌÅÓȟ ÂÕÔ ÍÁÙ ÎÏÔ ÂÅ ȬÎÁÔÕÒÁÌȭ ɉe.g.ȟ ÈÉÇÈ "ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅ ÁÎÄ ÌÏ× ÐÁÃÅ ÐÒÅÄÉÃÔÅÄ ÁÓ Ȱ.ÏÔ

0

25

50

75

100

None Why Not Why

% Correct Answers

0

25

50

75

100

None Why Not Why

% Responses with Correct Answer Reasons

Inequality

Partially Correct

Fully Correct

4.6 EXPERIMENT 2 55

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

5

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

5

%ØÅÒÃÉÓÉÎÇȱɊȢ The answer and reason results indicated that providing explanations lead to better

understanding and trust of the system with less disagreement about the system output. However, in

their provided why reasons, several participants alluded to the domain of physical activity and

physiology to explain how the inputs (Body Temperature, Heart Rate, and Pace) should relate to

×ÈÅÔÈÅÒ ÔÈÅ ÄÅÖÉÃÅ ×ÅÁÒÅÒ ×ÁÓ Ȱ%ØÅÒÃÉÓÉÎÇȱ ɉe.g., ȰÍÏÖÉÎÇ Ǫ ÈÉÇÈ ɍÂÏÄÙ ÔÅÍÐÅÒÁÔÕÒÅɎȟ ÌÏÏËÓ ÌÉËÅ

ÒÕÎÎÉÎÇ ÓÏ) ÕÐÐÅÄ ÔÈÅ ɍÈÅÁÒÔ ÒÁÔÅɎȱ). Furthermore, most responses specified the inputs as ȰÈÉÇÈȱ ÏÒ

ȰÌÏ×ȱ rather than specifying numeric boundaries (e.g., ȰÈÅÁÒÔ ÒÁÔÅ ÉÓ ÌÏ×ȟ ÓÏ ÍÕÓÔ ÂÅ Á ÈÉÇÈ ÐÁÃÅ

ÁÌÏÎÇ ×ÉÔÈ ÈÉÇÈ ÂÏÄÙ ÔÅÍÐÅÒÁÔÕÒÅ ÔÏ ÐÒÅÄÉÃÔ ÅØÅÒÃÉÓÉÎÇȱ). This suggests that having prior knowledge

×ÏÕÌÄ ÌÅÓÓÅÎ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÅÆÆÏÒÔ ÔÏ ÂÅ ÐÒÅÃÉÓÅ ÁÂÏÕÔ ÔÈÅÉÒ ÕÎÄerstanding. To mitigate the effects of

prior knowledge, and to support more generalizability to other domains, we decided to anonymize

the inputs and outputs with an abstract system.

4.6 EXPERIMENT 2

Our second experiment focused on comparing the effectiveness of different explanations types for

each of the 4 intelligibility questions. Using the explanation algorithms described in Table 1, we can

isolate these explanations for each condition.

4.6.1 METHOD

This experiment followed the procedure of Experiment 1. For the None, Why, and Why Not

conditions, participants see the same interface as in Experiment 1, but with the inputs obfuscated

as A, B, and C, and the output values relabeled to a and b.

Figure 4.5. What If explanation facility. Participants would get to freely enter values for the

inputs A, B, and C, and get the system to simulate what the output would be.

56 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.6. Participants in the How To condition view this facility. By specifying two of the

input values and an output value, they can inquire the system to indicate possible values of

the remaining input.

Participants in the What If condition receive a What If interaction facility (see Figure 4.5) instead of

an explanation to let them see the output given their choice of inputs. Participants in the How To

condition received an interactive facility (see Figure 4.6) to determine how to get the system to

produce a chosen output value. To control for the number of examples encountered, participants in

the What If and How To conditions only get 12 complete examples (the even-numbered examples of

other conditions), and can invoke their respective intelligibility facilities 12 times to see a total of

24 examples (similar to the other conditions). For each condition, the explanations or explanation

facilities will always appear as each example is executed.

4.6.2 PARTICIPANTS

158 participants were recruited, aged from 18 to 72 (M=31.9). There were 26-37 participants in

each of the 5 conditions: None (31); Why (30); Why Not (31); How To (29); What If (37). On

average, participants took 33 minutes to complete the study (similar to Experiment 1, they were

required to complete the study within 15 to 50 minutes). Compensation was identical to

Experiment 1.

4.6.3 RESULTS

We analyzed the results by using the Tukey HSD pairwise test, looking for differences between

groups for our previously described metrics. Compared to participants in the None, What If and

How To conditions, participants in the Why and Why Not conditions had more correct answers in

4.6 EXPERIMENT 2 57

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

7

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

7

the Fill-in-the-Blanks tests, provided better reasons, and reported having a better understanding of

the system. Participants in the Why and Why Not conditions had an accuracy of 80.0% and 74.2%,

respectively, compared to 61.7% for the None condition (F[1,152]=51.6, p<.001; see Figure 4.7).

More of their answer reasons were coded as at least Inequality type rules (Inequality:

F[1,153]=198, p<.001), Partially Correct (F[1,153]=195, p<.001) and Fully Correct (F[1,153]=108,

p<.001). Finally, the self-reports of understanding for Why and Why Not were 3.14 and 2.79,

respectively (see Figure 4.10a).

Participants in the Why condition further distinguished themselves from Why Not by giving more

Fully Correct reasons (contrast of Why with Why Not: F[1,153]=23.2, p<.001), and trusting the

system output more (contrast of Why with None: F[1,153]=8.26, p<.001 vs. contrast of Why Not

with None: p=n.s.) with means of 3.26, 3.0 and 2.46 for Why, Why Not and None, respectively (see

Figure 4.10b). However, these participants also took the longest to answer each Fill-in-the-Blanks

test case (M=26.3 seconds, compared to M=22.0 and M=17.0 for Why Not and None, respectively)

(contrast of Why with None: F[1,145]=9.32, p<.003 vs. contrast of Why Not with None: p=n.s.).

Surprisingly, participants in the Why Not condition were not significantly better at providing Why

Not reasons than Why reasons. While participants in the What If condition were indistinguishable

from those in the None condition across all of our metrics, we did find that participants in the How

To condition were able to understand the types of rules used in the system better than participants

in the None condition (answer reasons coded as Inequality or better: F[1,153]=15.6, p<.001).

To identify why participants in the Why Not condition understood less about the rules than Why,

we coded the quality of answer reasons on the number of inputs and rules mentioned. Participants

in the Why condition provided more correct rules (M=1.19 vs. M=0.79; F[1,59]=6.16, p<.02) while

those in the Why condition provided fewer extraneous rules (M=0.11 vs. M=0.23; F[1,59]=8.276,

p<.006).

58 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Figure 4.7. Percent of correct answers in the Fill -in -the-Blanks test section, by condition.

Different colors indicate statistically significant differences.

Figure 4.8. Percent of reasons coded as Inequality , Partially Correct, or Fully Correct in the

Fill -in -the-Blanks Test section for each condition.

Figure 4.9. Overall understanding of the system was similar to the understanding in -situ of

individual examples, but responses were less precise (fewer correct descriptions).

0

25

50

75

100

None What If How To Why Not Why

% Correct Answers

0

25

50

75

100

None What If How To Why Not Why

% Responses with Correct Answer Reasons

Inequality

Partially Correct

Fully Correct

0

25

50

75

100

None What If How To Why Not Why

% Participants with Correct Mental Model Score

Inequality

Partially Correct

Fully Correct

4.6 EXPERIMENT 2 59

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

9

4
.6

 E
X

P
E

R
IM

E
N

T 2
 5

9

(a)

(b)

Figure 4.10. Self-reports of (a) understanding and (b) trust, by condition. Different colors

indicate significant differences.

4.6.4 DISCUSSION AND IMPLICATIONS

The results in Experiment 2 validate those in Experiment 1 with a more generalized abstract

domain, while not suffering from confounds due to prior domain knowledge. The Why and Why Not

ÅØÐÌÁÎÁÔÉÏÎÓ ÉÍÐÒÏÖÅÄ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇȟ ÉÎÃÒÅÁÓÅÄ ÔÈÅÉÒ ÔÒÕÓÔ ÉÎ ÔÈÅ ÓÙÓÔÅÍȟ ÁÎÄ ÔÈÅÉÒ

task performance. Examining the user reasons, we found that automatically generated Why

explanations allowed users to more precisely understand how the system functions for individual

instances compared to Why Not explanations. This is in spite of the Why Not explanations being

logically equivalent to Why explanations since flipping the notȭÓ ÉÎ ÔÈÅ ÆÏÒÍÅÒ ÃÁn derive the latter.

Moreover, we found that the Why Not participants tended to provide fewer correct rules (more

participants could only provide one correct rule instead of two) for the answer reason, or provide

extraneous inputs and rules that the system did not consider for the respective test cases, as

compared to the Why participants. These indicate that Why Not participants tended to learn only

part of the reasoning trace, and did not associate the two rules together, but treated them

separately. This failure in rule conjunction could be due to the inclusion of negative wording (i.e.

ȰÂÕÔȱ ÁÎÄ ȰÎÏÔȱɊ ÉÎ ÔÈÅ 7ÈÙ .ÏÔ ÅØÐÌÁÎÁÔÉÏÎȢ 4ÈÅ ÍÅÎÔÁÌ ÅÆÆÏÒÔ ÔÏ ÕÎÄÅÒÓÔÁÎÄ ÔÈÅ 7ÈÙ .ÏÔ

0

1

2

3

4

None What If How To Why Not Why

Understood System
Fully Agree

Agree

Neutral

Disagree

Fully Disagree

0

1

2

3

4

None What If How To Why Not Why

Trust of System Output

Fully Agree

Agree

Neutral

Disagree

Fully Disagree

60 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

explanation and create such a rule conjunction is certainly more than those in the Why condition

had to expend, which could explain the differences we observed.

Neither the How To nor What If explanations showed much benefit over not having explanations.

Some participants expressed their difficulty in using these explanation types, e.g.ȟ Ȱ) ÒÅÁÌÌÙ ÄÏÎȭÔ

think I used it cause I did not understand itȱȠ ȰThe first few [times, I did] not even realize what the

facility was for.ȱ Participants receiving What If explanations did not optimize their selection of

examples, with some users even selecting input values out of range (e.g., A=100). Given the abstract

and mathematical nature of the experimental setup, without any reasoning trace (unlike Why, Why

Not, How To), almost none of these participants proposed inequality rules as reasons, similar to

those in the None condition. However, as with the effect of domain knowledge (in Experiment 1),

participants who did not receive reasoning traces did consider the inequality rules, but just not

correctly (see Figure 4.5).

Our results suggest that developers should provide Why explanations as the primary form of

explanation and Why Not as a secondary form, if provided. Our results may suggest the

ineffectiveness of How To and What If explanations, but these explanation types may be more

useful for other types of tasks, particularly those relating to figuring out how to execute certain

system functionality, rather than interpreting or evaluating.

4.7 GENERAL DISCUSSION

We now discuss the findings of our two experiments and their implications for real world context-

aware systems.

4.7.1 IMPACT OF PRIOR KNOWLEDGE

We found in Experiment 1 that participants formed less accurate and precise mental models of the

system, compared to those in Experiment 2. This could be due to participants applying their prior

knowledge of exercising to understanding how the system works and not paying careful attention

to the explanations, as evidenced by the reasons they provided. This persistence of mental model

was also shown in [Tullio et al., 2007] where participants received explanations, over time, of how

an interruptibility system worked. As many real context-aware applications are based on common

everyday activities, users may have strong prior knowledge of the domains although weak

understanding of the applications, and may also not diligently learn from the provided

4.7 GENERAL DISCUSSION 61

4
.7

 G
E

N
E

R
A

L D
is

cu
ss

io
n 6

1

4
.7

 G
E

N
E

R
A

L D
is

cu
ss

io
n 6

1

explanations. One way to address this could be to learn from the knowledge-based systems

community, and provide deeper justification [Gregor and Benbasat, 1999] explanations to help

users understand why the system behavior may be different from typical everyday understanding.

4.7.2 FROM THE LAB TO THE REAL WORLD

Our intelligibility test infrastructure differs from real applications in that users would have

different goals when asking either of the intelligibility question types. In reality, users would ask

Why questions when they lack an understanding of how the application works, but Why Not

questions when they expect certain results that the application did not produce. This distinction in

user expectations and goals was not present in our lab study. Therefore, even if Why Not

explanations are found to be less effective than Why explanations, for real systems, users may

prefer the former explanation type to bridge gaps in their understanding and improve their trust

and acceptance of the system.

In order to investigate how our findings play in a real-world setting, we have developed an

intelligible, context-aware plugin [Lim and Dey, 2012a] for the AOL Instant Messenger (AIM) that

uses predictions of buddy responsiveness to instant messages (based on [Avrahami and Hudson,

2006]). In a future longitudinal deployment we plan to investigate how explanations affect usability

and acceptability.

4.7.3 IMPLICATIONS FOR CONTEXT-AWARE APPLICATIONS

While our intelligibil ity test infrastructure has some characteristics of context-aware systems, real

context-aware applications are more complex and several issues would have to be handled

regarding the provision of explanation types. Firstly, applications that use decision tree models

tend to have much larger trees learned from possibly hundreds of features, and it would not be

scalable to generate explanations from them. For example, a tree of depth 13 could lead to the Why

traces that have over 10 inequality relations. The explanations returned would be too long for users

to assimilate and remember. One way to deal with the larger tree size is to just provide subsets of

reasons in the explanations. For example, the Why trace could just provide the top 5 inequality

relations ranked by how much each relation affects the prediction accuracy. Providing subsets of

explanations would provide users with only partial understanding of each application behavior

instance, and users may have to interact with the system longer before understanding the system

62 CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

better. One way to reduce overall learning time may be to start new users with higher-detail

explanations, then progress to less detail the more they interact with the system.

While our setup dealt with decision tree learners, the naïve Bayes classifier is another popular

learner used in context-aware applications. Even though they are not as intuitive as decision trees,

Naïve Bayes models can be interpretable, and there are several visualizations to explain them (e.g.,

nomograms [Mozina et al., 2004]). However, some learners (e.g., Support Vector Machines with

Gaussian kernels, Neural Networks) are considered black-boxes [Nugent and Cunningham, 2005]

and are not inherently interpretable. Fortunately, there have been some attempts to make them

explainable using decision trees or rules (e.g., [Andrews, Diederich, and Tickle, 1995]). We can then

use the same techniques to provide explanations for systems based on decision tree models.

Another issue with real systems is that users may not like to receive explanations all the time, but

on demand instead, because the former may be too obtrusive. In Chapter 9, we performed a study to

compare if users can still benefit sufficiently from explanations if they get to choose when and how

often they can receive explanations, and if this usage of explanations can lead to improved learning.

Our results suggest the effectiveness and importance of providing Why and Why Not explanations

over How To and What If. The former two deaÌ ×ÉÔÈ .ÏÒÍÁÎȭÓ ÇÕÌÆ ÏÆ ÅÖÁÌÕÁÔÉÏÎȟ ×ÈÉÌÅ ÔÈÅ ÌÁÔÔÅÒ

two deal with the gulf of execution [Norman, 1988]. While we feel that this dichotomy should

remain true for informative context-aware systems (e.g., applications to determine interruptibility

of others to inform onlookers [Avrahami and Hudson, 2006; Tullio et al., 2007]), systems that are

more pro-active (e.g.ȟ ÁÐÐÌÉÃÁÔÉÏÎÓ ÔÈÁÔ ÓÅÎÄ ÎÏÔÉÆÉÃÁÔÉÏÎÓ ÂÁÓÅÄ ÏÎ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÒÒÕÐÔÉÂÉÌÉÔÙɊ ÍÁÙ

benefit more with the How To and What If explanations. With those explanations, users would be

better informed of how they can carry out their tasks.

4.8 CONCLUSIONS AND FURTHER WORK

We have described a large controlled study comparing the provision of explanations addressing

four explanation type questions (Why, Why Not, How To, and What If). We developed a web-based

platform that provides a functional input-output interface of an intelligent system prototype that

provides different types of explanations. Our findings suggest that providing reasoning trace

explanations for context-aware applications to novice users, and in particular Why explanations,

ÃÁÎ ÉÍÐÒÏÖÅ ÕÓÅÒȭÓ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÁÎÄ ÔÒÕÓÔ ÉÎ ÔÈÅ ÓÙÓÔÅÍȢ

4.8 CONCLUSIONS AND FURTHER WORK 63

4
.8

 C
O

N
C

L
U

S
IO

N
S a

n
d
 F

u
rth

e
r W

o
rk

 6
3

4
.8

 C
O

N
C

L
U

S
IO

N
S a

n
d
 F

u
rth

e
r W

o
rk

 6
3

Our results of the relative strengths and weaknesses of each explanation type came from a between-

subjects study, but to gain an insight into which explanation type individual users may prefer, we

wish to run a within -subjects study, where each participant sees multiple explanation types. In

Chapters 7 and 9, we investigate this with an intelligible context-aware mobile application, which

provides several explanation types.

Furthermore, though our results do not show the effectiveness of How To and What If explanations,

we believe they may be more useful given better motivating scenarios and better interface design.

Therefore, we continued to pursue our investigations into these explanation types in later work

(Chapters 5, 6, 7, and 9), and specifically sought out a user friendly interface for explanations in

Chapter 7.

We next sought to widen the scope of intelligibility to include more questions that users may ask of

context-aware applications. In Chapter 5, we expand on four intelligibility question types to include

11 question types for our taxonomy of Intelligibility.

65

5 ASSESSING DEMAND FOR

INTELLIGIBILITY

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2009). Assessing Demand for Intelligibility in Context-Aware

Applications. In Proceedings of the 11th international Conference on Ubiquitous Computing

(Orlando, Florida, USA, September 30 - October 03, 2009). Ubicomp '09. ACM, New York, NY,

195-204.

ABSTRACT. Intelligibility can help expose the inner workings and inputs of context-aware

applications that tend to be opaque to users due to their implicit sensing and actions. However, users

may not be interested in all the information that the applications can produce. Using scenarios of four

real-world applications that span the design space of context-aware computing, we conducted two

experiments to discover what information users are interested in. In the first experiment, we elicit

types of information demands that users have and under what moderating circumstances they have

them. In the second experiment, we verify the findings by soliciting users about which types they

would want to know and establish whether receiving such information would satisfy them. We

discuss why users demand certain types of information, and provide design implications on how to

provide different explanation types to make context-aware applications intelligible and acceptable to

users.

5.1 INTRODUCTION

In Chapter 4, we found that some types of explanation were more effective than others in improving

ÕÓÅÒÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÁÎÄ ÔÒÕÓÔ ÏÆ Á ÃÏÎÔÅØÔ-aware intelligent system. However, it was not clear what

information users actually want to know and will ask about, and whether there are more explanation

66 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

types than we had previously considered. In this work, we explored and assessed a taxonomy of user

demand for intelligibility: which types of questions users want answered, and how answering them

improves user satisfaction of context-aware applications. User satisfaction is obviously crucial for

adoption and acceptance of such technologies.

To make context-aware applications intelligible so that they can expose their inner functions to the

end-user, much research has looked into how to generate explanations from the underlying

application models and deliver them to users (e.g., [Cheverst et al., 2007; Ko and Myers, 2009;

Kulesza et al., 2009; Lim and Dey, 2009]). However, lit tle work has been done to compare the

impact of different types of explanations or in the domain of context-aware computing. Users may

not be receptive to these explanations, especially when they end up using the applications in ways

for which they were not designed [Orlikowski , 2000], and when those explanations do not adapt to

ÖÁÒÙÉÎÇ ÓÉÔÕÁÔÉÏÎÓ ÏÆ ÕÓÅȢ 4ÈÕÓ ÉÔ ÉÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÅØÐÌÏÒÅ ÉÎÆÏÒÍÁÔÉÏÎ ÄÅÍÁÎÄ ÆÒÏÍ ÔÈÅ ÕÓÅÒȭÓ

perspective lest effort is wasted in implementing explanations that would see little use.

Researchers have explored what users want to know in other domains. McGuinness and colleagues

[Glass, McGuinness, and Wolverton, 2008; McGuinness et al., 2007] have identified information

need factors that influence the level of trust in adaptive agents. They used interviews to identify

explanation requirements and rank question types according to their helpfulness. Gregor and

BenbasatȭÓ [1999] meta-review investigates explanation types that users of knowledge-based

systems (KBS) would like to have. While adaptive agents and KBS are similar to context-aware

applications (which may also use agents or knowledge bases and rules), they are work-oriented,

while context-aware applications are targeted for everyday use, for many more situations and a

wider range of users, and under more situations [Abowd, Mynatt, and Rodden, 2002]. Thus we need

to explore how these different requirements would lead to different intelligibility needs.

The chapter is organized as follows: we discuss how supporting intelligibility by providing

explanations that users want, has the potential to increase user satisfaction and thus acceptance of

context-aware applications. We then describe our experimental design that uses surveys and

scenarios to expose users to a range of experiences with context-aware applications. We present

two experiments that investigate what types of information users want. In the first experiment, we

elicit the types of information users are interested in and under what moderating circumstances. In

the second experiment, we validate our findings by presenting users with 11 information types as

intelligibility features in a controlled study and measure their impact on user satisfaction. We end

5.2 HYPOTHESES AND APPROACH 67

5
.2

 H
Y

P
O

T
H

E
S

E
S a

n
d
 A

p
p
ro

a
ch 6

7

5
.2

 H
Y

P
O

T
H

E
S

E
S a

n
d
 A

p
p
ro

a
ch 6

7

with a discussion of why users of context-aware systems demand certain types of information in

different situation, and provide design recommendations for providing different information types

to make context-aware systems intelligible and acceptable to users.

5.2 HYPOTHESES AND APPROACH

We hypothesize that there are different types of information in which users are interested, for

different context-aware applications, and different situations. Since people ask information seeking

questions due to cognitive disequilibrium [Graesser and McMahen, 1993] and to correct knowledge

deficits [Van der Meik, 1987], we believe that satisfying these information demands through

intelligibility can lead to better satisfaction when using these applications and improved adoption

and acceptance. In order to elicit the information demands users have for context-aware

applications under various situations, we conducted a study of the demand for explanations and

different types of information in several scenarios users may find themselves in as they use context-

aware applications.

Using described scenarios instead of actual field deployments allows us to quickly and more

effectively study and understand the impact of different information on intelligibility and

satisfaction, without having to implement and deploy a variety of applications, any of which could

fail for reasons independent of our main focus. Next we describe four applications we use to focus

our scenarios. For each application, the scenarios intentionally span a range of incorrect,

appropriate and unexpected or anomalous, but not necessarily wrong behavior, to probe directly at

the issues of intelligibility and satisfaction.

5.3 SETUP: SCENARIOS OF FOUR CONTEXT-AWARE

APPLICATIONS

To investigate the demand for intelligibility in the space of context-aware applications, we selected

four protot ypical context-aware applications: (i) a desktop interruption management application

(an Instant Messenger plugin), (ii) a remote person monitoring peripheral display (Digital Family

Portrait), (iii) a context-aware reminder application (CybreMinder), and (iv) a mobile context-

aware tour guide (CyberGuide). All applications in this study behave according to models of learned

decision trees.

68 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5.3.1 INTERRUPTION MANAGEMENT

Figure 5.1: (Left) Screen capture of a fi ve-second video clip for the IM Auto -Notification

application survey , showing the user rushi ng to meet a deadline. (Right) S creenshot of a non -

work IM message which had been suppressed and delivered later.

We designed the instant messenger (IM) auto-notifi cation plugin based on recent work on a

predictive model to determine how long a buddy would take to respond to a message [Avrahami

and Hudson, 2006]. Our application uses the responsiveness prediction to determine the subjectȭÓ

interruptibility [Fogarty et al., 2005], and either forwards or suppresses incoming IM messages. We

developed four main scenarios for this application where the subject is in various states of

availability :

1. Rushing to reach an imminent deadline,

2. Taking a break and surfing the Internet,

3. Reading a work-related book, and

4. Returning from a protracted informal meeting.

For each scenario, the user receives an IM message from

¶ A colleague regarding critical work, or

¶ A friend regarding a fun video.

There are 16 scenarios (4 availability × 2 received messages × 2 application actions).

5.3 SETUP: SCENARIOS OF FOUR CONTEXT-AWARE APPLICATIONS 69

5
.3

 S
E

T
U

P: S
c
e

n
a

rio
s
 o

f F
o
u

r C
o

n
te

x
t-A
w

a
re

 A
p

p
lic

a
tio

n
s 6

9

5
.3

 S
E

T
U

P: S
c
e

n
a

rio
s
 o

f F
o
u

r C
o

n
te

x
t-A
w

a
re

 A
p

p
lic

a
tio

n
s 6

9

5.3.2 REMOTE MONITORING

Figure 5.2: (Left) Screen capture of a five -second video clip for the Elderly Remote

Monitoring application survey, showing the user casually glancing at the display.

Screenshot s of a normal event (Middle) and an anomalous event (Right) .

We used the Digital Family Portrait [Mynatt et al., 2001] as an example for remote monitoring

systems. It leverages a picture frame to present the current status of an elderly family member as

he or she goes through daily life living independently in her home, to remote loved ones. Our

rendition of the Digital Family Portrait is based on a decision tree model which we define as several

small subtrees, each addressing groups of scenarios. We present a subset of what the sensors on the

ÅÌÄÅÒȭÓ ÂÏÄÙ ÁÎÄ ÉÎ ÔÈÅ ÈÏÍÅ ÁÒÅ ÄÅÓÃÒÉÂÅÄ ÁÓ detecting:

1. Whether the family member has fallen,

Whether there is a fire;

2. How many times the toilet has been used recently,

Whether the usage frequency is anomalous,

Whether the system thinks this could be a symptom of incontinence;

3. Whether the family member is watching TV,

Whether the family member is sleeping

4. 7ÈÅÔÈÅÒ ÔÈÅ ÆÁÍÉÌÙ ÍÅÍÂÅÒȭÓ ÈÏÕÓÅ ÉÓ ÖÁÃÁÎÔȟ

Whether there is an intruder.

For this application, there are a total of 13 scenarios.

70 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5.3.3 REMINDER

 Figure 5.3: (Left) Screen capture of a five -second video clip for the Reminder application

survey, showing the phone trigge ring at the pantry . Screenshot s of a work -related reminder

(Middle) and personal reminder (Right) .

We used CybreMinder [Dey and Abowd, 2000] as an example for reminder systems. CybreMinder is

a context-aware reminder application that considers combinations of contexts, such as location,

time, and collocation, to trigger reminders. It is based on several personal and environmental

sensors, and triggers reminders based on the satisfaction of one of several rules (modeled as a

decision tree). We developed scenarios that would relate to three types of reminders (mentioned in

[Dey and Abowd, 2000]):

1. Reminder to discuss an important issue when the user and a colleague serendipitously meet

(collocation trigger);

2. Reminder to take the umbrella when it is forecasted to rain and the user is approaching the

front door (location and information trigger); and,

3. Reminder to discuss party planning with a friend when the user and the friend are free, and

the user is at the office (complex trigger).

We developed 13 scenarios based on these three reminders.

