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ABSTRACT 
Educational games have become an established paradigm of instructional practice; however, there is still much 
to be learned about how to design games to be the most beneficial for learners. An important consideration when 
designing an educational game is whether there is good alignment between its content goals and the instructional 
behaviors it makes in order to reinforce those goals. Existing methods for measuring alignment are labor intensive 
and use complex auditing procedures, making it difficult to define and evaluate this alignment in order to guide 
the educational game design process. This thesis explores a way to operationalize this concept of alignment and 
demonstrates an analysis technique that can help educational game designers to both measure the alignment of 
current educational game designs and predict the alignment of prototypes of future iterations. 

In my work, I explore the use of Replay Analysis, a novel technique that uses in-game replays of player sessions 
as a data source to support analysis. This method can be used to capture gameplay experience for the evaluation 
of alignment, as well as other forms of analysis. The majority of this work has been performed in the context of 
RumbleBlocks, an educational game that teaches basic structural stability and balance concepts to young children. 
Using Replay Analysis, I leveraged replay data during a formative evaluation of RumbleBlocks to highlight some 
misalignments the game likely possesses in how it teaches some concepts of stability to players. These results led 
to suggestions for several design iterations.  

Through exploring these design iterations, I further demonstrate an extension of Replay Analysis called Projective 
Replay Analysis, which uses recorded student replay data in prototypes of new versions of a game to predict 
whether the new version would be an improvement. I implemented two forms of Projective Replay: Literal 
Projective Replay, which uses a naïve player model that replays past player actions through a new game version 
exactly as they were originally recorded; and Flexible Projective Replay, which augments the process with an AI 
player model that uses prior player actions as training data to learn to play through a new game. To assess the 
validity of this method of game evaluation, I performed a new replication study of the original formative evaluation 
to validate whether the conclusions reached through virtual methods would agree with those reached in a normal 
playtesting paradigm. Ultimately, my findings were that Literal Projective Replay was able to predict a new and 
unanticipated misalignment with the game, but Flexible Projective Replay, as currently implemented, has 
limitations in its ability to explore new game spaces. 

This work makes contributions to the fields of human-computer interaction by exploring the benefits and 
limitations of different replay paradigms for the evaluation of interactive systems; learning sciences by establishing 
a novel operationalization of alignment for instructional moves; and educational game design by providing a 
model for using Projective Replay Analysis to guide the iterative development of an educational game. 
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CHAPTER 1  INTRODUCTION 
Ever since the first settlers struck out on the Oregon Trail in 1974, educational games1 have been a part of the 
instructional landscape. Of course games and play have a much more storied history in the cultures of the world 
[68] and games of one kind or another have been used for educational purposes for centuries [143]. I begin with 
Oregon Trail not because it was the first educational game but because it has some personal significance to me2 
and because it is one of the most immediately recognizable examples of a modern digital educational game. 
Though it may not seem like it when compared to recent examples like Foldit [38] or Crystal Island [129], the 
game instantiates a highly detailed model based on historical data [125] and gives players the chance to explore 
the consequences of their actions while remaining faithful to the experiences that real settlers had on the trail. 
Giving players the ability to interact with detailed models of concepts and understand the implications of their 
actions are some of the potential benefits of using games in educational settings [52,152]. 

Despite the modern academic study of educational games having been around for some time [52], there 
continues to be active debate in the literature as to whether games can be good for learning. Every few years a 
new meta-review is published drumming up the question again [33,37,45,54,105,171]. While these reviews may 
be useful for policy makers or curriculum developers to decide when to begin adding games to a curriculum, I 
believe they are asking the wrong—or at least an unhelpful—question with regard to games and learning. Asking 
if a game, difficult as that term itself is to define [135], could be beneficial for learning recalls the debates between 
Clark and Kozma on whether the medium of instruction would ever influence learning over or beyond the method 
of instruction used [34,81]. At best this question is already solved, requiring only an existence proof, of which there 
are several [20,42,56]. A far more useful question, in my opinion, is this: how can we design better educational 
games?  

I am not the first person to ask this question. There are several frameworks on educational game design that seek 
to inform this question [8,13,16,52,168]. However, a majority of these frameworks falter in that they describe an 
ideal to aspire to in design without providing much guidance on the process of how to get there. For example, 
James Gee’s influential account of What Videogames Have to Teach us About Learning and Literacy [52] contains 
a list of principles that describe the qualities of good entertainment games that could leveraged to an educational 
purpose. Similarly, Amory [13] and Annetta’s [16] frameworks describe a number of facets that quality educational 
games possess and make arguments about how those components could contribute to learning when done well. 
Aleven [8] and Winn’s [168] frameworks take an approach of describing different perspectives to look at 
educational game design, similar in spirit to Schell’s lenses for general game design [135], which provide a means 
of framing educational game design from the perspective of different intellectual traditions. What most of this 
work seeks to do is provide a common language with which to talk about the challenges and opportunities of 
educational game design. This is a noble goal as a lack of common terminology is a problem game design 
generally struggles with [39]. Where I take issue with this work is that none of these frameworks, to my knowledge, 
have been demonstrated to support an active design process, focusing instead on applications of critique and 
post-hoc analysis. This is like telling a settler that they could have a better life in Oregon when all they really want 

                                                      
1 Throughout this thesis I will refer to “educational games” as a category mainly because my work is influenced by 

my participation in the Program for Interdisciplinary Education Research (PIER) at CMU and thus involved games 
in K-12 settings teaching conventionally academic subjects. I would expect many of my methods and findings 
to be applicable to other formulations of “serious” or “transformational” games despite my word choice here. 

2 I went to elementary school blocks from the headquarters of the Minnesota Educational Computing Consortium, 
developers of Oregon Trail. 
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to know if which direction is West. Rather than develop yet another framework of what a good educational game 
is, I instead want to focus on how better to steer designs toward the desired outcome of a good educational 
game. Exploring this line of inquiry requires some understanding not only of what a good educational game 
should be, but also why designing such a game is hard. 

For some readers, it might be sufficient to point to the nature of design as a wicked problem [24] in justifying why 
this task is so hard; however, the educational game design task has unique challenges of its own. Even when 
armed with the most recent findings of learning science theory, there are several trillion ways one could design 
an instructional intervention [76]. In addition to the inherent complexity in instructional design, games, particularly 
the kind of open-ended simulation games commonly used in educational settings [152], employ a delicate balance 
of mechanical systems that can result in emergent behavior [133]. This property of games can make it difficult to 
anticipate how a design choice will affect the behavior of the system and subsequently the learning of players. 
While domain theory and subject matter experts may provide some insight, judging the result of a design 
alteration is ultimately an empirical question.  

Further complicating the problem of educational game design is the fact that a player’s experience in a game is 
not solely the product of a game’s mechanical systems. Hunicke, LeBlanc, and Zubek provide a framing for this 
issue in their Mechanics, Dynamics, Aesthetics (MDA) framework [69], where they describe the aesthetic 
experience of the player arising from the player’s interactions with the mechanics of the system, which they call 
dynamics. In this framing, designers and players have fundamentally different perspectives on a game. While 
designers see more of the mechanics and rules of the game they create, players perceive a dynamic aesthetic 
experience while the game is being played. Others have referred to this relationship as a second-order design 
problem:  

“As a game designer, you are tackling a second-order design problem. The goal of successful 
game design is meaningful play, but play is something that emerges from the functioning of 
the rules. As a game designer, you can never directly design play. You can only design the 
rules that give rise to it. Game designers create experience, but only indirectly.”  - Salen and 
Zimmerman [133]. 

A similar sentiment is echoed in the learning science literature to describe the challenge of instructional design. 
Herbert Simon, one of the founding fathers of the fields of cognitive psychology and artificial intelligence is noted 
as having said: 

“Learning results from what the student does and thinks and only what the student does and 
thinks. The teacher can advance learning only by influencing what the student does to learn.” 
– Herbert Simon3 

A key to both of these perspectives is that the agency over the experience lies in the hands of the player or learner. 
Put another way, educational game designers cannot directly cause learning to happen; they can only ensure that 
whatever players do in their games affords the ability to learn desired concepts. 

                                                      
3 I have endeavored to find a citable version of this quote in print and have come up empty handed. Simon is 

attributed with having said a version of this phrase often in the opening of How Learning Works [12] and 
Carnegie Mellon University saw fit to set the words in stone for a memorial to him, so I believe I am justified in 
quoting it here. 
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From this lens, I view educational game design less like planning a clear instructional path and more like tending 
a garden of possible learner experiences. The challenge in this approach is understanding the space of possible 
experiences players might explore, characterizing whether those experiences are upholding the goals of the 
design, and, in the cases where they are not, taking steps to trim or guide the experience to align it with the 
original intention. This orientation has more in common with the reflective [136] and unselfconscious [9] processes 
of traditional design practices rather than the front-loaded goal-directed processes of conventional instructional 
design [101,166].  

The perspective of Donald Schön is one that I find particularly useful in this context. He describes the general 
design process as a reflective conversation with the materials of a design situation [136] and further characterizes 
that conversation as iterating through stages of seeing-moving-seeing [138]. Initially designers see the context of 
their design situation and perceive some problem to be solved. They then make a move to correct that problem 
by altering the situation in some way. Finally, they can see both the intended and perhaps unintended 
consequences arising from their move and the cycle starts anew. 

Schön’s perspective on the design process relates to the current question of educational game design in that the 
types of seeing that Schön talks about are intrinsically difficult for designers to do in an educational game setting. 
The influences of players’ agency and their dynamic interactions with a game’s systems [69] require some 
representation of the player experience to be present in order to see whether a game is meeting its goals. Further, 
the learning events that are the goal of an educational design take place in a player’s mind and are invisible to 
designers [77]. Therefore, an open area of research is developing better methods for designers to see their games 
in a way that lets them make new moves and consider the consequences of those moves. 

Literature on the game design process as a practice provides some insights into addressing these challenges.  
Many game design thinkers highlight the importance of establishing experience goals to serve as a guiding focus 
throughout the design process. Schell talks about starting by establishing what the designers want the essential 
experience of a game to be [135]. Fullerton advocates for taking a play-centric design approach where it is the 
designer’s role within a team to be an advocate for the player and their experience [51]. Culyba’s forthcoming 
framework on transformational game design [40] advocates for establishing transformation goals early as a way 
to build a common language with stakeholders. The Tandem Transformational Game Design approach of To et 
al. [154] is a unique example of not only advocating for the establishment of transformational player goals at the 
beginning of the process but also acknowledging that the goals themselves can be subject to iterative 
development as a design evolves. These processes have much in common with instructional design practices for 
developing alignment with curricular goals [166]. 

From a process standpoint existing methods for game design emphasize an iterative approach that can be 
responsive to change, often invoking Agile software development practices [22]. Development is commonly 
separated into phases of conceptualization, pre-production, production, and refinement [51]. In the early stages 
designers focus more on what the core on the experience is using low-fidelity prototyping and other 
brainstorming methods [30]. It is these early stages where Vandenberghe advocates for failing fast and following 
the fun [158], to more quickly hone in on a solid idea to pursue further. In the production stage, prototyping 
becomes more formal but still iterative. The RITE method [98], for example, advocates for a process of rapid 
prototyping and quick iterative testing of potential design solutions as soon as they are feasible to implement. 
The final stages of design are focused on polishing and tuning the player experience to ensure it is meeting the 
desired goals. 
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Running through the entire process of game design is the common practice of playtesting. Because of the 
emergent and dynamic nature of player experience [69] it is impossible to evaluate the quality of a game without 
some representation of the player. Playtesting gives designers the ability to see the experiences their games create 
in action and evaluate whether they are meeting expectations. In their study of playtesting Choi et al. highlight 
that it is important that playtesting sessions be organized in a purposeful way [30] whether it be to explore the 
space of player interest, or prove to a stakeholder that a game is having it desired impact. Further, Schell [135] 
argues that playtesting should be viewed apart from other kinds of evaluation such as usability evaluation or 
software integrity testing, as the kind of testing of unique interest to game designers and for game design 
problems.  

While playtesting is a powerful method for understanding game design issues there exists an opportunity to 
expand upon it. For example, Open-ended simulation games allow for many possible player experiences and it 
can be hard to see and appreciate them all in the context of a single playtest. Further, educational games are 
often intended for and tested in classroom settings, adding to the complexity of collecting useful insights from 
observation. These issues can be addressed by augmenting the practice of playtesting with the common game 
development idiom of replay systems [44]. Designers can utilize detailed recordings of playtesting sessions and 
modern game analytics techniques [89,140] in order to better understand the experiences players are having and 
whether those experiences are upholding their intentions. 

Broadly, this thesis explores the question of how we can use novel replay-based analytics techniques to support 
the design process to make better educational games. This broad question includes two particular thrusts.  

The first thrust is concerned with answering the question of how to define better educational games. For this 
thrust, I turn to the idea that all educational games are being designed with the goal of teaching something to 
their players. Thus, the quality of an educational game is measured in how well it embodies its target content and 
conveys its target concepts. In instructional design, this relationship is called alignment. Existing approaches for 
measuring alignment are ill-suited for the space of educational game design, so I have developed a novel 
analytical technique for characterizing alignment in educational games. 

The second thrust addresses the replay-based analytics approach itself and explores how it can be used to support 
the iterative design process. As part of this thrust, I have developed the Replay Analysis approach that 
encompasses a collection of methods for using replays to inform the game design process. Within this broader 
category, I explore two forms of Replay Analysis. Retrospective Replay Analysis uses historical recordings of game 
play to provide data to game analytics techniques in evaluating the current state of a design. Projective Replay 
Analysis augments this process with an AI agent, which enables designers to explore next iterations of a design 
without having to gather new playtesting data. 

In my earlier work, I employed Retrospective Replay Analysis to explore ways of measuring this idea of alignment 
within the educational game RumbleBlocks. I then developed Projective Replay Analysis to address the challenge 
of predicting the effect new design decisions have in the context of new play traces based on old replays. The 
driving research question behind this work was: could a method like Replay Analysis give a reliable picture of what 
players would do in new situations, and could the insights gleaned from these approaches provide useful direction 
for the design of a game. 

Throughout this document, I detail my explorations of the concepts of alignment and Replay Analysis in the design 
of educational games and describe the contributions they make to the fields of educational game design, learning 
science, and human-computer interaction (HCI). This document will be structured in the following way: 



5 

 

Chapter 2 opens by discussing the concept of alignment in instructional design and its theoretical underpinnings. 
I then describe several existing methods for measuring and using alignment in the design process and how these 
methods fall short in the context of educational game design. Finally, I define my own characterization of 
alignment and how I operationalize it for measurement. 

Chapter 3 introduces Replay Analysis as an approach for educational game analytics. I start by describing related 
literature on game analytics, the use of replay based approaches in game and user interface evaluation, and the 
application of AI models to the evaluation of games and interfaces. I then define Replay Analysis itself and describe 
a taxonomy of replay forms including Retrospective Replay, which uses historical data to understand the current 
state of a design, and Projective Replay, which takes historical replay data and projects it into a future iteration of 
a game to test whether it has improved. Further, Projective Replay can be implemented as either Literal Projective 
Replay, which instantiates a naïve player model that tries old actions in new context without reasoning, or Flexible 
Replay, which augments prior log traces with an intelligent AI model that makes decisions based on new 
information. Finally, in this chapter, I describe the implementation of the Replay Analysis toolkit as a concrete 
software tool and systems contribution of this thesis. 

Chapter 4 will describe the assumptions I make about contexts that this work is applicable to, specifically single-
player step-based puzzle games. Additionally, this chapter will describe the game RumbleBlocks, an educational 
game design to teach structural stability and balance concepts to children in K-3 (ages 5-8). RumbleBlocks could 
be seen as a prototypical example of the type of games that the techniques I describe in this thesis would be 
appropriate for. Further, RumbleBlocks will be the specific context used in the remaining chapters to demonstrate 
the utility and validity of replay analytics to improve alignment. 

Chapter 5 presents a formative evaluation of RumbleBlocks that served as the first application of Replay Analysis 
to understanding an educational game. I explore initial questions of whether players are learning target concepts 
from playing the game and whether the game is aligned to its instructional goals. This work provided evidence to 
validate my conceptualization of alignment by showing a correspondence between concepts with good and bad 
alignment and players’ learning. 

Chapter 6 demonstrates the capacity of Replay Analysis to allow designers to see their game from several angles 
in diagnosing what problems it may have. This chapter elaborates on the work of the formative evaluation by 
exploring the solution space of RumbleBlocks with the goal of explaining why the patterns of misalignment seen 
in the formative evaluation may have occurred. I ultimately find a pattern of behavior in the results that suggests 
a possible cause of misalignment related to particular sub-structural faults in players’ solutions rather than broader 
patterns related to the game’s goals. 

Chapter 7 explores the power of Projective Replay Analysis to enable designers to see the implications of next-
iteration design choices without gathering new data. This work takes the form of a replication study of the 
formative evaluation of RumbleBlocks and serves as a validation of Projective Replay Analysis. Building on the 
findings of Chapter 6, I developed several variations of RumbleBlocks with the intent of improving alignment. 
These variations were tested using Projective Replay Analysis and one was tested with a new classroom study. 
Comparing the results of these studies, I find that Literal Projective Replay predicted a change in alignment but 
Flexible Projective Replay did not. Further, producing a new game variation based on alignment analysis did not 
produce a better alignment when tested. 

Chapter 8 concludes the document with a discussion of the results and what they imply about Replay Analysis 
and alignment. Ultimately, I find that Projective Replay Analysis has promise as a method for understanding next 
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step design variations, but more work is needed to improve its ability to function on more divergent designs, 
particularly when Flexible Replay is used. Results for alignment show similar promise for use of the concept as a 
tool to inform design, but further study will be needed to better understand the relationship between alignment 
and student learning gains. Finally, I close with a discussion of the implications this work has on future 
investigations. 
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CHAPTER 2  ALIGNMENT 
At the heart of the iterative design process are a pair of simple questions: “Is my product good?” and “If I were to 
make a change, would it be better?”. These questions are a characterization of what Alexander calls fitness in 
design [9]. They are also the questions at the heart of what Schön describes as move-testing hypotheses [136] 
that designers make while they work to bring a particular design into line with its goals. In order to develop better 
methods for aiding educational game designers, we must understand how fitness is operationalized within the 
context of educational games. 

Within the broader context of instructional design, the idea of the fitness of a design for its instructional purpose 
has commonly been called alignment. In many discussions, alignment is used to frame other issues, such as 
content/construct validity in assessment [85] or implementation fidelity of a new intervention [66], but it can also 
be considered an instructional design principle in its own right. In addition to being a principle, there is also 
evidence that aligned instruction leads to better learning. Cohen details several early studies of the effect of 
alignment on learning and generally finds that aligned instruction often leads to 4-to-1 effect sizes over unaligned 
instruction [36]. Within the context of educational game design, Habgood and Ainsworth [56] have explored the 
related concept of intrinsic vs extrinsic integration (i.e., how directly learning content is integrated into the core 
interactions of a game). They found that players of an intrinsically integrated math game learned more than 
players in an extrinsic condition and were willing to continue playing the game for longer when given a choice.  

In the literature, alignment research has commonly included one of two areas: curriculum alignment or 
instructional alignment. The focus of curriculum alignment is to demonstrate a correspondence between the 
content of a curriculum plan and a set of standards, often associated with questions of material coverage [15]. 
Instructional alignment, on the other hand, addresses the relationship of instructional goals, instructional moves, 
and assessments, often within the context of a single classroom [36]. One could look at curriculum alignment as 
being related to outward accountability of instructional practice, while instructional alignment is more focused on 
an internal validity. For the purposes of this thesis, I am more interested in the space of instructional alignment. 

As the name would suggest, alignment normally refers to an agreement between two or more components of 
the instructional context. However, what those components are varies depending on the definition being used 
and the purpose of the analysis. I refer to this issue as instructional alignment’s n-body problem. In physics, the 
n-body problem refers to trying to predict the individual motions of n bodies, accounting for all of their individual 
gravitational interactions on each other. The problem is easy for two bodies but gets significantly harder, if not 
impossible, as more bodies are added to the system. Similarly, instructional alignment is almost always discussed 
as a relationship between two things (e.g., state assessments and their related standards [96]), but there are many 
such binary relationships in a larger educational system. For example, one might look at how well a teacher’s 
instructional actions relate to the particular curriculum they are required to teach as a measure of accountability 
[121]. Alternatively, one could look at how the content of an assessment relates to a set of standards, at a state 
or inter-state level [123]. Just as in physics based n-body problems, measuring alignment requires the assumption 
of a common reference frame.  

In most discussions of alignment, the common reference frame is provided by a focus on three main components 
of the instructional context: goals, instruction, and assessments. This trio of elements appears in many existing 
studies of alignment [36,41,96,123] and will serve as a useful language for discussing alignment across studies 
going forward. While these three components establish the main elements of the instructional context that should 
agree with each other, they leave open to interpretation what agreement means (i.e., how alignment is measured), 
and further, how instruction can be designed towards alignment. 
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Designing for Alignment 
One of the main uses of alignment in prior work is as a frame around the design process. In these examples, 
alignment takes on a methodological bent, providing guidance on how the design process should proceed with 
the intent of arriving at a good instructional design.  

In his discussions of instructional alignment, Cohen [36] describes criterion-referenced instruction as an older 
method of instructional design drawing on the behaviorist tradition of B.F. Skinner. The general pattern of 
criterion-referenced instruction is that instruction and assessment are done with identical tasks; in effect, literally 
teaching to a test. The result of this process is to merge assessment and instruction into one entity, and to define 
goals as accomplishing the assessment. This approach makes less sense in traditional educational settings but has 
applicability in domains such as training, where the goal is not to increase individuals’ transferable skills or 
knowledge, but to reduce variance across performers of a common task. 

Evidence-centered design [101] is a method created by the Educational Testing Service for developing 
assessments in novel contexts. At a high level, the process requires defining a series of models: a student model, 
which encompasses the collection of goals that the instructor wants students to learn; a task model, which 
describes the structure of the task the student is performing; and an evidence model, which describes a mapping 
between tasks and the competencies they evidence. While this process is primarily associated with assessment 
design rather than instruction, it has shown promise towards integrating assessment into instruction (e.g., in stealth 
assessment [144]) and has previously been used in educational game design settings [130]. Within the context of 
the trifecta of alignment, evidence-centered design has an outside-in approach, where it begins with a set of 
goals and a set of tasks (i.e., instruction) and attempts to define a mapping between the two with an evidence 
model (i.e., assessment). 

Finally, in backwards design [166], the instructor begins by defining the goals of the instruction, usually relying on 
standards or other curricular targets, then defines assessments that could be used to measure whether students 
have achieved the goals, and finally plans a program of instruction that will lead students to improve performance 
on those assessments. This approach is called backwards design to counter the initial intuition of many teachers 
to begin designing with the means of instruction (e.g., favorite materials or lessons), and instead focus on the 
ends of instruction (i.e., the goals). From the perspective of alignment, this approach defines goals to be the 
foundation upon which everything is based, then builds toward instruction in a linear fashion. 

Each of these methods can be valuable scaffolds for the design process and provide a useful framing for reasoning 
through issues, but there are limitations to relying on methodology to produce good alignment. While it is not 
unreasonable to assume that good products will result from good practice, having simply followed a particular 
method does not provide a sense for how well aligned a current design is without some form of objective 
measurement. The educational game design process can be complicated by issues like expert blind spot [78], the 
complexity of ill-defined domains [90], and the wickedness of design problems in general [24] and each of these 
could contribute to the introduction of alignment problems by accident. These limitations echo HCI literature on 
design process where there is a distinction between designing the right thing and designing a thing right [155]. 
In so far as the structure of alignment implied by each of these methods is appropriate to a context, they can be 
helpful frameworks for designing toward alignment. However, they still have the issue of leaving the concept of 
agreement between elements open to interpretation. 
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Measuring Alignment 
A number of techniques exist within the literature that either explicitly claim to measure alignment or have 
implications for the task of measuring alignment. I summarize a few of the key approaches that have implications 
for the development of a general method for measuring instructional alignment in educational games. 

In thinking about how to quantify the alignment of a design, one might be tempted to use a pre-posttest 
measurement as evidence. A typical paradigm of assessment driven instructional design is to define some form 
of pre-posttest that is administered before and after an instructional intervention. If an improvement on this test 
is observed, the usual conclusion is that the instruction was aligned to the assessment because learning was 
observed. While this is a gold standard scientific design, I would argue it is not informative but rather confirmatory. 
If the result is negative or inconclusive, then little can be concluded about what aspect of the instructional behavior 
within a system broke down. A method that is inconclusive in the negative is a problem for iterative design 
because, through the course of iteration, a designer is likely to deal with far more bad prototypes than good ones 
[53]. In measuring alignment as a means of guiding the design process, a more nuanced formulation is necessary. 

A series of methods have been developed as part of accountability and educational reform movements [41] that 
I collectively refer to as matrix methods. A good summary of some of the principal examples of this type can be 
found in Marone and Sireci’s review [96]. The usual procedure of these methods is to define some kind of matrix 
that compares instructional units, assessment items, or standards to some level of competency (commonly a level 
of cognitive depth or a series of levels similar to Bloom’s taxonomy of learning objectives [82]). The general idea 
of this approach is that a set of standards would mandate that a student possess some knowledge or skill to 
certain level of depth, so a lesson or assessment should cover that content to the required level. Once the matrix 
is defined, a group of subject matter experts are convened as a panel of raters. The raters then rigorously annotate 
the target standards, instruction, or assessment items by marking appropriate matrix cells. In some cases, a cell is 
filled in with the mere presence of a competency-by-level match, and sometimes it is scaled based on amount of 
overall instructional time reserved for the concept. Ultimately, the result of the rating process is a matrix for each 
instructional component being compared. The relationship between a pair of matrices can be quantified in a 
number of ways [96] based on how well the patterns of cells overlap. Other quantifying methods have also been 
explored that result in heatmap-like visualizations for inspection beyond a single summary metric [122]. 

While the matrix methods are commonly considered to be a gold standard within their particular tradition of 
literature [120], they do have some issues that would make them difficult to apply in the context of iterative 
educational game design. For one, the process of convening a panel of raters is extremely time intensive and 
expensive. The most common use case for methods of this kind is in the evaluation of large scale reform efforts 
where the costs of detailed review are more justifiable. In a tighter loop of educational game design iteration, 
having subject matter experts review all content changes would likely become infeasible quickly. A second issue 
with many of these methods is that they tend to assume the evaluation of static material. In this way, they are 
effectively solving the first-order design problem in that they look to evaluate whether the intended content is 
present in the material without regard to how a learner might experience it. As I previously discussed, the 
experience of playing a game is a dynamic one and is shaped partially by the input of players [69]. This quality 
would require that raters be able to evaluate all possible experiences, or provide ratings based on their own play 
experiences, which would run the risk of expert blind-spots [78]. 

A third approach that I see as relevant to alignment measurement, though it has not to my knowledge been billed 
as such in the past, is the practice of Knowledge Component model refinement embodied by the PSLC Datashop 
[75,153]. A Knowledge Component (KC) is a formalism from the Knowledge-Learning-Instruction (KLI) framework 
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and represents “a specific unit of cognitive function that is inferable from performance on a set of related tasks” 
[77]. One of the theoretical aspects of a KC is a useful stand-in for other constructs like skill, fact, ontology, 
production rule, schema, etc. The process of KC model refinement starts by first defining a mapping between KCs 
and tasks, often called a Q-matrix [21]. Student performance data is then captured from the use of a system and 
fit using a specialized statistical model called the Additive Factors Model (AFM) [28] to generate learning curves 
plotting the change in students’ performance over time under some assumptions of learning. By inspecting these 
curves, designers can see where their expectations about learning are being met and where they are not [153]. 
Anomalies in the learning curve highlight places where a learning task does not embody the content designers 
thought it did and can lead to improvements in instructional design [79]. I have applied this KC model refinement 
approach to the context of educational game design in the past and found benefits for its use in considering 
alignment [58]. 

While a KC modeling approach to alignment has promise, it too has some limitations to its application in an 
educational game design context. One of the biggest points against the KC modeling approach is the necessity 
of a very fine-grained description of problem solving. The method was originally developed in the context of 
intelligent tutoring systems that operate under a paradigm of display-based reasoning [84] where discrete unit 
steps in problem solving are given immediate feedback [159]. Not all games can support this kind of structure. 
Further, developing a reasonable KC model can be a time intensive task requiring detailed cognitive task analysis 
[5], often with the assistance of domain experts. 

Operationalizing Alignment 
Educational game designers need a formulation of alignment that allows them to consider how well the 
instructional behavior of their game aligns to their instructional goals in a way that is tractable within an 
educational game design context. In order to account for the complexities of the second order nature of game 
design, we need an informative operationalization of alignment that can do more than confirm whether or not a 
game is working. Such an operationalization needs a way of relating a game’s instructional moves (i.e., feedback) 
to an assessment of player understanding within the context of the game itself. Drilling analysis down to a finer 
grain size of instructional moves allows for a more nuanced evaluation of alignment issues. To this end, I define 
alignment with a paradigm of internal assessment linked to instructional feedback moves that the game makes in 
response to player actions.  

The essential logic behind my approach to alignment is that a game’s feedback and incentive structures are some 
of the main ways a game communicates meaning to players. In so far as the pedagogical intent of an educational 
game is for players to come away with a better understanding of the content the game is meant to be about then 
it is crucial that these systems behave appropriately. I do not intend to claim that this is the only way to evaluate 
whether a game is upholding its intended meaning, as players can derive meaning from many aspects of game 
experience [133], including re-appropriating a game in transgressive play [1] or creating meaning around it in a 
social context [72], but remaining grounded in feedback—a well-regarded instructional design principle [14] in its 
own right—provides a concrete basis on which to build an evaluation technique. 

Understanding the concepts of feedback moves and player actions requires a brief discussion about the idea of 
game spaces. All games take place in some kind of space. One way of thinking about this space is as the Magic 
Circle [133] that forms a boundary around the game and gives its components meaning (e.g., outside the Magic 
Circle, Monopoly money is just paper). However, game spaces have other useful properties beyond their ability 
to give endogenous value to game elements. Another useful lens for talking about game space is in terms of 
functional game space [135]. The functional space of a game can be conceptualized as the space in which the 
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game really takes place. For example, while the game of Monopoly is printed as a two-dimensional board, in 
terms of functional space, the game is really a single one-dimensional loop of properties. Further, each property 
is actually a zero-dimensional space, as the particular placement of a player piece within the bounds of a property 
is meaningless. 

Using a lens of functional space allows us to define a player action as anything that meaningfully changes the 
state within the functional space of a game. Extending this concept further, a solution to a game challenge or 
level is a collection of player actions that lead to a goal state. This perspective allows us to define the solution 
space to a challenge or level as the set of all pathways through, or configurations of, functional game space that 
lead to goal states. Borrowing from the Knowledge-Learning-Instruction framework [77], I make the assumption 
that, in creating their solution to an in-game challenge, a player is expressing their understanding of the 
knowledge or skills (i.e., KCs) required to solve that challenge. This perspective is also similar to what Plass called 
assessment mechanics, which provide players with the tools to be able to express their understanding of concepts 
[119]. Under the assumption that a player’s knowledge is expressed through their play, there would arise a 
qualitative (and possibly quantifiable) difference between solutions created by someone who understands a 
concept and someone who does not. Markers of this difference can be formalized as a separation function of the 
solution space in terms of target domain principles.  

Feedback can be defined in similar terms as the collection of changes to the functional game space that the game 
communicates to players in response to their actions. While this collection of changes is potentially very large, it 
can be useful to think about it in terms of different channels [135] that are functionally distinct. For example, 
successfully solving an in-game puzzle might result in a bright green check mark, animated fireworks, and a “woo-
hoo” sound; all of these responses are multiple channels of conveying the same message, namely, that the player 
succeeded. Similar to how players with different understandings will generate different portions of a solution 
space, feedback can act as a separation function over the solution space, where a certain collection of solutions 
will receive one type of feedback while the rest will receive another. 

Using this operationalization, solutions within a solution space can arrive at one of four designations, best thought 
of as the 2x2 matrix shown in Figure 1. Two quadrants in this matrix are desirable and, if solutions consistently 
land in either one of these quadrants, it would indicate that the game is well aligned. Solutions that are highly 
principled would ideally be given some form of positive feedback, which would imply that the game is reinforcing 
target concepts to the player. Similarly, solutions that are unprincipled should be given negative feedback, which 
would mean that the game is discouraging deviations from target concepts, allowing a player to learn from their 
mistakes. Solutions would ideally not fall into the other two quadrants, where principled solutions are discouraged 
or unprincipled solutions are reinforced. In these cases, the game is sending contradictory feedback to students, 
at best confusing them and at worst fostering misconceptions. 
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Figure 1. A matrix showing the possible alignment interpretations of student solutions based on the agreement 
between domain judgment and game feedback. 

Ultimately, I define the alignment of an educational game as the level of agreement between the game’s 
separation function of its solution space (i.e., feedback), and a domain-principle-based separation function of that 
same solution space. I formalize the measurement of agreement as the coefficients of a regression model that 
predicts game feedback using metrics tied to domain principles. I refer to these metrics as Principle-Relevant 
Metrics (PRMs) in that they are metrics that are intrinsically tied to a principle a game is trying to teach.  

The formalism of PRMs does impose a constraint on the method in that I assume some kind of proxy metric for 
adherence to a principle is calculable from a given player solution; however, the definition of these metrics can 
be quite broad as the framework of regression modeling is flexible. For example, a metric could be a calculable 
number from a game state, or it could be a categorical tagging based on some set of rules, which could then be 
treated as levels of a factor in regression. The heart of the approach is to ensure that relationships that should 
hold true within the domain also hold true in the game’s behavior.  

Viewing alignment as agreement between how feedback separates a solution space and how assessment 
separates the same space, it would seem like the obvious design solution is to base feedback directly on an in-
game assessment; however, this is not always possible. For example, the target domain might be ill-defined [90], 
meaning that there is no single strong domain theory that could be used to create feedback rules, or any such 
rules would be subject to debate by experts. Further, it could be that the principles of interest have complex 
interconnected effects on the domain such that representing them faithfully requires tuning and balance. 
Balancing complex systems is a common task in game design [70], but it often takes many hours of testing to 
make minute changes and is rarely straightforward [55]. Finally, while it may be possible to based game behavior 
directly on a principle based model it may be prohibitively expensive to implement a sufficiently accurate model 
for the task. In such cases simply black box solutions, such as an off the shelf physics engine, might be more 
feasible but would require monitoring to ensure instructional goals are still being upheld by the system’s behavior. 

In all of these cases, playtesting and iteration are essential to see if the instructional behaviors of a game are 
aligning with designers’ expectations. Since the instructional behaviors of a game encompass the results of many 
different design decisions, we need a definition of alignment that is capable of functioning at a fine grain size. I 
believe my definition of alignment as an agreement between separations of a solution space serves this purpose. 
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CHAPTER 3  REPLAY ANALYSIS 
The second order nature of game design [133] makes it difficult for designers to see and evaluate a design without 
some representation of the player experience. I present a potential solution to this problem in the common game 
idiom of in-game replays [44] and developed the technique of Replay Analysis to explore such an approach. 

Replay Analysis is the core methodological contribution of this thesis. At a high-level, Replay Analysis is a game 
analytics technique that uses in-game replays of player sessions as a data source to support evaluations of game 
design. In addition to supporting evaluation of a current game design, the approach can also make use of a 
computational theory of human learning to instantiate AI player models to project replays into future versions of 
a game that players have not yet seen. 

In this chapter, I will describe the broader space of prior work that Replay Analysis contributes to before laying 
out the Replay Analysis approach as I define it in my work. Finally, I will detail the implementation of the Replay 
Analysis toolkit I developed for facilitating Replay Analysis in the Unity game engine.  

Game Analytics 
The measurement of player experience has been a growing topic of interest for both general game user research 
and serious games research [89,140]. Many practitioners and researchers have explored different ways of 
measuring player experience [107] including self-report and subjective surveys [23,113], biometrics and physical 
response data [100,108], and data mining and analytics [46,74,157]. Among these approaches, I believe the data 
mining and analytic approaches are the most promising for guiding alignment analysis in terms of solution space.  

Game analytics research is generally concerned with the application of game log data (also commonly referred 
to as telemetry) to answer questions about game players and game design. There are many approaches to game 
analytics and several ways to describe the relationships between different methods (see [140] for several different 
taxonomies). In moving toward a design informative process using analytics, it is necessary to understand where 
analytics sits within the iterative design process. Schön describes the design process as a reflective conversation 
with a situation [136]. This conversation iterates through stages of reframing a design situation, moving to improve 
the situation, and then evaluating whether the move resulted in improvement. Commonly, analytic approaches 
occupy the evaluation stage of this loop, as they provide a picture of a current design in terms of a specific framing 
of the design problem. Existing approaches also support reframing to varying extents in their ability to ask 
questions beyond their original intent. What is generally missing, however, is the ability to explore move testing. 
Rather than employing analytics as a tool throughout the conversation with a situation, a designer must step away 
from their context and ask for it to be analyzed before being able to form new design hypotheses to test.  

Using Schön’s notion of a reflective conversation as a guide, I categorize different game analytics techniques into 
one of three groups based on two distinctions. The first distinction I make is whether an approach is generally 
measure-then-record or record-then-measure. 

Measure-then-record approaches to game analytics work by performing the actual measurement of a desirable 
feature within the game and then recording only the result of that measurement. This tactic is generally the realm 
of very large-scale metric-based [46] approaches to understanding player experience where key performance 
indicators that designers want to record are known well in advance [80]. The benefit of these approaches is that 
they generally require minimal post-processing of data beyond simple aggregation or statistical testing, because 
the desirable information exists directly in game logs. However, a measure-then-record approach has limited 
capacity to inform reframing of a game design situation, because what can be said about the player experience 
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is only what can be inferred from the measurements that exist in the data, as any other context was lost. Because 
of their capacity for scale and general rigidity, measure-then-record approaches are usually employed for later 
stage monitoring of games post release. 

Record-then-measure techniques take the approach of recording some kind of representation of the player 
experience from which measures are distilled. This style of game analytics is far more common in educational 
game work with several existing examples [117,128,145]. The trace-based recording approach common to 
intelligent tutoring systems is also an example of this kind of analytics [19,75]. The general benefit of these kinds 
of approaches is that they preserve some portion of the context of the play experience, allowing for that 
experience to be reframed to some extent. The second distinction in my categorization of prior analytics 
approaches is within the group of record-then-measure approaches and asks whether an approach is designed 
to record-to-measure or record-to-capture. 

Record-to-measure paradigms are typified by a focus on recording player experience in service of a future 
measurement that is planned. The quintessential example of this kind of approach is Evidence-Centered Design 
[101,102,130]. Though not strictly an analytics approach, Evidence-Centered Design is focused on an extensive 
process of building evidentiary arguments about learner competencies before any measurement takes place. 
Record-to-measure techniques are generally more appropriate for making the kinds of evidentiary arguments 
needed during the prove stage of playtesting [30], where the focus is on persuading stakeholders that a design 
is working rather than informing design refinement. While these approaches have strong validity for developing 
assessments, I would argue they are less suited for informing iterative design because they are generally 
committed to the lens of their assessment, which can limit the ability to reframe the context beyond that 
measurement. 

Record-to-capture, on the other hand, generally intends to capture the player experience as it happened and 
defers any measurement or characterization of the experience until after it has been captured. This is commonly 
where extremely high fidelity and labor-intensive techniques, like video recording, are employed to provide 
ground truth for other methods [114,127]. These forms of analytics are desirable early in the refinement stages 
of playtesting [30] because they are the closest to the traditional form of design evaluation via observation. 
However, the maintenance of so much context runs the risk of drowning in excessive detail, leading context-heavy 
analytics approaches to be discouraged by the broader community of research [11,47,88]. 

Prior Replay Based Approaches 
Within the broader spaces of Game Analytics, Learning Analytics, and HCI Usability methods, there are a number 
of techniques that have used replay of various forms to understand designs and systems. To better characterize 
how my approach to Replay Analysis differs from this prior work, I will review some of the major examples and 
general approaches that exist in the literature. 

The use of replay to evaluate user experience has existed as a concept in the HCI literature for some time. As far 
back as 1984, Neal and Simons described a system called Playback [111] that recorded a users’ key strokes on a 
terminal based system that could then be played back through a prototype interface. This system was primarily 
interested in supporting measurements of command use frequency and timing information. Given its age, the 
design of Playback is limited to very specific hardware platforms, but it represents an early example of what would 
now be called a click-stream, or raw input, recording of user interaction [151]. In these approaches, raw input 
signals are fed back into a system to reproduce user behavior. A similar technique is used in the modern practice 
of tool-assisted speed running (http://tasvideos.org/) where players record their raw controller inputs to be played 

http://tasvideos.org/
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back for verification in competitions or performance at events [99]. These raw input based replay approaches are 
often limited to systems with discrete control systems (e.g., pressing keys or a limited number of buttons on a 
controller as opposed to the analog input of something like a joy stick or dragging a mouse). 

In the intelligent tutoring systems community replays of various kinds have been used to understand and improve 
learners’ experiences. Baker, Corbett, and Wagner describe levels of replay fidelity for analyzing learner behavior 
[18]. The goal of their analysis was to understand forms of replay that could allow human observers to watch 
learners’ experiences and apply observational coding techniques [114] that could be compared to data-mining 
analyses of log data. In their taxonomy, a high-fidelity replay would be a video recording or exact visual 
reproduction (what they call full screen replays) of a learners’ interactions with a tutoring system, while a super-
fidelity replay would augment that video with additional information such as eye-tracking or fMRI data. The main 
focus of their work, however, was exploring what could be done with low-fidelity replay in providing simple textual 
descriptions of sessions. In their study, low-fidelity text replays were generated by randomly sampling a starter 
learner action from a session and then adding the following actions up to a window of 20 seconds and presenting 
these actions as a text transcript. They found that, for their purposes, observers using textual replays were able to 
reach a sufficient level of interrater reliability in coding for behaviors like gaming the system. While these results 
are interesting, they are more useful for facilitating human interpretation of replayed events for validation of 
automated methods rather than directly supporting analytics themselves. 

Another use of a replay-like system from model-tracing intelligent tutoring [3] is what Aleven et al. called “meta-
cognitive model tracing after the fact” [7]. Normally, within model-tracing intelligent tutoring, learners’ actions are 
traced against a model of expert performance to measure their current ability in terms of the expert model. In 
developing a new model of help seeking Aleven et al. used log traces of learners to see how often their preliminary 
models detected certain kinds of help-seeking behavior and whether those designations corresponded to student 
learning as theory would suggest. This usage of replay is geared more toward theoretical ends rather than design 
as the target of replay and iteration is the cognitive model, not the student’s experience, though the resulting 
model could be used to drive the feedback systems of a tutor in the future. 

The field of software engineering has also used replay based approaches for automated testing and debugging 
[106]. A particular example of this approach is Dolos by Burg et al. which provides low overhead deterministic 
replays of web interactions to support debugging Javascript systems [26]. One of the core foci of Dolos is to 
detect execution divergence and inform developers about unexpected behavior. The intention of software 
engineering replay systems is the exact reproduction of a program’s execution state at a memory level in service 
of replicating execution errors and software bugs. This level of detail is excessive for most evaluations of design 
related issues, and implementing systems capable of guaranteeing exact reproduction of program state to a 
memory level requires costly focused engineering efforts. 

The use of replay log files is also common in the space of game analytics for various purposes such as strategy 
analysis [162] and prediction [164]. This work differs from my own goals here in that it is directed toward 
understanding the player decision making process rather than evaluating the quality of given game. Replays also 
feature prominently in the space of game AI, particularly for strategy games like StarCraft [165]. In these use cases, 
the replay log files are usually not being employed for their intended purposes (i.e., reenacting a game or match), 
but are instead being used as a means to get around having to instrument telemetry hooks in a commercial game. 
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Prior Uses of Player, Learner, and User Models in Evaluation 
A subcomponent of my replay approach deals with the question of integrating AI models4 of players. A number 
of other researchers have employed modeling techniques for various purposes in the design of games, 
instructional environments, and user interfaces generally. In this section, I will describe several domain specific 
taxonomies of these approaches and detail some of the notable examples. 

In addition to writing about design as a reflective conversation with the material of a situation, Schön also describes 
four different purposes that AI researchers could take in applying AI to the context of the design task [137], which 
I find useful to frame prior work. In the first level of his taxonomy, Schön suggests that researchers could develop 
an AI that achieves a similar design output to a human but not necessarily in the same way a human would (similar 
to the Turing Test [156]). The second level is to develop an AI that reproduces not only equivalent output but also 
reproduces how people go about designing. The third purpose is to develop AIs purely as assistants to designers 
while the fourth purpose is to use AI approaches to develop environments aimed at better understanding the 
design process as a target of research itself. Within my work, I am primarily interested in the third level of AI as 
design assistant, but there are several interesting implications of the other levels that play into this purpose. 

Within the domain of intelligent tutoring systems, VanLehn et al. present a similar taxonomy of how AI models of 
simulated students can be used for educational purposes [161]. The first use case is for teachers to practice 
teaching with simulated students to formally verify teaching effectiveness. The second use case is to have students 
learn alongside simulated learners to benefit from collaborative learning effects. This form of simulated learner 
has been demonstrated in the work on SimStudent [86,97], where students tutored simulated learners to explore 
the benefits of learning-by-teaching. Finally, the third use case is for instructional developers to use simulated 
students to test their products before release. This final case is the primary focus of my own work. Employing 
simulated students as a means of playtesting can enable designers to see into the experiences of their games 
using a tighter iteration loop than one which requires new playtesters. In terms of Schön’s framework, I see this 
application of AI primarily as a third category application of AI in design, but there are some implications for his 
other categories. For example, should such testing agents only be required to perform adequately in an 
environment (Schön’s category 1), which is likely easier to develop, or should they also be designed to perform 
in a humanlike way (Schön’s category 2). The development of the Apprentice Learner Architecture [94], which I 
contributed to and use in my work, was partly directed at this distinction. In an evaluation colleagues and I were 
able to show an Apprentice Learner Model applied to an intelligent tutoring system could not only reach similar 
asymptotic performance to human learners but also follow a similar learning trajectory, suggesting a commitment 
to Schön’s second category is possible. 

HCI also has a broad literature on the use of user models in the evaluation of interfaces. This literature mostly 
derives from the work on GOMS models [71], which is itself based on early theoretical work on human problem 
solving and information processing [27,112]. In a GOMS analysis a researcher must specify the Goals, and sub-
goals, of a task being performed; Operators, which are primitive actions that can be taken in service of a goal; 
Methods, which are sequences of operators that accomplish goals; and Selection rules, which determine which 
methods and operators to apply in the case that multiple could be applicable to a given situation. The goal of a 
GOMS analysis is to generate timing estimates for using an interface, accounting for various assumptions about 
human cognition and performance. Each primitive operator is assigned a timing weight that is used to score an 

                                                      
4 Within this context of replay, when I refer to a “model” I mean a runnable computational model of behavior 

rather than a statistical model that simply predicts numerical outcomes. 
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agent’s execution based on the operators it applied. One of the key distinctions in this work from my own focus 
is that a GOMS analysis usually assumes it is modeling expert performance, whereas in an educational context, I 
am more interested in modeling novice performance and ideally the change in performance as a learner 
progresses from novice to expert. 

Covering the entire space of applications of AI to games is well beyond the scope of this thesis [170] but I will 
explore a few cases that I find relevant to Schön’s third category of AI in design. One of the largest uses of AI in 
game design is within the space of Procedural Content Generation (PCG) [73]. An example of AI use in a PCG 
context is generating levels with guaranteed desirable qualities [142,147]. Often these approaches function within 
the context of a formal description of game mechanics like the Video Game Description Language (VGDL) [134], 
which is powerful in that it allows the field of AI research in games to advance under a common understanding, 
but also potentially limiting as it imposes a representational formalism on designers.  

AI in games has also been used to explore automated playtesting of game designs [109,150]. This work is similar 
in spirit to VanLehn’s description of simulated learners being used to test instructional software, but has a key 
difference. Similar to my issue with GOMS modeling, prior uses of AI in playtesting games tend to be focused on 
expert performance. There is a noted counterexample by Holmgård et al. [67] who explored the use of 
intentionally hamstrung AI models as a proxy for modeling different skill levels. This work is encouraging but does 
not make use of findings from the cognitive sciences in a way that I feel is necessary for educational game design.  

Replay Analysis 
Within the context of my work and this thesis, I define Replay Analysis as the use of in-game replays as a data 
source to support varied analysis. The core intuition behind this approach is that a running game engine has 
access to any potentially relevant pieces of game state in service of analysis, while a simpler log trace is restricted 
to what information explicitly exists in, or could be inferred from, the logs. A clear distinction that I want to make 
upfront is that these replays are not video based, but rather action traces of players’ session that can be recreated 
within a game engine. Further, the analyses being performed do not need to involve any visual representation of 
the game play at all, though they certainly can. The main requirement for replay is that the underlying model of 
the game can be re-instantiated in the same state it was in during the recorded play session. 

One of the biggest strengths of Replay Analysis generally is that it affords designers and researchers the ability to 
decouple the process of defining metrics for evaluating a game and the designing of the game itself. Since analysis 
is performed over replays, telemetry hooks for particular metrics of interest do not need to be fully decided on 
before playtesting can begin. I do not necessarily advocate for a fully decoupled process of game design and 
evaluation design, as it is often a good idea to be clear on what will be measured before design begins [101,166], 
but delaying a hard focus on proving a game’s effectiveness can allow for more exploratory playtesting [30] to 
refine experiences and try new directions. Also, in a research context, Replay Analysis enables researchers to use 
old data for new analyses (i.e., secondary analysis) to validate and improve upon prior work. Further, even for 
analysis within a given set of research questions, replay can be useful, as it can be hard to foresee what analytics 
or extracted variables would be necessary prior to collecting data. 

Forms of Replay Analysis 
Within my formulation, Replay Analysis can take several forms (Figure 2) depending on how it is performed. Each 
form uses replay traces in different ways and each enables different kinds of analysis. The first form of Replay 
Analysis is what I call Retrospective Replay Analysis. In retrospective replay, recorded sessions are played back 
through the game they were recorded from and used to better understand the current state of that game. 
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Retrospective replay has been used in most of my prior published work [58,60,62]5 to enable several kinds of 
analysis of educational games (see Chapter 5 and Chapter 6 for more details on this work). The core focus of a 
retrospective Replay Analysis is to create a faithful reproduction of the game as the player experienced it and then 
interpret that reproduction with metrics or abstractions as suits analysis.  

 

Figure 2. The taxonomy of Replay Analysis approaches showing how different forms relate to each other. 

The second major form of Replay Analysis is Projective Replay Analysis. In a Projective Replay Analysis paradigm, 
recordings of player sessions are used as input to a computational agent, which interacts with the game as if it 
were a player and generates a new trace that is interpreted for analysis. The main benefit that Projective Replay 
adds over retrospective replay is the ability to run analyses on a next iteration of a game without recruiting a new 
population of playtesters. At the simplest level, Projective Replay could be used for tasks like regression testing 
[106]; but in more complex situations, it can be used to provide insight into how a new yet similar set of players 
might interact with a game after some change was made. An example case and validation study of Projective 
Replay is show in Chapter 7   

Projective Replay is further divided into two forms depending on how the player agents are structured. In Literal 
Replay the original action traces are enacted exactly as recorded but within the new game environment. This form 
could be seen as a naïve player model that only attempts actions it has tried in the past without learning from the 
consequences. In cases where prior actions are no longer possible, that agent can simply move on or report a 
failure. At first glance Literal Projective Replay may seem similar to Retrospective Replay, but there are some 
differences, particularly in where the authority of the game resides. In Retrospective Replay, the trace takes 
precedence over the entire game, overriding or ignoring in-game triggers and events; whereas, in Literal 
Projective Replay, the agent is subject to the rules of the game as executed. For example, if a game mechanic 
were changed such that some player attempts reach a goal state earlier than they originally did, Retrospective 
Replay would continue to apply actions to the level, while Literal Projective Replay would advance to the next level 
as directed by the game system. 

The other sub-form of Projective Replay is Flexible Replay Analysis. In Flexible Replay, the player model is 
augmented with an AI decision making process. In principle, the AI decision making process could be 
implemented in a number of ways; however, I advocate for a player model that adheres to assumptions about 
human learning by taking demonstrations from original players’ replays and learning to perform its own actions 
within the game. It is important that the computational player models are informed by prior player recordings 

                                                      
5 Note that in my prior work Retrospective Replay Analysis was referred to simply as Replay Analysis. With the 

introduction of Projective Replay Analysis in this thesis I find the extra distinction useful to reduce confusion. 
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instead of rules or training from the game creators to avoid the possibility of expert blind spot [78]. One of the 
purposes behind user testing is to learn something about a product that was not already known, and training AIs 
with current designer understanding runs the risk of reflecting the designers’ existing conceptions back at them. 

It is certainly possible that other sub-forms of Projective Replay could be envisioned. For example, an Exhaustive 
Projective Replay agent could explore the space of all possible approaches to a game level without input from 
existing log data. This is the approach taken by several existing AI-aided game design strategies [148–150].  

Replay Analysis Toolkit 
In order to facilitate the process of Replay Analysis within my own research, I have developed the Replay Analysis 
toolkit, which I have presented previously [62] and include here as a systems contribution for this thesis. The 
system is built as a C# library to integrate with the Unity game engine, but the high-level architecture of its design 
should be generalizable to other languages and game engines. The reference implementation of this system can 
be found at (https://github.com/eharpste/ReplayAnalysisEngine). The full system has two main pieces, a logging 
system and a replaying system, but I will describe the system in three sections because the addition of the agent 
system to support Flexible Projective Replay adds an extra layer of complexity. 

Replay Logging Library 
The first component of the Replay Analysis Toolkit is a logging library for recording actions during a play session. 
The purpose of the logging library is to provide a simple API for game developers to record players’ actions in a 
way that can facilitate replay at analysis time. 

The recording of actions follows in the educational data mining tradition of the PSLC DataShop [75]. The action 
encoding format used by DataShop is based on the plug-in architecture for tutoring [126]. In this system, Ritter 
and Koedinger described an architectural design that could be implemented into any existing piece of software 
to communicate with an intelligent tutoring backend. The goal in my case is similar, to augment any game 
implementation with the capacity to communicate with a replayer, but there are some differences.  

The largest difference between my logging approach and the one used by DataShop is that the DataShop 
specification captures transactions as interactions between students and intelligent tutoring systems by pairing a 
student tool action with a tutor response, while my approach only records the student’s action. In designing the 
system this way, I make the assumption that the game engine will have the capacity to reconstruct the “tutor 
response” while replaying, and thus recording the explicit response is unnecessary. Further, in the Projective Replay 
case the explicit response may no longer be valid. 

Within the logs, players’ behavior is captured at the level of a basic action which I define as the smallest unit of 
meaningful action that a player can exert on the functional game space. This grain size is similar to the notion of 
a semantic event in the plug-in tutor architecture [126] and is analogous to what Schell calls operative actions 
[135], which are the base actions a player can take within a game. These actions are contextualized to the game 
world, (i.e., picking up or dropping an object) rather than the raw input of the player (i.e., mouse down at position 
(x1, y1), mouse up at position (x2, y2)). I contextualize actions rather than raw input events because actions that are 
semantic to a given game design are more robust to change over iterations in design than the meaning of a given 
set of screen coordinates, which can be dependent on hardware and platform configurations. 

The log specification of a single action is based on the DataShop specification of a Selection-Action-Input (SAI) 
triple but augments it with a further State field, resulting in the 4-tuple of Selection-Action-Input-State (SAIS). For 
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a given action, the Selection is defined as the entity6 the player is acting on, in most cases the name of the entity, 
or some other unique identifier. The Action is what the player is doing to the entity, effectively the name of the 
verb being done. The Input is a set of parameters to the action being performed. The meaning of the Input field 
is contextual to the type of action, and may not always be meaningful, such as in the case of button presses that 
use “-1” for Input as a standard convention. An alternative way to think about the relationship of the elements of 
an SAI is as a semantic description of an underlying function call7 where Selection is the object being called, Action 
is the function itself, and the Inputs are the parameters to the function. The State property of an action is a 
description of the relevant game state at the time the action was taken. The State property is used during the 
replay process to allow for arbitrary indexing into a session without having to interpolate the game state in order 
to recover context. The paired recording of state is also important in situations where a game’s state and behavior 
could change for reasons other than direct player action (e.g., a physics engine simulating the motion of objects, 
or a non-player character making its own independent decisions). The emphasis on contextualized action paired 
with state is meant to embody a record-to-capture paradigm of analytics and maximize the amount of information 
to be available for future reframing and move testing. 

In addition to the SAIS properties, actions are also recorded with a series of unique identifiers to enable easier 
aggregation. At the top level, all actions are associated with a given User ID. Every time a player starts a new game 
they are assigned a unique Session ID to be associated with that session of play. A session is composed of a series 
of attempts, each with an associated Attempt ID, on the levels of the game, which include a Level field for 
identification. Finally, each action is tagged with a unique Transaction ID and Timestamp at time of action. This 
aggregation structure does impose an assumption that the game is composed of a series of levels that are 
attempted until the player is successful or not, but it is a common game structure that is applicable a large number 
of educational games [116] and is similar to the format of most DataShop logs [75]. 

The logging library was written in C# and is designed to be straightforward to use. For each player action, the 
implementer adds a call to a function that takes as parameters the Selection, Action, and Input to record the 
action. For convenience, there are also simpler versions of this call that record the standard properties that all 
Unity GameObjects have, such as Transform properties for position and rotation. The recording of state is 
facilitated through a system I built into the library that is similar to, but distinct from, Unity’s tagging functionality, 
where GameObjects that would be relevant to record are aggregated by user defined tags. By default, 
GameObjects’ names and transform properties are captured in the state description, but a LoggableObject script 
can be extended to augment state information with further data as needed for a particular game. 

There are several other similar log recording systems for Unity including that ADAGE system from Owens and 
colleagues [116], as well as Unity’s own analytics service (https://unity3d.com/unity/features/analytics) 8 . The 
novelty in my approach is in the commitment to the SAIS structure for recording player actions and in having the 
ultimate goal of supporting further analysis through replay (recording-to-capture) rather than being a general-

                                                      
6 The use of the term entity throughout this section is in reference to the software pattern of an entity-component 

model, of which Unity is an example. See (http://entity-systems.wikidot.com/) for more information. 
7 This perspective derives from the history of the plug-in tutor architecture, whose action descriptions were based 

on the structure of Apple Events in Apple Script that described semantic actions through functions for the 
purposes of creating macro action recordings. 

8 My implementation, in fact, predates the release of Unity’s own analytics product. 

https://unity3d.com/unity/features/analytics
http://entity-systems.wikidot.com/


21 

 

purpose analytics suite. In so far as those purposes could be supported by another logging solution than my 
approach could be transfer. 

The Replay Analysis Engine 
The system for replaying player log traces is called the Replay Analysis Engine (RAE). The RAE reconstructs players’ 
sessions action-by-action, provides software hooks for running analyses during replay, and integrates with an AI 
framework to instantiate player models based on prior logs for testing new game mechanics. It is the ability to 
augment a replay with different analysis scripts that sets my replayer apart from prior approaches to in-game 
replay [44]. In this way, the live game engine is used intrinsically as the data source for analysis rather than 
inspecting textual traces of logs, as is more common in educational data mining and other analytics work [146]. 

The several classes and components9 of the RAE are designed to be analogous to many of Unity’s normal 
components. The core processes of the replayer are factored across four main components: a central 
ReplayAnalysisEngine, which controls the main flow of replay and delegates operations to the other components; 
an Agent component, which provides actions to be performed given the current state of the game; an Interpreter, 
which performs interpretations of the game state to produce analysis; and a GameSpecificReplayComponent 
(GSRC), which acts as a bridge between the general replay process and the specific logic and processes of the 
current game being analyzed.  

In general, the main replay loop is similar to Unity’s update loop, but implemented as a series of co-routines to 
allow the two to execute in parallel. A single tick of the replay loop starts by requesting a new action from the 
Agent. Once an action is obtained the GSRC, it is used to assume the state described by the action and then 
performs the action itself. The normal game logic is then allowed to run until a defined stopping condition is met 
(e.g., waiting for some amount of time, or waiting for all physics objects to stop moving). At this point, the main 
game logic is paused and the Interpreter is executed to produce some interpretation of the action and its effects. 
The Agent also evaluates the result of the action to support learning processes. The ReplayAnalysisEngine then 
proceeds to the next iteration and the cycle repeats. 

The Agent’s main task is providing actions to be performed, but how those actions are created differs depending 
on the type of replay being performed. In a Retrospective or Literal Projective replay, the Agent serves actions 
out of a database or log file in time order, grouped by user, session, level, and attempt. The difference between 
the two is that in Retrospective replay the agent continues to feed actions as they exist in the log without regard 
for the game’s own logic; whereas, in Literal Projective replay, the agent can be interrupted by the game’s logic 
as it advances to new levels or resets levels as needed. Using a series of messaging functions, the Agent notifies 
the ReplayAnalysisEngine, and by extension all other core components, when a new action would be from a new 
attempt, level, or user to trigger behavior like reloading the current level or resetting the entire game. In a Flexible 
Projective replay, the Agent produces actions to perform based on AI reasoning and learns from the results of 
those actions as the game progresses. I will describe this learning process in more detail in the next section. 

The Interpreter component provides little outward functionality itself other than a single function used to trigger 
an interpretation. The simplicity of this specification is designed to enable a wide range of possible analyses. While 
running an interpretation of a particular player action, the Interpreter can leverage the full affordances of Unity’s 
APIs to generate any metrics, feature abstractions, or descriptions necessary for a given analytical goal. 

                                                      
9 As with entity, the term component has particular meaning within the context of the unity engine. See 

(https://docs.unity3d.com/Manual/UsingComponents.html) for more information. 

https://docs.unity3d.com/Manual/UsingComponents.html


22 

 

The GSRC performs several tasks throughout the replay process. Its main tasks are to parse the SAIS data from a 
player action, instantiate the state, and perform the action. While the inclusion of this component does impose a 
burden on the game developer, they will have already written code to record the action in the first place and 
could, in many cases, simply direct the relevant SAI information to existing logic in the game’s codebase. In 
addition to enacting player actions, the GSRC is used by the Agent during Flexible Projective replay to generate 
descriptions of the current game state and actions performed by the Agent for use in training during the action 
evaluation stage. This description process is similar to describing actions for the purposes of logging and could in 
many cases use the same logic. 

In adapting the system to their own game, a developer will generally only need to implement their own GSRC 
and Interpreter with generic versions of the other components provided by the library. The core components of 
the engine (with the exception of the ReplayAnalysisEngine itself) inherit from a common RAEComponent base 
class that provides several messaging functions (similar to existing Unity functions like OnCollisionEnter or 
OnLevelWasLoaded) to allow housekeeping logic to be spread throughout the main replay process. Additional 
subclasses of this common base class could be used by a developer to inject additional special logic into the core 
replay process as needed.  

In addition to the core RAEComponents, the system also uses a ReplayBehavior component that is attached to all 
existing GameObjects in a scene by the RAE. The main purpose behind this system is to provide the RAE with a 
method for interacting with the various GameObjects in the scene without relying on Unity’s normal infrastructure, 
in the event that it is being used to perform the game’s own logic. For example, the ReplayBehavior component 
implements the same system for tagging GameObjects that is used by the logger in order to designate objects 
that appear in state messages or as targets of agent actions. The ReplayBehavior component also provides various 
helper functions similar to those provided by the LoggableObject class during play time. 

Flexible Projective Replay Agent 
In both Retrospective and Literal Projective Replay, the Agent component makes use of a log database to feed 
actions directly from prior players’ traces into RAE. In Flexible Projective Replay, this process is replaced by an AI 
agent system that takes prior players’ traces as training data and generates new actions through its own reasoning. 

The current implementation of the Flexible Projective Replay Agent is inspired by the Apprentice Learning 
Architecture [94]. Colleagues and I developed the Apprentice Learning Architecture as a computational theory of 
human learning from demonstrations and feedback. The goal of the architecture is to try to explain human 
learning by describing its mechanisms rather than merely modeling behavioral patterns with statistical techniques. 
The overarching theory generates computational models of human learning (i.e., runnable programs that 
instantiate assumptions of learning) that can be executed to generate behavior. This behavior can then be 
compared with existing empirical results at a fine grain level to evaluate whether the models and the theory they 
are based on are suitable explanations of the learning process. 

For the purpose of this thesis, I am not interested in the use of the Apprentice Learning Architecture for advancing 
theories of human learning10. Instead, I am interested in leveraging the Apprentice Learning Architecture’s goal 
of modeling a human-like learning process to model the behavior of novice learners in a game setting. This sets 

                                                      
10 For this use case of the Apprentice Learning Architecture see Christopher MacLellan’s thesis [92]. 
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my use of agents apart from prior explorations of virtual playtesting by maintained a strong commitment to 
cognitively informed modeling rather than creating models merely capable of playing a game. 

The apprentice learner model used in Flexible Projective Replay learns a collection of skills that it can execute in 
the game world from example player actions and associated feedback. These skills take a similar form to 
production rules, IF-THEN rules that generate a particular behavior (THEN) when their conditions (IF) are met. The 
model factors skill learning into three sub processes: how, where, and when. For a given SAIS description of a 
player action, how learning seeks to explain how the player came up with the specific set of inputs given 
information in the state and a set of primitive operators; where learning seeks to generate a pattern that describes 
where the elements used in the how explanation came from; and when learning uses the state and game feedback 
to understand the conditions for when this particular skill should be applicable in the future.  

For how learning, the model uses a forward-chaining theorem proving algorithm [131]. For each of the inputs in 
the SAIS, the algorithm takes all of the facts in the state and a set of primitive operators (e.g., functions for doing 
basic arithmetic, or for noticing when two values are equal), and generates a space of possible explanations by 
successively applying the operators to the state until a specified depth of explanation is reached. The system then 
randomly samples among the set of the shortest explanations that produce the target input value. The intuition 
of this choice is that a shorter explanation is likely to be better. If no valid explanation can be found, the system 
uses a simplistic explanation by saying that the exact values from the example did not derive from features of the 
state and much therefore be special constants.  

Where learning uses a specific-to-general relational learning algorithm [103]. This process takes the variables 
referenced by the operators in the explanations generated by the how search and tries to construct a pattern of 
conditions that describes where those variables originate in the structure of the state. Initially, the conditions are 
all the relations in the state that refer to the specific variables of the first example. As more examples for the same 
skill are added, the algorithm generalizes the pattern by introducing new variables for constants that change 
across examples and dropping relations that are not common to all examples. At any given point, the generated 
pattern is the most specific description that is consistent with all the previously seen examples for a particular skill. 

Finally, when learning makes use of the TRESTLE algorithm [93] (see Appendix B for more details on TRESTLE) to 
learn a classifier for when the skill is applicable. To train the classifier, the state of the SAIS is paired with the 
feedback from the game and incorporated into the skill’s TRESTLE knowledge base. The result of this process is 
something akin to a probabilistic decision tree for each skill that can return whether the skill should fire given any 
structured state.  

Initially, the agent starts with no skills. On the first demonstration the agent receives, it creates a new skill using 
how learning and then updates the skill’s where learning and when learning. On subsequent demonstrations, the 
agent first checks to see if any of its existing skills could have generated the values in the SAIS. If there are any 
matches, each of the matching skills’ where learning and when learning components are updated and no how 
learning is performed. If no skills matched, a skill is created with how learning and updated with where learning 
and when learning. 

The training process for the agent alternates between two primary orientations: watching and trying. Initially, the 
agent begins in the watching orientation as it possesses no knowledge of its own with which to play the game. 
When watching, the agent returns actions from the log database as it would in Literal Projective Replay. As the 
agent plays, actions it performs are accumulated in a list for the current attempt until the end of the level when 
feedback is provided. This feedback is then associated with each of the actions and the agent learns from them 
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in the order they were executed. Once the agent has learned from all examples, it switches into the trying 
orientation. 

When in a trying orientation, the agent is provided a representation of the current state of the game and asked 
to generate an action to apply. The agent iterates over its current list of learned skills, testing the state against the 
where learning pattern and when learning classifier of each skill. If the test returns true, a new SAIS is created by 
applying the skill’s how learning explanation to the current state to generate a grounded action. This action is 
then returned to the RAE to be executed in the game. If the agent cannot produce an action on its own, it requests 
a new demonstration action from the log database and tries to generate an action again with the result of the 
demonstrated action. 

Throughout the interactive learning process, there are several situations where the process could break down that 
I call impasse points. The most prominent impasse point is when an agent has executed several actions under its 
own reasoning but then hits a point where it does not know what to do. In this case, the agent is several actions 
ahead of the log trace and requesting a demonstration may not be applicable to the current situation in the game. 
When this impasse happens, the agent reverts to the point where its reasoning diverged from the log and picks 
up where it left off, watching demonstrated actions. In the current implementation, the reasoned actions that led 
to the dead end are forgotten. 

Another impasse point is when an agent’s actions result in no perceptible change in the game state. If a single 
action results in no change to the world, then the agent immediately trains that action as a negative example and 
tries again. This process encourages the agent not to try actions that do nothing. A more nuanced version of this 
impasse, however, is when an agent’s actions result in a recurring cycle of game states. In these cases, the agent 
would run indefinitely without intervention. In the current implementation, I address this issue by keeping a list of 
previously seen game states for the current attempt. If the agent ever detects such a cycle, it drops the entire 
attempt and moves on to the next level. 
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CHAPTER 4  CONTEXT OF APPLICATION 
My main goal in this thesis is to demonstrate the capacity of Replay Analysis to facilitate alignment-informed 
iteration of educational game design; however, the space of all possible educational game designs is enormous 
and not even the best-intentioned method could hope to cover all of it. In this chapter, I will lay out several 
assumptions I make in my Replay Analysis methods that provide bounds around the types of games that my 
methods could be applicable to. Further this chapter will also describe the educational game RumbleBlocks, which 
will serve as both a prototypical example of the kinds of games that my methods could be applied to as well as 
the main context for the work described in the chapters that follow. 

One of the foremost assumptions I make in Replay Analysis is that a game is single-player. This orientation is not 
intended to be a fundamental commitment that single-player games are superior or desirable for education but 
rather derives as a consequence from the various intellectual traditions on which my work is based. For example 
the Apprentice Learner Architecture [94] and the Knowledge-Learning-Instruction framework [77] that provide 
much of the cognitive basis for my work have primarily been applied to single learner paradigms in the past, 
though there are some noted recent examples to expand into collaborative contexts [115]. Limiting to single-
player games also serves as a simplifying assumption to avoid having to model complex multi-agent systems 
during replay. It would not be impossible to expand the replay paradigm to a multi-player context as the 
mechanisms that are used to create replay mechanics often resemble the same software patterns that enable 
networked multiplayer games [44], however, for the time being such efforts are reserved for future work. 

A second major structural assumption I make is that a game is step-based in its interactions. By this I mean players 
act upon the environment by taking a series of sequential steps to arrive as some solution to an in-game challenge 
or whole level. This paradigm could be seen as opposed to continuous or real-time play that might be seen in a 
first-person shooter game such as Quake. Again, this assumption derives from the historical approach of 
intelligent tutoring that informs much of my work, however, what constitutes a step can be more broadly defined 
than it may appear. In his discussion of various representational approaches for steps in tutoring systems VanLehn 
arrived at a definition that a step is “the smallest possible correct entry that a student can make” [160]. Combing 
this perspective with Schell’s notion of functional game space [135] one could view a step as the smallest unit of 
player action which causes a change to the functional space of a game. While it may seem obvious that a game 
like Dragon Box is step-based, by virtue of performing discrete manipulations of cards in the environment, one 
could also see a game like Portal as being step-based problem solving where discrete units of meaningful 
interaction drive puzzle solving forward. Linehan et al. demonstrated an orientation similar to this perspective in 
their exploration of the challenge curves11 of four successful puzzle games [87]. 

I am hesitant to invoke a particular game genre as the focus of my work as the notion of game genres is fraught 
by a tension between industry established categories and other more aesthetically-based topologies [17]. One of 
the more promising taxonomies for game genre is Heintz and Law’s Game Genre Map [65]. Within their taxonomy, 
the puzzle genre fits most closely with the assumptions of game structure built into my work, however, I could 
also see potential application to adventure, simulation, or strategy genres as well. Ultimately, the context that my 
work focuses on could best be described as single-player step-based puzzle games. 

                                                      
11 Linehan et al. refer to these as learning curves but I would frame them more as curves of challenge introduction, 

hence my change in terminology. I discussed this somewhat in my own learning curve paper [58]. 
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RumbleBlocks 
Much of the work contributing to this thesis has been in the service of better understanding the game 
RumbleBlocks [32], which could be seen as a prototypical example of the kind of game my work is relevant to. 
Not only have these explorations aided the understanding and design of this particular game but they also serve 
as an extended case study of how Replay Analysis can support design iteration of an educational game by 
enabling a number of different analytics methods. To be clear, I do not intend RumbleBlocks to be taken as a 
contribution of this thesis itself; however, the game is the context in which much of the thesis work was done. In 
order to fully appreciate the implications of the balance of this document, it is necessary to first have some context 
on RumbleBlocks itself. Throughout the rest of this chapter, I will detail the original design of RumbleBlocks and 
its educational goals. In the next several chapters, I will then proceed through the stages of an extended case 
study of RumbleBlocks and demonstrate how Replay Analysis aided the exploration and iteration of the game. 

RumbleBlocks (Figure 3) is an educational game designed to teach basic structural stability and balance concepts 
to children in kindergarten through grade 3 (5-8 years old). It was originally developed as part of the DARPA 
ENGAGE program at Carnegie Mellon University, which was a collaboration between game design students at the 
Entertainment Technology Center and learning science researchers in the Human-Computer Interaction Institute. 
The ENGAGE project had a broad mission to explore the design of games to support young children learning 
core STEM content, scientific inquiry, and social and emotional concepts [4]. For the purpose of this thesis, I will 
only be reviewing RumbleBlocks’ effectiveness as it relates to the core STEM content of structural stability. More 
information about the design history of the game and a playable version can be found at: 
http://www.etc.cmu.edu/engage/?page_id=84012 

RumbleBlocks was originally designed to focus on three core principles of structural stability: 

1. An object with a wider base is more stable. 
2. An object with a lower center of mass is more stable. 
3. An object that is symmetrical is more stable. 

These principles are derived from goals outlined in the National Research Council’s Framework for New Science 
Educational Standards [110] and other science education curricula for the target age group. 

 

Figure 3. A screenshot of RumbleBlocks. 

                                                      
12 For archival purposes, I will try to maintain a copy of a playable version of RumbleBlocks at: 

www.erikharpstead.net/rumbleblocks  

http://www.etc.cmu.edu/engage/?page_id=840
http://www.erikharpstead.net/rumbleblocks
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The game follows a science fiction narrative wherein a group of aliens have their mothership damaged by a comet 
and must escape to a nearby planet. Players must help the stranded aliens by constructing towers out of a set of 
provided blocks13 that capture energy dots floating in the scene to power the ship and allow the alien to fly away. 
Each level starts with the player finding an alien stranded on a cliff and a deactivated spaceship left on the side of 
the scene (see Figure 3). The player’s goal is to build a tower out of blocks that is tall enough to reach the alien 
so that they can give the alien’s ship back by placing it in a glowing target zone. In the process, they must also 
capture all of the energy dots in the scene, or else the ship cannot launch. Once the player has placed the ship 
on top of the tower and captured all of the energy dots, the ship powers up, which triggers an earthquake. If the 
spaceship falls out of its target zone, either by the tower collapsing or the ship falling off the tower, then the player 
fails and must restart the level; however, if the tower remains standing with the ship on top, the player succeeds 
and progresses to the next level.  

Each set of levels in RumbleBlocks is designed to focus on a different principle of stability. The targeting of different 
principles is accomplished mainly through level design (i.e., the mechanics do not change depending on the target 
principle; only the positions of energy dots and types of blocks available change). The energy dots can be used 
to both scaffold and constrain students’ solutions to a level, forcing them to prioritize one principle over another. 
However, even with this scaffolded design, there are an unknown number of possible valid solutions to any given 
level, because the earthquake mechanic relies on the dynamics of Unity’s real-time physics engine to evaluate the 
student’s structure. That is, even though the level designer may intend for a particular tower design to be the 
solution, other designs may also work.  

The unknown nature of a given level’s solution space entertains the possibility that players could create solutions 
that ignore the target principle for the level and still succeed. Such a situation would allow learners to complete 
the game without having to contend with the entire set of target principles. While one might expect that the 
physics engine takes care of most of these misalignment cases in RumbleBlocks (i.e., regardless of how well a 
solution embodies the target principle for a level, it is still subject to the laws of physics), there are many design 
decisions that can affect this behavior. For example, changing the mass and friction properties of blocks can alter 
how likely a structure is to collapse during an earthquake. Additionally, altering the speed or magnitude of the 
earthquake can also affect what happens to a player’s solution and thus whether the core concepts of the game 
are being properly represented. This complication of a dynamic feedback mechanism presents a challenge in 
anticipating whether the game is providing properly aligned feedback across the myriad of possible player 
experiences. 

                                                      
13 During one of the playtests, a player suggested that the blocks were parts of the broken mother ship, which 

had never occurred to me, but it makes a nice narrative sense. 
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CHAPTER 5  FORMATIVE EVALUATION OF RUMBLEBLOCKS 
In order to demonstrate the Replay Analysis approach and my formulation of alignment for this thesis, I will 
describe a number of studies. This first study is part of a formative evaluation of RumbleBlocks; and for the goals 
of this thesis, it serves multiple purposes. On a basic level, this work represents the first demonstration of the 
method of Replay Analysis and the RAE in an educational game. Further, this work was the origin of my formulation 
of alignment as a regression of principle-relevant metrics to game feedback and provides some encouraging 
evidence for that approach. Finally, in the broader context of my work, the data collected during this study is used 
throughout all of my future investigations as a baseline for comparison in iteration. The work in this chapter has 
previously been published in [62], which presented the original design of the Replay Analysis toolkit, and [60], 
which expanded further on the concepts of Replay Analysis and its utility. 

At the culmination of RumbleBlocks’ original development cycle, the ENGAGE team was interested in evaluating 
whether the game was succeeding at its pedagogical goals. As part of this development effort, I assisted with a 
formative evaluation of the game. The original goals of the study were two-fold. First, this study was a first formal 
evaluation of RumbleBlocks’ instructional effectiveness generally; second, it was a study to explore the effect of a 
series of levels based on a contrasting case instructional paradigm on students’ learning. I will only focus on the 
general formal evaluation question, as the results of the contrasting case comparison have been published 
elsewhere [29]. The formative evaluation was done as a series of in-class playtests paired with out of game transfer 
tests that took place over four sessions: an external pretest, two 40-minute sessions of play, and an external 
posttest. This work was performed in two Pittsburgh area public schools with 281 students participating across 
both schools. For replay based analyses, the full sample of 281 students is used; however, only 174 students were 
present for all four days of the study and have full data for the pre-posttest analysis. (See Appendix A for further 
descriptive statistics from this study.) 

To facilitate the evaluation, two sets of levels were selected to be used as in-game pre- and posttests, 
counterbalanced across players. These levels (one for each principle) were chosen out of the normal pool of levels 
but were altered to remove the energy dot mechanic and to prevent players from retrying after a failed attempt. 
These special levels were placed after a short collection of tutorial levels, which explained the basic mechanics of 
the game, and at the end of the game. On the second day of the study, all players were jumped to the second 
set of pre-post levels to ensure they all got a chance to play them. This design allowed us to get a sense of how 
players built before and after they had experience with the game. In addition to the in-game evaluations, players 
also took out-of-game paper and pencil tests, before and after playing the game. These tests contained items 
relating to stability and construction, based on the three principles of base width, low center of mass, and 
symmetry. 

Replaying for Pre-Posttest Measures 
As a first pass at evaluating the effectiveness of the game, I leveraged the pre-posttest design to confirm whether 
RumbleBlocks was succeeding in getting players to improve in their understanding of its target principles. As I 
stated previously, such an analysis would primarily be confirmatory with regard to alignment evaluation, but it is 
nonetheless a valuable analysis tool when developing an educational game. If positive learning results were found, 
it would be reasonable to assume that the game was well aligned; but if results are not positive or conclusive, 
then the interpretation with regard to alignment becomes unclear. 
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The results from the formative evaluation study were promising. The out-of-game tests showed a slight, yet 
significant increase in player’s performance from pretest to posttest, using a paired-samples t-test, t (173) = −2.13, 
p = 0.03, d = 0.16. Looking at players’ pass rates on the in-game pre-post levels (i.e., how likely students were to 
succeed on the levels) demonstrates a similar conclusion, showing a significant, medium sized increase in 
performance using a paired-samples t-test, t (173) = −4.96, p < 0.001, d = 0.51.  

While these initial pre-posttest results are encouraging, the replay data can be leveraged to see if there was finer 
grained behavioral evidence that players not only got better at the game but did so because they were better 
instantiating the principles it targets. This result would mean that before and after playing the game for some 
time, players would build towers in the unguided pre-posttest levels (i.e., levels without the constraints of energy 
dots, allowing more freedom in construction) that showed a better awareness that (1) a structure with a wide base 
is more stable, (2) a structure with a lower center of mass is more stable, and (3) a structure that is symmetrical is 
more stable. It is important to note that looking at a difference in metrics related to learning goals is different 
from looking at the difference in player success rate. If we entertain the possibility that the game is not necessarily 
well aligned, then it is possible that players could improve in their pass rate in the game for reasons other than 
following the principles that are central to the game’s goals. 

To test whether players were better leveraging the physics principles targeted by the game in their solutions, I 
built an Interpreter for the RAE to calculate a variety of metrics based on each player’s final state of each in-game 
pre-posttest level. These metrics represent the PRMs in RumbleBlocks and are defined as: the width of the tower’s 
base (Figure 4A); the height of the tower’s center of mass, calculated as a weighted average of the centers of 
mass of the tower’s blocks relative to the ground (Figure 4B); and a measure of symmetry defined as the size of 
the angle formed by a ray from the center of the tower’s base to the center of mass and 90° (Figure 4C). Once I 
had a set of metrics, I normalized the scores across players within each level to have a mean of 0 and a standard 
deviation of 1. Normalization was done to account for differences in scale between the levels (e.g., some levels 
have a higher target zone for the ship resulting in higher centers of mass for all towers on that level) which made 
it difficult to compare metrics directly between levels. 

 

Figure 4. A visual depiction of each of the 3 Principle-Relevant Metrics used in the analysis of RumbleBlocks. 
(A) Base Width, (B) Center of Mass Height, and (C) Symmetry Angle. 

To see if there was any improvement on the use of principles in players’ solutions from the pre- and posttest 
levels, I compared each student’s averaged PRMs using repeated-measure ANOVAs. Looking at the results in 
Error! Reference source not found., I saw a significant improvement for the Base Width, F (1, 253) = 9.31, p = 
0.003, and Symmetry Angle F (1, 253) = 5.94, p = 0.016 metrics, meaning that at the end of playing the game, 
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students were beginning to design towers that had wider bases and more symmetrical layouts. However, I did not 
see any significant difference in terms of Center of Mass (COM) Height, F (1, 253) = 0.35, p = 0.552, meaning that 
students did not seem to attempt to lower the center of mass of their structures. This result suggests that the 
original version of the game may possess a misalignment in how it handles the low center of mass principle; 
however, as stated previously, a null result in pre-posttest comparison cannot reach this conclusion definitively.  

Metric MS df F p 
Base Width 3.37 1 9.31 0.003 ** 
COM Height 0.14 1 0.35 0.552  
Symmetry Angle 1.94 1 5.94 0.016 * 

Table 1. Repeated-measures ANOVA results for average normalized Principle-Relevant Metrics from the in-
game pre- and posttest in the formative evaluation study of RumbleBlocks. 

Alignment Regression Analysis 
Knowing from the pre-posttest analysis that there were possibly some misalignment issues with RumbleBlocks, 
the next step in analysis was to explore why this might be happening. This result led me to explore the question: 
is the game properly incentivizing players to act in a way that corresponds to the pedagogical goals for the game? 
If the game is knocking over towers that are principled or letting unprincipled towers remain standing, then players 
will not know what to make of the feedback they are given, making it unlikely for them to improve toward better 
understanding. Such cases would be examples of misalignment. 

To answer this question, I turned to my definition of alignment as a regression between PRMs and game feedback. 
In effect, I needed to test if there was a relationship between the relative principled-ness of student solutions and 
whether the game deemed the solutions successful. Put another way, I needed to establish whether the principled-
ness of a tower (measured by the relevant PRM) could predict that a tower would stand or fall in the earthquake. 
To facilitate this analysis, I augmented the original Interpreter to have the RAE calculate the same PRMs I used for 
the pre-post analysis, except this time for all levels. I wanted to explore how well the metrics that should indicate 
a well-constructed tower (i.e., a domain-principle-based separation function of the solution space) corresponded 
to a player passing a given level (i.e., a feedback-based separation function of the solution space). It is important 
to note that this analysis is concerned primarily with the behavior of the game and not with student performance. 
In this context students are merely providing the test data for my analysis of the game’s system. 

In measuring alignment throughout this document, I employ a hierarchical mixed-effects regression method14. 
We would expect from this analysis that, as a player creates towers that exhibit stronger adherence to each of the 

                                                      
14 Note: In previously published versions of this work, slightly different forms of regression and coefficient scaling 
have been used. In [62] regression was performed with values scaled in terms of the maximum or minimum values 
for a given level and done within groups of levels targeting the same principle. In [60] a similar approach was 
taken with regard to grouping levels but with coefficients normalized (i.e., mean=0, SD=1) instead of max scaled. 
Given that many more regression models are being run and compared in the current work and previous analyses 
suggested we should be skeptical of the principle target labels for some RumbleBlocks levels [59], I have opted 
for the simpler paradigm used here. My conclusions have always been generally similar regardless of the specific 
approach to regression. 
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target principles of the game, they would be more likely to succeed on the game’s levels. The regression model I 
use to evaluate alignment takes the following form: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ~ 𝐶𝐶𝑂𝑂𝐶𝐶 𝐻𝐻𝑂𝑂𝐻𝐻𝐻𝐻ℎ𝑂𝑂 + 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴𝑂𝑂 + 𝐵𝐵𝐵𝐵𝑠𝑠𝑂𝑂 𝑊𝑊𝐻𝐻𝑊𝑊𝑂𝑂ℎ + (1 | 𝐿𝐿𝑂𝑂𝐿𝐿𝑂𝑂𝐴𝐴) 

Equation 1. Hierarchical regression model used for evaluating alignment. 

In this model, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is a binary outcome of whether the tower succeeded on the level; 𝐶𝐶𝑂𝑂𝐶𝐶 𝐻𝐻𝑂𝑂𝐻𝐻𝐻𝐻ℎ𝑂𝑂 , 
𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴𝑂𝑂, and 𝐵𝐵𝐵𝐵𝑠𝑠𝑂𝑂 𝑊𝑊𝐻𝐻𝑊𝑊𝑂𝑂ℎ are the PRMs as defined in Figure 4; and (1 | 𝐿𝐿𝑂𝑂𝐿𝐿𝑂𝑂𝐴𝐴) denotes a random 
intercept for Level, meaning that some variance in outcome is expected due to the idiosyncrasies of each individual 
level design. Coefficients from the model are reported in both raw form (B) with standard errors (SE B) and in 
standardized (β) form. The raw coefficients represent the effect of a single unit increase of the given metric’s 
natural scale, while the standardized coefficients represent the effect of a single standard deviation increase from 
the given metric’s mean. In general, the raw coefficients are better for understanding the strength of an individual 
metric’s contribution where the standardized ones are better for judging the relative strengths of the metrics 
compared to each other. 

To aid interpretation, raw COM Height and Base Width scores are scaled such that a one-unit increase in the 
measure is equivalent to the size of one square block (the grey squares visible in Figure 3), which is the smallest 
block size in the game. Further, in all regressions throughout this document, COM Height and Symmetry Angle 
are both reverse-coded so that a larger coefficient value represents a better alignment between game goals and 
game outcomes.  

Given that Outcome is a binary variable, the model is fit as a logistic regression. As a reminder, when interpreting 
logistic regression models, the coefficient Bi or βi correspond to the change in the log of the odds for a one-unit 
change in factor xi given that all other factors remain fixed. The change of odds ratio (𝑂𝑂𝑂𝑂), i.e., the change in 
percentage chance that a tower succeeded, for a 1-unit change of factor x1 can be computed by raising ℯ to the 
power of the coefficient, 𝑂𝑂𝑂𝑂 =  ℯ𝛽𝛽1 . 

The results of applying this regression process to the formative evaluation data can be found in Table 2. When 
looking at the PRMs for Base Width and Symmetry Angle, there is a significant relationship between the PRM and 
success on the level, which is what would be expected if the game is appropriately incentivizing their target 
principle. The relationship for the COM Height PRM, however, was not found to be significant. This would mean 
that, counter to what the target principles suggest, players who build with lower centers of mass are not any more 
likely to succeed on levels than players who build towers with higher centers of mass. This behavior could not 
have been the RumbleBlocks designers’ intent. 

Coefficient B SE B β p 
(Intercept) 1.077 0.450 1.749 - 
Base Width 0.136 0.031 0.188 < 0.001  *** 
COM Height -0.049 0.047 -0.039 0.295 

 

Symmetry Angle 0.050 0.005 0.321 < 0.001  *** 

Table 2. Alignment regression results for the formative evaluation of RumbleBlocks. 
Discussion 
The results of the initial formative evaluation of RumbleBlocks suggest that the game did have learning gains, 
particularly for the symmetry and wide base principles, but had issues with the center of mass principle. In looking 
at the relationship between students’ solution features and their likelihood of success on a given level, I found that 
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the pattern in student learning appears to be replicated in the coefficients of the metrics predicting success, in 
that more principled Symmetry Angles and Base Widths are associated with a higher likelihood of success on a 
level, while a more principled COM Height was not associated with success (and was in fact trending negative).  

I interpret these results to suggest that RumbleBlocks has a problem with its alignment. As players are going 
through the game it would be hard for them to associate having a lower center of mass as a solid structural 
principle because the game does not provide consistent feedback to make the connection. Given that the pre-
posttest results show a similar pattern as the alignment regression, it is clear this misalignment is an issue with the 
game’s design that needs to be remedied with design refinement. 

One might be tempted to suggest that if there is such a misalignment with the center of mass principle, then the 
designers should simply alter the game to base feedback directly on that metric. This suggestion is not an 
unreasonable idea; but in the case of RumbleBlocks, it would be difficult to implement. For one, while the design 
of each level in RumbleBlocks is intended to emphasize one principle over another, the principles can never be 
truly separated from each other. Making it so that success for a level targeting one principle is determined by the 
respective PRM might cause that level to become misaligned for another principle. Further, these principles are 
high-level abstractions for the dynamics of real earthquake physics, which possesses some inherent stochasticity 
that cannot be estimated in a closed form (see Appendix C for further details on this issue). 

More broadly, I find this work provides encouraging evidence for my formulation of alignment. Given that there 
was a misalignment of the COM Height metric and success in the game, it stands to reason that players would 
not be building with lower centers of mass from pretest to posttest, and this pattern was, in fact, observed. If 
alignment regression corresponds to learning results, that suggests that it could be used as a valid assessment of 
a game’s fitness to its instructional goal. 

Further, this work was a first demonstration of Replay Analysis. In this instance, I employed the system both for 
measuring learning in terms of pre-post gains but also to evaluate the alignment of a game and its goals. Both 
of these helped to broaden the understanding of how RumbleBlocks worked. As the case study continues to 
unfold in later chapters, the capacity for Replay Analysis to answer even more questions from this same dataset 
will be demonstrated. 
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CHAPTER 6  EXPLORING SOLUTION SPACES IN RUMBLEBLOCKS 
In the previous chapter, I provided an initial demonstration of Replay Analysis in service of measuring alignment. 
From the perspective of Schön’s seeing-moving-seeing framing of the design process [138], the evaluation so far 
amounts to a first glance at a particular context. The fact that Replay Analysis can provide this kind of first pass 
appraisal of a game’s fitness is good, but there is potential for it to be used further. In the event that an issue is 
found at an abstract level, the next question for a designer is to try to better understand why it might be 
happening. Exploring this question requires reframing the design context [48] and viewing it from different angles 
to suggest what solutions might lead to a better design. Replay Analysis also affords this kind of exploration, as I 
will demonstrate in this chapter. 

The fact that RumbleBlocks is not providing feedback in accordance with its pedagogical goals gives rise to a new 
question: if players are not getting consistent feedback on the center of mass principle, what is the game doing 
in these situations? Answering this question requires the ability to look at players’ experiences in closer detail than 
is provided by distilled metrics. Leveraging the Replay Analysis approach provides the ability to look at the 
common structure of solutions that the players created and judge whether the game’s reactions to those solutions 
was appropriate.  

Attacking this question required wrestling with the issue that neither the designers of RumbleBlocks nor I had a 
sense of how many ways there were to solve any of the levels in the game. Further, among the various ways to 
solve each level, which ones are the young players of the game’s target demographic more likely to employ? 
Resolving these issues would enable looking at the kinds of feedback the game provides to common solutions 
and whether that feedback appears to make sense given the principles of the game. Rather than comb through 
myriad solutions to each level myself, I made use of the RAE to reframe the log data as a detailed representation 
of the solution space. This representation could then be coerced into a form that would make it amenable to 
various machine learning methods to cluster structurally similar solutions.  

At a high level, this analysis involves capturing a picture of the space of solutions that students use to overcome 
in-game challenges. This solution space is generated by clustering individual solutions created by students into a 
subset of representative solutions (since there are too many to view individually). Once a collection of 
representative solutions is gathered, each one is evaluated in terms of its PRMs. Finally, the PRMs are compared 
to the positive or negative feedback designation that the game’s mechanics assigned to the majority of individual 
solutions embodied by each of the representative solutions. This process allows me to analyze the general 
principled-ness of a set of student solutions and how the game treated them as a means of evaluating alignment. 

An alternative way to approach this problem could have been to employ some kind of AI to exhaustively explore 
all possible solutions to in-game levels and challenges, and there is some precedent for approaching design 
problems in this manner [147]. I focus instead on the analysis of representative solutions for three main reasons. 
First, the generation of an exhaustive space could be infeasible for games with lots of variation in solution 
approach, particularly during prototyping stages where minor changes might have drastic effects on possible 
solution space. Second, many existing techniques for exhaustive game space exploration require formal 
description languages such as the Videogame Description Language [134]. Relying on the conclusions of an 
abstract representation of a game may elide over idiosyncrasies or hidden assumptions that would arise in a 
realized prototype put before players. Finally, focusing on patterns across the behavior of actual players cuts right 
to the heart of the reason for evaluating a design in the first place. Understand how players will approach and 
explore the game is why playtesting is conducted and focusing on their behavior allows one to focus on this 
mission.  
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Conceptual Feature Extraction 
The complex structure of towers in RumbleBlocks, and games more generally, makes their representation 
inappropriate for common clustering methods. To perform clustering, I first had to develop a means of describing 
solutions in terms of their structural features in a way that machine learning methods could understand. For 
example, many students might build a tower that uses an arch pattern, whereas others might build an inverted 
“T” shape. I needed a representation that captured elements of these basic structural patterns. This effort lead 
colleagues and I to the development of the Conceptual Feature Extraction (CFE) algorithm, previously presented 
in [61], which leverages a two-dimensional grammar induction process to characterize solution states within 
RumbleBlocks.  

At a high-level, the Conceptual Feature Extraction process flows through a series of four stages (illustrated in 
Figure 5). First, the raw game representation of the solution state is discretized to a grid making use of the objects’ 
physics collider properties. Next, an exhaustive two-dimensional context free grammar is learned over all of the 
solutions in a given dataset. This grammar can then be used to parse the set of solution states, and the resulting 
parse trees can be flattened into binary feature vectors that are amenable to clustering. 

 

Figure 5. A high level description of the Conceptual Feature Extraction Process. 

To build this new representation, I developed a new Interpreter for the RAE to produce representations of student 
towers aligned to a two-dimensional grid. The RAE made use of a common physics formalism available in the 
Unity game engine called an axis-aligned bounding box, which describes the physical extents of an object aligned 
to each of the three principle axes at any given point in time. Relying on this formalism means that while this 
approach was largely developed with RumbleBlocks in mind, it would be applicable to any game relying on a 
similar physical structure. 

Next, two-dimensional grammar induction learns a set of patterns that can be used to describe all the student 
solutions in the entire dataset. A two-dimensional grammar consists of three components:  

1. Terminal Symbols, which represent the blocks, spaceship, and empty space (in this context)  
2. Non-terminal Symbols, which represent structural patterns consisting of more than a single block 
3. Rules, which map non-terminal symbols to pairs of other non-terminal symbols oriented in a certain 

direction (horizontal or vertical), or non-terminals to terminal symbols (a unary relationship). 

To help illustrate the concept, Figure 6 shows a simple example grammar (u, h, and v represent unary, horizontal, 
and vertical respectively), and the parses for two simple towers. 
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Figure 6. A simple two-dimensional grammar (a) and the parse trees generated by applying this grammar to 
two towers (b and c). 

CFE first generates an exhaustive set of rules that describe every possible way to parse all of the solutions in the 
set. Next, it computes all the possible parses of each solution. Given the parses for each solution, it creates a hot-
1 encoded vector (i.e., containing a 1 for every non-terminal present in the solution and a 0 for every non-terminal 
not present in the solution) for each solution. The resulting feature vectors contain information about all the 
structural patterns present in each solution. These patterns may correspond to individual blocks, pairs of blocks, 
more complex combinations of blocks, or even whole towers. The vectorized patterns can then be used for a host 
of machine learning applications, including clustering and classification. 

Using CFE to Consider Solution Spaces 
Given a set of solutions described in terms of their common structural features with CFE, the next task is to create 
a set of representative solutions that can enable designers to look at the game’s behavior across multiple player 
experiences. I frame this task as clustering, where each unique cluster in a solution can be taken as a representative 
solution to a level. Using clusters, an archetypal solution can be considered as the aggregate of the solutions 
contained within a given cluster.  

In creating representative solutions for RumbleBlocks, I performed clustering across the levels of the game. For 
each level, I clustered the vectorized solutions using g-means, a variant of the common k-means clustering 
algorithm that chooses a value for k optimizing for a Gaussian distribution within clusters [57]. This process 
produced a set of different groups for each level, where each group represents solutions that share structural 
similarity. The resultant clusters can be summarized as representative solutions that embody the general trend 
within the cluster. For each cluster, I created a representative solution by averaging the PRM scores within the 
cluster and then assigning the success label that the game assigned to the majority of solutions within the cluster. 
Aggregating solutions in this way gives me the ability to think about common patterns of solutions through a 
single representative solution rather than individual solutions.  

To get a sense of the general trends in how the game treats different solutions to a particular level, I created 
representative plots of the clusters like the one show in Figure 7. These plots show each representative solution 
plotted with its frequency of use (as a percentage of all observed solutions for that level) along the x-axis and its 
relative principled-ness, in terms of a normalized PRM score, along the y-axis. The green squares represent 
solutions that are mostly successful where the red diamonds show solutions that are mostly unsuccessful. When 
examining these plots, two different patterns are primarily of interest: principled failures and unprincipled 
successes, which both represent the game generally giving feedback contrary to the target principle for the 
particular level. These cases can shed light on potential problems with a game’s alignment. The analysis of 
RumbleBlocks highlighted several cases, but for purposes of this document, I only discuss two in detail. 
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Figure 7. A plot of representative solutions’ PRM score versus frequency. 

The first problem level is Symmetry_7, which is a level meant to target the concept that a symmetrical structure is 
more stable. In this example, there are two highly frequent solutions, the two points farther to the right in Figure 
8. One is mostly successful and the other is mostly unsuccessful, but they do not differ strongly in their PRM scores 
for symmetry. When I examined screenshots of student solutions to this level, I saw the situation shown in Figure 
8, where the tower on the left (an inverted T-shape) comes from the majority failure solution while the tower on 
the right (an arch shape) comes from the majority success solution. While it is clear from the examples that the 
left tower should fail (as it did frequently), it is important to remember that this level is designed to target the 
symmetry principle, which says a symmetrical structure should be more stable. Both solutions seen in these 
representative solutions are generally symmetrical, but one was considered a failure while the other is considered 
a success. This case represents RumbleBlocks giving inconsistent feedback to players about the targeted symmetry 
principle. An alternative interpretation is that this level should not be labeled as targeting the symmetry principle, 
given that its two most frequently used solutions both embody a reasonable level of symmetry. 

 

Figure 8. A plot of solution frequency (as a percentage) vs. PRM score for all of the clusters on the Symmetry_07 
level of RumbleBlocks (Left) and two example student solutions to the Symmetry_07 level. The solution on the 

left comes from a majority unsuccessful cluster (Right). 
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Another anomalous example is shown in Figure 9, which shows a plot of the different solutions to the level 
CenterOfMass_10_PP. This level was used as part of an in-game pre-post design, meaning it omits the energy 
dot mechanic and is based on a level designed to target the low center of mass principle. It is harder to attribute 
patterns in the chart to elements of level design because it lacks the energy dot mechanic and thus does not 
restrict players as much as normal game levels; however, an interesting pattern develops nonetheless. The 
distribution of how many students created each solution on this level is more evenly spread; but among groups 
of solutions that are all relatively equal in PRM score, we see two solutions that are majority failure rather than 
success. 

Visually inspecting the solutions students created to this level, we see the pattern that arises in Figure 9, where an 
example from one of the successful solutions is shown on the top and an example from each of the unsuccessful 
solutions is shown on the bottom. The salient feature to note among the unsuccessful solutions is the presence 
of the alien’s spaceship on top of a single square block. This pattern points to a nuance in the game’s mechanics, 
where the criteria for in-game success is whether the spaceship falls off the tower during the earthquake and not 
just that the tower continues to stand. Such a pattern opens up the possibility, illustrated by the lower right 
quadrant of the matrix in Figure 1, that a student could build a perfectly reasonable tower that is judged as 
unsuccessful by the game only because the spaceship falls off. This behavior is an example of the more nuanced 
kind of alignment issue where a task requires an extra piece of unexpected knowledge to complete the level 
successfully. While the spaceship should also be subject to the same stability principles as any other part of the 
tower, this level seemed to suggest it was the major determining factor in success, disregarding the rest of the 
tower’s design. 

  

Figure 9. A plot of solution frequency (as a percentage) vs. PRM score for all of the clusters on the 
CenterOfMass_10_PP level of RumbleBlocks and examples of student solutions on the CenterOfMass_10_PP 

level. The solution at the top comes from one of the majority successful clusters. 

The patterns I observed in the analysis of the Symmetry_7 and CenterOfMass_10_PP data were present in a 
number of other levels as well. As a pattern of salient features emerged, I wanted to see if there was further 
evidence in the structural data to support the conclusion that RumbleBlocks might have an issue with certain 
structural features exerting too much influence on the success of a tower. To explore this question, I used the 
structural features generated through the CFE process and used a χ2 analysis to identify which structural features 
present in student solutions were more predictive of success. I performed a χ2 test of each of the 6,010 symbols 
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against solution success to see which patterns were most strongly related to success of a tower. Because there 
are a large number of statistical tests involved, the possibility of a false positive (i.e., Type I error) is increased. I 
applied a Bonferroni correction to the results to account for the number of statistical tests [49]. This correction 
divides the cutoff for considering a result to be significant (conventionally p < .05) by the number of tests 
performed (in this case 6,010) and uses the result (8.32e-6) as the new bar for significance. 

Overall, 19 grammar symbols were significantly related to success. However, representing the grammar symbols 
with grounded game objects resulted in only five distinct structures15. Once I had a selection of significant features, 
I performed a logistic regression of those features against solution success to understand the direction of the 
relationship (i.e., does each feature predict success or failure) as a χ2 can only detect the presence of an association 
and not its direction. I only present the directional results of this regression and not the actual coefficients. The 
results of this process are visually rendered in Figure 10. 

 

Figure 10. Rendered results of a χ2 analysis of structural features in RumbleBlocks which predict the success of a 
tower in the earthquake. Student solutions that contained the features in the failure region to the left were more 

likely to be unsuccessful in the earthquake, while solutions that contained the feature in the success region to 
the right were more likely to be successful. 

The original question driving this exploration asked: if players are not getting consistent feedback in the game, 
what is the game doing? The pattern that arises from the χ2 analysis demonstrates that the game tends to focus 
more on points of weakness with a lone square block without supports, meaning that the game is generally 
punishing more nuanced sub-structural faults of towers. The principles targeted by RumbleBlocks are generally 
meant to apply to whole structures, and so do not necessarily account for these kinds of smaller structural 
problems. These results would suggest some misalignment between the stated goals of the game and its feedback 
mechanisms as instantiated in the earthquake mechanic. 

Further, the analysis demonstrates a strong difference between the width of the platform underneath the 
spaceship and the eventual success of the tower (i.e., placing the spaceship on a single block is more likely to lead 
to failure and placing it on a wide block is more likely to lead to success). This pattern highlights the importance 
of the spaceship remaining on top of the tower as a key success criterion. While the designers were aware that 

                                                      
15 The CFE process uses a set of recursive rules to represent negative space, allowing it to create multiple symbols 

that would look visually the same but differ in how negative space around the tower is handled. More details on 
this limitation can be found in the paper on CFE [61]. 
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the spaceship served such a purpose in the design, they probably did not think it would be such a strong 
determining factor to the potential detriment of other learning goals. When pursuing iteration, the designers of 
RumbleBlocks will have to consider if this result represents a flaw in the game’s mechanics, which contradicts the 
message, or an opportunity to teach a nuanced aspect of stability and balance with some new feedback. 

Limitations of CFE 
CFE has enabled a number of analyses that have highlighted potential issues with RumbleBlocks. While the process 
has been useful in this case there are several limitations to the CFE approach that would make it difficult to 
generalize to other contexts and games and are worth noting. 

The main limitation of CFE is its reliance on a two-dimensional context free grammar formalism. While the axis-
aligned bounding boxes I use in the process are common in many game engines and it is relatively trivial to 
expand the approach to a three-dimensional space, it is still restricted to primarily spatial relationships between 
objects that can be fit to a grid. Games whose spaces are less obviously geometric would struggle to adapt the 
approach. Further, the current grammatical approach cannot describe all geometric patterns itself. For example, 
a spiral pattern like the one in Figure 11 cannot be describe using a two-dimensional context free grammar 
because there is no way to cleanly separate any of its elements along a single axis. 

 

Figure 11. An example of a spiral pattern that a two-dimensional context free grammar could not encode. 

Viewing CFE more generally as a grammar induction strategy for encoding game states it is possible to envision 
other grammatical formalisms besides two-dimensional adjacency that could be used for non-geometric games 
(e.g., applying natural language processing techniques to a game whose space it primarily textual responses). This 
perspective, however, places an additional burden of feature engineering on game designers to develop new 
grammatical rules for understanding their games.  

Further, CFE is a brittle process meaning that as new playtesting is conducted there is no guarantee that an existing 
grammar could describe the new solutions. In order to perform analysis in an ongoing fashion a new grammar 
has to be re-learned on the entire body of player solutions each time. This requirement can make it difficult to 
translate findings between iterations of design as each iteration is being interpreted under its own grammar rather 
than a common one between all iterations. 

Addressing these limitations of CFE was part of what motivated colleagues and I to develop the TRESTLE concept 
formation algorithm [93]. Rather than take the approach of encoding game states as feature vectors to apply 
mainstream machine learning techniques, TRESTLE was developed to take examples described in the common 
JavaScript Object Notation (JSON) and organize them into a conceptual hierarchy. The algorithm is also inspired 
by cognitive research on human category learning [50] and so develops concepts incrementally allowing it to 
incorporate new data as it is collected. Leveraging these features could allow TRESTLE to serve as a more general 
way of clustering player solutions to explore solution space. For more specific details on the implementation of 
TRESTLE see Appendix B.  
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To demonstrate TRESTLE’s capacity as a clustering technique for exploring solution space I compared clusterings 
produced by TRESTLE and by CFE to groupings produced by humans to see how well they agreed. For this 
analysis, I created an Interpreter for the RAE that produced screenshots of player solutions to three of the pre-
posttest levels of RumbleBlocks, as well as state descriptions that could be parsed by TRESTLE and CFE. The pre-
posttest levels were used because they are likely to have some of the most interesting variance in solutions as 
they were minimally constrained. Once the data was generated I had two assistants produce groupings of the 
screenshots using an open-card sorting process (i.e., there was no previously agreed upon number of groups). I 
then applied both CFE and TRESTLE to cluster the solutions. The clustering process for CFE worked as I described 
above, while TRESTLE applied to process described in Appendix B optimizing for the Bayesian Information 
Criterion (BIC) [139] heuristic.  

The clusters created by each method were compared to the human grouping using Adjusted Rand Index (ARI) 
[124]. ARI is a measurement of agreement between raters where the raters do not need to agree on a number of 
groups and can be viewed as a generalization of Cohen’s Kappa [163]. The scale of ARI ranges from -1.0 to 1.0 
where 1.0 represents perfect agreement, -1.0 represents perfect disagreement, and 0.0 representing chance. 
Because the g-means and TRESTLE algorithms have some stochastic processes, clusters were generated 10 times 
for each level averaging ARI across the runs.  

Level Clustering ARI STD 
Level 1 
(n=251) 

CFE 0.51 0.08 
TRESTLE 0.51 0.02 

Level 2 
(n=249) 

CFE 0.47 0.04 
TRESTLE 0.53 0.05 

Level 3 
(n=254) 

CFE 0.42 0.02 
TRESTLE 0.49 0.06 

Table 3. Average and Standard Deviation (STD) Adjusted Rand Index (ARI) measures for CFE and TRESTLE 
across three levels of RumbleBlocks. 

The average ARI measures of cluster agreement can be seen in Table 3. The results of the comparisons show that 
TRESTLE demonstrates equal or better agreement with human groupings than CFE does across the three levels. 
TRESTLE’s clusters are at least as good as ones created by CFE but they have the benefit of using a less constrained 
representation for game states that would enable application to a wider set of games. Further, TRESTLE, being an 
incremental algorithm, is less brittle in handling new data from new playtesting allowing for analysis to continue 
within a common understanding. 

While this analysis demonstrates that TRESTLE could also serve as a potentially better clustering approach for 
solution space analysis, the algorithm does lack the ability to support the kind of sub-structural pattern analysis 
demonstrated by the χ2 results. This characteristic highlights the importance of being able to look at player 
experience from many different angles and perspectives to understand how a game is being played. A Replay 
approach readily affords this ability. 

In the context of the broader thesis, this chapter highlighted the capacity for Replay Analysis to enable reframing 
of a game to understand it from different angles. As part of this work, I developed several techniques to enable 
clustering of solutions in game levels. Considering solutions in terms of clusters enabled me to define the solution 
space of the game in terms of representative solutions existing in the original log data. Being able to see this 
solution space and frame it in several ways allowed me to move from a general sense of misalignment to a 
concrete behavior pattern that could be addressed with a specific design change.  



43 

 

CHAPTER 7  CLOSING THE LOOP WITH PROJECTIVE REPLAY 
The work I have described so far has demonstrated the power of Retrospective Replay Analysis to explore the 
alignment of an educational game using observed player behavior. The approach enabled both alignment 
evaluation and an exploration of the solution space from multiple perspectives using a single common dataset. In 
the context of RumbleBlocks, these analyses highlighted a general problem of alignment and concrete potential 
issues that could be addressed in iterating the game’s design. The next logical step in the design process would 
be to explore whether fixing the highlighted problems results in a demonstrably better game. In the educational 
data mining and learning analytics literature, this type of study is called a close-the-loop evaluation [35,79], and 
these evaluations are exceedingly rare. The goal of the work in this chapter is to demonstrate how an extension 
of Replay Analysis, namely Projective Replay Analysis, can facilitate close-the-loop evaluations that would provide 
designers with similar insight to formal student playtests and further to perform such an evaluation with the results 
of the RumbleBlocks alignment analyses. 

Concretely, the primary question addressed in this chapter is: would a Projective Replay Analysis of a redesigned 
game come to the same conclusions as a full close-the-loop evaluation? To explore this question, I performed 
Projective Replay Analyses of several design variations of RumbleBlocks and a new close-the-loop study of one 
of the variations. I then compared how well the results of the Projective Replays predicted the results of new 
human playtesting in order to evaluate whether Projective Replay could be a suitable evaluation of a game design 
on the same level as additional human playtesting. 

Additionally, this chapter addresses a second question: do redesign ideas based on alignment-focused analytics 
produce a better aligned game? To answer this question, I compared how the alignment of PRMs to in-game 
feedback and the shape of the solution spaces generated by the various Projective Replays relate to the original 
game design. The goal with this analysis is to demonstrate that following the conclusions of alignment-focused 
analytics produces an upward trend in alignment. 

This chapter will be organized as follows. First, I describe the origins of the three design variations that were 
considered for testing and detail the rationales behind their design. Second, I detail the method I developed for 
characterizing the relationship between two solution spaces in order to understand how a particular design choice 
altered the space of what players did in the game. Next, I present the results of Projective Replay Analysis on each 
of the candidate redesigns followed by the results of the close-the-loop classroom study and a discussion of how 
its conclusions relate to those of the Projective Analyses. Finally, I discuss the implications of the results on 
Projective Replay Analysis as a valid evaluation method of game design variants. 

Design Variations of RumbleBlocks 
In order to understand whether Projective Replay Analysis can approximate the results of human playtesting with 
new versions of a game, I required multiple variants on which to run Projective Replay Analysis. In consultation 
with practicing game designers and based upon the alignment and solution space evidence so far, I developed 
three mechanical variations for RumbleBlocks: Glue Blocks, No Cliff, and No Ship. In this section, I describe the 
rationale and implementation behind each of these variations. 

The Glue Blocks Variation 
One of the bigger lessons from the solution space analysis is the results of the χ2 analysis shown in Figure 10, 
where the success of a tower is more strongly related to micro faults within the tower than with broader aspects 
of the tower’s design. A way to address this problem of micro faults is to explore a version of the game where 
blocks act together as a single rigid body, so that feedback is likely to be better aligned with the broad principles 
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that the game is meant to target. A design that involved connected structures was considered in the preliminary 
design phases of RumbleBlocks16, but initial prototype testing indicated that players found the disconnected 
structures to be more fun in the game. The designers also thought that having a disconnected block mechanic 
would allow for more interesting dynamics in the design. However, if we introduce a mechanic that allows players 
to glue blocks together so that the blocks act more like connected structures, the level may be better modeled 
by the principle-relevant metrics.  

To implement this variation, I added a mechanic that connects the blocks of a tower before the earthquake begins. 
I do this by calculating the tower’s aggregate center of mass as a weighted average of the centers of mass of 
each of its blocks. I then instantiate a new GameObject at that position with the aggregate mass of the tower. The 
blocks of the tower are attached to the new GameObject as children and have their Rigidbody components 
deactivated so they no longer simulate their own physics. Effectively, this change creates one large object that 
has the collider profile (i.e., boundary silhouette) of the stack of blocks and the mass of all of the blocks added 
together, acting like a single rigid body in the shape of the tower. I did explore implementing the mechanic by 
attaching the blocks of a tower to each other using Unity’s physics joint system; however, this approach caused 
problems in the physics engine’s constraint solver because there were too many fixed joints to solve, which caused 
errors when the system could not process them all. 

The No Ship Variation 
Another interpretation of the χ2 analysis suggested that which block(s) supported the ship had an outsized effect 
on the outcome of a level. This pattern highlighted the spaceship having an outsized effect on the success criteria 
such that the real goal of the game is to stabilize the ship and not to build a stable structure. Another possibility 
for changing the mechanics could be to remove the spaceship as a factor entirely. If success was not defined 
purely by the spaceship, players would have to think about a broader sense of stability in their towers. Removing 
the spaceship success mechanic could also preserve the interesting dynamics of having disconnected structures, 
which were valued by the designers.  

There are some design challenges to removing the spaceship, however, as it serves several purposes in the game. 
Currently, the spaceship is how players submit a solution (i.e., placing the ship on top of the tower). The spaceship 
also serves a narrative purpose as returning the ship to the alien is currently the motivation of the game. Further, 
the ship is also cleverly used as an early tutorial for how to rotate objects because the ship always starts upside 
down, requiring rotation before submitting the first level. 

Rather than remove the spaceship from the game entirely, I designed a change to the scoring mechanics in an 
attempt to limit its outsized impact on success. Currently, success is defined by the ship remaining in its target 
zone after the earthquake. In the No Ship variation, the success criterion is changed to simply holding on to the 
energy dots through the earthquake. When the earthquake is started, the ship’s collider is turned off (so it is 
ignored by the physics system) and it goes into an animation to slowly float upward. As the earthquake shakes, 
the system keeps track of the number of active energy dots captured by the blocks during every physics update 
frame. Once the quake is finished, if the average number of dots across all the frames of the earthquake (rounded 
up) is equal to the number of dots in the scene, the player succeeds and moves on the next level; otherwise, they 
fail. The goal behind this design is to require players to pay attention to the overall stability of their structures 
rather than focusing on the spaceship. 

                                                      
16 http://www.etc.cmu.edu/projects/illuminate/?page_id=221 



45 

 

The No Cliff Variation 
In developing design variations for this study, I consulted with several practicing game designers, showing them 
the alignment and solution space results so far and asking what they might try to fix. Several interesting candidates 
resulted from this process. For example, several ideas related to the concept of the alien being worried about 
their ship, appearing more nervous if it shook too much or more confident if it stayed more stable throughout 
the quake, as a way of providing a more continuous feedback signal. Another idea was to change the shape or 
size of the spaceship as another parameter to adjust for challenge.  

One of the more promising ideas was the simple suggestion of removing the cliff from the equation. The designers 
noticed some examples of solutions that seemed to use the cliff as a crutch, which possibly contributed to allowing 
unprincipled towers to stand. They reasoned that there is no real functional purpose for the cliff to have a physical 
presence in the scene, and it could simply be a background visual element. A similar issue of the cliff holding up 
towers did emerge in earlier design iterations of RumbleBlocks, resulting in the shape of the cliff being altered but 
leaving its physical presence intact. To implement this No Cliff variation, the game simply deactivates the collider 
of the cliff once a level starts so that it will not have a physical presence in the scene. It is notable that, unlike the 
other variations, this one is activated at the beginning of the scene, meaning it could affect how players build their 
towers and not just how they are treated by the earthquake. 

Solution Space Shift 
While the paradigm of Projective Replay Analysis has the potential to guide closed-loop design iteration, there is 
one fundamental concern with the approach; namely, if the game is behaving differently, then the possibility exists 
that players will play differently. This concern would seem to imply that the instant a game’s mechanics are 
changed, any replay recordings taken from the old version of the game become invalid. I do not dispute this 
notion in general. I would, however, argue that changes in player behavior due to changes in game behavior are 
a matter of degree rather than absolute. Depending on the nature of the mechanical change, players might be 
able to have new experiences than they could have previously, or a change could effectively outlaw previous 
player behavior by making it impossible. To better understand this relationship between a game design change 
and a change in players’ experiences, I developed a way to characterize the relationship between solution spaces. 
By looking at how a game’s original solution space relates to the one afforded by a new variation, designers can 
revise their intuitions about how well the game suits their goals. 

Concretely, I suggest that any change to a game’s mechanical structure will have one of five possible effects on 
its solution space:  

1. The new solution space could remain the same. This outcome would mean that the affordances available 
to players to explore the solution space are no different than they were before. While the structure of the 
space remains the same, the change could cause existing solutions to receive different feedback, leading 
the game or the players to interpret a space differently. Even if the structure of the space does not 
change, it is still possible that alignment could change. 

2. The new solution space could be a subset of what it was before. In this case, previously reachable 
solutions are no longer possible. This outcome would be desirable in cases where specific solutions or 
mechanical uses were found to foster misconceptions.  

3. The new solution space could be a superset of what it was before. This outcome would mean that the 
game now affords more variation to players than it originally did. In such cases, it is necessary to evaluate 
the alignment of this new territory of the solution space to ensure that educational goals are still being 
met. 
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4. The new solution space could be a shift of the original space. That is, the space shrinks in some areas 
and grows in others. I would expect this form of solution space change to be more common than the 
subset and superset ones, as it is rare that a mechanical change would be so localized. 

5. The new solution space could be a disjoint set from the original. This outcome is the case where a 
mechanical change was so fundamental that I would argue it has created an entirely new game. 

Determining which of these five relationships two solution spaces share is analogous to determining the level of 
co-occurrence between two sets of structured data. The intuition behind such an analysis is to produce something 
akin to a confusion matrix (like the example in Table 4), which I call an overlap matrix. For all the solutions present 
across two solution spaces, we want to know the number of solutions that appear in both spaces or uniquely in 
one space or the other. However, because it is non-trivial to define when two particular solutions are exactly the 
same, I conduct this analysis over representative solutions, similar to the solution space analysis presented in 
Chapter 6 , which is why the assignment of solutions to a space in Table 4 is not an integer.  

 
In A Not in A 

In B 
2606.20 

(68.24%) 
1140.93 

(29.88%) 

Not in B 
71.87 

(1.88%) 
– 

A = 1907; B= 1912 

Table 4. An example overlap matrix made by comparing the first two thirds (A) and last two thirds (B) of a 
subset of solutions from the formative evaluation of RumbleBlocks. 

The process for calculating this overlap matrix is as follows. Given two solutions spaces A and B, I calculate three 
values: the proportion of each representative solution existing in both A and B (Overlap), the amount of each 
representative solution existing in A but not B (A Shift), and the amount of each representative solution existing 
in B but not A (B Shift). The first step of the process is to generate a set of representative solutions by taking all 
the solutions from both spaces and clustering them together using TRESTLE’S [93] clustering procedure, 
optimizing for the Bayesian Information Criterion (BIC) heuristic (See Appendix B for details on the TRESTLE 
algorithm and its clustering process).  

Given a set of clusters, the next step is to decide the proportion of each cluster that provides evidence of either 
an overlap or a shift. Because each cluster can be comprised of solutions from both spaces, a representative 
solution can have partial membership in each space. For example, clusters that have a 50-50 split of solutions 
from space A and space B would be viewed as sitting in the overlap between the spaces, where pure clusters (i.e., 
composed entirely of solutions from a single space) appear to exist in only one space. Clusters that are composed 
of some mix of the spaces could simultaneously suggest some amount of overlap and some amount of shift 
depending on the proportion of members and whichever one is dominant.  

In calculating the percentage of a cluster that suggests overlap or shift, I use Binary Entropy [91], which measures 
the uncertainty of a binary classification. In effect, the more uncertain a cluster is about which space it contains, 
the more evidence that cluster provides for an overlap between the solution spaces. Entropy is used to weight 
the assignment of representative solutions to the quadrants of the overlap matrix. The Overlap quadrant is the 
sum of the size of the representative clusters weighted by their entropy. The A Shift quadrant is calculated as the 
sum of the size of the majority A clusters weighted by 1 minus their entropy and B Shift is calculated in a similar 
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manner for majority B clusters. Figure 12 shows a plot of how this weighting process plays out based on the 
percentage of solutions in a cluster that originally come from space A. 

 

Figure 12. A plot showing how binary entropy (black line) is used to decide the proportion of each cluster that is 
assigned to the B Shift (green), Overlap (red), or A Shift (blue) quadrants based on the percentage of solutions 

in a cluster that come from Space A. 

When comparing the whole space of two different game versions, I repeat this process on a level-by-level basis 
and sum the results of each level to obtain an overall comparison of the two spaces. For the purpose of whole 
space comparison, I drop any levels that do not have at least ten solutions existing in both versions. In the case 
where one version contains a level that the other does not, it is trivially obvious that any solutions to that level are 
either entirely new (in the case of an added level) or completely outlawed (in the case of removing a level) and 
so would bias the comparison. 

Looking at the makeup of these overlap matrices allows me to categorize a pair of solution spaces into one of 
the five relationships I described above. If a large majority of solutions exist in the Overlap quadrant, then the 
solution spaces are effectively the same. If there is a large percentage of solutions in A Shift or B Shift with little to 
no solutions present in the other shift, then the solution spaces are in a sub/superset relationship with each other 
(e.g., I would characterize the matrix in Table 4 as space A being a subset of space B). If there is a spread of 
solutions across the three quadrants, then the spaces are shifting apart. Finally, if the overlap cluster is zero or 
nearly zero, then the solution spaces are disjoint. By employing this solution space overlap analysis on solution 
spaces generated by different Projective Replays, I can get a picture for how a game’s space of possible solutions 
has changed under a new set of mechanics. 

Projective Replays of Design Variations 
In understanding exactly how each of the design variations I wanted to explore might affect players’ experiences 
in RumbleBlocks, I performed Literal and Flexible Projective Replay analyses with each of the variations. Using the 
new solution space generated by the replays, I repeated the alignment regression (see Equation 1) from the 
formative evaluation and produced an overlap matrix comparing the new solution space to the one seen in the 
original data.  
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The close-the-loop evaluation study, which I describe in the next section, was performed using only 2nd and 3rd 
graders from one of the schools from the original formative evaluation. Given that this is the case, I make use of 
a sample of the original formative evaluation data, limited to just the 2nd and 3rd graders from the same school as 
the close-the-loop study, for the analyses in this section. This selection was done with the intent of reducing any 
possible noise due to population differences, under the intuition that the agents would be learning to emulate 
the players in the sample. If the agents were learning from the entire sample of data, it would be difficult to tell if 
any variations found when comparing to the close-the-loop study are due to changes to the game or variations 
in training data. 

To generate a baseline solution space for comparison, I first performed a Retrospective Replay of the limited 
sample of the original game log data17. The resulting solution space is used as the baseline comparison space 
(referred to as Original) in all following space overlap analyses. I also performed a Flexible Projective Replay, 
trained on the limited sample, through the original game in order to see how the flexible projective agent would 
perform in the absence of any mechanical variations. The results of alignment regression over these two spaces 
can be seen in Table 5, and the overlap matrices from solution space comparison are in Table 6. 

Replay Type Coefficient B SE B β p 

Literal 
(n=2602) 

(Intercept) 2.400 1.164 2.182 - 
Base Width 0.137 0.068 0.188 0.043 * 
COM Height 0.053 0.131 0.039 0.686   
Symmetry Angle 0.064 0.012 0.386 < 0.001 *** 

Flexible 
(n=1448) 

(Intercept) 6.574 2.330 2.119 - 
Base Width -0.243 0.113 -0.342 0.031 * 
COM Height 0.391 0.251 0.242 0.119   
Symmetry Angle 0.046 0.017 0.302 0.007 ** 

Table 5. Alignment Regression Results for Literal and Flexible Replays of 2nd and 3rd grade students in 
RumbleBlocks’ original design. 

Looking at the results of the alignment regression, we see that the experience from 2nd and 3rd graders in the 
original evaluation study was somewhat different from the overall population. Where the original alignment 
analysis highlighted a potential problem with the center of mass principle (see Table 2), the results for the restricted 
sample show more reasonable alignment for all metrics. The COM Height metric is still not significant, meaning 
its effect might be 0, but it is trending positive in this case, where it was negative before. The Flexible Replay results 
show a different pattern, where the Base Width metric is now more strongly associated with failure than success. 
This outcome suggests that the flexible agent would predict an altogether different alignment issue could happen 
with the game. 

                                                      
17 I use replay here, as opposed to referencing the State field of the SAIS directly in the log data, because the 

clustering process requires a slightly different characterization of the state and to ensure that all data being 
compared were generated from a common Interpreter implemented in the RAE. 
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In Original 

Not in 
Original 

  
In Original 

Not in 
Original 

In Literal 
Replay 

5669.87 
(98.95%) 

30.18 
(0.53%) 

 In Flexible 
Replay 

3085.57 
(81.50%) 

162.95 
(4.30%) 

Not in Literal 
Replay 

29.96 
(0.52%) 

– 
 Not in Flexible 

Replay 
537.49 

(14.20%) 
– 

Original = 2865; Literal Replay = 2865  Original = 2343; Flexible Replay = 1443 

Table 6. Overlap Matrices comparing solution spaces generated by Literal and Flexible Replays of 2nd and 3rd 
grade students with the original RumbleBlocks solution space. Note that the Literal matrix is the result of 

comparing the space to itself and is included for completeness. 

Turning to the results of the solution space overlap, we see a pattern that is somewhat to be expected. First, in 
the comparison of Literal Replay with the original solution space, we see nearly 100% overlap as it is effectively 
the result of comparing a space with itself, because a Literal Replay on an unchanged game is essentially a 
retrospective replay as the game would treat the recorded player behavior the same18. When comparing the 
space generated by Flexible Replay with its the original counterpart, we see a substantial overlap (~80%) with 
most of the divergence existing in the Original space. This result would seem to suggest that the flexible agent 
generated a smaller space that is essentially a subset of the original space. This interpretation was confirmed when 
I looked at the percentage of solutions that the agent generated under its own reasoning versus in the process 
of taking a training example. Overall, ~10% of the flexible agent’s solutions were generated under its own 
reasoning, while the remaining ~90% were the result of the agent taking a training example. 

Once a baseline of behavior was established, I performed Literal and Flexible Replays of each of the design 
variations to be tested. The first variation I tested was adding the Glue Blocks mechanic to towers before the 
earthquake started. The alignment regression results for this variation can be found in Table 7 and the overlap 
matrices for the Literal and Flexible replays are in Table 8. In the alignment results, the Literal replay shows a 
negative trend for COM Height, while Symmetry Angle has a roughly similar effect to the original 2nd and 3rd 
grade data. This result would suggest that the Glue Block mechanic introduces misalignment problems similar to 
the current design as measured by the alignment of the overall data. Given that the rationale behind the Glue 
Block mechanic was to bring the game’s mechanics more in line with the realities of earthquake physics, it is hard 
to understand why this might have happened. Looking at the flexible alignment results, we see a similar pattern 
to the Flexible Replay of the original version with the exception that none of the effects are significant. 

                                                      
18 The reason overlap is not perfectly 100% is because TRESTLE is an order dependent algorithm and instances 
are fit into the tree in a random order, which can introduce minor noise. 
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Replay Type Coefficient B SE B β p 

Literal 
(n=2612) 

(Intercept) 0.462 1.329 3.283 - 
Base Width -0.166 0.087 -0.230 0.055  
COM Height -0.459 0.148 -0.341 0.002 ** 
Symmetry Angle 0.082 0.016 0.509 < 0.001 *** 

Flexible 
(n=1327) 

(Intercept) 6.231 3.076 3.369 - 
Base Width -0.232 0.161 -0.328 0.150  
COM Height 0.232 0.331 0.147 0.484  
Symmetry Angle 0.006 0.025 0.038 0.814  

Table 7. Alignment Regression Results for Literal and Flexible Replays of the Glue Block design variation. 

Considering the solution space overlap analysis of the Glue Block variation (Table 8), we see that the Literal Replay 
again has substantial overlap with the original solution space. This outcome makes sense given that the Literal 
Replays contain the same towers with most of the variation being due to some cases where towers in the new 
condition failed to meet submission criteria due to idiosyncrasies in the newly implemented mechanics. The flexible 
overlap analysis shows more divergence than the original game version as the agent would now be learning from 
qualitatively different feedback due to the mechanical variation and thus likely would design more novel structures. 

 
In Original 

Not in 
Original 

  
In Original 

Not in 
Original 

In Literal 
Replay 

5657.32 
(98.73%) 

34.23 
(0.60%) 

 In Flexible 
Replay 

2271.83 
(61.99%) 

394.71 
(10.77%) 

Not in Literal 
Replay 

38.45 
(0.67%) 

– 
 Not in Flexible 

Replay 
998.46 

(27.24%) 
– 

Original = 2865; Literal Replay = 2865  Original = 2343; Flexible Replay = 1322 

Table 8. Overlap Matrices comparing solution spaces generated by Literal and Flexible Replays of the Glue Block 
design variation with the original RumbleBlocks solution space. 

The next variation I tested was the No Cliff variation, which removed the physics collider of the cliff in the scene, 
feasibly opening the space for more variation. The alignment regression results of the No Cliff version are in Table 
9 while the solution space overlap results are shown in Table 10. The alignment of the literal No Cliff replay is 
similar to the results of the Literal Glue Block replay but with a less pronounced effect for COM Height and instead 
a stronger relationship for Base Width. Again, COM Height and Base Width show negative associations with 
success on the level, suggesting possible issues with alignment in this variation. The Flexible Replay results closely 
mirror the Flexible Replay in the original version of the game. This outcome makes sense as the No Cliff variation 
is very similar to the original version of the game, with a slightly more permissive building environment.  
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Replay Type Coefficient B SE B β p 

Literal 
(n=2626) 

(Intercept) 1.134 1.045 1.707 - 
Base Width -0.176 0.070 -0.242 0.012 * 
COM Height -0.194 0.117 -0.149 0.097 

 

Symmetry Angle 0.079 0.012 0.475 < 0.001 *** 

Flexible 
(n=1411) 

(Intercept) 5.492 2.310 2.003 - 
Base Width -0.140 0.114 -0.198 0.223   
COM Height 0.320 0.250 0.195 0.202   
Symmetry Angle 0.050 0.018 0.332 0.005 ** 

Table 9. Alignment Regression Results for Literal and Flexible Replay of the No Cliff design variation. 

Again, in the solution space overlap analysis, the Literal Replay adheres very closely to the original solution space. 
The results of the Flexible Replay are similar to those of the Flexible Replay in the original version, with the new 
space being a subset of the original space. This result provides some additional weight to the interpretation that 
both the No Cliff and Original Flexible Replays had highly similar performance leading to similar alignment results. 

 
In Original 

Not in 
Original 

  
In Original 

Not in 
Original 

In Literal 
Replay 

5614.80 
(98.14%) 

52.83 
(0.92%) 

 In Flexible 
Replay 

3049.48 
(81.34%) 

144.06 
(3.84%) 

Not in Literal 
Replay 

53.37  
(0.93%) 

– 
 Not in Flexible 

Replay 
555.46 

(14.82%) 
– 

Original = 2865; Literal Replay = 2856  Original = 2343; Flexible Replay = 1406 

Table 10. Overlap Matrices comparing solution spaces generated by Literal and Flexible Replays of the No Cliff 
design variation with the original RumbleBlocks solution space. 

The final variation I tested was the No Ship mechanic, which removed the influence of the spaceship on solution 
success and instead based success on the aggregate behavior of the tower. This variation was likely to see the 
most different behavior because the changes to the outcome mechanics were fundamentally different. In looking 
at the alignment results for the No Ship variation (Table 11), we see the now familiar pattern in the Literal Replay 
of a negative association with Base Width and a moderate positive for Symmetry Angle. The flexible results show 
a weaker negative trend for Base Width than most of the other Flexible Replays did and is still insignificant. 

Replay Type Coefficient B SE B β p 

Literal 
(n=2616) 

(Intercept) 1.291 1.172 1.735 - 
Base Width -0.223 0.072 -0.305 0.002 ** 
COM Height -0.186 0.130 -0.139 0.153   
Symmetry Angle 0.053 0.012 0.320 < 0.001 *** 

Flexible 
(n=1749) 

(Intercept) 3.238 1.661 1.459 - 
Base Width -0.059 0.084 -0.079 0.480   
COM Height 0.148 0.184 0.092 0.420   
Symmetry Angle 0.063 0.014 0.379 < 0.0001 *** 

Table 11. Alignment Regression Results for Literal and Flexible Replay of the No Ship design variation. 
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In the solution space overlap results for the No Ship variation (Table 12) we see that Literal Replay again has nearly 
perfect overlap. Flexible Replay, on the other hand, shows another shift of solution space away from the original. 
This is likely because the No Ship mechanic presents fundamentally different feedback from the normal version 
of the game and, thus, a flexible agent is more likely to try things that have not been seen before, or be lead away 
from some solutions that used to be common. 

 
In Original 

Not in 
Original 

  
In Original 

Not in 
Original 

In Literal 
Replay 

5625.32 
(98.31%) 

42.44  
(0.74%) 

 In Flexible 
Replay 

2328.35 
(62.89%) 

410.89 
(11.10%) 

Not in Literal 
Replay 

54.24 
(0.95%) 

– 
 Not in Flexible 

Replay 
962.76 

(26.01%) 
– 

Original = 2865; Literal Replay = 2857  Original = 2343; Flexible Replay = 1359 

Table 12. Overlap Matrices comparing solution spaces generated by Literal and Flexible Replays of the No Ship 
design variation with the original RumbleBlocks solution space. 

On the whole, these results show some differences in alignment between the original game version and each of 
the variations tested, generally favoring the original in terms of resulting alignment. The solution space overlap 
analyses tend to show a high degree of overlap with Literal Replay, as would generally be expected, and some 
divergence in Flexible Replay, depending on variation. Flexible Replay also tended to generate a partial subset of 
the original solution space, again depending on design variation. 

Classroom Study of the No Ship Variation 
The ultimate question of the classroom study is whether or not Projective Replay methods can be trusted as a 
means of evaluating an educational game on par with new playtesting. In order to address this question, I 
performed a close-the-loop validation of one of the design variations in order to see if the predictions made by 
Projective Replay are confirmed with a new population of human players. If there is agreement between the 
alignment and solution space overlap analyses with a population of real users, then I can be confident that 
Projective Replay Analysis is a valid replacement for new user studies. 

This close-the-loop validation was implemented as a two-condition experiment, where one condition played the 
original version of RumbleBlocks while the other condition played one of the design variants tested in the 
Projective Replay. For this study, I chose to implement the No Ship variant because I felt it came the most clearly 
from my prior analyses and because the fundamental difference in feedback criteria had the potential for a 
broader space of player interpretation and thus exploration. Having the potential to explore more space would 
make it the toughest test of Projective Replay as the potential effects on the games’ solution spaces are the hardest 
to predict a priori. 

Students from two 2nd and two 3rd grade classes from one of the schools in the original formative evaluation were 
recruited. Students played the game during dedicated time in their classrooms using a WebGL build of 
RumbleBlocks on Chromebooks owned by the school. The study took place over four sessions. Similar to the 
original formative evaluation study, the first session was a pretest, followed by two days of gameplay, and finally 
a posttest. Unlike the formative evaluation, the pre- and posttests were administered digitally using a CTAT [6] 
based interface rather than with paper and pencil. Further, due to scheduling conflicts with the school, the posttest 
took place five days after the second day of gameplay, rather than on the next day, making it more of a delayed 
test. Overall, 77 students participated with full data. Participants were randomly assigned to a game version, with 
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40 in the base game condition and 37 playing the No Ship variation (see Appendix A for descriptive statistics from 
this study). 

For this study, RumbleBlocks was altered from the original formative evaluation in a few additional ways. First, the 
original game contained a series of levels where players removed blocks with the goal of removing as many blocks 
as possible without toppling the tower. These levels were poorly explained in the context of the game and analysis 
of the log files showed that players spent an average of less than 5 seconds on these levels, suggesting that they 
did not engage with the material very deeply; thus, they were removed. Second, a follow-up study to the original 
formative evaluation expanded on the idea of contrasting cases as a game mechanic by introducing levels where 
players reasoned through why a set of towers stood or fell by looking through different magic goggles to visualize 
the underlying physical properties of towers. This study found a positive learning benefit of including these levels 
[29] and so they were included here in the interest of benefiting players. It is possible that these additional 
variations affected players’ explorations of solution space during the study, in addition to the conditional variations 
of the mechanics. 

When looking at learning effects on the external pre-posttests, as with the formative evaluation, there was a 
significant increase in performance on posttest using a repeated measures ANOVA F (1, 68) = 12.10, p < 0.001, 
but there was no significant effect due to game version F (1, 68) = 0.88, p = 0.35 and no significant interaction F 
(1, 68) = 0.67, p = 0.41. Looking at success rate on the in-game pre-posttests, in a repeated measures ANOVA, 
there was no significant difference in performance between pre- and posttest F (1,74) = 0.09, p = 0.72, no effect 
of condition F (1, 74) = 0.02, p = 0.89, and no interaction F (1, 74) = 0.56, p = 0.46. Repeated measures ANOVAs 
of players’ metric use between pre- and posttest (Table 13) show a significant main effect for a greater application 
of symmetry F (1, 49) = 12.31, p < 0.001 from pre- to posttest across conditions, but no other significant effects 
or interactions. 

Metric Effect MS df F p 

Base Width 
Time 0.38 1 1.01 0.319   
Game Version 0.00 1 0.01 0.908  
Time x Game Version 0.29 1 0.77 0.383  

COM Height 
Time 0.41 1 1.44 0.232  
Game Version 0.34 1 1.20 0.276  
Time x Game Version 0.07 1 0.24 0.625  

Symmetry Angle 
Time 2.99 1 12.31 < 0.001 *** 
Game Version 0.16 1 0.67 0.418  
Time x Game Version 0.56 1 2.32 0.134  

Table 13. Repeated Measures ANOVA results of players PRM use over time in the pre-posttest levels of 
RumbleBlocks. 

The alignment regression results for both the Base Game and No Ship conditions can be found in Table 14. 
Looking at the Base Game condition, there is a non-significant negative association with COM Height. This 
coefficient shows a similar trend to the one seen in the original alignment analysis using the full formative 
evaluation sample (Table 2); however, this pattern does not match the one seen in the restricted sample of 2nd 
and 3rd graders in the original study (Table 5), suggesting there might be some variation here due to the different 
populations. In the No Ship condition, there are two significant effects for Symmetry Angle and Base Width; 
however, the effect of Base Width is particularly stark and negative, suggesting that there is a strong negative 
association with building wider based structures.  
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Game Version Coefficient B SE B β p 

Base Game 
(n=1391) 

(Intercept) -1.109 1.669 1.232 - 
Base Width 0.051 0.071 0.077 0.473   
COM Height -0.285 0.189 -0.182 0.132   
Symmetry Angle 0.059 0.013 0.373 < 0.001 *** 

No Ship 
(n=1278) 

(Intercept) 0.775 1.829 0.730 - 
Base Width -0.314 0.069 -0.473 < 0.001 *** 
COM Height -0.148 0.207 -0.094 0.476   
Symmetry Angle 0.027 0.013 0.168 0.048 * 

Table 14. Alignment Regression Results for the Base Game and No Ship conditions of the close-the-loop study. 

For the solution space overlap analyses, I performed two sets of comparisons. First, I compared both of the new 
solution spaces to the original to see if there was a comparable amount of shift, as was predicted by the 
corresponding Flexible Replay. Second, I compared the new No Ship space to the Literal and Flexible Replays of 
the corresponding game version to see if these sets converged, suggesting that replay explored a similar space 
to what a new population of students would have done. The results of comparing the new spaces to the original 
can be seen in Table 15, while the comparisons of the new space to its counterparts are in Table 16. 

 
In Original 

Not in 
Original 

  
In Original 

Not in 
Original 

In Base 
Game 

1850.96 
(59.38%) 

216.22  
(6.94%) 

 In No Ship 1712.70 
(58.02%) 

169.59 
(5.74%) 

Not in Base 
Game 

1049.81 
(33.68%) 

– 
 Not in No 

Ship 
1069.71 

(36.24%) 
– 

Original = 2195; Base Game = 922  Original = 2116; No Ship = 836 

Table 15. Overlap Matrices comparing solution spaces from the Base Game and No Ship conditions of the 
close-the-loop study with the original RumbleBlocks solution space. 

When looking at the solution space comparisons between both conditions and the original solution space, it 
appears that both new spaces are mostly subsets of the original. On one hand, this pattern is to be expected 
because the new solution spaces are being created by a smaller number of players than the original and so it is 
more likely that there would be solutions the new players had not considered. However, it is surprising to see that 
there was not very much divergence in the No Ship condition, given that the mechanics of that condition differed 
so much from the original game. 

 In New No 
Ship 

Not in New 
No Ship 

  In New No 
Ship 

Not in New 
No Ship 

In Literal 
Replay 

1682.90 
(56.97%) 

1083.60 
(36.68%) 

 In Flexible 
Replay 

1009.45 
(55.22%) 

534.98 
(29.27%) 

Not in Literal 
Replay 

187.50 
(6.35%) 

– 
 Not in Flexible 

Replay 
283.57 

(15.51%) 
– 

Classroom = 836; Literal Replay = 2118  Classroom = 748; Flexible Replay = 1080 

Table 16. Overlap Marticies comparing solution spaces generated by Literal and Flexible Replays of the No Ship 
design variation with the solution space captured in the Classroom playtest of the No Ship condition. 
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The results in Table 16 show a similar trend as the rest of the close-the-loop comparisons where the replayed 
solution spaces are largely supersets of the spaces seen during the close-the-loop study. As would generally be 
expected, comparing the new No Ship space to a Literal Replay of the old solutions in a No Ship variation yields 
similar overlap results as when comparing it to the Original solution space itself. In the Flexible Replay case, there 
is a larger degree of divergence between the spaces, suggesting that the Flexible Replay into a No Ship variation 
does not strongly resemble what a new population of players would have done. 

Discussion 
The primary question asked in this chapter was: would a Projective Replay Analysis of a redesigned game come 
to the same conclusions as a full close-the-loop evaluation? To address this question, I performed two parallel 
evaluations of a design variant in RumbleBlocks. One evaluation was a Projective Replay Analysis, while the other 
was a close-the-loop study in the style of the original formative evaluation of the game. In repeating the alignment 
analyses from the formative evaluation, I expected to see similar relationships appear between success and PRMs 
in the results of evaluations of the same game version regardless of method of evaluation. Similarly, I expected to 
see a reasonably high level of overlap between solution spaces generated by players of the same game version 
and a similar level of shift away from the original solution space, whether those players were human students or 
AI models. 

After performing the Projective Replay Analysis of the No Ship variation, the alignment regressions for literal 
projection show a significant positive effect from adherence to symmetry angle, and a strong negative association 
with base width. Flexible replay showed a similarly strong relationship for symmetry angle but did not show a 
strong negative effect for base width (the coefficient was negative but not significantly so). When looking at the 
results of the classroom evaluation, the alignment regression also showed a significant positive effect for symmetry 
angle and a strong negative relationship with base width. 

Looking at the results of solution space overlap analysis, the Flexible Replay of the No Ship variation shows some 
shift away from the original solutions (~11%) but for the most part is a bit of a subset of the original space with 
~26% of the original space not seen in the Flexible Replay. When looking at the level of shift from original in the 
classroom playtest, the No Ship condition looks like a subset of the original space. Only ~6% of the joint solution 
space exists only in the new data with ~36% appearing only in the original. When looking at the relationship 
between the two No Ship spaces, the pattern looks like a diverging shift with only ~55% of the solutions appearing 
in overlap and the rest split roughly two-to-one between the replayed space and the human student space 
respectively. 

Given the preponderance of evidence from the close-the-loop study, it is difficult to decisively conclude that 
Projective Replay, as applied to these game variations and implemented in this study, was a fair substitute for a 
real classroom study. The alignment conclusion arising from the classroom study is generally that the Base Game 
condition would continue to have some issues with its treatment of the Center of Mass principle while the No Ship 
condition will manifest a strong negative association with Base Width. When comparing this pattern to the one 
found in the Projective Replay of the No Ship variant, the Literal Projective Replay does predict this relationship, 
however the Flexible Projective Replay does not. This result would suggest that Literal Projective Replay can predict 
changes in alignment where Flexible Replay did not. Given that Literal Replay is essentially a naïve implementation 
of a replay agent, it is disappointing to see it perform so well relative to a presumably more intelligent flexible 
agent. 
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Considering these results, the next question is: why might it be the case that a naïve agent implementation would 
outperform one that is capable of learning from new feedback and potentially better at exploring new game 
spaces? One possible explanation is that the agent, as implemented, was not able to generalize the 
demonstrations it received well enough to learn suitable skills. Potential support for this hypothesis can be seen 
in looking at the percentage of solutions the agents created while in a trying orientation as opposed to watching. 
Of the 1749 solutions in the flexible agent’s solution space, only 151 (~9%) were produced in a trying orientation. 
This pattern would explain why the flexible agent’s solution space appears to be mostly a subset of the original 
space, as almost 90% of its solutions are the result of the agent watching a prior logged solution. If the agent was 
able to properly generalize demonstrations, I would have expected to see a much larger portion of solutions 
produced from a trying orientation. 

One hypothesis I have as to why this happened deals with the impasse points that I mentioned in the 
implementation of the agent’s training protocol (see the Flexible Projective Replay Agent section pg 22). Under 
the current training paradigm, if the agent has produced several actions under its own reasoning but then finds 
it has no applicable skills it will request a new demonstration from the logs. In such a case, the next logged action 
will not be applicable to the current situation, as it has fallen behind the agent’s own reasoning. Currently, in these 
situations, the agent merely forgets the experience and is moved on by the system. It is possible that other 
methods of providing demonstrations could be employed to allow agents to continue to explore new paths more 
fluidly without backtracking in dead ends. For example, if an agent finds itself ahead of its log file and out of ideas, 
a secondary demonstration source could be used to find a demonstration across all logs that would be applicable 
in the current situation (e.g., some existing work with Monte-Carlo tree search [172] could serve this purpose) 
whether or not it came from the same student or the same level. Alternatively, more general AI approaches could 
be used to allow the agent to plan its way out of impasse problems. 

Another possibility as to why I saw primarily a subset relationship from the flexible agent is that this use case was 
arguably stacked against Flexible Replay. Going into the evaluation, I chose the No Ship condition because I had 
no strong a priori intuition about how the mechanical change would affect the solution space. On a fundamental 
level, no core interaction mechanics were changed so it was entirely possible for the solution space to remain the 
same, as all prior towers could be validly constructed again. If there was a mechanical change that made it 
impossible for Literal Replay to work in new space (e.g., introducing a new concept like a negative energy dot that 
destroys blocks when touched), then the Flexible Replay may have provided a better picture of how the new game 
could work because it could potentially learn from these new designs. However, given my hypothesis with regard 
to generalization of examples, we might have still seen a similar problem. 

More generally, it is hard to tell how much of a new solution space could have been expected. The original premise 
behind my solution space analysis was that RumbleBlocks, or any game for that matter, has as solution space of 
some unknown size. Using more formal representations for a game, it might have been possible to map this space 
a priori [134,147]; but operating outside of those assumptions, it is less clear how large the fundamental space is. 
It is possible that the particular affordances of blocks and energy dots within RumbleBlocks do not allow for 
substantially more variation than had already been seen in the formative evaluation study. A limitation of trying 
to measure solution space overlap is that it is hard to know how much overlap would be expected due to chance. 
While the overlap matrices show overlap and shift among their three quadrants, in a more objective frame there 
could exist a non-zero quantity in the fourth quadrant, namely a space of solutions that do not exist in either 
space A or space B due merely to sampling limitations rather than fundamental mechanical implications. It is 
possible that the data captured in the original formative evaluation was a sufficient sample to see all of the 
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reasonable variations that 2nd and 3rd grade students would try in the game without fundamentally changing 
interaction mechanics. In such a situation, Flexible Replay would, at best, be expected to produce an overlap if 
not a subset, as we saw here. 

The second major question of this chapter was to understand if following the recommendations of an alignment-
focused analytics process can produce a better aligned game. To answer this question, I ran several more 
Projective Replays of different design variations arising from my analysis to see if the prediction trends of PRMs 
related to success would improve after making a change. Ideally, we would see from these replays that the 
alignment regressions of the changed versions of the game would show better relationships between the PRMs 
and success than the original formative evaluation of the game. 

When looking at the results of the regressions, we see some interesting patterns. First, in the Literal Replay of the 
Glue Block variation the negative coefficient for COM Height that existed in the original formative evaluation as a 
non-significant effect has become significant and stronger, meaning that the Glue Block condition may actually 
be worse aligned with regard to the COM principle. As was mentioned previously, both the Literal Projective 
Replay and the human playtest of the No Ship condition predict a new strong negative relationship with base 
width that was not present in the original data. The No Cliff variation also shows this negative effect for base 
width. Perhaps most curious is the fact that the new classroom evaluation of the original game version does not 
agree with the alignment conclusion of the 2nd and 3rd grade subset of the original data, as the new data does 
not have a significant relationship between base width and success when the original data did. The general trend 
across these results is that no new variation is predicted to be categorically better than the original data. Most of 
the alignment results predict a positive relationship for the symmetry principle, but beyond that each variation 
has different strengths and weaknesses. 

One possible explanation for the strong negative association with base width in the No Ship condition comes 
from my observations of students playing the game during the study. The scoring function of the No Ship 
mechanic introduced an unforeseen dynamic that affected some towers. In several levels of the game, players 
stacked blocks in wide flat structures covering several energy dots (See Figure 13). When the earthquake hit those 
towers, they tended to jump up momentarily and lose contact with multiple energy dots at once. This momentary 
lapse resulted in a strong negative hit to a player’s score, often resulting in them losing the level because scoring 
in the No Ship condition is based on average number of energy dots covered over the frames of the earthquake. 
This idiosyncrasy frustrated several players in the classroom playtest and is the kind of unintended consequence 
that a playtest would want to discover. 

 

Figure 13. An example of a tower that fails in the No Ship condition because of the unforseen dynamic of the 
scoring function. The brief moment where three energy dots are uncovered (middle) causes the tower to fail. 

It appears that Literal Projective Replay could have predicted the negative consequence of the No Ship design 
variation given the comparable patterns that arose in the alignment analysis. The reliance on classroom 
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observation to inform the conclusion about the mechanical problem is primarily due to time constraints. I would 
fully expect a further solution space analysis of the new classroom data to highlight the problems with this design 
pattern and I plan to explore this in future work.  

It is interesting to see that the alignment conclusion of the base game condition in the new study does not agree 
with the original study. One possible explanation for this is a sample size issue, given that the base width 
relationship in the original data is just on the acceptable side of significant. Another possibility, however, could be 
implementation differences between the two playtests. The original playtest took place on locally installed versions 
of the game, while the new playtest was performed on a WebGL build of the game. As Unity’s physics engine is 
hardware dependent, there is a possibility that it would behave somewhat differently across different platforms 
and introduce noise. The Projective Replay process could actually be used to run replays of old sessions on new 
hardware and directly measure this effect, but I did not have the opportunity to test that in this instance. 

While I was unable to find support for the conclusion that alignment focused redesign ideas generate games with 
better alignment, that does not mean the hypothesis is wrong. It is certainly possible that the solutions I proposed 
to alignment problems in RumbleBlocks were merely poor answers to a valid problem. From an iterative design 
perspective, these Projective Replays would be used as evidence to eliminate the current set of redesign 
candidates, but other good ideas may still exist. Doing these kinds of validations and closing the loop is actually 
a strength afforded by Projective Replay, as performing full close-the-loop style playtests for each of these 
variations would have been prohibitively expensive in time and social capital. Endeavoring to go beyond the tests 
I performed here to find a better design solution to the alignment problems I observed could be a potential 
avenue for future work. Using a broader exploration of this process with a practicing design team that would not 
be influenced by my own preconceptions of RumbleBlocks might uncover an even better answer to the design 
issues of the game. 
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CHAPTER 8  IMPLICATIONS, CONTRIBUTIONS, AND CONCLUSIONS 
In this thesis, I have endeavored to demonstrate how replay-based approaches can aid iterative educational game 
design with an eye toward pedagogical alignment. Within the body of this work, I have presented a new 
formulation of pedagogical alignment as a relationship between principle-relevant metrics and game feedback 
and developed a method for measuring this relationship using log data. I have also described a taxonomy of 
Replay Analysis methods and developed a toolkit for implementing replay within the Unity game engine. I 
demonstrated the utility of Retrospective Replay in a formative evaluation of the alignment of the game 
RumbleBlocks. I further showed how retrospective replay could be used to understand a game’s solution space 
from multiple perspectives. Finally, I explored the possibility of using Projective Replay Analysis to evaluate a game 
design iteration without performing additional playtesting.  

Given the results of all of this work, I will now discuss what can be said about Replay Analysis and alignment and 
their place within the iterative design of educational games. I will separate this discussion into two parts, one for 
each of the core questions, before detailing what I see as the contributions of this thesis and discussing implications 
for future work and conclusions. 

Discussion of Replay Analysis 
In presenting Replay Analysis in its various forms as part of this thesis, I sought to demonstrate that it is both a 
useful and valid approach to investigating potential problems with an educational game’s design. I believe I have 
succeeded in demonstrating the utility of the method through my work and have provided some qualified support 
for its validity. In this section, I will discuss how I arrived at this conclusion. 

It could be argued that none of the analyses I performed in Chapter 5 or Chapter 6 using Retrospective Replay 
Analysis required that I use a replay paradigm, and I do not disagree with this statement. I do not intend to claim 
that Replay Analysis uniquely enables any one kind of investigation into a given game design; instead, I argue that 
it affords the ability to adapt and reframe data as needed by an evolving investigation. One point in favor of this 
conclusion is that every analysis within this thesis, with the exception of the external pre-posttest comparisons, 
was facilitated in some way by a Replay Analysis approach and, in most cases, using a single dataset.  

Using Replay Analysis, the data from a single classroom playtest of RumbleBlocks was able to provide insight into: 

• whether players appear to be learning target concepts and can apply them better after playing  
• whether the game provided feedback to players’ solutions in a way that aligned with its goals 
• how players approach solving levels differently and how their approaches relate to designers’ 

expectations 
• how the structural patterns in players’ solutions predict how the game will react to them 
• how the game’s behavior might change after altering its mechanics in three different ways 

Whether any one of these analyses possess utility is a subjective question to a particular design situation, but the 
ability to freely move between them is where I see the value in Replay Analysis.  

Another way of looking at Replay Analysis is as a form of deferred analytics. It is trivial to envision an 
implementation of a record-to-measure analytics system that would be sufficient to perform any one of the 
investigations in this document in isolation. Such a system would look similar to the various Interpreter 
components I implemented for the RAE to perform the analysis myself. The main difference is that, rather than 
spending time developing an entire analysis plan before designing the game and tasking a game developer with 
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implementing several specialized telemetry hooks, I was able to create new Interpreters for the data on the fly as 
my questions about the game design evolved. 

With regard to the validity of Projective Replay as a game evaluation technique, I find the results mixed. When 
applying Literal Projective Replay to the No Ship variation of RumbleBlocks, the alignment regression results 
showed a strong negative association between a wider base and success. This same pattern was found in the 
alignment regression results in the close-the-loop classroom study of the No Ship variation. Both of these patterns 
are likely caused by the mechanical issues I observed while running the playtest in classrooms, where certain tower 
designs with wide flat structures were adversely affected by the new scoring function. The fact that a Projective 
Replay was also able to show this pattern without new player data would suggest that it possesses some validity 
as method to allow designers to explore mechanical ideas more quickly. In this case, Literal Projective Replay is 
functioning more like a regression test [106] to show that a change to the game created adverse side effects. 
While it was hoped that a Projective Replay would be able to validate an improvement to the game, being able 
to catch a new fault is equally important to the design process. 

The question of Flexible Projective Replay’s validity is more complicated. Across all of the Flexible Projective 
Replays I presented, the general conclusion is that they each explored a subset of the space of the original game 
and little beyond it. I interpret this to mean that the flexible projective agent, as currently implemented, is not able 
to adequately generalize from prior players’ log data. Fully explaining why this is the case demands future work, 
but I have several hypotheses that relate to the agent’s design.  

First, the way the agent currently handles impasses between generating actions and requiring demonstrations 
(e.g., being unable to reason about an action while several steps ahead of its example trace or ending up in a 
cycle of non-operative actions) is to forget experience and reset itself. By dropping experience, the agent is missing 
out on learning potentially useful information. A more intelligent impasse resolution approach could allow the 
agent to continue longer in exploring the space on its own without relying so heavily on the particular example 
trace. For example, the agent system could be augmented to try looking for the most applicable demonstration 
from across an entire dataset when it gets too far ahead of its example trace. One issue with this solution is that 
it would move away from the intention of the agent system to be a model of a single player’s behavior if it could 
take demonstrations from beyond one player’s experience. 

Alternatively, the agent system could take an approach of interactive training by asking a designer for a 
demonstration when it is out of actions, similar to the implementation of SimStudent for authoring expert models 
in tutoring [95]. This strategy would certainly provide a means for the agent to resolve impasse situations and 
likely better prepare it for game variations that differ wildly from the original game, but it does have a few 
downsides of its own. Currently, the Flexible Replay process takes a significant amount of time, often running over 
multiple days. If an agent was implemented to require interactive training from a designer, they would need to 
be able to provide a demonstration on demand while the process ran, or employ some kind of queueing strategy. 
Further, having designers train their playtesting AIs by hand runs the risk of introducing expert blind spots [78] in 
the evaluation where the agent is really learning to emulate the thought processes and assumptions of the 
designer and not the behavior of a novice learner who may have a different perspective on the task. In so far as 
playtesting is done to learn something about a product that its designers do not already know, having an agent 
play from a designer’s perspective is less likely to uncover new information. 

A second possible limitation in the agent’s implementation comes from how feedback is assigned to actions during 
the learning process. Currently, the agent assumes it will be given feedback at the end of a series of actions, and 
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when learning from the experience the feedback is assigned equally to each action. This strategy could be seen 
as a naïve approach to the credit/blame assignment problem, though it has some precedent in AI literature [83]. 
The essential issue with the credit assignment problem is that not all actions that a player would take in attempting 
a level cause it to be a success or failure. An example from RumbleBlocks would be that placing the first block on 
the ground does not necessarily cause the entire tower to fail; however, that is how the current implementation 
of the agent would see it. More sophisticated approaches exist in the literature on reinforcement learning [104], 
but these approaches are commonly aimed solely at reaching competency from experience, not in following a 
learning trajectory similar to a human learner. My implementation adheres more to the goals of the Apprentice 
Learner Architecture to model and explain human learning not only in asymptotic output but also in trajectory 
[94]. The apprentice learner paradigm currently bypasses this credit/blame assignment problem because it was 
originally designed within the context of intelligent tutoring systems and thus assumes a pattern of display-based 
reasoning [84], where actions are taken at a fine grain size and feedback is provided immediately [159]. Exploring 
ways to augment the architecture to better account for the credit assignment problem will be a component of 
my future work. 

A further way that the agent could be improved would be to change the internal how, where, and when learning 
mechanisms. One potentially promising example, given the lack of generalization in the agent, would be to use a 
general-to-specific where learner instead of the specific-to-general one that is currently used. The Apprentice 
Learner Architecture was intentionally designed to be modular in this way and allow for different internal 
algorithms to represent the various learning mechanisms. The particular model that I use here was chosen because 
a similar version without TRESTLE had demonstrated some capacity to model human learners in the past [94] and 
adding TRESTLE was likely to create a model better suited to RumbleBlocks’ highly structured environment. The 
infrastructure did exist for me to explore varying the internal implementation of the agent, but it was out of scope 
for this thesis19. The ultimate goal of the Apprentice Learner Architecture is to find some set of mechanisms 
capable of modeling learners’ behaviors across a number of domains simultaneously and further iterating on the 
implementation of the flexible projective agents will be part of this future work. 

An additional question raised by my discussion of Replay Analysis is the degree to which the approach would 
generalize to other games and other systems as well as where it would fit within the process of game design more 
generally. All the work I have presented as part of this thesis has been in the context of a single game. While 
Replay Analysis was applied in a more limited capacity to some of the other games developed as part of the 
ENGAGE project, most notably Beanstalk [31,58], it remains an empirical question how well the approach would 
generalize to other games.  

Throughout the development of the Replay Analysis toolkit, I took care to avoid tailoring the system too heavily 
to the particulars of RumbleBlocks’ implementation. The RAE is implemented as a completely separate software 
package and anything that needs special knowledge of RumbleBlocks (e.g., Interpreters and the GSRC for 
RumbleBlocks) are isolated from the main library. Further, all of the core components of the RAE are designed to 
mimic software patterns present throughout Unity’s standard library to make integration with new systems easier. 
While these intentions are good, a proper validation of developer ease of use in integrating the system into a new 
game would be a topic for future work. 

                                                      
19 As per my previous footnote, this application of the Apprentice Learner Architecture is, in fact, the topic of 

Christopher MacLellan’s thesis, which will be published shortly after this one. 
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One question with regard to generality relates to how actions are encoded and what assumptions this might 
impose on a design. The SAIS structure theoretically has the capacity to encode any action that could be taken in 
a game, but because the description is contextual rather than based on raw input, like a mouse click, there is a 
question of what is an appropriate level of description for an action or step [160]. DataShop’s original SAI encoding 
is commonly used to describe semantic actions applied in the graphical user interfaces of intelligent tutoring 
systems and has sufficed for a wide range of interfaces as evidenced by the volume of data contained within 
DataShop itself [75]. One of the reasons this has been so successful is because the interaction paradigms afforded 
by most graphical user interfaces are reasonably consistent. The space of games, on the other hand, is populated 
by a much larger set of possible interactions that players could apply to entities in a game world; and, while it 
may be theoretically possible to encode any of them in a SAIS structure, it is not trivially obvious that it would be 
easy without some sufficiently clever strategy. An example that SAIS would have trouble encoding is a continuous 
action, such as navigating a 3D space. This limitation is why I restrict my focus to step-based interaction paradigms, 
making a similar assumption to DataShop. In so far as a game is also step-based, as many educational and puzzle 
games are, my methods should transfer readily or with minimal difficulty. In other cases, some kind of extra 
encoding would be required. For example, by leveraging the concept of functional game space [135], one  could 
impose an encoding where players navigate between meaningful points of interest in a 3D space as discrete steps 
rather than over continuous paths in meaningless space. Exploring how to better understand players interactions 
in more open-world environments is a topic I am interested in exploring further. 

Another possible limitation on generality imposed by encoding is how the attempt, level, session, and user 
description of action progression makes assumptions about how a game is structured. Currently, the system 
assumes a progression pattern like the one in RumbleBlocks, where players progress through a series of levels 
contained within a larger hierarchy of tiers. While this assumption is limiting, it is also an extremely common 
structure in games from Mario Brothers to Angry Birds. It would be hard to apply this encoding to games that do 
not have a discrete set of challenges, such as Minecraft, though such games could be coerced into the format by 
imposing some discrete attempt structure onto in-game tasks. Further, there would be similar limitations for 
games that have procedurally generated or randomized level designs where the ability to call up a scene by name 
cannot be guaranteed. Such a game would require some additional encoding in the replay to ensure things like 
a randomizing seed or other invariant properties are captured in state descriptions. It is not necessarily required 
that the system be specifically designed in this way, though changing some of these assumptions would impact 
how the agent’s interactive training process, such as when feedback would be provided. 

A final structural limitation built into the Replay Analysis Toolkit as implemented is a focus on single-player 
experiences. The system currently assumes that actions are recorded from a single user’s perspective and that 
they should be played back as a single agent. It is not impossible that the replay process could be extended to a 
multiplayer context as the software systems for enabling real-time multiplayer have much in common with replay 
systems [44]. Adding multiplayer functionality to the system would require substantial additions to the agent 
framework, and the Apprentice Learner Architecture itself and so it must remain future work for the time being. 

Ultimately, I regard my efforts in presenting Replay Analysis to have been successful in demonstrating the utility 
of the method to allow for a wide ranging and reflective analysis process. I have also shown qualified evidence 
for its validity as a rapid prototyping method on part with conventional playtesting, but further work is needed to 
explore the promise of the method in more contexts. 
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Discussion of Alignment 
My goal in presenting a new framing of alignment as part of this thesis was to demonstrate that looking at 
alignment as an agreement between a game’s feedback and Principle-Relevant Metrics provides some much-
needed grounding to discussions of alignment in educational game design. As with the discussion of Replay 
Analysis, my work on alignment also requires a discussion of the utility and validity of the approach toward aiding 
the educational game design process, considering the evidence of my work. I find the results with regard to validity 
to be generally successful while the results for utility are more qualified. 

Regarding the validity of my formulation of alignment, the results of both studies present some encouraging 
evidence. The in-game pre-posttest results of the formative evaluation showed a significant learning effect on the 
Base Width and Symmetry Angle metrics, but no significant result for COM Height. The alignment regression 
results from the same study show a similar pattern, where the game showed appropriate feedback for Base Width 
and Symmetry Angle but not for COM Height. In the second classroom study, I see a similarly encouraging result. 
In the pre-posttest results, repeated-measures ANOVA results showed significant learning of the Symmetry Angle 
metric across conditions. This pattern corresponds with the alignment regression results where both conditions 
showed a significant positive relationship with Symmetry Angle. Taken together these results show encouraging 
support for my formulation of alignment as regression. In addition to providing some face validity to this approach 
these patterns also demonstrate some correspondence to the findings of Cohen [36] that a better aligned 
instructional program leads to greater learning. 

While the correspondence of alignment and learning does provide encouraging support for my method there is 
still an interesting pattern in my second classroom study that is left unexplained. The alignment regression results 
of the No Ship condition show a strong negative effect for the Base Width metric but the pre-posttest learning 
results for that condition did not show a corresponding negative learning trend. As I previously discussed in the 
alignment chapter, whenever a game is rewarding unprincipled behavior or punishing principle behavior (the pink 
off-diagonal of the matric in Figure 1) then at best the game would confuse players and at worst it would foster 
misconceptions. The pattern shown by the No Ship condition appears to be the former case of merely confusing 
players. This is obviously the more desirable of the two possibilities but does raise interesting questions for future 
work on what conditions are necessary for misalignment to foster an active misconception. 

A different angle on the question of the validity and utility of my alignment framing stems from its contribution to 
the iterative design process. If my approach finds a misalignment issue with a game and a variation to the design 
is made to correct that issue, we would expect to see greater alignment as a result. When looking at the results 
from the close-the-loop evaluation, this hypothesized outcome is not what occurred. The exploration into 
RumbleBlocks’ solution space suggested a possible cause of the misalignment problem in the outsized effect of 
the spaceship on a player’s success. In an effort to correct this issue, I explored three different variations of the 
game and measured their potential change in alignment with Projective Replay. Accepting some uncertainty due 
to potential limitations of Projective Replay, I still did not see an improvement in alignment in any of the variations. 
It is tempting to consider this result an indictment of my alignment approach, but it is possible that a decrease in 
alignment would have happened anyway, suggesting that alignment is hard to predict. The design process is 
wicked [24] and unintended implications of design choices are common. In this light, I view my perspective on 
alignment as a useful mental model [48] for thinking about the design process rather than an objective function 
to optimize a design. 

Similar to the discussion of Replay Analysis there are also questions of generalizability for my formulation of 
alignment. In particular, what assumptions underlie the definition of PRMs and how might that restrict the kinds 
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of games that the technique could be applied to? Viewing alignment as a regression task provides some 
perspective on this question. Through this lens, a PRM could be anything that should predict success. In my case 
PRMs were relatively straightforward numerical properties of game state but other approaches are possible. For 
example, one could imagine a different RumbleBlocks with the goal of teaching that arch-shaped structures are 
more stable. In this case a categorical PRM could be defined to label towers as is-arch, rather than define some 
abstract numerical metric for arch-ness. In the regression formalism, this is-arch metric would be treated as a 
categorical factor and would result in an estimate of the effect of following the arch principle. Alternatively, the 
outcome side of the regression could be continuous rather than binary necessitating a different form of regression 
(e.g., Gaussian or Poisson) but ultimately functioning similarly.  

The simplistic framing of alignment as measuring PRMs that should predict success does open up a question why 
stop there? It would be tempting to try and invent as many PRMs as possible and try to fit them all into a massive 
omnibus regression. This strategy would run into issues of statistical power and limit the technique’s ability to 
accurately diagnose issues with a design. Fully addressing all the ways one might address this problem is well 
beyond the scope of this thesis and is more the topic of focused discussions on statistical methods [141]. I would, 
however, suggest some rules of thumb for practitioners looking to replicate my approach. First, it is better to focus 
alignment measurement on particular metrics of interest, likely agreed upon with subject matter experts or 
stakeholders, rather than try everything. Further, it is difficult to say precisely how much data is needed for the 
method to be accurate, beyond saying more is better, as this depends upon the shape of the regression formula 
being applied. This problem is aided somewhat by the unit of analysis for alignment regression being a player 
solution rather than a player themselves, which allows a single playtest to provide more signal about a game than 
one might expect. Ultimately, the regression-based alignment approach does require some sophisticated 
statistical training to apply correctly, and exploring ways to reduce this requirement would be interesting to explore 
in the future. 

Overall, my conclusion with regard to measuring alignment as a relationship between in-game metrics and 
feedback shows promise as a metric for evaluation a design but more work is needed to better understand its 
bounds. The results from comparing alignment measurement with learning gains show encouraging potential for 
positive alignment to predict positive learning, however misalignment does not necessarily predict a 
misconception. Further, designing toward alignment did not produce a better aligned game in my case, however 
it is still useful to understand when well-intentioned design choices have unintended consequences. As it stands I 
would not advocate for using alignment as an exclusive objective function to drive the design process, but rather 
hold it as one measure among many to help designers think about what their designs look like and how they 
might move forward. 

Contributions 
Collectively my work makes contributions to the fields of educational game design, learning science, and human-
computer interaction. 

My work advances the field of educational game design by contributing a number of novel methods for helping 
designers to understand their games. Retrospective Replay Analysis provides a novel method for designers to 
characterize playtest data from a number of perspectives and suit varied analyses, expanding on prior playtesting 
methods by making individual playtests more valuable. Alignment Regression formalizes the relationship between 
game goals and game behavior, allowing for a common language to talk about expectations in a design. Solution 
Space Analysis opens a window into the varied experiences that players can have in a way that is digestible to 
designers. Finally, though more work is needed, Projective Replay shows promise for allowing designers to predict 
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the implications of their redesign choices. Taken together these methods form the beginnings of a toolbox for 
educational game design that can be expanded in the future. 

In the learning sciences, my focus on measurements of the alignment of instructional moves to goals stands to 
benefit the literature on alignment research, which is typically more focused on the alignment of assessments to 
goals. In particular, my definition of alignment in terms of a solution space is a novel way to approach the 
alignment of instructional moves and provides an empirical basis for attacking the question. Further, the 
characterization of alignment as a regression task gives a well-formed answer to the question of what it means 
for elements of an instructional context to agree with each other. More work is needed, however, to fully 
understand how alignment from this perspective relates to student learning. 

In human-computer interaction, replay paradigms have been an established means for the evaluation of 
interactive software. In exploring Projective Replay Analysis, I am expanding on this prior work by probing the 
boundaries of how the nature of design changes affect the validity of replay based methodologies. The results of 
my studies provide some encouraging support for the use of a Literal Projective Replay approach to evaluate next 
game design iterations. Further, my exploration of Flexible Projective Replay shows promise for expanding the 
paradigm in the future to allow for AI-enabled evaluation of future game designs in the absence of new player 
data. 

Implications for Future Work 
Beyond the contributions of my work for the originally intended purposes, the results hold interesting implications 
for exploring new areas of research in the future. 

From Implications for Design to Implication of Design 
While developing the method to characterize how a design change affects a game’s solution space, an implication 
arose for further studying the relationship between a designer’s choices and their implications on experience. 
Currently, I frame my work in terms of developing a tool to aid a designer in thinking about a particular product 
in a particular context, for a particular purpose. I heartily believe in this goal of aiding design at a hyper-local level, 
but there is an opportunity in this work to explore a broader set of questions.  

The broader perspective of this concept is that design decisions have side effects. This notion is not a new one 
[9], but prior work has lacked a consistent way to characterize these side effects. By looking at ways to characterize 
the relationship between the behavior of a design before and after a change is made, we can start to explore 
what other implications of a given choice might reliably arise across designs. An example where I see potential 
here is in considering the space of learning science design principles [76]. In general, learning science design 
principles are framed as a claim that following a certain instructional form (e.g., interleaving topics instead of 
presenting them in blocks) is demonstrably better for learning. In essence, these principles are design patterns for 
good instructional practice [10]. What is less often talked about with these principles is whether any side effects 
might result from adhering to them. As I have discussed several times in this thesis, design is a wicked problem 
[24] and while recommending a given principle is likely to be beneficial, that abstract recommendation may be 
eliding design details that are important to a specific context. Investigating if instructional design principles possess 
reliable side effects could provide more nuance to discussions of instructional design. 

Material Experience 
An implication of the replay paradigm that I find particularly interesting is what it suggests for the space of 
experience design. Literature on experience design often casts designing an experience as explicitly different from 
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designing a material object [63]. An experience is seen as something that is subjective, holistic, situated, and 
dynamic [64]. These qualities are also likely what lead game designers to characterize their practice as second 
order design [133]. When the target of design is so subjective, prototyping design ideas becomes challenging 
[25] because so much of the experience depends upon a users’ own reactions and understandings. In these 
situations, Schön’s notions of seeing [138] become difficult without extensive experiential testing.  

Operating under a replay paradigm offers the chance to reify experience into a material form. The situated and 
dynamic nature of experience can be re-instantiated in the context of a replay and considered from a design lens. 
In furthering the development of my replay approach and its associated software systems, I am interested in 
further exploring how this implication changes the design process and the relationship between designer and 
game (or product more generally). If, in the midst of exploring an idea, a designer could summon the opinions of 
an army of virtual playtesters, how would this change their iterative process? Further, how does building such an 
army change over the life cycle of design? Could a single small playtest act as a seed for growing more playtesting 
agents as iteration continues? 

One aspect of experience that would elude replay is the appreciation of a player’s subjective experience. As a 
designer, perceiving a player’s experience from the outside will always have some limits on truly appreciating how 
a player feels about it. Existing models of player experience often rely on survey measures or interview techniques 
to probe how players feel about a design [43,107]. However, there is an opportunity to expand upon the player 
modeling approach of the Apprentice Learner Architecture to include processes for emotion and affect. Existing 
work on integrating affect into models of learners and cognitive systems [132,167] could be a fruitful direction to 
explore and will be a component of my future work. 

Conclusion 
In this thesis, I have presented the method of Replay Analysis as a technique that uses in-game replays as a data 
source for varied analyses of educational games. I created the Replay Analysis toolkit for the Unity game engine 
that embodies this method. I applied Replay Analysis to the educational game RumbleBlocks and demonstrated 
its capacity to support varied analyses. Using Retrospective Replay Analysis, I developed a novel framing of the 
instructional alignment between a game’s educational goals and its instructional moves. I further employed replay 
to re-characterize the game’s solution space from several perspectives in trying to diagnose why it may have 
alignment problems. Finally, I explore a new use of replay in projecting old recordings into new iterations of a 
game design and evaluated whether such a method would reach valid conclusions about a game on par with 
conventional playtesting. 

The results of this work have shown promise for both Replay Analysis and my characterization of alignment. In 
exploring Projective Replay, I found that an exact reproduction of a recorded game session was capable of 
predicting some issues with misalignment in a new game version, while an AI-augmented approach was less 
effective. This suggests some potential future work in expanding the AI model to enable further generalization 
from training examples. In validating my formulation of alignment, I found mixed results. While in one study there 
was a strong agreement between a pattern of misalignment and learning, in another there was a weaker 
association. Further work is needed in this area to understand how other contextual factors of instruction 
contribute to student’s learning or lack thereof. 

As I stand at the culmination of my doctoral studies, I find myself at a place that looks more like a beginning than 
an end. The work I have done so far in developing a new method and toolkit has created a useful first step to 
explore several future ventures. In continuing to develop both Replay Analysis and alignment measurement, I 
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hope to continue expanding our understanding of educational game design, learning science, and human-
computer interaction. 
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APPENDICES 
Appendix A. DATASET DESCRIPTIVE STATISTICS 
Throughout this appendix I have included some general descriptive statistics of the datasets used throughout my 
various studies. Overall, the purpose of this appendix is to provide context; I make no inferences or conclusions 
from the data presented here. However, one of the reasons I included this appendix was to show the distributions 
of the PRMs used in alignment regression, as they are somewhat irregular. 

Formative Evaluation Study 
The data in this section is from the formative evaluation study presented in Chapter 5 . The data in Table 17 is 
presented organized by school and grade. School A is the school that was used in the follow up classroom study 
presented in Chapter 7 . 

School Grade 
Total 

Students 
Total 

Attempts 
Avg Levels 
Completed 

Std Levels 
Completed 

% All 
Attempts 

Successful 

% First 
Attempts 

Successful 

A 

k 37 847 19.43 7.01 81.46 82.51 
1 36 1139 24.78 7.76 80.42 81.32 
2 39 1356 27.10 7.71 81.49 83.35 
3 39 1492 29.62 6.48 83.31 83.58 
Overall 151 4834 25.32 8.11 81.80 82.79 

B 

k 27 591 17.67 6.69 75.13 77.45 
1 45 1186 21.04 6.39 75.04 76.44 
2 30 863 24.03 6.99 78.91 80.06 
3 28 997 29.54 5.65 80.04 82.80 
Overall 130 3637 22.86 7.58 77.34 79.24 

Overall 
 

281 8471 24.18 7.95 79.88 81.23 

Table 17. Descriptive statistics of the user population for the formative evaluation study of RumbleBlocks. 
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Figure 14, Figure 15, and Figure 16 show density distributions of the three principle-relevant metrics used in 
alignment regression. These plots show the raw scores for each metric across all of the data. Note that while these 
distributions appear very non-normal, this effect is minimized in the regression because of the inclusion of a 
random intercept for level (see Equation 1). 

 

Figure 14. A density plot of the distribution of the Base Width metric in the Formative Evaluation data. 

 

Figure 15. A density plot of the distribution of the COM Height metric in the Formative Evaluation data. Note: 
COM Height has been reverse-coded, so a higher number on the x-axis is better. 

 

 

Figure 16. A density plot of the distribution of the Symmetry Angle metric in the Formative Evaluation data. 
Note: Symmetry Angle has been reverse-coded, so a higher number on the x-axis is better. 
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Projective Replay Data 
The data in this section shows some basic descriptive statistics for the different Projective Replays. 

Game Version Replay Type Total Attempts % Successful Attempts 

Base 
Retrospective 4424 82.82 
Literal 4424 77.08 
Flexible 2354 82.97 

Glue Blocks 
Literal 4429 88.64 
Flexible 2140 94.16 

No Cliff 
Literal 4458 75.95 
Flexible 2243 83.75 

No Ship 
Literal 4429 75.16 
Flexible 2907 74.99 

Table 18. Descriptive statistics of Projective Replays. 

Close-the-Loop Classroom Study 
The data in this section describes the new close-the-loop classroom study presented in Chapter 7 . The data in 
Table 19 is organized by condition and grade. 

Condition Grade 
Total 

Students 
Total 

Attempts 
Avg Levels 
Completed 

Std Levels 
Completed 

% All 
Atmpts 

Successful 

% First 
Atmpts 

Successful 

Base  
2 18 655 28.89 12.95 70.99 73.83 
3 22 833 30.09 8.30 72.51 74.62 
Overall 40 1488 29.55 10.51 71.84 74.27 

No Ship 
2 17 661 27.76 9.67 58.85 64.16 
3 20 716 29.25 5.84 65.50 67.49 
Overall 37 1377 28.57 7.76 62.31 65.99 

Overall 
 

77 2865 29.08 9.24 67.26 70.37 

Table 19. Descriptive statistics of the user population for the close-the-loop study of RumbleBlocks. 
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Figure 17, Figure 18, and Figure 19 show density distributions of the three principle-relevant metrics used in 
alignment regression. For the close-the-loop study, each plot is further separated by condition. These plots show 
the raw scores for each metric across all of the data. Note that while these distributions appear very non-normal, 
this effect is minimized in the regression because of the inclusion of a random intercept for level (see Equation 1). 

 

Figure 17. A density plot of the distribution of the Base Width metric in the Close-the-loop data in the Base and 
No Ship conditions. 

 

Figure 18. A density plot of the distribution of the COM Height metric in the Close-the-loop data in the Base 
and No Ship conditions. Note: COM Height has been reverse-coded, so a higher number on the x-axis is better. 

 

Figure 19. A density plot of the distribution of the Symmetry Angle metric in the Close-the-loop data in the Base 
and No Ship conditions. Note: Symmetry Angle has been reverse-coded, so a higher number on the x-axis is 

better.  
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Appendix B. THE TRESTLE ALGORITHM 
Throughout my time as a PhD student, the development of TRESTLE20 ranks as one of the projects for which I was 
the proudest to be a part of. That being said, TRESTLE was developed as part of a highly collaborative effort with 
Christopher MacLellan, and it did not feel right to include it as a contribution in this thesis proper. I do, however, 
use the algorithm throughout several parts of my research, and I felt it would help readers to have some context 
on how the algorithm works. I have included a brief description of the algorithm in this appendix for this purpose. 
We have also previously published a description of TRESTLE in the Advances in Cognitive Systems Journal [93]. A 
Python implementation is available online at: https://github.com/cmaclell/concept_formation and further 
documentation can be found at: http://concept-formation.readthedocs.io  

TRESTLE is a model of concept formation based on the COBWEB algorithm [50] that incrementally learns 
hierarchical concept trees given a set of structured instances. Each concept in a TRESTLE tree is a probabilistic 
description of the collection of instances stored under it. This probabilistic description is stored in the form of a 
probability table that tracks how often each attribute-value pair occurs in the underlying instances. Once learned, 
these concept trees can be used for a number of purposes, such as functioning like a classification system or 
clustering instances based on their common properties.  

One can think of a TRESTLE tree like the classification system of animal taxonomics (i.e., kingdom, phylum, class, 
order, family, genus, species), but based on a particular set of training data. Alternatively, you could view it like a 
probabilistic decision tree [169] that optimizes for predicting all attributes of an instance simultaneously rather 
than predicting a specific target attribute. 

Instance Representation 
One of the major goals behind the design of TRESTLE that sets it apart from other examples of the COBWEB 
family of algorithms is being highly permissive in the kinds of data that can be fit into a concept tree. Normally in 
machine learning, instances must be cast into some kind of flat vector representation in order to be usable. This 
was one of the reasons we originally developed CFE [61], to make RumbleBlocks states amendable to conventional 
clustering. TRESTLE, on the other hand, is designed to accept instances described by a superset of the common 
JSON representation (www.json.org). Instances are represented as JSON objects that contain a set of attribute-
value pairs. Attributes can be either constant (the standard form), variable (meaning the name is not important), 
or hidden (meaning they are tracked but not used during categorization). Values can be either nominal (strings), 
numeric (numbers), or components (nested sub-objects). In addition to these forms, objects can also contain 
relational attributes that describe relationships between other attributes of the object. Relations are usually used 
to describe the relationships between sub-objects of a state. An example of a way a RumbleBlocks tower would 
be described to TRESTLE is shown in Figure 20. 

                                                      
20 TRESTLE is not an acronym. Rendering TRESTLE’s name in all caps is a convention we started in its first 
publication because the other algorithms in the COBWEB family also published their names in all caps, despite 
not being acronyms themselves. The name TRESTLE was chosen because we intended it to support a bridge 
between the fields of concept formation and representation learning. 

https://github.com/cmaclell/concept_formation
http://concept-formation.readthedocs.io/
http://www.json.org/
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Figure 20. An example of a RumbleBlocks tower described as a TRESTLE instance.  

In the example in Figure 20, blocks are represented as variable attributes with component values. The Success 
attribute is hidden (starting with a ‘_’) and has a constant nominal value. Each block’s type attribute is a constant 
nominal value, and its dimensions are constant numeric values. Finally, the (On …) relations show examples of 
relational attributes. 

Learning Process 
TRESTLE learns from instances incrementally, meaning that its knowledge representation is updated as it 
encounters new data rather than fit on an entire batch of data at once. This has an additional side effect of making 
the algorithm susceptible to ordering effects, but in a way that we have previously shown models human ordering 
effects [93]. The learning process of TRESTLE follows three main phases: partial matching, flattening, and 
categorization. 

Partial Matching 
In the partial matching phase, the algorithm tries to match the variable attributes in the new instance to the root 
concept of the tree. In our instance representation, variable attributes are intended to imply that the name of a 
given attribute is not important, only that some value exists. This means that it is open to interpretation which 
other unbound attributes a variable is referring to when it gets integrated into the tree. Partial matching is done 
by searching over the space of possible bindings for all the variable attributes to find the mapping that produces 
the greatest number of expected correct guesses of the instance’s values. The goal of this step is to align the new 
instance with the tree’s existing knowledge as best as possible before proceeding to later stages. An example 
mapping is show in Figure 21. 

{ _Success: “False”, 
  ?Block1: {type: “ufo”, 
     angle:0.0, 
     left:0.1 
     right:2.8, 
     bottom:4.1, 
     top:5.6}, 
  ?Block2: {type: “rectangle”, 
     angle:90.0, 
     left:0.9 
     right:1.9, 
     bottom:1.1, 
     top:4.1}, 
  ?Block3: {type: “rectangle”, 
     angle:0.0, 
     left:0.0 
     right:3.0, 
     bottom:0.0, 
     top:1.0}, 
  (On ?Block1 ?Block2): “True”, 
  (On ?Block2 ?Block3): “True”} 
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Figure 21. An example partial mapping for an instance in TRESTLE. 

In the example mapping in Figure 21, the ufo (?Block1) was renamed to c3 because in more of the previous 
instances that component happened to be named c3 instead of ?Block1. In this case changing the name would 
increase the number of expected correct guesses at the root. Note that relations that referenced a variable 
component have also been changed to maintain the connection. 

Flattening 
Once the new instance has been partially matched it is converted to a flattened representation. This flat 
representation removes component values and describes their structure using an equivalent relational syntax.  

            

Figure 22. An example of the flattened TRESTLE representation 

Categorization 
Once the instance has been properly transformed it is integrated into the concept tree. This process follows a 
method similar to COBWEB [50]. As an instance is incorporated into a concept the frequencies in its probability 
table are updated to include the attribute-values of the instance. Initially, the instance is added at the root of the 
tree. Then at each concept it encounters the algorithm considers four possible operations (see Figure 23 for an 
illustration) to incorporate the instance into its tree: adding the instance to the most similar child concept; creating 
a new child concept to store the instance; merging the two most similar child concepts and then adding the 
instance to the resulting concept; and splitting the most similar child concept, promoting its children to be children 
of the current concept, and recursing. Each operation is simulated and evaluated in terms of its resultant category 

{ _Success: “False”, 
  ?Block1: {type: “ufo”, 
     angle:0.0, 
     left:0.1 
     right:2.8, 
     bottom:4.1, 
     top:5.6}, 
  ?Block2: {type: “rectangle”, 
     angle:90.0, 
     left:0.9 
     right:1.9, 
     bottom:1.1, 
     top:4.1}, 
  ?Block3: {type: “rectangle”, 
     angle:0.0, 
     left:0.0 
     right:3.0, 
     bottom:0.0, 
     top:1.0}, 
  (On ?Block1 ?Block2): “True”, 
  (On ?Block2 ?Block3): “True”} 
 
      

{ _Successful: “False”, 
  c3: { type: “ufo”, … }, 
  c2: { type: “rectangle”,  
        angle: 0.0,  
        …}, 
  c1: { type: “rectangle”,  
        angle: 90.0,  
        …},                  
  (On c3 c2): “True”,  
  (On c2 c1): “True”} 
      

{ _Successful: “False”, 
  c3: { type: “ufo”, … }, 
  c2: { type: “rectangle”,  
        angle: 90.0,  
        …}, 
  c1: { type: “rectangle”,  
        angle: 0.0,  
        …},                  
 (On c3 c2): “True”,  
 (On c2 c1): “True”} 
      

 { _Successful: “False”, 
   (type c3): “ufo”,  
   …, 
   (type c2): “rectangle”,  
   (angle c2): 90.0,  
   …, 
   (type c1): “rectangle”,  
   (angle c2): 0.0,  
   …,                  
   (On c3 c2): “True”,  
   (On c2 c1): “True”}      
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utility [50]; whichever operation results in the greatest category utility is applied, and the process continues until 
the instance is added to a leaf concept or a new child is created. 

 

Figure 23. Diagramatic representation of the four COBWEB operations. The grey shaded node represented 
where the instance is added before, during, and after the operation. Blue dotted lines (creating and merging) 

represent newly created nodes and red dashed lines (splitting) represent deleted nodes. 

Category utility is a measure of the increase in the average number of expected correct guesses of all attribute-
values in the children of a node relative to the node itself. The intuition is that, as you move down the tree to 
more specific descriptions of instances, you are more likely to be correct about what the instance contains. The 
category utility of a set of children {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛} is calculated by: 

𝑪𝑪𝑪𝑪({𝑪𝑪𝟏𝟏,𝑪𝑪𝟐𝟐,⋯ ,𝑪𝑪𝒏𝒏}) =
∑ 𝑷𝑷(𝑪𝑪𝒌𝒌) �∑ ∑ 𝑷𝑷�𝑨𝑨𝒊𝒊 = 𝑽𝑽𝒊𝒊𝒊𝒊|𝑪𝑪𝒌𝒌�

𝟐𝟐 − ∑ ∑ 𝑷𝑷�𝑨𝑨𝒊𝒊 = 𝑽𝑽𝒊𝒊𝒊𝒊�
𝟐𝟐

𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 �𝒏𝒏
𝒌𝒌=𝟏𝟏

𝒏𝒏
 

Equation 2. The equation for category utility used in TRESTLE. 

Where 𝑃𝑃(𝐶𝐶𝑘𝑘) is the probability of a particular concept given its parent, 𝑃𝑃�𝐴𝐴𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖�𝐶𝐶𝑘𝑘� is the probability of 
attribute 𝐴𝐴𝑖𝑖 having value 𝑉𝑉𝑖𝑖𝑖𝑖 in the child concept 𝐶𝐶𝑘𝑘, 𝑃𝑃�𝐴𝐴𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖� is the probability of attribute 𝐴𝐴𝑖𝑖 having value 𝑉𝑉𝑖𝑖𝑖𝑖 
in the parent concept, and 𝐴𝐴 is the number of child concepts. Each of these terms can be efficiently computed via 
a lookup of the probability tables stored in the parent and child concepts. 

When dealing with numeric values, TRESTLE uses a normal probability density function to store the probability of 
different values of a numeric attribute. Under this assumption, the sum of squared attribute-value probabilities in 
Equation 2 is replaced with an integral of the squared probability density function, which for a normal distribution 
is the square of the distribution’s normalizing constant. Thus when calculating category utility for numeric values 
the ∑ ∑ 𝑃𝑃�𝐴𝐴𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖�𝐶𝐶𝑘𝑘�

2 − ∑ ∑ 𝑃𝑃�𝐴𝐴𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖�
2

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  in Equation 2 is replaced with ∑ 1
𝜎𝜎𝑖𝑖𝑖𝑖

− 1
𝜎𝜎𝑖𝑖

𝑖𝑖  where 𝜎𝜎𝑖𝑖𝑘𝑘  is the 

standard deviation of values for the attribute 𝐴𝐴𝑖𝑖 in child concept 𝐶𝐶𝑘𝑘 and 𝜎𝜎𝑖𝑖 is the standard deviation of values for 
the attribute 𝐴𝐴𝑖𝑖 in the parent concept.  

Prediction 
When TRESTLE is used for prediction or classification of a novel instance, the partial matching and flattening 
procedures are applied as described above. The categorization process is altered in order to not modify the 
existing concept hierarchy while predicting. As an instance traverses down the tree the probability tables of the 
concepts it encounters are not updated. Further, only the creating and adding operations are used at each point. 
If the creating operation is ever deemed to have the highest category utility then the current concept is returned; 
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otherwise, the final leaf encountered is returned. Once a concept node is returned, the probability table within 
that concept can be used to make predictions about the instance’s attribute-values either by taking the highest 
probability value or sampling from the distribution of values as desired. 

Clustering 
A TRESTLE tree can also be used to create a flat set of clusters of data based on its hierarchical knowledge. When 
clustering a set of instances, each instance is first categorized by the tree in a non-modifying way similar to the 
prediction process above. Cluster labels can then be provided by successively splitting concepts, using the normal 
splitting operation, in the tree and assigning each instance a label of its highest un-split parent, which would 
initially be the root representing all things.  

The number of splits to perform on the tree when clustering is arbitrary, but it can be guided by different model 
fit statistics such as Akaike Information Criterion (AIC) [2] and Bayesian Information Criterion (BIC) [139] in a similar 
vein as the x-means clustering algorithm [118]. Both AIC and BIC balance the log-likelihood that the set of clusters 
would generate their assigned instances against the number of predictors used to generate that model. In the 
case of a TRESTLE clustering, the number of predictors is the total number of unique-attribute value pairs in the 
root concept multiplied by the number of clusters. There is no objective way to choose a best heuristic to guide 
splitting. From our own experience with the algorithm we have generally seen that AIC will lead to more splits 
resulting in more smaller clusters and BIC will make less splits resulting more commonality between instances. 
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Appendix C. A BRIEF PRIMER ON EARTHQUAKE PHYSICS 
Ever since the early days of ENGAGE, we found it difficult—even as adults—to reason about how exactly 
earthquakes worked in order to inform our intuitions for designing RumbleBlocks. At one point, I was dispatched 
to have a meeting with Dr. Irving Oppenheim, P.E., a Professor jointly appointed in Carnegie Mellon’s departments 
of Civil and Environmental Engineering, and Architecture. This meeting resulted in a small slide deck of briefing 
notes (affectionately called “The Math”) that I have included as backup slides in all my presentations since as a 
way of shedding some light on the real complexity of earthquake physics for people who might be confused. I 
have reproduced the gist of that slide deck here for anyone who might be similarly confused while reading this 
document. Two of the core intuitions that arise from this deck is that, unintuitive for some, the weight of the tower 
does not matter, and that one really cannot separate the principles involved from each other, which is what makes 
alignment in RumbleBlocks to difficult. 

First, an earthquake is generally modeled as an oscillating process taking place over some duration 𝑇𝑇, with some 
number of cycles 𝐴𝐴 and some amplitude 𝐷𝐷. The earthquake in RumbleBlocks has parameters for each of these 
properties. From these features, we can obtain a frequency 𝑓𝑓 =   𝐴𝐴/𝑇𝑇, which can be used to calculate a maximum 
amount of acceleration applied by the quake as 𝐴𝐴 = (2𝜋𝜋𝑓𝑓)2𝐷𝐷, which can be specified in terms of g’s as 𝛼𝛼 = 𝐴𝐴/𝐻𝐻 
where 𝐻𝐻 is the gravitational constant. Essentially, the goal at this stage is to understand the number of g’s of 
acceleration that the earthquake imparts on the tower. 

Next, for the case of a simple tower like the one in Figure 24, the center of mass has a height of ℎ, and is 𝑊𝑊 units 
from the nearest edge of the tower’s base, so in a non-symmetrical tower this would be the smaller of the two 
distances. Also, the tower has a weight 𝑊𝑊 = 𝑂𝑂𝐻𝐻 where 𝑂𝑂 is the mass of the tower and 𝐻𝐻 is the gravitational 
constant as one would expect. The threshold of motion, i.e. the minimum energy required for the tower to start 
moving is when 𝛼𝛼𝑊𝑊 > 𝑊𝑊 𝑊𝑊/ℎ or essentially 𝛼𝛼 > 𝑊𝑊/ℎ. The definition of falling (perhaps intuitively) is when the 
center of mass of an object is no longer over its base. The energy required to cause the tower to topple then is 
the amount of energy required to lift the center of mass to the point that it is directly above the foot, which is the 
length of the hypotenuse of the triangle formed with 𝑊𝑊 and ℎ. Thus, resulting in the following equation for energy 
required: 

𝐸𝐸𝑟𝑟 = 𝑊𝑊 (�ℎ2 + 𝑊𝑊2 − ℎ) 

 

Figure 24. An example tower (left), whose center of mass is at height h and is d units from the nearest edge of 
the tower's base. And that same tower at the moment of falling (right). 

The energy imparted on the tower is the force imparted multiplied by the total tower’s weight. The force imparted 
is ideally 𝛼𝛼𝑊𝑊 and the total distance imparted would be 𝐴𝐴4𝐷𝐷. Making the total energy imparted on the tower: 

𝐸𝐸𝑖𝑖 = 𝛼𝛼𝑊𝑊 ∗ 𝐴𝐴4𝐷𝐷 
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However, it is not that simple in reality. Since the earthquake is oscillating, it is not imparting force perfectly on 
the tower at all times, and not all the motion is contributing to the tower falling. Some examples of this 
phenomenon are when the tower jumps briefly or when the motion is switching directions and momentarily 
counteracting its own energy. To account for these issues, you multiply by scaling factors, but these scaling factors 
are essentially impossible to know a priori so they can only be determined empirically. Making the real equation: 

𝐸𝐸𝑖𝑖 = 𝑋𝑋𝛼𝛼𝑊𝑊 ∗ 𝑌𝑌𝐴𝐴4𝐷𝐷 

where 𝑋𝑋 and 𝑌𝑌 are some scaling factor between 0 and 1. In our discussion 𝑋𝑋 = 0.25 and 𝑌𝑌 = 0.10 were offered 
as possible examples. 

Ultimately, a tower falls when the energy imparted is greater than the energy required: 𝐸𝐸𝑖𝑖 > 𝐸𝐸𝑟𝑟 or: 

𝑋𝑋𝛼𝛼𝑊𝑊 ∗ 𝑌𝑌𝐴𝐴4𝐷𝐷 > 𝑊𝑊 (�ℎ2 + 𝑊𝑊2 − ℎ) 

Note that there is a 𝑊𝑊 (weight) on both sides of the equation that can be factored out, making the final formula: 

𝑋𝑋𝛼𝛼 ∗ 𝑌𝑌𝐴𝐴4𝐷𝐷 > (�ℎ2 + 𝑊𝑊2 − ℎ) 

This final equation means that the weight of the tower will not matter in terms of knocking a tower over with an 
earthquake. Dr. Oppenheim supported this conclusion and did mention that the weight would matter if it we were 
instead talking about a projectile impact. 

To put the math in terms of the principle-relevant metrics of RumbleBlocks consider the abstract example in Figure 
25.  

 

Figure 25. A less regular example tower with a COM Height c, Symmetry Angle s, and Base Width of b. 

Given a Base Width 𝑏𝑏, COM Height 𝑂𝑂, and a Symmetry Angle 𝑠𝑠 the values of 𝑊𝑊 and ℎ in the original formula can 
be derived. Simply ℎ = 𝑂𝑂, while 𝑊𝑊 = 𝑏𝑏

2
− 𝑂𝑂 tan 𝑠𝑠. This results in Energy Required based on PRMS: 

𝐸𝐸𝑟𝑟(𝑃𝑃𝑂𝑂𝐶𝐶𝑠𝑠) = �𝑂𝑂2 + �
𝑏𝑏
2
− 𝑂𝑂 tan 𝑠𝑠�

2

− 𝑂𝑂 
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