

Automated Data-Driven Hint Generation
for Learning Programming

Kelly Rivers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
krivers@cs.cmu.edu

CMU-HCII-17-103
July 13th, 2017

Submitted in partial fulfillment of the requirements

 for the degree of Doctor of Philosophy

Committee:
Ken Koedinger, Carnegie Mellon University, Chair

Brad Myers, Carnegie Mellon University
Vincent Aleven, Carnegie Mellon University
Sharon Carver, Carnegie Mellon University

Tiffany Barnes, North Carolina State University

This work is supported in part by the Program in Interdisciplinary Education Research (PIER), a training
grant to Carnegie Mellon University funded by the Institute of Education Sciences (R305B090023).

Copyright © 2017 Kelly Rivers

ii

Keywords
data-driven tutoring, programming tutors, canonicalization, path construction, hint

representation, hint evaluation, self-improving tutoring system

iii

Abstract
Feedback is an essential component of the learning process, but in fields like computer

science, which have rapidly increasing class sizes, it can be difficult to provide feedback to
students at scale. Intelligent tutoring systems can provide personalized feedback to students
automatically, but they can take large amounts of time and expert knowledge to build, especially
when determining how to give students hints. Data-driven approaches can be used to provide
personalized next-step hints automatically and at scale, by mining previous students’ solutions.

I have created ITAP, the Intelligent Teaching Assistant for Programming, which
automatically generates next-step hints for students in basic Python programming assignments.
ITAP is composed of three stages: canonicalization, where a student's code is transformed to
an abstracted representation; path construction, where the closest correct state is identified and
a series of edits to that goal state are generated; and reification, where the edits are
transformed back into the student's original context. With these techniques, ITAP can generate
next-step hints for 100% of student submissions, and can even chain these hints together to
generate a worked example. Initial analysis showed that hints could be used in practice
problems in a real classroom environment, but also demonstrated that students' relationships
with hints and help-seeking were complex and required deeper investigation.

In my thesis work, I surveyed and interviewed students about their experience with help-
seeking and using feedback, and found that students wanted more detail in hints than was
initially provided. To determine how hints should be structured, I ran a usability study with
programmers at varying levels of knowledge, where I found that more novice students needed
much higher levels of content and detail in hints than was traditionally given. I also found that
examples were commonly used in the learning process, and could serve an integral role in the
feedback provision process. I then ran a randomized control trial experiment to determine the
effect of next-step hints on learning and time-on-task in a practice session, and found that
having hints available resulted in students spending 13.7% less time during practice while
achieving the same learning results as the control group. Finally, I used the data collected
during these experiments to measure ITAP’s performance over time, and found that generated
hints improved as data was added to the system.

My dissertation has contributed to the fields of computer science education, learning

science, human-computer interaction, and data-driven tutoring. In computer science education, I
have created ITAP, which can serve as a practice resource for future programming students
during learning. In the learning sciences, I have replicated the expertise reversal effect by
finding that more expert programmers want less detail in hints than novice programmers; this
finding is important as it implies that programming teachers may provide novices with less
assistance than they need. I have contributed to the literature on human-computer interaction by
identifying multiple possible representations of hint messages, and analyzing how users react to
and learn from these different formats during program debugging. Finally, I have contributed to
the new field of data-driven tutoring by establishing that it is possible to always provide students
with next-step hints, even without a starting dataset beyond the instructor’s solution, and by
demonstrating that those hints can be improved automatically over time.

iv

Acknowledgments

So many people have supported me in this quest for a PhD that I am sure I will end up
missing a few. Nevertheless, I’m so grateful to all of you.

Erik, thank you for being my stalwart supporter and best friend these past six years.

Without you, my ideas would be only half-baked and my statistics would be abominable. I love
you so much, and I’m so proud to be graduating alongside you.

Mom and Dad, thank you for teaching me to love learning and encouraging me all along

the way. You, John, and Emily have been such a wonderful and loving family, and I owe so
much to you. Stan, Jodi, Sonja, Greg, and of course Durinn: thank you for welcoming me into
your family so warmly! I’m so happy to continue growing with all of you.

Ken, thank you for teaching me how to be a researcher. I’ve learned a great deal from

you these past six years about how to shape ideas and test them, and how to keep going even
when things fall apart. Thank you for everything.

To my committee, Sharon, Tiffany, Brad, and Vincent: thank you for all the advice,

feedback, and recommendations. My thesis work was largely shaped by your wise words.
Thanks as well for making time for me in your very busy schedules, especially when we had to
schedule the proposal twice!

Huge thanks to Aayush Mudgal for spending a summer working on better syntax hint
generation, and to Erik Pintar for modifications on the Cloudcoder interface. I hope the
experience was beneficial for both of you. Thank you to David Kosbie, Dilsun Kaynar, and
Margaret Reid-Miller for letting me run studies in your classes. Without you, I would never have
been able to track down so many students! Thanks also to Jaime Spacco and David Hovemeyer
for helping me modify and set up my Cloudcoder instance, and to Norman Bier, Raphael
Gachuhi, and Martin van Velsen for getting ITAP into OLI. I appreciate your patience with my
many mistakes.

And of course, thanks to all of the amazing people who have welcomed me into their

communities this past year. Jenny and Samantha, you have been such wonderful officemates.
See, we can ALL finish this whole thesis thing! Dave, Vi, Chris, Caitlin, Ryan, Rony, Nesra,
Derek, Eliane, Iris, Steven: you guys are a fantastic learning science cohort. Thanks for helping
me improve my research, and for opening my eyes to the many varieties of educational
research. Sauvik, Anna, Jeff, Kerry, Queenie, and everyone from HCII: thank you for being the
most phenomenal department. I think I might finally have some understanding of design thanks
to all of you. Finally, thanks to Dan, Robert, and Julia for being the best co-puzzlers, and
everyone from the SCS musical group for putting on such silly shows. You have all made this
PhD process so much more fun than I ever could have anticipated.

v

Contents

1. Introduction: How Can We Support Students? 1	

Feedback 1	

Next-Step Hints 2	

2. ITAP: The Intelligent Teaching Assistant for Programming 4	

Related Work: Data-Driven Tutoring 4	

Use of Student Data 5	

Choosing Next Steps 6	

Automatically-Generated Feedback Types 8	

Effects of Automatic Feedback on Students 10	

Canonicalization 11	

Related Work: Data Representation 11	

Categories of Canonicalization 13	

Anonymization 14	

Simplification 15	

Ordering 19	

Domain-Specific 21	

Evaluation of Canonicalization Reduction 24	

Path Construction 28	

Algorithmic Description 28	

AST Algorithms 28	

Goal State Generation 31	

Next-Step Path Construction 33	

Reification 34	

Specific Canonicalizations 35	

Hint Generation 41	

Example 41	

Hint Representation 44	

Generating Syntax Hints 46	

Evaluation of Hint Chaining 47	

Evaluation of Self-Improvement 49	

3. Identifying Student Help-Seeking in Programming Problems 54	

Online IDE Implementation 54	

vi

Pilot Study 56	

Research Questions 56	

Methods 56	

Results 58	

Qualitative Analysis by Performance 59	

Qualitative Analysis of Hint Use 61	

Discussion 61	

Classroom Study 0: How Do Hints Affect Learning? 62	

Research Questions 62	

Methods 62	

Learning Metrics 63	

Results 63	

Analysis of Hint Conditions 63	

Analysis of Cloudcoder Use 65	

Discussion 67	

Classroom Study 1: How Do Students Seek Help? 68	

Research Questions 68	

Methods 68	

Learning Metrics 70	

Results 71	

Analysis of Hints 71	

Analysis of Cloudcoder Use 75	

Analysis of Motivational Factors 76	

Qualitative Analysis 80	

Discussion 82	

4. Evaluating Hint Representations in Different Contexts 83	

New Hint Representations 83	

Usability Study: How Does Context Affect Hint Choice? 87	

Research Questions 87	

Methods 88	

Results 90	

Quantitative Analysis 92	

Qualitative Analysis 96	

vii

Discussion 98	

5. Measuring the Effect of Hints on Student Learning 100	

Updated Implementation 100	

Classroom Study 2: How Do Hints Affect Learning? 102	

Research Questions 102	

Methods 102	

Results 103	

Analysis of Learning 103	

Discussion 106	

6. Conclusions, Contributions, and Future Work 108	

References 111	

Appendix 1: Practice Problems 122	

Appendix 2: Technical Evaluation Dataset Statistics 123	

Appendix 3: Surveys 125	

Study 1 Survey 1 126	

Study 1 Survey 2 131	

Study 1 Survey 3 135	

Usability Study Survey 140	

1. Introduction: How Can We Support Students?
 It is not particularly controversial to state that feedback is an essential component of the
learning process. After all, without feedback a student can never learn from their mistakes, and
every student runs the risk of encountering misconceptions and sources of confusion during
their learning process. But there are questions about how feedback can be produced, what it
should say, and when it should be provided.

Feedback
Feedback can occur in a wide variety of forms, and plays a role in many different

aspects of the learning process, from motivation to content knowledge (Hattie & Timperley,
2007). I am primarily interested in the feedback given directly to students to modify thinking or
behavior in order to improve learning, otherwise known as formative feedback. Determining
what the content of feedback should be, when it should be provided during learning, and how
much to provide can be complicated, due to many factors that affect learning (Koedinger &
Aleven, 2007); however, many of these questions have already been addressed in studies over
the years (Shute, 2008).

 The question of how to provide feedback in domains with open-ended problem solving is
especially difficult, as it is harder to define correctness and incorrectness when the range of
possible strategies grows large. I’m particularly interested in determining how to provide
feedback in the domain of programming, for a variety of reasons. First, programming is open-
ended yet still easy to measure; there can be dozens of different correct solutions to a simple
programming problem, and hundreds of paths towards those solutions, yet they can all be
structurally represented and compared, as they are all constrained by the syntax of the
programming language. Second, the domain of programming provides more insight into the
problem-solving process than many other domains, as it is naturally done on computers, which
makes it possible to record every step a student takes. And finally, there is great need for
feedback during the process of learning how to program. Computer science is rapidly growing
as a core component of general education (Computing Research Association, 2017), and
computational thinking is viewed as a necessary skill for the modern world (Wing, 2006), yet
students in introductory programming classes struggle and drop out at high rates (Watson & Li,
2014). Many students who drop out claim that they can’t catch up in the course after falling
behind, due to lack of time or inadequate study resources (Petersen et al, 2016); therefore,
there is hope for retaining students if we can identify and assist struggling students early.

 Since computer science as a field has rapidly growing class sizes (Computing Research
Association, 2017), and since classroom feedback is most useful when given immediately (Kulik
& Kulik, 1988), I am interested in determining how to provide feedback to students
automatically. This challenge is addressed by the field of intelligent tutoring systems (ITSs)
(Corbett, Koedinger, & Anderson, 1997). ITSs provide students with practice problems that
provide feedback automatically as the student works, to personalize and maximize learning,

2

with a goal of providing the same level of instructional assistance as a human tutor (Bloom,
1984). These tutoring systems traditionally provide feedback to students in the form of
correctness feedback, error-specific feedback, and next-step hints (VanLehn, 2006).

Correctness feedback simply tells a student whether their current solution is correct or
incorrect; this kind of feedback is already available to students via automatic assessment, where
test cases are used to measure whether a solution performs as expected (Douce, Livingstone,
& Orwell, 2005). Error-specific feedback tells the students what might be wrong with an incorrect
piece of their solution; this assistance can be provided by automatic assessment as well, by
carefully designing test cases so that each corresponds to a common error and connecting
teacher-created feedback messages to each test case. This is actively done in many constraint-
based tutors (Mitrovic & Ohlsson, 1999), and was used in the LISP tutor, one of the first
intelligent tutoring systems, as well (Corbett & Anderson, 2001). Finally, next-step hints tell
students what to do next in order to make progress or fix their work. Personalized hints are
much rarer in automated programming instruction (Keuning, Jeuring, & Heeren, 2016), as it is
far easier to see that a program is broken than it is to fix said error. Therefore, I focus primarily
on the problem of how to provide next-step hints to programming students in this work.

Next-Step Hints
In human tutoring, hinting is commonly used by tutors as a method to help students

remember information they already know or make new inferences on how to solve a problem
(Hume et al, 1996). In computer-based tutoring, hints are either provided on-demand or are
provided by the tutor based on specific events (such as a student getting a step wrong), with on-
demand hints sometimes resulting in better learning (Razzaq & Heffernan, 2010). Student use
of hints is varied, ranging from correcting errors or comparing their approach to the teacher’s
(Cummins et al, 2016) to gaming the system by using hints and feedback with no real attempt at
learning (Baker et al, 2004).

One way to provide hints is to tell students what they should do next (next-step hints).

Traditionally, next-step hints are provided by the tutor authors when the tutor is first built, by
tagging each possible state that a student might reach with a specific hint message, or by
generating production rules which can be matched to student work. This approach is feasible in
domains where the number of possible states is small (like fraction addition), but it is nearly
impossible to do in open-ended problem-solving domains, especially when students are working
in an unstructured environment, as they do while coding. Even for the simplest problems, it still
takes large amounts of expert time to construct an ITS, which makes the systems difficult to
generate at scale (Folsom-Kovarik, Schatz, & Nicholson, 2010).

One alternative to expert authoring is to use a data-driven approach instead. This

approach was first used in the Hint Factory, a hint-generation method used in a logic proof
tutoring system (Barnes & Stamper, 2008). Instead of trying to hand-author hints for any
possible proof state, this system gathered data on how previous students using a non-hinted
version of the system solved problems, then used the successful solution paths of those

3

students to generate hints for newcomers by telling them what other students in a similar state
had done in the past. The Hint Factory was able to generate hints for 91% of student requests
and 48% of all observed states (Barnes et al, 2008). This approach is a more feasible way to
generate hints for programming problems, but it still has limitations. The space of possible
programming states is even larger than the space of possible proofs, and the open-ended text-
entry of coding provides more natural variation than a drag-and-drop proof construction system
might experience. In other words, the chance that a past student will have written the exact
same program as a current struggling student is rather low.

 In this thesis, I present a new approach towards data-driven tutoring in ITAP, the
Intelligent Teaching Assistant for Programming (Rivers & Koedinger, 2015). This system uses
student data to identify a personalized goal state for any given submission, with which it can
generate next-step hints. These are bottom-out hints that tell the student exactly how to change
their code to get closer to a correct solution. I have evaluated this system in several contexts
and have learned much about what students want and need in a hint message. I have also
found that hints may help students learn more quickly, which could have positive effects on the
student experience.

 In this document, I will first describe the technical implementation of the ITAP algorithm
and demonstrate its capability with technical evaluations, including an evaluation of whether the
algorithm can improve itself by collecting student data over time. I will then discuss the
experimental evaluations run on the system. First, I describe several classroom evaluations on
student use of hints; next, a usability study on the content and structure of hint messages; and
ultimately, an experimental evaluation of the effect of hints on learning. Finally, I discuss the
implications and contributions of this research, which include the ITAP system itself in addition
to theories on how students perceive and use hints and examples, and I describe plans for
future work.

4

2. ITAP: The Intelligent Teaching Assistant for
Programming
 This chapter focuses on the major components of ITAP, describing how they work
theoretically and algorithmically. This process depends on the concept of a solution space,
which I define as a graph of code states submitted by previous students where the edges
between states represent edits that transform one state into another. I describe the system with
three main categories: canonicalization, which is the process for creating an abstract
representation of student code; path construction, the process for determining what steps must
be taken to go from an incorrect state to a corrected version; and reification, the process of
undoing canonicalizations in order to represent hints in the student’s original context. Finally, I
describe how the whole process connects to create hint generation, by canonicalizing an
incorrect state, identifying the best path to a solution, and then generating a hint in the student’s
original context.

I also provide technical evaluations of canonicalization and the whole hint generation
process, to determine whether they are performing as would be expected on real student code,
and I test whether the ITAP algorithm improves as it collects more data. Much of the work
presented in this chapter was originally presented in Rivers & Koedinger (2015). I have made all
of the code described in this section open source; it can be found at
https://github.com/krivers/ITAP-django

Related Work: Data-Driven Tutoring
 Data-driven tutoring and automatic hint generation have grown tremendously in recent
years, possibly due to the surge in popularity of MOOCs in previous years (Pappano, 2012),
which led to a more urgent need for hint mechanisms which would work at scale. However, at
the initial point of publication of this work (Rivers & Koedinger, 2013), the field was still quite
new and had several open questions. In particular, this early work led to what is arguably the
first approach that could generate hints automatically 100% of the time (Rivers & Koedinger,
2014).

 Methodologically, this work draws primarily on the concept of the Hint Factory (Barnes &
Stamper, 2008), as was described earlier. In this section I describe the state of the field of data-
driven tutoring, both prior to and after my entry into this research area (Rivers & Koedinger,
2012). I restrict my review to systems which are at least partially automated, at least partially
use student-generated data, and generate feedback which is hint-like (that is, feedback which
pertains in some way to what the student should do next). It is worth noting that a range of non-
data-driven techniques can be used to generate feedback and hints for programming problems
automatically. Many of them are described by Le (2016), including plan libraries, program
transformation, constraint-based models, strategy-based models, and machine learning.

5

 I focus here primarily on four questions. First, how do different approaches use student
data? Second, how do these approaches decide what should be done next? Third, what kind of
feedback is generated? And finally, how does this feedback affect students?

Use of Student Data
 Initial research into data-driven tutoring used student submission data as it was
presented, with no modifications. This was first attempted with a bootstrapping approach, where
previously-collected student interaction log data was used to generate a skeletal model of a
tutor for a collaborative software tool (McLaren et al, 2004). Further study into interaction log
data for an equation-solving tutor found that individual student states could be matched to each
other in order to reduce the number of possible paths, confirming that this approach could be
feasible for tutor generation (Lin, Chou, & Chan, 2008). This led to the creation of the Hint
Factory approach, which logged student submissions, turned them into chains of steps, and
then collapsed identical steps across students together (Barnes & Stamper, 2008).

All of these initial approaches were attempted in domains where the number of possible
submissions was restricted; therefore, to generate hints in more open-ended domains (such as
programming), alternate solution representations needed to be used. Many different
representations have been proposed over time. Some approaches use simplified versions of the
programs to make comparison between states easier. These include my method of
canonicalization (Rivers & Koedinger, 2013), which will be described in more detail later, and
Singh’s abstraction of submissions as program sketches (Singh, Gulwani, & Solar-Lezama,
2013), which can leave ‘holes’ in programs to be fixed. These approaches can work quite well
for some problems, but may not be applicable to open-ended problems where solutions do not
converge (Price & Barnes, 2015). Alternatively, program ASTs can be broken down into
subcomponents, which can then be compared directly (Price, Dong, & Barnes, 2016).

Other approaches use some control flow representation to represent the main function of

a student’s submission without being overwhelmed by syntactic variation. These include
variable linkage graphs, which separate out statements that change specific variables (Jin et al,
2012) and more traditional control flow graphs, which demonstrate how conditionals and loops
interact in the program (Phothilimthana & Sridhara, 2017; Wang et al, 2017; Marin et al, 2017).
This approach can substantially reduce the number of unique states, but also removes
potentially useful semantic variation from the state.

Some approaches represent programs with their output instead of their code. This has

been used to cluster submissions based on compiler errors (Hartmann et al, 2010), and to
generate hints based on graphical program output (Peddycord III, Hicks, & Barnes, 2014). Using
output can greatly reduce the number of unique states, but also removes almost all semantic
information from the student state, which can make bottom-out hint generation difficult.

A few other approaches have used student-generated edits instead of student-generated

submissions. These approaches all use program synthesis to generate hints, and therefore
need a knowledge model to identify possible edits to apply to programs. In some cases, this

6

model is derived based on edits seen from previous students, either through use of textual line
edits (Lazar & Bratko, 2014) or program edits (Rolim et al, 2017; Head et al, 2017).
Alternatively, commonly-appearing subexpressions across student submissions can be mined to
produce similar knowledge models (Perelman, Gulwani, & Grossman, 2014; Marin et al, 2017).
These approaches all have the benefit of supporting rapid generation of knowledge models for
many individual problems.

 Finally, new work is breaking down student code even further by attempting to learn
recurrent neural networks for token sequences in student submissions (Bhatia & Singh, 2016).
This approach has strong potential for correcting syntax errors, but is still limited in the types of
errors it can fix.

 My work primarily differs from the other approaches shown here as it was one of the first
to use solution abstraction (via canonicalization) to represent student submission states. Of
course, student data can be represented at many different levels of detail and abstraction, and
the chosen representation depends mostly on how hint generation will be performed. This
depends at least partially on generating possible next steps, which I will discuss next.

Choosing Next Steps
 The essential content of a next-step hint depends on knowing what the next step a
student takes should be. It is worth noting that the types of next steps students take naturally
can vary greatly in purpose; students can move between subgoals, make corrections or errors,
or rethink prior decisions (Hicks et al, 2015). Many different approaches for identifying the best
next step have been developed, but most fall into four categories: identification of a previously
used step (the Hint Factory approach), comparison of the student state to a correct state (my
path construction approach), repair of a program with a knowledge model (the program
synthesis approach), and human annotation of abstracted states (the crowdsourcing approach).
I will discuss each of these categories in this section.

 The first approach was proposed in the Hint Factory, which posited that previously
observed student submission chains could be combined into a graph of all possible learning
paths. This graph would then be turned into a Markov Decision Process to assign weights to
edges; then, when a new student needed a hint, they could be found within the graph and told
to move towards the best edge leading out of the state (Barnes & Stamper, 2008). This
approach has been adopted in several domains outside of the original logic tutor, including a
tutor for linked lists (Fossati et al, 2009), a tutor for basic programming problems using linkage
graphs (Jin et al, 2012), an educational game teaching basic programming (Peddycord III,
Hicks, & Barnes, 2014), and a SQL tutor (Lavbic, Matek, & Zrnec, 2016). The approach works
very well in domains with restricted solution spaces, but has difficulty covering all possible steps
in domains where student submissions do not map together quite so well; previous work has
reported that even the more-restricted solution spaces can only generate hints around 85% of
the time (Barnes & Stamper, 2008).

7

 The second approach, comparing a student state to a goal state, has been used in many
different systems. How the goal state is chosen varies over different implementations. Most
implementations compare states to correct solutions directly, often using AST tree edit distance.
This can be done to provide the goal itself as the next step (Ade-Ibijola, Ewert, & Sanders,
2015; Freeman, Watson, & Denny, 2016), as would be done with clustering; this kind of next-
step allows students to see all possible differences, but in doing so gives much information
away. Alternatively, the edit between the student’s state and the goal can be broken up to
provide the student with intermediate steps. This was first proposed in my work on path
construction (Rivers & Koedinger, 2014), which will be described in more detail later; alternative
and improved algorithms for next-step selection have been analyzed as well (Piech et al, 2015;
Zimmerman & Rupakheti, 2015; Price, Dong, & Barnes, 2016). The approach has also been
used to build chains of edits for style hints (Choudhury, Yin, & Fox, 2016), and in matching
states with control flow information (Wang et al, 2017). The path construction approach makes it
possible to provide smaller edits to students at any possible state, allowing full hint coverage,
but cannot guarantee that those edits are always optimal, as automatically-generated
intermediate states may never have been seen before.

 The third approach, program synthesis-supported repair, relies on the concept of an
error/knowledge model to identify possible fixes which can be applied to incorrect student
states. Various algorithms have been developed which attempt to find the minimal set of fixes
needed for a given incorrect program. This approach was originally attempted with the SKETCH
system, which used an instructor-built expert model to fix mistakes in student code (Singh,
Gulwani, & Solar-Lezama, 2013; D’Antoni, Samanta, & Singh, 2016; Phothilimthana & Sridhara,
2017). Additional approaches attempted to apply program synthesis using text-based
approaches (Lazar & Bratko, 2014) and test-driven approaches (Perelman, Gulwani, &
Grossman, 2014).

Recently, new program synthesis systems have been designed specifically to fix buggy
code without requiring expert-built error models; these include Refazer (Rolim et al, 2017; Head
et al, 2017) and SIMPL (So & Oh, 2017). And finally, some approaches have combined program
repair with pattern matching to identify optimal fixes between incorrect and correct states
(Gulwani, Radicek, & Zuleger, 2016; Marin et al, 2017). The program synthesis approach has
many strengths, but it can also be somewhat slow in hint generation as it is constructing edits
instead of comparing states, and hint generation cannot always be guaranteed, with hint
coverage ranging from 70-90% across systems (Lazar & Bratko, 2014; Rolim et al, 2017;
Gulwani, Radicek, & Zuleger, 2016).

Finally, some approaches use human support to identify the best next-step for a given

student state. Often this human support is providing human annotation to data that has been
observed before. This was the case in the original work my McLaren et al (2004); the skeletal
model used by the bootstrapping approach had no information about correctness, and thus
needed to be annotated by a tutor author. A similar approach is taken in clustering approaches,
where experts were asked to identify correct states in given clusters, which can then be
compared directly to other student submissions (Gross et al, 2012; Kaleeswaran et al, 2016).

8

Other approaches identify common incorrect states and, instead of identifying the next

state, ask experts to annotate the incorrect state with feedback. This approach has been used
to attach feedback to common incorrect subexpressions (Marin et al, 2017), and has also been
used with crowdsourcing to provide feedback on a variety of incorrect states (Hartmann et al,
2010; Glassman et al, 2016). All of these human-based approaches have the benefit of
containing feedback that is checked by a real human, but this benefit is also a downside; adding
a human into the loop delays feedback, and make the system not fully automated as well.

 A few additional approaches for next-step generation have been proposed which do not
fall into the previous four categories. These include using spectrum-based fault localization to
identify locations in the code that need to be fixed (Edmison, Edwards, & Perez-Quinones,
2017), using recurrent neural networks to predict which tokens need to be changed in
syntactically invalid code (Bhatia & Singh, 2016), and building a knowledge base to predict any
possible next step a student might need to take (Paquette et al, 2012; D’Antoni et al, 2015).

 Altogether, I would conclude that none of these four approaches is better than the
others; they all have strengths and weakness, and are best used in different contexts. The Hint
Factory approach is most suitable to domains with small solution spaces, and a combination of
the other three approaches can support most need cases in other domains. Human-generated
feedback can provide insightful comments on common error states, program synthesis can be
used to quickly fix small errors in the code, and solution-comparison can be used to support the
remaining incorrect states, which cover a long tail of possible submissions.

My own approach was, as far as I can tell, the first fully-automated solution comparison
approach in data-driven hint generation. It also provided one of the earliest demonstrations of
how corrections could be broken down into multiple steps, instead of giving all corrections to the
student at once. Of course, knowing how to choose a next step is only half the battle; once that
information has been found, a system still needs to generate a hint for students to see.

Automatically-Generated Feedback Types
 The systems I have described in the previous section generate many different types of
hints. These range in content (location of bug, edit to fix bug, or entire solution) and form (direct
edits, text messages, or visual cues). In this section I describe how these different hints can be
categorized as the point, teach, and bottom-out hints used in traditional intelligent tutoring
systems (VanLehn, 2006).

 First, a few systems generate hints that can tell a student where errors are, but not how
to fix them. These are similar to point hints, as they show a student where to look without giving
the answer away. If the system knows where the change needs to occur, it can give the student
the location by pointing at the line number where a change needs to be made to fix the program
(Perelman, Gulwani, & Grossman, 2014). Alternatively, this information can be represented
visually with a heatmap that highlights lines of code likely to be incorrect (Edmison, Edwards, &
Perez-Quinones, 2017).

9

If the specific location is not known, the system could instead demonstrate how the

program’s output is different from what is expected by showing the student what the graphical
output of a program should be at the next step (Peddycord III, Hicks, & Barnes, 2014). Finally,
Hint Factory systems can sometimes use information about the path students are traversing to
provide Hazard hints, which tell a student whether the steps they’re currently taking are
unproductive (Fossati et al, 2009; Eagle & Barnes, 2014). These hint types may nudge the
student towards the right direction, but they require that the student do their own debugging;
therefore, if a student cannot find the answer on their own, more assistance is needed.

The second hint level, ‘teach’ hints, gives the student high-level instruction about how to

solve the problem without giving the solution away. These high-level hints are difficult to
generate automatically, since current data-driven systems only know how to fix a program, and
not why making a certain change fixes it. Therefore, most currently available teach hints are all
generated using some kind of expert annotation (Singh, Gulwani, & Solar-Lezama, 2013; Marin
et al, 2017; Head et al, 2017) or crowdsourcing (Hartmann et al, 2010). One exception can be
found in the Hint Factory, which can provide subgoal hints to students with no annotation
necessary. High-level hint generation works in this context because showing a student an
intermediate step in the solution does not immediately solve the problem; students still must find
logical rules to derive the intermediate stage themselves (Eagle & Barnes, 2014). It is not clear
how this would be accomplished in programming, where code is both the state and the solution.
Teach hints can be highly valuable, but require time and training for experts to generate.

Finally, the vast majority of data-driven hints fall into the bottom-out hint category, as

they directly provide a student with the edit or solution they need to solve the problem. This can
be done with the Hint Factory approach by demonstrating which rule needs to be applied
(Barnes & Stamper, 2008) or which line needs to be changed (Jin et al, 2012). It can also be
done with path construction (Rivers & Koedinger, 2015; Zimmerman & Rupakheti, 2015; Lavbic,
Matek, & Zrnec, 2016; Price, Dong, & Barnes, 2016; Wang et al, 2017), program synthesis
(Lazar & Bratko, 2014; D’Antoni, Samanta, & Singh, 2016; Gulwani, Radicek, & Zuleger, 2016;
Rolim et al, 2017; So & Oh, 2017; Head et al, 2017), and other methods (Bhatia & Singh, 2016)
to demonstrate which edits need to be applied to fix the program. These edits can be
represented as text messages or highlighting in the IDE.

Some approaches show hints by comparing the student’s solution to the goal state side-

by-side, while highlighting differences (Gross et al, 2012; Ade-Ibijola, Ewert, & Sanders, 2015;
Kaleeswaran et al, 2016). This can benefit students by supporting comparing and contrasting,
but also makes it easier for students to apply hints directly without reading them thoroughly first.
Finally, one approach generated somewhat higher-level edit hints by comparing the control flow
of the two solutions and stating where the two flows differed (Phothilimthana & Sridhara, 2017).
All of these approaches have the advantage of being able to support even the most confused of
students, though they may also remove possible opportunities for debugging.

10

Finally, a few projects have explored the combination of multiple types of hints. Gross et
al (2014) compared four different content types which could be used to generate bottom-out
hints. Glassman et al (2016) explicitly labeled user-generated hints as point, teach, or bottom-
out, and compared how these different types performed. Suzuki et al (2017) identified different
hint types used in natural language and demonstrated how to recreate them automatically. It is
likely that an optimal hint provision system will need to provide hints at multiple levels, to
support students at different stages of learning.

My research does not attempt to define entirely new feedback types; instead, I have

attempted to modify the content of ITAP’s hints to provide different levels of instruction, as will
be described in later sections. ITAP’s original hints were modeled after the Hint Factory hints in
that they told the student directly what to do. One would assume that these hints would help
students learn, but to determine if that is the case, the learning process needs to be studied
directly.

Effects of Automatic Feedback on Students
 Now that I have described the data-driven tutoring systems that already exist, one main
question remains: how do these systems perform with real students? Much research still needs
to be conducted to determine how data-driven hints impact learning, but some studies have
found early results.

 First: what do these studies tell us about what kinds of hints should be generated? Some
prior work suggests that smaller amounts of content (steps, not solutions) may be more
appropriate for the student learning process (Gross et al, 2014). The same research suggests
that those steps should come from expert solutions, which may be more beneficial to novices
than other novice solutions. Additionally, the systems which are choosing these examples may
need careful development to reach optimality. Out of two studies which asked experts to rate
the optimality of chosen examples, one found that less than half of the examples were optimal
(Gross et al, 2012), while another found only 20% non-optimal cases (Head et al, 2017).

 Second: do automatically-generated hints improve the student learning experience?
Previous work indicates that this is true. Prior studies have shown that having access to
automatic hints results in spending less time on problems (Eagle & Barnes, 2013; D’Antoni et al,
2015), though this is potentially refuted by (Lavbic, Matek, & Zrnec, 2016). Additionally, students
may require fewer submissions to solve problems with hints (Phothilimthana & Sridhara, 2017),
and students complete more practice problems with hints (Barnes et al, 2008; D’Antoni et al,
2015). Therefore, these systems have promise.

 However, efficiency is not the same as improved learning. Few studies have been
conducted which directly measure learning; the only definite result reported thus far showed that
in a style tutor, students with style hints improved dramatically more than students without
(Choudhury, Yin, & Fox, 2016). However, multiple studies have shown that students will use the
hints they are given and consider them beneficial (Hartmann et al, 2010; Price, Dong, &

11

Lipovac, 2017; Phothilimthana & Sridhara, 2017), so time may still demonstrate whether data-
driven hints can directly impact the learning process.

 The studies I report on later in this thesis have supported the previous results that
automatically-generated hints help students spend less time with equal learning. However, they
have potentially countered the results on hint content by demonstrating that higher levels of
content may be better for improving student performance. Further research will be needed to
substantiate these claims.

Canonicalization
 In the first part of the hint generation process, the system needs to represent student
data for optimal information processing. It is possible to compare student states in their original
text, but this results in great amounts of non-meaningful variation, especially when ITAP
compares across different students (who will likely have different styles). To remove some of
this variation, I have created a suite of semantics-preserving program transformations. These
transformations normalize the syntactic structure of the program (the code itself) while
preserving semantic meaning (what the code does). If ITAP can apply an optimal set of
transformations, any resulting differences between states should be semantic in nature, rather
than syntactic. In this section, I describe how this process works, and explain the
implementation of the canonicalizations used. The work described in this chapter was originally
published in (Rivers & Koedinger 2012), though I have updated the canonicalizations since
then; the most recent approach is described here.

Related Work: Data Representation
 When considering how to represent data in tutoring systems, the tutor has to determine
what content is necessary when evaluating and progressing from the student’s current state.
This data can be abstracted at varying levels, where each level focuses on a different type of
information which can be used to provide context on the student’s decisions.

One approach to data-driven tutoring relies on the original actions made by students,
and generates hints only based on those actions seen before. These can be represented by
interaction networks (Eagle, Johnson, & Barnes, 2012), which can efficiently model student
interactions as a complex weighted network, where tutoring information is encoded into nodes
and edges. In this model, both the student states and the student actions are necessary to
represent the work that has been done. A similar type of model tracks student actions during the
programming process (Carter, Hundhausen, & Adesope, 2015), though it does not analyze
student code at the semantic level.

Other approaches view states and actions as independent, and use either the state or

the action as a representation. Actions can be represented as text edits (Lazar & Bratko, 2014)
or as AST edits (Rolim et al, 2017). In both cases referenced here, the actions can be used

12

outside of their original contexts to provide feedback in new situations, for code states that have
not been seen before.

I view the question of data representation more as a problem of representing the state

than the action. A program’s state can be represented by a set of features (Gross et al, 2012;
Sudol, Rivers, & Harris, 2012), the output of the program (Peddycord III, Hicks, & Barnes,
2014), the execution of the program based on API calls or state changes (Piech et al, 2012;
Paaßen, Jensen, & Hammer, 2016), or the actual code of the program. Furthermore, all these
representation levels can be abstracted to various degrees. I am primarily interested in
providing semantic hints about what a student should do next, so I do not use feature vectors,
output, or execution; all of these would contain no information about how to actually change the
program’s code. Instead, I focus on varying levels of abstraction of a code state.

A program’s code can be represented as text, a set of parsed tokens, an abstract syntax

tree, or even bytecode. Programs can also be represented based on their control flow (Wang et
al, 2017), data flow (Jin et al, 2012), or a combination of the two (Suarez & Sison, 2008; Srikant
& Aggaral, 2013). Additional work has represented specific subsets of programs, to break larger
programs up into pieces (Nguyen et al, 2014; Price, Dong, & Barnes, 2016). Since I want to be
able to map back from the representation to the original text, I choose a level of representation
which is highly abstracted while still bearing a full connection to the text: the abstract syntax
tree.

Abstract syntax trees retain information that is purely syntactic, which can be modified

using program transformations without harming the semantic meaning of the code. This
canonicalization approach has been used before for educational purposes. Xu and Chee
showed that program transformations could be used to facilitate comparing student programs to
a teacher solution to provide difference feedback, and described a set of transformations they
personally used (Xu & Chee, 2003). Further work showed that these transformations could also
be used to supplement grading (Wang et al, 2007; Li et al, 2007). More recent work has used
canonicalizations to support clustering code for the purposes of grading and feedback provision
(Glassman et al, 2014), and has proposed control-flow abstract syntax trees, which reduce
ASTs to only include control flow information, as an even more abstract representation for
analyzing student programs (Hovemeyer et al, 2016).

Additionally, canonicalization has been used in intelligent tutoring systems for

programming before. Early programming ITSs were often based on functional languages, where
the accepted responses for questions were more constrained, making it easier to model the set
of all possible solutions. Several researchers used program transformations to normalize these
solutions or extend the set of possible solutions, to better support matching to student code.
This has been done in the LAURA automatic debugging system for LISP programs (Adam &
Laurent, 1980), in the Prolog Tutor (Looi, 1991; Gegg-Harrison, 1992), and in Ask-Elle, a tutor
for Haskell (Jeuring et al, 2014). However, the technique has not been used in non-functional
programming tutors, to the best of my knowledge, and I am not aware of any previous

13

approaches which paired canonicalization with reification, to undo the changes made to student
code.

Categories of Canonicalization
 To run the canonicalization process with any given piece of code, it must first be
transformed into an Abstract Syntax Tree (AST). An AST is an intermediate representation of a
program created by the compiler during the conversion of a program from text into binary code;
an example is shown in Figure 1. This format allows algorithms to directly modify the structure
of a program, as it is represented by the tree. Any program which can be parsed by a compiler
can be turned into an AST (as, indeed, compilers transform programs into ASTs internally
during the process of creating executable code); to generate hints for non-parseable code, I use
a different process, which will be described later.

Figure 1: An example of a program code state and the corresponding AST.

14

Once ITAP has the AST (which can be generated simply using a built-in Python library),
it runs each of the canonicalizations in turn, one by one. If the resulting AST has changed from
its original state, it runs the set again, and continues doing so until the AST does not change
anymore; once the state remains the same, it cuts off the process. This process should always
terminate, as no two canonicalizations should ever reverse each other’s changes.

 Most of the canonicalizing functions described below only require the AST to run, but a
few perform better when given additional information. For example, if the author knows the
intended argument types for a function, providing that information will make it easier to
understand the types the program can expect to encounter. Additionally, providing a set of
‘given names’ (like names of instructor-provided or -required functions) means that ITAP will not
accidentally anonymize names that are required by the program.

Anonymization
 First, I describe the process of variable anonymization. This is kept separate from the
other categories because it can be applied outside of the canonicalization process to create
anonymized but otherwise unchanged states. This is useful during hint generation, for reasons
that will be discussed later.

 To anonymize the variable names of a piece of code, ITAP first identifies any names
which should remain unchanged in the program. This includes the main function’s name, any
instructor functions that will be standardized across submissions, imported module names, and
built-in function names (like sum and max). It creates a dictionary which maps these names to
themselves, to establish that they should remain unchanged. It then goes backwards through
the main body of the code (which contains functions, imports, and global assignments),
identifying all global names and mapping them to anonymized global ids. Helper functions are
anonymized to helper<num>, where <num> goes up by one for each new helper function seen,
while global variables are represented by g<num>, with <num> again increasing with each new
variable.

 Once all the global values have been identified, ITAP gathers the local scope of each
individual function. Here, function parameters are mapped to p<num>_<functionname> and local
variables are mapped to v<num>_<functionname>. Each local variable is followed by the parent
function’s name to ensure that variables do not clash across helper functions during code
matching later.

Once the full scope has been put into the dictionary, ITAP traverses the functions again,
this time changing any encountered variable to its new name. Original names are stored in the
ast.Name object’s metadata, under the tag originalId. At this point, it also identifies variables
that do not appear in the dictionary. These are random variables, as they have not had a value
assigned to them (and will therefore likely crash the code when reached). It maps these
variables to r<num>_<functionname>, and gives them an additional metadata tag, randomVar.
Finally, when it encounters a variable with a given name (where the variable’s name is mapped

15

to itself in the dictionary), it is given the metadata tag dontChangeName, to track that this name
should never be anonymized.

 At this point, the function should be fully anonymized. An example of a function pre- and
post- anonymization is shown in Figure 2 (with the name find_the_circle replaced with ftc for
readability). Note that most variables are mapped to v<num> or p<num>, but in the helper
function, lst is mapped to r0, as it is not defined in the local or global scope.

def ftc(lst):
 for i in range(len(lst)):
 for j in range(len(lst[i])):
 if lst[i][j] = 'o':
 return helper(i, j)

def helper(i, j):
 y = len(lst) - 1 - i
 x = j
 return [x, y]

def ftc(p0_ftc):
 for v0_ftc in range(len(p0_ftc)):
 for v1_ftc in range(len(p0_ftc[v0_ftc])):
 if p0_ftc[v0_ftc][v1_ftc] = 'o':
 return helper_g0(v0_ftc, v1_ftc)

def helper_g0(p0_helper_g0, p1_helper_g0):
 v0_helper_g0 = len(r0_helper_g0) - 1 - p0_helper_g0
 v1_helper_g0 = p1_helper_g0
 return [v1_helper_g0, v0_helper_g0]

Figure 2: A piece of code before and after anonymization takes place.

Simplification
 Several of the canonicalization functions are simplifying; they remove excess code and
generally streamline programs. This allows ITAP to map together both verbose and succinct
implementations that are semantically identical.

 First, there are a few small simplifications which are performed primarily to simplify the
AST itself. These are also used to simplify the implementations of following canonicalizations.
For example, in Python, it is possible to perform multiple assignments on a single line. ITAP
separates out the multiple assignments into independent lines, as is shown in Figure 3. This will
be evaluated in the same way, but is also more likely to coincide with other programs it has
already seen.

a = b = c b = c
a = b

Figure 3: An example of multi-assignment simplification

16

 Additionally, assignment can be done on separate items on the same line using tuples or
lists. ITAP separates out the multiple assignments here as well, when possible; see Figure 4.

(a, b) = (c, d) a = c
b = d

Figure 4: An example of tuple assignment simplification

 Augmented assignments are also used in Python, which allow variables to be updated
using shorthand. ITAP separates these out by displaying the full operation; see Figure 5.

a += b a = a + b

Figure 5: An example of augmented assignment simplification

 Finally, Python allows multi-comparisons, where multiple comparisons are joined in the
same operation. ITAP separates these out into individual comparisons joined by and operators,
to achieve the same semantic effect; this is shown in Figure 6.

a < b <= c (a < b) and (b <= c)

Figure 6: An example of multi-comparison simplification

 The above simplifications are used to simplify the built-in Python AST format, but ITAP
also adds additional information to the AST by propagating expected type values throughout the
code. It does this because Python is weakly typed, which means that variables can change
types or not be assigned to the expected type without causing a compiler error. A side effect of
this is that the AST does not, on its own, know the types of its various variables. This makes it
difficult to tell whether given pieces of code might crash, and if ITAP does not know whether a
piece of code might crash, it does not know if it will be safe to move or delete that code later.

 If the problem statement guarantees that input for a given function will always take on
specific types (as many problems do), ITAP can assign those types as metadata to the
function’s parameters and propagate it through the rest of the code. It does exactly that, giving
variables a type tag which maps to the guaranteed type of the variable (if it can be determined),
and otherwise mapping to None. I also define a function eventual_type, which can determine the
eventual type of a Python expression if enough information is provided. Using these functions,
ITAP can propagate metadata throughout all of the code about types for later use.

 In addition to the simplifications described above, ITAP runs four traditional compiler
optimizations on student code: function inlining (Chang & Hwu, 1989), constant folding
(Wegman & Zadeck, 1991), copy propagation (Aho, Sethi, & Ullman, 1986), and dead code
elimination (Kennedy, 1979). Implementations for these functions can be found elsewhere, so I
only briefly describe how each function works.

17

 Function inlining is used to take the body of a helper function called by the main function
and replace the original call to the helper function with that code. This can only be done in
certain restrained circumstances (often when the control flow of the helper function is very
simple), but it can be useful for the purpose of removing unnecessary helper functions written by
students still trying to understand function decomposition. An example of function inlining is
shown in Figure 7.

def helper_g1(p0_helper_g1, p1_helper_g1):
 return ((p0_helper_g1 // 10) * (p1_helper_g1 - 1))

def helper_g0(p0_helper_g0):
 v0_helper_g0 = p0_helper_g0
 v1_helper_g0 = 0
 while (v0_helper_g0 > 0):
 v0_helper_g0 = (v0_helper_g0 // 10)
 v1_helper_g0 += 1
 return v0_helper_g0

def sum_of_odd_digits(p0_sum_of_odd_digits):
 sum = 0
 if ((helper_g0(p0_sum_of_odd_digits) % 2) == 0):
 for v0_sum_of_odd_digits in range(1, helper_g0(p0_sum_of_odd_digits), 2):
 sum += helper_g1(p0_sum_of_odd_digits, v0_sum_of_odd_digits)
 else:
 for v0_sum_of_odd_digits in range(1, (helper_g0 + 1), 2):
 sum += helper_g1(p0_sum_of_odd_digits, v0_sum_of_odd_digits)
 return sum

def helper_g0(p0_helper_g0):
 v0_helper_g0 = p0_helper_g0
 v1_helper_g0 = 0
 while (v0_helper_g0 > 0):
 v0_helper_g0 = (v0_helper_g0 // 10)
 v1_helper_g0 += 1
 return v0_helper_g0

def sum_of_odd_digits(p0_sum_of_odd_digits):
 sum = 0
 if ((helper_g0(p0_sum_of_odd_digits) % 2) == 0):
 for v0_sum_of_odd_digits in range(1, helper_g0(p0_sum_of_odd_digits), 2):
 sum += ((p0_sum_of_odd_digits // 10) * (v0_sum_of_odd_digits - 1))
 else:
 for v0_sum_of_odd_digits in range(1, (helper_g0 + 1), 2):
 sum += ((p0_sum_of_odd_digits // 10) * (v0_sum_of_odd_digits - 1))
 return sum

Figure 7: A piece of code before and after function inlining has been performed. Note that
helper_g1 is only a single line, and thus can easily be inlined.

 Constant folding is used by compilers to calculate constant operations in the code at
compile-time instead of waiting to determine them at runtime. ITAP identifies operations that can

18

be performed ahead of time and simplifies the code to show the resulting value. This is not
restricted only to operations on constant values; for example, given the operation (x + 0), if it
knows x is a number, it can simplify the expression to (x). In some occasions, these operations
are used to adjust the type of an expression; for example, the expression (1.0 * x), when x is
a number, is meant to turn x into a float. To normalize code, it transforms expressions such as
this into the direct type-cast instead (float(x)). An example of constant folding is shown in
Figure 8.

def has_extra_fee(p0_has_extra_fee, p1_has_extra_fee):
 if ((p0_has_extra_fee > 5) or (p1_has_extra_fee == p1_has_extra_fee)):
 return False

def has_extra_fee(p0_has_extra_fee, p1_has_extra_fee):
 if ((p0_has_extra_fee > 5) or True):
 return False

Figure 8: A piece of code before and after constant folding has been performed. Note that
obviously p1 == p1, so that operation can be replaced with True.

 Copy Propagation is used to propagate variable values into the code, which can be
paired with Dead Code Elimination to remove unnecessary variables. In copy propagation, ITAP
keeps track of which variables are live; that is, which variables have not been changed since
they were last assigned. If a variable is live when it is used in an expression, ITAP copies its
value into the variable’s place. Dead code elimination checks for dead code (code which is not
used or will never be reached). This includes any code that occurs after a return statement,
variables that are never used, and expressions that are run by themselves without changing the
state. An example of both copy propagation and dead code elimination is shown in Figure 9.

import math
def convert_to_degrees(p0_convert_to_degrees):
 degrees = ((p0_convert_to_degrees * 180) / 3.14)
 return degrees

import math
def convert_to_degrees(p0_convert_to_degrees):
 degrees = ((p0_convert_to_degrees * 180) / 3.14)
 return ((p0_convert_to_degrees * 180) / 3.14)

import math
def convert_to_degrees(p0_convert_to_degrees):
 return ((p0_convert_to_degrees * 180) / 3.14)

Figure 9: The code shown at the top is run through copy propagation to get the second state
(middle), where the value of degrees has been copied into the return statement. ITAP then runs

through dead code elimination to get the third state (bottom), where the initial variable
assignment is removed.

19

Ordering
 The second set of canonicalizing functions I describe are ordering functions. These
functions impose a strict ordering on Python expressions so that ITAP can standardize the
ordering of commutative (reorderable) operations in different pieces of code. This makes it
much easier for it to compare functions across multiple students, and usually improves the
accuracy of hint generation later.

 The ordering function checks for non-AST values (such as strings and numbers) first,
putting them after ASTs in ordering (so that an expression like (1 + x) will be reordered to (x +
1)). It then orders among AST nodes by imposing a strict ordering on node types; statements
come before expressions, which come before operations, and all the individual types among
these are ordered as well. Within identical node types, ordering is done first based on the depth
of the tree (so that larger expressions go later); if the depths are the same, it compares the
attributes of the two trees instead.

 When canonicalizing, ITAP imposes this ordering on Boolean operations, binary
operations, comparisons, and conditionals. In this section I will demonstrate the effect this
ordering has on code for each of these different types.

First, consider basic commutative operations. Binary operations take two inputs and
evaluate them based on some (often-mathematical) operator. When this operation is addition,
multiplication, or a bitop, and when ITAP knows the inputs are numbers, it can reorder the
inputs based on the ordering from before without causing any changes. The same is true of
Boolean operations, as long as all of the inputs are Boolean-typed and none of them can crash;
ITAP also tries to combine adjacent Boolean operations that have similar components. For
comparisons, it can reorder the inputs for == or != operations, and it also changes > and >=
operations to < and <=, just to keep everything consistent. Boolean and comparison reordering
is demonstrated in Figure 10.

def no_positive_even(p0_no_positive_even):
 for v0_no_positive_even in range(len(p0_no_positive_even)):
 if ((v0_no_positive_even > 0) and ((v0_no_positive_even % 2) == 0)):
 return False
 return True

def no_positive_even(p0_no_positive_even):
 for v0_no_positive_even in range(len(p0_no_positive_even)):
 if (((v0_no_positive_even % 2) == 0) and (0 < v0_no_positive_even)):
 return False
 return True

Figure 10: Code that has had the ordering function imposed on it. The Boolean operation in the
if statement has switched the operations (to put the longer expression on the left); the

comparison operation has also switched direction, to become a < operation.

20

 Additionally, ITAP tries to reorder some binary operations in order to reduce the number
of negations, and it uses De Morgan’s law to reduce the number of not operators in Boolean
operations. For negations, it identifies expressions such as x + (-y) and changes them to x -
y; for not operations, it uses De Morgan’s law to turn expressions such as (not (x == True))
into (x != True). Examples of this are shown in Figures 11 and 12.

def nearest_bus_stop(p0_nearest_bus_stop):
 if ((p0_nearest_bus_stop % 8) > 4):
 return (p0_nearest_bus_stop + (8 - (p0_nearest_bus_stop % 8)))
 else:
 return (p0_nearest_bus_stop - (8 - (p0_nearest_bus_stop % 8)))

def nearest_bus_stop(p0_nearest_bus_stop):
 if ((p0_nearest_bus_stop % 8) > 4):
 return (p0_nearest_bus_stop + (8 - (p0_nearest_bus_stop % 8)))
 else:
 return (p0_nearest_bus_stop + ((p0_nearest_bus_stop % 8) - 8))

Figure 11: An example of negation reduction in student code. Note how the else statement’s
return value changes.

def is_prime(p0_is_prime):
 v0_is_prime = round((p0_is_prime ** 0.5))
 if (p0_is_prime <= 1):
 return False
 else:
 if (not (p0_is_prime == 2)):
 for v1_is_prime in range(3, ((p0_is_prime ** 0.5) + 1), 2):
 if ((p0_is_prime % v1_is_prime) == 0):
 return False
 return True

def is_prime(p0_is_prime):
 v0_is_prime = round((p0_is_prime ** 0.5))
 if (p0_is_prime <= 1):
 return False
 else:
 if (p0_is_prime != 2):
 for v1_is_prime in range(3, ((p0_is_prime ** 0.5) + 1), 2):
 if ((p0_is_prime % v1_is_prime) == 0):
 return False
 return True

Figure 12: An example of De Morgan’s law applied to student code. Note how the if statement
inside the else changes.

 Apart from these operation reorderings, ITAP can also impose specific orderings on
conditional statements. In fact, there are many ways in which ITAP can combine and order

21

conditionals! When conditionals are connected in if-elif-else trees with disjoint tests, it can
reorder those tests according to the ordering operation. It can also switch if-body and else-body
orderings in cases where the else body is smaller than the if. Additionally, when connected
conditional tests achieve the same result (such as returning a value), ITAP can combine those
tests; an example is shown in Figure 13.

def can_make_breakfast(p0_can_make_breakfast, p1_can_make_breakfast):
 if (p0_can_make_breakfast < 11):
 if (not p1_can_make_breakfast):
 return True
 return False

def can_make_breakfast(p0_can_make_breakfast, p1_can_make_breakfast):
 if ((p0_can_make_breakfast < 11) and (not p1_can_make_breakfast)):
 return True
 return False

Figure 13: An example of the effect of conditional reordering on a piece of code. As both if
statements must succeed to reach the return True statement, ITAP can combine them with an

and operator.

ITAP can also recognize separate but disjoint if statements and connect them, which can
help improve ordering using the methods listed above. This is done by determining whether the
tests are disjoint, which can be done for many comparison operations. An example is shown in
Figure 14.

def has_extra_fee(p0_has_extra_fee, p1_has_extra_fee):
 if (p0_has_extra_fee <= 5.0):
 return False
 if (p0_has_extra_fee > 5.0):
 return True

def has_extra_fee(p0_has_extra_fee, p1_has_extra_fee):
 if (p0_has_extra_fee <= 5.0):
 return False
 elif (p0_has_extra_fee > 5.0):
 return True

Figure 14: Another effect of conditional ordering on student code. Because p0 > 5 is disjoint
from p0 <= 5, the two conditionals can be combined into one conditional tree.

Domain-Specific
 Finally, there are a set of canonicalizing functions which are not used for generic
simplification or ordering, but instead target specific oddities of novice code which can be
reduced to great effect. These functions were mostly created by examining student code to find

22

places where inefficient code was being written, and cases where semantically identical code
was not mapped to the same canonical states.

 First, ITAP looks for cases where default values are used (in slices and ranges), even
when they are not required. Both slices and ranges in Python take the form of
value[start:end:step], where start defaults to 0, end defaults to len(value) (for slices), and
step defaults to 1. However, there are some cases where students include default values where
they are not needed. In these cases, ITAP can remove the default values entirely; see Figure 15
for an example.

def first_and_last(p0_first_and_last):
 return (p0_first_and_last[0] + p0_first_and_last[:len(p0_first_and_last)])

def first_and_last(p0_first_and_last):
 return (p0_first_and_last[0] + p0_first_and_last[:])

Figure 15: An example of the simplification of default values. Note that len(p0) can be removed
because it is already the default value for the slice.

 Next, ITAP looks for cases where unnecessary type-casting is performed. These are
simply cases where students try to cast a value to a type, when the value is already that type.
Since the cast is unnecessary, it can be removed altogether. Of course, ITAP only removes
these casts in conditions where it knows the type of the expression (using type metadata and
the eventual_type function). An example is shown in Figure 16.

def over_nine_thousand(p0_over_nine_thousand):
 return bool((p0_over_nine_thousand > 9000))

def over_nine_thousand(p0_over_nine_thousand):
 return (p0_over_nine_thousand > 9000)

Figure 16: An example of the simplification of type casting. Because comparisons always
evaluate to Boolean values, ITAP does not need to cast them.

 Additionally, ITAP finds several cases where a student checks whether boolean_value
== True, even though this is entirely unnecessary, as the result of this check is the same as the
Boolean value itself. This is often used in conditional statements, perhaps because students do
not fully understand how Boolean variables work, or perhaps because they think single values
cannot be used as conditional tests. Either way, it can simplify these expressions by removing
the == True part of the expression, as is shown in Figure 17. It does the same for value ==
False, turning it into not value.

def has_extra_fee(p0_has_extra_fee, p1_has_extra_fee):
 if ((p0_has_extra_fee < 5.0) and (p1_has_extra_fee == True)):
 return False

23

 if ((p0_has_extra_fee < 5.0) and (p1_has_extra_fee == False)):
 return True

def has_extra_fee(p0_has_extra_fee, p1_has_extra_fee):
 if ((p0_has_extra_fee < 5.0) and p1_has_extra_fee):
 return False
 if ((p0_has_extra_fee < 5.0) and (not p1_has_extra_fee)):
 return True

Figure 17: An example of code transformation via removal of == True.

 Finally, ITAP can (again) simplify various unusual uses of conditionals. First, it can fix
cases where students use redundant statements, by moving those statements outside of the
conditionals. An example of this is shown in Figure 18, where the return statement is moved
outside of the conditional as it appears in both branches. Second, it can collapse conditional
statements that are entirely unnecessary (where both branches have identical bodies), by
moving the branch body outside and deleting the conditional. If there is a chance that the
conditional test will crash, ITAP moves it into an expression that occurs before the conditional’s
body.

import math
def nearest_bus_stop(p0_nearest_bus_stop):
 v0_nearest_bus_stop = (p0_nearest_bus_stop % 8)
 if (v0_nearest_bus_stop <= 4):
 v1_nearest_bus_stop = ((p0_nearest_bus_stop // 8) * 8)
 return v1_nearest_bus_stop
 else:
 v1_nearest_bus_stop = (((p0_nearest_bus_stop // 8) * 8) + 8)
 return v1_nearest_bus_stop

import math
def nearest_bus_stop(p0_nearest_bus_stop):
 v0_nearest_bus_stop = (p0_nearest_bus_stop % 8)
 if (v0_nearest_bus_stop <= 4):
 v1_nearest_bus_stop = ((p0_nearest_bus_stop // 8) * 8)
 else:
 v1_nearest_bus_stop = (((p0_nearest_bus_stop // 8) * 8) + 8)
 return v1_nearest_bus_stop

Figure 18: An example of code transformation via moving of redundant conditional statements.
As the return statement appears in both branches, it can be moved outside the if statement

entirely.

 Altogether, these various transformations are used to generate canonical states. It is
worth noting that these transformations were tailored to work specifically for Python ASTs; the
compiler optimizations and ordering functions could be imposed on other language ASTs with
reimplementation, but the domain-specific transformations may not be transferable. Still,

24

transformations work across all problems, as they are associated with the whole language
instead of specific concepts.

Evaluation of Canonicalization Reduction
 To evaluate the canonicalizations, I must address their original purpose: do they
adequately map together syntactically independent states that are semantically equivalent? To
determine whether this is the case, I generate solution spaces with student states at different
levels of state abstraction, to see if I can reduce the size of the solution spaces with higher
abstraction (by mapping more program states together).

When running this technical evaluation (and the evaluations which follow), I use student
code submissions collected from a series of studies described in the Chapters 3-5. I combined
problem data across studies in cases where the problem statement did not change from one
study to another, then identified problems from the resulting set which were attempted by at
least ten students and had encountered at least 100 states (to ensure that reduction could be
detected), where a state is defined as a program representation at some level of abstraction.
This resulted in a set of 41 problems, where the smallest dataset had 122 states and the largest
had 1065 (with an average of 404 states). The problems range in complexity as well, from 3
tokens in the simplest solution to 56 tokens in the most complex (with an average of 20 tokens).
Full summary statistics for all the problems used in this and following technical evaluations are
included in Appendix 2.

In this analysis, I do not use states which cannot be parsed by the compiler (as ITAP

must have an AST to perform canonicalization); these syntactically incorrect states take up 14%
of the space on average. I also ignore states that are immediate duplicates of prior submissions
(which often happens when students get impatient and click Submit several times); this leaves
91 states in the smallest solution space and 697 in the largest (average of 263). Note: in the
following analyses, the reduction reported for each stage of abstraction is computed based on
the solution space size of the abstraction stage that came before it, so that the effects of each
abstraction stage can be compared independently.

With the above-mentioned dataset, I investigate the size of the solution space for varying

levels of abstraction: original submissions, unique text submissions, unique AST submissions,
anonymized submissions, and canonicalized submissions. Unfortunately, I was not able to
calculate an accurate reduction amount for unique text submissions or unique ASTs at this time,
due to a bug in the logging software that replaced original code text with an AST-normalized
version that obfuscated differences between text submissions; I will leave this for future work.
However, I can still look for additional reduction contributed by anonymization and
canonicalization, as well as reduction from original submissions to the unique AST version. I
also realized that the IDE used in one of the studies provided a ‘see our solution’ feature to
students after they had attempted to solve the problem at least once, which artificially inflated
the appearances of the provided solution. To account for this, I remove those provided solutions
from the data set.

25

Averaging over the 41 problems shows that reduction from original submissions to
unique ASTs is quite high (35% fewer unique states), while reduction due to anonymization and
canonicalization is rather lower (8% and 9% on the resulting solution spaces respectively), but
each reduction is significant according to a paired t-test (p < 0.001; original means and standard
deviations reported in Table 1). Overall, the average solution space was reduced to 55% its
original size. I also found that unique AST reduction was strongly negatively correlated with
token complexity (r = -0.65) and canonicalization reduction was moderately negatively
correlated with token complexity (r = -0.36); in other words, more reduction was possible in
programs that had less tokens.

Representation Mean Std. Dev

Original Submissions 238.93 127.94

Unique AST 157.63 105.52

Anonymized State 143.05 92.10

Canonicalized State 131.90 87.06

Table 1: The mean and standard deviation for number of unique states in each representation
level across 41 problems. The high variance is due to significantly different submission rates

across problems.

 I also investigate the number of correct states per problem with varying levels of
abstraction, as one would expect many more possible incorrect states in a solution space than
correct states. The problems ranged from having 12 to 264 correct solutions recorded (average
of 100). Averaging over the same 41 problems shows that reduction from original correct
submissions to unique ASTs continues to be strong (48%), and that reduction due to
anonymization and canonicalization has doubled (20% and 21% respectively). Overall, the
average set of correct states was reduced to 34% its original size. All reductions were significant
according to paired t-tests (p < 0.01; means and standard deviations reported in Table 2). AST
reduction was strongly negatively correlated with complexity (r = -0.66), and canonicalization
reduction was moderately negatively correlated with problem complexity (r = -0.34).

Representation Mean Std. Dev

Correct Submissions 76.00 47.85

Unique AST 33.68 21.81

Anonymized State 25.17 16.82

Canonicalized State 20.34 14.54

Table 2: The mean and standard deviation for number of unique correct states in each
representation level across 41 problems. The high variance is due to significantly different

submission rates across problems.

26

 It is worth noting here that ITAP can apparently reach a stable number of correct states
per problem, though the same cannot be said of the entire solution space. First, I note that the
number of unique canonicalized states is highly correlated with the original number of
submissions (r=0.87), which implies that more submissions lead to more unique states.
However, the number of unique canonicalized states among only correct solutions is only
moderately correlated with the total number of correct submissions (r=0.40). This point is
illustrated in Figure 19. The first graph shows the number of unique states for each format,
organized by total number of submissions; here it is obvious that the number of states tends to
increase with the number of total submissions. The second graph shows the same data for only
correct submissions; here, the number of more abstracted submissions does not appear to
linearly increase with the number of correct submissions.

27

Figure 19: The abstraction power for the entire solution space and the set of correct states
alone, organized by total number of submissions. Though the number of canonicalized states

increases with the number of total submissions for the whole solution space, it remains static for
the set of correct states.

Altogether, these results suggest that student solutions may naturally converge more

than I initially expected, considering how much reduction could be achieved with unique AST

28

reduction alone. This is mainly due to the simplicity of many of the problems in the dataset; with
more complex problems, I would not expect such convergence, and the negative correlation
between solution complexity and reduction supports this theory. I also found that most reduction
occurred with correct states (as expected), and that ITAP appears to be able to identify a stable
set of correct solutions despite increasing submission rates. To determine if this is the case, I
will need to run studies with real teachers to see whether their clustering of solutions matches
the clustering performed by ITAP; however, I leave this for future work.

Path Construction
 In this section, I describe how the path construction algorithm can generate the content
used in hints. The goal of path construction is to identify the closest correct/goal state (where a
correct state is one which passes all the problem’s designated test cases) to a submitted
incorrect state, then to link the submitted state to that goal with a series of edits. The work
described in this chapter was originally described in (Rivers & Koedinger, 2014), though I have
modified the algorithm since that point; the more recent version of the algorithm is included
here.

Algorithmic Description
 Before I describe the path construction algorithm, I have to explain a few terms that will
be used in the upcoming section. As most of path construction relies on being able to compare
and modify ASTs, it is easiest to describe the functions that make this possible upfront.

AST Algorithms
 First, I explain how the edits between ASTs are represented. When diffing AST x and
AST y, the system identifies a set of edit vectors which can be applied to x to turn it into y.
These edit vectors are comprised of several properties:

● Type: The type of the edit vector describes what kind of change is being made.
Currently, ITAP can generate seven types:

○ Change: replaces one value with another
○ Subset: replaces a value with a subset of itself
○ Superset: replaces a value with a superset of itself
○ Add: inserts a new value into the specified location
○ Delete: removes a value from the specified location
○ Swap: swaps the positions of two values.
○ Move: moves the value at the indicated position to a new position

● AST: The AST which the edit vector should be applied to. When transforming x into y,
this is x.

● Path: A list of nodes and indices that can be traversed through the starting AST to reach
the location in the tree where the edit occurs.

● Old and New Expressions: The old and new values described above in the varying edit
types. The old value is taken from x, while the new value is taken from y.

29

 As edit vectors are intended to work only on the specified AST, ITAP often needs to
modify them if it needs to change the starting AST they are applied to. This usually happens
when several edits need to be applied consecutively, as earlier edits may change the position of
the following ones. When this happens, it identifies the changes between the original and new
ASTs and records them in the edit vector in a metadata map. This allows ITAP to apply the edit
vectors to the updated locations in the new AST. Most often, this is done during the goal
optimization stage, which will be described later.

Next, I explain how ITAP generates the edit vectors between two ASTs; that is, how it
performs a diff operation on two ASTs. This can be broken down into two questions: how to
compare two AST nodes, and how to compare two lists. Comparing AST nodes is simple; ITAP
checks whether the node types are equal. If they are, it recursively generates edit vectors for
the diffs of the fields of each item. If they are not equal, it checks whether the first AST occurs
within the second, or vice versa; this can generate a Subset or Superset vector. If that is not the
case, it creates a Change vector between the two nodes.

Comparing two lists is slightly harder, as ITAP aims to provide optimal matching (so that

the number of edits required is minimized, which should make those edits sensible). To do this,
it takes the two lists (x and y) and identifies the optimal item-matching between the two (that is,
a mapping from the index in x to the index in y). Matching is done via the following steps:

1. First, match items that are exactly the same (prioritizing items on the same line)
2. Next, match items that are the same type (prioritizing lower distance between items

according to the distance metric, then distance between indices)
3. Next, match items that occur in the same position
4. Finally, match the remaining items in order. Extra items in either list are marked.

 Once ITAP has the mapping between the two lists, it identifies the set of edit vectors
needed. First, it generates vectors based on position. The items marked as unmatched are
turned into Delete vectors (if they came from x) or Add vectors (if they came from y). For the
remaining item pairs, it generates two lists: one a set of indices in the normal order from 0 to n
(A), the other the set of indices ordered so that they’re paired with the first set (B). ITAP has to
find a set of edit vectors that will turn A (the current ordering of lines in x) into B (the current
ordering of lines in y). It does this with the following algorithm, which tries to find an optimal set
of vectors from the outside in:

1. If A[0] == B[0], run recursively on A[1:] and B[1:]
2. If A[-1] == B[-1], run recursively on A[:-1] and B[:-1]
3. If A[0] == B[-1] and A[-1] == B[0], generate a Swap vector between A[0] and A[-1],

and run recursively on A[1:-1] and B[1:-1]
4. If A[0] == B[-1], generate a Move vector from A[0] to A[-1], and run recursively on

A[1:] and B[:-1]

30

5. If A[-1] == B[0], generate a Move vector from A[-1] to A[0], and run recursively on
A[:-1] and B[1:]

6. Otherwise, identify the index i in B where A[0] occurs, generate a Move vector from A[0]
to A[i], and run recursively on A[1:] and B[:i] + B[i+1:]

An example of how this algorithm works is shown in Figure 20. This algorithm is optimal

for lists up to size four; for larger lists optimality is not guaranteed, but such large lists are
relatively rare in novice programs. Once all the positional vectors have been generated, ITAP
compares the item-pairs to identify any further edit vectors that need to be generated between
the ASTs.

 List A (old) List B (new) Actions

Initial [0,1,2,3,4,5,6] [0,6,3,4,2,5,1] 0 matches already

Step 1 [1,2,3,4,5,6] [6,3,4,2,5,1] Swap 1 and 6

Step 2 [2,3,4,5] [3,4,2,5] Move 2 behind 4

Step 3 [3,4,5] [3,4,5] Done!

Figure 20: An example of how position edit vectors are generated. Initially, 0 can be discarded
as the positions already match; next, 1 and 6 can be swapped; finally, moving 2 results in a

perfect match.

 The paths for the edit vectors are constructed as the vectors are passed back up the
recursive chain, by noting each parent node and list position that the chain passes through. With
this, ITAP can recursively generate sets of edits between any two given ASTs.

 Once ITAP knows how to diff two ASTs, it can use this procedure to calculate the
distance between two trees (which will be useful when selecting optimal paths and goals). To do
this, it divides the weight of the changes between the two trees by the base weight of the two
trees. In this context, a tree’s weight is calculated based on the number of nodes that appear in
the tree. The base weight is simply the maximum of the two trees’ weights; it uses this as the
base because in the worst case, an edit will involve replacing one entire AST with the other.
Thus, a distance of 0 means that two trees are identical, while a distance of 1 means that they
are entirely different. When calculating the weight of the edits, ITAP adds each individual edit
weight, and calculate the weights of different types as follows:

● Change: take the maximum of the old and new value weights
● Subset: weight of the new value - weight of the old value
● Superset: weight of the old value - weight of the new value
● Add: weight of the new value
● Delete: weight of the old value
● Swap: 2
● Move: 1

31

 My goal with these weights is to emphasize how much of a change the student will need
to make. Therefore, subset and supersets only count the code that is removed or added, as do
add and delete values. Swap and Move vectors cost very little, as they only require that a
student move lines of code, rather than write new code. Note: when ITAP calculates the weight
of an AST, it is effectively counting the number of tokens that occur in it.

 Finally, a quick note on measuring the correctness of code: ITAP relies on test cases to
measure whether or not a program is correct. Therefore, certain types of problems (such as
graphics problems, or open-ended tasks) cannot be used in path construction. ITAP only allows
0.1 seconds to run test cases on any given piece of code, due to the large number of states
which need to be tested during path construction and the high rate of infinite loops. I have tested
the difference between cutting off the test cases at 0.1 seconds vs. 1 second, and found very
few cases where it changed the score.

 Now I can finally describe the actual path construction algorithm. This takes place in four
parts: choosing a goal state, optimizing that goal state, finding all valid edit combinations
between the starting state and the goal, and choosing the optimal path through those
combinations. I describe these parts in this section.

Goal State Generation
 The first two steps involve choosing and optimizing the best possible goal for a given
state. This goal will be the endpoint for the path construction algorithm, and should be as close
to the student’s intended goal as possible. Since ITAP cannot read the student’s mind, it
estimates what they’re trying to do based on data instead.

 First, ITAP compares the start state (the student’s submission in some abstracted form)
to each of the correct states it has gathered so far, to identify which state has the smallest
distance. During these distance calculations it ignores variable name differences, for reasons
described below. When two states tie on distance, it breaks the tie based on which state has
been used more often (to encourage more common and therefore more sane solutions).

 Once ITAP has found the best-matching goal state, it does function and variable
matching between the two states, to ensure that the semantic meaning of functions and
variables matches as closely as possible. To do this, it identifies all anonymized function and
variable names in the two functions, and then generates all possible pairings between
function/variable names across the two. This does not include functions/variables with names
that have not been anonymized, as these names cannot be changed. It also does not include
parameters, as they are constrained by position, and it does not allow variable matching across
functions. It applies each mapping to the goal state in turn, and identifies which version of the
goal state is closest to the starting state. An example of this process is shown in Figure 21. In
this example, the goal state has three variables where the start state has only two. By trying all
possible mappings between the two original variables and the three possible locations, the
algorithm can find that the best mapping changes the first variable in the goal state to be the

32

new one, while the second and third goal variables are mapped to the first and second state
variables. This greatly reduces the number of edits needed.

Variable Map Goal State

Start State

def all_three_chars(p0):
 for v0 in range(len(p0)):
 for v1 in range(len(p0[v0])):
 if (len(p0[v0][v1]) != 3):
 return True
 return False

Original Goal State
v0 -> v1,
v1 -> n0,
add v0 later

def all_three_chars(p0):
 v0 = 0
 for v1 in range(len(p0)):
 for n0 in range(len(p0[v1])):
 if (len(p0[v1]) != 3):
 return True
 return v0

v0 -> n0,
v1 -> v1
add v0 later

def all_three_chars(p0):
 v0 = 0
 for n0 in range(len(p0)):
 for v1 in range(len(p0[n0])):
 if (len(p0[n0]) != 3):
 return True
 return v0

v0 -> v0,
v1 -> n0,
add v1 later

def all_three_chars(p0):
 v1 = 0
 for v0 in range(len(p0)):
 for n0 in range(len(p0[v0])):
 if (len(p0[v0]) != 3):
 return True
 return v1

v0 -> n0,
v1 -> v0,
add v1 later

def all_three_chars(p0):
 v1 = 0
 for n0 in range(len(p0)):
 for v0 in range(len(p0[n0])):
 if (len(p0[n0]) != 3):
 return True
 return v1

Best Goal State
v0 -> v0,
v1 -> v1,
add n0 later

def all_three_chars(p0):
 n0 = 0
 for v0 in range(len(p0)):
 for v1 in range(len(p0[v0])):
 if (len(p0[v0]) != 3):
 return True
 return n0

v0 -> v1,
v1 -> v0,
add n0 later

def all_three_chars(p0):
 n0 = 0
 for v1 in range(len(p0)):
 for v0 in range(len(p0[v1])):
 if (len(p0[v1]) != 3):
 return True
 return n0

Figure 21: An example of how variable matching is used to identify an ideal matching for goal
states. In this case, the best goal state (shown second from the bottom) is different from the

original goal (shown second from the top).

33

 Next, ITAP seeks to optimize the goal state by trimming down the number of edits
between the start and goal state as much as it can. This focuses on only those edits which will
actually help a student improve their code, instead of showcasing every single difference.
ITAP’s main approach towards optimization is to apply every possible subset of edits to see if
any of them can generate a correct state; however, this approach is time-consuming, as it grows
exponentially. Therefore, it expedites the optimization process by attempting fast optimizations
first.

 First, ITAP checks whether any individual edit vector can correct the starting program
when applied on its own. If one or more can, it chooses the smallest edit and chooses the
correct state that it generates as its goal state. If none of the individual edits can correct the
program, it starts checking all subsets of the main set of edits that include all but one of the
edits. Here, it is effectively checking whether any single edit is not required, and can be
removed without penalty. When it finds an all-but-one set that results in a correct state, it
removes the unneeded edit, then repeats the process with the remaining edit set. This process
continues until there is no single edit which it can remove.

 Once fast-optimization has been performed, ITAP checks how many edits remain in the
edit set. If more than six exist, it abandons the optimization and path construction process, as it
will take too long to find an optimal path. This is because in the worst case, it will need to test
2^7 = 128 code states, which will take 128*0.1s = 12.8 seconds at worst. I assume that no
student wants to wait this long for an optimal hint, so instead ITAP chooses the current goal as
the optimal goal, constructs a very simple path (that goes directly from the start state to the goal
state with no intermediate stops), and ends the algorithm there. If there are less than seven
edits, it performs the real optimization process, generating all possible combinations of edits and
testing each one for correctness. If multiple correct states are found, it chooses the one which is
closest to the starting state. This gives ITAP a truly optimized goal state which may be close to
what the student is trying to do, though it is impossible to tell what a given student’s intended
solution truly is.

Next-Step Path Construction
 Once ITAP has chosen an optimized goal state, it needs to determine how the student
should progress from their current start state to that goal state. To do this, it must find all valid
edit combinations (which represent intermediate steps between the start state and the goal),
then generate a path through these steps; in other words, a path through the solution space.

 Finding all valid edit combinations is simple: ITAP generates every possible subset of
edits (which has often already been done during optimization), then checks each subset for
whether it produces a next-step state which is valid. Valid states must obey three properties:

1. A valid state must be able to parse into an AST.
2. A valid state must be closer to the goal than the starting state.
3. A valid state must perform no worse than the starting state when tested.

34

 The first requirement is almost always true (though there are a few exceptions: for
example, multi-comparisons where the number of values does not match the number of
operators). The second requirement is also almost always true, but the third varies across
states. I recognize that there may be some cases where a student must fail more test cases in
order to make progress, but unfortunately, students are unlikely to listen to hint messages which
make their performance worse. In the worst case, ITAP can always tell students to jump straight
to the goal state.

 Once it has the set of all valid combinations, ITAP needs to generate a path through the
edits. This path will effectively break up the full set of edits into subsets and put them into a
certain optimal order. To decide how they’ll be broken up and what order to put them in, ITAP
looks for the most desirable next-step state out of all possible next states in the set. I define
desirable states as having the following properties:

● Seen Before: a state that has been submitted by a student before has a better chance
of being reasonable than a state entirely concocted by an algorithm.

● Close to Current State: when possible, I want the next-step state to require a small
amount of change from the previous state

● Good Performance: I want the next state to do as well on test cases as possible, to
encourage the student by demonstrating that they’re making progress.

 When weighing these properties, ITAP currently gives double weight to closeness and
quadruple weight to having been seen before, to emphasize my priorities. However, I have not
tested this formula carefully; it is entirely possible that a different formula would result in better
intermediate states. I leave experimentation into this formula for future work.

 Once the most desirable next-step state has been identified, ITAP reduces the set of
possible combinations to include only those between the next-step state and the goal state. It
then repeats the process until, eventually, it reaches the goal; this process should always
terminate, as the set of edits to be applied is finite. This process gives ITAP a chain of edits
which can be applied, one by one, to reach the goal state.

Reification
 Once ITAP has generated a goal state and a path of edits from a starting state, it needs
to make sure that that goal and that path are properly contextualized to the student’s code. This
is especially true when the student’s code has been majorly changed during canonicalization, as
parts of it might have been moved or modified, and those parts might have ended up in the
recommended edits. Therefore, ITAP needs to undo the canonicalizations within the edits, to
make them applicable to the student’s code. I call this process reification, as it is bringing edits
from the abstract solution space to the reality of the student’s concrete code.

35

 When reifying code, ITAP needs to update the old values, new values, and paths of the
edit vectors, as these are all the components that directly relate to the code they’re applied to. In
most cases, this can be done simply by tracking global IDs. At the start of the canonicalization
process, ITAP annotates each of the nodes of the starting AST with an ID number. During
canonicalization, this ID is passed along whenever changes are made so that it always maps
back to the semantically equivalent expression in the original AST. Then, during path
construction, the old values in edit vectors are extracted from the canonicalized AST, so they
retain their global ID. This means that during reification, ITAP needs only search for the old
value’s global ID in the original AST to identify where the semantically equivalent version of the
expression occurred in the original code. This also lets it identify the reified path, as it can
calculate it based on that position.

 Of course, there are some cases where this does not work quite so easily. For example,
some edit vectors change basic values (like strings or integers), which do not retain metadata.
In these cases, ITAP can traverse the edit vector’s path backwards to find the nearest parent
node that has a global id; it can then find that parent’s equivalent in the original code, and follow
the path to find the old value. Furthermore, while this method works very well at reifying the old
values and the paths, it cannot do the same for new values, as these have been taken from the
goal states. Therefore, to make sure that the new values are sensible, it must keep track of any
canonicalizations that affect the old values, to see if changes will ever need to be made to both.

Specific Canonicalizations
 There are several canonicalizations that need to be treated specially during reification, to
ensure that edits remain sensible. To keep track of these, ITAP applies metadata to affected
AST nodes during canonicalization, which stores which canonicalizations have affected which
nodes. In this section, I describe the special reifications that have been implemented.

 First, ITAP needs to undo the anonymization of variable names in both old and new
values. This is fairly simple; when doing anonymization, it adds metadata to variable nodes that
keep track of the original name, and then in reification, it replaces the anonymized name with
the original one. The only exception is new variables that have been added from the goal state.
ITAP replaces the filler names on these with new_var_<num> (where <num> keeps track of how
many variables have been added), to make it clear to the student that a new variable is being
added.

 Next, ITAP has to identify augmented assignments that were turned into normal
assignments during simplification (x += 1 to x = x + 1). This can cause a problem in reification
when edits are made to the part of the code originally tied to the assignment; in this simple
example, that would occur if ITAP tried to change the x or + on the assignment’s right side. To
address this problem, ITAP applies the non-reified edits to its canonicalized starting point to get
the modified AST, then moves upward in both the new tree and the original tree to reach the
node where the whole assignment was performed. This allows it to change the whole statement,

36

as is shown in Figure 22. This method of moving up in the tree to reach an unchanged
statement or expression will be repeated often in the following examples.

Time Old Context New Context Edit

Pre Function:
 x = x + 1

Function:
 x = y + 1

Change x to y
[Binary Operation Left Side <- Assign Value
 <- Function Body Line 0]

Post Function:
 x += 1

Function:
 x = y + 1

Change AugAssign to Assign
[Function Body Line 0]

Figure 22: An example of augmented assignment pre- and post- reification. Since changing x to
y in the left side of the value breaks the augmented assignment, the whole assignment

statement is changed instead.

 Another special case from the simplification canonicalizations is multi-comparison
operations. When ITAP changes an expression like (a < b < c) to (a < b and b < c), it must
be careful about any edits that apply to the expression. For example, if an edit wants to add
another expression to the Boolean operation, it must create a new Boolean operation
altogether. If it wants to delete part of the Boolean operation, it can just remove the unneeded
part of the operation. Finally, if it wants to change the interior part of the multi-comparison, it
needs to break apart the multi-comparison in the edit to keep from modifying both b
expressions. Examples of all three of these operations are shown in Figure 23.

37

Edit Type Time Old Context New Context Edit

Add Pre return (a < b and
 b < c)

return (a < b and
 b < c and d)

Add d to Boolean Operation
[Boolean Operation Item 2
<- Return Value]

Post return (a < b < c) return (a < b < c
 and d)

Change (a < b < c) to (a <
b < c and d)
[Return Value]

Delete Pre return (a < b and
 b < c)

return (a < b) Remove b < c from Boolean
Operation
[Boolean Operation Item 1
<- Return Value]

Post return (a < b < c) return (a < b) Remove < c from Compare
[Comparator 2
<- Return Value]

Change Pre return (a < b and
 b < c)

return (a < b and
 d < c)

Change b to d
[Comparator 0
<- Boolean Operation Item 1
<- Return Value]

Post return (a < b < c) return (a < b and
 d < c)

Change (a < b < c) to
(a < b and d < c)
[Return Value]

Figure 23: Three examples of reification performed on multi-comparisons. Most of the change
happens in the edit, shown on the right.

 Most of the compiler optimization functions used in simplification do not need special
reification operations, as they only remove code (which therefore will not show up in edits).
However, copy propagation is an exception, as it sometimes modifies expressions that were
originally represented by variables. In that case, ITAP needs to replace the original variable
reference with the whole expression (including the changed component) that it represents. To
do this, it tags all children of the copied expression with metadata that includes the variable’s
global id. This allows it to identify the appropriate location in the original tree where the edit
should be made.

 ITAP also needs to make sure that proper reification is performed on expressions that
have been changed by the ordering constraint. This is especially true of operators, as they
might directly change the new value as well as the old. When an operator is reversed or
negated, it is given a metadata tag; if that tag is found on the old value, ITAP undoes the
reversal and/or negation, and performs the same operation on the new value, so that both
values will be reversed/negated. This ensures that operations are represented correctly. It also
needs to keep track of reordered binary expressions (as it may want to modify sub-expressions
that were not originally grouped together); for these, it moves up in the tree until it reaches an
expression with a global id (which therefore must have an equivalent match in the original tree),
and performs the operation there. Examples of these reifications are shown in Figure 24.

38

Function Time Old Context New Context Edit

Reversed Pre return (a < b) return (a <= b) Change < to <=
[Compare Op
<- Return Value]

Post return (b > a) return (b >= a) Change > to >=
[Compare Op
<- Return Value]

Negation Pre return (a == b) return (a != b) Change == to !=
[Compare Op
<- Return Value]

Post return not (a != b) return not (a == b) Change != to ==
[Compare Op
<- Unary Value
<- Return Value]

Binary
Operation

Pre return (a + b) + c return (a + d) + c Change b to d
[Binary Operation
 Right Value
<- Binary Operation
 Left Value
<- Return Value]

Post return a + (b + c) return a + (d + c) Change b to d
[Binary Operation
 Left Value
<- Binary Operation
 Right Value
<- Return Value]

Figure 24: Example reifications for three simple ordering functions: reversed operators, negated
operators, and reordered binary operations.

 ITAP also has to address Move and Swap vectors, which can get confused by the
reordering of expressions and statements. This most often happens in statement bodies and in
Boolean operations, where expressions or statements need to be moved to a different set of
items than where they’re currently located. For Boolean expressions, it can deal with this by
moving up in the tree to encompass the full modification (turning the Move vector into a Change
vector); for statement bodies, it deletes the line in its current location and adds it back at a new
position. In future work, it would be useful to extend the functionality of Move and Swap vectors
to work outside of the constraints of position in the AST.

 Finally, ITAP has to deal with the most common cause of complexity in reification:
conditionals. Conditionals undergo many potential changes during canonicalization, which leads
to many possible problems in reification. Furthermore, it cannot always use the trick of moving
up to a higher location in the tree here, as conditional modifications may cover multiple lines in a
program. Therefore, ITAP treats each canonicalization distinctly.

 First, I address conditional combining, where multiple conditionals are combined into one
(using a Boolean operation over multiple tests). This is easiest when ITAP needs to add a new

39

value to the Boolean operation, as it can just add the new value to the first conditional test, and
leave the other tests alone. Changing the combined operation is harder; in this case, it can
change the first conditional’s test to the new value, but it then needs to delete the additional
conditionals, so that they do not affect the new functionality. This may increase the number of
edit vectors it needs to include. And finally, when it needs to delete part of the Boolean
operation, it actually needs to delete all of the conditionals that were part of it originally.
Examples of these reifications are shown in Figure 25.

Edit Type Time Old Context New Context Edit

Add Pre Function:
 if (a < b or
 c < d):
 return x

Function:
 if (a < b or
 c < d or e):
 return x

Add e to Boolean Operation
[Boolean Operation Item 2
<- If Test
<- Function Body Line 0]

Post Function:
 if (a < b):
 return x
 if (c < d):
 return x

Function:
 if (a < b or e):
 return x
 if (c < d):
 return x

Change (a < b) to (a < b or e)
[If Test <- Function Body Line 0]

Delete Pre Function:
 if (a < b or
 c < d):
 return x

Function:
 if (c < d):
 return x

Remove a < b from Boolean
Operation
[Boolean Operation Item 0
<- If Test
<- Function Body Line 0]

Post Function:
 if (a < b):
 return x
 if (c < d):
 return x

Function:
 if (c < d):
 return x

Remove If statement from Function
Body
[Function Body Line 0]

Change Pre Function:
 if (a < b or
 c < d):
 return x

Function:
 if (e):
 return x

Change (a < b or c < d) to e
[If Test <- Function Body Line 0]

Post Function:
 if (a < b):
 return x
 if (c < d):
 return x

Function:
 if (e):
 return x

Change a < b to e
[If Test <- Function Body Line 0]

Remove If Statement from Function
Body
[Function Body Line 1]

Figure 25: Three examples of conditional combination reifications. The main changes can be
seen in the edits, shown on the right.

 Next, there are cases where ITAP moved redundant lines outside of conditionals. In the
case where an edit wants to delete or change the conditional that the moved line was originally
associated with, it needs to make sure that the moved line is preserved. To do this, it tags
conditionals whose lines are being moved with metadata that includes the global id of the
moved line. If it needs to remove a conditional with that metadata, it instead replaces it with the
moved line; if it needs to change it, it keeps the change vector as it is, but adds an Add vector

40

afterwards to put the moved line back in. And finally, it considers the case of conditional
collapsing, if the edit includes the test of the conditional. If that test needs to be deleted, it
changes the delete vector to instead replace the original conditional with its body, so that the
semantics are preserved. Examples of these three cases are shown in Figure 26.

Function Time Old Context New Context Edit

Redundant
Line Delete

Pre Function:
 if x:
 x += 1
 return x

Function:
 return x

Remove If Statement from
Function Body
[Function Body Line 0]

Post Function:
 if x:
 x += 1
 return x
 else:
 return x

Function:
 return x

Change If Statement to Return
Statement in Function Body
[Function Body Line 0]

Redundant
Line
Change

Pre Function:
 if x:
 x += 1
 return x

Function:
 print(“foo”)
 return x

Change If Statement to Print
Statement in Function Body
[Function Body Line 0]

Post Function:
 if x:
 x += 1
 return x
 else:
 return x

Function:
 print(“foo”)
 return x

Change If Statement to Print
Statement in Function Body
[Function Body Line 0]

Add Return Statement to
Function Body
[Function Body Line 0]

Collapsed
Conditional
Delete

Pre Function:
 (x[0] == “a”)
 return x

Function:
 return x

Remove Expression from
Function Body
[Function Body Line 0]

Post Function:
 if x[0] == “a”:
 return x
 else:
 return x

Function:
 return x

Change If Statement to Return
Statement in Function Body
[Function Body Line 0]

Figure 26: Examples of three further conditional reifications: deleting redundant lines, changing
redundant lines, and collapsing conditionals. Most of the changes occur in the edits, shown to

the right.

 Additionally, ITAP does several small optimizations during reification to ensure that the
edits will not be nonsensical and will not cause broken code. For example, if a reified edit ends
up not causing any change at all, it is removed. ITAP also attempts to simplify edits when
possible; instead of telling a student to replace (x + 1) with (x + a), it tells them to replace 1
with a. Finally, it makes sure that function, conditional, and loop bodies are never deleted to the
point of being empty (as this breaks syntax); if this is in danger of occurring, it instead replaces
the last line with a pass statement.

41

There are a few canonicalizations that I have not yet implemented reifications for, as

they occur rarely; these include function inlining and multi-assignment lines, both of which will
eventually require potentially complex reifications. Additionally, it is worth noting that there are
some cases where overzealous dead code elimination removes student code which is then
added back in during the path construction process. I attempt to address this problem during
hint generation, but a better solution might be to recognize when an expression is being added
that already exists in reification, so that the addition can be ignored completely.

Hint Generation
 Now that I have described canonicalization, path construction, and reification, they can
all be put together to implement my main goal, hint generation. I will illustrate how this process
works with a real student program, to tie the whole system together. I then evaluate the system
on its ability to generate hints and on its ability to improve in performance over time.

Example
 In this example I will use a real student submission to the problem one_to_n. In this
problem, the student is given a number n and needs to generate a string which contains the
numbers from 1 to n. The student submission, shown at the top of Figure 27, attempts to solve
this problem by generating a list of numbers and then joining them together with the .join
function; however, this submission generates a runtime error, as .join can only be called on a
list of strings, not a list of integers. A human teacher would likely suggest that the student
change those integers into strings by using l.append(str(i)) instead of l.append(i).

42

 To generate a hint automatically, ITAP tests the student program to determine whether it
is syntactically incorrect, semantically incorrect, or correct. If there is a syntax error, it uses a
separate process (described in a later section) to generate text hints. Otherwise, it parses the
code into an AST and generates AST-cleaned, anonymized, and canonicalized versions of the
code. AST-cleaning is done by transforming the AST back into text using a tree-to-text function
(which normalizes whitespace); the other functions have been described already. The AST-
cleaned, anonymized, and canonicalized versions of this example program are shown in Figure
27.

Original def one_to_n(n):
 l = []
 string = ''
 for i in range(1,n+1):
 l.append(i)

 return ''.join(l)

AST-cleaned def one_to_n(n):
 l = []
 string = ''
 for i in range(1, (n + 1)):
 l.append(i)
 return ''.join(l)

Anonymized def one_to_n(p0_one_to_n):
 v0_one_to_n = []
 string = ''
 for v1_one_to_n in range(1, (p0_one_to_n + 1)):
 v0_one_to_n.append(v1_one_to_n)
 return ''.join(v0_one_to_n)

Canonicalized def one_to_n(p0_one_to_n):
 v0_one_to_n = []
 for v1_one_to_n in range(1, (p0_one_to_n + 1)):
 v0_one_to_n.append(v1_one_to_n)
 return ''.join(v0_one_to_n)

Figure 27: The different versions of the example program, which currently causes a runtime
error when it attempts to join numbers together in a string. Note how each version provides

some new form of normalization.

43

 If the program is correct, ITAP simply adds these states to the solution space and then
returns a statement telling the student they’re already correct. Otherwise, it has to determine
what steps they should take next. To do this, it applies path construction to both the anonymized
and canonicalized versions of the code. It checks both formats because in some cases the
closest solution will be near the anonymized code, while in others it may be near the
canonicalized version. The goals chosen from the problem’s solution space for this example’s
anonymized and canonicalized versions are shown in Figure 28.

Anonymized Goal def one_to_n(p0_one_to_n):
 v0_one_to_n = []
 v1_one_to_n = ''
 for v0_one_to_n in range(1, (p0_one_to_n + 1)):
 v1_one_to_n += str(v0_one_to_n)
 return v1_one_to_n

Anonymized Edit 'string' - 'v1_one_to_n' :
[Variable ID <- Assign target <- Function body line 1]

'v1_one_to_n' - 'v0_one_to_n' :
[Variable ID <- For loop target <- Function body line 2]

v0_one_to_n.append(v1_one_to_n) –
v1_one_to_n += str(v0_one_to_n) :
[For loop body line 0 <- Function body line 2]

''.join(v0_one_to_n) - v1_one_to_n :
[Return value <- Function body line 3]

Canonicalized Goal def one_to_n(p0_one_to_n):
 v0_one_to_n = []
 for v1_one_to_n in range(1, (p0_one_to_n + 1)):
 v0_one_to_n += str(v1_one_to_n)
 return ''.join(v0_one_to_n)

Canonicalized Edit v0_one_to_n.append(v1_one_to_n) –
v0_one_to_n += str(v1_one_to_n) :
[For loop body line 0 <- Function body line 1]

Figure 28: The goals and edit paths chosen for the example’s code states. Note that they are
very different, due to string = ‘’ being removed in the canonicalized version.

44

 Once ITAP has this information, it compares the distances (calculated based on the
edits) from the anonymized state to its goal and the canonicalized state to its goal. It chooses
the shorter of the two paths as its best path, then applies reification to the edits in that path. In
some rare cases, this leads to a dead end (usually due to odd canonicalization cases); if this
happens, it repeats the process with the alternative solution path. Figure 29 shows the reified
version of the goal and edits.

def one_to_n(n):
 l = []
 string = ''
 for i in range(1, (n + 1)):
 l += str(i)
 return ''.join(l)

l.append(i) - l += str(i)
 : [For loop body line 0 <- Function body line
2]

Figure 29: The chosen goal and edits post-reification. These edits can now be directly applied to
the starting state.

Hint Representation
 Of course, ITAP can’t show the student the hints just by displaying the edit vectors;
instead, it has to transform them into textual messages that the student can read. The system
does this by mapping the edit vectors onto hint templates which use the components of the
vector to give the student information. The basic template for a bottom-out hint is:

[Location info] + [action verb 1] + [old value] + [action verb 2] + [new value] + [context].

 In this template, location information and context come from the path, the action verbs
come from the vector type, and the old and new values come from the old and new values of
the vector. The hint provided for the example problem is shown in Figure 30.

On line 5 in column 8, replace l.append(i) with l += str(i) in the for loop body.

Figure 30: The hint generated based on the post-reification edits. This is what ITAP can show to
the student.

 It is worth noting that the hint template has changed throughout ITAP’s development.
Early versions of ITAP attempted to provide minimal next-step information to users (as some
research suggests that having students engage with smaller solution steps leads to more
learning (Roll et al, 2014)). However, based on reactions from users and some findings on how
students learn from hints, later versions greatly expanded the amount of content shown. Though
the current version of ITAP does not apply most of the original reduction methods, I describe
them here to give historical context for previous studies.

45

Early versions of ITAP reduced the amount of information provided to students by
tokenizing the new value of the hint data so that only one new token was provided to students at
the time. This was done in an effort to model the next-step hints generated by intelligent tutoring
systems, which would target exactly one step of the problem. To tokenize an expression, ITAP
would identify the highest node in the new value AST (the node to keep) and would then replace
the child nodes of the AST with filler strings. These filler strings originally took the form of
‘[stuff]’ and ‘[more stuff]’, using a range of string contents in square brackets. In the
usability study, these were modified to contain contextual information about the AST; instead of
telling a student to change a value to ‘[stuff]’ + ‘[more stuff]’, ITAP would tell them to
change the value to ‘~left side~’ + ‘~right side~’. Finally, in the final learning evaluation,
this code obfuscation was replaced with full hint content (e.g., sum + count). Reasoning for
these changes is included in later chapters.

Hint provision was also affected by the number of hints available to students. In the first
pilot study, I sought to replicate the traditional next-step hints provided in intelligent tutoring
systems by providing three levels of hints: point, teach, and bottom-out (VanLehn, 2006). The
point hint only told students where the error occurred, the teach hint showed which type of edit
needed to be made, and the bottom-out hint showed the new value to be used. An example of
these three levels is shown in Figure 31. Students could unlock the more detailed levels of hints
by clicking the hint button again if the first hint did not help enough.

In line 2 consider 'powerlevel' in the left side of the comparison

In line 2 replace 'powerlevel' with something in the left side of the comparison

In line 2 replace 'powerlevel' with 'powerLevel' in the left side of the comparison

Figure 31: Point, teach, and bottom-out hints generated by the pilot version of ITAP.

 Students in the pilot study seemed to find the first and third hint levels useful, but
generally skipped past the second level. Therefore, in the first and second classroom studies,
ITAP provided only two levels of hints (with and without the new value), as is shown in Figure
32. I also added statements prompting students to ask for hints again if they needed help, as
this was not clear to students originally.

In line 2 change x to something in the left side of the binary operation.
If you're still stuck, ask for the next level of hint!

In line 2 change x to (x % '[all the stuff]') in the left side of the binary
operation

Figure 32: Point and bottom-out hints generated by initial classroom versions of ITAP.

Further feedback from those studies showed that the combination of tokenization and
the point-only hints made hints too abstract; therefore, starting with the usability study, ITAP
provided only bottom-out hints (as was shown in Figure 30 above). This is the current hint

46

format used by ITAP, though that format may change in the future based on findings from the
usability study.

Generating Syntax Hints
 The text above describes how to give hints for semantically incorrect programs, but it
cannot be used to give hints for programs with syntax errors. This is a major flaw, as the newest
students most in need of help are more likely to make syntactic errors in the first place.
However, ITAP can still run a simplified version of the path construction algorithm on the text of
the program to identify text edits that can help a program parse.

 In syntax path construction, the goal is not to transform an AST into a version that
passes all test cases; instead, ITAP aims to transform the code text into a version that can be
parsed. Therefore, in this process, the ‘goal states’ are any states that can parse, and programs
are compared via text diffing instead of AST diffing. ITAP computes these comparisons with the
Python difflib, which gives it characters that need to be added, removed, or left alone. These
characters can be combined into substrings to provide Addition and Deletion edits. ITAP also
treats whitespace edits specially (as Indent and Deindent edits), since students have difficulty
reading the number of spaces or tabs in a string, so it is easier to report the number of
spaces/tabs needed to be added or deleted instead.

 The algorithm compares the non-parsing code sample with every code sample that has
been seen before. For each state, it then tries all possible subset combinations of edits to see if
there is a more minimal approach towards fixing the program. This runs the risk of taking an
astronomically long time, so ITAP optimizes by cutting off the search at the length of the best
(shortest) edit seen so far. Examples of syntax hints generated by this algorithm are shown in
Figure 33.

To help your code parse, make this change: On line 1 in column 35, add
" return False"

To help your code parse, make this change: On line 3 in column 30, replace "of"
with "=="

Figure 33: Two syntax hints generated by ITAP. The first tells a student to add code to an empty
block; the second suggests that a non-valid token should be replaced with a valid one.

 There are obvious flaws with this approach: the more different a student program is from
others seen before, the more nonsensical the suggested edits are likely to be. However, I am
working with others on smarter approaches towards generating syntax hints that rely on partial
parse trees instead of text (Mudgal, 2016); these approaches are very promising (Sykes &
Franek, 2004), and will likely be able to provide syntax hints in most cases. Text-path
construction can be saved as a fallback, for when these better approaches do not work.

47

Evaluation of Hint Chaining
 To test the success of ITAP, I want to determine whether it succeeded at the main goal:
generating hints that could be followed to produce a correct state. For the technical evaluation I
test this literally, by checking whether the reified edits can be directly applied to student code to
produce working solutions. Assuming that students can translate from hint messages to edits,
this should be the direct equivalent of a student using hints to turn their problem into a worked
example, by constantly following bottom-out hints until they reach the correct solution. I call this
process hint-chaining, as it involves generating hints, applying them to the code, and repeating
until the correct solution is reached.

 For this evaluation, I again use the set of 41 problems mentioned in the previous section.
I perform hint-chaining on all (syntactically or semantically) incorrect states in the dataset in the
order that the states were originally submitted, building the solution space over time and
measuring the algorithm’s performance on two success conditions. First: how often does hint-
chaining eventually lead to a correct state? And second: how long does it take for this process
to be performed? The first question tests feasibility, while the second tests reasonable use;
students are not likely to use hints if they take too long to generate.

 I tested 11,051 incorrect states across the 41 problems for this evaluation, and found
that all but one followed the hint chain to correct completion. The one state which did not reach
a correct state was plagued by a hint-application loop where it would add a new variable
assignment, which would then be removed in canonicalization (as it would not semantically
impact the rest of the function). Since this edge case is vanishingly rare, I leave fixing it for
future work.

 To test how long hint generation took, I timed the hint-chaining process for each state,
from start to completion. The distribution of resulting times is shown in Figure 34. Note that this
figure only shows times for incorrect states; correct states finish in less than five seconds 97.5%
of the time, as should be expected. On the other hand, only 77.7% of incorrect states finish in
less than five seconds, and 9.4% take more than 10 seconds to finish. This is problematic, as
students are not likely to rely on hints if they take too long to generate, even if the delays only
happen occasionally.

48

Figure 34: A histogram showing hint-chaining times for incorrect states. 10 states which take

longer than 60 seconds are not included.

 However, this time analysis was run on full hint-chains, not on individual hint requests
(which students actually use). Rerunning the analysis while timing only the first request for a hint
reveals the time distribution shown in Figure 35. Now, 94.2% of the states are completed in 5
seconds or less, and only 1.1% of the states take longer than 10 seconds. As this is the
interaction students will actually see, this is much more acceptable for normal use.

49

Figure 35: A histogram showing hint generation times for incorrect states. 3 states which take

longer than 60 seconds are not included.

 But this still leaves one important question: why do some states take so long to perform
hint generation? One hypothesis is that this has to do with the complexity of the problem; the
more complex a problem is, the longer it may take to generate hints. I represent complexity
based on the number of tokens in the teacher’s solution to the problem, and find that time for
hint generation is, indeed, correlated with complexity (r = 0.24 for hint-chaining, r = 0.08 for
regular hint generation, p < 0.001 for both). Altogether, one can expect faster hint generation on
simpler programs than more complex ones.

Evaluation of Self-Improvement
In addition to seeing whether ITAP worked at a basic level, I also wanted to examine

how ITAP’s behavior changed over time as new data was added. Specifically, I want to see
whether the hints generated by ITAP truly improve over time as more data is added, and if the
hints improve, is there a cutoff point at which more data is not needed? In order to answer this
question, I ran a series of technical simulations to measure whether ITAP’s performance
improved as data was added. These simulations were meant to mimic the cold-start evaluation
performed in (Barnes & Stamper, 2008), but by measuring optimization of hints instead of
existence of hints.

Previous work has been done with the goal of building self-improving tutoring systems.

One of the first approaches attempted to modify instructional approaches experimentally, to
some effect (O’Shea, 1978). Other approaches focused on modifying strategies based on
student interactions (Dillenbourg, 1989; Soh & Blank, 2008). Still more work has sought to

50

automatically improve or create ITSs based on data-driven methods (Koedinger et al, 2013). I
am primarily interested in improving hint effectiveness, and will focus on that aspect instead in
my evaluation.

To run this simulation, I drew on the same dataset used in the previous technical

evaluations; 41 problems with at least 100 states each. I decided to measure the quality of hints
based on the number of tokens included in the edit between the student’s starting state and the
goal state, as smaller edits are more desirable. First, I generated token edit weights for the
baseline and optimal versions of the solution space, to know what the worst and best case
scenarios were for each state. In the baseline case, hints are generated for each state with a
solution space that consists only of the starter goal state provided by the teacher. In the optimal
case, a full solution space based on all data provided by students is generated, then a new hint
is generated for each state (resetting the solution space each time). In practice, the hints
generated at the baseline are what the very first student using an ITAP tutor would encounter,
while the optimal hints would be received by the very last student.

To measure change in hints over time, I ran 20 randomized iterations of solution spaces

for each problem, where the order of states was randomized (apart from the starter goal state),
then built up a solution space by adding one state at a time. For each state I tracked both how
many total states and correct states came before it, as goal states may have a stronger effect
than incorrect states on future hints, since incorrect states only impact the choice of edit
ordering during path construction. Then I recentered and scaled the edit weights for each state
by mapping the range of possible weights for the state (with baseline as max and optimal as
min) to the 1-0 range, by calculating (weight - optimal_weight) / (baseline_weight -
optimal_weight). This reweighting provides a min-to-max view of how much improvement has
been seen for this state, with 0 being optimal. States that do not improve from baseline to
optimal (and the few states which have worse performance from baseline to optimal) are
excluded, as are goal states (since they do not have edits).

On average across the 41 problems, 56.69% of the states saw normal improvement

from baseline to optimal, 39.75% saw no improvement (baseline = optimal), and 3.56% had a
baseline score better than optimal (negative improvement). In the twenty random iterations,
among the normal-improvement states, 92.60% also saw normal improvement, while 95.49% of
the no-improvement states saw no improvement. In other words, this methodology is not perfect
(as some states do not fit in the 0-1 measure), but the measurements do make sense for over
90% of cases.

I found that the correlation between the number of states which had been seen before

and the adjusted number of edits varied from problem to problem, with a correlation of -0.05 in
the worst case (the problem reduce_to_positive) and -0.48 in the best case (the problem
first_and_last). The average correlation was -0.24. Surprisingly, the average correlation for
number of correct states seen before was no different, as it was within 0.02 points of the
correlation for the number of states for each problem. Altogether, there does seem to be an
effect of additional data on hint generation, where more states lead to fewer token edits

51

required. This effect is demonstrated in Figure 36, which shows the solution space improvement
for how_many_egg_cartons, an average problem.

Figure 36: Solution space improvement for how_many_egg_cartons, an average problem in the
dataset. 44 outliers (points with adjusted edits less than 0 or greater than 1) have been removed
for clarity, with 424 points remaining. As the number of states increases, the number of adjusted
edits does too, though the effect levels off after a while. A loess smoothed trendline is included.

 Next, I determine whether there is a cutoff point after which I can say the solution space
has stopped improving. I check two cutoff points: a soft cutoff (when 50% of the states have
reached an adjusted edit of 0), and a hard cutoff (when 90% of the states have reached an
adjusted edit of 0). The soft cutoff indicates when the system is optimal more often than not; the
hard cutoff indicates when the solution space has reached reasonable optimality.

 In the analysis, I found starkly different results for different problems. 19 of the problems
reached the soft cutoff immediately (within the first ten states); they started with a fairly optimal
solution space already. In contrast, 9 problems did not reach the soft cutoff until seeing at least
half of the states, 8 did not reach it until seeing 90% of the states, and 5 did not reach that point
at all. The hard cutoff also gave varying results; 7 problems reached the hard cutoff at once, 9
reached it within 90% of the states, and 25 did not reach it at all. The soft and hard cutoffs did
not always match up; an example of several problems with varied cutoffs is shown in Figure 37.

52

Figure 37: Solution space improvement figures for multiple problems, with lines delinieating the
50% and 90% cutoff points. Upper left: a problem with immediate soft and hard cutoffs. Upper
right: a problem with an immediate soft cutoff and a hard cutoff after 111 states (68%). Middle

left: a problem with an immediate soft cutoff but no point at which a hard cutoff is reached.
Middle right: a problem with a soft cutoff at 27 states (8%) and a hard cutoff at 193 states (61%).
Lower left: a problem with a soft cutoff at 69 states (26%) but no point at which a hard cutoff is

reached. Lower right: a problem where there is no point at which the soft cutoff is reached.

53

It is possible that the variation in optimality cutoffs is due to the size of the solution space
for the problem, or the complexity of the problem. To determine if this was the case, I checked
whether the number of states needed to reach the 50% and 90% cutoff points was correlated
with the problem’s solution space size or token complexity. I found that the solution space size
was strongly correlated (r = 0.50 for 50% cutoff and r = 0.77 for 90% cutoff); in other words,
gathering more data leads to more possible routes in the solution space. There is a similarly
strong correlation between the number of unique correct solutions (at the canonicalized level)
and the cutoff points (r = 0.44 for the 50% cutoff and r = 0.51 for the 90% cutoff), so some of this
might be due to new solutions being discovered over time. The problem token complexity was
also moderately correlated (r = 0.40 for 50% cutoff and r = 0.30 for 90% cutoff), so longer or
more complex problems require more data to fully explore the solution space.

Both of these results imply that solution space improvement will vary widely between

different problems, and likely across different datasets and different populations; however, I can
still say that these improvement cutoffs do exist, and can be identified in individual problems.
This supports the idea that ITAP actually is acting as a self-improving tutoring system. This does
not necessarily mean that ITAP-generated hints grow to resemble the hints that human tutors
would provide; to measure that, I will need to run studies in the future comparing human-
generated hints to ITAP-generated hints. I leave this for future work for now.

54

3. Identifying Student Help-Seeking in Programming
Problems
 Technical evaluations can go far in describing the capabilities and limits of ITAP, but
they cannot demonstrate whether the generated hints will affect student behavior and/or
learning. To measure learning, I must test ITAP with real programming students to see how it
affects their learning and to get feedback from these students on where the system works well
and where it can be improved. Towards this end, I ran a small pilot study and two wider-scale
classroom studies with the primary goal of identifying how students view practice, help-seeking,
and problem-solving in the context of programming education. In this chapter I discuss these
three studies and their results.

 First, I briefly report on related work into student help-seeking behaviors during learning.
In a general review of help-seeking studies, it was reported that student help use is influenced
by student characteristics and is often flawed, but that on-demand help can lead to better
learning (Aleven et al, 2003). Student use of more detailed help seems to be associated with
shallower learning (Mathews & Mitrovic, 2008), though requesting help on more challenging
steps is associated with more productive learning (Roll et al, 2014). Improper help use in ITSs is
often represented as help abuse (asking for help without putting forth effort) and help avoidance
(refusing to use help sources at all) (Aleven et al, 2016), and can lead to worse learning in some
cases. Less investigation has been done into the specific help sources used by introductory
programming students, though some studies have reported that students ask different questions
in lecture vs. on email newsletters (Postner & Stevens, 2005), and deeper analysis into student
questions during office hours shows that they can often be repetitive (Heiner, 2008).

Online IDE Implementation
To make the ITAP generated hints available to students, I needed to insert ITAP into an

integrated development environment (IDE) that students could use while solving problems.
Online IDEs typically manage test cases, scoring, and the code editor/syntax highlighting.
Having a system that already supports these necessary features makes it easier to run studies,
as less development needs to be done.

For the following three studies, I used the online IDE Cloudcoder (Papancea, Spacco, &
Hovemeyer, 2013) to present practice problems to students. I chose Cloudcoder because it
allowed teacher tracking of student accounts (which would let me review participant activity),
and because it is open-source, which meant that I could easily create an edited version of the
IDE that supported hint generation. After a student has logged in, Cloudcoder shows them a list
of problems that have been released in their class (see Figure 38); clicking on the problem
leads them to the editor, where they can write code and click ‘Submit’ to test their program (see
Figure 39). I modified this system to also include buttons, which, when pressed, would send a
hint request to the ITAP system running on a separate server via a PHP request.

55

Figure 38: Cloudcoder’s problem selection page. Cloudcoder serves as the ‘outer loop’ of the

tutoring system, where students choose which problem to solve.

Figure 39: Cloudcoder’s problem solving page. Here, students can write code in the editor and

get test case results by pressing ‘Feedback’. In this case, pressing ‘Feedback’ also provides the
student with a hint.

56

 For each study, I developed a set of practice problems that students would solve. These
problems varied across the studies, as I refined the content each semester based on student
feedback from the previous semesters. However, some of the problems were reused across
multiple semesters. In all cases, problems were designed to be well-aligned with the content
being taught in the associated class, so that students would achieve optimal benefit from
completing the problems.

Pilot Study
First, in January 2015, I ran a pilot study in order to observe how students solved

programming problems, either with or without hints. I originally intended to use this study as an
experiment to measure the effects of hints on learning and performance in solving programming
problems; however, low participant turnout made it impossible to measure any effects.
Therefore, I instead used this study as an opportunity to gather qualitative information on
student interaction with programming problems.

Research Questions
 The original research question of this study was: does having access to ITAP-generated
hints effect student learning or time-on-task during practice? However, I also wanted to answer
a more qualitative question: how do real students seek help during practice, and how would they
use ITAP-generated hints?

Methods
 For this study, I had participants come to the lab for an hour to work on programming
practice problems online while I observed, followed by a brief optional interview about their help-
seeking practices. The programming activity consisted of 15 problems: four pretest problems,
seven practice problems, and four posttest problems (shown in Figure 40). These problems are
included in Appendix 1. The study was designed to last one hour, with participants spending up
to 15 minutes on the pretest, up to 30 minutes on the practice, and up to 15 minutes on the
posttest (with students progressing to the next set if they completed all of a section’s problems
before time ran out).

57

Figure 40: The pilot study interface, as seen by students.

At the start of the study, participants were randomly assigned to either the Control or

Hint condition, where the Hint condition had a hint button on the seven practice problems, while
the Control condition only had the normal Submit button. Students were also assigned to
different orderings of two different tests in order to counterbalance the questions, which led to
four distinct groups: Control-Test 1-First, Hint-Test 1-First, Control-Test 2-First, and Hint-Test 2-
First.

After each participant had finished the practice problems, I asked them if they would be

willing to do a short interview about their programming problem-solving process. This interview
consisted of the following questions:

1. Is there any problem-solving that you do before you start coding? Please describe it.
2. Have you been stuck on a programming problem while coding before? If so, what have

you done to get help?
3. Which of the problems that you worked on today do you think was the most difficult for

you? Why?
4. [If they were able to ask for hints]: Were the hints you received helpful? Why or why not?
5. [If they were able to ask for hints]: Was there ever a time that a hint you received didn't

align with your idea of the solution? Was this helpful or unhelpful?
6. Do you have any other thoughts you'd like to share?

 Participants were recruited from one of the introductory computer science courses at
Carnegie Mellon, 15-112, via an announcement during class lecture in the first week of classes

58

and an email sent to the course’s dlist. Students were told that the study was optional and would
not directly affect their course grade, and that participants would be entered into a raffle, where
two participants would win $20 Amazon gift cards.

 Altogether, fifteen students (out of around four hundred) volunteered to participate in the
study during the first week of the semester. After this point, the students had advanced far
enough in the material that the practice problems were no longer a challenge, so no more
students could be recruited. These students attempted 13.47/15 problems on average, and
solved 10.93/15 on average, with a total of 202 attempts.

Results
 First, I examined how students used hints. The 8/15 students in the hint condition had
access to hints during the practice problems, and all requested at least one hint. In total, these
students requested 46 hints, 21 of which were unique (as some students requested the same
hint multiple times), requesting 5.75 hints on average. I found no correlation between the
number of hints a student requested and the time they spent on the practice (possibly because
time was controlled) or the number of incorrect submissions they made, but I did find a strong
negative correlation between the number of unique hints requested and the number of problems
a student solved at pretest (r = -0.56). In other words, weaker students were more likely to ask
for hints.

Next, I checked the performance of students in the two conditions to see if any
differences could be noted between the two despite the small sample size. The results are
shown in Figure 41. According to a repeated measures ANOVA there was only a marginal effect
of test time F(1, 13) = 4.03, p < 0.1, and no significant effect of condition F(1, 13) = 1.36, p > 0.1
nor the interaction of condition and test time F(1, 13) = 0.81, p > 0.1. This lack of condition effect
is potentially caused by students being at mastery already at the pretest; 9/15 of the students
completed all four pretest problems within the given time limit. Therefore, I chose to focus on the
qualitative analysis instead.

59

Figure 41: Learning between conditions in the pilot study. There was no significant difference

between the two conditions, potentially because the students started at a high level of
performance.

 Looking at the results of the students reveals three main groups of students: those who
have already mastered the material (the six who got all fifteen problems right), those who are
successfully learning (the six who got at least five problems right across the activity), and those
who are failing to learn (the three who got fewer than five problems right across the activity). In
reviewing the activities of these students, there might be indicators for why they perform so
differently.

Qualitative Analysis by Performance
 First, I analyze the students who had already mastered the material, despite only having
been in class for a week. All six of these students completed all fifteen problems within the time
limit, and several of them finished with extra time to spare. Four of the six students reported
having taken a programming class previously, so it is not particularly surprising that they found
the first week’s material easy. Most of the students used online resources (like StackOverflow
and testing code with repl.it) to find information they didn’t already know. They would sometimes
encounter bugs (usually related to edge cases), but they could fix them quickly after looking at
compiler messages and test case results.

 These students also used concrete strategies when approaching each problem. One
student reported in the interview that he would read through the problem and try to match the
text to the code; another reported that she ‘bolded parts of the prompt in her head’, to identify
requirements. One student said he looked at the parameters and variables to see what he’d

60

need for the end. Altogether, it seemed as if these students used more purposeful strategies
when designing solutions for the problems.

 Next, I analyze the students who were successfully learning the material. Of the six
students, three got perfect scores on pretest and posttest but could not complete all practice
problems, while the remaining three either improved or remained static in problem completion
from pretest to posttest. Two of the six students had taken a programming class before.

First, looking at the three students who achieved perfect pretest scores shows that they
all mainly struggled with the string problems, which were universally difficult for participants
since they had not yet learned about strings in class. These problems all required string
comparison, which most participants did not know was built into Python. The three students who
did not complete the string problems all got stuck developing different (incorrect) algorithms,
which led them down unproductive paths. These three students did not report having clear
strategies for problem solving in the interview, which might tie into why they had more trouble
with strings.

Next, there are three students who struggled with more than just the string problems. All

three of these students appeared to have difficulty debugging syntactic and algorithmic errors in
their programs; they would make the same mistakes multiple times, and would not immediately
understand why their program was wrong. However, they each eventually learned from their
mistakes.

One student commonly used continent == “Australia” or “Antarctica” in early

versions of his code, instead of continent == “Australia” or continent == “Antarctica”, but
by the posttest, he was able to identify and fix this kind of bug rapidly. Another student
commonly used = instead of == in early programs, but she was able to identify and fix this bug
by the time she reached the posttest as well. The final student originally used “True” and
“False” instead of True and False, but once he realized that the values were built-in, he was
able to solve the remaining problems successfully.

Altogether, these students seemed the best representatives of the learning process: they

were not masters at the beginning, but they improved over time. When asked about problem-
solving strategies in the interview, one student mentioned that he tended to use a lot of
functions, while another student mentioned how she tried to think of multiple cases; in general,
their plans did not seem as abstracted as the plans of the more successful students.

 Finally, I analyze the students who were still struggling at the end. Two of these three
students only solved three problems, while the remaining student only solved two. All of these
students attempted far more problems than they were able to solve, often skipping to another
problem when they couldn’t solve their current problem. None of the students had taken a
programming class before, though two of them had previous experience with different
languages.

61

 All three of these students struggled greatly with syntax errors throughout the practice
session. Some of them were clearly familiar with sophisticated programming concepts (as they
attempted to use if statements), but they did not know how to use those concepts in Python.
These students spent a great deal of time reading resources online (such as the Python API,
StackOverflow, and the course notes), but they were still unable to successfully complete most
of the problems (as they would often abandon a problem after it became clear that they could
not complete it).

Qualitative Analysis of Hint Use
 Outside of these three groups, I can also look at the interactions between students and
hints. This analysis led to a few common observations. First, there were several occasions
where students asked for hints and got hints that were not particularly helpful, either due to
being too vague or due to the hint referencing a part of the code that was not relevant to the
problem. Second, reactions to hints that actually were accurate were varied. One student
understood the hint immediately and fixed their code accordingly, while another was confused
by a hint that clearly stated what needed to be changed. Therefore, having accurate content
does not necessarily imply that a hint will make sense to a student; context matters as well.
Also, students rarely got much out of the second-level hint; most students wanted to get to the
bottom-out hint (which would tell them what to do).

 These are all unfortunate observations for the hint system at that time, but they do not
necessarily imply that the system is useless. Two of the eight students who had access to the
hint button attempted to use it during the posttest (when it was not available), and were
disappointed to discover it was not there. Additionally, two of the three students in the third
group tried to use the hint button when having syntax problems; however, syntax hints were not
available at the time.

Discussion
 Overall, though I was unable to distinguish learning effects from this pilot study, I made
several valuable observations. First, it is important for students to have access to both semantic
and syntactic assistance, as different students struggled with these two types of errors. In
particular, the students who learned the least were those who struggled with syntax, so it is
essential to provide assistance in that area. Second, students already make use of many
different help sources when trying to solve a problem, and many of those sources (such as
StackOverflow and the Python API) are used to find examples of working code. Therefore,
providing targeted example code may be beneficial for student learning. This theme was
explored in more depth in work described in further chapters. Finally, it is important that the
hints provided to students are well-targeted and suited to the context, as confusing hints lead to
befuddled students.

62

Classroom Study 0: How Do Hints Affect Learning?
 After conducting the pilot study and updating ITAP based on the observations made
(including adding syntax hints as a feature), I ran a large-scale classroom study in Fall 2015 to
evaluate the impact of hints in a more authentic learning environment. The goal of this study
was to measure the effect of hints on learning by having students work on optional practice
problems during the course, in the ordinary environments where they would work on
assignments.

Research Questions
 In this study, my main research question centered around the effect of hints on learning.
Specifically, I aimed to see whether having access to hints during practice improved student
learning in course assignments or quizzes.

Methods
 For this experiment, I studied students enrolled in 15-112, one of the introductory
programming courses at Carnegie Mellon, as participants. Students were given login credentials
to Cloudcoder, where they could complete practice programming problems if they chose to
participate. New problems were released each week for six weeks to match the material being
taught in class, with 45 problems released altogether (problems are included in Appendix 1). I
gathered log data on student interactions with the website, as well as data from the class on
student performance on quizzes and assignments.

 At the start of the study, all students were randomly assigned to either the hints-first or
hints-second condition, where students in the hints-first condition had access to the Hint button
in weeks 1-3, while students in the hints-second condition had access to the Hint button in
weeks 4-6. All students had access to the Hint button during weeks 7+.

 15-112 students were all opted into the study at the beginning of the semester (though
students could opt-out of data collection by logging into Cloudcoder and making the request
there), but use of Cloudcoder was entirely voluntary and did not directly impact students’
grades. Students were made aware of the study via an announcement during the first week of
classes and via emails sent with login information. Of the 419 students in the class, 99 logged
into Cloudcoder at some point during the semester, and 63 started at least one programming
problem. Nine of the logged-in students (including five who started at least one programming
problem) requested that I not use their data for research purposes, so they are not included in
this analysis, resulting in 90 students who logged in and 58 who started at least one
programming problem. 17 of these students requested at least one hint, and this subset of
students requested 112 hints total (6.58 hints per student on average).

 In this and all following studies, I run regression analyses on varying sets of factors. In
all regression results reported, I use step regression to search through the set of possible factor

63

configurations to identify the optimal set of factors according to AIC. I report on all of those
chosen factors, regardless of whether they are significant or not.

Learning Metrics
 To measure learning, I had to select appropriate learning events from the semester.
Quizzes and assignments both happened weekly, but the first two assignment scores were both
near the maximum possible grade (mean = 95.9/100 and 98.4/100), which makes it difficult to
measure pretest differences between students. The first two quiz scores offered more variance
(mean = 84.9/100 and 90.9/100), making them better indicators for starting ability, so I use the
quiz scores to estimate learning over time.

 Observing how students used the hint system during the semester made it clear that by
far the most practice was done within the first two weeks of the semester, when the system was
still new. 47 of the 58 students I analyze here opened a problem within the first three weeks,
while only 9 students opened a problem in the following three weeks (when the hints-second
condition had hints available). Therefore, I focus this analysis on the first three weeks of the
semester, where there is enough student interaction to achieve some power for analysis. During
this time period, there were four quizzes I can use to measure learning. Quiz 1 occurred before
the practice system was released to students, and Quiz 4 occurred directly after the conditions
switched (when usage was very low), so I use these quizzes as pretest and posttest.

Results
 Since so many students chose not to use Cloudcoder, I can compare several different
subsets of students. In this analysis, I focus primarily on a few different groups. First, I look at
intention to practice: students who did not choose to use the practice system, students who
intended to use the practice system (by logging into Cloudcoder), and students who actually
used the practice system (by writing code for at least one problem). Second, I look at the effect
of hints: students who practiced and were in the hints-first condition vs. students who practiced
and were in the hints-second condition, including information on whether or not these students
actually used hints.

Analysis of Hint Conditions
 First, I answer my initial research question: did having access to hints improve students’
learning over time? The pretest and posttest are not balanced (as they are testing different
content entirely), but they can still show how different subsets of students differ in performance
when compared to each other. Removing students who did not take both Quiz 1 and Quiz 4
leaves 373 students who scored an average of 85.78/100 on Quiz 1 and an average of
79.57/100 on Quiz 4. According to a repeated measures ANOVA, there is no significant effect of
condition F(1,371) = 0.86, p > 0.1 nor interaction between test time and condition F(1,371) =
0.02, p > 0.1, which is not surprising, as a majority of the students chose not to use Cloudcoder
and therefore would not be impacted by the hints.

64

Investigating only those students who attempted at least one problem in Cloudcoder
leaves only 35 students across both conditions (14 in hints-first, 21 in hints-second), but the
numbers here are trending in a positive direction; students in the hints-first condition did not see
a decrease in scores going from Quiz 1 to Quiz 4 while students in the hints-second condition
saw the same decrease as the normal population. This difference is shown in Figure 42. A
repeated measures ANOVA showed no significant effect of condition F(1,33) = 0.18, p > 0.1 nor
interaction between test time and condition F(1,33) = 1.91, p > 0.1, potentially due to the small
sample size. Digging further into the data, I investigate whether this effect may be due to the
students in that population who actually chose to use hints. Half of the population (seven
students) requested a hint at least once, and indeed, those students saw a positive learning
trend (79 to 80.1) whereas the students who did not request hints saw a negative trend (84.1 to
81.8). Again, according to a repeated measures ANOVA, there is no significant effect for
condition F(1,12) = 0.45, p > 0.1, nor interaction between condition and test time F(1,12) = 0.25,
p > 0.1.

Figure 42: Performance on pre- and post-tests for students who attempted problems in

Cloudcoder across conditions. Though students who had access to hints seem to be doing
better, the effect is not significant.

 I also investigated whether the different conditions affected other elements of students’
performance. For this analysis, I narrowed the data set to only include students who started at
least one problem (opening it in Cloudcoder), as students did not know what condition they were
in until that point, and therefore their performance should not have been affected until then. 43
students met this criterion. Note that this number is greater than the number of students who
attempted problems, because eight students opened at least one problem but never clicked the
‘Submit’ button to check their code. Surprisingly, the majority of the students who started but

65

submitted no code were in the hints-first condition (see Table 3). In fact, the difference in
problem dropout between conditions is significant based on a Fisher Exact Test (p < 0.05).
Further investigation into these students showed that three of the seven students in the hints-
first condition who made no attempts actually requested hints before exiting the system, though
none of them spent more than a minute in the interface.

 Attempted Problem Dropped Problem Total

Hints-first 14 7 21

Hints-second 21 1 22

Total 35 8 43

Table 3: Students who, upon opening a problem in Cloudcoder, either chose to write code
(attempt the problem) or not attempt it at all. Significantly more students in hints-first did not

attempt problems than in hints-second (p < 0.05).

 I also investigated whether the hint conditions or hint use affected how much time
students spent working on problems, but a linear model found that only the number of problems
started and the score on Quiz 1 affected how much time students spent on problems. Condition
did not have a significant effect (see Table 4). Finally, I investigated whether student use of
hints was impacted by pretest score, and found that it was not a significant predictor.

 Estimate Std. Error t value Probability

(Intercept) 8416.01 3174.76 2.651 0.0116

Condition: hints-second -588.75 794.82 -0.741 0.4634

Problems Started 557.07 58.99 9.444 < 0.0001

Hints Requested 119.61 77.71 1.539 0.1320

Quiz 1 Points -111.95 37.65 -2.973 0.0051

Table 4: A linear model predicting time spent in Cloudcoder. Original factors: condition, #
problems started, # hints requested, and Quiz 1 score. Hint condition does not appear to have a

significant effect. Adjusted R-squared: 0.7535

Analysis of Cloudcoder Use
 Next, I investigate whether there is are any learning differences between students who
chose to use Cloudcoder and students who did not. Running a logistic model on students who
logged into Cloudcoder shows that scores on Quiz 1 have a significant negative effect on
logging into Cloudcoder (p < 0.05), as is shown in Table 5. In other words, students who did
worse on Quiz 1 were more likely to try Cloudcoder. However, the same significant effect is not
seen in logistic models for students who start a problem (p > 0.1), nor for students who attempt

66

problems (p > 0.1), once I control for logging in. In fact, according to a repeated measures
ANOVA, logging in has a marginally significant effect on score F(1,371) = 3.34, p < 0.1, as is
shown in Table 6. This effect is demonstrated in Figure 43.

 Estimate Std. Error t value Probability

(Intercept) 0.8432 0.8790 0.959 0.3374

Quiz 1 Score -0.0258 0.0104 -2.489 0.0128

Table 5: A logistic model predicting whether students logged into Cloudcoder. Original factor:
Quiz 1 score. Students who performed worse on Quiz 1 were more likely to log in.

 Mean Sq NumDF F.value Probability

Test Time 3778.2 1 38.979 < 0.0001

Logged In 323.4 1 3.337 0.0686

Interaction 152.2 1 1.570 0.2110

Table 6: A repeated measures ANOVA demonstrating the effect of logging in on test scores.
Students who logged in did marginally significantly better over time on quizzes (p < 0.1).

Figure 43: Performance on Quiz 1 and Quiz 4 for students who did or did not choose to log into
Cloudcoder. Those who logged in started off significantly worse (p < 0.05 according to a logistic

model), but were no different at Quiz 4 (p > 0.1).

67

 I also checked whether interaction with Cloudcoder affected the chance that a student
would drop out of the course, as I had data on which students dropped out (44 students in the
dataset total). For this analysis, I examined the 398/410 students who had scores for Quiz 1. I
found that both Quiz 1 scores and logging in were significantly negatively associated with
dropping out according to a logistic model (p < 0.05, see Table 7), though there was no effect of
condition.

 Estimate Std. Error t value Probability

(Intercept) 0.8123 0.0940 8.637 < 0.0001

Quiz 1 Score -0.0082 0.0011 -7.574 < 0.0001

Logged_in -0.0730 0.0354 -2.065 0.0396

Table 7: A logistic model predicting whether students dropped out. Original factors: Quiz 1
score, logged in, started problem, attempted problem, condition. Students who performed worse

on Quiz 1 and students who did not log in were more likely to drop out.

Discussion
 First, I found a few mildly surprising effects by examining the students who chose to
interact with the tool (by logging into Cloudcoder). These students had done significantly worse
on the pretest, yet they caught up to their peers by the posttest. What is most interesting here is
the fact that this effect was not apparent for the subset of students who went on to attempt and
solve problems; it existed only for the students who chose to log in. The same effect was seen
for dropout behaviors, where logging in was negatively associated with dropping out, regardless
of whether a student went on to attempt problems or not. One hypothesis for why starting
problems mattered less is that the student’s intention to practice is more important than actually
practicing; in other words, the student’s internal motivation or mindset is what resulted in course
improvement. To determine whether this hypothesis is true, further analysis needs to be done.

 The differences found between conditions lead to both positive and negative hypotheses
for how hints affected students. On the positive side, it seems that the students who were
exposed to hints performed better from pretest to posttest than their counterparts; though I did
not find significant effects, it is possible that the effect could become clearer with more statistical
power. On the negative side, it also seems that merely seeing the Hint button (and occasionally
interacting with it) scared several students away from using the system.

Why would students leave the system upon seeing a hint button? One hypothesis is that
some students might have a negative perception of hints due to classroom culture; seeing a
Hint button may have made those students dislike the system and refuse to use it as a result.
However, if classroom culture was the cause, I would not have expected any of the problem
dropout students to have requested hints, and 3/7 of them did. Alternatively, perhaps students
associate hint availability with problem difficulty, and assume that the problems will be too hard
as a result. However, the problem text is visible before the hint button appears (which should

68

convince students otherwise), and there is no pretest difference between students in the hints-
first condition who dropped the problem versus those who attempted it (though the students
who dropped the problem do not see the same learning gain that their counterparts do).
Alternatively, it is possible that this effect is simply due to statistical noise. To learn the true
reason for this behavior, I will need to do deeper analysis of student conceptions about hints,
practice, and problem difficulty.

Classroom Study 1: How Do Students Seek Help?
 The results of the previous classroom study led to many new questions about how
students perceive help-seeking and how they interact with hints. Therefore, I modified the study
design by including a pre- and post- survey on motivational mindsets, ran interviews with
students on help-seeking behaviors, and included the same practice problems and learning
measurements as before. I ran the second classroom study in Spring 2016 with an expanded
set of students.

Research Questions
 In this study, I had two primary research questions. First, I aimed to replicate the results
of the previous study, to better understand how practice problems and hints impacted student
learning. Second, I asked whether student’s individual factors (such as help-seeking beliefs)
impacted hint usage and general behavior during practice.

Methods
 For this study, I used students enrolled in 15-110 and 15-112, the two primary
introductory programming courses at Carnegie Mellon, as participants. The main design of the
experiment was the same as the design of the previous study: students were given login
information for Cloudcoder, where they could complete practice programming problems related
to the course. This time, all problems were available from the beginning (though sorted into
different sections labeled by week), with 40 problems total (problems are included in Appendix
1). I gathered log data on student interactions with the website and student performance on
quizzes and assignments to measure learning over time. Again, students were assigned to
hints-first and hints-second conditions, to provide equal access to hints while allowing me to
determine the effects of hints on learning.

 Additionally, this study included survey and interview components. The survey was sent
to students at the beginning of the semester, at the three-week point (when hint conditions
switched), and at the end of the semester. The goal of the survey was to measure students’
habits and beliefs regarding help-seeking as well as their grit (Duckworth et al, 2007),
achievement goals (Elliot & McGregor, 2001), and mindset (Blackwell, Trzesniewski, & Dweck,
2007), in order to determine whether these factors impacted how they interacted with the hint
system. The surveys used can be found in Appendix 3. Previous work suggests that students
with mastery-oriented goals or high grit should achieve significantly better grades (de Raadt et

69

al, 2005; Wolf & Jia, 2015), though findings for growth mindset are more mixed (Cutts et al,
2010).

I also varied the amount of encouragement students received in the initial invitation
email, where half of the students were told “As a reminder- using ITAP is completely optional
though we highly encourage you to try it as our previous studies suggest that working on
practice problems may help you learn more.”, while the other half were only told “As a reminder-
using ITAP is completely optional.” I hoped this encouragement manipulation might influence a
greater variety of students to participate than were seen in the previous study.

I asked students who had used Cloudcoder by the three-week point if they would be
interested in participating in a half-hour interview about their experiences with help-seeking and
using the practice problem system. The interviews were based on a set of seven questions,
shown below, about the students’ past experiences with programming, help-seeking, and ITAP.
Interviews were conducted in my office.

1. In non-programming classes, do you ever feel like you need help while learning? How do

you seek it out? Tell me about a time you did so.
2. Did you have a different help-seeking experience in your programming course than your

other courses? How was it different?
3. Can you think of a time when you were working on a programming problem and you got

stuck? Describe what that experience was like for you.
4. Did you manage to solve the problem you were stuck on? If so, how? If not, what did you

do?
5. Have you ever gotten help from a teacher/TA in the programming course? Think back to

the last time this happened. What did they do that was effective/ineffective?
6. Have you ever used ITAP to practice programming?

a. Did you ever get stuck while using ITAP? If so, what did you do?
b. Did you ever have access to feedback options (Test, Hint buttons) on ITAP?

What was using each feedback type like?
7. In general, what kind of help do you think would be the most valuable for a novice

programmer like you?

Finally, I collected basic demographic information by extracting name, major, and year

data from Carnegie Mellon’s directory based on each student’s id. I estimated gender based on
students’ names using an API which contained a database of over 200,000 name-gender
matches (Genderize.io), and estimated 80% of the population’s genders with this approach.

 All 15-110 and 15-112 students were opted into the study at the beginning of the
semester (again, students could opt-out of data collection via Cloudcoder), and participation in
the surveys, interviews, and use of Cloudcoder was all entirely optional and did not directly
impact students’ grades. I announced the study in lecture (with permission from the course
instructor), which was followed by emails containing login instructions and links to the surveys.
15-110 contained 207 students at the start of the semester, while 15-112 contained 478. Of

70

these 685 total students, 5 requested that I not use their data for research purposes, leaving
680 to analyze. The number of students who participated in each facet of the study is shown in
Table 8; it mainly demonstrates that both 15-110 and 15-112 had students use Cloudcoder, but
the majority of students who participated in other parts of the study were from 15-112.

 ITAP Use Survey 1 Survey 2 Survey 3 Interview

15-110 50 4 0 10 1

15-112 65 37 7 35 5

Table 8: Participants in each optional part of the study, split by course. The majority of survey
and interview participants came from 15-112.

 Additionally, I examined how many students used hints in the two courses and found
that students requested 345 hints total (207 in 15-110, 138 in 15-112). 16 students in 15-110
requested hints (12.94 hints on average), while 15 students in 15-112 requested hints (9.2 hints
on average).

Learning Metrics
 To measure learning, I needed to identify appropriate assessments in both 15-110 and
15-112. 15-112 has weekly assignments and quizzes, but the initial assignments are again too
close to ceiling to be usable (99.7/100 and 98.8/100 for the first two assignments, compared to
86.5/100 and 94.9/100 for the first two quizzes). 15-110 has weekly written assignments and
programming assignments, but not weekly quizzes. I use the programming assignments, even
though they start fairly close to ceiling (9.5/10 and 9.0/10 for the first two), for lack of better data.

 Just like in the previous study, 15-112 students again mostly used the system at the
beginning of the study (in fact, in the first week), and usage decreased dramatically after that
point. 15-110 students, on the other hand, had a low but steady rate of participation until weeks
4-5, when a larger number of students used the system just before the first exam of the course.
This effect is shown in Figure 44. Unfortunately, this again makes it difficult to do a proper
crossover analysis, as most hint use in 15-112 happened during the hints-first phase and the
majority of hints use in 15-110 happened during hints-second. Therefore, I will attempt to
analyze the effect of hints in 15-112 primarily during the first three weeks with Quiz 1 as a
pretest and Quiz 4 as a posttest, and I’ll primarily analyze 15-110 during the following three
weeks with Assignment 3 as a pretest and Assignment 7 as a posttest.

71

Figure 44: Number of logins per week during the study for each course. 15-112’s peak occurred

at the beginning, while 15-110 peaked at the 4-5 week mark, before their first exam.

Results
 There are several different factors that I investigated in this study. First, I re-ran the
analyses from the previous study to determine whether hints impact learning and/or whether
choosing to practice impacts learning. Second, I investigated whether there is a relationship
between students’ reported motivational and demographic factors and their use of the practice
system and/or hints. And finally, I analyzed the feedback students provided in the surveys and
interviews to look for any important trends or insights into how students view the help-seeking
process.

Analysis of Hints
 First, I re-run the analyses of the previous study, to see if they are replicated when
controlling for demographic information. The first question: does having access to hints improve
students’ learning over time? For this analysis and the following ones, I remove students who
did not complete the pretest or posttest, as well as non-traditional students (staff members) who
do not fit well into the year-of-study model. 397 students in 15-112 and 165 students in 15-110
remain. In 15-112, students scored an average of 86.7/100 on the pretest and 73.3/100 on the
posttest; in 15-110, students scored an average of 8.31/10 on the pretest and 7.82/10 on the
posttest. Overall, according to a repeated measures ANOVA, there is no evidence of significant
impact of hint condition (or encouragement condition) on learning from pretest to posttest in
either class, as is shown in Table 9.

72

15-110 Mean Sq NumDF F.value Probability

Test Time 16.8447 1 3.45 0.0651

Hint Condition 2.3427 1 0.48 0.4896

Encourage Condition 0.0025 1 0.00 0.9819

Interaction: Test Time & Hint Condition 0.4265 1 0.09 0.7680

Interaction: Test Time & Encourage Condition 0.0604 1 0.01 0.9116

Interaction:
Hint Condition & Encourage Condition

0.0713 1 0.01 0.9040

15-112 Mean Sq NumDF F.value Probability

Test Time 35798 1 294.65 < 0.0001

Hint Condition 33 1 0.27 0.6043

Encourage Condition 6 1 0.05 0.8243

Interaction: Test Time & Hint Condition 63 1 0.52 0.4723

Interaction: Test Time & Encourage Condition 55 1 0.46 0.5003

Interaction:
Hint Condition & Encourage Condition

0 1 0.00 0.9490

Table 9: Two repeated measure ANOVAs checking the effect of condition on performance in 15-
110 (top) and 15-112 (bottom). There was no significant effect of condition and no interaction.

 Investigating only the students who attempted at least one problem in Cloudcoder leaves
38 students in 15-112 (21 in hints-first, 17 in hints-second) and 28 students in 15-110 (11 in
hints-first, 17 in hints-second). This time, there was no noticeable difference between the
conditions according to a repeated measures ANOVA, as is shown in Table 10 and Figure 45;
therefore, the non-significant learning gain seen in the previous study was probably due to
chance. I also examined the effect of condition on attempting problems (after a problem has
been started), as that had generated a startling result in the previous study. This time, there was
no effect of condition on dropping a problem; only six students across the two courses exhibited
this problem-dropping-out behavior at all, two with hints available, four without.

73

15-110 Mean Sq NumDF F.value Probability

Test Time 4.4908 1 1.04 0.3191

Hint Condition 8.8749 1 2.05 0.1660

Encourage Condition 0.6784 1 0.16 0.6961

Interaction: Test Time & Hint Condition 0.1930 1 0.04 0.8347

Interaction: Test Time & Encourage Condition 0.4499 1 0.10 0.7502

Interaction:
Hint Condition & Encourage Condition

2.0783 1 0.48 0.4957

15-112 Mean Sq NumDF F.value Probability

Test Time 3033.92 1 28.59 < 0.0001

Hint Condition 28.92 1 0.27 0.6051

Encourage Condition 179.35 1 1.69 0.2023

Interaction: Test Time & Hint Condition 63.76 1 0.60 0.4435

Interaction: Test Time & Encourage Condition 195.55 1 1.84 0.1833

Interaction:
Hint Condition & Encourage Condition

17.10 1 0.16 0.6906

Table 10: Two repeated measure ANOVAs checking the effect of condition on performance
after attempting a problem in 15-110 (top) and 15-112 (bottom). There was no significant effect

of condition and no interaction.

Figure 45: Learning results for practicing students in 15-110 (left) and 15-112 (right). Neither

case shows even a potential effect of condition on learning according to a repeated measures
ANOVA (p > 0.1).

74

 Again, I investigated whether hint/encouragement condition and/or hint use impacted
how students interacted with the system. Surprisingly, I found that in 15-110 students in the
extra encouragement condition started fewer problems than their counterparts in the normal
encouragement condition (14.4 problems on average for the control group, 8 problems on
average for experimental) with marginal significance according to a t-test (p < 0.1). The same
effect was not found for 15-112 (8.8 problems for control, 8.1 problems for experimental, p > 0.1
on a t-test).

I also investigated the effect of condition on time spent in the practice problem system
and found effects in both courses. In 15-112, according to a linear model, time spent was
positively affected by both the number of problems attempted and the number of hints
requested (see Table 11); in 15-110, according to a linear model, being in hints-second (having
hints available) was negatively correlated with time spent, but number of hints requested was
positively correlated (see Table 12). In other words, requesting more hints results in spending
more time in the system, but it is unclear whether having access to hints has an independent
effect on time on task.

 Estimate Std. Error t value Probability

(Intercept) -131.81 158.47 -0.832 0.4107

Problems Attempted 160.04 14.14 11.316 < 0.0001

Hints Requested 60.82 14.10 4.315 0.0001

Table 11: A linear model predicting time spent in Cloudcoder for students in 15-112. Original
factors: hint condition, encouragement condition, # problems started, # problems attempted, #

hints requested. Students who attempted more problems and requested more hints spent more
time. Adjusted R-squared: 0.8197

75

 Estimate Std. Error t value Probability

Intercept -223.40 591.86 -0.377 0.7094

Condition: hints_second -1170.04 548.72 -2.132 0.0444

Condition: encourage_experiment 838.78 492.85 1.702 0.1029

Problems Started 581.53 284.77 2.042 0.0533

Problems Attempted -420.25 326.17 -1.288 0.2110

Hints Requested 166.40 37.24 4.469 0.0002

Table 12: A linear model predicting time spent in Cloudcoder for students in 15-110. Original
factors: hint condition, encouragement condition, # problems started, # problems attempted, #

hints requested. Students who were in hints-second spent less time, but students who
requested more hints spent more time, so the effects cancel out. There is also a marginal

positive effect for number of problems started. Adjusted R-squared: 0.8167

Analysis of Cloudcoder Use
 Additionally, I investigated whether there is a difference between students who chose to
use Cloudcoder and those who did not. This time, a repeated measures ANOVA did not find a
difference at pretest or in learning based on whether students logged in F(1,395) = 0.96, p > 0.1
or an interaction between test time and logging in F(1,395) = 1.53, p > 0.1. I also looked at how
using Cloudcoder interacted with dropout rates and found that students who attempted
problems in 15-112 or logged in in 15-110 were less likely to drop out. Additionally, students in
higher years (upperclassmen and graduate students) in both courses were more likely to drop
out. These effects are shown in logistic models shown in Table 13 and Table 14. Note that I do
not have pretest scores for students who dropped out, so it is possible that these effects would
be negated if I did have that data.

15-112 Estimate Std. Error z value Probability

Intercept -2.8666 0.2373 -12.082 < 0.0001

Started Problem 1.7747 0.9457 1.877 0.0606

Attempted
Problem

-3.2443 1.2162 -2.667 0.0076

Year 0.4845 0.0796 6.084 < 0.0001

Table 13: A logistic model predicting dropout for students in 15-112. Original factors: logged in,
started problem, attempted problem, hint condition, encouragement condition, year. Students
who attempted fewer problems were more likely to drop out, as were students in higher years.

76

 Estimate Std. Error z value Probability

Intercept -1.6201 0.3160 -5.128 < 0.0001

Logged In -1.9634 0.7562 -2.596 0.0094

Year 0.3202 0.1268 2.526 0.0116

Table 14: A logistic model predicting dropout for students in 15-110. Original factors: logged in,
started problem, attempted problem, hint condition, encouragement condition, year. Students

who did not log in were more likely to drop out. Students in higher years were also more likely to
drop out.

Analysis of Motivational Factors
 Next, I investigate the relationship between students’ reported motivational data and
their use of the Cloudcoder system. First, I check whether the students who responded to at
least one of the surveys accurately represent the overall population of the course. A generalized
linear model did not show with any significance that any of the demographic factors impacted
whether or not students took the survey, but it did show that students who logged into ITAP
were more likely to take the survey (p < 0.001). This result is not surprising, as these are
students who are opting into participation already, but it does mean that survey results must be
viewed skeptically, as the population may not be representative of the whole group of students.

 Ideally, I’d like to analyze the survey results of students who completed all three surveys,
but only three students satisfy these criteria. Furthermore, only ten students completed both the
first and last surveys, which again provides limited analysis capability. When I compare the
responses of those ten students, I find that only two factors changed from pre to post (according
to a paired t-test): estimated level of programming knowledge (which went up, from 2.5/7 to
4.5/7, p < 0.001), and having a mastery approach achievement goal (which went down from
6.7/7 to 6/7, p < 0.01). The first is not surprising at all, as one would expect students to learn.
The second is surprising, but is possibly due to students skewing towards the ceiling in the
pretest.

 Since most of the factors did not significantly change from pretest to posttest, I combine
the data from the two tests to draw from a larger sample in order to analyze the effect of most
factors on behavior in the system. To do this, I average the results of students who completed
both pretest and posttest, and take the individual results of students who completed either
pretest or posttest. I do minimal analysis of mastery approach, prior knowledge, or the other
factors only collected at the pretest, as I do not have a large enough dataset to draw from. Any
results found with this dataset will need to be viewed skeptically, as I am combining data from
two different points of time, but it may still provide hypotheses for future study.

 First, I investigate whether there are any differences between the two courses, to see
whether the populations are similar and can be combined. The results of the first survey
demonstrated that students from 15-112 tended to have more programming experience than

77

students from 15-110, as is shown in Table 15 (where all p values are taken from t-tests
between the two courses). This finding is not surprising, as students with more experience are
normally advised to take 15-112. The only other significant differences between courses were
shown in self-reported performance avoidance ratings, where 15-110 students had a
significantly higher reported rating on a Likert scale than 15-112 students, and use of practice
resources, where 15-110 students again had a higher rating than 15-112 students. Again, this
result can be easily explained, as 15-112 is known to be more difficult than 15-110, so students
worried about failing would be more likely to take 15-110.

 15-110 15-112

Programming Knowledge (7-Pt Likert Scale) *** 1.2 2.7

% Students with Prior Language Experience * 20% 84%

% Students with Prior Python Experience *** 0% 54%

Math SAT Self-Report 720 746.77

Grit Self-Rating (7-Pt Likert Scale) 6.29 6.07

Mastery Approach Self-Rating (7-Pt Likert Scale) 6.4 6.73

Mastery Avoidance Self-Rating (7-Pt Likert Scale) 4.79 4.28

Performance Approach Self-Rating (7-Pt Likert Scale) 4.71 4.69

Performance Avoidance Self-Rating (7-Pt Likert Scale) * 5.75 4.5

Fixed-to-Growth Mindset Rating (7-Pt Likert Scale, Fixed low) 4.55 4.73

Practice Resource Use (7-Pt Likert Scale) * 3.5 5.31

TA/Office Hour Resource Use (7-Pt Likert Scale) 3.79 4.27

Table 15: Self-reported survey measures for students in 15-110 and 15-112.
* p < 0.05, ** p < 0.01, *** p < 0.001.

Next, I investigate whether any of the collected factors influence students’ use of the

practice problem system, in terms of how many problems they started, attempted, and solved. I
ran Poisson models on the combined pretest-posttest data for students who logged into
Cloudcoder to check the effects of the collected factors. The results of these models are shown
in Tables 16-18. Several patterns appeared along the lines of student motivation goals, but it is
difficult to be sure that they are consistent, as running individual correlations between problems
started/attempted/solved and the mastery goals sometimes flipped the effect sizes. Therefore, I
concentrate on grit and growth mindset. I found that students’ self-reported grit was associated
with starting, attempting, and solving fewer problems. It is unclear why higher grit would lead to
less work, especially since one would normally predict the opposite effect; however, this might
be a ceiling effect, as the average grit self-reports were very high. Further investigation will be

78

needed to determine why this occurred. Additionally, students with stronger growth mindsets
and students who used TA resources more tended to start more problems; neither of these
results are particularly surprising.

 Estimate Std. Error z value Probability

Intercept 1.7170 0.4737 3.625 0.0003

Mastery Avoidance Ranking 0.3510 0.0559 6.281 < 0.0001

Performance Approach Ranking -0.1237 0.0511 -2.422 0.0154

Performance Avoidance Ranking -0.1880 0.0394 -4.768 < 0.0001

Grit Ranking -0.6545 0.0811 -8.070 < 0.0001

Growth Mindset Ranking 0.5166 0.0655 7.882 < 0.0001

TA Use Ranking 0.2940 0.0440 6.683 < 0.0001
Table 16: A Poisson model predicting number of problems started, using data from the
combined pretest and posttest. Original factors: course, hint condition, encouragement

condition, year, mastery avoidance level, performance approach level, performance avoidance
level, grit level, growth mindset ranking, practice resource use ranking, TA use ranking. On

running individual correlations, effect signs hold for all factors except performance approach.

 Estimate Std. Error z value Probability

Intercept 2.3624 0.5399 4.376 < 0.0001

Problems Started 0.1129 0.0088 12.829 < 0.0001

Course: 15-112 -0.7397 0.2312 -3.200 0.0014

Mastery Avoidance Ranking -0.1147 0.0566 -2.029 0.0425

Performance Approach Ranking 0.1382 0.0605 2.282 0.0225

Performance Avoidance Ranking -0.0601 0.0413 -1.455 0.1457

Grit Ranking -0.1437 0.0609 -2.358 0.0184
Table 17: A Poisson model predicting number of problems attempted, using data from both

pretest and posttest. Original factors: # problems started, course, hint condition, encouragement
condition, year, mastery avoidance level, performance approach level, performance avoidance

level, grit level, growth mindset ranking, practice resource use ranking, TA use ranking. On
running individual correlations, effect signs hold for all factors except mastery avoidance.

79

 Estimate Std. Error z value Probability

Intercept 2.4677 0.5622 4.389 < 0.0001

Problems Started 0.1116 0.0097 11.530 < 0.0001

Hints Requested 0.0216 0.0070 3.092 0.0020

Hint Condition: Hints-second 0.6647 0.1986 3.346 0.0008

Mastery Avoidance Ranking -0.1649 0.0628 -2.626 0.0086

Performance Avoidance Ranking -0.1669 0.0499 -3.344 0.0008

Grit Ranking -0.2546 0.0751 -3.390 0.0007

Growth Mindset Ranking 0.1320 0.0908 1.454 0.1460

Table 18: A Poisson model predicting number of problems solved, using data from both pretest
and posttest. Original factors: # problems started, # problems attempted, # hints requested,

course, hint condition, encouragement condition, year, mastery avoidance level, performance
approach level, performance avoidance level, grit level, growth mindset ranking, practice

resource use ranking, TA use ranking. On running individual correlations, effect signs hold for all
factors except hint condition and mastery avoidance.

 Finally, I investigated how these different factors affected students’ use of hints. I ran a
Poisson model using the pretest and posttest combined dataset for students who had hints
available during the time period assessed; the results are shown in Table 19. This model is
likely overfitting due to the small amount of data in the usable dataset (20 entries), but it seems
that performance-oriented students and students with higher grit requested more hints, while
students who used more practice resources requested fewer hints. I also see a potential
negative association with growth mindset, but an individual correlation between growth mindset
and hints requested returned a positive association, so I cannot be sure.

80

 Estimate Std. Error t value Probability

Intercept -6.6842 1.7634 -3.790 0.0002

Problems Attempted -0.8633 0.3272 -2.638 0.0083

Problems Started 1.0958 0.3071 3.568 0.0004

Encouragement Condition: Extra -4.1485 0.7073 -5.866 < 0.0001

Year 0.2774 0.0827 3.355 0.0008

Mastery Avoidance Ranking -0.4507 0.1798 -2.506 0.0122

Performance Approach Ranking 0.4769 0.1366 3.491 0.0005

Performance Avoidance Ranking 0.4991 0.1856 2.689 0.0072

Grit Ranking 1.7556 0.3506 5.007 < 0.0001

Growth Mindset Ranking -0.6421 0.1853 -3.466 0.0005

Practice Problem Use Ranking -0.5206 0.1416 -3.677 0.0002
Table 19: A Poisson model predicting number of hints requested, using both pretest and

posttest data. Original factors: # problems started, # problems attempted, course,
encouragement condition, year, mastery avoidance level, performance approach level,

performance avoidance level, grit level, growth mindset ranking, practice resource use ranking,
TA use ranking. On running individual correlations, effect signs hold for all factors except

mastery avoidance and growth mindset.

Qualitative Analysis
 Finally, I analyze the qualitative data gathered from the surveys and interviews. On the
final survey, I asked students why they did or did not choose to use the practice problem
system, whether the feedback they got was helpful, and if they had any suggestions for
improving the system. (I also asked students for suggestions in the mid-survey, and include the
responses here). Students who used the system stated that they wanted extra practice
problems, or wanted to study for exams. Students who did not use the system said that they
had enough practice problems already, or had forgotten that the system was available.

 When asked about the feedback, the 4/10 comments which explicitly mentioned hints
were, interestingly, largely negative. One student stated that “It was helpful, but not exhaustively
helpful”; another said that “The hints were vague and not really specific to the code”. A third
student elaborated on these points, saying “Sometimes the feedback wasn't totally clear, or
applicable. It would give the same hints/feedback over vs modifying it to help spur useful
thoughts”. Combining the survey results with ITAP use logs showed that several of these
students received multiple hints in a row which targeted the same part of their solution, but that
those hints only gave small amounts of information; perhaps this frustrated the students. Finally,

81

one student did say the hints were “helpful when i got stuck”, and several students gave positive
feedback on the test case results.

 When asked for suggestions, many students gave feedback on the Cloudcoder interface
(especially navigational elements), but some also gave suggestions for better feedback. Several
students asked for more problems, or specifically more difficult problems. Two different students
stated that they’d like to be able to see the solutions, and two other students asked that the
hints be better explained. As one stated: “Improve the hints and make them more descriptive
about how to correct the code, even if the hints have to be general.”

 In the interviews, students discussed their relationship with practice and help-seeking in
more detail. When asked about how they sought out help, the majority (5/6) mentioned getting
help from classmates; other help sources included office hours, university-sponsored
supplemental instruction, and online resources. Students also mentioned that they got help from
TAs a lot in their programming class, potentially due to strict rules prohibiting many forms of
collaboration in the introductory programming courses.

 When asked to think about a situation where they got stuck on a programming
assignment, half of the students brought up how they had to spend several hours debugging in
order to solve relatively small problems. One student literally said that it took them two to three
hours to find a “very stupid” mistake in a single line of code. One student discussed having
difficulty starting an assignment, but another said that it wasn’t hard to find a way to solve a
problem, it was just hard to get it right. Several students mentioned using print statements to
find a problem, while others said they wrote it out on paper. Only one student specifically
mentioned getting help from a TA.

 When asked specifically about help from teachers and TAs, some students mentioned
that they would help with debugging, but they weren’t as helpful with conceptual problems.
Several students said that the amount of help given depended on which TA came to you, with
TAs giving varying levels of detail. Students also complained about long wait times in office
hours; one student talked about waiting an hour, getting advice from the TA that didn’t really
help, and then needing to put her name on the waitlist again immediately, which she said was
frustrating. Another student mentioned that she wished she could get help for longer periods of
time, but that she “... can’t have a personal TA for the whole time she’s doing homework”.

 When asked about their use of Cloudcoder, two of the six students hadn’t used it
(because, they said, they were too busy), and two said they had done some of the problems but
had found them too easy. One student mentioned that she had tried to do some of the
problems, but that she gave up when she had difficulty with a runtime error. Further
investigation revealed that she did not have hints available when she encountered the runtime
error. The final student (who was the only student in 15-110) said that he liked the system, that
he never got stuck because he used the test cases and the hints a lot. He said that he often
encountered syntax errors, and that clicking the hint button a lot helped him find his errors.

82

 Finally, when asked about what type of help they thought would be most useful, half of
the students mentioned specific, targeted help during problem-solving (which hints would
provide, though only one student made this connection). Two others wanted more peer
assistance, and other students mentioned alternative solutions and conceptual reviews.

Discussion
 First, it appears that I have found evidence against most of the apparent results of the
previous study, as I saw neither additional learning for students with hints nor additional problem
dropout for students with hints. The lack of problem dropout might have occurred because I
changed the Cloudcoder interface to show a greyed-out Hint button for students in the control
condition, so the interface would not change too dramatically between conditions. I also no
longer see a difference at pretest between students who chose to use Cloudcoder and those
who chose not to, but I do see that students who attempt problems in the system are less likely
to drop out, which corroborates the previous result where students who logged into the system
were less likely to drop out.

 One new and unusual effect I found was related to the encouragement manipulation,
where half of the students were shown an additional line in their invitation email about how
doing practice problems could help them do better in the course. There was no difference
between conditions on how many students tried problems in Cloudcoder, but, surprisingly, the
students who received extra encouragement started fewer problems than their counterparts in
the control condition. It is unclear why this might be the case.

 I also found that asking for more hints was correlated with spending more time in the
system, but it is possible that students who need more help (and therefore need more time) just
ask for more hints. Without a more representative population, it is difficult to tell whether the hint
use caused the extra time spent or not.

 When I analyzed the survey results, I found a few small effects that may help give insight
on how students view help-seeking. For example, students with higher grit ranking started,
attempted, and solved fewer problems, which is surprising and deserves further investigation.
The results on hints are shaky due to low sample size, but it seems possible that students who
request hints have higher grit and are less likely to engage with other practice resources.

 Students’ open-form feedback in the surveys and the interviews indicated that hints
could be improved by making them less vague and more extensive. However, hints were
viewed as helpful to one student I interviewed, who asserted that they helped him solve syntax
errors. In general, it seems that there is a need for targeted, direct feedback, but work still needs
to be done to present that information in an optimal way for students to use.

83

4. Evaluating Hint Representations in Different
Contexts

The analysis of student feedback from the previous study demonstrated that the format
and level of detail of the hints provided by ITAP was lacking, in the students’ opinion at least. It
can be debated whether or not more information would lead to better learning, but learning is
not the only factor that needs to be considered in the question of how to format hints. After all,
most hints are provided upon student request; if students do not believe in the hints, they will
not request them, and therefore will get no use out of them at all. Therefore, I decided to run a
usability study to test different forms and detail levels of hints, to see which forms were
preferred by students. The different experiences of students in 15-112 and 15-110 led me to
believe that user preference might shape the type of hint they desire, so I collected information
on the users’ prior experience and help-seeking beliefs. I also think it possible that the type of
error a student encounters might influence what type of hint they would most benefit from, so I
experimented with various types of errors as well.

 First, I provide a brief review on different feedback representations that can be provided
during the programming process. A full classification has been provided in (Le, 2016), which
separates feedback broadly into yes/no, syntax, semantic, layout, and quality feedback. I am
particularly interested in semantic feedback, which can be separated into two categories:
intention-based and code-based analysis. Intention-based analysis is somewhat tied to the
concept of a reference program (which can provide intention), while code-based analysis relies
more on the student submission itself. Until now, I have focused mainly on code-based
approaches; an intention-based approach could prove useful as well. It can also be beneficial to
provide algorithmic feedback, which focuses more on the algorithmic components needed than
the syntax of the code; this approach was shown to lead to more productive edits in previous
work (Sudol-DeLyser, 2014).

When generating hints specifically, there are several hint types used by human tutors. A

formative study of hints provided by teachers on an online forum found that teachers provided
many specific types of hints, including five amenable to automatic generation: transformation,
location, data, behavior, and example (Suzuki et al, 2017). The next-step hints I have provided
so far fall under the transformation category, with location information as well. Data and
behavior hints tell the student more about why the error is occurring, while example hints clarify
expected output for the problem.

New Hint Representations
 I took insights from observations gained in the previous studies in designing the new
types of hints which would be evaluated in this usability study. First, I determined that there
were two factors that would influence the hints presented: the content of the hint and the level of
detail provided. In other words, I could present a hint that dealt with the whole solution at low
detail, or a hint that focused on only one part to be changed in high detail.

84

 Next, I analyzed student feedback to identify possible new content for hints that could be
derived via data-driven approaches. I identified two major pieces of content that are created by
ITAP: the edit between the student’s state and its goal, and the personalized goal itself. I then
generated four hint types based on these two pieces of content.

 First, there are location hints. These use the edit content to identify where in the code
the edit must happen, but they do not address what the edit should be (examples shown in
Figure 46). Location hints are like error highlighting in IDEs, showing where the syntax errors
may be located without telling the student how to fix them. I chose to include these hints as they
are similar to hints given by some TAs.

Bugs occur in the following locations:
At line 5

Bugs occur in the following locations:
At line 5, column 24
At line 7, column 22

Bugs occur in the following locations:
At line 5, column 24
At line 7, column 22
At line 5, column 27

Bugs occur in the following locations:
At line 5, column 24
At line 7, column 22
At line 5, column 27

Figure 46: Examples of location hints at all four levels of detail.

 Second, there are next-step hints. These are the traditional hints I’ve been using in
previous studies, but potentially without the obfuscation used previously (examples shown in
Figure 47). These hints are akin to autocomplete, as they suggest what the student could do
next.

At line 5, column 24 swap i with j in the tuple

At line 5, column 24 swap i with j in the tuple
At line 7, column 22 replace 1 with (-1) in the tuple

At line 5, column 24 swap i with j in the tuple
At line 7, column 22 replace 1 with (-1) in the tuple
At line 5, column 27 change i to (('~left value~' - '~right
value~') - i) in the tuple

At line 5, column 24 swap i with j in the tuple
At line 7, column 22 replace 1 with (-1) in the tuple
At line 5, column 27 change i to ((len(l) - 1) - i) in the tuple

Figure 47: Examples of next-step hints at all four levels of detail.

85

 Third, there are structure hints. These hints use the goal state generated by ITAP, but
obfuscate most of the details, only revealing the main statement types on each line (examples
shown in Figure 48). I chose to use these hints as some students wanted hints from the very
beginning of the problem, and this type of hint would provide some idea of how to approach the
problem without giving everything away. This approach has been used before to some success
in the AutoTeach system, which reveals high-level portions of a specified solution while
obfuscating the interior code to provide multiple levels of hints (Antonucci et al, 2015).

Here is the structure of the working program:
def ...
 for ...
 for ...
 if ...
 return ...
 else ...
 return ...

Here is the structure of the working program:
def ~function name~(~var~):
 for ~var~ in ~function name~(~arg~, ~arg~):
 for ~var~ in ~function name~(~arg~):
 if (~var~[~var~][~var~] ~op~ ~string~):
 return (~var~, ~left side~ ~op~ ~var~))
 else:
 return (~number~, ~number~)

Here is the structure of the working program:
def ~function name~(~var~):
 for ~var~ in ~function name~(~number~, ~function name~(~var~)):
 for ~var~ in ~function name~(~function name~(~arg~)):
 if (~var~[~var~][~var~] ~op~ ~string~):
 return (~var~, (~left side~ ~op~ ~number~) ~op~ ~var~))
 else:
 return (~number~, ~number~)

Here is the structure of the working program:
def ~function name~(~var~):
 for ~var~ in ~function name~(~number~, ~function name~(~var~)):
 for ~var~ in ~function name~(~function name~(~var~[~var~])):
 if (~var~[~var~][~var~] ~op~ ~string~):
 return (~var~, ((~function name~(~var~) ~op~ ~number~) ~op~ ~var~))
 else:
 return (~number~, ~number~)

Figure 48: Examples of structure hints at all four levels of detail.

86

 Fourth, there are solution hints. These hints simply tell the student what their
personalized goal state is (example shown in Figure 49). They can be viewed as turning
problems into example code, instead of worked examples or practice problems. I included this
type of hint because many students relied on example code to help them learn syntax and
structure at the beginning.

Here is an alternative correct solution:
def findTheCircle(l):
 for i in reversed(range(len(l))):
 for j in range(len(l[i])):
 if (l[i][j] == 'o'):
 return (j, ((len(l) - 1) - i))
 return ((-1), (-1))

Figure 49: An example of a solution hint at the lowest level of detail. Higher levels of detail
include alternative solutions (selected from the solution space); these are not shown to save

space.

 Finally, I generated example hints, which could be given to students who had already
gotten the problem right. These hints would show the students examples of other solutions that
were similar to their solution, very different from their solution, and the most popular in the
solution space (example shown in Figure 50). I generated this type of hint because some
students mentioned that they never got the chance to see other ways that problems were
solved, and because this could serve as an additional way to see example code over time.

87

def find_the_circle(l):
 for i in reversed(range(len(l))):
 for j in range(len(l[i])):
 if (l[i][j] == 'o'):
 return (j, ((len(l) - 1) - i))
 return ((-1), (-1))

Your solution is already correct! If you're
interested, here are some other correct solutions:
def find_the_circle(p0):
 for v0 in range(len(p0)):
 for v1 in range(len(p0[v0])):
 if (p0[v0][v1] == 'o'):
 return (v1, ((len(p0) - v0) - 1))
 return ((- 1), (- 1))

def find_the_circle(p0):
 v0 = (len(p0) - 1)
 v1 = 0
 while (v0 >= 0):
 for v2 in range(len(p0[v0])):
 if (p0[v0][v2] == 'o'):
 return (v2, v1)
 v0 -= 1
 v1 += 1
 return ((- 1), (- 1))

def find_the_circle(p0):
 for v0 in reversed(range(len(p0))):
 for v1 in range(len(p0[v0])):
 if (p0[v0][v1] == 'o'):
 return (v1, ((len(p0) - v0) - 1))
 return ((- 1), (- 1))

Figure 50: An example of an example hint, to be shown to students with already-correct
solutions. The student’s original solution is shown at the top, while the hint is shown at the

bottom.

Usability Study: How Does Context Affect Hint Choice?
 Once I had formulated the new hint types, I designed a multi-part usability study that
could test student reactions to the different hints. This study consisted of a survey (to gather
individual user information), a set of hint-selection exercises (to see what types of hints users
preferred), and a set of free-coding exercises (to observe how users interacted with previously-
available hints in a real coding environment).

Research Questions
 Within this study, I had a set of research questions I wished to answer. First, I wanted to
know whether the types of hints users requested changed based on the users’ own personal
characteristics; for example, does a more experienced student want less detail in hints than a
novice? Second, I wanted to know whether the types of hints users requested changed based

88

on the type of error they had encountered; do larger errors require more content in hints?
Finally, I wanted to know which types of hints were considered most helpful, so that I could use
those hints in future work.

Methods
 To run this study, I recruited people who had past experience with programming but
(preferably) were not experts in Python, in order to replicate the experience of learning how to
program without needing to teach total novices the basics. Users were recruited via the CMU
participant pool and from the mailing list of HCI graduate students. The study was run in a lab in
the Human-Computer Interaction Institute, where each user would spend up to one hour
completing the study activities while I observed. Users were compensated with $10 for their
participation.

 At the beginning of the study (after signing the consent form), users completed a short
screening task, where they were asked to explain the purpose of a short program. I took notes
on their explanation and used these notes to create an independent ranking of the users’
programming knowledge. Participants then completed a short survey where they gave self-
reported measures of their programming knowledge, their grit level, and their use of help
sources; the full survey is included in Appendix 3. Basic demographic information (gender and
race) was gathered from the participant pool database.

 Once this survey was complete, participants were asked to treat the rest of the study as
a think-aloud experiment (Ericcson & Simon, 1998). In a think-aloud experiment, participants
literally say what they’re currently thinking as they do tasks, to help researchers understand the
purpose behind their actions and how they view different tasks. When participants fall silent, the
researcher reminds them to keep talking, to ensure a consistent stream of thought. I took notes
on these comments for qualitative analysis.

 The first half of the study consisted of several hint-selection exercises, which participants
worked on for up to half an hour. An example page of this exercise is shown in Figure 51. In
these exercises, participants were shown a problem statement, a piece of code, the compiler
errors/test case results that the code produces, and how close to a solution the code is. They
were then asked several questions:

89

Figure 51: An example exercise from the first half of the study.

● What do you think is wrong with this code?

○ Nothing is wrong
○ It's mostly right, but has a few bugs
○ It has the right approach, but some implementation problems
○ It has the wrong approach entirely

● If there is an error, do you know how to fix this code right now?

○ Yes/Maybe/No

● If you were unsure about what to do, what kind of hint would you want at this state?
○ Location of the incorrect code
○ What change to make to fix the code
○ Structure of the correct solution
○ Examples of other solutions

● What level of detail should the hint have?

○ Small: just show me a bit of the next step
○ Medium: show me the whole next step
○ Large: show me half of the needed work
○ All: show me all the needed work

 The first question was meant to be used as a representation of the perceived error type
of the problem, to determine whether it was consistent across participants. The second question
could be used to separate participants who already knew how to solve the problem (and did not
need a hint) from those who did not. The third and fourth questions then asked the user to
choose one of the hint types described in the previous section. I anticipated that several factors

90

would lead to different hint types being chosen per problem. However, it is not certain that
student choices will follow any discernible pattern, as a previous study on student choices
between error-specific feedback and next-step hints could find no correlation between students’
code states and their feedback requests (Gross & Pinkwart, 2015).

 Once the participant had made their choices and clicked Submit, a pre-generated hint
was given to them based on their choices and was shown alongside the code and other
information on the following page. Students were then asked these follow-up questions:

● Do you think this hint would help you move forward in solving this problem?
○ Yes/Maybe/No

● Does the level of detail match what you were expecting?

○ Yes/Maybe/No

● If there's an error in the code, do you understand how to fix it now?
○ Yes/Maybe/No

 The first two questions were used to determine whether the actual produced hints
matched the users’ expectations of what they should get. The final question was used to
determine whether certain hints actually helped; that is, whether they could help students who
did not know how to solve the problem before find the bug and the fix.

Some students, upon receiving an unsatisfactory hint, instead chose to move back in the
interface, choose a different type of hint, and review that hint instead. I allowed this behavior (as
it helped me understand which types of hints were more helpful), and I include this backtracking
action in the dataset for analysis.

The second part of the study consisted of participants writing code to solve simple
programming problems in Cloudcoder, with hint support, while thinking aloud. This part allowed
me to observe how the users interacted with actual hints while problem-solving. Problems were
sorted based on difficulty so that all students would eventually reach a problem that would
cause them to struggle. Only next-step hints were provided for this part due to implementation
constraints. Students worked for the remaining time in the hour, attempting to complete as many
of the problems as they could.

Results
Overall, 28 participants were recruited (8 female, 20 male); these participants ranged

greatly in programming capability, making it possible to explore help-seeking behavior across of
range of experience levels. The user survey results are shown in Table 20. Using the screening
task as a separate indicator of programming knowledge, I found that 13 of the participants fully
understood the code and understood its algorithmic purpose; 7 understood the program flow but
missed some algorithmic components, and the remaining 8 struggled to understand the
program, with three failing to grasp the main points at all.

91

Factor Average Result

Researcher-Rated Python Knowledge (1 to 7) 5.32

User-Rated Programming Knowledge (7-Pt Likert Scale) 4.25

User-Rated Python Knowledge (7-Pt Likert Scale) 2.79

Used Python Before? 54%

User-Rated Grit Ranking (7-Pt Likert Scale) 5.54

Use of Practice Problems (7-Pt Likert Scale) 5.68

Use of Office Hours (7-Pt Likert Scale) 4.57

Use of Online Materials (7-Pt Likert Scale) 6.21
Table 20: Summary statistics for the user survey.

In the first half of the study, a full 34 exercises were included in the dataset, but I did not

expect any student to finish all of them, and indeed, no student did. Students completed an
average of 11.5 exercises, with a minimum of 3 and a maximum of 21; altogether, there is data
for 321 exercise attempts, with 16 additional backtracking events. In the second half of the
study, 15 problems were made available on Cloudcoder, again with the purpose of providing
more than enough problems to fill the allotted time. Two of the participants were unable to do
this part, as server problems resulted in Cloudcoder going offline; of the remaining 26,
participants completed an average of 5.6 problems, with a minimum of 1 and a maximum of 11,
for a grand total of 145 completed exercises and 16 incomplete exercises. Users asked for 9.19
hints on average during this section, with a minimum of 0 and a maximum of 28, for a total of
239 hints.

When analyzing the data, I found that one user did not vary their responses per question

(they classified every error as a bug, and requested small next-step hints every time); I therefore
remove this user from analyses. All other users exhibited variance in the bug type they chose,
and most tried different levels of detail or hint types across exercises. Overall, users requested
52 location hints, 134 next-step hints, 74 structure hints, and 68 example hints; 100 of the hint
size requests were small, 113 were medium, 53 were large, and 62 were all. 16 of the states
were classified as having nothing wrong, while 132 were classified as having a bug, 107 were
classified as having implementation errors, and 73 were classified as having the whole
approach wrong. Therefore, in general, students were biased towards smaller next-step hints
and thought that the states did have errors, though they generally thought the errors were
smaller as well. It is worth noting here that the 16 states that were classified as having nothing
wrong did, in fact, have bugs. Most of these classifications (10/16) occurred on the first problem,
which had a whitespace error that was difficult to detect. Also, the bug-type classification was
subjective, as there was no correct response for what type of bug a program had. I was
primarily interested in the users’ impressions of bug severity.

92

Quantitative Analysis
My first research question asked whether the types of hints users requested changed

based on the users’ own personal characteristics; for example, do more experienced students
want less detail in hints than novice students? I ran a generalized linear model controlling for
bug type and whether the student could already solve the problem that checked all the variables
collected in the survey, as well as the researcher rating of the student’s Python knowledge and
gender. I removed entries where the bug type was labeled as ‘Nothing’ for this analysis, as it
does not make sense to choose hints when nothing is wrong.

First, I ran the model of the type of hint chosen. I ordered the four hint types by the

amount of content they provide (location, next-step, structure, and solution), so that the resulting
model would show positive factors associated with more contentful hint types and negative
factors associated with less content. The model (shown in Table 21) had surprisingly clear
results. Students were likely to ask for more contentful hints if they had not used Python before,
had lower grit, and often used office hours while help-seeking. In other words, more novice
students wanted more content in their hints, while stronger students wanted less. It is also worth
noting that approach bug-types were associated with more contentful hints, and women
apparently requested less contentful hints.

 Estimate Std. Error z value Probability

Intercept 4.2822 1.4314 2.992 0.0028

Bug Type: Bug 0.3217 0.7460 0.431 0.6663

Bug Type: Implementation 0.7613 0.7795 0.977 0.3287

Bug Type: Approach 2.1240 0.9274 2.290 0.0220

User-Rated Programming Knowledge -0.2258 0.1489 -1.517 0.1293

Used Python -0.8917 0.3839 -2.323 0.0202

Grit Ranking -0.6980 0.1960 -3.561 0.0004

Office Hour Use Ranking 0.5556 0.1373 4.045 < 0.0001

Gender: Female -1.0446 0.4959 -2.106 0.0352
Table 21: A logistic model predicting the contentfulness of the hint type, where contentfulness

varied from location = 0, next-step = 1, … to solution = 3. Original factors: bug type, whether the
user could solve the problem before, researcher-rated Python knowledge, user-rated Python

knowledge, user-rated programming knowledge, whether the user had used Python before, grit
ranking, student use of practice resources, student use of office hours, student use of online

materials, and gender.

93

 Next, I ran a similar logistic model on the level of detail chosen for the hint, this time
including hint type as a parameter. As the levels of detail were already ordered (small, medium,
large, and all), I did not have to impose a new ordering. The resulting model can be found in
Table 22. This time, students with lower reported programming knowledge and higher office
hour use request higher detail in hints; again, this seems to indicate that more novice students
want more detail. However, students with higher grit also request more detail, which is
surprising. I again see that approach-type bugs require the most detail (though bug and
implementation bugs also require more detail), and that women request less detail; also, users
who were less capable of solving the problem originally were likely to request more detail.

 Estimate Std. Error z value Probability

Intercept -2.5220 1.2093 -2.085 0.0370

Bug Type: Bug 1.7785 0.8062 2.206 0.0274

Bug Type: Implementation 1.6601 0.8081 2.054 0.0399

Bug Type: Approach 2.9629 0.8930 3.318 0.0009

Can Solve Before Ranking -1.0615 0.2442 -4.347 < 0.0001

User-Rated Programming Knowledge -0.2682 0.1254 -2.140 0.0324

Grit Ranking 0.4316 0.1754 2.461 0.0139

Office Hour Use Ranking 0.4886 0.1130 4.325 < 0.0001

Gender: Female -1.4361 0.4195 -3.423 0.0006

Table 22: A logistic model predicting the level of detail of a hint, where detail varied from small =
0, medium = 1, … to all = 3. Original factors: hint content type, bug type, whether the user could
solve the problem before, researcher-rated Python knowledge, user-rated Python knowledge,
user-rated programming knowledge, whether the user had used Python before, grit ranking,

student use of practice resources, student use of office hours, student use of online materials,
and gender.

 I also investigated whether these user factors would predict actual use of hints in the
second half of the study. I ran a Poisson model predicting the number of hints a student asked
for in the second half, excluding the two students who did not get to complete it. The resulting
model can be found in Table 23. This model supports the findings of the previous ones, as it
shows that having less programming and/or Python knowledge results in asking for more hints.
It also shows that students who completed more problems asked for more hints, and that
women asked for fewer hints.

94

 Estimate Std. Error z value Probability

Intercept 3.0856 0.6975 4.424 < 0.0001

Researcher-Rated Python Knowledge -0.2167 0.0687 -3.153 0.0016

User-Rated Programming Knowledge -0.2119 0.0552 -3.841 0.0001

User-Rated Python Knowledge -0.1727 0.0657 -2.628 0.0086

Grit Ranking 0.1321 0.0811 1.629 0.1033

Practice Problem Use Ranking -0.2751 0.0858 -3.208 0.0013

Online Material Use Ranking 0.2518 0.1130 2.229 0.0258

Gender: Female -0.3426 0.1618 -2.117 0.0342

Part Two Problems Solved 0.1467 0.0526 2.790 0.0053
Table 23: A Poisson model predicting the number of hints a user requested in the second half of
the study. Original factors: researcher-rated Python knowledge, user-rated Python knowledge,

user-rated programming knowledge, grit ranking, student use of practice resources, student use
of office hours, student use of online materials, gender, number of Part two problems solved,

and number of Part two problems attempted but not solved.

Next, I wanted to know whether the types of hints users requested changed based on

the type of error they had encountered. First, I investigate whether the bug types which were
provided were consistently applied to problems; in other words, was it clear to students what
each bug type meant? I focus only on problems completed by at least five students, which
provides 15 problems. Of these fifteen problems, only two had a single bug type that was
chosen by at least 80% of the participants (one a bug bug-type, the other an approach bug-
type). Eleven of the remaining problems reached this cutoff when the second most common
bug-type was added in; nine of these were tied between Bug and Implementation errors, while
two were tied between Approach and Implementation errors. Therefore, it seems that choice of
bug type was at least partially subjective, possibly due to confusion about what an
Implementation error was.

Since there were not consistent results between individual error types, I instead view

them as a spectrum of error levels, with ‘Nothing’ being the lowest level and ‘Approach’ being
the highest. Mapping these bug types to the numbers 0 to 3 gives a numerical rating of how
severe the error type is. Now I want to see whether I can predict how severe the error is
perceived to be based on the distance from the state to the solution (shown in the exercise as
Percent Completed). I averaged the error type numbers for each problem to get an average
rating (where the lowest-rated problem had a rating of 1, and the highest-rated problem had a
rating of 2.73). I found a negative correlation between the level of bug type chosen and the
problem’s percent completed (r = -0.50, p < 0.05); in other words, code that was further from the
correct solution was labeled as having more complex bugs. At this problem level, more
contentful hint types were also correlated with more complex bugs (r = 0.55, p < 0.01), which
matches the result seen in the model that included user data.

95

Finally, I wanted to know which types of hints were considered most helpful, to provide

more information on the learning potential of hints. To do this, I use two metrics: change in the
participant’s rating of whether they could solve the problem (i.e., learning), and the participant’s
rating of the hint’s helpfulness. I also include data from students who backtracked, by marking
these attempts as not being able to solve the problem and not finding the hint helpful (which I
assume to be true, as participants wanted a different hint). It is important to note upfront that
these metrics are not true indicators of learning, as they are based on self-report and do not test
users’ abilities to actually fix bugs. However, they do indicate how hint format impacts student
perception.

Linear models found that both learning and helpfulness were positively correlated with

larger detail sizes, learning was correlated with solution-type hints, and already being able to
solve a problem was correlated with higher ratings of hints, as is shown in Tables 24 and 25.
These models also showed that students who originally did not see a bug (the nothing bug-type)
learned more, but thought the hints were less useful.

 Estimate Std. Error t value Probability

Intercept -0.2807 0.1643 -1.708 0.0886

Bug Type: Implementation 0.1249 0.1275 0.980 0.3281

Bug Type: Bug 0.1081 0.1249 0.865 0.3876

Bug Type: Nothing 0.6716 0.2264 2.967 0.0032

Hint Type: Next-Step 0.1221 0.1350 0.904 0.3665

Hint Type: Structure 0.0565 0.1489 0.380 0.7044

Hint Type: Solution 0.4257 0.1567 2.717 0.0069

Hint Size 0.1773 0.0425 4.174 < 0.0001

Table 24: A linear model predicting the delta of student’s report that they could solve the
problem, before and after receiving a hint. Original factors: bug type, hint type, and hint size.

Adjusted R-squared: 0.08899

96

 Estimate Std. Error t value Probability

Intercept 1.0413 0.1889 5.514 < 0.0001

Can Solve Before
Ranking

0.1853 0.0579 3.200 0.0015

Bug Type: Implementation 0.0020 0.1258 0.016 0.9875

Bug Type: Bug -0.0502 0.1224 -0.410 0.6819

Bug Type: Nothing -0.5665 0.2375 -2.385 0.0177

Hint Type: Next-Step 0.0324 0.1321 0.245 0.8064

Hint Type: Structure -0.2370 0.1458 -1.625 0.1052

Hint Type: Solution 0.2625 0.1535 1.711 0.0881

Hint Size 0.1750 0.0424 4.127 < 0.0001

Table 25: A linear model predicting how helpful students will rank a hint as being. Original
factors: whether they could solve before, bug type, hint type, and hint size. Adjusted R-squared:

0.1321

I also analyzed the four different types of hints, to see if they differed in how they were
perceived by students. Two of the hint types, location hints and structure hints, did not generally
see a significant difference in learning according to a paired t-test (location: 2%, p > 0.1;
structure: 5%, p > 0.1), and were only counted as moderately helpful by participants (location:
65% helpful; structure: 60% helpful). On the other hand, next-step hints and solution hints both
showed significant improvements in learning before and after hints were shown (next-step: 10%
improvement, p < 0.01; solution: 24%, p < 0.001). Next-step hints were counted as helpful 75%
of the time, while solution hints were counted as helpful 86% of the time.

Qualitative Analysis
In addition to the quantitative analysis, I also have copious notes on real-time student

interactions during the study. I reviewed these notes to identify useful commonalities between
participants and to look for areas where hint representation could be improved.

First, I looked for indicators of what kind of help students need, based on participant

comments and actions. A few participants focused primarily on fixing the code, saying things
like "I don't think that's very helpful; it does get rid of the error message, but does it fix the
function?" Other participants wanted to know not just how to fix the code, but also why it had to
be done a certain way. In particular, one person stated: “The hint should be something... the
compiler can't tell. Maybe the message should just say whitespace matters?". Another
participant, after receiving a solution hint, said "I feel like I wouldn't understand why this doesn't
work, but I'd know it doesn't work".

97

More students wanted to use examples in order to understand how code worked. This

attitude was particularly evident in the second half of the study, where many of the participants
asked if they could go back to the first part to look at examples of Python code when tasked with
writing it themselves. However, comments about examples occurred during the first half as well.
As one student said, "I want an example of how... I don't want other solutions. I want to be able
to google, to see how to make it a string". Other students, while trying to think from the point of
view of a student who had created the erroneous state, thought examples would be needed to
help such a confused student. One said, "I'd guess I want examples in this case, ‘cause... if I
thought the len of a number was a reasonable thing to do, I'd want to look at another example".
Another student posited: "I'd want structure [hint]... but would they want structure? They'd have
to recognize they're fundamentally wrong to want structure".

Overall, the differences between these two points of view seem best summarized by the

following quote from one participant: "A hint is what you do when you're stuck. Google is for
when you know what to do, but not how to do it". Understanding the difference between a
student who knows what to do but not how to code it and a student who knows how to code but
not what to do may be essential in formatting useful hints. This difference was shown clearly in
one problem in Part 2 where participants had to use the in operator, which most of them did not
already know. Even when participants got hints that specifically told them to add the expression
‘left side’ in ‘right side’, they did not always follow the hint’s advice; when questioned
about this, one participant said he hadn’t even noticed the in, as he was expecting something
more like .contains(). He thought that having an example of how to use in would be more
useful.

 Many participants also commented about the amount of information provided by hints.
There seemed to be a general assumption that students should be provided with the smallest
hint possible, but also an understanding that, sometimes, more detail would be necessary. This
assumption appeared in complaints that small hints did not always provide enough information:
"Oh... that didn't help. I think I need more than a small amount of help.", and "Part of me wants a
location of the incorrect code, but that implies that I think the error will be obvious. That might be
my first hint, though.". It also appeared in complaints that large hints were too large: "This is
probably too detailed- it's not a hint, it's just the solution", "It seems like I would never want what
change to make, that's just giving me the answer", and “I feel like this is cheating, because it
gave me alternative correct solutions, didn't that give me the answer?"

 Some participants explicitly stated that they wanted to start with smaller hints, but
progress to larger ones if needed. One said, "Once I'd fixed that section, I'd want a bigger hint,
but right now I'd want a small hint to fix this". Another mentioned, "I want the smallest amount of
help possible, so I can figure it out... but that's under the assumption that I can figure it out".
One particularly intriguing comment came from a participant who said "Most of my mistakes are
syntactic, that was more logical. Once I know it's logical, I'll want a more detailed hint.”

98

 Finally, I looked for places where participants expressed confusion about hints to better
understand how I could improve them. First and most blatantly, several students mentioned
code obfuscation as being confusing and unnecessary (in both next-step hints and structure
hints). Several comments mentioned this idea directly: "The notation for [the structure] was hard
for me to read, at least, and was rarely what I was looking for", "Only when I got the full
statement did I know what was going on", and “If you're giving a hint, why not make it entirely
clear?". Some participants mentioned that structure hints could be improved if individual values
were better represented: “I'd expect the variables to be numbered". However, students generally
thought that next-step hints should provide full detail: "I think the whole thing would work,
because I didn't know about casting, the hint should tell me that".

 Participants also expressed opinions on hints that recommended they delete or replace
work that had already been done. One student said, "I thought it was telling me to use a whole
different approach, I didn't want to start again" when asked why he wasn’t following a hint.
Another scoffed at a delete hint, saying, "Well, I don't think that's a hint". These comments came
from participants working on their own code in Part 2; participants in Part 1 who were rating
large replace next-step hints did not seem quite so offended, but they were sometimes
confused. One participant said, “I sort of understand the old code, but it told me to replace it with
new code, which I don't understand what it's doing", while another said, "I guess if I follow this, I
could get the right solution, but I don't understand much of what's going on".

 Finally, participants also expressed confusion at the term ‘column’ (used in location and
next-step hints), as many of them did not recognize what that term meant. This confusion could
be remedied by either having columns explicitly shown in the IDE (as many IDEs do), or by
using other location indicators, like highlighting or bolding the relevant piece of code. The
potential use of this approach was demonstrated by one student who highlighted part of her
code before pressing Hint, and others who suggested that highlighting broken indentation would
be more useful than the textual hints. I also noticed that the students with the least incoming
programming knowledge struggled greatly with applying the hints; two participants encountered
syntactic trouble when they tried to apply next-step hints that included filler strings (by not
putting quotes around the filler), while another had trouble finding the right location in the code
to apply changes, as he had trouble distinguishing ‘right side’ from ‘left side’. Differently
formatted hints might improve the experience of students like them.

Discussion
 In this study, I observed a few strong connections between a participant’s knowledge
level and the hints they requested, as well as preferences for different types of hints for different
error types. First, more experienced students (via several factors) wanted less detail, while less
experienced students wanted more; this could be viewed as an expertise reversal effect, which
states that learners at different levels of knowledge need different types of assistance (Kalyuga
et al, 2003). This information could be included in a student model that could change the kinds
of hints provided to students. Additionally, only next-step and solution hints were associated
with a view of improvements in learning; therefore, it makes sense to focus on these types of
hints when providing feedback to students.

99

Alternatively, based on participant comments, ITAP could construct multiple levels of

hints that would provide increasing amounts of information each time a student asked for more;
this approach would be akin to the method used in traditional ITSs, where hints are often
provided in a point-teach-bottom-out sequence (VanLehn, 2006). However, instead of using
varying levels of detail in next-step hints (as I did in the pilot study), ITAP could instead provide
different types of hints, starting with location, moving on to next-step, and bottoming out at the
personalized solution. The type of hint could also be adjusted based on the distance from the
solution, as I found that participants wanted more contentful hints when they encountered
approach-style bugs (possibly because more improvements needed to be made) and that
approach-style bugs were associated with larger distances from the correct code.

The idea of providing examples that do not necessarily give away the solution came up

several times throughout the study, which leads to a new question: would it be possible to
construct hints for the explicit purpose of providing targeted examples? Integrating worked
examples into data-driven tutors has been investigated before (Liu, Mostafavi, & Barnes, 2016),
though the worked examples were provided upfront instead of having students attempt problem-
solving first, and a method for optimal selection of examples has been proposed by (Gross et al,
2014b). However, it is not clear how these hints and examples might differentially affect
learning; further study will be needed to tease the differences of these two feedback types apart.
For now, I will continue focusing on data-driven hints, but example hints provide an interesting
avenue for future work.

Finally, I must address the concerns raised by students about hints which suggest that

they change large portions of code and about hint obfuscation. The first problem occurs when
students ask for hints on code that is significantly different from any correct state that has been
seen before. This problem may occur on code states which are attempting to reach new solution
states, but more often it occurs in code that is confused and hard to rescue. Perhaps a better
approach to providing hints in this context would be to provide them with a simpler problem or
worked example that would help them learn more material. The second problem is easier to
address, as I have now seen it raised several times. Now that students in the classroom study
and students in the usability study have complained about code obfuscation, it is clear that it
must be changed to something easier to understand. It may not be wise to remove it altogether
(as there are times when a teacher may wish to not give away a large amount of code), but
ITAP must minimize the amount of filler code used in hints in the future.

100

5. Measuring the Effect of Hints on Student Learning
 In this final study, I address an important question about ITAP-generated hints: do they
have any impact on student learning? I performed a randomized crossover classroom
experiment that could directly measure the effects of receiving hints on student performance on
related coding problems. The main difference between this study and the previous classroom
studies is that in this study, student participation was required, where past experiments have
encouraged voluntary participation. In this chapter I discuss the conduct and results of this
classroom study.

 In this study, I anticipate that hints may have an impact on time-on-task and/or learning.
There is some support for each of these hypotheses in the previous literature. For the time-on-
task hypothesis, previous work on providing novices with detailed messages about why
programs behaved in certain ways resulted in the programmers completing their work much
more efficiently (Ko & Myers, 2008). Additionally, an evaluation of the Hint Factory showed that
having hints helped students complete some problems in a third of the time, when compared to
students without hints (Eagle & Barnes, 2013), and a study of an automatic hint generation
system for programming found that students who had hints available finished problems in less
time (Kim et al, 2016).

General research into hints in ITSs delves more into the effect hints have on learning.
One study found that the amount of time a student spends with a bottom-out hint correlates with
learning (Shih, Koedinger, & Scheines, 2011), potentially due to self-explanation benefits.
Another study comparing error-flagging to hints showed that hints resulted in marginally higher
levels of learning (Paquette et al, 2012). However, as was shown in the previous chapter,
different students have different experiences with hints; in particular, previous studies have
shown that more novice students tend to benefit from more assistance, while more expert
students benefit from less (Razzaq, Heffernan, & Lindeman, 2007), so the effects of hints on
learning may not be clear.

Updated Implementation
Since this study had required participation, instead of voluntary, I had to ensure that the

hint generation system and the online coding modules would be able to support the full class of
students accessing it at the same time. As this study required supporting up to 200 sessions at
once, the original system of using individual servers to run the online IDE and ITAP instance
would not suffice. Therefore, I decided to transition both the frontend IDE and backend ITAP
system to work at greater scale by integrating coding problems into the Open Learning Initiative
(OLI) system and transitioning the ITAP backend to be supported by Django, a popular Python
web framework designed to make systems scalable.

First, a brief background of the OLI system (Lovett, Meyer, & Thille, 2008). OLI serves
as an online educational resource that provides interactive online course resources over a
variety of topics, including programming. It combines textual lessons with tutor activities (such

101

as the one shown in Figure 52) that allow students to practice as they learn. Some of these tutor
activities were made with the tutor-authoring system CTAT (Aleven et al, 2006) and thus come
equipped with Submit and Hint buttons. The programming problems used in OLI prior to this
study were also built with Submit and Hint buttons, where hints were written for each problem at
the problem’s creation, and therefore would not change based on student input.

Figure 52: An example of an ITAP-enabled tutor activity in the OLI system.

I modified the programming problems in a specific module of OLI’s Principles of

Computing course to instead provide hints using the ITAP system by submitting the student ID,
problem name, and current code to an ITAP server on each student’s submission and sending
back a JSON object containing the hint message. This was accomplished by designating the
ITAP system as a new type of feedback engine within OLI. The OLI project ran its own instance
of ITAP on its servers; as the project already supports hundreds of students using the main
system every day, it was able to meet the demand easily.

I also needed to make certain modifications to the ITAP system during this transition
period. First, the original version of ITAP stored data in csv files, which was not sustainable for
high-volume use. I transitioned to a database format for data storage by using Django. Using
Django required that I also transition the ITAP codebase from Python2 to Python3, which
necessitated many changes within the codebase (and several core changes to the built-in AST
format). These changes did not impact the underlying algorithm, but they did lead to several
bugs that were not caught until after the study was run, leading to less-than-optimal hint

102

generation in some cases. The primary bugs that might have affected the students caused
incorrect variable name display and sometimes caused the algorithm to choose less-efficient
goal states.

Classroom Study 2: How Do Hints Affect Learning?
The following section describes the final study of this thesis, conducted in the spring of

2017.

Research Questions
This study was designed to answer two primary research questions. First, does seeing

ITAP-generated hints during practice lead to increased learning on similar coding tasks?
Second, does seeing ITAP-generated hints during practice lead to faster completion of practice
problems?

Methods
To answer these research questions, I designed a study that would require students to

complete practice problems during a time of optimal learning. The study consisted of five
stages: pretest, practice 1, midtest, practice 2, and posttest. The pretest, midtest, and posttest
each consisted of three questions (one each of easy, medium, and hard difficulty). While
students could run test cases on their code in these problems, they could not ask for hints.
These sections were used to assess learning over time. The two practice sessions consisted of
eight coding problems (three easy, three medium, and two hard), which could have hints
enabled, depending on the student’s condition. The content of the problems in the easy,
medium, and hard categories were aligned across sections, so that learning could be measured
directly across activities over time. The activities used are included in Appendix 1.

Students were assigned to one of two conditions upon attempting the first problem:

hints-first or hints-second. Students in the hints-first condition received hint messages
generated by ITAP alongside test case results in the practice 1 section (with every request
instead of on-demand); students in the hints-second condition received them in the practice 2
section instead. In this way, I hoped to measure the effects of hints on learning between pretest
and midtest and between midtest and posttest. I originally intended to test a new sequence of
hints (based on the findings from the usability study), where students would be able to request
more detailed hints after viewing the original ones; however, last-minute changes to the OLI
interface resulted in the traditional next-step hints being used alone instead.

The study was conducted in 15-110: Principles of Computing, the introductory

programming course for non-majors at Carnegie Mellon University. It occurred in weeks 7-8 of
the course, directly before the first lab exam. Students were told by the main course instructor
that they would receive 5% on the lab exam for either completing all the problems in the OLI
module or spending at least two hours in the module (so that students would not be required to
spend an undue amount of time in the system). 189 students used the system; of these

103

students, all but seven met the requirement for full participation credit. One student asked that
their data not be used in analysis, so I removed them from the dataset.

Results
When the study began, I asked students to complete the modules in order and also

asked that they spend a maximum of ten minutes per pretest/midtest/posttest and 45 minutes
per practice session, so that they would attempt all sections within two hours. I did not enforce
these requests, which turned out to be a mistake, as many students completed activities out of
order. Therefore, the following analyses will be done on subsets of students who completed the
analyzed activities in the correct order (as causality cannot otherwise be discerned).

First, I attempted to analyze a subset of students who completed the pretest, practice 1,

midtest, practice 2, and posttest in the correct order. Of the 188 students, 92 completed all the
modules in the correct order. An additional nine students went back and forth between the
pretest and practice 1 before opening the midtest, or went back and forth between the midtest
and practice 2 before opening the posttest; I include these students, but only count work done
on the pretest and midtest before the practices were attempted. Of the remaining 87 students,
65 did not complete one of the five modules, and the other 22 used other odd orderings that
could not be redeemed.

Of the 101 students analyzed, 50 were in the hints-first condition and 51 were in the

hints-second condition. Since every submission resulted in a hint (for students in the hint
condition), I cannot provide the usual statistics on student use of hints; however, I can show
how many submissions students made in each practice session as a surrogate metric. In the
first practice session, students in the hints-first condition made 20.22 submissions on average,
while students in the hints-second condition made 21.98 submissions on average. In the second
practice session, students in the hints-first condition (now without hints) made 19.2 submissions
on average, while students in the hints-second condition made 21.75 submissions on average.

To determine whether students were a) learning more or b) spending less time on

practice, I primarily investigated two variables. First, I analyzed the number of problems that
students got correct on the first attempt (controlling for the number of problems they attempted
at all and performance on the previous test) in the midtest and posttest. Second, to measure
time on task, I analyzed how much time was spent on the practice 1 and practice 2 sections,
controlling for number of problems attempted in each.

Analysis of Learning
According to a repeated measures ANOVA there was a significant change in

performance on first attempt from pretest to midtest F(1,99) = 38.80, p < 0.01; however, there
was no significant effect of condition F(1,99) = 2.04, p > 0.1 nor interaction between condition
and test time F(1,99) = 1.51, p > 0.1. A second repeated measures ANOVA from midtest to
posttest detected no significant effects for test time F(1,99) = 0.54, p > 0.1, condition F(1,99) =
0.80, p > 0.1 nor interaction between the two F(1,99) = 0.54, p > 0.1. These results are shown in

104

Figure 53. I also found no significant effect of condition on time on task in practice 1 or practice
2 according to a linear model (Practice 1: 43.56min for the hints-first condition, 51.12min for the
hints-second condition. Practice 2: 43.37min for the hints-first condition, 51.67min for the hints-
second condition).

Figure 53: Learning from pre-to-mid-to-post test, in both conditions. Students in the two

conditions start at significantly different levels of performance, but have achieved the same level
of learning by midtest. The difference in learning between conditions is not significant according

to a repeated measures ANOVA.

It is possible that I did not see an effect of condition on learning or time on task due to
the reduced sample size. Therefore, I also looked at students who completed the pretest,
practice 1, and midtest in the correct order. Of the 188 students, 122 completed these three
sessions in the correct order originally. An additional ten students alternated between the
pretest and practice 1 before moving on to the midtest; I include these students, but only use
their initial work on the pretest for learning measurement. Of the remaining 56 students, 46 did
not complete one of the three required elements, and the other 10 used other odd orderings that
could not be redeemed.

Of the 132 students analyzed, 64 were in the hints-first condition, while 68 were in the

hints-second condition. Again, I analyze how many submissions students made in the first
practice session as a surrogate for hints requested; students in the hints-first condition
requested 21.22 hints on average, while students in hints-second requested 21.91 hints on
average.

105

A repeated measures ANOVA again showed a significant increase in learning from
pretest to midtest F(1,130) = 53.85, p < 0.01, but no significant effect of condition F(1,130) =
0.53, p > 0.1 nor an interaction between the two F(1,130) = 2.07, p > 0.1. This result is shown in
Figure 54. However, I did find a marginal effect of condition on time on task. A linear model
predicting total time spent in practice 1 found that being in the hints-second condition was
positively correlated with spending time on task, but only with marginal significance (p < 0.1),
with an effect size of 7.35 minutes. The full model is shown in Table 26.

Figure 54: Learning from pretest to midtest was significant, F(1,130) = 53.85, p < 0.01,

but learning between conditions was not.

 Estimate Std. Error t value Probability

Intercept -402.9856 802.3609 -0.502 0.6164

Condition: hints-second 441.0321 238.7987 1.847 0.0671

Practice 1 # Attempts 319.9040 108.7219 2.942 0.0039

Pretest Total Time 0.8546 0.1873 4.561 < 0.0001

Table 26: A linear model predicting time spent on practice problems in the first practice session.
Original factors: condition, # attempts in practice 1, total time spent in pretest. Adjusted R-

squared: 0.2198

 To better understand where this change in time-on-task occurred, I plotted a density
graph to show how much time different students were spending in practice 1 across the two

106

conditions. This density graph is shown in Figure 55. This figure shows that most students in the
hinted condition spent the recommended amount of time on the practice module (around 45
minutes), while more students in the control condition were likely to spend additional time on
practice. In other words, having access to hints may have kept students from getting stuck and
spending non-fruitful time on problems.

Figure 55: A density graph showing how time spent on practice was distributed across students

between conditions.

Discussion
Based on the results, even though students learned from pretest to midtest, it seems

fairly unlikely that the hints generated at the time of the study influenced learning. However,
there does seem to be a possibility that having hints reduced the amount of time students
needed to spend on practice by 13.7%, without negatively affecting learning outcomes. To
determine whether hints can actually reduce the time needed to learn, I will need to run further
studies to see if the marginally significant effect holds.

It is worth noting that the results found in this study may be weaker than one would

typically expect due to several factors. First, as mentioned before, there were several bugs in
the ITAP system at the time of the study, which resulted in some less-than-optimal hints.
Second, some students reported latency issues during use of the hint system on OLI during
times of heavy traffic; the OLI team addressed these concerns efficiently (so that the number of
complaints stayed low), but this lag may still have impacted learning. Finally, this study occurred
at a time of review, instead of initial learning, and the topics covered had all been taught in
previous weeks. This delay may have resulted in different learning results than would be

107

produced with a study conducted earlier in the learning process. However, all of these
limitations would lead one to expect weaker effects due to hints, instead of working against my
hypothesis.

108

6. Conclusions, Contributions, and Future Work
 In this final chapter, I reiterate my findings from the previous chapters, present the
contributions of this thesis, and discuss avenues for future work. As a reminder, my original goal
was to extend the field of data-driven tutoring to work in the more complex domain of
programming, to see whether this approach could provide useful next-step hints for novice
programmers.

 First, I built ITAP, the Intelligent Teaching Assistant for Programming, as a technical
approach towards adapting data-driven hint generation to a new domain. This system extends
work on state representation by normalizing away non-semantic variation, which assists the
system in identifying only semantic differences between different student states. The system
also enhances research on next-step identification by constructing new paths instead of using
paths that had been seen before, which allows it to generate hints for states that have never
been seen before. I found that ITAP could generate hints 100% of the time, and that it could
even chain hints together to create personalized worked examples for almost all student
submissions. I also found that the hints were usually generated quickly enough to be usable.
Another analysis showed that ITAP independently improved in performance as it gathered more
data, and that several problems were able to reach optimal solutions with a subset of data.
These results showed that data-driven hint generation for programming was feasible, but they
did not address whether the generated hints would be useful.

 In initial classroom studies, I investigated how students interacted with hints and help-
seeking, to better understand how hints should be presented. When practice and hints were
made optional, I found no evidence of a significant effect on learning, though choosing to
practice was associated with lower dropout rates. Surveying students showed that students with
higher levels of grit worked on fewer problems but asked for more hints, and that students with
stronger growth mindsets started more problems. Additionally, qualitative notes suggested that
students wanted more clarity and detail in hint messages, which led to my next question: how
should hints be presented?

 I ran a usability study where I tested four different types of hints (location, next-step,
structure, and example) across a variety of buggy programs. Across a range of participants, I
found that less experienced students generally wanted more content and more detail in their
hints. Furthermore, analysis showed that more detailed hints were more likely to help students
debug their code and were considered more helpful. This result is at odds with a general belief,
expressed by several participants including some novices, that initial hints should contain a low
level of detail. I also found that approach-type bugs (which were furthest from the goal state)
were more often associated with larger content types and higher levels of detail in requested
hints. Altogether, the type of hint presented might ideally vary on several dimensions:
experience level of the student, severity of the error, and how many hints have been requested
already.

109

 I also found that in many occasions, students preferred seeing examples to receiving
hints on how to fix their programs. Students would occasionally go out of their way to find
examples, by reviewing previous work that had been completed. It seems that when students
are stuck, they are often in one of two situations: either they know what to do but not how to
code it, in which case an example is most helpful, or they don’t know what to do, in which case
they want a hint. The example hints and next-step hints best fit these descriptions, and indeed,
those two types of hints were the only two that resulted in significant learning according to
student reports of their ability to fix bugs.

 Finally, I tested the ability of hints to improve learning or time-on-task in a randomized
control trial experiment. I found no evidence of an effect of hints on learning outcomes, but
having hints appeared to result in students spending 13.7% less time on practice. In other
words, it appears students learned more efficiently when they had access to hints. As this effect
was found in a condition with non-optimal hints due to a few technical limitations, even stronger
results may be expected in follow-up studies.

 There are several limitations to the work presented in this thesis. First, on a technical
level, ITAP has been tested with introductory-level problems which tend to be short and simple.
In contexts with longer or more complex problems it is likely that hint generation would be less
effective. ITAP also relies on having test cases to determine whether a code state is correct,
and test cases may not be available for several types of problems (including problems with
randomization and graphics). Other researchers are investigating how to apply data-driven hint
generation in these domains (Price, Dong, & Barnes, 2016), and they are likely to improve on
the work presented here.

Additionally, the studies conducted for this thesis all had methodological limitations. The
optional studies likely had a skewed population of students opting in, most likely students who
would already engage frequently with practice resources. The usability study relied on self-
report to determine whether users could solve problems, which could easily be skewed based
on user perceptions. Finally, the study on learning delivered hints with every feedback request,
which would never occur in normal practice circumstances. I plan to address these limitations by
conducting new studies in the future to validate the original results.

 The main technical and practical contribution of this thesis has been the ITAP system
itself. This data-driven approach has been adopted and improved by other researchers since
the first publication of the algorithm (Piech et al, 2015a; Price, Dong, & Barnes, 2016), which
may lead to continued improvements in the field of data-driven tutoring, and thus improved
feedback for students in classrooms. ITAP has also proven useful in introductory programming
courses at Carnegie Mellon University as a resource for practice exercises, and it can continue
to be used as a resource in the future. In the realm of data-driven tutoring, this work has
demonstrated that it is possible to provide targeted next-step hints for any state automatically,
and that these hints improve over time as data is collected. It has also shown that ITAP-
generated hints can help students complete practice problems in less time with the same
learning results, which can lead to more efficient learning.

110

For learning science and human-computer interaction contributions, I have also provided

insights into how students are interacting with help resources in introductory programming
classes, which may lead to modifications in how feedback is provided in the future. For
example, I found that all interviewed students reported that they received help from their peers
in other classes, but that they had to rely more on TAs in programming, due to different
collaboration policies. Given the finding that student stuck-states can be caused by knowing
what to do but not how to do it, it may be possible to institute new collaboration policies that
allow peers to share examples, but not fixes. This type of policy could allow students to practice
coding independently while still receiving help from social circles.

I also demonstrated that there is a discrepancy between the level of detail that novice

students need for learning and the level they think is appropriate. Hints with higher levels of
detail were consistently reported to be more helpful and better for fixing bugs, yet users
expected lower levels of detail. It may be possible to fix this discrepancy by separating the
learning process from the process of assessment, so that novices can receive highly detailed
feedback on practice problems without any qualms. Further work will be needed to determine if
this approach works.

 In future work, I plan to continue refining ITAP so that it might provide robust and useful
hints in a variety of contexts. I also hope to eventually extend the system to work for additional
languages by adapting the central algorithm to work on abstract ASTs, with different
canonicalization and reification libraries for each language. Furthermore, I am interested in
examining the relationship between examples and hints as types of feedback, to see how both
affect learning. I also plan to extend my current analyses of these thesis studies to more closely
examine whether students actually follow the recommendations of hints they receive, to see
how much of a direct impact hints have. Finally, I plan to replicate the study results in future
courses where I am the head instructor to make sure that the results are robust across different
contexts. In particular, I plan to study the long-term effects of hint support during practice, to see
if this kind of support impacts student learning or retention throughout a course.

111

References
Adam, A., & Laurent, J. P. (1980). LAURA, A System to Debug Student Programs. Artificial
Intelligence, 15(1-2), 75-122.

Ade-Ibijola, A., Ewert, S., & Sanders, I. (2015). Introducing Code Adviser: A DFA-Driven
Electronic Programming Tutor. In Proceedings of the 20th International Conference on
Implementation and Application of Automata (pp. 307-312).

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, Principles, Techniques, and Tools.

Aleven, V., McLaren, B., Sewall, J., & Koedinger, K. (2006). The Cognitive Tutor Authoring
Tools (CTAT): Preliminary Evaluation of Efficiency Gains. In Proceedings of the 8th International
Conference on Intelligent Tutoring Systems (pp. 61-70).

Aleven, V., Roll, I., McLaren, B. M., & Koedinger, K. R. (2016). Help Helps, But Only So Much:
Research on Help Seeking with Intelligent Tutoring Systems. International Journal of Artificial
Intelligence in Education, 26(1), 205-223.

Aleven, V., Stahl, E., Schworm, S., Fischer, F., & Wallace, R. (2003). Help Seeking and Help
Design in Interactive Learning Environments. Review of Educational Research, 73(3), 277-320.

Antonucci, P., Estler, C., Nikolić, D., Piccioni, M., & Meyer, B. (2015). An Incremental Hint
System for Automated Programming Assignments. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education (pp. 320-325).

Baker, R. S., Corbett, A. T., Koedinger, K. R., & Wagner, A. Z. (2004). Off-task Behavior in the
Cognitive Tutor Classroom: When Students Game the System. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 383-390).

Barnes, T., & Stamper, J. (2008). Toward Automatic Hint Generation for Logic Proof Tutoring
Using Historical Student Data. In Proceedings of the 9th International Conference on Intelligent
Tutoring Systems (pp. 373-382).

Barnes, T., Stamper, J., Lehman, L., & Croy, M. (2008). A Pilot Study on Logic Proof Tutoring
Using Hints Generated from Historical Student Data. In Educational Data Mining 2008: 1st
International Conference on Educational Data Mining, Proceedings (pp. 197-201).

Bhatia, S. & Singh, R. (2016). Automated Correction for Syntax Errors in Programming
Assignments using Recurrent Neural Networks. In Proceedings of the 2nd Indian Workshop on
Machine Learning.

112

Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit Theories of Intelligence
Predict Achievement Across an Adolescent Transition: A Longitudinal Study and an
Intervention. Child Development, 78(1), 246-263.

Bloom, B. S. (1984). The 2 Sigma Problem: The Search for Methods of Group Instruction as
Effective as One-to-One Tutoring. Educational Researcher, 13(6), 4-16.

Carter, A. S., Hundhausen, C. D., & Adesope, O. (2015). The Normalized Programming State
Model: Predicting Student Performance in Computing Courses Based on Programming
Behavior. In Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (pp. 141-150).

Chang, P. P., & Hwu, W. W. (1989). Inline Function Expansion for Compiling C Programs. In
ACM SIGPLAN Notices (Vol. 24, No. 7, pp. 246-257).

Choudhury, R.R., Yin, H., & Fox, A. (2016). Scale-Driven Automatic Hint Generation for Coding
Style. In Proceedings of the 13th International Conference on Intelligent Tutoring Systems (pp.
122-132)

Computing Research Association (2017). Generation CS: Computer Science Undergraduate
Enrollments Surge Since 2006. http://cra.org/data/Generation-CS/

Corbett, A. T., & Anderson, J. R. (2001). Locus of Feedback Control in Computer-Based
Tutoring: Impact on Learning rate, Achievement and Attitudes. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 245-252).

Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent Tutoring Systems.
Handbook of Human-Computer Interaction (pp. 849-874).

Cummins, S., Stead, A., Jardine-Wright, L., Davies, I., Beresford, A. R., & Rice, A. (2016).
Investigating the Use of Hints in Online Problem Solving. In Proceedings of the Third (2016)
ACM Conference on Learning@ Scale (pp. 105-108).

Cutts, Q., Cutts, E., Draper, S., O'Donnell, P., & Saffrey, P. (2010). Manipulating Mindset to
Positively Influence Introductory Programming Performance. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education (pp. 431-435).

D'Antoni, L., Kini, D., Alur, R., Gulwani, S., Viswanathan, M., & Hartmann, B. (2015). How Can
Automatic Feedback Help Students Construct Automata?. ACM Transactions on Computer-
Human Interaction (TOCHI), 22(2), 9.

D’Antoni, L., Samanta, R., & Singh, R. (2016). Qlose: Program Repair with Quantitative
Objectives. In Proceedings of the 28th International Conference on Computer Aided Verification
(pp. 383-401).

113

de Raadt, M., Hamilton, M., Lister, R., & Tutty, J. (2005). Approaches to Learning in Computer
Programming Students and Their Effect on Success. In Proceedings of the 2005 HERDSA
Annual Conference (pp. 407-414).

Dillenbourg, P. (1989). Designing a Self-Improving Tutor: PROTO-TEG. Instructional Science,
18(3), 193-216.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic Test-Based Assessment of
Programming: A Review. Journal on Educational Resources in Computing (JERIC), 5(3), 4.

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and
Passion for Long-Term Goals. Journal of Personality and Social Psychology, 92(6), 1087-1101.

Eagle, M., & Barnes, T. (2013). Evaluation of Automatically Generated Hint Feedback. In
Proceedings of the 6th International Conference on Educational Data Mining (pp. 372-374).

Eagle, M., & Barnes, T. (2014). Data-Driven Feedback Beyond Next-Step Hints. In Proceedings
of the 7th International Conference on Educational Data Mining (pp. 444-446).

Eagle, M., Johnson, M., & Barnes, T. (2012). Interaction Networks: Generating High Level Hints
Based on Network Community Clustering. In Proceedings of the 5th International Conference
on Educational Data Mining (pp. 164-167)

Edmison, B., Edwards, S. H., & Pérez-Quiñones, M. A. (2017). Using Spectrum-Based Fault
Location and Heatmaps to Express Debugging Suggestions to Student Programmers. In
Proceedings of the Nineteenth Australasian Computing Education Conference (pp. 48-54).

Elliot, A. J., & McGregor, H. A. (2001). A 2x2 Achievement Goal Framework. Journal of
Personality and Social Psychology, 80(3), 501.

Ericsson, K. A., & Simon, H. A. (1998). How to Study Thinking in Everyday Life: Contrasting
Think-Aloud Protocols with Descriptions and Explanations of Thinking. Mind, Culture, and
Activity, 5(3), 178-186.

Folsom-Kovarik, J. T., Schatz, S., & Nicholson, D. (2010). Plan ahead: Pricing ITS Learner
Models. In Proceedings of the 19th Behavior Representation in Modeling & Simulation (BRIMS)
Conference (pp. 47-54).

Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L., & Cosejo, D. (2009). I Learn from
You, You Learn from Me: How to Make iList Learn from Students. In Proceedings of the 2009
Conference on Artificial Intelligence in Education: Building Learning Systems that Care: From
Knowledge Representation to Affective Modelling (pp. 491-498).

114

Freeman, P., Watson, I., & Denny, P. (2016). Inferring Student Coding Goals Using Abstract
Syntax Trees. In Proceedings of the 24th International Conference on Case Based Reasoning
(pp. 139-153).

Gegg-Harrison, T. S. (1992). ADAPT: Automated Debugging in an Adaptive Prolog Tutor. In
Proceedings of the Second International Conference on Intelligent Tutoring Systems (pp. 343-
350).

Glassman, E. L., Scott, J., Singh, R., Guo, P. J., & Miller, R. C. (2015). OverCode: Visualizing
Variation in Student Solutions to Programming Problems at Scale. ACM Transactions on
Computer-Human Interaction (TOCHI), 22(2), 7.

Glassman, E. L., Lin, A., Cai, C. J., & Miller, R. C. (2016). Learnersourcing Personalized Hints.
In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work &
Social Computing (pp. 1626-1636).

Gross, S., Mokbel, B., Hammer, B., & Pinkwart, N. (2012). Feedback Provision Strategies in
Intelligent Tutoring Systems Based on Clustered Solution Spaces. DeLFI 2012: Die 10. e-
Learning Fachtagung Informatik (pp. 27-38).

Gross, S., Mokbel, B., Hammer, B., & Pinkwart, N. (2014b). How to Select an Example? A
Comparison of Selection Strategies in Example-Based Learning. In Proceedings of the 12th
International Conference on Intelligent Tutoring Systems (pp. 340-347).

Gross, S., Mokbel, B., Paassen, B., Hammer, B., & Pinkwart, N. (2014a). Example-based
Feedback Provision Using Structured Solution Spaces. International Journal of Learning
Technology, 9(3), 248-280.

Gross, S., & Pinkwart, N. (2015). How Do Learners Behave in Help-Seeking When Given a
Choice? In Proceedings of the 17th International Conference on Artificial Intelligence in
Education (pp. 600-603).

Gulwani, S., Radiček, I., & Zuleger, F. (2016). Automated Clustering and Program Repair for
Introductory Programming Assignments. arXiv preprint arXiv:1603.03165.

Hartmann, B., MacDougall, D., Brandt, J., & Klemmer, S. R. (2010). What Would Other
Programmers Do: Suggesting Solutions to Error Messages. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 1019-1028).

Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research,
77(1), 81-112.

115

Head, A., Glassman, E., Soares, G., Suzuki, R., Figueredo, L., D'Antoni, L., & Hartmann, B.
(2017). Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis. In
Proceedings of the Fourth (2017) ACM Conference on Learning@Scale (pp. 89-98).

Heiner, C. (2008). A Preliminary Analysis of the Logged Questions that Students Ask in
Introductory Computer Science. In Proceedings of the 1st International Conference on
Educational Data Mining, (pp. 250-257).

Hicks, A., Dong, Y., Zhi, R., Cateté, V., & Barnes, T. (2015). BOTS: Selecting Next-Steps from
Player Traces in a Puzzle Game. In Proceedings of the 2nd International Workshop on Graph-
Based Educational Data Mining.

Hovemeyer, D., Hellas, A., Petersen, A., & Spacco, J. (2016). Control-Flow-Only Abstract
Syntax Trees for Analyzing Students' Programming Progress. In Proceedings of the 2016 ACM
Conference on International Computing Education Research (pp. 63-72).

Hume, G., Michael, J., Rovick, A., & Evens, M. (1996). Hinting as a Tactic in One-on-One
Tutoring. The Journal of the Learning Sciences, 5(1), 23-47.

Jeuring, J., van Binsbergen, L. T., Gerdes, A., & Heeren, B. (2014). Model Solutions and
Properties for Diagnosing Student Programs in Ask-Elle. In Proceedings of the Computer
Science Education Research Conference (pp. 31-40).

Jin, W., Barnes, T., Stamper, J., Eagle, M. J., Johnson, M. W., & Lehmann, L. (2012). Program
Representation for Automatic Hint Generation for a Data-Driven Novice Programming Tutor. In
Proceedings of the 11th International Conference on Intelligent Tutoring Systems (pp. 304-309).

Kaleeswaran, S., Santhiar, A., Kanade, A., & Gulwani, S. (2016). Semi-Supervised Verified
Feedback Generation. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (pp. 739-750).

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The Expertise Reversal Effect.
Educational Psychologist, 38(1), 23-31.

Kennedy, K. (1979). A Survey of Data Flow Analysis Techniques.

Keuning, H., Jeuring, J., & Heeren, B. (2016). Towards a Systematic Review of Automated
Feedback Generation for Programming Exercises. In Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education (pp. 41-46).

Kim, D., Kwon, Y., Liu, P., Kim, I. L., Perry, D. M., Zhang, X., & Rodriguez-Rivera, G. (2016).
Apex: Automatic Programming Assignment Error Explanation. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (pp. 311-327).

116

Ko, A., & Myers, B. (2008). Debugging Reinvented: Asking and Answering Why and Why Not
Questions about Program Behavior. In Proceedings of the 30th International Conference on
Software Engineering (pp. 301-310).

Koedinger, K. R., & Aleven, V. (2007). Exploring the Assistance Dilemma in Experiments with
Cognitive Tutors. Educational Psychology Review, 19(3), 239-264.

Koedinger, K. R., Brunskill, E., Baker, R. S., McLaughlin, E. A., & Stamper, J. (2013). New
Potentials for Data-Driven Intelligent Tutoring System Development and Optimization. AI
Magazine, 34(3), 27-41.

Kulik, J. A., & Kulik, C. L. C. (1988). Timing of Feedback and Verbal Learning. Review of
Educational Research, 58(1), 79-97.

Lan, A. S., Vats, D., Waters, A. E., & Baraniuk, R. G. (2015). Mathematical Language
Processing: Automatic Grading and Feedback for Open Response Mathematical Questions. In
Proceedings of the Second (2015) ACM Conference on Learning@Scale (pp. 167-176).

Lavbič, D., Matek, T., & Zrnec, A. (2016). Recommender System for Learning SQL Using Hints.
Interactive Learning Environments, 1-17.

Lazar, T., & Bratko, I. (2014). Data-Driven Program Synthesis for Hint Generation in
Programming Tutors. In Proceedings of the 12th International Conference on Intelligent Tutoring
Systems (pp. 306-311).

Le, N. T. (2016). A Classification of Adaptive Feedback in Educational Systems for
Programming. Systems, 4(2), 22.

Li, G., Wu, W., Sun, Y., Wang, J., & Lai, T. (2007). Transformation-Based Assessment for C
Programs. In Proceedings of the 9th International Symposium on Signal Processing and Its
Applications.

Lin, C. J., Chou, C. Y., & Chan, T. W. (2008). Developing a Computer-Supported Tutoring
Interaction Component with Interaction Data Reuse. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems (pp. 152-161).

Liu, Z., Mostafavi, B., & Barnes, T. (2016). Combining Worked Examples and Problem Solving
in a Data-Driven Logic Tutor. In Proceedings of the 13th International Conference on Intelligent
Tutoring Systems (pp. 347-353).

Looi, C. K. (1991). Automatic Debugging of Prolog Programs in a Prolog Intelligent Tutoring
System. Instructional Science, 20(2), 215-263.

117

Lovett, M., Meyer, O., & Thille, C. (2008). The Open Learning Initiative: Measuring the
Effectiveness of the OLI Statistics Course in Accelerating Student Learning. Journal of
Interactive Media in Education. http://jime.open.ac.uk/2008/14

Marin, V. J., Pereira, T., Sridharan, S., & Rivero, C. R. (2017). Automated Personalized
Feedback in Introductory Java Programming MOOCs. In Proceedings of the 2017 IEEE 33rd
International Conference on Data Engineering (ICDE) (pp. 1259-1270).

Mathews, M., & Mitrović, T. (2008). How Does Students' Help-Seeking Behaviour Affect
Learning?. In Proceedings of the 9th International Conference on Intelligent Tutoring Systems
(pp. 363-372).

McLaren, B. M., Koedinger, K R., Schneider, M., Harrer, A., and Bollen, L. (2004).
Bootstrapping Novice Data: Semi-Automated Tutor Authoring Using Student Log Files. Human-
Computer Interaction Institute. Paper 155. http://repository.cmu.edu/hcii/155

Min, W., Mott, B., & Lester, J. (2014). Adaptive Scaffolding in an Intelligent Game-Based
Learning Environment for Computer Science. In Proceedings of the Second Workshop on AI-
supported Education for Computer Science (AIEDCS 2014) (pp. 41-50).

Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a Constraint-Based Tutor for a Database.
International Journal of Artificial Intelligence in Education, 10, 238-256.

Mudgal, A. (2016). Syntactic Hint Generation for Introductory Programming Problems. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp.
727).

Nguyen, A., Piech, C., Huang, J., & Guibas, L. (2014). Codewebs: Scalable Homework Search
for Massive Open Online Programming Courses. In Proceedings of the 23rd International
Conference on World Wide Web (pp. 491-502).

O'Shea, T. (1979). A Self-Improving Quadratic Tutor. International Journal of Man-Machine
Studies, 11(1), 97-124.

Paaßen, B., Jensen, J., & Hammer, B. (2016). Execution Traces as a Powerful Data
Representation for Intelligent Tutoring Systems for Programming. In Proceedings of the 9th
International Conference on Educational Data Mining (pp. 183-190).

Papancea, A., Spacco, J., & Hovemeyer, D. (2013). An Open Platform for Managing Short
Programming Exercises. In Proceedings of the Ninth Annual International ACM Conference on
International Computing Education Research (pp. 47-52).

Pappano, L. (2012). The Year of the MOOC. The New York Times, 2(12), 2012.

118

Paquette, L., Lebeau, J. F., Beaulieu, G., & Mayers, A. (2012). Automating Next-Step Hints
Generation Using ASTUS. In Proceedings of the 11th International Conference on Intelligent
Tutoring Systems (pp. 201-211).

Peddycord III, B., Hicks, A., & Barnes, T. (2014). Generating Hints for Programming Problems
Using Intermediate Output. In Proceedings of the 7th International Conference on Educational
Data Mining (pp. 92-98).

Perelman, D., Gulwani, S., & Grossman, D. (2014). Test-Driven Synthesis for Automated
Feedback for Introductory Computer Science Assignments. In Proceedings of Data Mining for
Educational Assessment and Feedback (ASSESS 2014).

Petersen, A., Craig, M., Campbell, J., & Tafliovich, A. (2016). Revisiting Why Students Drop
CS1. In Proceedings of the 16th Koli Calling International Conference on Computing Education
Research (pp. 71-80).

Phothilimthana, P. & Sridhara, S. (2017). High-Coverage Hint Generation for Massive Courses:
Do Automated Hints Help CS1 Students? In Proceedings of the 22nd Annual Conference on
Innovation and Technology in Computer Science Education.

Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., & Guibas, L. (2015b).
Learning Program Embeddings to Propagate Feedback on Student Code. In Proceedings of the
32nd International Conference on Machine Learning (pp. 1093-1102).

Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012). Modeling how Students
Learn to Program. In Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education (pp. 153-160).

Piech, C., Sahami, M., Huang, J., & Guibas, L. (2015a). Autonomously Generating Hints by
Inferring Problem Solving Policies. In Proceedings of the Second (2015) ACM Conference on
Learning@Scale (pp. 195-204).

Postner, L., & Stevens, R. (2005). What Resources Do CS1 Students Use and How Do They
Use Them? Computer Science Education, 15(3), 165-182.

Price, T. W., & Barnes, T. (2015). An Exploration of Data-Driven Hint Generation in an Open-
Ended Programming Problem. In Proceedings of the 2nd International Workshop on Graph-
Based Educational Data Mining.

Price, T. W., Dong, Y., & Barnes, T. (2016). Generating Data-Driven Hints for Open-Ended
Programming. In Proceedings of the 9th International Conference on Educational Data Mining
(pp. 191-198).

119

Price, T. W., Dong, Y., & Lipovac, D. (2017). iSnap: Towards Intelligent Tutoring in Novice
Programming Environments. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education (pp. 483-488).

Razzaq, L., & Heffernan, N. T. (2010). Hints: Is It Better to Give or Wait to be Asked?. In
Proceedings of the 10th International Conference on Intelligent Tutoring Systems (pp. 349-358).

Razzaq, L., Heffernan, N. T., & Lindeman, R. W. (2007). What Level of Tutor Interaction is
Best? In Proceedings of the 2007 Conference on Artificial Intelligence in Education: Building
Technology Rich Learning Contexts That Work (pp. 222-229).

Rivers, K., & Koedinger, K. R. (2012). A Canonicalizing Model for Building Programming Tutors.
In Proceedings of the 11th International Conference on Intelligent Tutoring Systems (pp. 591-
593).

Rivers, K., & Koedinger, K. R. (2013). Automatic Generation of Programming Feedback: A
Data-Driven Approach. In Proceedings of the First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013) (pp. 50-59).

Rivers, K., & Koedinger, K. R. (2014). Automating Hint Generation with Solution Space Path
Construction. In Proceedings of the 12th International Conference on Intelligent Tutoring
Systems (pp. 329-339).

Rivers, K., & Koedinger, K. R. (2017). Data-Driven Hint Generation in Vast Solution Spaces: a
Self-Improving Python Programming Tutor. International Journal of Artificial Intelligence in
Education, 27(1), 37-64.

Rolim, R., Soares, G., D'Antoni, L., Polozov, O., Gulwani, S., Gheyi, R., Suzuki, R., & Hartmann,
B. (2017). Learning Syntactic Program Transformations from Examples. In Proceedings of the
39th International Conference on Software Engineering (pp. 404-415).

Roll, I., Baker, R. S. D., Aleven, V., & Koedinger, K. R. (2014). On the Benefits of Seeking (and
Avoiding) Help in Online Problem-Solving Environments. Journal of the Learning Sciences,
23(4), 537-560.

Shih, B., Koedinger, K. R., & Scheines, R. (2011). A Response Time Model for Bottom-out Hints
as Worked Examples. Handbook of Educational Data Mining, 201-212.

Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1),
153-189.

Singh, R., Gulwani, S., & Solar-Lezama, A. (2013). Automated Feedback Generation for
Introductory Programming Assignments. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation (pp. 15-26).

120

So, S. & Oh, H. (2017). Synthesizing Imperative Programs for Introductory Programming
Assignments. In Proceedings of the 24th Static Analysis Symposium.

Soh, L. K., & Blank, T. (2008). Integrating Case-Based Reasoning and Meta-Learning for a Self-
Improving Intelligent Tutoring System. International Journal of Artificial Intelligence in Education,
18(1), 27-58.

Srikant, S., & Aggarwal, V. (2013). Automatic Grading of Computer Programs: A Machine
Learning Approach. In Proceedings of the 12th International Conference on Machine Learning
and Applications (ICMLA) (pp. 85-92).

Suarez, M., & Sison, R. (2008). Automatic Construction of a Bug Library for Object-Oriented
Novice Java Programmer Errors. In Proceedings of the 9th International Conference on
Intelligent Tutoring Systems (pp. 184-193).

Sudol, L. A., Rivers, K., & Harris, T. K. (2012). Calculating Probabilistic Distance to Solution in a
Complex Problem Solving Domain. In Proceedings of the 5th International Conference on
Educational Data Mining (pp. 144-147).

Sudol-DeLyser, L. A. (2014). AbstractTutor: Increasing Algorithm Implementation Expertise for
Novices Through Algorithmic Feedback (Doctoral dissertation, Carnegie Mellon University).

Suzuki, R., Soares, G., Glassman, E., Head, A., D'Antoni, L., & Hartmann, B. (2017). Exploring
the Design Space of Automatically Synthesized Hints for Introductory Programming
Assignments. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (pp. 2951-2958).

Sykes, E. R., & Franek, F. (2004). Presenting JECA: A Java Error Correcting Algorithm for the
Java Intelligent Tutoring System. In Proceedings of the IASTED International Conference on
Advances in Computer Science and Technology.

VanLehn, K. (2006). The Behavior of Tutoring Systems. International Journal of Artificial
Intelligence in Education, 16(3), 227-265.

Wang, K., Lin, B., Rettig, B., Pardi, P., & Singh, R. (2017). Data-Driven Feedback Generator for
Online Programing Courses. In Proceedings of the Fourth (2017) ACM Conference on
Learning@ Scale (pp. 257-260).

Wang, T., Su, X., Wang, Y., & Ma, P. (2007). Semantic Similarity-Based Grading of Student
Programs. Information and Software Technology, 49(2), 99-107.

121

Watson, C., & Li, F. W. (2014). Failure Rates in Introductory Programming Revisited. In
Proceedings of the 2014 Conference on Innovation & Technology in Computer Science
Education (pp. 39-44).

Wegman, M. N., & Zadeck, F. K. (1991). Constant Propagation with Conditional Branches. ACM
Transactions on Programming Languages and Systems (TOPLAS), 13(2), 181-210.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.

Wolf, J. R. and Jia, R. (2015) The Role of Grit in Predicting Student Performance in Introductory
Programming Courses: An Exploratory Study. In Proceedings of the Southern Association for
Information Systems Conference (21).

Xu, S., & San Chee, Y. (2003). Transformation-Based Diagnosis of Student Programs for
Programming Tutoring Systems. IEEE Transactions on Software Engineering, 29(4), 360-384.

Zimmerman, K., & Rupakheti, C. R. (2015). An Automated Framework for Recommending
Program Elements to Novices. In Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE) (pp. 283-288)..

122

Appendix 1: Practice Problems
Due to the length of this appendix, I have hosted it on my website instead of including it within
the main thesis. You can find it at http://krivers.net/files/thesis_appendix.pdf

123

Appendix 2: Technical Evaluation Dataset Statistics
In this appendix, I report summary statistics for the 41 problems used in various technical
evaluations. This data was gathered across all the studies reported in this thesis.

Problem Name Token

Complexity
Studies # Students # Syntax

Error
States

Semantic
Error
States

Correct
States

all_three_chars 18 1 124 0 211 107

any_divisible 22 1 160 46 139 132

any_first_chars 20 1 134 69 140 105

any_lowercase 19 2 165 16 371 115

can_drink_alcohol 10 4 232 66 140 230

can_make_breakfast 10 1 128 0 35 125

convert_to_degrees 8 2 88 17 62 90

count_all_empty_strings 30 1 147 0 264 103

create_number_block 28 1 18 45 97 12

factorial 18 3 27 15 67 31

find_root 41 2 73 22 32 76

find_the_circle 36 3 138 79 279 93

first_and_last 9 1 25 19 65 26

get_extra_bagel 13 1 158 26 55 149

go_to_gym 11 1 149 20 72 139

has_balanced_parentheses 37 2 151 134 281 91

has_extra_fee 10 1 163 0 184 155

has_two_digits 8 5 277 134 333 281

hello_world 3 2 106 83 141 103

how_many_egg_cartons 10 2 71 109 232 68

is_even_positive_int 17 2 55 62 172 52

is_leap_month 13 1 167 95 112 160

is_prime 24 3 38 16 111 46

is_punctuation 9 1 31 51 112 19

is_substring 17 2 37 55 117 54

kth_digit 14 2 67 37 215 34

last_index 55 1 109 69 178 70

124

list_of_lists 34 2 115 0 179 86

multiply_numbers 17 1 167 30 153 158

nearest_bus_stop 10 2 61 50 141 77

no_positive_even 24 1 125 0 93 111

one_to_n 19 3 186 137 560 137

over_nine_thousand 6 3 83 28 43 83

reduce_to_positive 24 2 148 61 308 99

second_largest 56 1 124 52 203 86

single_pig_latin 10 2 48 61 110 46

sum_all_even_numbers 33 1 137 0 118 109

sum_of_digits 19 2 23 15 76 24

sum_of_odd_digits 28 1 154 93 291 119

was_lincoln_alive 8 1 161 14 72 154

wear_a_coat 11 1 169 33 116 168

125

Appendix 3: Surveys
In this appendix, I include the surveys used in this thesis. The first three surveys were all from
Study 1, and the fourth is from the Usability Study.

126

Study 1 Survey 1

127

128

129

130

131

Study 1 Survey 2

132

133

134

135

Study 1 Survey 3

136

137

138

139

140

Usability Study Survey

141

142

