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Abstract
Isaac Newton famously said, “stand on the shoulders of giants,” to emphasize the

importance of pre-existing synthesis for making new challenges tractable in a single
human brain. Newton himself learned partial abstractions from Ptolemy, Copernicus,
Kepler, and Galileo, as well as Descartes’ analytic paradigm, which he used as foun-
dations for his calculus problem. However, rapidly accumulating knowledge makes it
increasingly difficult to be aware of existing approaches and innovate upon them.

In this thesis, I argue that what we need are new tools to help people synthesize use-
ful cross-cutting abstractions from knowledge, effectively organize knowledge with
those abstractions, and use them to find novel cross-domain insights. I present four
systems toward this goal, where I explore several kinds of abstractions to enable new
interaction capabilities. These include ‘research threads’ for supercharging people’s
reading experiences with AI to enable seamless interaction with thread-level abstrac-
tions while reading, the purpose-mechanism schema and how AI can help users find
cross-domain analogies, and ‘active ingredients,’ a mechanism abstraction that helps
designers engage with and transfer insights from biology to mobility design.

Through controlled laboratory studies, I demonstrate the value of these abstractions
in elevating people’s focus during reading and exploration to a higher level (e.g.,
from individual papers to how notable threads divide a research field; from individual
species to active ingredients of mechanisms), thereby gaining efficiency and helping
them broaden their pursuit of problem-solving strategies. The end result is more cre-
ative ideas.

In a world of abundant knowledge and large language models, the structuring and
distilling of conceptual insights will be the defining characteristics of driving value in
knowledge work. By putting powerful techniques that empower conceptual interac-
tion with information into the hands of everyday people, I envision a future where
innovators everywhere deeply engage with insights that overcome domain bound-
aries and develop novel ideas that address personal challenges they face to bring
forth positive effects for the world.
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Chapter 1: Introduction

1.1 Is Innovators’ Productivity Decreasing
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The scientific progress achieved over the centuries is truly awe-inspiring, expanding the scope of questions
we can explore. Consider, for instance, the Cheom Seong Dae observatory (meaning “near the star place”
in Korean), one of the oldest still-standing observatories, and juxtapose it with the cutting-edge James
Webb Space Telescope (JWST), which orbits the second Lagrange point where no humans have reached
to observe the earliest moments of the universe. Such advancements exemplify how far we have come in
our quest for knowledge and understanding of the universe.

Tracing the history of this progress shows significant conceptual shifts driven by creation of new abstrac-
tions. For instance, in 1609, Johannes Kepler’s work transitioned the prevailing model from Ptolemy’s
geocentrism to heliocentrism, and his insights laid the groundwork for Isaac Newton’s universal gravita-
tion theory, which in turn provided the foundation on which Einstein worked on his re-conceptualization
of gravity. As such new conceptual frameworks can revolutionize our understanding and drive further
innovation.

However, despite the seemingly remarkable progress, there is growing evidence that the rate of produc-
tivity growth among innovators is slowing down. A notable example is Moore’s law, which describes the
regular doubling of the number of transistors on an integrated circuit every two years, or equivalent to a
35% constant growth rate, that propelld advanced information technology and, along the way, remarkable
economic growth over the past several decades. Yet, this masks the increasing input required to sustain
such growth: with the number of Ph.D.s and funding in research growing more rapidly than 35% each
year, the effective innovator productivity is decreasing (Fig. 1.1).
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Figure 1.1: Trends in the growth rate in the effective number of researchers and the year-over-year growth
rate specified by the Moore’s law show a widening gap between the two, suggesting the productivity per
researcher is falling over time (Figure adopted from [27]).

This slowdown in productivity is not limited to semiconductors but is observed across various key goods
such as corn, cotton, and soy [27]. Furthermore, the quality of Nobel Prize-winning discoveries in physics
show stagnant quality despite significantly increased investment [59], while patents and research findings
are becoming more consolidatory rather than disruptive in nature [200]. In short, a unit of scientific and
engineering innovation has become much more costly, suggesting decreasing innovators’ productivity.

1.2 Harnessing the full potential of archived knowledge
I believe one significant cause of the innovators’ productivity decrease is the increasing complexity and
scale of knowledge production, that leads to increased burden of knowledge and challenging synthesis of
existing information. As the scale of accumulated knowledge grows, innovators must spend more time
and resources to glean insights from it, and to consider many of the relevant existing works to contribute
something new. An examination of conceptual diversity (calculated as the lexical diversity of title phrases)
among research publications confirms this trend, as it has only grown linearly in recent years while the
number of research publications has increased exponentially, widening the gap between the two [180].
Furthermore, Jones’ analysis of the first time of great scientific achievements or invention show a trend in
increasing amount of age before the first great achievements among the innovators [134].

Yet, Isaac Newton famously said, “standing on the shoulders of giants,” to underscore the critical role pre-
existing synthesis plays in making new challenges tractable in a single person’s brain. Newton himself
relied on the partial abstractions from the works of Ptolemy, Copernicus, Kepler, and Galileo, as well as
the analytic paradigms of Descartes, to develop his solution to the calculus problem.

In this dissertation I argue that what we need for an antidote of the decreasing innovator productivity
and realizing a bigger potential of archival knowledge is new tools for helping people synthesize useful
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cross-cutting abstractions from knowledge, effectively organizing knowledge with those abstrac-
tions, and using them to find novel cross-domain insights.

1.3 Why aren’t we getting better tools for building on existing knowl-
edge?

1. Difficult to interpret 
importance in the literature

2. Costs in verifying the 
structure

3. Hallucination
4. Difficult to build upon

1. Learning-by-doing 
2. Self-actualization

1. Recursive context from 
continued exploration

2. Fear of missing out
3. Cognitive demands for 

organization & synthesis

Threddy

Apolo

[17]

[10] Metro Maps [40]

Galactica [44]

Bottom-up Workflows Top-down Workflows

Mixed-initiative
Workflows

Pros

Cons

1. Initial structure
2. Supports overview

Figure 1.2: The initiative spectrum of workflow designs, with bottom-up and top-down workflows at the
ends with corresponding pros and cons.

First, making sense of information – whether for scientists, designers, or lawyers – has inherent com-
plexities [208] that involve many manual and interleaved steps before synthesizing useful conceptual
abstractions that succinctly summarize the core aspects of information and their interrelationships. For
example, consider a research scientist who wants to write a summary of notable research threads in a topic
area she recently started exploring. To do so she opens up the PDF of a paper that she saved earlier for
the topic. As she reads through the introduction and related work sections of the paper, she finds several
sentences with a group of citations to prior work that describe interesting advances in the literature which
she thinks are useful. She clips the snippets while taking notes on where they came from to review later,
a cumbersome task that requires her to switch between a document editor, a PDF viewer, and a search
engine. In the process, she opens up one of the new references found in a clipped snippet to examine
further.

In the new paper, she once again discovers several citation contexts scattered around in the introduction
and related work sections of the paper describing notable other approaches that have relevance. In order
to track down the references, she recursively employs forward and backward citation chaining or footnote
chasing [199], which quickly accumulates the layers in her search path. This prevents her from easily
restoring the earlier context of research threads she started investigating (Fig. 1.2, left; Con 1). In addition,
the possible search space from the collected references and citation contexts in the process increases
exponentially, making it almost an impossible task to follow up on all of the discovery paths she might
have, making her feel the fear of missing out on important research (Fig. 1.2, left; Con 2). Furthermore,
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as her collection of useful citation contexts and references expands, she finds it increasingly difficult to
synthesize clips and references into a coherent outline describing multiple threads of research (Fig. 1.2,
left; Con 3).

Systems that provide tailored support for each of the individual steps in the bottom-up process of sensemkaing
do exist. However, existing tools often fall short of supporting the synthesis outcome users ultimately need
to get at. While people are better at tracking down or organizing interesting references into folders during
their sensemaking using such tools, they are left alone when it comes to extracting insights from the pa-
pers, discovering new papers and pinpointing and clipping the actual content that contribute to them, and
organizing their structure together.

Switching to tools such as a new large language model (LLM)-powered and retrieval-augmented chat
interface may represent the top-down end of the process well, and help users avoid some of the challenges
by jumping over many steps in the iterative bottom-up process that people were previously engaged in.
Instead now such a tool may provide a summary of several papers in response to a single user request.
While it has potential to be remarkably useful, in such a scenario it is difficult for users to know how
and why certain papers are included in the summary, and whether they are considered trustworthy and
important works in the literature (Fig. 1.2 right, Con 1 & 2). It is also difficult to build upon the output
(Fig. 1.2, right; Con 4), to expand by further including other related threads of research that divide the
literature at a similar level of abstraction, or examine those sources by users themselves to deepen their
understanding and consider alternative framing.

Once existing knowledge is mapped and relevant prior approaches are identified through the sensemak-
ing process, the next goal is to build upon them to come up with novel solutions for a given problem.
However, knowing what prior approaches have come before alone may not give rise to fresh new ideas.
To this end, making analogies is an effective way of sourcing new inspirations. Aalogical inspirations
have produced innovative breakthroughs throughout the history of science, engineering, and design. For
example what used to be a 50-year-old challenge in aerospace engineering is “how do we transport a large
number of solar arrays into the space for use by telescopes, satellites and others?”. One solution idea to
this quest might be to make the arrays lighter, by optimizing the design of component parts such as the
hinges, springs, etc. Another idea might be to build a bigger rocket, but the bigger the rocket that has to
be built gets, the less feasible it gets given fuel requirements that significantly increase with the size of
the rocket. When an astrophysicist working at NASA at the time encountered this problem, he happened
to also be an Origami expert and recognized a deeper structural similarity between folding Origami pa-
pers and transporting and deploying large solar arrays into the space, despite the obvious surface level
differences of one being typically involved with sheets of paper and the other with solar arrays. This kind
of recognizing deeper structural similarities in spite of surface level differences is analogical processing.
However, analogical innovations are rare because analogical transfer is challenging due to human memory
retrieval sensitivity that favors analogs with surface-level similarity and the heavy cognitive load incurred
during analogical processing.

Together, these represent the challenges that explain why building better tools for sensemaking of knowl-
edge and ideation is challenging yet a valuable goal for exploration.
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1.4 Systems for Helping People to Curate, Engage with, and Use
Conceptual Abstraction during Sensemaking and Ideation

In this dissertation, I explore the design space of interacting with conceptual abstraction during sense-
making and ideation by designing and developing a series of novel interactive systems. These systems
re-imagine existing tools by proposing new interaction techniques and computation to give users capa-
bilties for curating, engaging with, and using conceptual abstraction during sensemaking and ideation.
Within the design of these systems, I consider several questions such as 1) What use contexts do users
need mechanisms of interaction with conceptual abstraction?; 2) How would users like to represent and
interact with the abstractions created during their sensemaking and exploration?; and 3) What scaffolding
can systems provide to help users engage with and iteratively build upon the artifacts they create?

The systems I develop explore a series of different user abilities for representing and interacting with con-
ceptual abstraction. These include extraction, externalization, and human-AI expansion of abstractions,
such as in the augmented reading experience where users can efficiently extract useful threads of research
described in other scholars’ existing work on the go (Threddy) and externalizing the extracted and saved
threads as boundary objects that encapsulate user intent that can be used by AI seamless to expand in
the neighboring citation graph (Synergi). I also examine analogical inspirations based on a purpose-
mechanism schema abstraction and user engagement with them, such as in how scientists interact with an
analogical search engine developed to retrieve analogical mechanism inspirations for their personal prob-
lem queries (Analogical Search Engine) and supporting their deeper engagement with the inspirations that
may be unfamiliar at the outset but have potential to be valuable after transferring and further iterating
on (BioSpark). The design of these systems were based on findings from workshops and pilot studies for
needfinding where early prototype systems were built and used for interviewing users about their expe-
rience and problems they faced in their work before. After the development of each system, I conduct
controlled lab experiments to deeply understand how the systems were used by people and compare to the
status quo.

1.5 Thesis Contributions
In this thesis I focus on how to design novel sensemaking and ideation systems that scientists, engineers,
and designers can use to curate valuable conceptual abstractions and engage with them to get inspired in
their own problem domains. In order to build systems that help users to this end, I contribute research
around the following three aspects of design across the systems and domains I explore.

1.5.1 Design for Interacting with Conceptual Abstraction by Research Threads

Design for Efficient Extraction and Organization of Threads

Scientists and inventors position their work in the context of most relevant prior work and draws con-
ceptual similarities and contrasts with them. This positioning and synthesis of contribution provides a
valuable resource for learning salient concepts in the field and knowing what language people in the field
use to describe them. Such framing and positioning of contributions often appear in the introduction or re-
lated work sections of a paper, where text exposition is interleaved with reference notations and provided
together. Therefore, this combination of exposition and references was the primary abstraction underlying
the interaction design for Threddy and Synergi.

From discussions with other scholars and reflections on our own experience as researchers, we learned that
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people use a variety of processes for reading these sections and curating threads. Some described taking
notes in the margins on the page while reading, others mentioned adding sticky notes near the passage they
were referring to, yet others used different tools, like Google Docs, Zotero comments, or Figma boards
for curating notes describing salient threads and associating them with the original papers. However, most
people we talked to felt this resulted in a ungainly pile of notes, scattered across many papers, which made
them not particularly conducive to the synthesis phase that followed. This also confirmed similar findings
in the prior literature. We also found that in-text highlighting was commonly used among the note-takers
and considered an intuitive input mechanism for this purpose, yet having an additional place for synthesis
(e.g., Google Docs or Spreadsheets) separate from the paper they were reading meant there was added
context switching cost every time they moved between the two for viewing or updating content.

Based on these observations, the interaction design of Threddy and Synergi prioritized an integrated en-
vironment for both reading and synthesis. This materialized into a design choice that replaced the default
Google Chrome browser PDF viewer with a native one that allowed users direct in-text highlighting while
also having access to the highlighted content for backend computation that powered various information
extraction and organization features. The content users highlighted for extraction typed in on their own as
threads to save were added to the sidebar located on the right of the PDF viewer. In order to support effi-
cient structuring, saved threads semantically relevant to the newly highlighted thread were ranked higher
on the candidate list for associating at the time of saving.

Techniques for Human-AI Expansion of Research Threads

The thread objects in Threddy supported the discovery of recent papers by ranking them based on citation
coverage related to the references included in a selected thread. This helped users decide which papers to
read next, continuing their synthesis of research threads. However, users still struggled with the extensive
effort required for manually engaging in the bottom-up process of moving between papers to identify and
curate threads.

To address these challenges, we developed Synergi. Synergi expands on user-saved threads by leveraging
them to automatically identify related papers, parse their full text to home in on specific content snippets
with supporting citations, and process the most relevant snippets to produce a pre-digested structure which
users could overview and incorporate into their synthesis thus far, seamlessly expanding its scope. By
highlighting text that describes research threads, users can trigger Synergi to construct a graph of relevant
papers and summarize their content hierarchically. This supports both detailed bottom-up and high-level
overview processes, catering to different user needs.

A key insight of the Synergi thread-expansion algorithm is that research threads can act as boundary ob-
jects for AI, enabling the construction of a thread-based understanding that bridges individual papers.
Synergi aids users in visualizing citation contexts and their interconnections, helping them develop com-
prehensive and reusable outlines. As such, Synergi helps to address the limitations of manual synthesis by
providing a human-AI expansion of individual threads through discovery and summarization of research
threads from related papers that have not been included in the synthesis thus far, but nonetheless related
given its content. In this way, Synergi provides a mixed-initiative framework that supports both bottom-up
and top-down workflows, facilitating a higher-level engagement with the literature and enabling users to
effectively synthesize and organize research insights.
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1.5.2 Empirical Understanding of Engagement Challenges in Purpose-Mechanism
Abstraction-Based Analogical Transfer

Knowing what prior approaches exist in the literature is helpful for coming up with new ideas. However, to
actually generate novel ideas, one must transform existing concepts into a new form. One way to achieve
this is through analogical processing based on the purpose-mechanism schema abstraction, where diverse
mechanisms with a similar purpose to the query purpose ca be discovered. An open question is how much
the degree of purpose-match among the diverse mechanism ideas affects creative ideation during analog-
ical processing, which is known to be challenging to human minds due to several cognitive constraints,
including the human memory retrieval sensitivity that prefers analogs with surface-level similarity and the
prohibitive cognitive load generated during analogical processing involving only a few relations at once.

In a controlled laboratory and case studies using an interactive analogy search engine operating on sci-
entific papers, I found that partially matching purposes – similar at a high level but differing in low-level
details – often led to more creative adaptation ideas than keyword-based searches. However, these partial
mismatches can either facilitate creativity or render analogies useless, depending on their nature.

I identified two main challenges involved in this process. The first challenge was discovering salient
structural elements. Participants noted difficulties in expressing their problems at the outset of search and
recognized that important constraints are often identified only after encountering mismatched structures.
This iterative process was essential for refining problem representations and steering research effectively.

The second challenge was supporting the right amount of mismatched elements to encourage useful vari-
ations. While exact purpose matches could result in missed opportunities, too much deviation made ideas
infeasible. Balancing this mismatch was crucial for fostering creative adaptation.

In summary, the findings highlight the potential and challenges of using an analogy search engine to
enhance creative scientific ideation. Purpose-match significantly mediates ideation outcomes, and under-
standing beneficial mismatches is essential. The iterative discovery of structural elements and balanced
superpositions of mismatches are key factors in facilitating effective analogical transfer.

1.5.3 Techniques for Deepening User Engagement with Analogical Inspirations
and Supporting Transfer

To mitigate the challenges involved in users engaging with analogical inspirations whose concepts may
be unfamiliar, I explored LLM-powered strategies with BioSpark. BioSpark introduces several new in-
teraction features designed to help users engage more deeply with analogical inspirations and boost the
likelihood of successful transfer from these inspirations to target domains.

One of the core features of BioSpark is the ‘sparks’ button. This functionality allows users to generate
new application ideas for a selected organism and its mechanism inspiration with each click. These ideas
are contextually related to the user’s design problem and its constraints, enabling a continuous flow of
relevant inspirations. This not only encourages playful exploration but also aids in the iterative process
of refining and adapting these inspirations to their specific problem contexts. Additionally, BioSpark
facilitates deeper engagement through a Q&A chat interface. This interface leverages an LLM-based
agent to dynamically respond to user queries and provide contextual clarifications. Moreover, the trade-
off analysis button helps users to evaluate different aspects of the analogical inspirations, providing an
analytical framework to assess the feasibility and potential impact of each idea. The combination of
features enables users to interactively digest and integrate inspirations, which might initially seem alien
or impractical.
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To support the interactive capabilities, I explore a backend process for generating a repository of the active
ingredients in analogical mechanisms found in nature that may be transferrable to target design domains.
To do so it iteratively builds a hierarchy of organisms, known as the tree of life, to identify sparse branches
on the hierarchy that indicates areas rich in potential for further expansion with the LLM. This back-end
process ensures a growing and evolving repository of analogical inspirations aligned with user needs.

By combining these advanced interaction and backend features, BioSpark empowers users to navigate the
unfamiliar terrain of analogical inspirations effectively. The system fosters a deep, iterative engagement,
ensuring that even initially unfamiliar concepts can be explored and adapted to yield valuable innovations
in the users’ target domains. This LLM-powered approach facilitates not just the discovery of novel inspi-
rations but also the practical transfer and integration of these inspirations, ultimately enhancing creative
problem-solving and ideation processes.

1.6 Thesis Overview
• Chapter 2 situates this dissertation in the context of related research into sensemaking and analogical

ideation, the theories I use to understand the sensemaking and analogical processing and transfer
process, as well as new tools and techniques towards improving both the bottom-up and top-down
ends of the initiative spectrum.

• Chapters 3 – 6 describe particular systems and studies that explore novel designs for sensemak-
ing and ideation focused on the conceptual abstractions of research threads, purpose-mechanism
schemas, and active ingredients of mechanisms. In these chapters, I report data from formative
studies, provide descriptions of system specifications and implementation details, and results from
evaluative studies.

• Chapter 3 describes Threddy, a system that introduces the research thread abstraction and develops
an augmented scholarly reader interface that supports efficient extraction and organization of threads
from research paper PDFs while reading. Then, I present the results of a controlled laboratory study
evaluating Threddy with scientists.

• Chapter 4 examines human-AI collaborative expansion of research threads and introduces Syn-
ergi, that aims at augmenting users’ abilities to gain thread-based understanding and discovery in
the related literature by extracting notable threads from papers related to previously user saved
threads, and pre-digesting papers along the saved threads to provide an initial structure that users
can overview and build upon. I describe the Synergi retrieval algorithm as well as its hierarchi-
cal summarization process that uses an LLM. Then, I present the results from a laboratory study
evaluating Synergi against Threddy.

• Chatper 5 examines how new ideas can be developed from understanding of prior works, and
through analogical processing based on a purpose-mechanism schema abstraction. I examine the
benefits and challenges involved with analogical processing with scientists using an interactive ana-
logical search engine where users could type in descriptions of research problems they were per-
sonally interested in receiving inspirations for. I describe how the analogical search engine was
developed, by first developing a sequence-to-sequence model trained on crowdsourced annotations
of purpose and mechanism tokens from research paper abstracts, deploying this model to process
papers at scale, and then by building a real-time search engine that searches for papers with a similar
purpose and diverse mechanisms upon user queries. Then, I present the results from a controlled
laboratory and case studies that describe how mismatching on certain purpose-level constraints can
trigger generative ideation, yet how this process is hampered by participants’ sensitivity to near
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analogs, and how they cannot enumerate the important constraints of a purpose at the outset nor ac-
curately assign the importance of matching on each constraint without seeing mismatching analogs.

• Chapter 6 describes BioSpark, a system for professional mobility designers seeking inspirations
from organisms in nature for their concept designs. In order to bridge the challenges with en-
gagement identified in Chapter 5, BioSpark introduces several new interaction features for users
engaging with analogical inspirations, to deepen their engagement with inspirations and boost the
likelihood of successful transfer from inspirations to target domains. I first describe the end-to-end
system specification of BioSpark, which includes both a backend data generation process and the
front-end interaction features. The backend dataset generation pipeline iteratively constructs the tree
of life hierarchy using an LLM, by incorporating organisms represented in the dataset generated so
far into the hierarchy. Then it identifies sparse branches on the hierarchy that represent potential
opportunities for expansion which it uses to prompt an LLM for further generation. BioSpark inter-
face supports LLM-based engagement features such as a ‘sparks’ button where users can generate
new application ideas for a selected organism and its mechanism inspiration on each click of the
button, a Q&A chat interface, and a trade-off analysis button, all of which are contextualized to
the design problem and its constraints and additionally personalized to the interaction history when
appropriate, to cater to specific user needs.

• Chapter 7 summarizes design lessons from the systems presented in the previous chapters and their
evaluations and discusses their design implications with regards to what might need to change for
broader adoption of conceptual abstraction-focused sensemaking and ideation systems. I conclude
with Chapter 8 by reviewing the contributions of the dissertation.
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Chapter 2: Related Work

Scholars have studied how people make sense of complex information for decades. Systems aimed at
helping people with the sensemaking process have been developed for just as long. Pirolli and Card’s
Sensemaking loop modeled the process into two main phases, the foraging and the sensemaking phase,
iteration through which is how people transform raw data into a coherent story for their inquiries [208]. In
the foraging phase, people engage in activities such as seeking, searching, filtering, reading, and extracting
relevant information from various sources for use later. In the latter phase, people develop schemas from
the gathered and whittled down information, from which they develop hypotheses for their inquiries.

Klein et al. further investigated how the schema production process works in human psychology, and
proposed a data/frame theory of sensemaking [152]. In it they use the term ‘frame’, a cognitive structure
in which entities are defined by their relations to others. The frame can take many different forms, such
as a story – which explains the chronology of events following a causal relationship, a map – which
shows feasible routes to destinations via geographical relations, a plan – which describes the sequence of
intended actions, among others. Notably, in the data/frame theory of sensemaking the development of a
frame follows an iterative process of how data is explored and perceived to discover relevant frames. And
the relevant frames then guides the perception of further relevant spaces of data to explore. Hence, the two
aspects – data and frames – are dual and have interleaving processes that cycle to move forward; a frame
defines key elements of the situation, assigns significance, and describes their relations to each other. This
then triggers subsequent actions, such as filtering irrelevant information and highlighting relevant ones,
thereby constructing what counts as data. Information that passes through these actions then modifies the
initial frame, and the cycle continues.

Many earlier works in the literature of sensemaking provide a foundation for the data/frame theory de-
scribed above. Among them, Marvin Minsky formulated a similar process as fitting individual cases to
a concise abstraction of a feature set and their parameters [181]. Piaget thought of schema as an internal
representation that a person retains for reconstructing the persistent features or attributes of an entity [206].
For Schank and Abelson [221], it was understood as a pattern generalizing a recurring sequence of events
or ‘scripts’.

The interleaved processes of synthesizing a frame and using the synthesized frame to guide the data search
and transformation process point to a broad design space for technological interventions. Specifically, I
focus on three concrete forms of conceptual abstractions, or frames, that people produce when engaged
in relevant sensemaking processes: research threads synthesized from reading scholarly texts, purpose-
mechanism schemas that can enable the retrieval of novel analogical insights for problem-solving, and
active ingredients of mechanisms that help designers transfer analogical insights into target problem do-
mains. I study and develop novel interaction and computational techniques enabled by AI and LLMs
that unlock new capabilities for users in exploring this design space. In the following sections, I review
novel systems and techniques developed in the literature that can help people effectively make sense of
information.
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2.1 Systems that Support Bottom-up Synthesis
Scholars face numerous challenges when exploring and reviewing the large-scale and ever-changing liter-
ature [29, 131, 177, 193, 216, 245], such as information overload [179] and difficulty allocating attention
effectively [229]. Finding and organizing relevant papers into multiple, evolving research threads, and
updating these threads with recent literature, further complicates scholars’ workflows. Consequently, lit-
erature review is often considered tedious, scattered, and reliant on chance [32, 161]. To mitigate these
issues, various systems have been developed to aid scholars in understanding research articles.

Workflows at the bottom-up end of the spectrum (Fig. 1.2, left) involve practices like forward and back-
ward citation chasing and footnote chasing. These are essential for scholars navigating citation graphs to
discover significant papers related to a research problem [199]. However, these workflows often experi-
ence fragmented information environments and disjointed tools [278], adding complexity and distracting
from synthesis. While related work or introduction sections of review papers may provide valuable syn-
theses of relevant domains [243], they are not ideal for iterative exploration of literature in creating one’s
own review with different focus, scope, or framing. Scholars must read multiple review papers for synthe-
sis [198], which can significantly increase cognitive and interaction costs.

2.1.1 Systems that support information extraction while reading

To aid users in bottom-up sensemaking processes, Passages [106] introduced an approach to ’reify’ [21]
ephemeral user text selections into persistent objects shareable across multiple applications. These objects
can be incorporated into various representations, such as a canvas or spreadsheet view, allowing users to
maintain their reading context while extracting and storing relevant information. Likewise, ForSense [211]
and Fuse [158] provided a sidebar view in webpage margins, enabling users to highlight content snippets
and organize them into clusters while viewing. Crystalline [168] further supported the review-extract loop
by automatically extracting software package-related criteria from developer websites using natural lan-
guage parsing. Mesh [50] offered similar assistance by automatically pulling in Amazon product reviews
from the API matching user-defined criteria about product categories.

2.1.2 Systems that augment reading interfaces to enhance comprehension

Another area of research related to bottom-up sensemaking focuses on augmenting reading interfaces.
Reading individual papers can involve high cognitive costs due to unfamiliar terms, domain-specific jar-
gon, nonce words [110], complex formulae [111], and required expertise for comprehension [20, 114,
190]. To address these costs, one thread of research has targeted cross-referencing within a single docu-
ment to improve readability (e.g., [12, 77, 212]). A sub-thread of this focuses on enabling more efficient
navigation between parts of a table and corresponding text [15, 146, 156]. Another sub-thread involves
support for concept diagramming while reading (cf. [233]), which may help readers more deeply engag-
ing with the material. In contrast, NB [282] enhances engagement and learning by adding contextually
relevant discussions to the margins of a document students are reading. These systems demonstrate the
importance of reducing cognitive costs associated with reading complex texts, like research papers, and
suggest potential benefits of augmenting reading interfaces. This allows readers to build upon authors’
pre-digested synthesis from multiple papers in a contextually relevant manner without disrupting their
reading flow, promoting better focus and mental models of related research threads.
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2.1.3 Systems that support paper-centric literature discovery and interaction

Significant research efforts have been devoted to developing interactive systems for scientists and profes-
sionals (e.g., [188]) in various stages of literature discovery.

For example, PaperQuest [209] suggested relevant papers based on citation relationships using query pa-
pers. Apolo [53] allowed users to save papers or clips and expand with additional items via the Belief
Propagation algorithm. Sturm [232] studied requirements for literature search systems and developed
LitSonar where users could deploy nested queries to query over multiple sources of document streams.
LitSense [235] included multiple citation relation visualizations and supported filtering and querying for
homing in on specific references for further exploration. Papers101 [55] helped scholars search for addi-
tional relevant literature by generating unused keywords for query expansion. CiteSense [278] developed
an information-rich environment which provides various features for searching, appraising, and managing
the different tasks involved in a literature review. Lastly, Relatedly [198] recommended more specific
content – relevant paragraphs in related work sections – than papers for exploration.

Except for Relatedly, most previous systems emphasize documents (i.e., research papers) for user inter-
actions and discovery. Support for crosscutting abstractions, such as research threads spanning multiple
papers and interaction techniques to build them over time, remains limited. Though the concept of ‘reified’
objects has been implemented before (cf. Passages [106]), it mainly focuses on extracting text selections
and aggregating them into a single view, without capturing the rich context, such as cited references, se-
mantic meaning, and the citation graphs. Moreover, the exploration of other synthesis-related objects, like
expert author committees, is still lacking.

2.2 Systems that Support Top-down Synthesis

2.2.1 Systems that support overview of the information landscape

On the opposite end of the spectrum (Fig. 1.2, right), systems such as ConnectedPapers1, Metro Maps of
Science [224], and Wang et al.’s narrative visualization system [264] provide a top-down visual overview
of the research landscape. These systems help scholars comprehend the structure of knowledge space and
discover interesting areas within it. For a collection of documents, IntentStreams groups and visualizes
documents relevant to a search query into streams [8], while Apolo [53] and IdeaHound [227] use a 2-
D spatial arrangement to quickly overview similar document clusters. Although these representations
are useful for entering a new knowledge domain, they often lack additional user interactions beyond the
overview stage, limiting their utility for synthesizing knowledge scattered across multiple papers.

2.2.2 LLMs for generating an overview of a topic

Recent advances in Large Language Models (LLMs) like Galactica [242], ChatGPT2, and Google Bard3

showcase impressive capabilities in answering user questions using synthesized web knowledge. Tools
such as Ask Your PDF4 indicate promising future systems supporting personalization and specification
based on user-curated documents. However, LLMs face challenges like hallucination and falsehood
(cf. [18, 26, 248]), making their outputs uncertain and less trustworthy, requiring manual inspection

1https://www.connectedpapers.com/
2https://chat.openai.com/chat
3https://bard.google.com/
4https://askyourpdf.com/
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and verification. Furthermore, their computation processes are obscured [9] and less interpretable to
users [165, 279], limiting their ability to learn, iterate, and synthesize based on these outputs.

2.3 Systems for Supporting Analogical Inspirations
Many innovations in design, technology, and science have been driven by harnessing analogical inspira-
tions from fields distant to one’s own. Historical examples include Vetruvius’ analogy of sound waves
with water waves [61], the Wright brothers’ wing control mechanism adapted from a bicycle inner tube
box [133], and engineers using origami concepts to furl a solar array for space deployment [183, 204, 281].
These examples demonstrate that analogical innovation requires the inventor to map inspirations with deep
structural similarities, often from seemingly unrelated domains [87, 89, 93].

However, supporting the entire cognitive process of analogical innovation in a single system has proven
challenging [129, 140]. Most existing approaches focus on only one stage of the process and often rely
on a small hand-coded set of inspirations [45, 66, 97], which limit their scalability and effectiveness.
Past systems targeting analogy retrieval mainly focused on modeling analogical relations in non-scientific
domains or within restricted scopes, such as structure-mapping [80, 81, 82, 87, 250], multiconstraint-
based [72, 120, 127], connectionist [117], and rule-based reasoning [11, 39, 40, 259] systems. The high
costs of developing structured representations hindered hand-crafted systems, such as DANE [127, 257]),
from providing comprehensive topic coverage and real-world applicability.

Conversely, scalable computational approaches, including keyword or citation-based search engines, are
limited by reliance on surface or domain similarity. These engines maximize similarity to queries which
is helpful for identifying work within the target domain but less effective when seeking inspirations out-
side that domain (for example, for Salvador Luria’s queries: “how do bacteria mutate?” or “why are
bacterial mutation rates so inconsistent?”, similarity maximizing search engines may have found Luria
and Delbrück’s earlier work on E.coli [171] but may have failed to recognize more distant sources of
inspiration such as slot machines). Supporting users in finding relevant inspirations and aiding them in
adapting these inspirations to their problems can lead to deeper engagement and potentially fruitful out-
comes [10, 228, 260].

2.3.1 Bioinspired Design

One thread of research in design by analogy focuses on biological organisms and systems [129]. Projects
such as AskNature [66] and DANE [97] rely on manual curation, which is labor-intensive. For example,
redescribing a single biological organism in the Structure-Behavior-Function framework can take approx-
imately 40-100 hours per model. Alternative approaches have used crowdsourcing to identify biomimetic
inspirations in scientific articles (e.g., [258, 280]), but high-quality annotations pose significant scala-
bility challenges. Rule-based and data programming approaches also show promise but face issues of
generalizability and scalability [54, 74].

2.3.2 LLMs for Ideation and Co-Creation

Recent advancements in LLMs offer potential for enhancing analogical innovation across all stages of the
cognitive process [267]. LLMs can infer specific analogies, generate relevant ideas, and provide flexible
natural language interfaces for interaction [1, 142, 178, 195].

However, studies have shown that improper incorporation of LLMs in the creative process can lead to
fixation rather than increased creativity. Issues such as inaccurate inferences, hallucinations, and fixation
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on AI-generated ideas have been highlighted [147, 261]. Thus, a more nuanced approach to using LLMs
in analogical innovation is necessary, aiming to augment human creativity without replacing it or causing
undue fixation.
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Chapter 3: Threddy
Supporting Personalized Thread-based Exploration and Organiza-
tion of Scientific Literature
This work was previously published in ACM UIST 2022 ([136]) and has been adapted for this document.

Although numerous systems aim to assist users in their bottom-up sensemaking processes, many do not
enable users to directly extract and curate synthesis outputs (e.g., research threads) provided by others and
develop them over time. Incorporating interaction features that align with users’ existing workflows and
support natural research thread discovery can substantially enhance sensemaking by reducing interaction,
context-switching, and cognitive costs, while aiding knowledge relation and structure identification.

Furthermore, treating threads as first-class objects not only allows a broader exploration beyond the current
paper but also enables effective interpretation of users’ interests and intentions by AI during literature
exploration. The combination of rich description and citations in threads can be leveraged to better target
user interests.

In this chapter, we explore a new paradigm for augmenting users’ scientific paper reading by introducing
Threddy, a platform that enhances a web-based PDF renderer with low-cost interaction features. Threddy
enables efficient in-context extraction and organization of research threads and recommends additional
relevant papers. It fosters users’ understanding of their own work’s contributions while organizing threads
and supporting evidence during reading.

3.1 Introduction
Reviewing the literature to understand relevant threads of research is a critical part of scientific research
and serves as a research facilitator and a vehicle for learning [33]. For example, a scholar trying to
understand the history of tools that support scientific literature review might learn about research threads
including overview visualizations based on citation networks; augmentative interfaces for active reading;
collection tools that help scholars organize their papers; and so forth. Understanding prior threads of
research is critical to building on past work, finding inspirations for new innovation, and positioning
contributions in the appropriate research context.

However, as the scientific literature grows the challenges for users to find and make sense of the many
different threads grow as well. Finding and keeping track of papers within a single thread can be chal-
lenging, requiring users to traverse references and citations, read through introductions and related work
sections, and search across various keywords to avoid missing important work. Exacerbating the problem,
scholars are often interested in multiple threads that are relevant to their work, with each often branching
into multiple sub-threads as the example described above of literature review support tools demonstrates.

An effective strategy for ‘shortcutting’ the cumbersome process of assembling research threads is to har-
vest and build on the work that other scholars have already done in assembling them. This process,
commonly used among scholars [33, 278], involves reading through papers (typically in the introduc-
tions and related work sections) to find how the authors have compressed and summarized the threads
of research relevant to their papers in order to situate their own work’s contributions. These predigested
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Figure 3.1: Thread creation and organization while reading on Threddy : 1O The reader highlights a useful
patch of text that interleaves references in a citation context. 2O The system extracts the referenced papers
from the highlighted text, link them to the citation context, and show the resulting data to the reader. 3O
The reader creates a new thread together with the citation context and extracted references. Alternatively,
the user can add the context only as a relevant clip to an existing thread, or add the extracted references to
it. The threads and their context follow the reader as she continues on reading other papers.

threads provide scaffolding for users in assembling their own, both in terms of the references cited as well
as the citing text describing those references. By following the most relevant references, finding more
citing texts, and further chaining through papers, scholars can more quickly assemble an overview of the
research threads in an area than by searching and collecting individual papers alone.

However, even this process of inferring threads is cumbersome. Consider the following scenario in which
a scientist is learning from a new research paper. Quickly skimming the introduction, she may identify
a useful patch of text in it which describes a research thread she would like to explore further. This
patch of text (e.g., a sentence, a paragraph, or a section) often contains a number of citations pointing to
related work and describes their relation which provides a helpful context. Deciding to save this context
and follow up on one of the references requires her to first jump between the references section and the
citation context in the body text to link the reference notation she wants to follow up with to the actual title
and URL of the paper. Next she needs to locate the actual content of the paper, perhaps by querying its title
on a search engine. Finally, she may make notes of the found paper and save it for future reference. She
needs to repeat this multiple times for each patch of text she finds interesting, the cost of which compounds
quickly. The reference notation used in papers may also differ, sometimes providing little context about
what they are (e.g., numbers in a bracket such as ‘[1]’), and this lays an even more burdensome task of
correctly mapping and linking papers, which (using one of our study participant’s words) can be “a real,
damaging context break.” In addition, she might after all end up finding that the actual content of the cited
paper to be irrelevant or uninteresting, in which case she must resume her flow of reading by re-building
the lost context and previous threads of thoughts.

As she moves to other papers and collecting more patches of relevant information, it may become clear
that they relate to each other along some threads she created, and this needs to be captured. In order to
achieve this, she first needs to look through her own notes, threads, and references that she may have
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loosely organized, and this quickly becomes a sizable sub-task that once again requires her to break out of
her flow of reading in order to complete it. Furthermore, it is easy to forget which references are already
looked at and which are new that need to be processed, which may incur additional friction to the process.
She may also have multiple threads she would like to follow up on at any given time, without having an
easy way of keeping track of them while she is reading a paper. Using multiple tabs or groups of them
might be an intuitive way to organize articles into related threads (albeit its potential for creating a tab
overload [51, 52, 100]), but this does not help with maintaining patches of citation context that described
the threads. Finally, once relevant patches of text are collected for each thread from source papers, there
is no easy way to use this information to find additional relevant papers that she may use to further grow
the threads.

While significant research has focused on supporting scientific literature search and collection, there is
relatively little support for users building threads during reading. For example, Papers101 [55] aims at
supporting early-stage scholars’ discovery of literature by recommending relevant but unused keywords
for query. Alternatively, Apolo [53] adopts and applies the Belief Propagation [274] algorithm on the cita-
tion network in a novel way to support progressive retrieval of papers given a set of papers that the user has
collected thus far. Once a list of recommendations are curated, systems such as PaperQuest [209] provide
support for triaging what to read next, and VisualBib [63] aims at providing a more holistic support for
managing the growing user-curated bibliographies. However, none of these systems provides a mecha-
nism for leveraging the data scholars have collected and assembled into threads while reading research
articles to recommend further relevant papers to continue growing the threads.

In this paper we aim to address this gap in the literature by developing Threddy , a system that sup-
ports users with collecting patches of text in research articles that contain pre-digested syntheses by other
authors (i.e., a useful citation context along with automatically extracted references), and helps them
assemble personal research threads using clippings of others’ pre-digested threads. Different from the re-
lated prior work, Threddy does not create a new information environment nor an application context that
requires users to context switch away from their natural flow of reading, but instead seamlessly integrates
the support it provides into the user’s in-situ context of reading. We evaluate Threddy in a controlled
lab study with 9 scientists conducting literature review in personalized domains, and demonstrate how it
increases users’ effectiveness in leveraging pre-digested syntheses by other authors to enrich their own
threads, decreases the cost of frequent context switching they would have experienced in a similar task
without the tool, and heightens users’ flow state while conducting a literature review.

3.2 Usage Scenario and System Design

Usage Scenario. We first illustrate how an end-user, Sam, would interact with Threddy to conduct a
literature review. Sam is reading a paper when she encounters an interesting patch of text (see also fig-
ure 4.1). The two paragraphs in the related work section describe particularly relevant research threads
that she wants to follow up on and save the references included in them for a deeper look. She quickly
highlights the paragraph, which triggers Threddy to search for references included in it, automatically
extract the metadata corresponding to each, and present them as interactive objects in the sidebar. Sam
glances over the linked references and removes a couple of them which seemed less relevant based on
their titles and TL;DR summaries, while keeping the rest. The extracted references and the context seem
to form a good grouping for revisiting later, so she adds them as a new thread labeled ‘Reifying ephemeral
user interaction (e.g., text selections)’. She continues reading the paragraphs and repeatedly extracts and
saves additional context, references, and threads such as ‘Systems for constructing narrative structures in
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Figure 3.2: The design of Threddy consists of two primary panels, (E) PDF viewer & Highlighter and (F)
Sidebar. When the user (A) highlights text in the PDF, its content and references are found and temporarily
stored in the (B) holding tank. The user can review the content of the holding tank and clean up any errors
in the automated extraction and linking of references. When the content looks good, the user can either
type in the (C) thread selector to create a new thread, or choose an existing thread. Choosing an option
selectively activates buttons for 1) creating a new thread with the references, 2) only adding the extracted
references to the chosen thread, and 3) only adding the content of the holding tank as a clip to the chosen
thread. Once the user chooses the intended operation, the (D) thread drawer’s content is updated to reflect
the change. The user can interact with the thread drawer to organize and re-organize its content. The
changes are stored and persist across other paper PDFs.

sciences’, and ‘Systems that augment document margins’. While these new groupings are helpful, she is
not yet confident if the newly added threads and the hierarchy would make sense in light of additional
references she would find later. She is also a little worried that the saved references may not provide a
good coverage on the topic.

This leads her to click on one of the newly saved thread for a detailed look. In it, she finds a panel that
shows additional references which cite several of the curated papers for the thread which seem relevant
and useful. In particular, she finds three recent papers that cited a few of the papers she saved for the
thread at the top of the panel. Seeing these papers leads her to create another thread with them. This
also leads to a change in her mental model around the higher level research thread; she realizes there is
a parent-level concept that aptly contains two of the threads she curated until now as its children. She
creates it and nests the two threads as its children to better capture her updated mental model. She then
collapses the parent thread to declutter the view and focus her attention to the other thread – ‘Systems
that augment document margins’ – that she has not yet looked at in detail. She finds one of the papers
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Figure 3.3: The Overview and Discovery page consists of three components: At the top of the page is a
section for the clips collected for the thread. In the middle of the page are references that belong to the
thread grouped by their citation context, and at the bottom of the page (not shown here) is a recommen-
dation panel that contain relevant papers. The overview shows all of the entry thread and its sub-threads’
content in a hierarchical manner (indented tree). Readers can choose which thread they want to look at in
more details from the sidebar view.

included in the thread particularly interesting, and clicks on it to switch to the PDF. Though her attention
shifts towards reading the new paper, she nevertheless maintains her awareness of the current research
thread she is interested in from the persisting content of the sidebar view on the right of the new PDF. At
the top of the sidebar shows the most recent thread she made changes to, which shows the hierarchy of
threads she has been organizing thus far. In the new paper’s related work section, she finds interesting new
examples of systems from the prior work and the corresponding threads describing how document margins
might be augmented in different ways to improve learner discussion, engagement, or comprehension of
technical documents. She adds these papers to ‘Systems that augment...’ with the context and sub-threads
corresponding to the specific ideas described in the paper.

System Design Rationale. Literature review is a complex task that most likely spans long durations,
may be interrupted by other tasks [185], and is often initiated and resumed across different device modal-
ities [98]. Therefore, one of the core design rationale for Threddy was how the context-switching cost
may be reduced and the relevant task context such as research threads may be surfaced as the end-user
moves from one paper to another. On the one end, active reading interfaces such as LiquidText [241] and
texSketch [? ] integrates an interactive canvas for note-taking and diagramming to an individual document
to support in-depth reading. On the other end of the spectrum are systems for visualizing a collection
of documents and their relevance between each other, as discussed in the related work section above. In
contrast, Threddy ’s PDF renderer seamlessly replaces the end-user’s default PDF reader in their browser,
such that they can read papers as they would normally without any additional constraint of having to start
reading papers using a new system, all the while collecting relevant papers and structuring them in a form
that reflects the user’s current mental model of the research space. Highlighting and Selection. Threddy
’s main PDF reader is divided into two areas (fig. 4.1): a PDF viewer and highlighter on the left EO, and
a sidebar view holding the thread-related content on the right FO. The PDF viewer supports text (using
mouse drag) and area highlights for images (drag-and-drop while pressing and holding the options/alt
key), which trigger Threddy to extract references included in the highlighted context (extraction is sup-
ported only for text highlights). Readers can view the extracted citation context and references in the BO
holding tank in the side bar, and deselect any reference they do not want to include or to fix any extraction
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error. Readers can add the citation context together with the references as a new thread, or simply add
them as a clip or papers to an existing thread using the CO thread selector. The selector uses the citation
context and computes the thread similarity (Appendix A) to suggest which thread the highlighted and
extracted content most likely belongs to. Threads and references are visually (e.g., different threads use
colored dots with numbered counts of nested items on the left; papers use a ‘document’ icon in place of
the colored dots) and organizationally differentiated (e.g., papers show a distinct title - metadata - TL;DR
content structure within each card UI). Readers can edit the context or the label in the thread by clicking
on the text. Citation context clips are visible only in the Overview and Discovery by default, to prevent
clutter. Organization. Readers can (re-)organize the threads by drag-and-dropping a thread or papers

Show detailed description of 
the citing context, grouped by 
intent (e.g., “Methodology”)

Add selected paper 
to this thread

Re-generate recommendations 
with updated papers in Thread

Figure 3.4: The discovery view shows recommendations with high citation coverage, recency, and se-
mantic similarity in a grid. Users can examine the details of each recommendation and decide to add the
recommended paper to the current thread. Once the new paper is added, the user can click [Refresh] to
generate new recommendations using the updated thread.

into another thread as a nested thread or out of a thread to start a new one. Threads that most recently
received an additive change (e.g., a new paper was added to it) are moved to the top. The rationale behind
this design choice was that readers may have more organizational needs for the threads that last received
content, and/or they are the ones readers most recently attended to and thus are likely to be re-visited. At
the top of the thread drawer DO, the default ‘Unorganized Papers’ thread is created and each paper PDF
opened in the viewer is initially added to it, such that readers can re-visit or organize it at a later time if
they wish to (cf. ‘deferred actions’ interaction design [115]). The paper in the current reader is annotated
with a ‘current paper’ message at the bottom of the corresponding paper card for awareness.

Overview, Discovery and Persistence. Clicking on either the ‘View Details’ or ‘Zoom’ icon in each
thread opens the Overview and Discovery panel for the selected thread (fig. 3.3). The clips that were
minimized to prevent clutter in the sidebar view are now visible in full details, along with references
grouped by the citation context they were collected from. The panel shows all of the nested threads and
their content structured in a hierarchical manner, along with the content of the selected thread. At the
bottom of the Overview and Discovery panel are new paper recommendations generated by searching for
those that have most cited the papers curated for the selected thread (fig. 3.4). Each recommended paper
conveys relevance by showing the number of papers that it cited from the curated, along with the citation
context and intent (e.g., in the ‘Methodology’ section). These more recent papers help users discover
newer development on the relevant research threads, akin to forward chaining commonly used by scholars
conducting literature reviews.
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Figure 3.5: Threddy system architecture: (A) PDF Renderer captures and handles user highlight events,
(B) Thread Handler fetches the references included in the highlighted text and visualizes them in the
holding tank. (C) The parser provides the PDF parse to the thread handler for finding corresponding
references in the highlighted text and fetching them via the (D) Paper Lookup module. It also supports (E)
the citing paper recommender for user expanded threads. The data is stored in a web storage and persisted
as the reader moves to other papers.

3.3 System Architecture
The front-end of Threddy handles user interaction with PDFs, rendering of threads, and the Overview and
Discovery panel and is implemented as a Chrome browser extension. The back-end is implemented as a
Flask server using GROBID [5] for parsing the PDF content such as the title, section headers, each in-line
citation notation to the corresponding reference entry, and body text sentences and their coordinates within
the document from its top left-hand side corner.

3.3.1 Automatic Extraction and Linking References to User Highlights

Backend PDF parsing, linking, and mapping user highlight locations. When the user opens a new
paper PDF on the browser, Threddy sends the file data to the backend GROBID server for parsing. Our
GROBID server uses a cascade of sequence labeling models including a fast linear chain CRF to parse
a PDF (see [5] for more details). This server provides full text extraction and structuring of the received
PDF, including the overall document segmentation (i.e., locating elements in pixel positions given the
scale of the received PDF file) and structuring the text body into sentences, section titles, in-line citation
notation to corresponding references (e.g., Whether and which reference ‘[1]’ in a sentence represents),
figures, tables, etc. This process is run once when a new paper is opened in Threddy (previously pro-
cessed PDFs are cached) and takes up to a few 10s of seconds to complete. Additionally, we include the
pixel coordinates for each ‘sentence’ parsed from GROBID, and run an additional sentence parsing using
spaCy1 to merge sentences that may have been erroneously broken. Using this parsed data, we search on
the S2ORC [170] and Semantic Scholar APIs2 to link the corresponding paper with its metadata including
the URL, publication year, TL;DR [37], SPECTER embedding [58].

Using the parsed PDF, we first align the scale of the rendered PDF with the PDF used for parsing in

1https://spacy.io/
2https://www.semanticscholar.org/product/api

21

https://spacy.io/
https://www.semanticscholar.org/product/api


GROBID. When the end-user highlights a portion of the text in PDF, the scale-adjusted coordinates of the
highlight location is used to search overlapping sentence coordinates of the parsed PDF. We also collect
the surrounding context (i.e., pre- and post-sentences of the overlapping sentence) for clipping. References
included in this contextualized selection are searched in the parsed PDF. For image highlights, we simply
take a screenshot of the underlying content and convert it into a data url for storage and display.

3.3.2 User Highlights and Creation of Threads

Front-end PDF viewer, Highlighter, and Sidebar. Using the parsed PDF data, we replace the native
Chrome PDF viewer with our custom viewer based on an existing highlighter3 that provides convenient
functionality for text and area selection which is a wrapper around the underlying rendering engine based
on Mozilla’s PDF.js4. We feed it with our parsed PDF data and align the rendering scale and user mouse
coordinates in accordance with the parsed PDF’s coordinate system.

The sidebar consists of multiple components (fig. 4.1). The holding tank view at the top visualizes the
intermediate content based on user selection. This includes the user highlighted text and the references
that are directly in or nearby the highlighted content or an image highlight from the PDF. The references
are shown as a list of cards underneath the user highlighted content. Each reference card contains title
and additional metadata about the paper, as well as the surface citation notation as shown in the PDF
text for ease of mapping. The user may choose to select some but not all of the references automatically
extracted to include (clicking on the trash icon discards the selected reference). The toolbar underneath
the holding tank is selectively activated based on user selection of the thread and the input data. The text
input box (fig. 4.1, CO) allows users to either type in new text (will create a new thread if no matching
thread exists), or select one of the existing threads to add the data to. Thread suggestions are generated
using an algorithm that first compares user highlighted text and to each vertical chain of the threads to find
the most related top-level thread. Next it ranks the most closely related sub-thread within the best chain
that the new content may be added to (see Appendix A for details).

Thread interaction. Threads are presented using an interactive nested structure which users can drag-and-
drop to nest a thread under another or move it out of the parent thread, delete an existing thread, modify the
label of the thread, or collapse/expand all its content (fig. 4.1, DO). At the top of the thread view is a single-
level, unremovable thread titled ‘Unorganized Papers’ – this thread is automatically generated and adds
any paper PDF that is opened by the user under it, allowing the them to defer the action of organizing the
papers. This thread is not subject to the user interactions described above other than moving its member
references to a different thread (or vice versa).

Clips and references included in each thread are visually differentiated. Clips are not shown to the users
by default, but simplified as a simple counter message (e.g., ‘3 clips found. View details’), upon clicking
which opens up an Overview and Discovery panel (Section. 3.3.3) to allow for the end-users to examine
further details. In our user study, participants often clipped several textual and image content for each
thread; showing all of them in the thread view will clutter it and make it hard to find the threads the user
was building on. References, on the other hand, are directly shown as a list of separate cards underneath
the thread that they belong to aid immediate access and further exploration. In addition to the content and
metadata of the referenced paper, each paper card UI contains a URL icon, which automatically links the
reference to its URL on Semantic Scholar. Clicking on the link directs end-users to the paper details page
and reduces the amount of context switch they otherwise need in order to find the PDF.

3https://github.com/agentcooper/react-pdf-highlighter
4https://github.com/mozilla/pdf.js
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3.3.3 Overview and Discovery of Additional Papers Related to Threads

Overview of threads. Once users have created multiple threads that may include sub-threads and relevant
references, it can be challenging to review all of the collected and organized content, and to use all of its
data to find additional papers in the related literature to further explore and grow the thread. To aid users
with this overview and discovery experience, we designed a direct access to a separate panel (fig. 3.3)
which opens up when the user clicks either the ‘View details’ text or the Zoom icon included in each
thread card. The panel is expanded to the whole screen width when opened and shows the unrolled view
of the selected thread and all of its sub-threads, along with the clips and references collected at each
depth. We visualize this using an indented hierarchy to further differentiate threads at different levels
(fig. 3.3, right). The panel has three main sections: At the top, user collected clips are shown in a grid with
accompanying annotations of the source they were clipped from. Next, a list of references is grouped by
their citation context and presented. Finally relevant papers are recommended at the bottom of the page.

Discovering new papers. Using the data collected and organized by each thread to find more relevant
papers to further grow the thread could be a challenging task and may significantly interrupt with the end-
user’s flow of reading. In order to close this discovery loop, we automatically recommend new relevant
papers when the Overview and Discovery panel is opened. End-users can then select any of the returned
recommendations to add to the thread by clicking on the ‘Add to thread’ button (fig. 3.4, middle). This
adds the paper to the thread in the sidebar as well and keeps it in sync. End-users may click ‘Refresh’
(fig. 3.4, top right) to re-generate the recommendations based on the updated list of references in the
thread, which then invokes the recommender engine.

We use the Semantic Scholar API5 to fetch necessary paper details for retrieval. Our recommendations
use citation coverage as its primary source of relevance signal. The rationale behind this decision is that
each selected thread contains user-curated relevant papers and the higher the number of thread references
cited by a new paper, the higher the chance that it may be relevant to the thread. While we limit our
search boundary up to 1,000 direct citations for each thread reference, future work may explore relevance
via longer citation chains. For each of the citing paper, we simply count how many of the unique thread
references were cited by the new paper. In our pilot tests, we found this to be a good proxy for relevance
to the thread’s content and return to this in our discussion. We sample a much smaller number (50) of top-
ranked results from the top-ranked high-coverage citing papers and sort them by their publication recency.
If the two citing papers have the same publication year, we further differentiate them by their semantic
similarity computed as the cosine similarity between the centroid vector of the set of thread references
included in the thread vs the new citing paper using SPECTER embeddings.

3.4 Evaluation
In evaluation our goal was to study how effectively Threddy supports scholars reading research papers
to review the relevant literature in a new domain. To this end, we designed a short literature review
task with the goal of producing an outline structure either for themselves in the future or someone else
to build upon. We employed a within-subject study comparing Threddy to the commonly used Google
Docs editor baseline (without any extensions for searching research papers installed) with research topics
that scholars were personally interested in conducting a literature review of. Alternative choices for the
baseline comparison may include combining a qualitative coding software such as NVivo with a reference

5https://www.semanticscholar.org/product/api
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management tool Mendeley6, or the recently announced Zotero 67 browser plug-in which allows users to
annotate PDF documents opened in it and create notes that can be exported and imported into the desktop
Zotero application. There are pros and cons of choosing each of these alternatives as a baseline for our
comparison. However, in our study we decided to use GoogleDocs because: a) every participant currently
uses it or has used it before to conduct literature review; b) it was directly accessible to everyone; and c)
it was sufficiently versatile to support creation of research threads, clipping, and adding references to the
thread. We return to the choice of the baseline condition in Discussion.

Participants and process. We recruited 9 participants (1 female) for the study. We employed a within-
subjects study design, and counterbalanced the order of presentation using 4 Latin Square blocks and
randomized rows. Due to the uneven number of recruited participants, the Google Docs-first presentation
order was assigned one more time than the Threddy-first order. The mean age of participants was 29.3
(SD: 4.67) and all actively conducted research at the time of the study (1 Master’s student, 2, Post-docs,
6 PhD students). Participants’ fields of studies included: HCI (5), NLP (2), Material Sciences (2). Par-
ticipants followed the following process in the study, which took place remotely using Google Meets:
introduction and consent, installation of Threddy, two training tasks followed by the main tasks in an in-
dividualized order, and surveys. Participants were asked to share their screen during the study. We ended
the study with a debrief interview with participants in which the interviewer asked follow-up questions on
his observations. The study lasted around 1 hour 20 minutes and participants were compensated at a $30
USD per hour rate.

Training tasks. We used the following paper [137] and using one of its subsections in the Related Work
(4 paragraphs) as the seed for practicing creation of an outline. The experimenter described the concepts
used in the main task including: ‘Threads’, ‘Clips’, and ‘References’; Threads are short descriptions of
topics or concepts in the related domain and can form a hierarchy with other threads; Clips are supporting
pieces of information related to a thread, which can range from a phrase to a paragraph-length text or
images directly taken from the paper; References are papers relevant to the thread. Participants were
shown a simple example outline and instructed that the outline needed a sufficient amount of details for
comprehension and the accessibility of the source. In addition, participants were instructed to read at
least one more paper that is relevant and create an outline that can incorporate multiple references in it,
starting from the seed paper. Participants were shown a quick tour and core functionality demonstration
(5 minutes) followed by a task to recreate the outline they created in a Google Doc using the same text in
Threddy.

Timed main tasks. The main tasks used the two topically diverse papers that participants submitted as
personally motivating sources for their own literature reviews as part of the sign up process. We randomly
assigned each paper to a condition and instructed the participants to start from it as a seed for the task.
The tasks were performed for 20 minutes each.

Surveys and interview. For demand (including physical and cognitive) and overall performance we adopt
the validated 6-item NASA-TLX scale [108]. For technological compatibility with participants’ existing
literature review workflows and the easiness of learning we adapted the Technology Acceptance Model
survey from [273] (5 items). For measuring the flow aspect [60] of participants’ interaction with the
system, we adopt Webster et al.’s research [268] uncovering multiple interrelated dimensions of flow in
human-computer interaction and the corresponding questionnaire (11 items). Finally, we included 8 addi-

6https://tinyurl.com/yckre5md
7https://www.zotero.org/blog/zotero-6/
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Figure 3.6: Evaluation Results: (a) The number of threads participants created in Threddy (µ = 5.2,SD =
2.28) and Google Docs (µ = 4.9,SD = 3.03) did not differ significantly (paired t-test, t(14.87) =
−0.22, p = 0.8). (b) However, participants added significantly more clips to threads (µ = 9.9,SD = 3.48)
in Threddy vs. Google Docs (µ = 4.9,SD = 3.17) (paired t-test, t(15.86) = −3.19, p = 0.006). (c) Partic-
ipants also collected and placed a significantly higher number of references into threads (µ = 20.4,SD =
13.84) in Threddy vs. Google Docs (µ = 7.9,SD = 4.91) (paired t-test, t(9.98) = −2.55, p = 0.03).

tional questions asking participants about extraction of clips and references, as well as their organization
into a thread structure (See Appendix B for details of the questionnaire).

Coding. For the baseline, two of the authors coded the first participant’s outline together to count the
number of threads created, as well as the number of clips and references collected. Then the coders inde-
pendently coded the rest of the data. The ordinal Krippendorff’s alphas were significant for all categories:
0.842, 0.962, 0.822 for threads, clips, and references, respectively. The main sources of disagreement
included: whether to count unfinished notes and incomplete text as clips, repeated or slightly modified
paper title text as threads, and so on. The final sets of counts for the baseline condition were therefore
produced by resolving any disagreements by taking the average between the two coders.

3.5 Findings

3.5.1 Collection and Organization into Threads

Quantitative Results

Participants in both conditions created a similar number of threads (µ = 5.2,SD = 2.28 in Threddy vs.
µ = 4.9,SD = 3.03 in Google Docs, paired t-test p = 0.8). However, the number of clips collected
for threads was twice as high in the Threddy condition (µ = 9.9,SD = 3.48) than in the Google Docs
condition (µ = 4.9,SD = 3.17, t(15.86) = −3.19, p = 0.006), demonstrating the utility of Threddy for
supporting collection of clips for individual threads. In addition, the number of references collected and
organized by the relevant threads was 2.6× higher (µ = 20.4,SD = 13.84) in the Threddy condition than in
the Google Docs condition (µ = 7.9,SD = 4.91, p = 0.03), further demonstrating its support for efficient
collection and organization of references by their relevant threads.

Qualitative Results

Saving time. All of the participants mentioned that automatic extraction of references from the high-
lighted citation context and linking them with metadata saved time. P1 mentioned that it “saves a lot of
time because I don’t have to cross check between the context and the references section” and similarly P3
said “Collecting references is such a pain, such a context break... and when I go to the references section
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and finally connect the number to the actual paper, and it turns out that the paper itself doesn’t even sound
interesting, I need to go back to where I was, with the damage already being done in terms of breaking
my reading flow.” Compared to their experience with Threddy, participants described their typical work-
flow of conducting literature review as involving lots of “scrolling back and forth” and “pointing and
clicking” (7/9 participants), and having to switch between different applications such as search engines,
PDF viewers, and note-taking applications (3/9). Automatic linking to metadata such as the link to the
paper details page on Semantic Scholar allowed participants to do without “having to spend a lot of time
to track down PDFs” (P5, P7). Automatically binding references to their citation context “reduced a few
clicks that would have otherwise been necessary to organize and keep track of that way” (P9). Uniformly
formatting references in the card UI removed the subtask for “formatting the references, for example it’s
always a pain to format the text I copied from a PDF... the text is either too large, colored differently, or
have weird line breaks, and often times the URLs are way too long” (P1) and made it easy as to not having
to “worry about all different (surface) citation forms” (P5). This saved time was thought to be used for
reading additional papers or switching to a different thread to explore more (P2).

Context awareness and flow. Participants also described the persistence of threads and pinning most
recently worked on threads to the top as effective awareness mechanisms for continuing their thinking
along those threads. P9 said: “Persisting data is helfpul, I don’t have to go back to the previous paper
to be reminded of what I was thinking of.” Context clipping was also considered helpful (3/9) and even
better with its persistence across papers (P1). P9 thought being able to see the threads while reading any
paper was “a good forcing function to encourage myself to structure and organize as I go.” Finally, P5
described the benefit of this awareness as follows:

“Perpetualness of the information is nice because otherwise I have to do this kind of tasks
in discrete chunks, just because I’ll lose the context a lot in the process because I cannot see
where things came from. Or just with a long list of citations and other things... I cannot
remember exactly why something that I opened up later is relevant anymore. In comparison,
here in the interface I have the continuous stream of cognition, like ‘Past Me thought this was
relevant to [production of materials] (thread created by P5).”

These results were also corroborated by participants’ responses to survey questions. On a 7-point Likert
scale (1: Strongly disagree, 7: Strongly agree), participants’ agreement was significantly higher with
the statement “It was easy to collect relevant clips using the system.” in the Threddy condition (µ =
6.2,SD = 0.67) than in the Google Docs condition (µ = 5.2,SD = 1.09, t(13.23) = −3.46, p = 0.01).
Furthermore, participants felt like it was easier “to keep track of relevant references” using Threddy (µ =
5.9,SD = 1.48) than Google Docs (µ = 3.8,SD = 1.27, t(15.63) = −2.80, p = 0.02), and also easier “to
organize references into relevant threads” using Threddy (µ = 5.6,SD = 1.13) than Google Docs (µ =
3.4,SD = 1.33, t(15.58) = −3.59, p = 0.007). Finally, participants also felt that they were in a heightened
flow state while using Threddy based on the results from our survey. Participants’ average composite
responses to the flow questionnaire items was significantly higher in Threddy (µ = 51.0,SD = 6.5) than
Google Docs (µ = 42.9,SD = 6.77, t(15.97) = −2.94, p = 0.02). Additionally, the overall demand
required for accomplishing the tasks, measured as the sum of the scores to five NASA-TLX questionnaire
items (excluding performance), showed no significant difference between the Google Docs (µ = 62.6,
SD=25.90) and Threddy conditions (µ = 55.3, SD=20.34) (t(15.15) = 0.76, p = .52, Two-sided paired
samples t-test; Table 1).
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3.5.2 Discovering Papers Relevant to Threads

Participants mentioned that “it was nice to see recommendations directly relevant to each thread” (3/9) and
directly accessible in the interface (8/9). Many recommendations “seemed relevant” (7/9) and especially
in the first few rows of the recommendation section. Given their relevance, P6 felt that “citation coverage
as proxy for relevance seems to work well.” Participants also agreed with the statement “It was easy
to find additional papers relevant to each thread using the system” significantly more in the Threddy
condition (µ = 6.1,SD = 0.78) than in the Google Docs condition (µ = 4.2,SD = 2.28, t(9.86) =
−2.35, p = 0.04). They also felt featuring recommendations in terms of more recent papers that cited the
references included in threads was helpful for “getting a sense of how the field is progressing” (P3, P5).
Interestingly, one participant felt that she experienced “no fear of missing out (FOMO)” (P1) given the
amount of recommendations available and their overall relevance, but another participant commented that
“I feel a little bit of FOMO because I built a thread which I thought was complete in a sense, but then
seeing all these interesting articles made me think, what other things have I missed or simply not shown
to me because I decided to organize this thread as such” (P5).

3.5.3 Extracting Pre-digested Threads, Integrating Papers into Assembled Threads

One challenge with extracting pre-digested threads from other papers was merged context, which hap-
pened when the author of the paper combined multiple kinds and levels of research contribution into a
single patch of text. P1 mentioned that “(fuzzy) selection is nice, but it sometimes leads to too much... I
have to still go through the list of extracted results and ‘check off’ something that I don’t want. For exam-
ple, these papers are general and maybe related in the loose sense at best... these on the other hand are
more specific.” Similarly P5 commented: “My main frustration is that people put so many references into
a single sentence, and they are not the same. Some of them are more specific and some of them are more
general.” Participants mentioned a need for specifying when they want an exact or pin-pointing selection
mechanism that complements the current fuzzy extraction from the highlighted citation context (“Some-
times I want to point at exactly one cite I want to add from the context.” – P1), with additional support
when a number of references were included in the citation context (“And for other papers, (citation) styles
like [12 – 15] are not great because they (the references) are in a batch, so how am I supposed to know
which ones go to which and which one’s interesting?”). While automatically linking the metadata of the
extracted references including the title and TL;DRs was helpful to the participants, sometimes they were
unavailable due to missing data or provide insufficient context for comprehension specifically related to
the citation context of interest (P1, P2, P5).

3.6 Discussion

3.6.1 Impact on the Workflow

Thread-first vs. paper-first exploration. Participants used Threddy to navigate through authors’ pre-
digested threads, collect ones that were interesting to them, and assembling their own threads using the
collected threads. Compared to how they conducted literature review Threddy seemed to unlock a new
capability for them to synthesize along the personally interesting threads, across multiple papers, without
losing context in the process. P1 contrasted her experience on Threddy with how she currently conducts
literature review on Google Docs and described that the former inverses the role between threads and
papers in a sense:
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“On Google Docs, I can only focus on one paper at a time. When I find an interesting new
paper, I’ll skim it and write a short description of why it’s interesting. If I find it’s worth
a more detailed read, I’ll try to read it in full, taking notes... like creating my version of an
annotated bibliography. In Threddy I can see my threads when I read a new paper, so I almost
focus on those (threads) as opposed to individual papers.” – P1

This phenomenon of thread-first exploration (in contrast to the paper-first exploration commonly used by
our participants) was also observed in how our participants engaged with actions such as adding new pa-
pers to threads, moving references and sub-threads out of their parent thread once enough references with
sufficiently different context were identified, and re-labeling and re-framing threads with different text to
capture their evolving understanding of the research field. It seemed that Threddy did not create additional
workload for users by encouraging them to take the thread-first perspective either; there was no significant
difference in terms of the number of threads participants created within the duration of the timed study in
each condition nor in terms of their perception of the demand required of them. It is possible, however,
that the core of the literature review task that requires complex processing of information (e.g., identify-
ing interesting research threads, summarizing and labeling threads, organizing them in a useful structure,
updating the threads) is not helped directly by Threddy. Indeed, participants perceived the easiness of
creating threads and subthreads to be roughly equal in both Google Docs and Threddy conditions (see
Table 1). Instead, Threddy may help scholars with the task by freeing up their capacity and attention
span that would otherwise be tied up by significant auxiliary tasks such as collecting supporting pieces
of evidence or relevant context as clips, organizing them into threads, and growing the threads with addi-
tional references while keeping track of them. Indeed our participants responded that Threddy provided
significant support for such tasks (Table 1).

On-the-go foraging and structuring. At a high level, Threddy users could continuously collect infor-
mation while following the relevant threads of research. For example, improved context awareness and
persistent threads across papers led participants to move between them and “structure information on the
go” (P9) as opposed to reviewing papers individually and “in discrete chunks due to the frequently lost
context” (P5). Moreover, in-thread recommendations integrated the stages for searching and reading, fur-
ther reducing the context-switching cost. These reduced switching costs and support for externalizing
working memory position Threddy to be especially useful in supporting the early sensemaking process of
literature review as researchers forage for information, helping them create what Pirolli and Card term a
“shoebox” of relevant information [208] easily, in a more organized way, and with affordances for helping
them pull in even more relevant information. There are many other aspects of the process where other
tools would remain useful. For example, active diagramming and concept mapping may help users exter-
nalize representations focused on relations of the concepts involved (e.g., understanding how the different
components of a weather system fit together from a paper, rather than the threads of research on weather
systems). Synthesis and summarization tools may also help further along the process; here it is possible
that a thread-based approach could scaffold the creation of synthesized mental models by enabling users
to work with pre-grouped sets of papers.

Checking assumptions via thread-centric recommendations. Participants generally appreciated the
recommendations specific to each thread. In addition to the primary benefits of: 1) seeing what is out
there, 2) getting a sense of how people are building off of the work curated for each thread, and 3) what
may be relevant papers for further exploration along the specific threads, recommendations had secondary,
unanticipated benefits as a “check for whether my thread makes sense (by looking at the returned recom-
mendations)” (P3) and as a way to “think about how I might re-define or sub-divide my threads” (P7).
Other participants felt additional mechanisms for specifying which context is personally more important
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for the recommendations, because they felt like “the list of recommendations is quite a spoonful (of pa-
pers), some of them are relevant but only at a high level, for example I don’t want to see [this paper] just
because most of the references in my thread have cited it in the background” (P1). A fruitful avenue for fu-
ture work therefore may lie in designing alternative mechanisms for finding relevant papers to recommend
for each thread that go beyond the simple citation coverage metric explored in this work.

3.6.2 Scaling over a Long Period of Time

An open question with Threddy is how the system would scale over time. With continued use, the number
of threads and papers in them would grow significantly. Furthermore, a user’s organization would require
refactoring as they become more expert in an area; research areas grow and split; or their interests and
mental models change. The design of Threddy was directly motivated by issues with scale faced by
researchers using other collection tools such as Zotero or Mendeley, with the introduction of hierarchical
threads developed in-situ aimed at providing a flexible and scalable way to keep track of diverse topics and
subtopics during literature review. Though limited by the duration, our user study uncovered preliminary
results speaking to the challenges of scale and time.

First, we found that users desired to focus primarily on a relatively small number of active threads that
were most relevant to the context of their target paper. During the post-study interview participants noted
that they are often limited in time by deadlines and focused on compiling the most relevant literature for
their papers or grants, for example writing a related work section that might include 2-4 topic threads. As
participants grew these threads, they noted that their mental models changed with new information, and
could use Threddy to refactor the threads appropriately. This included pulling out a particularly dense
topic into new subthreads, renaming threads as they learned more about what actually went in them, and
using the hierarchy to nest new threads into existing ones and move between them.

However, participants also noted challenges such as not being able to see an overview of all their threads
and easily reorganize them within a dedicated workspace. These suggest clear areas for future work
including bringing in proven triage and workflow approaches such as tracking which papers have been
read or are in different states of processing beyond the simple recency based mechanism introduced here.
While these techniques were not core to testing the thread-based idea but they will become essential
to a real-world system involving many threads, clips, and references. Another area includes support for
working with threads over time, including more intelligent ways to split and merge threads or reorganizing
them in the thread hierarchy, which would likely become more important as a user’s library grows over
time. At an even higher level, there are interesting questions around whether Threddy’s hierarchical
structure might be improved on by more flexible graph structures, and how such representations could be
collaboratively aggregated and built on by others.

3.6.3 Beyond Citation Chaining

Chaining the references in forward and backward directions in time is a common practice used by scientists
searching for high relevance papers in the literature and making sense of how the field has progressed
over time [266]. However, one potential limitation of citation chaining-based approaches is that it may
limit the discoverability of work outside frequently co-cited bodies of literature, and may lead to filter
bubbles [189]. Certain domains of knowledge are less likely to interact with each other [56, 238] despite
their potential for catalyzing significant scientific innovations [219]. Here, we believe that augmentative
tools that help end-users discover articles directly in the context of their flow of reading have potential for
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helping scholars become more open to the literature that may exist outside the domains they are familiar
with but are nonetheless relevant. Additionally, the reduced context switching with the aid of the tool may
also help scholars more deeply engage with more distant articles.

In this vein, recent work on discovering analogical scientific literature [140] demonstrated an early evi-
dence of the feasibility of computationally sourcing analogical papers that, although may be missed by
conventional search engines, would inspire scientists to come up with novel conceptualization of their
research problems (see also [122] for how similar mechanisms of sourcing computational analogies may
spark inspirational ideas in a different task context). Complementary approaches may leverage the knowl-
edge domains of papers that the scholar has recently read to automatically increase the frequency of cross-
domain retrieval in subsequent recommendations (cf. [139]) or to design a user control for interactively
tuning the retrieval domain diversity. At an even higher level, a broader design space for opportunities
exists, for example how the system might source recommendations by taking into account the inferred
‘social’ relevance to frequently read or cited authors, or use such relevance for user engagement and
prioritization of recommendations [138].

3.7 Conclusion
In this paper we developed Threddy , a system that supports users with collecting patches of text that
contains pre-digested synthesis by other authors (i.e., useful citation context along with automatically
extracted associated references), and helps them assemble threads they are personally interested in using
clippings of other authors’ pre-digested threads included in the introduction or related sections of papers.
In contrast with prior work that sought to create separate information environments for similar objectives,
Threddy seamlessly integrates into the user’s in-situ context of reading, and aims at reducing the cost
of context switching while harvesting, assembling, and synthesizing research threads. Further research
is required to uncover additional design implications for in-situ reading support for collecting other’s
synthesis work and assembling them into their own threads.
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A Algorithm for Ranking Relevant Existing Threads for Adding New
Threads

Sub-thread 1

2 3

Top-level thread

A new thread 
to be inserted

4

?
?

?
A vertical chain

Figure 7: Closely related threads given a new target thread to be inserted are ranked in two stages. In
stage one, the vertical chains of threads are grouped together, and a measure of fit that balances the group
similarity (i.e., similarity to the centroid of the group) and the maximal member similarity is computed.
In stage two, each of the member threads of a vertical chain is compared against to the target thread to
further rank them based on similarity which helps the end-user quickly see which thread may be the most
relevant for association. When no thread is matching the new thread’s content the user can insert it as a
new top-level thread.

With the continued use, scholars would likely accumulate a number of threads in the drawer of the inter-
face, leading to a scanning cost that may increase linearly with it at the minimum. In the hope of scaling
the usage of Threddy , an algorithm was developed to automatically sort closely related threads that the
new thread most likely belongs to in a descending order of their relevance. The first step of this algorithm
is finding closely related vertical ‘chains’ of threads to the to-be-added thread. The intuition here is that
end-users most likely nested threads for their semantic relatedness, preserving of which may provide the
system a valuable source of signal for discerning the similarity between the new thread and existing chains
of threads. Therefore, we first group the members of each chained threads (traversed via the depth-first
manner), and compute the similarity between the new target thread and the centroid of the chain. For
computing the similarity and the chain centroid, the target thread and each member of the group are em-
bedded into high-dimensional vectors that preserve their multifaceted semantic relatedness. We use the
Microsoft’s MiniLM model [263] fine-tuned by HuggingFace8 with 1B+ training pairs, including 116M
citation pairs from S2ORC. In our pilot test, this model provided a good trade-off between efficiency and
performance for use in our real-time application setting. The chain centroid is computed using a simple
average of the member thread embeddings.

However, optimizing only for the similarity to the group centroid runs the risk of finding a chain that
although the members’ centroid is close to the target thread’s embedding, all of its members may be
scattered far from one another (i.e., high dispersion, low cohesion). Therefore, we further measure the
similarity between the target thread and the closest member thread in the chain and use it to deprioritize
matching on such cases:

Group Similarity(grp,T) := sim

 N∑
n∈grp

(
−−−−−→
emb(n))/N,

−−−−−−→
emb(T)


Cohesion(grp,T) := maxn∈grpsim

(
−−−−−→
emb(n),

−−−−−−→
emb(T)

)
For a given target thread T , our final rank objective is multiplicative:

argmaxgrp

(
Group Similaritygrp,T × Cohesiongrp,T

)
8huggingface.co
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to prioritize groups with coherent rather than lopsided similarity (e.g., a high score on only one of Group
Similarity or Cohesion but low score on the other may result in an overall irrelevant thread to the user due
to the potential situations as described above.). Once we have identified the best chained thread to insert
the target thread into, we further rank its member threads in the order of its similarity to the target thread
embedding. The resulting ranks of the threads are then presented to the user who may insert the target
thread at a particular position of the chain.

B Additional Survey Results
Descriptions of additional questionnaire items and participants’ responses grouped by condition are pre-
sented in Table 1. Two-sided paired samples t-tests were performed to compute the p-values between
conditions. See Section 7.1 for a discussion of the results.

C Vignettes of Participants’ Threads
The vignettes of threads were simplified by excluding the many clips and references added to each (sub-
)thread, and loose yet-to-be organized papers. Note that the structure of threads is subject to change
through participants’ iteration.

Participant A’s vignette of threads, simplified.

• Human-AI collaboration in healthcare

Barriers to AI adoption in healthcare

Human AI-onboarding

ML as second set of eyes

Clinical decision support systems
• Mental Model for Decision Making and Errors
• Explainable AI in healthcare

Participant B’s vignette of threads, simplified.

• Interpretable model classes and explainability methods
• Usage of GAMs

GAMs are widely used to detect patterns of data
• Model interpretability (broadly)
• Explainable Boosting Machine
• GAM empirical studies and results

Participant C’s vignette of threads, simplified.

• Table-based decision support tools

Sensemaking of collections of online information
• Review Summarization
• Aspect Extraction Methods
• Research on consumer product reviews
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Description Google Docs Threddy p-val.

Overall Work-
load

Sum of the participants’ responses to the five
NASA-TLX’s [108] 21-point scale question-
naire items below.

62.6 (SD=25.90) 55.3 (SD=20.34) p = .47

Mental De-
mand

“How mentally demanding was the task?” 10.4 (SD=6.91) 11.6 (SD=5.59) p = .60

Physical De-
mand

“How physically demanding was the task?” 12.7 (SD=7.16) 9.3 (SD=4.18) p = .14

Temporal De-
mand

“How hurried or rushed was the pace of the
task?”

13.1 (SD=6.15) 12.3 (SD=4.47) p = .64

Effort
“How hard did you have to work to accomplish
your level of performance?”

16.2 (SD=3.90) 11.7 (SD=5.39) p = .15

Frustration
“How insecure, discouraged, irritated, stressed,
and annoyed were you?”

10.1 (SD=6.72) 10.4 (SD=5.94) p = .92

Flow

Sum of the participants’ responses to the 11
questionnaire items adopted from Webster et
al. [268] measuring the flow aspect of partici-
pants’ interaction with the system.

42.9 (SD=6.77) 51.0 (SD=6.50) p = .02∗

TAM

Sum of the participants’ responses to the 5
questionnaire items adopted from [273] mea-
suring the technological compatibility with par-
ticipants’ existing literature review workflows
and the easiness of learning.

28.1 (SD=5.93) 24.7 (SD=5.12) p = .18

Confidence

“Using the system increased my confidence in
conducting literature review. (The response
Likert scales for this question and below are 1:
Strongly disagree, 7: Strongly agree)”

4.7 (SD=1.87) 4.8 (SD=1.56) p = .88

Creating
Threads

“It was easy to create different threads in the
related literature using the system.”

5.6 (SD=1.24) 5.9 (SD=0.93) p = .54

Creating Sub-
threads

“It was easy to add sub-threads using the sys-
tem.”

5.4 (SD=1.51) 5.3 (SD=1.73) p = .83

Collecting
Clips

“It was easy to collect relevant clips using the
system.”

5.2 (SD=1.09) 6.2 (SD=0.67) p = .001∗∗

Organizing
Clips

“It was easy to organize clips into relevant
threads using the system.”

5.8 (SD=0.97) 5.3 (SD=1.50) p = .27

Keeping Track
of References

“It was easy to keep track of relevant references
using the system.”

3.8 (SD=1.48) 5.9 (SD=1.27) p = .02∗

Growing
Threads

“It was easy to find additional papers relevant to
each thread using the system.”

4.2 (SD=2.28) 6.1 (SD=0.78) p = .04∗

Organizing
References

“It was easy to organize references into relevant
threads using the system.”

3.4 (SD=1.33) 5.6 (SD=1.13) p = .007∗∗

Table 1: Descriptions of additional questionnaire items and participants’ responses grouped by condition.
p−values are from two-sided paired samples t-tests. The results suggest that Threddy helps with collecting
clips, growing threads by finding more references, and organizing them efficiently. However, Threddy did
not seem to decrease the demand of the task or of creating and organizing threads. Furthermore, there
was no significant difference in terms of technology compatibility/likelihood of adoption between Google
Docs and Threddy, suggesting a familiarity bias favoring Google Docs.
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Chapter 4: Synergi
A Mixed-Initiative System for Scholarly Synthesis and Sensemaking
This work was previously published in ACM UIST 2023 ([142]) and has been adapted for this document.

In this chapter, we build on Threddy to introduce Synergi which further utilizes user-curated threads as
boundary objects for AI to home in on user interests and relevant other threads. To this end, we explore
a mixed-initiative approach to directly support a crosscutting abstraction, threads, for scholarly synthesis
and sensemaking. Synergi searches important papers relevant to user-curated citation contexts via Belief
Propagation over a local citation graph, acquires their full text, hierarchically clusters relevant clips, and
synthesizes abstractions using GPT-4. The structured abstractions and clips are then recommended to
scholars as prominent threads of research, enabling iterative development and expansion. In our evalua-
tion, we find that Synergi helps scholars efficiently make sense of relevant threads, broaden their perspec-
tives, and increases curiosity. We discuss future design implications for thread-based, mixed-initiative
scholarly synthesis support tools.

4.1 Introduction
Scientific and engineering innovations rely on synthesis of prior art: to know what approaches have been
tried and identify most promising ideas for new problems; to unlock creative new ideas by combining ex-
isting ones; to reason about open challenges and unknown unknowns; and to contextualize one’s research
in a broader context of literature [154]. At the same time, scholarly synthesis is a cognitively difficult task
because it involves many inter-related steps in the process such as discovering the relevant literature about
a problem, reading and comprehending papers, collecting useful information and organizing it for fur-
ther distillation, and recording and monitoring progress by developing an outline that summarizes current
learning in the space [278]. Furthermore, scholarly synthesis becomes even more challenged by deepen-
ing specialization that makes the barrier of expertise for engaging with the literature higher [20, 110, 114],
the accelerating rate of growth [29, 131], and its increasingly interdisciplinary nature [194, 251].

In order to synthesize knowledge scattered across multiple papers, scholars often employ an iterative
workflow that involves multiple inter-related stages. This workflow can be characterized by its location
on a spectrum of how much of the initiative is automated, between fully bottom-up and fully top-down
workflows. Systems closer to the bottom-up end of the spectrum such as Apolo [53] or Threddy [136]
allow users to explicitly save an interesting paper or clip, and expand to additional papers and clips.
However, users are required to manually save individual clips and papers, making these systems fall short
of helping scholars synthesize and distill knowledge after the early stages of discovery and foraging in
sensemaking [208]. In contrast, systems near the top-down end of the spectrum such as ConnectedPapers1

and Metro Maps of Science [224] provide users an initial visual overview of the research landscape to
help scholars make sense of the structure of knowledge and discover interesting parts in it which can
be especially useful for scholars new to a domain. In addition, recent Large Language Models (LLMs)-

1https://www.connectedpapers.com/
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Figure 4.1: Main stages of Synergi. (A) A scholar highlights a patch of text in a paper PDF that describes
an interesting research problem with references. (B) The system retrieves important papers specifically
relevant to the highlighted context in terms of how they have been previously cited by other scholars,
via Loopy Belief Propagation over a local 2-hop citation graph from the seed references (Section 4.3.1).
(C) Relevant text snippets extracted from top-ranked papers are hierarchically structured and recursively
summarized using GPT-4 in the chat interface (Section 4.3.2). (D) The outline of threads, supporting
citation contexts, and references are presented to the scholar for importing, modifying, and refactoring in
the editor (Section 4.3.3 and 4.3.4).

based systems such as Galactica [242], ChatGPT2 and Google Bard3 enable Q&A-based interactions with
knowledge domains which users can iteratively query. However, the responses of such systems are similar
to visual overviews described above in the sense that they are complete artifacts, rendering them less
penetrable and useful for learning, iteration, and synthesis. Furthermore, despite the great potential for
augmenting scholarly synthesis workflows, LLMs also suffer from issues of hallucination and falsehood
(cf. [18, 26, 248]) that render their outputs uncertain, less trustworthy, and needing manual inspection
and verification.

Here, we propose a novel mixed initiative workflow, Synergi, that augments scholars’ existing synthesis
workflows by providing them a structured outline view of research threads, which they can interactively
review, curate, and modify. This outline can be iteratively generated to support scholars moving between
the bottom-up and top-down workflows of scholarly synthesis, and help them combine the best of both
worlds in the process. Synergi-generated research threads relate specifically to a query clip and seed
references, that may match only on a specific citation context within a paper rather than its entirety, and
can directly help scholars with making sense of existing threads of research in an area and understanding
their relations. Synergi accomplishes this by automatically retrieving a set of important papers from a
2-hop neighborhood on the citation graph and summarizing them in a hierarchical manner with a syn-
thesized label for each parent node that captures the core commonality among its children. In contrast
to prior approaches that supported largely manual bottom-up synthesis workflows (e.g., Threddy [136]
and Apolo [53]), Synergi synthesizes threads from multiple papers and organizes them into a hierarchy
that allows users to quickly discover most relevant threads and understand them through synthesis by
other scholars, described in the citation contexts in their papers, that are provided together. Furthermore,
in contrast to top-down LLM-based workflows that may generate difficult-to-inspect black-box outputs,
Synergi-generated threads maintain rich provenance and context to help users relate and inspect them
further by following up on the source papers and the specific parts in their body text.

Through case studies and a controlled laboratory experiment where domain experts compared the quality
of user-generated outlines from Synergi against those of a baseline system based on Threddy and a GPT-

2https://chat.openai.com/chat
3https://bard.google.com/
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4-based approach using the chat interface (henceforth referred to as Chat-GPT4) blind-to-condition, we
found that Synergi resulted in the highest overall helpfulness ratings from expert judges. Our quantitative
analysis showed that the overall helpfulness of outlines from Synergi was 1.6-point higher compared to
Chat-GPT4-generated outlines and 2.6-point higher compared to Threddy-based outlines (on a 7-point
Likert scale). In addition, experts judged that threads in the Synergi condition were better-supported with
evidence from the literature compared to the Chat-GPT4 condition (+∆3.3) and the Threddy condition
(+∆2.3; both on a 7-point Likert scale). Through quantitative and qualitative analyses of users’ inter-
action logs, interviews, and responses to experience survey questions, we found that Synergi allowed
users to think at a higher level of what existing salient threads of research are and how they divide the
space, increased their curiosity in them, and boosted their confidence in conducting a literature review. In
addition, we found that these benefits likely came from efficiency gains over a Threddy-based baseline,
and also from gains in coverage of synthesis compared to a Chat-GPT4-based baseline. We discuss these
results and conclude with design implications for future systems and workflow designs of AI-augmented
scholarly synthesis.

In sum, the contributions of this paper include:

• Synergi, a novel mixed-initiative workflow consisting of retrieval and organizational algorithms and
interaction features to support scholarly synthesis.

• The results of a controlled laboratory and case studies involving expert judges and detailed quantita-
tive and qualitative analyses of user interaction logs, interviews, and surveys uncovering the benefits
and challenges of the approach.

• Implications for future workflow designs and relevant research inquiries in this area.

4.2 Usage Scenario and Design Goals
Motivated by the challenges with existing tools and workflows described in the use scenario described in
the introduction of this proposal (Section 1.1), our design goals are as follows:

[D1] When reading one research paper, allow scholars to clip passages and references of interests, and
help them find important papers in the domain for synthesis, specific to query context and seed
references.

[D2] Based on clips and references collected by a scholar, the system should provide a structured outline
of salient research threads to support their synthesis across multiple papers.

[D3] Help scholars understand the specific research contexts described in each thread in detail, and verify
their sources.

[D4] Help scholars review the system-generated threads, curate ones that most interest them into their
own outline, and iteratively build upon it.

4.3 System Architecture
The system consists of two primary backend algorithms and two sets of interface and interaction features
corresponding to the design goals described above.
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Figure 4.2: Two main interfaces of Synergi. (A) The PDF viewer and in-text highlighter is similar to
that of Threddy [136], with a simplified stream of user-collected clips shown on the right. When the
user clicks the ‘Outline Editor’ button, the view switches to the editor mode. (B) In the top lefthand side
corner is an input for user-collected clips where keywords of clips can be typed in to trigger a dropdown
menu (not shown). Users can also click on “Try these clips” button to see the most recently saved clips
for convenience of their reference (not shown). When the user adds a clip in the input, Synergi kickstarts
the pipeline to generate a 3-level hierarch of salient research threads in the literature specific to input
clips. (C) Users can interact with the outline editor to curate interesting threads and citation contexts from
the hierarchy (Section 4.3.4). (D) Synergi-generated threads and grouped citation contexts are made
draggable for user curation into the editor (Section 4.3.3). (E) The reference manager automatically
updates upon changes in the editor content (Section 4.3.3).

4.3.1 Retrieving important papers specific to user’s query citation context (D1)

Background: Application of Loopy Belief Propagation for Sensemaking

Loopy Belief Propagation (LBP) [274] is a message-passing algorithm well-suited for iterative sensemak-
ing over graphs that may contain cycles. LBP has previously been applied to sensemaking over citation
graphs [53] due in part to its favorable qualities such as simultaneously being able to start from multi-
ple entry points on a graph (e.g., multiple references in a user clipped paper passage), and supporting
soft clustering (allowing each paper to belong to more than one research topics; see also Related Work
in [53] for additional discussions of the algorithm’s advantages over alternatives). While LBP on graphs
with cycles may risk non-convergence, in practice the risk is extremely low on citation graphs due to the
chronological ordering of citation edges leading to broken cycles and weak correlation [7].

Different from Apolo [53], in our workflow users start by specifying input that consists of the initial set of
seed references as possible exemplars on the citation graph, along with the citation context described in
natural language in which they were referred to. This setting does not assume user supervision is provided
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in an iterative manner throughout the process of discovery to prevent propagation of errors.

While previous use of Loopy BP over citation graphs only considered a set of user-provided seed papers
to help discover additional papers [53], users in Synergi clips passages and references as they read a
paper to discover relevant research threads and papers. To incorporate this additional context (i.e., text
passages) into Loopy BP, we introduced a new multiplicative objective for context-sensitive message
weighting (See Appendix A.1 for a detailed description), that goes beyond the constant message weighting
scheme used in [53]. Intuitively, each component of the new multiplicative message weighting objective
corresponds to the context similarity and reference overlap, respectively, optimization of which prioritizes
papers that simultaneously meet the conditions of 1) that they are referred to in semantically related ways
by other scholars in their literature reviews (typically appear in the introduction and related work sections
of the paper) and 2) that they build upon related threads of research, represented by the overlapping set of
references that they cited.

Construction of a factor graph using the 2-hop citation neighborhood

We run the LBP algorithm over the local citation graphs sourced starting from the seed references provided
in the user clip. In order to construct a candidate set of papers for retrieval (Fig. 4.1, 2O), the system
dynamically fetches the 2-hop citation neighborhood using each of the seed references in both directions
(i.e., incoming citations and references) using the Semantic Scholar APIs [149]. For each seed paper
referenced in a clip, this allowed Synergi to fetch up to 50 most cited incoming or outgoing citations and
50 references for each hop, resulting a total of 50 * 50 * 2 = 5,000 candidate papers. Once the 2-hop
citation neighborhood is retrieved for each seed reference, we construct our factor graph with each unique
candidate paper as a variable and use the citation edges as factors connecting the variables. To more deeply
consider how each candidate paper is semantically relevant to the user clips, we also retrieve from the APIs
information about each candidate papers including the titles and citing contexts. These information were
stored as annotations on each edge in the factor graph. Since a paper can be cited by the same paper
multiple times in different contexts, each edge may end up with multiple citation context annotations.
Furthermore, each variable can be connected to multiple papers that have citation connections with it,
allowing Synergi to capture different ways a candidate paper had been characterized by other scholars.

Acquiring and parsing top-ranked paper PDFs

Prior work [136] showed that specific citation contexts and synthesis already provided by other scholars
(often appear in the related work or introduction sections of a paper) are useful for scholars’ sensemaking
and literature review. In order to extract them, we developed a full-text PDF acquisition and parse pipeline.
First, we ran the LBP algorithm described above until convergence to find 30 top-ranked papers to search
for their full text PDFs. Then the pipeline initially searches the S2ORC corpus [170] to see whether a
corresponding full text PDF URL is available for each paper. In cases where a PDF URL was not available
in the S2ORC corpus, the pipeline uses the Google Custom Search API4 to search for a matching paper
title and its PDF URL using the “filetype:PDF” constraint. After obtaining a PDF file from the URL,
the pipeline uses GROBID [5] to parse the PDF and extract the citation contexts along with metadata
(e.g., page number that the citation context appeared on; the header of the section containing the citation
context, etc.) and the information of the references included in them to render in tooltips. Finally, if a
candidate paper fails to fetch its PDF or be parsed, the pipeline defaulted to the paper title and abstract as
its content.

4https://developers.google.com/custom-search/
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Figure 4.3: Interface features. (A) The thread outline view is organized using an indented tree visualiza-
tion. Threads and clips are visually differentiated using colors (the latter always featured a grey bar) as
well as information organization. The citation contexts for each thread were grouped by the source papers
and presented as a list. By default 3 contexts were shown; clicking on a [show more] button at the end
of the list expands the list (not shown). (B) Mouse over each reference in a citation context (dotted and
underlined for feature visibility) showed a tooltip that contained information about the reference. (C) The
reference section at the bottom of the outline editor was automatically updated with each reference featur-
ing citation cards; mouse over on a card showed a tooltip that contained the citation context information.

4.3.2 Generating Salient Threads of Research (D2)

Using the top-ranked papers from previous steps, Synergi generates a structured summary of multiple
relevant threads of research in the area (Fig. 4.1, 3O). This consisted of steps to home in on specific citation
contexts in the papers, structure them into a hierarchy, and summarize them to capture core commonalities
among the lower-level components in the hierarchy.

Filtering citation contexts most relevant to seed clips

To synthesize relevant information scattered across the multiple top-ranked papers identified from the
retrieval algorithm (Section 4.3.1) into a hierarchical structure using relevant text from them, Synergi
embedded the extracted citation contexts using text-davinci-003, and filtered those that have a higher
average cosine similarity to seed clips than 0.80.5

Agglomerative clustering and tree-cutting

To present the most relevant topical clusters to the users, Synergi first uses the embeddings of the filtered
citation contexts to measure how relevant they are to the user clip. For this, Synergi constructs a hier-
archical structure from them using a unsupervised agglomerative clustering with the Ward linkage. We
perform this using the fastcluster package [187]. Agglomerative clustering initializes citation contexts
as singleton clusters and computes the ward distance of each pair to successively merge the most similar
clusters. The result is a hierarchical binary tree (Fig. 11) where the height of the joint of branches repre-
sents the distance at which they were merged (the higher the height of the common ancestor of two leaf
nodes on the hierarchy, the more distant they are as neighbors). The resulting binary tree is then converted
into a 3-level hierarchy for the user to explore (see Appendix A.2 for a description of the rationale and the
method).

5determined through a small scaled experiment with five example clips during development.
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Recursively summarizing the children clusters

To help users explore the 3-level hierarchy, Synergi synthesizes labels for each parent thread that suc-
cinctly describes the underlying threads or citation contexts. In order to synthesize labels that are simul-
taneously coherent with the underlying children nodes’ texts and are abstractions of them, we traverse
the hierarchy in a bottom-up manner to recursively synthesize labels. We use Chat-GPT4 with a prompt
(Fig. 12 in Appendix A.4) that instructs it to summarize the underlying text using 6 words or less. In each
pass on a parent node, up to 25 text snippets from its children were provided during prompting. Therefore,
in the first pass the 25 cluster citation contexts were added to the prompt and in successive runs, the text of
the children clusters’ synthesized labels were used. We also added a post-processing step to merge similar
threads (see Appendix A.3 for a description of the rationale and the method) and assigned a unique color
to each top-level thread such that the similarity among the children threads could be visually indicated
later on the interface.

Finally, the 3-level tree structure with salient threads and their labels, along with the most relevant citation
contexts attached to each, are returned to the front-end to render an overview of the relevant research
landscape and salient threads in it.

4.3.3 Interface Features (D2 & D3)

Walk-through of the interface

Users on Synergi can highlight and clip relevant citation contexts directly from paper PDFs they are
reading. Once they have one or more clips they are interested in investigating further, they switch to the
editor view by clicking on the ‘Outline Editor’ button from the PDF viewer (Fig. 4.2 AO). In the Outline
Editor view, the user can select one or more from the list of saved clips to generate structured research
threads related to the citation context and seed references included in selected clips (Fig. 4.2 BO).

Once the system finishes processing, the structured thread recommendations appear under the clip input
(Fig. 4.2 DO). The user can review the content by scrolling through the list and by expanding/collapsing
individual threads which contain the detailed information about citation contexts related to the thread,
grouped by source papers. The colored bars on the left also provide users with high-level research areas to
quickly orient themselves among the surfaced research areas and help guiding their attention to interesting
ones. When the user identifies interesting threads, they can curate them into the outline they are building
by dragging and dropping the threads from the list on the lefthand side into the outline editor (Fig. 4.2 CO),
into the appropriate location on the hierarchy. The reference section below automatically updates based
on the content changes in the editor, providing the users an easy access to information about papers that
have been most cited across multiple threads and citation contexts, which help them prioritize what to
read next. The user can continue the cycle by opening up a new paper in the PDF viewer and switching
between outline editor. The user data persists for iterative development and refinement.

Tree-structured thread recommendations

The tree-structured thread recommendations can be expanded and collapsed to reveal the relevant citation
contexts below, which are grouped by source papers (Fig. 4.3 AO), to provide users with easy access to
the source materials and increase the verifiability. Each thread label also featured a color bar on the left
to indicate semantically similar groupings among different threads. Each citation context included the
specific context found from the paper, the section header that it appeared in, as well as other metadata
about the source paper.
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Citation context and reference tooltips

To help scholars quickly gain additional information about the cited references in each citation context,
each citation notation (e.g., ‘[4]’) was rendered with a dotted underline (Fig. 4.3 BO), with an additional
tooltip that reveals information about the reference such as its title, publication year and venue, number
of citations, author names, and the abstract over a mouse-over. In the references section under the outline
editor, each referenced paper was automatically updated when the content in the editor changes, and pulled
in any citation contexts added in the editor that it was cited in. The grouped citation contexts were shown
as squares next to the title (denoted as ‘citation context cards’ in Fig. 4.3 CO), which revealed a tooltip that
contains information about the citation context with the corresponding reference notation highlighted in
the yellow over a mouse-over.

4.3.4 Drag-and-Drop Outline Editor (D4)

Right click on each thread label 
opens the context menu

Figure 4.4: Users could edit the outline either by adding a new thread or citation context into it using
drag-and-drop, or by right clicking on each node in the editor.

Threads or individual citation contexts were made draggable into the outline editor. Users could drop the
dragged item into any thread node already in the editor or the default top-level thread (‘Your Outline’).
After the user drops an item to add to the editor, the references section below automatically updated to
pull in any new references or new citation contexts for existing references (as shown in Fig. 4.3 CO). The
added threads and citation contexts in the editor were interactive via right-clicking on them at which point
the corresponding context menu was revealed. When a thread was right clicked, the following options
were shown (Fig. 4.4):

Insert a new child: Add a new nested thread node.

Remove this & all its children: Completely remove the sub-tree rooted on this thread.

Remove this: Remove only the clicked thread and moves all its children one level up (equivalent to
merging).

Edit: Edit the label of the thread.

Cancel: Close the menu.
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Figure 4.5: The entire procedure of our study. The order of the middle section of the procedure was
swapped based on the assignment (A/B). The order assignment was randomized and counterbalanced
across participants (see text).

Right-clicks on citation contexts showed only the ‘Remove this’, ‘Edit’, ‘Cancel’ options in the menu.

4.4 Experimental Design

4.4.1 Objective & Research Questions

Based on a user query as the input, we aimed to study how Synergi-generated threads of research and
supporting clips can benefit scholars conducting literature review to cover the broader areas of research.
We designed the timed tasks in the experiment to mimic the practice and be coming up with a literature
review outline for an assigned topic. This is because scholars often craft intermediary outlines before
arriving at a fully written article to structure their thoughts, synthesis, and exploration of the literature
in earlier stages. We chose two different topics of research based on the papers that our expert judges
were lead authors on [123, 275]. To compare different conditions, we measure the quality of the outlines,
the efficiency of constructing them, and the participants’ perception of Synergi-generated threads and
experience. We operationalized the quality of outlines as experts’ judgment of the overall helpfulness,
and thread-specific relevance, familiarity, and the goodness of the supporting citation context, on a Likert
scale from 1 (Strongly disagree) to 7 (Strongly agree). We operationalized efficiency as the number of
threads, clips, and references saved in the outline in a fixed amount of time, as well as the number of user
actions taken to construct the outline. Our research questions were:

• RQ1. Does Synergi improve the quality of scholars’ literature review outlines over the baselines?
• RQ2. Does Synergi improve the efficiency of outline construction over the baseline?
• RQ3. What are perceived benefits and limitations of Synergi-augmented workflows?

4.4.2 Participants

We recruited 12 participants (2 female) for the study. The mean age of participants was 26.4 (SD: 2.11) and
all actively conducted research at the time of the study (9 Ph.D. students and 3 Pre-doctoral Investigators).
Participants’ fields of studies included (multiple choices): HCI (10), NLP (4), Information Retrieval (1),
Cognitive Science (1). We also recruited two experts (both female) to review participants’ outlines. Both
experts judges were 5th-year Ph.D. students with multiple first-authored and peer-reviewed publications
in HCI venues. Their domains of research were ‘cross-functional AI teams in envisioning AI products
and experiences’ and ‘designing and building novel tools to help developers better annotate and share
their learning materials’. The expert judges spent 1.5 hours to review participants’ outlines and were
compensated $60 USD. The study lasted for 80 minutes and participants were compensated $40 USD.
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4.4.3 Baseline Implementation

Baseline based on Threddy

The baseline system, based on prior work Threddy [136], supported users in manually curating citation
contexts via direct in-text highlighting in the PDF, with persisting clips across papers for increased context
awareness, and featured a list of user curated clips on the lefthand side of the editor view that users could
drag-and-drop into the editor easily. The user-curated clips replaced the system-generated outline provided
in the treatment condition. All other interaction features were kept the same.

Figure 4.6: The baseline system was based on Threddy [136] which supported clipping, persistence of
clips across multiple papers, and an easy access to the outline editor where users could organize their own
outlines using the self-curated clips.

Baseline based on Chat-GPT4

We also generated two literature review outlines for each paper using Chat-GPT4 on the OpenAI Play-
ground interface6. We instructed it to complete a literature review that the user has started and provided
the same citation context clip used in the treatment condition for generating an outline, along with an
additional label of one thread. We also replaced the citation notations with the actual titles of the cited
references, with a clear demarcation to provide further context about the research topic (see Fig. 13 in
Appendix B.2). The temperature for Chat-GPT4 was set to 1 with the maximum token length for genera-
tion as 2,048. We repeatedly sampled two outlines for each of the two source paper-clips. These outlines
were then manually formatted/blinded (e.g., removing auxiliary characters demarcating headers, reference
notations, and unifying the style) for expert review.

6https://platform.openai.com/playground
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4.4.4 Procedure

Structure

We employed a within-subjects study to compare Synergi to a baseline system based on a prior sys-
tem [136]. We chose two different research areas and topics for timed literature review tasks, and let
individual participants choose personally interesting topic/paper for case studies in the end (three tasks in
total per participant). We randomly assigned systems to the topics for the timed tasks. We counterbal-
anced the order of presentation using 6 Latin Square blocks and randomized rows. Participants followed
the following procedure in the study, which took place remotely using Zoom: Introduction, Consent, De-
mographics survey; Installation and Tutorial (detailed in Appendix G.1) of the first system; Main task for
the first system; Survey for the first system; Alternate and repeat for the second system; Case Study based
on a personally interesting topic; Debrief. Participants were asked to share their screen during the timed
tasks and think-aloud during the case studies.

Timed Literature Review Tasks on Pre-defined Topics (20 mins each)

In each of the two timed tasks, participants were instructed to perform a literature review on a randomly
assigned topic.The interviewer provided the initial URL to the paper and pointed the participants to the
exact location of the clip in each paper that contained the target problem statement. The scenario given
to the participants was motivated as ‘conducting a review of the relevant literature on behalf of their
colleague, who is studying a related research question’.

Post-task Surveys

After each task, participants were administered a survey containing questions on their subjective feelings
about the experience. Demand (both physical and cognitive) and overall performance were measured
using the validated 6-item NASA-TLX scale [108], where a more compact 7-point scale, mapped to the
original 21-point scale, was instrumented [217]. In order to probe the compatibility and adoptibility of
the technology with participants’ existing literature review workflows, we included a modified Technol-
ogy Acceptance Model survey from [273] (4 items). Furthermore, 8 types of benefits around discovery,
sensemaking, outlining, curiosity, confidence, fear of missing out, and organization of clips and references
were measured for each system (See Appendix D for details of the questionnaire).

Data Collection

We collected participant-generated literature review outlines at the end of each timed task. The outlines
were then transformed into a spreadsheet while preserving the indentation of the original tree structure
with additional columns on the left for experts’ judgement. Each tree was traversed to tally the number
of threads, clips, and references for each participant for analysis. During the experiment, participant’s
interaction traces (i.e., timestamped action details during timed tasks) on each system were logged. The
details of each timestamped action included a unique user ID, time of the action, the type of the action
(i.e., clip, import, create, move, edit, remove, merge), and corresponding details. Participants’ think-
alouds during the case study and debrief were recorded and transcribed.

Experts’ Evaluation

The participant-generated literature review outlines were anonymized and blended with two randomly
sampled outlines from Chat GPT-4 for each paper (See Appendix B.2 for the details of the prompts used).
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Therefore outlines were generated from three conditions in total, Baseline – the Threddy-based baseline
system described in Section 4.4.3, Treatment, and the Chat-GPT4-based baseline (Section 4.4.3). Experts
reviewed each outline independently and blind-to-condition, and evaluated on the basis of the following
7-point Likert-scale (1: Strongly disagree, 7: Strongly agree) questions:

• (Overall Outline Helpfulness) “I found the outline with supporting context helpful for reviewing the
relevant literature.”

• (Thread Familiarity) “I found the thread of research familiar.”
• (Thread Relevance) “I found the thread of research relevant.”
• (Thread is Well-Supported by Citation Context) “I found the thread to be well-supported by the

specific citation context(s).”

The overall helpfulness question was evaluated once per participant resulting in 12 data points in Baseline
and Treatment conditions and 4 data points in the Chat-GPT4 condition; the three thread-level questions
were evaluated once per thread per participant, leading to 108 data points (i.e., 31 in Baseline; 10 in
Chat-GPT4; and 67 in Treatment) in total.

Case Studies

At the end of the timed tasks, the interviewer asked participants to find and open the PDF of a paper that
they were personally interested in that was also in their domain of research using the treatment system.
Each participant highlighted and clipped a patch of text (one sentence or longer) that described a particular
research problem that also included at least one citation in it, then generated a list of threads using it in
the same way as earlier in the timed task. Once the result has returned, the participants were asked to
review the generated list of threads, their semantic grouping, the clips, and the references that the clips
had originated from. The interviewer then asked questions around their quality, benefits, and limitations.

Data Analysis

The mappings between the research questions and analyses of collected data are as follows.

• RQ1. We analyzed the quality measures of the outlines, which were on a 7-point Likert scale, using
non-parametric tests. For expert-evaluated overall helpfulness of outlines, the Wilcoxon’s signed
rank test was performed for the paired-samples data (i.e., the Baseline vs. Treatment comparison)
and the Mann-Whitney U test was performed for the independent data (i.e., the Chat-GPT4 baseline
vs. Treatment comparison). For independent data such as thread-level familiarity and relevance, the
Mann-Whitney U test was used.

• RQ2. We analyzed the efficiency measures (e.g., the average number of saved threads/clips/ref-
erences in 20 minutes and the number of user actions taken to construct the outline) between the
conditions using paired Student’s t-test.

• RQ3. The Likert-scale and Likert-item responses in the survey data were analyzed using the non-
parametric paired-samples Wilcoxon’s signed rank test. Participants’ comments during the case
studies were transcribed and qualitatively analyzed using open coding. Participants’ interaction logs
were visualized as time graphs and used for triangulating relevant survey responses and qualitative
data.
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Figure 4.7: The overall helpfulness judged by experts was the highest in Treatment (M=5.6), followed by
Chat-GPT4 (M=4.0) and Baseline (M=3.0) conditions. The pairwise differences between Treatment and
others were significant (see text).

Figure 4.8: Neither (a) average thread relevance nor (b) familiarity significantly differed between the con-
ditions. (c) However, the average goodness of support from relevant citation context differed significantly,
as it was judged higher in the Treatment condition (M=5.5, SD=1.25) than in the Chat-GPT4 (M=2.2,
SD=1.03) or the Baseline (M=3.2, SD=1.27) conditions.

4.5 Findings

4.5.1 RQ1. Quality of Outlines

Higher quality outlines.

While using Synergi , participants were able to generate literature review outlines that were rated as higher
quality. The average expert judges’ ratings on the overall helpfulness of literature review outlines in the
Treatment condition was M=5.6 (SD=1.38), followed by the Chat-GPT4 condition (M=4.0, SD=1.41)
and the baseline condition (M=3.0, SD=1.41) (Fig. 4.7). Both differences between the Treatment and
the Chat-GPT4 conditions (two-sided Mann-Whitney U=7, p=0.036) and between the Treatment and the
Baseline conditions (Wilcoxon W=4, p=0.003) were significant. The experts were blind to the conditions
that each of the outlines were generated under.
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Improved support while maintaining relevance and familiarity.

We further examined the overall outline helpfulness by comparing between the conditions their component
threads’ relevance, familiarity, and how well each thread was supported by relevant citation contexts
found in the literature (Fig. 4.8). The results showed that the average thread relevance did not differ
between the Treatment (M=5.4, SD=1.32) and the Chat-GPT4 (M=5.7, SD=1.34) conditions, nor between
the Treatment and the Baseline (M=5.6, SD=1.74) conditions. Similarly, the average thread familiarity
between the Treatment (M=6.1, SD=1.03) and the Chat-GPT4 (M=6.0, SD=0.94) conditions did not differ
significantly, nor did the difference between the Treatment and the Baseline (M=5.8, SD=1.86) conditions.
This suggests that while Synergi considered a large set of 2-hop references and citations (more than 5,000
candidate papers), it is able to maintain high relevance to the user query when presenting related research
topics.

Further, the average support each thread received from relevant citation contexts differed significantly.
Experts’ judgement on the goodness of supporting citation contexts was the highest in the Treatment
condition (M=5.5, SD=1.25) and positive (between ‘slight’ (5) and ‘moderate’ (6) levels), whereas in
the Chat-GPT4 (M=2.2, SD=1.03; two-sided two-sided Mann-Whitney U = 26, p < .0001) and the
Baseline (M=3.2, SD=1.27; two-sided Mann-Whitney U = 255, p < .0001) conditions, it was negative
and significantly lower. The goodness of support from relevant citation contexts also seemed to be a
differentiating factor of the overall helpfulness of outlines among the conditions; while the relevance and
familiarity measures for each thread were highly correlated (Kendall’s τ = .78, p < .0001 for Baseline;
τ = .45, p < .0001 for Treatment; τ = .88, p = .002 for Chat-GPT4 threads), the only other significant
correlations between the support and other measures showed a weak relation (i.e., between relevance and
support, τ = 0.21, p = 0.04).

It is notable that despite the lack of supporting citation contexts, both the relevance and familiarity of an
average thread generated by Chat-GPT4 tied with those of human-generated threads in the Baseline and
Treatment conditions. However, our expert judges noted significant qualitative differences between the
Chat-GPT4-generated threads from others, despite not knowing the sources of each outline during the
evaluation. The judges proactively offered descriptions of how they differed qualitatively:

“[One of the Chat-GPT4-generated outlines was] Probably the most coherent/thoughtful sum-
marization and distillation of the source paper, but most of the stuff seems like something you
could just get from reading only that paper and less of a literature review... no citations in
any of the points... although the points are reasonable and feel like informed either by my
work or other relevant source.” – E2

“[After correctly pointing out the two Chat-GPT4-generated outlines] They seem like maybe
someone read over some of the citations in my paper and pulled some points from that, but
synthesis is generic. Overall, they are both not great as they don’t include citations for the
points outlined... Numbered lists in both outlines feel as if they were AI-generated, basically
too generic to be useful without citations.” – E1

4.5.2 RQ2. Outline Construction Process

Synergi showed significant efficiency gains in the outline construction process

The number of research threads, clips, and references saved in the duration of the experiment were all
significantly higher in the Treatment than the Baseline condition (Fig. 4.9a – c). For threads, the average
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Figure 4.9: The average (a) number of threads, (b) clips, and (c) references saved during the experiment
(fixed length) were significantly higher in the Treatment condition than in the Baseline condition. (d) The
differences in the saved numbers could be explained by how much more efficiently users in the Treatment
condition imported system-generated outputs, rather than (e) spending time in manually clipping the rel-
evant citation contexts, while (f) performing an overall similar amount of refactoring after adding new
items to the outline editor.

Figure 4.10: (Top) A prototypical time-graph of user actions demonstrating a bottom-up approach of
constructing the outline. (Bottom) Same for a top-down construction approach.

number saved was 6.0 (SD=2.76) in the Treatment condition vs. 3.4 (SD=1.16) in the Baseline condition
(tpaired(14.79)=-2.98, p=0.01). The average number of saved clips was 64.3 (SD=66.27) in the Treatment
condition vs. 5.5 (SD=2.81) in the Baseline condition (tpaired(11.04)=-3.12, p=0.010). The average num-
ber of saved references was also significantly higher in the Treatment (M=71.5, SD=63.40) vs. Baseline
(M=18.4, SD=9.62) conditions (tpaired(11.51)=2.98, p=0.01).

The higher numbers of saved items in the treatment condition could be explained by the overall higher
frequency of ‘import’ actions that users in the treatment condition performed (Fig. 4.9d) compared to
the baseline condition, instead of manually clipping (Fig. 4.9e). On average, the users in the treatment
condition performed 13.3 (SD=9.06) imports vs. 6.3 (SD=2.80) in the baseline (tpaired(13.08)=-2.75,
p=0.019; Fig. 4.9d) and 0.9 clipping (SD=0.29, Treatment) vs. 7.3 (SD=3.20, Baseline; Fig. 4.9e)
(tpaired(11.18)=7.0, p=0.00002). The overall number of refactoring operations (i.e., moving nodes in
the outline editor, editing their labels, merging different thread nodes, removing nodes, creating a new
parent thread) did not differ significantly between the two conditions (M=12.4, SD=8.44 in Treatment
vs. M=12.0, SD=7.75 in Baseline; Fig. 4.9f, tpaired(21.84)=0.17, p=0.87), further suggesting that the ef-
ficiency gains originated from replacing the manual clipping of data with examining and importing the
system-generated threads and clips in the treatment condition.

Synergi supported both top-down and bottom-up workflows

Interestingly, the users in the Treatment condition exhibited diverging patterns of constructing the outlines.
Specifically, some users showed a pattern of top-down construction where they first carefully read through
the problem statement and the rest of the source paper to come up with most salient threads of research
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in their mind before moving on to importing clips that fit those threads, and updating them when a new
thread that expands or modifies the initial threads ideated by themselves. Fig. 4.10 (bottom) demonstrates
a prototypical action time-graph which shows a densely populated area of refactoring in the beginning
(e.g., in the first 5 minutes in the graph) followed by successive importing. In contrast, Fig. 4.10 (top)
demonstrates a prototypical time-graph for a bottom-up construction approach. In this case, the participant
(P2) first imports a number of system-generated threads and clips onto the editor on the right, then moves
on to refactor them (e.g., past the 10 minute mark) to work towards a personally interesting outline.

4.5.3 RQ3. Perceived Benefits and Challenges with Synergi-augmented Work-
flows

Our quantitative analysis of survey results and qualitative analysis of interviews uncovered different types
of benefits from Synergi, such as encouraging participants to gain a higher-level perspective about the
literature, think about relations among the threads, and increasing their curiosity. They also uncovered
limitations of Synergi-augmented workflows such as additional refinement need related to identifying
concepts at a similar level on the conceptual hierarchy, support for probing the relations among threads,
and the desire to see explanatory relevance signals for user trust and acceptance.

Reviewing Synergi-generated threads encouraged broader perspectives, sensemaking,
and curiosity

Participants commented on how having a list of automatically generated threads of research pushed them
to think more broadly about the research space. P1 mentioned that the threads “help you visualize the
literature review outline in your head” and “provide better and more context, especially useful for a new
topic” (P1). Relatedly, P4 commented that:

“This is giving me a super-power to even begin to think at the level of ‘how are different
threads of research dividing the space?’, which would’ve been impossible for me to do other-
wise.” – P4

Compared to how they typically conduct a literature in a new domain, they described feeling like saving
a lot of time and cognitive effort (“I usually have to scroll back and forth so many times” – P2; “Over-
head is significantly reduced... I can now just read, copy-paste, and re-organize stuff ” – P3) that would
have otherwise interfered with forming higher-level perspectives. Participants’ responses to the survey
question: “The system helped me discover relevant threads of research in the literature.” also signifi-
cantly favored the treatment condition (M=6.3, SD=0.75) over the baseline condition (M=3.3, SD=2.14;
Wilcoxon W=0, p=0.009). Participants also felt as though the “colors denoted good groupings of threads,
for example this brown (color) shows a group about ‘Evaluation of toxicity’ which was the core question
in our research project.” (P7) and that “the thread titles are pretty informative. I could easily tell what I
should be paying attention to.” (P8). Interestingly, P1 commented on how “it’s refreshing to find threads
on definitions and studies of ‘social capital’ that may differ in non-western and global south’s regional
context of use” (P1) because manually chasing the citations alone tend to get you “sucked into” the “West-
dominant” perspectives in the literature, since “asymmetry in the citation behaviors exists between the
western and non-western bodies of literature” – P1.

Furthermore, participants’ responses to survey questions: “The system helped me make sense of relevant
threads of research in the literature.” (M=5.3, SD=1.66 in Treatment vs. M=4.3, SD=2.00 in Baseline,
Wilcoxon W=10.5, p=0.088) and “The system helped me outline a review of the literature.” (M=6.1,
SD=0.67 in Treatment vs. M=5.1, SD=2.02 in Baseline, Wilcoxon W=2, p=0.089) showed marginal
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significance between the two conditions at α = .10.

Participants commented that the list of papers included in the references section of the outline, automati-
cally extracted from the imported clips, was particularly relevant and contained “inspiring papers to read
in this area” (P7) and one that some participant wanted to take home (“Can I get a copy of the list on the
left?” – P11). P10 also described how the list “Matches the threads and references that I curated for my
own on-going literature review of the domain, which is good” (P10). Participants’ responses to the survey
questions also showed significant preference for the treatment condition over the baseline condition in
terms of boosting their curiosity around different threads of research (M=6.0, SD=0.74 in Treatment vs.
M=3.9, SD=1.73 in Baseline; Wilcoxon W=2, p=0.01), confidence in conducting the literature review
(M=5.8, SD=0.94 in Treatment vs. M=4.0, SD=1.71 in Baseline; Wilcoxon W=2, p=0.01), and in reduc-
ing the fear of missing out on important research (M=5.2, SD=1.22 in Treatment vs. M=3.2, SD=1.64 in
Baseline; Wilcoxon W=5, p=0.01) (See Appendix D for the details of survey questions).

Trade-offs between Completeness vs. Information Overload

While participants reacted positively towards the initial utility of Synergi in the context of the timed lit-
erature review outlining task (“This is a great starting point for a literature review” – P10), they also
commented on limitations that point to future directions of research in the area. One of the common con-
cerns for longer-term use of Synergi raised by participants related to how to make sense of the quantity of
threads presented to them. On the one hand, “having this many, around 20 or so threads would overwhelm
me easily” (P10) and especially “seeing similar threads, even though I like how they are grouped together
using the same color, could really overwhelm me” (P4). On the other end of the spectrum, seeing a widely
varying number of threads returned for queries made P8 wonder if “the result here is complete in this area
because I only got 5 threads for this query. Or am I missing something important?” (P8).

Additional Support for Refining and Relating Threads

Participants also commented on how in some cases the variations among the threads within the same high-
level color group may be insignificant yet repeated, leading to visual clutter and information overload:
“[Newcomer Integration in OSS Projects] and [Newcomer barriers] are too similar, they can be merged”
(P10); “[Prompt engineering in NLP models] and [Prompting in Natural Langugage Processing] feel
really similar” (P7). On the other hand, participants also pointed out threads that were seemingly too
narrow in scope for them to be at the same level as other threads that seemed to synthesize across multiple
papers: “The [Skip-thought] thread is kind of weird to have be its own category because it’s the name of
a specific technique from a single paper.” (P6); “[Numeric and logical reasoning] is focused on a very
specific aspect of the papers in it, which I appreciate but feels too specific to be included in my review.”
(P7).

P4 described how the threads of research helped him ‘lift’ his perspective going into the literature review
task which was beneficial. However, he also described how he was trying to interpret the relations and the
order among different threads within each group and between differently colored high-level groups, and
how he wished to “also be able to reason about what the overlapping spaces are between the threads, for
example in a ‘Venn diagram’ of the research space... which is hard to do with a list of threads.” (P4).

An interesting sub-thread emerged in this topic when participants examined some of the ‘and’ conjugated
threads and found examples where the phrase before and after the ‘and’ were at different levels of con-
ceptual abstraction. Often the problematic cases featured one concept that felt too broad to be meaningful
in relation to the other concept in the thread. For P10, a thread titled ‘[Augmenting scientific reading]
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and [machine learning]’ was a clear demonstration of how the ‘and’-conjugated concepts could appear at
different levels of abstraction, with the second concept in this specific example (i.e., machine learning)
being too high-level to be useful. Similarly P6 pointed out two examples, ‘[Text classification] and [fea-
ture weighting]’ where the first concept was too broad to be meaningful, and ‘[Image Captioning] and
[Computer Vision]’ where the second concept “did not feel like adding useful information” (P6).

Scaffolding explanatory relevance information for trust and confidence in recommenda-
tions

Last but not least, participants wished to see additional information to understand how each thread was
generated, and efficient at-a-glance information around which specific aspect in the query each clip is
relevant to, in order to boost their confidence and trust in the recommendations. P10 said that:

“Understanding the sourcing mechanisms would help me gauge how much trust I should be
lending to the system and stay vigilant for potential failure modes, because there are so many
different kinds of relations that could be surfaced, for example ‘is it (relation) by authors?
venues? publication years? topical similarity?’ which makes me want to understand more.”
– P10

For some, being able to group threads by a given paper was desired for helping orient their sensemaking
process. P11 commented that “In my process I move between papers when conducting a literature review...
Here, some of the clips look similar to one another and I can see how the same paper is touching on
different threads and I appreciate that the system has added clips from the same paper across multiple
relevant papers... but it would be nice to be able to see which other threads that this paper has been added
to so that I can quickly decide whether to read that paper in more details.” (P11). P12 commented that
“It would be helpful if I could see the connections between a thread and each clip in the thread because
there are a lot of clips in this thread... and I want to quickly go through them, discarding the ones that
look tangentially related.” (P12).

4.6 Discussion

4.6.1 Summary of Contribution

In this work, we designed and developed Synergi as a mixed-initiative system for scholarly synthesis and
sensemaking and studied the benefits and challenges of augmenting scholars’ workflows for synthesizing
knowledge from many papers. In doing so, we built on relevant threads of prior work in Human-Computer
Interaction and Natural Language Processing to explore novel algorithmic and interaction designs.

In contrast to prior approaches that were limited to fully manual or fully automated synthesis, our approach
is aimed at generating the structure of research threads relevant to specific a query context and seed ref-
erences that scholars can iteratively review, curate, and build upon. To enable this, Synergi first searches
important papers by simultaneously considering the specific user query context and seed references over
the citation graph through Loopy Belief Propgation, automatically clips useful citation context described
by other scholars from their full text, and synthesizes a hierarchical structure using agglomerative clus-
tering and GPT-4. The constrained use and curated input data to GPT-4 limits the risk of hallucination
frequent in many top-down workflow systems. Furthermore, preservation of rich provenance and contex-
tual information allows scholars to easily examine the structure and its details and check the veracity when
in doubt.
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Our evaluation task focused on generating a literature review outline which is a common practice in
scholarly research and can serve as a useful practice for organizing one’s learning about the literature
reviewed thus far. Comparing to a baseline system based on prior work [136], and a Chat-GPT4-based
prompting approach, we found that Synergi improves the expert-judged overall helpfulness of outlines
and the participants’ efficiency in constructing them. Participants in the study commented how being able
to see the Synergi-generated threads of research broadened their perspectives and freed their cognitive
bandwidth to focus more on higher-level thinking about salient threads of research and their relations.
Our results also found implications for future AI-augmented scholarly synthesis workflows, which we
discuss further in Section 4.6.3 and 4.6.4.

4.6.2 Broader Scope of Synthesis over Chat-GPT4; Efficiency Gains over Threddy

Our evaluation results showed that the overall helpfulness ratings of the outlines generated in the treat-
ment condition was significantly higher than that of the baseline or Chat-GPT4 conditions. In comparing
to the outlines from the Chat-GPT4 baseline, the expert judges found (blind-to-condition) that Chat-GPT4-
generated outlines were surprisingly well-synthesized, distilled key points about the target problem state-
ment, and were “thoughtful”. However, they also thought the helpfulness of outlines was significantly
limited due to the small scope of its content which felt to have focused only on the source paper alone,
and because the threads generated did not have any supporting citation context from other related papers
in the literature, unlike the outlines generated in other conditions. These results highlighted the role and
value of supporting evidence in scholarly synthesis.

Surprisingly, the average expert-judged familiarity and relevance of threads did not differ between the
three conditions, which included both human-generated and Chat-GPT4 threads. This suggested that both
human and GPT4-generated threads felt on-topic and exhibited a similar level of linguistic fluency when
it comes to a limited scope of literature review, perhaps involving a single source paper. However, the
outlines generated from each condition showed significant differences in the scope of synthesis among
them, measured by the number of supporting references and citation contexts included for each thread. A
much higher level of comprehensiveness was seen in the treatment condition compared to the other two
conditions. By examining the outline construction process, we found that participants in the treatment
condition gained significantly in their efficiency of foraging and making sense of the space of related
research, compared to the baseline condition, which could have allowed them to broaden their scope
of synthesis and to incorporate more relevant papers and supporting citation contexts into their outline.
Taken together, these findings suggest that while LLMs such as GPT-4 made remarkable advances in
appropriately condensing scholarly text, being able to synthesize across multiple papers from the broader
literature remains a uniquely human capability today, albeit human scholars may be challenged by limited
cognitive bandwidth while performing the cognitive taxing tasks of literature review and synthesis.

4.6.3 Workflows, Cost Structures, User Reliance

Our examination of user interaction logs also revealed two salient behavioral patterns during synthesis
around how and when they incorporated the Synergi-generated threads into their own outlines which we
labeled as top-down and bottom-up synthesis workflows (Section 4.5.2). In the top-down workflow, users
often started by processing the problem statement in more depth compared to the bottom-up workflow,
and involved reading broader surrounding contexts in the source paper to distill their understanding into
an initial outline of their own. In our evaluation participants using this workflow tended to have more prior
knowledge in the broader research area that they could draw upon in creating the initial structure. Once
appropriate empty threads in their initial structure were identified, they subsequently imported relevant
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system-generated threads into them.

In contrast, in the bottom-up process participants often started off by iteratively importing system-generated
threads into their editor on an individual thread basis, and creating ad-hoc parent threads when they find
commonalities among existing threads. Though lacking initial outline structures, this workflow was pop-
ular among the participants most of whom were new to the subject domains used in the experiment. Fur-
thermore, given their access to a readily available list of threads, the cost structure of sensemaking [150]
may have shifted such that their reliance on system recommendations was increased to make economic
decisions [157]. The contrast in synthesis workflows among the scholars therefore points to interesting
future inquiries around their relationships with the cognitive cost structures of scholarly synthesis. Future
empirical research in this area has potential to elucidate the factors that can effect changes on behavioral
outcomes such as scholars’ acceptance and reliance on AI-generated recommendations. Studies may be
designed to measure changes in synthesis workflows and outcomes while manipulating participants’ prior
knowledge in task subjects and introduce different modalities of AI recommendations as well as inter-
action features that alter the participants’ efficiency in verifying or modifying the recommendations in
the process. In this context, recent work such as [254] provides helpful exemplar study designs for this
domain.

4.6.4 Implications for Future Thread-focused Mixed-Initiative Workflow Designs

Our evaluation also points to design implications for future workflows that are collaborative and AI-
augmented. Our expert evaluation showed that fully AI-generated synthesis was competitive against out-
lines synthesized by human users in a manual or an AI-augmented workflow in coherence and distillation.
While fully automated AI-synthesis was limited in its scope – where it seemed to have focused on a
single source of paper – which led the judges to believe its utility is significantly reduced, future, more
improved LLMs with a sufficiently larger context window may overcome this issue via new capabilities
in processing many papers at once.

However, even with such an improved AI, a fully automated workflow may not be the best design for
future systems aimed at supporting scholarly synthesis. An important relevant observation here is that
‘putting in the work’ during the literature review may be critical for scholars’ learning and building up the
necessary repository of knowledge to successfully perform subsequent synthesis of the domain. Rather
than adopting a design that may disincentivize self learning and self-actualization [174], successful mixed-
initiative systems therefore would need to consider tasks that AI augmentation can be most beneficial
without interfering with the core cognitive tasks and human learning processes. This may be hinged on
selectively delegating tasks involved in the synthesis based on their high vs. low importance or the core
vs. periphery division. For example, scholars may specify a subset of research threads deemed peripheral
to be further reviewed and summarized by an AI agent, such that they can efficiently make decisions with
respect to whether newly identified threads from the summary merits further exploration and attention
from the user, without sacrificing attention and cognitive bandwidth in case they turn out to irrelevant or
uninteresting.

4.6.5 Limitations

Though our evaluations uncovered new insights into scholarly synthesis workflows and implications for
future mixed initiative synthesis support tools, our experiments focused only on end-to-end evaluations
of the entire pipeline. Further ablation studies may be conducted to tease apart contributions from each
component in the pipeline (e.g., the retrieval algorithm based on the modified Loopy Belief Propagation al-
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gorithm; the algorithm for formation of a thread-based hierarchy; and the recursive summarization method
using GPT4). In addition, future evaluation against a baseline that has an expanded prompt context (e.g.,
using multiple paper body text as input) relative to the prompt we used on GPT-4 in this work would
tell us whether GPT-4’s synthesis capabilities generalize multiple papers. Furthermore, while our PDF
acquisition and parsing modules were performant in the case studies that involved generating outlines for
personalized queries, scaling our approach to real-world scenarios with many users may require a signif-
icant investment into engineering. A notable example here is how our system aimed to acquire and parse
the full text PDFs for important papers, but it relied on best effort (by involving use of commercial APIs
such as Google’s Custom Search; Section 4.3.1), without a guarantee of coverage. While significant com-
bined research and engineering efforts such as the S2ORC corpus [170] is notable in greatly increasing
access to a large paper index with full text PDFs, we note that a significant portion of human knowledge is
still locked in non-accessible PDFs, and concerted legal and institutional efforts may be required to make
a significant step forward in this domain.

Finally, we believe that future empirical evaluations that go beyond the short duration for studies reported
here, and in a more ecologically valid use context (e.g., in a field deployment study rather than a laboratory
study) may uncover exciting new opportunities and important challenges in this space.

4.7 Conclusion
In this paper we develop Synergi, a mixed-initiative system that supports scholarly synthesis and sense-
making of the scientific literature. In contrast to prior approaches that cater to either ends of the initiative
spectrum (i.e., bottom-up or top-down workflows), here we develop a a novel approach to help scholars
iteratively review the structure of literature related to a specific query context, curate important threads and
references, and outline a useful review. Our evaluation that involved 12 participants and domain experts
found that Synergi allowed users to create a higher-quality outline of a literature review, compared to a
baseline based on the prior system, Threddy [136] and Chat-GPT4. We also found that Synergi achieves
this through efficiency gains over the Threddy baseline. Moreover, we show that Synergi increased the
coverage of synthesis while also enabling effective curation of supporting evidence from multiple papers
over Chat-GPT4. Participants of the user studies found Synergi to be useful in broadening their per-
spectives about the literature, increasing curiosity while decreasing the fear of missing out on important
research in the area. Finally, we conclude with implications for future mixed-initiative workflow designs
for scholarly synthesis and interesting inquiries for research in the space. We believe more work is needed
in this area to uncover new workflow models on the initiative spectrum and envision improved interactive
scholarly systems that would help accelerate scientific innovation for all.
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A Detailed System Descriptions

A.1 Loopy Belief Propagation Algorithm in Synergi

Background

The use of LBP in prior work [53] was limited to a scalar conversion weighting of the probability (0.58)
when messages are exchanged between connected nodes in the graph. In other words, when the user
assigns a category to a paper, the papers connected to that via citations would receive messages to increase
their marginal probabilities of also being assigned the same category, regardless of the specific citation
context. Furthermore, while this simple message weighting is a suitable configuration for interaction
scenarios where the user provides iterative supervision over graph nodes (i.e., user assigns a category
c ∈ C for each node n; each node state s(n) ∈ {c,¬c, not-seen}), which can be used to correct subsequently
propagating errors due to insensitivity to diverse citation relations, it is not suitable for our problem setting
where no iterative supervision from the user can be supplied during the initial outline generation phase.

In contrast, in our problem setting the user input consists only of the initial set of seed references as
possible exemplars on the citation graph, along with the citation context described in natural language in
which they were referred to, without iterative supervision.

Running LBP with context-specific message scaling

In order to prioritize papers that globally optimizes relevance and importance to the user input, we de-
veloped a multiplicative message weighting scheme which we assign to each factor in the factor graph to
change the marginal probability after each local message passing between the two papers vi and v j:(∑

s∈S ,k∈K sim
(
emb(ai, j,k), emb(cs)

))
|S × K|

×
1

1 + e−|ref(vi)∩ref(v j)|
where {∀s ∈ S : cs} is the set of seed clips, {∀k ∈ K : ak} are the annotation texts stored on each edge
between paper variable vi and v j (i.e., note that k ≥ 1 because the candidate paper’s title text is always
available even when no citation context text was found), sim(·, ·) represents the cosine similarity function
that takes two embedding vectors as its input, emb(·) represents a text embedding using the Open AI’s
text-davinci-003 model, and ref(·) represents a function that takes a paper vi as its input to return the
IDs of its referenced papers.

Intuitively, the first component of the multiplication corresponds to the average semantic similarity of
possible pairings between the citation contexts in seed clips provided by the user and the citation contexts
of the two papers. This is relevant because we are concerned with prioritizing papers with similarity
specific to the query aspect, rather than the entire paper’s topical or thematic similarity to another paper.

The second term of the multiplication corresponds to the degree of overlapping references between the
two papers. Intuitively, the higher the number of overlapping references between the two papers, the
more likely they would be building on similar threads of research, which can be a useful signal. Similar
mechanism of triadic closure has been shown to be capable of surfacing missing friends [6, 225], relevant
paper recommendations [138], and author recommendations [141]. However, the effect of a small increase
of the count of the overlapping references early on (e.g., consider the effect from a step change 0 7→ 1,
in terms of the number of overlapping references between two papers; because there are many more
papers that do not share any references, this step change may contain more discriminative information for
classification than any other subsequent increases) may exhibit a steeper effect than the same difference at
a higher base count of overlapping references. As such, we model the diminishing returns of this signal
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using the sigmoid function. Finally, the LBP is run until conversion7.

A.2 From Binary Tree to a 3-level Hierarchy

Figure 11: Example hierarchy from agglomerative clustering.

The resulting binary tree from the agglomerative clustering step in the algorithm (Section 4.3.2) may
contain within it the high-level hierarchy that resembles the structure that emerges from bottom-up coding
of clips via this clustering process. However, in practice each thread in a literature review outline may
have more than just two children citation contexts supporting it. For example, in the example binary
tree outputted in Fig. 11, the tri-colored branches may correspond well to three distinctive research areas
and thus need to be grouped into three semantic categories. Therefore, we condense and re-structure the
binary tree in a way that hides the unnecessary complexity arising from the particular clustering method,
while preserving the high-level semantic groupings converted, into an 3-level N-ary tree by cutting it at 3
different heights and pruning the branches that form elongated chains.

A.3 Merging Similar Threads

After piloting the synthesized labels of threads (Section 4.3.2), we realized that the conversion of the full
binary tree from agglomerative clustering into a 3-level hierarchy may have resulted in sub-groups that
have similar citation contexts, that may be better described as a single larger high-level group. Therefore,
we introduced a post-processing step that greedily merges parent threads that are highly similar in content
from one another, thus reducing redundant sub-groups. We achieved this by using the pairwise cosine
similarity of 0.92 as threshold, which was determined from pilot testing.

A.4 Chat-GPT4 Prompt for Label Synthesis

The input prompt to Chat-GPT4 consisted of a system message and a user message (Fig. 12). The outputs
were generated using the OpenAI Playground interface8 in the chat mode using the GPT-4 model. The
temperature was set to 0. The content of the user message was infilled with up to 25 citation context text
snippets in each cluster.

B Details of the study

B.1 Tutorials

Before participants start with each of the two main task with different conditions, they were given a tuto-
rial of the assigned systems via screen sharing. The interviewer demonstrated a step-by-step installation
process and the main features of each system using a prepared script that took around 10 minutes in each
condition. In the baseline condition, participants were instructed to clip citances using in-text highlighter

7We did not encounter a non-converging case in the user studies.
8https://platform.openai.com/playground

56

https://platform.openai.com/playground


[System Message]

You are an agent that summarizes scientific articles.

- Follow the user’s requirements carefully & to the letter.

[User Message]

What is the topic commonly described in the following text snippets?

Summarize the topic succinctly (i.e., 6 words or less).

Reply with "Common topic: " followed by your response.

---

{input documents}

---

Figure 12: The prompt used to synthesize labels for each cluster using cluster members ({input
documents}).

directly in the PDF, and switch between the editor and PDF viewer to organize saved clips into an outline.
Participants could search for the PDFs of relevant papers on the Web using any popular search engines
and continuously collect relevant clips from them. Participants in the treatment condition were instructed
to start by reviewing the Synergi-generated threads and recommended clips to construct an outline.

B.2 Chat-GPT4 Prompt for Literature Review

For the prompt in Fig. 13, the temperature was set to 1 for repeated random sampling. The content of the
user message was infilled using the content of each clip used in timed tasks, augmented by the titles of the
references included in the clip.

C Detailed User Interaction Logs
A time-graph of user actions in each condition is shown in Fig. 14.

D Full Survey Results
Descriptions of survey items and participants’ responses grouped by condition are presented in Table 1.
Two-sided Wilcoxon’s signed rank tests were performed to compute the p-values between conditions. See
Section 4.5.3 for discussions of the results.
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[System Message]

You are an assistant to a scientist who’s conducting a literature review.

- Follow the user’s requirements carefully & to the letter.

[User Message]

Complete the following survey paper:

Title: Using Annotations for Sensemaking about Code - A Survey

### Code comments are not commonly used for keeping track of facts learned or open

↪→ questions

Code comments are commonly utilized for keeping track of open tasks [START_REF]The

↪→ emergent structure of development tasks.[END_REF][START_REF]Work Item Tagging:

↪→ Communicating Concerns in Collaborative Software Development.[END_REF] and can be

↪→ used as navigational aids [START_REF]How Software Developers Use Tagging to

↪→ Support Reminding and Refinding.[END_REF][START_REF]Work Item Tagging:

↪→ Communicating Concerns in Collaborative Software Development.[END_REF], but are

↪→ not commonly used for keeping track of the other previously mentioned information

↪→ needs developers have such as facts learned or open questions. This may be

↪→ partially because the cost of externalizing this information , especially when the

↪→ information may be incorrect , is too high [START_REF]Resumption strategies for

↪→ interrupted programming tasks.[END_REF], and these code comments must then be

↪→ cleaned up [START_REF]TODO or to bug.[END_REF].

###

Figure 13: The prompt used to generate outlines for expert review (showing content for one of the two
papers used in timed tasks of the experiment). (Top) The system message component of the prompt.
(Bottom) The user message component of the prompt. The temperature was set to 1. The prompt for the
first paper in the timed task was similarly constructed, using the clipped citation context with demarcated
(e.g., enclosed within each [START REF]...[END REF] pair) reference titles.

58



Figure 14: User interaction logs on each system showing the timestamps of seven types of actions.
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Description Baseline Synergi p-val.

1. NASA-TLX

Sum of the participants’ responses to the five
NASA-TLX’s [108] Likert-scale questionnaire
items below. The original 21-point scale was
mapped to a 7-point scale, similarly with [217].

22.3 (SD=6.00) 17.9 (SD=4.19) .08

1a. Mental “How mentally demanding was the task?” 4.8 (SD=1.36) 4.3 (SD=1.42) .34

1b. Physical “How physically demanding was the task?” 4.6 (SD=1.62) 3.8 (SD=1.47) .32

1c. Temporal “How hurried or rushed was the pace of the
task?”

5.0 (SD=1.21) 3.5 (SD=1.31) .003∗∗

1d. Effort
“How hard did you have to work to accomplish
your level of performance?”

4.4 (SD=1.44) 4.3 (SD=0.98) .93

1e. Frustration
“How insecure, discouraged, irritated, stressed,
and annoyed were you?”

3.5 (SD=2.11) 2.0 (SD=1.21) .08

2. TAM

Sum of the participants’ responses to the 4 ques-
tionnaire items below adopted from [273] mea-
suring the technological compatibility with par-
ticipants’ existing scholarly discovery workflows
and the easiness of learning.

19.1 (SD=4.48) 21.0 (SD=5.00) .06

2a. Compatibility

“Using the system is compatible with most as-
pects of how I search for scholars and their
papers.” (The response Likert scales for this
question and below are 1: Strongly disagree, 7:
Strongly agree)

4.1 (SD=1.51) 4.8 (SD=1.70) .33

2b. Fit
“The system fits well with the way I like to search
for scholars and their papers.”

4.7 (SD=1.83) 4.6 (SD=1.73) .89

2c. Easy-to-Learn “I think learning to use the system is easy.” 5.8 (SD=1.05) 6.2 (SD=1.02) .48

2d. Adoption
“Given that I had access to the system, I predict
that I would use it.”

4.5 (SD=188) 5.4 (SD=1.73) .15

3. Discovery
“The system helped me discover relevant threads
of research in the literature.”

3.3 (SD=2.14) 6.3 (SD=0.75) .009∗∗

4. Sensemaking
“The system helped me make sense of relevant
threads of research in the literature.”

4.3 (SD=2.00) 5.3 (SD=1.66) .09

5. Outlining
“The system helped me outline a review of the lit-
erature.”

5.1 (SD=2.02) 6.1 (SD=0.67) .09

6. Curiosity
“The system made me curious about different
threads of research in the literature.”

3.9 (SD=1.73) 6.0 (SD=0.74) .01∗

7. Confidence
“The system increased my confidence in review-
ing the literature.”

4.0 (SD=1.71) 5.8 (SD=0.94) .01∗

8. Fear of Missing
Out

“The system reduced my fear of missing out on
important research.”

3.2 (SD=1.64) 5.2 (SD=1.22) .01∗

9. Organizing
Clips

“The system helped me organize the clips I
found.”

5.7 (SD=1.15) 5.5 (SD=1.73) .79

10. Organizing
References

“The system helped me organize the references I
found.”

5.2 (SD=1.59) 5.8 (SD=1.66) .34

Table 1: Descriptions of full questionnaire items and responses grouped by condition. p−values are from
two-sided paired samples Wilcoxon’s signed rank tests.
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Chapter 5: Analogical Search Engine
Augmenting Scientific Creativity with an Analogical Search Engine
This work was previously published in ACM Transactions on Computer-Human Interaction (Volume 29,
Issue 6) ([140]) and has been adapted for this document.

While knowing what notable prior approaches exist is useful, the knowledge needs to be further trans-
formed to produce new problem-solving insights. To this end, professionals often need to engage in many
cycles of deliberate ideation.

One way to generate novel problem-solving insights is by way of generating analogies, which has been
central to creative problem-solving throughout the history of science and technology. As the number of
scientific papers continues to increase exponentially, there is a growing opportunity for finding diverse
solutions to existing problems. However, realizing this potential requires the development of a means
for searching through a large corpus that goes beyond surface matches and simple keywords. In this
chapter, we describe the first end-to-end system for analogical search on scientific papers and evaluate
its effectiveness with scientists’ own problems. Furthermore, we uncover interaction challenges and new
design spaces around building an interactive analogy search engine for professional uses.

5.1 Introduction
Analogical reasoning has been central to creative problem solving throughout the history of science and
technology [71, 86, 101, 112, 119, 197]. Many important scientific discoveries were driven by analogies:
the Greek philosopher Chrysippus made a connection between observable water waves and sound waves;
an analogy between bacteria and slot machines helped Salvador Luria advance the theory of bacterial
mutation; a pioneering chemist Joseph Priestly suggested charges attract or repel each other with an inverse
square force by an analogy to gravity.

Today the potential for finding analogies to accelerate innovation in science and engineering is greater
than ever before. As of 2009 fifty million scientific papers had been published, and the number continues
to grow at an exceedingly fast rate [29, 65, 131, 192]. These papers represent a potential treasure trove for
finding inspirations from distant domains and generating creative solutions to challenging problems.

However, searching analogical inspirations in a large corpus of papers remains a longstanding chal-
lenge [76, 88, 176, 231]. Previous systems for retrieving analogies have largely focused on modeling
analogical relations in non-scientific domains and/or in limited scopes (e.g., structure-mapping [80, 81, 82,
87, 250], multiconstraint-based [72, 120, 127], connectionist [117], rule-based reasoning [11, 39, 40, 259]
systems), and the prohibitive costs of creating highly structured representations prevented hand-crafted
systems (e.g., DANE [127, 257]) from having a broad coverage of topics and being deployed for realistic
use. Conversely, scalable computational approaches such as keyword or citation based search engines
have been limited by a dependence on surface or domain similarity. Such search engines aim to maximize
similarity to the query which is useful when trying to know what has been done on the problem in the
target domain but less useful when trying to find inspiration outside that domain (for example, for Sal-
vador Luria’s queries: “how do bacteria mutate?” or “why are bacterial mutation rates so inconsistent?”,
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similarity maximizing search engines may have found Luria and Delbrück’s earlier work on E.coli [171]
but may have failed to recognize more distant sources of inspiration such as slot machines as relevant).

Figure 5.1: A diagram of two different yet analogical
approaches (dashed arrow) for building lighter and
more compact solar arrays, and their representations
in purposes and mechanisms.

Recently a novel idea for analogical search was
introduced [121]. In this idea what would oth-
erwise be a complex analogical relation between
products is pared down to just two components:
purpose (what problem does it solve?) and mech-
anism (how does it solve that problem?). Once
many such purpose and mechanism pairs are iden-
tified, products that solve a similar problem to the
query but using diverse mechanisms are searched
to help broaden the searcher’s perspective on the
problem and boost their creativity for coming up
with novel mechanism ideas. Anecdotal evidence
suggests that this approach may also be applica-
ble to the domain of scientific research. For exam-
ple, while building lighter and more compact solar
panel arrays has been a longstanding challenge for NASA scientists, recognizing how the ancient art form
of origami may be applied to create folding structures led to an innovation to use compliant mechanisms
to build not just compact but also self-deployable solar arrays [64, 204, 281] (diagrammatically shown
in fig. 5.1). The first remaining challenge of analogical search in the scholarly domain is how we might
represent scientific articles as purpose and mechanism pairs at scale and search for those that solve similar
purposes using different mechanisms. Recent advances in natural language processing have demonstrated
that neural networks that use pre-trained embeddings to encode input text can offer a promising technique
to address it. Pre-trained embeddings are real-valued vectors that represent tokens (Tokenization means
breaking a piece of text into smaller units; Tokens can be words, characters, sub-words, or n-grams.), in a
high-dimensional space (e.g., typically dimensions of a few dozens to a few thousands) and are shown to
capture rich, multi-faceted semantic relations between words [23, 236]. Leveraging them, neural networks
may be trained to identify purposes and mechanisms from text [121, 122] to enable search-by-analogy (i.e.
different mechanisms used for similar purposes). Once candidate papers are retrieved, searchers may use
them to come up with novel classes of mechanisms or apply them directly to their own research problems
to improve upon the current state. Prior studies in product ideation showed that users of analogical search
systems could engage with the results to engender more novel and relevant ideas [49, 96, 151]. Here, we
study the remaining open questions as to whether such findings also generalize to the scientific domains
of innovation and how they may differ.

In this paper we present a functioning prototype of an analogical search engine for scientific articles at
scale and investigate how such a system can help users explore and adapt distant inspirations. In doing
so our system moves beyond manually curated approaches that have limited data (e.g., crowdsourced
annotations in [49] with ∼2000 papers) and machine learning approaches that have been limited to simple
product descriptions [96, 121, 122]. Using the prototypical system, we explore how it enables scientists
to interactively search for inspirations for their personalized research problems in a large (∼1.7M) paper
corpus. We investigate whether scientists can recognize mapping of analogical relations between the
results returned from our analogical search engine and their query problems, and use them to come up
with novel ideas. The scale of our corpus allows us to probe realistic issues including noise, error, and
scale as well as how scientists react to a search engine that does not aim to provide only the most similar
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results to their query.

In order to accomplish these goals we describe how we address several technical issues in the design of an
interactive-speed analogical search engine, ranging from developing a machine learning model for extract-
ing purposes and mechanisms in scientific text at a token level granularity, the pipeline for constructing
a similarity space of purpose embeddings, and enabling these embeddings to be queried at interactive
speeds by end users through a search interface. We construct the similarity space by putting semantically
related purpose embeddings in close indices from each other such that related purposes can be searched at
scale.

In addition to the technical challenges there are several important questions around the design of analogical
search engines that we explore here. A core conceptual difference that distinguishes analogical search
engines from other kinds is that the analogs they find for a search query need to maintain some kind
of distance from the query, rather than simply maximizing the similarity with it. However, only certain
kinds of distance may support generative ideation while others have a detrimental effect. Another question
remains as to how much distance is appropriate when it comes to finding analogical inspirations in other
domains. While landmark studies of analogical innovation suggest that highly distant domains can provide
particularly novel or transformative innovations [93, 95, 113], recent work suggests the question may be
more nuanced and that intermediate levels of distance may be fruitful for finding ideas that are close
enough to be relevant but sufficiently distant to be unfamiliar and spur creative adaptation [47, 83, 99].
Using a concrete example from one of our participants who studied ways to facilitate heat transfer in
semiconductors, a keyword search engine might find commonly used mechanisms appropriate for direct
application (e.g., tweaking the composition of the material) while an analogical search engine might find
similar problems in more distant domains which suggest mechanisms that inspire creative adaptation (e.g.,
nanoscale fins that absorb heat and convert it to mechanical energy). Though more distant conceptual
combinations may not always lead to immediately feasible or useful ideas, they may result in outsized
value after being iterated on [24, 46, 153].

In the following sections we explore the technical and design challenges for an analogical search engine
and how users interact with such a system. First, we describe the development of a human-in-the-loop
search engine prototype, in which most elements of the system are functional but human screeners are used
to remove obvious noise from the end results in order to maximize our ability to probe how users interact
with potentially useful analogical inspirations. Using this prototype we characterize how researchers
searching for inspirations for their own problems gain the most benefit from papers that partially match
their problem (i.e., match at a high level purpose but mismatch at a lower level specifications of the
purpose), and that the benefits are driven not by direct application of the ideas in the paper but by creative
adaptation of those ideas to their target domain. Subsequently we describe improvements to the system to
enable a fully automated, interactive-speed prototype and case studies with researchers using the system
in a realistic way involving reformulation of their queries and self-driven attention to the results. We
synthesize the findings of the two studies into design implications for next-generation analogical search
engines.

Through extensive in-depth evaluations using an ideation think-aloud protocol [79, 253] with PhD-level
researchers working on their own problems, we evaluate the degree to which inspirations spark creative
adaptation ideas in a realistic way on scientists’ own research problems. Unlike previous work which
has often used undergraduate students in the classroom or lab [257], and often evaluated systems on pre-
determined problems [84], this study design provides our evaluation with a high degree of external validity
and allows us to deeply understand the ways in which encountering our results can engender new ideas.
Our final, automated search engine demonstrates how the human-in-the-loop filtering can be removed
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Figure 5.2: Components of our system design that address the three core challenges. 1O Purpose and
mechanism tokens are extracted from paper abstracts at scale. We develop sequence-to-sequence clas-
sifiers to classify tokens into purpose, mechanism, or neither, going beyond previous approaches that
worked on sentences or relied on crowds. 2O We embed the extracted purpose texts using a pre-trained
language model (Google’s Universal Sentence Encoder (USE) [44]) and train a tree-based index of vec-
tors to place high semantic similarity vectors in close neighborhoods for efficient lookup. 3O When the
user query arrives at the system, it is first embedded with USE. This query embedding is then used to
lookup the pre-computed tree indices for high similarity purpose embeddings. Paper abstracts for the
corresponding purpose embeddings are retrieved from Google Datastore. In the first system, additional
human filtering is performed to remove obviously irrelevant results that may have been included due to
model errors. Finally, a set of papers with similar purposes to the query but different mechanisms are
returned to the users for ideation.

while achieving a similar accuracy. We conclude with the benefits, design challenges, and opportunities
for future analogical search engines from case studies with several researchers. To encourage innovation
in this domain, we release our corpus of purpose and mechanism embeddings1.

5.2 System Design
The design of our analogical search engine for scientific papers involves three main system requirements.
First, a computational pipeline for automatically identifying purposes (what problems does it solve?) and
mechanisms (how does it solve those problems) at scale (e.g., millions of papers), in a token-level gran-
ularity from scientific abstracts. Second, an efficient retrieval algorithm for incorporating the identified
purpose and mechanism texts into the system to enable search-by-analogy (i.e. paper abstracts that contain
similar purposes to a query problem but different mechanisms). Third, end-user interactivity for querying
problems of interest (e.g., “transfer heat in semiconductors,” “grow plants using nanoparticle fertilizers”).

1https://github.com/hyeonsuukang/augmenting_tochi22
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Kind (# of papers) Avg. length # of PP # of MN

Train (2021) 196 65 261 120 586
Validation (50) 170 1510 1988

Table 5.1: Summary statistics of the training and validation datasets: the number of purpose (PP) and
mechanism (MN) tokens, the number and avg. token length of paper abstracts.

Domain CS Eng BioMed B & Eng Total

Count 675K 568K 336K 145K 1.7M

Table 5.2: Corpus used in the deployed search engine and its topical distribution: Computer Science (CS),
Engineering (Eng), Biomedicine (BioMed), and Business and Engineering (B & Eng).

We describe the system design in detail in the following subsections.

5.2.1 Stage One. Training Seq2Seq models for identifying purpose and mecha-
nism tokens

Overview of Modeling

In the first stage of the system, purpose and mechanism tokens are identified from paper abstracts (fig. 5.2,
1O). Research paper abstracts often include descriptions of the most important purpose or the core problem
addressed in a paper and the proposed mechanism or the approach taken to address the problem, making
them good candidates for identification and extraction of tokens corresponding to them. For example,
for a similar problem of facilitating heat transfer, Paper A may propose an approach that modifies the
structure of the material used at the interface between crystalline silicon (semiconductor material) and
the substrate, while Paper B may propose a more distant mechanism (due to the mismatch on scale) of
fin-based heat sinks commonly used for electronic devices. The goal of this first stage is to automatically
identify and extract tokens that correspond to the similar purpose (e.g., ‘facilitate heat transfer’) as well
as the mechanisms (e.g., ‘modifying the structure of the material used at the interface between crystalline
silicon’ vs. ‘fin-based heat sinks’) from the abstract A and B.

One relevant automated approach for identifying purposes and mechanisms from scientific abstracts is
DISA [124], which formulates the task as supervised sentence classification. However, we found that
many key sentences in abstracts include both purpose and mechanism, breaking the assumptions of a
sentence-level classifier (e.g., “In this paper, [a wavelet transforms based method] for [filtering noise from
images] is presented.”). To overcome this limitation we follow [122] and frame purpose and mechanism
identification as a sequence-to-sequence (Seq2Seq) learning task [17, 237] and develop deep neural net-
works with inductive biases capable of learning token-level patterns in the training dataset. Our dataset
consists of crowdsourced annotations from Chan et al. (the dataset is constructed via application of [49]
to a larger corpus of around 2000 paper abstracts largely in computer science domains) (Table 5.1). We
train the models to classify input features (tokens or spans of tokens) as either purpose (PP), mechanism
(MN) or neither.

We train two deep neural networks (Model 1 and 2), achieving increasing accuracy of classification. The
first model is based on a Bi-directional LSTM (BiLSTM) architecture for sequence tagging [116, 126], in
which the forward (the beginning of the sequence to the end) and the backward passes condition each token
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position in the text with its left and right context, respectively. A main source of improvement of Model 2
over Model 1 is the ability to more selectively attend to informative tokens in a sentence rather than treating
each token in a sequence as independent of each other (as a hypothetical example, an extremely effective
model based on this approach may assign more weights to the tokens ‘selectively attend to informative
tokens’, as they represent the core mechanism described in the previous sentence) and to leverage the
regularities of co-occurrence with surrounding words through the self-attention mechanism [256].

Seq2Seq Model Implementation Details

We implement the BiLSTM architecture of Model 1 in PyTorch [201]. We use pre-trained GloVe [203]
word embeddings with 300 dimensions, consistent with prior work [28, 160, 203] to represent each token
in the sequence as 300-dimensional input vectors for the model. We train the model with a cross entropy
loss objective for per-token classification in the three (PP, MN, Neither) token classes.

For Model 2, we adapt the SpanRel [130] architecture and implement it on AllenNLP [85]. We implement
a self attention mechanism that tunes weights for the core word in each span as well as the boundary
words that distinguish the context of use, consistent with [162]. We use the pre-trained ELMo 5.5B [205]
embeddings for token representation following the near state-of-the-art performance reported in [130] on
the scientific Wet Lab Protocol dataset. We train the model using a similar procedure as Model 1. We
leave detailed training parameters for Model 1 and 2 to the Appendix.

Introducing Human-in-the-loop Filtering for Model 1

The final classification performance (F1-scores) of Model 1 on the validation set is 0.509 (Purpose), 0.497
(Mechanism), and 0.801 (neither). We found that the limited accuracy contributed to how the system
retrieves irrelevant search results. Because reactions to obviously irrelevant results are not useful, we
added a human-in-the-loop [70] filtering stage. The filtering proceeded as follows: members from the
research team inputted problem queries received from study participants into the system. Once the model
produced matches, they went over from the top of the sorted list and removed only those that are irrelevant
to the problem context. They continued filtering until at least 30 papers with reasonable purpose similarity
were collected. After Winsorizing at top and bottom 10% [272], the human filterers reviewed 45 papers
per query (SD: 27.6, min: 6, max: 138) for 5 queries (SD: 2.4, min:2, max: 9) to collect 33 (SD: 3.5,
min: 30, max: 40) purpose-similar papers (about 12/45 = 26% error rate). In Study 1 we show that the
limited retrieval accuracy of Model 1 is sufficient for use as a probe with this additional human-in-the-loop
filtering. In Study 2 and case studies, we demonstrate how this filtering can be removed with Model 2
while achieving a similar accuracy.

Scaling Model Inference

In order to have sufficient coverage to return diverse results, we collected an initial corpus of 2.8 million
research papers from Springer Nature2. After deduplication (based on Digital Object Identifier using
BigQuery3) and filtering only papers with at least 50 characters in the abstract we were left with 1.7
million papers in four subjects (Table 5.2). We stored the resulting corpus in Google Cloud storage
buckets4. To scale the classification of the Seq2Seq models we used the Apache Beam API5 on Google

2https://dev.springernature.com/
3https://cloud.google.com/bigquery
4https://cloud.google.com/storage
5https://beam.apache.org/
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Cloud Dataflow6 to parallelize the operation.

5.2.2 Stage Two. Constructing a purpose similarity space

Overview

In the second stage, the identified purpose texts are incorporated into the system to enable search-by-
analogy of papers that solve similar problems using different mechanisms, at an interactive speed (fig. 5.2,
2O). Relevant previous approaches include Hope et al. [121] which first clusters similar purposes (through
k-means with pruning) and subsequently samples within each cluster of similar purposes to maximize the
diversity of mechanisms (via a GMM approximation algorithm [213]), or [122] which employs similarity
metrics to balance the similarity to a purpose query and the distance to a mechanism query (and vice
versa). In contrast, from pilot tests in our corpus we discovered that even close purpose matches of
scientific papers already had high variance in terms of the mechanisms they propose. We hypothesize that
this may be the case due to the enormous span of possible research topics and the relative sparseness of
their coverage in our corpus, and/or due to the emphasis on novelty in scientific research that discourages
future papers which might contribute relatively small variations to an existing mechanism. We leave
exploration of these hypotheses for future work and simplify our sampling of the scientific papers to the
one based solely on the similarity of purpose, sufficient for ensuring diversity.

In order to support fast retrieval (e.g., sub-second response time) of papers with similar purposes at scale
(e.g., millions of papers), we pre-train Spotify’s Annoy7 indices of nearest neighboring purposes. Annoy
trains a neural network to assign an embedding vector corresponding to a purpose an index in the high-
dimensional space that brings it close to other indices of purpose vectors that have similar meaning (see
§5.2.2 for details of the metric used for the similarity of meaning). Annoy uses random projection and
tree-building (see [3, 4]) to create read-only, file-based indices. Because it decouples creation of the static
index files from lookup, it enables efficient and flexible search by utilizing many parallel processes to
quickly load and map indices into memory.

Interactive Speed

Additionally Annoy minimizes its memory footprint in the process. This efficiency, critical for real-time
applications such as ours, was further validated during our test of the end-to-end latency on the Web, with
the average response taking 2.4s (SD = 0.56s)8. The level of latency we observed was sufficiently low
to enable interactive search by end users (both human-in-the-loop filterers in Study One and researcher
participants in case studies).

Implementation Details

To construct the similarity space, we first encode the purpose texts into high-dimensional embedding
vectors which then can be used to compute pairwise semantic similarity. Here, the choice of an encod-
ing algorithm depends on three main constraints. First, the pairwise similarity, when computed, should
correlate well with the human-judged semantic similarity between the purposes. Second, similarity calcu-
lation between varying lengths of texts should be possible because extracted purposes can differ in length.
Third, computationally efficient methods are preferred for scaling. To meet these requirements, we chose

6https://cloud.google.com/dataflow/
7https://github.com/spotify/annoy
8We tested with 20 topically varied search queries that have not previously been entered to the engine to test the latency

end-users experience and to exclude the effect of caching from it.
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Universal Sentence Encoder (USE)9 to encode purposes into fixed 512-dimensional vectors. Universal
Sentence Encoder trains a transformer architecture [256] on a large corpus of both unsupervised (e.g.,
Wikipedia) and supervised (e.g., Stanford Natural Language Inference dataset [30]) data to produce a
neural network that can encode text into vectors that meaningfully correlate with human judgment (e.g.,
evaluated on the semantic textual similarity benchmark [43]). USE can handle texts of varying lengths
(e.g., from short phrases to sentences to paragraphs), and with high efficiency [44], thereby making it
suitable for our system.

We pre-compute pairwise similarity of the purpose embeddings and store the indices in neighborhoods of
high similarity for fast retrieval of similar purposes. As mentioned before, we train the Annoy indices on
Google Cloud AI Platform10. We use 1 - the Euclidean distance of normalized vectors (i.e., given two
vectors u and v, distance(u, v) =

√
(2 (1 − cos (u, v)))) as a similarity metric (using a Euclidean distance

based metric for nearest neighbor clustering shows good performance, see [14] for a related discussion on
the impact of the distance metric on the retrieval performance). We set the hyper-parameter k specifying
the number of trees in the forest to 100 (larger k’s result in more accurate results but also decreases
performance; see [3] for further details). Empirically, 100 seemed to strike a good balance between the
precision-performance trade-off, thus we did not experiment with this parameter further.

5.2.3 Stage Three. Retrieving the results

In the last stage, the front-end interface interacts with end users and receives problem queries. These
queries are then relayed to the back-end for retrieval of papers that solve similar problems using different
mechanisms. The retrieved papers are presented on the front-end for users to review (fig. 5.2, 3O). When
a user query is received, the back-end first encodes it using the same encoding algorithm used as the
construction method of the purpose similarity space (i.e. Universal Sentence Encoder). Using this query
embedding, the back-end searches the pre-trained similarity space for papers with similar purposes. The
papers with high purpose similarity are then returned to and displayed on the front-end. We describe the
actual interfaces used in the studies in the corresponding design sections (§5.3.2, §5.3.2).

Together the design of our system enabled what is to our knowledge the first functioning prototype of an
interactive analogical search engine for scientific papers at scale. In the following sections we report on
how such a search engine can help researchers find analogical papers that facilitate creative ideation.

5.3 Study 1: Creative Adaptation with a Human-in-the-loop Analog-
ical Search Engine

In Study 1 we set out to establish the viability of an analogical search engine using a human-in-the-loop
probe in the domain of scholarly recommendations. We investigate whether analogical search returns a
distinct and novel set of papers compared to keyword search results, and capture participants’ reaction to
each result in a randomized order, blind to condition. To deeply understand the process of ideation using
analogical papers we ask participants to come up with new ideas for their own research projects after
reviewing each paper. Using this data we code ideation outcomes in depth to explore the various ways in
which analogical distance can shape ideation outcomes, such as inspiring direct transfer of solutions, or
sparking adaptation of ideas into novel combinations.

9https://tfhub.dev/google/universal-sentence-encoder-large/5
10https://cloud.google.com/ai-platform
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Figure 5.3: Example papers for the purpose of facilitating heat transfer heat in semiconductors. (Top) A
Direct Application paper involves directly applicable ideas and techniques for manipulating the interface
material and structure to control thermal conductance. (Bottom) A Creative Adaptation example involves
transferring a distant idea (fin-based design for heat sinks) and creatively adapting it into the target prob-
lem context (designing nano-scale fins that could absorb heat and convert it to useful energy). Figure
credits: contact configurations and interface resistance from [276], fin-based heat sink from [247], nano-
fins from [220].
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5.3.1 Coding ideation outcomes

We are interested in studying whether an analogical search engine provides distinctive and complementary
value to other commonly used search approaches that rely on surface similarity. In particular, our focus
is on the inspirational value rather than the immediate relevance of search results or the direct usefulness
of solutions. The highest value of creative inspiration often comes from creatively adapting ideas to
reformulate a problem and recognizing new bridges to previously unknown domains that open up entirely
new spaces of ideas. For example, recognizing a connection from the ancient art form of origami to
fold intricate structures with paper and building a sufficiently compact, deployable solar panel arrays and
radiation shields led NASA to hire origami experts [64, 204, 281].

Our approach to measuring ideation outcome is through the use of a quaternary variable categorizing the
types of ideation. To capture the inspirational value of analogical search and move beyond the measure-
ments focused on the immediate relevance or the direct usefulness we distinguish the Creative Adaptation
and Direct Application types of ideation. In our studies these two types corresponded to think-alouds that
resulted in novel ideas whereas the rest (Background and None) corresponded to think-alouds in which no
new ideas were produced.

• Creative Adaptation: Novel mechanism ideas that involve substantial adaptation of the information
provided in the paper. These ideas are typically associated with a higher uncertainty of success due to the
less familiar nature of the domains involved.

• Direct Application: More directly applicable ideas that involve less adaptation than Creative Adapta-
tion. These ideas are typically associated with a lower uncertainty of success because researchers are more
familiar with the domains.

• Background: The information provided in the paper is good for background reading (e.g., to learn about
other domains).

• None: Did not result in new ideas nor was useful for background reading.

Creative Adaptation ideas generally involved a substantial amount of adaptation, while Direct Application
ideas were closer to the source domain and more directly applicable. For example, using the data from one
of our participants, applying the techniques for manipulating thermal conductance at solid-solid interfaces
was considered a direct application idea for P1 (fig. 5.3, left) because he was familiar with the concept of
controlling the interfacial thermal conductivity given the relevant approaches he developed in his current
and past research projects. Thus the connections to the source problem were directly recognizable. On
the other hand, creating a fin-based wall structure for heat transfer was an example of creative adaptation
idea (fig. 5.3, right) because of its novelty and the participant’s unfamiliarity in relevant domains. The
unfamiliarity and uncertainty was generally more associated with analogs for creative adaptation than
direct application. On the other hand, the unfamiliarity also sometimes acted as a barrier to participants’
openness and subsequent ideation. Though challenging, in order to recognize novel connections to the
source problem the participants may need to suspend their early rejection of a seemingly foreign idea
and its surface-level mismatches and engage in deeper processing which could lead to re-imagination and
re-formulation of the research problem at hand. To code the Creative Adaptation and Direct Application
types of ideation outcomes, the coders took into consideration different linguistic and contextual aspects
of the descriptions of the ideas and their think-aloud process (details in §5.3.2).
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5.3.2 Design of the study

Participants

We recruited eight graduate (four women) researchers in the fields of sciences and engineering via email
advertisement at a private R1 U.S. institution. Four were senior PhD students (3rd year or above and
one recently defended their thesis) and the rest was 2nd year or below. Disciplinary backgrounds of
the participants included: Mechanical (3), Biomedical (2), Environmental (1), Civil (1), and Chemical
Engineering (1). Once a participant signed up for the study, we asked them to describe their research
problems and send the research team search queries they use to look for inspirations on popular search
engines such as Google Scholar11. Members of the research team screened papers with relevant purposes
using these queries on the filtering interface (fig. 5.4, left). Despite our efforts to collect papers over
diverse topical areas, the search engine did not contain enough papers for two of the participants who
work on relatively novel fields (e.g., “machine learning methods of 3D bioprinting”). These participants
were interviewed on their current practices for reviewing prior works and coming up with new ideas for
research and were not included in the subsequent analyses.

Study Procedure and Keyword-search Control

The rest of the participants were then invited to in-person interviews. To ensure that participants would be
exposed to a sufficiently diverse set of analogical mechanisms and to maximize our power to observe the
ideation process, we generated a list of top 30 results from the analogical search engine using the search
queries provided by the study participants. As a control condition we also included top 15 results from a
keyword-based search engine using the standard Okapi BM25 algorithm [172] (k1 = 1.2, b = 0.75) using
the same search queries as the analogical search engine. The order of results in the list was randomized
and participants were blind to condition. To account for the difference in the quantity of exposure in the
analysis, we normalized the ideation outcomes by the number of results returned in each condition. Using
this list we employed a think-aloud protocol [164, 252] in which participants were presented with the title,
abstract, and other metadata of papers and asked to think aloud as they read through them with the goal
of generating ideas useful for their research using our Web-based interface (fig. 5.4, right). Although time
consuming, this approach allowed us to capture rich data on participants’ thought process and how those
processes changed and evolved as participants considered how a paper might relate to their own research
problems. In addition, we asked the participants to make a judgment on the novelty of each paper on a
3-point Likert-scale. After participants finished reviewing the 45 papers, we interviewed them about their
overall thoughts on the results’ relevance and novelty and whether there were any surprising or unique
results. Each interview lasted about one and a half hours and the participants were compensated $15/hr
for their participation.

Data and Coding

In total, our data consisted of 267 paper recommendations for six participants and their Likert-scale ques-
tionnaire responses measuring the content novelty, after removing 3 within-condition duplicates (these
papers included cosmetic changes such as different capitalization in the title or abstract). One participant
ran out of time towards the end of the interview and only provided novelty measures for the last 17 paper
recommendations in the randomized list. Thus, 250 transcripts of participants’ think-aloud ideation after
reading each paper were used for analyzing ideation outcomes. To code the distance between the Creative
Adaptation and Direct Application types of ideation outcomes, the coders took into consideration (1) the

11https://scholar.google.com/
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verbs used to describe the ideas (e.g., ‘design’, ‘develop’, or ‘invent’ were generally associated more with
distant ideas compared to ‘apply’, ‘use’, ‘adopt’; see Table. 5.3); (2) the context of ideas such as partic-
ipants’ expression of unfamiliarity or uncertainty of the domain involved (e.g., “I’m not really sure” vs.
“I’m familiar with this domain”); and (3) participants’ perceived immediacy of the idea’s applicability
(i.e., ideas perceived by participants as more immediately applicable were associated with direct applica-
tion but not creative adaptation ideas). Two of the authors coded a fraction of the data together (13/250,
5.2%) and then independently coded the rest blind-to-condition, using the four ideation outcomes types
described in §5.3.1 and with the following protocol: The coders first judged the existence of an idea. If
there was, then its type was further distinguished between Creative Adaptation and Direct Application us-
ing the linguistic and contextual descriptions described above (e.g., Creative Adaptation ideas were more
frequently associated with the ‘design’ words, higher unfamiliarity and uncertainty of the domains, and
less immediate applicability, compared to Direct Application ideas). In case there was no concrete idea in
the data, coders further distinguished between the Background vs None cases.

The agreement between coders was significant, with Cohen’s κ = 0.89 (near perfect agreement) for the
four categories of ideation outcome. Given the high level of agreement between the coders, any disagree-
ments were resolved via discussion on a case-by-case basis.

Apparatus 1: the human-in-the-loop filtering interface

In Study 1, members of the research team first received search queries from study participants and re-
viewed the model-produced purpose matches to filter irrelevant papers using a filtering interface (fig. 5.4,
left). This additional step was introduced to ensure that papers with obviously dissimilar purposes are not
returned to study participants. Reviewers determined whether each paper contained a clearly irrelevant
purpose in which case it was removed by clicking the Dissimilar button at the bottom of the paper. On the
other hand when the Similar button was clicked it turned the background of the paper green in the interface
and increased the number of the papers collected so far. Reviewers continued the screening process until
at least 30 papers with reasonable purpose similarity were collected.

Apparatus 2: the ideation task interface

The filtered papers were then displayed as a randomized list of papers to study participants (fig. 5.4, right).
In addition to the content and metadata of papers (e.g., authors, publication date, venue, etc.), each paper
was presented with a Likert-scale question for measuring content novelty and a text input for ideation.

Limitations

To reduce potential biases, our coders were blind to experimental conditions and relied on participants’
statements of ideas’ novelty and usefulness (e.g., “I’ve never seen something like this before,” “this is not
a domain I would’ve searched if I used Google Scholar”), and achieved a high inter-rater reliability. We
believe coders had a reasonable understanding of how participants arrived at specific ideas from descrip-
tions of their current and past research topics, think-alouds, and end-of-experiment discussions. Despite
this, we also acknowledge the limitations of this approach and discuss how future research may improve
upon it (see §5.7.2).

On reporting the results

We report the result of our studies below. To denote statistical significance we use the following notations:
∗(α = 0.05), ∗∗(α = 0.01), ∗∗∗(α = 0.001), ∗∗∗∗(α = 0.0001). Alpha levels were adjusted when appropriate
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Filtering Interface

System Interfaces Used in Study One

Ideation Task Interface

Purpose Query Input
for Filterers

Input for Novelty Measure 
and Ideation

← Buttons for Filtering

Figure 5.4: The front-end interfaces. (Left) Human reviewers used this filtering interface to input search
queries received from the participants and remove papers with obviously irrelevant purposes. To assist
the reviewers’ filtering process, model predicted purpose (e.g., the noise reduction and time, highlighted
in red at the bottom of the filtering interface) and mechanism (highlighted in green) tokens were also
provided along with the title and the abstract text. The background color turned green when the “Similar”
button is clicked and red when the “Dissimilar” button is clicked. (Right) The ideation task interface was
populated with a list of human filtered papers for review by the participants in Study 1 (the order of papers
was randomized).

in post-hoc analyses using Bonferroni correction.

5.3.3 Result

Finding novel papers for creative ideas. Our key measure of success is how paper recommendations
from the analogy search engine (hereinafter analogy papers) help scientists generate creative ideas for
their own research problems. To this end, we investigate a) whether analogy papers are novel and com-
plementary to the papers found from the keyword-search baseline (hereinafter keyword papers) and b)
whether analogy papers resulted in more creative adaptation ideas than direct application ideas in ideation.

Analogy papers differed from keyword papers and were judged more novel

The viability of our approach is based on the assumption that the analogy search pipeline returns a dif-
ferent distribution of results than a keyword-based baseline. This assumption appeared to hold true: the
keyword-search and analogy-search conditions resulted in almost completely disjoint sets of paper recom-
mendations. Out of the total 267 papers, the overlap between analogy and keyword papers was only one.
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Analogy papers appeared to represent a complementary set of results users would be unlikely to encounter
through keyword-based search.

Figure 5.5: (Left) Participants judged analogy pa-
pers significantly more novel. The mean response
to the question ”Have you seen this paper before?”
was significantly higher in Analogy: 2.7 (SD: 0.48)
than in Keyword: 2.3 (SD: 0.55). (Right) There were
significantly more overlapping words between search
query terms provided by participants and the title and
abstract text of papers: Keyword: 4.1 (SD: 1.74) vs.
Analogy: 1.6 (SD: 1.42).

To further examine this assumption we had par-
ticipants rate the novelty of the results by asking
them “have you seen this paper before?” on a 3-
point Likert scale response options of 1: “Yes, I
have seen this paper before”, 2: “Yes, not exactly
this paper but I have seen similar ideas before”,
and 3: “No, I have not seen anything like this
before”. Participants found papers recommended
in the analogy condition to contain significantly
more novel ideas (2.7, SD: 0.48) compared to the
keyword condition (2.3, SD: 0.55) (Welch’s two-
tailed t-test, t = −5.53, p = 1.33 × 10−7) (fig. 5.5,
left). Participants thought the “variance in results
is much higher than using other search engines”
(P5) and “there’re a lot of bordering domains...
which can be useful if I want to get ideas in them”
(P4).

This difference was also reflected in the content of
papers, with keyword papers having significantly
more overlapping terms with participant-provided
query terms (4.1, SD: 1.74) than analogy papers (1.6, SD: 1.42) (Welch’s two-tailed t-test, t(145.27) =
11.70, p = 1.10 × 10−22) (fig. 5.5, right)12. More occurrences of familiar query terms in keyword papers’
titles and abstracts may have led participants to perceive them as more familiar.

Analogy papers resulted in more creative adaptation ideas than direct application ideas

We found that the distribution of ideation outcome types differed significantly between analogy and key-
word papers (χ2(3) = 52.12, p < 1.0 × 10−10). Participants came up with more creative adaptation ideas
(N = 53; 32% of total) over direct application ideas (N = 3; 2%) using analogy papers. In contrast, key-
word papers resulted in more direct application ideas (N = 16; 19%) than creative adaptation ideas (N
= 10; 12%) (fig. 5.6). The difference between creative adaptation and direct application was significant
(χ2(1) = 28.41, p = 9.84 × 10−8).

To illustrate more concretely the divergent patterns of ideation leading to Creative Adaptation and Direct
Application ideas, we describe vignettes from three participants (table 5.3). While Direct Application
ideas represented close-knit techniques and mechanisms directly useful for the source problem (described
with verbs such as apply and adopt), Creative Adaptation type ideas were more distant from the source
problem and could be characterized with the use of different verbs associated with significant adaptation
(design and invent). For example, P1’s research focused on the methods for improving nanoscale heat
transfer in semiconductor materials. Previously he developed mechanisms for manipulating the thermal
conductivity at solid-solid interfaces, specifically by adjusting the semiconductor wall structures. Thus,

12We measured the term overlap between participants’ queries and the content of papers (title and abstract). To preprocess
text, we used NLTK [25] to tokenize papers’ content, remove stopwords, digits, and symbols, and lemmatize adjectives, verbs,
and adverbs. Finally, using the processed tokens we constructed a set of unique terms for each paper and the query which was
then compared to find overlapping terms.

74



Figure 5.6: Frequency of the ideation outcome types by condition. Darker colors represent higher rates.
Creative adaptation is 5.3 times more frequent among analogy papers (53 in Analogy vs. 10 in Key-
word), while most of direct application is from keyword papers (3 in Analogy vs. 16 in Keyword).
The distributions differed significantly (chi-squared test, χ2(3) = 52.12, p < 1.0 × 10−10 overall and
χ2(1) = 28.41, p = 9.84 × 10−8 for the contrast between the rates of creative adaptation and direct appli-
cation ideas).

a paper reporting experimental results of manipulating thermal conductance on planar metallic contact
points was deemed a directly useful paper that might contain helpful techniques. On the other hand an
analogy paper which dealt with the heat transfer phenomenon at a macroscale, using fin-based heat sink
designs for electronic devices, gave him a new inspiration: to adapt fins for nanoscale heat transfer in
semiconductors to not only transfer heat but also convert it into a useful form of mechanical energy.
Despite the mismatch on scale ([macroscale]↮ [microscale]), challenging the assumption of the typical
size of a fin-based design engendered an idea to creatively adapt it to convert heat into energy through an
array of tiny fins, rather than merely dissipating it into space as in the original formulation of the problem.
P1 also found another analogy paper focused on thermal resistance at a liquid-solid interface useful for
future ideation because despite its surface dissimilarities, there was a potential mapping that may open up a
new space of ideas (e.g., [liquid]↮ [polymer substrate], [solid]↮ [germanium], yet the pairwise relation
[liquid:solid]↔ [polymer substrate:germanium] may be analogous and interesting): “This is liquid... but
it’s about liquid-solid interface which can be useful... because for the substrate that sits on top of silicon
or germanium you use polymers which have liquid-like properties” (P1).

In the case of P2, a paper focused on computational methods for toxicity prediction was deemed directly
helpful because “if certain nanomaterials are toxic to certain microorganisms that eat plants or kill them
but safe for the plant, we can target these organisms using the nanomaterials as pesticide. Another way this
can be helpful is in predicting the chance of toxicity of the nanoparticles in our fertilizers” (P2). Whereas
an analogy paper that uses image analysis for plant identification reminded her of “hyperspectral imaging
in plants, like a CT scan for plants. So making a hyperspectral 3D model using something like this... to
optically sense and trace plant cells (such that the entry of fertilizer nanoparticles into plant cells can be
monitored, a sub-problem of P2’s research problem) would be pretty cool.”

As a third example, P6’s research focused on recording and simulating electrical activity using micro-
electrode arrays. To him, an analogy paper about printing sensors for electrocardiogram (ECG) recording
seemed to present an interesting idea despite its mismatch in terms of scale ([nanoscale]↮ [macroscale])
and manufacturing mechanism ([fabrication]↮ [printing]), because the pairwise relation between [nanoscale:fabrication]
↔ [macroscale:printing] engendered a reflection on the relative advantages of different methods and future
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PID Research Problem Type Paper Title→ New Idea (paraphrased)

1
Improve nanoscale heat
transfer in
semiconductor material

Direct Application

Experimental investigation of thermal contact conductance for
nominally flat metallic contact → Apply the techniques in
the paper to manipulate thermal conductance at the solid-solid
interface

Creative Adaptation
Investigation on periodically developed heat transfer in a spe-
cially enhanced channel → Design nanoscale “fins” to absorb
heat and convert it to mechanical energy

2

Grow plants better by
optimizing entry of
nanoparticle fertilizers
into the plant

Direct Application

Nanoinformatics: Predicting Toxicity Using Computational
Modeling → Apply the computational modeling from the pa-
per for predicting toxicity of candidate nanoparticles

Creative Adaptation

Identification of Plant Using Leaf Image Analysis → Invent a
hyperspectral 3D imaging mechanism for plants that optically
senses, traces, and images plant cells in 3-dimensional struc-
tures

3

Enhance the
evaporation efficiency
of thin liquid films in
heat pipes and
thermosyphones

Direct Application

Thin film evaporation effect on heat transport capability in a
grooved heat pipe→ Adopt the techniques in the paper for ma-
nipulating the solid interface’s surface properties to balance the
film thickness and disjoining pressure

Creative Adaptation

Alkaline treatment kinetics of calcium phosphate by piezoelec-
tric quartz crystal impedance→ Design novel liquid film mate-
rials for manipulating hydrophobicity to change disjoining pres-
sure

Table 5.3: Examples of Direct Application and Creative Adaptation types for three participants (PID).
Each participant’s research problem is described in the Problem column. While the topics of research
problems vary, Creative Adaptation ideas are more distant in terms of content compared to the source
problem than Direct Application ideas are, and may be characterized by the use of different sets of verbs
({design, invent} in Creative Adaptation ideas versus {apply, adopt} in Direct Application ideas).

research directions): “Interesting idea! Instead of nanoscale fabrication, printing can be a good alterna-
tive for example for rapid prototyping. But I think the resolution won’t be enough (for use) in nanoscale...
works for this particular paper’s goal, but an idea for future research is whether we can leverage the benefit
of both worlds – rapid printing and precision of nanoscale fabrication” (P6).

The level of purpose-match had different effects on the ideation outcome

Suggested in these examples is a certain kind of distance the ideas in analogy papers maintain in order to
spur creative adaptation. We hypothesize that some amount of difference in purpose facilitates creative
adaptation. This process may involve a curvilinear relationship between the degree of purpose mismatch
and the resulting ideation outcome, with too much or too little deviation leading to a little-to-no benefit
or even an adverse effect on the ideation outcome, a pattern that is consistent with the findings in the
literature of creativity and learning outcomes (e.g., Csikszentmihalyi’s optimal difficulty [60]). For this
analysis, we coded each paper based on three levels of purpose-match to the source problem:

• Full: Both high- and low-level purposes match

• Part: Only the high-level abstract purpose matches. Explicit descriptions of the high-level purpose exist
in either title and abstract of the paper. At the same time, certain low-level aspects of the participant’s
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Purpose-Match PID Participant Comment

Full 2

“It’s a little bit old (from 2010) but I have read papers from that era. I love
this... because the paper mentions everything else and especially one word
which is ‘disjoining pressure’ – if I were to publish my current project that’s
going to be the core topic.”

Part 1

“Though I’m not familiar with GFRP-GFRP... but I can see that they’re re-
ferring to glass fiber reinforced plastic, so this is something not crystalized
material... learning about this kind of materials is interesting.”

None 3
“I don’t know what a lot of words mean. I don’t typically work with animals
cells.”

Table 5.4: Examples of different purpose-match types. Purpose-Match shows the level of purpose-match
between a recommended paper and each participant’s research problem (see table 5.3 for descriptions of
research problems). Fully matching purposes are those that match at both high- (more abstract) and low-
levels (specific details). Partial matches only match at the high-level abstraction and differ in details. The
Participant Comment column shows relevant excerpts from the participant.

research problem are mismatched as evidenced by relevant comments from the participant

• None: Neither high- nor low-level purposes match

Examples of these types of purpose-match are provided in Table 5.4. High-level match can be considered
as a first-order criterion of purpose match and low-level match as a second-order criterion: If the paper
does not have overlapping terms in terms of its purpose with the user query cast at a high level (e.g.,
transfer heat, grow plants) then the low-level match does not matter, but if the paper’s purpose matches at
the high level, its low-level alignment (e.g., specific aspects of the purpose, such as its scale or materialistic
phase) will additionally determine full (i.e., aligned in both high- and low-level aspects of the purpose) vs
partial match (i.e., aligned only in the high-level but not low-level aspects of the purpose). Therefore, the
coding procedure was symmetrical to the procedure described for coding four types of ideation outcome,
with the high-level purpose match deciding between {Full, Part} and None match types, while the low-level
purpose further distinguishing between Full vs. Partial match. Following this procedure, two independent
coders achieved an inter-rater reliability Cohen’s κ = 0.72 (substantial agreement) and disagreements were
resolved with case-by-case discussion.

We used the mediation package13 [249] to conduct a mediation analysis between the condition, the kind
of purpose-match, and the binary Creative Adaptation ideation outcome. The analysis showed that the
effect of condition (Keyword vs. Analogy) on the binary outcome of creative adaptation was mediated
by the degree of purpose-match, but not by the novelty of content, suggesting that the difference between
full vs. partial matching on purpose is much more significant than the variance in the content novelty.
We come back to this result in the discussion (§5.7.2). Table 5.5 presents the result of the mediation
analyses. The regression coefficient between creative adaptation and condition was significant as was
the regression coefficient between the degree of purpose match and creative adaptation. The indirect
effect was (−.42) × (.21) = −.09. We tested the significance of this indirect effect using a bootstrapping
procedure [210] (p < 2 × 10−16), by computing the unstandardized indirect effects for each of 1000

13https://cran.r-project.org/web/packages/mediation/index.html
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Effect of Condition Unique Effect Indirect Effect CI 95%

Mediator on Mediator (a) of Mediator (b) (a×b) Lower Upper

Purpose-match
−0.42**** 0.21**** −0.09**** −0.14 −0.05

(.08) (.05)

0.40**** −0.06 −0.02 −0.07 0.02
Novelty

(.07) (.05)

Pid
−0.02 0.03* −0.001 −0.02 0.02

(.22) (.02)

Table 5.5: Regression table of three mediation analyses using Purpose-match, Novelty and Pid (Participant
ID) as mediators between Condition and the binary Creative Adaptation outcome variable. Purpose-
match was the only significant mediator between Condition and Creative Adaptation (indirect effect=-.09,
significant using a bootstrapping method [210] with 1000 iterations, p < 2 × 10−16).

boostrapped samples as well as the 95% confidence interval (CI)14.

Partial purpose matches in both keyword and analogy papers led to creative adaptation, but the rate was
significantly higher with analogy papers. As expected, the ratio of direct application decreased from the
keyword papers that fully match in purpose (Keyword Full, 68%) to the keyword papers that partially
match in purpose (Keyword Part, 6%) (fig. 5.8). At the same time, the rate of creative adaptation in-
creased from the keyword papers that fully match in purpose (Keyword Full, 0%) to the keyword papers
that partially match in purpose (Keyword Part, 21%). However, the rate of creative adaptation differed
significantly between the keyword and analogy papers, with the rate more than doubling among the anal-
ogy papers over keyword papers (Analogy Part 47% vs. Keyword Part 21%). Homing in on the partial
matches, these papers led to creative adaptation ideas significantly more often in analogy search (47%)
than keyword search (21%) (Welch’s two-tailed t-test, t(112.22) = −3.40, p = 9.0 × 10−4, fig. 5.7, left).
While the partial purpose mismatch was highly associated with creative adaptation ideas, it could be a
double-edged sword. Among the analogy papers, 38% of the partial mismatches resulted in no useful
ideation outcome as opposed to the 47% that resulted in creative adaptation (fig. 5.8, Analogy Part).
Therefore, knowing what mismatches are beneficial to creative adaptation has important implications
for facilitating generative misalignment for ideation.

5.4 Study 2: Enabling a Fully Automated Analogical Search Engine

5.4.1 Motivation and structure of the study

The findings of Study 1 suggest potential benefits of an analogical search engine for scientific research, but
a core limitation of interactivity due to the human-in-the-loop system design prevented its use as a more
realistic probe for understanding researchers’ natural interaction with analogical results. Specifically,
the results of Study 1 are limited by the lack of participants’ ability to reformulate search queries and
the study design that involved returning only a fixed number of papers that blended both keyword and
analogy papers in a randomized order. These factors significantly deviate from realistic usage scenarios
of a deployed analogical search engine and prevent us from observing the full scope of user interaction.

14Alternatively, it is possible that the mediating effect of the degree of purpose-match on the likelihood of creative adaptation
outcome is moderated by novelty. However, the result of our analysis showed that this was unlikely: The effect was insignificant
using the boostrapping method -.04, (p = 0.12, 95% CI = [−.09, .01]).
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Figure 5.7: Proportion of creative
adaptation ideas among the par-
tial purpose-match papers. Cre-
ative Adaptation was significantly
more frequent among the analogy
papers (47%) than keyword papers
(21%) (Welch’s two-tailed t-test,
p = 9.0 × 10−4.

Figure 5.8: The rate of ideation outcome types in full and par-
tial purpose matches. Among the keyword papers as the purpose
mismatch increases, the rate of creative adaptation also increases
from 0% to 21% (middle). However, this rate is significantly
higher among the analogy papers (47%) than the keyword papers
(21%). Note that while purpose mismatches led to more creative
adaptation among analogy papers, a large portion of them also re-
sulted in no ideation outcome (38%).

In order to move beyond these limitations, first we need a fully automated pipeline that removes the
need for human-in-the-loop filtering, thus allowing us to enable query reformulation and interaction with
corresponding search results. To achieve this, we improved the model accuracy on extracting purposes
and mechanisms from paper abstracts by training a more sophisticated neural network that leverages more
nuanced linguistic patterns. Specifically, we implemented an attention mechanism within a span-based
sequence-to-sequence model (Model 2) such that it could learn words that frequently co-occur to describe
coherent purposes or mechanisms in paper abstracts, and as a result, learning more informative words for
our purpose (see Appendix for details of implementation). Through evaluating the system backed by this
improved pipeline, we demonstrate how it can remove the human-in-the-loop while maintaining similar
levels of accuracy. In the following sections, we report the evaluation results that show 1) an improved
token-level prediction accuracy using the span-based Model 2; 2) rankings of the results aligning well with
human-judgment of purpose-match from Study 1; and 3) top ranked results of the system maintaining a
similar rate of partial purpose matches relative to that of the human-in-the-loop system from Study 1.

The interactivity enabled by the automated analogical search pipeline further allows us to observe its use
in more realistic scenarios. To probe how researchers would interact with an analogical search engine and
what challenges they might face in the process, we ran case studies with six researchers (§5.5). From these
studies, we uncover potential challenges (§5.5) and synthesize design implications for future analogical
search engines (§5.6).
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5.4.2 Result

Model Embedding All PP MN
(finetuned)

1. Model 2 [130] ELMo (N) 0.65 0.65 0.64
2. BiLSTM ELMo (N) 0.63 0.67 0.59
3. BiLSTM SciBERT (N) 0.62 0.69 0.55
4. BiLSTM-CRF [205] ELMo (N) 0.58 0.59 0.57
5. BiLSTM GloVe (Y) 0.55 0.56 0.53

6. Model 1 GloVe (N) 0.50 0.51 0.50

Table 5.6: F1 scores of different models, sorted by the over-
all F1 score of Purpose (PP) and Mechanism (MN) detection.
The span-based Model 2 gave the best Overall F1 score (blue).
In comparison, the average agreement (%) between two ex-
perts’ and crowdworkers’ annotations was 0.68 (PP) and 0.72
(MN) [49]. We used AllenNLP [85] to implement the baseline
models 1 – 5.

Figure 5.9: Mean ranks of
human-judged high and low pur-
pose match papers from the span-
based pipeline. Low matches
were ranked significantly lower
(the rank number was higher),
on average at 465th (SD: 261.92)
than high matches at 343th (SD:
279.48).

Improved token-level prediction of a span-based model

First we compared the span-based Model 2 with five other baselines to evaluate the token-level classi-
fication performance (Table 7). Model 2’s overall F1 score was the highest at 0.65 (Purpose; PP: 0.65,
Mechanism; MN: 0.64, an 0.14- and 0.14-absolute-point increase from Model 1, respectively) on the
validation set which represents an overall 0.15-absolute-point increase from Model 1 used for the initial
human-in-the-loop analogical search engine.

Pipeline with a span-based model reflected human judgment for ranking the results

The improved token-level prediction performance materialized as an increase in the pipeline’s ability
to judge the degree of purpose match. For this evaluation, we first recorded every query provided by
Study 1 participants that human-in-the-loop filterers used to search and filter the relevant papers. Then,
we simulated the search condition of the filterers for the automated pipeline by providing it input as the
exact queries they used. We capped the number of top search results sufficiently large at 1000 for each
query. From these top 1000 results, we selected papers that also appeared in the human-in-the-loop system
and collected the corresponding human-vetted judgments of high or low purpose-match. For each of these
papers, we also collected its corresponding rank positions on the new (automated) pipeline’s list of results.

We compared the mean ranks of papers that are judged by human filterers as high purpose match to those of
low purpose matches. The result showed that the new pipeline indeed was able to distinguish between the
two groups of papers; low purpose matches (i.e. papers that were deemed not relevant and subsequently
filtered by the judges in Study 1) were placed at significantly lower positions on the list than high purpose
matches (i.e. unfiltered papers in Study 1). The mean rank for low purpose matches was 465 while for
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Figure 5.10: Distribution of Full, Part, and None purpose matches among the five sourcing mechanisms:
BiLSTM with filtering represents the human-in-the-loop system (Study 1); Model 1 represents a system
based on the BiLSTM model alone, without human-in-the-loop filtering; Model 2 represents the fully
automated system; Random represents randomly sampled papers; Keyword represents keyword-based
search (Control in Study 1). Model 2 and BiLSTM with filtering showed a similar distribution of purpose
matches, and more partial purpose matches than BiLSTM alone. Random showed mostly no matches. The
Keyword condition resulted in the highest number of fully matched papers and the lowest number of no
matches, suggesting that keyword-based search may be an effective mechanism for direct search tasks, but
potentially less effective for inspirational/exploratory search tasks.

high purpose matches it was 343 (fig. 5.9). This difference was significant (t(192.49) = 3.29, p = 0.0012.
Welch’s two-tailed t-test.).

Different model performance on finding papers that fully or partially match on purpose

Data and coding. In addition to the overall rankings reflecting human-vetted judgments we also found
that the proportion of partial purpose matches was significant among the top-ranked results. We sourced
top 20 results for each participant’s research problem with the automated system (Model 2) using the
exact queries and order used by the human-in-the-loop filterers in Study 1. We compared this to four
other approaches: 1) the human-in-the-loop system in Study 1 (BiLSTM with filtering), 2) a BiLSTM-
based system excluding the human-in-the-loop from 1 (BiLSTM), 3) randomly sampled papers (Random),
and 4) a keyword-based search results, which was used as control in Study 1 (Keyword). There were no
overlapping papers between Model 2 and other conditions except for the Keyword condition which had 1
overlapping paper. To code the degree of purpose match, we blended the results of Model 2, biLSTM, and
Random conditions. Two of the authors coded a fraction of the data together blind-to-condition (7.4%,
N = 20/270) following the same procedure used in Study 1. Then they independently coded the rest
blind-to-condition achieving an inter-rater agreement of κ = 0.80 (substantial agreement). We resolved
any disagreement through discussion on an individual case basis.

Result. We found that the Model 2-based system achieved a parity with the human-in-the-loop system
(Study 1) for finding purpose matches (fig. 5.10), with more than half of the system’s top 20 results
judged to be partial purpose matches. In contrast, when human-in-the-loop filtering was removed from
the BiLSTM-based system, the frequency of partial purpose matches decreased from 58% to 37% while
the frequency of no matches increased from 40% to 59%. Random sampling resulted in mostly irrelevant
results, with no alignment on purpose with the source problem. An interesting point of comparison is
between the keyword-based and Model 2-based search results. Keyword search mostly outperformed
Model 2-based system by finding full purpose matches at a much higher rate (23% in keyword search
vs. 4% in the Model 2-based system), with similar rates of partial purpose matches (58% vs. 55%),
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Figure 5.11: The distribution of mean purpose
match scores over different conditions (map-
pings: None 7→ 0, Part 7→ 1, and Full 7→ 2).
The mean purpose-match score of the system
backed by Model 2 (0.63, SD: 0.56) is signif-
icantly higher than that of the system used in
Study 1 without the human-in-the-loop (BiL-
STM, µ = 0.45, SD: 0.58) (Welch’s two-tailed
t-test, t(237.87) = 2.49, p = 0.0135), simi-
lar to that of the system with the human-in-
the-loop (BiLSTM with filtering, µ = 0.62,
SD: 0.52) (t(244.65) = 0.25, p = 0.80), and
significantly lower than that of the keyword-
based search (Keyword, µ = 1.04, SD:0.65)
(t(159.38) = −4.57, p = 0).

Purpose Query Input

Search Interface Used in the Case Study

List of Analogical Papers

Figure 5.12: The search interface used for case
studies featured an input for query reformula-
tion which participants used to iteratively refor-
mulate their queries.

and significantly less no purpose matches (19% vs. 41%). On average the purpose match score was the
highest in keyword-search followed by the Model 2-based and the human-in-the-loop systems (fig. 5.11).
Combined with the results of Study 1, this suggests the complementary value of analogical search: The
higher rate of full-matches in keyword-search may be good when searchers know what they are looking
for, such as in direct search tasks and foraging from familiar sources of ideas. Nonetheless, because
analogy papers were both deemed significantly more novel by the scientists and had little-to-no overlap
with keyword-search papers, they augmented keyword-based search results with a complementary set of
papers that introduce useful mistmatches in their purposes. This set of papers may open up new domains
of ideas that scientists may not have been aware of, and encourage creative adaptation.

5.5 Case Studies with Researchers
To further understand what potential interaction challenges prevent future analogical search engines from
reaching their full potential, we ran case studies with 6 participants. To this end, we developed a frontend
interface that includes a text input for reformulating purpose queries (fig. 5.12, right). This frontend inter-
faced with our automated, Model 2-based backend to display a ranked list of analogical results for a given
purpose query. Leveraging the fully automated search engine, we also removed the structure of Study 1
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PID Participants’ Description of Research Problem

1 Improve heat pipe evaporation

2
Computer simulations for fluids in nanoscale and uncovering their heat-transfer properties

3
Developing a model to identify complex steps in Nuclear Power Plant (NPP) operation, and
understanding what task features and structures cause the complexity and how this influences
the operators’ performance

4 Designing simulators for training bridge inspectors

5
Developing algorithms and extensible frameworks for detecting personal protective equipment
(PPE) in construction sites to improve the safety of construction workers

6 Convergence rates of optimization algorithms under multiple initial starting positions

Table 5.7: Case study participants’ descriptions of own research problems

that asked participants to engage with each result they encountered, thus allowing us to observe which
results researchers more naturally attend to and engage with. In sum, the design of our case studies differ
from Study 1 in three aspects: 1) participants interacted with only the analogical search results ranked in
the order of purpose similarity, without blended keyword-based search results; 2) participants reviewed
search results returned for their queries and reformulated the queries when needed; and 3) participants
looked for papers that interest them and may serve as sources of inspiration for their research problems at
their own pace, without being explicitly asked to engage with each result they encounter.

The primary goal of our case studies was to identify generalizable challenges that analogical search en-
gines may face in interactive use, thus providing us insights on how future engines may be designed
and improved. Specifically, we were interested in the challenges related to 1) how researchers recognize
relevance of analogical search results and 2) how researchers formulate and reformulate purpose search
queries while interacting with analogical search results.

5.5.1 Participants and Design

Participants were asked to formulate purpose queries for their own research problems and interact with the
results to find interesting papers. If a paper gave them a new idea relevant to their research project, they
were asked to write a short project proposal in a shared Google Doc and explain how the paper helped
them to come up with the idea. Interviews were conducted via Zoom and lasted for roughly an hour.
Participants were paid $20 in compensation. One participant was an assistant professor in mechanical
engineering at a public R1 U.S. university and five were PhD researchers in the fields of sciences and
engineering at a private R1 U.S. university. Two were senior PhD students (3rd year or above) and the rest
were 2nd year or below. Disciplinary backgrounds of the participants included Chemical (2), Civil (3), and
Mechanical Engineering (1). We note that one participant previously took part in Study 1, whose research
focus was the same in terms of its general domain. However, the participant’s ideas and the specific papers
of interest that led to them did not have overlap between the two studies. Table 5.7 describes participants’
research problems.

Apparatus: Search interface. The improved performance of Model 2 backed the fully automated pipeline
without human filtering. The search interface interacting with this back-end included a text input for
reformulating purpose search queries as well as a list view of search results that showed a sorted list of
papers with similar purposes (fig. 5.12).
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5.5.2 Result

Overall impressions

Overall participants described their experience with the analogical search engine in a positive light (e.g.,
“helps me think at a broad topic or a big picture level” – P2; “find some very interesting and useful ideas,
the design is also very simple, good when focusing on key areas of research” – P5; and “very interested
now what the future of this engine would look like” – P3), but a deeper look suggested that the success
of ideation depended on how well searchers were able to engage with analogical results that deviate from
their expectations: “It’s surprising that the engine recommends examples like these” – P3; “If I input the
same search queries on Google Scholar it’d not normally return these things... this search engine works in
a different way” – P1.

“Not the kind of paper I’d look for but...”: The challenge of early rejections

Unlike similarity-maximizing search engines, the diversity in analogical search results can lead to prema-
ture rejection of alternative mechanism ideas. One of the factors contributing to premature rejection of
alternatives may be the tendency for adherence to a set of existing ideas or concepts, as studied in the lit-
erature of design fixation (e.g., [128]). In our study, the participants found the variety of domains featured
in search results confusing, and it sometimes prevented them from engaging with the ideas therein. For
example, P3, whose research studies ways to manage or reduce task complexity for nuclear power plant
operators, expected to see results similar to Google Scholar which are typically in the domains of oper-
ational and managerial sciences, but was surprised by unfamiliar domains represented in search results:
“These (distributed networked systems design or path planning for automated robots) are not the kinds of
fields that I normally read in, if I found them elsewhere I would’ve probably thought they’re irrelevant and
skipped” (P3). Ranging from unfamiliar terms (P1, P4, P5) to unfamiliar categories of approaches (e.g.,
“Not sure what ‘Gauss-Newton approach for solving constrained optimization’ is” – P6), or high-level
research directions (e.g., “this is different from my research direction, people who work on this direction
might find it interesting, though” – P1), participants saw the diversity of results as a challenge for engage-
ment. P1 pointed out a perceived gap between the expectation of least effort and the cognitive processing
required when engaging with analogical ideas and adapting them:

“As I understand it, I think this search engine is trying to present papers from related but
different fields to let people make connections. But people expect less friction. (The result is)
something interesting but I can’t directly write it into a project proposal... I think it would
be challenging to make people get interested in investing time to read the papers in depth to
come up with connections. I wonder what would happen if this was hosted just as an online
website (instead of the study context)” – P1

On the other hand, analogs that did get examined more deeply could ultimately lead to creative adapta-
tion. For example, P3 mapped task scheduling among computer processes to task assignment among the
nuclear power plant operators, and came up with an idea to adapt algorithmic scheduling used in real-time
distributed systems to a scheduling mechanism that could be useful in her research context. Represented
symbolically this process was akin to ideating what might best fill in the ‘?’ in the relational structure
[scheduling algorithm:processes in distributed systems]↔ [?:nuclear power plant operators]: “I think the
algorithms proposed in this paper could be useful for calculating the operator task execution time, the
power plant system’s response time, and the time margin between the execution time and the system re-
sponse time... so that the next task assignment can factor in these margins and things related to workers’
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Figure 5.13: Diagram showing different abstraction levels of purposes and their relations. Node AO cor-
responds to a more specific query than its higher-level representation, denoted as BO. Similarly, node CO
represents a more specific purpose representation of AO, accessible via the AO →

abstraction
BO →

specification
CO path.

well-being like rest and time required between switching tasks” (P3).

Participants seemed to recognize a small number of core relations as kernel for creative adaptation. In the
example of P3, scheduling processes in the distributed systems paper piqued her interest and led her to
connect them with similar concepts in the literature she was already familiar with: “You need to make that
connection... I saw parallels between (distributed systems domain) concepts like [scheduling] and [tasks]
and [scheduling tasks for the operators]” (P3). Similarly, P5 recognized a similarity between [monitoring
people’s performance] in fitness training and [monitoring whether construction workers are wearing per-
sonal protective equipment] in construction sites. He then adapted the idea of tracking heat emission in
the fitness context to his own: “I like the idea of [monitoring heat emissions] in fitness training... maybe
I can also detect heat emissions from construction workers to see if they are wearing the safety vests or
masks while also monitoring the site conditions and worker efficiency. It also gives me an idea to monitor
the CO2 emissions from workers so as to improve the robustness of detection” (P5). In this case, moni-
toring and the physical nature of the activities involved helped P5 see the connection useful for creatively
adapting the source idea.

“I don’t know what to type in”: The challenge of query (re-)formulation

Another challenge participants faced was that they were not used to formulating their search queries in
terms of high level purposes of their research. On average participants entered 5.2 queries (Min: 1, Max:
18, SD: 5.87), 87% (27) of which were in the form of a single noun phrase (e.g., “heat pipe evapora-
tion,” – P1, “task complexity” – P3, “theoretical optimization convergence for non-convex functions” –
P6) or a comma-separated set of multiple noun phrases (e.g., “heat transfer, nanoscale, fluid” – P2) that
represented specific aspects related to research purposes rather than the core purposes themselves. For
example, the purpose of ‘heat pipe evaporation’ may be to transfer heat, and the purpose of searching for
‘theoretical optimization convergence for...’ may be to detect when optimization converges or diverges, or
to effectively sample unknown (non-convex) distributions.

One of the reasons why participants formulated search queries in this way may be wrongly assuming
that the search engine used keyword matching to find results. For example, extensive prior experience
with search engines that highlight matching keywords in abstracts (e.g., Google Scholar) in response to
users’ search queries can reinforce such assumptions among the users. In addition, participants’ domain
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knowledge useful for judging which of the returned papers are relevant may have led them to notice a set
of keywords the inclusion of which strongly signifies the relevance of a paper. In contrast, the analogical
search results often seemed to not feature such directly similar terms and this contributed to the difficulty
of judging whether a result is relevant and how: “I find these papers not very related to my search query at
first. It’d be better if you can use some graph or some pictures to indicate how these papers can relate to
my keywords” (P5); “I’d not consider... (because) they are totally different, right? They look irrelevant...
until I think about it I can realize that it’s useful. But if you give me the paper, at first I don’t realize that”
(P3).

While it may not feel as compelling or natural to participants, formulating and abstracting queries at a
high level may lead to searching more distant results that are analogous at a higher level. For example, by
querying “detect personal protective equipment” instead of “personal protective equipment construction,”
P5 found novel mechanisms of detection, such as general image segmentation algorithms or an approach
to monitoring heat in the context of fitness training not specific to construction sites and personal pro-
tective equipment but nonetheless useful for creative adaptation. Querying “scheduling tasks” instead of
“task complexity” for P3 resulted in finding scheduling algorithms in distributed computer systems that
otherwise P3 would not have encountered, while “assigning tasks” led to novel auction mechanisms which
made her think about a system in which each power plant operator can bid for a task as opposed to being
assigned one. Schematically, fig. 5.13 shows how formulating queries at a higher level of abstraction than
specifying the problem context in full details (AO→ BO) may lead to discovering novel mechanisms that are
relevant at the high level of abstraction, and in more distant ways from the original problem formulation
(BO→ CO).

5.6 Design Implications
From both the case studies’ and Study 1’s participants’ reflection on the challenges of interacting with
analogical search results, common themes emerged. Here we present three design implications for fu-
ture analogical search systems synthesized from these results. We use subscripts to denote which study
participants participated in when appropriate.

5.6.1 Support purpose representation at different levels of abstraction

Analogical search engines should support users to formulate their purpose queries at different levels of
abstraction. Additionally the search engine may prompt users to consider abstracting or specifying their
purpose queries in the first place, and explain how it might help bring new insights into their problems. As
seen in the case studies (Section 5.5.2), scientists recognized their purpose queries may be represented at
multiple levels, but prior experiences with similarity maximizing search engines may also have anchored
them around pre-existing rigid formulation of purposes. Prompting users to consider their research prob-
lems at multiple levels may work against this rigidity, and providing candidate suggestions at varying
levels may further reduce the cognitive demand. Moving up on the hierarchy to abstract purpose queries
may be possible through removing parts of the query words that correspond to specific constraints, or by
replacing them with more general descriptions. For example two participants of Study 1 had an identical
purpose representation at a high level (“facilitate heat transfer”) despite the differences in materialistic
phases targeted in each purpose: solid material and semiconductors for P1Study 1 and liquid thin films for
P3Study 1.

Furthermore, we also observed that looking for only the exact match of a purpose can lead to missed op-
portunities. For example, although “fins represent a different idea for transferring the heat” and “they (fins)
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don’t match in terms of the scale – macro, not nano,” it nevertheless made P1Study 1 wonder “what if we
could design nanoscale wall structures that act like fins that convert heat to mechanical energy?”. A cor-
rollary to this observation is that sometimes the superpositions of misalignment with just the right amount
can lead to interesting results. For P4Study 1, a paper presenting experimental techniques for piezoelectric
properties was interesting despite its misalignment such as [simulation-based] (source)↮ [experimental]
(analog) and [dielectric properties] (source)↮ [piezoelectric properties] (analog): “Though it’s an exper-
imental study, it’s very close in terms of the material and phenomenon so likely to be helpful. Because
we might be able to pick up some trends like, if we increased the temperature, the dielectric response
gets stronger or weaker, inferred from the experimental piezoelectric responses, which can then be used
to corroborate simulation results or help configure its parameters” (P4Study 1). However, too much devia-
tion seemed detrimental to its potential for inspiration: “[Molecular dynamic simulation] is the same tool,
but (this paper studies) [thermal] (not [dielectric]) properties on [polymer composites]... [polymer com-
posites] are harder to model” (P4Study 1). In sum, analogical search engines should support not only the
capability to ‘narrow it down’ with specific constraints, but also ways to relax them to broaden the search
space when suitable, thus making feasible the sweet spot between too little (i.e. similarity maximization
and trivial matches) and too much deviation (i.e. critical misalignment and unusable analogs).

5.6.2 Support iterative steering from critical misalignment and towards genera-
tive misalignment

Analogical search engines should recognize that important constraints may be discovered by users only
after seeing misaligned analogs, and support this discovery process by presenting effective examples of
misalignment to users. Analogs that deviate on some aspects of the source problem but preserve important
relations may be particularly conducive to analogical inspiration that opens up not just individual solu-
tions, but entirely new domains of solutions. However at the same time scientists also found it challenging
to know how to come up with effective search queries because combinations of misalignment can some-
times lead to an unintended intersection of domains: “I feel like I’m tricking the machine because [thin
film] is often used with [solids], and the term [pressure] also appears a lot in [manufacturing]... so com-
bining them gives a subset of papers concerned with heat transfer in solid materials and in manufacturing”
(P3Study 1); “on Google Scholar also, I get a lot of polymer strings and get (irrelevant) results like we use an
[electric] device to study [vibration and stress] of [polymers]... the machine is picking up [electric] and
[properties] such as vibration and stress in the context of studying polymers but what I really want is [elec-
tric properties] of [polymers] not [electronic devices] to study the [mechanical properties] of [polymers]”
(P4Study 1). Nonetheless, seeing misaligned analogs can be an effective way of reasoning about salient
constraints and reflecting on hidden assumptions. For example, while evaluating papers about designing
microelectrode arrays, P6Study 1 said: “Now I think about this (result), I assumed a lot of things when
typing that search query... though impedance and topology are my main focus in microelectrode arrays,
the coating, size, interface between a cell membrane and electrodes/sensors, biocompatibility, softness of
electrodes, fabrication process, material of the platform: silicon or polymer or graphene, form factor: at-
taching electrodes to a shank-like structure or a broom-like structure, degree of invasiveness, are all part
of the possible areas of research and it makes sense that they showed up – there is no way the machine
would have known that from my query.” This excerpt illustrates how knowing what the necessary specifi-
cations are and which constraints need to be abstracted to cast a wide-enough net to catch interesting ideas
appeared to be a difficult task for scientists, especially when they had to recall important attributes rather
than simply recognize them from examples of misalignment. Prior work in cognitive sciences also show
how dissimilarity associated with various factors in analogical mappings [90] can pressure working mem-
ory [262], increase cognitive load [240], and increases response time taken to produce correct mappings
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for analogy problems [144]. Therefore, analogical search engines should help to reduce the cognitive
effort required in the process, for example by proactively retrieving results that are ‘usefully’ misaligned
such that searchers can better recognize (as opposed to having to recall) salient constraints and refine their
problem representation. This process is deeply exploratory [218, 269, 278] in nature, and suggest the
importance of both providing end-users a sense of progress over time [244] as well as adequate feedback
mechanisms for the machine to adjust according to the changing end-user search intent [145, 222, 223].
For example, while the machine may ‘correctly’ recognize a significant anaogical relevance at a higher
level of purpose representation and recommend macro-scale mechanisms to a scientist who studies nano-
scale phenomena (P1Study 1) or solid and semiconductor-based cooling mechanisms to a scientist in liquid
and evaporative cooling systems (P3Study 1), these analogs may be critically misaligned on the specific con-
straints of the problem (i.e. the scale or materialistic phase) and thus considered by end-users as useless
and even harmful.

5.6.3 Support reflection and explanation of analogical relevance

Throughout the process of analogical search, human-AI coordination is critical for success, and an impor-
tant aspect is how deeply the human users can reflect on the retrieved analogs [107] and recognize how
different notions of relevance may exist for their own problem context, despite potential dissimilarity on
the surface. Looking at previous examples of the tools and techniques developed for targeted reflection
support may be useful to this end. For example, ImageCascade [155] provides intelligent support such as
automatically generated mood-boards and semantic labels for groups of images to help designers commu-
nicate their design intent to others. Another system, Card Mapper, visualizes relative co-occurrences of
design concepts using proximity in the design space [62]. Similarly representing the space of analogical
ideas using spatial encoding of similarity between two analogs, or designing information that supports
getting a sense of the space of search results — e.g., semantic category labels similar to ImageCascade’s
or the distribution of the domains that analogs are pulled from — may be an avenue for fruitful future
research. The explanation of relevance is also important especially when there is a risk of early rejection
(§5.5.2). Using examples from the case studies, one approach to explaining relevance might be to surface
a small number of core common features between an analog and a problem query. Such common features
were considered useful by scientists for making analogical connections, and they could creatively adapt
them for their own research problem context. When common features are not directly retrieved, generation
of more elaborate explanations may be required. We refer to [19, 34, 230? ] for those interested in future
design considerations of automatically generated recommendation explanation. Further complementing
the direct explanation of relevance approach, techniques such as prompting or reminding the searchers of
previously rejected or overlooked ideas may also trigger deeper reflection and delay premature rejection
of the ideas based solely on their surface dissimilarity. Participants from both studies commented that
the critical first step towards analogical inspiration may be raising similarly enough attention and interest
above the initial ‘hump’ of cognitive demand. Gentle reminders (e.g., “Ask me later if this would be in-
teresting and also provide a list of items” – P1Case Studies) or resurfacing previously rejected papers in light
of new information (P1Case Studies, P3Case Studies) may help with users cross this barrier.

5.7 Discussion

5.7.1 Summary of contribution

With the exponential growth of research output and the deepening specialization within different fields,
encouraging analogical inspiration for scientific innovation that connects distant domains becomes ever
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more challenging. Our human-in-the-loop and fully automated analogical search engines represent an
approach for supporting such analogical inspirations for challenging scientific problems. We have demon-
strated in Study 1 that our human-in-the-loop system finds novel results that participants would be unlikely
to encounter from keyword-based search, and that these results lead to high levels of creative adaptation.
Through a mediation analysis we also showed that this success was driven by the analogical search en-
gine’s ability to find partial purpose matches (e.g., matching at the high-level purpose but differs at the
low-level details). We saw the nuanced effects of partial purpose alignment on the results’ goodness as
analogs for inspiration. Through qualitative observations, we described how certain attributes of analogi-
cal mapping were perceived as more salient by participants, and that mismatches on them can have either
a positive (i.e. generative insights) or a negative impact (i.e. critical misalignment) on creative adapta-
tion. In contrast, keyword-based search resulted in more full purpose matches and a higher level of direct
application. The value of keyword-based search and analogy-based search thus may complement each
other, while keyword-based search can help researchers find ‘exactly that’, analogy-based search can help
researchers to switch from a preservative mode (i.e. aiming to find results with maximal similarity to the
query) to a generative mode (i.e. aiming to find analogs that are relevant despite the surface dissimilarity)
of searching, and ultimately lead them to recognize unusual relations and come up with ways to creatively
adapt existing ideas for novel domains.

We also demonstrated how improving the sequence-to-sequence purpose and mechanism identification
model can remove the human-in-the-loop but maintain a similar level of accuracy on purpose-match by
human judges. This improvement enabled us to develop a fully automated analogical search system to use
as a probe to study searchers’ more natural interaction with analogical results. Through a series of evalua-
tion we first show that our automated analogical search pipeline can emulate human judgment of purpose
match and that it finds partial purpose matches in top ranked results with a similar rate compared to the
human-in-the-loop system used in Study 1. Then through case studies we find generalizable challenges
that future analogical search engines may face, such as early rejection of alternative mechanism ideas and
the difficulty of abstracting and representing purposes at the right level. From our studies we synthesize
design implications for future analogical search engines, such as supporting purpose representations at
different levels of abstraction, supporting the iterative process of steering away from critically misaligned
analogs and towards a fertile land of generative misalignment, and providing explanations on why certain
analogical search results may be relevant. We envision that future studies will shed light on deeper cogni-
tive sources of the challenges identified here. A fruitful avenue of research may be studying how the dual
processing theory [135, 265] underlies or interacts with analogical search interaction. Studying also how
simplification heuristics [182] may negatively bias interaction with analogical results and how it may be
reduced for expert user populations may be an interesting future direction [41, 159].

5.7.2 Limitations and future work

Experimental design and improving its validity

Our findings have several limitations. First the design of our studies may be improved to increase the
experimental validity. We believe that our coders of the ideation outcomes had a reasonable understand-
ing of participants’ research context from descriptions of current and past research topics, think-alouds
with 45 papers, and end-of-experiment discussions, and that the procedure of coding reduced potential
biases (e.g., the coders were blind to experimental conditions, relied on participants’ statements of nov-
elty and distance). Despite this, it is possible that they judged ideas differently from domain experts, for
example coding more or fewer ideas as creative adaptation, or pre-filtering useful ideas in the human-in-
the-loop stage. In addition, other quality dimensions such as potential for impact or domain-expert-judged

89



idea quality are largely inaccessible within the studies presented here. Future research may improve on
these limitations by iterating on the experimental design, collecting data for triangulating the results and
capturing other quality dimension of the generated ideas.

Additionally, future work may add ablation studies to quantify the effects of human filtering in Study 1 on
the ideation outcome as well as sensitivity studies to relate how much the increased token-level classifi-
cation performance of trained models may reduce the burden of human filtering. Furthermore, additional
experiments with baselines other than keyword-based search using the whole abstract will help pinpoint
the potential advantages of representing and matching papers using extracted purposes and mechanisms.
For example, Chan et al. [49] found that embedding all words from an abstract (using GloVe embed-
dings) resulted in retrieval of fewer analogical items than when extracted purposes and mechanisms were
used. Replicating this result with additional approaches such as contextualized word embeddings and
pre-trained language models (e.g., ELMo [205], BERT [67], and SciBERT [22]) will be valuable.

Potential sampling bias

The sampling strategy in Study 1 was purposefully unbalanced, where analogical papers were sampled
twice as much as keyword papers to ensure participants’ exposure to sufficiently diverse results. This was
crucial for uncovering potential benefits and challenges of our analogical search engine and investigating
its viability. This ratio was chosen purposefully, to balance the statistical power for detecting potentially
significant differences between the conditions, while also limiting the number of papers that each partic-
ipant had to review. Given the cognitive burden of reviewing a paper while thinking aloud, we decided
on 45 in total with the 2:1 ratio to fit the practical time limits of interviews. However, this may have led
to unanticipated effects on ideation outcomes despite having accounted for the difference in sample sizes
by measuring the outcomes in ratios. For example, when the results were combined into a single blinded
list, the over-representation of analogical results over more purpose-aligned keyword results may have
shifted the users’ overall perceived value of the list to be more or less positive. Users’ perception of di-
verse results may have been further affected by their relative over-representation. For example, increased
cognitive load for processing analogical mapping [103, 104, 240] may suggest that results that fully match
on the purpose search query may have been perceived even more favorably than analogical results, due to
a negative spill over effect from the rest of the papers in the list, which were less likely matched on the
purpose. Investigating whether such factors led to compounding effects beyond our ratio-based measures
of usefulness remains an open question for future work.

Controlling the diversity of search results

Our work is also limited by the lack of controllability in sampling the search results beyond purpose simi-
larity. As described in §5.2.2, from pilot tests in our corpus we discovered that even close purpose matches
of scientific papers already had high variance in terms of the mechanisms they proposed which allowed
us to focus our approach to sampling based solely on purpose similarity. The simplicity of this approach
also means fewer hyper parameters in the sampling mechanism compared to other approaches [121, 122].
However, all the approaches including this work thus far lacked a mechanism for explicitly controlling the
diversity in retrieved search results which remains a fruitful avenue for future work. For example, prior
research has uncovered the nuanced effects of distance (e.g., near vs. far sources of inspiration [48, 226]),
suggesting the benefit of targeting analogs at different distance from the source problem for the right
context. Future research may also uncover further complexities in the relationship between novelty and
purpose-match. The result of our mediation analysis (Table 5.5) showed that the novelty of content among
the search results in Study 1 was not a significant factor to the same extent that the three levels of purpose
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match was. However, the relationship between novelty and purpose match may be more complex than the
levels of manipulation presented in this work. For example, [68] suggested a greater importance of nov-
elty than usefulness for predicting creativity scores. Future work may design mechanisms to manipulate
the variance in content novelty and alignment in the purpose-mechanism schema to uncover dynamics
between the two that go beyond the results from mediation analyses presented here (§5.3.3). Further-
more, challenges with the abstraction of purposes remain open, for example how core versus peripheral
attributes of research purposes may be identified, and how they may be selectively matched at a specific
level of the conceptual hierarchy. Finally, not all query formulations are created equal in terms of their
suitability for analogical search. We observed in the case studies that participants wanted to express dif-
ferent query intent via reformulation (§5.5.2). While participants could reformulate their search queries
and examine the returned results from our analogical search engine in real-time, it was unclear whether
and how specific query formulations may lead to more or less diverse results, and how subsequent queries
may be updated after reviewing them. As such, systems that assist users in the potentially tedious process
of query reformulation [270] (for example, by way of automatic query expansion [42]) in the context of
analogical search will be important.

Studying the effect of larger context of scientific innovation on analogical innovation

Due to our focus on ideation outcomes, our results do not explain how these ideas may be integrated,
developed, and shared across the research communities. Studying the lifetime of ideas that goes beyond
their inception will deepen our understanding of the factors that currently make analogical innovation such
a rare event in sciences (for example, Hofstra et al. suggested that more semantically distant conceptual
combinations receive far less uptake [118]). Through interviewing our study participants and other col-
leagues in academia we found emerging structures related to this challenge. Our interviews informed us
that in general the context in which a scientist exists – such as the scientist’s role in a project, the maturity
of a project, and the broader academic culture – can ultimately change how they interact with and seek
analogical inspirations. For example a third-year PhD student studying chemical engineering commented
“In the current stage of my project it’s more about parameter-tuning – running multiple experiments at
once and comparing which configuration works the best... If I were a first year PhD student maybe I
would be in a broader field and exploration.” In contrast, a PhD in biology who recently defended noted
that “analogical inspirations would perhaps be more useful if you’re looking for a postdoc or a faculty
position.”

In addition, the underlying career incentive structures in academia may also affect researchers’ perception
of and openness to analogical inspirations. One of the study participants commented “since I’m already a
third year PhD student and my project is further along and more firmed up, I’m not really looking for really
far inspirations... first we push the specific way we have in mind with many iterations on the experiments
until, say, publication.” In addition to the career-wise incentives there are other types of competitive
resourcefulness (e.g., social resources such as the advisors’ and colleagues’ expertise that participants can
easily tap into; physical and other forms resources such as tangible artifacts like previously developed
code packages or experimental processes and setups). These factors can influence scientists’ perception
of their advantage and lead them to interpret analogical inspirations as more or less useful, feasible, and
directly applicable to their research. This observation is further suggested by survey results that asked
our participants: “Could this paper be useful to you?,” their ratings were significantly higher for keyword
papers than analogy papers despite them having come up with creative adaptation ideas more often with
analogy papers. Therefore, future work that studies incentive structures, the quality of ideation outcome,
their feasibility, the differences in research context e.g., frames of research contribution such as discovery-
oriented vs. novel system development-oriented, and taking a longitudinal observation of the variation in
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such factors will add a significant depth to our understanding.

5.8 Conclusion
In this paper we present our novel human-in-the-loop and fully automated analogical search engines for
scientific articles. Through a series of evaluations we found that analogous papers that our systems re-
trieved were novel and useful for sparking creative adaptation ideas. However, significant work is needed
to continue this trajectory, including additional understanding of the context and incentives of scientists
as well as advances in the data pipeline and interaction methods beyond those described here for a system
to maximize its real-world impact.

We imagine a future in which scholars and designers could find inspirations based on deep analogical sim-
ilarity that can drive innovation across fields. We hope this work will encourage scientists, designers, and
system builders to collaborate across disciplinary boundaries to accelerate the rate of scientific innovation.
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A Reproducibility

Training and validation datasets. The original annotation dataset from [49] also includes Background
and Findings annotations which we exclude due to their relatively high confusion rates among the anno-
tators with the Purpose and Mechanism classes and to balance the number of available training examples
per annotation class.

Model parameter selection. We experimented with changing the model capacity relative to the signal
present in the training dataset by tuning the number of hidden layers and the nodes used in each model
architecture. For Model 1 we found a hidden layer of 100 nodes was sufficient. We optimized this model
using the cross-entropy loss and the Adam optimizer [148] with a 0.0001 learning rate. For Model 2, we
found three hidden layers with 256 nodes led to an improved accuracy on the validation set. We trained
this model with an L2 regularizer (α = 0.01), dropouts with the rate of 0.3, and the Adam optimizer with
a 0.001 learning rate.

Span-based model architecture. We adapt SpanRel [130] as architecture for the span-based Model
2. SpanRel combines the boundary representation (BiLSTM) and the content representation with a self-
attention mechanism for finding the core words. More specifically, given a sentence x = [e1, e2, · · · , en],
of n token embeddings, a span si = [ωsi , ωsi+1, · · · , ω fi] is a concatenation of the content representation
zi

c (weighted average across all token embeddings in the span; SelfAttn) and the boundary representation
zi

b of the start (si) and end positions ( fi) of the span:
u1,u2, · · · ,un = BiLSTM(e1, e2, · · · , en)

zc
i = SelfAttn(esi , esi+1, · · · , e fi)

zb
i = [usi ;u fi]

zi = [zc
i ; zb

i ]
We use the contextualized ELMo 5.5B embeddings15 for token representation, following the near state-
of-the-art performance reported on the named entity recognition task on the Wet Lab Protocol dataset
in [130]. We refer to [130, 162] for further details.

Other parameters. We use GloVe vectors for input feature representation for Model 1 with 300 di-
mensions, consistent with the prior work [28, 160, 203]. For Model 2, we use the contextualized ELMo
5.5B embeddings as described above which have pre-determined 1024 dimensions. We use Universal
Sentence Encoder (USE) [44] for encoding purposes. A USE embedding vector has pre-determined 512
dimensions.

15https://allennlp.org/elmo
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Chapter 6: BioSpark
An LLM-based End-to-End System for Facilitating Analogical Design
Sparks and Deepening Engagement
An earlier version of this work was previously published as an Extended Abstract in ACM CHI 2024
([143]) and NeurIPS 2023 Creativity Workshop, and has been adapted for this document.

This paper presents BioSpark, a system for analogical innovation designed to act as a creativity partner
in reducing the cognitive effort in finding, mapping, and creatively adapting inspirations from distant
fields. While previous approaches have largely focused on the initial stages of identifying inspirations,
often limited to a narrow set of hand coded data, BioSpark uses LLMs embedded in a familiar, visual,
Pinterest-like interface to support users in more deeply engaging with inspirations across multiple stages
of analogical innovation while avoiding fixation and over-reliance on AI-generated ideas. To do so we
introduce several novel features, including a tree-of-life enabled approach for generating relevant and
diverse inspirations; ‘sparks’ that connect inspirations to the source problem domain; tradeoff cards that
scaffold user consideration of key constraints; and a free-form chat interface grounded in the context of the
design problem and the inspiration to help users more deeply explore adapting inspirations. We designed
and evaluated the effectiveness of BioSpark through a workshop with professional designers, a pilot study
with a functional prototype, and a controlled user study. Our results suggest that participants found value
in BioSpark’s potential to embed AI support into interfaces seamlessly, promote deeper engagement with
inspirations, and augment human creativity, while mitigating the risks of hallucinations, loss of ownership,
and idea fixation.

6.1 Introduction
Many innovations in design, technology, and science have been driven by people finding and adapting
inspirations from fields distant to their own. Whether Vetruvius explaining how sound waves work through
analogy with water waves [61], the Wright brothers designing a lightweight wing control mechanism
based on a bicycle inner tube box [133], or engineers partnering with an origami expert to furl a solar array
into a narrow rocket [183, 204, 281], such innovations have required their inventors to engage in a complex
cognitive process of finding and creatively adapting inspirations that had limited surface similarities but
deep structural similarities.

While such analogies may sometimes seem like ‘lightning strikes’ of serendipity, researchers have identi-
fied that analogical innovation involves several cognitive stages, all of which can require significant mental
effort. Finding inspirations in distant domains is difficult because of the challenge of going beyond sur-
face keywords and visual similarity to finding out-of-domain mechanisms that share a deeper underlying
problem structure. Once encountered, determining which inspirations are relevant to solving the problem
requires the inventor to map the inspiration to the source domain to understand how its mechanisms could
be instantiated [87, 89, 93]. Often, the inspiration may not itself be used directly; instead it may identify a
profitable design space that the designer might creatively adapt to the problem [140, 167]. For example, an
inspiration of a simple paper crane might identify origami as a profitable design space but not be directly
used in the complex design of a folding solar array. Finally, the particular way in which the design mech-
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Figure 6.1: The BioSpark interface is organized into the mechanism clusters panel (AO) and the stream
( IO). Each cluster card (BO) consists of an image of the first (or user-selected in the cluster modal view)
species in the cluster, its active ingredient description, action buttons, and a ribbon indicating the size of
the cluster. When the card is clicked a modal view shows up, revealing more details about each mechanism
in the cluster. The action buttons include: ‘save mechanism’ (CO), which updates the count in the badge
for the saved mechanisms toggle (HO), ‘spark’ (DO) that generates new sparks of inspiration that build on
the clicked mechanism and are diversified by previously generated sparks, ‘trade-off’ ( EO) that generates
a run-down of potential design trade-offs of using the clicked mechanism in the context of the design
problem, and ‘Ask AI’ ( FO) that opens up a pop up window with a text area for typing any requests (e.g.,
follow-up questions about the mechanism). The stream panel ( IO) includes system- and user-generated
outputs such as sparks, trade-offs, and responses to user questions. Each spark card also includes helpful
features such as a caret for expanding/collapsing the card, the timestamp of creation, a clickable thumbnail
( JO) showing the source mechanism, which expands the modal view upon clicking it, and control buttons
(KO) for further generating new sparks of the spark content, Q&A, and deletion. The content of each spark
is directly editable.
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anism is instantiated and used needs to be thought through, with limitations and trade-offs considered and
mitigated [10, 228, 260]; for example, while the Wright brothers used the twisting of the cardboard box
for inspiration, they had to find materials and use mechanisms that would support a manned plane in flight
without tearing or being too heavy.

Supporting these complex needs in a single system has been challenging, with most approaches focusing
on one or two stages of the process and largely limited to a small, hand-coded set of inspirations [45, 66,
97, 129]. Approaches to collecting inspirations at a larger scale have begun to appear [73, 121, 125, 140],
but have mostly been limited to helping with the finding stage of analogical innovation. Relying on
users to do the hard work of determining which inspirations could be relevant and how they could be
adapted can lead to them not noticing or putting in the effort to go beyond surface similarities and try to
understand how an inspiration could be used; as noted in Kang et al. 2022, “the critical first step towards
analogical inspiration may be raising... enough attention and interest above the initial ‘hump’ of cognitive
demand” [140].

In BioSpark we explore the idea of a LLM-powered computing system acting as a creativity partner to
proactively help with the intellectual work of not only finding analogies but also transferring and adapting
those ideas to the target domain. By doing so we aim to help free up the cognitive effort of users to
engage in the creative process of exploring new design spaces and considering more ideas more deeply
than they would be able to otherwise. A key goal of our approach is to augment human creativity rather
than replacing it with AI-generated ideas or resulting in fixation on those ideas.

To achieve this, BioSpark explores several new design patterns for partnering AI with human analogical
ideation, including:

• A tree-of-life enabled approach for generating new and relevant biological inspirations from a small
set of ‘gold standard’ inspirations taken from AskNature;

• An analogical ideation interface leveraging familiar interaction concepts from designers’ practice
of browsing Pinterest and curating moodboards;

• Proactively generating ‘sparks’ that help users understand the mapping between inspirations and
their design problem;

• Providing pro/con tradeoffs to scaffold users in considering key aspects of the design problem;
• Supporting a free-form chat interface grounded in the inspiration and the design problem context to

help users more deeply consider inspiration mechanisms.

We instantiated BioSpark in a prototype system and evaluated and iterated on it through a formative study
with 4 participants with design and engineering backgrounds as well as a user study with 12 participants
of varied backgrounds. Our results suggest ways in which AI support can be embedded into interfaces to
support and augment human creativity through deeper engagement with AI inspirations while addressing
potentially negative effects such as hallucinations, lack of ownership and control, and fixation on AI
prompts and generated ideas.

6.2 Related Work

6.2.1 Design by analogy

Throughout history, analogies have often driven breakthroughs in science, engineering, and design (e.g.,
[61, 133, 183]). Yet, analogical innovation in human minds has proven rare due to the cognitive challenges
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involved with the underlying analogical processing. One challenge is the high sensitivity to surface-level
similarity during retrieval from memory that favors analogs with shared visual or keyword similarities
over the ones that share a deeper underlying structure [89]. In addition, the heavy cognitive load incurred
during analogical processing, even with just a few relations, significantly burdens working memory and
leads to performance degradation [91, 94, 105]. To support people with analogical processing, researchers
have designed various systems for analogy retrieval. One thread of research here focuses on modeling
analogical relations, albeit in limited scopes. This includes system based on the structure-mapping the-
ory [80, 81, 87], multiconstraints theories (e.g., [120], connectionist designs [117, 127], and rule-based
approaches [11, 39, 40]). Many methods involve labor-intensive processes, such as the WordTree method-
ology [167]. Additionally, numerous systems depend on hand-coded and meticulously structured data, the
curation of which is often resource-intensive (e.g., [97, 260]).

Recent work in computational methods for finding analogical inspirations at scale have shown promising
results using a significantly simplified schema (e.g., the purpose and mechanism schema in [121, 140])
with just a fraction of data (e.g., [49, 121, 140]). However these systems primarily focus on facilitating the
discovery of potential analogies and do not extend support to the subsequent, intricate stages of design that
follow. This involves navigating potential limitations or trade-offs, which are essential for the successful
transfer of these analogies in real-world scenarios [10, 228, 260].

6.2.2 Bioinspired design

One particularly relevant thread of research in design by analogy focuses on finding inspirations in bio-
logical organisms and systems [129]. However, prior approaches have been limited due to their reliance
on costly manual curation (e.g., AskNature [66] or DANE [97]; the researchers of DANE found that
redescribing a single biological organism in the Structure-Behavior-Function framework can take approx-
imately ∼40-100 hours per model). Alternative approaches demonstrated the feasibility of using crowd-
sourcing to power supervised learning for identifying scientific articles with biomemetic inspirations (e.g.,
[258, 280]), but the cost of curating high-quality annotations presented a significant bottleneck for scalabil-
ity. Yet another line of research has explored rule-based (e.g., [54]) or data programming [74] approaches,
and showed promising results, albeit potential concerns of their generalizability and scalability.

Our iterative tree-of-life-based algorithm for expanding the mechanism dataset builds on these threads
of research, while also leveraging recent advances in AI, such as Large Language Models (LLMs), that
present promising new opportunities for designing scalable approaches for bio-analogy generation. How-
ever, naively prompting LLMs in a zero-shot manner may still result in limited diversity on abstract con-
cepts [57]. One promising avenue of research here is exploring knowledge-augmented or knowledge-
guided prompting for the purpose of increasing conceptual diversity in generation output. Previous work
in this area (e.g., [16]) has explored this idea in the domain of factual Q&A, and has shown increased
factuality in responses to questions with simple answers (e.g., “Where did Alex Chilton die?”) when a
relevant knowledge graph was traversed first to retrieve relevant facts to contextualize LLM prompts.

6.2.3 LLMs for ideation and co-creation

Recent advances in LLMs also suggest the potential for scalably augmenting analogical innovation for
users throughout the entire cognitive process, from finding potential analogical inspirations to mapping
them to the problem domain to helping users more deeply engage with their mechanisms and trade-offs.
LLMs have shown the capability to infer specific analogies and to generate ideas relevant to a design
goal (cf. [267]). They also can serve as more flexible natural language processing components in an
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interface, allowing for powerful interface augmentation approaches (e.g., [13, 78, 142, 169] as well as
direct interfaces using chat-based dialog (e.g., [1, 178, 195]).

However, studies examining the use of LLMs and generative AI in the creative process have shown that
improperly incorporating LLMs into the creative process can end up doing more harm than good. Using
generative AI systems such as image generation (e.g., Midjourney) or text generation (e.g., ChatGPT) has
been shown to lead users to become more fixated rather than more creative [261]. Several core properties
to LLMs have been identified as potentially problematic, including tendencies for inaccurate inferences
and hallucinations, user fixation on the initial prompts they enter, and overly accepting the results of
AI-generated ideas rather than adapting them or using them to further explore the design space [147,
261]. These results suggest a more nuanced approach to incorporating LLMs and AI into the analogical
innovation process may be needed.

6.3 Formative Studies

6.3.1 Workshop with Professional Designers

To better understand how our system could engage with the needs and constraints of designers, we con-
ducted a day-long workshop with professional automotive designers. During the workshop we conducted
a design probe with several worked examples of analogical inspirations that had the potential to help them
in various phases of their design process. We also discussed their existing workflow and how a tool could
be usefully integrated into that flow.

Several findings from this workshop informed the design of BioSpark. First, designers’ frequent, often
daily, practice of scrolling through inspirations on online sites such as Pinterest suggested an opportunity
for a familiar interface and behavior that our system leverage. Relatedly, the designers expressed a desire
for visual representations of inspirations (consistent with previous findings such as [166]) which reinforced
the value of a visually dense, scrollable interface and suggested that we needed to support ways of creating
visual representations for the textual inspirations the system would provide. Finally, designers stressed the
importance of their design brief and the time constraints of generating and iterating on concepts to address
it, which informed the overall flow of our prototypes in first setting a design problem to be addressed and
reducing the cognitive effort and time in helping designers adapting inspirations to address those problems.

6.3.2 Functional Prototype Pilot

Based on the workshop findings we developed an initial functional prototype to test with participants. The
prototype included a component to generate biological inspirations that could address a design problem,
for example given the need to ‘design a secure bike rack for sedans’ the system provides inspirations such
as shapeshifting algae and parasitic copepods that attach to their hosts using friction-based mechanisms
(details on the method used for inspiration generation are provided in the full system description). Each
inspiration was represented visually with an image retrieved from online search queries (Appendix A.3).

To assist designers in interacting with these inspirations, the prototype (fig. 21) included features for
explanation, comparison, combination, and critique of mechanisms using GPT4-generated content within
the interface (Appendix A.4). These features allow users to delve into individual mechanisms, directly
compare mechanisms, synthesize new ideas by combining mechanisms, and critique their own design
ideas.

For the pilot we recruited four participants (all male, avg. 29.0 age: SD: 7.39) with backgrounds in:
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mechanical engineering, CAD (2), visual, communication & UX design (1), and creative coding and
visual design (1). The study took place virtually on Zoom and lasted about 45 minutes.

Each participant was given one of two randomly selected design briefs (1) ‘design a secure bike rack
for sedans’ or 2) ‘design improvements for sedans on slippery road conditions’) and asked to use the
prototype to find as many inspiring mechanisms to come up with new design ideas as they could in 20
minutes. Participants shared their screen and thought aloud during the task, and were encouraged to use
all of the system features to come up with at least two new design ideas for the brief. After the design
tasks participants were interviewed about their experience with the prototype.

Overall, participants found the prototype valuable, with all participants finding several mechanisms that
inspired new design ideas. Some examples included: the coiling of octopus tentacles and lizard tails inspir-
ing bike rack components that could expand and contract with turbulence; and scale and fur arrangements
in rodents inspiring groove patterns on tires that would create more downforce on slippery roads.

However, all participants noted a similar theme in terms of desire for additional support, which was greater
help in engaging with the inspirations to understand and adapt their ‘active ingredients’, the core ab-
straction underpinning how each mechanism actually works. For example, while mechanisms commonly
included whole body images of organisms, participants commented that showing active ingredients such
as “feathers and feather constellation patterns rather than the whole body image of birds” (P1); and
“curvature of the tail and claws in geckos” (P3) would be better for transferring a concept.

Relatedly, participants also wanted additional support for envisioning how mechanism inspirations
transferred into their target design domain. Participants also commented that incorporation of mech-
anism ideas into focused areas of target domains may facilitate engagement with more distant ideas that
have potential for high impact when iterated on. P2 said: “I think more targeted treatment, focused in
scope would be good. Maybe we (users) can apply scales to only parts of the vehicle, such as wheel rims
or front grilles or spoilers”.

Finally, participants noted the desire for deeper exploration of mechanism ideas, such as from P1:
“‘Bike rack’ and ‘slime’ are somewhat contradictory but it (slime mechanism) makes me think about the
attachment aspects of the design... maybe new ideas around loading and unloading of bikes that have
dynamically adjusting surface friction... I’m going to click “explain” on slime... (after the detailed expla-
nation loads) I wish I could know more about the lubrication mechanism aspect of slimes”.

6.4 BioSpark

6.4.1 Design Goals

Together, the design workshop and pilot study with an initial functional prototype informed the devel-
opment of BioSpark’s design goals for a system aimed at helping augment engagement with analogical
inspirations with the potential of being incorporated into designers’ existing practices. Specially, we aimed
to help users: 1) Find analogical inspirations; 2) transfer them into their target domain; 3) understand the
active ingredients of their mechanisms; and 4) explore those mechanisms more deeply.

We instantiated these design goals in BioSpark, with the high level intention of acting as a creative part-
ner in the analogical design and innovation process beyond simply finding inspirations. The design of
BioSpark is premised on reducing the cognitive workload of users by proactively helping the user see
multiple connections between inspirations and their own problem domain, potentially sparking new ideas
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in the design spaces thus unlocked; and/or by reducing the effort for the user to engage with inspirations
more deeply by considering their tradeoffs and design constraints or by asking for more information about
their details or characteristics.

Implicit but nonetheless critical in these design goals is the need for the system as a creative partner to
not take over the human element of creativity and ownership of the resulting ideas. To address this we
frame AI-generated content as intermediate products that are ephemeral and editable and minimize ex-
plicit context switching by embedding AI actions in the flow of the system. Specifically, the AI provides
its suggestions on mappings between inspirations and the problem as idea ‘spark’ cards that are added
to a sidebar whenever the user saves an inspiration; ‘tradeoff’ cards that contextualize the pros and cons
of an inspiration’s mechanism within the problem domain; and Q&A cards that allow the user to submit
freeform queries to the LLM which are automatically contextualized with the problem and inspiration
contexts. As the user engages with the system a typical flow involves them perusing and saving inspira-
tions, and engaging with the cards in the sidebar to more deeply consider particular mechanisms or the
design spaces they represent.

In the following sections we describe in more detail the design of the system, starting with groundwork and
infrastructure for generating inspirations and their active ingredients; how we find visual representations
for them; and then a detailed discussion of the system interface features including a scenario walkthrough.

6.4.2 Biological Mechanisms and Active Ingredients Dataset Generation

Iterative Tree-of-life Construction and Expansion

The first stage of the BioSpark dataset pipeline is running an iterative algorithm for generating a diverse
set of mechanism inspirations, starting from a small set of expert-curated AskNature seed inspirations.
Prior approaches in this research area can be described as either directly retrieving information from the
Web (through various means such as crowdsourcing [258, 280], rule-based programs (e.g., [54]), data
programming [74]) or generating information from LLMs using prompt augmentation, such as by adding
directly relevant facts retrieved from a knowledge graph [16]. In comparison, while our approach also
explores prompt augmentation for LLMs, it also differs with prior approaches in new ways. First, our ap-
proach conceptually follows the hierarchy-based expansion method such as the WordTree method [167]
that demonstrated how the up-then-down traversal on the abstraction hierarchy in structured brainstorm-
ing settings could lead to novel insights. Here, we design a similar approach for structurally expanding
a seed dataset, but unlike the focus of the prior work on designing a collective process that involves hu-
man ideators and the word abstraction hierarchy, our approach applies it to LLMs and the Tree-of-Life1

hierarchy to design a scalable algorithm.

Second, our approach also differs in terms of its use of proxy data for expansion. Unlike prior approaches
that aimed at retrieving directly relevant facts or scientific articles, we anchor our expansion algorithm on
species of nature as a mediator for new spaces of mechanisms, as species often adapt to changing natural
environments by evolving with new mechanisms.

In order to generate a diverse set of biological mechanisms from curated blog posts on AskNature, we
design a two-stage process. In the first stage, we start by structuring the natural text in AskNature blog
posts into problem-mechanism-organism schemas through HTML parsing of the blog text and GPT4-
based extraction (Details in Appendix A.1). For each organism in an extracted schema, we then construct
a 7-level tree-of-life hierarchy consisting of the {domain,kingdom,phylum,class,order,family,g

1https://en.wikipedia.org/wiki/Tree_of_life
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Biological Mechanisms Dataset Generation

From unstructured AskNature blog 
posts to structured problem-mechanism 
schemas and organism tree-of-life

Step 1. Human Expert-Curated 
Seed Inspirations (AskNature.org)

Seed Organism 
Tree-of-Life

Organism tree-of-life is iteratively 
constructed and expanded by 
balancing (a) breadth- and (b) 
depth-focused strategies

Step 2 [Iterate]. Structured 
Seed Expansion with LLMs

Reference 
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Figure 6.2: We design a two-stage pipeline for generating a diverse set of species and their mechanisms.
In Step 1, we start from an initial set of seed mechanisms and species extracted from AskNature. In Step 2,
we use LLMs to iteratively construct the tree-of-life hierarchy using species generated up to that point. We
sort the hierarchy to identify sparse branches that have maximal diversification opportunities, and traverse
them in a depth- or breadth-focused manner to generate further species and their mechanisms.

enus,species} levels. To do so in our initial investigation we explored available resources such as the
Global Biodiversity Information Facility API2, Catalogue of Life [36], or the Encyclopedia of Life [75],
using canonical species names retrieved from the Darwin Core List of Terms3 for corresponding organisms
in our problem-mechanism-organism schemas. However, the limited coverage, data consistency, and API
availability of these tools prevented their adoption in our pipeline. We also investigated Wikipedia as a
source of ground-truth taxonomic information given the name of a species, which exist for some of the
organism articles we tested in the form of the ‘biota’ information box that appears on the right-hand side
of the corresponding organism Wiki article, but this data was not readily available at scale.

Instead, we wondered if given the scale of biology articles GPT4 has processed during pre-training if the
model could reliably generate the 7-level taxonomy when prompted using only the name of the species. To
evaluate the feasibility of this idea, we constructed 90 ‘ground-truth’ taxonomies using Wikipedia’s ‘biota’
scientific classification information box. To our surprise, this evaluation showed satisfactory accuracy
levels for use that were ranging between 94.4% – 100% for each of the 7 levels on the taxonomy (Table 2,
Appendix C).

In the second stage, using the constructed initial tree-of-life hierarchy, we identify sparsely populated
branches as diverse mechanism generation opportunities. Indeed recent data shows that there are signif-
icant branching opportunities on the tree-of-life hierarchy with its exponential growth (for example, the
Genus level has an estimated number of 310K members [214], while the number in the subsequent level,
families, is estimated at 8K [184]. The number of direct children in each node also varies significantly,
with the majority of genera within non-avian reptiles hosting a single species each. In contrast, insect
genera, for example Lasioglossum and Andrena boast over 1,000 species each, and the of flowering plant
known as Astragalus includes more than 3,000 known species [271]). In order to exploit these opportuni-
ties, we adopt both breadth- and depth-first strategies for finding new mechanisms.

2https://www.gbif.org/developer/species
3https://dwc.tdwg.org/list/#dwc_Organism
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In depth-focused diversification, we traverse the tree-of-life hierarchy of organisms (that include all of the
organisms in the dataset up to that point) and filter its nodes at a given depth (e.g., ‘order’). We then sort
the filtered nodes in the ascending order based on the number of its children, such that the first node in
the sorted list has the least number of children. This node represents the highest opportunity for vertical
(i.e., generating its children species) exploration, due to its sparsity. Using the first five nodes in the list
as candidates for depth-focused expansion, we design a prompt (fig. 12 in Appendix A.2) that requests
GPT4 to generate children nodes and their mechanisms that are applicable to the problem in the schema. In
breadth-focused expansion, we design a prompt (fig. 13 in Appendix A.2) that requests GPT4 to generate
sibling nodes of a given node, excluding the previously generated nodes to avoid duplicate generation.
The output of the prompts contains natural text descriptions of the step-by-step execution which we then
feed into a simple prompt for extracting and structuring the data into a JSON array.

Active Ingredient Extraction

Informed by our design goals and formative study findings, one purpose for BioSpark design and devel-
opment was enhancing its data focus around active ingredients, or transferable concepts in mechanism
descriptions, to streamline downstream user interaction along the active ingredients. To this end, we fur-
ther developed the BioSpark backend dataset pipeline to process the mechanisms in the dataset to extract
active ingredients and organize them in semantically meaningful clusters.

To extract active ingredient descriptions from mechanisms, we designed a prompt (Appendix F.1) for a
GPT4 model (gpt-4-turbo-preview) that consists of a system message and a user message. Using
the system message we instruct the model with three criteria for identifying active ingredients. Through
pilot testing we found that active ingredients that are short (i.e., 15 words or less) are easier to skim and
increase the cluster separation by excluding secondary features of commonality among the species. We
also found that an active ingredient description with a verb or verb phrase is easier to parse, as it often
presented the information in the form of ‘what acts upon what’; thus we explicitly instructed the model
to focus on this information in the system prompt. Finally, we provide some examples of concrete active
ingredients and instruct the model to also focus on those elements in extraction. The prompt also takes in
the description of a mechanism as its user message to apply these rules.

Recursive Clustering of Active Ingredients

In order to organize the active ingredients in semantically meaningful groups, we create a recursive clus-
tering algorithm. In our pilot testing we found that directly applying the off-the-shelf clustering algorithm
such as the density-based algorithm DBSCAN resulted in two challenges: 1) there remained a large (of-
ten ∼20 - 40% of the total) cluster of seemingly diverse mechanisms, and 2) that cluster appeared at the
beginning of clusters, contributing to potentially mis-orienting users as to what each cluster represented.

To address these challenges, our algorithm iteratively targets the “could not cluster” cluster, which con-
ventionally is denoted as the “-1” cluster in many off-the-shelf clustering algorithm output including DBS
CAN, to re-cluster among its members. To this end, the algorithm successively re-clusters using members
of the -1 cluster generated from the previous run of clustering, with a gradual relaxation of the minimum
distance parameter (denoted as ϵ in DBSCAN), that decides the global sensitivity to cluster separation. We
set this parameter to start off at .3, and gradually increases with a decreasing slope, meaning the step in-
crease added to the parameter at each run decreases over time i.e., by a factor of 1.1, until no improvement
in clustering results could be made even after the epsilon has increased. Intuitively this works by taking
out the relatively straightforward clusters (i.e., groups of mechanisms with very similar surface text forms,
resulting in very low distances among them in the embedding space) early on, and by sufficiently lowering
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the sensitivity threshold subsequently in order to identify less obvious yet coherent clusters (i.e., groups of
mechanisms that look different in the surface text form yet are semantically related, resulting in relatively
higher distances among them) in the distance terrain of the remaining mechanisms. After the final run of
the algorithm, if there remains any -1 cluster mechanisms, they are broken down into a series of singleton
clusters, and appended to the end of the list to orient users towards clusters of multiple members for high
information density clusters.

6.4.3 Mechanism Image Retrieval

Searching on Google+Adobe Stock Images

In order to visually represent each mechanism, we consider retrieval- and generation-based approaches.
In our formative study, we found that generated mechanism images needed more improvements such as
identifying effective time and vantage points as well as effective zoom or scales that are specific to each
mechanism to be effective. We also found that participants liked seeing the portrait of a species as the
first step before engaging more deeply with its mechanisms. Furthermore, we similarly observed from the
design of expertly curated AskNature.org webpages that the use of a close-up and centered portrait of a
species often creates a striking visual that also invokes curiosity.

Therefore, we decided to use a retrieval-based approach to visually represent the mechanism, and specifi-
cally to focus on finding effective animal portrait images. We use Google Search and Adobe Stock Images
for this purpose, each of which had strengths and weaknesses. We found that directly searching on Google
using its API4 with an animal name or mechanism description query often resulted in images such as book
covers or graphs in relevant research paper, which were ineffective (this can also be seen in our formative
study system interface, fig. 21). On the other hand, using Adobe Stock Images5 with animal species names
as queries led to top-ranked results that were often high-quality photos, but also with other potential visual
representativeness concerns, as sometimes the results included photos of nature with the query animal
shown in the distance, rather than as portraits. In addition, we had coverage concerns with Adobe Stock
Images. Thus, we combined the top-5 results from Google Search and Adobe Stock Images to create a set
of images to rank and choose the best candidate from.

Visual Representativeness Ranking

Figure 6.3: The top-2 and bottom-2 species images ranked by GPT-4V (higher scores to the left) for
‘Scaly-foot snail’.
Using up to 10 image candidates for each species, we ranked them using GPT-4V (gpt-4-vision-pre
view) by prompting the model with instructions for focusing on specific types of photos (i.e., “focus on
one individual species, preferably in the wild, over cartoons, drawings, or the species photographed in
the distance”) with potential value for mechanism understanding (i.e., “contains visual details that help

4https://programmablesearchengine.google.com/about/
5https://stock.adobe.com
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viewers understand the following biological mechanisms...”) In addition, we instructed the model to score
all 10 candidate images from 0 to 100 in terms of goodness based on the criteria described above, and
provide rationale for each. The prompt used can be found in Appendix F.2.

For example, fig. 6.3 shows the top-2 and bottom-2 scoring images (from left-to-right) for the species
‘Scaly-foot snail’ using this approach. The score and rationale of each image was as follows.

Top-1 | Score: 95 | Rationale: This image provides an excellent close-up view of the

↪→ scaly-foot snail, highlighting intricate details of the iron-infused sclerites and

↪→ the shell’s texture which are indicative of its biological mechanisms.

Top-2 | Score: 92 | Rationale: This image offers a clear and detailed close-up of the

↪→ scaly-foot snail, clearly showcasing the iron-infused sclerites and the unique

↪→ appearance of its iron-mineralized shell, which are valuable for understanding its

↪→ biological mechanisms.

Bottom-2 | Score: 30 | Rationale: Although this underwater image shows the scaly-foot

↪→ snail in its natural environment, the details necessary to comprehend the

↪→ biological mechanisms such as the sclerites and shell are obscured and not clearly

↪→ visible.

Bottom-1 | Score: 10 | Rationale: The image is a stylized, cartoon-like representation

↪→ of a scaly-foot snail, lacking detailed visual information about the species’

↪→ biological mechanisms such as the iron-infused sclerites and iron-mineralized shell

↪→ .

The first author reviewed ranked images, their scores, and rationale for 10 species, and found a consistent
pattern of reasonable visual processing and instruction-following to be useful.

6.4.4 Interface

Walk-through

Consider an automotive designer, Sarah, looking for inspirations that could spark new ideas for novel
bike rack design, similarly as the persona we described for the formative study. When she arrives at the
BioSpark interface, she first scrolls through the board UI on the left of the screen to review different clus-
ters of mechanisms. She is initially drawn to the ‘exoskeleton’ cluster, showing an image of a froghopper,
as the exoskeleton structure may have insights into the skeletal design of new bike racks. She clicks the
cluster card (fig. 6.1, AO) to examine its details further. The mechanism description in the modal that ex-
pands out upon her click highlights a particular material, ‘chitin’, as strong and flexible that can absorb
and distribute the force of impact. She clicks on the ‘See more details on Perplexity.ai’ button to explore
this material further (fig. 6.4). She finds a few related scientific research providing additional details of the
exoskeleton composition, such as how pleural arches of the froghopper exoskeleton contain a composite
structure of both rigid chitin and the elastic protein resilin that allows the exoskeleton to store energy and
then release it quickly to power the froghopper’s powerful jumps (fig. 6.6). She takes a quick note on the
research and returns to BioSpark.

She then finds another mechanism that seems counter-intuitive yet interesting, the mucus and muscular
foot of ‘Architaenioglossa’, that includes different species of snail, as potentially interesting mechanisms
for the problem. She clicks on the ‘spark’ button to receive inspirations for new ideas that may use this
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mechanism in new ways (fig. 6.1, DO). She receives two sparks in response; the first, titled ‘Mucus-Glide
Bike Mount’, describes an idea that uses hydrogel coating to reduce friction in motion. Intrigued by
the idea, but concerned with the durability of hydrogel in various weather conditions, she asks BioSpark
using the ‘Ask AI’ button (fig. 6.1, FO): “what are good candidate hydrogel coating materials? Also con-
sider weather situations (frigid cold or precipitation) and suggest materials robust to such conditions.”.
BioSpark returns an information card that provides alternative material choices, such as Polyacrylamide
Hydrogels, described as capable of maintaining their mechanical strength and elasticity in a wide range of
temperatures and as resistant to degradation in wet conditions, or Polyvinyle Alcohol (PVA) Hydrogels,
notable for excellent mechanical properties and withstanding repeated freeze-thaw cycles while maintain-
ing a low-friction surface even when wet, which makes them an appealing case for use in cold weather
conditions (the Q&A card in the top of the stream, fig. 6.1, IO). She writes down these materials as poten-
tial leads to pass on to the engineering research team later, and clicks on the ‘Trade-off’ button (fig. 6.1,
EO) to learn more about the potential disadvantages of a design that incorporates a lubricant-like material
directly on the surface of the rack where bike wheels are loaded on to. The returned trade-offs card raises
cleaning difficulty as a potential concern, which she uses to ideate related usage scenarios and constraints
involved to develop the idea further.

B A

D

C

Figure 6.4: The modal view of a clicked mechanism cluster shows additional mechanism and active in-
gredient details (AO). The same action buttons featured on the main page of the interface (BO) are shown, as
well as the ‘See more details on Perplexity.ai’ for finding additional details and related scientific researech
(CO), and a carousel displaying other species that belong to the cluster which can be viewed by clicking on
any of the images (DO).

Sparks

We expected that BioSpark users may engage in an explore-exploit trade-off while interacting with the
system. Many prior studies have investigated patterns involved with this trade-off, for example in the
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Figure 6.5: (First & Second) Bar graphs show that semantic diversity increased when using the precedent-
based diversification approach, both at the whole spark and active ingredient levels; (Third & Fourth)
Repeat analyses show the robustness of these results against the choice difference of the encoder model,
when the Sentence-bert model [215] is used instead of OpenAI’s text-embedding-3-large.

context of organizational learning (cf. [173]) and information foraging (cf. [207]), producing valuable
implications for system design. In BioSpark, this trade-offmay manifest in the form of users scrolling and
browsing various clusters in the interface, and wanting to efficiently exploit an interesting design space
that surrounds a particular mechanism and its active ingredient. In order to support efficient exploitation
of an interesting design space that surrounds a mechanism inspiration, we design a one-click feature for
new related spark generation.

We generate two new sparks using GPT4 (gpt-4-turbo-preview) each time the user clicks on the
‘spark’ button (fig. 6.1, DO) on a mechanism. We design a spark-generation prompt (Appendix F.3) to
request the generation. In the prompt we contextualize the user-selected mechanism inspiration with
the design problem description and the constraints provided with the problem. We instruct GPT4 to
be succinct when generating sparks (i.e., under 500 characters) and provide a descriptive title for each.
However during pilot testing, we noticed that directly generating multiple sparks for the same mechanism
inspiration led to highly similar generations, despite the explicit instruction included in the prompt that
requested diversification in generation.

To address this, we add the most recently generated 20 sparks as part of the prompt, and deliberately
request that the new generation be novel, and not redundant with them. We term this approach ‘precedent-
based diversification’. We test whether precedent-based diversification leads to a significant improvement
in terms of semantic diversity compared to generation without such diversification. To this end, we re-
peatedly generate 20 sparks for each of the 10 randomly selected seed mechanism inspirations, and for
each of the two design problems (the same design problems that our participants saw in the user study).

We investigate semantic diversity at two levels, the whole text and the active ingredient of a spark. To
get the active ingredient, we process the generated spark using the same process as before for extracting
active ingredients from mechanisms (§6.4.2). We then encode each spark or active ingredient text into an
embedding using the OpenAI’s text-embedding-3-large model. We construct pairs of spark or active
ingredient embeddings using the 20 sparks generated for each seed mechanism for each of the two design
problems, which amounted to 3,800 pairs, and calculate the average cosine distance among the pairs. This
average represents the semantic diversity measure, which has been used in similar context in prior studies
and was shown to be a viable measure of semantic diversity of natural language texts (cf. [92, 109, 246]).
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In order to ensure robustness of our results against the choice difference of the encoder model, we repeat
the analysis using another popular encoder – the Sentence-bert model for embedding the text [215].
We find that, at the whole spark text level, the semantic diversity was significantly higher when precedent-
based diversification was used (M=.24, SD=.073) than not (M=.17, SD=.090) (ttwo-tailed(7291.87)=-42.41,
p=0.0). The result is consistent for the active ingredient level (M=.49, .43, p = 0.0), and robust against
the choice of encoder models (fig. 6.5).

Finally, in order to further facilitate users’ engagement and exploration in a potentially interesting design
space, we add two sparks whenever the user saves a mechanism inspiration as well.

Trade-off Analysis

We generate a new trade-off analysis card using GPT4 (gpt-4-turbo-preview) each time the user clicks
on the trade-off button (fig. 6.1, EO) on a mechanism. We design a trade-off analysis prompt (detailed in
Appendix F.4) to request the generation. In the prompt we contextualize the user-selected mechanism in-
spiration using the design problem description and the constraints provided with the problem. We instruct
GPT4 to return the ‘pros’ and ‘cons’ of the mechanism inspiration in the context of the design problem
using a markdown table format that places each pro-and-con pair in a new row, and give each item in the
table a succinct (3 words or less) label. In the view, we display the analysis in each trade-off card in the
stream (fig. 6.1, IO) and implement a scrollable and formatted table view using React-Markdown6 and r
emark-gfm7.

Two-Stage User Request Triaging and Handling Q&A

In order to flexibly respond to various requests that users could type in the Q&A text area (fig. 6.1, FO) and
generate appropriate responses, we design a two-stage process for handling user Q&A. In the first actio
n-triage stage we prompt GPT4 (gpt-4-turbo-preview) with user-typed text to act as an agent that
reads the content and triage it to any of the following five action choices:

[Action 1]. Generate **two** related but highly different ideas based on the user-

↪→ selected mechanism.

[Action 2]. Perform an analysis of anticipated pros-and-cons design tradeoffs of

↪→ applying the user-selected mechanism.

[Action 3]. Answer the user’s follow-up question or respond to their comment related to

↪→ the user-selected mechanism

[Action 4]. None of the above actions are appropriate for the user comment; take no

↪→ action.

We instruct GPT4 to pick appropriate actions and for each choice, return an ‘appropriateness score’ and
supporting ‘rationale’ for the choice. We pass the latter information to the interface to feature it on a tooltip
next to the timestamp of the returned card (fig. 6.1, the ?O icon left to each card in the stream IO). The first
action indicates that the user intent inferred from the text by GPT4 is in seeking new ideas. The second
action indicates that the user intent is in seeking a design trade-off analysis. The third action indicates that
the user intent is in additional details about a mechanism. The final action indicates that none of the user
intent above was deemed appropriate. We sort by the appropriateness score in the descending order and
send corresponding requests for performing each action, as described in the previous sections.

6https://github.com/remarkjs/react-markdown
7https://github.com/remarkjs/remark-gfm

107

https://github.com/remarkjs/react-markdown
https://github.com/remarkjs/remark-gfm


In the second stage, the BioSpark backend performs the action and returns the result to the interface.

Stream Organization & Supporting Efficient Exploitation of an Interesting Design Space

In order to support user engagement with freshly produced sparks and other system-generated information,
we organize the stream (fig. 6.1, IO) by recency, placing the most recently generated items to the top. In
addition, to support efficient exploitation of an interesting design space, we support action buttons directly
in each spark (fig. 6.1, KO). Users can use these buttons to build off of any of the existing sparks in the
stream, for example by clicking on the spark generation or the Q&A button in the card. We leverage the
same machinery for generating sparks as before, but contextualize the generation using the selected spark
in the stream, to anchor generation in the design space being exploited by the user.

Furthermore, the stream contains helpful organizational feature, such as quick filtering of different types
of information (e.g., sparks, trade-offs, or Q&A only, fig. 6.1, top of the stream IO), as well as deleted
items with additional support for restoration.

Drill-down on related research

In order to support users with drilling down on related scientific research for each mechanism inspiration
on demand, we designed a designated button (The ‘See more details on Perplexity.ai8’ button, fig. 6.4,
CO). Through interface pilots, we anticipated that the most common user workflow for drilling down on
related research to be taking place after the user decides on a particularly interesting cluster for further
consideration. When designing the button, we initially considered its placement on each of the cluster
cards in the main interface, but decided to move it to the cluster modal view in order to prevent clutter
and support effective exploration of diverse design space on the main interface. In addition, to support the
streamlined exploration – decision – further research workflow, we specifically placed the button at the
end of the extended mechanism description featured in the modal fig. 6.4, CO).

We implemented the button’s functionality as opening a new browser tab that contains search results of
relevant research on the Perplexity.ai website. The search query was pre-populated using the following
template:

Give me relevant details about "[active ingredient]" commonly found in [species]

An example of the Perplexity.ai page result is shown in fig. 6.6. This functionality design was a com-
promise following our technical investigation that showed the difficulty of implementing Perplexity.ai’s
search page results inside a native React.js application interface9 and the lack of API10 support for
evidence generation11.

BioSpark was implemented using React.js for the interface and the Flask server in Python3.11 for
the backend components.

8https://www.perplexity.ai/
9Perplexity.ai prohibits user requests that attempt to render its search results natively.

10https://docs.perplexity.ai/
11Last tested on March 17th, 2024.
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Figure 6.6: An example results page on Perplexity.ai that opens up in a new browser tab when the user
clicks on the ‘See more details on Perplexity.ai’ button on the mechanism modal view. The page describes
how the froghopper exoskeleton contains a composite structure of both rigid chitin and the elastic protein
resilin that allows the exoskeleton to store energy and then release it quickly to power the froghopper’s
powerful jumps, and its supporting research, that may provide valuable details as described in our scenario
(§6.4.4).

6.5 User Study
We conducted a within-subjects laboratory study to investigate whether BioSpark was more effective in
helping people engage with inspirations for ideating new solutions to design problems compared to a
baseline condition that involved using both the expert-curated AskNature.org and ChatGPT. The rationale
for using AskNature+ChatGPT as a baseline condition is that AskNature is a ”gold standard” for highly
curated bioinspired design inspirations, and in combination with ChatGPT participants could in theory
perform all of the same features as enabled by BioSpark, though with higher friction. Thus this baseline
provides a strong test for the system: while we might not necessarily expect the quality of its inspirations
to match that of AskNature, we anticipated them to be sufficiently useful to test the value of the system’s
workflow support as a whole.

6.5.1 Methodology

Research Questions

Our research questions included:

[RQ1] How do users engage with inspirations and how does the depth and type of engagement differ
between conditions?

[RQ2] How do users explore the design space during ideation and how do the quantity and diversity of
their ideas differ between conditions?

Structure

We employed a within-subjects study design to compare BioSpark with a baseline system for inspiration
and a shared Google Spreadsheet participants accessed to write down their own ideas. We chose two
design problems for user ideation, including how to design wheelchairs that allow users to go up the stairs
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easily and how to design an innovative bike rack for sedans. These problems were chosen because they
involve multiple, potentially competing constraints (e.g., lightweight but durable) and were pilot tested
for being able to be completed within the timed ideation task.

(The ’Wheelchair’ problem) Design advanced wheelchairs that can also allow users to go

↪→ up the stairs easily.

Constraint 1 (Lightweight yet Durable Construction): The wheelchair should be

↪→ lightweight and be able to withstand a heavy load without structural failure.

Constraint 2 (Compact and Foldable Design): The wheelchair must be foldable to a 1/4 of

↪→ the volume within 30 seconds without the use of tools.

(The ’Bike rack’ problem) Design innovative bike racks for sedans.

Constraint 1 (Integration without Interfering with Aerodynamics): The bike rack’s

↪→ design must not significantly reduce the vehicle’s fuel efficiency when installed

↪→ and with bikes mounted.

Constraint 2 (Versatility in Accommodating Different Bike Types): The rack must be able

↪→ to securely hold at least three different bike frame sizes (e.g., 16", 20", and

↪→ 26") without the need for additional adapters.

We randomly assigned problems to conditions for the main timed tasks (20 minutes each), counterbalanc-
ing the order of presentation using 3 2x2 Latin Square blocks. Participants followed a fixed procedure in
the study, which took place remotely using Zoom: Introduction, Consent, Demographics survey; Tutorial
(detailed in Appendix G.1) of the first system via screensharing; Main task for the first system (20 min);
Rating task for the first system (only in the BioSpark condition) Survey for the first system; alternating
and repeating for the second system; followed by a debrief. Participants were asked to share their screen
during the timed tasks and think-aloud. To probe how participants felt about the utility of different in-
formation generated using various AI-based system features, after the BioSpark’s main task, participants
were also presented with a rating interface that showed a list of saved Spark, Q&A, and Trade-off cards
along with a 5-point Likert-scale for them to rate its usefulness in their process.

Participants

We recruited 12 researchers (7 women, 5 men) through advertisement on Upwork12 and email lists at a
State Arts College. Participants’ background included professional UX design experience (6), professional
illustration and graphic design (1), PhD in Psychology (3), and a current undergraduate student in Arts
and Design (1) and a master’s student in AI and Data Science (1). Participants’ average age was 36.1
(SD=9.91).

Baseline

The baseline system used AskNature.org+ChatGPT. Participants were given 5 URLs, each of which
pointing to a functional category equivalent to those that were used for the BioSpark backend dataset

12https://www.upwork.com/
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pipeline: Manage Impact13, Manage Tension14, Manage Compression15, Manage Turbulence16, and Mod-
ify Speed17. Before the baseline task began, participants organized their screen by opening up all 5 tabs
in their browser on the left-hand side of the screen and sign-in and open the ChatGPT18 interface on
the right-hand side of the screen. They were instructed to freely use the platforms to help themselves
understand and ideate with mechanism inspirations found on AskNature for the design problems. Each
participant was also instructed to write down the ideas they come up with in the process in a prepared
Google spreadsheet, with a brief description of the species that inspired each idea.

Qualitative coding of the types of participants’ engagement with mechanism inspiration

The research team met to discuss coding of interview and think-aloud data from the study. One salient
feature of the data was that participants seemed to engage with mechanism inspirations differently in depth,
for example with or without follow-up actions that related to attempting to deepen their understanding
of the inspirations, of their relevance to the design problem and of trade-offs regarding different design
constraints, and attempting to come up with new ideas that could adapt the inspirations to a design problem
in new ways. In order to capture this, the first two authors came up with the following four codes that
describe participants’ different engagement patterns:

[S1: “Interesting!”]: Comments on a mechanism inspiration, but directly followed by moving on to a
different mechanism that was visible to the participant.

[S2: “I’m not sure how this might be relevant”]: Comments on a mechanism inspiration, but similarly
followed by moving on to a different mechanism that was visible to the participant.

[D1: Engaging with relevance understanding and constraints consideration]: Engages with AI to un-
derstand a mechanism inspiration’s relevance to the design problem, for example by asking the
following types of questions “tell me examples of...” or “how might this be used/applied...”

[D2: Actively coming up with new ideas]: Explores the design space and actively generates new ideas “it
made me think of...”

One author transcribed the interview and think-aloud data from the study, and incorporated descriptions
of participants’ actions with each platform (e.g., what the participant is typing in the ChatGPT interface
or what the participant is clicking in BioSpark), that participants’ think-aloud did not describe but were
relevant to understanding their engagement process and intent. This amounted to 266 transcripts across
12 participants. Coders coded a set of randomly selected 16 transcripts together blind-to-condition and
arrived at an agreed-upon set of codes through a discussion. Then the two coders coded 30 additional
randomly selected transcripts independently. The inter-rater agreement of codes for this set showed a
moderate to strong level of agreement κ = 0.76. Thus, the first author coded the remaining 218 transcripts
alone.

Extraction of unique design constraints described in each idea

To analyze the user engagement patterns involving consideration of design constraints (§6.5.2), we first
extract the unique design constraints described by participants in each idea. We use GPT4 (gpt-4-tu

13(Manage Impact) https://rb.gy/rvz17u
14(Manage Tension) https://rb.gy/t3se2z
15(Manage Compression) https://rb.gy/xvogjb
16(Manage Turbulence) https://rb.gy/9apgoq
17(Modify Speed) https://rb.gy/r7o2c8
18https://chat.openai.com/
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rbo-preview) with a prompt (Appendix H.1) to perform the extraction. The first author reviewed the
extracted constraints in terms of their coherence and uniqueness for a random set of 20 ideas and found
that the extraction was satisfactory in terms of both the uniqueness of extracted constraints and their
coherence.

Extraction of the species’ names that participants described as inspiring their ideas

To analyze the diversity of the species that participants were inspired from for their own ideas (§6.5.2),
we use GPT4 (gpt-4-turbo-preview) with a prompt (Appendix H.2) to extract the species name from
each participant idea and normalize it. The first author then reviewed the extracted species’ names in a
random sample of 20 ideas and found that the extraction accuracy was satisfactory.

Length-constrained Summarization and Diversity Calculation of Participants’ Ideas

In order to accurately analyze the semantic diversity of participants’ ideas without the length of idea
description as a confound (§6.5.2), we first summarize each participant idea into 10 words or less using
GPT4 (gpt-4-turbo-preview) with a prompt (Appendix H.3). In the prompt we instructed GPT4 to
succinctly summarize each idea in 10 words or less, and provided four examples of summarization. The
first author then reviewed summarized ideas in terms of accuracy for a random set of 20 ideas and found
that the summarization performance was satisfactory.

Each summarized idea was then encoded into an embedding using the OpenAI’s text-embedding-3-l
arge model. Using these embeddings, we construct pairs in each individual participant-condition com-
bination and calculate the average per condition for semantic diversity analysis between the conditions,
similarly as before in our evaluation of precedent-based diversification (§6.4.4).

Measures

In relation to the research questions described in §6.5.1, we collect the following measures for analysis:

[RQ1] To analyze the differences in participants’ engagement patterns we measure: the frequency of each
code for each participant in each condition; the character length of each idea; the number of unique
design constraints mentioned in each idea.

[RQ2] To analyze the diversity in design space exploration we measure per condition: the aggregate pair-
wise cosine distance for each participant; the number of unique species each of the participants were
inspired by; the number of ideas participants generated.

Furthermore, to analyze how participants’ thought about the two systems’ usefulness and their various AI
features, we collected participants’ subjective ratings to a modified Technology Acceptance Model survey
questionnaire items focused around task performance and easiness of learning from [273] (4 items). In
addition, we employed questions focused on serendipity and exploration adapted from [175, 191] (9 items)
and the questions on the value of AI assistance and the quality of inspirations found in the system.

For the BioSpark condition, additional 6 questions were included in the survey asking participants about
the usefulness of 6 different features of the system.

Analysis

[RQ1] To analyze the potential differences in engagement patterns with mechanism inspirations, we per-
form a χ2 test followed by pairwise paired-samples t-tests (two-tailed) with corrections for multiple
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tests (Bonferroni) when appropriate. Furthermore, we perform independent-samples t-tests (two-
tailed) for idea-level analyses, e.g., for their length and the number of design constraints described.

[RQ2] To analyze the diversity in design space exploration, we perform paired-samples t-tests (two-tailed),
e.g., for each participant’s aggregate pairwise cosine distance between conditions, and the number
of ideas participants generated.

For analyses of how participants’ thought about the two systems’ usefulness and their various AI features,
we perform Wilcoxon’s signed rank test on the survey data, which was participants’ responses on a 7-
point Likert scale (1: strongly disagree, 7: strongly agree), using the non-parametric paired-samples
and two-tailed Wilcoxon’s signed rank test. We also perform a thematic analysis [31] on the transcripts.
Our analysis focused on themes around: how users interacted with the integrated interaction features in
BioSpark, and how that contrasted with their usage patterns in the baseline condition, and the potential
challenges related to that.

6.5.2 User Study Findings

We structure our user study findings around the two research questions and report on how participants
felt that the BioSpark’s integrated AI support compared to ChatGPT for helpfulness in engaging with
mechanism inspirations and exploring the diverse design space.

RQ1: How did participants engage with inspirations and how does the engagement differ
in depth between the conditions?

We consider three factors with significance to how designers engage with analogical inspirations to arrive
at insights. The first factor is the depth in which they engage with an inspiration, which is particularly rele-
vant to analogical inspirations that may require challenging, deep cognitive processing of analogs [89, 94]
for valuable ideas of transfer to emerge. The second factor is the ‘first impression’ of an analogical
inspiration, where the negative first impression could be particularly damaging by snipping the bud of po-
tentially valuable insight despite surface-level irrelevance. The last factor is how much designers consider
the feasibility constraints of an inspiration or idea that may have significant implications for its practical
impact.

To analyze these factors, we first look at a subset of the transcribed participants’ think aloud along with
their behavior descriptions and find distinctive engagement patterns. Table 6.1 shows representative cases
and how they map to the four codes of engagement patterns (§6.5.1). Across the cases that involved
participants’ deep engagement (D1 & D2), we see a consistent pattern of participants following up on
their thoughts with exploration of additional information (e.g., such as from using the Ask feature in
BioSpark; D1), or going into the details of what the inspiration made them think of (D2). In contrast,
for shallow types of engagement (S1 & S2), we find that participants stop short of the kinds of extensive
follow-up we see with deep engagement.

Following this observation, we analyze the data and hold the following hypotheses:

[H1] Participants engage more deeply with mechanism inspirations when they can access integrated
‘deep’ engagement features (e.g., requesting ‘sparks’ of mechanism-to-problem mappings for a
user-selected mechanism that are different from previously generated sparks or user ideas; request-
ing a run-down of anticipated design trade-offs for a user-selected mechanism; and being able to
ask a follow-up question about a mechanism and receive a problem-context-specific answer).

[H1a] (Depth) Participants in BioSpark show a higher frequency of ‘deep’ engagement than the baseline.
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[H1b] (First Impression) Participants in BioSpark see interesting connections or be curious about a mech-
anism inspiration significantly more often than the baseline.

[H1c] (Feasibility Consideration) Participants in BioSpark elaborate on design constraints in their ideas
more extensively than the baseline.

Qualitative log analysis of engagement types. In order to examine how participants’ engagement depth
differed between the conditions, we start our analysis by categorizing the first two engagement codes
as ‘shallow’ (i.e., S1 – participants commenting “Interesting!” or S2 – “I’m not sure how this might
be relevant” without any follow-up actions), and the remaining two codes as ‘deep’ (i.e., D1 – partic-
ipants’ comments while interacting with ChatGPT or BioSpark’s deep engagement features related to
understanding the relevance of a mechanism inspiration, e.g., “tell me examples of...” or “how might
this be used/applied...”, and D2 – exploring the design space and actively generating new ideas e.g., “it
made me think of...”). We first perform a χ2 test to find if there is a significant distributional difference
between the frequencies of the two types of codes and conditions. We find a significant distributional dif-
ference (χ2(1)=12.93, p=.0003). Following this result, we perform paired two-tailed t-tests to identify the
between-condition difference for each engagement type. Pairwise comparisons after Bonferroni correction
for multiple (2) testing for each type of engagement shows a significantly higher frequency of deep engage-
ment in BioSpark (M=3.3, SD=2.67) over the baseline condition (M=1.3, SD=1.87) (tpaired(21.16)=-3.12,
p==.01, fig. 6.7, left). Interestingly, we find no significant differences in the frequency of shallow engage-
ment between conditions (Baseline: M=6.3, SD=3.28; BioSpark: M=5.8, SD=3.60, tpaired(21.81)=.34,
p==.74, fig. 6.7, right).

Figure 6.7: (Left) The bar graph shows that the average number of deep engagement was significantly
higher in BioSpark; (Right) The bar graph shows that there were equally many shallow engagement types
in both conditions.

These results suggest that participants were more efficient when engaging with diverse mechanism inspi-
rations in BioSpark, leading to more frequent ‘deep’ engagement in spite of similar levels of frequency
in otherwise ‘shallow’ engagement. Indeed, we see that participants’ follow-up actions for deeply en-
gaging with source inspirations differed between conditions which involved different time and cognitive
demands required for performing the actions. For example, when asking follow-up questions about a
mechanism in the baseline condition using ChatGPT, participants had to manually provide relevant mech-
anism context from the AskNature webpage and iterate on their prompts. In contrast, BioSpark provided
dedicated one-click buttons for requesting a design trade-off analysis, Q&A interaction, and generating
ideation “sparks” based on a user-selected mechanism that provided descriptions of relevant mappings to
the problem. Participants’ behavioral log data show that they used these system features throughout the
experiment (fig. 6.8). Participants also commented in support of the difference in efficiency of follow-up
actions, as P1 described: “I just felt like it was able to produce things without me having to like prompt
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Figure 6.8: This user log visualization shows that participants used BioSpark features throughout the span
of experiment to generate new sparks of inspiration based on user-selected or saved mechanisms (Spark),
learn more about design trade-offs (Trade-off), write down their own idea (Idea), ask follow-up questions
about the mechanism and design constraints (Q&A), or drill down on related research (Perplexity.ai).

it. And I think that allowed me to spend more time, maybe thinking about specific connections between
the mechanisms and the design features it was suggesting. Whereas... with [ChatGPT] I felt like I had to
spend more time like doing to allow it to actually help, but with [BioSpark] I felt like the AI system already
knew what I needed, so it saved that step.”. Together these results suggest that the availability and design
of system features in BioSpark may have freed up participants’ cognitive bandwidth, allowing them to
focus more on deeper engagement with mechanism inspirations. Thus we confirm H1a.

Deep engagement can only take place if participants recognized the potential relevance or be curious about
a mechanism inspiration without initially realizing the relevance. In either case, the first impression of a
potential inspiration has a significant implication for how that inspiration may be taken up or pursued for
deeper engagement down the road, and especially important for analogical inspirations whose value may
be nontrivial at the beginning, but may have an outsized value after iterations [24, 46, 153]. To examine
how BioSpark changed the saliency of participants’ first impressions of mechanism inspirations com-
pared to the baseline system, we analyze the frequency of the two positive and negative forms of shallow
engagement. Specifically, we analyze the balance of the frequency of the positive-to-negative first impres-
sions, by mapping the codes S 1→ +1 and S 2→ -1. We find that the balance is significantly higher in the
BioSpark condition (M=3.1, SD=3.92) than the baseline condition (M-.3, SD=4.16) (tpaired(21.92)=-2.25,
p==.046). Thus we confirm H1b.

How participants engaged with design constraints related to the ideation task. In addition to the
analysis of user behaviors of engagement, we also examine the output of user behaviors for signatures
of deep engagement. One such signature is the number of different design constraints participants de-
scribed in each idea. Anticipating and engaging with different design constraints is important as design
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Figure 6.9: The graph shows that the frequency balance of recognizing or not recognizing connections
between a mechanism and the design problem at hand (i.e., ‘interesting’ – S1 and ‘not sure how this is
relevant’ – S2, mapped to +1 and -1, resp.) is roughly at parity in the baseline condition, while there were
significantly more positive first impressions in BioSpark.

constraints are important for the feasibility and practical impact of ideas. In order to analyze the level
of design constraint elaboration we group user ideas per condition and first examine the average idea
length. We perform a two-tailed, independent samples t-test over ideas grouped by condition and find
that participants’ ideas were significantly longer in the BioSpark condition (M=375.5, SD=96.15) over
the baseline condition (M=141.9, SD=108.93, ttwo-tailed(119.25)=-14.65, p=¡.0001). However, the length
alone may not necessarily represent how deeply participants elaborate on design constraints without being
corroborated by its content focused on related design constraints.

To examine the constraint-focused-content, we first extract unique chunks from each idea description that
each corresponds to consideration of a single coherent design constraint. We use the gpt-4-turbo-prev
iew model with a prompt for extraction, which showed a satisfactory performance (details in §6.5.1). We
then counted the number of extracted constraints for each idea. Using this data, we find that the length of
each idea was indeed significantly correlated with the number of design constraints described in it (ρ=.58,
p ¡ .0001). We also find that BioSpark users mention a significantly higher number of design constraints in
their ideas (M=2.7, SD=1.01) than the baseline condition (M=1.6, SD=.78; ttwo-tailed(163.27)=-8.45, p=
¡ .0001). Participants’ comments also supported these results. For example, P4 described how the default
behavior of BioSpark providing information about relevant design constraints to consider nudged him:
“In the [baseline system], I was asking just random questions to ChatGPT, whereas in [BioSpark] I was
asking related questions, you know, like, first would ask, how to manufacture this, but then I can follow up
with like... I didn’t have to even ask ‘lightweight’ or ‘durable’ material. But when the system suggested
them and provided alternative choices like carbon fiber, griffin, polymer... I thought this was very helpful.
And then I looked at the pros and cons of using different kinds of materials, and manufacturing cost...
which gave me ideas.” Thus we confirm H1c.

Taken together, we confirm H1: Users engage more deeply with mechanism inspirations when they
can access integrated ‘deep’ engagement features.

116



Figure 6.10: (Left) The bar graph shows that user ideas were significantly longer in BioSpark than in the
baseline, and (Right) a similar trend was observed for the number of design constraints described in each
idea.

Figure 6.11: (Left) The bar graph shows a marginally higher diversity of ideas in the baseline condition.
Diversity is measured as the average cosine distance of idea embeddings with length-constrained summa-
rization, for each participant-condition combination; (Middle) The number of unique species in nature that
participants were inspired by in their ideas was significant higher in BioSpark than the baseline; (Right)
The number of ideas participants came up with during the experiment was significantly higher in BioSpark
than the baseline.

RQ2: How much design space did users explore during ideation and how does its diversity
differ between the conditions?

To answer the research question we look at the aggregate semantic diversity of ideas, the number of
individual species represented in the ideas, and the number of ideas per participant, and hold the following
hypotheses:

[H2] Participants explore a more diverse design space using BioSpark than the baseline system.

[H2a] Participants’ idea diversity is significantly higher in BioSpark than the baseline.

[H2b] Participants engage with significantly more inspiring species in BioSpark than the baseline.

[H2c] Participants generate significantly more ideas in BioSpark than the baseline.

To analyze the semantic diversity of ideas, we calculate the aggregate pairwise cosine distance using text
embeddings as described in §6.5.1, adopting an approach similarly used in prior studies and was shown
to be a viable measure of semantic diversity of natural language texts (cf. [92, 109, 246]). However,
directly applying the pairwise cosine distance measure without accounting for the significant difference in
the character length and the number of design constraints mentioned in the ideas may lead to an inaccurate
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result because conceptually different ideas could result in a lower level of diversity in the BioSpark con-
dition just as a side effect of mentioning similar constraints. To mitigate the potential confounding from
length (and descriptions of design constraints rather than actual design ideas), we first perform a length-
constrained summarization of each idea in 10 words or less using gpt-4-turbo-preview, and embed
the summarized idea text to calculate the average pairwise cosine distance in each individual participant-
condition combination for analysis (details in §6.5.1).

We find that diversity of ideas was .48 (SD=.109) in the baseline condition and .40 (SD=.025) in the
BioSpark condition, but the difference is marginally significant (tpaired(12.17)=2.20, p==.05) (fig 6.11,
left). Thus we cannot confirm H2a: Participants’ idea diversity is significantly higher in BioSpark
than the baseline.

Another measure of diversity in design space exploration is how many different species in nature partici-
pants are engaging with for ideation, which has potential for not only inspiring ideas based on a specific
mechanism of the particular species but also opening up a new space of design that encompasses other
mechanisms of the species or its related species. To this end, we analyze the number of unique species that
participants describe as inspirations for their ideas. We first extract the inspiring species’ names using gp
t-4-turbo-preview with a prompt (details in §6.5.1) and lowercase the extracted names to construct a
set of unique species per participant. We calculate the size of each set and average them across the partici-
pants in each condition. We perform a paired two-tailed t-test to identify the between-condition difference.
We find that the number of unique species for inspiration is significantly higher in the BioSpark condi-
tion (M=8.2, SD=4.97) than the baseline condition (M=4.6, SD=2.71) (tpaired(17.02)=-3.30, p==.007)
(fig. 6.11, middle). Thus we confirm H2b: Participants engage with significantly more inspiring
species in BioSpark than the baseline.

Complementary to the types of content diversity described above, the number of unique ideas that partic-
ipants came up with itself also has a direct implication to how much design space participants explored.
To analyze this, we perform a paired two-tailed t-test of the number of participant-generated ideas. We
find that participants in the BioSpark condition generated significantly more ideas (M=10.3, SD=8.46)
than the baseline condition (M=5.5, SD=2.91) (tpaired(13.56)=-2.35, p==.04) (fig 6.11, right). Thus we
confirm H2c: participants generate significantly more ideas in BioSpark than the baseline.

Taken together, we find that while the semantic diversity score of ideas shows a ∼17% (0.48 → 0.40)
decrease from the baseline to the BioSpark condition, the average number of ideas (5.5 → 10.3) and the
number of different species participants engaged with (4.6 → 8.2) both show significantly higher levels
of increase (∼105% and ∼78%, respectively). Thus, to the extent of considering the aggregate effect of
the factors and their relative proportions, we conclude that exploration of design space is effectively
broadened in BioSpark over the baseline system (H2).

Furthermore, the interview, survey, and observation data allow us to more deeply understand what aspects
of the BioSpark design and interactive features most contributed to broadening participants’ exploration
of design spaces.

Participants felt that the AI features in BioSpark helped them explore more design spaces and get creative.
On the usefulness of the ‘spark’ generation feature (the second highest-scoring feature for usefulness,
M=5.9, SD=1.08), P1 commented that:

“The “Sparks” button provided me with a lot of interesting insights and got me thinking in directions I
may not have thought of on my own. It spurred my creative thought. There were some instances where
I felt that the Sparks button produced insights that were a bit technical and somewhat excessive, so I
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streamlined the text to enhance accessibility for myself.”

On the usefulness of the ‘Ask AI Anything’ feature (the third highest-scoring feature for usefulness,
M=5.8, SD=1.19), participants mentioned that it “helped clarify the details of the general overview of
the idea” (P3), and that “I could ask some very specific questions about very specific mechanisms such as
finding a fabricated material that is comparable to chitin, and get a useful reply” (P4).

However, participants also felt in some occasions the AI’s response was re-coursing to make connections
to the original problem constraint, which seemed forced and adding less value “it’s still trying to navigate
the conversation towards the original topic and doens’t seem to be “progressive” enough to talk more
in depth with specific areas” (P12). Overall, participants agreement with the statement ‘I was able to
examine a variety of inspirations’ was significantly higher in the BioSpark condition (M=6.6, SD=.67)
than the baseline condition (M=5.4, SD=1.62) (Wilcoxon W=0.0, p=.03), as well as for the statement
‘I could easily explore many inspirations without getting lost’ (M=6.3, SD=.89 in BioSpark, M=5.2,
SD=1.80 in baseline, Wilcoxon W=2.0, p=.05).

Participants’ strategies for prompting and integrating ChatGPT with AskNature.org varied,
without clear guidelines

Furthermore, BioSpark’s tailored AI support helped participants find a relevant design space and ideate
within it, and this was made clear when contrasting with how participants interacted with AI support in
the baseline condition. Consider the three participants P12 and P9, and P4 who navigated AskNature and
used AI in different ways in the baseline condition. P12 was an undergraduate student at an arts college
who have only casually used prompt-based AI tools such as ChatGPT while P9 worked in a tech company
as a UX designer and have extensively used prompting on a daily basis in his work. P9 even volunteered a
few of his system prompts saved on ChatGPT that detailed the persona, task instructions, and performance
guidelines which he described perfecting over time. P4 was a PhD student in educational psychology who
have occasionally used ChatGPT in the past.

While P12 initially struggled to make relevance connections from the AskNature article pages to the prob-
lem context, subsequent interaction on ChatGPT was also time-consuming and ofttimes required multiple
back-and-forth’s to communicate his intent to AI, for example by asking AI to define an unfamiliar con-
cept (e.g., “what is [large pelagic cruisers]?” – P12) and rephrasing and re-asking his question to focus
its response to explanation of relevance to a problem domain (e.g., “Well it’s giving me specific animals
(rather than general and transferrable concepts)... So I’m going to pause the generation... let me see...
(types on ChatGPT) ‘what shape?’... oops that didn’t work, let me try again ‘what shape that could be
useful for industrial design?”’ – P12).

In contrast, and unlike other participants, P9 spent the first 6-70% of time in the study configuring the
first prompt to ChatGPT, in which he provided the task details, the AskNature.org website details, and
even including screen shots of the first few mechanisms he saw on AskNature. At the end of this context
he added a description of his request to ChatGPT to then filter the mechanisms provided in 5 functional
categories19 in terms of relevance to the design problem at hand. In subsequent prompts he selected a
few of the mechanisms ChatGPT generated in response, and prompted AI to generate more ideas based
on those. While P9 felt this approach was effective in generating ideas, it certainly cost him a significant
amount of time for crafting a prompt that had enough context and he deliberately chose to completely
bypass the diverse mechanisms existing on AskNature and to rely fully on ChatGPT-filtered mechanisms.

19That were provided as part of the task instruction to participants in the baseline condition
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Finally, P4 felt that AskNature was “like a generic platform”, but that he felt like meandering while
interacting with AI to build off of the material, as “I felt like I was asking just random questions to Chat-
GPT, while in the second one I was asking related questions”. While he thought the functional category-
based organization in AskNature helped his navigation, it also somewhat fixed the broader design space
he explored in, as he felt like “got stuck somewhere a little bit because I came up with this sideways
top-mount bike rack idea early on from the ‘manage turbulence’ concept”. P4 also thought it was easier
to see the relevance of mechanisms in BioSpark and follow-up with more exploration.

In contrast, BioSpark’s integrated design helped participants map out the design space

Participants commented on how the design and presentation of information in BioSpark streamlined their
exploration and helped them accomplish the task. P10 described it as: “I like that it’s integrated into
one space. I can press a button to get to the particular need that I had.”. While some of the participants
thought clustering of different mechanisms was helpful for navigation, others either did not notice the
‘clusters’ or engage with them.

Furthermore, the stream organization of sparks was generally thought as helpful, and was the highest-
scoring system design feature in BioSpark (M=6.3, SD=.98). Relatedly, P1 said:

“I liked these because they kept my thoughts and all the information very organized. It allowed me to
focus on the actual text vs focusing on the organization of everything. It would have been even more
helpful though if there was a way to enable bullet points or formatting tools within these. I would have
used bold or italics for example.”

Some participants wanted additional support for “comparing and contrasting” (P7) the ideas, to ‘easily
highlight the strengths of each design and extract useful design features from it for integration into a
new idea for mitigating anticipated challenges’ (P5). Overall, participants’ agreement with the statement
‘Using this system would improve my task performance’ was significantly higher in the BioSpark condition
(M=6.5, SD=.80) than in the baseline condition (M=5.3, SD=1.07) (Wilcoxon W=2.0, p=.02). For the
statement ‘The system enabled me to make connections between different inspirations’ the difference was
marginal (M=6.5, SD=.80 in BioSpark, M=5.6, SD=1.56 in baseline, Wilcoxon W=1.5, p=.07).

6.6 Discussion
We introduced BioSpark, a system exploring the idea of acting as a creativity partner in analogical in-
novation. BioSpark builds on insights from a design workshop and formative pilot study to support not
only finding inspirations but also transferring inspirations into the target design domain and more deeply
engaging with them during ideation. We found in a user study that the LLM-enabled features we explored
in BioSpark – generating and clustering inspirations, introducing sparks to help map the inspiration to the
design problem, tradeoffs to help users consider design constraints, and free from chat to explore inspi-
rations more deeply – resulted in participants generating more ideas and exploring more different species
without a significant decrease in diversity compared to a ‘gold standard’ condition using AskNature in-
spirations and chatGPT. Furthermore, BioSpark appeared to keep users in the flow of ideation, reduce the
cognitive effort in transferring and adapting ideas, and help people engage more deeply in considering
how they could use inspirations and the design spaces they unlocked.

One significant concern we had was that the features that were aimed at deeper engagement, such as
sparks, might counterproductively decrease engagement and increase fixation because of how fleshed out
the connections were in terms of articulating an entire, detailed design idea embodying the inspiration’s
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mechanism in the target domain (e.g., using spider silk for lifting a wheelchair or creating a ramp). The
higher the fidelity of an inspiration the more it may incur fixation and direct use rather than creative adap-
tation [255]. In our case we did not see evidence of this happening; instead, it led to deeper engagement
and further exploration of the design space suggested by the idea.

Why did this occur? We believe there are several factors at play. First, the cognitive load of mapping the
idea to the design space was reduced by the AI, but the decision to do the mapping in the first place was
driven by the user by saving an inspiration. Thus before seeing the AI mapping they needed to notice
something interesting or relevant about the inspiration, even if they didn’t fully make the connection to
the problem domain themselves. This self-driven curiosity and agency could play a role in their deeper
engagement with the sparks and tradeoff cards. Future systems might explore what user actions and
agency are necessary for them to feel ownership and spur initial engagement with inspirations.

Another factor that might have driven engagement was perceived ownership of inspirations. Previous
work has identified that ownership and attribution are key elements of human-AI collaboration [202].
In our study we noticed participants making attribution statements about the sparks, such as “That’s not
really my idea, [it’s] ChatGPT’s idea but okay”. A common theme among participants was discussing how
they modified the sparks to make ideas more their own and to avoid “plagiarism”, even though they were
told they could use the sparks as they wish. It’s unclear why designers in other studies finding fixation
when using LLM and generative AI did not similarly adapt and riff on ideas in order to build ownership,
but a possibility that might be explored is that an integrated system that frames AI-generated ideas as
intermediate products, as we do in BioSpark, might be more effective at promoting deeper engagement
than an unstructured system or one where they claim prominence as more final products.

Another concern we had in our system design was whether contextualizing the system interface features
in the design problem would lead to narrowing of the design ideas users would explore. Sparks, tradeoff
cards, and the freeform chat interface were all contextualized with the source design problem, with the
goal of reducing the cognitive effort needed for users to engage with the details of the inspirations relevant
to their goals. This largely appeared to hold true, with users finding the contextualization useful, and even
sometimes “magical”. While they were technically able to do this with the baseline system and sometimes
did (“It feels like I got the seed like the very starting point idea from AskNature and then generating actual
ideas from it was done by ChatGPT, like translating the seed into actual ideas”), the efficiency of the
built-in contextualization was frequently mentioned as useful as a jumping off point rather than replacing
cognitive work (e.g., “it was able to produce things without me having to like prompt it. And I think that
allowed me to spend more time, maybe thinking about specific connections between the mechanisms and
the design features it was suggesting”).

Overall, our results suggest a more nuanced consideration of context and fixation than previously con-
sidered, in which helping users reduce cognitive load throughout the analogical innovation process while
avoiding fixation by keeping AI suggestions as intermediate products in the system flow could be a prof-
itable paradigm to explore.

6.6.1 Limitations

Our findings and analysis have several limitations. Our access to professional designers working in large
organizations doing ongoing work was limited to the design workshop, and our formative study and user
study involved heterogeneous pools of participants that included freelance designers recruited from Up-
Work and design and PhD students recruited from an arts college. These study participants may not be
representative of all design professionals.

121



There may be alternative interpretations of our data based on the operalization of the measures we used.
Measuring creativity and ideation has been the subject of a large stream of research across multiple disci-
plines, and the particular measures we used are grounded in a specific subset of that stream we perceived
as most relevant to the goals of measuring engagement with inspirations and the resulting quantity and
diversity of ideas generated. Diversity in particular has been measured in many different ways, and our
approach to it may be biased by choices we made in our computation pipeline, such as reframing ideas to
control for word length or the particular LLM used.

While we developed our study protocol based on input about professional designers’ practice, our user
studies are also limited in terms of introducing artificial scenarios and are time-limited in a way that may
not be representative of the constraints designers have in their jobs. Future studies deploying similar
systems into designers’ actual practice, or making such systems publicly available for volunteer usage
could result in important learnings about the benefits and remaining challenges for supporting analogical
innovation to have real world impact.

6.7 Conclusion
In this work we present BioSpark, an end-to-end system for generating a biological-analogical mecha-
nisms dataset and an interactive interface that facilitates learning new biological mechanisms for design
challenges and synthesizing new solution ideas inspired by analogical mechanisms. We imagine a fu-
ture in which engineers and designers could find inspirations based on deep analogical similarity between
mechanisms found in nature to problems common to engineering and design challenges to drive innova-
tion across fields. Future work remains in this area to provide improvements on the pipeline for generating
analogical inspirations from nature, and in supporting users’ recognition and synthesis from them for ma-
terializing downstream innovations.
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PID Active Ingredient
Inspiration

Species Code Participants’ Think-aloud & Related Behavior Descrip-
tions

P1 Shape allows air
to flow over and
around (like in a
sail)

Caryophy-
llales
(seed)

S1 “Okay. WindSail carrier. Oh that’s pretty cool! Inspired by
the aerodynamically shaped seeds of Caryophyllales, this
bike rack utilizes a lightweight, sail-like structure that har-
nesses airflow to reduce drag...”

D1 “The sails are adjustable to snugly fit bikes, mimicking the
efficiency of seed dispersal by wind... What does it mean by
a sail” (Asks BioSpark a question to explain how ‘sail’
would work in the idea) “That’s a lot of information... Aero-
dynamic Shape. The sail-like structure of the WindSail Car-
rier is not just for aesthetic appeal; it serves a functional
purpose by mimicking the shape of aerodynamically efficient
seeds. The shape allows air to flow over and around the bike
rack... Oh okay now we’re getting something.”

P4 Appendages retract
into an empty space

Turtle D2 “Okay, so, the tortoise shell made me think about how things
can be folded into empty space. That was the thing I got from
the tortoise. There’s empty space inside the shell and it can
fold like it can take its feet into the shell. But it doesn’t break
the feet into simple pieces, or fold it like, roll it like, or any-
thing like that. Just takes the feed into empty shell. So that’s
what I came up with, and then I started thinking about like,
oh what does it mean to have a slot inside, and then I thought,
airplane wheels, and the Alaska airline door incident, which
made me think about the pin-release mechanism (that was
supposed to hold the door).”

P6 Small, powerful
thrusts that allow
for quick, upward
propulsion and
quick directional
changes

Lepidoptera
(butter-
flies and
moths)

S1 “Okay that’s pretty interesting, the propulsion (mechanism)
and changing directions... that could be relevant to changing
directions on wide stairs.”

N/A N/A S2 “okay so since I don’t know these concepts from nature, I
need help in understanding whether I can use that technol-
ogy in this? So it’s hard to understand the relevance.”

P11 Sliding and col-
lapsing (like in a
telescope)

Armadillo D2 “Okay so this shell that can collapse is an interesting mech-
anism. Like this makes me think of a telescope, like a tele-
scoping mechanism for sliding and collapsing... so that
could be a really interesting design space.”

Table 6.1: Transcripts of participants’ think aloud and behavioral records in the BioSpark condition (‘Par-
ticipants’ Think-aloud & Related Behavior Descriptions’) and how they were coded into different types
of engagement patterns (‘Code’). The bold-faced text in each row highlights the important signatures of
the assigned code. Each row also contains the following: the participant ID (‘PID’), the active ingredient
description that participants found interesting / relevant (‘Active Ingredient Inspiration’), and the asso-
ciated species (‘Species’). Exhibits in the baseline condition were similar, with the exception of tools
participants interacted with.
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A System Implementation Details

A.1 Structuring AskNature blog posts into seed problem-mechanism-organism
schemas

To source a set of diverse, high-quality biological mechanisms for a given problem, BioSpark starts from a
seed set of expert-curated biological mechanisms on AskNature (fig. 6.2, Step 1). AskNature.org provides
a curated list of organisms with detailed descriptions of their unique strategies to functional problems
(e.g., ‘Manage Impact’, ‘Modify Speed’). The organisms and strategies can be grouped by function and
viewed as a list. To curate a seed set of high-quality mechanisms, we first choose a functional problem
p predicted to be highly relevant to automobile designers, excluding irrelevant functions such as ‘Adapt
Behaviors’, ‘Adapt Genotype’, ‘Coevolve’, ‘Maintain Community’ We access the sub-list of organisms
o ∈ O and strategies posted to p on AskNature’s group-by-function page by parsing the HTML code using
the BeautifulSoup package on Python. We then access the blog post for each organism-strategy page
using the parsed URL and parse the returned HTML page to get the title, description, and references (if
available).

At this stage, the returned unstructured text is yet to contain a succinct mechanism description. Further-
more, we found that some blog posts do not contain any body text despite having a title and are accessible
via the URL. Some of these missing blog posts indicated that they are in maintenance and/or planned
to be updated. To structure the raw blog post text AskNature(o,p), we prompt GPT4 [196] to succinctly
describe (i.e., using 12 words or less) the core mechanism (i.e., excluding the qualities or effects, and fo-
cusing on mechanisms with engineering design implications), given (o, p) (if blog post text is missing) or
(o, p,AskNature(o,p)). The returned mechanism description m along with the function description makes
up the problem-mechanism schema for each organism: {o ∈ O|(p,m, o)}.

A.2 Iteratively expanding mechanisms dataset by traversing constructed taxo-
nomic trees

Using each schema as a seed, we iteratively prompt GPT4 to find relevant mechanisms for the given mech-
anism and problem, using an even mixture of breadth- and depth-focused expansion strategies (fig. 6.2,
Step 2). To enable structured diversification of organisms and their mechanisms beyond prior work that
relied on token-level manipulation or naı̈vely prompting LLMs, we guide LLMs how and where to ex-
pand by leveraging organism taxonomic hierarchies. At each iteration of expansion (fig. 6.2, Step 2), we
aggregate the organisms represented in found mechanisms up to that point, and construct a taxonomic
tree featuring seven levels of hierarchy on Tree of Life: {domain, kingdom, phylum, class, order,
family, genus, species}, where domain representing the highest level and species representing the
lowest level on the hierarchy.

Given this tree, we aim to identify sparsely populated branches for expansion. We cut the tree at a given
reference expansion level (e.g., class), and sort the taxonomic ranks (nodes) on that level by the number
of its immediate children nodes20, in an increasing order. For performance, we batch 10 prompts to send
to GPT4 for expansion. For half of the prompts, we instruct breadth-first expansion which asks GPT4 to
first identify sibling nodes at the given reference taxon level and existing nodes (up to 50 most populated
nodes).

For example, the prompt asks “come up with a few biological classes not in {...names of excluded

20Alternatively, the entire size of the subtree, rather than immediate children, could be used for sorting
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classes...}”. The breadth-first expansion prompt then instructs GPT4 to repeat the following: 1) Choose
one taxon from the list it came up with; 2) Succinctly describe (i.e., using 14 words or less) new mecha-
nisms m related to a problem p. For the rest of the prompts, we instruct depth-first expansion which asks
GPT4 to first identify a new children node at the given reference taxon level and existing children nodes
(up to 50 randomly sampled children). For example, the prompt asks “come up with a few biological
families in order araneae that are not any of {araneidae, ...}”. The depth-first expansion prompt then
instructs GPT4 to repeat a similar procedure as breath-first expansion. The prompt details are provided in
fig. 12 (the depth-focused expansion prompt) and fig. 13. In the prototype system, we run 10 batches for
expansion to construct dataset of mechanisms for each problem.

The returned list of mechanisms and organisms text are then fed into the second GPT4 prompt for struc-
turing them into a list of {mechanism, organism} dictionaries. Finally, using each organism name, we
prompt GPT3.5-turbo to retrieve the seven-level taxonomic hierarchy, based on our model evaluation re-
sult showing its high accuracy (Appendix C).

[System Message]

You are an expert biologist who knows species and their taxonomic hierarchy in detail

↪→ .

You can also come up with diverse problem-solving strategies found in nature relevant

↪→ to engineering design problems.

Do the following step-by-step.

[User Message]

1. Come up with a few biological {lower-taxon-plural} **IN** the {taxon} "{term}" AND

↪→ **NOT** {exclude-user-prompt}

2. Select one {lower-taxon_singular} from the list you came up with.

3. Come up with short descriptions (up to 14 words or less) of new mechanisms found

↪→ in the selected {lower-taxon-singular} that are applicable to the challenge of "{

↪→ prob}".

4. Repeat step 2 and 3 for each selected {lower-taxon-singular} and think step-by-

↪→ step. Number each step in your thinking and make it as short as possible.

Figure 12: The prompt used for depth-focused expansion of the mechanism dataset. The “lower-taxon-
singular” or “lower-taxon-plural” is the singular and plural name of the subsequent level on the tree-
of-life hierarchy, of the level “taxon”, respectively. The “term” is the name of the selected taxon. The
“exclude-user-prompt” includes previously generated “taxon” names which are used to instruct the LLM
to avoid duplicate generation. The “prob” and “src-mech” contain the problem and mechanism schemas
to constrain generation.

A.3 Representative Mechanism Image Curation

To aid designers’ visual understanding of and pique curiosity for biological-analogical mechanisms, we
retrieve representative images for corresponding textual mechanism descriptions. We use Google Custom
Search21 with queries as “[organism name]:[mechanism description]” and the file type set to images
and the safe search mode enabled. We choose the first place result of Custom Search as the visual repre-
sentation of each mechanism.

21https://developers.google.com/custom-search/v1/overview
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[System Message]

{same as in the depth-focused expansion prompt}}

[User Message]

1. Come up with a few biological {taxon-plural} **NOT IN** the excluded {taxon-plural

↪→ } below:

{exclude-user-prompt}

2. {same as in the depth-focused expansion prompt}

3. {same as in the depth-focused expansion prompt}

4. {same as in the depth-focused expansion prompt}

Figure 13: The prompt used for breadth-focused expansion of the mechanism dataset. See the depth-
focused expansion prompt (fig 12) for parameters descriptions.

A.4 Interacting with Mechanism Inspirations: Explain, Compare, Combine, and
Critique

To facilitate designers’ understanding and synthesis of mechanism inspirations, we develop several inter-
action features available on the interface (fig. 6.1). The Explain button is located in tooltips that pop up
when the user places the mouse over on a mechanism card in the board UI (fig. 6.1, first panel). When
the user clicks on the button, BioSpark sends a prompt to GPT4 requesting elaboration of the interacted
mechanism and the organism in the context of the chosen engineering design problem. The Compare
tab is located in the control bar of the sidebar of the interface. To use this, users need to first click on (at
least) two mechanism cards from the left, saving them to the ‘saved inspirations’ panel at the top of the
sidebar. There, users can check any two of the saved mechanisms they wish to compare. BioSpark sends
a prompt to GPT4 when the user clicks on the tab, requesting comparison of pros and cons between the
two mechanisms in the context of the chosen engineering problem. The result is formatted into a mark-
down table, with each mechanism as the header followed by pros and cons rows detailing each point. The
Combine tab is also located in the control bar of the sidebar in the interface. Similarly with Compare,
users can check two saved mechanisms they wish to see combined. BioSpark sends a prompt to GPT4
then requesting elaboration of a mechanism that combines the two selected mechanisms, and explain its
potential advantages in the context of the chosen engineering problem. The result is also formatted into a
markdown page using section title and headers for demarcating the content. Finally, the Critique button
is located inside the Ideate tab. Upon clicking the Ideate tab, users can type in their own idea in the rich
text editor in the opened tab, and optionally click on the button below to receive constructive feedback
on it. BioSpark sends a prompt to GPT4 with the content of the text editor describing the idea, and re-
quests additional revision that may improve the quality, such as anticipated failure modes and potential
improvements.

A.5 Extending BioSpark to support any problem queries by incorporating rich
problem-mechanism relations

One of BioSpark’s limitations is its fixed problem queries. Though the five pre-generated problem queries
provide a useful entry to mechanism organisms that may be applicable to a diverse set of design challenges,
it comes at the cost of an inability to query biological mechanisms for any engineering design problems
described in natural language text. As designers and engineers progress in interacting with the system,
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they may naturally come up with follow-up queries that may differ from the source queries, that could
emphasize important constraints around the design problem, or specify low-level details newly understood
to be important to consider. Adaptation to such evolving user query intent requires further personalization
and scaffolding in the workflow. In future work, mixed-initiative workflows may leverage user interaction
traces as input to LLM operations (cf. [142, 169]) to augment query input and automatically search data
to retrieve analogical results.

In order to enable search by free-text problem queries, the underlying data model needs to be extended to
contain multiple problem-mechanism relations beyond the single problem present in the schema {∀i|(pi,mi, oi)},
and into an enriched dataset with mappings between problems p1, p2, · · · , pn ∈ P and an applicable mech-
anism mk, as commonly the case in engineering (e.g., ‘spider silk’ can be used for multiple engineering
challenges such as replacing steel bars in concrete or wound suture and prosthesis [102]).

One way to expand the rich problem-mechanism relations in a scalable manner is to prompt LLMs to come
up possible engineering design problems that a given biological mechanism could be applied to. Here,
naı̈ve prompting may suffer from conceptual redundancy, analogous to the challenge of curating diverse
mechanisms, that limits the diversity in mechanism-to-problem mappings. Another approach may be to
intelligently use the existing dataset {∀i|(pi,mi, oi)} to identify similar mechanisms mi in (pi,mi, oi) and
m j in (p j,m j, o j) that can be mapped onto disparate problems: mi ∼ m j → pi, p j. This approach however
assumes the presennce of many correlated such mechanisms with disparate problem pairs in the dataset,
which need empirical examination for support. Once the enriched dataset {∀i|mi → S (mi)} (Here, S (mi)
denotes the set of engineering design problems that mi is applicable to) is made available, one simple
approach for allowing querying on any problem text is to construct a similarity search index (e.g., the
HNSW index of FAISS [132]) using a chosen text embedding approach.

B Synthetic Mechanism Visualization
We explored two complementary approaches for visualization.

B.1 Direct Prompting Approach

In the direct prompting approach for synthetic mechanism visualization, we prompt Dall-E3 using a com-
bination of the description of the mechanism and the species of the organism using the template in fig. 17.
We set the image resolution for generation to 1024x1024 in size and standard quality resolution. We
set the ‘style’ parameter to vivid, which guides the model to “lean towards generating hyper-real and
dramatic images”22. We repeatedly sample 3 images to incorporate visual diversity among the images.

B.2 Aspect- and Vantage-Point-Focused Prompting Approach

We noticed that the simple repeated sampling approach incorporated variations among the generated im-
ages focused on visual aesthetics. However, we also noticed that the variations did not sufficiently in-
corporate diversification based on different aspects involved with each mechanism. For example, though
differing in the specific color palette or orientation used for depicting the organism (fig. 16, left), the im-
ages commonly featured an anatomical drawing of the whole body, using a top-down perspective, similar
to what might be expected in displays in natural science museums. We also noted that generated images
rarely focused on a single aspect or view point of the mechanism, and instead frequently incorporated
many confusing visual details such as organism anatomy into one image, potentially misguiding viewers’

22https://platform.openai.com/docs/api-reference/images/create
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Figure 14: Direct prompting

Figure 15: Aspect-focused

Figure 16: Synthetic mechanism visualizations using two approaches. (Left) Images generated via direct
prompting on Dall-E3 for ‘Body shape streamlining found in coleoptera’. (Right) Images generated via
aspect-focused prompting for ‘Body shape streamlining found in Dermoptera’. The three aspects iden-
tified by GPT4 for this mechanism were (from the leftmost image) ‘Aerodynamic Profile View’, ‘Top-
Down Aerodynamics View’, ‘Microscopic Surface Texture View’, each highlighting different aspects of
the mechanism (see Appendix B.2 for the full generated content).

{Mchanism Description: Body shape streamlining} found in {Species: coleoptera}

Figure 17: The prompt used in the direct prompting approach for synthetic mechanism visualization.

attention to less important aspects of the organism and the mechanism. Motivated by this, in the second
approach we aimed to control for visual differentiation by focusing generation along one relevant aspect
of the mechanism at a time. To this end, we developed a two-step generation pipeline: In the first stage,
we prompt GPT4 to generate up to four unique aspects about a mechanism using an aspect- and vantage-
point-elaboration prompt with both the mechanism description and the organism name. The prompt asks
GPT4 to describe how the mechanistic aspect described could be best visually displayed using a particular
vantage point for the species and to format the aspect descriptions into a list of JSON objects. In the
second stage, we iteratively prompt Dall-E3 using each JSON object and the same text-to-image genera-
tion prompt (Appendix B.1) as before to generate mechanism visualizations along a single salient aspect.
Pilot experimentation of the outcome of this pipeline showed a clearer emphasis on individual mechanism
aspects and the use of a fixed vantage point for the corresponding aspect that might visualize the aspect
effectively.

C BioSpark Dataset Pipeline Evaluation: Accuracy of LLM-based
Taxonomy Construction

The main process in our diversification strategy is iterative construction of taxonomic trees at each stage
of expansion with a set of problem-mechanism schemas and corresponding organisms {o ∈ O|(p,m, o)}
curated (in case of AskNature seeds) or generated up to that point. To construct the trees, the taxonomic
hierarchy of each organism needs to be known. Here, we restrict our tree construction to seven levels of
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Model Domain Kingdom Phylum Class Order Family Genus

GPT4
100%
(90/90)

100%
(90/90)

100%
(90/90)

100%
(90/90)

96.7%
(87/90)

94.4%
(85/90)

98.9%
(89/90)

GPT3.5-turbo
100%
(90/90)

100%
(90/90)

100%
(90/90)

100%
(90/90)

95.6%
(86/90)

95.6%
(86/90)

93.3%
(84/90)

Table 2: The accuracy of zero-shot taxonomy generation using only the organism name.

depth, ranging from the highest to lowest levels: domain, kingdom, phylum, class, order, family,
genus, species. These levels provide considerable branch-switching opportunities for diversification,
through significant changes in the number of members between levels and within each level of the hier-
archy. For example, while the highest level domain consists of three members, Bacteria, Archaea, and
Eukarya, there are estimated 8.7M species in the world [239]. The next level on the hierarchy, Genus,
has an estimated number of 310K members [214], while the number in the subsequent level, families, is
estimated at 8K [184] in 2011. The number of known species for each node on the hierarchy also changes
considerably, further contributing to the diversification opportunities. For example while most non-avian
reptile genera have only 1 species each, insect genera such as Lasioglossum and Andrena have over 1,000
species each, while the flowering plant genus, Astragalus, contains over 3,000 known species [271].

Our initial exploration of suitable approaches to retrieve organism taxonomies involved using available
resources such as the Global Biodiversity Information Facility API23, Catalogue of Life [36], or the Ency-
clopedia of Life [75], where canonical species names were retrieved from the Darwin Core List of Terms24

for corresponding organisms in problem-mechanism schemas. However, the limited coverage, data consis-
tency, and API availability of these tools prevented their adoption. On the other hand, Wikipedia provides
scientific classification for some of the organism articles (for example in the Pomelo article25, taxonomic
names for Kingdom, Clade, Order, Family, Genus, and Species are available in the ‘biota’ informa-
tion box that appears on the right-hand side of the page). However, this data was not readily available for
scalable generation.

C.1 Procedure

LLMs may provide an alternative solution to the limitations of existing approaches for retrieving the
taxonomic hierarchy for a given organism name. To test this idea, we curated 90 gold taxonomies using
Wikipedia that have complete information in the ‘biota’ scientific classification info box (the complete list
of 90 organism names can be found in Appendix C.5). For each organism, we prompted LLMs with each
organism name zero-shot using the chat completions API endpoint26 using each model key. The prompt
used for taxonomy generation for LLMs can be found in fig. 19. Once the hierarchy data is generated, we
lower-cased the rank names for consistency.

C.2 GPT4’s Accuracy

We find that GPT4’s zero-shot taxonomy generation accuracy to range between 94.4% and 100% (Ta-
ble 2). The lowest accuracy was observed in the family taxonomy, followed by order (96.7%) and genus
(98.9%).

23https://www.gbif.org/developer/species
24https://dwc.tdwg.org/list/#dwc_Organism
25https://en.wikipedia.org/wiki/Pomelo
26https://api.openai.com/v1/chat/completions
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C.3 Error analysis

We find that some error cases in taxonomy generation could be attributed to recent changes in classifi-
cation in the literature. For example, both GPT4 and GPT3.5-turbo models classified naked mole-rats as
then literature-accepted ‘Bathyergidae’ for their family, same as other African mole-rats. However, more
recently naked mole-rats were placed in a separate family, Heterocephalidae [2].

Among the error cases overlapping between the two models, we found cases that either the GPT3.5-turbo
or the GPT4 model wins over the other (e.g., for ‘hummingbird’, GPT3.5-turbo generated ‘archilochus’
as its genus whereas GPT4 generated ‘various’; for ‘boxer crab’, GPT3.5-turbo generated ‘hymenoptera’
which is an order of insects, whereas GPT4 generated ‘decapoda’, which is the correct order). In other
cases, both models outputted similarly incorrect answers, for example for ‘sea snail’, GPT3.5-turbo gen-
erated ‘neogastropoda’ whereas GPT4 generated ‘archaeogastropoda’ (the Wikipedia gold answer was
‘lepetellida’).

C.4 System Optimization: GPT3.5-turbo’s Accuracy

We find that GPT3.5-turbo has comparable accuracy levels with GPT4 in zero-shot taxonomy genera-
tion. The highest misaglignment occurred in genus, with a 6.67% error rate (equivalent to 6 out of 90).
Appendix C.3 provides a further qualitative error analysis of models’ comparative performance. Based
on these results, we opted for the more efficient GPT3.5-turbo model in our pipeline. We leave further
exploration of the capabilities of smaller, fine-tuned base LLMs, with implications for LLM cascade27, to
future work.

C.5 Complete List of Organisms Used for Taxonomy Generation

{‘spidermonkey’,‘prairiedog’,‘gardentigermoth’,‘africansacredibis’,‘argiopeargen

tata’,‘ostrich’,‘groundhog’,‘daniorerio’,‘gannet’,‘deer’,‘cattle’,‘glyptodon’,‘a

lligatorsnappingturtle’,‘leopard’,‘arcticgroundsquirrel’,‘cormorantsandshags’,‘b

ears’,‘squirrels’,‘herons’,‘europeanbadger’,‘goldensilkorb-weaver’,‘aardvark’,‘s

eahorses’,‘banner-tailedkangaroorat’,‘hyenas’,‘pinkfairyarmadillo’,‘giantotter’,

‘bighornsheep’,‘hippopotamus’,‘californiagroundsquirrel’,‘europeanbee-eater’,‘be

echmarten’,‘leopardgecko’,‘tailorbird’,‘testudinidae’,‘emperorpenguin’,‘northern

pike’,‘giantclam’,‘stoat’,‘horse’,‘nutria’,‘tree-kangaroo’,‘giraffe’,‘guineababo

on’,‘ferret’,‘bonytailchub’,‘bayaweaver’,‘brooktrout’,‘pelican’,‘mallard’,‘rosea

tespoonbill’,‘mountainweasel’,‘pocketgophers’,‘lybiaedmondsoni’,‘giantanteater’,

‘commonraccoondog’,‘dewdropspiders’,‘armadillogirdledlizard’,‘arcticfox’,‘bison’

,‘swordfish’,‘baldeagle’,‘chimpanzee’,‘asbolusverrucosus’,‘spermwhale’,‘abalone’

,‘goldenjackal’,‘hornet’,‘zebra’,‘orangutans’,‘peregrinefalcon’,‘atlanticcod’,‘b

urrowingowl’,‘africanwilddog’,‘manedwolf’,‘honeybee’,‘nakedmole-rat’,‘echidnas’,

‘bowerbirds’,‘rhinoceros’,‘beaver’,‘bombyxmori’,‘commonboxturtle’,‘hummingbird’,

‘domesticsheep’,‘wolverine’,‘raccoon’,‘evergreenbagworm’,‘pig’,‘muskrat’}

27LLM cascade refers to a system design approach that adaptively chooses optimal LLM APIs for a given query. Smaller,
task-specific LLMs are regarded as optimal when they exhibit higher or similar levels of performance compared to models that
are orders of magnitude larger [69], with all else being equal.
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D BioSpark Dataset Pipeline Evaluation: Increase in Organism Di-
versity

In order to evaluate the effectiveness of diversification through our expansion strategies from iteratively
constructed taxonomic trees, we investigated how organism diversity changes upon a series of mechanism
generation.

D.1 Procedure

We generate mechanisms and corresponding species for five problems closely related to automobile de-
sign: ‘managing impact’, ‘managing tension’, ‘managing compression’, ‘managing turbulence’, ‘modify-
ing speed’. We index the species at the time of its appearance in the corresponding mechanism generation.
Hence, the index corresponds to when a new mechanism was generated via our pipeline. At each genera-
tion index, we count the unique number of names that are generated up to that point, for each taxonomic
rank, and average the numbers across the five problems.

D.2 The pattern of increasing organism diversity

Qualitatively we observe that the number of species generated are monotonically increasing (fig. 20), al-
beit at a decreasing rate. The ratio between the number of unique species and the generation index is 2:1
at index=200, and approaches 4:1 near index=800. This suggests more mechanisms are generated and
become concentrated on individual species (e.g., for grasshoppers, there might be several distinct mecha-
nisms relevant to the problem of ‘managing turbulence’ such as their foldable wing structures, lightweight
exoskeleton designs, or joints in their legs enabling repeated high jumps) on average as generation contin-
ues. In our future work, we will explore whether and how the mechanisms generated for the same species
semantically differ from one another. In addition, we plan to examine how our generation approach com-
pares to alternative curation (e.g., [74], which explored a data programming approach for mining concise
biological problem-solving inspirations on Wikipedia) or generation approaches in terms of the efficiency
of generating mechanisms across diverse organisms, by measuring the slope of organism diversity over
generation index.

E Formative Study System Interface
Based on the design workshop findings (§6.3.1), we designed an initial, functional protoype interface to
test with participants. The protoype included a selector for generating biological inspirations that could
address a design problem such as ‘design a secure bike rack for sedans’. The interface also included
interactive features for explanation, comparison, combination, and critique of mechanisms that used GPT4
to generate corresponding content. Fig. 21 shows the interface design.

F BioSpark

F.1 Active Ingredient Extraction

The prompt used is detailed in fig. 22.
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F.2 Ranking Candidate Species Images

The prompt used for ranking candidate species images is detailed in fig. 23.

F.3 Spark Generation

The prompt used for generating sparks is detailed in fig. 24.

F.4 Trade-off Analysis Generation

The prompt used for generating a trade-off analysis is detailed in fig. 25.

G Details of the User Study

G.1 Tutorials

Before participants start with each of the two main task in each condition, they were given a tutorial of the
assigned systems via screen sharing. The interviewer demonstrated a step-by-step process and the main
features of each system using a prepared script that took around 8 minutes for the BioSpark condition
which had more features, and around 5 minutes for the baseline condition. In the baseline condition,
participants were instructed to open up 5 different URLs each pointing to a pre-curated list of mechanisms
for a functional category. The 5 functional categories used in the study were the same as those that were
used for the BioSpark backend dataset pipeline, and they were: Manage Impact, Manage Tension, Manage
Compression, Manage Turbulence, and Modify Speed. In addition, participants in the baseline condition
were instructed to sign in and open ChatGPT, and freely use it for understanding and ideating for the
design problems using the information found from AskNature. When participants came up with each new
idea during the task, they were told to write it down in a prepared Google spreadsheet that was shared in
the beginning of the task. In the BioSpark condition, participants were told to keep the stream space as a
holder for their ideas, and thus delete any ideas they did not like or edit the text directly.

H Prompts Used for Pre-processing Ideas in the User Study

H.1 Prompt used for extracting coherent and unique design constraints

The prompt used is detailed in fig. 26.

H.2 Prompt used for extracting the species’ name that inspired each participant’s
idea

The prompt used is detailed in fig. 27.

H.3 Prompt used for summarizing the participants’ ideas

The prompt used is detailed in fig. 28.
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[System Message]

Identify up to three different vantage points that illuminate the mechanism described

↪→ .

The vantage points for the mechanism should consider the problem context of designing

↪→ a secure bike rack for sedans, where management of turbulence is critical.

The vantage points should differ in terms of the scale and the angle of focus, such

↪→ as micro versus macro or portrait , side, or top views and so on.

For each vantage point, describe in detail how the mechanism aspect according to the

↪→ specific vantage point can be visually drawn.

Output your response in a list of JSON dictionaries with "vantage_point" as keys and

↪→ their corresponding values.

For example, [{ "vantage_point": "...", "desc": "..."}, {"vantage_point": "...", "

↪→ desc": "..."}, ...].

Do not output any text other than the JSON.

[User Message]

{Body shape streamlining} found in the species {galliformes}

[Example Generated Content for the mechanism ’Body shape streamlining found in

↪→ Dermoptera ’ (in section "Synthetic Mechanism Visualization")]

[{

"vantage_point": "Aerodynamic Profile View",

"desc": "From a side view, the streamlined body shape of the gliding primate or

↪→ rodent can be depicted with smooth, elongated contours that taper towards the rear

↪→ . This profile would highlight the gradual reduction in cross-sectional area from

↪→ the head to the tail, illustrating how the body shape is optimized for reducing

↪→ drag. The limbs would be shown close to the body or extended in a way that aligns

↪→ with the airflow, further reducing turbulence."

},

{

"vantage_point": "Top-Down Aerodynamics View",

"desc": "From a top-down perspective , the organism’s body can be visualized as an

↪→ elongated oval with a slight taper towards the tail end, indicating a teardrop

↪→ shape that is known for its aerodynamic efficiency. The limbs, if extended, would

↪→ be seen as narrow lines that either align with the body or are positioned to

↪→ maintain the streamlined form. This view would emphasize the symmetry and

↪→ smoothness of the body, which are critical for minimizing air resistance and

↪→ managing turbulence."

},

{

"vantage_point": "Microscopic Surface Texture View",

"desc": "At a microscopic scale, the surface texture of the organism’s skin or

↪→ fur can be illustrated to show how it may contribute to reducing turbulence. The

↪→ visual would depict any specialized structures , such as scales or fur patterns ,

↪→ that are designed to disrupt the laminar flow just enough to reduce the formation

↪→ of larger, more chaotic turbulent vortices. This close-up view would focus on the

↪→ intricacies of the surface that interact with the air at a very small scale, which

↪→ collectively contribute to the overall aerodynamic performance."

}]

Figure 18: The prompt used in the aspect- and vantage-point-focused prompting approach for synthetic
mechanism visualization and a sample generated output. The content in curly brackets ({...}) in the user
message portion were replaced with user-specific content.
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[System Message]

You are an expert biologist who knows species and their taxonomic hierarchy very well

↪→ . Follow the instructions to the letter.

- Return the scientific term for each taxonomic rank the species belongs to.

- Enclose keys and values using double quotes ("...") and format them into a Python

↪→ dictionary.

- Use the taxonomic ranks as keys and corresponding scientific terms as their values.

- Do not add any other text.

[User Message]

What {"domain", "kingdom", "phylum", "class", "order", "family", "genus"} does "{

↪→ organism}" belong to? Format your reply into a Python dictionary.

Figure 19: The prompt used to generate the taxonomy of each organism.

Figure 20: Organism diversity, measured by the number of unique names among the generation, increases
monotonically as generation continues, while the number of mechanisms generated per organism also in-
creases, as evidenced by the decreasing slope. This suggests mechanism concentration over each organism
increases over time.

User clicks the Compare 
button after selecting a pair of 
mechanisms to see pros and 
cons between them.

User clicks the Combine 
button see a potential 
combination mechanism.

Main interface of the system consists of a 
board-based interface that shows diverse 
mechanism clusters (left) and a sidebar (right).

User clicks the Explain 
button in tooltips to see 
mechanism details.

Cluster Label

Problem Query

Sidebar

Figure 21: Formative study prototype interface and a subset of available interaction features (excluding
the ‘critique’ button that was also available to study participants). The interface consists of a left-hand
side panel that shows clusters of semantically similar mechanisms that was scrollable, and a right-hand
side panel that included a holding tank for user-saved mechanisms. When the user checks two of the
saved mechanisms in the holding tank and clicks one of the tabs underneath, the system generated the
corresponding content, such as the comparison of two mechanisms in a pros-and-cons table, a new idea
that combines the two mechanisms, and the ‘Ideate’ button that provided critique on the ‘Combine’ idea.
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[System Message]

Reply with a succinct (i.e., 15 words or less) description of the following

↪→ biological mechanism ’s active ingredient. Follow the instructions.

[Instructions]

- The active ingredient should describe how the species "act" upon its challenges to

↪→ mitigate them, and include verb or verb phrasees.

- Active ingredient descriptions should also focus on the integral ingredients such

↪→ as its bodily parts, liquids, or evolutionary tactic that are concrete and

↪→ distinctive.

- Structure your output in the following format (do not output any characters other

↪→ than the actual json-formatted dictionary):

{"desc": "..."}

[User Message]

{mechanism}

Figure 22: The prompt used to extract the active ingredient from a mechanism. The mechanism is de-
scription to extract from is provided as part of the user message to GPT4.

[User Message]

Judge each image based on how clearly it shows the real species (i.e., photos

↪→ focusing on one instance of the species in the wild is better than cartoons,

↪→ drawings , or species photographed in the distance)

{species} and contains visual details that help viewers understand the following

↪→ biological mechanisms:

===

{formatted_mechanisms}

===

For each image given, reply with a number between 0 and 100 as its "score", where a

↪→ higher number represents a higher quality of the picture,

and also provide rationale for your decision in "rationale".

Output a list, with the following format. Exclude any other character than the comma

↪→ between dictionaries in the list:

[{{"score": "50", "rationale": "..."}}, ...]

Figure 23: The prompt used to extract the active ingredient from a mechanism. The mechanism is de-
scription to extract from is provided as part of the user message to GPT4.
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[System Message]

Generate **2** highly different ideas that could solve the design problem: "{

↪→ design_prob}".

The design problem has constraints that the ideas must satisfy: {design_constraints}

Generated ideas must be at least broadly related to the user-selected inspiration

↪→ found in nature.

Generated ideas should be novel and not redundant with the following ideas generated

↪→ in the past: {prev_sparks}

Describe each idea succinctly (i.e., max 500 characters), but ensure to provide

↪→ sufficient details to help the user visualize the idea.

Start each idea description with a short, eye-catching name that captures the gist.

Output exactly in the following format, WITHOUT ANY OTHER TEXT:

[{{"name": "IDEA 1 NAME", "desc": "IDEA 1 DESCRIPTION"}}, ...]

[User Message]

User-selected inspiration from nature to base your generation on:

===

{user_selected_mechanism_inspiration}

===

Figure 24: The prompt used to generate new sparks. We contextualize the prompt using the design
problem description and the constraints provided with the problem, as well as 20 previously generated
sparks for precedent-based diversification. We explicitly instruct the model to generate non-redundant
sparks based on the history of precedents, and be succinct (i.e., under 500 characters), with a descriptive
title. Finally the user-selected mechanism inspiration is provided as part of the user message to GPT4.

[System Message]

Generate up to **3** anticipated pros and cons for applying the user-selected

↪→ mechanism to the design problem: "{design_prob}".

The design problem has constraints that the ideas must satisfy: {design_constraints}

Format the ’pros’ and ’cons’ into each column in a markdown table.

Place the header row at the top of the table: "| **PROS** | **CONS**

↪→ |".

After the header row, place each ’pro’-’con’ row; start each ’pro’ or ’con’ text with

↪→ a succinct label (3 words or less), enclosed in parantheses.

[User Message]

User-selected inspiration from nature to base your generation on:

===

{user_selected_mechanism_inspiration}

===

Figure 25: The prompt used to generate a new potential design trade-off analysis. We contextualize the
prompt using the design problem description and the constraints provided with the problem. We instruct
the model to return the ‘pros’ and ‘cons’ of the mechanism inspiration in the context of the design problem
using a markdown table format that places each pro-and-con pair in a new row, and give each item in the
table a succinct (3 words or less) label. Finally the user-selected mechanism inspiration is provided as part
of the user message to GPT4.
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[System Message]

We’re preparing each idea description for measuring the degree to which various

↪→ design constraints were considered.

Chunk the idea description into unique segments each of which describe consideration(

↪→ s) for a single coherent design constraint.

Output exactly in the following format (use double quotation marks to encapsulate any

↪→ string), without any other text:

{"constraint_considerations": [["idea 1 constraint 1", "idea 1 constraint 2", ...],

↪→ ... }

[User Message]

{list_of_participant_ideas}

Figure 26: The prompt used to extract coherent chunks of text that relates to unique design constraints.
Participants’ ideas are stringified and provided as part of the user message to GPT4.

[System Message]

We’re extracting the source species’ name that inspired each idea from the idea

↪→ description.

Output exactly in the following format (use double quotation marks to encapsulate any

↪→ string), without any other text:

{"source_species": [’species name for idea 1’, ’species name for idea 2’, ...] }

[User Message]

{list_of_participant_ideas}

Figure 27: The prompt used to extract the species’ names that inspired participants’ ideas. Participants’
ideas are stringified and provided as part of the user message to GPT4.
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[ System Message ]
We’ r e p r e p a r i n g each i d e a d e s c r i p t i o n f o r measu r ing t h e d i v e r s i t y .

One c o n f o u n d e r f o r t h e d i v e r s i t y measure i s t h e l e n g t h o f each i d e a and t h e d e s c r i p t i o n s o f c o n s t r a i n t s t h a t a r e n o t c o r e t o
↪→ t h e i d e a i t s e l f .

To a d d r e s s t h i s , your j o b i s t o summarize each i d e a u s i n g e x a c t l y 10 words ( o r l e s s ) t o c a p t u r e t h e c o r e a c t i v e i n g r e d i e n t .
Focus on how t h e b i k e r a c k i s c o n s t r u c t e d , o r what i t l o o k s l i k e , r a t h e r t h a n what i t was i n s p i r e d by .
Fol low t h e examples :
===

Example 1 :
{ i d e a : ” S c o t s P ine − Hanging b i k e r a c k s by mimicing t h e s c o t s p i n e s t r u c t u r e s i n c e i t i s ve ry good a t h a n d l i n g t h e w e i gh t
↪→ s t r e s s o f t h e b i k e s , t h e f l e x i b l e wood i s an i m p o r t a n t f e a t u r e t o c o n s i d e r when d e a l i n g wi th wide r a n g e w e i g h t e d b i k e l i k e
↪→ l i g h t w e ig h t t o heavy w e i gh t . Also t h e c l i m a t e w i t h o l d i n g i s an e x c e p t i o n a l add−on t o have . ” , ’ p robId ’ : 1 }

Should be summarized t o :
’ Hanging b i k e r a c k s mimicking s c o t s p ine ’

Example 2 :
{ i d e a : ” T o r t o i s e S h e l l Geometry − For t h e b i k e r a c k s s t a b i l i t y & d u r a b i l i t y , I would use l a y e r s o f d i f f e r e n t p r o p e r t i e s t o add
↪→ on or improve t h e s t r e n g t h mimicing t h e t o t r o i s e s h e l l geomet ry . Also I would a d p a t t h i s f e a t u r e s i n c e i t p r o d v i d e s ve ry good
↪→ l o n g i t i v i t y o f t h e p r o d u c t which e n h a n c e s u s e r s a t i s f a c t i o n & t r u s t . ” , ’ p robId ’ : 1 }

Should be summarized t o :
’ Use l a y e r s l i k e t o r t o i s e s h e l l geometry ’

Example 3 :
{ i d e a : ” I n c l u d e a r t i c u l a t e d j o i n t s y s t e m s a t key p o i n t s such as t h e s e a t − to −f rame and frame− to −wheel c o n n e c t i o n s ; t h e s e would
↪→ a l l o w f o r c o n t r o l l e d movement i n r e s p o n s e t o sudden i m p a c t s ; e n g i n e e r s c o u l d use e l a s t o m e r i c m a t e r i a l s f o r f l e x i b i l i t y o r
↪→ i n c o r p o r a t e s p r i n g − l o a d e d mechanisms f o r c o n t r o l l e d movement ” , ’ p robId ’ : 2 }

Should be summarized t o :
’ A r t i c u l a t e d j o i n t s y s t e m s a t key p o i n t s ’

Example 4 :
{ i d e a : ” B e e t l e G l i d e S t a i r W h e e l c h a i r . Drawing from t h e i r o n c l a d b e e t l e ’ s e x o s k e l e t o n , t h i s w h e e l c h a i r u s e s a bio− i n s p i r e d s h e l l
↪→ d e s i g n f o r s t r e n g t h and l i g h t n e s s . I t i n c o r p o r a t e s a unique , f o l d a b l e t r a c k sys tem t h a t e x t e n d s a round s t a i r s l i k e a
↪→ c a t e r p i l l a r , e n a b l i n g s a f e a s c e n t and d e s c e n t . The t r a c k s a r e made from a d u r a b l e , l i g h t w e i g h t m a t e r i a l t h a t g r i p s s t a i r s
↪→ s e c u r e l y , w h i l e t h e w h e e l c h a i r ’ s body f o l d s by c o l l a p s i n g t h e s e a t and r e t r a c t i n g t h e t r a c k s i n t o t h e s h e l l , e n s u r i n g i t
↪→ meets t h e compac tne s s r e q u i r e m e n t . ” , ’ p robId ’ : 2 }

Should be summarized t o :
’ R e t r a c t a b l e s h e l l − l i k e t r a c k sys tem f o r g l i d i n g ’
===

Note t h a t t h e problem ID 2 c o r r e s p o n d s t o a ” b i k e r a c k ” d e s i g n problem and 1 c o r r e s p o n d s t o a ” w h e e l c h a i r ” d e s i g n problem .
Ensure t h a t your t h e summarized d e s c r i p t i o n i n c l u d e ” b i k e r a c k ” o r ” w h e e l c h a i r ” i n i t s d e s c r i p t i o n .

Ensure t h a t you a r e n o t ad d i ng any a d d i t i o n a l c o n t e n t t o t h e d e s c r i p t i o n o t h e r t h a n t h e d e s i g n domain as d e s c r i b e d above .

Outpu t e x a c t l y i n t h e f o l l o w i n g format , w i t h o u t any o t h e r t e x t :
{ ” s u m m a r i z e d i d e a s ” : [ ’ i d e a 1 ’ , ’ i d e a 2 ’ , . . . ] }

[User Message]

{list_of_participant_ideas}

Figure 28: The prompt used to summarize the participants’ ideas. Participants’ ideas are stringified and
provided as part of the user message to GPT4.
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Chapter 7: Discussion

The four systems described in this thesis demonstrate the possibilities for human-AI interaction design that
centers on conceptual abstraction to increase human cognitive efficiency and creativity in problem-solving.
From the need-finding studies, as well as the observational and interview data of the people interacting
with the systems developed as part of this thesis, I synthesize design implications for future systems that
focus on interaction with conceptual abstractions for knowledge discovery and insight generation.

7.1 Supporting Exploration of Many Abstractions
When multiple abstraction artifacts are created that lay diverging exploratory paths, how should design
support this exploration of abstractions? In order to make good progress during the exploration, one needs
to understand and evaluate the goodness of each abstraction and make decisions around what kinds of data
are relevant and needed to further refine the abstraction and continue the exploration [152].

To illustrate this process, consider the following scenario of an intelligence officer gathering counterintel-
ligence information, abstracting a pattern, and assessing its threat level. In this example, an intelligence
officer is tasked with figuring out the nature of overflight activity around nuclear power plants1 that sig-
nificantly increased in frequency in reports following 9/11. The first possible explanatory pattern might
be that this is a threat from terrorists who suddenly increased their surveillance activities. Alternatively,
the officer might pursue a different explanation – that this is a series of random coincidences. Exploring
each of these patterns further guides the decision around what kinds of data are relevant. For example, the
officer may gather a candidate terrorist organization’s tactics manual to see whether such a tactic would
align with the organizational goal. To determine whether the reports indeed contained a series of ran-
dom incidents, the officer could gather information about the pilots and the routes the planes were taking.
These data become ‘critical constraints’ of the pattern, or ‘anchors’ in the terminology used in [152]. The
manual the officer acquired clearly instructs members of the organization not to bring attention to them-
selves. Moreover, after analyzing the flight paths, the officer finds that 90% of the flights were heading
from the east and flying at low altitudes, about 1,500 feet. Both types of data are misaligned with the
first pattern. The regularity in the second data refutes the second pattern. Based on this information, the
officer considers another pattern – that these flights perhaps were by less informed, training pilots who
were following standard instructions in the pilot manual. Finally, the officer finds instructions that describe
‘visual flight rules’ about how pilots, when lost, should look for nuclear power plants. Because they are so
easily sighted and recognizable as landmarks, they are useful for getting one’s bearings. The instructions
further specify that students should fly east to west and low. The officer reinforces this explanatory pattern
by interviewing a flight instructor who described this as common knowledge for a generation of pilots.
One remaining mystery is why the frequency of sightings only increased after 9/11. The officer finds an
explanation for this: critical infrastructure, including nuclear power plants, was designated as “temporary
restricted flight” zones following 9/11, meaning the reporting sensitivity likely increased, suggesting that
such flight patterns could have existed for a longer period but were only being picked up following the

1The unmodified version of the example can be found in [152])
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designation.

Figure 7.1: Visual representation of the scenario found in [152]: ‘intelligence officer tasked with figuring
out the nature of overflight activity around nuclear power plants’.

This example, as visually shown in fig. 7.1, illustrates the notion of critical (anchor) constraints and
how their iterative discovery guides subsequent abstractions’ formation by confirming or refuting them.
In this sense the goodness of abstraction rests on how well its representation aligns with existing critical
constraints. Because of the iterative nature of discovery, designing a layer for superimposed structures that
can overlay abstraction representations on top of source materials without altering them permanently and
linking them for efficient access (similar to how discussion artifacts were designed over the raw discussion
threads [277]) may be a helpful design principle. Furthermore, as shown in the example, people could
explore multiple alternative abstractions at once and may need to branch back to earlier abstractions as
new critical constraints emerge, acquiring new data as needed, and propagating changes to other data as
they go.

Large design spaces remain open as to how AI may assist in this process of data acquisition, and generation
and propagation of changes as users explore multiple abstractions. For example, AI could assist people
in defining data relevance criteria, and retrieving appropriate sources from the Web. This direction may
be cautiously explored with development of new AI agents that can operate tools such as web interface
manipulation or web APIs. For dynamic generation and propagation of appropriate updates, approaches
that extend initial works such as PaperWeaver [163] may be explored to automatically generate textual
update descriptions anchored on a previous state, and by combining it with an additionally developed
module that translates the text-based description into appropriate update lists. Luminate is also a notable
work here, where a similar pipeline for automatically generating possible dimensions of information with
an LLM first, then generating information for each combination of dimensions [234] could be useful for
systematically generating and maintaining change lists across many target dimensions.
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7.2 Supporting Usefully Misaligned Abstractions
From observations of users interacting with the analogy search engine in laboratory and case studies, I
found that they were motivated to iteratively and flexibly re-represent their purpose queries at different
levels of abstraction. Such re-representation allowed them to uncover novel abstractions that might be
missed with exact matches, and prompted new ways to adapt ideas even if they were initially misaligned.

For example, users frequently removed certain constraints from a purpose representation in response to
the returned search results, thereby moving it to a higher level of abstraction and casting a wider net for
search results. They also added further constraint descriptions to the query to filter results misaligned with
critical constraints. This observation was echoed in how users interacted with Synergi-generated thread
structures, where they commented on how some threads were too narrow in their conceptual focus within
a broader structure to be represented at the same level in the hierarchy as other threads, while other times
a thread was thought to be too broad-scoped and would benefit from further delineation of differences
among its members.

From these insights, I present the design implication of supporting usefully misaligned abstractions that
facilitate the discovery of important constraints in the problem representation. For the misalignment to
be useful, one should be able to engage with its examples to reveal latent assumptions, identify core con-
straints, and learn how they might formulate more effective queries. Given the cognitive load involved
in the process of mapping relations between abstractions, systems should reduce the effort required by
retrieving results that are usefully misaligned, helping users to recognize rather than recall critical con-
straints.

In addition, because users often struggle to come up with queries that suitably represent the core abstrac-
tion while also avoiding unintended intersections of domains that lead to irrelevant results, supporting
efficient exploration of abstractions is key. For example, users may engage in dropping or altering certain
constraints included in the representation and resume exploration with the revised representation. Various
such configurations could be explored in parallel, and their results incorporated back to guide subsequent
explorations.

7.3 Abstraction and Exploration History as Boundary Object
Users interacting with Synergi-generated thread structures noted that sometimes the generated threads
seemed mismatched at the level of abstraction. For example, the delineation between two different threads
“Newcomer Integration in OSS Projects” and “Newcomer Barriers,” despite each containing a coherent
and disjoint set of clips, felt too similar in level for a user to be separated. On the other end of the spectrum,
a thread on “Numeric and Logical Reasoning” for a user whose research interests included techniques for
sub-sentential representations for LLMs, felt it focused on too specific an aspect of the literature that does
not rise to the level of abstraction the rest of the structure was focusing on. This suggests a potential
limitation of using an individually user-curated thread as a boundary object that AI uses to expand user
synthesis. While users could engage with the AI-generated structure and benefited from it to visualize a
literature review outline that synthesizes across multiple papers rather than from a single paper, the tail
parts of the structure skewed too high on the abstraction ladder and too generic or too low in level and too
specific to be really useful.

This means AI would need further context surrounding the boundary object to unpack the intricacies in
user intent. In BioSpark, the LLM handling user requests to generate new ‘sparks,’ which were application
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ideas that showed ways in which the source inspiration could be applied to the target design domain to
help designers bridge the transfer gap, was provided with the previous history of generation to guide its
generation towards more conceptually diverse ideas. Even with such a simple concatenation of generation
history, the LLM showed improvement in the diversity of generation by avoiding the generation of imme-
diately similar ideas that the user has already seen. Using the history more judiciously by focusing on how
users interacted with prior information at the level of conceptual abstraction, future work may improve on
the diversity metric even further.

To scaffold user learning, the system may curate conceptually diverse abstractions and their misaligned
examples, presenting them to the user in a manner that supports maximum gains in both user learning
and AI understanding of user intent. In the literature, two relevant approaches have been explored for
a similar purpose. In the context of a problem concerned with detecting traffic lights in noisy images
from the perspective of a car on a road, Mozannar et al. used an iterative algorithm for finding examples
congruent with one another to belong to a region given an optimization object of human learning gains
for forming a region [186]. Approaches that generalize this line of work to identify regions based on
the user’s changing mental models of conceptual abstraction and multiple possible ways that each data
point can be conceptualized could effectively augment human onboarding processes. Furthermore, human
domain experts’ insights may be crowdsourced to provide conceptual abstractions for examples to learn
‘concept activation vectors’, similar to Cai et al.’s work [38], to bootstrap learning in a high-stakes domain.

7.4 Supporting Curation of Parts from Generated Abstraction Out-
puts

In addition, we found that users often engaged in taking only parts from the system generated abstractions
and incorporated them into their own output. For example, in BioSpark, users also engaged in selecting
the best features from various inspirations to form a new idea (e.g., combining the idea of ‘sliding scale’
from armadillos and ‘lubricating surface’ from mucus snails to produce an idea around an easily expand-
able telescoping rack for bikes). In Synergi, sub-selection and curation were supported via dragging and
dropping the useful threads into the user’s own editor.

Extrapolating from these examples, for going beyond a common chat-based interface for LLMs, it would
be important to support ways to easily select and curate only a subset of abstractions from the broader
structure to improve their usefulness. Supporting user intent for sub-selecting from the system-generated
abstraction outputs while learning from the signals embedded in the rest of the structure could meaning-
fully improve the model of user intent for the system. For example, the threads users selected before
moving on to generate other system outputs could indicate that the rest of the threads in the structure
that were not selected constitute negative examples that did not meet the level of abstraction the selected
threads fit well. Learning from the comparisons between these cases, therefore, could provide valuable
nuances that the system missed before.

7.5 Abstraction as Lens
Zooming out a little bit, abstraction can be understood as a lens for users’ interpretation and authoring
processes. Streamlining users’ flow of data interpretation – by, for instance, making important parts of the
new information salient through highlighting its conceptual relations to prior knowledge – and personal-
izing the interpretation of data using adaptive levels of abstraction can significantly aid comprehension.
Moreover, structuring outlines for authoring tasks can bring further clarity and focus. This implies that
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focusing interaction design on abstraction in future systems opens up new spaces of design. These systems
would support users in easily moving between different levels of abstraction, matching system presenta-
tion levels accordingly, and anticipating users’ abstraction intents. By acting on these intents, the system
can provide timely and relevant insights, thereby assisting users more effectively in their various tasks.
Ultimately, an emphasis on abstraction could make systems more intuitive, responsive, and aligned with
the cognitive processes of their users.

7.6 Broader Implications

Figure 7.2: Broader Implications for Design

Envisioning future systems that focus on end-user interaction with conceptual abstractions, I consider the
following broader implications for design. The purpose of AI systems is to help humans build a bigger
repository of patterns faster, retain that repository of patterns, and dynamically apply them with high
accuracy and yield in complex problem scenarios. As such, the effectiveness of designs could be measured
according to these goals. Projecting into the future, some factors currently important may only become
more critical as human-AI team capabilities increase. As the execution cost drops, the importance of
understanding how to approach a problem and the types of problems to solve will be amplified. The speed
at which a reasonable proof of concept can be developed will remain important, and concerns regarding
systemic fairness will become even more pronounced as access to these tools becomes increasingly tied
to costly resources.

143



Chapter 8: Conclusion

In 1945, Vaneveer Bush proposed a vision for an associative trails machine that never forgets information
and assists users in their day-to-day inquiry and knowledge work [35]. In the years since, research into
related areas has provided valuable models for how humans make sense of complex information, and
how the data and the conceptual abstraction generated during information exploration guide one another.
This dissertation argues that the challenges we face today in the innovation economy, such as information
overload and the difficulties associated with synthesizing valuable insights, can be addressed by focusing
user interaction and AI design on how we synthesize conceptual abstractions from prior knowledge and
use them to discover new knowledge and insights.

To this end, this thesis presents four sensemaking and ideation systems that demonstrate how end users,
such as scientists, engineers, and designers, could be supported in curating, engaging with, and utilizing
conceptual abstractions.

Key contributions include the development of Threddy and Synergi, systems that demonstrate efficient
extraction and human-AI collaborative expansion of research threads, providing a foundation for more
effective literature synthesis. Additionally, the Analogical Search Engine and BioSpark systems show-
case the potential for LLM-powered analogical processing to generate innovative ideas, emphasizing the
importance of purpose-mechanism schema abstractions.

The empirical studies and controlled lab experiments conducted with these systems reveal important de-
sign principles and interaction techniques that can enhance user engagement and support the practical
transfer of inspirations. These findings and design lessons point to future systems aimed at addressing the
challenges posed by the increasing complexity and scale of knowledge production, ultimately aiming to
improve innovator productivity.

In conclusion, this dissertation advocates for the development of mixed-initiative systems that combine
user input with advanced AI capabilities. By empowering users to better synthesize and utilize conceptual
abstractions, these systems hold the promise of unlocking new avenues for innovation and effectively
leveraging the vast repository of archived knowledge. The insights and design principles derived from this
research have far-reaching implications, potentially transforming how individuals across various domains
engage with complex information and generate novel solutions.
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