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Abstract
No learning happens until students make the choice to engage, regardless of

how well-designed and personalized a lesson. While advanced algorithms have
been developed to personalize and accelerate learning, similar highly quality
models and algorithms aren’t available for intelligent support of student mo-
tivation. The greatest challenge lies in the lack of high-quality measurement
models to support the administration of motivational interventions. Exist-
ing models focus on the observable engagement behaviors of students. These
measures are prone to noise from non-learner-specific influences as opposed to
reflecting the underlying motivational drivers of engagement. This complicates
the task of leveraging these analytics for assessing individual student motiva-
tional needs to support greater engagement.

In this dissertation, I address this gap through the development of a model
to measure student diligence, their capacity to self-regulate and engage with
learning activities. I leverage prior research in psychology and psychomet-
rics to identify behavioral metric candidates. Through secondary analysis of
a year-long longitudinal dataset of log data from students learning with intel-
ligent tutoring systems, I evaluate the viability of these behavioral measures
to estimate student diligence. I further develop these measures by leveraging
theory to account for some cognitive, temporal, and social confounding factors.
My analysis indicates that these behavioral measures, while better indicators
of diligence, are still prone to other sources of noise that make the measures
unreliable.

To address the unique challenges of measurement with observational data,
I explore the viability of diversifying the model inputs by leveraging multi-
ple operationalizations of diligence for estimation. I demonstrate that multi-
operational models possess more desirable psychometric properties than any
individual measure. Furthermore, I developed the Learner Engagement Simu-
lator (LEnS) to generate data that reflects the challenges of estimating moti-
vational constructs due to unobserved influences from the social and environ-
mental context. My analysis of the simulated data reinforces the findings with
real student data that multiple operationalizations of diligence increases the
estimator accuracy.
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Chapter 1

Introduction

1.1 Overview
Learning scientists and technologists continue to push the boundaries on building higher
quality educational solutions, but ultimately, students must still make that choice to en-
gage in order for learning to happen. Learning processes are an intricate dance between
cognition and motivation [4], and effective instruction must adapt to both in order to more
optimally enable learning. Advances in educational data mining and learning analytics
have led to widely adopted models that can effectively trace student cognition and knowl-
edge. However, engagement models focus on the moment-by-moment or overall superficial
engagement of students instead of attempting to differentiate underlying motivations of
students from contextual factors that may be driving engagement.

Assessing student qualities beyond domain skill and knowledge, such as student mo-
tivations, is becoming an increasing priority for practitioners, administrators, and policy-
makers [52]. However, tools for performing this measurement for use in instruction or ad-
ministration are currently inadequate [63]. Past research in this field has used survey-based
measures or specially designed behavioral tasks. The data collected from survey instru-
ments are prone to many biases such as desirability and acquiescence bias, and behavioral
tasks are prone to practice effects. Models derived from log-data generated through the us-
age of educational applications provide an opportunity to collect measurements of student
motivations unobstrusively. Such measurement methods are not prone to the same biases
as self-report and behavioral task measures, so for high stakes settings could complement
such instruments to build a more valid compound measurement model.

Developing behavioral models of motivational constructs that are specific to the learn-
ing experiences of an educational technology product is a non-trivial task. Instead of
attempting to identify and analyze behaviors that are specifically relevant for a particular
construct, I approach this measurement challenge through the lens of engagement. This
approach leverages existing work on learner engagement and engagement analytics to de-
velop measurement models of motivation. I attempt to disambiguate latent motivations
by leveraging details about the contexts where student engagement breaks down.

An overview is shown in Figure 1.1 of the many interacting factors that drive engage-
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Figure 1.1: Model of measurement challenges with observational log data with overview of
corresponding analysis chapters

ment and define the challenges of identifying diligence from measures of engagement. Prior
educational data mining work has focused on the cognitive contexts of learning. Log data
enables observation of the problem-solving process, making visible many cognitive factors
that influence learners’ success and behaviors. However, motivation is not strictly influ-
enced by these cognitive factors. Student’s aren’t immediately able to focus at a moments
notice, and their ability to maintain that focus tends to wane over time. Class time coming
to an end can create pressures on students to perform. Despite the theoretical importance
of these temporal factors in influencing behavior, models of learning do not encode these
factors. Likewise, the social context can have a major influence on students’ motivations.
Educational psychology has focused on understanding the complexities of how individual
student learning is driven by perceptions and expectations of peers, teachers, and family.
Because these other people are not visible to the learning applications, this introduces a
major hurdle in accounting for the role of these factors in driving student engagement.
Furthermore, observational data, such as log data collected during learning with educa-
tional technology, is vulnerable to noise due to random unanticipated confounding factors,
which may be cognitive, temporal, or social in nature.

In this thesis, I develop a measurement model of student diligence, their ability to self-
regulate and focus on learning instead of more enjoyable alternatives. As shown in Figure
1.1, I explore in the next three chapters how to account for cognitive, temporal, and
social factors evident when estimating diligence with log-data based behavioral measures
of engagement. In chapter 3, I operationalize diligence as gaming the system [18], and
I explore how interactions between gaming and challenge levels within the curriculum
moderate the influence of motivation through a correlation analysis with survey measures.
In chapter 4, I perform some feature engineering to encode in the data how long students
have been working. I leverage this information to evaluate whether there is evidence that
temporal effects predicted by self-regulation theory are evident in the log data traces. In
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chapter 5, I develop some new features in the data that encode some facets of the social
context. I explore whether the relative timing of students’ engagement within a class
session might carry information about motivations. In addition to developing diligence
measurement models that factor cognitive, temporal, and social influences, I explore the
use of multiple operationalizations within a measurement model as a approach to reduce
the risk of bias from other unanticipated factors in the model. I evaluate the viability of
this approach with both real student data and simulated data.

1.2 Motivated Decision-making
What goes on in the minds of students as they resist the urge to chat with friends to
instead focus on completing the lesson activity? Why do some students manage to focus
their attention onto the learning task assigned to them while other students give in to
the desire to engage in other pursuits? This ability to self-regulate for academic pursuits,
aside from intelligence, is one of the most reliable predictors of academic achievement [48].
What are the mechanisms that drive students decisions to stay on task?

Models of self-regulation have focused on the role of executive function to focus at-
tention on the target task while also inhibiting desires to focus on other tasks. However,
the relationship between executive function and observations of students’ abilities in the
classroom are very weak. Prior work has shown that the way learner’s represent the task in
their minds influences their effectiveness at inhibiting the undesired task [2]. Additionally,
learners may employ strategies to manipulate their contexts, such as sitting far away from
distractions, to reduce the need to inhibit the undesired task [72]. Therefore, the specifics
of a particular context tend to have a greater effect on a learner’s ability to self-regulate
than the learner’s innate capacity to inhibit and direct attention appropriately.

Motivation is defined as the orienting and invigorating impact on both behavior and
cognition of prospective reward [62]. Students’ motivation to self-regulate is linked to
the nature of the tasks at hand. Value-based decision making research has demonstrated
that this sort of self-regulation process can be represented as a decision between different
possible actions where some subjective, weighted internal valuation of the outcome of each
action informs the choice [76]. In these models, students choose the action that yields the
the most personally valuable outcome. In academic contexts, value-based decision making
models align with expectancy-value theory models that elaborate the specifics of decision
making on learning tasks. In expectancy-value theory, learners apply their own subjective
expectations of an outcome given a particular action and the associated values that might
result from such an outcome [11]. The most common formulation for this relationship
assumes a multiplicative relationship between expectancy and value. Given some universe
of available actions A, for each action, a, there are k possible outcomes. For outcome, i,
the student has some expectancy, ea,i, of achieving the outcome, and a prospective value
for successfully attaining the outcome, va,i. Student’s then choose the action at time t,
denoted at, according to equation 1.1 such that the action maximizes prospective reward
over all possible actions and prospective reward for an action is the expectancy-weighted
average of the value of all the possible outcomes for the action.
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at = argmaxaεA

k∑
i=0

ea,iva,i (1.1)

A students’ expectancy for a particular outcome given an action, their self-efficacy, are
based on a subjective judgement informed by many factors including past experience with
the task as well as domain and topic related confidence. Self-efficacy tends to vary across
domains, topics, and skills [54]. With each experience, students update their expectations
which will influence expectations in the future. Therefore the expectancy for the same
action is expected to evolve over time as a result of these many influences[61].

Students attribute several types and quantities of task value to an outcome. There are
four main task values associated with academic tasks [21]. Intrinsic value describes a value
that students attribute completing the task itself due to the characteristics of the task such
as an interest in the topic discussed in an assignment. Utility Value describes the utilitarian
value gained from completing a task that services some goal such as performing well in
the class or entering a particular career. Attainment value describes the importance of an
outcome with respect to some aspect of an student’s identity, ideals, or sense of competence
[38]. Costs describe values that negatively impact a task valuation. Costs can be attributed
to several factors including effort required for the task, effort put forth for other tasks, loss
of alternative opportunities or value, and emotional costs [64]. For a particular outcome,
student, the total value for the outcome is the generally treated as the sum of all of these
components.

Task value is not considered to be constant. [7] found that children tended to have
decreases in utility value for many academic subjects as well as intrinsic interest in reading
over the course of several years in pre-adolescence. However, intrinsic value in math and
music did not tend to change over that same period. [30] demonstrate the role that goals
play in influencing task value dynamics over time. Achievement Goal theory models the
effect of the types of goals that students hold [42, 10]. In this theory, goals have two
independent attributes represented by a two-dimensional dichotomy. On one axis, goals
can be either mastery or performance oriented. On the other axis, goals can be avoidance or
approach. Performance goals are those that define accomplishment relative to peer-derived
standards while mastery goals are ones that are defined relative to personal standards
and prior ability and knowledge. Approach orientation implies an individual is seeking
attainment of those goals while avoidance orientation describes individuals more concerned
with avoiding failure rather than goal attainment. The goals students hold influence the
types of value they perceive for a task [60]. Performance goals are shown to be associated
with utility value through a focus on task outcomes and subsequent academic performance
[12]. Mastery goals are associated with both intrinsic value and utility value, through a
focus on the task process as opposed to the outcome [34]. Students hold multiple goals
simultaneously with varying degrees of strength [12]. Goals may vary both in type, number,
and priority over time as a consequence of active self-regulation based on task feedback.
Similar to expectancy, the task value associated with an outcome for a particular action
are different as a result of the different contexts in which they are experienced [21].

In this model of motivated decision making, students have their own unique goals,
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expectancies, and task values. These play a role in allowing the student to make a value-
based decision about not only how to engage in a learning task, but also whether to
continue to inhibit other activities to keep focused. During the learning process, students
constantly self-regulate through a process of planning, action, evaluation, and reflection
[41]. While expectancy-value can explain the planning and action phases, SRL research
introduces different processes where students update expectancies, values, and goals based
on an evaluation of the outcome of actions taken. An unsuccessful attempt will tend to
drive down expectancies in the future[56]. Reflection on the completed task after updating
expectancies may lead to realizations that a different action may be more appropriate in
the future [8]. For instance, students may realize that help-seeking may be more valuable
in situations of great difficulty. Similarly, students may realize that spending the time to
attempt the difficult problem was not as rewarding as more leisurely and attainable activ-
ities such as watching entertaining videos. Some learners may reflect on this alternative
outcome as being less rewarding for certain goals such as the desire to make an impres-
sion of diligence on the teacher. Making choices in the face of different short term versus
long-term rewards is the role of self-regulation. In situations where learners identify this
tension, they may re-prioritize their goals or define new goals so that choices may be more
aligned with long-term over short-term rewards.

Academic Diligence is defined as working assiduously on academic tasks which are ben-
eficial in the long-run but tedious in the moment, especially in comparison to more enjoy-
able, less effortful diversions [55]. The construct is an operationalization of self-regulation
for the academic domain, and attempts to capture a trait-like capacity of individuals to
self-regulate in academic settings. Measures of diligence have been shown to be align with
conscientiousness, a personality trait linked to hard-work and perseverence, and is pre-
dictive of long-term academic outcomes. Though motivated decision-making is a process
that is influenced by a set of motivation constructs that are potentially dynamic over time,
evidence from personality-psychology indicates that behavior tends to be stable over time.
Though the dynamics of how the hierarchy of constructs tends to shift over time to produce
stable trends in behavior, current evidence supports the viability of this trait-like construct
for predicting future behavior.

1.3 Measurement Models of Motivation
A significant body of prior work has focused on assessing moment-by-moment motivation
through detectors of affect [33] and engagement [77, 66]. However, work analyzing the
link between fine-grained behavioral measures and motivational goals and dispositions is
much more limited. [40] created a rational model of student affect that leveraged a range
of individual attributes including Big 5 personality measures and achievement goals. This
work established the value of students’ achievement goals on predicting moment by moment
motivations as inferred by affect.

Several researchers attempted to identify task specific behaviors that rationally should
be linked to achievement goals. [51] attempted to relate help-seeking behaviors while using
an ITS to achievement goals. Researchers expected mastery-oriented students to be more
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likely to use a glossary or index resource, while performance-oriented students might tend
to ask for hints from the tutor instead. No significant relationship between self-reported
achievement goals and help-seeking behaviors was found. However, task achievement goals
as predicted by choice of help resources did relate to learning outcomes as would be pre-
dicted by achievement goal theory.

[59] expanded on this work and attempted to relate task choice, where descriptions of
each task were closely linked to corresponding achievement goals, to self-reported achieve-
ment goals and learning outcomes. In this work, task achievement goals as inferred by
task choice predicted learning outcomes for the lesson but did not align with self-reported
achievement goals. However, self-reported achievement goals were more predictive of course
outcomes. Researchers speculated that self-reported goals might reflect an average ten-
dency to be motivated by particular goals over a range of tasks within the domain and
thus explaining alignment with more aggregated measures such as course outcomes.

Gaming the system, a pattern of behavior where students abuse the design of the learn-
ing environment to answer a particular question, is a well-documented behavior that has
been linked to poor learning outcomes [19]. In [29], the authors test the relationship be-
tween a range of student motivations and gaming the system behaviors across two different
ITS’s. The study results supported a link between gaming behaviors and some motivational
measures but not others. One of the strongest results indicated that student’s attitudes
and interest towards the domain was related to observed gaming frequency. There was
also strong support for a link between experiences of frustration and gaming as well as a
lack of drive to motivate themselves on tasks in general as well as in the face of challenge.
The results demonstrated mixed or weak support for a relationship with growth mindset
and perceptions of the helpfulness of the ITS help resources. Interestingly, the researchers
failed to identify a relationship between observed gaming and performance goals, though
the performance goal measures were not drawn from validated achievement goal instru-
ments. Furthermore, this study used strictly observed gaming frequencies. Subsequent
work has identified the joint role of contextual and student factors in explaining gaming
behaviors [39, 78].

Though not a model based on naturally observable behavior, [55] developed and val-
idated a math-based digital behavioral task for measuring academic diligence. The task
measured diligence by monitoring how long students engage in a tedious but beneficial math
task versus a more immediately rewarding alternative, playing video games and watching
videos. They are told ”try to solve as many problems as quickly and accurately as you can”
and ”you are doing this activity because it can make you smarter” to create the expectation
that they should do the math task and that it is good for them. More specifically, students
are asked to solve single-digit subtraction problems for 4 five-minute windows. The com-
puter interface is split between a math problem interface and video-watching/game-playing
interface. During this task, two measures are collected, the total time spent solving math
problems and the total problems solved. These measures were linked to conscientiousness,
a personality traits associated with perseverance and working hard, and were predictive
of many long-term academic outcomes. This simple task demonstrated the viability of
developing a diligence measure based on the engagement choices that students make while
learning, though challenges remain in overcoming the complexities of observational data.
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1.4 Methodological Challenges
Past research in educational psychology has relied on survey-based measures to measure
the expectancies, goals, and task values that learners have. These measures have been
collected at different granularities including at the domain, topic, activity type, and task
level. Unlike survey measures which are more portable across learning environments, oper-
ationalizing how these constructs manifest in fine-grained behavior for some specific learn-
ing environment is both necessary and non-trivial. There have been two main approaches
to defining behaviors that might be indicative of motivational constructs, theory-driven
and empirically-driven. Theory-driven approaches build on past research that describes
the many factors that might interact with a target construct in influencing learner be-
havior. Model developers then have to consider the specifics of a target application and
the target population to identify how factors from theory map to the learning context
and predict behaviors within the universe of possible behaviors available to the learner.
Empirically-driven approaches leverage ground truth labels collected using survey-based or
observation-based methods in combination with digitally observable traces of the learner
such as log data. Labels are then used with machine learning algorithms to define models
of fine-grained behavior associated with the measured construct.

One common empirically-driven method for collecting labels for is the BROMP method
[67]. In this method, coders observe every learner in a classroom for a brief time and record
codes for the student’s state. These codes are used as labels for supervised machine learning
algorithms to develop fine-grained behavioral models from learner log data. This method
has been used to build models for disengaged behavior [19], gaming the system behavior
[19, 58], and affect [43]. There has been some work that has demonstrated that models
trained over some content might generalize to other content within the same software [69].
Additionally, these models are as accessible to develop as the process for collecting the
ground truth observation data. However, the data collection method is difficult to scale,
and so may be biased by the particular sample of learners used to train the model. Research
has shown that there are differences in the prevalence of different patterns of gaming the
system behavior across the urban/suburban/rural divide [78]. Despite the great degree to
which gaming-the-system models have been studied, development teams of new products
cannot leverage these other models. Instead, teams must go through the effort of applying
the BROMP method to collect data labels themselves, a significantly less accessible process
for incorporating such models into a product.

Researchers have also used experience sampling to collect self-report labels for devel-
oping models. [73] demonstrated the viability of this method for developing automated
detectors of mind-wandering by probing users pseudo-randomly during a learning activity
to reflect on whether they had mind-wandered. This method is significantly more acces-
sible than the BROMP method as it can be performed through the application the user
is already using, and so it will readily scale. As a self-report measure, the data labels are
prone to many of the issues common with self-report measurement [9]. In assessment set-
tings where students know their responses might be used to support teacher monitoring of
behavior, student responses are prone to social-desirability bias [63], providing responses
that match the socially desirable state of diligent work as opposed to reporting mind-
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wandering. For measurements of constructs such as intrinsic value, student responses may
reflect reference bias [13], where students may have different standards for what degree of
interest in math is associated with a three out of five.

Another method uses human coders to develop computational models through a more
labor intensive qualitative analysis process. [23] demonstrate this method on cognitive
tutor data, and [49] demonstrate this method in an open-ended learning environment for
learning scientific inquiry. In this class of methods, a subset of log data is selected for
qualitative analysis. Trained human coders apply qualitative coding methods to review
short sequences of logs for individuals and apply labels to the data according to their
coding dictionary. This class of methods shares many characteristics with the BROMP
method except this method is less prone to sampling bias because label data can be created
for any population that the application currently serves. However, the method relies on a
human coder’s ability to operationalize and interpret constructs in the coding dictionary
in terms of the limited log data available. The significantly smaller degree of information
available to human coders to make judgements raises some questions about accuracy. [28]
demonstrated that for gaming the system behaviors, expert coders were able to label data
with good reliability, but the degree to which these results apply to other motivational
constructs or over data collected from different applications is still an open question.

Another bottom-up method requires collecting labels at significantly lower resolution
than in BROMP or experience sampling methods. [50] demonstrated a method for identi-
fying patterns of behavior associated with effective self-regulated learning processes while
using an open-ended science learning environment. In this work, they leverage achievement
data at the level of learners as a supervision signal to be used in conjunction with a se-
quence mining algorithm to identify patterns of behavior that differentiate low achievement
learners from high achievement learners. Given the very rich space of possible behaviors
and strategies available to students in the open-ended learning environment, these methods
demonstrated a capacity to automatically identify learner behaviors from fine-grained log
data associated with a desired training signal collected at the learner level. For trait-like
constructs such as good/poor self-regulation ability, where the construct can be assumed
to be constant over the data collected, this method can work quite well. However, these
measures are much more sensitive to overfitting and are prone to biases from unobserved
confounds such as cultural differences in how students tend to work [78, 68] or classroom
specific technology usage patterns [65, 46].

As opposed to these bottom-up approaches, which allow models to be defined from the
data, top-down methods primarily depend on theory to define models. [22] demonstrate an
a-priori thresholding process for operationalizing SRL theory into a measurement model on
fine-grained data. The authors applied SRL theory in a cognitive task analysis to develop a
model consisting of a set of if-then-else rules representing a decision tree model for solving
problems with help-seeking. By leveraging theory from prior research, the model benefits
from the greater likelihood of a more generalizable model. In order to apply this model
to the data, the model operationalized concepts such as “Familiar at all?” and “Sense
of what to do?” using a set of calculated values in the data and thresholds that are set
to values that the authors describe as “intuitively plausible, given our past experience”.
This a-priori heuristic is difficult to reproduce and requires an intuitive sense of how users
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interact with the system. Alternatively, the values might be set using the data itself, but
then the model may face similar threats of overfitting if generalized to new environments
or content.

Another example of the top-down approach is demonstrated by [32], where they ex-
tended a model of off-task behavior [18] to a narrative-centered learning environment. This
open-ended environment involved actions such as navigating a character around a virtual
world, interacting with objects, and talking with non-player characters. In lieu of a usable
measurement model, the authors developed an alternate operationalization of off-task be-
havior that required insight into the pedagogical value of possible interactions in the game.
[32] were motivated to develop an off-task behavior measurement model informed by the
findings of [18], indicating that student learning is negatively impacted by such behaviors.
Despite appearing to match the [18] construct on its face, validation of the model indi-
cated that the model developed by [32] was not measuring the same construct. There was
no significant relationship between learning and observed frequency of the behavior, and
no correlation was found with survey based motivational measures either. The authors
mention in the discussion that the operational definition captured a broad behavior that
in different observable contexts, an observer might draw not label the behavior as being
off-task. This example of operationalizing a model demonstrates some of the main chal-
lenges in translating existing theory and models to new contexts and applications. There
is ultimately some degree of interpretation that must be performed by the model developer
in translating a model to a new learning environment. This requires both defining the
behaviors and the contexts that affect the interpretation of the behavior. These problems
are evident in the broader problems of a lack of generalizability of models in the space
of motivation-related learning analytics research [84] and highlights an opportunity for
greater support.

Top-down approaches trade the benefits of more generalizable models for more labor
costs from learning science experts. Alternatively, bottom-up approaches are able to more
automatically discover behavioral models, but such models are subject to validity threats
due to the methodology that training labels are collected, and over-fitting to latent char-
acteristics of the sample population. There is an opportunity to explore the middle ground
between these two types of approaches with multi-operational models. Multi-operational
models can leverage the benefits of top-down models by leveraging theory to inform mul-
tiple operationalizations of a construct, while pairing with bottom-up approaches to train
system-specific fine-grained behavior models.
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Chapter 2

The Dataset

The work in this dissertation primarily uses a dataset drawn from Datashop [35] that was
collected as part of a year-long study [47] in a suburban middle school in a mid-atlantic
state. The students used the Carnegie Learning Cognitive Tutor software (CogTutor).
A screenshot of a student using the algebra 1 version of the software is shown in figure
2.1. The CogTutor software provides adaptive instruction based on a fine-grained skill
representation of the domain. The application divides problems into steps that must be
answered individually and each map to independent skills in the domain model. Student
practice problems are selected according to whether they have demonstrated mastery of
necessary skills. The instruction is also scaffolded, allowing students to request multiple
levels of hints at every step of the problem, providing on-demand problem scaffolding
that provides increasingly informative support to the students. The data logs generated
by the software are transformed into the standard learning data format specified by [35]
before being utilized in this analysis. This format specifies how long students spend on
every interaction, whether the action was correct, incorrect, or a hint, and what skill is
associated with a specific problem step. Each interaction is represented as a single student
transaction in the dataset, which includes over 4M such transactions across all students
observed.

The dataset includes recorded learning transactions of students using the tutor ap-
proximately two class-periods per week for a full school year. The dataset also includes
demographic, achievement, and motivational survey measures. The demographic informa-
tion collected includes gender, ethnicity, free-or-reduced lunch status, and special educa-
tion status. Achievement data includes end-of-year grades from the prior academic year
as well as the grade for each academic quarter and a cumulative end-or-year grade for
the year transaction data was collected. Survey measures were collected at the beginning
and the end of the course to measure students’ motivational goals and dispositions. Each
scale utilized was drawn from well-validated instruments. Survey measures include scales
for interest in math [37], self-efficacy [24], effort regulation [3], growth mindset [86] and
achievement goals [10]. Responses for each scale were summed to represent students’ mo-
tivation along each dimension. The specific questions and their respective response scales
are referenced in appendix C.
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Figure 2.1: Screenshot of Algebra 1 CogTutor demonstrating the multi-step student input
interface design that enables fine-grained problem-solving process tracing

The dataset includes a total of 426 students, but not all students have complete or
valid data that is usable for analysis. An overview of the different subsets of the sample
that had complete or partial data are shown in top row of table 2.1. Student courses are
identified by relating the unit names of the problems solved to a dictionary of expected
unit names associated with each course curriculum. There are 426 students in the total
dataset where each student in that dataset with data from at least one category of data,
transaction, demographic, achievement, or survey data. There were also 155 students
that had no accompanying demographic or external achievement information (”Only TX”
column). 107 of these 155 students belong to classes where there is at least one student
with demographic or achievement information, so the transactions for these students are
included for some of the subsequent analyses in this document. Details are elaborated in
the corresponding chapters. Transactions for the other 48 students (”Unknown Classes”
row), are excluded from all analyses. Of the remaining 271 students, 45 of these students
(”Incomplete” column) were found to have missing or invalid data for some achievement or
motivational survey measures. The subsequent analyses conducted in this document are
performed using this set of 226 students.

One important characteristic with this dataset is that while there are 426 students in
the dataset, many of these students are missing some form of transaction, demographic,
achievement, or survey responses. The missing data is not random across the dataset. The
students are spread across three courses, Pre-algebra, Algebra 1, and Geometry. Most of
the missing data is from students in Algebra 1 courses, with 127 out of 147 students having
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Table 2.1: Data exclusions impacting sample size by course
All Only TX Incomplete Complete

Total 426 155 45 226
Pre-Algebra Classes 127 2 17 108
Algebra 1 Classes 147 104 23 20
Geometry Classes 104 1 5 98
Unknown Classes 48 48 0 0

missing achievement data. While Pre-algebra and Geometry classes are between 9 to 25
students in size with a mean close to 16, these classes only have between 1-3 students being
excluded due to missing data. Algebra 1 classes are similarly between 7 and 23 students in
size with an average of 16. However, the vast majority of students are lacking achievement
information where each class has between 1 to 4 students with complete data for analysis.
It is unclear why data collection was poor for Algebra 1 classes, however, the students
with complete data are included for most analyses unless otherwise stated in the study
methodology.

From the full set of demographic information collected, a set of 271 students, the
population includes 125 Pre-algebra students, 103 Geometry students, and 43 Algebra 1
students. The students are 48% male and 52% female. The population is from a suburban
school in the mid-western United States where the students are predominantly white with
only 2% of the population identifying as non-white. 23% of students receive free-or-reduced
lunch, and 14% of students are identified with special education needs. These exact de-
mographics vary slightly from the specific sample with complete data used in subsequent
analyses, but exact breakdowns of the distributions are included in appendix A.
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Chapter 3

Cognitive Factors

3.1 Overview
The contexts when students demonstrate failures to self-regulate their learning behaviors
can be informative of their motivational goals [15], their perceived value of the activity [21],
and their beliefs about their self-efficacy [17]. When aggregating behaviors such as time-
on-task as in the academic diligence task, it becomes difficult to account for the contextual
factors that may be influencing measures of student diligence. Unlike in the behavioral
task where there are tight controls on the context that students complete the task, in
observational settings these contextual factors they may be quite variable over the time
the data is collected. Operationalizing diligence in a more fine-grained manner can enable
better insight into the influence of contextual factors on student decisions. The study in
this chapter explores the feasibility of leveraging observations of students’ self-regulation
as measured by gaming the system behaviors to measure student diligence. Furthermore,
it seeks to answer two main research questions.

Research Question #1: How does the relationship between gaming and measures of moti-
vation differ when gaming estimates are derived from either raw observations of gaming or
using random effects models that account for both student-level and contextual variation.

Research Question #2: How does student performance on educational content with varying
degrees of gaming frequency relate to their different motivational goals and dispositions?

3.1.1 Gaming the System Behavior
Gaming behaviors are defined using the heuristic model introduced by [58] as this model
appeared to produce better kappa on unseen data from across multiple systems including
the CogTutor. Using this model, individual transactions were labeled according to a tax-
onomy that captures a range of relevant behaviors such as thinking before a hint request,
spending time reading hint requests, and variations of guessing behaviors. Transactions are
labeled as gaming if they are a member of a set of subsequent transactions that matches
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one of the thirteen expert identified heuristic patterns [58]. The patterns encode two pri-
mary types of gaming: guessing and hint abuse. Guessing patterns include placing the
same answer incorrectly into multiple available answer slots and answering the same ques-
tion rapidly with very small changes in the answer across attempts. Hint abuse patterns
include not stopping to think about multiple subsequent errors before requesting help and
rapidly requesting hints to seek a bottom-out hint, which in the CogTutor environment
is simply the answer to the problem step given as the second or third hint. Transactions
are rolled-up into student steps, where each student step encapsulates metadata about all
the transactions associated with a problem step until a correct answer is reached. Each
student step is labeled as gamed if any transaction associated with the step was also la-
belled gamed. The resulting student step data was utilized to calculate student and content
gaming frequencies. Details of the implementation of the detector model are included in
appendix B.

3.2 The Dataset
The analysis in this chapter uses the dataset described in chapter 2. This analysis utilizes
a subset of the full dataset, including the 206 students from the pre-algebra and geometry
courses with complete and valid observed tutor transactions, demographic information,
achievement data, and motivational survey responses. Algebra 1 students were excluded
from this analysis because there were inadequate students to gauge differences in content-
level difficulty. The dataset included 3.5% gamed student steps. These numbers align
reasonably well with gaming frequencies observed in prior work on CogTutor data. [19]
found students gaming the system about 3% of the time based on in-classroom human
observations. [58] found a slightly higher overall gaming frequency of 6.8% in their dataset
utilizing the same detection model as used here. However, this deviation is not so different
that it is due to significant unobserved differences in the populations.

The CogTutor content is organized hierarchically into multiple units. Each unit consists
of several sections that themselves have multiple skills to be learned. Each section has
problems that are divided into highly granular steps which each are associated with at
least one skill. I grouped observations at the section level to capture differences across the
curriculum with sufficient resolution while having sufficient observations across students
to make reasonable estimates of gaming frequency. The data included 237 sections with a
mean gaming frequency of 1.95% and a standard deviation of 1.7%. A number of sections
were found to have no observed gamed steps, while the highest observed frequency was one
section with 32% gamed steps.

Additionally, some curricular sections were excluded due to having low observations in
the data. Transactions from 41 sections are excluded from the dataset because they were
observed with less than 6 students completing any work in the section. These sections
are excluded because such sections might be measurements of only the fastest working or
highest achieving students, thus introducing a bias to observations of gaming within those
sections. Furthermore, the data is divided into two subsets, hard sections and non-hard
sections. Hard sections are defined based on how often students are observed gaming on
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problems in that section. An 80% quantile threshold of 3.23% observed gaming frequency
for each section separates the hard and non-hard sections. There were 156 non-hard sections
and 40 hard sections. Additional descriptive statistics of observed gaming in each subset
of the data can be reviewed in appendix A.5

Unlike in prior work, [19], no students were found to have never gamed throughout
the year. The average student was observed gaming 3.66% of the time with a standard
deviation of 1.16%. The minimum observed gaming frequency for students was 1.98% while
the maximum observed was 11.95%.

3.3 Methods
In this study, four estimates of student gaming are generated and compare to each motiva-
tional measure using partial correlations controlling for gender, ethnicity, and free/reduced
lunch status.

θObservedGaming =
xNumGamed

NTotalSteps

(3.1)

P (Gamed) ∼ (1|Student) + (1|Section) (3.2)

θGaming = eθstudent (3.3)

To investigate RQ1, student gaming tendency is calculated using only raw observations
for each student as shown in Eq 3.1. Gaming tendency is estimated by fitting a model
to predict gaming on each problem-step using a random effects model with a random
effect for student and tutor-section as shown in Eq 3.2. The model is fit over all observed
student steps and the student gaming tendency is found by calculating the exponential of
the fitted random intercept, θstudent, for each student as shown in Eq 3.3. To investigate
RQ2, I analyzed estimated student gaming on the hard and non-hard section data subsets.
Again, the random effects model in Eq 3.2 was used for each data subset to estimate
student gaming.

For RQ1, I expect student gaming estimates from the random effects model to better
correlate with motivation relative to observed gaming because the model takes into account
variance in gaming due to sections, which may not be observed for all students, as well as
accounting for statistical noise due to sampling of a rare event.

For RQ2, I investigate the hypothesis informed by design principles of psychomet-
ric behavioral tasks. Measuring a targeted construct requires straining the resource and
identifying a metric upon which to differentiate subject performance. Therefore, I expect
estimates of student gaming using only highly gamed sections will have a more significant
relationship with motivational variables compared to data without highly gamed sections.
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3.4 Results
The results of the partial correlation analysis are shown in Tables 3.1 and 3.2. The first
row of both tables present evidence contrary to the results from [3]. Prior research found
correlations with math interest, effort regulation, and growth mindset using only averages
of observed gaming. However, in this dataset, only interest in the subject is related to
gaming behaviors, and no other motivational measure has a significant correlation with
student’s gaming frequency.

On the other hand, the second row reflects correlations with student gaming estimated
using a random effects model fitted with all of the data. In general, more motivational
measures are correlated with these gaming estimates than those derived from the raw
observations, which supports the hypothesis for RQ1. Comparing these results to [3],
there are no direct measures of frustration, however it is possible that self-efficacy mediates
whether student’s experience of frustration explaining the correlation. Growth mindset is
found to be marginally significant, which further bolsters the previous mixed evidence for
a link between mindsets and average student gaming.

There are two cells where these correlations do not seem to agree with prior research.
Effort regulation is expected to be correlated both as a matter of face validity as well as
because prior research found a relationship between gaming and students’ drive to persevere
on academic work.

Table 3.1: Correlations between Gaming and Motivation Measures
Data Subset Math Interest Self Efficacy Effort Reg. Growth Mindset
Observed -0.22** -0.10 -0.11 0.00

All -0.17* -0.16* -0.11 -0.14(.)
High Gaming -0.19* -0.14(.) -0.10 -0.11
Low Gaming -0.16* -0.19* -0.16* -0.14*

(.) - p < 0.10, * - p < 0.05 , ** - p<0.01, *** - p<0.001

Table 3.2: Correlations between Gaming and Achievement Goals
Data Subset Mastery Approach Performance Approach Performance Avoidance
Observed -0.03 -0.01 -0.05

All -0.20** -0.10 -0.15*
High Gaming -0.14(.) -0.08 -0.11
Low Gaming -0.25*** -0.14(.) -0.21**

(.) - p < 0.10, * - p < 0.05 , ** - p<0.01, *** - p<0.001

The link between achievement goals and gaming are mixed. In [29], the authors as-
sessed performance goals using questions such as, “If you had your choice, what kind of
extra-credit projects would you most likely do”. It is unclear how this question maps
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to achievement goals, however, performance approach goals are not significant as might
be extrapolated from prior work. On the contrary, mastery approach and performance
avoidance goals are correlated with gaming. This relationship is rationally derived from
the theory on self-regulation and motivation, but not predicted by specific prior work.
Overall, the random effects model yielded a significant relationship to more motivational
constructs than gaming estimates from raw observations.

The results from estimating gaming using only highly gamed sections, the third row of
each table, are contrary to what is expected. Many of the correlations that appear when
using all of the data, are weakened or not significant when using only the hardest questions.
While the loss of significance with some constructs could be an artifact of random sampling
from the full dataset, this does not explain the results seen in the bottom row. When
estimating gaming using only non-highly gamed sections, correlations arise with every
available motivational construct as seen in the fourth row. This is an unlikely consequence
of sampling from the population and supports the idea that student gaming performance
on highly gamed questions is introducing additional noise to the available signal in the
rest of the data. Thus, the evidence points towards student gaming behaviors in the non-
highly gamed sections as being more informative of student motivations than behaviors in
the highly-gamed sections where self-regulation is under greater strain.

3.5 Discussion
In this study, I demonstrate that leveraging random effects models to cope with statistical
noise in observations of student’s tendency to game on any given section better estimates
student’s gaming as related to their motivational goals and dispositions. Additionally, I
provide initial evidence towards a measurement model of student’s motivational goals and
dispositions by leveraging observations of gaming. Results indicate that student gaming
tendencies can be used to estimate diligence by accounting for the cognitive factors that
may vary with the type and difficulty of problems that are encountered during practice.

Several correlations with gaming estimates appear contrary to prior research and merit
further analysis. The significant correlation with both mastery approach and performance
avoidance disagrees with the results found by [29]. This disagreement could be due to the
independence of achievement goals from each other, where gaming may be driven by an
aggregate motivation of all achievement goals. More analysis is necessary to bridge this
seeming contradiction and understand how patterns of gaming across problems of varying
difficulty and prior experience might support an interpretation of gaming as indicative of
different achievement goal profiles.

Gaming frequency was leveraged as a proxy measure for a range of unencoded difficulty
factors. While this includes factors such as poor classroom instruction or a poorly designed
cognitive model, it also encapsulates difficulty of individual problem-steps. A natural next
step would be to investigate how more detailed student skill models might improve esti-
mates of perceived difficulty and corresponding enrich model understanding of the nuances
of why students are gaming and how this relates to different motivational goals.

Prior work has also shown that on longer time-scales, motivational goals are not neces-
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sarily stable [53]. In this study, I looked for relationships between pre-course motivations
and in-course gaming behaviors. For students with fluctuations in achievement goals or
self-efficacy, the contexts in which such students tend to game or disengage from the les-
son in other manners might similarly change. Further analysis is necessary to investigate
whether variations in gaming over time are similarly reflective of variations in motivational
goals and dispositions over time.

Furthermore, the study included a fairly large body of students, but the observations
were still limited to a single school in a particular region of the country with limited ethnic
and socio-economic status diversity represented in the sample. Such factors are known to
be correlated with variations in the types and frequencies of gaming behaviors observed in
the population [78]. As such, I exercise caution in extrapolating these relationships beyond
this demographic group without further validation.

Nonetheless, the results presented in this work lay the groundwork for further inves-
tigation into measurement models of motivational goals and dispositions that leverage an
understanding of the contexts that strain students’ self-regulation. Such unobtrusive mea-
surement models hold the keys to a future where schools can better utilize instructional
time that is currently occupied by standardized test and test-specific preparation while
still receiving the student, and class-level performance measures necessary to support con-
tinuous improvement.
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Chapter 4

Temporal Factors

4.1 Overview
Many teachers can relate to the struggle of keeping an entire class engaged as the end
of the day approaches. Some students may be listening raptly while other have started
packing their belongings. Many teachers use class management techniques, such as specific
activities in the beginning of class, in anticipation of the difficulties in ramping up the
engagement of the entire class [16]. Student motivation appears to vary systematically
over the course of a class period. Many good teachers adapt to this reality. It seems
appropriate that intelligent tutoring systems should as well.

Student procrastination, the failure to engage in a task in a timely fashion, has a well-
established link to student motivations [27]. The nature of the tasks that students have
difficulty engaging can be revealing about their individual goals [15], their perceptions of
the value of the task [21], and their beliefs about their abilities to complete the task [17].
Similarly, the context of what drives students to quit can be equally telling about the same
facets of student motivation [20].

Measures of quitting and procrastination leverage the easily observable dichotomy of
student engagement, but are there other within-task student behaviors that might similarly
indicate motivation? Quitting and procrastination are evidence of students’ failure to
exercise their self-regulation. In these moments, students are failing to direct their attention
towards a less desirable but beneficial learning task, and instead opting to engage in more
desirable non-learning tasks. Applying this self-regulation lens, it may be possible to
understand student motivation by identifying and analyzing other observable moments
during student work where students engage in less desirable behaviors for learning.

For instance, solving an extra credit problem on the homework may likely push the
student’s grade from a ”B” to an ”A” for the year. However, the problem will likely take
an hour to solve and the student may have to skip soccer practice to find time to complete
the problem. Observing the student’s choices and behaviors in these critical moments of
self-regulation can reveal student’s underlying motivation. Prior models of self-regulated
learning behavior have focused on the cognitive facets of a given task: its difficulty level
[80, 81], its domain topic [57], its time cost [64], and its expected value to the student
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[11]. However, research on self-regulation point to temporal factors that influence decision
making.

Task switching research indicates that the exercise of self-regulation imposes a cognitive
cost. Once an individual chooses to engage in a task, they do not always appear to
be applying themselves with full effort [36]. Additionally, when a person is forced to
change tasks rapidly, they are not able to perform at the same level as those given more
consolidated spans of time to perform on the same task [14]. These studies imply that
students are likely to perform at a reduced capacity when initially beginning work to
perform on a task upon initially beginning work,

Ego-depletion models of self-regulation posit that the ability to regulate attention over
time may tend to deplete as some time-driven function of an internal and limited resource
[26]. Thus, motivation may also tend to wane over time leading to an eventual failure to
self-regulate.

This chapter explores whether these temporal properties of self-regulation are evident
in student behaviors through patterns in observations of their failures to self-regulate.

4.2 Related Works
Measuring self-regulation related constructs is not a new concept in the intelligent tutoring
system literature. Prior work has developed a range of models for detecting self-regulation
related behaviors.

4.2.1 Off-task Detection
Some of the earliest work in this space identified off-task student behaviors by identifying
large gaps of time between interactions in the log data of student interactions [19]. In-
ferences on student skill improvement, in addition to whether the students asked for help
or attempted a problem correctly/incorrectly following a long gap between interactions
determined whether students were off-task while idle.

[75] developed models of mind-wandering, when students’ attention and thoughts move
off-task, which enabled detection of off-task behavior over much shorter time spans. These
models leveraged information from videos and human labels of short time segments to train
a supervised model to classify when mind wandering occurs. The features fed into the model
included a range of low-level image processing features, facial features, inferred emotions,
and temporal features that describe the dynamics of facial features and emotions during a
short time interval. [79] extended this work given user self-reports of mind-wandering and
included body position information.

4.2.2 Persistence and Quitting
[80] developed a model of student persistence by analyzing patterns of behavior that in-
cluded observed student actions contingent on properties of the problems being worked
and the student’s skill on those problems. In this work, two types of students emerged,
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where the authors posited that trait level differences in students’ capacity for sustained
attention lead to differences in learning strategies and persistence during problem solving.

[70] designed a game-based measure of trait level persistence and validated the measure
against other existing survey and standard psychometric behavioral tasks. The measure
looked at average time on unsolved versus solved problems given a wide range of difficulty
levels.

In [81], the authors built models of quitting an educational game. They leverage many
features including features of each level of the game, the current state of game progress
of the student, and the time in the current level. The final model that emerged from the
supervised machine learning process were focused around actions of the student and the
state of progress and counts of actions at each level across and within attempts at the level,
thus not including any of the limited temporal features given at model training time.

[57] attempted to predict when students would quit reading a given passage. In this
work, the authors used semantic features of the reading passages, the recent context of
what passage is being read, which passages have been read recently, and both current page
and total reading time. Total reading time, a similar proxy to ego-depletion, was found to
be a significant contributor to models of quitting with respect to the first page of a passage.
The authors also implicitly investigated the role of task switching by predicting quitting at
the beginning of a new passage compared to some other new page within a passage. While
some of the data supports a differential impact of task switching and quitting, the authors
do not explicitly explore how quitting behaviors vary over time.

4.2.3 Gaming the System
With intelligent tutoring systems that provide scaffolding supports through progressively
informative hints and feedback, another behavior tends to arise called “gaming the system”
[18]. These behaviors have been identified using information about a series of recent actions
such as time spent or the number of recent hint requests and errors, and the characteristics
of the problems worked, such as problem section and difficulty in those interactions [78].
Extensive work has attempted to determine what drives gaming behaviors. While some
initial work determined that problem context better explained gaming behaviors over trait-
like individual propensities to game [25], later work presented the opposite result using a
different intelligent tutoring system [39]. A large multi-environment analysis was conducted
that compared the types of gaming behaviors observed across urban, suburban, and rural
contexts using three different intelligent tutoring systems [69]. The study found that across
tutoring environments, students displayed different predominant gaming behaviors, which
implies that the lure of certain types of gaming may be different given tutoring environ-
ment or problem-type affordances. Similarly, within tutoring environments, students from
areas of different population density (eg: rural versus urban) display different predominant
patterns of gaming. These differences point to how variation in work environment may
have differential anticipated costs to gaming, while the variation within environment but
across geographic regions point to possible cultural and thus motivational differences.
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4.2.4 Research Question
Prior work has developed extensive models of self-regulation behaviors that demonstrate
the importance of cognitive, contextual factors, and local temporal factors for influencing
student’s self-regulation decisions. However, these models have not investigated how self-
regulation behaviors might vary systematically over time and how such trends relate to
student learning. In this chapter, I am looking to investigate whether the within-session
temporal properties of self-regulation are evident in student behaviors and whether these
temporal trends are predictive of similar negative impacts on student learning.

Models of the cognitive cost of task switching imply that self-regulation related behav-
iors such as gaming the system are more likely to occur in the beginning of a work session.
Similarly models ego-depletion imply that self-regulation related behaviors such as gaming
are more likely to occur after students have been working for some time. I propose to in-
vestigate whether models of task-switching and ego-depletion are evident in some changes
over time of the probability of gaming the system, a behavioral instance of self-regulation. I
then investigate whether lower cognitive engagement as predicted by task-switching theory
co-occurs with gaming the system. I follow this with an analysis to determine if failures in
self-regulation during critical time periods are indicative of session-level motivation.

4.3 Methods

4.3.1 Dataset
The analysis in this chapter uses the full set of 226 students from the dataset described in
chapter 2. In order to see temporal patterns, data was excluded from short sessions with
length in the bottom 5% of all student session lengths, which was determined to be about
5 minutes. This excludes data from 494 sessions. The resulting observed student sessions
ranged from 5 minutes to 58 minutes, with a median length of 32 minutes.

To measuring gaming the system behaviors, the same gaming model applied in chapter
3 is applied here. Details of how the gaming model is implemented can be review in
appendix B. Overall the dataset consists of 3.5% of steps as being labeled as gaming
behavior, where the majority of students are labeled as gaming between 3.1 to 4.5% of all
observed steps with a minimum of 2.0% and a maximum of 13.4%.

4.3.2 Aligning Session time
In this chapter, sessions are defined as the working session of a student starting when they
are first observed working to the time they stop working. Sessions are encoded in the
original transaction data with a unique session identifier(session ID), so temporal patterns
are inferred by batching student transactions by session ID and re-orienting time-stamps
relative to the start of the session. The start of the session is defined as the time of
the earliest transaction sharing a particular session ID minus the duration of the first
transaction. The end of the session is the time of the last transaction sharing the same
session ID.
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One difficulty in measuring ego-depletion with observational data is in controlling for
differences in the depleting effects of context. In ego-depletion studies, the task is controlled
for and thus can be ruled out to explain observed differences in behavior. In intelligent
tutoring contexts. The adaptive instruction will provide variably challenging and types
of content and may differentially deplete students across the experiences within the same
period of time. To overcome this issue, we leverage the insight that when two students
begin working, they might be in similar states relative to their internal thresholds for self-
regulation. We also assume that when two students stop working, they are in comparable
states. If these two students stop working at different times, it implies similar start and
finish attention states, but different depleting effects of context that were experienced over
time. In order to account for these differences in uncontrolled contextual factors, we created
an additional time measure that aligned individual student transactions within sessions by
the percentage of the session time that has elapsed. This alignment facilitates comparison
of transactions relative to the start and end of a session, scaled to the session length.

4.3.3 Modeling The Effect of Time
Theories of self-regulation imply different models of the effect of time on self-regulation.
Attentional shift models posit a cognitive cost of task switching. These costs may cause
some tasks to seem more difficult near the beginning of a session. Ego-depletion models
imply a reduction of a limited capacity to self-regulation resource over time. These models
suggest students may eventually find it difficult to continue in a task and signs of fatigue,
such as gaming, may be revealed by an increased tendency to engage in gaming behaviors
before finishing working. To test these model implications, we compare five random effect
logistic regression models to determine how self-regulation may vary over the course of a
session.

We introduce M4.1 as the baseline model for comparison whether any temporal models
are more significantly more predictive than current best practices as suggested by prior
gaming research. This model, includes random effects for both student and curricular
section to control for the previously established impacts of student and context on student’s
tendency to game. The remaining four subsequent models similarly control for student and
contextual factors while introducing alternative factors representing temporal effects.

To define the remaining four models, time is represented along two dimensions. In the
first dimension, time is represented as either time elapsed since the student began working
or percentage of total working time elapsed, as described section 3.2. Time elapsed models
represent the default model informed by both ego-depletion and task switching theories.
Percentage of time elapsed models test the hypothesis that such a representation better
captures motivation as temporally relative to the most informative moments of student
behavior. In the second dimension, time is represented linearly or quadratically. Linear
models allow only one main temporal effect to be captured by the model, either a constant
increase or decrease in motivation over the course of a session. Quadratic models can
capture different effects at the start and end of the session that differ from each other and
the middle of the session. All temporal variables are normalized over the full dataset for
model interpretation.
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M4.1: Baseline – Baseline model for comparison controlling for differences in student’s
tendency to game and contextual factors across curricular sections, such as average diffi-
culty, that influence gaming.

Gaming ∼ (1|Student) + (1|Section) (4.1)

M4.2: Linear Session Time – Extending the baseline model M4.1 by adding a linear
term for time-elapsed since the student has begun working

Gaming ∼ TimeElapsed+M4.1 (4.2)

M4.3: Linear Percent Time – Extending the baseline model M4.1 by adding a linear
term for proportion of session time elapsed as a percentage of total time observed working.

Gaming ∼ PctT imeElapsed+M4.1 (4.3)

M4.4: Quadratic Session Time – This model extends model M4.2 by adding a quadratic
term

Gaming ∼ TimeElapsed2 +M4.2 (4.4)

M4.5: Quadratic Percent Session Time – In addition to the random effects in Eq 4.1,
this model tests the hypothesis that students self-regulation resources are

Gaming ∼ PctT imeElapsed2 +M4.3 (4.5)

4.4 Results

Table 4.1: Comparing models student gaming behaviors over the course of a work session
Model BIC AIC LogLik
M4.1 434741 434703 -217348
M4.2 434682 434632 -217312
M4.3 434668 434619 -217305
M4.4 434454 434392 -217191
M4.5 454503 434441 -217215

The results of fitting each of the five models are shown in Table 4.1, including model
performance as assessed by AIC, BIC, and log-likelihood. In general, all models with tem-
poral factors outperform the baseline model, M4.1. This implies that temporal information
has a significant effect on student’s self-regulation behaviors. Additionally, both quadratic
models, M4.4 and M4.5, are significantly better than their linear counterparts (χ2 = 179
(p<0.001) for M4.2 vs M4.4, and χ2 = 242 (p<0.001) for M4.3 vs M4.5). Likewise M4.4
and M4.5 are significantly better than baseline with χ2 = 315 (p<0.001) and χ2 = 266
(p<0.001) respectively. This supports the interpretation that there are non-monotonic
differences in gaming the system behaviors between the start, middle, and end.
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Figure 4.1: Volume of data observed over time in a working session

Figure 4.2: Proportion of gaming actions observed over time in a student’s working session
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Figure 4.3: Volume of data observed over a working session aligned by proportion of overall
session length

Figure 4.4: Proportion of gaming actions observed over time in a student’s working session
aligned by proportion of overall session length
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Exploratory plots of proportion of gaming the system transactions over the session
support these interpretations. Figure 4.2 and 4.4 plot the proportion of transactions iden-
tified as gaming the system behaviors across the session over minutes passed or proportion
of total session time respectively. As expected from the quadratic fit models, each figure
shows an increased proportion of gaming behaviors near the start and end of sessions.

A closer look at the data in Figure 4.1 reveals that there is a large student participation
drop-off near the 43 minute mark. While whole class sessions seem to regularly measure
about 60 minutes, students’ login and logout times are quite staggered such that 99% of
observed student sessions are less than 43 minutes in length. Only 82 out of more than 9800
sessions are observed where students worked continuously for between 43 and 60 minutes.
Furthermore, analyzing gaming averaged over each minute of the hour, Figure 4.2, shows
that this dramatic reduction in data is associated with very large and volatile estimates of
average students gaming per unit time. Because of the low amount of data observed in the
last 17 minutes of sessions longer than 43 minutes, it is hard to draw stronger conclusions
about whether students are much more likely to display gaming behaviors if they are able
to stay on task longer than 43 minutes, or if the volatility is due to random sampling bias.

A closer inspection of data in Figure 4.3 also shows some peculiar variability in data at
the start and end of sessions. Because session time is divided evenly across the proportion
of sessions, there is no a-priori reason to believe students have more or less frequent trans-
actions at any time in the session. The small decrease in quantity of transactions near the
start of sessions implies students take longer on average to complete actions near the start
of work. The large spike of activity near the end implies students are taking less time per
action shortly before stopping work. In both cases, the data sparsity issue seen in Figure
4.1 is not likely driving the changes in proportion of gaming seen in Figure 4.4. The small
decrease in activity near the start is associated with the start of a broader downward trend
in proportion of gaming behaviors that continues even after activity frequency flattens.
The sudden increased frequency of transactions near the end of sessions is associated with
a comparable spike in prevalence of gaming the system behaviors. However, because some
gaming behaviors are defined by rapid actions in succession, this relationship is expected.

Taking the model comparisons and exploratory data analysis together, this evidence
supports the interpretation that there are non-monotonic differences in gaming the system
behaviors between the start, middle, and end of sessions.

Term M4.4 - ß Term M4.5 - ß
Intercept -4.215 Intercept -4.217

Percent time elapsed -0.265 Time elapsed -0.283
Percenttimeelapsed2 0.231 Timeelapsed2 0.252

Table 4.2: Model coefficients for M4.4 and M4.5

Comparing the two quadratic models, M4.4 is the best fit model by all 3 measures,
BIC, AIC, and Log Likelihood. The model details can be seen in Table 2. The variance
in gaming attributable to curricular sections is 0.87. This translates to average gaming
attributable to tutor context level factors to range between 0.23% and 8.4% for 95% of
sections. The variance attributable to students is much smaller, 0.088. This translates
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to average gaming attributable to trait-level student factors to range between 0.82% to
2.57%. An inspection of the model coefficients shows that the model predicts the average
gaming level at the start of a session, P (gaming|t = 0), is 4.1%. Average gaming at the
end of the session, P (gaming|t = 60minute), is 18.7%. The quadratic model reaches a
minimum observed gaming of 1.3% at 23 minutes into the session.

An 18.7% average probability of gaming after working for 60 minutes appears to be
very high given that gaming only occurs overall in the dataset in about 4.5% of all actions.
As discussed in the previous exploratory data analysis, the very high gaming proportion
observed in the last 17 minutes of sessions is potentially related to the increased volatility
created from estimates drawn from small amounts of data. These estimates spike upwards
as high as 25%, which corresponds with the dramatic difference between start and end
gaming predicted by M4.4. Therefore, the model is reflecting this same artifact of the
data.

Inspecting M4.5, the model predicts that gaming is more likely in the start and end of
the session. The average probability of gaming decreases to 1.35% by the time the student
has worked 67% of the total time. According to the model, we are 3.34 times more likely
to observe students game the system near the start of work than near their peak level of
focus. Likewise, it is 1.32 times more likely to observe gaming the system in the moments
shortly before students stop work. This model appears to make less dramatic predictions
that are more inline with expectations based on overall average frequencies of gaming while
not reflecting the same uncertainties as M4.4.

These results support the hypothesis that self-regulation processes have an impact on
the average occurrence of gaming the system behaviors over the course of a work session.
Students in this data appear to experience decreased motivation near the start of work
as would be predicted by the cognitive costs of task switching. Likewise, students appear
to show some decreased motivation before stopping work as predicted by ego-depletion
theories.

Gaming Indicates Cognitive Effort

If students are not observed to game the system early in a session, we expect that student
motivation is likely higher around this time despite the brief slightly negative impact of
task switching. This greater motivation allows students to bring greater cognitive resources
to the work relative to days when gaming is observed near the start. When comparing
assistance rates in the beginning of a session, the proportion of questions either answered
incorrectly or with a request for help on first attempt, a student who is more cognitively
engaged should be less likely to make errors or ask for help. Likewise, similar patterns
should be associated with assistance rates near the end of students work.

We compared the assistance rates for sessions where a student is observed gaming in
the first 10% of the session time (the first 3 minutes for the median session) to assistance
rates where no gaming is observed in the first 10% of the session time. To calculate the
assistance rate, the raw student transactions are aggregated by problem-step. The outcome
of each step is determined by the first attempt at the step. The step is labeled as gaming
the system if any of the aggregated transactions are labeled as gaming. Because patterns
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of gaming generally involve either incorrect or help-seeking behaviors, steps that were
labeled as gaming the system are removed before calculating the proportion of incorrect
and help-request steps to overall steps observed in the portion of the session.

Figure 4.5: Comparing assistance rate at the start of sessions

Figure 4.6: Comparing assistance rate at the end of sessions

The assistance rates in the start of sessions are shown in Figure 4.5 and were found to
be significantly lower (t = −15.22, p < 0.001). The average assistance rate where gaming
is observed is 30% (sd = 25) while the average rate when gaming is not observed is 21%
(sd = 26). Similarly, Figure 4.6 shows boxplots for assistance rates in the last 10% of
sessions. Rates were found to be to be significantly lower (t = −11.6, p < 0.001) with the
average session where gaming is observed having a rate of 25.3% (sd = 22) compared to
the average non-gaming session having a rate of 18.6% (sd = 24).
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This simple analysis does not take into account factors such as question difficulty. It is
possible that if students are working on difficult content near the start, then they are more
likely to make errors and request hints. It also implies that more challenging material may
impact how students evaluate the likelihood of prospective reward given their perceived
abilities. This may lead students to believe that applying effort is unlikely to result in
experiencing the reward or attempting to apply effort may have greater depleting effects
that impact future actions. In either case, it is possible that more challenging material
instead of task-switching or ego-depletion explains the relationship between increased as-
sistance score and gaming behaviors near the start and end of work. However, these tests
do provide compelling evidence for a possible impact of decreased cognitive engagement
on some practice opportunities that can inform future modeling work.

Gaming Indicates Motivation Levels

Student’s day-to-day average motivation level is affected by factors in the school, in the
classroom, and in the student’s life more broadly. A death in the family, fight with a
significant other, or poor grade in another class might be weighing on a student’s mind
while that begin working. These broader factors may have a more general negative effect
on student’s ability to self-regulate during work, effectively directing all attention to the
learning task at hand. If this is the case, these factors will act in combination with the
additional impacts of task-switching or ego-depletion at the start and end of the session to
impact a student’s capacity to self-regulate. Thus, observing gaming the system behaviors
at the start or end of a session may also be informative about a student’s more general
motivational level. In this section, we analyze gaming behaviors throughout the session
using information about whether students gamed at the beginning or end of a session to
improve predictions of gaming in the rest of the session.

Gaming at the start and end are defined the same as in the previous section. In the
data, 29.7% of sessions are observed with gaming at the start while 32.0% of sessions have
gaming at the end. Together 49.9% of sessions have instances of gaming the system in
the start or end, while only 11.8% of sessions are observed with gaming in the start and
end of the session. While gaming near the start or end might be indicative of session level
motivational impacts, in this analysis we test whether seeing any gaming at the start or
end is sufficiently informative or if start and end are differently informative.

To perform this analysis, we use the best previous model , M4.5 the quadratic percent-
time-elapsed model. This model will control for the variance due to student and tutor
contextual factors, removing concerns about confounds such as gaming at the start may
be due to generally more difficult material that makes gaming more likely throughout the
session. We compare models that add main effects for whether gaming was observed at
the start or at the end as well as linear and quadratic interaction effects. The models are
elaborated as follows:

M4.6: Baseline Quadratic Model – the baseline model from Section 4 analysis for
comparison.

Gaming ∼ PctElapsed+ PctElapsed2 + (1|Student) + (1|Section) (4.6)

32



M4.7: Gaming at start/end main effect – M4.6 with a binary indicator variable of
whether gaming is observed near the beginning of the session and a binary indicator variable
of whether gaming is observed near the end of the session

Gaming ∼ M4.6 + gamedstart + gamedend (4.7)

M4.8: Combined Gaming at start or end main effect – M4.6 with a binary indicator of
whether gaming is observed at either the beginning or the end of the session

Gaming ∼ M4.6 + gamedstart+end (4.8)

M4.9: Gaming at start and end with linear interactions – M4.9 elaborates on top of
M4.7 adding linear interactions with time.

Gaming ∼ M4.7 + gamedstart ∗ PctElapsed+ gamedend ∗ PctElapsed (4.9)

M4.10: Gaming at start and end with quadratic interactions – M4.10 elaborates on
top of M4.9 adding interactions with quadratic time terms.

Gaming ∼ M4.9 + gamedstart ∗ PctElapsed2 + gamedend ∗ PctElapsed2 (4.10)

Comparing M4.7 and M4.8, we see that including separate main effects for gaming
at the start and gaming at the end leads to better models rather than combining the
information into a single indicator of whether there were any self-regulation failures at
either the start of the end of the session. This particular result is worth further investigation
to understand how and why self-regulation at the start of a session is differently indicative
of student motivation levels compared to gaming at the end of the session.

Table 4.3: Comparing models work session gaming given observed gaming near the
start/end of a session

Model AIC BIC LogLik
M4.6 434441 434503 -217295
M4.7 422316 422403 -211151
M4.8 427322 427397 -213655
M4.9 419913 420045 -209958
M4.10 418266 418402 -209122

The results in Table 4.3 indicate the best fit model is M4.7, the model with start/end
gaming information and interactions with linear and quadratic terms. This model is signif-
icantly different from the baseline quadratic model (χ2 = 49.42, p < 0.001) and establishes
the informativeness of gaming in the start or end of a session on student’s motivation levels
through the time that students are working. Details about the model is given in table 4.4.

The variance accounted for by section and student level random effects are reduced
in comparison to the baseline quadratic model reported in Section 4. The variance at-
tributable to student factors was found to be 0.0789, which translates to an average gam-
ing level of 0.64% to 1.91% for 95% of students. The variance attributable to section level
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Table 4.4: Coefficients for start/end gaming with quadratic interaction terms
Term β

Intercept -4.489
PercentTimeElapsed 1.129

(PercentT imeElapsed)2 -1.251
Gamed at start 0.301

(Gamed at start) * (PercentTimeElapsed) -1.480
(Gamed at start) * (PercentT imeElapsed)2 1.170

Gamed at end 0.356
(Gamed at end) * (PercentTimeElapsed) -0.490

(Gamed at end) * (PercentT imeElapsed)2 0.900

factors was found to be 0.7527, which translates to an average gaming frequency of 0.20%
to. 5.79% for 95% of sections. This implies that a significant fraction of observations of
gaming that were previously explained by section-level factors appears to now be explained
by motivational factors indicated by gaming at the start or end of a session.

Table 4.5: P(Gaming) Main effect predictions given start/end gaming observations

Context Game Game Game Start End
(t=0) (t=opt) (t=100) Odds Odds

No Gaming start or end 0.35% 1.43% 0.21% 0.24 0.15
Start Gaming 2.14% 2.14% 0.66% 1 0.31
End Gaming 0.18% 2.10% 1.71% 0.086 0.81

Start + End Gaming 53.1% 1.72% 5.1% 30.9 2.98

Table 4.5 contains the predicted gaming attributable to the main effect terms in model
M4.10. The first column describes average predicted gaming at the start of work. The third
column describe average predicted gaming at the end of work. Because the model includes
quadratic terms, the second column is included to describe the optimum (minimum or
maximum) probability of gaming throughout the session. The fourth column describes
the odds ratio the chance of gaming at the start relative to the optimum point. The fifth
column describes the odds ratio of the chance of gaming at the end compared to gaming
at the optimum point. The complexity of the model can make the model challenging the
interpret, however there are some important trends indicated by the model. If gaming is
observed only in the start of a session, gaming is most likely to occur similarly near the
start and will reduce over the course of the session as evidenced by the odds of gaming being
greatest at the start relative to the end. Likewise, observing gaming only at the end of the
session implies that students tend to be well regulated near the beginning of the session
and will appear to fatigue over the session until near the end where the odds fall slightly.
When students are not observed gaming at the start or end, there is a corresponding low
probability of observing gaming near the start and end. However, over the course of the
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session, the model predicts that these students become more likely to have slightly reduced
motivation until the latter half of the session where attention on the time pressure of the
end of class might increase motivation through the end of class. In the limited sessions
where students are observed gaming at the start and end, the model predicts a much
greater propensity to game throughout, with a 53% chance in the start and a 5% chance
near the end.

Taken together, these results support the conclusion that gaming at the start and end
of work are indicative of session-level motivational factors influencing student behavior.
It also provides initial evidence for separable constructs indicated by gaming at the start
versus at the end. Each of these constructs appears to have different degrees of impact
on underlying student motivation factors and the resulting decision processes that lead to
observable behaviors.

4.5 Discussion
We have treated gaming the system behaviors as indicators of student’s self-regulation.
Task switching and ego-depletion theories of self-regulation predict a temporal pattern
to student’s abilities to self-regulate over the course of a class period. Predictive model
comparisons are supportive of the hypothesis that both task switching and ego-depletion
are evident in the patterns of student behaviors over each class session. Further analysis
indicates that observations of self-regulation behaviors in the start and end of class might
be indicative of both temporally immediate degrees of cognitive engagement as well as
more session or day-level influences on motivation.

Open questions remain about how student models could operationalize task switching
or ego-depletion. The work presented, uses information about the full student session to
represent time, though such information is not available to real-time models. This raises
the question of how should student’s prior behaviors inform a predictive models of student
ability to task switch or ego deplete? To what degree do students display consistency in
their ability to task switch quickly or manage ego-depletion more effectively across sessions?
Over the course of months or years? To what degree are these capacities independent or
can correlations be attributable to other latent motivational causes?

We believe these findings highlight the importance of leveraging student models that
incorporate temporal variables in the design of learning activities. Problem selection algo-
rithms may want to be biased for lower challenge or greater interest to overcome negative
effects of task switching. Similarly, activities may want to incorporate changes in the
rhythm of the activity in order to periodically re-engage student attention as it wains over
time. This work exposes an unexplored design space for how educational activities could
incorporate temporal effects of student motivation to better enable student learning.

In this work, we introduce the importance of considering temporal factors in addition
to content-related cognitive factors to more effectively support students’ motivational tra-
jectories within a work session. These findings extend the rich body of work on modeling
student motivational and cognitive processes with self-regulated learning. Students are
not machines, and they do not always jump immediately into tasks full throttle or have
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the endurance to work as long as they are asked. Hopefully, a future that recognizes these
dynamics can take intelligent tutoring systems one step closer to emulating the capabilities
of effective teachers.
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Chapter 5

Classroom and Social Factors

5.1 Overview
Understanding student motivation through engagement requires understanding the choices
that students are making. Online learning environments offer the ability to directly observe
student’s thoughts about the problem-solving process at very fine-grained levels. However,
students’ choices to engage in a learning activity are not strictly informed by the char-
acteristics of the task itself. Self-regulation is by definition a choice. While students are
working on problems, many of the relevant choices can be inferred through knowledge
about the current problem state. However, task-specific choices are not the only important
factors that are driving student engagement. As in the academic diligence task, students
are balancing engaging with tutor with alternative activities unrelated to the tutor. Stu-
dents are working in a classroom with a teacher imposing demands on their behavior to
work on the tutor during some time and nearby friends that may be doing something else
that is entertaining. In order to better estimate student’s capacity to self-regulate through
time-on-task measurement, it should be important to contextualize these observations with
respect to the classroom context to better understand the balance of the choices students
are making.

One common format for classes using an intelligent tutoring system is that a class
will meet in a dedicated computer lab where each student is able to log into their own
individual computer. At the start of class, students are expected to login and continue
working through the entire class session. At the start of class, students must transition
themselves away from whatever they are doing to begin working on the tutor. Students
may be talking with friends, working on some non-class related task, or just rolling thoughts
over in their mind. Different students may tend to have different rituals as they transition
into the class, depending on the friends that may cross their path, or whether their class
schedule typically has assigned homework that might be due later in the day. The ability
of students to transition into working on the tutor will be dependent on their current task,
their perception of value of that activity, and their motivational values and expectations for
succeeding on the work in the tutor. Each scenario has some value for the student relative
to working on the tutor. Depending on the types of motivations that drive the student,

37



they will have some associated ability to transition away that is measurable by how long
they take to transition. Typical socio-cognitive motivational constructs such as self-efficacy,
intrinsic interest, and achievement goals play a role in this decision to engage, but they only
impact the prospective reward of one choice. Students are ultimately balancing choices of
when/how to engage with the tutor against some alternate activity and the relative values
of these two activities impacts the probability that the student chooses to transition at
any given time.

Student engagement time is influenced by two major factors in the classroom. The
first is the amount of time given to the students to work by teachers, which provides
an implicit normative expectation for how much working time is expected of students.
Teachers dedicate a certain amount of class time as opportunity for students to work on the
tutors. In turn, this time creates an implicit standard for students to meet, which creates
an extrinsic incentive for students to engage with the tutor that is dynamic depending on
how the student has managed their time. Students are therefore likely making engagement
decisions some of the value of engagement is a function of what proportion of the provided
opportunity the student had worked. The second factor influencing students is their social
context. While teacher’s provide some implicit expectation about time to work, the activity
of peers also influences a student’s decision to engage. Even if the students are all in a
classroom where the teacher expects them to be working, if most peers are not working,
this decreases the incentive for a student to work because the normative expectation is
that the student is performing on par with others. The inverse should also be true, if
most students are working, this should increase the perceived incentive for engaging with
the tutor over alternative activities. Therefore, the relative engagement of students to
in-classroom peers should also impact students’ decisions.

The goal in this chapter is to investigate whether there is value in leveraging social
and classroom contextual information for improving estimation of student diligence. In
particular, I am seeking to investigate two research questions.

Research Question #1: Is diligence estimation improved by accounting for how students
are utilizing the opportunity provided by teachers?

Research Question #2: Does taking into account students utilization of opportunity rela-
tive to their peers improve diligence estimation?

5.2 Methods

5.2.1 Dataset
The analysis in this chapter uses the full set of 226 students from the dataset described in
chapter 2. Unlike in chapter 4, sessions in this chapter are defined as inferred class sessions
as opposed to student working sessions. Building on the student sessions investigated
in the previous chapter, class sessions are inferred using data from students identified as
belonging to the same class through a shared class ID in the data. The specifics of inferring
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class session are described in the next section.

5.2.2 Measures of Diligence
One of the most common measures of student diligence is time-on-task. This direct measure
of student engagement is an easily accessible measure that can be inferred from log data.
Naturally, not all logged time is engaged time, and there has been prior work [19] that
developed models to differentiate disengaged from engaged logged-in time.

One challenge with leveraging this raw measure of time-on-task is that it is unclear
how much time each student was able to work. A student working 45 minutes in a class-
room where the teacher provided three 60-minute class periods to work is significantly less
engaged than a student working 45 minutes given only a single 60-minute class period in
that same week. The opportunity that teacher’s provide students to work is a valuable
reference for contextualizing the observed time that student’s are working.

Given only logged interactions with the software, its not clear how much opportunity
teachers are providing students. To address this challenge, log data for all students in the
same class are leveraged together to draw inferences about when class is taking place. First
sessions where students in the same class are working simultaneously are identified. Then
the earliest transaction of all the students and the latest transaction of all the students
in those sessions are assumed to be the start and end time for the class respectively. The
total opportunity to work is assumed to be the time between this estimated start and stop.
Class sessions were considered to be any of these overlapping work sessions that occurred
during the bounds of the school day (between 7am and 3pm).

Once there is some estimate for when each class is taking place, the time that student’s
work can be contextualized in several ways. Knowing approximately when class begins, it
is possible to measure how quickly students start working in each session. This transition
speed reflects student’s ability to self-regulate when choosing between the types of activities
they may be engaged in the start of class and the learning activity. Over the course of the
year, an overall start speed ability is calculated as the mean of the observed session start
speeds.

While the number of minutes that a student delays beginning work might be one way
that student’s inform their judgement of the value of getting started at any given moment,
they may also make these judgements relative to what their peers are doing. For instance,
when most other students are already working, there may be greater incentive to begin
work even if the student is delayed just three minutes. Alternatively, if most students
are delaying over three minutes, the student may not perceive the disincentive of delaying
three minutes to the same degree. Therefore the relative start speed can be calculated by
normalizing each students’ start speed relative to peers within each session to capture how
much faster or slower they are starting relative to the average student.

Within each session, the percentage of session time that students are working can be
calculated as the proportion of total time-on-task to session length. This measure captures
student’s ability to self-regulate within the class session with the pressure from the teacher’s
monitoring as well as other available distractions. Over the course of the year, an overall
ability to self-regulate in class can be calculated as the mean of this per-class percent
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session time measure.
Similar to start speed, the percentage of session time might be perceived by students

more in relative terms than absolute. A relative session time measure can be calculated
by normalizing each session time measure across all students observed within the same
session. This relative percent session time measure captures the tendency of students to
work longer or shorter than the average student on any given day. Then the overall ability
to self-regulate relative to peers is calculated as the mean of this per-class measure. This
measure captures the degree to which students are making motivated judgements relative
to what they perceive their peers to be doing.

Total overall opportunity can be calculated as the sum of the length of all class sessions
to estimate the total expected time students were expected to work. Notably, there are
times when students work outside of a class session and the measures discussed thus far do
not account for how students may utilize their time outside of class. Percent Opportunity
can be calculated as the proportion of total time-on-task total opportunity. This measure
aggregates total time worked regardless of whether it was within any particular class session
or outside of school, but contextualizes it assuming students are making judgements about
time-on-task relative to how much the teacher may have expected them to work. For
instance, students may realize they skipped most of a class session on one day because
they needed that time to complete an assignment for another class. They then attempt to
make up this progress at home later in the day. Percent Opportunity worked will capture
the degree that students are choosing to work relative to overall expectation regardless of
when they work.

The analysis in this chapter explores the validity of these five measures, start speed,
relative start speed, percent session time, relative percent session time, and percent oppor-
tunity, relative to the standard time-on-task measure.

5.2.3 Evaluation

5.3 Results
To investigate the value of opportunity information on estimating student self-regulation,
this study leverages a correlational analysis to evaluate the construct validity and a re-
gression analysis to evaluate the predictive validity. For the correlation analysis, a pearson
correlation between motivational survey measures and three measures, percent opportunity,
percent session time, and start speed and a time-on-task control measure. The strength
and significance of correlations with each motivational measure is compared relative to the
time-on-task measure. To evaluate the predictive validity, each measure is used to predict
end of year grade controlling for prior achievement. The model performance is measured
using Bayesian information criterion and each measure is compared to both the predictive
model including no engagement measure as well as a time-on-task measure.
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5.3.1 Class Time Measures
Construct Validity

Figure 5.1: Comparing class information measure correlations with motivation survey mea-
sures

The correlations between each behavior and motivational measure are shown in Table
D.1. The baseline measure, total time, is not significantly correlated with any motivational
measure except performance avoidance. As shown in Figure 5.1, every behavioral measure
that incorporates class time information is more correlated than total time with most mo-
tivational measures. Interestingly, total time has a stronger relationship with performance
avoidance and growth mindset than any other measure, though the correlations are only
significant for performance avoidance. Further exploratory plots show that where rela-
tionships are significant, there is a triangular relationship that indicates each motivational
construct is necessary but not sufficient to drive the associated behavior.

Predictive Validity

Table 5.1: Predictive Model Comparison of Class-information measures
Model BIC
Baseline 476
Total time 459*

Percent Opportunity 450*
Avg Session Length 468*

Start Speed 464*

∗ - Significant improvement from baseline (P|t| < 0.05)

In Table 5.1 below, we see that all engagement measures, including total time, provide
explanatory power for end-of-year student achievement in comparison to the baseline model
using only prior achievement. Adding class information to total time measures to form the
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percent opportunity measure outperforms the total time model. This implies that students
that are able to focus in class are achieving better than their peers who are making up
for time outside of class controlling for total time worked. However, understanding overall
effort is important in predicting overall achievement. This can be seen by Avg Session
Length and Start Speed performing significantly worse than total time (χ2 = 7.46 and
χ2 = 6.48 respectively). A student’s start speed limits the amount of the class session
that they will be able to work. We see that these two measures are highly correlated
(R = −0.79), and the models are not significantly different in predicting achievement
(χ2 = 0.98) despite session length explicitly carrying more information about total time
worked.

5.3.2 Social Context Measures
Construct Validity

Figure 5.2: comparing Social Information Measure Correlations with Motivation Survey
Measures

A comparison of the social and the class information measures are shown in figure 5.2.
The specific values shown in this plot along with p-value thresholds can be reviewed in
Table D.2 in appendix D. From the comparison shown in figure 5.2, it is evident that the
two social measures have consistently weaker correlations than each respective non-social
measure. This indicates that reducing start speed or working endurance to the compo-
nent of these decisions that is driven by peer behaviors does not relate significantly to
the motivational measures collected. This is unexpected because performance orientations
(approach or avoidance) are defined with respect to how peers are behaving, however, it
is unclear whether students perceive engagement time with tutors as a component of per-
formance or if they view success answering problems exclusively as a performance related
outcome to optimize. The evidence indicates that overall within this population and con-
text, students did not perceive engagement with the tutor as a measurement outcome on
which they might be judged by teachers.

42



Predictive Validity

As seen in Table 5.2, each of the social information measure models significantly improves
upon the baseline models with only prior achievement, there it captures an element of
achievement beyond prior knowledge that is reflected in prior achievement. Both social
information models outperform their respective class information models. Models knowing
only whether students are starting faster or slower than their peers is on par with pre-
dicting end of year performance as knowing how much total time students are working
over the entire year. Furthermore, measures of whether students worked longer than peers
outperforms predictions of end of year grade over total time and even percent opportunity
which accounts for time with respect to opportunity. This is especially notable given that
this relative session time measure ignores any outside of class work that students may have
worked that may contribute to overall knowledge that would translate into differential
performance on later academic assessments.

Table 5.2: Predictive Model Comparison of Class-information measures
Model BIC
Baseline 476
Total time 459*

Avg Session Time 468*
Relative Session Time 440*

Start Speed 464*
Relative Start Speed 457*

∗ - Significant improvement from baseline (P|t| < 0.05)

5.4 Discussion
This evidence taken together provides support for the value of modeling student choices
beyond the strictly knowledge-related features that are easily observable through log data.
Building measures that leverage some conception of how well students are choosing to
utilize the dedicated working time within a class period are shown to capture information
about students engagement comparable to if not better than typical total time measures,
but also is capturing the influence of various socio-cognitive motivational constructs on
student’s engagement choices. This evidence indicates that student choices about work
take into account the time given and thus a student’s ability to self-regulate will better
be measured by accounting for how student’s are encoding their context to inform their
decision making about engagement time with an online tutor.

The evidence for the value of relative social behaviors is more mixed than for classroom
time. For both session time and start speed measures, the social-information version of
these measures are less correlated with student motivation measures than their respective
class information measures. This implies that most student’s are not considering what their
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making decisions about starting work or continuing to work. This is somewhat counter-
intuitive, but it may be possible that the impact of social pressure to begin or stop work
is very non-linear, only having a measurable impact when a large majority of students are
doing the opposite task. On the other hand, these social measures of engaged behavior
are better predictors of end of year grades. However, its unclear whether this predictive
power is due to the measure capturing differences in student ability to work with a greater
degree of focus, thus leading to more and faster learning or if the measure is capturing some
component of how teachers assign grades based on some sense of aggregate engagement.
In other words, is some component of teachers’ grade assignments attributable to some
subjective relative judgement of student classroom conduct?

One of the limitations of this work is that the data was derived from a school imple-
menting a classroom policy where students are expected to engage with the tutor for a full
class period. Varying school or classroom policies for when students are expected to work
online will have implications for how students perceive the importance of time utilization
and therefore how well measures of time-on-task and opportunity utilization will indicate
student’s ability to self-regulate. Likewise, a combination of student cultural variation and
classroom policy may change how students encode the incentives to work in class, intro-
ducing measurement confounds that reduce the generalizability of the models developed
here. This risk of confounds is inherent to observational data and will require alternative
methodologies to reduce these risks.

44



Chapter 6

Multi-Operational Measurement Models

6.1 Simulated Student Data Evaluation

6.1.1 Overview
The major limitation in the studies in previous chapters is that there is a lack of ground
truth on the construct of diligence on which to validate any behavioral measure. Com-
putational simulations are a valuable tool for evaluating methodological questions while
eliminating uncertainty about the effect of measurement error on estimation. In the educa-
tional data mining community, simulation has been used extensively to explore questions
about cognition and learning [31] or tutoring algorithms [71]. However, there is a lack of
work that attempts to explore the mechanisms that underlie engagement through simula-
tion. In this chapter, I introduce the development of the Learner Engagement Simulator
(LEnS) framework, and then leverage this framework to evaluate the robustness of multi-
measure approaches to estimating student self-regulation.

6.1.2 Methods
Design of LEnS Framework

The Learner Engagement Simulator is a python-based real-time simulation framework that
enables exploration of real-time fine-grained decision-making models of online learner be-
havior in context. The framework extends the simulation paradigm found in prior work
to enable the emulation of the role of various motivational and self-regulatory constructs
on learning and achievement. Prior work focused on simulating the cognition of a learner
and/or the policy of the tutor. This approach focused on two main elements in a learning
system, the learner and the tutor. Through manipulating either of these two systems, re-
searchers have demonstrated an ability to evaluate the effectiveness of instructional policies,
to test theories of human learning, and to support more efficient and scalable authoring of
instructional content. This approach to simulating learners assumes learner engagement
throughout the simulation, however, engagement is complex and dynamic and a significant
explanatory factor in achievement outcomes.
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Figure 6.1: Diagram of Learner Engagement Simulation Framework components with mes-
saging interactions

The LEnS framework includes four primary components: the environment model, the
tutoring model, the learner cognition model, and the learner decision-making model. Each
of these components can be independently defined as appropriate for the research goals
for the project. An example of a simple system demonstrating all of the components
and their interactions is shown in figure 6.1. As seen in the diagram, simulations defined
through this framework can model more complex interactions than just direct learner-to-
tutor interaction. Through the environment model, a set of many-to-many interactions
between agents can be defined to model more complex social and spatial relationships. In
addition to modeling direct agent to agent interaction, the environment model also requires
a specification of temporal events. The agent-to-agent and event-to-agent interaction is
managed via a publish-subscribe model. These two elements of the environment model, the
agent network and the timeline, allow for simulation of a wide range of complex interacting
social-technical systems. An example

The timeline forms the foundation of the real-time simulation. The simulation specifies
a timeline and a series of events that happen at specific times. With no agent network, the
simulation will run without any agent activity. Agents subscribe to the stream of events
on the timeline. Each event is represented as a metadata object that encapsulates all
relevant information. Agents must have internal logic that filters events for relevant events
to respond. For instance, when a class session begins, the event can be represented with
a class ID, event type, and a timestamp. Upon receiving the class start event, the learner
will begin the process of logging into the tutor.

The agent network in the environment model is implemented using the RabbitMQ

46



Figure 6.2: Diagram of Learner Engagement Simulation Framework components with mes-
saging interactions

library for agent-to-agent messaging in a publish-subscribe architecture. When agents
perform an action, they publish a message that encapsulated metadata about the action
that is then published to any subscribers specified in the environment model. An example
of a simple tutor-learner event flow is shown in Figure 6.2. In this example, a simple model
has a tutor agent subscribed to a learner. When a tutor login attempt event is published,
the tutor will process the event, and initialize the tutoring environment and present a
problem to begin working. At this point, the tutor will publish an updated state that
includes a new problem displayed to work.

In this framework, the tutor model can be as simple as running an actual tutoring
software system [74], or emulating a range of problem selection policies [71]. The tutor
requires an adapter to translate the input of a student action into the expected input of the
underlying tutor model. Likewise, tutor state updates must publish sufficient information
that the learner model adapter can determine possible actions and interact.

The learner model consists of two sub-models, the cognition and decision-making
model. The learner process begins with a class starting event from the timeline. The
decision-making model translates the environment state to determine a set of possible ac-
tions. It may call the cognition model to support parameter calculation to support the
decision-making process, depending on the actions available. In this example the learner
decides to continue their current task of listening to music for 5 minutes until finally log-
ging into the tutor. Once the tutor updates state and presents a problem to be solved,
the decision-making model uses the tutor state and environment model to identify possible
actions. For actions related to solving the tutor problem, the model uses the cognition
model to derive relevant decision parameters. Once all actions are derived and evaluated,
the learner uses the decision-making model to make a choice and executes the associated
action. If the action is to attempt to solve the problem, then the cognition model is called
to produce a response. The result of the action is published by the learner, where the tutor
sees the response and processes the input according to its own internal logic.

LEnS introduces innovation in simulations by leveraging a broader context including
the social and temporal context that may by influencing learner engagement while they
work with tutors. This framework affords the capability to explore hypotheses about how
these latent motivational constructs may interact with contextual factors to produce learner
behaviors that are observable in traces in log data. Furthermore, empirically validated
models can be leveraged to explore the effect of interventions at both the individual and
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group level. In the next section, this framework is applied to develop a simulation that
emulates the effect of multiple motivational constructs on learner decision-making and how
that impacts measures of learner engagement.

Simulator Implementation

This study leverages a simulator developed using the LEnS framework to generate data and
evaluate the performance of applying multi-measure behavior scales for estimating latent
self-regulation. Interaction between the learner and tutor takes place over the course of
multiple class sessions. No social interactions between students or tutor-specific tracking
of student state are explicitly modeled, so the simulation focuses on the interaction of
motivation and temporal context to influence engagement. The constructs modeled in the
student model is varied across simulation runs and the performance of behavioral measures
across each set of runs is compared. The following sections will describe the details of the
simulation, and the evaluation methodology.

The environment model for the simulation consists of a single learner interacting with
a tutor. The timeline schedules a single daily class session. Each simulated student works
a total of 20 class sessions, where the session length is random (µ = 40, σ2 = 8) with a
minimum of 0 and maximum of 60. The variability in session length creates variance in
the overall opportunity that students may have to work. Within the available time, the
simulation will focus on how students utilize the available time and how this utilization
can be leveraged across multiple metrics to estimate the latent self-regulation parameter
specified for each student.

The tutor model defines a domain model with 20 curricular units to complete. Each
unit has a random number of skills (µ = 22, σ2 = 23, min = 1) and the skills practiced in
each unit are not overlapping with the skills in other units. Each unit consists of a random
number of sections (µ = 4, σ2 = 2) and the skills within the unit are randomly distributed
among the sections. Practice problems are defined as multi-step problems with a random
number of steps (µ = 10, σ2 = 4), where each step is considered a practice opportunity
for a single skill. Problems are generated such that each step is randomly mapped to a
skill that is practiced within the section and problems are generated such that there are a
maximum of 100 practice opportunities for each skill within the section. The number of
problems was selected such that it was extremely unlikely that a skill would require more
than the available practice to master. Each skill is generated with 4 parameters common
to bayesian knowledge tracing model [6] and two additional parameters to independently
model how long it takes for students to solve steps related to this skill. L0 is the probability
that the learner has mastered the skill on the first practice opportunity. P (T ) is the
probability the learner transitions from unmastered to mastered with each practice. P (g)
is the probability a student answers correctly given that they have not mastered the skill.
P (s) is the probability a student answers incorrectly given that they have mastered the
skill. tµ and tσ2 are the average and standard deviation respectively of the time to complete
a step associated with this skill.

The tutor model traces the progress of each learner on all skills in the domain model
using Bayesian knowledge tracing. Given the outcome of the learner’s response on the
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nth opportunity Xn, the probability that the learner has mastered a the skill after the
nth opportunity P (Ln) can be estimated using the equations 6.1-6.3. The tutor uses a
mastery threshold of P (Ln) > 0.9 to determine when a learner has likely mastered each
skill. Problems are selected by first selecting the subset of skills that have not reached
mastery in the current section the student is completing. Then a problem is selected at
random from the set of available problems that have at least one practice opportunity of
the target skill. Due to skill overlap in many of the generated problems, this simple policy
likely leads to over-practice of some skills. However, optimal efficiency of learning time is
not a goal of this simulation, so this should not impact the study design. For every step
of every problem, there are 3 hints available for learners, where the third hint is treated as
providing the answer so that the subsequent attempt has 100% chance of correctness.

P (Ln−1|Xn = 1) =
P (Ln−1)(1− P (s))

P (Ln−1)(1− P (s)) + (1− P (Ln−1)P (g)
(6.1)

P (Ln−1|Xn = 0) =
P (Ln−1)P (s)

P (Ln−1)P (s) + (1− P (Ln−1)(1− P (g))
(6.2)

P (Ln|Xn = xn) = P (Ln−1|Xn = xn) + (1− P (Ln−1)|Xn = xn))P (T ) (6.3)

The cognition model in the learner model follows the same assumptions as bayesian
knowledge tracing. Learners are assumed to have either mastered or not mastered a skill
before the first practice opportunity. With each opportunity, there is some chance stu-
dent’s transition from unmastered to mastered. Each learner has a unique cognitive ability
parameter, Xcog, that represents individual differences in problem solving ability. This pa-
rameter is assigned randomly for each learner (µ = 0, σ2 = 1). When each learner begins
working in a new section, each of the learner’s skills, Xkc, related to this section are all
initialized randomly as either mastered or unmastered. The cognitive ability parameter
biases the probability of having initial mastery according to formula EQ 6.4. When at-
tempting a problem, the probability of getting the answer correct are given in equations
6.5 and 6.6.

P (Xkc = 1) = P (L0) ∗ (1 +Xcog/5) (6.4)

P (Xn = 1|Xkc = 0) = P (g) (6.5)

P (Xn = 1|Xkc = 1) = 1− P (s) (6.6)

The learner’s decision model is a stochastic model that operationalizes an expectancy-
value paradigm as a mechanism for weighting the likelihood of each choice. Depending
on the context, there are a total of six possible actions that learners can choose from:
Start working, Attempt Problem, Guess on Problem, Request Hint, Go Off-task, and Stop
Working. When learners either have not started working yet or are currently off-task, the
only choice is to either stay off-task or to start working. When the learner is currently
working on the tutor, the learner can either attempt the problem, guess an answer, request
a hint, go off-task, or stop working. Each action has an expected value calculated as the
product of the expectancy and total value of the action. The action is chosen randomly with
the probability of each action being equal to the action’s expected-value as a proportion of
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the total of all action expected-values. Once the learner makes a decision, the associated
action is executed, and related events are published.

The expectancy for any action was defined as the probability the learner can complete
the action successfully. For attempting a problem, the learner will leverage the cognitive
model to produce a context specific estimate of answering the question correctly. For this
simulation, the cognitive model uses a BKT algorithm to update the learner’s internal esti-
mate of skill-specific ability. This model of metacognition and self-efficacy is not expected
to be an accurate representation of learner cognition, but cognition with respect to learning
is not crucial to this simulation. The key is that learner’s have lower self-efficacy on early
practice opportunities, and that the learner will experience a wide range of self-efficacies
randomly distributed throughout any working session. Guessing an answer is modeled as
the type of behavior when learners attempt to answer a question quickly without expending
any effort to make an informed guess. The expectancy of guessing is set to 0.05, where it
is lower than the average expectancy on all skills at first opportunity, but not so low that
the actions is extremely unlikely. Guessing tends to waste time, but when learners guess
correctly, no learning occurs as well. All other actions are deterministic, so they have been
defined with an expectancy of 1.

The base values for each action were defined with the following behavioral goals. Be-
cause the simulation emulates a second-by-second stochastic decision-making process, the
starting time of when student begin working are assumed to follow a geometric distribu-
tion. When learners have not started working yet, the value of starting was set such that
the probability of starting work after 8 minutes would be 5%. Similarly, when students go
off-task while working, the value of returning to working was weighted such that the prob-
ability of starting work after 4 minutes is 5%. The value of stopping work is a function of
the time remaining in the session, where the value of stopping work increases quadratically
as the end of the class period approaches. The goal with this is to simulate the mild incen-
tive to finish early while also simulating the strong incentive of learners to stop working
by the time class ends. While working, the value of going off-task was tuned such that
learners only engaged in this behavior approximately 1-3% of all decisions. Guessing an
answer and asking for a hint were set to have very similar values, where asking for a hint is
slightly more valuable because it offers the prospect of achievement through perseverance.
Attempting to answer the question has a value of 3 times the value of requesting a hint so
that learners are expected to answer questions at least 67% of the time.

At baseline, learners across all simulations are modeled with a minimum of two con-
structs, cognitive ability and diligence. Additionally, self-efficacy and intrinsic interest in
the domain are defined in the decision-making models using additional parameters. There
are four sets of students generated for comparison of behaviors. The baseline students vary
only in terms of cognitive ability and diligence parameters. There is one set of students that
also vary in terms their self-efficacy parameter. There is a third set that vary in terms of
their intrinsic interest, and a fourth set varies in terms of self-efficacy and intrinsic interest.

As described previously, cognitive ability is a parameter that influences the operation
of the cognitive model. Diligence is a core parameter in the function of the decision-making
model. Within a particular context, each action is considered either a diligent or a non-
diligent action. More diligent students are simulated to be more able to prioritize diligence

50



actions. This is implemented by weighting the expected-value of diligent actions propor-
tionally to the learner’s diligence parameter. The result is that more diligent students will
tend to engage in any diligent action more often than a less diligent student in the same
context. When starting class, the impact of diligence on re-weighting the value of starting
was derived such that a student that is one standard deviation over the mean diligence
level would have a 5% chance to start after 5 minutes as opposed to 8 minutes.

Intrinsic interest and self-efficacy are implemented similarly by weighting the expectancy
and values for specific actions. Students with greater levels of Intrinsic interest will have
higher value associated with attempting a problem and requesting a hint because both
actions are associated with engaging cognitively with an activity that is intrinsically re-
warding. Likewise, more intrinsically interested students will see less value in guessing an
answer. When either deciding to start class or resume working when off-task, the effect of
intrinsic interest is equivalent to the effect of diligence on increasing the learner’s average
start speed. In this way, learners with greater intrinsic interest are expected to start faster,
go off-task less, work longer, and learn more. Self-efficacy is modeled at the domain level,
where learners have some more domain general belief in their ability to solve problems
which biases their own expectancy when considering a problem. This is implemented by
having learners, with self-efficacy at one standard deviation greater than the mean, will
have an expectancy that is up to 1.2 times greater than an average learner. The result is
that lower self-efficacy learners will tend to spend more time requesting hints, guessing,
going off-task, and even stopping earlier.

This set of simulation models approximates the complexities of confounding constructs
on motivated decision-making. In particular, decisions specifically related to time-on-task
and learning efficiency are multiply confounded and not uniquely identifiable using strictly
log data. This is a major hurdle in estimating student self-regulation through observable
behaviors, and this multiple confounding is manipulated in the following simulation study
to demonstrate the benefits of multi-measure instruments on the task of estimation with
observational behavior data.

Evaluation

In this study, four simulation runs are compared. Each run consists of 100 learners where
the learner models vary across runs based on the latent constructs they implement. The
baseline simulation includes learner models that implement only cognitive ability and dili-
gence. Three comparison simulations are also run each implementing confounding con-
structs in addition to the ones implemented in the baseline condition. The first imple-
ments self-efficacy. The second implements intrinsic interest. The third is a combination
simulation that implements both self-efficacy and intrinsic interest.

Within each simulation run, each of the learner parameters are generated independently
and randomly (µ = 0, σ2 = 1). Each simulated student works a total of 20 class sessions,
where the session length is random (µ = 40, σ2 = 8) with a bounded range of zero to sixty
minutes. For each simulation, learner decisions are logged, and interactions with the tutor
are logged in a format compatible with the Datashop learner transaction data standard
[35].
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The performance of four behavioral measures will be compared. The percent oppor-
tunity measure, Xopp, is calculated as the proportion of the total duration of all diligent
transactions (ie: time-on-task) to the total of all session lengths(EQ 6.7). The percent
off-task measure, Xot, is how likely the learner is to go off-task and is calculated as the
proportion of all transactions that are off-task to the total number of transactions (EQ
6.8). The start speed measure, Xstart, is the mean time it takes for learners to start work-
ing and is calculated as the average of the difference between the first action and the start
of session(EQ 6.9). The early finish measure, Xfinish, is the average time before the end
of class that learners stop working and is calculated as the mean of the difference between
the last action and the end of the session (EQ 6.10).

Xopp =

∑
i=transactions ti,duration ∗ Ii,diligence∑xSessionCount

i=1 tsessionlength
(6.7)

Xot =
xOfftaskCount

xTransactionCount

(6.8)

Xstart =
1

xSessionCount

∗
xSessionCount∑

i=1

xi,StartSpeed (6.9)

Xfinish =
1

xSessionCount

∗
xSessionCount∑

i=1

xi,EarlyF inish (6.10)

In addition to the individual behavioral measures, a set of composite measures will be
calculated using every combinations of 2,3, and 4 behavioral measures. In each composite
measure, a latent factor model is calculated by performing a factor analysis with 1 latent
factor. The data is projected onto the latent factor using the factor loadings to calculate the
composite measure. Overall, 15 diligence estimators will be compared for each simulation
run. For each estimator, the square of the Pearson correlation coefficient (r2) is calculated
between the estimator and the learner diligence parameters for each simulation run.

6.1.3 Results

To start, we validated the effect of the experimental manipulation of the effect of con-
founding factors on recovering a measure of the diligence parameter. Figure 6.3 shows
performance of each of the individual behavior measures on its ability to recover the latent
diligence parameter as measured by r2. The effect of the experimental manipulation is
evident in the general downward trend of the r2 values as each confound is introduced to
the simulation. Relative to baseline, the introduction of confounds tends to reduce corre-
lations with particular behaviors, and the combined simulation run shows further reduced
correlations. In the baseline condition, the estimation challenge with these simulated pa-
rameters is evident in the moderate to low correlations with r2 ranging from 0.34 to 0.5.
With only 20 sessions, as in typical real-life applications, there is limited data to estimate
parameters for each behavior given the variance of the underlying generating function. If
evaluating the performance of these indicators on student data, opportunity would have
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Figure 6.3: Baseline measure: r2 comparing individual behavior measures with latent
diligence parameter on simulated student data

been selected as the best performing measure with the exception of the combined confounds
condition where Off-Task, r2 = 0.24, slightly outperformed opportunity, r2 = 0.23, though
the difference was very small.

To compare the benefit of leveraging multiple operationalizations in the instrument,
the best performing combination of measures is compared for instruments of overall size
ranging from 1 to 4, where size=1 is the set of baseline measures discussed previously. Fig-
ure 6.4 demonstrates the main effect of using multi-measure estimators as a general trend
of improving performance over baseline within each simulation condition. This is again
evident in the within condition comparison of measures. However, it was unexpected that
the two-measure instruments outperformed three and four-measure instruments in all but
the baseline condition. It was expected that there would be a general benefit for including
more measurements. However, a closer analysis of the results for each instrument, which
can be referenced in appendix D.2.1, is that the combination of opportunity and off-task
measurements performed the best. Given that opportunity is derivative of start speed and
early finishing, while off-task is independent of both of the remaining three measures, it
appears that the in this simulation, the extra information offered by delineating start and
finish behaviors is potentially overwhelmed by the noise that such measures introduced.
This implies that some of the results presented here require further theoretical and ex-
perimental exploration to understand the relationship between the signal-to-noise ratio of
individual measures and the measurement power they offer to the overall instrument.
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Figure 6.4: Comparison to baseline of r2 of multi-operational instrument measures of
varying size with latent diligence parameter on simulated student data

6.1.4 Discussion
In this study, the value of leveraging multiple behavioral measures to estimate learner’s
latent ability to self-regulate is demonstrated through manipulation of confounding con-
structs in simulated data. In general, self-regulation is a challenging construct to measure
with observational data because the construct is impossible to identify given the limitations
of the data. Nonetheless, educational technology regularly leverage engagement analytics
as an indicator of students’ diligence, and therefore there is a benefit to improving the
accuracy of these metrics. This simulation study demonstrates that leveraging a multi-
measure instrument approach to estimation will offer an improvement over contemporary
single measure approaches.

One challenge with this approach is evident in how the instruments with greater than
2 measures could be improved by possibly introducing more independent measures of dili-
gence. This is due to the redundant information that is contained in the percent opportu-
nity measure relative to the start and finish measures. This highlights the continued need
for intelligent design of behavioral metrics that capture student’s self-regulation, however,
it also demonstrates that one new consideration in addressing mono-operational bias is in
empirically validating the assumptions that new individual behavioral measures provide
a marginal benefit to an existing instrument. This is a common practice in the develop-
ment of survey-based psychometric instruments, and research and methodologies in this
area can be leveraged to tackle similar challenges in developing multi-measure behavioral
instruments.

In this study, a simple approach of using estimating a latent common factor across
multiple aggregate behavioral measures was leveraged as a methodology for addressing
mono-operation bias. The key finding is that different behaviors implicate confounds to
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self-regulation differently and that operationalizing the target construct in multiple ways
can mitigate measurement biases. The natural variation in the underlying structural model
of how self-regulation and its confounds are implicated in each behavior can be leveraged
as additional information to improve on model estimation. Therefore, a natural next step
in this work will be to explore more advanced modeling approaches to leveraging data
across multiple behaviors, incorporating rich contextual information, to build more robust
estimation models.

6.2 Real Student Data Evaluation

6.2.1 Overview
One of the great challenges with observational data is attempting to attribute variance
to signal or noise. Studies in prior chapters have demonstrated that student diligence
manifests in behaviors observable through fine-grained learning log data. Furthermore,
some motivational confounds can be accounted for through intelligent feature engineering.
However, the models developed thus far show either strong construct validity or predictive
validity, but not both. Also, the measures tend to be unreliable and unstable, so they are
difficult to use as a psychometric measure. The challenge with observational data arises
from the fact that a particular behavior is driven by some set factors, and this structure
can be elicited in the data. However, not all of the factors can be observed in the data
to a degree that would enable identifying the signal from the noise. With motivation this
challenge is compounded because there is always the possibility that unexpected events
like a conflict with a close friend can drive a change in behavior. Because these events are
not easily encoded in the data, the behavioral measure is prone to these confounds, thus
making the measure less reliable.

One approach to address this risk is to diversify the measures used to estimate student
diligence. While a particular behavior, such as choosing how quickly to start class, will be
driven by a set of factors including the target measure with some predictable structure, a
different behavior may also implicate the target measure while having a different relational
structure to confounding factors. By leveraging multiple behaviors that operationalize
diligence differently, it is now possible to estimate diligence as a latent common factor
across the set of behaviors. The risk of any confounding source is reduced by the fact that
a sufficiently diverse enough collection of measures will contain some measures that are
not influenced by a particular confounding source, and therefore they will not reflect the
variation driven by this source of noise. In this chapter, I attempt to explore the viability
of this multi-operationalization approach to estimating diligence with log-based behavior
data.

6.2.2 Methods
This study compares the psychometric attributes of a combined latent measure to the
multiple operationalizations of diligence developed in prior chapters. The same dataset
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that was used in prior chapters is used again for this study [47]. The multi-operational
measure is defined as the common latent factor across the set of defined diligence measures.
Horn’s Parallel analysis [1] is applied to determine the appropriate number of latent factors
that best fits the data as described by the full set of individual diligence measures. Using
the resulting factor loadings, the data is projected in the latent factor space and the
psychometric attributes of the resulting latent factor measures are evaluated relative to
the individual measures.

The diligence measures used are attendance, percent opportunity, start speed, relative
start speed, early finish, relative early finish, percent session time, relative percent session
time, and gaming tendency. Attendance is calculated as the proportion of all inferred
class sessions where the student is observed working with at least one transaction. Percent
opportunity is calculated as the ratio of the total time working to the total opportunity
provided for the class, where the total opportunity is the sum of the length of all class
sessions for a class. Because students can work outside of class, this measure can be greater
than one. Start speed is the average delay time between the start of a session and the first
action of the student for all sessions where the student is observed working. Relative start
speed is an average over all observed working sessions of the student’s start time normalized
across the set of observed start times for that class session. Early finish is the average over
all observed working sessions of the time between the last time the student is observed
working and the end of the session. The relative early finish is an average over all observed
working sessions of the student’s early finish time normalized across the set of observed
early finish times for that class session. The percent session time is the average of the
proportion of each class session that the student is observed working. The relative percent
session time is the average over all observed working sessions for the student of the percent
session time normalized across the set of percent session time measures for all students
observed for that session. The gaming tendency is the probability the student may engage
in a gaming behavior, controlling for the probability of gaming due to working on problems
from a particular section of the curriculum. Gaming is defined according the the expert
defined heuristic model defined in [58]. The tendency is estimated using a random effects
model predicting the probability of gaming on a particular problem-step, with random
intercepts for each student and section of the curriculum. The gaming tendency is defined
as the fitted random intercept for each student.

Once the latent factors have been calculated, the construct validity, predictive validity,
reliability, and stability of the latent factors will be compared to the individual measures
to compare the relative performance of the combined factor. To evaluate the construct
validity, the correlations of the latent factors with the survey-based motivational measures
is compared to correlations of the individual measure with the survey measures. To evaluate
the predictive validity, each of the individual measures and the latent factors are added
to a baseline random effects regression model predicting end-of-year grade given prior
achievement with a random intercept for class membership. The Bayesian Information
Criterion (BIC) is calculated to compare the predictive performance of each model.

In order to calculate the reliability and stability of the measures, the data is split into
halves. To calculate stability, the data is split by date, where the first half includes all
data that occurs before the end of December. The second half is all data that occurs after
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last day of December. To calculate the reliability, the school year is divided into 36 weeks
and the weeks are randomly divided into two equal sets of 18. The data is then divided
according to which set of weeks the data belongs. Once the data has been divided, each of
the individual measures is calculated for each half. The latent factor analysis is performed
on the first half of the data to calculate the factor loadings. Then the loadings are used
to project the data in each half respectively to calculate the latent factor projections. For
each measure, the stability and reliability are computed as the pearson correlation between
the values calculated from each half of the data. In this dataset, one of the 226 students
was found to have data in only the first half of the year, so that student was removed from
the stability analysis.

6.2.3 Analysis
Factor Analysis

Applying Horn’s parallel analysis, 3 latent factors emerge as the best fit number of latent
factors for this dataset. The loadings for each latent factor are shown in table 6.1. Factor
0 could best be interpreted as the diligence factor for which the instrument was designed.
This factor captures the degree that students are starting quickly, before peers, ending
later, and working longer. Notably, gaming does not load strongly on any of the factors.
This is somewhat surprising because rationally gaming should be an additional application
of self-regulation and prior studies reinforced this hypothesis. However, decisions about
gaming may be more influenced by other factors related to the problem being solved than by
the dominant factors influencing time-management choices. Factor 1, the procrastinator
factor, captures the extent that students attend class but don’t utilize as much of the
opportunity given to them, predominantly because they tend to start late but then work
most of the remaining time. Factor 2, the slacker factor, captures the degree to which
students are avoiding work by stopping early. It is primarily defined by finishing early
and working less session time. As hypothesized, the dominant factor is a diligence-like
factor, though some measures, such as gaming and early finishing, loaded very lightly on
this measure.

Table 6.1: Factor Loadings
F0 (Diligence) F1 (Procrastinator) F2 (Slacker)

Opportunity 0.831 0.327 0.220
Session Time 0.874 0.050 -0.194

Peer Norm Session Time 0.811 -0.098 -0.100
Start Speed -0.890 0.391 -0.001

Peer Norm Start Speed -0.842 0.514 0.037
Early Finish -0.386 -0.530 0.661

Peer Norm Early Finish -0.044 -0.559 0.209
Attendance 0.453 0.623 0.638
Gaming -0.163 -0.209 -0.070
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Figure 6.5: Comparing correlations of multi-measure diligence factor with motivational
survey measures to correlations of raw behavioral measures of the same survey measure

Construct Validity

The detailed tables of all correlation results can be reviewed in appendix D. Inspection
of the direction of the correlations of each factor with achievement measures supports the
interpretations of each factor. The diligence factor shows a positive relationship with all
achievement measures. Likewise, the procrastination and slacker factors have a negative
relationship with each achievement measure as expected. A graphical summary of the
correlations of the motivational survey measures with each of the raw behavior measures
as well as the diligence factor can be seen in Figure 6.5. As seen in the analysis in chapter
5, the start speed measures is still the raw behavioral measure that best indicates student
motivation across the board. The only exception is with growth mindset. Relative Early
finishing is the best indicator of growth mindset where students that work until closer to
the end of class are more associated with possessing a more growth mindset. No other be-
havioral measure including the latent factors were significantly related to growth mindset.
In comparison to the best indicators of motivation, the diligence factor shows the strongest
correlation with each motivational measure in comparison to any of the individual behav-
ioral measures with the exception of growth mindset. Interestingly, the diligence factor
appears to capture the similar facets of self-regulation that are indicated by start speed as
it shows very similar correlations with motivation measures with a small but consistently
stronger correlation for each measure.
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Predictive Validity

Any measure of self-regulation should explain achievement above and beyond prior knowl-
edge. As seen in Table 6.2, the procrastination and slacker factors are not significant in
each respective regression (p=0.2 and 0.17 respectively), and each model fails to improve
over the baseline using only prior achievement (BIC = 456 and 460 respectively in compar-
ison to 452). However, the diligence factor does significantly (p=0.002) predict end-of-year
achievement accounting for prior achievement as expected. In fact, the diligence measure
performs similarly (BIC=430) to the best predictor, opportunity (BIC=428). A-priori, it
is not clear whether diligence should better explain achievement over more direct measures
of effort such as percent opportunity or relative session time, which capture measures of
either overall work or work in class relative to peers. Class grades are a composite mea-
sure of performance on various assignments as well as other measures such as attendance
and class conduct, the influence of diligence on achievement is more indirect than some of
these other more predictive measures, which likely explains the weaker but still significant
predictive results.

Table 6.2: Comparing multi-measure latent factors performance predicting end-of-year
grade to that of individual behavior measures

Model BIC
Baseline 453

F0 (Diligence) 430*
F1 (Procrastinator) 443

F2 (Slacker) 447
Attendance 443*

Pct Opportunity 428*
Gaming 450*

Start Speed 445*
Relative Start Speed 444*

Early Finish 461
Relative Early Finish 455*

Pct Session 451*
Relative Pct Session 431*

∗ - Significant improvement from baseline (p < 0.05)

Stability And Reliability

The stability and reliability of each individual measure and latent factor are shown in figures
6.7 and 6.6 respectively. The most stable individual measure is session time (R=0.67) with
each of the start speed, session time, and opportunity measures all having a stability
between 0.55 and 0.67. None of the individual measures pass the heuristic threshold of
0.7 for an acceptably stable measure [5]. The same set of measures are also the most
reliable measures with R ranging from 0.63 to 0.79 with four out of five measures having
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Figure 6.6: Comparing reliability of multi-measure diligence factor to raw behavioral mea-
sures

an acceptable reliability of |R| > 0.7. The diligence factor is acceptably stable and reliable,
and it is more stable (R=0.71) and reliable (R=0.80) than the most stable or individual
measures, raw session time and percent opportunity respectively.

6.2.4 Discussion
One surprising result from inspecting the factor loadings is that gaming behaviors did not
align closely with these other time-on-task related behaviors. When developing psycho-
metric instruments, the low agreement between gaming and other measures implies that
gaming should be dropped to improve the instrument. However, in this set of measures,
gaming is the only fine-grained behavioral measure included in the instrument. The over-
all instrument analyzed here consists of measures that are focused on students’ abilities to
self-regulate with respect to their local environment. Though there is a non-trivial number
of measures in the instrument, most of them may share some set of confounding factors
that are not influential during the moment-by-moment learning process. This implies that
the gaming measure is possibly in fact introducing desirable diversity to the instrument.
This is a question that is worth exploring in future studies.

A summary of the results of the psychometric evaluation of the multi-operationalized
diligence instrument relative to individual behavioral measures is shown in Figure 6.3.
overall, the evidence supports the conclusion that a relatively simple multi-operationalized
instrument approach yields an overall improved psychometric measure relative to any of
the proposed individual measures. The diligence factor shows a significant relationship
with almost all motivational measures, with a mild improvement over the best indicator
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Figure 6.7: Comparing stability of multi-measure diligence factor to raw behavioral mea-
sures

Table 6.3: Summary of comparison of psychometric characteristics of multi-operational
diligence instrument

Best Individual Measure Relative Diligence Performance
Correlation Start Speed Better
Prediction Opportunity Comparable
Stability Session Time Better
Reliability Opportunity Comparable

of motivation raw start speed. However, raw start speed is only moderately stable and
reliable. Opportunity and session time are much more stable and reliable measures than
raw start speed, but they trade reliability and stability for construct validity. The combined
diligence factor appears to not require these trade-offs, demonstrating superior construct
validity, stability, and reliability.

One of the limitations in this study is that the latent measure captured by this behav-
ioral measure scale is not validated against an independent measure of student diligence.
This dataset lacks a more direct measure of student diligence such as one collected by the
Academic Diligence Task [55]. Furthermore, evidence for predictive validity is supportive
but weaker than results from construct validity, stability, and reliability analyses. While
student ability to self-regulate will influence many behaviors such as time-on-task and de-
gree of cognitive engagement, other factors such as student knowledge and student-teacher
relationship may also have direct influences on outcomes that influence end-of-year grade.
Thus, behavioral measures that better capture the influences of these other factors may
better predict achievement than diligence.
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Chapter 7

Discussion

7.1 Overview
In summary, this dissertation addresses the challenge of using log data to identify a reliable
measure of the individual differences between students capacity to engage in learning.
Over the course of five studies, I explored evidence for motivational factors in log data
that can be accounted for to more accurately identify diligence. Then I utilized these
factors to demonstrate, with simulated and real student data, that leveraging multiple
operationalizations reduces bias and identifies a reliable and predictive measure of diligence.
A reliable measure of diligence enables new forms of adaptation and student support. In
this chapter, I explore the implications of this contribution for researchers and designers
of educational applications.

7.2 Adapting instruction to optimize engagement and learning
Skilled human tutors not only respond to the knowledge specific needs of learners, but also
adapt to the unique personality of the learner and signals of their motivation throughout the
day. Prior researchers have focused on gauging the knowledge and skills of learners [44] as
well as the moment-by-moment fluctuations in motivation [33], and using this information
to inform problem or activity selection. A reliable measure of diligence enables problem and
activity selection that is more personalized to how likely the next activity may disengage
the student.

Applications that encode student diligence can use that information to select problems
and activities that support engagement for less diligent students. One of the challenges
with instruction is that not everything that needs to be learned can be easy and pleasant.
There are inherently more and less challenging and engaging materials in a curriculum.
Learners must work through all the material. More diligent students will more readily
engage in a learning task regardless of its characteristics, while less diligent students are
more likely to be slow to engage and also to disengage early without utilizing most of the
opportunity afforded them. Diligence measures can provide an ability for applications to
extend prior work on predictors of disengagement or gaming [82, 57] by personalizing to
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students’ diligence. These predictions can be balanced in turn against the various learning
parameters that might be weighted for problem or activity selection.

Attempting to push certain practice problems to another time creates a need to plan
the timing of certain practice and activities both within and across sessions. Not all
skills and knowledge are best suited for the same types of practice [45]. Some factual
knowledge acquisition and procedural fluency development are more suitable for adaptation
to more engaging or activities with lower barriers to starting. Nonetheless, every curriculum
includes some significant quantity of materials that is more disengaging, but nonetheless
must be completed. Applications can attempt to optimize learning time by mitigating
this disengagement risk or time the riskier practice to maximize some balance between
overall engagement time completing more disengaging material. One example might be to
consider spaced practice needs by pushing more fluency building exercises to sessions long
after initially learning some new material. This allows one to focus on more challenging
and likely disengaging materials in the later part of sessions, while allowing more fluency
building early in a session to reduce disengagement risk and maximize overall engagement
time.

While diligence measurement opens new avenues for personalizing learning experiences,
it also exposes a new space of questions for researchers to explore. Leveraging predictive
models of quitting and disengagement in real-time to anticipate and intervene on learner
motivation is still a very under-explored area. The variability in motivation that influ-
ences engagement decisions as students work through problems of varying difficulty and
experience strings of successes and failures is still an under-modeled area of research. The
complexity of modeling dynamics in these multi-variate time-series is difficult even with
the scale of student data available. However, the LEnS framework can allow researchers to
explore hypotheses and narrow the space of possibilities before testing more specific models
on student data. Additionally, this framework allows for evaluating the longitudinal effects
of any tutors new problem selection algorithm on overall student learning.

7.3 Enabling motivation interventions with multi-operational mod-
els

Knowing the individual differences in student’s diligence is valuable as teachers are be-
coming acquainted with their students. However, as the school-year progresses, teachers
monitor students for changes in behavior that might point to an issue that needs to be
addressed. Leveraging multiple-operationalizations enables more reliable measurement of
student characteristics, however, variability across operationalizations can carry diagnos-
tic information about student’s motivations. This variation can be leveraged as an asset
instead of just bias information to filter from the measurement model.

Individualizing instruction is more than just accelerating struggling students, but also
supporting all students in learning to the best of their abilities. For instance, the second
latent factor that emerged from the analysis in chapter 6 was a procrastination factor,
characterized by a slow start speed and moderate to high diligence values along most other
measures. This implies there might be a student that is quite diligent but has some strong
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and consistent distractions at the start of class such as always walking into class while
talking with a good friend from the previous class. This inevitably leads to poor starting
speeds because of the strong temptation to continue the conversation. Once this student
starts, they work hard on all the problems and they utilize the rest of the remaining oppor-
tunity available. In this case, the majority of the behavioral measures indicate a moderate
to highly diligent student, though the student will appear low diligence according to the
start speed measure. This disagreement in measures can be indicative of a motivational
confound, the distracting friend. This can be informative for educators to either pay special
attention to the student near the start of class or talk to the student directly to identify
whether there was any way to improve their classroom diligence. Providing analytic sup-
port and diagnostic scaffolds within educator dashboards can be an important application
of the diligence instrument.

Start speed in particular was an interesting measure that emerged from the analysis
in chapter 5 because it was the strongest indicator of student motivation. One possible
reason for this is likely related to the fact that start speed decisions are not influenced by
the specific attributes of the learning activity not under the students control such as prob-
lem difficulty because the student has not begun working. Instead, the student balances
domain and tutor-specific perceptions of value against their current activity or other alter-
natives. By removing variation in observed behavior due to interactions with the tutoring
algorithm, start speed behaviors can be a more straightforward indicator of motivation.
Likewise, because this behavior is largely influenced by factors more directly under the
student’s control as opposed to the tutoring application, it can be more appealing as a
target for behavioral change. Because starting slowly necessarily constrains the potential
instructional time available to a student, improving this behavior also opens the door for
more overall engagement. For these reasons, applications should consider specifically incor-
porating interventions and analytic support for start speed improvements either mediated
by teachers or directly to students through some form of open learner model.

It may also be valuable to use multiple behavioral measures to gauge whether a stu-
dent on a particular day might appear to be experiencing some extraordinary motivational
impacts. One of the challenges with individual measures is that variability over time is
expected, so it is hard to gauge whether an outlier value is indicative of some motivational
impact that is worth further attention. However, with multiple behavioral indicators, it
may be possible to have more confidence when seeing a consistent trend across multiple
behavioral indicators for the day. For instance, a student starting late one day, may not
be noteworthy. However, if they are also showing a lot of gaming and off-task behaviors,
and then they stop working early, educators may more confidently act on this scenario
if dashboards are able to surface this sort of behavioral anomaly. In fact, this paradigm
of intervention support can help teachers identify students that might be feeling particu-
larly disengaged as well as those students who are demonstrating exceptional engagement.
Enabling more immediate positive reinforcement can help students more easily identify
what practices they are doing that are successful. Providing analytic support for both
positive and negative motivational support can be a powerful tool for teachers to guide
their students to greater engagement and higher achievement.
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Chapter 8

Conclusion

Effective instruction not only addresses the learning needs of students, but also recognizes
their unique motivations and adapts instruct to support both of these dimensions. This
dissertation advances the capacity of technology enhanced learning environments to recog-
nize the motivational dimension of students. To this end, this dissertation makes several
contributions.

1. In the learning sciences, this work contributes to the understanding of how student’s
capacity to self-regulate interacts with the cognitive, temporal, and social contexts
during classroom learning to form patterns of engagement.

2. To the learning analytics community, this work contributes a fine-grained, log-data
based model of student diligence that can be leveraged to assess and support students’
engagement.

3. For the educational data mining community, this work demonstrates the value of
leveraging multiple-operationalizations when building behavior-based measurement
models of motivation.

4. For the human-computer interaction community, this work develops the LEnS Frame-
work for furthering the use of simulations to model how motivational constructs drive
the behavior of systems of learners and educational technology within a learning en-
vironment.

I invite researchers and developers to build on this work to explore how motivationally-
aware applications might improve learner experiences or better support educators in con-
necting with their students.
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Appendix A

Appendix A: Dataset Information

A.1 Demographic Information
In the following tables, the counts for each demographic category are shown for three sets
of data. The ”All” column describes the full set of 271 students with demographic infor-
mation collected. The ”No TX” column describes the set of 11 students with demogrphic
information but no observed tutor transactions. The ”Complete” column describes the set
of 226 students that have observed tutor transactions, demographic information, and a
complete set of achievement and motivational survey measures at the start of the year.

Table A.1: Sample size for ethnicity over each subset
All Incomplete Complete

White 265 42 223
Non-white 6 3 3

Table A.2: Sample size for gender over each subset
All Incomplete Complete

Male 131 24 107
Female 139 20 118

Table A.3: Sample size for Free/Reduced Lunch Status over each subset
All Incomplete Complete

Not F/R 210 33 177
Free/Reduced Lunch 61 12 49

69



Table A.4: Sample size for Special Education Status over each subset
All Incomplete Complete

Not Special Ed 233 39 194
Special Ed 38 6 32
Not Gifted 269 45 224
Gifted 2 0 2

Table A.5: Observed Gaming Frequency by Section including over non-hard and hard
section subsets

Count Mean
Gaming

Stdev
Gaming

Min
Gaming

Max
Gaming

Median
Gaming

All Sections 237 1.95% 1.7% 0 32%
All Sections eee-
without low obs

196 2.48% 3.64% 0 28.3% 1.6%

Non-Hard Sec-
tions

156 1.40% 0.83% 0 3.23% 1.24%

Hard Sections 40 6.70% 6.37% 3.25 28.3% 4.27%
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Appendix B

Appendix B: Gaming Detector

This dissertation leverages the model of gaming developed by [58] to annotate transactions
as gamed. This model identifies a set of patterns of transactions that experts identify
as gamed patterns. A student is determined to be gaming at some time if a series of
transactions matches an identified transaction. For instance, a common pattern is when
students enter the same or a very similar answer into multiple places without answering
correctly, effectively guessing where a calculation result belongs without understanding
the organization of the problem. Another common pattern is when students ask for help
without taking much time to consider the problem, followed shortly after by an incorrect
input. In this case, the student appears to be using the help facility to get an answer but
is not taking enough time to use the information provided to derive an answer.

To apply the gaming detector from [58], first individual transactions are labelled using
a set of heuristic threshold given in B.1. Then the transactions are reviewed sequentially to
identify any matches to patterns shown in figure B.1. If an individual transaction belongs
to sequence of preceding or subsequent transactions that matches any pattern, than the
transaction is labelled as a gaming transaction. Then for each problem-step observed, if
any transactions are considered gaming, then the step is labeled as gaming.
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Figure B.1: Patterns of Gaming
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Table B.1: List of transaction level labels with heuristic thresholds
Identifier Description
[did not think before help request] Pause smaller or equal to 5 seconds before a help re-

quest
[thought before help request] Pause greater or equal to 6 seconds before a help re-

quest
[read help messages] Pause greater or equal to 9 seconds per help message

after a help request
[scanning help messages] Pause between 4 and 8 seconds per help message after

a help request
[searching for bottom-out hint] Pause smaller or equal to 3 seconds per help message

after a help request
[thought before attempt] Pause greater or equal to 6 seconds before step attempt
[planned ahead] Last action was a correct step attempt with a pause

greater or equal to 11 seconds
[guess] Pause smaller or equal to 5 seconds before step attempt
[unsuccessful but sincere attempt] Pause greater than or equal to 6 seconds before a bug
[guessing with values from problem] Pause smaller than or equal to 5 seconds before a bug
[read error message] Pause greater than or equal to 9 seconds after a bug
[did not read error message] Pause smaller than or equal to 8 seconds after a bug
[thought about error] Pause greater than or equal to 6 seconds after an in-

correct step attempt
[similar answer] Answer was similar to the previous action (Levenshtein

distance of 1 or 2)
[switched context before right] Context of the current action is not the same as the

context for the previous (incorrect) action
[same context] Context of the current action is the same as the pre-

vious action
[repeated step] Answer and context are the same as the previous ac-

tion
[diff. answer AND/OR diff. context] Answer or context is not the same as the previous ac-

tion
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Appendix C

Appendix C: Motivational Surveys

In this section, all of the survey measures that were utilized in the data collected for this
study are included below.

C.1 Math Interest [37]
On a scale of 1 to 5, where 1 = ”Not at all true” and 5 = ”Very true”, please indicate the
extent to which you agree or disagree with each of the following statements by writing the
number that corresponds to your opinion.

1. Math is practical for me to know
2. Math helps me in my daily life outside of school
3. It is important to me to be a person who reasons mathematically
4. Thinking mathematically is an important part of who I am
5. I enjoy the subject of math
6. I like math
7. I enjoy doing math
8. Math is exciting for me

C.2 Self-Efficacy [24]
On a scale of 1 to 9, where 1 = ”Not at all” and 9 = ”Completely”, please indicate the
extent to which you agree or disagree with each of the following statements by writing the
number that corresponds to your opinion.

1. I am confident that I will do well in math class
2. I expect to do well in math
3. I am confident that I can learn future math concepts
4. Considering the difficulty of this course, I think I will do well in mathematics in the

future
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5. I am confident that I will do an excellent job on future math problems.

C.3 Achievement Goals [10]
The following statements concern your attitudes toward learning and performance in this
class. Please respond to the following items by indicating the degree to which the statement
is true of you. Your rating should be on a 7-point scale where 1 = Strongly Disagree and
7 = Strongly Agree.

1. My aim is to completely master the material presented in this unit.
2. In this unit, I am striving to do well compared to other students.
3. In this unit, my goal is to learn as much as possible.
4. In this unit, my aim is to perform well relative to other students.
5. In this unit, my goal is to avoid performing poorly compared to others.
6. I am striving to understand the content of this unit as thoroughly as possible
7. My goal is to perform better than the other students in this unit
8. In this unit, I am striving to avoid performing worse than others.
9. In this unit, my aim is to avoid doing worse than other students.

C.4 Theory of Intelligence [86]
Read the sentences below and then click the one number that shows how much you agree
with it. There are no right or wrong answers.

Strongly Agree Agree Somewhat Agree Somewhat Disagree Disagree Strongly Disagree
1 2 3 4 5 6

1. You have a certain amount of intelligence and you really can’t do too much to change
it.

2. Your intelligence is something about you that you can’t change very much.
3. You can learn new things, but you can’t really change your intelligence.
4. No matter who you are, you can change your intelligence a lot.
5. You can always greatly change how intelligent you are.
6. No matter how much intelligence you have, you can always change it quite a bit.

C.5 Effort Regulation [3]
Please rate the following items based on your behavior in math class. Your rating should
be on a 7-point scale where 1 = not at all true of me to 7 = very true of me.

76



1. I often feel so lazy or bored when I do homework for this class that I quit before I
finish what I planned to do.

2. I work hard to do well in this class even if I don’t like what we are doing.
3. When class work is difficult, I give up or only study the easy parts.
4. Even when class materials are dull and uninteresting, I manage to keep working until

I finish.
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Appendix D

Appendix D: Additional Study Result Details

D.1 Classroom and Social Factors

D.1.1 Construct Validity Tables

Table D.1: Pearson’s R relating Class Information Behavior measures with motivation
measures

Total time Percent Opportunity Avg Session Length Start Speed
Effort Reg. 0.098 0.186** 0.216*** -0.248***

Math Interest 0.097 0.194** 0.149* -0.209**
Self-Efficacy -0.016 0.121** 0.148** -0.228***
Mastery App. -0.061 0.181* 0.177** -0.236***
Perf. App. -0.029 0.152* 0.207** -0.254***
Perf. Avoid. -0.134* 0.026 0.084 -0.111

Growth Mindset -0.079 0.031 -0.021 -0.023

* - p < 0.05 , ** - p<0.01, *** - p<0.001

Table D.2: Pearson’s R relating social information behavior measures with motivation
measures

Avg Session Time Rel Session Time Start Speed Relative Start Speed
Effort Reg. 0.216** 0.156* -0.247*** -0.145*

Math Interest 0.155* 0.096 -0.208* -0.103
Self-Efficacy 0.182* 0.101 -0.235*** -0.068
Mastery App. 0.213** 0.099 -0.253*** -0.108
Perf. App. 0.089** -0.022 -0.111*** 0.024
Perf. Avoid. 0.153 0.092 -0.226 -0.110

Growth Mindset -0.031 0.046 -0.027 -0.0002

* - p < 0.05 , ** - p<0.01, *** - p<0.001
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D.2 Simulation

D.2.1 Instrument Correlation with Diligence

Table D.3: r2 comparing multi-operational diligence measures with latent diligence param-
eter for simulated student data

Baseline Self-Efficacy Intrinsic Interest Combined
Opportunity 0.50 0.40 0.28 0.23
Off-Task 0.34 0.40 0.24 0.24

Start speed 0.41 0.30 0.08 0.17
Early Finish 0.34 0.20 0.25 0.15
Opp, Off-Task 0.57 0.61 0.36 0.37
Opp, Start 0.55 0.45 0.19 0.23
Opp, Finish 0.44 0.31 0.29 0.21

Off-Task, Start 0.52 0.52 0.20 0.29
Off-Task, Finish 0.50 0.50 0.41 0.33
Start, Finish 0.58 0.44 0.25 0.25

Opp, Off-Task, Start 0.61 0.57 0.24 0.29
Opp, Off-Task, Finish 0.53 0.40 0.27 0.26
Opp, Start, Finish 0.53 0.40 0.27 0.25

Off-Task, Start, Finish 0.62 0.60 0.28 0.33
Opp, Off-Task, Start, Finish 0.60 0.49 0.31 0.29

D.3 Multi-operationalization of Diligence with Student Data
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Table D.4: Latent Factor Correlations with Achievement Measures
Prior Final Grade Final Grade Units Completed

F0 (Diligence) 0.252 0.320 0.544
F1 (Procrastinator) -0.113 -0.141 -0.355

F2 (Slacker) -0.111 -0.143 -0.121
Attendance 0.137 0.306 0.571

Pct Opportunity 0.195 0.360 0.645
Gaming -0.138 -0.292 -0.342

Start Speed -0.239 -0.303 -0.551
Relative Start Speed -0.242 -0.334 -0.480

Early Finish -0.111 -0.144 -0.123
Relative Early Finish -0.038 -0.158 -0.024

Pct Session 0.133 0.189 0.537
Relative Pct Session 0.259 0.409 0.496

Table D.5: Latent Factor Correlations with Motivation Measures
Effort Reg. Math Interest Self-Efficacy Growth Mindset

F0 (Diligence) 0.243 0.224 0.245 0.024
F1 (Procrastinator) -0.103 -0.115 -0.139 0.004

F2 (Slacker) -0.113 -0.082 -0.078 -0.025
Attendance 0.100 0.102 0.024 0.047

Pct Opportunity 0.190 0.198 0.124 0.033
Gaming -0.177 -0.183 -0.136 -0.042

Start Speed -0.230 -0.218 -0.243 -0.018
Relative Start Speed -0.133 -0.108 -0.120 0.004

Early Finish -0.114 -0.083 -0.078 -0.025
Relative Early Finish -0.050 0.003 -0.020 -0.136

Pct Session 0.212 0.174 0.183 -0.026
Relative Pct Session 0.167 0.117 0.125 0.074
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Table D.6: Latent Factor Correlations with Achievement Goal Measures
Mastery App. Perf. App. Perf. Avoid

F0 (Diligence) 0.254 0.261 0.127
F1 (Procrastinator) -0.077 -0.116 -0.028

F2 (Slacker) -0.0152 -0.117 -0.087
Attendance 0.074 0.008 -0.042

Pct Opportunity 0.183 0.155 0.028
Gaming -0.107 -0.068 -0.056

Start Speed -0.231 -0.249 -0.113
Relative Start Speed -0.062 -0.103 0.024

Early Finish -0.153 -0.118 -0.087
Relative Early Finish -0.077 0.001 -0.022

Pct Session 0.180 0.213 0.089
Relative Pct Session 0.100 0.100 -0.030

Table D.7: Reliability and Stability of Diligence Measures
Measure Stability Reliability

F0 (Diligence) 0.71 0.80
F1 (Procrastinator) 0.36 0.38

F2 (Slacker) 0.39 0.61
Attendance 0.43 0.40

Pct Opportunity 0.65 0.79
Start Speed 0.55 0.64

Relative Start Speed 0.64 0.71
Early Finish 0.34 0.46

Relative Early Finish 0.27 0.34
Pct Session 0.67 0.74

Relative Pct Session 0.63 0.78
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Appendix E

Appendix E: Linked Resources

E.1 Datasets
The dataset collected from [47] can be accessed at this address:

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=613

The simulated student data set that was generated for the analysis in 6 can be accessed at
this address:

https://pslcdatashop.web.cmu.edu/Project?id=806

E.2 Code and Libraries
Code for the LEnS framework, simulation runs, and data analysis performed in 6 can be
accessed at this address:

https://github.com/stevencdang/MotivSim

E.3 Published Work
The work described in chapter 3 was originally presented at the 2019 International Confer-
ence for Educational Data Mining and published in the associated proceedings [83]. The
work described in chapter 4 was originally presented at the 2020 International Conference
for Educational Data Mining and published in the associated proceedings [85].
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