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ABSTRACT 

To facilitate everyday activities, context-aware applications use sensors to detect what is happening 

and use increasingly complex mechanisms (e.g., by using big rule-sets or machine learning) to infer 

the user's context and intent. For example, a mobile application can recognize that the user is in a 

conversation and suppress any incoming calls. When the application works well, this implicit 

sensing and complex inference remain invisible. However, when it behaves inappropriately or 

unexpectedly, users may not understand its behavior. This can lead users to mistrust, misuse, or 

even abandon it. To counter this lack of understanding and loss of trust, context-aware applications 

should be intelligible, capable of explaining their behavior. 

We investigate providing intelligibility in context -aware applications and evaluate its usefulness to 

improve user understanding and trust in context-aware applications. Specifically, this thesis 

supports intelligibility in context -aware applications through the provision of explanations that 

answer different question types, such as:  Why did it do X? Why did it not do Y? What if I did W, 

What will it do? How can I get the application to do Y? 

This thesis takes a three-pronged approach to investigating intelligibility by (i) eliciting the user 

requirements for intelligibility, to identify what explanation types end-users are interested in 

asking context-aware applications, (ii) supporting the development of intelligible context-aware 

applications with a software toolkit  and the design of these applications with design and usability 

recommendations, and (iii) evaluating the impact of intelligibility on user understanding and trust 

under various situations and application reliability, and measuring how users use an interactive 

intelligible prototype. We show that users are willing to use well-designed intelligibility  features, 

and this can improve user understanding and trust in the adaptive behavior of context-aware 

applications.  
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1 INTRODUCTION 

Over the past 20 years, with the miniaturization and commoditization of computing power, we have 

moved away from the desktop paradigm of computing to that of ubiquitous computing (Ubicomp). 

This manifests Weiser's vision of a world with ubiquitous, invisible computing [Weiser, 1991] 

embedded in smart ambient environments and carried by end-users in small devices. Anticipating, 

adapting, and servicing user needs, these Ubicomp systems were envisioned to work calmly and 

ÑÕÉÅÔÌÙȟ ÒÅÍÁÉÎÉÎÇ ÉÎ ÔÈÅ ÂÁÃËÇÒÏÕÎÄ ɍ7ÅÉÓÅÒ ÁÎÄ "ÒÏ×Îȟ ρωωχɎȟ ÎÏÔ ÇÅÔÔÉÎÇ ÉÎ ÔÈÅ ×ÁÙ ÏÆ ÔÈÅ ÕÓÅÒÓȭ 

work or activit ies.  

An important part of this Ubicomp vision is context-aware computing [Dey, Abowd, and Salber, 

2001; Schilit, Adams, and Want, 1994] with applications that automatically adapt and tailor their 

ÂÅÈÁÖÉÏÒ ÉÎ ÒÅÓÐÏÎÓÅ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÃÕÒÒÅÎÔ ÓÉÔÕÁÔion (or contextɊȟ ÓÕÃÈ ÁÓ ÔÈÅ ÕÓÅÒȭÓ ÁÃÔÉÖÉÔÙȟ ÌÏÃÁÔÉÏÎȟ 

and environmental conditions. 5ÓÉÎÇ ÓÅÎÓÏÒÓ ÔÏ ÒÅÃÏÇÎÉÚÅ ÏÒ ÉÎÆÅÒ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÎÔ ÏÒ ÓÉÔÕÁÔÉÏÎȟ 

context-aware applications do not need explicit user input to carry out their functions. Hence, these 

applications implicitly  ÄÅÔÅÒÍÉÎÅ ×ÈÁÔ ÉÓ ÈÁÐÐÅÎÉÎÇ ÁÎÄ ÃÏÍÐÌÅÍÅÎÔ ÔÈÅ ÕÓÅÒȭÓ ÁÃÔÉÖÉÔÙ ×ÉÔÈÏÕÔ 

needing the ÕÓÅÒȭÓ attention. Examples of context-aware applications include: 

¶ Mobile tour guides, e.g., CyberGuide [Abowd et al., 1997], GUIDE [Cheverst et al., 2000]),  

¶ Reminder systems, e.g., CybReminder [Dey and Abowd, 2000]; 

¶ Monitoring and awareness systems, e.g., Digital Family Portrait [Mynatt et al., 2001], 

embedded assessment of the elderly [Lee and Dey, 2010; 2011], domestic activity [van 

Kasteren et al., 2008], coworker awareness [Lim, Brdiczka, and Bellotti, 2010]; 

¶ Interruption management, e.g., for Instant Messaging [Avrahami and Hudson, 2006], on the 

mobile phone [Lim and Dey, 2011a; Rosenthal, Dey, and Veloso, 2011], and in the office 

[Tullio et al., 2007]; 

¶ Coordination, e.g., family transportation [Davidoff et al., 2011]; 

¶ Service or device automation, e.g., Intelligent Office System [Cheverst et al., 2005] 
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Consider using context-awareness to manage interruption  on a mobile phone. With the 

proliferati on of smart mobile phones, mobile applications can leverage embedded sensors in the 

phones to provide context-awareness. A compelling application is for the phone to automatically 

detect what the user is doing to determine whether it is an appropriate time ÆÏÒ ÔÈÅ ÕÓÅÒȭÓ ÃÏÎÔÁÃÔÓ 

to call and interrupt her. For example, the application can detect if the user is in a conversation 

(using the microphone for sensing and machine learning for inference) at the office (using Wi-Fi or 

GPS sensing), or detect if she is driving a car (using the accelerometer for sensing and machine 

learning for inference). Using a set of rules, it can infer whether the user is available. 

In the previous example, as with many context-aware applications, the user does not need to 

explicitly inform the application of her availability, or more generally, of her contextual situation, 

and can expect the application to serve her need to be uninterrupted without her involvement . The 

application uses implicit sensing , and complex inference  to support context-awareness. 

However, these designs and capabilities can lead to some user interaction issues. 

1.1 THE PROBLEM φ LACK OF INTELLIGIBILITY 

Since context-aware applications sense implicitly and act quietly, these applications lack the 

affordances [Gibson, 1979] to allow end-users to be aware of what they know or what they are 

doing. Bellotti et al. [2002] point out that with the vision of Ubicomp making the interface invisible, 

it would become difficult for these systems to manifest themselves and allow users to make sense of 

them. Dourish [1996] argues ÔÈÁÔ ÉÎÔÅÒÁÃÔÉÖÅ ÓÙÓÔÅÍÓ ÓÈÏÕÌÄ ÇÉÖÅ ȰÁÃÃÏÕÎÔÓȱ ɂ reflective 

representations of their operations and externally observable states.  

The complex inference mechanisms employed by context-aware applications also increase the 

difficulty of understanding how these applications reason and decide. Bellotti and Edwards [2001] 

propose that context-aware systems must be intelligible ɂ Ȱable to represent to their users what 

they know, how they know it, and what they ÁÒÅ ÄÏÉÎÇ ÁÂÏÕÔ ÉÔȢȱ They believe that, along with 

enforcing user accountabilityȟ ÉÎÔÅÌÌÉÇÉÂÉÌÉÔÙ ȰÍÕÓÔ ÂÅ ÐÒÅÓÅÎÔ ÆÏÒ ÃÏÎÔÅØÔ-aware systems to be 

ÕÓÅÁÂÌÅȟ ÐÒÅÄÉÃÔÁÂÌÅȟ ÁÎÄ ÓÁÆÅȢȱ Bellotti et al. [2002] also challenge Ubicomp systems to support 

alignment between the user and system, by making the system state perceivable, persistent, and 

query-able, and providing timely and appropriate feedback. Indeed, this lack of intelligibility has 

been empirically observed. Barkhuus and Dey [2003a, b] found that although end-users want to use 

context-aware applications, they have serious issues with the lack of understandability, loss of 
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control, loss of privacy, information overload; users find automatic behavior useful but difficult to 

understand. 

Trust in automation guides reliance when the complexity of the automation makes a complete 

understanding impractical [Lee and See, 2004]. This lack of system intelligibility in context-aware 

applications and user confusion can lead users to mistrust and misuse, and even abandon them 

[Muir , 1994; Muir and Moray, 1996]. Therefore, ensuring end-users have sufficient user trust of 

these systems is crucial to supporting their adoption. Lee and See [2004] described three attributes 

of trust in automation: predictability, performance, and purpose. Predictability and performance are 

particularly relevant to the problem of the lack of intelligibility. Without sufficient understanding of 

context-aware applications, end-users will find theÓÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ behaviors less predictable, and 

this can compromise user trust. Furthermore, context-aware applications are prone to ambiguity 

and uncertainty [Greenberg, 2001]. This can cause them to make wrong inferences and misbehave, 

compromising their performance.  A common strategy for improving the performance of context-

aware applications involves user mediation, where the user resolves uncertainty [Dey et al., 2002]. 

Nevertheless, without intelligibility, end -users will struggle to determine the causes for uncertainty 

and may not be able to improve the system performance. 

1.2 A SOLUTION φ EXPLANATIONS FOR INTELLIGIBILITY 

Providing explanations is a popular way to improve user understanding and user trust [Johnson, 

1993] in Intelligent Systems. Dzindolet et al [2003] found that even though users lose trust in 

intel ligent decision aids which make occasional errors, providing a description of why the aid might 

fail can help to ÉÎÃÒÅÁÓÅ ÕÓÅÒÓȭ ÔÒÕÓÔȢ Explanations have been shown to improve user understanding 

and performance in expert systems (e.g., knowledge-base systems [Davis, Buchanan, and 

Shortcliffe, 1977, Gregor and Benbasat, 1999], intelligent decision aids [Glass, McGuinness, and 

Wolverton, 2008; Haynes, Cohen, and Ritter, 2009]) and end-user systems (e.g., recommender 

systems [Herlocker, Konstan, and Riedl, 2000], intelligent user interfaces [Myers et al., 2009]).  

We employ the same strategy of providing users with explanations of application state, inference 

logic, and behavior for context-aware applications. For example, a context-aware application may 

mis-infer ÔÈÅ ÕÓÅÒȭÓ availability to receive phone calls, and allow a colleague to call him at the 

library. Intelligibility will allow the user to learn why this apparent mistake happened. It could tell 
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him that the application correctly infer red his location at the library, but that he had forgotten to 

set a rule to be unavailable, or that his colleague ignored social norms and called anyway.  

1.2.1 THESIS STATEMENT 

In this thesis, we explore how to provide intelligibility in context-aware applications through 

explanation interfaces. We aim to support both developers to design and implement intelligible 

context-aware applications, and evaluate the benefits and limitations of intelligibility on end-users. 

With the intelligibility explanations we develop in this thesis, we claim that: 

Intelligi bility  in context-aware applications can improve end-ÕÓÅÒÓȭ understanding  

of how these applications work and, consequently, increase end-users' trust  to use 

these applications. 

1.2.2 THESIS APPROACH 

To prove this thesis statement, we approach the problem in three high-level stages. First, we (i) 

explore what intelligibility is and define it through exploratory work, then we (ii) facilitate and 

support intelligibility so that it is easier to provide it, and finally, (iii) we evaluate the usefulness of 

intelligibil ity towards the thesis goals. Figure 1.1 outlines the chapters in this dissertation. 

 

Figure 1.1. Three -stage approach to thesis with various projects connected by progression . 

Arro ws indicate how findings and implications from one study applies to the next. We 

summarize our taxonomy for Intelligibility in Chapter 3. 

SupportRequirements Evaluation

Pilot
(Chapter 4)

Ȭ0ÁÐÅÒȭ 0ÒÏÔÏÔÙÐÅ
(Chapter 8)

Design and 
Usability

(Chapter 7)

Quasi-Field
(Chapter 9)Elicitation 

from Scenarios
(Chapter 5)

Literature 
Review

(Chapter 2)

Implementation
with Toolkit
(Chapter 6)

Design
Recommendations



1.2 A SOLUTION Ʉ EXPLANATIONS FOR INTELLIGIBILITY    5 

 

1
.2

 A
 3
Ï
Ì
Õ
Ô
É
Ï
Î
 
Ʉ
 
%
Ø
Ð
Ì
Á
Î
Á
Ô
É
Ï
Î
Ó
 
Æ
Ï
Ò
 
)
Î
Ô
Å
Ì
Ì
É
Ç
É
Â
É
Ì
É
Ô
Ù

    5
 

 

 

I) REQUIREMENTS GATHERING AND SPECIFICATION 

In the first stage, we sought to define a framework for intelligibility. We accomplish this with a 

literature review of explanations in intelligent systems (Chapter 2), and empirical work eliciting 

what explanations potential users of context-aware applications would like to know (Chapter 5). To 

this end, we have defined a taxonomy of explanation question types. 

II) FACILITATION, SUPPORT, AND GUIDELINES 

The next stage implements the requirements as determined from the taxonomy of intelligibilit y, 

and provides generalized support for implementing intelligibility in context -aware applications 

through a software toolkit and design recommendations. We facilitate the implementation of 

intelligibility with the Intelligibility Toolkit ( Chapter 6), and also explored and evaluated design and 

usability issues to derive guidelines for providing and presenting intelligibility (Chapter 7). 

III) EVALUATION 

In the final stage, we evaluate intelligibility  in context-aware applications. Using the toolkit and 

design guidelines, we can rapidly prototype intelligibility in context-aware applications to test our 

hypotheses. We investigated the impacts of different explanation types on user understanding and 

tru st of context-aware intelligent systems (Chapter 4). Next, through questionnaires, we evaluated 

the impact of intelligibility on user impression of context-aware applications that are uncertain or 

certain of their inferences (Chapter 8). We followed this with an evaluation of an interactive 

prototype of an intelligible context-aware mobile application, where we investigated the extent of 

usage of intelligibility, how well or poorly users understood the application inferences, and their 

perceived usefulness of the explanations (Chapter 9).  

1.2.3 INTELLIGIBILITY AS EXPLANATION TYPES 

We support intelligibility through an explanation query paradigm (e.g., [Wick and Slagle, 1989; Ko 

and Myers, 2003], where users can obtain explanations to questions about the context-aware 

applications, such as: 

1. What  is the current value of the context? 

2. Certainty : how certain or confident is the application of this inference? 

3. Why  is this context the current value X? 

4. Why Not : ×ÈÙ ÉÓÎȭÔ ÔÈÉÓ ÃÏÎÔÅØÔ ÖÁÌÕÅ 9ȟ ÉÎÓÔÅÁÄȩ  
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5. How To: when would this context take value Y? 

6. What if  the conditions are different, what would this context be? 

Categorizing explanations into these Explanation Types allows us to systematically investigate their 

usefulness and how to support their provision in context-aware applications. We detail our 

taxonomy of Explanation Types in Chapter 3. 

1.3 SCOPE AND DEFINITIONS 

There are several terms and concepts that are central to this dissertation and we define them here. 

In this thesis, we focus on providing and evaluating explanations in context-aware applications 

used by lay end-users for everyday computing activities. We use the definition of context -

awareness as defined in [Dey, Abowd, Salber, 2001; Schilit, Adams, and Want, 1994] regarding a 

positivist, constructionist view of understanding of the environment and the user through 

constituent contextual cues and signals that are sensed, aggregated, interpreted, and inferred. 

These can include sensors around the house (e.g., thermostats, brightness sensors), in computer 

software (e.g., keyboard and mouse activity), worn on the body or in mobile devices (e.g., 

accelerometers, microphones); and inferred activities and intentions such as domestic activity (e.g., 

making breakfast, using the toilet), and mobile availability and activity (e.g., driving, talking in a 

meeting). On the other hand, the use of intelligibility, especially in a social application (e.g.ȟ ,ÁʆÓÁ ÉÎ 

Chapter 7), can support the interactionist, phenomenological view of context [Dourish, 1994], where 

context is relational, dynamic, depends on the social interactions, arises from activity, and is co-

constructed with the user. Intelligibility can provide users with more information to make better 

sense of the situation. 

There can be many different types of users of intelligent systems, with different relationships to the 

systems and different domain expertise. We have scoped our investigation into context-aware 

applications to cover Ȱeverydayȱ activities  as defined in [Abowd, Mynatt, an Rodden, 2002; 

Greenfield, 2006] (e.g., reminder systems, interruption management), rather than work task-

oriented or professional decision aids (e.g., medical diagnosis knowledge bases, task planning). 

Finally, we target lay end-users as the consumers of the intelligibility features we seek to provide. 

We do not expect these users to have technical or computer science expertise, nor will they 

necessarily have deep interest in understanding the detailed operation of novel context-aware 
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applications. Instead, we expect these users to primarily focus on their activities and pay attention 

to intelligibility occasionally, e.g., when the applications misbehave or act unexpectedly. 

We intend for context-aware applications to provide intelligibility to help end-users learn  and 

understand  them. Much research has been performed on explanations in intelligent systems, using 

different terms to describe an intelligible application, such as: explainable, interpretable [Mozina et 

al., 2004], transparent [Cheverst et al., 2005; Cramer et al., 2008; Höök, 2000], scrutable [Assad et 

al., 2007; Barua, Kay, and Kummerfeld, 2011], palpable [Rimassa, Greenwood, and Calisti, 2005], 

ȰÇÌÁÓÓ ÂÏØȱ [Höök et al., 1996], white-box [Herlocker, Konstan, and Riedl, 2000], seamful [Chalmers 

and MacColl, 2003], etc. Given the complex inference mechanisms and sensors used in context-

aware applications, there will be terms and concepts central to their operation that end-users may 

not understand. Therefore, intelligibility can help end-users to learn the relevant terminology and 

concepts, so that they may properly scaffold and form more accurate mental models [Johnson-Laird, 

1983]. We do not intend for end-users to learn these concepts to the extent which students learn 

from their coursework (as is the intention of Intelligent Tutoring Systems, e.g., [Anderson et al., 

1995]), nor do we expect end-users to understand the application to be able to debug their code 

(e.g., Whyline [Ko and Myers, 2003]). We aim to use intelligibility to allow end-users to understand 

the factors or sensors that influence the inference and decision making in context-aware 

applications, so that they may be aware of and appreciate ÔÈÅ ÃÏÍÐÅÔÅÎÃÅ ÏÆ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ 

complex inference (assuming reliable performance). We also want end-users to understand the 

limitations of the applications. 

We aim is to improve end-user trust  by improving the end-ÕÓÅÒȭÓ ȰÁÂÉÌÉÔÙ ÔÏ ÅÓÔÉÍÁÔe predictability 

ÏÆ ÔÈÅ ɍÁÐÐÌÉÃÁÔÉÏÎȭÓɎ ÂÅÈÁÖÉÏÒÓȱ ÂÙ ÍÁËÉÎÇ ÔÈÅ ÂÅÈÁÖÉÏÒÓ ȰÏÂÓÅÒÖÁÂÌÅȱ ɍ-ÕÉÒȟ ρωωτɎȢ Lee and See 

[2004] identified  three processes underlying trust: analytic, analogical, and affective. Analogical 

trust  is influenced by the context, environment of use, and other social factors such as reputation. 

Affective trust ÉÓ ÉÎÆÌÕÅÎÃÅÄ ÂÙ ÔÈÅ ÕÓÅÒȭÓ ÅÍÏÔÉÏÎÁÌ ÒÅÓÐÏÎÓÅ ÁÎÄ ÁÌÌÏ×Ó ÈÅÒ ÔÏ ÒÅÄÕÃÅ ÈÅÒ ÃÏÇÎÉÔÉÖÅ 

burden when deciding how much to trust the application. Parasuraman and Miller [2004] found that 

differences in machine etiquette (e.g., providing messages at appropriate or disturbing times, whether 

polite or impolite) can influence user trust more than the automation reliability. This demonstrates 

an influence of affect on user trust. Analytic tru st ÒÅÌÁÔÅÓ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÏÆ ÔÈÅ ÌÏÇÉÃ ÏÆ 

ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎ ÁÎÄ ÉÓ ÉÎÆÌÕÅÎÃÅÄ ÂÙ ÔÈÅ ÕÓÅÒȭÓ ÃÏÇÎÉÔÉÏÎȢ 4ÈÏÕÇÈ ×Å ÁÃËÎÏ×ÌÅÄÇÅ ÔÈÅ ÉÍÐÏÒÔÁÎÃÅ ÏÆ 

ÅÁÃÈ ÔÙÐÅ ÏÆ ÔÒÕÓÔȟ ÉÎ ÔÈÉÓ ÔÈÅÓÉÓȟ ×Å ÆÏÃÕÓ ÏÎ ÐÒÏÍÏÔÉÎÇ ÁÎÁÌÙÔÉÃ ÔÒÕÓÔ ÂÙ ÉÍÐÒÏÖÉÎÇ ÔÈÅ ÕÓÅÒȭÓ 

underÓÔÁÎÄÉÎÇ ÏÆ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎȭÓ ÂÅÈÁÖÉÏÒȢ We also aim to help users to better calibrate their trust 
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[Dzindolet et al., 2003] in context-aware applications with their increased understanding of the 

competence and limitations of these applications. 

Finally, Edwards, Newman, and Poole [2010] noted that low-level infrastructure on which 

applications are built should also be made intelligible. Although we provide a toolkit to support 

intelligibility, our focus in this thesis is to support intelligibility for end -user applications. 

1.4 CONTRIBUTIONS 

This dissertation makes a number of major contributions: 

¶ Evidence that end-users want intelligibility in context -aware applications. 

¶ A taxonomy of explanation types that end-users desire to have provided for context-aware 

applications. 

¶ A toolkit for supporting the development of intelligibility in context-aware applications. 

¶ Algorithms to generate multiple explanation types from several rules and machine learning 

inference models. 

¶ Design recommendations for intelligibility features. 

¶ A prototype of an intelligible context-aware application developed through several 

iterations. 

¶ Investigation of caveats  and limitations of providing intelligibility  (usability issues and 

intelligibility of uncertain systems) 

¶ Evidence that end-users can use intelligibility features to learn about context-aware 

inferences and behaviors 

¶ Evidence that providing intelligibility can improve end-user understanding and trust in 

context-aware applications 

1.5 OUTLINE 

The rest of the dissertation is organized as follows: 

To give a background to this dissertation, in Chapter 2, we review explanations in intelligent 

systems, various taxonomies of explanations, and systems that provide explanations to users. In 

Chapter 3, we give an overview of intelligibility as defined in this dissertation. We describe research 
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questions that drove various projects in the thesis and introduce a taxonomy of explanation types 

that intelligible context-aware applications can provide. The following chapters are organized 

chronologically and in the order that follows from the chain of reasoning in our research questions. 

Chapter 4 describes early work demonstrating the usefulness of intelligibility to help end-users 

understand and trust the output of a context-aware intelligent system. Particularly, we compare the 

effectiveness among four explanation types. Subsequently, in Chapter 5, we describe our expansion 

of the list of explanation types through an elicitation study by presenting questionnaires of various 

applications and scenarios to participants. 

Chapter 6 describes how we support the implementation of our taxonomy of explanation types with 

an Intelligibility Toolkit  to automatically generate and present explanations from multiple inference 

models. However, the toolkit does not provide design recommendations on how to present 

explanations to users. In Chapter 7, we describe a user study that explored design and usability 

issues for intelligibility interfaces in a context-aware application prototypeȟ ,ÁʆÓÁ. 

Having designed a usable, intelligible context-aware application, we evaluate the impact of 

intelligibility. Chapter 8 describes a questionnaire study that investigated the positive and negative 

impact of intelligibility for application inferences with high or low certainty, respectively. Chapter 9 

describes a quasi-ÆÉÅÌÄ ÓÔÕÄÙ ÅÖÁÌÕÁÔÉÎÇ ÔÈÅ ÕÓÁÇÅ ÁÎÄ ÕÓÅÆÕÌÎÅÓÓ ÏÆ ÉÎÔÅÌÌÉÇÉÂÉÌÉÔÙ ÉÎ ÏÕÒ ,ÁʆÓÁ 

prototype, showing how usage of intelligibility helps end-users to better understand and 

troubleshoot the application inference. 

In Chapter 10, we conclude the dissertation with a summary of its contributions and a discussion of 

its limitations. We include several appendices describing detailed technical aspects of the 

Intelligibility Toolkit, descriptions of the intelligibility user inter ÆÁÃÅ ÏÆ ÔÈÅ ,ÁʆÓÁ ÐÒÏÔÏÔÙÐÅȟ ÁÎÄ 

experiment study materials. 
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2 RELATED WORK: 
EXPLANATIONS IN INTELLIGENT 

SYSTEMS 

In this chapter, we review the explanation taxonomies developed in several research domains of 

different types of intelligent systems. Research in several domains have explored the impact of 

explanations to improve user trust and acceptance of intelligent systems, including knowledge-

based systems (see a review in [Gregor and Benbasat, 1999]), task processing systems (e.g., [Glass, 

McGuinness, and Wolverton, 2008; Haynes, Cohen, and Ritter, 2009; McGuinness et al., 2007; 

Silveira, de Souza, and Barbosa, 2001]), intelligent tutoring systems (e.g., [Graesser, Person, and 

Huber, 1992; Graesser, Baggett, and Williams, 1996]), recommender systems (e.g., [Herlocker, 

Konstan, and Riedl, 2000; Cramer et al., 2008]), case-base reasoning (CBR) (e.g., [Kofod-Petersen, 

Cassens, and Aamodt, 2008; Sørmo, Cassens, and Aamodt, 2005]), end-user debugging (e.g., [Ko and 

Myers, 2004; 2009; Myers et al., 2006]), and context-aware systems (e.g., [Assad et al., 2007; 

Cheverst et al., 2005; Tullio et al., 2007; Vermeulen et al., 2009]), etc. These domains can be 

categorized into two groups, namely, expert systems handling professional tasks and end-user 

systems handling "everyday" activities. We discuss how we draw inspiration from these works that 

have investigated explanations over the past several decades, and identify gaps and opportunities 

for providing explanations for context-aware applications in ubiquitous computing (Ubicomp).  

2.1 EXPLANATIONS IN EXPERT SYSTEMS 

Much early research on explanations in intelligent systems were focused on expert systems to help 

professionals to learn how the system makes decisions, or to help novices to learn about decision 

making. As such, several frameworks of explanations have been developed. 
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2.1.1 KNOWLEDGE-BASED SYSTEMS  

Drawing from explanation facilities of many knowledge-based systems (KBS), Gregor and Benbasat 

[1999] identify three classification methods of explanation type: content , pr esentation  format, 

and provision  mechanism. They found that KBS systems provide four content types of 

explanations: 

1. Trace or line of reasoning. )Î ÒÅÓÐÏÎÓÅ ÔÏ ÔÈÅ ÔÙÐÉÃÁÌ Ȱ×ÈÙȱ ÑÕÅÓÔÉÏÎȟ ÔÈÉÓ ÅØÐÌÁÎÁÔÉÏÎ ÔÙÐÅ 

describes the decision processes taken by the system, why or how it came to its result. 

Explanations that EMYCIN [Van Melle, Shortliffe, and Buchanan, 1984] provided are of this 

type. 

2. Justification or support. Introduced in the XPLAIN system [Swartout, 1983], this type of 

explanation provides deeper doÍÁÉÎ ËÎÏ×ÌÅÄÇÅ ÔÏ ÊÕÓÔÉÆÙ ÔÈÅ ÓÙÓÔÅÍȭÓ ÐÒÏÃÅÓÓȢ 4ÈÅÓÅ ÄÅÅÐ 

explanations can incorporate different types of knowledge such as analogies, cases, and text 

books. 

3. Control or strategic.  Introduced in NEOMYCIN [Clancey, 1983], this type of explanation 

explains tÈÅ ȰÓÙÓÔÅÍȭÓ ÃÏÎÔÒÏÌ ÂÅÈÁÖÉÏÒȟ ÁÎÄ ÐÒÏÂÌÅÍ ÓÏÌÖÉÎÇ ÓÔÒÁÔÅÇÙȢȱ 4ÈÉÓ ÐÒÏÖÉÄÅÓ ÔÈÅ 

user with the design rationale that the developers employed for the application logic. 

4. Terminological.  Distinguished by Swartout and Smoliar [1987], this type of explanation 

familiarizes users with domain terms and concepts by providing terminologies and 

definitions. 

There are several factors, such as user expertise , that affect when certain explanation content 

types are more important. For example, novice users would use justification and terminology 

explanation types more as they learn how to use the expert system; expert users would mainly use 

explanations to resolve anomalies and for verification, so they would prefer reasoning traces and 

control types of explanations.  

Presentation styles used in KBS systems have been identified to fall into two categories: Text -

based and Multimedia . Text-based explanations can either be in the form of programming 

language syntax, a canned text of the programming logic, or natural language translations of the 

logic. Multimedia explanations use graphics, images, animations, or sound. 

Gregor and Benbasat have also identified three types of mechanisms to provide explanations: user-

invoked , automatic , and intelligent . User-invoked (also known as on-demand, optional, or 
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voluntary) explanations can be provided through menus, commands, and hyperlinks, and users can 

choose whether or when to invoke them. Automatic explanations are provided all the time, and 

users do not get a choice of whether to receive them. To maximize exposure of certain explanations, 

and minimize the perceived effort of obtaining these explanations, Everett [1994] recommends 

making these explanations automatic. Intelligent provision of explanations depend on the system 

determining when is most appropriate to provide the explanations. Gregor and Benbasat discuss 

employing user modeling to track their expertise and mental model (and whether they are making 

mistakes) for the system to determine when to provide explanations.  

2.1.2 INTELLIGENT DECISION AID 

The knowledge-based systems discussed by Gregor and Benbasat [1999] deal mainly with 

supporting decisions, or helping users decide what to do, rather than acting on their behalf. On the 

other hand, there is a growing number of systems that are being designed to be more proactive, and 

have greater autonomy to carry out tasks. These systems, also called intelligent agents, would have 

to gain the trust of users before they can be widely accepted. One way to increase user trust is to 

increase transparency in these systems, such as by answering explanation questions. Haynes, 

Cohen, and Ritter [2009] did an extensive review of explanations in intelligent agents (systems that 

ȰÍÁËÅ ÕÓÅ Á ËÎÏ×ÌÅÄÇÅ-ÂÁÓÅ ÁÎÄ ÁÌÇÏÒÉÔÈÍ ÔÏ ÃÁÒÒÙ ÏÕÔ ÉÔÓ ÒÅÓÐÏÎÓÉÂÉÌÉÔÉÅÓȱ), using a wider scope of 

systems than just KBS. They extend and reorganize Graesser et al.ȭÓ ɍρωωςɎ ÃÌÁÓÓÉÆÉÃÁÔÉÏÎ ÏÆ ρσ 

explanation-seeking questions into a framework of four main explanation types: ontological, 

mechanical and operational explanations, and design rationale. 

¶ Ontological  explanations ÐÒÏÖÉÄÅ Ȱ×ÈÁÔȱ ÉÎÆÏÒÍÁÔÉÏÎ ÔÏ ÈÅÌÐ ÕÓÅÒÓ ÍÁËÅ ÓÅÎÓÅ ÏÆ Á ÃÏÎÃÅÐÔ 

or a component of the system, including: 

o What ɀ identity.  Basic ontological information about the existence of an agent or 

agent component, or its identifier. 

o What ɀ definition. Information beyond simply identifying an agent or component 

and involves providing it with some meaning in context through definitions. 

o What ɀ relation.  Information about the static structural relation between agents or 

their components, such as spatial information. 

o What ɀ event. Especially distinguished, this is information about entities that are 

primitives in describing causal explanations, and can provide temporal information. 
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¶ Mechanistic explanations deal with the how of agent behavior. The main type of question is 

"How does it work?" This type of explanations provides information about how different 

components interact to give rise to more complex actions. 

¶ Operational explanations answer the question of "How do I (the user) use it (the system)?" 

They provide instructions for the user or other agents to enact some agent behavior. 

¶ Design rationale  explanations deal with why questions at multiple levels from system 

component constraints to designer intentions to law-like relations. In relation to the 

taxonomy provided by Gregor and Benbasat, the design rationale spans reasoning trace and 

strategic. Haynes et al. categorize design rationale into four parts: 

o Deductive -Nomological (D -N). Explanations referring to some law or law-like 

relation between entities and/or agents. This is based on the D-N model that 

suggests that explanations should take the form of deductive statements predicated 

on well-established truths [Hempel, 1965]. 

o Functional.  Design intent of the function of a created agent or component. 

o Structural.  Explanations that refer to the structure of the system constraints that 

cause an entity or event to happen. 

o Pragmatic.  %ØÐÌÁÎÁÔÉÏÎÓ ÔÏ ÒÅÑÕÅÓÔÓ ÔÈÁÔ ÄÅÐÅÎÄ ÏÎ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÒÅÓÔ ÖÁÌÕÅȢ 4ÈÅÓÅ 

explanations are in response to either why not or what if questions. 

In an empirical study using a virtual pilot cognitive model intelligent agent, Haynes et al. found that 

most explanation seeking questions (58%) were ontological, followed by mechanistic (19%), then 

operational (12%) and design rationale (11%). 

McGuinness and colleagues have explored explanation needs for task processing systems, 

particularly with the Cognitive Assistant that Learns and Organizes (CALO, 2007). Focusing on 

temporal characteristics, McGuinness et al. [2007] articulated several types of explanation 

questions that users of task processing systems are interested in:  

¶ Motivation for tasks.  )Î ÒÅÓÐÏÎÓÅ ÔÏ ÔÈÅ ÑÕÅÓÔÉÏÎ Ȱ×ÈÙ ÁÒÅ ÙÏÕ ÄÏÉÎÇ ЃÔÁÓËЄȩȱ, answer 

strategies can (i) include identifying the task requestor (attribution), (ii) indicating that the 

task is a subtask that supertask depends on, (iii) indicating the task is next-in-step of a task 

procedure, and (iv) indicating that certain terminating conditions have not yet been met. 
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¶ Task status. This regards to (i) what tasks are being done, (ii) what the status of those 

tasks are, (iii) whether certain tasks are not being done (what ÄÉÄÎȭÔ), and (iv) whether any 

tasks are being hindered. 

¶ Task history.  This regards to (i) what the system has done recently, (ii) what it has started 

recently, (iii) why it did a task (in the past, as opposed to why it is doing), (iv) why it ÄÉÄÎȭÔ 

ÄÏ Á ÔÁÓËȟ ɉÖɊ ÈÏ× ÉÔ ÄÉÄ Á ÔÁÓËȟ ÁÎÄ ɉÖÉɊ ÁÎÄ ÖÁÒÉÁÎÔÓ ÏÆ ÒÅÁÓÏÎÉÎÇ ÒÅÇÁÒÄÉÎÇ ×ÈÁÔ ÄÉÄÎȭÔ 

questions. 

¶ Task plans. While task history looked into past actions, task plans looks into the future 

planned actions. This regards to (i) what the system will do next, (ii) when it will start the 

task, (iii) why, and (iv) how it expects to do it. 

¶ Task ordering.  This regards to (i) why a task is being done before another, (ii) why some 

other task has not yet been started, and (iii) what needs to be done to complete a task. 

¶ Explicit time questions.  This regards to (i) when a task will begin, or (ii) end, (iii) when a 

task happened, (iv) how long it took to complete, (v) why a task took so long to complete, 

(vi) why a task is already being done instead of later. 

While users of task processing systems may have many questions regarding time, they have other 

information requirements before they can appropriately trust these applications. Through 

structured interviews with users of CALO, Glass et al. [2008] investigated several factors that 

influence their level of trust. They used Silveira et alȢȭÓ ÔÁØÏÍÏÎÙ ɍςππρɎ ÏÆ ÕÓÅÒÓȭ ÆÒÅÑÕÅÎÔ ÄÏÕÂÔÓ 

to derive a list of question types users are interested in:  

¶ Choice: What can I do right now?  

¶ Procedural : How can I do this? 

¶ Informative : What kinds of tasks can I accomplish? 

¶ Interpretive : What is happening now? Why? 

¶ Guidance: What should I do now? 

¶ History : What have I already done? 

¶ Descriptive : What does this do? 

¶ Investigative : Did I miss anything? 

¶ Navigational : Where am I? 
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These questions are ordered by the rated importance from the interviews. While question types 

defined by McGuinness et al. [2007] were mainly about time, and about the system, these questions 

are about the user and his activity. 

2.1.3 INTELLIGENT TUTORING SYSTEMS 

While not quite expert systems to aid workers in their work, Intelligent Tutoring Systems provide 

expert knowledge (of the domain or concept being studied) to students. The knowledge or 

information can be provided via explanations. Graesser et al. have explored how students ask 

questions and derived several explanation types and reasons for question asking. Graesser and 

McMahen [1993] four conditions when questions are asked: 

¶ Anomalous event . Questions are asked about the causes and consequences of an unusual 

event, e.g., if someone faints in a restaurant. 

¶ Contradiction . Questions are asked to resolve a contradiction between two propositions, 

e.g., two people who claim to be married but are not wearing wedding rings. 

¶ Obstacle to a goal. Questions are asked to remove or circumvent an obstacle to a goal, e.g., 

when a car fails to start, the driver will ask why it will not start and how it can be fixed. 

¶ Equally attractive alternatives . Questions are asked to break a tie between a set of 

alternatives, e.g., pros and cons of switching jobs, choosing different products. 

From empirical analyses of questions in educational settings, Graesser and Person [1994] grouped 

,ÅÈÎÅÒÔȭÓ ɍρωψχɎ ρφ ÑÕÅÓÔÉÏÎ ÃÁÔÅÇÏÒÉÅÓ ÉÎÔÏ ÔÈÒÅÅ ÄÅÐÔÈ ÌÅÖÅÌÓȡ 

¶ Simple / shallow questions 

o Verification:  invites a yes or no answer 

o Disjunctive:  Is X, Y, or Z the case? 

o Concept completion:  Who? What? When? Where? 

o Example: What is an example of X? 

¶ Intermediate questions 

o Feature specification:  What are the properties of X? 

o Quantification:  How much? How many? 

o Definition:  What does X mean? 

o Comparison:  How is X similar to Y? 
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¶ Complex / deep questions 

o Interpretation:  What does X mean? 

o Causal antecedent: Why / How did X occur? 

o Cause consequence: What next? What If? 

o Goal orientation:  Why did an agent do X? 

o Instrumental / procedural:  How did an agent do X? 

o Enablement:  What enabled X to occur? 

o Expectation:  7ÈÙ ÄÉÄÎȭÔ X occur? 

o Judgmental: What do you think of X? 

While these questions are not specifically for end-users to ask of automated systems, many of them 

are relevant (e.g., example, feature specification, comparison, causal antecedent, goal orientation, 

expectation). Point and Query, an educational software [Graesser, Langston and Baggett 1993] 

provides explanations to questions in terms of levels of knowledge: 

¶ Taxonomic knowledge:  What does X mean? What are the types of X? What are the 

properties of X? 

¶ Sensory knowledge:  What does X look like? What does X sound like?  

¶ Goal-oriented procedural knowledge:  How does a person use / play X?  

¶ Causal knowledge:  What causes X? What are the consequences of X? How does X affect 

sound? How does a person create X? 

2.1.4 RELATION TO CONTEXT-AWARE APPLICATIONS 

The aforementioned frameworks provide a rich design space for different types of explanations. 

However, they cater to expert systems with users who carry out tasks that require expert decision 

making. Context-aware applications in ubiquitous computing focus on helping lay end-users in 

"everyday" activities [Abowd, Mynatt, and Rodden, 2002], so their users would require a different 

set of explanations. For example, we expect the functional purpose of context-aware applications to 

be clearer than expert systems because, as everyday products, their functional scope would be 

limited. Therefore, we do not anticipate functional explanation types to be very necessary. 

Nevertheless, some of these explanation types remain useful for context-aware applications.  

In this thesis, the explanations we provide for intelligibility are mainly about the application's line 

of reasoning, or mechanistic. We treat context-aware applications as inference and decision agents, 
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and, through intelligibility, reveal their reasoning process. We take a user-centered approach, and 

therefore, also provide pragmatic design rationale explanations to explain to end-users how the 

application inferred in the context of the user's goals (why not) or present understanding of the 

situation (what if). While users should not have to be overly bothered by technical terminology 

when using everyday applications, to explain some of the low-lying contexts and reasoning traces, 

terminological explanations may be needed to help users learn relevant explanatory concepts. We 

also expect users to act on the information they learn from intelligibility, but they would need to 

know how they can modify or control the context-aware application. Therefore, operational 

explanations would also be relevant to provide in context-aware applications.  

2.2 EXPLANATIONS IN END-USER SYSTEMS 

Research into explanations for KBS or task processing systems tends to focus on trained or 

reasonably knowledgeable users. However, explanations can be useful for novice end-users to 

understand unfamiliar programs too, even those that help with their everyday tasks. 

2.2.1 RECOMMENDER SYSTEMS 

Currently, explanations of end-user systems are most accessible to people through online 

recommender systems like Amazon's recommendation of products, Pandora.com's song selection, 

etc. Herlocker, Konstan, and Riedl [2000] described two sources of errors: model/process, and data.  

¶ Model/process errors  are due to the limited feature space of the computational model 

used;  

¶ Data errors  are due to (i) not enough data, (ii) poor or bad data, or (iii) high variance data.  

To support explanations, Herlocker et al. discuss white-box and black-box models. The white -box 

model  divides the Automated Collaborative Filtering (ACF) system into three parts: user profile 

ratings, similarity measures used to compare profiles, and the model or mechanism of how the 

ratings are combined to form recommendations. These explanation capabilities may help users 

understand the conceptual model of the system, but this may not be desirable all the time, 

especially for guarding proprietary methods. The black -box model  is appropriate for such 

situations, and use alternative information to explain the system. Techniques include providing 

information about past performance justification (e.g. that the system was 80% correct in the past 

when recommending this), and using external supporting evidence (justification type explanations). 
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Tintarev [2007] classifies the explanation types used in recommender systems in several types 

such as case-based, content -based, collabor ative , demographic , and knowledge -based. Much 

of these explain the recommendations regarding the similarity  of the attributes of the entities of 

interest (e.g., speed of camera), of the user (e.g., demographic information), preference similarities 

between users (e.g., the user preferring low prices).  

4Ï ÅØÐÌÏÒÅ ÔÈÅ ÉÍÐÁÃÔ ÏÆ ÅØÐÌÁÎÁÔÉÏÎÓ ÏÎ ÃÏÎÓÕÍÅÒÓȭ ÔÒÕÓÔÉÎÇ ÂÅÌÉÅÆÓ ÉÎ ÏÎÌÉÎÅ ÓÈÏÐÐÉÎÇ (e-

commerce) recommendation agents (RAs), Wang and Benbasat [2007] examined the effects of three 

types of explanations:  

¶ How  explanation to reveal the line of reasoning used by the RA. This increased perceived 

benevolence ÔÈÁÔ ÔÈÅ 2! ÁÃÔÓ ÉÎ ÔÈÅ ÃÏÎÓÕÍÅÒȭÓ ÉÎÔÅÒÅÓÔȢ 

¶ Why explanation to justify the importance and purpose of the RA to consumers. This 

increased perceived competence (performance) and benevolence in the RA. 

¶ Trade-off  explanation to offer objective decision guidance to help consumers identify 

differences in features between products. This increased perceived integrity  that the RA 

adheres to a set of principles (e.g., honesty, justice, objectivity). 

Note their use of the terms why and how differ from how they are used in the rest of this 

dissertation. 

Cramer et al. [2008a, b] investigated the effects of transparency in an art recommender, Cultural 

Heritage Information Personalisation (CHIP) system, on user trust. They considered three versions 

of CHIP: non-transparent, transparent (provides Why explanations listing properties the current 

recommendation shares with artworks the user had previously rated positively, and ȬÓÕÒÅȭ 

(showing a Confidence  ÒÁÔÉÎÇ ÏÆ ÔÈÅ ÓÙÓÔÅÍȭÓ ÒÅÃÏÍÍÅÎÄÁÔÉÏÎɊȢ 4ÈÅÙ ÆÏÕÎÄ ÔÈÁÔ providing Why 

explanations increased user acceptance of the system, but did not improve user trust. Furthermore, 

they found that Confidence (Certainty) explanations did not improve acceptance or trust. 

Even though these similarity -based approaches are highly effective for recommender systems, 

context-aware applications also use context information about the physical environment and 

situation. Moreover, context-aware applications can use other types of models to make inferences. 

From a literature survey of context-aware applications [Lim and Dey, 2010] and in Section 6.2, we 

found that the most popular models are indeed different: rules, decision trees, and naïve Bayes 
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classifiers. Therefore, while explanations have been richly studied for recommender systems, 

research into explanations for context-aware applications remains an open problem. 

2.2.2 CASE-BASE REASONING 

Given the focus on unique and similar products or entities that recommender systems have, 

recommender systems can also be considered as systems operating on a collection of cases. This 

lends itself nicely to applying techniques in Case-Based Reasoning (CBR). For example, Top Case 

[McSherry, 2005] provides explanations to discriminate between different cases and explain why 

one is better than another. It explains in terms of attributes of the cases, indicating whether they 

are the same or different for different cases, and which attributes do not affect the 

recommendation.  

Some research has sought to provide frameworks for explanations in CBR. Roth-Berghofer [2004] 

describes five explanation types of [Spieker, 1991] relevant to CBR: 

¶ Conceptual explanations to describe the meaning of concepts 

¶ Why explanations to describe the cause or justifications for an event 

¶ How explanations as a special case of Why explanations to describe the causal chain of the 

decision process 

¶ Purpose explanations to describe the purpose of a fact or object 

¶ Cognitive explanations as a special case of Why explanations. The previous four 

explanation types explain the physical world in which the CBR system operates on, while 

these explain the processing and behavior of the system. 

Roth-Berghofer describes knowledge containers (vocabulary, similarity measures, adaptation 

knowledge, and case-base) as components of the CBR system which contribute variously to these 

explanations. 

Sørmo, F., Cassens, J., and Aamodt [2005] identified five goals for explanations in CBR to satisfy: 

¶ Transparency  to explain how the system reached the answer 

¶ Justification  to explain why the answer is a good one 

¶ Relevance to explain why a strategy is relevant 

¶ Conceptualization  to clarify the meaning of concepts and vocabulary 

¶ Learning  to teach the user about the domain 



2.2 EXPLANATIONS IN END-USER SYSTEMS    21 

 

2
.2

 E
X

P
L
A

N
A

T
IO

N
S in

 E
n
d-U

s
e
r S

ys
te

m
s    2

1
 

 

 

Cassens [2008] employ problem frames [Jackson, 2000] to model explanation machines and system 

knowledge to meet these goals. 

CBR has also been applied to ambient intelligent systems (e.g., [Cassens and Kofod-Petersen, 2007; 

Kofod-Petersen and Aamodt, 2003; Ma et al., 2005; Zimmermann, 2003]). For example, Cassens and 

Kofod-Petersen [2007], added explanation capabilities the CREEK architecture [Aamodt, 2004] in a 

simulated hospital ward domain. For user-centric explanations, they distinguish between context-

awareness (inferring the situation) and context-sensitivity (acting according to the situation) and 

respectively provide different explanations: 

¶ Elucidate  why the system identifies a particular situation (context-awareness). This 

explanation eØÐÏÓÅÓ ÔÈÅ ÓÙÓÔÅÍȭÓ ÁÓÓÕÍÐÔÉÏÎÓ ÏÆ ÔÈÅ ÅÎÖÉÒÏÎÍÅÎÔ ÔÏ justify what it believes. 

¶ Explicate  why a certain behavior was taken (context-sensitivity). This explanation points 

out the relevance of the system performing a particular action. 

2.2.3 END-USER PROGRAMMING 

End-user programming considers users whose primary task is not to program the application, but 

who still do so to facilitate their task or configure the application. For example, people who use 

spreadsheets to tabulate and calculate budgets can be considered end-user programmers. Ko and 

Myers [2005] found that end-user programmers of the Alice programming environment [Conway et 

al., 2000] asked questions when their expectations are unmet. They asked why did  questions when 

something unexpected occurs and why ÄÉÄÎȭÔ questions when something expected does not 

happen. Ko and Myers subsequently develop the Whyline system [2004, 2009] that traverses the 

program tree to generate reasoning traces within the program code to generate why did and why 

ÄÉÄÎȭÔ explanations: 

¶ Why did  the program do X? 

¶ 7ÈÙ ÄÉÄÎȭÔ the program do Y? 

Kulesza et al. [2011] developed the What You See is What You Test for Machine Learning 

(WYSIWYT/ML) method that supports systematic testing of machine learning applications, 

particularly for high cri ticality tasks. WYSIWYT/ML provides explanations of  

¶ Confidence to indicate how certain the system was of its classification 

¶ Similarity  of how different the example is from previously trained data 



22    CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS  

 

¶ Relevance of how able the system is to perform the classification 

¶ History  to help users track inference changes after the users make edits 

This is complementary to our approach of supporting ad hoc testing of context-aware applications, 

where end-ÕÓÅÒÓ ÓÅÒÅÎÄÉÐÉÔÏÕÓÌÙ ÌÅÁÒÎ ÁÂÏÕÔ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ ÂÅÈÁÖÉÏÒȢ )Ô ÁÓÓumes that some end-

users will take the effort to perform such a rigorous test. We do not assume such enthusiasm and 

effort of end-users, and explicitly measure their usage in our study described in Chapter 9. As 

demonstrated with WYSIWYT/ML [Shinsel et al., 2011], explanation and testing facilities can also be 

ÈÅÌÐÆÕÌ ÆÏÒ ÍÕÌÔÉÐÌÅ ÓÔÁËÅÈÏÌÄÅÒÓ ÏÒ ȰÍÉÎÉ-ÃÒÏ×ÄÓȱ ÔÈÁÔ ÓÈÁÒÅ ÔÈÅ ÕÓÅ ÏÆ ÉÎÔÅÌÌÉÇÅÎÔ ÁÇÅÎÔÓ ÔÏ 

collectively improve the behavior of a machine learning system. However, we focus on single-user or 

single-viewer use of intelligibility in this thesis. 

Although machine learning is becoming popular for developers of intelligent adaptive systems, it still 

remains difficult for developers to understand and debug their programs. Patel et al. has investigated 

the classification pipeline [Patel et al., 2008], and developed several tools (e.g., Gestalt [Patel et al., 

2010], Prospect [Patel et al., 2011]) to help developers implement classifiers and analyze their data. 

Although the applications investigated were for end-users, Patel et al. focused on supporting 

programmers familiar with machine learning. We focus on end-users with no knowledge of machine 

learning in this thesis. 

2.2.4 INTELLIGENT AND ADAPTIVE USER INTERFACES 

Intelligent and adaptive user interfaces are closely linked to context-aware, but typically describe 

desktop-based applications, e.g., spam filters, email sorters, or office application assistants. They 

typically perform user modeling to understand the user needs and adapt accordingly. To increase 

their predictability to end -users, Höök [2000] argues for user-adaptive systems to be transparent. 

She describes three glass box levels from [Brown, 1989]: 

¶ Domain  transparency  for the user to see the application domain or concepts relevant to 

the system, 

¶ Internal transparency  for the user to see the internal workings of the system, and 

¶ Embedding transparency  for the user to see a whole picture of how she relates to the 

system. 

Myers et al. [2006]  apply the Whyline explanation types (why did  and ×ÈÙ ÄÉÄÎȭÔ) to end-user 

ȰÅÖÅÒÙÄÁÙȱ ÐÒÏÄÕÃÔÉÖÉÔÙ ÔÏÏÌÓ ×ÉÔÈ ÔÈÅ #ÒÙÓÔÁÌ ÆÒÁÍÅ×ÏÒË ÔÏ ÓÕÐÐÏÒÔ ÔÈÅÓÅ ÅØÐÌÁÎÁÔÉÏÎÓ ÉÎ Á ÓÁÍÐÌÅ 
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text editor that has auto-correct features. Following this question-asking approach, Kulesza et al. 

[2009]  investigated the provision of whyȣ and why notȣ explanations for an email client that uses 

the naïve Bayes machine learning classifier to sort email. Due to the probabilistic nature (rather 

than deterministic or rule-based) of the naïve Bayes classifier, reasoning traces were not used for 

the explanations, but a representation of weights from various inputs (keywords). Explanations 

were provided as a rich visualization of bar charts.  

Kulesza et al. [2012] explored whether end-users can quickly build and recall sound structural mental 

models of an intelligent music recommender system. They found that scaffolding with a human tutor 

can help end-users to build mental models with greater soundness, and allow them to subsequently 

better operate the system. Even though the scaffolding was not done through the system interface, 

this gives evidence that end-users can learn to better and effectively understand such complex 

systems. In this thesis, we minimize scaffolding via human tutors or instructions, such that end-users 

learn about the system behavior and inference through the intelligibility provided via the interface. 

2.2.5 RELATION TO CONTEXT-AWARE APPLICATIONS 

It is intuitive that end-users would also ask why and why didn't questions for other "everyday" 

applications, and, in the proposed thesis, we take this approach of providing explanations to these 

questions, but generalize it for context-aware applications. Our work leverages some explanation 

techniques from Kulesza et al., extending them to explain physical contexts that are more relevant 

for context-aware applications. Furthermore, the overall approach in end-user programming is to 

allow the end-user to debug the application when it behaves inappropriately. We broaden the use 

of explanations to be used in more situations, even when the application is functioning 

appropriately. 

2.2.6 UBIQUITOUS AND CONTEXT-AWARE COMPUTING 

Context-aware applications for ubiquitous computing present new challenges for providing 

explanations to end-users. These applications would penetrate everyday life and have a wide 

impact on end-users [Abowd, Mynatt, and Rodden, 2002]. Furthermore, many of these systems 

would automatically gather information (contexts) about the user and environment and implicitly 

take various actions [Dey, Abowd, and Salber, 2001]. (Ï×ÅÖÅÒȟ ÓÕÃÈ ÁÃÔÉÖÉÔÙ ÄÏÎÅ ȰÑÕÉÅÔÌÙȱ ×ÉÔÈÏÕÔ 

ÔÈÅ ÕÓÅÒȭÓ ËÎÏ×ÌÅÄÇÅ [Weiser and Brown, 1997], without much transparency, can be disconcerting 

to users who may like to know how their information is being used.  
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Bellotti and Edwards [2001] state that context-aware applications must be intelligible: being able to 

ȰÒÅÐÒÅÓÅÎÔ ÔÏ ÔÈÅÉÒ ÕÓÅÒÓ what they know, how they know it, and what they are doing ÁÂÏÕÔ ÉÔȢȱ They 

proposed a framework for intelligibility and accountability including four principles:  

1. Inform the user of current contextual system capabilities and understandings. 

2. Provide feedback including: 

¶ Feedforward : What will happen if I do this? 

¶ Confirmation : What am I doing and what have I done? 

3. Enforce identity  and action disclosure  particularly with sharing r estricted information: 

Who is that, what are they doing, and what have they done? 

4. Provide control  (and defer) to the user, over system and other user actions that impact her, 

especially in cases of conflicts of interest. 

In this thesis, we cover aspects of the first two principles exposing the application capabilities by 

ÓÅÌÅÃÔÉÎÇ ÒÅÌÅÖÁÎÔ ÉÎÆÏÒÍÁÔÉÏÎ ÁÎÄ ÉÎÆÏÒÍÉÎÇ ÕÓÅÒÓ ÏÆ ÔÈÅ ÓÙÓÔÅÍÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇÓ ÔÈÒÏÕÇÈ 

generating explanations. We also support feedback through various explanation types. 

2.2.6.1 INTELLIGIBLE CONTEXT-AWARE APPLICATIONS 

A simple form of intelligibility is to show the Certainty  ÏÆ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎȭÓ ÉÎÆÅÒÅÎÃÅȢ !ÎÔÉÆÁËÏÓ ÁÎÄ 

colleagues showed that uncertainty improved task performance speed of participants when 

certainty is high [2004], and that participants verified automatic settings made by a context-aware 

system less often when its certainty was high or medium [2005]. In studies of presenting location 

information [ Dearman et al., 2007; Lemelson et al., 2008], visualizations of location certainty were 

found to improve user performance with location-based services. 

Some early intelligible context-aware applications provide end-users with a modest amount of 

explanations to give them insight mainly by providing transparency (showing the application's 

underlying state ) and traceability (showing reasoning trace ) information. Cheverst et al. [2005] 

investigated how much users would want to know about rules governing a context-aware system 

and whether to control it. The system takes actions depending on context changes (and history) and 

the user model (e.g. preferences), and displays to users its rules  of a fuzzy decision tree and its 

certainty  about the inference. McCreath, Kay, and Crawford [2006] explored the difference in 

scrutability of different machine learning classifiers (sender identity, keywords, TF-IDF, decision 

trees, naïve Bayes) in their Intelligent-Electronic Mail Sorter. The Daily Activities Diarist [Metaxas et 
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al., 2007], an awareness display to support aging in place (like the Digital Family Portrait [Mynatt et 

al., 2001]), employs narratives complemented with graphical visualizations to provide semantic cues 

and explanations. Tullio et al.'s interruptibility displays [ 2007] explain how they determine a 

manager's interruptibility by exposing the values of sensors in the manager's room. Panoramic 

[Welbourne et al., 2010] provides reasoning trace , location  status, and history  explanations to 

explain location events through a visualization of parallel timelines of sensed and rule-determined 

events. Vermeulen et al. explored several interfaces to provide intelligibility in ambient intelligent 

(AmI) environments. They projected trajectory  visualizations along the wall of an AmI room, 

tracing the application operation from sensor input (e.g., camera motion sensor) to actuator output 

(e.g., room light) [Vermeulen et al., 2009]. The PervasiveCrystal [Vermeulen et al., 2010] also 

explains for processes in a smart environment by providing Why  and Why Not  explanations from a 

mobile screen display.  

2.2.6.2 FRAMEWORKS TO SUPPORT INTELLIGIBILITY IN CONTEXT-AWARE COMPUTING 

Some frameworks and toolkits have also been developed to provide wider support for intelligibility 

in context-aware applications. SpeakEasy [Newman et al., 2002] supports querying and displaying 

of the states of devices (PCs, printers, projectors, etc.) in an environment, allowing users to 

discover if they are available, they have failed, etc.  PersonisAD [Assad et al., 2007] defines a 

distributed framework to support explanations by resolving iden tities  and associations  of 

devices, locations, people, etc.  It makes user models scrutable so that users can control which parts 

of their user model can be private or public and visible to the sensing environment. Personis-LF 

[Barua, Kay, and Kummerfeld, 2011] extends this concept of scrutability to life-long personalization 

and adds capabilities to control forgetting information. While this is important for deployed 

systems, this thesis does not cover the scope of longitudinal use of intelligibility. Hardian et al. 

[Hardian, 2006; Hardian, Indulska, and Henricksen, 2008] added a Logging and Feedback Layer 

along with a Query Interface to the Pervasive Autonomic Context-aware Environments (PACE) 

middleware [Henricksen and Indulska, 2006] to reveal elements that influence application 

behavior. However, as pointed out by Fong [2010], these components expose information that is 

too low-level and overly technical. 

Dey and Newberger [2009] provide the Enactors toolkit to support intelligibility and control in 

context-aware applications by adding the Enactor component to the Context Toolkit. For 

intelligibility, it allows applications to provide input  context values , and reasoning traces . For 

control, it exposes parameters that the UI layer of the application can allow users to interact with 
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and manipulate. This thesis extends the scope of intelligibility to allow users to ask more questions 

of the application's state and inference mechanism. For example, users would be able to ask about 

an anomaly with a Why Not question, and ask about a possible future scenario with a What If 

question.  

Vermeulen [2010] proposed to explore the design space for providing and presenting intelligibility 

in Ubicomp systems along the dimensions of:  

¶ timing  ɂ before, during, or after an event 

¶ generality  ɂ general, or domain-specific 

¶ degree of co-location  ɂ whether intelligibility is provided  in the same UI or separately 

¶ initiative  ɂ user, or system initiated 

¶ modality  ɂ visual, auditory, haptic 

¶ level of control  ɂ not controllable to fully programmable  

This thesis takes a different approach to investigate intelligibility in context-aware applications. 

Rather than explore multiple presentation styles for intelligibility, we have explored the provision 

of intelligibility from an information-centric  perspective. End-users are considered information 

consumers of explanations, and intelligible applications as information providers through the 

explanations they can generate, and present. Presentation styles are definitely important for the 

effective assimilation of explanations and conveyance of intelligible information, but we have 

treated finding the best solutions for presenting explanations in different applications mainly as a 

design exercise. 

Inspired by our taxonomy of explanation types (see Chapters 4 and 6), TOSExp (TinyOS Explained) 

[Bucur, 2011] supports intelligibility in embedded context-aware applications by providing static 

explanations to explain the Inputs  values and Outputs  range of the application, and What If  and How 

To explanations that describe hypothetical behaviors of the application. It operates at an embedded 

systems level to provide bit-accurate explanations that while being very precise, may suffer from a 

lack of user-friendliness by being too low level or too detailed. This thesis focuses on systems and 

applications at higher programming abstraction layers (i.e., application logic) and also prioritizes 

explanations that are more usable for end-users. 

Targeting end-user preference models for context-aware systems, Fong et al. [2010, 2011] developed 

an intelligible preference modeling approach that expresses preferences in terms of if-then-else rules. 
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Their system can generate explanations to questions of What , Why, Why Not, How To, and Control . 

As such, this is limited to preference modeling and rules. In this thesis, we do not restrict our 

contributions to just rules and include machine learning models and models for other purposes, such 

as activity recognition. 

Metaxas [2010] investigated supporting intelligibility in the Contextual Range Editor (CoRE) for end-

users to configure rules for awareness systems. He consider rules presented in text templates and 

whether to present the rules in disjunctive normal form  (DNF) or conjunctive normal form  (CNF) 

depending on the affinity  of logical terms (e.g.ȟ ȰÄÒÉÖÉÎÇȱ ÁÎÄ ȰÒÕÎÎÉÎÇȱ ÈÁÖÅ ÈÉÇÈÅÒ ÁÆÆÉÎÉÔÙ ÔÈÁÎ 

ȰÒÕÎÎÉÎÇȱ ÁÎÄ ȰÔÁÌËÉÎÇȱɊȢ  In Chapter 6, we also consider DNF for representing explanations of rules, 

ÁÎÄ ÃÁÎ ÉÎÔÅÇÒÁÔÅ -ÅÔÁØÁÓȭ ÆÉÎÄÉÎÇÓ ×ÉÔÈÉÎ ÔÈÅ ÆÒÁÍÅ×ÏÒË ÏÆ ÔÈÅ )ÎÔÅÌÌÉÇÉÂÉÌÉÔÙ 4ÏÏÌËÉÔȢ  

2.2.6.3 INTERPRETABLE MACHINE LEARNING 

Machine learning is a popular technique to enable inference and activity recognition in many 

context-aware applications (see review in Chapter 6). For example, machine learning is used to 

recognize what activity an occupant in the home is performing [van Kasteren et al., 2008]. To 

support intelligibility in these applications using machine learning models, these inference models 

will need to be intelligible too. Indeed, much work in the artificial intelligence and machine learning 

computing community have sought to make these models interpretable. In this thesis, we focus on 

explanations for the inference process rather than the learning or training process. 

Some learned models are trivial to explain (e.g., decision trees that can be transformed into rules) 

by just traversing through the program branches to provide reasoning traces. Some learned models, 

in particular additive classifiers (e.g., Naïve Bayes, linear Support Vector Machine (SVM), and Linear 

Regression), are less intuitive, but still relatively easy to make interpretable (e.g., Mineset [Brunk et 

al. 1997], Nomograms [Mozina et al., 2004]; ExplainD [Poulin et al., 2006]). These explanation 

methods present visualizations to users and indicate decision processes based on weights placed 

ÏÎ ÄÉÆÆÅÒÅÎÔ ÆÅÁÔÕÒÅÓȢ 4ÈÅÒÅ ÁÌÓÏ ÒÅÍÁÉÎ ÓÅÖÅÒÁÌ ȰÂÌÁÃË-ÂÏØȱ ÃÌÁÓÓÉÆÉÅÒÓ ɉÓÕÃÈ ÁÓ !ÒÔÉÆÉÃÉÁÌ .ÅÕÒal 

Networks) that are not directly interpretable. One way to try to make them reasonably 

interpretable is by using case-base reasoning to provide an alternative explanation [Nugent and 

Cunningham, 2005], and another way is to extract rules from them [Núñez,  Angulo, and Català, 

2002; Tickle et al., 1998]. 
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2.3 SUMMARY 

In summary, much research investigating the provision of explanations in intelligent systems have 

demonstrated a positive impact on user understanding and trust. Research in the domain of 

context-aware computing is also nascent and has shown some promise, but more work is required 

to provide stronger support for intelligibility and gain better insight about how intelligibility 

impacts users. This thesis proposes to deepen this research, and provide concrete contributions 

towards providing intelligibility in context -aware applications. In the Chapter 3, we describe how 

the nature of context-aware applications pose research questions for providing intelligibility, and 

describe the taxonomy of explanations we investigated to answer these questions in the thesis.  
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3 EXPLANATION TYPES FOR 

INTELLIGIBILITY  

In Chapter 2, we reviewed the different types of explanations provided in various intelligent 

systems. In this chapter, we introduce the research questions that have driven our investigation 

and then describe the taxonomy of intelligibility explanation types we have developed to make 

context-aware applications intelligible. 

As mentioned in the earlier section, context-aware applications use implicit  sensing, and intelligent 

inference to determine the user's context so as to perform appropriate actions. For Ubicomp 

systems, context-aware applications have been primarily developed to support everyday activities, 

such as tracking the user's physical activity to monitor her exercise, recognizing activity in the 

home to provide timely medical assistance, determining her availability to others, providing 

recommendations based on where she is and what she is doing, reminding her to pick up the milk 

when she is located at the grocery store, etc. They sense implicitly to minimize obtrusiveness and 

interruption to the user; they automatically sense the situation rather than requiring the user to 

manually tell them what is happening. Context-aware applications are increasingly using 

sophisticated inference mechanisms due to the growing complexity of contexts they need to 

understand, particularly for activity recognition. For inference, they use big rule sets and machine 

learning algorithms to handle diverse situations, and to be more robust to exceptional cases. All 

these improve the accuracy in properly and calmly understanding the user's context. 

Unfortunately, these two factors of implicit sensing and intelligent inference also make context-

aware applications difficult for end-users to understand. This is particularly problematic when the 

applications behave inappropriately or unexpectedly. In such cases, context-aware applications no 

longer remain invisible to the user's experience; instead, they become a puzzle. The users become 

frustrated if they cannot understand what has happened and why the application behaved 
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unexpectedly. Eventually, this lack of understanding  would lead to a loss in  trust  in the system's 

inference and behavior, and the eventual abandonment of them. Without a proper understanding of 

how context-aware applications work, users may also not be able to effectively control them to 

improve their performance for subsequent situations. Therefore, it  is crucial for context-aware 

applications to be intelligible, so that they can explain what they sense and how they are inferring 

about the users' contexts.  

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY  

Starting with a broad idea of intelligibility from Bellotti and Edwards [2001], we defined 

intelligibility for a context -aware application as the ability to answer or explain questions that users 

could ask. Given the implicit actions that context-aware applications take, end-users may not know 

what the application is doing, let alone assess whether it has performed appropriately. Hence, it is 

important for applications to make their action state explicit and provide feedback of what they are 

doing. This is supported by providing an explanation or answer to the question: 

1. What  is the current value of the context? 

Continuing with the user-centric perspective of answering intuitive questions, we draw from the 

question-answering approach of the Whyline [Ko and Myers, 2004, 2009], with just why and why 

not questions. One can easily imagine a confused, exasperated, or inquisitive user asking the 

following questions: 

2. Why  is this context the current value X? 

3. Why Not : ×ÈÙ ÉÓÎȭÔ ÔÈÉÓ ÃÏÎÔÅØÔ ÖÁÌÕÅ 9ȟ ÉÎÓÔÅÁÄȩ  

Why asks what factors caused or influenced the inference outcome, and Why Not asks why an 

alternative inference was not made. In a similar manner as the Whyline, we answer these questions 

by providing mechanistic explanations that specifically describe the inference over the instance the 

end-user is asking about. Note that we do not enforce a particular structure of explanations to 

answer these questions. They could be answered with rule traces (line of reasoning) or some other 

structures. We do not explain these in terms of design rationale or purpose, which relate to the 

underlying assumptions, concepts, or objectives driving how the application behaves. 
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As an extension of Why and Why Not questions, end-users may want to ask questions relating to 

the general rules or model under which the application makes inferences. This can allow the users 

to generalize their understanding of how the application works to better predict future behavior. 

Specifically, we provide explanations for the questions: 

4. How To: when would this context take value Y? 

5. What if  the conditions are different, what would this context be? 

How To explanations are a generalization of Why explanations, but they do not specifically target 

any instance. In terms of rule traces, this explanation type can be expressed by listing all traces that 

achieve the desired inference. What If explanations support the feedforward type of feedback, 

where end-users can investigate what the application will do in a future or hypothetical scenario. 

We began our investigation of providing intelligibility in context-aware applications with this initial 

set of five explanation types. This thesis aims to show that intelligibility can improve  user 

understanding and trust of context-aware applications. We would especially like to show this with 

the scope of intelligibility that we have defined based on multiple question types. Specifically, our 

first investigation sought to answer the research question: 

RQ1. DOES INTELLIGIBILITY HELP USERS IMPROVE THEIR UNDERSTANDING AND TRUST OF CONTEXT-

AWARE INTELLIGENT SYSTEMS? 

Even though this has been proven true with narrower forms of intelligibility (transparency, 

scrutability , etc.) in related work, we explored how supporting the various question types 

independently affect user understanding and trust in context-aware applications. Our work, 

presented in Chapter 4, shows that providing some explanation types (Why and Why Not) are more 

effective than others in improving user understanding and trust. 

These successful results from our first study showed that providing intelligibility is a promising 

avenue for research. Next, we sought to carefully explore the scope of questions that users would 

ask of context-aware applications. Specifically: 

RQ2. WHAT ARE THE INTELLIGIBILITY NEEDS OF END-USERS IN CONTEXT-AWARE APPLICATIONS? 

Answering this question will help to ensure that the intelligibility we aim to provide will be relevant 

to users and can better satisfy their informational needs. In work presented in Chapter 5, we 
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conducted user-centered, empirical research to elicit what information users wanted to know of 

context-aware applications, when the applications behaved under various situations. We identified 

more explanation types, and expanded our taxonomy of explanation types. 

To improve end-users awareness of what the application knows, much previous work in adaptive 

or context-aware applications have investigated the principle of making the application 

transparent. One way to support transparency is to fully reveal the internal input state of the 

application. This answers the question: 

6. Inputs : what factors and values affect this context? 

One could distinguish between naming the input sources, and the value taken by each input at the 

time of interest. Users are also interested in the range and diversity of actions or responses that 

context-aware applications. Considering an application model as an input-output functional model, 

this supports the explanation for the question: 

7. Outputs : what other values can this context take? 

Given the ambiguity and uncertainty in sensing and inference, context-aware applications are not 

necessarily deterministic in their decision logic. Hence, users are also interested in asking: 

8. Certainty : how confident is inference of this value? 

With increased knowledge and understanding of the applications, users will also want to be able to 

reconfigure or control the application to improve its behavior. This asks the question: 

9. Control:  how can I control the application to improve it? 

Finally, we determined some circumstances in which users asked for information additional to 

what the context-aware application may model for its function. For example, wanting to see a video 

capture of the room where an elderly family member was detected to have fallen. Providing this 

extra information helps answer the question:  

10. Situation : what else is happening in this situation (not about the application, but about the 

circumstance)? 

Similarly, users want to know if the application has taken other actions meanwhile: 
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11. What Else: what else did the application do? 

With the study described in Chapter 5, we identified  which explanation types users ask of context-

aware applications. However, it remains difficult for application developers to implement 

intelligi bility in context-aware applications, especially with such a wide range of explanation types. 

This brings us to the next research question: 

RQ3. HOW CAN WE SUPPORT THE IMPLEMENTATION OF INTELLIGIBILITY IN CONTEXT-AWARE 

APPLICATIONS?  

We chose to provide toolkit support for developers to easily add intelligibility to their context-

aware applications (Chapter 6). We developed the Intelligibility Toolkit that provides extensible 

components to support the automatic generation of explanations, and mechanisms to process the 

explanation information into simpler forms that end-users may easily interpret. However, this 

technical contribution did not provide final solutions to how the explanations should be presented 

to end-users. This leaves unaddressed the next research question: 

RQ4. HOW CAN WE DESIGN INTELLIGIBILITY FOR CONTEXT-AWARE APPLICATION TO BE USABLE FOR END-

USERS? 

We answer this question with a think-aloud usability study described in Chapter 7, where we 

designed ,ÁʆÓÁȟ a complex context-aware application that uses multiple input contexts and various 

rules and machine learning classifiers. This application was implemented as an interactive 

prototype for participants to engage with. In this study, we explored several design principles for 

intelligibility, and evaluated how users interpret explanations from an intelligible context-aware 

application. Our findings provide insights and design recommendations for providing usable 

intelligibility in context -aware applications.  

We considered context-aware applications with inference models that infer a certainty distribution 

over multiple Outcomes. Instead of a single What value, there can be a non-zero Certainty of 

inferring each of the possible Output values. We support and later manifest this as an aggregation of 

explanations Outputs + Certainties. An alternative point of view is that the What explanation is 

extended to include a range of output values.  

12. Outputs + Certainties : how confident is inference of all possible values? 
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As we investigate providing explanations with a real-world interactive prototype, new explanation 

types become more relevant and important, namely: 

13. When : when was the context inferred as this value? 

14. History : what was the inference at an earlier time, T? Why did it make that inference at 

time T? Etc. 

Historical explanations can help to provide users with a confirmation of what they and the 

application have done in the past. Furthermore, explanations about history include not just the 

inferred value at that time, but also any other event-dependent explanations about the event. 

As context-aware applications begin to use esoteric sensors and features for inference, we also 

include textual descriptive information to help end-users to learn the terminology used by the 

application and key concepts. 

15. Description : what is the meaning of the context terms and values? 

Description explanations can also be used to justify the behavior of the application by describing the 

implications of various context values, and describe the rationale for the application to consider 

various features or inference mechanisms. 

At this stage, we investigated how to provide intelligibility through gathering requirements, 

providing technical support, and recommending design principles. This allows developers and 

designers to more easily and carefully implement, provide, and present intelligibility in context-

aware applications. This also enables us to explore our hypotheses on the impact of intelligibility 

with more realistic intelligible  context-aware applications. Logically, we next address research 

questions relevant to evaluation in light of realistic issues. One concern is that context-aware 

applications are not always certain of what they infer, and providing intelligibility may not be 

helpful when they are uncertain. This could be because users learn ÁÂÏÕÔ ÔÈÅ ÁÐÐÌÉÃÁÔÉÏÎÓȭ 

weaknesses. This brings up the research question: 

RQ5. WHEN IS INTELLIGIBILITY HELPFUL AND HARMFUL FOR CONTEXT-AWARE APPLICATIONS WITH 

DIFFERENT CERTAINTIES? 

We conducted a large online controlled study with a between-subjects experiment design to 

investigate the interaction effect of providing intelligibility and of application certainty on user 
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impression of two context-aware applications. This is described in Chapter 8. We found that above 

a threshold of about 80% certainty, providing intelligibility improves user impression of the 

application performance. However, below that threshold, providing intelligibility harm s user 

impression because it reveals the weaknesses of the application. 

This result deepens our earlier findings in Chapter 4, and considers nuances in the impact of 

intelligibility in context -aware applications. At this point, much of our work on evaluating 

intelligibility ha s ÆÏÃÕÓÅÄ ÏÎ ÑÕÅÓÔÉÏÎÎÁÉÒÅ ÓÔÕÄÉÅÓ ÁÎÄ ȬÐÁÐÅÒȭ ÐÒÏÔÏÔÙÐÅÓ ÏÆ ÒÅÁÌÉÓÔÉÃ ÁÌÂÅÉÔ 

fictitious context-Á×ÁÒÅ ÁÐÐÌÉÃÁÔÉÏÎÓȢ 7ÉÔÈ ÔÈÅ ,ÁʆÓÁ ÐÒÏÔÏÔÙÐÅ ɉ#ÈÁÐÔÅÒ 7), we sought to increase 

realism in investigating intelligibility with an interactive prototype. However, intelligibility was 

ÓÈÏ×Î ȰÁÌ×ÁÙÓ ÏÎȱ ÔÏ ÐÁÒÔÉÃÉÐÁÎÔÓȟ ÓÏ ÔÈÅÙ ×ÅÒÅ ÂÉÁÓÅÄ ÔÏ ÌÏÏË ÁÔ ÔÈÅ ÅØÐÌÁÎÁÔÉÏÎÓȢ 4ÈÉÓ brings 

forward  the question: 

RQ6. EVEN IF INTELLIGIBILITY CAN IMPROVE USER UNDERSTANDING AND TRUST, WILL USERS WANT TO 

USE IT, AND, IF SO, HOW MUCH? 

We address this question with the study described in Chapter 9. Using a quasi-field experiment 

with four scenarios, we let participants freely use a fully interactive intelligible context-aware 

application on a mobile phone. We logged their usage of the intelligibility features, and interviewed 

participants to evaluate their understanding of the application behavior. We found that participants 

do use intelligibility without prompting, and that more extensive and deeper usage helps them to 

better understand the application behavior.  

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES 

We have introduced several explanation types in the previous section, and in our empirical study in 

Chapter 5. Here, we summarize these into a framework of explanation types for intelligible context-

aware applications.  
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Explanation  Type Question  Explanation  

What 

(Output 
Value) 

Top Value What is the inferred value? Shows the value of the inferred output. 

Outputs What are the inferred values? Lists multiple other likely alternative values. 

What Else What else (other actions) did the application do? Informs what other actions the application is simultaneously 
doing. 

Certainty Top What is the confidence of inferring the current value X? Shows the Certainty of inference. 

Certainties What is the confidence of inferring all possible values? May include certainties of inferring other values. 

When When was value X inferred? Indicates the time that the inference was made. 

Why Why was value X inferred? With the Intelligibility Toolkit, this explanation can be provided as a 
Rule Trace or as Weights of Evidence. 

Describes the triggered rule(s) or weights of evidence for the 
inference. 

Why Not Why was value Y not inferred? Same format as Why.  

Describes the un-triggered rules or difference in weights of 
evidence for why an alternative value Y was not inferred. 

Input Values What are the factor values / What is the input state? Describes the values of all input factors. 

Situation What else is happening with the situation? 

What is the ground truth? 

Provides a description or playback of the recorded ground truth to 
convey a richer picture or experience of the situation. 

E.g., showing a video of the sensed scene, providing an audio 
recording of the sound recognition source. 

History* *Provides the same range of explanations, but for a historical event or inference at a specific time in the past. 

Table 3.1. Dynamic instance -based explanation types explaining the inference of a specific event . These explanations will differ 

for every instance the application acts.  
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Explanation  Type Question  Explanatio n 

What If What will be the inferred value, if the input values are 
W? 

Provides a hypothetical What or What Else answer given user-
queried input values.  

Requires user input to specify / constrain some input values. 

How To How can I get the application to infer Y? Similar format as Why, but  

Explains in terms of an alternative output value Y, instead of X. 

How To If How can I get the application to infer Y, given a subset 
of input values W? 

Similar format as How To, but  

Requires user input to specify / constrain some input values. 

Control Parameter 
Values 

What parameters can I change to control the 
application behavior? 

Describes how to control and adjust parameters or attributes to 
change the application behavior (e.g., in a manner exposed in [Dey 
and Newberger, 2009]).  

We do not cover this explanation type in this thesis 

Rules / Model What rules or settings can I change? Describes how to add/edit rules or the model.  

We do not cover this explanation type in this thesis. 

Table 3.2. Dynamic general  explanation types explaining the inference model of the context -aware application . 



 

 

3
8

    C
H

A
P

T
E

R
 3
 | E

X
P

L
A

N
A

T
IO

N
 TY

P
E

S
 F

O
R

 
IN

T
E

L
L
IG

IB
IL

IT
Y 

Explanation  Type Question  Explanation  

Inputs Factors What factors / sources influence this inference? Lists all input factors / sources for the application. 

Outputs (Options) What are the possible output values for this 
inference? 

Lists all possible values or actions that the application may 
produce or perform. 

Description Terminology What does this term mean? Provides a textual description of a term or concept. 

Justification What is the implication of this value? Provides a textual description of the implication of a context value. 

E.g.ȟ Á ÈÉÇÈ Ȱ0ÅÒÉÏÄÓ ÏÆ 3ÉÌÅÎÃÅȱ ÉÎ ÔÈÅ ÓÅÎÓÅÄ ÓÏÕÎÄ ÓÕÇÇÅÓÔÓ 
talking noise because speech has more relative silence than voices. 

Rationale What is the rationale for this inference? Provides a textual description of the rationale of a process, rule, or 
inference mechanism. 

E.g., the application considers sound activity when inferring 
availability because you may be in an impromptu meeting, and it 
detects your talking, even though your calendar is open (no events 
scheduled). 

Table 3.3. Static general  explanation types explaining the inference model of the context -aware application . For a static (fixed) 

model, these explanations will always be the same.  
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In the next chapters (4 to 9), we describe in detail the pieces of work that have been completed for 

this thesis.  
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4 INVESTIGATING THE 

INTELLIGIBILITY OF QUESTION 

TYPES 

This chapter is an extension of the work presented in: 

Lim, B. Y., Dey, A. K., and Avrahami, D. (2009). Why and Why Not Explanations Improve the 

Intelligibility of Context -Aware Intelligent Systems. In Proceedings of the 27th international 

Conference on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09, 2009). 

CHI '09. ACM, New York, NY, 2119-2128. 

This publication was a best paper honorable mention for a CHI '09. 

ABSTRACT. Context-aware intelligent systems employ implicit inputs, and make decisions based 

on complex rules and machine learning models that are rarely clear to users. Such lack of system 

intelligibility can lead to loss of user trust, satisfaction and acceptance of these systems. However, 

ÁÕÔÏÍÁÔÉÃÁÌÌÙ ÐÒÏÖÉÄÉÎÇ ÅØÐÌÁÎÁÔÉÏÎÓ ÁÂÏÕÔ Á ÓÙÓÔÅÍȭÓ ÄÅÃÉÓÉÏÎ ÐÒÏÃÅÓÓ ÃÁÎ ÈÅÌÐ ÍÉÔÉÇÁÔÅ ÔÈÉÓ 

problem. In this chapter, we present results from a controlled study with over 200 participants in 

which the effectiveness of different types of explanations was examined. Participants were shown 

ÅØÁÍÐÌÅÓ ÏÆ Á ÓÙÓÔÅÍȭÓ ÏÐÅÒÁÔÉÏÎ ÁÌÏÎÇ ×ÉÔÈ ÖÁÒÉÏÕÓ ÁÕÔÏÍÁÔÉÃÁÌÌÙ ÇÅÎÅÒÁÔÅÄ ÅØÐÌÁÎÁÔÉÏÎÓȟ ÁÎÄ 

then tested on their understanding of the system. We show, for example, that explanations 

describing why the system behaved a certain way resulted in better understanding and stronger 

feelings of trust. Explanations describing why the system did not behave a certain way, resulted in 

lower understanding yet adequate performance. We discuss implications for the use of our findings 

in real-world context-aware applications. 
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4.1 INTRODUCTION 

This chapter describes an investigation of a number of mechanisms for improving system 

intelligibility performed using several controlled online lab experiments. To investigate these 

intelligibility factors and their effects, we defined a model-based system representing a canonical 

intelligent system underlying a context-aware application, and an interface with which users could 

learn how the application works. We recruited 211 online participants to interact with our system, 

where each one received a different type of explanation of the system behavior. Our findings show 

that explaining why a system behaved a certain way, and explaining why a system did not behave in 

a different way provided most benefit in terms of objective understanding, and feelings of trust and 

understanding compared to other explanation types. 

In this chapter, we first define a suite of intelligibility explanations derived from questions users 

may ask of a context-aware system and that can be automatically generated. We then describe an 

online lab study setup we developed to compare the effectiveness of these explanation types in a 

quick and scalable manner. Next we describe the experimental setup used to expose participants to 

our system with different types of intelligibility and the metrics we used to measure understanding, 

ÁÎÄ ÕÓÅÒÓȭ ÐÅÒÃÅÐÔÉÏÎ ÏÆ ÔÒÕÓÔȟ ÁÎÄ ÕÎÄÅÒÓÔÁÎÄÉÎÇȢ 7Å present two experiments in which we 

investigated these factors, elaborating on the results and implications. We end with a discussion of 

all of our results and plans for future work. 

4.2 INTELLIGIBILITY 

Context-aware systems can confuse users in a number of ways. For example, such systems may not 

have familiar interfaces, and users may not understand or know what the system is doing or did. 

Furthermore, given that such systems are often based on a complex set of rules or machine learning 

models, users may not understand why the system acted the way it did. Similarly, a user may not 

understand why the system did not behave in a certain way if this alternative behavior was 

expected. Thus, our focus in the work presented here is on explanations that can be regarded as 

reasoning traces.  

While a reasoning trace typically addresses the question of why and how the application did 

something, there are several other questions that end-users of novel systems may ask. We chose to 

following initial set of intuitive questions (adapted from [Dourish, Adler, and Smith, 1996]):  
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1. What:  What did the system do? 

2. Why:  Why did the system do W? 

3. Why Not:  Why did the system not do X? 

4. What If:  What would the system do if Y happens? 

5. How To: How can I get the system to do Z, given the current context? 

Throughout this chapter we will r efer to these as our five intelligibility question  types, and the 

explanation addressing each of them as an explanation type. 

.ÏÒÍÁÎ ÄÅÓÃÒÉÂÅÄ Ô×Ï ÇÕÌÆÓ ÓÅÐÁÒÁÔÉÎÇ ÕÓÅÒÓȭ ÇÏÁÌÓ ÁÎÄ ÉÎÆÏÒÍÁÔÉÏÎ ÁÂÏÕÔ ÓÙÓÔÅÍ ÓÔÁÔÅ ɍNorman, 

1988]. Explanations that answer questions What, Why, and Why Not address the gulf of evaluation 

ɉÔÈÅ ÓÅÐÁÒÁÔÉÏÎ ÂÅÔ×ÅÅÎ ÔÈÅ ÐÅÒÃÅÉÖÅÄ ÆÕÎÃÔÉÏÎÁÌÉÔÙ ÏÆ ÔÈÅ ÓÙÓÔÅÍ ÁÎÄ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÎÔÉÏÎÓ ÁÎÄ 

expectations), while explanations answering questions What If and How To address the gulf of 

execution (the separation between ×ÈÁÔ ÃÁÎ ÂÅ ÄÏÎÅ ×ÉÔÈ ÔÈÅ ÓÙÓÔÅÍ ÁÎÄ ÔÈÅ ÕÓÅÒȭÓ ÐÅÒÃÅÐÔÉÏÎ ÏÆ 

that). With a partial conception of how a system works, users may want to know what would 

happen if there were some changes to the current inputs or conditions (What If). Similarly, given 

certain conditions or contexts, users may want to know what would have to change to achieve a 

desired outcome (How To).  

This chapter deals with providing and comparing the value of explanations that address four of 

these intelligibility questions to investigate which of these explanations benefit users more. We 

label these explanation types: Why, Why Not, What If, and How To. Since the system we developed 

to evaluate the value of explanations, already explicitly shows the inputs and output of the system 

(see next Section on Intelligibility Testing Infrastructure), we did not investigate the What 

explanation.  

4.2.1 HYPOTHESES 

7Å ÈÙÐÏÔÈÅÓÉÚÅ ÔÈÁÔ ÄÉÆÆÅÒÅÎÔ ÔÙÐÅÓ ÏÆ ÅØÐÌÁÎÁÔÉÏÎÓ ×ÏÕÌÄ ÒÅÓÕÌÔ ÉÎ ÃÈÁÎÇÅÓ ÉÎ ÕÓÅÒÓȭ ÕÓÅÒ 

experience: understanding of the system and perceptions of trust and understanding of the system. 

We will now present our hypotheses about each of these intelligibility questions. 

Why explanations will support users in tracing the causes of system behavior and should lead to a 

better understanding of this behavior. So, we expect: 

H1: Why explanations will improve user experience over having no explanations (None).  
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Why Not explanations should have similar benefits to Why ÅØÐÌÁÎÁÔÉÏÎÓȠ ÈÏ×ÅÖÅÒȟ ÕÓÅÒÓȭ ÁÂÉÌÉÔÙ ÔÏ 

apply Why Not explanations may not be as straightforward. There may be multiple reasons why a 

certain outcome did not happen; while a why explanation may be a single reasoning trace (or at 

least a small number of possible traces), a why not explanation is likely to contain multiple traces. 

Given this complexity, users will  require more cognitive effort to understand how to apply the 

knowledge, and may do so poorly.  As such, we expect: 

H2: Why Not explanations will (a)  improve user experience over having no explanations (None), 

but (b) will not perform as well as Why explanations.  

Explanations for How To and What If questions would have to be interactive and dynamic, as they 

depend on example scenarios that users define themselves. Receiving these explanations should be 

better than receiving none at all. However, given that novice end-users are unlikely to be familiar 

with a novel system, they may choose poor examples to learn from, and learn less effectively than 

the Why explanations. So we expect: 

H3: How To or What If explanations will (a)  improve user experience over having no explanations 

(None), but (b) will not perform as well as Why explanations. 

 Hypotheses Experiment 1  Experiment 2  

H1 None < Why None < Why None < Why 

H2a None < Why Not None < Why Not None < Why Not 

H2b Why Not < Why .ÏÎÅ Ђ 7ÈÙ .ÏÔ .ÏÎÅ Ѕ 7ÈÙ .ÏÔ 

H3a None < (How To, What If)  .ÏÎÅ Ђ ɉ(Ï× 4Ïȟ 7ÈÁÔ )ÆɊ 

H3b (How To, What If) < Why  (How To, What If) < Why 

Table 4.1. Summary of hypotheses and results regarding  the effect of  explanation type on 

user experience (understanding and trust) Ȣ ȬЂȭ means no significant difference (p=n.s.); ȬЅȭ 

means we hypothesize either a lower user experience  or no difference . 

To test these hypotheses (summarized in Table 4.1), we created a test-bed that allows simulating 

different types of intelligent systems and testing different explanation types. We describe this 

testing infrastructure next.  
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4.3 INTELLIGIBILITY TESTING PLATFORM 

We developed a generalizable web interface that can be applied to various application domains to 

study the effect of the various mechanisms for providing intelligibility. Users interact with a 

schematic, functional intelligible system that could underlie a context-aware application: it accepts 

a set of inputs (e.g. Temperature, Humidity), and uses a model (for example, a decision-tree), to 

produce a single output (e.g., Rain Likely, or Rain Unlikely). Users are shown different instances of 

inputs and outputs and can be given various forms of explanations (or no explanations) depending 

on what explanation type is being studied. To users who do not receive explanations, the system 

appears as a black box (only inputs and the output are visible). 

This infrastructure allows us to efficiently and rapidly investigate different intelligibility factors in a 

controlled fashion and closely measure their effects; further, the online nature of the infrastructure 

allowed us to collect data from over two hundred participants. The design also has the advantage of 

being generalizable to a variety of different domains simply by relabeling its inputs and outputs to 

represent scenarios for those domains. 

4.3.1 TEST PLATFORM IMPLEMENTATION 

The web interface was developed using the Google Web Toolkit [GoogleɎȢ 7Å ÌÅÖÅÒÁÇÅ !ÍÁÚÏÎȭÓ 

Mechanical Turk infrastructure [Amazon] to recruit and manage participants and manage study 

payments by embedding our study interface in the Mechanical Turk task interface. Users found our 

study through the listings of Human Intelligence Tasks (HITs), and after accepting our HIT, they 

participated in the study and interacted with the system. 

The user encounters several examples of system inputs and output (see Figure 4.1). He first sees 

the input values listed and has to click the Ȱ%ØÅÃÕÔÅȱ ÂÕÔÔÏÎ ÓÏ ÔÈÅ ÓÙÓÔÅÍ ȬÇÅÎÅÒÁÔÅÓȭ ÔÈÅ ÏÕÔÐÕÔȢ 

7ÈÅÎ ÈÅ ÉÓ ÄÏÎÅ ÓÔÕÄÙÉÎÇ ÔÈÅ ÅØÁÍÐÌÅȟ ÈÅ ÃÌÉÃËÓ ÔÈÅ Ȱ.ÅØÔ %ØÁÍÐÌÅȱ ÂÕÔÔÏÎ ÔÏ ÍÏÖÅ ÏÎȢ $ÅÐÅÎÄÉÎÇ 

on the explanation condition the user is in, he may receive an explanation about the shown 

example. 
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Figure 4.1. Screenshot of the interface for our intelligibility testing infrastructure.  

We modeled our testing infrastructure on typical sensor-based context-aware systems that make 

decisions based on the input values of multiple sensors. Many of these sensors produce numeric 

values and the applications change their behaviors based on threshold values of the sensors. For 

example, a physical activity recognition system could look at heart rate and walking pace. To keep 

our experiments and the task reasonably simple for participants we restricted the system to three 

input sensors that produce numeric values, we used inequality-based rules to define the output 

value, and constrained the output to belonging to one of two classes. In Experiment 1, for example, 

we defined two inequality rules that consider two inputs at a time (see Equation (4.1)). Since we 

did not want the lack of domain knowledge (e.g., that the body temperature can rise from 36.8 to 

σψȢσЈ# ×ÈÅÎ ×ÅÉÇÈÔ ÌÉÆÔÉÎÇɊ ÔÏ ÁÆÆÅÃÔ ÕÓÅÒÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÏÆ ÔÈÅ ÓÙÓÔÅÍȟ ÓÏ ÔÈÅ ÉÎÐÕÔÓ use an 

arbitrary scale of integer values: Body Temperature from 1 to 10, and Heart Rate and Pace from 1 

to 5.  

ἜἺἭἬἱἫἼἱἷἶ

ͼ%ØÃÅÒÃÉÓÉÎÇͼ ȟÉÆ "ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅφ!.$0ÁÃÅς
ͼ%ØÃÅÒÃÉÓÉÎÇͼ ȟÉÆ (ÅÁÒÔ 2ÁÔÅφ !.$0ÁÃÅσ

ͼ.ÏÔ %ØÃÅÒÃÉÓÉÎÇͼȟÏÔÈÅÒ×ÉÓÅ
 (4.1) 

Equation (4.1): Inequality -based rules for the physical activity domain.  
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Figure 4.2. Visualization of the learned decision tree model used in Experiment 1. 

As machine learning algorithms are popular in context-aware applications, our system also uses 

machine learning. Among the myriad of machine learning algorithms, decision trees and Naïve 

Bayes lend themselves to be more explainable and transparent, while others are black-box 

algorithms that are not readily interpretable (e.g., Support Vector Machines and Neural Networks) 

[Nugent and Cunningham, 2005]. We chose to start our investigation using decision trees because 

they are easier to explain, especially to end-users who may not understand the probabilistic 

concepts that underlie Naïve Bayes algorithms. Using 7ÅËÁȭÓ ɍHall et al., 2009] J48 implementation 

of the C4.5 Decision-Tree algorithm [Quinlan, 1993], our system learns the inequality rules from the 

complete dataset of inputs (250 instances from the permutations of all inputs) and outputs and 

models a decision tree (see Figure 4.2) that is used to determine the output value.  

4.3.2 DECISION TREE EXPLANATIONS 

While the decision tree is able to classify the output value given input values, we had to extend it to 

expose how the model is able to derive its output. The decision tree model lends itself nicely to 

providing explanations to the four intelligibility question types. Table 4.2 describes how the 

explanations were implemented. 

Not
Exercising

Exercising

Body

Pace

Heart
Rate

Pace

Exercising
Not

Exercising

Not
Exercising

Ѕσ >3

Ѕυ >5

Ѕς >2

Ѕρ >1

Temperature
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Why : Traverse the decision tree to trace a path of decision boundaries and values that match the instance 
being looked at. Return a list of inequalities that satisfies the decision trace of the instance (e.g.ȟ Ȱ/ÕÔÐÕÔ 
classified as Not ExercisinÇȟ ÂÅÃÁÕÓÅ "ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅЅυ ÁÎÄ 0ÁÃÅ ЅσȱȠ ÓÅÅ &ÉÇÕÒÅ ςɊȢ 

Why Not:  Traverse the whole tree initially to store in memory all the traces that can be made. Walk the tree 
to find the why-trace, and find differing boundary conditions on all other traces that return the alternative 
output. A why-not trace would contain the boundary conditions that match the why trace and boundary 
conditions where it is different (e.g.ȟ Ȱ/ÕÔÐÕÔ not ÃÌÁÓÓÉÆÉÅÄ ÁÓ %ØÅÒÃÉÓÉÎÇȟ ÂÅÃÁÕÓÅ 0ÁÃÅЅσȟ ÂÕÔ not Body 
4ÅÍÐÅÒÁÔÕÒÅЄυȱɊȢ  

A full Why Not explanation will  return the differences for each trace that produces the alternative output. 
However, so as not to overwhelm the user, we use a heuristic to return the differences of just one why-not 
trace, the one with the fewest differences from the why trace. Note that while this technique is suitable for 
small trees, it is not scalable to large trees, and heuristics should be used to look at subsets of traces. 

How To:  Take user specified output value, and values of any inputs that were specified. Iterate through all 
traces of the tree to find traces that end with the specified output value and has branches that satisfy the 
specified input values. If any trace is found, it identifies the satisfying boundary conditions for the 
unspecified inputs and returns them. Note that if there is a trace, there will only be one, since an instance 
can only satisfy one trace in the tree. If there are no boundary conditions for the unspecified inputs, then 
these inputs can take any value. If no trace is found, then there are no values for the unspecified inputs, 
given values of the specified inputs, to produce the desired output value. 

What If:  4ÁËÅ ÕÓÅÒȭÓ ÉÎÐÕÔÓ ÁÎÄ ÐÕÔÓ ÉÔ ÔÈÒÏÕÇÈ ÔÈÅ ÍÏÄÅÌ ÔÏ ÃÌÁÓÓÉÆÙ ÔÈÅ ÏÕÔÐÕÔȢ 2ÅÔÕÒÎ ÔÈÅ ÏÕÔÐÕÔ ÖÁÌÕÅȟ ÂÕÔ 
since this is a simulation, do not take any action based on this output value. 

Table 4.2. Algorithms for generating different types of intelligibility explanations from a 

decision tree model.  

4.4 METHOD 

Given the different factors we wanted to investigate and the flexibility of our testing infrastructure, 

we were able to independently test different intelligibility elements in a series of experiments. We 

ran Experiment 1 to explore providing different explanation types (Why, Why Not, and the control 

condition with no explanations). The system was presented in the context of the domain of activity 

ÒÅÃÏÇÎÉÔÉÏÎ ÏÆ ÅØÅÒÃÉÓÉÎÇ ÁÓ ÄÅÓÃÒÉÂÅÄ ÁÂÏÖÅȢ (Ï×ÅÖÅÒȟ ÄÕÅ ÔÏ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÐÒÉÏÒ ËÎÏ×ÌÅÄÇÅ ÏÆ ÔÈÅ 

domain, our results were difficult to interpret . So, we decided to subsequently run experiments 

with an abstract domain. Experiment 2 compares explanations provided to address each of the four 

intelligibility question types (Why, Why Not, How To, and What If) individually to investigate which 

are more effective in helping users gain an understanding of how our intelligent system works 

compared to not having explanations (None).  

4.4.1 STUDY PROCEDURE  

Our study consists of four sections. The first section (Learning) allows participants to interact with 

ÁÎÄ ÌÅÁÒÎ ÈÏ× ÔÈÅ ÓÙÓÔÅÍ ×ÏÒËÓȢ 4×Ï ÓÕÂÓÅÑÕÅÎÔ ÓÅÃÔÉÏÎÓ ÔÅÓÔ ÔÈÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÏÆ 
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the system (Fill-in-the-Blanks Test and Reasoning Test), and a final section (Survey) that asks users 

to explain how the system works (to evaluate the degree to which participants have learned about 

ÔÈÅ ÓÙÓÔÅÍȭÓ ÌÏÇÉÃɊ ÁÎÄ ÔÏ ÒÅÐÏÒÔ ÔÈÅÉÒ ÐÅÒÃÅÐÔÉÏÎÓ ÏÆ ÔÈÅ ÅØÐÌÁÎÁÔÉÏÎÓ ÁÎÄ ÓÙÓÔÅÍ ÉÎ ÔÅÒÍÓ ÏÆ 

understandability, trust and usefulness.  

4.4.1.1 LEARNING SECTION 

In the Learning section, participants are shown 24 examples with inputs and output values (see 

Figure 1). These examples were chosen from all possible input instances, to have an even 

distributed over all branches in the decision tree, and they appear in the same order to all 

participants. Examples were arranged in ascending order of Body Temperature, then of Heart Rate, 

then of Pace. Participants have to spend at least 8 seconds per example (controlled by disabling the 

Next Example button). Explanations are provided depending on the experimental condition. If 

participants receive explanations, they will receive them automatically when executing each 

example. It is important to note that explanations are only provided during the Learning section. 

Participants are provided with a text box to make notes in, which persist throughout the Learning 

section. At the end of the Learning section, users are told to spend some time studying their notes 

as those are not available during the rest of the study. 

4.4.1.2 FILL-IN-THE-BLANKS TEST SECTION 

This section tests users on their ability to accurately specify a valid set of inputs or output; they are 

given a single blank in one of the inputs or the output, and are given the rest of the inputs/output. 

There are 15 test cases, three with blank Body Temperature, three with blank Heart Rate, four with 

blank input Pace, and 5 with blank output. These test cases different from the earlier examples, and 

are randomly ordered, but in the same order for all participants. On seeing each test case, users 

have to fill in the missing input or output with a value that makes the test case correct. If an input is 

missing, they should provide a value that causes the given output value to be produced; if the 

output is missing, they provide a value that would be produced with the given input values. After 

providing the missing value, they are also asked to provide a reason for their response. Participants 

are not given any explanations during this test and, are not given the answer or told whether they 

are correct after they finish.  
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4.4.1.3 REASONING TEST SECTION 

This section shows users three complete examples, and, for each example, asked to give reasons 

why the output was generated, and why the alternative output was not. These test case examples 

are different from what users have encountered before, and are randomly ordered, but are in the 

same order for all participants. To see if improved understanding can lead to improved trust, users 

are also asked how much they trusted that the output of the system is correct for each example. 

Participants are not given any explanations during the test and, are not given the answer after they 

finish. 

4.4.1.4 SURVEY SECTION 

The final Survey section is used to collect self-report information from users. Users provide a more 

detailed description of how they think the system works overall (i.e., an elicitation of their mental 

models), and are asked 16 Likert -scale questions (see Table 4.4) to understand how users 

perceived about using our system, including whether they trusted and understood the system and 

explanations. The questions were randomly ordered to avoid order effects. 

4.4.2 MEASURES 

In order to see what types of intelligibility explanations would help users better understand the 

system, and whether this improved understanding would lead to better task performance, 

improved perception of the system, and improved trust in the system output, a number of measures 

were collected. 

Task performance was measured in terms of task completion time, and the Fill-in-the-Blanks Test 

inputs and output answer correctness. Task completion time was measured with two metrics: total 

learning time in the Learning section, and average time to complete each Fill-in-the-Blanks Test 

question.  

User understanding is measured by the correctness and detail of the reasons participants provide 

when they give their answers (in the Fill-in-the-Blanks Test), explain examples (in the Reasoning 

Test), or give an overall description of how the system works (mental model in the survey). The 

reasons given for each answer in the Fill-in-the-Blanks Test were coded using a rubric (see Table 

4.3) to determine how much the participant understands about how the system works. Reasons are 

coded as Guess/Unintelligible if participants wrote they were guessing, did not write anything, or 

wrote something not interpretable. Reasons are graded as Some Logic if participants provided 
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some rules or probability statement or cited past experience (e.g., saying they saw something 

similar before) that were not inequalities with fixed numeric boundaries. This includes cases such 

ÁÓ Ȱ"ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅЄ(ÅÁÒÔ 2ÁÔÅȱȢ 2ÅÁÓÏÎÓ ÁÒÅ ÃÏÄÅÄ ÁÓ )ÎÅÑÕÁÌÉÔÙ ÉÆ ÐÁÒÔÉÃÉÐÁÎÔÓ ÓÐÅÃÉÆÉÅÄ ÁÎ 

inequality of at least one of the inputs with a fixed numeric boundary (e.g., Body Temperature>7). 

Reasons are coded as Partially Correct if participants provided only one rule with the correct input, 

boundary value, and relation. Reasons are coded as Fully Correct if participants get only all the 

sufficient rules correct, and did not list any extra ones. Each reason was coded with only a single 

grade (i.e., the highest appropriate grade). 

Understanding Code  Description  

GUESS/U NINTELLIGIBLE No reason given, guessed, or reason incoherent 

SOME LOGIC Some math/logic rules, probability, or citing past experience 

INEQUALITY Correct Type of rules which are inequalities of inputs with fixed numbers 

PARTIALLY CORRECT Some, but not all, of the correct rules, or extra ones 

FULLY CORRECT All correct rules, with no extra unnecessary ones 

Table 4.3. Grading rubric for coding free -form reasons given by participants. Mental Models 

were coded using this same rubric.  

There are two inequality rules (e.g., 0ÁÃÅσ, and (ÅÁÒÔ 2ÁÔÅφ) for each test case or example, so 

answer reasons for the Fill-in-the-Blanks Test have two components. We measure how many of 

these components participants learn using three coding metrics that count (i) the number of inputs 

the participant mentions as relevant in the reasons, (ii) the number of correct rules described, and 

(iii ) the number of extraneous rules mentioned (0 or 1). 

The reasons for the Why and Why Not questions that participants provided in the Reasoning Test 

were coded using a rubric similar to Table 4.3. We also recorded, on a five-point Likert -scale the 

ÐÁÒÔÉÃÉÐÁÎÔȭÓ ÌÅÖÅÌ ÏÆ trust of the correctness of the outputs for each example in the Reasoning Test. 

In the survey, we asked participants to describe their overall understanding of how the system 

works. This mental model understanding is coded in a similar manner to why reasons, but not 

applied to specific examples.  

We did a factor analysis on the 16 Likert-scale questions of system and explanation perceptions in 

the survey (see Table 4.4).  
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Factor  ɻ Likert -scale Opinions (Strongly Disagree 1 to Strongly Agree 5)  

Understood System .917 I understood the relationship between inputs and output 

I understood how the system works 

I found the system predictable 

I found the system easy to understand 

I believe I did well in the test section 

Found System Confusing 

(Negated) 

.722 I found the system confusing 

I found the system complicated 

I found the system hard to remember 

Liked System / Found it 
useful 

.648 I learned something new from interacting with this system 

I liked interacting with the system 

Explanations Difficult 

(Negated) 

.529 I found the explanations insufficient 

I found the explanations confusing 

I found the explanations too detailed 

Explanations Useful 

 

.816 I found the explanations appropriate 

I found the explanations useful 

Understood Explanations 

 

N.A. I understood the explanations 

Table 4.4. Likert -scale questions of perception grouped into six factors with CronbacÈȭÓ ɻ 

reliability computed . The former three factors are regarding the system, and the latter three 

factors only apply to participants who viewed Intelligible versions of the system.  

4.5 EXPERIMENT 1 

Our first experiment focused on providing answers to hypotheses H1 and H2; whether Why 

explanations would lead to improved user understanding, trust, perception, and performance more 

than having no explanations, and H2 regarding providing Why Not explanations being better than 

no explanations, but not as good as Why explanations. We chose the domain of activity recognition 

of exercise, of which users would have a reasonable understanding. Mapping to the generalized 

abstract system described earlier, the system takes on the role of a wearable device that can 

ÍÅÁÓÕÒÅ ÔÈÅ ×ÅÁÒÅÒȭÓ "ÏÄÙ 4ÅÍÐÅÒÁÔure, Heart Rate, and walking or running Pace, and classify 

whether the wearer is exercising (Equation (4.1)).  The first rule can be satisfied during strength 

training (e.g., weight lifting) that does not require much walking about, but can raise body 

temperature, while the second rule can be satisfied by running.  
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Participants in the no explanation (None) condition did not receive any explanations, and could 

only execute each example and move on. Participants in the Why condition receive Why 

explanations automatically along with the output value when they execute each example by clicking 

ÔÈÅ Ȱ%ØÅÃÕÔÅȱ ÂÕÔÔÏÎȢ Participants in the Why Not condition receive a Why Not explanation in place 

of a Why explanation. 

4.5.1 PARTICIPANTS 

53 participants were recruited, aged from 18 to 57 (M=29.8). There were 18 participants in the 

None condition, 18 in the Why condition, and 17 in the Why Not condition. We removed from the 

analysis any responses of participants who took fewer than 15 minutes (one participant in the 

None condition) or longer than 50 minutes to complete the four sections. This was done to filter out 

participants who just click through the steps without thinking, and to leave out participants who 

may be distracted while performing the task and take too long. On average, participants took 34 

minutes to complete the study. Participants were each given $3 for completing the study ($1 base 

and a $2 bonus to motivate performance). A further $2 was offered to a few participants who 

participated in interviews conducted soon (up to a few days) after completing the task. 

4.5.2 RESULTS 

4Ï ÁÎÁÌÙÚÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÁÂÉÌÉÔÙ ÔÏ ÁÐÐÌÙ ÔÈÅÉÒ ÕÎÄÅÒÓÔÁÎÄÉÎÇȟ ÔÈÅ ÎÕÍÂÅÒ ÏÆ ÃÏÒÒÅÃÔ ÁÎÓ×ÅÒÓ ÐÅÒ 

participant was summed and a Tukey HSD pair-wise test was performed. The number of correct 

answers was the dependent measure. The analysis showed significant differences in accuracy 

between explanation types (F[2,84]=8.85, p<.001; see Figure 4.3ɊȢ 4Ï ÁÎÁÌÙÚÅ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÁÂÉÌÉÔÙ ÔÏ 

formalize their understanding, their reasons were coded using the coding scheme in Table 4.3 and 

dummy variables were generated indicating: Inequality or better (0 or 1), Partially or Fully Correct 

(0 or 1), and Fully Correct (0 or 1). The analyses were done with the reason coding as the 

dependent measure and with condition as a fixed effect. Participants were modeled as a random 

effect and nested within condition. A Tukey HSD pairwise test of the occurrences of each coded 

score shows that providing explanations leads to more correct answers than not providing any 

(contrast of None with Why and Why Not: F[1,50]=15.1, p<.001). However, there was no significant 

difference in the number of correct answers between Why and Why Not explanation types.  
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Figure 4.3. Participants receiving explanations  (in the Learning section) answered 

significantly more questions correctly in the Fill -in -the-Blanks section.  

 

Figure 4.4. Percent of reasons coded as Inequality , Partially  Correct, or Fully  Correct in the 

Reasoning Test section. 

Using the grading coding scheme in Table 4.3 on the Why reasons provided in the Fill-in-the-Blanks 

Test, we found that participants in the Why and Why Not conditions were able to produce more 

Partially Correct reasons compared to those in the None condition (F[1,50]=27.4, p<.001) (see 

Figure 4.4). Participants in the Why condition produced more Fully Correct reasons compared to 

None and Why Not (F[1,50]=10.8, p<.002). There were no significant differences between Why and 

Why Not. A similar pattern was found in the Reasoning Test section Participants in the Why 

condition had a higher level of trust than those in None (F[1,49]=8.98, p<.005), while those in the 

Why Not condition did not. The survey measures on overall mental model or perceptions of the 

system and explanations did not reveal significant differences. 

4.5.3 DISCUSSION AND IMPLICATIONS 

The generally poor trust in the system could be due to occasional examples that follow the system 

ÒÕÌÅÓȟ ÂÕÔ ÍÁÙ ÎÏÔ ÂÅ ȬÎÁÔÕÒÁÌȭ ɉe.g.ȟ ÈÉÇÈ "ÏÄÙ 4ÅÍÐÅÒÁÔÕÒÅ ÁÎÄ ÌÏ× ÐÁÃÅ ÐÒÅÄÉÃÔÅÄ ÁÓ Ȱ.ÏÔ 
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%ØÅÒÃÉÓÉÎÇȱɊȢ The answer and reason results indicated that providing explanations lead to better 

understanding and trust of the system with less disagreement about the system output. However, in 

their provided why reasons, several participants alluded to the domain of physical activity and 

physiology to explain how the inputs (Body Temperature, Heart Rate, and Pace) should relate to 

×ÈÅÔÈÅÒ ÔÈÅ ÄÅÖÉÃÅ ×ÅÁÒÅÒ ×ÁÓ Ȱ%ØÅÒÃÉÓÉÎÇȱ ɉe.g., ȰÍÏÖÉÎÇ Ǫ ÈÉÇÈ ɍÂÏÄÙ ÔÅÍÐÅÒÁÔÕÒÅɎȟ ÌÏÏËÓ ÌÉËÅ 

ÒÕÎÎÉÎÇ ÓÏ ) ÕÐÐÅÄ ÔÈÅ ɍÈÅÁÒÔ ÒÁÔÅɎȱ). Furthermore, most responses specified the inputs as ȰÈÉÇÈȱ ÏÒ 

ȰÌÏ×ȱ rather than specifying numeric boundaries (e.g., ȰÈÅÁÒÔ ÒÁÔÅ ÉÓ ÌÏ×ȟ ÓÏ ÍÕÓÔ ÂÅ Á ÈÉÇÈ ÐÁÃÅ 

ÁÌÏÎÇ ×ÉÔÈ ÈÉÇÈ ÂÏÄÙ ÔÅÍÐÅÒÁÔÕÒÅ ÔÏ ÐÒÅÄÉÃÔ ÅØÅÒÃÉÓÉÎÇȱ). This suggests that having prior knowledge 

×ÏÕÌÄ ÌÅÓÓÅÎ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÅÆÆÏÒÔ ÔÏ ÂÅ ÐÒÅÃÉÓÅ ÁÂÏÕÔ ÔÈÅÉÒ ÕÎÄerstanding. To mitigate the effects of 

prior knowledge, and to support more generalizability to other domains, we decided to anonymize 

the inputs and outputs with an abstract system. 

4.6 EXPERIMENT 2 

Our second experiment focused on comparing the effectiveness of different explanations types for 

each of the 4 intelligibility questions. Using the explanation algorithms described in Table 1, we can 

isolate these explanations for each condition. 

4.6.1 METHOD 

This experiment followed the procedure of Experiment 1. For the None, Why, and Why Not 

conditions, participants see the same interface as in Experiment 1, but with the inputs obfuscated 

as A, B, and C, and the output values relabeled to a and b.  

 

Figure 4.5. What If explanation  facility. Participants would get to freely enter values for the 

inputs A, B, and C, and get the system to simulate what the output would be.  
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Figure 4.6. Participants in the How To condition view this facility. By specifying two of the 

input values and an output value, they can inquire the system to indicate possible values of 

the remaining input.  

Participants in the What If condition receive a What If interaction facility (see Figure 4.5) instead of 

an explanation to let them see the output given their choice of inputs. Participants in the How To 

condition received an interactive facility (see Figure 4.6) to determine how to get the system to 

produce a chosen output value. To control for the number of examples encountered, participants in 

the What If and How To conditions only get 12 complete examples (the even-numbered examples of 

other conditions), and can invoke their respective intelligibility facilities 12 times to see a total of 

24 examples (similar to the other conditions). For each condition, the explanations or explanation 

facilities will always appear as each example is executed.  

4.6.2 PARTICIPANTS 

158 participants were recruited, aged from 18 to 72 (M=31.9). There were 26-37 participants in 

each of the 5 conditions: None (31); Why (30); Why Not (31); How To (29); What If (37). On 

average, participants took 33 minutes to complete the study (similar to Experiment 1, they were 

required to complete the study within 15 to 50 minutes). Compensation was identical to 

Experiment 1. 

4.6.3 RESULTS 

We analyzed the results by using the Tukey HSD pairwise test, looking for differences between 

groups for our previously described metrics. Compared to participants in the None, What If and 

How To conditions, participants in the Why and Why Not conditions had more correct answers in 
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the Fill-in-the-Blanks tests, provided better reasons, and reported having a better understanding of 

the system.  Participants in the Why and Why Not conditions had an accuracy of 80.0% and 74.2%, 

respectively, compared to 61.7% for the None condition (F[1,152]=51.6, p<.001; see Figure 4.7).  

More of their answer reasons were coded as at least Inequality type rules (Inequality: 

F[1,153]=198, p<.001), Partially Correct (F[1,153]=195, p<.001) and Fully Correct (F[1,153]=108, 

p<.001). Finally, the self-reports of understanding for Why and Why Not were 3.14 and 2.79, 

respectively (see Figure 4.10a). 

Participants in the Why condition further distinguished themselves from Why Not by giving more 

Fully Correct reasons (contrast of Why with Why Not: F[1,153]=23.2, p<.001), and trusting the 

system output more (contrast of Why with None: F[1,153]=8.26, p<.001 vs. contrast of Why Not 

with None: p=n.s.) with means of 3.26, 3.0 and 2.46 for Why, Why Not and None, respectively (see 

Figure 4.10b). However, these participants also took the longest to answer each Fill-in-the-Blanks 

test case (M=26.3 seconds, compared to M=22.0 and M=17.0 for Why Not and None, respectively) 

(contrast of Why with None: F[1,145]=9.32, p<.003 vs. contrast of Why Not with None: p=n.s.). 

Surprisingly, participants in the Why Not condition were not significantly better at providing Why 

Not reasons than Why reasons. While participants in the What If condition were indistinguishable 

from those in the None condition across all of our metrics, we did find that participants in the How 

To condition were able to understand the types of rules used in the system better than participants 

in the None condition (answer reasons coded as Inequality or better: F[1,153]=15.6, p<.001). 

To identify why participants in the Why Not condition understood less about the rules than Why, 

we coded the quality of answer reasons on the number of inputs and rules mentioned. Participants 

in the Why condition provided more correct rules (M=1.19 vs. M=0.79; F[1,59]=6.16, p<.02) while 

those in the Why condition provided fewer extraneous rules (M=0.11 vs. M=0.23; F[1,59]=8.276, 

p<.006).  
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Figure 4.7. Percent of correct answers in the Fill -in -the-Blanks test section, by condition. 

Different colors indicate statistically significant differences.  

 

Figure 4.8. Percent of reasons coded as Inequality , Partially  Correct, or Fully  Correct in the 

Fill -in -the-Blanks Test section for each condition.  

 

Figure 4.9. Overall understanding of the system was similar to the understanding in -situ of 

individual examples, but responses were less precise (fewer correct descriptions).  
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(a)  

 

 

(b)  

Figure 4.10. Self-reports of (a)  understanding and (b) trust, by condition. Different colors 

indicate significant differences.  

4.6.4 DISCUSSION AND IMPLICATIONS 

The results in Experiment 2 validate those in Experiment 1 with a more generalized abstract 

domain, while not suffering from confounds due to prior domain knowledge. The Why and Why Not 

ÅØÐÌÁÎÁÔÉÏÎÓ ÉÍÐÒÏÖÅÄ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇȟ ÉÎÃÒÅÁÓÅÄ ÔÈÅÉÒ ÔÒÕÓÔ ÉÎ ÔÈÅ ÓÙÓÔÅÍȟ ÁÎÄ ÔÈÅÉÒ 

task performance. Examining the user reasons, we found that automatically generated Why 

explanations allowed users to more precisely understand how the system functions for individual 

instances compared to Why Not explanations. This is in spite of the Why Not explanations being 

logically equivalent to Why explanations since flipping the notȭÓ ÉÎ ÔÈÅ ÆÏÒÍÅÒ ÃÁn derive the latter. 

Moreover, we found that the Why Not participants tended to provide fewer correct rules (more 

participants could only provide one correct rule instead of two) for the answer reason, or provide 

extraneous inputs and rules that the system did not consider for the respective test cases, as 

compared to the Why participants. These indicate that Why Not participants tended to learn only 

part of the reasoning trace, and did not associate the two rules together, but treated them 

separately. This failure in rule conjunction could be due to the inclusion of negative wording (i.e. 

ȰÂÕÔȱ ÁÎÄ ȰÎÏÔȱɊ ÉÎ ÔÈÅ 7ÈÙ .ÏÔ ÅØÐÌÁÎÁÔÉÏÎȢ 4ÈÅ ÍÅÎÔÁÌ ÅÆÆÏÒÔ ÔÏ ÕÎÄÅÒÓÔÁÎÄ ÔÈÅ 7ÈÙ .ÏÔ 
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explanation and create such a rule conjunction is certainly more than those in the Why condition 

had to expend, which could explain the differences we observed. 

Neither the How To nor What If explanations showed much benefit over not having explanations. 

Some participants expressed their difficulty in using these explanation types, e.g.ȟ Ȱ) ÒÅÁÌÌÙ ÄÏÎȭÔ 

think I used it cause I did not understand itȱȠ ȰThe first few [times, I did] not even realize what the 

facility was for.ȱ Participants receiving What If explanations did not optimize their selection of 

examples, with some users even selecting input values out of range (e.g., A=100). Given the abstract 

and mathematical nature of the experimental setup, without any reasoning trace (unlike Why, Why 

Not, How To), almost none of these participants proposed inequality rules as reasons, similar to 

those in the None condition. However, as with the effect of domain knowledge (in Experiment 1), 

participants who did not receive reasoning traces did consider the inequality rules, but just not 

correctly (see Figure 4.5). 

Our results suggest that developers should provide Why explanations as the primary form of 

explanation and Why Not as a secondary form, if provided. Our results may suggest the 

ineffectiveness of How To and What If explanations, but these explanation types may be more 

useful for other types of tasks, particularly those relating to figuring out how to execute certain 

system functionality, rather than interpreting or evaluating. 

4.7 GENERAL DISCUSSION 

We now discuss the findings of our two experiments and their implications for real world context-

aware systems. 

4.7.1 IMPACT OF PRIOR KNOWLEDGE 

We found in Experiment 1 that participants formed less accurate and precise mental models of the 

system, compared to those in Experiment 2. This could be due to participants applying their prior 

knowledge of exercising to understanding how the system works and not paying careful attention 

to the explanations, as evidenced by the reasons they provided. This persistence of mental model 

was also shown in [Tullio et al., 2007] where participants received explanations, over time, of how 

an interruptibility system worked. As many real context-aware applications are based on common 

everyday activities, users may have strong prior knowledge of the domains although weak 

understanding of the applications, and may also not diligently learn from the provided 
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explanations. One way to address this could be to learn from the knowledge-based systems 

community, and provide deeper justification [Gregor and Benbasat, 1999] explanations to help 

users understand why the system behavior may be different from typical everyday understanding.  

4.7.2 FROM THE LAB TO THE REAL WORLD 

Our intelligibility test infrastructure differs from real applications in that users would have 

different goals when asking either of the intelligibility  question types. In reality, users would ask 

Why questions when they lack an understanding of how the application works, but Why Not 

questions when they expect certain results that the application did not produce. This distinction in 

user expectations and goals was not present in our lab study. Therefore, even if Why Not 

explanations are found to be less effective than Why explanations, for real systems, users may 

prefer the former explanation type to bridge gaps in their understanding and improve their trust 

and acceptance of the system.  

In order to investigate how our findings play in a real-world setting, we have developed an 

intelligible,  context-aware plugin [Lim and Dey, 2012a] for the AOL Instant Messenger (AIM) that 

uses predictions of buddy responsiveness to instant messages (based on [Avrahami and Hudson, 

2006]). In a future longitudinal deployment we plan to investigate how explanations affect usability 

and acceptability. 

4.7.3 IMPLICATIONS FOR CONTEXT-AWARE APPLICATIONS 

While our intelligibil ity test infrastructure has some characteristics of context-aware systems, real 

context-aware applications are more complex and several issues would have to be handled 

regarding the provision of explanation types. Firstly, applications that use decision tree models 

tend to have much larger trees learned from possibly hundreds of features, and it would not be 

scalable to generate explanations from them. For example, a tree of depth 13 could lead to the Why 

traces that have over 10 inequality relations. The explanations returned would be too long for users 

to assimilate and remember. One way to deal with the larger tree size is to just provide subsets of 

reasons in the explanations. For example, the Why trace could just provide the top 5 inequality 

relations ranked by how much each relation affects the prediction accuracy. Providing subsets of 

explanations would provide users with only partial understanding of each application behavior 

instance, and users may have to interact with the system longer before understanding the system 
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better. One way to reduce overall learning time may be to start new users with higher-detail 

explanations, then progress to less detail the more they interact with the system. 

While our setup dealt with decision tree learners, the naïve Bayes classifier is another popular 

learner used in context-aware applications. Even though they are not as intuitive as decision trees, 

Naïve Bayes models can be interpretable, and there are several visualizations to explain them (e.g., 

nomograms [Mozina et al., 2004]). However, some learners (e.g., Support Vector Machines with 

Gaussian kernels, Neural Networks) are considered black-boxes [Nugent and Cunningham, 2005] 

and are not inherently interpretable. Fortunately, there have been some attempts to make them 

explainable using decision trees or rules (e.g., [Andrews, Diederich, and Tickle, 1995]). We can then 

use the same techniques to provide explanations for systems based on decision tree models. 

Another issue with real systems is that users may not like to receive explanations all the time, but 

on demand instead, because the former may be too obtrusive. In Chapter 9, we performed a study to 

compare if users can still benefit sufficiently from explanations if they get to choose when and how 

often they can receive explanations, and if this usage of explanations can lead to improved learning. 

Our results suggest the effectiveness and importance of providing Why and Why Not explanations 

over How To and What If. The former two deaÌ ×ÉÔÈ .ÏÒÍÁÎȭÓ ÇÕÌÆ ÏÆ ÅÖÁÌÕÁÔÉÏÎȟ ×ÈÉÌÅ ÔÈÅ ÌÁÔÔÅÒ 

two deal with the gulf of execution [Norman, 1988]. While we feel that this dichotomy should 

remain true for informative context-aware systems (e.g., applications to determine interruptibility 

of others to inform onlookers [Avrahami and Hudson, 2006; Tullio et al., 2007]), systems that are 

more pro-active (e.g.ȟ ÁÐÐÌÉÃÁÔÉÏÎÓ ÔÈÁÔ ÓÅÎÄ ÎÏÔÉÆÉÃÁÔÉÏÎÓ ÂÁÓÅÄ ÏÎ ÔÈÅ ÕÓÅÒȭÓ ÉÎÔÅÒÒÕÐÔÉÂÉÌÉÔÙɊ ÍÁÙ 

benefit more with the How To and What If explanations. With those explanations, users would be 

better informed of how they can carry out their tasks. 

4.8 CONCLUSIONS AND FURTHER WORK 

We have described a large controlled study comparing the provision of explanations addressing 

four explanation type questions (Why, Why Not, How To, and What If). We developed a web-based 

platform that provides a functional input-output interface of an intelligent system prototype that 

provides different types of explanations. Our findings suggest that providing reasoning trace 

explanations for context-aware applications to novice users, and in particular Why explanations, 

ÃÁÎ ÉÍÐÒÏÖÅ ÕÓÅÒȭÓ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÁÎÄ ÔÒÕÓÔ ÉÎ ÔÈÅ ÓÙÓÔÅÍȢ 
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Our results of the relative strengths and weaknesses of each explanation type came from a between-

subjects study, but to gain an insight into which explanation type individual users may prefer, we 

wish to run a within -subjects study, where each participant sees multiple explanation types. In 

Chapters 7 and 9, we investigate this with an intelligible context-aware mobile application, which 

provides several explanation types. 

Furthermore, though our results do not show the effectiveness of How To and What If explanations, 

we believe they may be more useful given better motivating scenarios and better interface design. 

Therefore, we continued to pursue our investigations into these explanation types in later work 

(Chapters 5, 6, 7, and 9), and specifically sought out a user friendly interface for explanations in 

Chapter 7. 

We next sought to widen the scope of intelligibility to include more questions that users may ask of 

context-aware applications. In Chapter 5, we expand on four intelligibility question types to include 

11 question types for our taxonomy of Intelligibility. 
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5 ASSESSING DEMAND FOR 

INTELLIGIBILITY 

This chapter is an extension of the work presented in: 

Lim, B. Y. and Dey, A. K. (2009). Assessing Demand for Intelligibility in Context-Aware 

Applications. In Proceedings of the 11th international Conference on Ubiquitous Computing 

(Orlando, Florida, USA, September 30 - October 03, 2009). Ubicomp '09. ACM, New York, NY, 

195-204. 

ABSTRACT. Intelligibility can help expose the inner workings and inputs of context-aware 

applications that tend to be opaque to users due to their implicit sensing and actions. However, users 

may not be interested in all the information that the applications can produce. Using scenarios of four 

real-world applications that span the design space of context-aware computing, we conducted two 

experiments to discover what information users are interested in. In the first experiment, we elicit 

types of information demands that users have and under what moderating circumstances they have 

them. In the second experiment, we verify the findings by soliciting users about which types they 

would want to know and establish whether receiving such information would satisfy them. We 

discuss why users demand certain types of information, and provide design implications on how to 

provide different explanation types to make context-aware applications intelligible and acceptable to 

users. 

5.1 INTRODUCTION 

In Chapter 4, we found that some types of explanation were more effective than others in improving 

ÕÓÅÒÓȭ ÕÎÄÅÒÓÔÁÎÄÉÎÇ ÁÎÄ ÔÒÕÓÔ ÏÆ Á ÃÏÎÔÅØÔ-aware intelligent system. However, it was not clear what 

information users actually want to know and will ask about, and whether there are more explanation 
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types than we had previously considered.  In this work, we explored and assessed a taxonomy of user 

demand for intelligibility: which types of questions users want answered, and how answering them 

improves user satisfaction of context-aware applications. User satisfaction is obviously crucial for 

adoption and acceptance of such technologies.  

To make context-aware applications intelligible so that they can expose their inner functions to the 

end-user, much research has looked into how to generate explanations from the underlying 

application models and deliver them to users (e.g., [Cheverst et al., 2007; Ko and Myers, 2009; 

Kulesza et al., 2009; Lim and Dey, 2009]). However, lit tle work has been done to compare the 

impact of different types of explanations or in the domain of context-aware computing. Users may 

not be receptive to these explanations, especially when they end up using the applications in ways 

for which they were not designed [Orlikowski , 2000], and when those explanations do not adapt to 

ÖÁÒÙÉÎÇ ÓÉÔÕÁÔÉÏÎÓ ÏÆ ÕÓÅȢ 4ÈÕÓ ÉÔ ÉÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÅØÐÌÏÒÅ ÉÎÆÏÒÍÁÔÉÏÎ ÄÅÍÁÎÄ ÆÒÏÍ ÔÈÅ ÕÓÅÒȭÓ 

perspective lest effort is wasted in implementing explanations that would see little use.  

Researchers have explored what users want to know in other domains. McGuinness and colleagues 

[Glass, McGuinness, and Wolverton, 2008; McGuinness et al., 2007] have identified information 

need factors that influence the level of trust in adaptive agents. They used interviews to identify 

explanation requirements and rank question types according to their helpfulness. Gregor and 

BenbasatȭÓ [1999] meta-review investigates explanation types that users of knowledge-based 

systems (KBS) would like to have. While adaptive agents and KBS are similar to context-aware 

applications (which may also use agents or knowledge bases and rules), they are work-oriented, 

while context-aware applications are targeted for everyday use, for many more situations and a 

wider range of users, and under more situations [Abowd, Mynatt, and Rodden, 2002]. Thus we need 

to explore how these different requirements would lead to different intelligibility needs. 

The chapter is organized as follows: we discuss how supporting intelligibility by providing 

explanations that users want, has the potential to increase user satisfaction and thus acceptance of 

context-aware applications. We then describe our experimental design that uses surveys and 

scenarios to expose users to a range of experiences with context-aware applications. We present 

two experiments that investigate what types of information users want. In the first experiment, we 

elicit the types of information users are interested in and under what moderating circumstances. In 

the second experiment, we validate our findings by presenting users with 11 information types as 

intelligibility features in a controlled study and measure their impact on user satisfaction. We end 
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with a discussion of why users of context-aware systems demand certain types of information in 

different situation, and provide design recommendations for providing different information types 

to make context-aware systems intelligible and acceptable to users.  

5.2 HYPOTHESES AND APPROACH 

We hypothesize that there are different types of information in which users are interested, for 

different  context-aware applications, and different situations. Since people ask information seeking 

questions due to cognitive disequilibrium [Graesser and McMahen, 1993] and to correct knowledge 

deficits [Van der Meik, 1987], we believe that satisfying these information demands through 

intelligibility can lead to better satisfaction when using these applications and improved adoption 

and acceptance. In order to elicit the information demands users have for context-aware 

applications under various situations, we conducted a study of the demand for explanations and 

different types of information in several scenarios users may find themselves in as they use context-

aware applications.  

Using described scenarios instead of actual field deployments allows us to quickly and more 

effectively study and understand the impact of different information on intelligibility and 

satisfaction, without having to implement and deploy a variety of applications, any of which could 

fail for reasons independent of our main focus. Next we describe four applications we use to focus 

our scenarios.  For each application, the scenarios intentionally span a range of incorrect, 

appropriate and unexpected or anomalous, but not necessarily wrong behavior, to probe directly at 

the issues of intelligibility and satisfaction. 

5.3 SETUP: SCENARIOS OF FOUR CONTEXT-AWARE 

APPLICATIONS 

To investigate the demand for intelligibility in the space of context-aware applications, we selected 

four protot ypical context-aware applications: (i) a desktop interruption management application 

(an Instant Messenger plugin), (ii) a remote person monitoring peripheral display (Digital Family 

Portrait), (iii) a context-aware reminder application (CybreMinder), and (iv) a mobile context-

aware tour guide (CyberGuide). All applications in this study behave according to models of learned 

decision trees. 
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5.3.1 INTERRUPTION MANAGEMENT 

  

Figure 5.1: (Left) Screen capture of a fi ve-second video clip for the IM Auto -Notification 

application survey , showing the user rushi ng to meet a deadline. (Right) S creenshot of a non -

work IM message which  had been suppressed and delivered later.  

We designed the instant messenger (IM) auto-notifi cation plugin based on recent work on a 

predictive model to determine how long a buddy would take to respond to a message [Avrahami 

and Hudson, 2006]. Our application uses the responsiveness prediction to determine the subjectȭÓ 

interruptibility [ Fogarty et al., 2005], and either forwards or suppresses incoming IM messages. We 

developed four main scenarios for this application where the subject is in various states of 

availability : 

1. Rushing to reach an imminent deadline,  

2. Taking a break and surfing the Internet, 

3. Reading a work-related book, and  

4. Returning from a protracted informal meeting. 

For each scenario, the user receives an IM message from 

¶ A colleague regarding critical work, or  

¶ A friend regarding a fun video. 

There are 16 scenarios (4 availability  × 2 received messages × 2 application actions). 
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5.3.2 REMOTE MONITORING 

 

  

  

Figure 5.2: (Left) Screen capture of a five -second video clip for the Elderly Remote 

Monitoring application survey, showing the user  casually glancing at the display. 

Screenshot s of a normal event (Middle)  and an anomalous event (Right) . 

We used the Digital Family Portrait [Mynatt et al., 2001] as an example for remote monitoring 

systems. It leverages a picture frame to present the current status of an elderly family member as 

he or she goes through daily life living independently in her home, to remote loved ones. Our 

rendition of the Digital Family Portrait is based on a decision tree model which we define as several 

small subtrees, each addressing groups of scenarios. We present a subset of what the sensors on the 

ÅÌÄÅÒȭÓ ÂÏÄÙ ÁÎÄ ÉÎ ÔÈÅ ÈÏÍÅ ÁÒÅ ÄÅÓÃÒÉÂÅÄ ÁÓ detecting:  

1. Whether the family member has fallen,  

Whether there is a fire; 

2. How many times the toilet has been used recently,  

Whether the usage frequency is anomalous,  

Whether the system thinks this could be a symptom of incontinence;  

3. Whether the family member is watching TV,  

Whether the family member is sleeping 

4. 7ÈÅÔÈÅÒ ÔÈÅ ÆÁÍÉÌÙ ÍÅÍÂÅÒȭÓ ÈÏÕÓÅ ÉÓ ÖÁÃÁÎÔȟ 

Whether there is an intruder.  

For this application, there are a total of 13 scenarios. 
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5.3.3 REMINDER 

 

  

 Figure 5.3: (Left) Screen capture of a five -second video clip for the Reminder application 

survey, showing the phone trigge ring at the pantry . Screenshot s of a work -related reminder 

(Middle)  and personal reminder (Right) . 

We used CybreMinder [Dey and Abowd, 2000] as an example for reminder systems. CybreMinder is 

a context-aware reminder application that considers combinations of contexts, such as location, 

time, and collocation, to trigger reminders. It is based on several personal and environmental 

sensors, and triggers reminders based on the satisfaction of one of several rules (modeled as a 

decision tree). We developed scenarios that would relate to three types of reminders (mentioned in 

[Dey and Abowd, 2000]):  

1. Reminder to discuss an important issue when the user and a colleague serendipitously meet 

(collocation trigger); 

2. Reminder to take the umbrella when it is forecasted to rain and the user is approaching the 

front door (location and information trigger); and,  

3. Reminder to discuss party planning with a friend when the user and the friend are free, and 

the user is at the office (complex trigger). 

We developed 13 scenarios based on these three reminders.  
















































































































































































































































































































































































































































































































































































































































































































































































