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Abstract

Low latency is critical for edge-enabled autonomous drones to do real-time computer vision tasks like
target tracking effectively. We discuss our work on analyzing the latency of the real-time drone video
stream using the SteelEagle autonomous drone system. By varying factors such as the cloudlet location,
network type, and the video decoding library used, we show that the latency is bottlenecked not by the
network but by the decoding of the RTSP video stream generated by the drone.
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1 Introduction

SteelEagle is a software suite that transforms commercial-off-the-shelf (COTS) drones into fully au-
tonomous, beyond-visual-line-of-sight (BVLOS) UAVs. It leverages edge computing to enable smaller and
lighter drones while preserving the compute-intensive real-time sensing and autonomous capabilities of
much larger drones [1]. SteelEagle transmits a real-time video stream from the drone’s camera to a ground-
based cloudlet where machine learning inference tasks, such as object detection, are offloaded. Based on
the results, the drone is guided to avoid obstacles or track objects. There are latencies incurred in this
process: (a) pre-processing on the drone to capture video frames from the camera and encode an H.264
stream (b) transmission of the video stream over the network to the cloudlet; (c) processing on the cloudlet;
and (d) optional transmission of actuation commands back to the drone.

Obstacle detection and tracking are time-sensitive tasks that can be performed effectively only if the
results of the offloaded computation are received promptly, ideally with very low latency. For example, a
delayed decision to steer the drone to avoid an impending collision due to high latency can be catastrophic.
This motivates us to analyze latency and identify where time is being spent. We try to tease through the
contribution of the different factors by benchmarking different configurations, and changing one factor
while keeping everything else the same. In this report, we show how our analysis led us to identify our
choice of video decoding library as the main culprit leading to high latency in SteelEagle.

2 Background
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Figure 1: Original SteelEagle Latency [1]

In 2023, Bala et al [1] introduced the SteelEagle system
to achieve autonomy for inexpensive flight platforms using
edge computing. SteelEagle can perform real-time computer
vision tasks including detection and tracking of targets with a
drone platform weighing less than 350g and costing less than
$800. We build upon Bala et al’s work by quantifying the
contribution of different factors that contribute to the end-
to-end latency.

Bala et al reported a mean drone-to-cloudlet latency of
933 ms (Figure 1). Such a high latency distribution makes it
challenging to effectively perform computer vision inference
tasks such as object detection and tracking. A round-trip latency from drone to cloudlet and back of over
a second results in low drone agility. The drone is likely to lose track of fast-moving subjects or be forced
to fly at lower speeds to circumvent obstacles in time.

3 Setup

Figure 2: Parrot Anafi

We replicate the setup used by Bala et al in SteelEagle [1]. We use the Parrot
Anafi drone (Figure 2) [4], which transmits a 720p H.264 RTSP stream at 30
FPS over UDP. This video stream is not configurable as it is generated by the
hardware on the drone; both the frame rate and resolution cannot be changed.

To reduce the impact of adverse network conditions, it uses a slice
encoding and intra-refresh scheme that disperses keyframe slices across multiple transmission packets [5].
Software decoding of the H.264 compressed video stream is required to obtain individual video frames.
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Figure 3: Onion Omega

The Parrot Anafi drone lacks cellular connectivity, which restricts its
offloading ability. The Onion Omega 2 LTE (Figure 3), a single-board
computer that supports both Wi-Fi and 4G LTE, is attached to the drone as
a payload and used as a communications hub to mitigate this. The drone is
connected to theOnionOmega overWi-Fi and a VPN tunnel is set up over LTE
between the Onion and the cloudlet, allowing the cloudlet to communicate
with the drone. We use the T-Mobile commercial LTE network unless stated otherwise. The drone exposes
an API called Parrot Ground SDK that gives full flight control and access to on-board sensors.

4 Measuring latency

Round-trip latency, from drone to cloudlet and back, defines the drone’s agility as it determines how fast
the drone can respond to environmental changes. The Anafi, being a commercial product that restricts
modification of its onboard software, effectively functions as a black box. Unfortunately, this black box
nature makes it impossible to benchmark the round-trip latency. Even calculating the one-way latency is
challenging since it is not possible to add instrumentation on the drone that records timestamps of when
each frame is sent.

Figure 4: Latency Measurement Technique

To get around these limitations, we use the technique used by Bala et al for measuring the one-way
drone-to-cloudlet video stream latency. The drone is kept stationary in a lab setting with its camera
pointing at a display connected to the cloudlet showing the current time at millisecond granularity
(Figure 4). The drone captures images of the timestamp displayed and transmits them to the cloudlet
through the SteelEagle pipeline. The cloudlet records the timestamp at which each frame is received,
storing the frame as a file along with this recorded timestamp. In post-processing, the files are manually
processed to compute the difference between the timestamps to get the total end-to-end time. It can be
more practical to use a display connected to a local computer that is time synchronized to the same NTP
server as the cloudlet, instead of connecting a display to the cloudlet directly. This is sometimes the only
way, for example, if the cloudlet is an EC2 VM running on AWS.

There are many components to the latency measured using this technique, some making up a bigger
proportion than others. First, there is a delay before the timestamp appears on the display that depends on
the refresh rate of the display monitor used. Second, there is a delay incurred in capturing the timestamp
by the drone’s camera, encoding the frame into a video stream, and transmitting it over WiFi. Third, the
Onion relay adds delays as it receives packets over WiFi and forwards them via its LTE modem. Fourth,
there is network latency over the LTE network as the packets go through the internet backbone before
finally ending up at the cloudlet. Finally, the SteelEagle system adds latency as it receives enough packets
for a single frame and then decodes and processes them.
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5 Measurements

Table 1: Drone-to-Cloudlet Latency over T-Mobile IoT (in ms)

Configuration Average Median p95 Min Max

Cloudlet
FFmpeg 888 ± 30 887 917 838 1,030
PDrAW 380 ± 15 379 402 344 420

AWS Small
FFmpeg 536 ± 75 521 600 473 936
PDrAW 429 ± 21 427 467 387 475

AWS Big
FFmpeg 870 ± 20 868 900 837 925
PDrAW 367 ± 20 365 392 327 416

50 samples obtained for each configuration.

Table 1 summarizes the measurements collected as part of our work. We begin by explaining the various
configurations used and then analyze how the measurements change with each configuration to identify
potential bottlenecks.

5.1 Configurations

The configurations used in our experiments in Table 1 vary by the location of the SteelEagle backend and
the library used for decoding the drone video stream. All configurations use T-Mobile’s commercial LTE
network for IoT devices.

Location of backend. Three backend locations with different specifications, each offering varying
levels of performance, are considered to evaluate how hardware scale-up affects system latency. The
SteelEagle backend is either set up on a bare-metal server on CMU’s campus, labeled “Cloudlet”, or on
an EC2 VM in AWS East (Virginia). Two types of EC2 instances are used, “AWS Small” and “AWS Big”.
The CMU Cloudlet has two Intel® Xeon® E5-2699 v3 CPUs clocked at 2.30 GHz for a total of 72 vCPUs,
128GB main memory, and an NVIDIA® GeForce® GTX 1080 Ti GPU. AWS denotes a g4dn.xlarge EC2
instance which has 4 vCPUs, 16GB of memory, and an NVIDIA T4 GPU. AWS Big is a g4dn.16xlarge
EC2 instance which has 64 vCPUs, 256GB main memory, and also an NVIDIA T4 GPU.

Video decoding library. Two video decoding libraries are considered: FFmpeg and PDrAW (pro-
nounced “pedro”). FFmpeg [2] is an open-source project that offers libraries for video encoding/decoding
and multiplexing/demultiplexing. FFmpeg is known for forming a core part of the VLC media player. We
interact with FFmpeg through OpenCV [3], which offers the ability to use FFmpeg as a backend for its
video capture APIs.

PDrAW [6] is a part of Parrot’s Ground SDK software. Similar to FFmpeg, it includes multiplex-
ing/demultiplexing abilities and can read from the RTSP stream generated by the Parrot Anafi drone.
Unlike FFmpeg, however, PDrAW is intended as a video player for RTSP andMP4 videos and lacks general-
purpose encoding and decoding abilities.

5.2 Analysis

The SteelEagle system was initially configured to use FFmpeg for decoding the real-time video stream,
using it as a backend for OpenCV video capture. The latency measurements obtained by Bala et al [1] also
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Figure 6: Latency Using PDrAW
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Figure 7: Latency vs. Number of FFmpeg Threads

Each box extends from the first quartile (Q1) to the third quartile (Q3), with a line at the median. Whiskers extend from the box
to the farthest data point lying within 1.5x the inter-quartile range (IQR = Q3 −Q1) from the box. Circles represent outliers.

50 samples obtained for each configuration.

used FFmpeg with the CMU cloudlet as a SteelEagle backend (Figure 1). However, the data obtained in our
experiments does not include inference time.

Our analysis of the SteelEagle video stream latency was performed by switching to a different
SteelEagle configuration with only one variable being changed, either the backend location or the video
stream decoding library used. We present the configuration changes in chronological order in which we
performed them and discuss how the resulting findings eventually led us to identify scale-out issues with
FFmpeg as a major contributor to high latency.

5.2.1 CMU Cloudlet to AWS Small
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Each box extends from the first quartile (Q1) to the
third quartile (Q3), with a line at the median.

Whiskers extend from the box to the farthest data
point lying within 1.5x the inter-quartile range

(IQR = Q3 −Q1) from the box. Circles represent
outliers. 50 samples obtained for each

configuration.

Figure 5: Latency with FFmpeg

As shown in Figure 5, moving from the CMUCloudlet to AWS
Small for the SteelEagle backend leads to an extreme drop
in latency, going down from p95 latency of 917 ms to 600
ms (see Table 1). That amounts to a 1.5× speedup, with an
improvement of over 300 milliseconds.

Discussion. Initially, we attributed this improvement to
network optimizations by T-Mobile. In early 2024, T-Mobile
optimized its network to create a local breakout to the AWS
East servers in Virginia. With this local breakout, packets
heading for the AWS data center in Virginia would obtain
direct routing to Virginia leading to fewer network hops
than if they had to travel the entire internet backbone. This
optimization allows for lower latency to an EC2 VM running
in AWS than to a server running on CMU’s campus.

However, our measurement of the round-trip network
latency using the ping tool found the latency to AWS via T-
Mobile to be 38 ms instead of 50 ms to the CMU Cloudlet on
average. Hence, this latency reduction of 12 ms on average
was not sufficient to explain the 300 ms drop in latency
moving to AWS.
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5.2.2 FFmpeg to PDrAW

Replacing FFmpeg with PDrAW for video decoding yields a significant improvement for AWS Small, with
a reduction in p95 latency from 560 ms to 467 ms. Surprisingly, p95 latency with the CMU Cloudlet went
down from 917 ms to 402 ms, a speedup of almost 2.3×.

Discussion. CMU Cloudlet has much lower latency than AWS Small when using PDrAW for video
decoding, but much higher latency when using FFmpeg. This discrepancy is unexpected, as one would
anticipate CMU Cloudlet to perform consistently better or worse across both configurations. Given that
AWS Small has fewer logical CPUs thanCMUCloudlet, we extended our evaluation to amore powerful EC2
VM,AWSBig, to investigatewhether it can offer even lower latency thanAWS Small. The primary question
now is: can AWS Big outperform both AWS Small and CMU Cloudlet in terms of latency with PDrAW?
Additionally, what factors are contributing to the latency variations observed in the CMU Cloudlet? These
questions drive our subsequent analysis, aiming to understand the underlying causes of these performance
discrepancies and to identify optimal configurations for video decoding.

5.2.3 AWS Small to AWS Big

Surprisingly, AWS Big performed similarly to the CMU Cloudlet with p95 latencies around 900 ms for
both. This is a huge degradation over using AWS Small, a weaker EC2 VM, which was found to have a p95
latency of 467 milliseconds.

Discussion. CMU Cloudlet has 72 logical CPUs, while AWS Big has 64, providing a similar
computational capacity. In contrast, AWS Small has only 4 logical CPUs. This led to the hypothesis that
FFmpeg’s performance degradeswith increased parallelism, struggling to scale effectivelywith higher CPU
counts. Our measurements support this hypothesis: CMU Cloudlet, with 72 CPUs, exhibited the highest
latency using PDrAW, with a mean of 887 ms. AWS Big, with 64 CPUs, showed a slightly lower mean
latency of 870 ms, while AWS Small, with only 4 CPUs, achieved the lowest mean latency of 536 ms. To
verify this hypothesis, we next consider a way to modify the number of CPUs used for FFmpeg on the
same hardware.

5.2.4 Configure FFmpeg to Use Fewer Threads

Table 2: Multi-threaded FFmpeg Latency (ms)

Threads Average Median p95 Min Max

1 417 ± 19 416 447 385 477
2 442 ± 22 438 480 399 514
3 485 ± 45 476 563 437 723
4 502 ± 16 503 531 472 532
5 535 ± 24 534 566 503 643
6 625 ± 146 576 932 537 1,208

50 samples obtained for each row.

OpenCV provides the option CAP PROP N THREADS to set the number of threads used for the FFmpeg
backend. To test the hypothesis presented in Section 5.2.3, measurements were obtained by varying the
value of this option from 1 to 6 (see Table 2 & Figure 7).

Discussion. FFmpeg has the best performance when using just a single thread. As we increase
the number of threads used we observe negative scale-out characteristics and performance degrades
substantially. These results provide conclusive evidence that the use of multi-threaded FFmpeg in
SteelEagle has contributed to high system latency.
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FFmpeg’s negative scale-out characteristics may stem from its optimization for throughput rather
than latency. Experiments have confirmed that increasing the number of threads enhances throughput
but adversely affects latency. One possible reason is that multi-threaded FFmpeg might buffer frames
longer than necessary, with each thread potentially maintaining its own frame buffer. Additionally, adding
more threads can increase contention if they access the same data concurrently. Overhead from frequent
thread switching can occur if spinlocks are not used appropriately. Cache line contention can lead to
unnecessary cache invalidation when threads share cache lines. Furthermore, the decoding task may not
be inherently parallelizable, so increasing the number of threads only adds unnecessary overhead. FFmpeg,
being a general-purpose library, may be struggling with the specific compression scheme the Anafi uses.
Understanding the true reason for this behavior will require detailed code analysis.

5.3 Contribution of Network Latency

Table 3: Latency (in ms) For Drone Connected To CMU Cloudlet Over WiFi

Configuration Average Median p95 Min Max

WiFi + FFmpeg 842 ± 17 841 868 807 879
WiFi + PDrAW 341 ± 22 338 374 298 419

50 samples obtained for each configuration.

While we achieved a significant reduction in end-to-end latency by switching to PDrAW, a mean of
380 ms is still high. We now aim to understand the LTE network’s contribution in our search for the next
bottleneck. While we have obtained an ad-hoc estimation using the ping tool in Section 5.2.1, we seek
to more concretely quantify it. This is motivated by the concern that ping ICMP packets might receive
preferential treatment compared to UDP packets.

To analyze the contribution of the LTE network latency, the experimental setup was modified such that
the Anafi drone is now connected directly to the CMU Cloudlet over WiFi, eliminating the Onion relay. As
before, the drone captures frames containing timestamps shown on a display that are sent directly to the
backend, this time directly over WiFi. Table 3 contains the results from this experiment. The p95 latency
for PDrAW over WiFi is 374 ms. Table 1 shows that the p95 latency with PDrAW over T-Mobile IoT is
402 ms. The hop over T-Mobile only added 28 ms to the p95 latency.

This suggests that the cellular network is currently not the bottleneck for SteelEagle. There are certain
limitations to this claim, as the use of a USB WiFi dongle might have added considerable latency to the
results. This would mean that perhaps the numbers obtained in Table 3 are higher than they should be,
leading us to believe that the network latency is much less than actual.

5.4 CBRS-based Private LTE Network

To further validate that the network latency is not the bottleneck, we evaluate the system using CMU’s
CBRS-based private LTE network. Table 4 shows the measurements obtained. Instead of the Onion relay,
a CBRS cellular dongle connected to a computer was used as a relay because the Onion Omega’s LTE
modem does not support CBRS frequencies. The CBRS network shows similar benefits as seen before
when switching from FFmpeg to PDrAW.

CBRS results are worse across the board compared to T-Mobile IoT in these configurations. Using
the CBRS network requires no more than 2-3 network hops to reach the CMU Cloudlet, which is much
lower than T-Mobile. Yet, we see a p95 latency that is higher by 24 milliseconds than that obtained when
reaching the CMU Cloudlet via T-Mobile IoT when using PDrAW, and higher by 205 milliseconds when
using FFmpeg (compare with Table 1).
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Table 4: Latency (in ms) For CBRS-Based Private LTE Network

Configuration Average Median p95 Min Max

CMU Cloudlet
CBRS + FFmpeg 742 ± 139 720 764 691 1,696
CBRS + PDrAW 459 ± 27 456 504 396 520

AWS
CBRS + FFmpeg 766 ± 34 757 807 724 927
CBRS + PDrAW 504 ± 25 503 548 448 564

50 samples obtained for each configuration.

800 1000 1200 1400 1600
Latency (ms)

0

20

40

P
er

ce
nt

ag
e

of
T

im
es

Figure 8: Latency With Phone & T-Mobile
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Figure 9: Latency With Phone & CBRS

To alleviate concerns about the overhead added by the use of the CBRS cellular dongle, we evaluate the
system using the Google Pixel phone as a relay, which can connect to both the T-Mobile 4G LTE network
and CMU’s CBRS-based private LTE network. Figure 8 and Figure 9 show measurements obtained by
using this relay for both networks using the CMU Cloudlet as the backend. When using T-Mobile for the
network we see a very heavy-tailed distribution which is not the case when using the CBRS-based private
LTE network. CBRS brings a latency advantage when used with the Google Pixel phone as a relay. This is
what we expect since the CBRS pipeline involves fewer network hops.

Further research is required to understand why these benefits are not observed when using the CBRS
cellular USB dongle as a relay. The CBRS cellular dongle used in these experiments is of questionable
quality and may be adding significant latency overhead. Additionally, there may be other ways to optimize
the private network to better support the SteelEagle workload.

6 Future Work

The version of FFmpeg used in this work does not utilize GPU hardware acceleration. Compiling FFmpeg
to use NVIDIA’s NVENC/NVDEC video encoding and decoding hardware support could potentially make
it perform better. Can hardware-accelerated FFmpeg achieve lower latency than PDrAW? Conventional
wisdom says that workloads that are inherently parallelizable benefit the most from the use of GPUs.
Other types of workloads may lead to higher perceived latency due to resource underutilization. Can
video decoding effectively leverage the GPU?

Profiling the video decoding pipeline on the SteelEagle backend, at a more granular level, will reveal
how much of the latency it precisely contributes. There might be potential to further optimize the code. It
could answer why FFmpeg does worse when the number of threads used is increased.
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Lastly, more experimentation can be done with a Google Pixel smartphone as the relay. Unlike the
Onion Omega, a Google Pixel is protected from the elements, has on-board compute, and supports both
CBRS and LTE cellular. Can a Google Pixel smartphone be as performant as the Onion Omega?

7 Conclusion
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Figure 10: Latency Using PDrAW

SteelEagle is currently bottlenecked by the decoding of
the RTSP video stream, not network latency. We have
significantly reduced the original 933 ms average and 1061 ms
p95 SteelEagle system latency shown in Figure 1. Figure 10
shows that connecting the Parrot Anafi drone to the CMU
Cloudlet over T-Mobile IoT and using the PDrAW library for
decoding the real-time video stream from the drone yields
an average of 380 milliseconds of latency, with a p95 latency
of 402 milliseconds (Table 1). That’s a more than two-fold
improvement. We also observe a significant reduction in
variability when using PDrAW, with the standard deviation
cut in half, resulting in more consistent performance. The new PDrAW configuration has shown clear
benefits in terms of increased drone agility, particularly when tracking fast-moving objects. A drone using
the SteelEagle system is now able to successfully track a person sprinting, which was not feasible at the
time Bala et al published their paper.

Despite the significant reduction in latency, 380 ms is still substantial. The analysis in this report has
taken an end-to-end view of the system latency and has not evaluated the piece-wise contribution of each
component. How much of the 380 ms latency is because of the video decoding algorithm? What about the
on-drone processing? Answering these questions is a prerequisite to further optimization of the system
latency. What would it take to get down to 50 ms of end-to-end latency? We hope that this report has
established the need for further research in analyzing the drone video stream latency that yields more
latency improvements. These improvements would unlock even more compelling drone computer vision
use cases.
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