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Abstract 

A key challenge of the learning sciences is moving research results into practice. 
Educators on the front lines perceive little value in the outputs of education 
research and demand more “usable knowledge”. This work explores the potential 
instead of usable artifacts to translate knowledge into practice, adding scientists as 
stakeholders in an interaction design process. The contributions are two effective 
systems, the scientific and contextual principles in their design, and a research 
model for scientific research through interaction design. 

College student study practices are the domain chosen for the development of these 
methods. Iterative ethnographic fieldwork identified two systems that would be 
likely to advance both learning in practice and knowledge for applying the 
employed theories in general. Nudge was designed to improve students’ study time 
management by regularly emailing students with explicit recommended study 
activities. It reconceptualizes the syllabus into an interactive guide that fits into 
modern students' attention streams. Examplify was designed to improve how 
students learn from worked example problems by modularizing them into steps and 
scaffolding their metacognitive behaviors though problem-solving and self-
explanation prompts. It combines these techniques in a way that is exceedingly easy 
to author, using existing answer keys and students' self-evaluations. 

Nudge and Examplify were evaluated experimentally over a full semester of a 
lecture-based introductory chemistry course. Nudge messages increased students’ 
sense of achievement and interacted with students’ existing time management skills 
to improve exam grades for poorer students. Among students who could choose 
whether to receive them, 80% did. Students with access to Examplify had higher 
exam scores (d=0.26), especially on delayed measures of learning (d=0.40). A key 
design decision in Examplify was not clearly resolvable by existing theory and so 
was tested experimentally by comparing two variants, one without prompts to solve 
the steps. The variant without problem solving was less effective (d=0.77) and less 
used, while usage rates of the variant with problem solving increased over time. 

These results support the use of the design methods employed and provide specific 
empirical recommendations for future designs of these and similar systems for 
implementing theory in practice. 
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1. Introduction 

Developments from the learning sciences move slowly, if at all, into educational 
practice. Consider the low adoption of spaced practice of learned material, a robust 
finding first observed by Hermann Ebbinghaus in 1885 and validated at scale in 
classrooms with thousands of students in 1939 (Ebbinghaus, 1913; Spitzer, 1939; 
1939; Whitehurst, 2003). Students still cram. Teachers still march linearly through 
curriculum and rarely repeat assessments. Why is it so difficult to implement 
research findings into practice? Burkhardt and Schoenfeld argue that “part of the 
reason is that the traditions of educational research are not themselves strongly 
aligned with effective models linking research and practice” (2003). 

The field of human computer interaction research, like many applied sciences, has 
also grappled with the gap between research and practice (Buie et al., 2010). In this 
dissertation I draw on methods common in HCI to describe an emerging model of 
linking research to practice in education: the operant probe. I adapt the HCI 
methods user experience design to an education-focused learner experience design, 
first exploring learner experiences through sketching to map out design 
opportunities. Then from this map I designed two operant probe systems to support 
the practice of studying: Nudge for allocating study time and Examplify for better 
learning from example solutions. In the following chapters, I describe the potential 
benefits of operant probe development, the fieldwork that inspired the systems, the 
design iterations to create them, and the formal evaluation to rigorously validate the 
design decisions. I then return to examining the process. But first, I elaborate how 
research in education can benefit from new design processes. 

1.1 Motivation 

1.1.1 Education is important to improve 

Quality education is critical to modern society. The cognitive skills of a population 
are powerfully related to their individual earnings, distribution of income, and 
economic growth (“The Role of School Improvement in Economic Development,” 
2007). While continued economic growth requires growth in cognitive skills, the 
United States educational system is in decline. In 1983, the Reagan administration 
published A Nation at Risk (United States National Commission on Excellence in 
Education, 1983) and in 2012 the Council on Foreign Relations reports that the poor 
state of American education threatens not just US prosperity but its national 
security (Klein & Rice, 2012). The comparative decline of US education is most acute 
in higher education. While America is ranked first in the world in college degrees 
per capita for people aged 55 to 64, for ages 45 to 54, it is third and in ages 25 to 34, 
it has fallen to 10th place globally. While this is a decline in rank, it is mostly due to 
other countries improving their education while the US has been stuck at 40% 
college completion for decades, despite large scale reforms such as the No Child Left 
Behind act (No Child Left Behind Act, 2002). 
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1.1.2 Education is difficult to improve reliably 

Part of the challenge is how difficult it is to know what proposed changes work in 
practice. This is due in part to the history of education research in the US. Quoting 
from the U.S. Department of Education’s Strategic Plan for 2002–2007 (2002, cf. 
Burkhardt & Schoenfeld 2003): 

Unlike medicine, agriculture and industrial production, the field of education operates 
largely based on ideology and professional consensus. As such, it is subject to fads and 
is incapable of the cumulative progress that follows from the application of the 
scientific method and from the systematic collection and use of objective information 
in policy making. We will change education to make it an evidence-based field. (p. 48) 

Since then the federal Institute for Educational Science, established by the No Child 
Left Behind Act, has fostered an emphasis on determining “what works”. They have 
defined a gold standard for research, randomized controlled trials. Yet, many of the 
studies they fund fail with “no effects”. Researchers and other experts question the 
design of these studies, running up to $14.4 million. Scholars worry that even when 
study results are positive, they do not carry over into other educational settings. 
Policy makers want to know, “What will work in my school?” (Viadero, 2009). 

Part of the difficulty in reforming education research is the tension between 
understanding how learning works, understanding how to improve learning, and 
actually improving learning. Let us return to the example of spaced repetition. Why 
isn’t it used more in practice? We understand learning enough to know that 
distributed (spaced) practice has better long term learn effects than massed practice 
(Committee on Developments in the Science of Learning, 2000; Karpicke & Blunt, 
2011). We also know that we could improve learning by increasing the amount of 
distributed practice by students. However, the next step is the hard part. Students 
know massed practice by another name, cramming, and when they are told it is not 
the best strategy for studying, they continue to use it. The classroom environment 
makes that the easiest option for most students. It doesn’t require planning or self-
regulation; it let’s them avoid confronting the limits of their knowledge; it isn’t 
facilitated by the instructor; and it doesn’t affect their grades much as they still do as 
well on the assessments they’re given. 

1.2 Scientific Research through Interaction Design 

How do you replace cramming with more effective study strategies? The answer is 
not a matter of just science but also of design. Science is powerful because of its 
ability to generalize, through nomothetic descriptions. In this case, the science falls 
short of solving the problem of shaping student learning. To change a student’ study 
strategies requires recognizing and fitting with the fuzzy factors that influence that 
student’s behavior in her specific environment. Design is an idiographic tradition, 
which tends to specify and understand the meaning of contingent phenomena in 
order to change a current state of the world to a preferred state. To use the power of 
scientific theories of learning to improve actual learning requires creating working 
solutions that operationalize basic research into practice. To evaluate the 
operationalization requires then evaluating those artifacts and their features for 
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their ability to effect the desired changes. Through many specific designs, 
generalizations can be developed for normalized solutions and theories of 
implementation. I describe this approach as Scientific Research through Interaction 
Design, building on the concept of Research through Design in the HCI literature (J. 
Zimmerman, Forlizzi, & Evenson, 2007). 

1.3 Operant Probes 

Further, we as a field need these artifacts to be designed to operate in the “real 
world”, as Fishman et al. contend: 

Why are cognitively oriented technology innovations not widely used in schools? Why 
aren’t they scaleable or sustainable? We believe an underlying explanation to be that 
we, as a scholarly community, have not focused our research on the development and 
use of cognitively oriented technologies in a way that addresses the fundamental needs 
of school systems. Instead, research on cognitively oriented learning technologies has 
focused primarily on students, teachers, and classrooms as the primary unit(s) of 
analysis. Though we recognize the need to link technology and reform, the field lacks a 
bridge between focused research and development of learning technologies and the 
broad-based systemic use of these innovations in schools. Shepard (2000) recognized 
this as problem for the broader educational research community in her AERA 
Presidential Address, when she advised researchers to develop methodologies that 
embrace “dilemmas of practice.” Such work “would advance fundamental 
understandings at the same time that they would work to solve practical problems in 
real-world settings” (p. 13). This focus would lead to the production of more readily 
“usable knowledge” (Lagemann, 2002). As researchers, we have developed rich 
understandings of how technology can foster learning in specialized situations; we 
now need to develop knowledge about widespread appropriation and use of 
cognitively oriented technologies by schools and school systems as part of real-world 
reform efforts. (Fishman, Marx, Blumenfeld, Krajcik, & Soloway, 2004) 

 

In this dissertation I developed two cognitively oriented learning technologies that 
operationalize theory into real-world contexts . The resulting designs are not just 
“usable knowledge” but “usable systems”. Moreover, their use serves to help inform 
scientific theory. I classify them as “operant probes”, a term and type of research 
contribution that I motivate and define in Chapter 2.  Operant probes form part of an 
emerging paradigm of research, using web technologies and scale to design research 
artifacts that operate in vivo and provide the controls and data collection needed for 
rigorous quantitative research. 

1.4 Process 

This work explores methods for designing operant probes in the approach of 
Scientific Research through Interaction Design, adapting HCI methods to education 
research. The process can be organized by the stages of Bannan-Ritland’s 
Integrative Learning Design Framework (Bannan-Ritland, 2003). In this framework, 
the design process begins with Informed Exploration of the design context, followed 
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by Enactment and then Evaluation of Local Impact. Finally, the design may be 
evaluated for Broader Impact. The designs in this work have not yet been evaluated 
for Broader Impact but I will speak to the aspects that support confidence in their 
suitability to transfer into other contexts. 

1.4.1 Informed Exploration 

To develop systems that fit into real-world contexts requires a rich understanding of 
those contexts. Because my goal is to develop new types of probes to open new 
opportunities for research, I begin with an exploration of opportunities in a specific 
context. Finding opportunities does not require a formal method, but here I offer a 
reliable method, adapted from the validated best practices of HCI, to rapidly identify 
new opportunities. I extend HCI user experience design to the unique challenges of 
learner experience design, evaluating these opportunities by both learner impact and 
contributions to accretive education research. 

I chose large college lecture courses as the context of inquiry. Lecture courses are 
presently the dominant way that the 20 million college students in the US are 
taught. As a centuries-old mode of instruction they are ripe for innovation. The goal 
here was to find opportunities to directly improve learning for a large number of 
students. This opportunity mapping approach to the Informed Exploration is fully 
described in Chapter 3. In this phase I identified two opportunities for which to 
design: 1) helping students to better allocate their study time and 2) provide 
students with more immediate feedback on their learning. 

1.4.2 Enactment 

With the two design goals, I iteratively developed two software systems, Nudge and 
Examplify. Nudge (attempts to improve how student allocate their study time by 
decomposing the course syllabus and adding explicit tasks with due dates (such as 
“Study for the upcoming exam” one week before it takes place.) The small tasks are 
sent to the student by email when they are due and students can indicate their 
progress on the task. Examplify enhances traditional answer keys with an 
interactive activity to scaffold how students learn from them. 

From storyboards evaluated through user interviews to working prototypes 
evaluated in pilot classroom trials, each design decision was weighed between its 
ability to operate on the environment to achieve the desired outcome and to probe 
the environment and its use to advance the science of learning. As operant probes, 
part of the design process was to refine an understanding of the implications and 
limits of the evidence in general theory and local observations for each design 
decision. When design questions could not be satisfactory resolved by general 
theory or local observations, they were identified as candidates for resolving 
empirically using probe variants. In this work, a tension was identified in the 
practical recommendations of the literature on the “worked example effect” in 
cognitive load theory versus the “testing effect” in memory theory. To help resolve 
this both for the design of this system and future similar systems, a variant of 
Examplify was produced for each of the two competing predictions of the theories in 
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practice. In one variant of the tool, the problem-solving prompt was removed so that 
it was strictly a worked example. The full iterative development process of each is 
described the chapters on Nudge and Examplify (Chapters 4 and 5). 

1.4.3 Evaluation 

With the two operant probes fully developed, the next phase was to evaluate their 
efficacy through an experiment. The experiment took place in a large college 
introductory chemistry course consisting of two similar sections. The larger section 
was chosen as the Experimental section and received both Nudge and Examplify 
while the other, control section, had neither. Within the experimental section, 
students who opted into the study were randomly assigned to a Nudge condition 
(Nudge required or unavailable) and an Examplify condition (including prompts to 
solve or not). Nudge and Examplify both fit well to the context. Students used both 
systems voluntarily through the whole semester, including students not in the 
study. 

Both Nudge and Examplify affected student learning measures. Nudge interacted 
with students’ time management skills to better aid students with worse time 
management. Examplify provided big gains on robust learning, supporting the 
testing and proceduralization over worked example effects in practice. On 
immediate measures, students with the variant that prompts to solve performed 
better than students both with the nonsolving control variant (d=.35) and business-
as-usual control section (d=.26). On delayed measures, the effect was roughly a full 
letter grade over the nonsolving control variant (d=. 77) and business-as-usual 
control section (d=.40). 

On the data production measures, Nudge provided data on student activities that 
could be used to model student study practices. Examplify logs provided data that 
helped explain the mechanisms of its effects. The full analyses of each system are 
detailed in their respective chapters (4 and 5). 

1.4.4 Wrap-up  

I do not set out in this work to answer a specific theoretical question. Instead, this 
work is to improve the practice of education by designing 1) technological artifacts 
that enact learning science principles to effect learning objectives in a specific 
natural context and 2) evaluations of the artifacts to inform future applications of 
said principles and the principles themselves. 

In doing so, this work contributes to processes of design research in education and 
to specific design implications for two classes of technologies for education. The 
primary contribution to design research broadly is the articulation of the operant 
probe as a productive research artifact and the scholarship to situate it within 
existing design practices and research issues (Chapter 2). A related contribution is 
the reflection on the learner experience design methods suitable to designing 
operant probes, chiefly mapping of opportunities (detailed in Chapter 3). With these 
processes, I developed two systems that operationalize and thus inform the real-
world application of theory. Nudge informs the potential for supporting student 
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time use and the contextual utility of theoretical principles of motivation (Chapter 
4). Examplify informs the potential for supporting students learning from worked 
solutions and the contextual utility of theoretical principles of cognitive load, 
practice and proceduralization. Further, the evaluation of Examplify experimentally 
measures the relative utility of competing theoretical principles when put to use 
(Chapter 5). 

I argue that through an analysis of existing methods and reflection on my design 
processes and artifacts, I will demonstrate a new and effective approach to design 
research in education. Stated explicitly: 

The Scientific Research through Interaction Design approach 
can enact preferred states in a manner that explains 
outcomes, informs the conditions for applying scientific theory, 
and generates new experimental hypotheses. 

In Chapter 6, I evaluate the success and limitations of this work in supporting this 
thesis statement by reflecting on the cases of Nudge and Examplify. 
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2. Operant Probes for Scientific 
Research through Interaction Design  

2.1 Introduction 

A persistent issue in education research is the question of what its relevance is to 
actual educational practice. Burkhardt and Schoenfeld argue that “part of the reason 
is that the traditions of educational research are not themselves strongly aligned 
with effective models linking research and practice” (2003). Shepard, in her AERA 
Presidential Address, called for the field to develop methodologies that embrace 
“dilemmas of practice.” (Shepard, 2000) Leaders in the field call for “usable 
knowledge” (Lagemann, 2002) using these methods. 

Knowledge is usually communicated through media (text and images), but 
knowledge also lives in and is communicated by designed functional artifacts (Cross, 
1999). Modern computing makes it easy to share not just bits that represent words 
but also bits that represent interactive artifacts (i.e. software). Fishman et al. call for 
design knowledge to make software that is cognitively oriented, scalable and 
sustainable (Fishman et al., 2004). This work posits that developing this knowledge 
base is promoted by targeting the design of “usable artifacts”. These are research 
artifacts that can cross the chasm into practice or be adapted by practitioners. I 
explore the potential of such artifacts to promote research and illustrate the 
opportunity for a new type of situated research artifact, the operant probe. 

2.2 Design-based Research in Education 

Education is fundamentally a design endeavor. Adopting Simon’s definition of 
design, "transformation of existing conditions into preferred ones" (Simon, 1969), 
all facets of education are design: e.g. teaching improves conditions of learners’ 
minds; better instruction improves conditions of teaching; better technology and 
research improves instruction; better public policy improves all of the above. 

To help close the gap between research and practice, education researchers in the 
early 90s began “design-based experiments” wherein they would iteratively and 
reflectively prototype interventions in classrooms (Brown, 1992; Collins, 1992). 
This grew into the Design-based Research methodology and movement, The Design-
based Research Collective (Design-Based Research Collective, 2003). However there 
are numerous conceptions and splinter methodologies and terminologies. Two 
excellent surveys are those of Mor & Winters and Wang & Hannafin (Mor & Winters, 
2007; Wang & Hannafin, 2005) and the book Educational Design Research compiles 
critical essays (van den Akker, Gravemeijer, McKenney, & Nieveen, 2006b). Howley 
contrasts these conceptions of design within the field of education with design more 
generally (Howley, 2010). To stay above the terminological morass, I will use her 
term DBRE to indicate the cluster of design-based research methods in education. 

DBRE is motivated by the observation that the direct application of theory is not 
sufficient to solve the complicated problems of education (van den Akker, 
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Gravemeijer, & Nieveen, 2006a). Instead researchers situate themselves within the 
context of use and iteratively intervene by reflecting on the situation. These well-
documented reflections and iterations form the basis of “humble theories”, which 
are domain-specific and pragmatic for the activity of design (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003). 

DBRE adds an important methodology that was missing from the toolbox of 
education research (Collins, Joseph, & Bielaczyc, 2004). However since the debut of 
DBRE in 1992, modern computing has opened new opportunities for situated 
interventions. The field of Human Computer Interaction has made greater progress 
in understanding how to build usable computing systems. I will switch to the lens of 
HCI to articulate this emerging research paradigm and then return to how it can 
address some of the remaining gaps in the methodological toolbox of education 
researchers. 

2.3 Scientific Research Through Interaction Design 

Interactive computing systems have the potential to improve the quality of 
education while lowering its costs. The field of human computer interaction has 
developed to address the considerable complexities in making systems that people 
can and want to use. Further, the field of HCI, like many applied sciences, has also 
grappled with the gap between research and practice (Buie et al., 2010). 

Because the term “design” is so frustratingly polysemous, I situate this work in a 
particular framework of “research through design” (J. Zimmerman et al., 2007). RtD 
describes much of HCI research and draws from Frayling’s distinctions between 
research into, through, and for art and design (Frayling, 1993). Research through 
Design defines (i) a model of interaction design research that benefits both research 
and practice communities and (ii) a set of criteria for evaluating the quality of an 
interaction design research contribution. 

A distinction of RtD from other design methods is the conception of the artifact itself 
as a research outcome. The artifacts, in transforming the world from its current 
state to a preferred state, serve as exemplars for HCI design practitioners. While the 
artifacts themselves communicate design knowledge and facilitate extension of the 
ideas therein, RtD contributions also describe their process in detail to support 
practitioners in making similar insights in their own design work. As illustrated in 
Figure 2-1, through this process the interaction designer can synthesize the 
knowledge from multiple modes of inquiry into an artifact that passes easily into 
practice. 
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Figure 2-1 Pathways and deliverables between and among HCI researchers and practitioners (from 
Zimmerman et al. 2007) 

 

RtD distinguishes research activities from practice, in part, by the goal “to make the 
right thing: a product that transforms the world from its current state to a preferred 
state.” They differentiate research artifacts from design practice artifacts in two 
important ways: 

First, the intent going into the research is to produce knowledge for the research and 
practice communities, not to make a commercially viable product. To this end, we 
expect research projects that take this research through design approach will ignore 
or de-emphasize perspectives in framing the problem, such as the detailed economics 
associated with manufacturability and distribution, the integration of the product into 
a product line, the effect of the product on a company’s identity, etc. In this way design 
researchers focus on making the right things, while design practitioners focus on 
making commercially successful things. 

This distinction between the right and the commercially viable highlights an 
important issue in education research, distinct from HCI practice. While researchers 
are generally concerned with what is right and good for learners, the communities 
that produce the products in the educational marketplace are concerned with what 
creates a perceived value for which the consumer will provide money (or attention 
for advertising, etc.). In education, this often means that commercial products are 
adopted that may be viable but not beneficial to learning outcomes, or at least not as 
beneficial as some right but less viable research artifact. However, the public and 
philanthropic funding of education provides an opportunity to make systems that 
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are both right and also viable through non-commercial means of distribution and 
funding.  

A second distinction of the education domain is that the most common practitioners, 
teachers, do not design technologies. While they design experiences of how 
technologies will be used in their courses, and may re-appropriate technology in 
creative and inventive ways, they do not and can not be expected to design the 
technologies themselves. Participatory design methods like co-design draw in 
education practitioners as actors in the design process (Roschelle & Penuel, 2006), 
but at some point the system is made and deployed to practitioners who will have 
nothing to do with its design. 

The difficulty in translating research into practice is a great challenge to the 
education research enterprise. There is a growing literature of “usable knowledge” 
in the form of practice guides, etc. However not all basic knowledge can take these 
forms. We also need “usable artifacts” that operationalize this knowledge into a 
usable form. By designing interactive usable artifacts, we can bring that knowledge 
into practice and help to inform the practical constraints of existing scientific 
knowledge and opportunities to advance it. Within the frame of Research through 
Design, I call this approach Scientific Research through Interaction Design. 

2.4 Operant probe as research artifact 

Interactive software systems are an ideal form for operationalizing knowledge in 
education. They can shape the behaviors of learners and mediate their interactions 
with learning materials, peers and facilitators. Further, recent advances in 
computing afford software applications that (i) cost little to develop, deploy and 
scale; and (ii) provide instrumentation to collect data and run controlled 
experiments on live systems in natural contexts. 

The costs of building web-based software systems are lower than ever. Software 
standards like HTML5 have driven down the costs of developing for a wide 
audience. Open-source operating systems and application stacks have driven down 
the costs of software infrastructure. Commoditization of computing has driven 
down the costs of hardware infrastructure. Today, one lone developer can make a 
web-based application, integrated with other services, and serve it to millions of 
users. The costs to develop and run such systems are miniscule compared to the 
value they can create. For example, Instagram was recently purchased for $1 billion 
and had only 13 employees. Projecting falling prices of server resources, a 
researcher could leave all their software systems running online the rest of their 
careers for less than the cost of a conference trip. 

Further, these systems can be used by people in real natural settings. Today 
software is constantly adapting to users and the objectives of its designers. For 
example, Google monitors everything its users do and make inferences to update 
their designs. These are small hypotheses about how a change to the product (e.g. 
autocompletion of search queries) can improve some desired outcome (such as 
speed to find a satisfactory search result). Often a hypothesis is tested through an 
A/B test which randomly assigns some users to one variant of the system. In this 
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way Google can develop its theories of its specific product and general theories of 
user behavior. 

The software then is an artifact which operates on the user’s environment (e.g. web 
browser) to achieve an outcome (e.g. fast search) and also probes that environment 
for data to improve the product’s design and more general theories. Let us name this 
type of artifact an “operant probe”. As an outcome of Research Through Interaction 
Design, an operant probe creates a new space that is both research and practice 
(Figure 2-2). Research from different modes of inquiry can be brought together to 
influence the design of an operant probe. The probe, operating in real world 
contexts, can then influence the learning experience. This influence can be 
experimentally manipulated to test theories, both humble and robust. Finally, all the 
data from its use can be used to model the outcomes and mechanisms. With these 
features, I offer a formal definition: 

Operant probe (n): an in vivo research apparatus that 
operationalizes theoretical constructs and collects data by 
which to both evaluate its effects and model the mechanisms. 

 

 
Figure 2-2 Relationship of Operant Probes to communities and contexts 

Operant probes are not new to education but there should be more. Intelligent 
Tutoring Systems make a large class of operant probes. The Cognitive Tutor product 
from Carnegie Learning could be described as the most successful operant probe in 
education, operating in thousands of schools and providing millions of data points to 
improve the product and scientific theories of learning with intelligent tutors. From 
cognitive tutors a whole field has emerged with variations and enabled exploration 
and quantitative evaluation of new designs and scientific ideas . Games for learning 
are a growing class of operant probes, using interaction data to improve the design 
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of the game and sometimes to contribute back to theory. Khan Academy is a popular 
system that uses interaction data extensively to drive their design, though they 
haven’t yet engaged any scientific research community. 

The operant probe concept fits well into the “iterated in vivo experimentation” 
methodology (E. Walker, 2010). Walker explains that such experiments, “use a 
design-based research process to create an intervention, deploy the intervention 
using an in vivo experiment, and then interpret the effects through a design-based 
lens, may be a more effective way of theory building than executing an in vivo 
experiment in isolation.” In such experiments, the intervention may be chiefly or 
entirely an operant probe. So in some sense, “operant probe” is a name for the 
artifact used in this methodology. But moreover, the design of operant probes is to 
produce systems that function as well outside the research activity because they are 
designed to have apparent value to their users and fit easily into their existing 
behaviors and constraints. Once in place, a well conceived and designed operant 
probe needs only minimal intervention in order to provide value to users and 
researchers. 

2.5 Value for Research 

Operant probes have specific affordances to the practice of research through design. 
The requirements of a software system to be considered an operant probe are listed 
in the first column of Table 2-1, with their benefits to research practice and validity. 

Table 2-1 Benefits of operant probes to research practice and validity 

Requirement Practical Benefit Relevant Validity  

Low cost and high fidelity of 
distribution in lab and real-world 

high deployability External and 
Ecological validity 

Consistency of intervention, ease 
of replication 

high replicability 
 

External validity 

Operationalization of theory high specificity External validity 

Instrumentation to provide data 
to model its use and context 

high resolution of 
data 

Internal and External 
validity 

Controlled manipulation of its 
design within and between 
deployments 

high manipulability Internal validity 

 

Research framed with operant probes helps fill the gap between descriptive 
accretive science and interventionist case-based design by supporting endeavors 
that are both interventionists and accretive. New classes of operant probes can 
provide learning scientists with new opportunities for real-world impact and new 
funding sources. They can provide design-based researchers with new tools for 
building on scientific approaches and rigorously evaluating their designs in many 
contexts without their active participation. I argue that the design and deployment 
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of new operant probes can improve outcomes, validate the practical import of basic 
theory, and generate new research questions. 

To advance research, probes must fit into their targeted contexts, provide 
conditions to validate or invalidate research hypotheses, and provide data to inform 
the selection of competing models explaining the outcomes. Below I survey the 
prevailing challenges for design-based research in education to highlight the 
opportunity for operant probes. 

2.6 Problems in education research 

In the couple decades since the introduction of design-based research in education, 
challenges in the paradigm have been articulated by an array of researchers. 
Operant probes provide an opportunity to address some of these problems in 
education research. This section quotes heavily from other authors to convey the 
tone of the critiques and variety of voices. 

2.6.1 Ill-defined methodologies 

One challenge in design-based research is that the methodologies are so shaky. This 
is not due to any lack of definitions and procedures; in fact there exists a surplus of 
distinct frameworks and terms (Wang & Hannafin, 2005). This focus on process has 
led to research that is over-methodologized and under-conceptualized (Dede, 2004). 

Operant probes as a design and research activity fit with existing methodologies 
instead of seeking to supplant them. As an interface between different communities, 
they have a face in each that can be engaged with and evaluated per the existing 
norms of those communities without having to invent new evaluation methods. 

2.6.2 Design principles have little traction 

Design-based researchers extract principles from their design activities. These are 
modeled after the design patterns of architecture and software development (Mor & 
Winters, 2007). Some frameworks advocate a hierarchy of patterns as design 
principles: General Cognitive Principles such as self-regulation, Metaprinciples such 
as “promote autonomy and lifelong learning”, Pragmatic Pedagogical Principles such 
as “Encourage monitoring”, and Specific Principles such as “Multiple, diverse 
opportunities for students to reflect on their ideas and create representations of 
their views” (Bell, Hoadley, & Linn, 2004; Linn, Davis, & Eylon, 2004). 

While these principles could be useful to a designer employing them, there is little 
evidence that education technology designers refer to such principles. Technology 
designers, like other designers, generally learn from examples, not abstract 
principles (Cross, 1999). Fortunately, unlike in architecture, in education technology 
the design artifacts are increasingly easy to share. Operant probes serve as highly 
visible design examples to learn from and iterate upon. 

2.6.3 Split competencies and interests 

Designing systems that are 1) rigorously grounded in theory and 2) are appealing 
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in messy real world contexts requires two distinct competencies. Dede describes 

the consequences (Dede, 2004): 

[…] much DBR lacks a strong theoretical foundation and does not attempt to generate 
findings important for the refinement and evolution of theory. Part of this shortfall 
may be that the skills of creative designers and the attributes of rigorous scholars have 
limited overlap. Effective DBR groups have a complex “cognitive ecology” with 
contradictory tensions: freewheeling, “whatever works” innovation versus controlled, 
principled variation. People fascinated by artifacts also are often tempted to start with 
a predetermined “solution” and seek educational problems to which it can be applied, 
a strategy that frequently leads to under-conceptualized research.  

In my experience in education technology for design, there are more than just two 
categories. Psychologists, technologists, interaction designers, visual designers, 
ethnographers, teacher liaisons, and others all play a role in the development of 
successful technologies for learning. While there have been attempts to engage 
technologists as collaborators in research (Slotta & Aleahmad, 2009), it is a difficult 
social challenge. Operant probes provide a productive interface and artifact with 
which to engage. 

2.6.4 Difficulty of modeling across layers of complexity 

The design of technology for education requires multiple distinct competencies, and 
research to support these different aspects requires different models. DiSessa and 
Cobb explain the gap between these layers (diSessa & Cobb, 2004): 

We introduce the phrase “managing the gap” to name the issue that is behind the 
failure of most frameworks for action to achieve what we would like accomplished. 
The “gap” arises from the fact that instruction is the result of many sorts of complex, 
interacting elements. Instruction depends on the values of the participants; it depends 
on technological infrastructure; it depends on the nature of classroom discourse; it 
depends on practicalities such as available time. We also want to make instruction 
both depend on and serve to test theory. And yet, in order to see and assess the impact 
of underlying theory, we must cleanly separate it from the myriad of other issues that 
we handle, as best we can, in the management of trade-offs among the multiple 
constraints impinging on instruction. In the ideal case, then, pedagogical strategies 
and conjectures are separated by a carefully considered and articulated gap from the 
theory or theories that explain or motivate them. A well-managed gap separates the 
implications of a particular theoretical claim from other claims and also from 
atheoretical aspects of design. Attention and effort are necessary to perform this 
management. 

To take a noneducational example, there can be no doubt that there is science in the 
design of airplanes. However, the shape of a Boeing 747 aircraft does not follow in a 
direct and simple way from any of this science. Neither does the shape of the aircraft, 
as a whole, directly test elements of the underlying theory. With sufficient care 
(corresponding to managing the gap between design and theory), however, a failure 
attributable to the shape of the aircraft might implicate a failure of a theory of 
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strength of materials, not just to a careless mistake, a failure to anticipate transient 
loads, or a poor choice of materials. 

An operant probe is like the aircraft. Similarly, it is a specific operationalization of an 
underlying theory (or theories), and a failure to affect the desired outcome could be 
due to any number of factors that do not directly test the theory. However, those 
success conditions and effect sizes do inform the relative significance of theoretical 
predictions, ease of operationalization, etc. The pursuit of successful operant probes 
helps illuminate these factors. The iteration of probe designs by different 
communities can help isolate the features that contribute to that success. 

2.6.5 Expense of collection, management and analysis of data from context 

Much of the in situ data for design-based research comes from observing the 
physical environment. While these methods can facilitate the discovery of important 
subtle issues, they are expensive in time and resources. Collins et al. describe the 
prevalence of unmanageable data (Collins et al., 2004):  

Design researchers usually end up collecting large amounts of data, such as video 
records of the intervention and outputs of the students’ work, in order to understand 
what is happening in detail. Hence, they usually are swamped with data, and given the 
data reduction problems, there is usually not enough time or resources to analyze 
much of the data collected. It also takes resources to collect so much data, and so 
design experiments tend to be large endeavors with many different participants, all of 
whose work needs to be coordinated. All these factors make design experiments 
difficult to carry out and the conclusions uncertain. 

Operant probes automatically collect their own data through logging of their 
operation. Additional data can be cheaply and reliably related to the recorded data. 
Keeping with the airplane metaphor, operant probes each have a black box 
recorder. 

2.6.6 Failure to scale  

Educational innovations can be difficult to scale to more users. This is often because 
the innovation is transformed in new contexts, sometimes losing the essential 
productive aspect or even becoming “lethal mutations” (Brown, 1992). Traditional 
design-based research requires working intimately with these contexts to manifest 
the innovation as intended. Operant probes, as Web-enabled software artifacts, have 
can be manifest in new environments with high fidelity to their original designs. 

When innovations that worked in a limited context are scaled up to more contexts, 
they often fail. Large randomized controlled trials, such as those advocated by the 
IES What Works Clearinghouse, find null results so often that some researchers 
think that What Doesn’t Work would be a more accurate description (Schoenfeld, 
2006). A common reason for the failure to find effects is that the intervention is not 
implemented correctly in the schools. Teachers often resist these top-down changes 
to their practice and reject them, even those who had signed up for the study. 
Instead, operant probes are designed for adoption by practitioners and randomized 
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controlled trials can take place within systems that are already integrated into 
practice. Ideal operant probes fit easily into new contexts without much researcher 
intervention. Imagine an airplane that can be duplicated without cost and modified 
like clay. 

2.6.7 Difficulty of reproducing studies 

Due in part to scaling issues, experiments in technology design are difficult to 
replicate. This limits their contributions to generalizable knowledge.  

DiSessa & Cobb content that “design research will not be particularly progressive in 
the long run if the motivation for conducting experiments is restricted to that of 
producing domain specific instructional theories” (diSessa & Cobb, 2004). To test 
the generality of principles and design decisions requires testing concrete 
enactments of them in other contexts. 

The story of the designing the first supersonic jet (Phillips, 2006) helps to illustrate 
how operant probes can help: 

In the period immediately following the end of World War 2 the US military, in 
conjunction with the agency that was the forerunner of NASA, set out on a project to 
design a plane that could regularly (and safely) fly faster than sound. Not only was it 
desired to produce a workable product (the X-1 plane), it was also desired to 
understand the physics – the aerodynamic principles – of flying at speeds greater than 
Mach 1. In essence, then, the participants were involved in an early piece of design 
research. The situation was alleviated by the use of two planes, one for pushing as hard 
as possible, the other for slower testing. Maybe there is a moral here for design 
researchers, and their funders. 

The operant probe, as an easily replicable and deployable artifact, can be used in 
multiple settings for multiple purposes. In one, designers can move fast to optimize 
its operation (the plane pushing as hard as possible). With copies (forks) of the 
probe, researchers can move slowly to maximize utility of the probe to understand 
what is going on and what can be learned more generally with confidence before 
changing it again. When the designers have innovated something interesting to the 
researchers, they can move on to that version to investigate. 

2.6.8 Limited duration of studies 

Design-based research in education often requires the active participation of 
researchers in the context. By putting this design effort into developing systems that 
can be deployed cheaply to many other contexts, the marginal cost of additional 
time for a study is greatly reduced. A researcher can let the system persist and check 
in on it just periodically. This facilitates more longitudinal research that looks at 
changes over months and years. The systems can even follow participants through 
multiple learning contexts. 
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2.6.9 Control of variables 

Perhaps the foremost challenge to design-based research in education is the lack of 
control of variables. Dede describes it poetically (Dede, 2004): 

The queasiness about DBR felt by many scholars conservative in their research 
methods stems from the realization that in DBR studies many variables are 
deliberately and appropriately not controlled, the “treatment” may evolve 
considerably over time, and even the research methodologies utilized may shift to fit 
the morphing intervention. Further, to aid with interpretation under these difficult 
circumstances, in DBR large qualitative and quantitative datasets of various types are 
often collected by many different participants, introducing substantial problems of 
alignment, coordination, and analysis. To a methodologist steeped in traditional 
Campbell and Stanley research strategies, this combination of challenges may seem 
less a promising new approach to scholarship than a type of study conceived in hell as 
Sisyphus-like torture for investigators. 

With operant probes, the system itself is a well-controlled variable, due to its 
reliability of replication. Evaluating a design in whole however confounds many 
variables that make up the design. As a way around this, features of the system can 
be selectively ablated to determine which are important to the outcome variables. 
The scale of operation allows these sorts of experiments.  

2.7 Limitations 

Operant probes offer many benefits, but only for situations in which they fit. Not all 
settings would allow an operant probe study. One strong reason would be the 
privacy of the subjects. The benefits of operant probes are largely in the remote 
collection of data. The limitations that different contexts pose on data collection can 
limit the viability of a probe. For example, federal law places strict requirements on 
how schools store and release grade information. In light of the benefits of mining 
these data, these restrictions may be lessened. 

Another limitation of the operant probe is in the requirement that it be desirable in 
the context. This is much easier said than done. Educational games offer a clear 
example of a desirable probe. What other systems can be made that are desirable? 
That question will drive research in the design of probes. 

Finally, there are new types of limits to the control and data collection. Operant 
probes take some features of the lab out into real world, such as control of design 
and collection of data. However the remote nature of use, while providing other 
benefits, limits the data and control to only what takes place inside or with the 
system. There is no way of controlling or even knowing exactly where and under 
what circumstances users are interacting with the system. The system can also them 
such questions or operate a virtual laboratory though a web camera, but such 
solutions trade off on the authenticity of the learning experience.  



Operant Probes for Scientific Research through Interaction Design  

 18 

2.8 Design process 

There are many methods for developing such probes, whether called probes or 
intentionally following any method at all. Because probes must fit into a user’s real 
world experiences, the most productive design framework would be user 
experience design. User-centered design is a perspective and set of design methods 
to help designers products that their target population can use. User experience 
design builds on user-centered design and expands the scope to methods for 
designing products that the target population wants to use.  

A necessary step in designing an operant probe is selecting a goal for which to 
design. Researchers often approach the design process with a problem frame in 
mind, for which they are designing a solution. Without questioning this frame, they 
proceed to iterate towards better solutions within that frame. Many other problems 
and many other frames to the same problem are often ignored. Mapping out the 
opportunities can lead the researcher to discover new ways of looking at the context 
and where operant probes could be most successful. As part of user experience 
design, sketching user experiences can help to create this map (Sketching User 
Experiences: Getting the Design Right and the Right Design, 2007). 

User experience design has some limitations for education research, principally that 
it looks to the user as the source of data for design decisions. It does not always ask 
the user directly, for they might not know what they really want, but it does try to 
extract the design knowledge from the user. However in education, many important 
design principles are secret from both the designer and the user. For example, there 
is a whole class of “desirable difficulties” in the learning process that improve long-
term retention of the learned material (Bjork, 1994). For example, running counter 
to the training and intuitions of graphic designers, making fonts hard to read can be 
desirable because the difficulty leads learners to better retain the information 
(Diemand-Yauman, Oppenheimer, & Vaughan, 2011). Decades of education 
psychology research have illuminated the processes of learning and many results 
counter our human intuitions. Indeed, these counterintuitive findings are perhaps 
the most important to implement in usable artifacts because they run so counter to 
the dominant practices. In the following chapter I discuss how to integrate 
theoretical knowledge of learning into the user experience design process. 

2.9 Evaluating an operant probe contribution 

For an operant probe to be a research contribution, there must be clear criteria by 
which to evaluate it. Like other Research Through Interaction Design artifacts, 
operant probes should be judged by Process, Invention, Relevance and Extensibility. 
Quoting from Zimmerman, Forlizzi and Evenson: For process, “interaction design 
researchers must provide enough detail that the process they employed can be 
reproduced. In addition, they must provide a rationale for their selection of the 
specific methods they employed.” For invention, “Interaction design researchers 
must demonstrate that they have produced a novel integration of various subject 
matters to address a specific situation. In doing so, an extensive literature review 
must be performed that situates the work and details the aspects that demonstrate 
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how their contribution advances the current state of the art in the research 
community.” For relevance, interaction designers “must articulate the preferred 
state their design attempts to achieve and provide support for why the community 
should consider this state to be preferred.” “The final criterion for judging successful 
design research is extensibility. Extensibility is defined as the ability to build on the 
resulting outcomes of the interaction design research: either employing the process 
in a future design problem, or understanding and leveraging the knowledge created 
by the resulting artifacts. Extensibility means that the design research has been 
described and documented in a way that the community can leverage the 
knowledge derived from the work.” 

In addition to the above criteria for all RtD, operant probes must satisfy three more 
criteria: Acceptance, Insight, Scalability and Effectiveness. Acceptance is the 
evidence that the operant probe artifact is desired in its target context, such that it 
will be accepted by the stakeholders and would be used independent of a research 
activity. Insight is the production of some generalizable knowledge through the 
operation and evaluation of the probe. For example, practical limitations to the 
operationalization of some theoretical construct or lab-based results. Insights can 
also lead to generalizable knowledge; for example, by raising new testable 
hypotheses. Scalability is evidence that the system can easily scale to more users 
and contexts. For example, a highly desirable system might be one where the 
researcher pays to have all student essays graded with detailed feedback and 
annotations. The costs of such a design prohibit scaling up. This can also be 
conceived as the marginal cost of additional use within and between contexts. 
Effectiveness is evidence that the operant probe operates on the context to achieve a 
desired outcome. This includes not just whether there is an effect but how great it is 
(e.g. effect size measure such as Cohen’s d). This allows both comparing the effects 
of a probe in multiple settings and assessing whether the probe is worthy of the 
resources it requires. 

2.10 Conclusion 

The inability to translate research into practice threatens the enterprise of 
education research and stagnates the practice of education. The methods of Design-
Based Research in Education help to develop this usable knowledge for practice. 
Modern computing is creating a new opportunity to create usable artifacts that carry 
over research knowledge and engage researchers directly in the real world 
environments of practice. 

Operant probes are a type of research artifact that are usable directly in practice and 
allow researchers to test hypotheses and models in vivo with relatively high 
experimental rigor. Research through Design provides part of a design frame by 
which to create and evaluate usable artifacts. I’ve extended RtD into Scientific 
Research through Interaction Design as a frame by which to create and evaluate 
operant probes in particular. In the next chapter I will explore methods for mapping 
opportunities for operant probes and in the following two chapters I document the 
design and evaluation of two probes designed to exploit found opportunities. 
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3. Discovering SRtID Opportunities in College Lecture Courses 

3.1 Introduction 

In chapters one and two I argue that design research in education can be more 
productive by designing, studying and iterating upon systems that operate in real-
world, authentic contexts. To design a system to operate successfully in authentic 
contexts requires a rich understanding of that context. Further, for the system to be 
adopted requires designing for the factors that drive stakeholders to consider and 
use the system. Developing this understanding of stakeholders helps to identify 
opportunities for which to design that will be adopted easily, advancing the practice 
of education and the resources with which to advance the theory. I describe this as a 
sketching phase in a broader learner experience design process. 

In this chapter, I describe a case of adapting the design sketching methods common 
in HCI to the theories and methods of learning science. The outcome is a lightweight 
local theory of the target context. This local theory makes predictions about how 
different design interventions would affect different desired outcomes in the 
context. These design intervention hypotheses can, and often are, developed directly 
from literature or casual observation, but I will argue that the rich tacit knowledge 
gained through this process improves the designs and thus the interventions and 
their assessment. Further, I describe a subsequent process for combining local 
theory with general theory to evaluate contextual factors in the implementation of 
general principles and opportunities for general principles to address issues 
observed in context. With this map of the opportunity space, I describe a process of 
ideating solutions to the most opportune issues and sketching out designable 
experiences that highlight those issues. Finally, I return to the stakeholders to 
discuss the sketched learning experiences, refining the opportunity map and my 
understanding of the learner needs within it. 

3.2 Methods for Discovering Opportunities 

Design requires first articulating a current state and a preferred state (Simon, 
1969). Education researchers often have current and preferred states in mind, as 
they are well familiar with the challenges and goals of education. Successfully 
designing systems that change the world from the current to prefer state also 
requires understanding the context. 

For a technology to affect change in a context, it must work through the culture of 
that context. (Culture is meant here broadly as the influences on a person’s 
behaviors, e.g. from institutions, authorities, peers and self.) A technology artifact 
with a perfect cultural fit would be adopted quickly and effortlessly. Consider the 
iPhone. What prospects would an entirely new computer platform have in a 
saturated marketplace? The iPhone was adopted because, although it is a general-
purpose computer, it fit the cultural role of phone. There are contexts it did not fit to 
initially, such as enterprise environments, which often require top-down 
administration. Once it met those contextual needs, the iPhone was rapidly adopted. 
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Research in education must also have cultural fit at some level. If an artifact does not 
fit the culture now, why expect that it would later? If the goal is to study a principle 
and not an artifact, why expect that the knowledge gained could be applied? There 
can be valid answers to these questions but they must be asked. A further advantage 
of cultural fit is it increases the rate at which research questions can be asked and 
answered. A widely adopted artifact can provide a large and varied data source in 
which to compare quasi-experimentally across differences of learners or context, or 
to compare experimentally across theoretically driven variations. 

Design researchers in education have developed methods for understanding 
context, such as the Informed Exploration phase of the Integrative Learning Design 
Framework (Bannan-Ritland, 2003). Many variants of design-based research 
practices are used in research on technology-enhanced learning (Wang & Hannafin, 
2005). Figure 3-1 presents a simple framework, orthogonal to those, to describe the 
process of producing software artifacts used in research and practice. The vertical 
axis indicates the steps in developing a software artifact from initial motivations in a 
context all the way to a working system. The horizontal axis indicates the setting of 
the research activity and progresses from understanding the present state to 
imagining preferred states to testing them through simulation and finally to 
enactment in the naturalistic context. 

 
Figure 3-1 Methods in education technology design to support contextual fit 
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are the current and preferred states as perceived by the stakeholders in the context? 
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have said, “If I had asked people what they wanted, they would have said faster 
horses” (O’Toole, 2011). Co-design (Roschelle & Penuel, 2006) and Child as 
Informant and Design Partner (Druin, 2002) are two examples of working with the 
stakeholders to design for their needs. The field of HCI, as a discipline largely 
dedicated to designing new technological artifacts that are complex and fit to people 
(Fallman, 2004), offers methods that are more widely practiced and validated. I 
contend that an earlier inquiry into context, by adapting HCI methods to an 
opportunistic assessment of needs, can help design researchers in education to 
develop systems that fit better into real world use. Systems that tap into a need 
deeply felt by stakeholders may be adopted easily and become more productive 
tools for research and design. 

The goals of this inquiry were two-fold. One was to discover opportunities for which 
I could build an operant probe and conduct a scientific evaluation within the time 
constraints of this dissertation (1 year). The design process steps to select the needs 
for which to design, i.e. the opportunities, are depicted in Figure 3-2. An additional 
goal of this inquiry was to describe the culture of undergraduate lecture courses in 
such a way that other researchers and technologists can find new opportunities for 
their own work. The Theory in Context section below offers this type of description. 

 
Figure 3-2 Steps of design inquiry process 
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150 million students were enrolled in college (“Data Points: More College Students 
Around the World,” 2009) and 18 million in the US alone (Snyder & Dillow, 2011). 
The numbers of enrollments is growing rapidly, and most of these students are in 
the familiar lecture type course. The learner experience in these courses is based in 
centuries of tradition and ripe for innovation. 

3.4 Semi-structured interviews 

To investigate the context I use HCI methods and adapt them to the values of the 
operant probe paradigm. The first set of methods come from Contextual Design, a 
methodology that has been used in hundreds of software products (Beyer & 
Holtzblatt, 1997). The first step of contextual design is Contextual Inquiry, collecting 
data through interviews and observations in the actual context of potential use.  The 
second is Interpretation of the data into models of perspectives on the context (e.g. 
cultural, physical) for each informant. The third step is Data Consolidation of the 
models across informants to create a single comprehensive model for each 
perspective. I also used Affinity grouping, another approach to Data Consolidation, 
to find themes among the side notes I took along the way. 

To conduct the contextual inquiry interviews, I first began by focus setting, a 
process for making explicit key goals of the inquiry. Aspects of the context outside 
the focus can come up in the interviews but the focus helps keep the dialogue on a 
productive course. To choose the foci, I first wrote on sticky notes a few dozen ideas 
I had about aspects of the context that technology could help improve. I then 
clustered these together on a whiteboard in an affinity diagram to find distinct 
themes. From these several themes, I chose two.  The “material use” focus 
encompassed the production and management of materials such as syllabi, lessons, 
quizzes, class notes, etc. The “social context” focus encompassed how student peer 
interactions, discussion boards, sharing of materials among instructors, asking 
questions, etc. 

3.4.1 Participants 

Contextual Inquiry requires interviews with participants in each role that will be 
impacted by the technology. For our chosen context of the large lecture course, I 
included students (10), faculty instructors (6) and graduate teaching assistants (3). 
The faculty instructors were drawn from two universities in the area by emailing a 
list of candidates. The list of candidates was made from personal recommendations 
and the course schedule. All faculty were from psychology except one from biology. 
The teaching assistants were drawn from the course schedule for the summer term 
in which the research was conducted and were all from psychology. Students were 
eligible by virtue of a participating instructor and were solicited by announcements 
in class or by email. 

3.4.2 Data Collection 

The interviews were conducted in the contexts in which the subjects engage in 
activities for the course. For the faculty and teaching assistants these were their 
offices. For the students, these were the library, their dorm rooms, and cafés. Each 
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interview spanned 1-½ hours and was audio recorded. For interviews in which the 
subject mentioned a tangible artifact, such as their class notes or a study guide, 
these were documented by taking a photo. 

3.5 Interpretation 

After the interviews, I listened to all the recordings and recorded observations 
relevant to the models specified by the Contextual Design methodology: Cultural, 
Flow and Sequence. I also noted “Design idea” observations that subjects had 
offered, that I had thought of out loud in the course of the interview, and that 
occurred to me while listening. For the affinity grouping technique of Contextual 
Design, I also noted “Affinity” observations, a catchall for observations to continue to 
process but which weren’t design ideas or informative to the models. The design 
idea and affinity type were used later for the ideation phase. 

Rather than a strict transcription, I typed paraphrases that were time-stamped to 
the audio with Transcriva, a Mac application. I exported the observations from each 
interview and concatenated them all in a spreadsheet of 1,014 observations. Each 
row contained the type, the subject, the time in the audio recording, and a note with 
the observation. Figure 3-3 shows the distribution of observation types. Note that 
the Cultural model observations were much more numerous than the Flow and 
Sequence observations.  

 
Figure 3-3 Counts of each type of observation recorded 

To visualize the cultural forces influencing each stakeholder’s behaviors, I created 
graphical models of the data in each interview.  I used a subset of the models in 
Contextual Design, including a cultural model for every interview, flow models for 
most of them, and a few sequence, artifact and physical models. Only the cultural 
model revealed insights not obvious in this context, and it is the only type for which 
I generated a consolidated model. 
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3.5.1 Consolidation 

To reveal patterns across the interviews, I combined all 19 models into a single 
consolidated model. Because I had come to focus on the cultural aspects, I did this 
only for the cultural model. The observed cultural factors that influence behavior of 
students and teachers are in Tables 3-1 and 3-2. Each Factor is an abstraction of 
multiple statements recorded in the interviews. The Influencer is either the actor 
themselves (e.g. students behaviors are influenced by their own goal of doing the 
minimum to get the grade they want) or another actor in the context (e.g. teachers 
influence student behaviors through culturally communicating the idea that they 
reward students for short-term, not long-term learning.) This consolidated cultural 
model presented a coherent view of all the roles in the cultural context and the 
cultural forces acting internally and between the different roles. Because it 
combines the models from each informant, it reveals tensions, breakdowns, and 
design opportunities among the cultural elements. 

Table 3-1 Cultural influences on student behavior 

Influencer Factor 

Self I do the minimum I must to get the grade I want 

Self I procrastinate on everything 

Self I need to do well in my classes to feel good (otherwise feel stressed) 

Self I am distracted easily 

Self Organization reduces my stress 

Self I don’t retain information 

Self I feel bad about my poor study habits 

Self My effort is based on how interested I am 

Self I want to know what I know and what I don’t know 

Self I am unmotivated without personal interaction 

Self I can never be good at certain parts of this class 

Self I doubt my value to my peers’ learning 

Self I enjoy having room for my own perspective 

Self I want immediate feedback on my reasoning 

Self It’s painful to put in effort and not see results 

Self I am motivated by work that will help me succeed later 

Self I can’t bear the thought of being wrong 

Instructor When we care, you care more 
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Instructor I reward you for short-term, not long term retention 

Instructor I let you get away with bullsh*tting 

Instructor I grade you on things that you don’t care about 

 

Table 3-2 Cultural influences on instructor behavior 

Influencer Factor 

Self If students don't do well, I haven't done a good job 

Self It's important to connect class to students' lives (prior knowledge and 
real world experiences) 

Self I enjoy teaching depth more than breadth 

Self I care deeply about the quality of my assessments 

Self Stimulating learning is more important that accurately measuring it 

Self I must train you to learn on your own 

Self It's my responsibility that you value understanding this domain 

Self I want to install ideas that will shape your life 

Self The best learning occurs when it's fun 

Self I want each student to succeed in their goals 

Publisher Use shallow instruction and assessment we are selling 

Department You must turn out creative smart people 

Department We reward you for time spent researching, not teaching better 

Students When we care, you care more 

Students You should be able to make learning easy 

 

3.5.2 Results of cultural modeling 

The consolidated cultural model brought to light several conflicts between the 
cultural forces shaping the behavior of participants in different roles. 

Misaligned goals: Student comments indicate an almost exclusive focus on getting a 
good enough course grade as their primary goal. Faculty, on the other hand, talk 
almost exclusively about learning. They lament that high quality evidence of 
learning cannot be measured in class. What can be measured easily, such as recall, is 
not important. What is important, such as application of knowledge, is laborious. 
What is most important, that the learning help students achieve their life goals, is 
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intractable. (e.g., a professor quoting Herb Simon: “I never gave an exam I liked that 
was gradable.”) 

Misaligned motivations: Students are motivated to learn things they care about, but 
feel they are graded on content they do not care about. Consequently, students feel 
the system rewards those who focus on grades and not those focused on their 
interests or what is useful to know. 

Tension in scope: Students want to know exactly what they have to learn. Professors 
want students to learn things that they do not specify or measure. Grades are the 
strongest signal to students and what is not assessed they will ignore. “Is it on the 
test?” 

Depth versus breadth: Instructors enjoy teaching depth more than breadth. Students 
are more comfortable with breadth. Textbooks are broad and shallow to lower costs 
and meet majority preferences of the market. Publishers perpetuate a feedback 
cycle incentivizing breadth over depth. 

Tension in support: Students have less stress when the class is organized. Faculty 
believe students should be learning how to learn so do not help “too much”. Faculty 
sees their role as teaching a domain and do not provide instruction or assessment of 
how to learn. 

3.6 Theory in Context 

3.6.1 Method 

To find the challenges and opportunities posed by the context to operationalize and 
contribute to educational theory, I identified how different theoretical models and 
recommendations were active in the context and barriers to activating them. To 
begin, I selected a scope of theory and practice recommendations to consult.  For the 
recommendations I draw from three theory-based Practice Guides published by the 
IES What Works Clearinghouse: Organizing Instruction and Study to Improve 
Student Learning (Pashler et al., 2007), Using Student Achievement Data to Support 
Instructional Decision Making (Hamilton et al., 2009), and Structuring Out-of-School 
Time to Improve Academic Achievement (Beckett, Borman, & Capizzano, 2009). I 
refer to these, respectively, as OI&S, USAD and SOST. 

To orient to how these theory-based recommendations are active in the context, I 
coded each theory-based recommendation by the evidence for its use in the context. 
For each recommendation, I coded what data were presented in the interviews for 
its application and perceived need in the context. Levels of None, Low, Medium and 
High emerged, which I coded 0-3. When there was evidence against the application 
or perceived need, it was coded as negative. The two factors were also split by the 
two key stakeholders, students and instructors. When there was a range among 
informants within the role, the value in the range was chosen that most highlighted 
an opportunity for design. 

In the spreadsheet I then added calculated columns: Needs Spread for the difference 
between the perception of students and teachers (three were >=3), SN vs. TP for the 
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difference in student perceived need versus the teacher practice (two were >=3), TN 
vs. SP conversely (five were >=3), and Sum Practice adding student practice and 
teacher practice codes (three at -4 and four at -3).  I discuss these below situated in 
the cultural model. 

3.6.2 Cultural barriers to implementing educational theory 

The consolidated cultural model reveals several cultural barriers that may hamper 
the use of evidence-based recommendations. Below I begin with the 
recommendations highlighted by the above analysis and situate them among the 
cultural forces of the actors in the context.  

3.6.2.1 1. Quality questions are scarce 

Because of the cultural practices of question production and evaluation, several of 
the recommendations are difficult to practice. One of the recommendations for 
which there is the most evidence, “Help students build explanations by asking and 
answering deep questions” (OI&S #7) also scored highest on teacher perceived need 
versus student practice (5). Teachers value deeper conceptual reasoning and 
particularly enjoy teaching the deeper concepts (e.g., “I’d like to teach a higher 
level”). Students tire of rote questioning and enjoy questions for which there is not a 
single “right” answer that they either hit or miss. A strong opposing force is that 
deep questioning requires more effort on the part of all participants. These efforts 
can be divided into question generation and answer assessment. For professors, 
there is a trade-off in time and difficulty between their generation of questions and 
grading assessment.  An open-ended question can be easier to produce than a set of 
multiple choice questions that measure the same understanding, but the price is 
paid at grading time when each answer has to be read and fine distinctions have to 
be inferred as to what levels of understanding are demonstrated. Grading time can 
be reduced by multiple choice or short answer questions, but to make these “deep” 
questions requires much more thought and, often, more time pilot testing to 
produce good foils that represent common student misconceptions. 

The instructors in our study often turn to textbooks for their questions because they 
are plentiful and no additional cost. Unfortunately, the questions in texts are often 
shallow and rarely valued by the instructor.  The textbook publishers sell primarily 
the textbook and a book’s question bank is offered to help sell that book, rather than 
being a revenue builder itself. An associated design idea is a technology in which 
publishers’ create question banks as a living online resource that instructors can 
review, collaboratively filter and improve upon.  

The efforts of professors to produce questions can also be amplified. They work so 
hard to make these that they are cautious in sharing them and they are typically 
shared with only a few colleagues at best. This observation supports a design 
constraint that there are sufficient security assurances of access only by qualified 
instructors.  With such, there might be a peer market so that faculty can exchange 
their valuable questions, increasing the supply and thus reducing the cost. 
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3.6.2.2 1a. Secrecy of questions limits formative assessment 

The scarcity of questions compels the teachers to re-use the good questions they do 
have. The re-use leads to careful guarding of questions limited in use to summative 
assessments and accessed only by trusted colleagues. The hampers OI&S 
recommendation #5a, “Use pre-questions to introduce a new topic.” Practicing this 
would help address students’ expressed needs to be aware of what they do not 
know and have evidence of their learning. It would also help prevent the perception 
of some students that teacher’s questions are meant to trick them. If there were a 
sufficient supply of exam-quality questions, they could be used to help guide 
students’ attention to a new topic and familiarize them with the content and style of 
questions their grade will later depend on. 

Another formative use of questions is after they are answered.  The OSAD guide 
recommends to “Teach students to examine their own data and set learning goals” 
(#2). The guide explains that “instructional strategies such as having students 
rework incorrect problems can enhance student learning.” (Clymer & Wiliam, 2006) 
Because teachers are compelled to reuse their questions, they cannot allow students 
to keep their graded exams. (Students would certainly share the questions with 
other students who had not yet taken the course.) One technology to address this 
without revealing the exact questions would be to provide detailed formative 
feedback with each summative assessment. Instead of the single percentage grade 
from the Scantron™ most students receive now, they could be provided with a 
report of their performance on different knowledge components (of large grain size 
if need be) and supplemental instruction to help address their deficiencies. This 
could help promote a Mastery style of learning and explicit goal setting. 

Another technology opportunity is to address the scarcity of questions by the 
recommended practice of students asking deep questions. With the proper supports 
for quality in production and filtering, students’ questions can be used for formative 
or even summative assessment. Because students’ questions are often shallow, they 
could also be used to free up the teacher’s efforts for deeper questions or as a 
starting point for a guided inquiry into deeper questioning. This crowd-sourcing 
technique could be extended to students that are more senior or the entire Internet. 
With sufficient quality assurance mechanisms and participation, instructors or 
tutoring systems could draw randomly from large pools without risking repetition. 

3.6.2.3 2. Specifying learning goals conflicts with flexibility and adaptivity of the 
course 

Several recommendations and perceived needs hinge on specifying learning goals. 
The OSAD guide recommends to “Teach students to examine their own data and set 
learning goals” (#2). “Tools such as rubrics provide students with a clear sense of 
learning objectives, and data presented in an accessible and descriptive format can 
illuminate students’ strengths and weaknesses (see recommendation 5 for more 
information on reporting formats) (Assessment for learning: putting it into practice, 
2003) Students want to know what they know and don’t know, which depends on a 
taxonomy of what they are expected to know. They also want to feel a sense of 
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progress for their efforts, which is difficult without clear targets. Finally, students 
expressed that organization in the curriculum lowers their stress and some 
instructors expressed a desire to minimize anxiety for students. 

The responsibility for specification of learning goals falls on the instructor, and in 
them are two forces pushing back. One, it is a lot of work that they see little point in. 
They believe they know what the goals are even if they have not articulated them. 
They will teach them so why spend the effort to write them down? This could be 
addressed by outsourcing that labor somehow. Students or assistants could be 
involved in writing the specifications. One technology opportunity might be a 
shared workspace in which the students collaboratively develop and revise what 
they believe to be the learning goals of their lessons and activities. This would 
certainly yield gains in metacognition and the instructor could give students the 
feedback necessary to reach a working set of goals. 

The second conflicting force is deeper and a part of the instructor’s conception of 
their role. The instructors see themselves as providing a unique experience based in 
their particular domain and pedagogical expertise. To follow a highly specified 
curriculum, especially one they did not create, reduces their creative role to one of 
executing a program. While detailed rubrics help students plan their learning and 
understand their progress, they also limit the instructor’s sense of freedom in 
adapting to his students or seizing upon spontaneous opportunities that “will often 
pop into mind during lecture”. In other words, instructors feel that learning goals 
can be slippery and shift throughout the course. Accordingly, assessments are 
crafted based on the course as taught, not as planned, with redistributed emphasis 
based on how much a topic was or was not covered. 

These observations lead to a design constraint to preserve instructors’ needs for 
creative input and flexibility with students’ desire for structure and predictability.  
Can we create a design to support explicit goal setting in a fluid manner? Students 
might be involved in articulating the learning goals based on the professor’s 
teaching and revise the set as it evolves in class. The professor can refine the 
specification and use it with software to dynamically generate assessments that 
align with the course. 

3.6.2.4 3. Faculty ostensibly teach how to learn but don’t assess or instruct it directly 

The professors in our study see their most important role as teaching students how 
to think, not what to think. While they carry the responsibility that students value 
understanding of the domain, their larger goal is to instill ideas that will shape each 
student’s life. These skills for learning range from the domain-specific metacognitive 
support to study strategies to general time management. Yet, none of these is taught 
explicitly, even though the largest courses are introductory courses with students 
unaccustomed to the rigors of post-secondary education. (e.g., ““by second semester 
freshman year I was trying to learn how to study, pretty much teaching myself.”) 

Teaching study strategies has field-based evidence (OI&S #6) and little cultural 
resistance. The guide recommends teaching students techniques to break their 
“illusion of knowing”. One way it recommends is through tests and quizzes, which is 
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widely practiced and does not teach any strategies to the student. The other 
recommendation is to teach students how to create “judgments of learning” 
themselves while studying, transitioning from demonstrating in class to using the 
techniques on their own. Some participants, particularly in cognitive psychology 
courses, do share techniques like this. What they do not do is assess it. Students 
make clear that they do the minimum they can to get a desired grade. Whether a 
technique works or not, students are unlikely to find out because they lack the 
motivation to try it. For those students, it is ineffectual instruction. Formative 
assessment helps detect ineffectual instruction, but the instructors avoid explicit 
assessments of strategies because while they wish students in their course learn 
how to learn, they are not teaching a course on “how to learn” per se. They do not 
want to award points in a psychology course for general study skills. Moreover, 
these skills are implicitly assessed through the student’s achievements in the 
domain. 

The technological opportunity here is to develop a study tutor that motivates use 
either intrinsically or extrinsically besides a grade. The system might scaffold 
students in acquiring the skills and dispositions of effective study strategies and 
fade as they internalize them. Ideally, it would assess student use of target strategies 
and provide formative feedback to the instructor on how the students are learning 
to learn. Moreover, it would provide more data by which instructors can understand 
students’ achievement in the domain per se. 

With sufficient data and interactivity, computer-based systems could support 
mastery of fine-grained metacognitive skills. An intelligent tutor for metacognitive 
skills might help students to see their progress and provide the immediate feedback 
that they desire. A fine-grained model of metacognitive skills in the domain would 
support a Mastery orientation to the skills, motivating students who believe their 
abilities are fixed. Of course, this is a grand challenge but the results of our inquiry 
suggest it is a worthy one. 

Another decomposition that technology can support is at the large grain size: 
completing the course. Students have difficulty breaking their goals into actionable 
chunks and scheduling them optimally. To the extent that the course is not meant to 
assess this skill, the entire course could be broken down to a hierarchical checklist 
with target dates. Software guides through the checklist would provide students the 
organization they seek and lower their stress, allowing them to focus on learning. To 
the extent that instructors wish to train or assess these skills, software could 
support student decomposition of the course syllabus and provide feedback on the 
chunks and on the schedule students have set. By making planning explicit, 
instructors can choose and convey how much students should be learning and 
internalizing “how to learn” versus the domain alone.  Such approaches would 
ideally be implemented and applied across courses. 
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3.6.2.5 4. Improving instruction through student data requires infrastructure and 
roles that don’t exist 

Instructors care very much about the achievements of their students. They pay 
attention to class discussion, assignment submissions and exam scores to form their 
course, and to the apparent needs of the students. (E.g., “if people are not scoring 
very well, my presumption is that I didn’t do a good job.”) There is much evidence 
for the importance of these practices, so much that a whole IES practice guide it 
dedicated to using student achievement data to form instruction. The guide 
emphasizes that data practices require a culture and infrastructure. One 
recommendation “Provide supports that foster a data-driven culture within the 
school”, includes steps: 1) Designate a school-based facilitator who meets with 
teacher teams to discuss data, 2) Dedicate structured time for staff collaboration, 3) 
Provide targeted professional development regularly. I did not find any evidence of 
these practices. 

An opportunity this presents to technologists is to support a bottom-up culture of 
data-driven instruction. For several professors in our study, exam scoring is 
outsourced to an office of testing, which returns the student answers and simple 
percentages. One instructor checks each question and each student test for 
irregularities. It requires hours of manual work that could be automated and other 
instructors do not have the time. If various reports were instantaneous, instructors 
could learn more about the quality of their assessments. If they were linked to a 
question bank, instructors could compare student performance, and their 
instruction, from semester to semester. One constraint would be to include the 
testing office in the design process and solution. Otherwise, they may fight what 
they perceive as a threat. 

There are many other data relevant to student achievement that are not available in 
a data analytic form. For example, textual responses are often hand-written, 
preventing use of computer-based language analysis. Other modes of data could be 
collected, such as non-traditional assessments like question authoring, the 
metacognitive activities above, how students use their time, or simply class 
questionnaires. Using technology to provide new measures of student activity would 
allow instructors to explore and potentially develop their own hypotheses about 
how to improve their courses. Detailed student data could also help instructors 
differentiate instruction. “One of my biggest challenges is the range of abilities of 
students coming into the class,” said one instructor. 

3.6.2.6 5. Instructors have precious little time to integrate new technologies 

A barrier impedes the implementation of all any technological system for 
implementing the practice recommendations is that instructors generally have very 
little time to spend integrating them. Faculty #3 lamented on the use of PowerPoint, 
“I spend an amazing amount of time with the apparatus of instruction rather than 
what I really want to be doing, which is thinking.” For most professors and teaching 
assistants, student learning is not their primary responsibility. Once a curriculum is 
developed, they have little incentive to change it. No wonder that many instructors 
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reported beginning new courses with a colleague’s or publisher’s materials and 
adapting them over time. 

Information technologies that are meant to help can end up taking more time. 
Faculty #2 tried using online discussions and retreated. “I did feel like more people 
participated, but it was easy to consume a much larger number of hours [of] 
everybody's [attention].  […] I remember thinking, wow, if I was doing this all the 
time I would end up spending an inordinate amount of time.” 

The instructors I spoke to were interested though in trying new ways to improve 
their courses. For example faculty #2 continued, “The things that make me change 
things are more… sort of new things that come my way, because I get bored. You 
know what I mean? Doing the same thing.”  To be accepted, though, new 
technologies must be easy to integrate into courses and not require much time or 
curricular changes from the instructor. 

3.7 Ideation 

The aim of the fieldwork was not merely to describe the present but to look to the 
future to what can be designed to improve on the present. To take a step towards 
the concrete, in the next phase I generated many distinct ideas for systems that 
could be built. I began this process by reviewing the observations and organically 
grouping them per the affinity grouping method of Contextual Design. 

The numerous observations and ideas required a different approach than the 
traditional whiteboard of sticky notes. To create the paper notes, I wrote a Python 
application in the Django web framework to format the 457 affinity and design 
observations into a page template that I then print and cut into small squares. 
Instead of a whiteboard, I laid them out on the floor. Together with a design 
assistant, we put related observations closer together and gradually honed in on 14 
parts of the context for which to design (Table 3-3). 

 

Table 3-3 Clusters of design ideas and observations 

Class logistics Knowing what I 
know 

Study habits Professor knowing 
each student 

Assessment 
production 

Help seeking Motivation Learning goals 

Attention in lecture Encoding lectures Community Instruction 
production 

Reëncoding Pear learning   

 

Using the data on the context, its interface with theory, the tacit understanding 
developed through extensive interviews, and the organization of the affinity groups 
and process, I began to generate ideas for systems I could build. This ideation was a 



Discovering SRtID Opportunities in College Lecture Courses  

 35 

relatively fast process and after a few days I had generated 64 distinct ideas, some of 
which are listed in Table 3-4 below and all of which are listed in Appendix B. Many 
of the ideas were carried over from my spontaneous thoughts while interviewing 
and later listening to the interviews. 

 

Table 3-4 Sample of ideation 

Class study partner pairing system. 
 
TA review session voting system (submit questions, everyone votes and popular ones first) 
 
Contributions that do not require being right or wrong. (E.g. cog psych scenarios, provocative 
questions) 
Analytics on how much students are working and how. (Anonymous logging and reporting.) 
 
Study behaviors tutor, tied to real data from learning activities and outcomes. 
 
Big ideas database to find concepts that cut across findings 
 
Versioning system for teaching materials with in-class annotations on each version. 

Micro-experiment tracking system for educators. Quick pre/post assessments around a small 
treatment. 
Recording questions keyed to time code and point in the slides. Embed student experience in 
materials (for future self, and others) 
Crowd-source the content of a learning game (authoring/use class/library/bus/home) 

Algorithm to distribute students throughout the hall for break-out with different groups 

 

3.8 Needs Distillation 

Each of the ideas was potentially good, but which were worth trying to develop into 
successful operant probes? Which ideas would be accepted by users and also 
contribute to scientific understanding? Instead of selecting directly from the ideas, I 
used them as part of a process to better understand the user needs and constraints, 
and the relevant science. The work following Ideation contracted the search space 
and helped to frame the problem, articulating the current and preferred states for 
which to design. 

Many different needs were evident in the observations from the interviews, but for 
which needs would designing lead to a successful operant probe? The ideation 
phase helped to think creatively about the ways that technology could help with 
those needs. Working back to the user, I distilled these numerous technological 
ideas into the distinct user needs that motivated them. In doing so I focused on the 
subset of all observed needs that technology could be used to address. E.g. 
“Motivating interest, nourishing curiosity”. The full set with initial solution ideas is 
list in Appendix B. 
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3.9 Scientific Impact Evaluation 

These distilled needs helped me navigate the design space to technological systems 
that would likely be accepted, but for scientific research through interaction design, 
I had a second goal of operationalizing scientific theory through designing for the 
need. This is where the design of operant probes deviates from traditional HCI 
practice. I conducted a literature review and for each for each candidate need, I cited 
lab-based results relevant to that need, and annotated it with three factors in its 
potential for impact: 1) That learning effects are predicted; 2) That the design and 
use of the artifact would inform other applications of those results; 3) Its fit to the 
research team. Could we capitalize on this research opportunity? 

Through this new design process technique, Scientific Impact Evaluation, I identified 
which needs would more likely have scientific impact if designed for. Appendix C 
shows the evolved description of needs and the relevant learning science principles. 
The principles were drawn mostly from the IES Practice Guide for “organizing 
instruction and study to improve student learning” (Pashler et al., 2007). For 
example both students and teachers felt the need to support students’ sense of what 
they’ve learned. The space of solutions to this need related to the lab-based research 
on “help[ing] students to allocate study time efficiently” (#6) and the studies behind 
the two sub-principles to “Teach students how to use delayed judgment of 
learning  techniques to identify concepts that need further study” (#6a) and “Use 
tests and quizzes to identify content that needs to be learned” (#6b). Further it was 
expected that a successful operant probe designed for this need would contribute to 
the scientific understanding of students’ motivations. 

3.10 Needs Validation 

After the distillation and scientific impact evaluation, I had 17 needs that I had 
observed. Because my goal was to design for technologies that would be accepted, I 
also had to validate whether the stakeholders themselves felt these. Needs 
Validation is a design method to assess whether what needs the stakeholders 
themselves perceive and what solutions they are likely accept (Davidoff, Lee, Dey, & 
Zimmerman, 2007). This is no guarantee that the system built would be accepted, 
but it helps point the designer in the direction of acceptable systems and improves 
understanding of each need in order to properly frame the problem. 

I elaborated the 17 needs for use in stakeholder interviews. Each scenario was 
refined and illustrated into a storyboard, to activate the user’s memories and 
feelings in a situation and draw out their perceptions of the plausibility of the 
situation, the character’s behavior, and their perceptions of the technological 
artifact. This can reveal the needs that a stakeholder perceives for their own role in 
the context. Appendix C shows all the needs annotated with learning science 
principles and descriptive scenarios to probe on the need. Figure 3-4 shows an 
example illustration for the scenario in need #10 and Appendix D shows them all. 
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Figure 3-4 Sample scenario for needs validation interviews 

With these elaborated scenarios and storyboards in hand, I conducted interviews. 
For each scenario I articulated my idea of what need the scenarios would recall for 
the student and teacher, along with a lead sentence for the interview to frame the 
conversation. I interview 7 students (2 as a pair), a group of 3 TAs, and 3 faculty (2 
as a pair). 

The needs validation process informed both whether stakeholders perceived the 
hypothesized needs and the cultural and practical constraints on my leading 
solutions to those needs. For example, I observed that some students resented 
school for reducing their connections with their friends. I perceived this as evidence 
of a need to involve students’ wider social worlds in their scholastic activities and 
presented a scenario in which students share their grades and study activities with 
their friends and family (need #6, LearnShare). Both students and faculty rejected 
this. One faculty pointed out that during college young people are trying to develop 
their individual identity, breaking such support ties and finding their own way. 
While such a system may be desired and helpful in secondary education or even 
adult learners, the college student context would not accept such a design. 

Another notable rejected need (or want) was to be more motivated in class through 
competition. This was based in my observations that some students already 
perceived class as a competition for good grades and wanted to be recognized for 
other achievements, such as writing the best study questions for one’s peers (need 
#5, PeerQuiz). Students and faculty had no interest in promoting competition. While 
some students may thrive with a competitive technology, such a system would not 
be accepted by the faculty who are the gatekeepers to their courses. This is an 
important constraint on the move towards gamification in education. 

As for the idea of students writing exam questions, faculty did like it. One instructor 
said, “This I would use. I’m going to do this actually.” However students did not. 
They didn’t trust that the questions would be helpful for the exams and might even 
lead them astray. Getting this design right would entangle complex social issues and 
require the active participation of the instructor. Indeed, systems such as PeerWise 
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do implement such a system and do. Considering this system helped me to hone one 
of my design constraints: that the systems be scalable broadly without requiring the 
instructor to spend much time or to change their course instruction or assessment. 

An interesting constraint of the traditional institution of higher education as a whole 
was evident in the rejection of the long-term retention scenario. In interviews 
students expressed frustration at forgetting what they had learned. This could be 
triggered, for example, by trying to help a friend through a class they had taken 
earlier and no longer being able to answer the questions, or simply by taking a 
subsequent course in a series and forgetting the prerequisite knowledge. While 
students and faculty both agreed it would be best for students to retain what they 
learn, and the OI&S first principle is spacing of practice, no one was willing to accept 
OlderCheck, a system in which receive an electronic follow-up quiz months after 
they complete a course. While an instructor stated plainly, “They forget most of 
what they learned after the exam,” he could not imagine a scenario in which 
students would do this voluntarily or could be incentivized to do this. This design 
constraint is imposed by the current structure of university courses and credits. 
Competitors to the university model may break free from this constraint. However 
the goal of this fieldwork was to identify improvements to the college courses of 
today. This issue highlights the potential for new institutional structures in the 
future and through this I adopted the design goal to design for back-porting the 
features from this better future into the structures of today. 

Some of the needs were strongly felt but did not provide much opportunity to 
engage scientific research. An example of this is the students need to ask questions 
in lecture when they are afraid of seeming ignorant or slow. Need 13 in Appendix C 
and illustration 13 in Appendix D present a scenario for a system whereby students 
can ask questions asynchronously on their mobile phones during lecture? Students 
were eager for a system like this and teachers also supported it (if it didn’t disrupt 
the flow of their lectures or take too much time). However, based on the scientific 
impact evaluation, I saw little opportunity to advance science through designing for 
this need. Of course, other researchers or teams may have more relevant expertise 
towards a scientific understanding of this need and acceptable solutions. 

3.11 Needs Selection 

The ultimate goal of the field study was to identify opportunities for new designs 
that would be accepted in college lecture courses. The needs validation affirmed two 
needs that pointed to solutions that would be informed by the science-based 
practice recommendations. In other words, two needs were felt (without 
satisfaction) and had solutions that were acceptable and had scientific evidence in to 
guide their designs. These features support the opportunity for an operant probe 
that could test the contextual design knowledge, the general scientific knowledge, 
and the effects of integrating them in a concrete scalable form. 
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3.11.1 Time Management 

The first need was to support students’ time management. All faculty and teaching 
assistants perceived this as a problem. Many students personally grappled with this 
and those who did not have this problem affirmed that many of their peers did. 
Students conceived of this primarily as procrastination. Probed on her study habits, 
Student 3 said sheepishly “I’m kind of a procrastinator. It’s not good!” This student 
was ashamed of her time use for school (“I should put a lot more effort in all my 
classes. I've been a real slacker.”) even though she falls asleep studying late into the 
night to wake up for work in the morning. Student 5 felt similarly guilty, “I have very 
bad study habit. I don't prereading.” What students conceptualize as their lack of 
willpower or discipline could instead be the failure of the educational offering to 
support them. For example Student 7 reported, 

When I got to college, my first semester freshman year was not the best. I didn't know 
how to study, and still don't study well. And I openly know that. Um, didn't know how 
to study, didn't know how to take notes. Didn't really have to in high school, you know? 
You can kind of get through high school without doing anything too… extensive. So 
that was tough. By second semester freshman year, I was then learning out to take 
notes and how to study, pretty much teaching myself. 

Faculty and TAs are sympathetic but don’t address this is in their primary 
instruction. Faculty 3 said, “Students that exercise time control, planfulness and 
stuff, really are ahead of the game.” The instructor subjects take some time to help, 
but students come in with a huge variance in time management skills and they 
mostly help with such issues in office hours. However many of the most needy 
students don’t come. TA 3 explained, 

My experience as a TA is that most students don't come to office hours. Ones who do 
come to office hours usually are the ones who are already pretty high achieving 
students, that have, that probably are high achieving students because they have a lot 
of good skills. How to attain help appropriately. How to know when you need help. My 
experience teaching […] has been really eye opening about the varying levels of 
preparation for college. 

Synthesizing from the contextual inquiry, recommendation literature (“help 
students allocate study time efficiently”, OI&S #6), ideation and needs validation, I 
settled upon a design goal for which a solution would likely both be accepted and 
contribute to learning science, 

- Computer support for students to use their limited time most effectively 

To design such a system, the field work made apparent these constraints: 

- Require no upfront action by the student in order to benefit 
- Require no changes to the instructor’s curriculum or schedule 
- Require little or no time from the instructor to offer in her course 

This goal and set of constraints formed the core design principles for Nudge. 
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3.11.2 Studying More Effectively 

The other evident need was to help students study more effectively.  Students 
validated the need for support in the study process but both students and faculty 
described the constraints on achieving this. Many students have trouble focusing on 
studying without action. Student 7 explained, “If I'm not actively doing something 
then I'm gone, that's it. … If I stop writing, within 5 minutes that's it. You're done. It's 
gone.” Some expressed wanting to study using more conceptual questions and not 
merely recall, but believed multiple-choice questions were all teachers had time for. 
When asked, “What’s your ideal test?” student 10 rejected the question. “They have 
to be multiple choice questions these days. You can't expect a teacher to hand grade 
100 tests.” Faculty 5 hears from students that they want more multiple-choice 
questions (“One thing they always ask is can we get more multiple choice 
questions”) but she can only provide so many. “The problem is if it's a question I 
think is really good, I'm saving it for the exam. And if it's a question I don't think is 
good, how much does that help you?” 

While students may appear to crave multiple choice questions, my experience 
talking to students suggests that what they really want is to prepare for the test and 
receive immediate feedback on how well they are likely to do. Student 6-valued 
practice tests and said that in some domains, like math, you cannot study for the 
exam without practice. The paucity of practice currently may be due mostly to the 
production of good practice materials. Faculty 5 shared, “It gets more challenging 
for me every year to ask good, challenging questions.” 

One of the students’ goals in studying and practicing is to focus their time and 
attention only on what they don’t yet know and need to. For example when asked, 
“How do you choose to study?” student 3 replied, “I don't know. I'll just like go over 
my notes and anything that I'm like unclear about, I'll study that like more closely.” 
While student 3 likes practice exams, she lamented that she doesn’t have time to do 
them all. Feedback on the scenario for a progress tracking system affirmed that 
students definitely want help knowing what progress they’re making. Faculty said 
they would love to do this for them but it means they have to write a lot more exam 
questions. They recognize though that many students “just don’t know how to 
study”. For example, one faculty recounted that students come to office hours 
complaining, “I read the chapter and memorized it and I don't know why I didn't do 
well." Students who don’t do well perceive it as a limitation of themselves that 
cannot be overcome. Student 6 explained that science “just isn’t [my] thing. […] I 
won't do well no matter how hard I try.” 

The field evidence points to a clear need to support students’ study techniques. The 
IES practice guide provides some theory-driven guidance: to “help students ask 
deep question in order to build explanations,”(#7 (Pashler et al., 2007). Combining 
these points to a solution would likely both be accepted and contribute to learning 
science: 

- Computer support for students to prepare for exams interactively by 
building explanations 
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The fieldwork also reveals some constraints for the design of such a system: 

- Scaffold effective study techniques for students that work even for students 
who don’t know them 

- Be interactive enough that students are engaged 
- Help students to accurately assess what they know and don’t know 
- Be self-paced so that students can go quickly over what they are already 

confident in 
- Map well to course assessments so that students know when they are 

prepared 

Again as for the other needs, there are general constraints of designing any operant 
probe for college lecture courses, 

- Require no upfront action by the student in order to benefit 
- Require no changes to the instructor’s curriculum or schedule 
- Require little or no time from the instructor to offer in her course 

This goal and set of constraints formed the core design principles for Examplify. 

3.12 Conclusion 

The goal of this fieldwork was to identify needs felt among stakeholders in college 
lecture courses and to understand the constraints on what offered computer-based 
solutions they would accept. The HCI practices of contextual design and needs 
validation helped draw a map of opportunities to design solutions that would be 
accepted. Learning, however, is a complex activity for which evaluation is much 
more difficult than mere adoption or perceived value. People are poor judges of 
their own competencies and learning experiences. To help ensure that the designed 
systems also achieved the goal of student learning, the design ideas were grounded 
in the scientifically vetted practical recommendations for educational experiences 
through the IES practice guides. In the next two chapters I detail the designs of the 
two proposed systems and ground them further in the scientific literature, both to 
improve their likelihood of achieving the desired outcomes and to provide an 
operant probe to better understand applications of the theoretical principles. 

In closing this chapter, I’d like to take a step back to reflect on the methods used in 
this fieldwork. Could I have designed the same systems without conducting the 
fieldwork? Could someone else have who is smarter and better versed in the issues 
of college lecture courses? I believe this ethnographic-oriented work provided three 
essential benefits to this design process that would be difficult to arrive at simply 
through theory or intuition. 

The first is the identification of needs and constraints felt by stakeholders. There is 
no literature (that I have found) saying that new technologies for studying 
education should not impose on the instructor. In fact, most design-based research 
in education calls for the active participation of the instructor. This is good for 
exploring how to improve teaching in the classroom, but there are many other 
needs students feel that teachers don’t pay attention to or don’t feel empowered or 
responsible to address. One of the results of this particular field study was that 
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while some students have an urgent need for support with time management and it 
is critical to their learning, it is outside the domain the instructor is teaching (and on 
which they are so focused that they dedicated their life to teaching). 

The second is to provide a wealth of tacit knowledge for the innumerable small 
decisions made throughout the design process, inquiry throughout the user-driven 
iterations, and the design of the classroom intervention by which the tools will be 
experimentally evaluated. So far I have only discussed the design space and 
constraints illuminated by the field activities. In chapters 4 and 5 I will discuss the 
designs of the two tools. It will be difficult as the designer and author to identify 
exactly what knowledge led to each decision (or even what decisions are worth 
remarking upon). I hope that a reader of this chapter will have developed a similar 
intuition. Regardless, I advocate that designers of education technology do conduct 
some amount of inquiry into the context and do so before they introduce their 
system. Further, that multiple courses be explored to develop an intuition for what 
varies and what remains constant between courses, and better design for operating 
at scale. 

Finally, the rigor of this process and critical reflection at each stage can lead to a 
reframing of what the larger problem is that one is attempting to solve. Every design 
seeks to turn a current state into a preferred state. The lens by which we see now 
and conceive of what is preferred dictate the designs we can imagine. Domains for 
which the frame is especially prismatic are known as “wicked problems” (Rittel & 
Webber, 1973). That is, moving the frame or looking at it from different angles 
changes the scope and character of what is seen. Education writ large is such a 
wicked problem. Like urban crime, when you begin to operationalize the exact 
criteria of a preferred state, what is preferred becomes very slippery. For example, if 
we could make it so everyone had the same level of education would that be 
preferred? What if everyone could learn what they would in college without 
attending, is that something that institutions responsible for education would 
support? This isn’t to say that improving education is intractably sociopolitical. It is 
to say that the frames of how we understand the problems in education can be 
moved and still lead us closer to someone’s preferred state. 

Through the active exploration of how learning in college could work, I came to see 
many aspects of the status quo as vestiges of a bygone era. The agrarian calendar 
when few are farmers, lectures in big halls when students can watch videos, 
assessments that can be fed into a Scantron, abstractions of student competencies 
into course grades and diplomas, the market bundling of instruction, assessment, 
certification and, for early undergraduate years, overnight camp. The business and 
technology of education are poised for a radical transformation. This fieldwork 
helped me imagine a preferred and achievable future that has different challenges 
than the present. One hallmark of the future of learning, where all knowledge is 
instantly available, will be decreased importance knowing a domain and the much 
greater importance of knowing how to learn efficiently from the overwhelming 
abundance of knowledge. That is the larger design frame that guides this work. How 
can we develop in students the best skills and dispositions for effective learning? 
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4. Nudge: Supporting Students’ Study Time Allocation 

 

4.1 Introduction 

In the contextual design study (Chapter 3) I observed that many students did not 
know how to be better students and instructors did not include study knowledge 
(declarative, procedural or dispositional) in the curriculum. I identified this as an 
opportunity for which to design a new software system that tries to address this 
problem by operationalizing education theories and to provide data to inform such 
theories and their future applications (i.e., an operant probe system, defined in 
Chapter 2). 

Through ideation of solutions, filtering by engagement with theory, and then by 
potential for uptake as determined by interviews with students and teachers, I 
settled on a rough description (and name) for the system: Nudge supports student 
time management by making course tasks explicit and notifying students of them 
when they are relevant. 

This chapter describes the iterative development of the Nudge system and a 
semester-long study in a large chemistry course to evaluate its efficacy as an 
operant probe. 

4.2 Background Theory 

Not all students are studious. Many students cram (see Benjamin & Bird, 2006), 
although there is abundant evidence that spacing learning leads to better retention 
(Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006). Cramming is often due to 
procrastinating, which from 46% (Solomon & Rothblum, 1984) to 95% (Ellis & 
Knaus, 1979) of college students do regularly. While more senior students may have 
college more figured out, they also procrastinate more (Semb, Glick, & Spencer, 
1979). Procrastination is largely due to fear of failure (50%) and to averseness of 
the task (18%; Solomon & Rothblum, 1984) and has been associated with a variety 
of difficulties, including test anxiety, missed deadlines for assignments, poor 
semester grades, depressed affect, low self-esteem, and social anxiety (e.g., Beswick, 
Rothbun, & Mann, 1988; Ferrari, 1991; Ferrari et al, 1995; Lay, 1986, 1987; Lay & 
Burns, 1991; Solomon & Rothblum, 1984). Little surprise then that most students 
see their procrastination as a problem they would like to eliminate (Solomon & 
Rothblum, 1984).  

Time management is difficult for students, but an important factor in their success. 
In a longitudinal study of cumulative GPA, a regression with time management skill 
and SAT scores showed time management to be a better predictor of GPA four years 
later (Britton & Tesser, 1991). Time management is made difficult by the human 
susceptibility to “planning fallacy”, the tendency for people and organizations to 
underestimate how long they will need to complete a task, even when they consider 
their previous under-estimates (Kahneman & Tversky, 1979). One technique for 
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abating the planning fallacy is to decompose the task, and this technique is more 
effective for tasks of greater complexity (Kruger & Evans, 2003). 

Students don’t choose their study behaviors based solely on the largest direct 
benefit to their learning (Thiede & Dunlosky, 1999). For example, students often use 
self-testing not as a learning activity but to diagnose their learning. Ironically, in a 
study comparing flash card practice with reading, students generally believed that 
more instruction (reading) would produce more learning, but chose flash card 
practice most frequently (Kornell, 2009). In another study, students reported that 
they went to lectures before reading their textbooks, despite thinking that reading 
the textbook and then going to class was more effective, probably because they also 
rated reading the textbook first as more difficult than going to the lecture first (B. G. 
Lee, 2006). 

Despite these dissociations between beliefs and behaviors, students can be taught to 
be self-regulated learners.  A classroom-based intervention study by (B. J. 
Zimmerman, Moylan, & Hudesman, 2011) showed struggling math learners how to 
self-reflect (i.e., self-assess and adapt to academic quiz outcomes) more effectively. 
Students receiving self-reflection training outperformed students in the control 
group on instructor-developed examinations and were better calibrated in their 
task-specific self-efficacy beliefs before solving problems and in their self-evaluative 
judgments after solving problems. The self-reflection training also increased 
students’ pass rate on a national gateway examination in mathematics by 25% in 
comparison to that of control students (B. J. Zimmerman et al., 2011).  

4.3 Core Features 

Nudge began as an intention to develop a scalable software application to address 
the need perceived by both students and instructors to support students’ time 
management. Following the fieldwork, I had established several design 
requirements for the application, 

1. Require no upfront action by the student in order to benefit 
2. Require no changes to the instructor’s curriculum or schedule 
3. Require little or no time from the instructor to offer in her course 

Through a wide review of the relevant theoretic literature, I settled on several 
features for the system (Table 4-1). The first feature is to transform the course 
syllabus to organize course activities by date. The rationale for this was that explicit 
and salient dates more likely to be met, based in the findings that external deadlines 
boost task performance more than self-determined deadlines (Ariely & 
Wertenbroch, 2002) and students generally do whatever’s due soonest (Kornell & 
Bjork, 2007). The second feature is to break down course study activities into 
smaller actions, such as turning an exam date into a series of tasks like “review 
lecture notes” and “take a practice test” each due well before the exam itself. The 
rationale for this was that decomposition of tasks improves time allocation and 
decreases aversiveness, based in the findings that smaller tasks abate the planning 
fallacy (Forsyth & Burt, 2008; Kruger & Evans, 2003), students procrastinate largely 
due to fear of failure (Solomon & Rothblum, 1984) and that in shared task lists, 
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vague information preferred (Blandford, 2001). The third feature is to help students 
maintain and track their assignments, study time and progress through the course. 
The rationale was that recording task status increases awareness and inclination, 
based in the finding that self-monitoring of study behaviors improves learning 
(Richards, 1975). Table 4-1 lists two additional features to motivate students 
through rewards. These were derived from the theoretical literature but never 
implemented. 

4.4 Iteration 

With these core features defined, I then developed Nudge through a series of 
successive iterations, driven by field observations and theory. Nudge evolved from 
scenario sketches (see Chapter 3) to core features (above) to paper prototypes to 
graphic mockups (shown in Figure 4-1) to a production prototype (shown in Figure 
4-2) for use by students in a real classroom setting. 

In this production version (Figure 4-2) students log into the system to see a 
dashboard of all the tasks for the whole semester. They are laid out in a table with 
columns indicating the milestone for which they should do the task (e.g. Exam 1 or 
Lecture 8), its importance (e.g. Required, Advised, or only If Needed), the expected 
time the task will take, a description of the actual task with a link to resources 
needed to carry it out (like the homework web page), an indication of their 
currently reported status (e.g. S for started) and when will be or was due. Students 
can filter any of these columns, as in a spreadsheet but with more relevant 
categories. For example, the filter on the Due column has options for Ever, Soon, and 
Past Due. The status column has a filter for what’s left To Do. 

A progress dashboard is accessible by a link at the top of the work list (Figure 4-3). 
Here students can see quantitatively how much work they’ve done and how much is 
left. They can compare the counts of their status reports, for example how many 
they’ve finished versus skipped. They can also see what proportion of tasks they’ve 
completed with each importance. For example, 4 / 14 required tasks due so far. 
Finally they can review their report on each task with the time spent and any notes 
to self. 

The production prototype was programmed with the Ruby 1.9 programming 
language, the Rails 3.0 (and later 3.1) web development framework, HTML5 
document object model and SCSS for CSS3 document styling. The system was run on 
a Heroku platform-as-a-service dyno instance. 

Nudge was first evaluated in a lecture course of 95 students in the spring of 2011. It 
was introduced in the 10th week and one quiz grade was replaced with points for 
how much they reported into the system about what they had done. The effects of 
Nudge were measured by normalizing scores on each exam, averaging these z 
scores for the two pre-Nudge exams and the three post-Nudge exams, and 
comparing pre- with post-. Students who used Nudge when it was first made 
available in the 10th week (N=9) saw their exam scores go up 0.36 sigma while 
students who started using Nudge in the 12th week (N=12) saw their exam scores go 
down 0.31 sigma. Of course, this is not a true experiment, and that is why the formal 
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evaluation below manipulates students’ Nudge experience through randomly 
assigned experimental conditions. 

While none of the features was evaluated in a controlled way, observations of their 
use revealed some factors that informed the next design interaction of Nudge. 

 Students did not like logging into the web site. The experimental semester-
long evaluation iteration of Nudge optimized for email-based interaction 
(Figure 4-4 Screenshot of an email sent in All-messages condition). Each 
email was a web form with radio buttons to indicate task status. At the 
bottom of the email users clicked a Record button to submit the data to the 
server and view the progress dashboard screen. Students asked that it be 
integrated with Blackboard but after months of effort investigating the 
technical and logistic requirements of the university, integration was 
abandoned as technically and logistically infeasible. 

 The dashboard to track course progress was used regularly by few and most 
never interacted with it (Figure 4-3 Screenshot of course progress screen). 
This was left in the next iteration but not improved upon.  

 Student’s self-reports of time on task were very noisy. Systems that prompt 
for time on task, should be careful to motivate and support students in 
accurate reporting. In the next iteration this feature was left but not 
emphasized. 

 Some notes in the “notes to instructor” field were feedback on the difficulty 
of assignments, but most were empty statements to mechanically maximize 
participation points.  

 The instructor never spontaneously looked at any of the reports and few 
students expected them to. E.g. “The system seems ambiguous in terms of 
feedback. I don't think that my instructor will look at any comments, so I 
don't write any for them specifically.” Student feedback that is never read 
may harm trust in the system and instructor. Such features should provide 
indications of whether feedback has been read. They may also need to push 
reports to the instructor. However this feature wasn’t changed from the pilot. 
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Figure 4-1 Nudge mockup 

 
Figure 4-2 Screenshot of task list in pilot and final evaluation 
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Figure 4-3 Screenshot of course progress screen 

 

 
Figure 4-4 Screenshot of an email sent in All-messages condition 
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Table 4-1 Nudge feature matrix 

Feature Claim Warrant Status 

Course task assigned 
to dates and 
organized centrally 

Explicit and 
salient dates more 
likely to be met 

External deadlines boost task performance more than 
self-determined deadlines (Ariely & Wertenbroch, 
2002) 

Students generally do whatever’s due soonest 
(Kornell & Bjork, 2007) 

Implemented 

 

Break-down of study 
activity into smaller 
actions  

Decomposition of 
tasks improves 
time allocation 
and decreases 
aversiveness 

Smaller tasks abate the planning fallacy (Forsyth & 
Burt, 2008; Kruger & Evans, 2003) 

Students procrastinate largely due to fear of failure 
(Solomon & Rothblum, 1984) 

In shared task lists, vague information preferred 
(Blandford, 2001) 

Implemented 

Maintaining and 
tracking 
assignments, study 
time and progress 

Recording task 
status increases 
awareness and 
inclination 

Self-monitoring of study behaviors improves learning 
(Richards, 1975)  

Implemented 

Reinforcement of 
effort demonstrated 

Ss will spend 
more effort when 
effort itself is 
rewarded  

Rewards on student effort can enhance achievement-
directed effort (Brophy, 1987) 

Task-orienting strategies facilitate performance of Ss 
who de-emphasize role of effort (Stipek & Kowalski, 
1989) 

Not yet implemented 

Surprise challenges 
and intermittent 
accolades 

Game-like 
features increase 
fun 

Intermittent rewards more motivating (Alberto & 
Troutman, 2008) 

Not yet implemented 
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4.5 Experimental Design 

With the experience of the pseudo-experimental pilot, parts of the Nudge system 
were improved (as discussed above) and an in vivo randomized controlled 
experiment was designed to evaluate Nudge as an operant probe. This formal study 
tested whether Nudge fit the context, achieved its desired effects, and could provide 
data to inform models of how its affects were achieved.  

4.5.1 Context 

The study took place in one section (n=136) of a large introductory chemistry 
course at a competitive private university. The instructor used Blackboard and a 
personal web site to provide students with a calendar of lectures and assessments, 
and regular announcements. The data collection and system intervention took place 
over the whole semester (Figure 4-5). 

4.5.2 Task list 

The course syllabus was recomposed into 60 tasks (14 required, 43 advised and 3 
supplemental), which are all listed in Appendix E. In this evaluation the conversion 
was rather formulaic so it didn’t require any domain or metacognitive knowledge. 
First I entered each assessment into a spreadsheet with its date, marking those 
tasks as required. Then I entered several ways to prepare for the assessment and 
marked them as advised. For homeworks these were simply the problems 
recommended by the instructor from his homework assignment listing. For exams, 
these were to take practice exams and review notes. The most time consuming part 
was to encode the web links to the resources to use for studying (e.g. linking to the 
actual practice problems online). In the table of tasks, each bracketed string was 
such a link. The expected time for completion for each task was very difficult to 
estimate and omitted from most tasks. 

Entering the tasks into the system takes negligible time. As the software developer, I 
was able to enter the tasks into the system from this spreadsheet programmatically 
in minutes, taking less than a half hour total. The current authoring tool could 
require a novice user up to an hour for the task decomposition and entry, but the 
authoring interface is a rudimentary prototype. With optimization to speed entry 
and scaffold the elaboration of the syllabus, a novice could produce a better task list 
in less time. Because the entry doesn’t require an expert understanding of the 
course, they could also outsource it. In a casual evaluation, Mechanical Turk workers 
typed in information from PDF syllabi for $1 and wrote by email to ask for more 
work. 

4.5.3 Conditions 

I evaluated the effects of Nudge by randomly assigning students to all nudges and no 
nudges conditions. Students in the all nudges condition were sent every task before 
it was due, grouped in emails sent at least weekly (e.g. Figure 4-4). Each email 
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prompted students to reply with their status of completing each task (skipped, not 
started, started or completed.) Students in the no nudges condition were not sent 
any reminders before tasks were due. To collect data on their work for the course, 
after each exam they received one email with all the tasks and were prompted to 
indicate their completion status for each. All students also filled out questionnaires 
before, during and after the semester’s instruction. 

4.5.4 Hypotheses 

Nudge was expected to help students’ study time allocation and grades. 

4.5.4.1 H-allocation 

Students sent all Nudge messages exhibit better time use than students sent no Nudge 
messages. 

The theory of operation of Nudge is that it helps students study more effectively by 
scaffolding, and ultimately causing, more effective allocation of time to study 
activities. For example, it should help students to review lecture notes immediately 
after the lecture to verify and repair their understanding. 

4.5.4.2 H-grades 

Students sent all Nudge messages perform better on assessments than students sent no 
Nudge messages. 

Through better allocation of study time, students will learn more and will ultimately 
perform better on course assessments. 

4.5.4.3 H-disposition 

Students with poor study time use benefit more from Nudge messages. 

The ethnographic observations were that some, but not all, students have difficulty 
with knowing how to study well. Nudge is designed for these students with poor 
study dispositions and is not expected to help as much students with good study 
habits. 

4.5.5 Knowledge measures 

All knowledge measures came from the normal course assessments. Accordingly, 
there are no formal pretest measures. 

There were 4 non-cumulative exams (E1-4) distributed evenly over the term such 
that each exam covered the immediately preceding material. During the final exam 
period, a fifth exam was given that was cumulative and could replace a student’s 
lowest non-cumulative exam grade. 

4.5.6 Explanatory measures 

Each student’s personal attributes affect how she uses Nudge, which in turn affect 
how the tool affects her and her learning. Toward understanding how the tool 
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works differently for different students, I logged user activities and collected several 
large questionnaires over the term. 

Behavioral measures include students’ interactions with Nudge, the data they 
reported through Nudge, and questionnaires about their time and study behaviors. 

Study time allocation was operationalized as the Time/Environment scale (α=.71) of 
the Motivated Strategies for Learning Questionnaire (Pintrich, 2002; Pintrich, Smith, 
Garcia, & McKeachle, 2001). The scale has eight items and some were adapted to 
target math and science classes. E.g. “I make good use of my study time for math and 
science courses.” 

To see how students’ goals in the course mediated their use and performance, the 
questionnaires also included several standard measures of goals. Of note in this 
analysis are the measures of the 2x2 achievement goal framework (Elliot & 
McGregor, 2001). This framework distinguishes students’ conception of competence 
by two dimensions: personally mastering a domain versus demonstrating 
performance (definition dimension) and whether they are oriented to approaching 
success or avoiding failure (valence dimension). 

4.5.7 Attrition and Missing Observations 

11 students signed up for the study, but never did any coursework and were 
omitted from all analysis. 7 (13%) were in the all nudges condition and 4 (8%) were 
in the no nudges condition. The difference is not significant. 

Of students who started the course, 2 (2.2%) dropped before the end (one from 
each condition). They are included in analyses for which their data are available. 

4.5.8 Timeline 

To help interpret the following results, Figure 4-5 Timeline of Nudge study shows a 
timeline of the course, assessments, and questionnaires and when changes were 
made to Nudge. 

 
Figure 4-5 Timeline of Nudge study 

4.6 Results 

4.6.1 Descriptive statistics 

Table 4-2 presents mean learning outcomes and pre/post time management scores 
by condition. 
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Table 4-2 Incoming attributes and outcomes 

Group Study time 
habits score 
(pre MSLQ: T/E) 

Exam scores 
(Exams 1-5 mean) 

Study time 
habits score 
(post MSLQ: T/E) 

Passed course 
 

No nudges 
(n=48) 

5.2 (n=42, 
sd=0.7) 

70.9 (n=43, 
sd=11.9) 

4.8 (sd=0.8) 92% (44/48) 

All nudges 
(n=45) 

5.3 (n=40, 
sd=0.8) 

69.5 (n=41, 
sd=12.3) 

4.9 (n=31, sd=1.0) 93% (42/45) 

 

4.6.1.1 Subjective rating 

A questionnaire was given after the 3rd exam asking the usefulness of several 
features of the course. 75% of respondents who received all nudges (n=28) rated 
“Email reminders about course work” as “Good” or “Great”. Five (17%) didn’t 
perceive it as useful and two chose “didn’t know about it”, even though the survey 
was sent to the same addresses as the Nudge messages. Among students not in the 
study, who could choose whether to receive Nudge messages or not, 20% (14/70) 
opted out and a few opted to reduce their rate but continue to receive weekly 
messages. 

About 40% of students responding to the final questionnaire agreed with the 
statement, “The reminder emails helped me in the class” (13/32). About 46% of 
Nudged students responding to the final questionnaire agreed with the statement, “I 
wish I could have email reminders for all my classes” (15/32), even though some of 
these students disagreed that it helped them in this class. 44% (14/32) agreed with 
the statement, “Without the reminders I would have forgotten to do something.” 
Again some of these students disagreed with the previous statements. 

In a measure of overall course satisfaction, students rated their agreement with “I 
achieved my goals for the course.” The main predictor, not surprisingly, was their 
grade. Accounting for average exam grade (p<.0001), Nudged students agreed more 
(F(1,58)=5.0, p=.029). To see if this was due more to expectation or outcomes, a 
second covariate was tested, their responses on the midterm questionnaire 
indicating the final grade they expected to receive (p=.002). Nudged students were 
sure to agree (p=.018, 95% CI [0.09,0.97]) and not Nudged likely to disagree (95% 
CI [–0.67,0.22]). 

4.6.1.2 Nudge usage 

Table 4-3 Nudge reception 

Group Evidence of 
opening 
email (email 
image tracker 
in 4th quarter)  

Evidence of 
opening email 
repeatedly 
(same message) 

Number of 
messages 
opened (among 
evidence of 
opening) 

Proportion 
opened more 
than two 
messages (among 
evidence of 
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opening) 

No nudges 38% (18/48) 25% (12/48) 1.6  (out of 2, n=18, 
sd=0.5) 

- 

All nudges 80% (36/45) 22% (10/45) 3.6 (out of 12, 
n=36, sd=3.3) 

36% (13/36) 

 

Table 4-3 presents usage measures of Nudge by condition. Nudged students opened 
about 80% of the messages sent to them once the email image tracker was in place. 
This is a floor estimate because some students may not have had told their email 
client to load the images which the tracker required. Only 38% of no-nudge students 
appear to have opened an email, but they also had only two occasions versus 12 for 
the nudged students (after the tracker). Over 22% of both groups opened some 
email messages repeatedly. The mean number of messages opened by nudged 
students was 3.6 out of 12, with a mode and median of 2. 

 

Table 4-4 Nudge replies 

Group Replied to 
task polls 
ever 

Median 
proportion of 
completes in 
reports on non-
required tasks 

Median 
proportion of 
completes in 
reports on 
required tasks 

Agreement with 
“What I enter is 
accurate”. 

(7pt Likert) 

No nudges 83% 
(40/48) 

.48 (n=40, sd=.27) .87 (n=40, sd=.25) 5.5 (n=26, sd=1.4) 

All nudges 87% 
(39/45) 

.20 (n=39, sd=.22) .75 (n=39, sd=.26) 5.8 (n=29, sd=1.3) 

 

The no-nudge students received Nudge tasks after the exams and were asked to 
reply with their task status then. The rate of reply was roughly equal between the 
groups, but the no-nudge students reported higher rates of completion of the tasks, 
especially on non-required tasks. Because the two conditions were measured 
differently, and 15% of participants never replied to any task poll, the response data 
is not used in the following analyses. However it’s worth noting that there was no 
difference in students’ agreement with “The data I reported were accurate.” 

4.6.2 H-allocation 

Students sent all Nudge messages exhibit better time use than students sent no Nudge 
messages. 

For this hypothesis, the originally intended operationalization of study time 
allocation was students’ reports of completion of advised tasks. However this 
measure is confounded with the different time and context of the task status polling 
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between conditions. Nudged students were polled periodically in small batches 
before due dates while non-Nudged students were polled in large batches after all 
the due dates related to an exam. Table 4-4 shows that nudged students not only 
reported far fewer completions of non-required tasks, they also reported fewer 
completions of required tasks (such as turning in a graded homework assignment). I 
take this to be an effect of when and how they were polled, making comparisons 
between conditions on these measures uninformative. 

Table 4-5 Reported hours spent on different activities 

W
ee

k
 

ty
p

e 

Group 

 

Attending 
lecture 

Attending 
recitation 

Reading 
the book 

Reviewing 
notes 

Studying 
and 
solving 
problems 

R
e

g
u

la
r 

No nudges 
(n=34) 

2.5 (sd=0.7) 1.6 (sd=0.6) 0.9 (sd=1.0) 0.8 (sd=1.0) 2.2 
(sd=2.0) 

All nudges 
(n=33) 

2.3 (sd=0.7) 1.9 (sd=0.7) 0.8 (sd=1.0) 1.0 (sd=1.0) 2.3 
(sd=1.5) 

E
x

a
m

 

No nudges 
(n=34) 

2.4 (sd=0.7) 1.7 (sd=0.7) 1.2 (sd=1.1) 1.3 (sd=1.0) 4.2 
(sd=1.8) 

All nudges 
(n=33) 

2.4 (sd=0.6) 2.0 (sd=0.8) 1.1 (sd=1.2) 1.7 (sd=1.2) 4.6 
(sd=2.0) 

 

The best available measures of student time use are their reports in a questionnaire 
at the end of the course asking the hours per week they spent on different activities 
(see Table 4-5). The response levels were ordinal and recoded to continuous (“Less 
than 1 hour”=0.5, “1-2 hours”=1.5, “2-3 hours”=2.5, “>3 hours”=3.5). Nudged 
students reported spending more hours in a regular week attending their recitation 
sections (F(1,64)=5.5, p=.023). During an exam week the difference was only 
marginally significant (p=.08). They also spent marginally more time reviewing 
notes during exam weeks (F(1,68)=3.0, p=.086) and regular weeks (p=.074 one-
tailed), however this may be an artifact of multiple comparisons. No significant 
differences were observed on time spent attending lecture, reading the book or 
studying and solving problems. 

4.6.3 H-grades 

Students sent all Nudge messages perform better on assessments than students sent no 
Nudge messages. 

There were no main effects of nudge messaging observed on exam performance. 

4.6.4 H-disposition 

Students with poor study time use benefit more from Nudge messages. 
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In a model of the interaction of nudging with students incoming Time/Environment 
dispositions score, better time management led to better exam scores 
(F(1,76.9)=6.4, p=.014) but Nudge interacts to help students with poor management 
(F(1,76.9)=4.6, p=.036). That is, Nudge may compensate for poor time management 
dispositions. Digging deeper, I account for math aptitude (F(1,63.7)=20.4, p<.0001), 
the number of email messages opened within each nudge condition (F(2,62.4)=3.0, 
p=.059) and its interaction with the Time/Environment score (F(2,62.6)=5.1, 
p=.009). In this model, the worse a student’s time use the greater the benefit of 
opening each Nudge message. For students with the highest Time/Environment 
scores, the number of messages they opened had no relationship with their exam 
scores. For students with the lowest Time/Environment scores, a predicted exam 
score of 58% would be 61% if they opened one message and by opening six 
messages they could match the predicted score of the best time managing students 
who opened none (76% on exam with 720 math SAT). Opening all twelve messages 
predicts a 90% score in this model. Because the number of messages opened is 
subject driven and not experimentally manipulated, it cannot be claimed to be the 
cause of the higher scores. It could instead be evidence of a third cause, which is the 
student’s motivation to succeed in the class. However, the fact that for students with 
good time skills their exam scores exhibit hardly any relation with the number of 
messages they opened suggests that the Nudge system created an opportunity 
whereby motivated students with poor time management could overcome this 
deficit. 

4.6.5 Student perceptions 

Different students perceived the system differently, but in several pretty consistent 
themes. In the final questionnaire, students were asked, “If the email reminders 
were a person, what kind of person would it be?” The responses mostly described 
one’s relationship to the person. “My mother” was echoed by in several responses. 
“They would be sort of like the mother that's always around and making sure you're 
on top of your school work.” From another, 

If the email reminders were a person they would be very annoying and nosy, but good-
hearted. They would be something of a mother, always checking up on you and 
wondering how much you have done, and even though you may at times get irritated, 
you would never give up a friendship with this individual. 

Several echoed the idea of a friend, e.g. “A close friend who is pushing me” and “My 
best friend. The only person that would tell me to get my work done because I tend 
to forget about assignments sometimes. This person would be on top of their work 
as well and displayed great academic success.”  

A more negative theme was a well-intentioned but annoying and dense nag. E.g. “the 
email reminders would be a person that did not really care about what they were 
saying. they need to be more upbeat or motivating and something thst [sic] someone 
would actually listen too.” Many said simply, “persistent”, and some explained that 
eventually they ignore such formulaic persistence: “That person who runs by your 
house every day to the point when eventually you stop noticing him” and “They'd be 
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the kind of person you say 'Hi' to because you feel obligated when passing them on 
campus, but in reality, you do not associate with that person in any way.” Some 
students expressed that despite being annoying, you appreciate this person:  

They would be a person that slightly annoyed me, but more because I wouldn't want 
him/her pointing out my flaws or what I've missed/forgotten. In the long run, I'd 
appreciate that person a lot, as he/she helped me and kept me on track. 

4.6.6 Feature Validation 

The features of Nudge were based in a few theoretically derived design claims. How 
does the evidence from this evaluation support or cast doubt on these claims? 
Because all the features were tested together none has rigorous evidence either 
way, but some observations from student use may help inform them. 

4.6.6.1 Explicit and salient dates more likely to be met 

This was implemented through organizing course tasks by date and regularly 
emailing students with what tasks were coming up (e.g. a homework or exam). The 
results are consistent with an interpretation in which this claim is true. However 
some caveats to the rationale are that while students generally do whatever’s due 
soonest (Kornell & Bjork, 2007), many of the “due” dates in the evaluated course 
were not conventional due dates when a student must do something or lose points. 
For example, the “take a practice exam” task due a few days before the exam can be 
ignored with no direct consequences. It’s unclear how much students bought into 
these dates as dates by which they should do the task. The fact that the dates were 
external (Ariely & Wertenbroch, 2002) may have motivated some students, but it 
may have led other students to distrust the dates. Some students expressed some of 
the “due” tasks had no value to them: “there are some assignments that are not 
required that I don't feel are necessary for my understanding of the material.” To 
increase adoption, it is worth considering allowing students to customize the due 
dates. To maintain the externally imposed nature, the dates and tasks could be part 
of a high level setting of, for example, high/medium/low effort, or more concretely a 
range of hours per week they will allocate to the course. With access to their course 
grades it could help them meet a target grade by adapting to their course 
performance. 

The salience of the dates is another issue to better explore. While no students 
expressly commented on the choice of dates, many were bothered by the frequency 
of the reminders. “I do not like the everyday emails, because they are sometimes 
excessive.” One student suggested, “Instead of daily reminders maybe biweekly 
reminders.” However, one student actually requested a higher frequency: “I would 
like if the check ups were more often, or if it could send reminders a few hours 
before homework is do.” It seems the reminders are annoying until they save you: 
What I like most about [Nudge] is that it lets you know when you have an assignment 
due. Usually, I am very good at remembering due dates, but one week, I forgot to write 
down my homework for the week and was therefore under the impression that nothing 
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was due that week. It wasn't until I got an email reminder from [Nudge] that I had 
assignments due that I realized my mistake. 

One way to address this feedback would be an escalating nag factor as the deadline 
approaches, customized to the user’s preference. 

4.6.6.2 Decomposition of tasks improves time allocation and decreases aversiveness 

This was implemented by breaking the course tasks, such as taking an exam, into a 
series of smaller actions. The fact that the effects of the messages interacted with 
students’ time management skills lends support to this design claim and the earlier 
findings that smaller tasks abate the planning fallacy (Forsyth & Burt, 2008; Kruger 
& Evans, 2003). The study produced no evidence related to the rationale that vague 
task information is preferred (Blandford, 2001) but there is data to affirm the idea 
that students procrastinate largely due to fear of failure (Solomon & Rothblum, 
1984). 

The questionnaires at the beginning and end of the semester included measures in 
the 2x2 achievement goal framework (Elliot & McGregor, 2001). The Performance 
Avoidance goal, for example, is measured by agreement with statements like, “My 
fear of performing poorly in this class is often what motivates me.” Students 
receiving all the Nudge messages ended up with a stronger orientation to the 
performance avoidance goal (F(1,91)=4.56, p=.035), accounting for their earlier 
rating (p<.0001). This goal orientation is a consequence of, but distinct from, a fear 
of failure (Bartels & Magun-Jackson, 2009; Elliot & McGregor, 2001). It is possible 
that the effects of the Nudge messages work through increasing students’ fear of 
failing in the class while decreasing their fear of failing in any particular study task. 
Is this good though? Performance avoidance goals have been found to be negatively 
correlated with learning outcomes and cognitive self-regulatory activities (“Goals 
and Goal Orientations,” 2008). As a mechanism, performance avoidance goals have 
been found to be a positive predictor of surface learning (Liem, Lau, & Nie, 2008). 
This points to an alternative explanation for the interaction of Nudge with time 
management skills. For students with poor skills, increasing their attention to 
surface learning activities may have produced a net gain in attention to the course. 
For more studious students, this greater attention to the course tasks (surface 
features of learning) may have been at the expense of deeper cognitive engagement, 
supplanting their own strategies for regulating their learning with those of the 
course syllabus. Can fear of failure be channeled into deeper learning? Further yet, 
can time management be supported while inducing a more productive achievement 
orientation (e.g., performance approach goals, or even mastery approach goals)? 
Both of these questions highlight important design spaces to explore. 

4.6.6.3 Recording task status increases awareness and inclination 

This claim was implemented by prompting students to record their task status. In 
the current design, students not required to record as part of the study did not 
record. Because the task status records are so noisy, there is no quantitative 
measure of specifically whether recording tasks increased their awareness and 
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inclination per the rationale that self-monitoring of study behaviors improves 
learning (Richards, 1975). However, qualitative data make clear that some students 
valued the progress monitoring enabled by task recording. “I like the way it keeps 
track of your progress” and “Sometimes it is nice to look back and see how many of 
the assignments I have completed.” Specifically regarding motivation, “It makes me 
realize how much I should spend doing my work” and “I like that it makes me feel 
accomplished since I get everything done on time.” For one student, the “not 
started” status option was their favorite feature of the system. “I like the fact that it 
gives you an opportunity to answer the questions very honestly with the ‘not 
started’ option.” 

4.7 Limitations and Opportunities 

4.7.1 Operation on desired outcomes 

The usage rates were low. 20% of nudged students never opened the emails. Some 
of these may have just not opened them during the 4th quarter when the email 
tracker was in operation or had their email clients set to not load images. However 
among people who definitely did open, 64% only opened one or two of the twelve 
sent. Both of these limitations suggest that some students do not take the treatment. 
Clearly the system should be more tailored to each student’s dispositions and course 
performance. How exactly is an open question. If it’s completely optional, then poor 
students may not see the need for it. If it’s mandatory, it may hinder some students. 
In future work, I would explore the potential for motivating participation, beginning 
with the last two features in Table 4-1 that have theoretical support but have not yet 
been implemented. 

There was no overall effect of the Nudge messages on student learning and for 
students with good time management they may have even been counterproductive. 
The messages appear to help students with poor time management (i.e. those in 
need of help) but this experiment didn’t have enough power to provide evidence for 
a main effect in this subpopulation. Future work should study nudge messaging 
where a larger proportion of students have poor time management. Further, Nudge 
messages increased students’ performance-avoidance goal orientation, which is 
generally predictive of worse learning and self-regulation. This may explain the 
negative impact on good time managing students. Future work should provide 
better messages, matched to the needs and proximal abilities of different learners. 

A key way to improve the impact of the Nudge messages is to improve the messages 
themselves. The set of tasks defined in this course were limited and did not specify 
all the good study activities to do well in the course. In the formally evaluated 
version, there were no reminders for instruction, only practice. There is a body of 
literature on best study practices that could be operationalized into ideal tasks and 
messages. What this study demonstrates is that the Nudge system works in vivo and 
is easy to deploy. The Nudge operant probe provides a new mechanism for research 
to test these study ideals in real-world settings and discover the distribution and 
boundaries of their effects with different curricula and students. 
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While Nudge is domain general, the messages had to be authored for the course in 
the study. Adding new curricula to nudge could be facilitated by having a set of 
templates to elaborate task structures around different typical course events. For 
example, each exam could have associated with it: reread notes (6 days before), 
study worked examples (8 and 4 days before), take practice exam (3 and 1 days 
before), and attend review session (2 days before). Were researchers to test their 
theories of optimal practices, these could become standard task expansions of 
traditional course events. Adding courses could be as simple as uploading a syllabus, 
scanning for key dates (homework due, quiz or exam given) and automatically 
expanding them into task sets to generate a task set for the whole course. These 
would certainly be improvements, but not necessary for adoption. The instructor in 
the study, was asked after seeing the results whether he would take the time to type 
in the dates to use it again and replied, “Yes, very much. I would say emphatically.”  

4.7.2 Probe data for modeling 

One aspect of the probing utility of Nudge that didn’t work as hoped was the set of 
student responses about what tasks they had done. There was a confound for 
comparing response between conditions, but that could be addressed easily in 
future work by polling the same times and ways. More problematically, it’s not clear 
how accurate the task reports are. 41% of students “strongly agreed” to “What I 
enter is accurate” but 28% didn’t agree, and that’s among the 58% who took the 
time to respond to that questionnaire. Conservatively, only a quarter of students in 
the study strongly agreed to having entered accurate task reports. For these data to 
be useful in modeling student study behaviors naturally, the design of acquiring 
them needs to be greatly improved. An important factor is students’ incentives for 
entering accurate data (or any data at all). Game-like motivations could help. 
Reinforcement of effort demonstrated and intermittent rewards are two planned 
features, supported by theory, that have yet to be implemented in Nudge. 

The particular tasks authored define the data that can be collected from students. 
While there are some tasks or behaviors that may be more effective for student 
learning, there may be others that are more valuable for student modeling and 
intervention diagnostics. If the system could elicit accurate reporting from students 
it would open another area of inquiry. Key factors for modeling students could be 
added to the task expansions for the purposes of different probing studies. 

4.8 Conclusion 

Nudge was designed to improve learning outcomes in university lecture courses 
using observations from the field and theories from existing literature. In a large 
introductory chemistry course, Nudge helped students with poor time management 
dispositions to learn and perform better on course exams. The benefit to such a 
student was greater the more of the Nudge emails they opened. 

The process of designing Nudge helps light the way for the design of similar 
systems. Explicit and salient dates may be more likely to be met but they can be too 
explicit and too salient to the point of being ignored. Instead they should be due 



Nudge: Supporting Students’ Study  Time Allocation 

 61 

dates and messaging policies that students buy into through a choice they make of 
what effort to allocate for the course. There was no direct evidence that 
decomposition of tasks improved time allocation but it may have decreases 
aversiveness. Students who received all Nudge messages went up in their 
performance-avoidance goal orientation, an indication of being motivated to avoid 
performing poorly. This motivation orientation is not best for excellence, but it is an 
increase in motivation that can help students perform better. There was also 
support for the design claim that recording task status increased students’ 
awareness and inclination to perform course work. Each of these merits further 
exploration. 

Nudge highlights the opportunity to support students’ time management skills to 
improve their learning. The formal evaluation and analysis of its design principles 
shine a light on new opportunities for research and real world impact through 
operant probes for applied learning science. 
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5. Examplify: Enhancing Worked Examples for Better Learning 

5.1 Introduction 

In the contextual design study (Chapter 3) I observed that many students grappled 
with how to study most effectively. Both students and faculty affirmed that many 
students have poor study skills. Students wanted to study more efficiently for 
exams, by having a strong sense of that they know and what they need to spend 
more time on. I identified this as an another opportunity (after Nudge in Chapter 4) 
for which to design a new software system that tries to address this problem by 
operationalizing education theories and to provide data to inform such theories and 
their future applications (i.e., an operant probe system, defined in Chapter 2). 

Through ideation of solutions, filtering by engagement with theory, and then by 
potential for uptake as determined by interviews with students and teachers, I 
settled on a rough description (and name) for the system: Examplify supports 
students in studying for exams by scaffolding the metacognitive skills needed to 
learn most effectively from example problems. 

This chapter describes the iterative development of the Examplify system and a 
semester-long study in a large chemistry course to evaluate its efficacy as an 
operant probe. I evaluate the system through a pseudo-experimental comparison of 
course sections and a randomized controlled trial of two variants of the tool.  

5.2 Background Theory 

Humans generally overestimate their level of understanding, which hinders redress 
of their deficits (“Assessing our own competence: Heuristics and illusions.,” 1999). 
For example, they are overconfident about their memories and are underestimating 
the amount they will learn by studying (Kornell, 2009). When students do study it is 
often by transcribing their notes until they don’t feel confused, rather than testing 
themselves (Karpicke & Blunt, 2011). This overconfidence of understanding is more 
severe among less advanced learners (Falchikov & Boud, 1989), who need most to 
be improve (Falchikov & Goldfinch, 2000). This work draws on three methods to 
improve learning through directing students’ attention to their misconceptions: self-
explanation, testing, and worked examples. The operation of Examplify differs from 
the procedures used in these studies but they do bear on its design and the 
hypotheses of its effects. 

Testing that requires recall has both mediated effects (such as revealing a need for 
further study) and direct effects on learning (Pashler et al., 2007; Roediger & 
Karpicke, 2006a). Studies of the testing effect generally test paired associate 
learning and I found no studies testing complex cognitive skills. On paired associate 
learning tasks, the effect is greater the more difficult or intricate the test (e.g., Bjork, 
1999; Karpicke & Roediger, 2007a). The testing effect has also been verified on a 
test of reading comprehension and retention but without demonstrating benefits 
from more demanding recall (Agarwal, Karpicke, Kang, Roediger, & McDermott, 
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2008). In a lab-style experiment, students studied prose passages and then 
restudied or took an open- or closed-book test. Taking either kind of test, with 
feedback, enhanced long-term retention relative to conditions in which subjects 
restudied material or took a test without feedback. On the initial test, open-book 
testing led to the best performance, but on a delayed assessment both types of 
testing produced equivalent retention. Bearing on the implementation of testing 
strategies, the students wrongly predicted they would recall more after repeated 
studying than through testing (Agarwal et al., 2008). This discrepancy between 
perceived and actual learning may result because students recall the feeling of 
knowing after they have restudied but feel less competent after testing. Students 
generally overestimate how quickly they have understood, for example, when 
people are allowed to decide when to stop studying, their memory performance can 
be worse than when the experimenter controls their timing (Kornell & Bjork, 2007; 
Metcalfe & Kornell, 2007) and they do not realize when extra study time will help 
(Koriat, 1997). Interestingly, a meta-analysis of testing effect studies noted that 
students who were tested frequently rated their classes more favorably in semester-
end course ratings than students who were tested less frequently (Bangert-Drowns, 
Kulik, Kulik, & Morgan, 1991). This is perhaps a selection effect due to selective 
reporting or collection of course ratings, but it does offer some hope for increasing 
the application of testing in classes. 

The study of worked examples is another effective learning activity that breaks the 
illusion of understanding (Pashler et al., 2007; Renkl, 2002). "A worked example is a 
step-by-step demonstration of how to perform a task or how to solve a problem" 
(Clark, Nguyen, Sweller, 2006, p. 190) and studying worked examples is an effective 
instructional strategy to teach complex problem-solving skills (van Merriënboer, 
1997). The theoretical rationale is based in Cognitive Load Theory (Sweller, 1988). 
Working memory has a limited capacity that can be filled by intrinsic, extraneous or 
germane cognitive load (Sweller, van Merriënboer, & Paas, 1998). When novices are 
first learning the schemas necessary to solve new types of problems, actually trying 
to solve the problem imposes an additional cognitive load, an extraneous cognitive 
load, and denies the limited working memory resources to cognition germane to 
learning. A large number of laboratory experiments and a smaller number of 
classroom studies have demonstrated that students learn more efficiently from 
problem solving activities when worked examples mixed in (Pashler et al., 2007). 
Others have compared learning only by problem solving to only by studying worked 
examples and found that pure worked example study was better for novices. As the 
learner develops in a domain, the benefit of worked examples recedes by the 
expertise reversal effect (Kalyuga, Ayres, Chandler, & Sweller, 2003). 

Self-explanation has been demonstrated to improve student learning: students who 
explain examples to themselves learn better, make more accurate self-assessments 
of their understanding and use analogies more economically while solving problems 
(Pashler et al., 2007; VanLehn, Jones, & Chi, 1992). Seminal work on the self-
explanation effect found that the students who learn best appeared to learn from 
examples by explaining to themselves (Chi, Bassok, Lewis, Reimann, & Glaser, 1989). 
Students can be taught to self-explain, and when they do, they learn more effectively 
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(Bielaczyc, Pirolli, & Brown, 1995). The theoretical basis of self-explanation is that it 
promotes generation and repair of a student’s mental models (Chi, 2000). For 
learning that depends on paired association or probabilistic inference, self-
explanation may not help (Wylie, Koedinger, & Mitamura, 2009).  

Prompting students to self-explain generally causes higher learning gains from 
studying a material than without prompting. Many students do not self-explain 
naturally and the quality of self-explanations themselves can be highly variable 
(Lovett, 1992; Renkl, 1997). The positive effects of prompting on the frequency and 
quality of students’ self-explanations has been demonstrated with verbal prompts 
from human experimenters (Chi, 1994), prompts automatically generated by 
computer tutors (Aleven & Koedinger, 2002), or embedded in the learning materials 
themselves (Hausmann & VanLehn, 2007). The latter study also asked whether the 
effects of self-explanation are due to the generation of the explanation or attention 
to an explanation and the authors found that generation of one’s own explanation 
was more effective than paraphrasing an author-provided one. With the 
paraphrasing as a check on attention paid to the author-provided explanation, the 
authors contend that generating is more effective than mere attending. While earlier 
work (Lovett, 1992) found that learners who generate the key inferences have the 
same learning gains as learners who read the corresponding inferences, they point 
out that in the Lovett study, the student-produced and author-provided 
explanations were of different qualities. While explanation quality may be a 
confound in a study of human learning, it is an important experimental condition for 
education research given that this difference is to be expected in natural 
environments. An important factor in the utility of instructional explanations is 
whether they are for learning concepts or procedures; a recent meta-analytic review 
concluded that instructional explanations in example-based learning have greater 
benefit for conceptual than procedural knowledge, though not necessarily more 
than self-explanations (Wittwer & Renkl, 2010).  

Much of the effectiveness of worked examples depends on the behaviors the 
students engage in, which vary significantly across both individuals and 
environments (Renkl, 1997). Various studies have experimented with different 
designs to elicit these beneficial behaviors, but from a cognitive psychological 
perspective. I contend that there is now a need to go beyond cognitive psychology 
methods and theory to include the concerns of interaction design. Interaction design 
can more rapidly explore the space of possible designs, driven by the needs and 
practicalities of use rather than only the needs of rigorous and incremental theory. 
For example, through the methods of psychological research, after over a decade of 
research in self-explanation only recently have researchers identified self-
explanations in which students contrast their own with that of an expert 
(Hausmann, Van De Sande, & VanLehn, 2008). Existing theory can help constrain the 
space. For example, in the goal of designing optimal learning from worked examples, 
leading researchers have concluded that instructional explanations hinder a 
student’s own self-explaining (Schworm & Renkl, 2002). I use these theoretical 
findings to guide the interaction design of Examplify. 
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5.3 Core Features 

Examplify began as an intention to develop a scalable software application to 
address the need perceived by both students and instructors to support students’ in 
using study materials effectively. Following the fieldwork, I had established several 
design requirements for the application, 

1. Scaffold effective study techniques for students that work even for students 
who don’t know them 

2. Be interactive enough that students are engaged 
3. Help students to accurately assess what they know and don’t know 
4. Be self-paced so that students can go quickly over what they are already 

confident in 
5. Map well to course assessments so that students know when they are 

prepared 
6. Require no upfront action by the student in order to benefit 
7. Require no changes to the instructor’s curriculum or schedule 
8. Require little or no time from the instructor to offer in her course 

The key insight to the design of Examplify is that many instructors have a trove of 
exam preparation materials in their answer keys. I tried to conceive of a way to re-
use these to help students prepare for exams. The field interviews (Chapter 3) made 
clear that instructors are reluctant to share good multiple-choice questions with 
students before the exam, but unless they re-use questions from semester to 
semester they would be willing to share questions from a previous exam. Some 
instructors do re-use questions from semester to semester because good multiple-
choice questions can be so difficult to produce. However, worked solutions to 
problems can be easier to produce because they don’t require tempting distractors 
or a simple unambiguous answer. Worked solutions do not have to demonstrate the 
right answer to a problem, just a valid answer. Further, some instructors offer these 
answer keys already to help their students prepare for exams. I noticed this during 
the pilot experience of Nudge and realized that building upon instructor answer 
keys would address design requirements 5 through 8. 

Ideating on how to satisfy design requirements 2 and 4, I realized these answer keys 
could be made interactive and self-paced by letting students gradually reveal the 
expert work. Segmenting the work would not require the expertise necessary to 
author a new problem or worked example and could potentially be carried out 
quickly by students or outsourced remote workers. In the study below people with 
no chemistry knowledge took less than 1 minute per page.  Figures 5-1 and 5-2 
show an expert’s example solution and the corresponding version covered up in 
steps. Further, by structuring the reveal interaction based in cognitive and 
metacognitive theory (described below), the activity could scaffold effective study 
technique (requirement 1) and help students accurately assess themselves 
(requirement 4).  
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With this rough design in mind, I reviewed relevant theoretic literature to settle 
upon an array of theoretically grounded features. Table 5-1 details each feature, the 
design claim behind it, and the warranting evidence. The overall design is a self-
paced interactive study aid that helps students’ to engage more actively with 
worked examples.  

Examplify supports cognitive engagement by scaffolding a step-by-step walk-
through of a problem posed and its solution. Based on evidence that students who 
explain to themselves learn more from examples (Chi et al., 1989), at each step the 
tool focuses the student on a part of the solution and prompts for an explanation. To 
motivate this activity, to help students check themselves, and to provide support to 
students who are still unsure, after submitting an explanation the system shows the 
student explanations that others have submitted. Students can click up or down to 
give feedback on how helpful the other explanation is and the more helpful 
explanations will be shown more frequently. After seeing as many as they want, they 
can revise their own explanation and resubmit. This helps to enhance the question 
resource with byproducts of the learning activity. 

Examplify has been designed to support accurate self-assessment while learning. 
Students are often deceived by their illusions of understanding. For example, they 
often read through a practice or past exam problem without making a real effort to 
answer them or even think about the content (Renkl, 2002). Students may convince 
themselves of good performance by assuming or feeling like they could produce the 
answer shown. Many students study by transcribing their notes until they are not 

Figure 5-2 An exam solution from an instructor Figure 5-1 Solution covered up in steps 
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confused, but this may be less effective than taking a test on that material. (Karpicke 
& Blunt, 2011). Students often go into passive learning while reading or in lecture. 
They overestimate how quickly they have understood (e.g. when people are allowed 
to decide when to stop studying, their memory performance can be worse than 
when the experimenter controls their timing (Kornell & Bjork, 2007; Metcalfe & 
Kornell, 2007). They do not realize when extra study time will help (Koriat, 1997). 

Like Nudge, Examplify was developed through a series of iterations. The prototypes 
have many visible states fluctuated widely from iteration to iteration, due to the 
cognitive complexity of the task. Figure 5-3 shows a screenshot of the PowerPoint 
prototype, which used animation to reveal the parts of the model solution.  Figure 
5-4 shows the sequence of screens in the implemented version of Examplify. Figure 
5-6 steps through the interactions with the screens. After trying to solve the 
problem on paper, the student clicks Check my work. The expert’s work appears and 
they click to indicate how well their work matches (e.g. “Partly right”). They are then 
prompted to explain, “Why did the expert do this?” They can then click that Yes they 
understand the work or Not yet. Either button proceeds to prompt them to work out 
the next step. This version was user tested with students in a summer version of the 
course. Like Nudge, the feature set evolved by observing their use and drawing on 
evidence-based learning science principles. The final set of features is presented in 
Table 5-1. 
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Table 5-1 Examplify feature matrix 

Feature Claim Warrant Status 

Present model 
solutions step-wise 

Breaking a problem into steps 
focuses attention productively 

Modular steps reduce task-related 
“intrinsic” cognitive load and shift it to the 
germane (Gerjets & Scheiter, 2006) 

Implemented; 

Piloted 

Reuses instructor’s 
extant materials 

Instructors are more likely to 
adopt a technology that a) doesn’t 
require more work and b) teaches 
the way they do. 

Results of contextual inquiry Implemented; 

Piloted 

Prompt students for 
explanations of 
explanations of the 
expert’s work 

Explaining correct examples 
improves learning but students 
need scaffolds to do so. 

Students studying worked examples do 
not spontaneously explain (Chi et al., 
1989; Renkl, 1997) 

Implemented;  

Piloted 

Require valid 
explanation in order 
to advance 

Students won’t explain unless 
required to 

Learner control causes students to not use 
the prompts (Scheiter, Gerjets, & 
Vollmann, 2006) 

Instructional explanations hinder learners 
in generating explanatory justifications of 
solution steps (Schworm & Renkl, 2002) 

Piloted; 

Rejected by user 
testing 

Shows explanations 
for each step 

Step-based explanations from 
students will improve learning 

Coupling worked examples with 
instructional explanations of steps 
improves learning (Catrambone & Yuasa, 
2006; van Gog, Paas, & van Merriënboer, 
2006) 

Implemented 

 

Source the 
explanations from 

Student explanations may be more 
effective 

Non-experts often make better 
explanations of work than experts do 

Implemented 
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other students (Aleahmad, Aleven, & Kraut, 2009) 

Expert knowledge creates blind spots in 
instruction (Nathan, Koedinger, & Alibali, 
2001) 

 

Prompt students to 
attempt solving a step 
of the problem before 
seeing expert’s work 

Prompting work leads to better 
learning from the example 

Taking memory tests improves long-term 
retention (Roediger & Karpicke, 2006a); 
both in the lab and classroom (McDaniel, 
Roediger, & McDermott, 2007) 

Implemented; 

Controlled in 
experiment 

At end of step prompt 
for cognitive load 

Proper cognitive load is an 
important factor in the 
effectiveness of an example 

Excessive information can produce too 
much cognitive load and interfere with 
schema development (Sweller et al., 1998) 

Simple measures of cognitive load can be 
reliable (Gerjets & Scheiter, 2006) 

Design driven 
during study 
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Figure 5-3 PowerPoint prototype of Examplify 

 

 

A	square	is	circumscribed	about	a	circle	with	an	area	of	
121π	inches.	How	long	is	the	diagonal	of	the	square	(in	

inches)?	
Does	the	expert’s	path	match	up	with	
yours?	
□		Yes,	I’m	on	the	same	path.	
□		No,	I	took	a	different	path	that	also	
works	
□		No,	I	was	on	the	wrong	path	

Does	the	expert’s	path	match	up	with	
yours?	
□		Yes,	I’m	on	the	same	path.	
□		No,	I	took	a	different	path	that	also	
works	
□		No,	I	was	on	the	wrong	path.	

Does	the	expert’s	path	match	up	with	
yours?	
□		Yes,	I’m	on	the	same	path.	
□		No,	I	took	a	different	path	that	also	
works	
□		No,	I	was	on	the	wrong	path	



Examplify: Enhancing Worked Examples for Better Learning  

 72 

 

 
Figure 5-4 Screenshots of implemented Examplify 

5.3.1 Competing Predictions 

In the course of iterating, a feature was questioned that could be resolved by neither 
user testing nor the literature: whether students should be prompted to solve the 
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problem before seeing the solution. User testing cannot answer this because the 
evaluation function is not user preference or facility, but long-term learning. The 
learning science literature is contradictory (Koedinger, Corbett, & Perfetti, in press): 
the testing effect literature has shown that being tested improves retention 
(Roediger & Karpicke, 2006b) but the worked example literature has shown that 
adding worked examples (more study trials and fewer test trials) improves novice 
learning (Pashler et al., 2007) and are sometimes most effective without the 
addition of problem solving (Paas, 1994). Later work helps clarify when worked 
examples are best and when to interleave them with problem solving (McLaren, 
Lim, & Koedinger, 2008; Salden, Aleven, Renkl, & Schwonke, 2009; Salden, 
Koedinger, Renkl, Aleven, & McLaren, 2010).  

There is no clear consensus on the optimal design for a system with the goals of 
Examplify. This system and evaluation differ from prior related work on testing, 
worked examples and self-explanation in several ways: 

1) These model solutions are “found” from materials designed as 
assessments, not authored as example-based instruction like in most worked 
example studies.  

2) The test here requires active problem solving, not mere recall as in the 
testing effect studies. 

3) Because the problem-solving test has no single correct response with 
which to compare one’s answer, the benefits of the model solution rely on the 
learner’s ability to compare it against their own solution. 

4) The prompted self-explanation is a form of testing, albeit neither with 
correctness feedback or paired associations in most testing effect studies. 

5) The examples are used voluntarily in a real course students are taking. 

To resolve whether students should be prompted to solve, I experimented with two 
alternative versions: one emphasizing self-testing as shown above and the other 
emphasizing worked examples and self-explanation by omitting the first two 
screens of the interaction.  

5.3.2 Benefits of Worked Examples 

Cognitive load theory (à la “worked example effect”) suggests that novice students 
learn new procedures more efficiently by replacing many problems with worked 
examples.  For novices, the cognitive load of attempting to solve problems takes 
away mental resources that could be more effectively used to learn from the 
example (Sweller, 1988). When learners are novice in a domain, studying worked 
examples requires less cognitive load than solving matched problems, leaving 
cognitive resources needed to learn. 

When students are proficient in a domain, the worked out part of the examples can 
hinder rather than help by adding extraneous cognitive load that distracts students 
from productive problem solving. This “expertise reversal effect” has been observed 
for expertise in multiple domains, including chemistry (Sweller, Ayres, & Kalyuga, 
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2011). However in most studies, the number of examples is controlled by the 
experiment. How would the use of worked examples play out when students can use 
examples completely at their own discretion? In most studies the worked examples 
are carefully designed. How well would “found” worked examples from instructors’ 
archives do? 

“Modular” worked examples break down complex problem solutions into smaller 
meaningful solution elements to “convey knowledge on problem categories together 
with category-specific solution recipes” (Gerjets, Scheiter, & Catrambone, 2004). 
This lowers intrinsic cognitive load and thus improves learning. In this case the 
worked examples are not authored, but found. They lack the instructional 
explanations and explicit category labeling of the solution recipes. Can this crude 
modularization method, produced by covering up parts or steps of a written 
solution, offer similar benefits to learning? 

5.3.3 Benefits of Problem Solving 

Worked examples help by removing problem solving to reduce cognitive load when 
learning. However problem solving can also help by promoting the active 
construction of knowledge (Anderson, Corbett, Koedinger, & Pelletier, 1995). 

Studying through testing requires more retrieval of knowledge, which facilitates 
future performance (Karpicke, 2010). The “testing effect” literature suggests that 
students learn more robustly by executing mental effort, as they would have to on a 
future assessment. For example for some problems, such as in chemistry, the hard 
part is to know how to frame the problem rather than the mechanics of solving 
within that frame. If students are not confronted with the task of generating the 
frame, they may accurately self assess their ability to execute the mechanics yet not 
realize that they are not prepared for an exam. 

The apparent tension between worked examples and problem solving can be 
reconciled by adaptively presenting the more appropriate activity based on the 
performance of the learner. Intelligent tutoring systems adapt the learning activity 
in sophisticated ways but are computationally complex and require 100-1000 hours 
of time from skilled experts to produce each hour of student instruction (Murray, 
1999). Another effective technique is simply to fade from worked examples when 
students are naïve to problem solving when they are more knowledgeable 
(Atkinson, Renkl, & Merrill, 2003; Renkl, Atkinson, & Maier, 2000). Worked 
examples can be made more cheaply by less skilled authors than required for 
intelligent tutoring systems (Aleahmad et al., 2009) and fading can be directed by 
the learner instead of a complicated artificial intelligence. 

5.3.4 Two kinds of worked example interaction 

Examplify creates adaptive learning activities using existing answer keys as content.  
Figure 5-5 presents the learner interaction flow and Figure 5-6 shows screen shots 
of each state. Each worked example starts in the Try state as a problem solving 
activity, with all the expert’s work occluded. The learner tries to solve the problem 
on their paper as they would on an exam. If they aren’t able to produce any work or 
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feel it is too difficult, they can click Get Help to reveal part of the expert’s work. If 
they are able to make any progress on the problem, they click Check my work which 
also reveals part of the expert’s solution. To proceed they reflect and indicate how 
similar their work is. After a new portion of the expert work is revealed, learners are 
prompted to reflect on why that is the appropriate work for the problem. To 
advance, they reflect and indicate whether they understand the work shown. That 
click takes them to the Try state again but for the next portion of work. The 
nonsolving variant is used as a control condition in the evaluation study (described 
below). 

 
Figure 5-5 States and transitions of Examplify worked example interaction 
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Figure 5-6 Screen shots from an example usage of the Solving variant 
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5.3.5 Implementation 

Examplify is implemented as a web application that runs in any modern web 
browser. The backend was developed in Ruby on Rails 3.1 with a PostgreSQL 
database and hosted on Heroku (PaaS) servers. The frontend was developed in 
HTML5, jQuery and Backbone.js. 

5.3.6 Problem browser 

Students find examples to open through the problem browser. The browser started 
as in Figure 5-7 but was later improved as in Figure 5-8. For each problem, the 
student can choose an empty version of the problem like on the test, a completed 
version like a printed answer key, or the interactive version specific to Examplify. 
All references to “examples” in the evaluation study refer to these interactive 
examples. 

At the top of the problem browser a blurb reads: 

This tool is designed to help you learn more in less time. Studies find that 

working through examples step-by-step and explaining lead to deeper and more 

robust learning. 

Working through these problems will take some more time than simply reading 

the solutions but you will get much more out of the time. Simply reading solutions 

can actually impede learning. That's why we made this tool, to make it easier to 

study in this more effective way. 

To start, just click on a problem below. Try solving the problem shown. You can 

click to check your work or get help. Take the time to explain. You'll learn the most 

by following the prompts and not simply clicking ahead. Your explanations can help 

other students in your class. 

 

For students with the nonsolving control variant (described below) the underlined 
text is omitted. 
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Figure 5-8 Problem browser from start of semester until Exam 3 Figure 5-7 Problem browser from Exam 3 until end of term 
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5.4 Experimental Design 

5.4.1 Context 

The study took place in a large introductory chemistry class at a competitive private 
university. The course curriculum is stable and the instructor has a large bank of old 
exams. For the past 12 years, after every exam the instructor has solved the test, 
scanned the solutions and put them online. Each exam question is a separate page 
and there are four pages per exam for 25 points each. 

Each page is one interactive example within Examplify. To add them into Examplify 
required covering each step of expert work with a gray box (see Figure 5-1). This 
task was distributed among several paid assistants with no chemistry expertise. 
They each took less than 1 minute per page. 

The course was taught in two lecture sections between which students chose 
(10:30am, n=136 and 11:30am, n=86). Students may have chosen based on 
earliness in the day or constraints of their schedules. 

5.4.2 Conditions 

I compare Examplify (with solving) to a nonsolving control variant of Examplify and 
to a business-as-usual (BAU) control section. Students self-selected into the 
Examplify or BAU sections, presumably to meet the constraints of their course 
schedules, and had no knowledge there would be any differences between them. 

In the Examplify section, students had access to the default version of Examplify 
with the solving prompt. They accessed the Examplify site through Blackboard or 
course announcement emails. Accessing from Blackboard required generating and 
remembering a password. 

Students who opted into the study were randomly assigned to receive either the 
solving variant of Examplify or an alternate, nonsolving variant of Examplify. In the 
nonsolving control, the prompt to solve the step of the example was removed 
(Figure 5-5). Instead students immediately saw the first step of the solution and 
were prompted to explain before clicking through to the next step (Figure 5-6). 
References to solving were also removed from the explanatory text on the problem 
browser page (Figure 5-8).  

The BAU control section operated no differently from previous years of the course, 
except students enrolled in the study filled out questionnaires and polls about what 
they had done in the class. 

5.4.3 Hypotheses 

The hypothesis that Examplify with solving will improve learning on both 
immediate and delayed measures follows from past theory in that this condition 
combines the benefits of worked examples and testing.  That is, it prompts for self-
testing but students can quickly get a worked example step if needed.  This 
hypothesis is novel and, in fact, application of cognitive load theory might suggest 
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the opposite, namely, that the prompt for self-testing (problem solving) may be 
extraneous load and thus the non-solving variant would be predicted to be better.   

5.4.3.1 H-immediate 

Students with Examplify with solving interaction score higher on immediate 
assessments. 

This H-immediate hypothesis is operationalized as higher scores across the four 
non-cumulative exams, both versus the nonsolving control variant and BAU control 
section. 

Examplify is designed to reduce the cognitive load of problem solving by 
decomposing the steps of the problem and allowing students to see a solution 
immediately if they choose. While this interaction uses more cognitive load than a 
simple worked example, this may be germane cognitive load that helps them assess 
their understanding. 

Both course sections have worked examples, but in Examplify they are broken up 
into steps. This modular form has been found to be more efficient and to reduce 
cognitive load. When students are ready to solve problems, Examplify may be more 
motivating than the BAU static questions and also scaffold better study strategies. 

5.4.3.2 H-delayed 

The benefits of Examplify with solving will be greater on delayed assessments than 
immediate assessments. 

Examplify with solving should increase the frequency of students recalling 
information (testing effect) and proceduralization (learning by doing). Both these 
activities improve robustness of learning, which I measure by comparing delayed 
and immediate tests on the same topics, and again versus both controls. 

5.4.4 Knowledge measures 

All knowledge measures came from the normal course assessments. Accordingly, 
there are no formal pretest measures. 

There were 4 non-cumulative exams (E1-4) distributed evenly over the term such 
that each exam covered the immediately preceding material. During the final exam 
period, a fifth exam was given of which half was on topics from the latest exam (E4) 
and half was on earlier topics (E2-3). A student’s score on this could replace their 
lowest exam grade. 

I use the half of the fifth exam that is on early topics as a delayed measure of 
learning, referred to below as “Delayed exam scores on early topics”. The paired 
immediate measure is the average score of the two exams on those earlier topics 
(E2-3), referred to below as “Immediate exam scores on early topics”. 
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5.4.5 Explanatory measures 

Each student’s personal attributes affect how she uses Examplify, which in turn 
affect how the tool affects her and her learning. To understand how the tool works 
differently for different students, I logged user activities and collected several large 
questionnaires over the term. (These measures are the same as in the Nudge study 
in Chapter 4.) 

Behavioral measures include their interactions with Examplify and questionnaires 
about their time and study behaviors. 

Cognitive measures include their math aptitude, operationalized as the SAT or ACT 
Math score reported on the questionnaires. (ACT scores were normalized to SAT.) 

Metacognitive and motivation measures were numerous on the questionnaires. One 
factor that comes up in the results is mastery-avoidance from the 2 X 2 Achievement 
Goal Framework (Elliot & McGregor, 2001). In a mastery-avoidance goal orientation, 
students strive to avoid misunderstanding or failing to learn course material. The 7-
pt scale is of agreement with statements such as, “I am often concerned that I may 
not learn all that there is to learn in this class.” 

5.4.6 Attrition and Missing Observations 

17 students signed up for the study, but never did any coursework and were 
omitted from all analysis. 

11 of these non-starters were in the Examplify section (11%) and 6 in the BAU 
control section (9%). Within the Examplify section 7 (13%) were in the solving 
condition and 4 (8%) were in the nonsolving condition. 

Of students who started the course, four (2.6%) dropped before the end. They are 
included in analyses for which their data are available. 

5.4.7 Timeline 

To help interpret the following results, Figure 5-9 Timeline of Examplify study 
shows a timeline of the course, assessments, questionnaires and when changes were 
made to Examplify. The questionnaires were given before instruction, after the 3rd 
exam, and after the course final exam. After the 2nd exam, links were added to the 
Examplify tool allowing students to use the traditional static example problems. 
After the 3rd exam, based on the results of that questionnaire, the ease of accessing 
and navigated the tool was improved. 

 
Figure 5-9 Timeline of Examplify study 
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5.5 Results 

5.5.1 Descriptive statistics 

5.5.1.1 Pre-existing differences 

Because the lecture sections are not randomly assigned, I tested for any natural 
differences between them. Table 5-2 details the incoming attributes of students in 
each condition. Within the Examplify section, I separate people who never used the 
tool (Never opened) from people who opened the solving or nonsolving variants of 
the tool, because the conditions make no difference for students who never opened 
it (confirmed statistically). 

 

Table 5-2 Incoming attributes and usage 

Group Freshman 
proportion 

Math aptitude 
(200-800) 

Mastery-
avoidance (1-7) 

Control section 38% (23/60) 711 (n=51) 5.2 (sd=1.1, n=50) 

Examplify section 65% (60/93) 723 (n=78) 4.5 (sd=1.6, n=82) 

- Never opened 33% (1/3) 730 (n=3) 5.4 (sd=1.9, n=3) 

- Nonsolving 61% (28/46) 717 (n=37) 4.3 (sd=1.5, n=41) 

- Solving  70% (31/44) 726 (n=38) 4.6 (sd=1.8, n=38) 

 

The Examplify section had significantly higher proportion of freshman (2=10.1, 
p=.0014) and students reported significantly lower self-ratings on mastery-
avoidance goal orientation (α=.84, F(1,130)=8.0, p=.006). 

As a check against differential attrition across the randomly assigned variant 
conditions, there no were no significant differences on any of these measures 
between the solving and nonsolving conditions. 

5.5.1.2 Subjective rating 

A questionnaire was given after the 3rd exam asking the usefulness of several 
features of the course. 40% of respondents (n=54) rated “Interactive tool to study 
past problems” as “Good” or “Great” (15%). There were no differences by condition. 
29% didn’t perceive it as useful and 26% didn’t yet know about it. Ease of accessing 
the tool was improved for the 4th quarter of the term by making the web link more 
prominent in Blackboard and updating the problem browser from as in Figure 5-7 
to as in Figure 5-8. 

5.5.1.3 Examplify usage 

Ninety-seven percent of students in the study opened the Examplify tool (no 
difference by Examplify condition) and every one of those opened at least one exam 
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example. Students in the Solving variant went on to open more overall (p=.0015) 
and across example types (F(1,88)=11.3, p=.001) than students in the Non-solving 
variant. 

Freshman status, math aptitude and mastery-avoidance motivation did not predict 
open rates nor did they interact with solving condition to predict open rates. 

At the beginning of the study there were some usability kinks in browsing examples 
that were slowly worked out over the term. All changes were in common between 
conditions and the last changes were deployed immediately after the 3rd exam. To 
see the change in use over time, I count the number of examples opened in each 
quarter of the term (before each exam). The days between exams were similar, 
though the period from the 2nd to 3rd exam was shorter than the others. The 4th 
exam period follows the improved navigation described above as a response to the 
questionnaire after the 3rd exam. 

Table 5-3 shows the average number of interactive examples opened during the 
periods between each exam. High users are those who opened more than 3 exam 
examples over the term (the median usage among who had access to the tool). The 
number opened goes up over the term (F(3,276)=31.0, p<.0001) but among solving 
students increases more (F(3,306)=3.8, p=.011). 

 

Table 5-3 Average number of interactive examples opened during each exam preparation period 

 Overall usage Exam 1 Exam 2 Exam 3 Exam 4 

Nonsolving All (n=48) 0.1 0.3 0.4 2.1 

  Low only (n=33)   0.1   0.1   0.4   0.6 

  High only (n=15)   0.2   0.7   0.6   5.5 

Solving All (n=45) 0.1 1.0 0.8 4.7 

  Low only (n=21)   0.0   0.2   0.5   0.9 

  High only (n=24)   0.3   1.7   1.2   8.0 
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Table 5-4 Activity over term 

Group Immediate exam 
scores (Exams 1-4) 

Example opens 
on early topics 
before exams  

Example opens 
on early topics 
after exams 

Early (immediate) 
exam scores on 
early topics 

Delayed exam 
scores on early 
topics 

Delayed minus 
early 

Control 
section 

69.3 (n=55, 
sd=12.6) 

n/a n/a 72.9 (n=59, sd=13.7) 65.1 (n=55, 
sd=18.9) 

–8.0 (n=55, 
sd=17.8) 

Examplify 
section 

70.1 (n=86, sd=12.3) … … 74.3 (n=91, sd=14.1) 68.9 (n=88, 
sd=19.9) 

–5.4 (n=87, 
sd=18.0) 

- Never 
opened 

57.9 (n=2, sd=22.5) 0 0 59.5 (n=3, sd=18.8) 68.7 (n=3, 
sd=22.1) 

9.1 (n=3, sd=7.3) 

- Nonsolving 68.2 (n=44, 
sd=12.5) 

0.26 (n=46, sd=.77) 0.37 (n=46, sd=.77) 72.0 (n=45, sd=14.8) 62.3 (n=43, 
sd=20.0) 

–10.5 (n=43, 
sd=19.5) 

- Solving 72.7 (n=40, 
sd=11.1) 

1.1 (n=45, sd=2.9) 0.6 (n=45, sd=1.2) 77.7 (n=43, sd=12.0) 75.7 (n=42, 
sd=17.6) 

–1.2 (n=41, 
sd=15.1) 
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5.5.2 H-immediate 

Students with Examplify with solving interaction score higher on immediate 
assessments. 

The variables being compared are summarized in Table 5-4. The “Immediate exam 
scores” is the average of scores on the four non-cumulative exams (E1-4). The 
“Delayed exam scores on early topics” is the average score on the half of Exam 5 that 
was on earlier topics, scaled to 100. A regression model predicting the immediate 
exam scores takes into account the section (p=.111), whether they ever opened the 
tool (p=.037), the assigned Examplify variant (n.s.) and its interaction with having 
ever opened the tool (F(1,125.2)=4.3, p=.052). (Section differences, freshman status 
and mastery-avoidance, were not significant.) Students with the solving variant 
scored significantly higher across immediate assessments than the nonsolving 
control variant (F(1,147)=5.2, p=.024, d=.35) in a contrast test of tool variants 
among students who opened it. So while there was effect by merely which tool was 
assigned, there was an effect of which tool the student ever saw. A simpler model 
comparing immediate exam scores only among students who opened the tool 
(n=90) also shows that students seeing the solving variant scored higher than 
students seeing the nonsolving variant (F(1,87.3)=5.4, p=.023, d=.36). 

Students with access to Examplify with solving scored marginally higher than BAU 
control section students on immediate assessments (F(1,145)=3.1, p=.082, d=.26) in 
a contrast test (Figure 5-10). There was no significant difference between students 
in the nonsolving control and the BAU control. 

 

 
Figure 5-10 Average exam scores by condition showing solving variant of Examplify leading to better 
exam scores on immediate assessments than both the nonsolving variant and business-as-usual controls 
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5.5.3 H-delayed 

The benefits of Examplify with solving will be greater on delayed assessments than 
immediate assessments. 

To assess robust learning, I predict each student’s score on the delayed (final) exam 
with their earlier average score on those same topics as a covariate (p<.0001) and 
whether they had access to solving interactive examples, nonsolving interactive 
examples, or BAU static examples. Students with access to solving interactive 
examples in Examplify scored higher on the delayed assessment (p=.012) than 
students with nonsolving examples in the same section (d=0.48) and students with 
access to only traditional examples in the BAU section (d=0.44). The nonsolving and 
BAU were so similar that their regression lines practically overlap (Figure 5-11).   

 
Figure 5-11 Prediction of delayed exam scores by type of study examples available with earlier scores on 
same topics as covariate. Students with access to solving variant of Examplify performed significantly 
better on delayed assessments, taking into account their earlier (superior) performance. 

 

It is not clear whether the differences between solving and nonsolving are due to 
how students studied from examples before the early assessment or in the interim 
between the early and delayed assessment. To help answer this, I restrict the 
analysis to students in the Examplify section who ever opened Examplify, meaning 
they could have been affected by the variant offered, and look at the interaction of 
condition with whether they accessed the tool before taking the earlier (Exam 3) 
assessment. In this model I predict delayed assessment score from early assessment 
(p<.0001), the assigned Examplify variant (p=.003), whether they opened the 
Examplify tool before Exam 3 (p=.197) and its interaction with variant (p=.064) and 
freshman status (p=.007). Among students who ever opened the tool, opening it 
before Exam 3 was linked to better performance if they were in the solving 
condition (F(1,77)=6.5, p=.013), predicting a score over a letter grade higher that 
students in the solving condition who didn’t open it until later (d=0.68). Opening it 

Solving variant of Examplify 
Nonsolving variant of Examplify 
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earlier or not made no difference among students in the nonsolving control 
condition (p=.73). 

One complication is that some scores are missing. A visual examination of the data 
for students who missed some exams does not reveal any outliers or differential 
attrition. I tested whether having missed an earlier exam was motivation for 
performance on the delayed exam (which can replace an earlier grade) but it made 
no difference. 

5.5.4 Post-hoc: Mechanisms 

What explains the higher scores on immediate and much higher scores on delayed 
assessments with the solving variant of Examplify? Are the mechanisms cognitive or 
motivational? In medical terms, is the medicine more effective or just better tasting? 
It may be both. 

As described in “Examplify usage” above, solving students opened more examples 
and the gap widened over time. This suggests students perceive a greater utility in 
using it. But is that because it’s more pleasant than the alternatives (“better tasting”) 
or they perceive it more as a good use of their time (“more effective per dose”)? 

I would like to test the effectiveness per dose by looking at the performance 
outcomes from usage, but greater usage can be an indication of greater need 
because it is a self-allotted dose (i.e., medicine consumed more to treat more severe 
symptoms). To control for need, I again use the early topics to compare immediate 
and delayed scores. 

Solving led Examplify users to open marginally more examples on early topics 
before those exams (F(1,88)=3.5, p=.064) and more opens are correlated with 
higher scores on those exams (r=.25) for both solving (r=.31) and nonsolving 
(r=.15). 

As a loose measure of robustness I consider the delayed measure minus the 
immediate. For solving, this difference is more correlated with opens before the 
immediate exam (r=.17) than after (r=.07). For nonsolving, opens before do not 
demonstrate robustness (r=.017) while opens after do (r=.28). This suggests that for 
nonsolving the difference is accounted for by studying the topics later, while for 
solving the difference is better accounted for by studying the topics earlier. This 
lends support to the interpretation that the gains of Examplify with solving on 
delayed assessments are due in part to a better effectiveness per dose. In other 
words, compared to business-as-usual or nonsolving, studying using Examplify with 
solving improves retention of the studied material. 

5.5.5 Student perceptions 

In the final questionnaire, students were asked, “If the email reminders were a 
person, what kind of person would it be?” One positive theme was that of a close 
and helpful friend. E.g. “my boyfriend” and “studious friend”. More often students 
describe Examplify as someone expert in chemistry. E.g. “A helpful, sympathetic 
older student”; “Someone who's been doing chemistry for a long time and 
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understands how to look at and start any given chemistry problem”; and “A very 
knowledgeable and helpful person. I would love them forever. I would want to study 
with them all the time.” While they found the system to be helpful, many were 
frustrated by its limitations, 

If the past exams archive were a person they would be a know-it-all who was always 
willing to answer questions. They would be there to show you what to do, but they 
could not really explain it - they just knew the answer. Helpful, but sometimes 
frustrating. 

One particularly colorful account portrayed the solutions without explanations as 
snake-oil: 

The exams archive would be a morbidly obese Wild West snake oil salesman. 
Horrendously bloated with year after year of exam, you have to wonder how much 
that guy ate (or maybe it was hormonal?). Sometimes his solutions work, sometimes 
they're even what you expected, but they come with absolutely no explanation and 
you're left with an unending suspicion that you're being bullshitted. But he's the only 
medicine man in town, and if you take enough of his treatments they seem to work, so 
you just keep investing in them more heavily. Sure, you could go to the local Wild West 
barber ([the course professor]) for an operation, but his explanations don't make any 
more sense. 

That was a really weird metaphor but I think you get the point. 

It seems the explanations were particularly desired for the multiple-choice or fill-in-
the-blank responses for which the process of arriving at the answer wasn’t 
apparent: 

they are a person with not many friends because very few people have written 
anything in the hints section so that part is not very helpful even though I wish it were 
because at times I didn't understand a multiple-choice answer and wanted an 
explanation but there were none. 

This last quotation points to the problem with the explanations. Very few were 
written. I discuss this limitation and possible remedies below. One encouraging 
repeated sentiment was that despite the system’s flaws, they did value it and had 
patience for “a child who is still constantly growing”. Another student wrote: 

I'm not sure what this question is looking for, but I'd say it's a very nice, clean cut 
person who would go out of their way to help you more often than not. Everyone slips 
up occasionally and is wrong about one thing or another, but overall, I think I love this 
person. 

5.6 Discussion and Conclusion 

Examplify was designed to improve learning outcomes in university lecture courses 
using observations from the field and theories from existing Cognitive Science 
literature. In a large introductory chemistry course, students with the solving 
variant of Examplify performed better on immediate assessments than both the 
nonsolving control variant and the business-as-usual control section. The benefits 
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on delayed assessments were even greater, about a full letter grade. What can 
explain these effects? First I contrast the two variants of Examplify.  

Students with the solving variant opened more examples, pointing to a motivational 
effect. They used Examplify more throughout the term and their usage increased by 
more in the 4th quarter when the system became easier to navigate. So, part of the 
explanation is that Examplify with solving motivated more studying than the 
nonsolving variant. 

However, usage factors do not entirely account for the differences in performance. 
The solving variant may also help students to get more out of opening each example, 
a cognitive effect. Rigorously determining whether this is true is not possible with 
this study design because a student’s open rate is confounded with their study 
beliefs and self-assessment. However, the regression model predicting delayed 
scores from their condition and its interaction with whether students opened the 
tool early also lends support to this interpretation. In the nonsolving variant, 
opening the tool early made no difference and for the solving variant it related to 
better delayed performance. Additionally, the correlations in the ad-hoc analysis 
suggest that Examplify with solving leads to better retention than how students 
otherwise study.  

The study did not have measures of student activity outside of Examplify, where 
students likely spent the majority of their study time. Another explanation for the 
benefits of solving over nonsolving are their relative impact on students study 
beliefs and dispositions, a metacognitive effect. For example, the solving interaction 
may have increased students’ awareness of their readiness for the exam and the 
nonsolving interaction may have induced a false sense of readiness. 

The solving variant of Examplify was better than the nonsolving version and the 
business-as-usual control, but explaining the differences with BAU is harder because 
there are more differences and less data to explain them. Examplify may have been 
more engaging and motivating than the BAU static examples, reduced cognitive load 
through the step-wise modularization, or any of the solving/nonsolving possibilities. 
This study was not designed to discern between these and I encourage future work 
on these questions. 

The data I do have comparing Examplify and BAU are partially confounded. Because 
the two section conditions were not randomly assigned, I cannot be certain that the 
differences were due to the Examplify treatment but the analyses did factor in key 
differences between the sections when they were significant. The differences were 
only marginally significant and were not significant on the delayed measure. One 
interpretation of the data is that the BAU condition was much like the nonsolving 
condition. The regression model of the delayed assessment supports this 
interpretation, through the almost identical parameter estimates for those two 
conditions. Only students with the solving version of Examplify scored differently on 
the delayed assessment when accounting for their scores on the earlier one. 

Overall the immediate and delayed measures seen against both controls provide 
evidence for the positive benefits of Examplify with solving. It appears that the 
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solving variant of the tool was motivating to students and led them to learn in more 
robust ways from their studying with it. The nonsolving variant, having similar 
outcomes to the BAU section, may closely match how most students study from the 
worked example problems without the tool. That is, by examining the expert’s 
worked solution and explaining it to themselves rather than first attempting to do 
the work. In this interpretation, studying with Examplify with solving could be 
improving their awareness of the skills they need to develop or directly increasing 
their fluency through practice. 

How to reconcile these results with Cognitive Load Theory? The solving variant 
prompted students to solve before they ever studied an example, which would be 
predicted to increase cognitive load and yield poorer learning, instead of the very 
positive effects observed. There are a number of possible explanations for this 
apparent contradiction with Cognitive Load Theory. The first could be the expertise 
reversal effect. In this interpretation, with the nonsolving variant of Examplify, 
students continued to study worked examples even when they had such expertise 
that problem solving was more appropriate. While this may be true, it doesn’t 
appear to be an effect of the tool as there were no significant differences between 
the nonsolving variant and business-as-usual. To validate this explanation, future 
work should test in isolation supporting students’ transition to problem solving. 

A second, and compatible, explanation, is that the solving variant of Examplify 
requires much less extraneous cognitive load than the problem solving conditions to 
which worked examples have been compared in previous studies. The problem 
solution feedback in most worked example studies is presented only after a student 
attempts the whole solution, subjecting them to possible floundering and, indeed, 
extraneous cognitive load. In the Examplify solving variant, the feedback is given 
after each step. Experiments with Cognitive Tutors, which share this step-wise 
feedback feature, have found a reduction in the worked example benefit (Salden et 
al., 2009). Potential extraneous load is further reduced in the Solving variant 
because instead of having a succession of hints about the next step as in Cognitive 
Tutors (which start off quite vague and may invoke extraneous load before finally 
getting to a worked-out example of the next step), in the solving variant students 
can go directly and quickly to the worked step if they choose.  An analysis of how 
quickly students reveal the next step in the solving variant should be pursued in 
future work.   

Examplify not only has strong positive impacts on learning, but is easy to adopt. The 
benefits to student learning required very little time from the instructor and no 
changes to his curriculum. All that was needed was spending one minute per page 
marking the static images for the interactive activities. In a course with similar 
exams, a teaching assistant could prepare 15 old exams in one hour, or about how 
long they have office hours each week. Because the markup does not require domain 
knowledge, it could be done by a work-study student or even outsourced to a micro-
labor market such as Amazon Mechanical Turk. For other courses, getting old exams 
into a digital form may be a bigger task. Scanning a stack of papers is fast, but for 
instructors without a scanner a phone camera is an increasingly practical option. 
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For instructors who do not have high quality camera phones, their students may and 
could be incentivized to both snap photos of old exams and mark them up for 
interactivity. 

Examplify is a simple technology that can provide big gains to learning. In a full 
semester evaluation in a real-world college course, Examplify with solving improved 
exam scores and had even greater gains on the delayed measure, suggesting benefits 
on longer-term learning. As a benefit to future related work, the techniques used by 
Examplify are drawn from cognitive psychology and are simple to implement and 
iterate upon. 
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6. Summary and Conclusions 

6.1 Introduction 

This work began with two main lines of inquiry: exploration and reflection on 
design processes for learning sciences research that operationalize theoretical 
results and are easily adopted in vivo, and case studies in applying those processes 
to the design and rigorous evaluation of systems to support students’ study 
activities in college lecture courses. In reflecting on the processes and outcomes in 
these cases and others, I developed this work as an instance of a broader concept of 
Scientific Research through Interaction Design, an emerging approach to research 
facilitated by recent developments in computing. In this last chapter, I will first 
summarize how this approach was pursued in this work. Then I will examine the 
two cases of Examplify and Nudge to support the thesis statement, 

The Scientific Research through Interaction Design approach 
can enact preferred states in a manner that explains 
outcomes, informs the conditions for applying scientific theory, 
and generates new experimental hypotheses. 

Finally I will reflect more generally upon the design processes I used and invented 
in service of these goals. 

6.2 Process Overview 

The phases of the process roughly fit the mold of the Integrative Learning Design 
Framework: Informed Exploration, Enactment, Evaluation for Local Impact, and 
Evaluation for Broad Impact  (Bannan-Ritland, 2003). Like the ILD framework, this 
work was also driven by the question, “How should we systematically create, test, 
and disseminate teaching and learning interventions that will have maximum 
impact on practice and will contribute significantly to theory?” In this work, the 
Informed Exploration was preceded by Planning of methods. I adopted HCI user 
experience design methods and a frame of Research through Design (J. Zimmerman 
et al., 2007). Further, through considering the affordances of current technology and 
the power of the available methods, I set out to design a particular kind of 
intervention that could impact practice and maintain a live connection to theory: the 
operant probe. By setting the operant probe as the designed artifact, I could cleanly 
separate the concerns of design and science to provide productive interfaces 
between them. 

The goal of developing an operant probe shaped the Informed Exploration phase of 
the work. Because an operant probe is intended to operate in natural use and 
contribute to science, this required a map of opportunities for which designs would 
both be accepted and facilitate the rigorous manipulation and instrumentation of 
scientifically interesting variables. While I used traditional HCI methodologies like 
Contextual Design (Beyer & Holtzblatt, 1997) and newer methods of user 
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experience sketching such as Needs Validation (Davidoff et al., 2007), I devised a 
new technique, Scientific Impact Evaluation, to evaluate the users’ needs by the 
ability of solutions to those needs to contribute to science. 

In the Enactment phase, I used traditional HCI prototyping techniques. I again 
augmented these with a theoretically driven Empirical Feature Rationale map for 
core features of the system. With this map of lab-based principles driving the design 
decisions, the qualitative and quantitative aspects of the Evaluation phase can help 
inform the mechanisms of any outcomes, conditions for applying these empirical 
principles in the studied context, and new experimental hypotheses around these 
principles. 

Finally in the Evaluation phase, I tested the systems in authentic classroom settings. 
While this work did not have a separate Broader Impact phase, the systems were 
evaluated for factors contributing to their Acceptance and Scalability. In the design 
of operant probes, the potential for broader impact is considered from the very 
beginning. The operant probes were also evaluated by their Effectiveness to 
improve outcomes in the context and the Insight they provided into the mechanisms 
of those outcomes and future applications of the principles. 

6.3 Nudge 

6.3.1 Motivation 

Nudge was driven primarily by the observation in the Informed Exploration phase 
that students needed help with time management. The technique of Needs 
Validation demonstrated that both students and teachers felt this need. It also 
scored well in the Scientific Impact Evaluation, connecting to key principles for 
organizing instruction and studying. A more thorough literature review added 
evidence that time management is difficult for students, but an important factor in 
their success. In a longitudinal study of cumulative GPA, a regression with time 
management skill and SAT scores showed time management to be a better predictor 
of GPA four years later (Britton & Tesser, 1991). Time management is made difficult 
by the human susceptibility to “planning fallacy”, the tendency for people and 
organizations to underestimate how long they will need to complete a task, even 
when they consider their previous under-estimates (Kahneman & Tversky, 1979). 
One technique for abating the planning fallacy is to decompose the task, and this 
technique is more effective for tasks of greater complexity (Kruger & Evans, 2003). 

The user interviews and analysis pointed to several design principles: 

- Computer support for students to use their limited time most effectively 
- Require no upfront action by the student in order to benefit 
- Require no changes to the instructor’s curriculum or schedule 
- Require little or no time from the instructor to offer in her course 

 



Summary and Conclusions 

 95 

6.3.2 Solution 

Nudge was designed to help students by breaking the course syllabus down into 
actionable tasks and supporting students in monitoring their statuses at carrying 
out those tasks. It was implemented as a web-based application that sent email 
messages when tasks were coming due. In each email was an embedded form 
whereby students could click to update their task statuses: Skipped, Not Started, 
Started or Completed. They would then see their progress through the course tasks. 
Any tasks they had done were stricken from future emails.  

6.3.3 Effectiveness 

In a randomized controlled trial over a semester of an introductory chemistry class, 
Nudge messages led students to spend more time in their recitation sections and 
helped students with poor time management to earn better grades. However, there 
were also some potentially negative outcomes. 

Among students who reported excellent time management skills, those receiving all 
reminder messages performed worse on exams than those sent no reminders. One 
possible explanation is that the Nudge messages were effective in causing students 
to study in the manner modeled by the set of tasks. Because the tasks modeled a 
middle of the road student, the better students would be less studious than they 
would have been otherwise. Easy solutions to this would be to email only students 
who need the support, or to email messages that model more studious behaviors to 
students who can reach those levels. Another observed negative effect is that 
students receiving all messages ended the semester with higher Performance 
Avoidance goal orientation than students receiving no messages. The performance-
avoidance orientation is basically fear of failure, which can have negative effects on 
learning. 

6.3.4 Acceptance 

It appears that students would eagerly adopt such a technology if offered more 
broadly. Three quarters of the respondents to an end-of-term questionnaire rated 
“Email reminders about course work” as “Good” or “Great”, including those who had 
high time management skills. Students not in the study could choose how often to 
receive Nudge messages and 80% did not choose to stop them. This suggests that 
even the students whom would have performed as well without the Nudge 
messages perceived them as valuable. 

6.3.5 Insight 

The benefits of Nudge message did not require opening the messages, but they were 
greater for students who opened more of them. This was not merely selecting a 
correlation with being a better student; the opening more messages made more of a 
difference for poor time managing students than those who already had managed 
time well. The fact that opening messages had no relation with exam scores among 
students with good time management helps inform the limitations of applying the 
principles behind Nudge. 
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6.3.6 Scalability 

Nudge required no instructor time or changes to the course. It simply required that 
someone type the syllabus dates into a tool. This doesn’t require any domain 
expertise and could easily be outsourced, but instructors may be willing to do it. 
When the instructor in the study was asked if he’d take the time to do it himself 
given the results, he replied, “Yes, very much. I would say emphatically.” The costs of 
operating Nudge are minimal. A simple web server can handle hundreds of courses 
and sending 10,000 emails costs $1 today. 

6.3.7 Future Work 

As an exploratory design research project, Nudge poses more questions than it 
answers. One overall question is whether students should have time management 
scaffolded for them, when it such an important skill to develop. The ultimate goal of 
Nudge is not to supplant the need for time management skills but to model them for 
students and support them until they have developed the skills. The contextual 
inquiry data support this position. Many students expressed a desire to be better 
students and ignorance of how to do it. Instructors valued supporting students’ 
development of these skills but did not have the needed expertise or time to spare in 
their curriculum. Nudge provides this scaffolding for students with minimal 
instructor time to set the tasks. 

Future work could explore whether Nudge-style systems shape students’ enduring 
behaviors (positively or negatively) or just help in the course with Nudge. A benefit 
of the Nudge system is that it enables these sorts of long-term evaluations with 
relatively little costs to the researcher. In a design over multiple semesters, Nudge 
could be provided to students in one of two introductory classes and outcomes 
measured in a subsequent required course. In a design over one semester, 
performance in other classes could be measured as an outcome of Nudge in one of 
students’ courses. With these, we could determine whether Nudge leads students to 
manage their own time better or worse (or neither) and whether the outcomes are 
predicted by student attributes. In the future Nudge could deliver, messages 
appropriate to each kind of student. 

Towards the goal of broader impact, I of course would like to see evaluations of 
Nudge in more environments. The effects of Nudge may be more pronounced in 
school environments where more students struggle with time management. In 
particular, I would like to study Nudge in community colleges where more students 
must balance studies with work and family. I would also be interested in adapting 
Nudge to a K12 environment. K12 teachers walk structure students’ study time very 
much already, but a system like Nudge could separate these time management skills 
from instruction and gradually fade for capable students to encourage internalizing 
the skills. 

Before any future study, I would like to develop a more theoretically validated 
model of what activities students should perform for different standard class events 
like lectures, quizzes and exams. The tasks in this evaluation were a shallow attempt 
at distributing practice, but more fine-grained scaffolds may increase the value that 
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students gain and perceive in the system. Further, it would increase the value of 
Nudge as a probe; to determine how students currently allocate their study time and 
how much adopting theoretically optimal study habits would affect their learning. 

6.4 Examplify 

6.4.1 Motivation 

Examplify was motivated by the observation in the Informed Exploration phase the 
students needed help to study more effectively. Students expressed the need for 
active engagement to hold their attention and how the study techniques they use 
are ad-hoc. Students want more immediate and regular feedback on their 
understanding, but quality feedback costs lots of instructor time that they do not 
have to spare. One solution to this is large banks of multiple-choice questions, but 
students and instructors agree these are shallow and do not assess deep 
understanding. In addition, they require time to create. Intelligent tutoring systems 
can get at deeper knowledge constructs, but require an inordinate amount of expert 
time to create. 

Designing a system to support student feedback required comparing competing 
theoretically driven design factors. For example, worked examples without solving 
have been shown to be more efficient for learning than direct problem solving. As 
students approach mastery, the effect reverses and problem solving is more 
effective. Which would help students more in a real-world course setting? Further, 
which would students use more? Problem solving may be less motivating because it 
requires more work. In addition, explaining solutions to oneself is beneficial in both 
cases. Could a software interaction elicit this behavior from the students? 

The user interviews and analysis pointed to several design principles (along with 
the generic latter three principles of Nudge): 

- Scaffold effective study techniques for students that work even for students 
who don’t know them 

- Be interactive enough that students are engaged 
- Help students to accurately assess what they know and don’t know 
- Be self-paced so that students can go quickly over what they are already 

confident in 
- Map well to course assessments so that students know when they are 

prepared 

6.4.2 Solution 

Examplify was designed to provide immediate and high quality feedback to students 
through an interactive problem solving activity. The key insight is that many 
instructors already produce answer keys to their exams. Examplify lowers the costs 
of authoring interactive exercises by repurposing the troves of answer keys in 
instructors’ filing cabinets and hard drives. Each page of a key is made interactive 
through simply drawing boxes over answer steps to mark what should be revealed 
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in what sequence. Two variants of the system were developed, one without any 
prompt to solve or compare one’s own work to the expert solution. 

6.4.3 Effectiveness 

In a randomized controlled trial of the variants, students with the solving version 
used the system more and performed better on learning measures. They performed 
especially better, about a grade letter, on delayed measures of learning. In a non-
randomized controlled comparison with business-as-usual, the solving version had 
similarly sized benefits over the non-interactive answer keys.  

6.4.4 Acceptance 

In a questionnaire given three quarters into the term, 40% rated the interactive tool 
as Good or Great, but 25% didn’t yet know about it. To increase student awareness, 
the tool was linked to more prominently from Blackboard and the navigation was 
improved. In this last quarter of the term, students with the solving variant of 
Examplify opened an average of 5 examples and the top half of users opened an 
average of 8. The nonsolving variant was used less over the term, averaging 2 in the 
last quarter of the term. 

The instructor was skeptical of the effectiveness results because he’d been pitched 
many other technological systems that claimed to improve student scores. He said 
he’d like to see it work again and was eager to include it in the next semester course. 

6.4.5 Insight 

The exact mechanisms of the benefits are difficult to determine given the 
experimental design. The theory of the design of the solving variant points to the 
testing effect, but the self-explanation prompts and easily available solutions were 
also in play. It’s an open question whether the system provided better testing than 
the business-as-usual non-interactive testing or simply motivated students to test 
themselves more. It’s also not clear whether the nonsolving variant had poor effects 
because it didn’t work as well, or students simply didn’t like using it and thus didn’t 
reap its benefits. Another factor is the expertise reversal effect, by which the 
nonsolving variant may have been helpful early on and the nonsolving variant after 
having studied. However, the solving variant can act as the nonsolving variant 
whenever the student wishes by bottoming out through the Get Help button. 

Some data suggest that the benefits on the delayed measures of learning are due to 
more robust learning before the earlier measures of the same topics. For the solving 
variant, the difference in scores is more correlated with the number of examples 
opened before the early exam than after. For the nonsolving variant, there is almost 
no correlation with opens before the early exam. 

The most important scientific insight of Examplify and its evaluation is that 
metacognitive tutors can be effective without evaluating student work. In Examplify, 
the student is responsible for evaluating his or her own work against the expert’s 
work. This drastically simplifies the system and reduces costs of authoring and 
implementation. It is conceivable that it also leads to greater metacognitive 
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development by requiring users to evaluate their work in order to advance. If so, 
such an interaction is unlikely to work for unmotivated learners but it does point 
strongly to a line of research to pursue.  

6.4.6 Scalability 

Examplify scales easily because it re-uses existing content. It requires no changes to 
the curriculum and only one minute per page to annotate. Instructors can easily 
avoid spending this time by giving the work to their teaching assistants. The 
instructor in this study said, “In a situation like that, I would find help from the TAs 
for their labor. Should be easily within their talents.” 

A bigger scalability issue is that the re-use of existing content depends on there 
being existing content. Not all instructors have troves of answer keys. Some of those 
who do may not wish to share them so that they can re-use exam questions. In 
practice, this may not much limit the adoption of Examplify because the types of 
questions it is suited to are those that have multiple steps, where students must 
show their work, and thus are easier to produce. 

6.4.7 Future Work 

There are two main directions I would like to see Examplify research pursue: 
optimization and explanation. Like the supersonic jet research described in Chapter 
2, as an operant probe Examplify can bifurcate for these two goals. 

To optimize the outcomes, I would first like to validate the system in more courses 
and evaluate its broader impact. This will first require converting the answer keys 
from more courses into Examplify activities, which will help inform the cost 
estimates of scaling up. I would also like to explore how well problems from one 
course can help students in other courses by testing them on similar but differently 
oriented problems. For these new settings, I would like to grow out from this 
chemistry course into new student populations (e.g. community college and high 
school) and domains. I am especially interested in whether the problem solving with 
examples extends past procedural domains and into ill-defined domains like history, 
business or design. 

A priority for the next iteration is to improve the elicitation of self-explanation. Are 
they self-explaining and just not typing it in? How can the system better motivate 
sharing of explanations? In reflecting on the results, I have some ideas for a better 
navigation structure that prompts participation in a way that they may see more 
value in. For example, when they do not understand then prompt them to ask a 
question which someone will answer. When they do understand, they can browse 
and answer these questions. This would also help the instructor to see what 
students are struggling with at a conceptual level. 

To help explain the outcomes, I would like to continue studying Examplify 
experimentally. First, I would improve the logging system to better model what 
mechanisms of the activity are improving student learning. I am especially 
interested in capturing how they study outside the system, and would explore ways 
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to poll students at a fine grain that remain ecologically valid. I would abandon the 
worked examples without solving because the Examplify interaction degrades into a 
worked example when students click to Get Help. My next randomized manipulation 
would be to compare students who have access to only Examplify interactive 
problems with those who also have access to the classic noninteractive versions. 
Does the necessity of working at a computer hinder their studying? Do they spend 
less time but reach the same outcomes? Does Examplify work well for everyone or 
only the students who elect to use it? I would also carry out this experiment at 
multiple sites to have a better representation of students and instructional settings. 

6.5 Scientific Research through Interaction Design 

6.5.1 Motivation 

One of the top challenges of the learning sciences is in improving education as it is 
practiced. Educators on the front lines perceive little value in the outputs of 
education research. Traditional experimental research methods, in isolating 
variables, often lose fidelity to learning as it actually occurs. Leaders call for more 
“usable knowledge” (Lagemann, 2002). 

The “design-based research” movement in education research attempted to place 
research in the learning context to improve its ecological validity. This has been at 
the expense of other forms of validity that science requires. Design-based research 
as commonly practiced has significant challenges in reproducing studies, controlling 
variables, and managing vast data that may be relevant. 

The challenges are implicit in the tension between the design and empirical 
communities, in their methods, goals and reward structures. What’s needed is a 
better way to link research and design (Schoenfeld, 2009), and move research more 
rapidly into practice. 

6.5.2 Solution 

Scientific Research through Interaction Design offers a new way to interface science 
and design to produce systems that have positive real world impact. The methods 
and values of Interaction Design are maintained without compromising them to a 
“science of design”. Instead, scientists are treated as stakeholders in the familiar 
design processes, such that the preferred state for which they are designing is both 
to improve world and to place scientific instrumentation within natural contexts. I 
offer a name for this type of artifact, an operant probe. 

6.5.3 Operant probe 

Operant probes are a research apparatus that can advance learning sciences by 
linking the design and traditional research communities. My work is not the first 
operant probe, but I believe reifying this concept and producing more instances will 
improve both research and practice. I have offered a definition: an in vivo research 
apparatus that operationalizes theoretical constructs and collects data by which to 
both evaluate its effects and model the mechanisms. 
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In vivo experimentation is growing in education (Koedinger, Aleven, Roll, & Baker, 
2009) and even iterated design of in vivo experimental interventions (E. Walker, 
2010). Operant probes are not a new type of experimentation but a new emphasis 
on the research apparatus as a designed artifact. While in vivo experimentation 
helps create “usable knowledge”, the operant probe is a means for researchers to 
create usable artifacts. These systems can operate in real world settings and put the 
products of research directly into practice. 

6.5.4 Opportunity mapping 

Researchers often begin the design process with an opportunity in mind. They use 
HCI techniques for user-centered design like iterative prototyping, but they don’t 
question their framing of the problem. The success of an operant probe design 
depends on its adoption. In this work, I used a broader user experience design 
approach to discover opportunities for systems that users would likely accept, that 
would likely work, and that could contribute to science. I argue that designs using 
this method are more likely to be adopted in real world settings in ways that are 
sustainable, ecologically valid, and productive for research. 

6.5.5 Scientific impact evaluation 

An important contribution to the opportunity mapping process is the Scientific 
Impact Evaluation technique. I used this to prioritize among the needs that users felt 
for the ones for which designed solutions would 1) be predicted by lab-based 
principles to work, 2) inform future applications of those principles, and 3) fit the 
expertise of the research team in order to succeed scientifically. 

This technique of evaluating scientific impact in the design process stands in 
contrast to normal design practice. Through this process, I was able to filter out 
systems that would be easy to design but not contribute to research. For example, 
the asynchronous question-asked backchannel in lectures. The need to ask 
questions in lecture without risking embarrassment was strongly felt, but the 
scientific opportunity for me as a researcher was not strong. This would be an 
excellent system for someone to implement commercially, but probably not as an 
operant probe. 

This technique of filtering scientific principles by user acceptance also stands in 
contrast to the traditional pipeline of lab to practice. Many learning principles, such 
as spaced practice, are scientifically robust and have the potential to improve real 
world education, but are hindered by user acceptance. For example, I was eager to 
implement a system to take spaced practice to a new scope. Students and faculty 
expressed frustration that students forget so much of what they learned when they 
walk out of the final. In interviews I described OlderCheck, a system that quizzes 
people months after they’ve finished a course, to help them retain that knowledge. 
This would have been interesting scientifically, but students and teachers rejected it 
completely. It didn’t fit at all into how courses operate today. The Scientific Research 
through Interaction Design approach can be seen as a way to focus the scientific 
inquiry towards knowledge that could fit more easily into real world use.  
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6.5.6 Evaluation of the design process 

As part of the exploration of these methods, I used them to develop Nudge and 
Examplify. Reflecting on the design and results of those two systems, how effective 
was my Scientific Research through Interaction Design approach? I discuss each of 
Walker’s criteria for productive design research (D. Walker, 2006). 

6.5.6.1 Riskier designs 

Both Nudge and Examplify involved considerable risk. For one, they are new types 
of systems, not iterations upon or features added to existing systems. There is no 
prior art to automated task polling in education. Nudge did draw on designs of 
general productivity task management systems, but the hard-coded set of tasks may 
not have turned out well. (Indeed, it is not clear that that part did.) It was somewhat 
surprising that students did fill out the tasks and that 80% of students who had a 
choice kept receiving the emails. I would not have invested the time to build the 
system if not for the promising results from the earlier pilot and the qualitative data 
from the opportunity finding process. 

Examplify bears some resemblance to intelligent tutoring systems, but takes away 
an essential element: intelligence. Would students still learn when they could 
deceive the computer? Would they use it voluntarily? They did learn and did not 
attempt to deceive the system, likely for just the reason that use was voluntary. This 
has opened up a new class of tutoring support systems. 

6.5.6.2 Cycles of studies 

The risk of these less conventional designs was minimized through the inexpensive 
iterative process that focused energy on ideas most likely to be accepted. To do this 
required failing fast on less productive ideas. The opportunity finding process 
helped me as the design researcher to quickly discover that some of my most 
precious ideas were not acceptable to the users for whom I was designing. For 
example, students in the interviews expressed frustration with having to learn 
things that were not connected to their career goals. I sketched a system to support 
customized curricula and social supports for sub-groups of the class with similar 
career goals. In interviews, students were uninterested and faculty explained, “most 
of the students have no idea what they want to be”. Another, a system to support 
retention of material past the end of the course, was found to be untenable in the 
current university structure. 

6.5.6.3 Study the resource requirements of designs 

Part of the opportunity finding activity is to consider the perceived benefits and 
costs to each stakeholder. Many of the other systems that were ruled out would 
require more effort on the part of teachers and students. Nudge and Examplify 
require very little time from the instructor and fit into their existing activities. For 
example, Nudge tasks can be set up while making the syllabus. Examplify exercises 
can be input while making the exam answer key. Because these authoring activities 
require so little expertise beyond the standard materials, they can be outsourced to 
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students or online workers for pay or recognition. When such a scale warrants the 
up front costs, the authorship can be lower to zero marginal cost by algorithms that 
interpret the instructor’s raw materials. 

6.5.6.4 Compare practices 

The market orientation of the opportunity finding method treats existing practices 
as competition in the market. The new designs have to be not just better than 
existing options, but so much better, they warrant adoption. (Or so much cheaper.) 

Nudge for many students was not so much better. In interviews, organized students 
explained they already have their time and task management methods such as a 
paper calendar or dorm room whiteboard. For students without good existing 
practices, Nudge helped. This is likely in part because Nudge did not require any 
effort on their part to configure. Should teachers take on the burden (albeit minor) 
of supporting students’ time management? It depends on their goals and incentives. 

Examplify was better than existing options. In the study, the solving version was 
compared both to the nonsolving variant and to the business-as-usual bank of 
noninteractive exercises. The solving variant was so much better that students’ rate 
of use went up over the semester. Further, as software Examplify can be monitored 
and improved over time. In designing Examplify, it was also positioned against 
simple online testing systems with automated scoring and with sophisticated 
intelligent tutors. While there is no direct evidence comparing them, Examplify 
activities are compatible with work that can’t automatically scored and they are 
significantly cheaper to author than quality automatic scoring questions or 
intelligent tutors. Whether they cause better learning is an open question. 

6.5.6.5 Consider sustainability and robustness 

The two systems have been shown to work in a classroom with negligible 
experimenter participation. They have not yet been shown to work in any other 
classroom or hostile deployment. However, because they are designed as operant 
probes, they are easy to replicate, iterate and monitor in new settings. Monitoring 
can detect early when the system usage is somehow going off the rails. Further, the 
qualitative research in the opportunity finding give confidence that the systems 
were designed with a decent understanding of the realities of the college course 
environment. Moreover, failures provide opportunities to explore and expand the 
applied knowledge of how to operationalize the basic theories. 

6.5.6.6 Involve stakeholders in judging the quality of designs 

Nudge and Examplify were each assessed by questionnaires with stakeholders and 
scored well. I believe the operant probe orientation of the work led to these systems 
that are easier for stakeholders to wrap their heads around to evaluate. They are not 
hypothetical or contingent upon other changes. They work as is in the classrooms of 
today. Further, because they were designed to be domain general they are easy for 
stakeholders to imaginatively assess their transfer into other courses with other 
structures and curricula. 
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6.5.7 Future Work 

As I described in the Nudge and Examplify sections above, I would like to try them 
both in new settings such as community colleges and observe contrasts in use and 
perceptions. I also would like to further explore the costs of content production and 
specific interaction features. 

For the broader design process research, I would like to apply these concepts again 
to new contexts. In this study I worked within the practical constraints of 
completing a dissertation, restricting the design space a priori to systems that could 
be informed, designed, implemented, and studied experimentally in vivo over a full 
semester all primarily by a single graduate student. How do these methods work in 
a team? Over several years or several months? I would like to see whether they 
reliably lead to productive operant probes. Moreover, I hope others will experiment 
with these concepts to assess whether they add value to their own design work. 

However, the future work I am interested in is validation of these systems as 
boundary artifacts. Strong evidence would be an independent party taking up Nudge 
or Examplify and either running with it, to hack away and make it as fast as possible, 
or walking with it to model how exactly it is working. Even more inspiring would be 
for the results of either of those inquiries to feed back across the boundary. 

6.6 Final Thoughts 

In this dissertation, I have described my work in innovating design concepts and 
processes for education research that better puts theory into practice. I have also 
described the two fruits of this labor, Nudge and Examplify, which have been shown 
through in vivo randomized controlled trials to have benefits to learners. Nudge 
especially helped students with poor time management to perform better on exams. 
Examplify (with solving) helped students across the board. Students who merely 
had access performed better than students who did not. The benefits were most 
pronounced on delayed measures in which students with Examplify performed a 
letter grade better. 

These systems operationalize theory and put it into practice. Where does this fit in 
the future of education research? Are designers and technologists in the learning 
sciences tent or will operant probes serve to delineate its boundaries? My hope is 
that as an applied science in a terribly complex system, developing products and 
shepherding them to adoption will be a valued research contribution. 
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Appendix A: Output of ideation 
 

# Idea 

1 Class study partner pairing system. 

2 
Shared note-taking wiki style that all notes coexist but some are prominent, social 
voting 

3 

TA review session voting system (submit questions, everyone votes and popular ones 

first) 

4 Share the question analytics with students. 

5 Funnel most disputed questions to students. 

6 Intelligent system to prioritize materials during study time. 

7 Stats on a question during practice to show how hard it is. (IRT curve) 

8 Seat reassignment system to pair clicker discussion partners. (learning community) 

9 

Study time companion, find most appropriate way to study within a certain time 

window. (e.g. bus ride) 

10 Book edition referent translator. (page numbers between editions) 

11 
Public anonymous note-taking on the learning goals to read the same material in 
different ways. 

12 Study partner match-up system based on performance data. 

13 Easy attendance system. (sort of CAPTCHA) 

14 
Quiz system that gathers up learning components you need more help on for review 
before the exam. 

15 Games/puzzles in lecture to keep everyone engaged. 

16 Voluntary delayed post test system for data mining. 

17 
Real time feedback to the instructor whether people understand what you're saying (e.g. 
slides) or doing (e.g. activities) 

18 Mark your confusion at a part of the lecture for someone to help you. (audio recording) 

19 
Contributions that don't require being right or wrong. (e.g. cog psych scenarios, 
provocative questions) 

20 Wiki study packets for exams. 

21 Make the grade reflect real learning, not motivation. 

22 
Self-testing system during exam prep, coupled with wiki instructional materials and 
worked examples. 

23 
Analytics on how much students are working and how. (Anonymous logging and 
reporting.) 

24 
Personal informatics on how you're spending attention. Cognitive/goal costs of 
compulsive computing. 

25 Writing tutor that teaches the domain (to enable and carry out better assessments) 

26 Assess learning through authoring scenario-based applied questions 

27 Studying informatics to be coached by instructor, peers, computer, etc. 

28 Teacher-accessible question and test informatics/validation tool (product-y) 

29 Integrated exam grading system (Questionmark?) 

30 Rapid system showing students their retention with active learning vs. passive 

31 Study behaviors tutor, tied to real data from learning activities and outcomes. 

32 Make students care, show they care. 

33 Big ideas database to find concepts that cut across findings 

34 
Automated attendance system in lecture. (geoweb? exchange info with person sitting 
next to you to validate you're there) 

35 
Real-time monitor of student engagement in the class. Let them indicate with devices, 
or sense with camera in the front (counting eyeballs with IR) 
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36 More active processing of lecture (than note-taking) 

37 Peer tutoring support highly instrumented for accountability / class credit 

38 Phone-based quiz answering to avoid paperwork time. (M/C and short answer) 

39 Actionable analytics for teachers on their formative assessments. 

40 Shared course planning, management tools for a team of teachers. A la Lesson Study. 

41 
Explain the lecture at the end of the lecture. By calling into a system? Peer review of 
audio later. Compare with rubric and give written feedback. 

42 
Data mining class participation to intervene in different ways, deliver personalized 
learning. 

43 
Graphical tools to easily connect current topic with earlier topics (in lectures?) 
Activeclass.org 

44 

Micro-experiment tracking system for educators. Quick pre/post assessments around a 

small treatment. 

45 Versioning system for teaching materials with in-class annotations on each version. 

46 

Compare learning across labs/recitations to monitor teaching of TAs, help them and 

improve the course. 

47 Portfolio system to develop the macro concepts of the course. Track recurrence of ideas. 

48 Phone app to display your understanding stats throughout the semester. (Gamelike) 

49 
Personalized questions during lecture. Pick your difficulty level. (Phone affords individual 
display > individual response) 

50 Backchannel with TA moderation to interrupt, queue or ignore on incoming question. 

51 

Recording questions keyed to time code and point in the slides. Embed student 

experience in materials (for future self, and others) 

52 
Ideate on fragmenting the attention streams in large lectures so more students can 
participate / be immediately accountable. 

53 

Anonymous polling system to know what students are really doing. (did you read the 

chapter? have you prepared for class? did you cheat on the homework?) 

54 Confidential assessments, surveys (no name encourages honesty, but still get feedback) 

55 
Pre-req ramp-up to get students in sync (learn immediately where you are in class, 
what you need to get by) 

56 Assessment system that is low/no anxiety. 

57 Crowd-source the content of a learning game (authoring/use class/library/bus/home) 

58 

Process sharing system. Instructor proposes ways to do things, students reflect and 

improve on the process. 

59 Teaching repository annotated with student feedback 

60 Daily evals on teaching and instructions 

61 
Course question system: email an address, makes a ticket, instructors can make public 
(AAQ) 

62 Facilitating spontaneous small-scale discussions 

63 Just in time tutoring through micro-labor markets 

64 

Algorithm to distribute students throughout the hall to for break-out with different 

groups 
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Appendix B: Early design areas for lecture courses 

Support mastery learning. Students not seeing results, focused on percentages instead 
of usable knowledge. Students want faster feedback on what they know and don’t 
know. Detailed feedback can help them master what they want to master for 
themselves vs. the grade. 
 
Personalizing lecture. Students have different life goals wrt/ the course content. Adapt 
to different backgrounds and interests. 
 
Supporting explication of learning goals. Related to mastery learning. Student want to 
focus on exactly what they are expected to learn. Instructors could use more 
accountability and discourse around harder to assess goals. 
 
Developing time and attention discipline. Students feel bad about these and it leads to 
low retention. Technology makes them distracted more easily than ever. Compensate 
for this. 
 
Integrate content into their lives. Students unmotivated by content they see as 
irrelevant to their lives. Link content into their daily experiences with mobile 
technology. Incentivize reading through questioning. (like the OLI Stats tutor) Spaced 
practice. 
 
Instrumenting reëncoding for self and formative assessment. Students spend a lot of 
time rewriting notes and aren't sure of what they understand or not. Mediate this 
informatically to inform both them and instructors of what they know and don’t. 
 
Community of learners. Lack of motivation, poor study habit. Drive participation with 
communal activities. 
 
Encouragement through non-grade feedback and achievements. Freshmen have fragile 
egos. Course grade is a “course” evaluation, based on somewhat arbitrary relative 
weights.  Recognize smaller achievements and personal goals. 
 
Social support for achievements. Students live in social media. Public goal setting with 
accountability. 
 
Taking advantage of the large size. What can you do in large lectures that you can’t in 
smaller ones? Harness diversity, anonymity, division of labor. 
 
Motivating interest, nourishing curiosity. Students are unmotivated and incurious. 
Motivate them as life long learners. 
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Add fun to the work. Most students do the work because they have to. Freshman 
courses are intro or breadth and have many people who aren’t passionate about the 
material. To increase their learning, add game-like engagement. e.g. achievements that 
aren’t graded or opportunities for creativity. 
 
Increase conceptual learning. Teachers are inclined to use shallow resources by their 
availability in textbooks. Students value conceptual learning more than facts but it takes 
more effort which they want to minimize. Teachers give shallow questions to meet 
student effort, lowering their motivation. Bad cycle. E.g. mechanisms for augmenting 
shallow resources with deeper reasoning. 
 
Feedback to teachers. Teachers stare out into a “sea of faces”. Hard to know 
distribution of interest, arousal, learning in the students. Rapid, rich data for personal 
and pedagogical formative evaluation. 
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Appendix C: Scenarios developed for Needs Validation 

 

 

Scenario 

key word 

Student need Student lead Teacher 

need 

Teacher lead LS 

principles 

LS 

contribution 

potential 

1 

progress To see more 

immediate fruits 

of study efforts. 

Faster feedback 

on what they 

know and don't 

know. 

Do you want to know 

how you've 

progressed after a 

study session? 

Motivate 

students to 

study. 

Do your students 

underestimate how 

much studying helps 

them? 

OIS 6a, 

OIS 6b 

Motivation. 

 Peter has an exam on Tuesday and sits down in the library Sunday afternoon to study. 

 

Before cracking the book, he takes a short online quiz on his laptop. The system gives him feedback on what 

he knows and doesn’t know. 

 

While reading through his book and notes, he pays more attention to what the system said needs help in. 

 

A few hours later he opens his laptop again and takes another quiz. It shows him he did better on all but one 

part. He is satisfied with his progress and leaves the library. 

 

2 

retention Hard to retain 

information. 

Do you find it hard to 

remember what you 

learned earlier in the 

semester? 

Higher 

retention of 

material. 

Do you find that your 

students forget what 

they've "learned" 

earlier? 

OIS 6a, 

OIS 1 
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 Peter crammed and did poorly on the first exam. He feels like he knew it at some point but forgot. To help he 

goes online to enroll in the optional RetentionBuddy system Prof. Treakle has set up for the class. 

 

The next morning checking his email at the dinner table, he sees a message with questions about some stuff 

covered last week and two weeks ago in class. He sort of remembers the stuff from last week and is frustrated 

he doesn’t remember the stuff from two weeks ago, but he thinks through it and comes up with the answer. 

He replies to the email with his answers. 

 

A week later he gets an email with questions from one, two and three weeks go. He is glad that he can answer 

the stuff from three weeks ago that he had trouble with last time. 

 

3 

relevance Connecting 

through shared 

interests. 

Do you ever question 

what the value is of 

what you're learning? 

Connect 

learning with 

shared 

interests. 

Are your students able 

to connect with people 

who share their 

interests? 

SOST 4, 

OIS 4 

Motivation. 

 Claire is in her dorm room working on the first homework assignment in her Intro to Psychology class. She 

has to describe her career plans and imagine how an understanding of psychology could help her. 

 

She writes what she wants to be a nurse traveling around the world. Her friend Lisa wants to be a teacher. 

 

The next week in lecture, there is a slide listing subgroups in the class based on people’s answers to the 

survey. Prof. Forbes instructs the groups to find each other in the lecture and meet up. Throughout the 

semester they will have customized assignments related to their goals. 

 

Over the weekend she talks with her friend Lisa about their homework on Attachment Theory. Claire's group 

had to relate it to baby incubators in hospitals while Lisa had to relate it to kindergarten teachers. 

 

4 

allocation Spend study 

attention on 

what you don’t 

know. 

Do you have any 

trouble prioritizing 

what you should be 

reviewing in your 

notes? Ever studied 

the wrong stuff? 

Help 

students 

focus on the 

important 

parts. 

Do you wish you had 

data on what students 

think they know? 

OIS 6b  



Appendix C 

 119 

 Claire got her Intro to Business midterm back and was dissappointed that she missed some key areas. She 

was pissed because she spent so much time on another area that was barely on the exam. 

 

Before the next quiz she goes to the library and tries the DoYouKnow system on her laptop for help on what 

she should focus on. First it lists the areas she is expected to know and then she has to rate her confidence in 

each area. 

 

She answers a series of quiz-like questions that adapt to be harder or easier based on her answers. When 

she’s done, she gets a report on how well the system thinks she knows the different areas. She is surprised 

that the system recommended she study more on supply/demand and market growth because she thought 

she understood those. 

 

She starts studying those trouble areas and worries less about the others. 

 

5 

competition Competitive 

motivation. 

Do you want to be the 

best at something in 

class, even if it's not 

the best exam grade? 

Motivation 

through 

competition. 

Would your students 

benefit from some 

friendly competition? 

OIS 6a, 6b Metacognitio

n. 

 Claire sits down at her kitchen table and logs into PeerQuiz to do her homework. She has to write and answer 

questions that require applying psychology theories to particular situations. She writes three questions. 

 

Next she looks over other questions. She clicks to rate them and types comments to critique them. When she 

finds a question she likes, she types a paragraph to answer it. Before she logs off she sees that one of her 

questions is now the 3rd highest rated. 

 

The next day she gets a text message with the current ratings of her questions and answers. She sees that 

her top-rated question has fallen to 5th place. She also sees that her answer is rated highly. 

 

6 

friends Social 

awareness. 

Do you feel like your 

education is too 

separate from the rest 

of your life? 

Integrating 

class with 

their outside 

social lives. 

Do some of your 

students need more 

social support for their 

learning from outside 

the school? 

SOST 4  
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 At the first lecture in Intro to Physics, everyone has to create a list of people to share their homework and 

grades with using LearnShare. Peter share his exam grades and attendance with his parents, his problem sets 

with his friends who are interested and everything with his sister. 

 

After his problem set on mechanics he gets an email from LearnShare. His math whiz friend says it's cool that 

Peter is learning this stuff. He says that Newton's laws are only an approximation and the relativistic model is 

even more interesting. 

 

After the first exam he gets an email from his mom, “Good job, son. An A on your first exam!” 

 

A few weeks later he is struggling and gets a D on the quiz. His sister calls him to ask how he’s doing. 

 

7 

recognition Achievements 

that aren't just 

%s 

Do you wish you got 

some recognition in 

class besides just a 

grade? 

Acknowledge

ment by 

more than 

grades. 

Do you wish it was 

easier to recognize 

your students' efforts? 

SOST 4  

 Claire is taking Intro Psych to meet her science requirement. At night she goes online to write her two weekly 

posts to the class forum. She didn't have time to read the textbook so instead she challenges other students 

to say why the stuff matters. She gets into heated exchanges and posts many more than two messages per 

week. 

 

Later in class the midterm grades are posted on the projector. She sees the top names and looks down to find 

hers with 76%. She sees other names for Best Questions in Class, Perfect Attendance, Most Improved, and 

see her name again under Most Provocative Poster. 

 

8 

strategy Learn better 

study 

strategies. 

How confident are you 

in your study 

strategies? 

Improving 

student 

study 

strategies. 

Would your students 

benefit from feedback 

on their study 

strategies? 

OIS 6, OIS 

1 

Optimal 

timing on 

longer scale. 
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 In the first day Intro Psych, Prof. Treakle tells the class that part of their grade will be for reporting their study 

activities and the data will be used for in-class analysis on the psychology of learning. 

 

Peter doesn't study very carefully. (He just takes notes in class and skims the textbook.) The lecture starts 

and he records on his phone that he is taking notes in class. 

 

After class he reads over his notes several times and records this. 

 

Weeks later he receives his first exam back with a C. Along with his grade is a full-page report on the study 

activities of the students who did best and those who did poorly. Other students who spent as much time but 

got better grades quizzed themselves while reading, so he decides to do that next time. 

 

9 

timegoals Develop good 

time 

management. 

Do you ever feel 

overwhelmed or 

regretful of how you 

spend your time? 

Improving 

students' 

time use 

planning. 

Do you think your 

students should 

improve their time 

management? 

OIS 6, OIS 

1 

Optimal 

timing on 

longer scale. 

 Claire gets her grade back on the last exam and it's lower than she expected. For this next unit, she decides 

to study regularly. 

 

At home in the evening Claire uses the TimeGoal system to set goals for what she will accomplish each day to 

prepare for the next exam. She resolves to read or at least skim the reading before class on Wednesday. She 

also wants to visit the TA's office hours on Thursday. 

 

Tuesday night at 9pm she receives a message on her phone asking how much she read. She clicks to 

postpone it. Thursday a message asks whether she went to office hours. She clicks No. 

 

On Friday she doesn’t feel confident for Monday's quiz and pulls up a report of whether she’s studying more 

regularly like she wanted. It shows her that she skipped both the reading and the office hours. She has to 

cancel some weekend plans to cram for Monday's quiz. 

 

10 

timeawarene

ss 

Be confident in 

how time is 

spent. 

Do you ever lose track 

of time? 

Improving 

student's 

awareness 

of time 

spent. 

Do you wish you had 

data on the time 

students spend on 

different parts of your 

class? 

OIS 6 Optimal 

timing on 

longer scale. 
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 Thursday night, Peter realizes he has a big essay due Monday morning and he’ll have to work hard on it over 

the weekend. 

 

At 9pm on Friday night Peter is tired of reading and decides it’s time to go out. He records on his phone that 

he’s switched from Studying to Partying. 

 

Saturday afternoon Peter picks up his essay again and records Studying on his phone. After an hour he 

records he’ll check Facebook for just 10 minutes. He loses track of time until the phone beeps to remind him 

and he returns to studying. 

 

Sunday evening Peter has completed his final draft and submits it early. With  satisfaction he records 

Watching TV. 

 

11 

interest Motivating 

interest in the 

material. 

Do you have any 

questions or 

curiosities related to 

the material that don’t 

get answered by the 

course? 

Students 

interested in 

what I'm 

teaching. 

Do you wish your 

students' learning 

would be driven by 

their own questions? 

OIS 7 Motivation. 

 On the first day of his Intro Psych class, Peter has to fill out a form with the big questions he has about human 

psychology and his goals for the course. 

 

After the first week Peter is at home on his computer and gets an email reminding him of his initial interests. 

It asks how the week helped satisfy them and prompts him for new questions he has. 

 

Each week he gets another email with his past questions and answers. He adds new questions and expands 

earlier answers. He feels like he’s learning what he cares about. 

 

At the end of the course he receives a full report of the big questions he had and what he learned to answer 

those questions. He read it and feels a sense of accomplishment. 

 

12 

adaptive Engagement 

with adaptive 

difficulty and 

topic. 

Are you ever 

frustrated with the 

lecture material being 

too fast or slow? Hard 

or easy? 

Matching 

lectures to 

students' 

levels. 

Do you worry that 

your lectures are 

above or below some 

students? 

OIS 5b Deeper 

questioning. 
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 In lecture Prof. Treakle pushes to ask the class questions. She presents many questions on a slide with 

different difficulty levels side by side. Peter chooses the hardest one and enters his answer on his phone. 

 

He gets back a message that he was right and how many other students attempted and succeeded at that 

question. 

 

Prof. Treakle can see that Patrick answered the easiest one and calls on him to explain his answer. 

 

13 

backchannel Engaging quiet 

students, larger 

back channel. 

Improve 

teaching. 

Do you ever have a 

question during class 

but hold back? 

More 

frequent 

feedback. 

Do you wish it were 

easier for students to 

ask questions during 

lecture? 

OIS 7, 

SOST 5 

Motivation. 

Formative 

assessment. 

 During her Developmental Psychology lecture, Claire has a question but thinks it's too dumb to raise her hand. 

Instead she asks the question anonymously on her phone.  

 

Allison the TA is reading each question and ranking them privately.  

 

Every 20 minutes Prof. Treakle shows the top questions on the projector. Claire’s is on the list and Prof. 

Treakle answers it. 

 

Later in the lecture she has another question which is off topic. She sends this one in with her name to be 

sure she gets an answer. In the next question block Prof. Treakle doesn’t choose it to answer. 

 

That night though, she gets an email. Another student liked her question and wrote an answer. Allison the TA 

marked the answer as acceptable but added a few clarifications. 

 

14 

valued Feel valued. 

Know what you 

know. Break 

illusion of 

knowing 

through 

reading. 

Do you wish your 

classwork were useful 

to more than you? 

Motivation 

by seeing 

value. 

Do you wish your 

students were 

motivated by 

something other than 

a grade? 

OIS 1, OIS 

5b, OIS 

6b, OIS 7 

Motivation. 

Student 

questioning. 
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 In the library one evening Peter works on his homework. He has to write questions that test the key ideas 

from lecture. He logs into CrowdExam and types in questions and their answers. One of them is too similar to 

another student's question and he changes it. 

 

The next day he receives an email that the TA has rated his questions and two of them are 5 stars out of 5. 

 

While taking the midterm, he gets to a question that is one of his. The professor picked it among the top-rated 

questions to include on the exam. 

 

15 

reception Formative data 

on how students 

are receiving 

the lectures. 

Do you wish your 

professor took 

feedback on each 

lecture? 

Data on 

impact/activi

ty of slides. 

Do you often wonder 

how your lecture 

went? How it could 

improve? 

  

 In her office, Prof. Treakle edits the slides she will use tomorrow in class. For one, she adds a new YouTube 

video to demonstrate Change Blindness. 

 

In class, while she shows each slide students click on their devices with a rating of whether they understand 

the points. Some students text in with suggestions. 

 

At a break she solicits questions. Allison the TA writes these down. Students rate their satisfaction with the 

answers the professor gives. 

 

In her office that afternoon, Prof. Treakle looks at her slide deck with the student feedback and questions 

beside it. She identifies some slides that could use more work. She also sees that students were more 

confused by the YouTube video than last semester's were with her earlier animation. 

 

16 

longterm Robust learning 

that impacts 

your life. 

Do you ever wish you 

remembered more 

from your past 

classes? 

Long term 

learning. 

Are you concerned 

about students 

forgetting everything 

after the final? 

OIS 1, OIS 

5b, SOST 

4 

Easy 

measurement 

of robust 

learning. 

Motivation. 
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 In his Developmental Psychology class Peter has an assignment to grade the quiz of a student who finished 

the class last semester. He logs into OlderCheck and reads their answers. He writes the correct answers and 

their explanations.  He does this for three different students. 

 

During the midterm, he is able to answer some questions by recalling his explanations on OlderCheck. 

 

Several months after his final, he gets an email with a quiz on the same stuff he tutored in OlderCheck. He 

tries answering the questions but can’t remember everything. He looks forward to the explanations from the 

current students so that he can remember what he learned and not have it be a waste. 

 

17 

connections Deeper 

conceptual 

learning. 

Do you feel like the 

stuff you learn is 

separate information 

that's not really 

related? Does it 

bother you? 

Developing 

big ideas. 

Do you wish your 

students would take 

away deeper 

conceptual 

understanding? 

OIS 7, OIS 

4, SOST 4, 

SOST 3 

Learning 

impact of 

affinity 

diagraming. 

Related to 

Concept Map 

literature. 

New 

assessment 

technique. 

 In lecture after the midterm Prof. Treakle says the students need to see the bigger picture of psychology and 

introduces the Relations system. Peter types out all the most important ideas and research he can think of 

from the class. 

 

The next week he meets with his assignment group and they lay out strips of paper on the floor with all their 

ideas printed on them. For the first phase, they have to organize them by experimental methodology. They 

debate with each other how the ideas all fit together and when they agree they snap a photo which they 

upload to Relations. 

 

In the next class Prof. Treakle shows a slide with a giant map of all the concepts that everyone put together. 

He shows what relationships most students agreed on and what ones were controversial. The class has a big 

discussion on the differences and Prof. Treakle explains how most scientists would organize them. Peter starts 

to see how it all fits together. 
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Appendix D: Scenario sketches used in Needs Validation 
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Appendix E: All tasks reminded or polled by Nudge 
  

Task group Due Importance Time 
estimate 

Description Note 

Participation 29-Aug required 20 min Take the concepts quiz in first lecture  

HW1 30-Aug advised  *Ch2*:  21, 23, 30, 31, 37, 38  

HW1 1-Sep advised  *Ch2*:  55, 63; *Ch3*: 23, 25, 27, 31, 37, 41  

Quiz 1 4-Sep advised  Practice [Quiz 1 problems]  

Participation 5-Sep required  Fill out [Week 1 questionnaire] in 
Blackboard 

 

HW1 6-Sep advised  *Ch3*:  47, 55; *Ch4*: 17, 19  

Mastery exam 
I 

7-Sep advised  Practice [Mastery problems]  

Quiz 2 12-Sep advised  Practice [Quiz 2 problems]  

HW1 13-Sep required  Do and submit [HW1]  

HW1 13-Sep advised  *Ch12*: 21, 27, 31, 37, 39, 43  

HW2 15-Sep advised  *Ch12*: 18, 49, 55, 57, 75, 77, [S1]  

Exam I 18-Sep advised  Practice [Exam I problems] It's best to try working 
through the problems 
several days in advance 
to see how you'll do on 
the exam. 

HW2 20-Sep advised  *Ch12*: 11,13, 83, 85, 87, 125, 129  

HW2 20-Sep required  Do and submit [HW2]  

Mastery exam 
II 

25-Sep advised  Practice [Mastery problems] Practicing in advance 
will help you learn and 
focus on what to 
review. 

Quiz 3 27-Sep advised  Practice [Quiz 3 problems]  

HW3 29-Sep advised  *Ch13*: 17, 33, 51, 65  

HW3 4-Oct advised  *Ch13*:  7, 55, 57, 61, 67, [S2]  

HW3 6-Oct advised  *Ch13*: 37, 39, 41, 72, [S4]  

HW3 7-Oct required  Do and submit [HW3]  

HW4 11-Oct required  Do and submit [HW4]  

HW4 11-Oct advised  *Ch3*: 77, 79  

Exam II 12-Oct advised  Practice [Exam II problems] It's best to try working 
through the problems 
several days in advance 
to see how you'll do on 
the exam. […] 

HW5 13-Oct advised  *Ch13*:   81, 89, [S5]  

Quiz 6 17-Oct advised  Practice [Quiz 6 problems]  

HW5 18-Oct advised  *Ch14*:  4, 31, 34a  

HW5 20-Oct advised  *Ch14*: 35, 41, 59  

HW5 20-Oct required  Do and submit [HW5]  

Mastery exam 
III 

21-Oct advised  Practice [Mastery problems] If you haven't passed 
the Mastery yet, here's 
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your next chance. 

Participation 24-Oct required  Fill out [3rd exam questionnaire] about 
CourseCheck 

It takes 5-10 minutes 
and is the last general 
questionnaire until the 
end of the term. 

Quiz 7 26-Oct advised  Practice [Quiz 7 problems]  

HW6 27-Oct advised  *Ch14*:  33, 37, 39, 43  

HW6 1-Nov advised  *Ch14*: 13, 19, 23, [S7]  

Quiz 8 1-Nov advised 20 min Practice [Quiz 8 problems]  

Exam III 2-Nov advised 90 min Practice [Exam III problems]  

HW6 3-Nov advised  *Ch14*: 25, 73  

HW6 3-Nov required  Do and submit [HW6]  

Exam III 5-Nov advised 50 min Timed practice of [past Exam III]  

HW7 8-Nov required  Do and submit [HW7]  

HW7 10-Nov advised  *Ch14*: 45, 67, [S8]  

Participation 10-Nov required 4 min Fill out [mid-semester questionnaire] If you enrolled in the 
study, taking a few 
minutes to fill out this 
survey is required to 
maintain participation. 

HW8 15-Nov advised  *Ch5*: 27, 31, 67, 83, 89  

HW8 17-Nov advised  *Ch16*:  16, 17, 18a-e, 21, 23  

Quiz 9 17-Nov advised 20 min Practice [Quiz 9 problems]  

Mastery exam 
IV 

18-Nov advised  Practice [Mastery problems] If you don't pass this 
one, you only have one 
more shot. 

Mastery exam 
V 

25-Nov advised  Practice [Mastery problems] This is your last chance 
to past the Mastery 
Exam if you haven't 
already! 

HW8 1-Dec required  Do and submit [HW8]  

HW8 1-Dec advised  *Ch19*: 7, 29, 33, 37,63, [S9]  

Exam IV  5-Dec advised 90 min Practice [Exam IV problems]  

HW9 6-Dec required  Do and submit [HW9]  

HW9 6-Dec advised  *Ch19*: 45, 47, 49, 77  

HW10 8-Dec advised  *Ch19*: 41, 51  

HW10 8-Dec required  Do and submit [HW10]  

Exam V 8-Dec advised 5 min Plan for studying [Exam V topics]  

Exam IV  8-Dec advised 5 min Plan for studying [Exam IV topics]  

Exam IV  9-Dec advised 50 min Timed practice of [past Exam IV]  

Exam IV  9-Dec advised  Review notes for Exam IV  

Exam V 9-Dec if_needed  Practice [Exam V problems]  

Exam V 10-Dec if_needed 90 min Timed practice of [past Exam V]  

Exam V 11-Dec if_needed  Review notes for Exam V Will you be taking Exam 
V? 

 

 


	Keywords
	Abstract
	Acknowledgements
	Table of Contents
	1. Introduction
	1.1 Motivation
	1.1.1 Education is important to improve
	1.1.2 Education is difficult to improve reliably

	1.2 Scientific Research through Interaction Design
	1.3 Operant Probes
	1.4 Process
	1.4.1 Informed Exploration
	1.4.2 Enactment
	1.4.3 Evaluation
	1.4.4 Wrap-up


	2. Operant Probes for Scientific Research through Interaction Design
	2.1 Introduction
	2.2 Design-based Research in Education
	2.3 Scientific Research Through Interaction Design
	2.4 Operant probe as research artifact
	2.5 Value for Research
	2.6 Problems in education research
	2.6.1 Ill-defined methodologies
	2.6.2 Design principles have little traction
	2.6.3 Split competencies and interests
	2.6.4 Difficulty of modeling across layers of complexity
	2.6.5 Expense of collection, management and analysis of data from context
	2.6.6 Failure to scale
	2.6.7 Difficulty of reproducing studies
	2.6.8 Limited duration of studies
	2.6.9 Control of variables

	2.7 Limitations
	2.8 Design process
	2.9 Evaluating an operant probe contribution
	2.10 Conclusion

	3. Discovering SRtID Opportunities in College Lecture Courses
	3.1 Introduction
	3.2 Methods for Discovering Opportunities
	3.3 Focus and context selection
	3.4 Semi-structured interviews
	3.4.1 Participants
	3.4.2 Data Collection

	3.5 Interpretation
	3.5.1 Consolidation
	3.5.2 Results of cultural modeling

	3.6 Theory in Context
	3.6.1 Method
	3.6.2 Cultural barriers to implementing educational theory
	3.6.2.1 1. Quality questions are scarce
	3.6.2.2 1a. Secrecy of questions limits formative assessment
	3.6.2.3 2. Specifying learning goals conflicts with flexibility and adaptivity of the course
	3.6.2.4 3. Faculty ostensibly teach how to learn but don’t assess or instruct it directly
	3.6.2.5 4. Improving instruction through student data requires infrastructure and roles that don’t exist
	3.6.2.6 5. Instructors have precious little time to integrate new technologies


	3.7 Ideation
	3.8 Needs Distillation
	3.9 Scientific Impact Evaluation
	3.10 Needs Validation
	3.11 Needs Selection
	3.11.1 Time Management
	3.11.2 Studying More Effectively

	3.12 Conclusion

	4. Nudge: Supporting Students’ Study Time Allocation
	4.1 Introduction
	4.2 Background Theory
	4.3 Core Features
	4.4 Iteration
	4.5 Experimental Design
	4.5.1 Context
	4.5.2 Task list
	4.5.3 Conditions
	4.5.4 Hypotheses
	4.5.4.1 H-allocation
	4.5.4.2 H-grades
	4.5.4.3 H-disposition

	4.5.5 Knowledge measures
	4.5.6 Explanatory measures
	4.5.7 Attrition and Missing Observations
	4.5.8 Timeline

	4.6 Results
	4.6.1 Descriptive statistics
	4.6.1.1 Subjective rating
	4.6.1.2 Nudge usage

	4.6.2 H-allocation
	4.6.3 H-grades
	4.6.4 H-disposition
	4.6.5 Student perceptions
	4.6.6 Feature Validation
	4.6.6.1 Explicit and salient dates more likely to be met
	4.6.6.2 Decomposition of tasks improves time allocation and decreases aversiveness
	4.6.6.3 Recording task status increases awareness and inclination


	4.7 Limitations and Opportunities
	4.7.1 Operation on desired outcomes
	4.7.2 Probe data for modeling

	4.8 Conclusion

	5. Examplify: Enhancing Worked Examples for Better Learning
	5.1 Introduction
	5.2 Background Theory
	5.3 Core Features
	5.3.1 Competing Predictions
	5.3.2 Benefits of Worked Examples
	5.3.3 Benefits of Problem Solving
	5.3.4 Two kinds of worked example interaction
	5.3.5 Implementation
	5.3.6 Problem browser

	5.4 Experimental Design
	5.4.1 Context
	5.4.2 Conditions
	5.4.3 Hypotheses
	5.4.3.1 H-immediate
	5.4.3.2 H-delayed

	5.4.4 Knowledge measures
	5.4.5 Explanatory measures
	5.4.6 Attrition and Missing Observations
	5.4.7 Timeline

	5.5 Results
	5.5.1 Descriptive statistics
	5.5.1.1 Pre-existing differences
	5.5.1.2 Subjective rating
	5.5.1.3 Examplify usage

	5.5.2 H-immediate
	5.5.3 H-delayed
	5.5.4 Post-hoc: Mechanisms
	5.5.5 Student perceptions

	5.6 Discussion and Conclusion

	6. Summary and Conclusions
	6.1 Introduction
	6.2 Process Overview
	6.3 Nudge
	6.3.1 Motivation
	6.3.2 Solution
	6.3.3 Effectiveness
	6.3.4 Acceptance
	6.3.5 Insight
	6.3.6 Scalability
	6.3.7 Future Work

	6.4 Examplify
	6.4.1 Motivation
	6.4.2 Solution
	6.4.3 Effectiveness
	6.4.4 Acceptance
	6.4.5 Insight
	6.4.6 Scalability
	6.4.7 Future Work

	6.5 Scientific Research through Interaction Design
	6.5.1 Motivation
	6.5.2 Solution
	6.5.3 Operant probe
	6.5.4 Opportunity mapping
	6.5.5 Scientific impact evaluation
	6.5.6 Evaluation of the design process
	6.5.6.1 Riskier designs
	6.5.6.2 Cycles of studies
	6.5.6.3 Study the resource requirements of designs
	6.5.6.4 Compare practices
	6.5.6.5 Consider sustainability and robustness
	6.5.6.6 Involve stakeholders in judging the quality of designs

	6.5.7 Future Work

	6.6 Final Thoughts

	References
	Appendix A: Output of ideation
	Appendix B: Early design areas for lecture courses
	Appendix C: Scenarios developed for Needs Validation
	Appendix D: Scenario sketches used in Needs Validation
	Appendix E: All tasks reminded or polled by Nudge

