
Deep Learning on Graphs:
Tackling Scalability, Privacy, and Multimodality

Minji Yoon

CMU-CS-24-139

July 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christos Faloutsos, Co-chair

Ruslan Salakhutdinov, Co-chair
Tom M. Mitchell

Jure Leskovec (Stanford University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Minji Yoon

This research was sponsored by the Kwanjeong Educational Foundation Scholarship and the Amazon Graduate Research
Fellowship.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

Keywords: Deep Learning, Graph Mining, Deep Learning on Graphs, Graph Representation
Learning, Graph Neural Networks, Graph Convolution Networks, Graph Neural Architecture Search,
Message Passing, Importance Neighborhood Sampling on Graphs, Transfer Learning on Graphs,
Heterogeneous Graph Neural Networks, Graph Generative Models, Graph Transformer, Multimodal
Graphs, Multimodal Learning, Multimodal Graph Learning, Language Models

To my shining star, Théo, who believed in me more than I believed in myself.

iv

Abstract
Graphs are everywhere, from e-commerce to knowledge graphs, abstracting in-

teractions among individual data entities. Various real-world applications running on
graph-structured data require effective representations for each part of the graph —
nodes, edges, subgraphs, and the entire graph — that encode its essential characteristics.

In recent years, Deep Learning on Graphs (DLG) has broken ground across
diverse domains by learning graph representations that successfully capture the un-
derlying inductive bias in graphs. However, these groundbreaking DLG algorithms
sometimes face limitations when applied to real-world scenarios. First, as graphs
can be built on any domain that has interactions among entities, real-world graphs
are diverse. Thus, for every new application, domain expertise and tedious work are
required for hyperparameter tuning to find an optimal DLG algorithm. Second, scales
of real-world graphs keep increasing to billions with unfiltered noise. This requires
redundant preprocessing such as graph sampling/noise filtering in advance of DLG
to be realized in applications. Next, real-world graphs are mostly proprietary, while
many DLG algorithms often assume they have full access to external graphs to learn
their distributions or extract knowledge to transfer to other graphs. Finally, the advent
of single-modal foundation models in language and vision fields has catalyzed the
assembly of diverse modalities, resulting in the formulation of multimodal graphs with
diverse modalities on nodes and edges. However, learning on multimodal graphs while
exploiting the generative capabilities of each modality’s foundation models is an open
question in DLG.

In this thesis, I propose to make DLG more practical across four dimensions: 1)
automation, 2) scalability, 3) privacy, and 4) multimodality. First, we automate
algorithm search and hyperparameter tuning under the message-passing framework.
Then, we propose to sample each node’s neighborhood to regulate the computation cost
while filtering out noisy neighbors adaptively for the target task to handle scalability
issues. For privacy, we redefine conventional problem definitions, including graph
generation and transfer learning, to be aware of the proprietary and privacy-restricted
nature of real-world graphs. Finally, I proposed a new multimodal graph learning
algorithm that is built on unimodal foundation models and generates content based on
multimodal neighbor information.

As the data collected by humanity increases in scale and diversity, the relationships
among individual elements increase quadratically in scale and complexity. By mak-
ing DLG more scalble, privacy-certified, and multimodal, we hope to enable better
processing of these relationships and positively impact a wide array of domains.

vi

Acknowledgments
My first and biggest thanks go out to my advisors, Christos Faloutsos and Ruslan

Salakhutdinov, for their advice and support. Christos has shown the deepest support
and trust in me throughout my Ph.D., which has been the cornerstone of my academic
journey. Ruslan has inspired me to explore new horizons and provided invaluable
guidance and encouragement that fueled my passion for research. I would also like to
thank my other thesis committee members, Tom Mitchell and Jure Leskovec, for their
insightful questions and constructive feedback.

I was fortunate to be mentored by Bryan Perozzi during my internship at Google
Research. Two chapters of this thesis are based on the work I collaborated with him. I
have had the opportunity to work with an amazing group of coauthors, each of whom
deserves my gratitude: Kijung Shin, Bryan Hooi, Théophile Gervet, Baoxu Shi, Sufeng
Niu, Qi He, Jaewon Yang, John Palowitch, Dustin Zelle, Ziniu Hu, Yue Wu, and Jing
Yu Koh. I would especially like to thank Bryan Hooi for mentoring me on how to
conduct research by guiding me through my first two papers, and for continuing to
broaden my horizons as we collaborated on my final paper in my last year.

I am grateful to all my lab mates for being great friends, coworkers, and mentors:
Tiffany, JY, Brandon, Murtaza, Kelly, Paul, and Ben from Ruslan’s lab, and Jeremy,
Catalina, and Saranya from Christos’s lab. I also thank my office mates, Chunkai and
Tian, for sharing all the ups and downs in the same office throughout 5 years.

I have been fortunate to have wonderful friends who supported me throughout my
Ph.D.: Ojash, Viraj, Sammy, Lauren, Kush, and Sam. Also, my Korean friends from
CMU, Daye, Chanyoung, Jimin Sun, Jimin Moon, Emily, Tiffany, and Haewon, and my
old friends from Korea who always believed in me, Seobin and Hyomin. Special thanks
to my first and last roommate, Daye, who shared all the happiness and frustrations
with me in Pittsburgh. I strongly believe I could not have completed my Ph.D. journey
without any of them. I would like to express my deepest gratitude to my parents, Woosik
and Sunhwa, and my parents-in-law, Odile and Eric, for their infinite love and support
that made my Ph.D. journey successful. Last but not least, many thanks go out to my
husband, Théophile Gervet, the best thing I got from CMU.

viii

Contents

1 Introduction 1
1.1 Challenges . 1
1.2 Contributions . 2
1.3 Thesis Organization . 2

2 Background 5
2.1 Graph-related Concepts and Notations . 5
2.2 Graph Neural Networks . 6
2.3 Heterogeneous Graph Neural Networks . 6
2.4 Graph Neural Networks on Multimodal Graphs 7
2.5 End-to-End Pipeline in Deep Learning on Graphs (DLG) 7

3 Automation 9
3.1 Motivation . 9
3.2 Unified Graph Mining Framework . 11

3.2.1 Message Passing . 12
3.2.2 UNIFIEDGM . 12
3.2.3 Reproduction of Existing Algorithms . 14
3.2.4 Conventional GM vs. GNNs . 17
3.2.5 Parameter Selection . 17

3.3 Extended UnifiedGM . 18
3.3.1 Attention . 19
3.3.2 Importance sampling . 20

3.4 Automation of Graph Mining Algorithm Development 22
3.4.1 Budget-aware objective function . 23
3.4.2 Bayesian optimization . 24
3.4.3 AUTOGM . 25
3.4.4 Time Complexity Analysis . 25

3.5 Experiments . 26
3.5.1 Experimental Setting . 26
3.5.2 Effectiveness of AUTOGM . 28
3.5.3 Search efficiency of AUTOGM . 30
3.5.4 Effect of UNIFIEDGM parameters . 30
3.5.5 Discussion . 32

3.6 Related work . 33
3.6.1 AutoML . 33

ix

3.6.2 Bayesian Optimization . 34
3.6.3 Graph Neural Architecture Search . 34

3.7 Summary . 35

4 Scalability 39
4.1 Motivation . 39
4.2 Preliminaries . 42
4.3 Proposed Method . 43

4.3.1 Sampling Policy . 43
4.3.2 Training the Sampling Policy . 45
4.3.3 Algorithm . 46

4.4 Theoretical Foundation . 48
4.4.1 Design of Sampling Policy . 50

4.5 Experiments . 50
4.5.1 Experimental setting . 52
4.5.2 Effectiveness . 52
4.5.3 Robustness . 54
4.5.4 Convergence & Variance . 54
4.5.5 Comparison with GAT . 54
4.5.6 Ablation Study . 56
4.5.7 Case Study . 57
4.5.8 Visualization of PASS . 57

4.6 Related Work . 58
4.7 Summary . 59
4.8 Appendix . 59

4.8.1 Proof of SUB-LOSS trick . 59
4.8.2 Experimental Setting . 60
4.8.3 Case Study . 60
4.8.4 Different sample numbers . 61

5 Privacy I: transfer learning within a heterogeneous graph 63
5.1 Motivation . 63
5.2 Preliminaries . 65

5.2.1 Heterogeneous graph . 65
5.2.2 Heterogeneous Graph Neural Networks (HGNN) 65
5.2.3 Problem definition . 66

5.3 Cross-Type Feature Extractor Transformations in HGNNs 66
5.3.1 Feature extractors in HMPNNs . 67
5.3.2 Empirical gap between fs and ft . 67
5.3.3 Relationship between feature extractors in HMPNNs 68
5.3.4 Generalized cross-type transformations for HGNNs 69

5.4 KTN: Trainable Cross-Type Transfer Learning for HGNNs 69
5.4.1 Algorithm . 70

x

5.5 Experiments . 71
5.5.1 Datasets . 71
5.5.2 Baselines . 71
5.5.3 Zero-shot transfer learning . 73
5.5.4 Generality of KTN . 73
5.5.5 Sensitivity analysis . 73

5.6 Related Work . 76
5.7 Summary . 78
5.8 Appendix . 78

5.8.1 Proof of Theorem 7 . 78
5.8.2 Indirectly Connected Source and Target Node Types 80
5.8.3 More results for Zero-shot Transfer Learning in Section 5.5.3 82
5.8.4 Analysis for Baselines in Section 5.5.3 . 82
5.8.5 More results for Generality of KTN in Section 5.5.4 82
5.8.6 Effect of trade-off coefficient λ . 83
5.8.7 Synthetic Heterogeneous Graph Generator 84
5.8.8 Real-world Dataset . 86
5.8.9 Baselines . 88
5.8.10 HGNN models . 88
5.8.11 Experimental Settings . 89

6 Privacy II: privacy-enhanced graph generative model 91
6.1 Motivation . 91
6.2 From Graph Generation to Sequence Generation 93

6.2.1 Computation graph sampling in GNN training 93
6.2.2 Duplicate encoding scheme for computation graphs 94
6.2.3 Quantization . 94
6.2.4 End-to-end framework for a benchmark graph generation problem 95

6.3 Proposed Work . 95
6.3.1 Computation Graph Transformer (CGT) 95
6.3.2 Theoretical analysis . 97

6.4 Experiments . 98
6.4.1 Experimental setting . 98
6.4.2 Main results . 100
6.4.3 Graph statistics. 102
6.4.4 Various scenarios to evaluate benchmark effectiveness 104
6.4.5 Ablation study . 105

6.5 Related Work . 106
6.6 Summary . 106
6.7 Appendix . 107

6.7.1 Reproducibility . 107
6.7.2 Limitation of the study . 107
6.7.3 Computation graph sampling in GNN training 107

xi

6.7.4 Proof of privacy and scalability claims . 108
6.7.5 CGT on ogbn-arxiv and ogbn-products 111
6.7.6 CGT as training/test set generators . 111
6.7.7 Detailed GNN performance in the privacy experiment in Section 6.4.2 . . . 112
6.7.8 Additional experiments on graph statistics 112
6.7.9 Detailed GNN performance in the benchmark effectiveness experiment in

Section 6.4.4 . 112
6.7.10 Detailed GNN performance in the ablation study in Section 6.4.5 114
6.7.11 GNN models used in the benchmark effectiveness experiment 114
6.7.12 Architecture of Computation Graph Transformer 116
6.7.13 Differentially Private k-means and SGD algorithms 116
6.7.14 Privacy-enhanced graph synthesis . 117
6.7.15 Experimental settings . 117

7 Multimodality 121
7.1 Motivation . 121
7.2 Proposed work . 124

7.2.1 Research Question 1: Neighbor Encoding 124
7.2.2 Research Question 2: Graph Structure Encoding 126
7.2.3 Research Question 3: Parameter-Efficiency 126

7.3 Experiments . 127
7.3.1 WikiWeb2M dataset . 127
7.3.2 Experimental Settings . 127
7.3.3 Effectiveness of Neighbor Information . 127
7.3.4 Neighbor Encoding . 129
7.3.5 Graph Structure Encoding . 130
7.3.6 Parameter-Efficient Fine-Tuning . 130

7.4 Related Work . 131
7.5 Summary . 132

8 Conclusion 133

xii

List of Figures

2.1 DLG pipeline. DLG can be decomposed into data, representation, and application
layers. 7

3.1 AUTOGM finds novel graph algorithms with the best accuracy/inference time
trade-off on the node classification task. (a) Given three accuracy lower bounds
(i.e., 0.58, 0.63, 0.68), AUTOGM generates three novel graph algorithms minimiz-
ing inference time. (b) Given three inference time upper bounds (i.e., 0.004, 0.01, 0.1
seconds), AUTOGM generates three novel graph algorithms maximizing accuracy. 10

3.2 Unified Graph Mining framework. UNIFIEDGM defines the message passing
mechanism based on five parameters: the dimension d, length k, width w, nonlin-
earity l, and aggregation strategy a. 13

3.3 Attention module in UNIFIEDGM. UNIFIEDGM computes attention between a
source node A and its neighbors based on their relevance to node A. Unrelated or
adversarial neighbors have small attentions. 19

3.4 Various sampling strategies in UNIFIEDGM. Uniform sampling samples infor-
mative and uninformative neighbors with an equal probability. It could sample only
uninformative or irrelevant neighbors. On the other hand, importance sampling sam-
ples each neighbor following their distinct sampling probabilities, and the sampling
probabilities are computed based on their relevance with regard to a source node. . 21

3.5 AUTOGM finds the algorithms with the best accuracy/inference time trade-off
on the node classification task. Given three different accuracy/inference time
constraints 1, 2, 3, AUTOGM generates three novel graph algorithms, AUTOGM-
1, 2, 3, respectively. 27

3.6 AUTOGM finds the algorithms with the best accuracy/inference time trade-
off on the link prediction task. Given three different accuracy/inference time
constraints 1, 2, 3, AUTOGM generates three novel graph algorithms, AUTOGM-
1, 2, 3, respectively. 29

3.7 Effects of the five parameters (d, k, w, l, a) of UNIFIEDGM on the performance
of graph algorithms. 31

xiii

4.1 PASS learns which neighbors are informative for the job industry classification
task on the LinkedIn member-to-member network. (a) Given Member A from
the "Computer software" industry, PASS learns high sampling probabilities for
Members B, C, and D from similar industries but low probabilities for Members
E and F from different industries. (b) Given Member G from the "Hospital &
health care" industry, PASS assigns a low sampling probability to Member I, who
has an unrelated career as a "Program Analyst" although he works in the same
industry. This shows PASS is able to determine that the attributes of Member I are
different from Member G’s and thus not informative. For space efficiency, we show
part of neighbors; thus, the sum of sampling probabilities does not sum to 1. See
Section 4.5 for details. 40

4.2 PASS is composed of three steps: 1) sampling, 2) feedforward propagation, and
3) backpropagation. In the backpropagation process, the GCN and the sampling
policy are optimized jointly to minimize the GCN performance loss. 44

4.3 Interpretation of why PASS assigns higher sampling probability to node v3
than v5 given source node v2. Node v3’s embedding h

(l)
3 helps v2’s embedding

h
(l)
2 move in the direction −dL/dh(l)

2 that decreases the performance loss L while
aggregating the embedding of node v5 would move v2 in the opposite direction. . . 49

4.4 The convergence of PASS on the test set in terms of epochs. 56
4.5 Visualization of PASS. The hidden-layer embeddings of a neighborhood in the

Amazon Computer dataset (visualized by t-SNE [17]). The red cross denotes the
gradient of the loss w.r.t the source node and green points denote the embeddings of
neighbor nodes. Numbers denote the increase/decrease in sampling probabilities.
PASS increases sampling probabilities for neighbors in the red area, close to the
gradient, while decreasing probabilities for the neighbors in the blue zone, which
are far from the gradients. 58

4.6 PASS learns which neighbors are informative or not. The numbers in nodes
denote node ids and labels. The numbers in edges denote sampling probabilities
computed by PASS. 61

5.1 Illustration of a toy heterogeneous graph and the gradient paths for feature
extractors fs and ft. Colored arrows in figures (b) and (c) show that the same
HGNN nonetheless produces different gradient paths for each feature extractor.
Color density of each box in (b) and (c) is proportional to the degree of participation
of the corresponding parameter in each feature extractor. 68

5.2 HGNNs trained on a source domain underfit a target domain even on a “nice"
heterogeneous graph. (a) Performance on the simulated heterogeneous graph for 4
kinds of feature extractors; (source: source extractor fs on source domain, target-
src-path: source extractor fs on target domain, target-org-path: target extractor ft
on target domain, and theoretical-KTN: target extractor ft on target domain using
KTN.) (b-c) L2 norms of gradients of parameters Wτ(·) and Mϕ(·) in HGNN models. 68

5.3 Synthetic HG generator. 76

xiv

5.4 Effects of edge and feature distributions across classes and types in heteroge-
neous graphs. 77

5.5 Schema of synthetic and real-world heterogeneous graphs. 87

6.1 Computation graphs with s = 2 neighbor samples and L = 2 depth. (a) input
graph; (b) original computation graphs have differently-shaped adjacency (blue)
and attribute (yellow) matrices; (c) duplicate encoding scheme outputs the same
adjacency matrix and identically-shaped attribute matrices. 93

6.2 Overview of our benchmark graph generation framework. (1) We sample a set
of computation graphs of variable shapes from the original graph, then (2) duplicate-
encode them to fix adjacency matrices to a constant. (3) Duplicate-encoded feature
matrices are quantized into cluster id sequences and fed into our Computation
Graph Transformer. (4) Generated cluster id sequences are de-quantized back into
duplicate-encoded feature matrices and fed into GNN models with the constant
adjacency matrix. 95

6.3 Computation Graph Transformer (CGT). (a,b) Given a sequence flattened from
the input computation graph, CGT generates context in the forward direction. e(st),
q
(l)
t , and h

(l)
t denote the token, query, and context embedding of t-th token at the

l-th layer; pl(t) and ys1 denote the position embeddings of t-th token and label
embedding of the whole sequence, respectively. (c) The cost-efficient version of
CGT divides the input sequence into shorter ones composed only of direct ancestor
nodes. 96

6.4 Benchmark effectiveness and scalability in graph generation. (a) We evaluate
graph generative models by how well they reproduce GNN performance from the
original graph (X-axis: original accuracy) on synthetic graphs (Y -axis: reproduced
accuracy). Our method is closest to x = y, which is ideal. (b) We measure
Mean Square Error (MSE) and Pearson/Spearman correlations from results in (a).
Our method shows the lowest MSE and highest correlations. (c) We measure the
computation time (training + evaluation) of each graph generative model. Only our
method is scalable across all datasets while showing the best performance. O.O.T
denotes out-of-time (> 20 hrs) and O.O.M denotes out-of-memory errors. 98

6.5 CGT preserves distributions of graph statistics in generated graphs. Duplicate
encoding encodes graph structure into feature matrices of computation graphs. In
each computation graph, # zero vectors is inversely proportional to node degree,
while # redundant vectors is proportional to edge density. We measure Wasser-
stein distanceW(P,Q) between the original distribution Q and the distribution P
generated by each baseline. 103

6.6 CGT reproduces GNN performance changes with different number of noisy
edges (#NE), sampled neighbors (#SN), and different amount of distribution
shifts (α) successfully. 105

xv

6.7 CGT preserves distributions of graph statistics in generated graphs for each
dataset: While converting from original graphs to quantized graphs, CGT loses
some of graph statistics information for k-anonymity privacy benefit. The variations
given by CGT are presented as differences in distributions between quantized
and generated graphs. X-axis denotes the number of zero vectors (z) and the
number of duplicate vectors (d) per computation graph, respectively. Y-axis denotes
the number of computation graphs with z zero vectors and d duplicate vectors,
respectively. 114

7.1 Multimodal datasets extracted from Wikipedia. (a) Most multimodal models target
multimodal datasets with clear 1-to-1 mappings between modalities. (b) Multimodal Graph
Learning (MMGL) handles multimodal datasets with complicated relations among multiple
multimodal neighbors. 122

7.2 Multimodal Graph Learning (MMGL) framework. (a) Multiple multimodal neighbors
are given with the input text. (b) Multimodal neighbors are first encoded using frozen
vision/text encoders and then aligned to the text-only LM space using 1-layer MLP mappers.
The mappers are trained during LM fine-tuning. Based on the neighbor encoding scheme,
texts could be used without any preprocessing (Self-Attention with Text+Embeddings)
or encoded into embeddings (Self-Attention with Embeddings or Cross-Attention with
Embeddings). Images are always encoded into embeddings to align to the text-only LM
space. (c) Graph structures among neighbors are encoded as graph position encodings.
(d) Encoded neighbor information could be infused either by concatenating to the input
sequences (Self-Attention with Text+Embeddings or Self-Attention with Embeddings) or
feeding into cross-attention layers (Cross-Attention with Embeddings). The graph position
encodings are added to the input token/text/image embeddings. 125

xvi

List of Tables

1.1 Organization of the thesis. 3

3.1 Commonly used notation in AUTOGM. 12
3.2 Various aggregation strategies in UNIFIEDGM. The aggregation strategy a

decides if a node sends a message to itself or not (Self-loop or No-self-loop)
and how to normalize the sum of incoming messages (Asymmetric, Symmetric,
or No-normalization). Each combination corresponds to an aggregation matrix
Aagg = Aggregate(A) in the table. Notation: n is the number of nodes in a graph,
A is a (n × n) binary adjacency matrix, D is a (n × n) diagonal matrix where
Dii =

∑
j Aij , and In is an identity matrix of size n. 15

3.3 Example graph mining algorithms under UNIFIEDGM. Graph mining algo-
rithms can be fully reproduced under UNIFIEDGM with the respective initial node
statistics and parameters (d, k, w, l, a). Notation: n is the number of nodes, A
denotes an (n× n) binary adjacency matrix, D denotes an (n× n) diagonal matrix
where Dii =

∑
j Aij , In denotes an identity matrix of size n, s is the number of

seeds, N(u) denotes the set of sampled neighbors of node u, and 0 < c < 1 is a
decay coefficient. For PageRank, see the formulation given in [179]. 36

3.4 Sampling strategies in UNIFIEDGM-EXT. UNIFIEDGM-EXT defines a sampling
strategy based on 1) where the sampling probabilities are learnable, 2) how the
sampling probabilities are designed, and 3) when the sampling is executed. 37

3.5 Dataset statistics. AmazonC and AmazonP denote the Amazon Computer and
Amazon Photo datasets, respectively. CoauthorC and CoauthorP denote the MS
Coauthor CS and Physics, repectively. 37

3.6 Parameters corresponding to algorithms found by AUTOGM in Figures 3.1.
The Budget column denotes the constraint input to AUTOGM to generate an algo-
rithm. 37

3.7 Search efficiency of AUTOGM. Given the same search time (column 2) and
accuracy lower bounds (column 3), AUTOGM finds faster algorithms than Random-
Search across all datasets; similarly, given the same search time (column 2) and
inference time upper bounds (column 8), AUTOGM finds more accurate algorithms
than RandomSearch across all datasets. 38

4.1 Commonly used notation in PASS. 41
4.2 PASS out-features competitors. Comparison of our proposed PASS and existing

sampling methods for GCNs. 43

xvii

4.3 Dataset statistics. LinkedIn dataset on member networks has two labels, member
industry and job title. 50

4.4 Effectiveness of PASS. PASS outperforms all baselines up to 10.4% on the bench-
mark datasets and up to 10.2% on our production datasets (LnkIndustry, LnkTitle).
Results on the benchmark datasets are presented in precision. Results on our pro-
duction datasets are presented in percentage point (pp) with respect to GraphSage
(random sampling). A higher precision/percentage point is better. 51

4.6 Comparison between PASS and GATs. PASS is scalable across all datasets while
GATs run out of memory on Pubmed, Amazon Computer, MS CS, and MS Physics
datasets. We run PASS with both 1 and 5 sampled neighbors, trading-off speed
for accuracy. On the few datasets where GATs are applicable, PASS (5) shows
comparable or higher accuracy as GATs with considerably shorter training and test
time. 55

4.7 Ablation study of PASS. Our dot-product-based importance sampling qimp outper-
forms the GAT-version importance sampling mechanism. Random sampling qrand
complements importance sampling qimp. 57

4.8 Comparison between node-wise samplers with large numbers of samples. . . . 62

5.1 KTN on Open Academic Graph on Computer Science field. The gain column
shows the relative gain of our method over using no domain adaptation (Base
column). o.o.m denotes out-of-memory errors. 72

5.2 KTN on PubMed graph. The gain column shows the relative gain over using
Base column. 74

5.3 KTN on different HGNN models. The Source column shows accuracy on for
source node types. Base and KTN columns show accuracy for target node types
without/with using KTN, respectively. The Gain column shows the relative gain of
our method over using no domain adaptation. 75

5.4 KTN on Open Academic Graph on Computer Science field. The gain column
shows the relative gain of our method over using no domain adaptation (Base
column). o.o.m denotes out-of-memory errors. 81

5.5 KTN on PubMed . 83
5.6 KTN on Open Academic Graph on Computer Network field 83
5.7 KTN on Open Academic Graph on Machine Learning field 84
5.8 Meta-path length in KTN: increasing the meta-path longer than the minimum

does not bring significant improvement to KTN. Note that the minimum length of
meta-paths in the A-V (L1) task is 2. 84

5.9 KTN on different HGNN models: The Source column shows accuracy on source
node types. Base and KTN columns show accuracy on target node types with-
out/with using KTN, respectively. The Gain column shows the relative gain of our
method over using no transfer learning. 85

5.10 Effect of λ . 85
5.11 Statistics of Open Academic Graph . 86
5.12 Statistics of PubMed Graph . 87

xviii

6.1 Privacy-Performance trade-off in graph generation. 99
6.2 Comparison with simple privacy baselines that add noisy nodes and edges to

the original graph. Node/Edge re-ident. columns show node/edge re-identification
probabilities of each privacy method. - denotes no privacy trick has applied. 101

6.3 Ablation study . 106
6.4 CGT on ogbn-arxiv and ogbn-products: Training time (hr) column denotes the

total training/generation time of CGT. 110
6.5 CGT as training/test set generators. We replace the original training/test sets of

the target dataset (Cora) with irrelevant graphs (Citeseer or Pubmed) and synthetic
Cora generated by our proposed CGT. 111

6.6 Privacy-Performance trade-off in graph generation on the Cora dataset. . . . 113
6.7 GNN performance on link prediction. 115
6.8 Ablation study . 119
6.9 Dataset statistics. 120

7.1 Effectiveness of neighbor information. As more neighbor information is fed to LMs
together with input texts (section text, section all => page text, page all), generation
performance is improved. We increase the input sequence length to 1024 to encode page
text and page all as more information is required to be encoded. The best results are colored
in red, while the second-best results are colored in blue. 128

7.2 Neighbor encodings in MMGL. We encode multiple multimodal neighbor information
using three different neighbor encodings, Self-Attention with Text+Embeddings (SA-TE),
Self-Attention with Embeddings (SA-E), and Cross-Attenion with Embeddings (CA-E).
While SA-TE shows the best performance, SA-TE requires a longer input length (1024)
to encode texts from neighbors in addition to the original text input, leading to scalability
issues. The best results are colored in red. 128

7.3 Graph structure encoding in MMGL. We encode graph structures among multimodal
neighbors using sequential position encodings (Sequence), Graph Neural Network embed-
dings (GNN), and Laplacian position encodings (LPE). Computed position encodings are
added to input token/text/image embeddings and fed into LMs. We use Self-Attention with
Embeddings (SA-E) neighbor encoding and Prefix tuning in this experiment. The best results
are colored in red. 129

7.4 Parameter-efficient finetuning in MMGL. We apply Prefix tuning and LoRA for Self-
Attention with Text+Embeddings (SA-TE) and Self-Attention with Embeddings (SA-E)
neighbor encodings. For Cross-Attention with Embeddings (CA-E) neighbor encoding, we
apply Flamingo-style finetuning that finetunes only newly added cross-attention layers with
gating modules. Note that SA-E and CA-E neighbor encodings have more parameters than
SA-TE because (frozen) text encoders are added to encode text neighbors. The best results
are colored in red, while the second-best results are colored in blue. 130

xix

xx

Chapter 1

Introduction

Amidst the recent successes in computer vision and natural language processing, a critical aspect of
real-world data—relational information—remains underexplored in AI models. Traditional models
primarily process single data entities, such as an image or a sentence, individually during training
and inference. In contrast, many real-world applications inherently involve data with rich relational
structures, naturally represented as graphs, where nodes symbolize data entities and edges encode
relationships among them. Understanding each data entity within a graph provides a holistic view
of how it is relevant/related to other entities. For instance, in e-commerce, a product’s context is
discerned not just through its description but through its neighbor nodes in an e-commerce graph
that incorporates user reviews, merchant information, or co-purchased products.

Deep Learning on Graphs (DLG) has proposed various Deep Learning methodologies to learn
effective representations for node, edge, subgraph, and graph by capturing the underlying inductive
biases on graphs [20, 75]. DLG has broken grounds across various domains, from traditional graph
applications such as product/friend recommendations in e-commerce/social platforms [88, 176],
misinformation detection on social networks [10], and fraud detection in financial transaction
networks [156] to newly introduced graph applications, including ETA prediction in navigation
applications [29], pandemic forecasting in epidemiology [22, 112], and drug development in
biology [70].

1.1 Challenges

DLG aims to learn from this interconnected world and improve understanding of each data entity
using graph structures and neighboring information. However, when we try to realize DLG in
practice, we face notable challenges arising from the characteristics of real-world graphs.
• Diversity: As graphs can be built on any domain that has interactions among entities, real-world

graphs are diverse, from e-commerce graphs to knowledge graphs. These diverse graphs require
different optimal hyperparameter sets for each DLG algorithms.

• Scale: Scales of real-world graphs keep increasing to billions or trillions with unfiltered noise.
This requires redundant graph sampling/noise filtering in advance of DLG to be realized in
applications.

• Privacy: The rise of privacy concerns and the enactment of relevant laws have constrained the
sharing of real-world graphs derived from various industries. This introduces unprecedented

1

challenges to DLG research, including restricted access to graph datasets of interest and disrupted
research assumptions regarding accessibility to external graphs.

• Multimodality: The advent of single-modal foundation models in language and vision fields
has catalyzed the assembly of diverse modalities across domains, resulting in the formulation
of multimodal graphs with diverse modalities on nodes and edges. Learning from multimodal
graphs while exploiting the potent generative capabilities of each modality’s foundation models is
an open question in DLG.

Due to these challenges, an array of DLG research could not fully deliver their impact shown in the
academic setting to newly emerged graphs in the industrial setting.

1.2 Contributions

Given the above four challenges — hyperparameter tuning, scalability, privacy, multimodality —
that hamper the broad adoption of DLG to real-world applications, I define new problems that
pave new ways to solve these challenges and propose practical solutions that can be deployable on
real-world graphs.
• Automation: To democratize DLG for practitioners by removing redundant works, I automate

neural architecture search (i.e., hyperparameter tuning) and find the optimal message-passing
algorithms given a graph, a task, and a resource budget (Chapter 3).

• Scalability: Instead of using the full neighborhoods given in the original graphs, I sample
neighbors for each node to regulate the computation cost of DLG algorithms. I adaptively
sample neighbors that are informative for a given task, filtering out noisy neighbors automatically
(Chapter 4).

• Privacy: Instead of resorting to external (likely to be proprietary) graphs, I propose new transfer
learning that transfers knowledge within a fully-owned heterogeneous graph, avoiding any access
to external graphs (Chapter 5). Additionally, I define a novel graph generation problem that
generates substitute graphs following distributions of proprietary graphs in a privacy-enhanced
way and diversify benchmark graphs for DLG research (Chapter 6).

• Multimodality: I proposed a new multimodal graph learning algorithm that is built on unimodal
foundation models and generates content based on multimodal neighbor information. This
paradigm holds potential as a foundational approach for applications necessitating intricate
multimodal data processing, including decision-making, planning, and recommendation systems
(Chapter 7).

Based on this array of works, we help DLG to be easily applied to broader domains, thus bringing a
larger impact to the real world.

1.3 Thesis Organization

The rest of the thesis proposal is organized as follows. See Table 1.1 for the main problems of each
chapter in the form of questions. In Chapter 2, we give preliminaries on different types of graphs,

2

graph convolutional networks, and an end-to-end pipeline for DLG. In Chapter 3, we present our
work on the automation of DLG hyperparameter search. In Chapters 4, 5 and 6, we present our
work on scalable and privacy-enhanced modeling. In Chapter 7, we present our work on multimodal
graph learning using pretrained foundation models. Finally, in Chapter 8, we provide conclusions
and discuss future research directions.

Table 1.1: Organization of the thesis.

Challenge Research Problem Chapter

Diversity How can we find the optimal hyperparameter sets for diverse
types of real-world graphs automatically?

3

Scalability How can we process large-scale graphs with noise 4
Privacy How can we learn on proprietary graphs without breaching

privacy?
5, 6

Multimodality How can we learn on multimodal graphs while exploiting
each modality’s foundation models?

7

3

4

Chapter 2

Background

In this chapter, we introduce some key concepts and notations that are used throughout this thesis.
The notations are also listed in Table 2.1, which is at the end of this chapter.

2.1 Graph-related Concepts and Notations

Homogeneous graphs denote graphs composed of nodes and edges of the same type/modality.
When we state a graph without any additional adjective, it commonly denotes homogeneous
graphs. Most of the recent DLG models consume either 1) one single large-scale graph or 2) a
set of small/medium-scale graphs. Denoting G = (V , E) a graph with n nodes vi ∈ V and edges
(vi, vj) ∈ E , each graph is given with three components as follows:

• Adjacency matrix A = (a(vi, vj)) ∈ Rn×n where a(vi, vj) is set to 1 when there is an edge from
vi to vj , otherwise 0.

• Node attribute matrix X ∈ Rn×d where xi denotes the d-dimensional attribute vector of vi.
• Node label matrix Y ∈ Rn where yi denotes the label of vi.

Sometimes, instead of node labels, a single graph label is provided for each graph (e.g., molecule
graphs). However, in this thesis, we focus on graphs with node labels.
Heterogeneous graphs model the relational data of multi-modal systems. Formally, a heterogeneous
graph is defined as G = (V , E , T ,R) where:
• Node set V consisting of nodes in G.
• Edge set E consisting of ordered tuples eij := (i, j) with i, j ∈ V , where eij ∈ E iff an edge

exists from i to j.
• Node type set T with associated map τ : V 7→ T .
• Relation type setR with associated map ϕ : E 7→ R.
This flexible formulation allows directed multi-type edges. Similarly to homogeneous graphs, we
additionally assume the existence of node attributes and labels as follows:
• A set of node attribute matrices {Xt : t ∈ T } where Xt is a node attribute matrix specific to

nodes of type t and a node attribute vector xi ∈ Xτ(i) for each i ∈ V .
• A set of node label matrices {Yt : t ∈ T } where Yt is a node label matrix specific to nodes of

type t and a node label yi ∈ Yτ(i) for each i ∈ V .

5

Note that the data modality of each node type is not necessarily exclusive (e.g., two node types s, t
can share either the same or different attribute spaces).

2.2 Graph Neural Networks

First, we briefly review Graph Convolutional Networks (GCNs) [75], one of the most popular
DLG algorithms, which is also repeatedly mentioned throughout this thesis. GCNs stack layers
of first-order spectral filters followed by nonlinear activation functions to learn node embeddings.
When h

(l)
i denotes the hidden embeddings of node vi in the l-th layer, the simple and general form

of GCNs is as follows:

h
(l+1)
i = σ(

1

n(i)

n∑
j=1

a(vi, vj)h
(l)
j W (l)), l = 0, . . . , L− 1 (2.1)

where n(i) =
∑n

j=1 a(vi, vj) is the degree of node vi; σ(·) is a nonlinear function; W (l) ∈ Rd(l)×d(l+1)

is the learnable transformation matrix in the l-th layer with d(l) denoting the hidden dimension at
the l-th layer. h(0)

i is set with the input node attribute xi. The last layer embeddings h(L)
i are then

fed into the downstream task.
GCNs require the full expansion of neighborhoods across layers, leading to high computation

and memory costs. To circumvent this issue, GraphSage [55] adds sampling operations to GCNs to
regulate the size of neighborhood. We first recast Equation 2.1 as follows:

h
(l+1)
i = αW (l)(Ej∼p(j|i)[h

(l)
j]), l = 0, . . . , L− 1 (2.2)

where we combine the transformation matrix W (l) into the activation function αW (l)(·) for conci-
sion; p(j|i) = a(vi,vj)

n(i)
defines the probability of sampling vj given vi. Then we approximate the

expectation by Monte-Carlo sampling as follows:

h
(l+1)
i = αW (l)(

1

s

s∑
j∼p(j|i)

h
(l)
j), l = 0, . . . , L− 1 (2.3)

where s is the number of sampled neighbors for each node. Now, we can regulate the size of
neighborhood using s, in other words, the computational footprint for each minibatch.

2.3 Heterogeneous Graph Neural Networks

We briefly describe heterogeneous graph neural networks (HGNN) models that extend GNN to apply
on heterogeneous graphs. MPNN (message passing neural networks) [49] is originally designed for
homogeneous graphs. We extend MPNN to process heterogeneous graphs by adding projection
matrices that project input attributes of different node types into the same feature space before
running the original MPNN. R-GCN [125] extends MPNN by specializing message matrices in each
edge type, while HMPNN specializes all transformation and message matrices in each node/edge

6

Figure 2.1: DLG pipeline. DLG can be decomposed into data, representation, and application layers.

type in MPNN. HGT [65] extends HMPNN by adding attention modules. The attention modules
have node-type-specific key/query projection matrices and edge-type-specific key-query similarity
matrices, following the transformer architecture. HAN [158] is a meta-path-based model who
specializes parameters in each meta-path. HAN exploits meta-path-specific attention modules to
aggregate features of neighboring nodes connected by each meta-path. Then HAN aggregates
embeddings of different meta-paths with semantic-level attention modules. MAGNN [46] is another
meta-path-based HGNN model. MAGNN aggregates features of all nearby nodes sitting on each
meta-path using intra-meta-path attention modules. Then MAGNN aggregates features of different
meta-paths using inter-meta-path attention modules.

2.4 Graph Neural Networks on Multimodal Graphs

Heterogeneous Graph Neural Networks (HGNNs) extend Graph Neural Networks (GNNs) [193]
to learn from multimodal heterogeneous graphs. This is done through precomputing input node
embeddings using frozen encoders, and training the GNN to map different modality embeddings
either at the input layer [125], intermediate [65], or late layers [182]. However, most HGNN
models focus on node classification, and are difficult to adapt for generative tasks. Recently,
various approaches have been proposed to fine-tune Large Language Models (LLMs) with GNNs
on text-attributed graphs [26, 57, 196]. These methods specialize in node/edge classification tasks
by putting GNN models after LLMs, making them difficult to adapt for use in generative tasks.

2.5 End-to-End Pipeline in Deep Learning on Graphs (DLG)

A broad array of problems are studied in DLG, including graph generative models, graph sampling
strategies, or node/edge/graph embedding algorithms. These diverse problem domains could puzzle
practitioners with questions like “How are those problems related to each other? How could I use
them together?”. Here, we dissect an end-to-end pipeline of DLG and introduce where our proposed
methods are located in the pipeline.

The DLG pipeline receives noisy graphs or unstructured data and outputs interesting patterns
hidden in the graphs to solve real-world problems, including clustering, classification, recommenda-
tion, and anomaly detection. As shown in Figure 2.1, we dissect this pipeline into three layers, data

7

layer, representation layer, and application layer, as follows:
• Data layer: We generate graphs from users’ unstructured data or generate synthetic graphs

following distributions of any source graphs. We also improve a given graph by filtering noisy
edges. Importance neighborhood sampling described in Chapter 4 and graph generation models
described in Chapter 6 belong to the data layer.

• Representation layer: We assign scores or embeddings to nodes/edges/subgraphs that encode the
graph structure. Chapter 3 describes how to find the optimal representation learning algorithms
under the message-passing framework. Chapter 5 describes how to transfer a representation
learning model trained on one node type to another node type with different modalities. Chapter 7
presents how to encode multimodal graph context into sequences of node embeddings.

• Application layer: We extract patterns from the representations, as required by the users’
application (e.g., classify nodes with high scores as anomalies).

I have also conducted several works in the representation and application layers during my Ph.D.
studies, which are excluded from this thesis. In the representation layer, we proposed robust
representation learning based on a low-pass message-passing mechanism [159]. In the application
layer, we proposed [177] and [180] to detect anomalies on static and dynamic graphs, respectively,
using Personalized PageRank scores. We also proposed to track edge statistics and detect anomalies
on streaming graphs[12].

8

Chapter 3

Automation

The pervasiveness of graphs today has raised the demand for algorithms to answer various questions:
Which products would a user like to purchase given her order list? Which users are buying fake
followers? Myriads of new graph algorithms are proposed every year to answer such questions
— each with a distinct problem formulation, computational time, and memory footprint. This
lack of unity makes it difficult for practitioners to compare different algorithms and pick the most
suitable one for their application. These challenges create a gap in which state-of-the-art techniques
developed in academia fail to be optimally deployed in real-world applications.

To bridge this gap, we propose AUTOGM, an automated system for graph mining algorithm
development. We first define a unified framework UNIFIEDGM for message-passing-based graph
algorithms. UNIFIEDGM defines a search space in which five parameters are required to determine a
graph algorithm. Under this search space, AUTOGM explicitly optimizes for the optimal parameter
set of UNIFIEDGM using Bayesian Optimization. AUTOGM defines a novel budget-aware objective
function for the optimization to find the best speed-accuracy trade-off in algorithms under a
computation budget. On various real-world datasets, AUTOGM generates novel graph algorithms
with the best speed/accuracy trade-off compared to existing models with heuristic parameters.

3.1 Motivation

Many real-world problems are naturally modeled using graphs: who-buys-which-products in online
marketplaces [180], who-follows-whom in social networks [110, 179], and protein relationships in
biological networks [16, 153]. Graph mining provides solutions to practical problems such as clas-
sification of web documents [174, 187], clustering in market segmentation [137], recommendation
in streaming services [11], and fraud detection in banking [32, 104].

A dizzying array of new graph mining algorithms is introduced every year to solve these
real-world problems, giving rise to the question: Which algorithm should we choose for a specific
application? Graph mining algorithms designed to solve the same task often have distinct conceptual
formulations. Concretely, to estimate the similarity between two nodes — in social recommender
systems for example — classical graph mining algorithms (like Personalized PageRank [6]) compute
similarity scores by iterating a closed-form expression, while graph neural network algorithms [166]
first learn node embeddings using deep learning, then estimate similarity scores with a distance
metric in this embedding space. This lack of unity makes it hard for practitioners to determine
which aspect of a method contributes to differences in computation time, accuracy, and memory

9

footprint — significantly complicating the choice of the algorithm. Currently, selecting a graph
mining algorithm suitable for a specific task among dozens of candidates is a resource-intensive
process requiring expert experience and brute-force search.

To mitigate the cost and complexity of the algorithm selection process, the machine learning
community has developed AutoML [72, 95] — which automates the process of algorithm selection
and hyperparameter optimization. The success of AutoML depends on the size of the search space:
it should be small enough to be tractable in a reasonable amount of time. However, AutoML
techniques cannot be directly applied to graph mining because the hyperparameter search space is
not even defined due to the lack of unity among graph mining algorithms.

PR
GCN●

GraphSage
SGCN

AutoGM−1

● AutoGM−2

AutoGM−3

0.57

0.60

0.63

0.66

0.69

0.005 0.009 0.013
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(acc>0.68)

Constraint 2
(acc>0.63)

Constraint 1
(acc>0.58)

BEST

(a) Accuracy constraints on the Citeseer dataset

PR

GCN●
GraphSage

SGCN

AutoGM−1
●

AutoGM−2 AutoGM−3

0.57

0.60

0.63

0.66

0.69

0.005 0.009 0.013 0.017
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(t<0.1)

Constraint 2
(t<0.01)

Constraint 1
(t<0.004)

//

BEST

(b) Time constraints on the Citeseer dataset

Figure 3.1: AUTOGM finds novel graph algorithms with the best accuracy/inference time trade-off on
the node classification task. (a) Given three accuracy lower bounds (i.e., 0.58, 0.63, 0.68), AUTOGM gener-
ates three novel graph algorithms minimizing inference time. (b) Given three inference time upper bounds
(i.e., 0.004, 0.01, 0.1 seconds), AUTOGM generates three novel graph algorithms maximizing accuracy.

Hence, in this paper, we first unify various graph mining algorithms under our UNIFIEDGM
framework, then propose an automated system for graph algorithm development, AUTOGM. We
target graph algorithms that pass messages — propagate scores in the PageRank terminology [78,
110] — along edges to summarize the graph structure into nodes statistics. UNIFIEDGM manipulates
five parameters of the message passing mechanism: the dimension of the communicated messages,
the number of neighbors to communicate with (width), the number of steps to communicate for
(length), the nonlinearity of the communication, and the message aggregation strategy. Different
parameter settings yield novel graph algorithms, as well as existing algorithms, ranging from
conventional graph mining algorithms (like PageRank) to graph neural networks.

Additionally, we introduce UNIFIEDGM-EXT that extends UNIFIEDGM to embrace various
attention and sampling methodologies in the message aggregation step. Recently, graph neural
networks have adopted attention and importance sampling methodologies to improve their per-
formance and scalability. The attention methodology computes importance/relevance scores of
each neighbor with regard to a source node, then uses those scores as weights when we aggregate
messages from the neighbors. Importance sampling goes one step further from attention and samples
only neighbors with high relevance scores. By extending UNIFIEDGM to embrace attention and
importance sampling concepts, we can apply techniques used by graph neural networks to the

10

conventional graph mining field.
Based on UNIFIEDGM (and UNIFIEDGM-EXT), we propose an automated system for graph

algorithm development, AUTOGM. AUTOGM leverages the parameter search space defined in
UNIFIEDGM to address a practical problem: given a real-world scenario, what is the graph mining
algorithm with the best speed/accuracy trade-off? In real-world scenarios, practitioners optimize
performance under a computational budget [83, 90]. AUTOGM defines a novel budget-aware
objective function capturing the speed/accuracy trade-off, then maximizes the objective function to
find the optimal parameter set of UNIFIEDGM, resulting in a novel graph mining algorithm tailored
for the given scenario.

The goal of our work is to empower practitioners without much expertise in graph mining to
deploy algorithms tailored to their specific scenarios. The main contributions of this paper are as
follows:

• Unification: UNIFIEDGM unifies various message-passing based graph algorithms as instantia-
tions of a message-passing framework with five parameters: dimension, width, length, nonlinearity,
and aggregation strategy. UNIFIEDGM-EXT extends UNIFIEDGM with attention and sampling
options in the message aggregation step.

• Design space for graph mining algorithms: UNIFIEDGM provides the parameter search space
necessary to automate graph mining algorithm development.

• Automation: AUTOGM is an automated system for graph mining algorithm development. Based
on the search space defined by UNIFIEDGM, AUTOGM finds the optimal graph algorithm using
Bayesian optimization.

• Budget awareness: AUTOGM maximizes accuracy of an algorithm under a computational time
budget, or minimizes the computational time of an algorithm under a lower bound constraint on
accuracy.

• Effectiveness: AUTOGM finds novel graph mining algorithms with the best speed/accuracy
trade-off compared to existing models with heuristic parameters (Figure 3.1).

Table 3.1 gives a list of symbols and definitions.
Reproducibility: Our code is publicly available 1.

3.2 Unified Graph Mining Framework

In this section, we first motivate the message passing scheme (Section 3.2.1). We then propose
our unified framework UNIFIEDGM (Section 3.2.2), explain how existing algorithms fit in the
framework (Section 3.2.3), and further analyze how UNIFIEDGM bridges the conceptual gap
between conventional graph mining and graph neural networks (Section 3.2.4). Finally, we outline
how to choose parameters of UNIFIEDGM given a specific scenario (Section 3.2.5).

1https://github.com/minjiyoon/ICDM20-AutoGM

11

https://github.com/minjiyoon/ICDM20-AutoGM

Table 3.1: Commonly used notation in AUTOGM.

Symbol Definition

G input graph
n,m numbers of nodes and edges in G
A (n× n) binary adjacency matrix of G
d0 dimension of input feature vectors
d dimension of communicated messages
k number of message passing steps
w number of neighbors sampled per node
l binary indicator for nonlinearity
a categorical aggregation strategy
X0 (n× d0) input feature vectors
Xi (n× d) i-th layer message vectors (i = 1 . . . k)
W1 (d0 × d) 1st layer transformation matrix
Wi (d× d) i-th layer transformation matrix

(i = 2 . . . k)

ϕ(x)

{
ReLU(x) if l = True
x otherwise

3.2.1 Message Passing

A goal common to many graph mining algorithms is to answer queries at the node level (e.g.,
node clustering, classification, or recommendation) based on global graph information (e.g., edge
structure and feature information from other nodes). To transmit the information necessary to
answer such queries, in classical graph mining algorithms, nodes propagate scalar scores to their
neighbors, while in graph neural networks, nodes aggregate feature vectors from their neighbors. In
short, both families of algorithms pass messages among neighbors: scalars or vectors, inbound or
outbound. The intuition behind these message passing algorithms is that whatever the task at hand,
connectivity/locality matters: connected/nearby nodes are more similar (clustering), informative
(classification), or relevant (recommendation) to each other than disconnected/distant nodes. Our
unified framework targets graph algorithms that use the message passing mechanism.

3.2.2 UNIFIEDGM

We propose a unified framework UNIFIEDGM for graph mining algorithms that employ the message
passing scheme. UNIFIEDGM defines the message passing mechanism based on five parameters:
• Dimension d ∈ Z>0 of passed messages. If d = 1, messages are scalar scores, otherwise they are
d-dimensional embedding vectors.

• Width w ∈ Z∪{−1} decides the number of neighbors each node communicates with. If w = −1,
nodes communicate with all their neighbors.

12

0.7
0.2
0.4
0.8
0.7

0.6
0.1
0.3
0.4
0.7

0.7
0.1
0.4
0.7
0.3

0.3
0.1
0.1
0.5
0.4

0.5
0.1
0.3
0.6
0.6

Length k

Widthw

Dimension
d

0.3
0.1
0.1
0.5
0.4

0.5
0.1
0.3
0.6
0.6

0.7
0.2
0.4
0.8
0.7

0.3
0.1
0.1
0.5
0.4

0.5
0.1
0.3
0.6
0.6

0.7
0.2
0.4
0.8
0.7

Nonlinearity 𝒍

𝝓

Aggregation 𝒂

Figure 3.2: Unified Graph Mining framework. UNIFIEDGM defines the message passing mechanism
based on five parameters: the dimension d, length k, width w, nonlinearity l, and aggregation strategy a.

• Length k ∈ Z decides the number of message passing steps.
• Nonlinearity l ∈ {True,False} decides whether to use nonlinearities in the message passing or

not.
• Aggregation strategy a decides if a node sends a message to itself and how to normalize the sum

of incoming messages.
Figure 3.2 shows how each parameter regulates message passing under UNIFIEDGM.

The input of UNIFIEDGM is a graph G = (V,E) and a matrix X0 of size (n× d0) containing
d0-dimensional initial node statistics for all n nodes — either scalar scores or feature vectors. Note
that d0 could be different from d, the dimension of the passed messages. The output of UNIFIEDGM
is a set of d-dimensional node embeddings. These embeddings contain information from the node’s
neighborhood and can be exploited in an output layer which is specialized to a given application
(e.g., a logistic regression for node classification.)

Algorithm 1 outlines how UNIFIEDGM passes messages across a graph based on a set of
five parameters (d, k, w, l, a). UNIFIEDGM first initializes node statistics (line 1), then iteratively
passes messages among neighboring nodes k times. In the i-th message passing step, UNIFIEDGM
randomly samples w neighbors to communicate with for each node (line 3) and aggregates mes-
sages from sampled neighbors with a strategy decided by the parameter a (lines 4 and 5). Then
UNIFIEDGM transforms the aggregated messages linearly with a matrix Wi (line 6) and finally
passes them through a function ϕ decided by the parameter l (line 7).

Let us explain in further detail the neighbor sampling and message aggregation steps. Neighbor
sampling (line 3) can be expressed as generating a matrix Asamp = Sample(A) by randomly
zeroing out entries of the binary adjacency matrix A. Message aggregation (lines 4 and 5) is
defined by the aggregation strategy a ∈ {SA, SS, SN, NA, NS, NN}. The first letter in {S, N}
determines whether a node sends a message to itself or not (Self-loop or No-self-loop). The second

13

Algorithm 1: UNIFIEDGM Algorithm
Require: initial node statistics X0, binary adjacency matrix A
Ensure: node embeddings Xk

1: Initialize node statistics X0

2: for message passing step i = 1; i ≤ k; i++ do
3: Sample neighbors for each node: Asamp ← Sample(A)
4: Generate aggregation matrix: Aagg ← Aggregate(Asamp)
5: Aggregate messages Xi ← AaggXi−1

6: Multiply with transformation matrix: Xi ← XiWi

7: Pass through nonlinear function: Xi ← ϕ(Xi) =

{
ReLU(Xi) if l = True
Xi otherwise

8: end for

9: return Xk

letter in {A, S, N} determines how to normalize the sum of incoming messages (Asymmetric,
Symmetric, or No-normalization). Each aggregation strategy a results in an aggregation matrix
Aagg = Aggregate(Asamp), explained in Table 3.2. Multiplying messages Xi−1 from the previous
step by the matrix Aagg corresponds to aggregating messages from neighboring nodes.

Letting fi denote the ith layer of message passing, we can summarize UNIFIEDGM as follows:

Asamp = Sample(A)
Aagg = Aggregate(Asamp)

Xk = fk(Xk−1) = ϕ(AaggXk−1Wk)

= fk(fk−1(. . . f1(X0)))

X0 is the (n× d0) matrix of initial statistic vectors, Xi is the (n× d) matrix of statistic vectors at
step i for (i = 1 . . . k). W1 and Wi are (d0 × d) and (d× d) transformation matrices respectively
(i = 2 . . . k).

3.2.3 Reproduction of Existing Algorithms

In this section, we introduce the most popular graph mining algorithms exploiting the message
passing scheme and show how they can be presented under UNIFIEDGM. Table 3.3 shows how
to set initial node statistics and parameters (d, k, w, l, a) of UNIFIEDGM to reproduce the original
graph algorithms.

PageRank [110] scores nodes in a graph based on their global relevance/importance, and was
initially used by Google for webpage recommendation. PageRank initializes all n nodes in the
graph with a score of 1

n
. Then, every node iteratively propagates its score across the graph with a

decay coefficient 0 < c < 1 to ensure convergence. Under UNIFIEDGM, PageRank propagates
scalar scores (d = 1) to all neighbors (w = −1) with no nonlinear unit (l = False) until scores have
converged (k =∞), and aggregates messages with no self-loop and asymmetric normalization (a =

14

Table 3.2: Various aggregation strategies in UNIFIEDGM. The aggregation strategy a decides if a node
sends a message to itself or not (Self-loop or No-self-loop) and how to normalize the sum of incoming
messages (Asymmetric, Symmetric, or No-normalization). Each combination corresponds to an aggregation
matrix Aagg = Aggregate(A) in the table. Notation: n is the number of nodes in a graph, A is a (n × n)
binary adjacency matrix, D is a (n× n) diagonal matrix where Dii =

∑
j Aij , and In is an identity matrix

of size n.

Self-loop (S) No-self-loop (N)

Asymmetric (A) D−1(A+ In) D−1A
Symmetric (S) D−1/2(A+ In)D

−1/2 D−1/2AD−1/2

No-normalization (N) (A+ In) A

NA). Note that the (d× d) transformation matrix W in UNIFIEDGM becomes a scalar value and
corresponds to the decay coefficient c.

Personalized PageRank (PPR) [6] and Random Walk with Restart (RWR) [178, 179] build
on PageRank to estimate the relevance of nodes in the perspective of a specific set of seed nodes
thus enable personalized recommendation. Under UNIFIEDGM, the only difference of PPR/RWR
from PageRank is the initial node scores: RWR/PPR place varying positive scores on the set of seed
nodes and zero scores on others. PPR/RWR have the same set of (d, k, w, l, a) as PageRank.

Pixie [35], introduced by Pinterest, complements the ideas of PPR and RWR with neighbor
sampling to deal with billions of nodes in real-time. Pixie fixes the number of message passing
operations and stays within a computation budget. To reproduce this under UNIFIEDGM, Pixie
fixes the product of k and w to a constant number (e.g., 2, 000 from [35]): after k is sampled, w
is decided as 2,000

k
. Pixie has the same initial node statistics and parameter d = 1, l = False, and

a = NA with PPR/RWR.
Graph Convolutional Networks (GCNs) [75] are a variant of Convolutional Neural Networks

that operates directly on graphs. GCNs stack layers of first-order spectral filters followed by a
nonlinear activation function to learn node embeddings. Under UNIFIEDGM, given node feature
vectors as initial node statistics, GCN passes message vectors (d = 64) to all neighbors (w = −1)
with nonlinear units (l = True) across two-layered networks (k = 2) and aggregates messages with
a self-loop and symmetric normalization (a = SS).

GraphSAGE [55] extends GCN with neighbor sampling. GraphSage with a mean aggregator
averages statistics of a node and its sampled neighbors. Under UNIFIEDGM, GraphSAGE-mean
has the same parameters as GCN except w and a. GraphSAGE-mean samples a fixed number of
neighbors to communicate with (w = 25) and normalizes the aggregated messages asymmetrically
(a = SA).

Simplified GCN (SGCN) [162] reduces the excess complexity of GCN by removing the nonlin-
earities between GCN layers and collapsing the resulting function into a single linear transformation.
With fewer parameters to train, SGCN is computationally more efficient than GCN but shows
comparable performance on various tasks. Under UNIFIEDGM, SGCN has the same parameters
with GCN except l. SGCN does not use any nonlinear unit (l = False).

Table 3.3 presents the original message passing equations of the existing graph algorithms.

15

Those equations can be fully reproduced from Algorithm 1 with the proper inital node statistics and
parameter sets listed in Table 3.3.

Here, we introduce two more graph algorithms that are unified under UNIFIEDGM with slight
modifications: K-cores [143] and Belief Propagation [114] — two of the most popular graph
mining algorithms. Although these algorithms do not contain trainable parameters and thus do not
benefit from AUTOGM, they fit under UNIFIEDGM’s message-passing framework. This shows that
UNIFIEDGM is general enough to cover various graph mining algorithms.

• K-core [143] is the maximal subgraph in which every node is adjacent to at least k nodes. The
most straightforward algorithm to compute k-cores is the so-called "shaving" method [131]:
repeatedly deleting nodes with a degree less than k until no such node is left. The shaving method
is presented in an iterative equation as follows:

xk+1 = ϕ(Akxk − k1⃗)

where xk is an indicator vector for k-cores where xk(i) is 1 when i-th node is part of k-cores,
otherwise set to 0; Ak is the binary adjacency matrix where only edges among xk(i) = 1 are set
to 1, otherwise 0. When we multiply Ak with xk, the output vector contains the degree of each
node in k-cores. ϕ(x) is a nonlinear operation where ϕ(x) = 1 when x > 0 else ϕ(x) = 0. In
Akxk − k1⃗, only nodes whose degree is higher than k have positive values. Thus, by passing
Akxk − k1⃗ to ϕ(x), we output xk+1, the indicator vector for k + 1-cores. Under UNIFIEDGM, k-
cores propagates scalar scores (d = 1) to all neighbors (w = −1) with a nonlinear unit (l = True)
k times, and aggregates messages with no self-loop and no normalization (a = NN). The slight
modifications to UNIFIEDGM are that the adjacency matrices Ak are iteratively updated, and we
perform a subtraction operation (−k1⃗) instead of the transformation operation (W). Note that the
(d× d) transformation matrix W in UNIFIEDGM becomes the constant value 1.

• Belief Propagation (BP) [114] calculates the marginal belief distribution for unobserved nodes,
conditional on any observed nodes’ belief. FastBP [81] is one of the most widely used approxima-
tion algorithms for BP. While BP does not guarantee convergence, FastBP provides convergence
in addition to speed and accuracy improvement. FastBP linearizes BP as follows:

[I + a′D − b′A]x = ϕBP

where I,D, and A denotes n× n identity, diagonal, and adjacency matrices, respectively; a′ and
b′ are hyperparameters decided by the BP propagation matrix; x is the final belief vector and ϕBP

is the prior beliefs. The equation is presented in an iteration equation as follows:

x = [b′A− a′D]x+ ϕBP

This iteration equation has the same form as PageRank. Under UNIFIEDGM, the only difference
between FastBP and PageRank is the initial node scores and the aggregation strategy: FastBP sets
the initial node scores X0 with the prior beliefs ϕBP and does not normalize the aggregation but
adds self-loop with coefficients (a′D− b′A). FastBP has the same set of parameters (d, k, w, l) as
PageRank.

16

3.2.4 Conventional GM vs. GNNs

As shown, conventional graph algorithms (e.g., PPR, RWR, Pixie) and recent GNNs are unified
under UNIFIEDGM. However, before this work, these algorithms were not analyzed in the same
framework. What has prevented them from being combined? Two main differences — the use of
node feature information and trainability — are the culprits. While GNNs exploit additional node
feature information and labels with semi-supervised learning, conventional graph algorithms do not.
We analyze this apparent gap and show how UNIFIEDGM reconciles both families of algorithms.

Node feature information: Conventional graph algorithms do not exploit node features, but
instead, choose a set of seed nodes to initialize with scores suitable for a given application. Under
UNIFIEDGM, these algorithms are also applicable with node features by maintaining the same
values for parameters (d = 1, k, w, l, a), but setting initial input dimension d0 to be the input feature
dimension and using a 1st layer tranformation matrix W1 of size (d0 × 1). This would yield a new
version of PageRank or PPR that exploits feature information.

Semi-supervised learning: In GNNs, the transformation matrix W is trained with semi-
supervised learning using node labels. On the other hand, conventional graph algorithms do not have
a training phase in advance of an inference phase. However, conventional algorithms are trainable:
the decay coefficient c in PageRank, PPR, and RWR corresponds to an (1 × 1) transformation
matrix W under UNIFIEDGM. Because of its low dimension, the (1 × 1) transformation matrix
could be set heuristically (e.g., c = 0.85 in PageRank). But we could use label information to train
this (1× 1) matrix W with gradient descent as we train it in GNNs.

In our experiments, we show how to train conventional algorithms (PageRank and Pixie) with
feature information.

3.2.5 Parameter Selection

We explain the effects of parameters (d, k, w, l, a) on the performance of graph algorithms and how
to choose the proper parameters by illustrating the existing algorithm design.

• Dimension d: High dimensions of messages enrich the expressiveness of graph algorithms by
sacrificing speed. If an application prioritizes fast and simple algorithms, scalar messages (e.g.,
d = 1 in Pixie) are suitable. In contrast, when applications prioritize rich expressiveness of
messages and accuracy, high dimensional vectors (e.g., d = 64 in GNNs) are more appropriate.

• Length k: By deciding the number of message passing steps, k regulates the size of neighborhoods
where a graph algorithm assumes locality — where nearby nodes are considered informative. For
instance, GCNs assume that a small neighborhood is relevant (k = 2). However, when there are
label sparsity issues, GNNs propagate toward large scopes (k = 7) to transmit label information
from distant nodes. Large k results in a long computation time but does not guarantee a high
accuracy.

• Width w: Large w lets algorithms aggregate information from more neighbors, leading to a
possible increase in accuracy. At the same time, large w requires more message passing operations,
resulting in longer computation time. In graphs with billions of nodes, like the Pinterest social
network, small w is necessary to answer queries in real-time (as done by Pixie).

17

• Nonlinearity l: Nonlinearities enhance the expressiveness of graph algorithms at the cost of
speed. They are suitable for anomaly detection systems that require high accuracy (e.g., GNNs
for infection detection in medical applications). In contrast, omitting nonlinearity is appropriate
for fast recommender systems in social networks (e.g., Pixie in Pinterest).

• Aggregation strategy a: The self-loop decides whether a node processes its own embedding dur-
ing message passing. GNNs include a self-loop to complement a node’s features with information
from its neighborhood. Conversely, PageRank and RWR do not include a self-loop as they want
to spread information from a source node to the rest of the graph to figure out the graph structure.
Normalization prevents numerical instabilities and exploding/vanishing gradients in GNNs.

In our experiments, we explore how the five parameters affect the performance of graph algorithms
empirically.

3.3 Extended UnifiedGM

We introduce UNIFIEDGM-EXT that extends the message-aggregation step in UNIFIEDGM with two
additional building blocks: attention and importance sampling. Recently, graph neural networks have
been improved in various ways to improve their performance and scalability. These improvements
focus on the aggregation step in the message passing mechanism. In the original form of the
message passing mechanism, nodes pass/receive messages uniformly from their directly connected
neighbors, assuming that these neighbors are informative. Questions have been raised about this
assumption: are all neighbors informative enough to communicate with? In real-world graphs,
few connections are made by mistake, and some are valid only for a specific application. For
instance, in member-to-member networks in LinkedIn, connections could be made not only among
colleagues but also among personal friends and families. When we apply the message passing
mechanism on the LinkedIn network to make job recommendations, we aggregate information
not only from the colleagues who are crucial information for the job recommendation task, but
also from personal friends and families who are from different areas and often irrelevant. The
motivations are summarized as follows: which neighbors are informative to pass/receive messages?
and how trustworthy are they?

Attention and importance sampling methodologies are proposed on graph neural networks
to handle these problems. The attention-based GNNs compute importance/relevance scores of
each neighbor with regard to a source node, then use those scores as weights when they aggregate
messages from the neighbors and compute a weighted sum of the aggregated messages. Importance
sampling goes one step further from attention and samples only neighbors with high relevance
scores. Importance sampling does not only handle different importance scores among neighbors,
but also solves scalability issues by reducing the size of graphs through sampling.

As we described in Section 3.2.4, UNIFIEDGM unifies the conventional graph mining algorithms
and graph neural networks. By extending UNIFIEDGM to embrace attention and importance
sampling concepts, UNIFIEDGM-EXT allows applying techniques used by graph neural networks to
the conventional graph mining field. To adopt attention into UNIFIEDGM-EXT, we add additional
options to the aggregation parameter a. To apply importance sampling on UNIFIEDGM-EXT,

18

A

B

D

C

E

𝛼𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(,) = 0.45

𝛼𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(,) = 0.45

𝛼𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(,) = 0.05

𝛼𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(,) = 0.04

𝛼𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(,) = 0.01

A B

A C

A

A

A D

E

Figure 3.3: Attention module in UNIFIEDGM. UNIFIEDGM computes attention between a source node
A and its neighbors based on their relevance to node A. Unrelated or adversarial neighbors have small
attentions.

we add a new parameter s that decides the sampling strategy. The following section shows how
UNIFIEDGM-EXT embraces the concepts of attention and importance sampling concretely.

3.3.1 Attention
Graph attention networks (GAT) [155] is the first attention-based graph neural network model. It
estimates the relevance between a source node and its neighbors using their hidden embeddings.
Then the computed relevance scores (attentions) are used as weights in a weighted sum in the
aggregation step. How to estimate relevance between two nodes or how to design the attention
model varies across different methods. UNIFIEDGM-EXT extends the aggregation parameter a with
new options: concatenation-based attention, dot-product-based attention, and low-pass attention.
We describe how each attention model works under UNIFIEDGM-EXT.
• Concatenation-based attention proposed in [155] computes a relevance score αl(i, j) between

node i and j at the l-th layer as follows:

αl(i, j) =
σ(aatt · [hl(i)||hl(j)])∑

k∈N(i) σ(aatt · [hl(i)||hl(k)])

where aatt denotes a (1× 2d) learnable parameter, σ(x) = exp(LeakyReLU(x)) is a nonlinear
operation for attention computation, hl(i) = xl(k)Wl denotes hidden embedding of node i
at the l-th layer after multiplying with the transformation matrix Wl, and N(i) denotes the
neighbors of node i. Since we concatenate the hidden embeddings ([hl(i)||hl(j)])), we name it
as a concatenation-based attention model. Then we aggregate messages (hl(j)) from neighbors
using the computed attention αl(i, j) as follows:

xl+1(i) = ϕ(
∑

j∈N(i)

αl(i, j)hl(j))

19

where ϕ(x) is the operation decided by the nonlinearity parameter l in UNIFIEDGM (refer to
Table 3.1). Then xl+1 is used as (l + 1)-th layer hidden embeddings.

• Dotproduct-based attention calculates a relevance score αl(i, j) between node i and j as follows:

αl(i, j) =
σ(Watthl(i) ·Watthl(j))∑

k∈N(i) σ(Watthl(i) ·Watthl(k))

where Watt denotes a (datt × d) learnable parameter which maps hidden embedding hl(i) from
d-dimensional space to datt-dimensional space. On the datt-dimensional space, we compute the
relevance score between node i and j by dot-producing their hidden embeddings.

• Low-pass attention reduces the impact of adversarial edge additions/deletions on graphs. To
filter out adversarial nodes, [159] introduces a low-pass filter to GCNs that decrease weights of
neighbors who are excessively different from a source node in the hidden embedding space. They
define a low-pass attention as follows:

βl(i, j) =
R

max(R, ||hl(i)− hl(j)||)

αl(i, j) =


βl(i, j)/di if j ∈ N(i) \ {i}
1−

∑
j∈N(i)\{i} βl(i, j)/di if j = i

0 otherwise

where R > 0 is a threshold for controlling the low-pass message passing and di = |N(i)| denotes
the number of neighbors of node i. βl(i, j) assigns a weight of 1 if hl(i) and hl(i) are less than R
apart, while gradually reducing the weight as the distance between them exceeds R. More distant
from the source node i in the embedding space, the neighbor node j has a smaller weight βl(i, j).
Then, the final attention αl(i, j) acts as a low-pass filter to prevent the source node from being
excessively affected by suspicious neighbors by giving small attentions.

In Section 3.2, the aggregation parameter a has six options (NN, NS, NA, SN, SS, SA from
Table 3.2). By merely adding three more options (concatenation, dot product, low-filter attentions)
to the parameter a, UNIFIEDGM-EXT successfully embraces attention-based models.

3.3.2 Importance sampling
In Section 3.2, we introduce uniform sampling in UNIFIEDGM-EXT where the sampling number
is decided by the sampling parameter w. While uniform sampling resolves high computation and
memory footprints problems by reducing the graph’s size, it leads to a possible loss of crucial
information. Uniform sampling does not discriminate informative neighbors from uninformative
ones in the sampling process. Thus it could sample only uninformative or irrelevant neighbors for
aggregation, resulting in low-quality embeddings. To deal with this limitation of uniform sampling,
importance sampling has been adopted in GCNs. Importance sampling samples each neighbor

20

A

B

D

C

E

𝑝(𝐵|𝐴) = 0.2
0.2

0.2

0.2
0.2

A

B

D

C

E

Sample

(a) Uniform sampling

A

B

D

C

E

𝑝(𝐵|𝐴) = 0.4
0.45

0.1

0.04
0.01

A

B

D

C

E

Sample

(b) Importance sampling

Figure 3.4: Various sampling strategies in UNIFIEDGM. Uniform sampling samples informative and
uninformative neighbors with an equal probability. It could sample only uninformative or irrelevant neighbors.
On the other hand, importance sampling samples each neighbor following their distinct sampling probabilities,
and the sampling probabilities are computed based on their relevance with regard to a source node.

following their distinct sampling probabilities, and the sampling probabilities are computed based
on their relevance with regard to a source node.

We expand UNIFIEDGM-EXT with new parameter s that regulates the message passing mecha-
nism’s sampling strategy. The sampling strategy decides 1) how to define sampling probabilities,
2) whether the sampling probabilities are learnable or not, and 3) when to sample neighbors.
We describe each component of the sampling strategy and its effect on the sampling process in
UNIFIEDGM-EXT.
• How to define sampling probabilities: Sampling probability p(j|i) of a neighbor node j given a

source node i could be computed individually or by a shared function with other edges. Individual
sampling probability p(j|i) is given as a scalar value that is decided independently from other
edges’ sampling probabilities. The only requirement is the sum should be 1 (

∑
j∈N(i) p(j|i)). The

individual sampling probabilities could be all same (uniform sampling, p(j|i) = 1/|N(i)|) or

21

proportional to their degree as follows:

p(j|i) = |N(j)|∑
k∈N(i) |N(k)|

where N(i) denotes the degree of node i. The shared function p(j|i) could have various forms
including the three attention models we described above. While individual sampling probabilities
are intuitive and easy to interpret, shared sampling probability functions share a small number of
parameters, thus less likely to be overfitted to the training set.

• Learnability of sampling probabilities: The sampling probabilities defined as either individual
scalar values or a shared function could be set heuristically and fixed to the initial values. They
could also be trained by gradient back-propagation. While heuristic sampling probabilities are
cost-efficient without additional sampling probability training, learnable sampling probabilities
are customized to a given application, leading to a performance improvement.

• When to sample neighbors: Static sampling samples neighbors of each node before the message
passing mechanism. In static sampling, a set of sampled neighbors is fixed during the message
passing mechanism. Thus nodes keep interacting with the same set of their sampled neighbors
in every layer. On the other hand, dynamic sampling samples a new set of neighbors every time
a source node is engaged in the message passing mechanism as described in Algorithm 1. In
dynamic sampling, nodes receive/pass messages with a new set of the sampled neighbors at each
layer. While static sampling reduces the computation time by running the sampling process
only once, dynamic sampling increases accuracy. Randomness in the dynamic sampling brings a
regularization effect, which helps with generalization.

In Table 3.4, the sampling parameter s has 5 (two heuristics and three shared models) ×2 (heuris-
tic/learnable)×2 (static/dynamic) = 20 options. With the addition of the parameter s, UNIFIEDGM-
EXT now has six parameters (d, w, k, l, a, s) to define a graph mining algorithm based on a message-
passing mechanism. Users decide whether to append new attention options to the parameter a and
add a sampling parameter s to UNIFIEDGM. This section showed UNIFIEDGM-EXT is general
enough to embrace new approaches with very few modifications. The following section about an
automated system for graph algorithm development is based on the original UNIFIEDGM from
Section 3.2. However, the number of parameters or the number of options for each parameter does
not affect the algorithm we describe in the next section.

3.4 Automation of Graph Mining Algorithm Development

With the proper parameter selection, UNIFIEDGM could output a graph algorithm tailored for
a specific application. However, the parameter selection process still relies on the intuition and
domain knowledge of practitioners, which would prevent non-experts in graph mining from fully
exploiting UNIFIEDGM. How can we empower practitioners without much expertise to deploy
customized algorithms? We introduce AUTOGM, which generates an optimal graph algorithm
autonomously given a user’s scenario.

22

When designing an algorithm for an application, we need to consider two primary metrics:
computation time and accuracy, which usually trade off each other. Take, for example, a developer
who aims to develop an online recommender system that makes personalized recommendations
to a large number of users at the same time. At first, she employs a state-of-the-art GNN model
(in terms of accuracy) but finds that the computation time is too long for her application. Then
the developer seeks an alternative simple graph algorithm that runs faster than a time budget by
sacrificing accuracy. AUTOGM incorporates this practical issue of finding the best speed-accuracy
trade-off into the graph algorithm generation problem. AUTOGM answers two questions: 1) given
the maximum acceptable computation time, which graph algorithm maximizes accuracy? 2) given
minimum accuracy requirements, which graph algorithm minimizes computation time?

We first formalize our budget-aware graph algorithm generation problem as a constrained
optimization problem. Then we replace the constrained problem with an unconstrained optimization
problem using barrier methods (Section 3.4.1). We explain why Bayesian optimization is well-
suited for this unconstrained problem (Section 3.4.2). Then we describe how AUTOGM solves the
optimization problem using Bayesian optimization (Section 3.4.3). Finally, we analyze the time
complexities of AUTOGM (Section 3.4.4).

3.4.1 Budget-aware objective function
Letting x denote a graph algorithm, g(x) and h(x) indicate the computation time and accuracy of x,
respectively. Then an optimal graph algorithm generation problem with an accuracy lower bound
hmin is presented as a constrained optimization as follows:

xopt = argminx g(x) subject to h(x)− hmin ≥ 0 (3.1)

One of the common ways to solve a constrained optimization problem is using a barrier method [151],
replacing inequality constraints by a penalizing term in the objective function. We re-formulate the
original constrained problem in Equation 3.1 as an equivalent unconstrained problem as follows:

xopt = argminx g(x) + Ih(x)−hmin≥0(x) (3.2)

where the indicator function Ih(x)−hmin≥0(x) = 0 if h(x) − hmin ≥ 0 and ∞ if the constraint is
violated. Equation 3.2 eliminates the inequality constraints, but introduces a discontinuous objective
function, which is challenging to optimize. Thus we approximate the discontinuous indicator
function with an optimization-friendly log barrier function. The log barrier function, defined as
− log(h(x)−hmin) is a continuous function whose value on a point increases to infinity (− log 0) as
the point approaches the boundary h(x)− hmin = 0 of the feasible region. Replacing the indicator
function with the log barrier function yields the following optimization problem:

fGM(x) = g(x)− λ log(h(x)− hmin) (3.3)
xopt = argminx fGM(x) (3.4)

fGM is our novel budget-aware objective function and λ > 0 is a penalty coefficient. Equation 3.4 is
not equivalent to our original optimization problem, Equation 3.1. However, as λ approaches zero, it

23

Algorithm 2: AUTOGM Algorithm
Require: minimum accuracy (or maximum inference time) constraint, target dataset, BO search budget
Ensure: a graph algorithm (i.e. five parameters of UNIFIEDGM)

1: for iteration i = 1; i < BO search budget; i++ do
2: Choose a point (d, k, w, l, a) to evaluate
3: Generate a graph mining algorithm A from (d, k, w, l, a)
4: Train A on the training set
5: Evaluate A and measure acc, time on the validation set
6: Evaluate fGM (acc, time) and update posterior of fGM

7: end for
8: return a parameter set with the minimum fGM

becomes an ever-better approximation (i.e.,−λ log(h(x)−hmin) approaches Ih(x)−hmin≥0(x)) [151].
The solution of Equation 3.4 ideally converges to the solution of the original constrained problem.
Now, our budget-aware graph algorithm generation problem is formulated as a minimization
problem of fGM .

Given a minimum accuracy constraint accmin, we set g(x) = time to minimize and h(x) −
hmin = acc − accmin ≥ 0 as a constraint. On the other hand, given a maximum inference time
constraint timemax, we want to maximize accuracy while observing the time constraint. Then we
set g(x) = −acc to minimize and h(x)− hmin = timemax − time ≥ 0 as a constraint.

3.4.2 Bayesian optimization

Under UNIFIEDGM, a graph algorithm x is defined by a set of parameters (d, k, w, l, a). Then
search space X for the optimization problem becomes a five-dimensional space of parameters
(d, k, w, l, a). Suppose we set cardinalities for each parameter as 300, 30, 50, 2, and 6, respectively
(i.e., 0 < d ∈ Z ≤ 300, 0 < k ∈ Z ≤ 30, 0 < w ∈ Z ≤ 50, l ∈ {True, False}, a ∈
{NA,NS,NN, SA, SS, SN}). Then the number of unique architectures within our search space
is 300×30×50×2×6 = 5.4×106, which is quite overwhelming. Moreover, training and validating
a graph algorithm, especially on large datasets, takes significant time. Thus it is impractical to
search the space X exhaustively. Most importantly, even if we could measure the computation time
and accuracy (g(x) and h(x)) of a graph algorithm and calculate the objective function fGM(x) =
g(x)− λ log(h(x)− hmin), we do not know the exact closed-form of fGM(x) = fGM(d, k, w, l, a)
in terms of the parameters (d, k, w, l, a) nor its derivatives. Thus, we cannot exploit classical
optimization techniques that use derivative information. To cope with these problems — expensive
evaluation and no closed-form expression nor derivatives — which optimization technique is
appropriate?

Bayesian optimization (BO) [15] is the most widely-used approach to find the global optimum
of a black-box cost function — a function that we can evaluate but for which we do not have a
closed-form expression or derivatives. Also, BO is cost-efficient with as few expensive evaluations
as possible (more details in Section 3.6.2). Therefore BO is well-suited to our problem to find the
best parameter set (d, k, w, l, a) given the expensive black-box objective function fGM(x).

24

3.4.3 AUTOGM
Users supply three inputs to AUTOGM: 1) a budget constraint (the minimum accuracy or maximum
computation time), 2) a target dataset on which they want an optimized algorithm — containing a
graph, initial node scores, and labels for supervised learning — and 3) a search budget for Bayesian
Optimization. The search budget is given as the total number of evaluations in BO. Then AUTOGM
outputs the optimal graph mining algorithm (i.e., parameter set of UNIFIEDGM).

Algorithm 2 outlines how AUTOGM works. Until it has exhausted its search budget, AUTOGM
repeats the process: 1) Pick a point x = (d, k, w, l, a) ∈ X to evaluate using an acquisition function
of BO (line 2) then generate a graph algorithm A from parameters (d, k, w, l, a) (line 3). 2) Train A
on the training set (line 4) and measure accuracy and inference time of A on the validation set (line
5). 3) Evaluate the objective function fGM given the accuracy and inference time of A, then update
a posterior model for fGM in BO (line 6). After all iterations, AUTOGM returns the parameter set
x = (d, k, w, l, a) with the minimum fGM among the evaluated points.

The search space of AUTOGM is not affected by the input but fixed to a five-dimensional space
of parameters (d, k, w, l, a). The search time of AUTOGM is determined by the BO search budget
(total number of evaluations) and evaluation time. Since the evaluation time of a graph algorithm is
often proportional to the input dataset’s size, the total search time of AUTOGM is decided by the
dataset. BO’s minimization of the number of evaluations is especially efficient for large datasets
which result in the long evaluation time. Our main contribution is defining the graph algorithm
generation problem as an optimization problem on a novel search space.

3.4.4 Time Complexity Analysis
We analyze the time complexities of UNIFIEDGM and AUTOGM.
Theorem 1 (Time Complexity of UNIFIEDGM). A graph mining algorithm A generated from
UNIFIEDGM with a parameter set (d, k, w, l, a) takes O(kdwn) time where n is the number of
nodes in a given graph.

Proof. Under UNIFIEDGM, matrix-vector multiplication operations represent the bulk of the
computation time. In the matrix-vector multiplication operations, the matrix corresponds to the
adjacency matrix whose number of nonzeros is O(wn). Under UNIFIEDGM, every node samples w
neighbors, summing up to O(wn) edges in the sampled graph. In the matrix-vector multiplication
operations, the vector corresponds to node embeddings X ∈ Rn×d. Then one matrix-vector
multiplication operation takes O(dwn). Under UNIFIEDGM, the matrix-vector multiplication
operation is executed k times across k layers. The nonlinear operation decided by l and the
normalization operation decided by a take O(n) time each. Thus the algorithm A takes O(kdwn)
time in total.

In Theorem 1, we show the time complexity of the graph algorithm generated from UNIFIEDGM in
terms of the parameters d, k, w, l, a. However, in Theorem 2 below, we express the time complexity
of AUTOGM in different terms. Intuitively, the computation time of AUTOGM is proportional to
the number of times we train a graph algorithm — i.e., evaluate a configuration (d, k, w, l, a) —
times the time it takes to train the algorithm. To represent the time it takes to train an algorithm,

25

we cannot rely on the parameters (d, k, w, l, a) as they keep changing while AUTOGM searches
the space. Instead, we note that the computation time of one epoch of training is mainly decided
by the size of the graph, which we represent by the number of edges m. The training time is then
proportional to Em, where E is the number of training epochs. The total time to BEm where B is
the number of times we train the algorithm (the number of evaluations allowed by the BO search
budget).
Theorem 2 (Time Complexity of AUTOGM). AUTOGM takes O(BEm) for searching the optimal
graph mining algorithm where m is the number of edges in a given graph, E is the number of
epochs for the training, and B is the BO search budget.

Proof. The computation time of AUTOGM is proportional to the number of times we train a graph
algorithm (evaluate a hyper-parameter configuration) times the time it takes to train the algorithm.
The graph algorithm executes several adjacency matrix-embedding vector multiplication operations
in the forward and backward pass, which take O(m). This is repeated for every batch (E times),
for a total training time Em. Finally, AUTOGM trains the algorithm B times as described in
Algorithm 2. Thus the overall computation time of AUTOGM is O(BEm).

3.5 Experiments

In this section, we evaluate the performance of AUTOGM compared to existing models with
heuristic parameters. We aim to answer the following questions:

• Q1. Effectiveness of AUTOGM: Do algorithms found by AUTOGM outperform their state-of-
the-art competitors? Given an upper bound on inference time/a lower bound on accuracy, does
AUTOGM find the algorithm with the best accuracy/the fastest inference time? (Section 3.5.2)

• Q2. Search efficiency of AUTOGM: How long does AUTOGM take to find the optimal graph
algorithm? How efficient it is compared to random search? (Section 3.5.3)

• Q3. Effect of UNIFIEDGM parameters: How do parameters (d, k, w, l, a) affect the accuracy
and inference time of a graph mining algorithm? (Section 3.5.4)

3.5.1 Experimental Setting
We evaluate the performance of graph mining algorithms on two semi-supervised tasks, node
classification and link prediction. All experiments were conducted on identical machines using the
Amazon EC2 service (p2.xlarge with 4 vCPUs, 1 GPU and 61 GB RAM).
Dataset: We use the three citation networks (Cora, Citeseer, and Pubmed) [126], two Amazon
co-purchase graphs (Amazon Computers and Amazon Photo) [127], and two co-authorship graphs
(MS CoauthorCS and MS CoauthorPhysics) [127]. We report their statistics in Table 3.5.
Baseline: Our baselines are PageRank [110], GCN [75], GraphSage [55], and SGCN [162]. We
generate each algorithm under UNIFIEDGM by setting the five parameters as follows:

• PageRank: d = 1, k = 30, w = −1, l = False, a = NA
• GCN: d = 64, k = 2, w = −1, l = True, a = SS

26

PR

GCN
●

GraphSage

SGCN

AutoGM−1

●AutoGM−2
AutoGM−3

0.65

0.70

0.75

0.80

0.004 0.005 0.006 0.007
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(acc>0.78)

Constraint 2
(acc>0.73)

Constraint 1
(acc>0.68)

BEST

(a) Accuracy constraints on the Cora dataset

PR

GCN●
GraphSage

SGCN

AutoGM−1 ●AutoGM−2

AutoGM−3

0.67

0.70

0.73

0.76

0.79

0.003 0.005 0.009 0.013
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(t<0.1)

Constraint 2
(t<0.01)

Constraint 1
(t<0.004)

//

BEST

(b) Time constraints on the Cora dataset

PR

GCN
●

GraphSage
SGCN

AutoGM−1
●

AutoGM−2

AutoGM−3

0.68

0.70

0.72

0.74

0.76

0.78

0.005 0.009 0.013 0.017
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(acc>0.77)

Constraint 2
(acc>0.73)

Constraint 1
(acc>0.68)

BEST

(c) Accuracy constraints on the Pubmed dataset

PR

GCN●
GraphSage

SGCN

AutoGM−1●
AutoGM−2

AutoGM−3

0.68

0.70

0.72

0.74

0.76

0.78

0.003 0.007 0.011 0.015 0.019
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(t<0.1)

Constraint 2
(t<0.01)

Constraint 1
(t<0.004)

//

BEST

(d) Time constraints on the Pubmed dataset

Figure 3.5: AUTOGM finds the algorithms with the best accuracy/inference time trade-off on the node
classification task. Given three different accuracy/inference time constraints 1, 2, 3, AUTOGM generates
three novel graph algorithms, AUTOGM-1, 2, 3, respectively.

• GraphSAGE: d = 64, k = 2, w = 25, l = True, a = SA
• SGCN: d = 64, k = 2, w = −1, l = False, a = SS

When w is larger than the number of neighbors, we sample neighbors with replacement. For
PageRank, the original algorithm outputs the sum of intermediate scores that each node receives
(
∑

Xi), but we use only the final scores Xk in our experiments. The goal of our experiments
is to compare PageRank with other algorithms in terms of its main feature in UNIFIEDGM, low
dimension (d = 1).
Bayesian optimization: We use an open-sourced Bayesian optimization package2. For the parame-
ters d, k, and w which take integer values, we round the real-valued parameters chosen by BO to
integer values. For the parameter l and a, which take boolean and categorical values, we bound
the search space (0 < l < 1and 0 < a < 6), round the real-valued parameters chosen by BO to the
closest integer values, and map (0: False, 1: True, 0: NN, 1: NS, 2: NA, 3: SN, 4: SS, 5: SA). We
set the BO search budget (total number of evaluations) as 20 for all datasets. The resulting search
time of each dataset is reported in Table 3.7. For the penalty coefficient λ, the smaller λ brings the
tighter budget constraints. To make our budget constraints strict, we set λ as 10−19.

We use the Adam optimizer [73] and tune each baseline with a grid search on each dataset. Most

2https://github.com/fmfn/BayesianOptimization

27

baselines perform best on most datasets with a learning rate of 0.01, weight decay of 5× 10−4, and
dropout probability of 0.5. We fix these parameters in our autonomous graph mining algorithm
search through Bayesian Optimization. We report the average performance across 10 runs for each
experiment.

3.5.2 Effectiveness of AUTOGM

In this section, we demonstrate how AUTOGM trades off accuracy and inference time on real-world
graphs with two different tasks, node classification and link prediction. We compare the best
algorithms found by AUTOGM with baselines in terms of accuracy and inference time. For each
dataset, we run AUTOGM with three different accuracy lower bounds and three inference time
upper bounds, as illustrated in Figures 3.1 and 3.5. For each constraint, AUTOGM generates a novel
graph algorithm corresponding to a set of five parameters of UNIFIEDGM. For space efficiency, we
show the result on the Cora, Citeseer, and Pubmed datasets.

Node Classification In the node classification task, each graph mining algorithm predicts the label
of a given node. Among algorithms satisfying an accuracy lower bound, the algorithms generated by
AUTOGM show the best trade-off between accuracy and inference time. For instance, in the Citeseer
dataset in Figure 3.1(a), AUTOGM-2 has the fastest inference time above accuracy constraint 2
among PageRank (PR), GCN, SGCN, and GraphSage. Given the highest or tightest accuracy
constraint 3, only AUTOGM-3 satisfies it. Conversely, among algorithms satisfying inference time
upper bounds, the algorithms generated by AUTOGM have the highest accuracy. For instance, in
the Pubmed dataset in Figure 3.5(d), AUTOGM-1 has the highest accuracy below time constraint 1
among PR and SGCN. Given the most generous time constraint 3, AUTOGM-3 achieves the highest
accuracy among all algorithms.

The empirical performance of our baselines is consistent with our guidelines for how to choose
the parameters (d, k, w, l, a) in Section 3.2.5. PageRank achieves fast inference time with a low
dimension of messages (d = 1) and no nonlinearities (l = False), but sacrifice accuracy. GCN and
GraphSage achieve high accuracy with a high dimension of messages (d = 64) and nonlinearities
(l = True) at the cost of a high inference time. SGCN removes nonlinearities (l = False) to decrease
the inference time while maintaining high accuracy.

Table 3.6 shows the parameter set of UNIFIEDGM that corresponds to the algorithms found by
AUTOGM on the Citeseer dataset. When encouraged to find higher accuracy algorithms (through
a larger time upper bound or higher accuracy lower bound), AUTOGM is likely to use high
values of d and w and nonlinearities (l = True). For instance, AUTOGM chooses higher values
d = 255, w = 45 for the larger time upper bound time < 0.01 than the values d = 70, w = 25 for
the bound time < 0.004. With the largest upper bound time < 0.1, AUTOGM chooses l = True
to use nonlinearities. This result is consistent with our intuition over the parameter selection in
Section 3.2.5. Vastly different parameter sets for each algorithm in Table 3.6 show that AUTOGM
searches the parameter space beyond human intuition, which underlines the value of autonomous
graph mining algorithm development.

28

PR

GCN
●

GraphSage

SGCN AutoGM−1

●AutoGM−2 AutoGM−3

0.75

0.77

0.79

0.81

0.0010 0.0015 0.0020 0.0025 0.0030
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(acc>0.79)

Constraint 2
(acc>0.76)

Constraint 1
(acc>0.74)

BEST

(a) Accuracy constraints on the Cora dataset

PR

GCN
●

GraphSage

SGCN

AutoGM−1
●

AutoGM−2

AutoGM−3

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.0010 0.0015 0.0020 0.0025 0.0030
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(t<0.003)

Constraint 2
(t<0.0022)

Constraint 1
(t<0.0015)

BEST

(b) Time constraints on the Cora dataset

PR

GCN
●

GraphSage

SGCN

AutoGM−1

● AutoGM−2

AutoGM−3

0.73

0.75

0.77

0.79

0.0015 0.0020 0.0025 0.0030
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(acc>0.78)

Constraint 2
(acc>0.75)

Constraint 1
(acc>0.73)

BEST

(c) Accuracy constraints on the Citeseer dataset

PR

GCN
●

GraphSage

SGCN

AutoGM−1

● AutoGM−2

AutoGM−3

0.73

0.75

0.77

0.79

0.0015 0.0020 0.0025 0.0030
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(t<0.004)

Constraint 2
(t<0.003)

Constraint 1
(t<0.002)

BEST

(d) Time constraints on the Citeseer dataset

PR

GCN
●

GraphSage

SGCN

AutoGM−1
●AutoGM−2

AutoGM−3

0.55

0.60

0.65

0.70

0.75

0.003 0.005 0.007
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(acc>0.75)

Constraint 2
(acc>0.65)

Constraint 1
(acc>0.55)

BEST

(e) Accuracy constraints on the Pubmed dataset

PR

GCN
●

GraphSage

SGCN

AutoGM−1
●

AutoGM−2
AutoGM−3

0.55

0.60

0.65

0.70

0.75

0.003 0.005 0.007
Inference Time (s)

Ac
cu

ra
cy

Constraint 3
(t<0.009)

Constraint 2
(t<0.006)

Constraint 1
(t<0.003)

BEST

(f) Time constraints on the Pubmed dataset

Figure 3.6: AUTOGM finds the algorithms with the best accuracy/inference time trade-off on the link
prediction task. Given three different accuracy/inference time constraints 1, 2, 3, AUTOGM generates three
novel graph algorithms, AUTOGM-1, 2, 3, respectively.

Link Prediction In the link prediction task, the algorithm predicts whether there exists an edge
between two given nodes. To build our training set, we randomly hide 30% of edges in the original
graph, use the remaining edges as positive ground-truth labels, and sample an equal number of
disconnected node pairs as negative ground-truth labels. Our test set consists of the hidden 30%
edges as positive ground-truth labels and an equal number of random disconnected node pairs
as negative ground-truth labels. After we get the node embeddings for a graph algorithm, we
dot-product each pair of node embeddings to predict the probability of edge existence for the given
node pair.

29

Among algorithms satisfying accuracy lower bounds, the algorithms generated by AUTOGM
have the fastest inference time. For instance, in the Pubmed dataset in Figure 3.6(e), AUTOGM-3
has the fastest inference time above accuracy constraint 3 among GCN and GraphSage. Conversely,
among algorithms satisfying inference time upper bounds, the algorithms generated by AUTOGM
show the best trade-off between accuracy and inference time. For instance, in the Citeseer dataset in
Figure 3.6(d), AUTOGM-1 has the highest accuracy below time constraint 1 among PR and SGCN.
A noteworthy phenomenon in the link prediction task is that algorithms generated from AUTOGM
have similar inference times but diverse accuracies. This shows that it’s easier to manipulate
accuracy by designing graph algorithms, while the dataset largely determines the inference time.

3.5.3 Search efficiency of AUTOGM

AUTOGM searches for the optimal graph algorithm in a five-dimensional space (d, k, w, l, a) defined
by UNIFIEDGM. To show the search efficiency of AUTOGM, we give the same maximum search
time and budget constraints to AUTOGM and RandomSearch, then compare the performance of
the best graph algorithms each method finds. RandomSearch samples each parameter (d, k, w, l, a)
randomly and defines a graph algorithm based on the sampled parameters. We set the maximum
search time proportional to the size of the dataset. The budget constraints are chosen based on the
best performance among the baseline methods (PageRank, GCN, GraphSage, SGCN). We select
the tightest constraints (i.e., fastest inference time and highest accuracy among the baselines) to
examine the search efficiency.

Table 3.7 shows the inference time and accuracy of the optimal graph algorithms AUTOGM
and RandomSearch find. RandomSearch fails to find any algorithm satisfying the given accuracy
constraints on the Cora, Pubmed, and CoauthorP datasets. It also fails to find any algorithm
satisfying the inference time constraints on the Citeseer, AmazonC, and AmazonP datasets. When
RandomSearch finds graph algorithms satisfying the given constraints, their performance is still
lower than the algorithms found by AUTOGM. For instance, given the inference time upper bound
(t < 0.02) on the CoauthorC dataset, AUTOGM finds an algorithm with accuracy 0.83 while
RandomSearch finds an algorithm with accuracy 0.75.

Table 3.7 presents how much accuracy/inference time is used under the given budgets to find the
optimal graph algorithms (column 6, 7 and 11, 12). AUTOGM generates algorithms whose accuracy
(time) is as close as possible to the given accuracy (time) budgets. For instance, AUTOGM finds
the fastest graph algorithm with an accuracy of 0.8 when the accuracy lower bound is given as 0.8
on the CoauthorC dataset. By exhausting the budget, AUTOGM improves the target metric time
(accuracy) and brings the best trade-off between computation time and accuracy.

3.5.4 Effect of UNIFIEDGM parameters

In this section, we investigate the effects of parameters of UNIFIEDGM on the performance of a
graph mining algorithm. Given a set of parameters (d = 64, k = 2, w = −1, l = True, a = SS), we
vary one parameter while fixing the others and measure the performance of the generated algorithm.
For the experiment where we vary the aggregation parameter a, we use a different set of parameters

30

Accuracy Inference Time

0.02

0.04

0.06

0.08

0.2

0.4

0.6

0.8

0 50 100 150
Parameter d

In
fe

re
nc

e
T

im
e

(s
)

A
ccuracy

(a) Parameter d

0.05

0.10

0.15

0.20

0.25

0.25

0.50

0.75

1.00

5 10 15
Parameter k

In
fe

re
nc

e
T

im
e

(s
)

A
ccuracy

(b) Parameter k

0.03

0.04

0.05

0.06

0.07

0.08

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40
Parameter w

In
fe

re
nc

e
T

im
e

(s
)

A
ccuracy

(c) Parameter w

0.0056

0.045

0.74 0.76

0.00

0.02

0.04

0.06

0.08

0.0

0.2

0.4

0.6

0.8

Linear Nonlinear
Parameter a

In
fe

re
nc

e
T

im
e

(s
)

A
ccuracy

(d) Parameter l

Accuracy Inference Time

0.00530.0054 0.0052 0.0051
0.0054 0.0054

0.720.71
0.76 0.750.73

0.76

0.000

0.002

0.004

0.006

0.008

0.0

0.2

0.4

0.6

0.8

NA NN NS SA SN SS
Parameter a

In
fe

re
nc

e
T

im
e

(s
)

A
ccuracy

(e) Parameter a

Figure 3.7: Effects of the five parameters (d, k, w, l, a) of UNIFIEDGM on the performance of graph
algorithms.

31

(d = 16, k = 2, w = 10, l = False) to better illustrate changes in accuracy and inference time. For
brevity, we show the result on the Pubmed dataset.
• Dimension d: Figure 3.7(a) shows that inference time increases linearly with d, while accuracy

increases only until d > 20. For the Pubmed dataset, 20-dimensional messages are expressive
enough that the accuracy stops increasing. Larger datasets would likely benefit from higher
dimensional messages.

• Length k: In Figure 3.7(b), when k increases, inference time increases linearly, but accuracy de-
creases for k > 3. The decrease in accuracy is due to oversmoothing: repeated graph aggregations
eventually make node embeddings indistinguishable.

• Width w: In Figure 3.7(c), when w increases, inference time increases until w > 15, but accuracy
does not change noticeably. The plateau in accuracy is due to most nodes having few neighbors
and nearby nodes sharing similar feature information, which makes a single sampled node be a
representative of a node’s whole neighborhood. The plateau in inference time indicates that nodes
have fewer than 15 neighbors on average on the Pubmed dataset.

• Nonlinearity l: Figure 3.7(d) shows that adding nonlinearities (l = True) increases accuracy due
to richer expressiveness, but also inference time.

• Aggregation strategy a: Figure 3.7(e) shows that the choice of aggregation strategy a has a
considerable effect on the accuracy of a graph mining algorithm. Still, we cannot conclude that
any aggregation strategy is always superior to others.

Figure 3.7 shows the general tendency in the effects of the parameters. Different datasets have
slightly different results (e.g., which w stops increasing accuracy or which k starts bringing over-
smoothing). This shows the need for AUTOGM, which chooses the best parameter set automatically
for the dataset we employ.

3.5.5 Discussion
In this section, we discuss few interesting observations we find during the experiments.
• Linear model is fast: As shown in Section 3.5.2, linear models including PageRank and SGCN

are faster than nonlinear models. The fast speed of linear models does not merely come from the
absence of a nonlinear operation at each layer. Without the nonlinear operation, multi-layers of
linear transformation operations could be compressed to one layer as follows:

X3 = ϕ(Aϕ(AX0W0)W1)

= A(AX0W0)W1 = A2X0W∗

where ϕ(x) = x is a linear operation, Xi denotes hidden embeddings at the i-th layer, A is the
adjacency matrix, Wi denotes the transformation matrix at the i-th layer, and W∗ = W0W1 is
the compressed matrix. Then, in the linear model, we can precompute A2X0 in advance and
multiply it only with W∗ during training. On the other hand, in the nonlinear model, we need
to execute matrix multiplication (AXiWi) in every layer. This explains the fast speed of linear
models compared to nonlinear models.

32

• Winning strategy: It is hard to define a single winning strategy for graph mining algorithm
development that is generalizable to various graphs and applications. However, we observe a few
tendencies. High dimensions of messages generally bring high accuracy with a negligible increase
in computation time. For instance, SGCN which has high dimension (d = 64) shows higher
accuracy than PageRank which has low dimension (d = 1) across different tasks (Figure 3.5
and 3.6). Second, nonlinear operations are not necessarily required for high accuracy. For example,
SGCN shows comparably high accuracy with GCN and GraphSage in both node classification
and link prediction tasks. While maintaining similar accuracy, SGCN is faster than GCN and
GraphSage due to the absence of nonlinear operations.

• Performance is affected by input graphs: In Figures 3.6(b), 3.6(d), 3.6(f), the graph algorithms
AUTOGM-1,2,3 that are generated by AUTOGM with different time constraints show similar
inference times (sometimes even similar accuracies). The performance of graph algorithms is
not only decided by the algorithms but also by input graphs. When graphs are sparse and have
simple structures, the graph algorithms will have short inference times regardless of how long
inference time constraints we give to AUTOGM. Likewise, when graphs are well-clustered, and
features are well-aligned with labels, the tasks become easy, and any graph algorithms would
easily get high accuracy. In Figures 3.6(b) and 3.6(d), the algorithms generated with longer time
constraints show higher accuracies while having similar inference times. Longer time constraints
allow AUTOGM to explore broader scope in the search space and find better algorithms with
higher accuracies, while all algorithms end up showing similar inference times thanks to simple
input graph structures.

3.6 Related work

3.6.1 AutoML
AutoML is the closest line of related work and the main inspiration for this paper. AutoML
algorithms are developed to automate the process of algorithm selection and hyperparameter
optimization in the machine learning community. The most closely related to our work in AutoML
is Neural Architecture Search (NAS), which focuses on the problem of searching for the deep neural
network architecture with the best performance. The search space includes the number of layers,
the number of neurons, and the type of activation functions, among other design decisions. NAS
broadly falls into three categories: evolutionary algorithms (EA), reinforcement learning (RL), and
Bayesian optimization (BO).

EA-based NAS [43, 77, 94] explores the space of architectures by making a sequence of
changes (inspired by evolutionary mutations) to networks that have already been evaluated. In
RL-based NAS [198, 201], a recurrent neural network iteratively decides if and how to extend
a neural architecture; the non-differentiable cost function is optimized with stochastic gradient
techniques borrowed from the RL literature. Finally, BO-based NAS [72] models the cost function
probabilistically and carefully determines future evaluations to minimize the total number of
evaluated architectures. Since EA and RL-based NAS need to evaluate a vast number of architectures
to find the optimum, these approaches are not ideally suited for neural architecture search [72].

33

On the other hand, BO emphasizes being cautious in selecting which architecture to try next to
minimize the number of evaluations. As we discuss later, this makes BO suitable for our problem.
In the following section, we give a brief description of Bayesian Optimization.

3.6.2 Bayesian Optimization

Given a black-box objective function f with domain X , BO sequentially updates a Gaussian Process
prior over f . At time t, it incorporates results of previous evaluations 1, ..., t− 1 into a posterior
P (f |D1:t−1) where D1:t−1 = {x1:t−1, f(x1:t−1)}. BO uses this posterior to construct an acquisition
function ϕt(x) that is an approximate measure of evaluating f(x) at time t. BO evaluates f at
the maximizer of the acquisition function xt = argmaxx∈X ϕt(x). The evaluation f(xt) is then
incorporated into the posterior P (f |D1:t), and the process is iterated.

The evaluation point xt chosen by the acquisition function is an approximation of the maximizer
of f . After T iterations, BO returns the parameter set of the maximum f among x1:T . When
choosing the point xt to evaluate, the acquisition function ϕt(x) trades off exploration (sampling
from areas of high uncertainty) with exploitation (sampling areas likely to offer an improvement over
the current best observation). This cautious trade-off helps to minimize the number of evaluations
of f . More details about BO can be found in [15].

These AutoML techniques cannot be directly applied to graph mining, as they require first
formalizing autonomous algorithm selection as an optimization problem in a hyperparameter search
space. Before UNIFIEDGM, the hyperparameter search space for graph mining was not even defined
due to the lack of unity among algorithms. Hence, our proposed UNIFIEDGM allows the graph
mining field to exploit state-of-the-art techniques developed in AutoML.

3.6.3 Graph Neural Architecture Search

Various discussions [195] on graph neural architecture search have been initiated. [48] adopts the RL-
based neural architecture search approach. [48] uses a recurrent neural network to generate variable-
length strings that describe the architectures of graph neural networks, and trains the recurrent
network with policy gradient to maximize the expected accuracy of the generated architectures
on a validation data set. [185] focuses on designing general space for graph neural networks, that
includes three crucial aspects of graph neural architecture design: intra-layer design, inter-layer
design, and learning configuration. Based on this design space, [185] develops a controlled random
search evaluation procedure to understand the trade-offs of each design dimension. [53, 150]
and [186] focus on how to make the graph neural architecture search process more scalable. While
most previous works focus on graph neural networks, we broaden the scope to embrace conventional
graph mining algorithms such as PageRank [110], Pixie [35], and K-core [143]. We analyze why
conventional graph mining algorithms and recent graph neural networks look unrelated at first
glance and describe how they could be unified under one framework (Section 3.2.4).

34

3.7 Summary

Graph mining is generally application-driven. The development of a new mining algorithm is
usually motivated by solving a specific real-world problem. Given how general graphs are as an
abstraction, the resulting algorithm is usually customized to a dataset, application, and domain.
Sometimes, to squeeze out the best performance, graph mining uses various heuristics specialized to
certain scenarios — 0.85 for the decaying coefficient in PageRank for web recommendation [110],
2-layered GCNs for citation networks [55], 3-layer GCNs for open academic graphs [65]. These
heuristics make graph mining algorithms less generalizable. Practitioners cannot simply apply
existing graph algorithms to their problems but must do trial-and-errors until they find optimal
(sometimes suboptimal) algorithms for their scenarios. This widens a gap in which state-of-the-art
techniques developed in academic settings fail to be optimally deployed in real-world applications.

This paper shows graph mining has enough room to be further generalized. Various message-
passing-based graph algorithms stem from the same intuition, homophily, applied in different ways.
Based on this shared intuition, UNIFIEDGM unifies graph algorithms using five parameters of
the message-passing mechanism: the dimension of the communicated messages, the number of
neighbors to communicate with, the number of steps to communicate for, the nonlinearity of the
communication, and the message aggregation strategy. UNIFIEDGM-EXT extends UNIFIEDGM
with attention and sampling methodologies and unifies a broader scope of graph algorithms under
one framework. This unification helps users understand which aspect of algorithms leads to different
accuracy/computation time/memory efficiency and which part of algorithms they should tune to
achieve their goals. Furthermore, we automate graph mining algorithm development under this
unified framework to prevent users from running trial-and-error and reaching suboptimal algorithms.
Our main contributions are:
• Unification: UNIFIEDGM and UNIFIEDGM-EXT allow conventional graph mining and graph

neural network algorithms to be unified under the same framework for the first time, helping
practitioners to understand the first principles in message-passing-based algorithms.

• Design space for graph mining algorithms: UNIFIEDGM provides the parameter search space
necessary to automate graph mining algorithm development.

• Automation: Based on the search space defined by UNIFIEDGM, AUTOGM finds the optimal
graph algorithm using Bayesian optimization.

• Budget awareness: AUTOGM maximizes the performance of an algorithm under a given
time/accuracy budget.

• Effectiveness: AUTOGM finds novel graph algorithms with the best speed/accuracy trade-off on
real-world datasets.

We hope this paper will spark further research in this direction and empower practitioners without
much expertise in graph mining to deploy graph algorithms tailored to their scenarios. In this era of
big data, new graphs and tasks are generated every day. We believe automated graph mining will
bring even more impact on a wider range of users across academia and industry in the future.

35

Table
3.3:E

xam
ple

graph
m

ining
algorithm

sunder
U

N
IFIE

DG
M

.G
raph

m
ining

algorithm
s

can
be

fully
reproduced

underU
N

IFIE
D

G
M

w
ith

the
respective

initialnode
statistics

and
param

eters
(d
,k
,w

,l,a).N
otation:

n
is

the
num

berofnodes,
A

denotes
an

(n
×

n)binary
adjacency

m
atrix,

D
denotes

an
(n
×

n)diagonalm
atrix

w
here

D
ii
= ∑

j
A

ij ,
I
n

denotes
an

identity
m

atrix
ofsize

n,
s

is
the

num
berofseeds,N

(u
)

denotes
the

setofsam
pled

neighbors
ofnode

u,and
0
<

c
<

1
is

a
decay

coefficient.ForPageR
ank,see

the
form

ulation
given

in
[179].

A
lgorithm

O
riginalm

essage
passing

equation
Initialnode

statistics
d

k
w

l
a

PageR
ank

X
k
=

c(D
−
1A

)X
k−

1
+

1−
c

n
1n

forallnodes
1
∞

-1
False

N
A

Pixie
X

k
=

c(D
−
1A

)X
k−

1
+

1−
c

s
X

0
1

for
s

seeds,0
others

1
sam

ple
2
0
0
0

k
False

N
A

G
C

N
X

k
=

R
eL

U (
(D

−
12(A

+
I
n)D

−
12)X

k−
1 W

k)
feature

vectors
64

2
-1

True
SS

G
raphSA

G
E

X
k (u

)
=

R
eL

U (
1

|N
(u

)|+
1 ∑

v∈
N
(u

)∪
u
X

k−
1 (v

)W
k)

feature
vectors

64
2

25
True

SA

SG
C

N
X

k
=

D
−

12(A
+
I
n)D

−
12X

k−
1 W

k
feature

vectors
64

2
-1

False
SS

36

Table 3.4: Sampling strategies in UNIFIEDGM-EXT. UNIFIEDGM-EXT defines a sampling strategy based
on 1) where the sampling probabilities are learnable, 2) how the sampling probabilities are designed, and 3)
when the sampling is executed.

Learnability Sampling probability
model form

Sampling
timing

Heuristic
Uniform distribution

Static
Dynamic

Proportional
to degree

Static
Dynamic

Learnable

Concatenation-based
attention model

Static
Dynamic

Dot-product-based
attention model

Static
Dynamic

Low-pass filter
attention model

Static
Dynamic

Table 3.5: Dataset statistics. AmazonC and AmazonP denote the Amazon Computer and Amazon Photo
datasets, respectively. CoauthorC and CoauthorP denote the MS Coauthor CS and Physics, repectively.

Dataset Node Edge Feature Label Train/Val/Test

Cora 2,485 5,069 1,433 7 140/500/1,000
Citeseer 2,110 3,668 3,703 6 120/500/1,000
Pubmed 19,717 44,324 500 3 60/500/1,000
AmazonC 13,381 245,778 767 10 410/1,380/12,000
AmazonP 7,487 119,043 745 8 230/760/6,650
CoauthorC 18,333 81,894 6,805 15 550/1,830/15,950
CoauthorP 34,493 247,962 8,415 5 1,030/3,450/30,010

Table 3.6: Parameters corresponding to algorithms found by AUTOGM in Figures 3.1. The Budget
column denotes the constraint input to AUTOGM to generate an algorithm.

Dataset Budget d k w l a Time Acc

Citeseer

t<0.004 70 4 25 F SA 0.0039 0.674
t<0.01 255 4 45 F SS 0.004 0.683
t<0.1 68 1 47 T SS 0.0134 0.686
a>0.58 138 1 36 F SA 0.0039 0.622
a>0.63 25 4 54 F NA 0.0039 0.665
a>0.68 39 1 10 T SS 0.0121 0.69

37

Table
3.7:Search

efficiency
ofA

U
T

O
G

M
.G

iven
the

sam
e

search
tim

e
(colum

n
2)and

accuracy
low

erbounds
(colum

n
3),A

U
T

O
G

M
finds

fasteralgorithm
s

than
R

andom
Search

across
alldatasets;sim

ilarly,given
the

sam
e

search
tim

e
(colum

n
2)and

inference
tim

e
upperbounds

(colum
n

8),A
U

T
O

G
M

finds
m

ore
accurate

algorithm
s

than
R

andom
Search

across
alldatasets.

FastestInference
(s)

A
ccuracy

H
ighestA

ccuracy
Inference

(s)
D

ataset
Search(s)

M
in.A

cc.
A

utoG
M

R
and

A
utoG

M
R

and
M

ax.Tim
e(s)

A
utoG

M
R

and
A

utoG
M

R
and

C
ora

450
0.78

0.0034
-

0.79
-

0.004
0.77

0.77
0.0036

0.0033
C

iteseer
800

0.67
0.0039

0.0039
0.67

0.67
0.004

0.67
-

0.0039
-

Pubm
ed

1,800
0.75

0.021
-

0.77
-

0.004
0.76

0.71
0.0036

0.0039
A

m
azonC

5,700
0.85

0.032
0.033

0.89
0.87

0.04
0.85

-
0.032

-
A

m
azonP

18,000
0.93

0.047
0.065

0.94
0.93

0.05
0.94

-
0.048

-
C

oauthorC
2,500

0.8
0.015

0.016
0.8

0.82
0.02

0.83
0.75

0.015
0.02

C
oauthorP

1,500
0.9

0.01
-

0.91
-

0.01
0.92

0.86
0.01

0.01

38

Chapter 4

Scalability

The main challenge of adapting Graph convolutional networks (GCNs) to large-scale graphs is the
scalability issue due to the uncontrollable neighborhood expansion in the aggregation stage. Several
sampling algorithms have been proposed to limit the neighborhood expansion. However, these
algorithms focus on minimizing the variance in sampling to approximate the original aggregation.
This leads to two critical problems: 1) low accuracy because the sampling policy is agnostic to the
performance of the target task, and 2) vulnerability to noise or adversarial attacks on the graph.

In this paper, we propose a performance-adaptive sampling strategy PASS that samples neigh-
bors informative for a target task. PASS optimizes directly towards task performance, as opposed to
variance reduction. PASS trains a sampling policy by propagating gradients of the task performance
loss through GCNs and the non-differentiable sampling operation. We dissect the back-propagation
process and analyze how PASS learns from the gradients which neighbors are informative and
assigned high sampling probabilities. In our extensive experiments, PASS outperforms state-of-the-
art sampling methods by up to 10% accuracy on public benchmarks and up to 53% accuracy in the
presence of adversarial attacks.

4.1 Motivation

Graph convolutional networks (GCN) [75] have garnered considerable attention as a powerful deep
learning tool for representation learning of graph data [7, 129]. For instance, GCNs demonstrate
state-of-the-art performance on node classification [27], link prediction [125, 163], and graph
property prediction tasks [44]. Motivated by convolutional neural networks, GCNs aggregate
information from a node’s neighbors analogously to how convolution filters process text or image
data [60, 82].

The main challenge of adapting GCNs to large-scale graphs is that GCNs expand neighbors
recursively in the aggregation operations, leading to high computation and memory footprints. For
instance, given a graph whose average degree is d, L-layer GCNs access dL neighbors per node
on average. If the graph is dense or has many high degree nodes, GCNs need to aggregate a huge
number of neighbors for most of the training/test examples. The only way to alleviate this neighbor
explosion problem is to sample a fixed number of neighbors in the aggregation operation, thereby
regulating the computation time and memory usage [55].

Most samplers minimize the variance in sampling to approximate the original aggregation
of the full neighborhood [23, 68, 97, 202]. These sampling policies learn neighbors helpful for

39

(a) Neighborhood for a software engineer member (b) Neighborhood for a registered nurse
member

Figure 4.1: PASS learns which neighbors are informative for the job industry classification task
on the LinkedIn member-to-member network. (a) Given Member A from the "Computer software"
industry, PASS learns high sampling probabilities for Members B, C, and D from similar industries but low
probabilities for Members E and F from different industries. (b) Given Member G from the "Hospital &
health care" industry, PASS assigns a low sampling probability to Member I, who has an unrelated career as
a "Program Analyst" although he works in the same industry. This shows PASS is able to determine that the
attributes of Member I are different from Member G’s and thus not informative. For space efficiency, we
show part of neighbors; thus, the sum of sampling probabilities does not sum to 1. See Section 4.5 for details.

variance reduction, not neighbors informative for the target task’s performance. Thus, those variance
reduction-oriented samplers suffer from two critical problems: 1) low accuracy because the sampling
policy is agnostic to the performance, and 2) vulnerability to noise or adversarial attacks on the
graph because the sampling policy cannot distinguish relevant neighbors from irrelevant ones or
true neighbors from adversarially added fake neighbors.

Then what is the optimal sampling policy for GCNs? To answer this question, we come back
to the motivation of the aggregation operation. In GCNs, each node aggregates its neighbors’
embeddings assuming that neighbors are informative for the target task. We extend this motivation
to the sampling policy and sample neighbors informative for the target task. In other words, we
aim for a sampler that maximizes the target task’s performance instead of minimizing sampling
variance.

Here we propose PASS, a performance-adaptive sampling strategy that optimizes a sampling
policy directly for task performance. PASS trains the sampling policy based on gradients of the
performance loss passed through the GCN. To receive the gradients from the GCN, we need to pass
them through the sampling operations, which is non-differentiable. To address this, PASS borrows
the log derivative trick commonly used in the reinforcement learning community to train stochastic
policies [106, 142]. PASS optimizes the sampling policy jointly with the GCN to minimize the task
performance loss, resulting in a considerable performance improvement.

Graph attention networks (GATs) [155] share the same objective of learning the importance
of neighbors. They select neighbors through an attention mechanism trained by back-propagating
gradients of the performance loss. This mechanism was originally designed as a continuous
approximation of the non-differentiable hard selection (i.e., sampling) operation [5, 155]. However,
GATs suffer from the same scalability issues as GCNs. Since sampling is inevitable in large
scale graphs, we embed the informative neighbor selection directly in the sampler, instead of

40

Table 4.1: Commonly used notation in PASS.

Symbol Definition

G = (V, E) input graph with nodes vi ∈ V
and edges (vi, vj) ∈ E

L number of layers in GCN model
D(l) dimension of the l-th hidden layer

where l = 0, 1, · · · , L
H(0) N ×D(0) input node feature matrix
H(l) N ×D(l) hidden embeddings at the l-th layer
W (l) D(l) ×D(l+1) transformation matrix

at the l-th layer where l = 0, · · · , L− 1
α(·) nonlinear activation function

αW (l)(·) abbreviation of α(W (l) · ·)
p(j|i) probability of sampling node vj given node vi
q(j|i) approximation of p(j|i)

approximating it downstream with an attention mechanism. In our experiments, we show how
PASS not only alleviates scalability issues of GATs but also shows higher performance.

Another advantage of PASS compared to previous sampling-based methods is that we provide
theoretical foundations on how sampling policy is updated to optimize the task performance. While
other samplers present the back-propagation algorithm to learn the sampling policy as a black box,
PASS cracks it open. We present a transparent reasoning process on how PASS learns whether a
neighbor is informative from the back-propagated gradients and why it assigns a certain sampling
probability to a neighbor.

Through extensive experiments on seven public benchmarks and one LinkedIn production
dataset, we demonstrate the superior performance of PASS over existing sampling algorithms.
We also present various case studies examining the effectiveness of PASS on real-world datasets
(Figure 4.1). Our main contributions are:

• Performance-adaptiveness: PASS learns a sampling policy that samples neighbors informative
for the task performance.

• Effectiveness: PASS outperforms state-of-the-art samplers, being up to 10.4% more accurate.
• Robustness: PASS shows up to 53.1% higher accuracy than the baselines in the presence of

adversarial attacks.
• Theoretical foundation: PASS presents a transparent reasoning process on how it learns whether

a neighbor is informative.

41

4.2 Preliminaries

In this section, we briefly review graph convolutional networks (GCNs) then describe how sampling
operations operate and solve the scalability issue in GCNs.
Notations. Let G = (V , E) denote a graph with N nodes vi ∈ V and edges (vi, vj) ∈ E . Denote an
adjacency matrix A = (a(vi, vj)) ∈ RN×N and a feature matrix H(0) ∈ RN×D(0) where h(0)

i denotes
the D(0)-dimensional feature vector of node vi. Table 4.1 gives a list of symbols and definitions.
GCN. The GCN models stack layers of first-order spectral filters followed by a nonlinear activation
functions to learn node embeddings. When h

(l)
i denotes the hidden embeddings of node vi in the

l-th layer, the simple and general form of GCNs is as follows [23]:

h
(l+1)
i = α(

1

N(i)

N∑
j=1

a(vi, vj)h
(l)
j W (l)), l = 0, . . . , L− 1 (4.1)

where a(vi, vj) is set to 1 when there is an edge from vi to vj , otherwise 0. N(i) =
∑N

j=1 a(vi, vj)

is the degree of node vi; α(·) is a nonlinear function; W (l) ∈ RD(l)×D(l+1) is the learnable transfor-
mation matrix in the l-th layer with D(l) denoting the hidden dimension at the l-th layer.
Sampling operation in GCN. GCNs require the full expansion of neighborhoods across layers,
leading to high computation and memory costs. To circumvent this issue, sampling operations are
added to GCNs to regulate the size of neighborhood. We first recast Equation 4.1 as follows:

h
(l+1)
i = αW (l)(Ej∼p(j|i)[h

(l)
j]), l = 0, . . . , L− 1 (4.2)

where we combine the transformation matrix W (l) into the activation function αW (l)(·) for conci-
sion; p(j|i) = a(vi,vj)

N(i)
defines the probability of sampling vj given vi. Then we approximate the

expectation by Monte-Carlo sampling as follows:

h
(l+1)
i = αW (l)(

1

k

k∑
j∼p(j|i)

h
(l)
j), l = 0, . . . , L− 1 (4.3)

where k is the number of sampled neighbors for each node. Now, we regulate the size of neighbor-
hood using k.
Scalability solution. Equations 4.1 and 4.3 describe the computation at the l-th layer in the original
GCN and GCN with sampling, respectively. In Equation 4.1, the numbers of nodes that participate in
the l-th and (l+1)-th layers are both up to O(N), resulting in a time complexity of O(|E|D(l)D(l+1))
where |E| denotes the number of edges. On the other hand, we can regulate the number of nodes
engaged at each layer in the GCN with sampling. When we set the number of nodes sampled for the
l-th and (l + 1)-th layers to k, the number of edges engaged in Equation 4.3 is up to O(k2), leading
to a time complexity of O(k2D(l)D(l+1)). With k ≪ N , sampling solves the scalability issue in the
GCN successfully [68, 97].

42

Table 4.2: PASS out-features competitors. Comparison of our proposed PASS and existing sampling
methods for GCNs.

Property

Method

G
ra

ph
Sa

ge
[5

5]

Fa
st

G
C

N
[2

3]

L
A

D
IE

S
[2

02
]

A
S-

G
C

N
[6

8]

G
C

N
-B

S
[9

7]

PA
SS

Importance Sampling ✓ ✓ ✓ ✓ ✓
Learnability ✓ ✓ ✓
Performance adaptiveness ✓

4.3 Proposed Method

What is the optimal sampling policy for GCNs? To answer this question, we come back to the
motivation of the aggregation operation in GCNs. The aggregation operation intends to complement
node embeddings with neighbors’ embeddings on the assumption that neighbors are informative for
the target task. We extend this motivation to the sampling policy and sample neighbors informative
for the target task. In other words, we train a sampler that directly maximizes the GCN performance.

The key idea behind our approach is that we learn a sampling policy by propagating gradients
of the GCN performance loss through the non-differentiable sampling operation. We first describe
a learnable sampling policy function and how it operates in the GCN (i.e., forward propagation)
in Section 4.3.1. We then describe how to learn the parameters of the sampling policy by back-
propagating gradients through the sampling operation in Section 4.3.2. Finally, we present the
overall algorithm and discuss implementation considerations in Section 4.3.3.

4.3.1 Sampling Policy

Fig. 4.2 shows an overview of PASS. In the forward pass, PASS samples neighbors with its
sampling policy (Fig. 4.2(a)), then propagates their embeddings through the GCN (Fig. 4.2(b)). In
this section, we introduce our parameterized sampling policy q(l)(j|i) that estimates the probability
of sampling node vj given node vi at the l-th layer.

The policy q(l)(j|i) is composed of two methodologies, importance q
(l)
imp(j|i) and random

43

(a) Sampling process (b) Forward propagation

(c) Backward propagation

Figure 4.2: PASS is composed of three steps: 1) sampling, 2) feedforward propagation, and 3) back-
propagation. In the backpropagation process, the GCN and the sampling policy are optimized jointly to
minimize the GCN performance loss.

sampling q
(l)
rand(j|i) as follows:

q
(l)
imp(j|i) = (Ws · h(l)i) · (Ws · h(l)j) (4.4)

q
(l)
rand(j|i) =

1

N(i)
(4.5)

q̃(l)(j|i) = as · [q(l)imp(j|i), q
(l)
rand(j|i)] (4.6)

q(l)(j|i) = q̃(l)(j|i)/
N(i)∑
k=1

q̃(l)(k|i) (4.7)

where Ws ∈ RD(s)×D(l) is a transformation matrix with D(s) denoting the hidden dimension in

44

the sampling policy and D(l) denoting the hidden dimension of the l-th layer; h(l)
i is the hidden

embedding of node vi at the l-th layer; N(i) is the degree of node vi; as ∈ R1×2 is an attention
vector; and q(l)(·|i) is normalized to sum to 1. Ws and as are learnable parameters of our sampling
policy, which will be updated toward performance improvement.

We describe each component in the sampling policy.
Importance Sampling. The first term q

(l)
imp(j|i) computes the intermediate score of sampling vj

given node vi in the l-th layer, corresponding to importance sampling. We first map the hidden
embeddings h

(l)
i and h

(l)
j into the D(s)-dimension through the transformation matrix Ws, then

compute the similarity between these two embeddings by dot product. We describe the intuition
behind this dot product-based importance sampling in Section 4.4.
Random Sampling. The second term q

(l)
rand(j|i) assigns the same sampling probability to each

node the neighborhood. When a graph is well-clustered, nodes are connected with all informative
neighbors. Then random sampling becomes effective since its randomness helps aggregate diverse
neighbors, thus preventing the GCN from overfitting. By capitalizing on both importance and
random samplings, our sampling policy better generalizes across various graphs. We show how
random sampling complements importance sampling experimentally in Section 4.5.
Attention of Sampling. The attention as regulates the tradeoff between importance sampling
q
(l)
imp(j|i) and random sampling q

(l)
rand(j|i). as learns which sampling methodology is more effective

on a given task. We initialize as with higher attention to the random sampling than the importance
sampling and allow the model to examine a broad scope of neighbors at first.

While our sampling policy q(l)(j|i) assigns a distinct sampling probability to each edge at each
layer, it shares the parameters (Ws, as) across all edges and all layers. This parameter sharing helps
our model generalize and prevents the sampling policy from overfitting to the training set.

4.3.2 Training the Sampling Policy

As shown in Fig. 4.2(c), after a forward pass with sampling, the GCN computes the performance
loss (e.g., cross-entropy for node classification) then back-propagates gradients of the loss. Next,
we describe how the gradients of the loss pass through the non-differentiable sampling operation to
update our sampling policy.

When θ denotes parameters (Ws, as) in our sampling policy q
(l)
θ , we can write the sampling

operation with q
(l)
θ (j|i) as follows:

h
(l+1)
i = αW (l)(E

j∼q
(l)
θ (j|i)[h

(l)
j]), l = 0, . . . , L− 1 (4.8)

Before being fed as input to the GCN transformation, αW (l) , the hidden embeddings go through
a non-differentiable expectation under the sampling policy, which is non-differentiable. To pass
gradients of the loss through the expectation, we apply the log derivative trick [160], widely used in
reinforcement learning to compute gradients of stochastic policies. Then the gradient∇θL of the
loss L w.r.t. the sampling policy q

(l)
θ (j|i) is computed as follows:

Theorem 3. Given the loss L and the hidden embedding h
(l)
i of node vi at the l-th layer, the gradient

45

of L w.r.t. the parameter θ of the sampling policy q
(l)
θ (j|i) is computed as follows:

∇θL =
dL

dh
(l+1)
i

αW (l)E
j∼q

(l)
θ (j|i)[∇θ log q

(l)
θ (j|i)h(l)j]

Proof. By the chain rule, dL
dθ

is decomposed as follows:

dL
dθ

=
dL

dh
(l+1)
i

dh
(l+1)
i

dθ

We compute the gradient of h(l+1)
i w.r.t. θ as follows:

dh
(l+1)
i

dθ
= ∇θαW (l)(E

j∼q
(l)
θ (j|i)[h

(l)
j])

= αW (l)(∇θ

N(i)∑
k=0

q
(l)
θ (uk|i)h(l)uk

)

= αW (l)(

N(i)∑
k=0

∇θq
(l)
θ (uk|i)h(l)uk

)

= αW (l)(

N(i)∑
k=0

q
(l)
θ (uk|i)∇θ log q

(l)
θ (uk|i)h(l)uk

)

= αW (l)(E
j∼q

(l)
θ (j|i)[∇θ log q

(l)
θ (j|i)h(l)j])

where the nodes {uk}N(i)
k=1 are neighbors of vi. The log derivative trick leveraging the property of

the logarithm ∇θ log qθ = ∇θqθ/qθ to tranform the sum into an expectation under qθ that we can
sample is applied in the fourth equation.

In Theorem 3, we describe the gradient of the loss w.r.t the sampling policy of a single edge
(i.e., sampling probability q

(l)
θ (j|i) of node j given node i). In the implementation, we average the

gradients ∇θL passed through all edges. Also, to show how the gradients w.r.t. the sampling policy
is passed through GCN parameters (σW) more efficiently, we omit how the gradients pass through
the ReLU. Except for the ReLU condition (x > 0), there is no difference in the final result.

Based on Theorem 3, we pass the gradients of the GCN performance loss to the sampling policy
through the non-differentiable sampling operation and optimize the sampling policy for the GCN
performance.

4.3.3 Algorithm
Algorithms 3 and 4 describe how we train graph convolutional networks with our sampling policy.
Our algorithm’s framework is composed of three steps: 1) sampling, 2) feedforward propagation,
and 3) backpropagation.

In the sampling process, we define a computation graph. The computation graph is a L-layer
network composed of nodes and edges participating in a minibatch. We generate the computation

46

Algorithm 3: One minibatch in PASS
Require: a minibatch of labeled nodes: {vi, yi}bi=1, sample number: k, GCN model: {W (l)}L−1

l=1 ,
sampling policy: q(l)(j|i)

Ensure: updated GCN model and sampling policy
1: Gcomp = Sampler({vi}bi=1, q(l)(j|i), k)
2: for l from 1 to L− 1 do
3: for vi in Gcomp[l + 1] do
4: Neighbor(vi) = neighbor nodes of vi in Gcomp[l]

5: h
(l+1)
i = α(

∑
j∈Neighbor(vi)

h
(l)
j W (l))

6: end for
7: end for
8: L = loss({h(L)i , yi}bi=1)
9: for l from L− 1 to 1 do

10: update W (l) using∇W (l)L
11: update q(l)(j|i) using∇q(l)(j|i)L
12: end for

13: return {W (l)}L−1
l=1 and q(l)(j|i)

Algorithm 4: Sampler
Require: a minibatch of nodes: {vi}bi=1, sampling policy: q(l)(j|i), sample number: k
Ensure: computation graph Gcomp

1: Gcomp[L] = {vi}bi=0

2: for l = L− 1 to 1 do
3: for vi in Gcomp[l + 1] do
4: Gcomp[l] = Gcomp[l] + {vuj}kj=1 ∼ q(l)(uj |i)
5: end for
6: end for

7: return Gcomp

graph using our sampling policy q(l)(j|i) in a top-down manner (l : L→ 1). When a minibatch of
size b is given, the b nodes are located at the L-th layer; each node samples k neighbors following
the sampling policy q(L)(j|i); the sampled kb nodes are located at the (L− 1)-th layer; each node
samples k neighbors following the sampling policy q(L−1)(j|i); the sampled k2b nodes are located
at the (L− 2)-th layer; repeat until the 1-st layer.

After acquiring the computation graph, we do feedforward propagation in a bottom-up manner (l :
1→ L), i.e., iteratively aggregate neighboring embeddings and pass them through transformations.
After computing the loss, we do backpropagation and update parameters using gradients of the loss
in a top-down manner (l : L → 1). In the backpropagation phase, we update the parameters of
both the GCN and the sampling policy. In practice, we find that the gradients from the 1-st layer
are sufficient to successfully update the sampling policy. We repeat the whole process with each
minibatch.

47

Implementation In the backpropagation phase, PASS uses the log derivative trick [160] to pass
gradients of the loss from the GCN to the sampling policy through an expectation operation. In
reinforcement learning, the log derivative trick is used to compute the gradient of the expectation of
a scalar function (e.g., a reward function) [106, 160]. However, our model applies the log derivative
trick to compute the gradient of an expectation of vectors (matrices for a batch implementation)
located in the middle of the neural network. The implementation of the log derivative trick in this
context requires hand-crafted backpropagation. If we were to brute-force the implementation, we
would need to compute dL/dh(l)

i , compute dh
(l)
i /dθ using the log derivative trick, multiply them to

output dL/dθ, and finally update θ manually using dL/dθ.
Here, we introduce an additional SUB-LOSS trick that allows us to leverage the backpropaga-

tion mechanisms built in deep learning frameworks (e.g., PyTorch, TensorFlow).
Theorem 4 (SUB-LOSS trick). Given θ ∈ RD(s)

, a hidden embedding h(θ) ∈ RD(l)
, and a loss

L(h) ∈ R, the gradient of the loss L w.r.t. θ is presented as follows:

dL
dθ

=
d

dθ
(
dL
dh
· h)

with an assumption d
dθ
(dL
dh
) = 0.

Proof. Proofs are given in Appendix 4.8.1

With the SUB-LOSS trick, we compute an auxiliary loss Laux = dL/dh(l)
i · h

(l)
i and simply call

the backpropagation function of our deep learning framework on Laux to compute the gradient w.r.t.
θ. More details are in Appendix 4.8.1.

4.4 Theoretical Foundation

In this section, we dissect the back-propagation process of PASS and analyze how PASS learns
whether a neighbor is informative for the target task from gradients of the performance loss (i.e.,
why it assigns a certain sampling probability to the neighbor).

GCNs train their parameters to move the node embeddings h(l)
i in the direction that minimizes

the performance loss L, i.e., the gradient −dL/dh(l)
i . PASS promotes this process by sampling

neighbors whose embeddings are aligned with the gradient −dL/dh(l)
i . When h

(l)
i is aggregated

with the embedding h
(l)
j of a sampled neighbor aligned with the gradient, it moves in the direction

that reduces the loss L.
In other words, PASS decides a neighbor node vj is informative when its embedding h

(l)
j is

aligned with the gradient −dL/dh(l)
i . In Fig.4.3, PASS considers v3 more informative than v5

since h
(l)
3 is better aligned with −dL/dh(l)

2 , thereby helping h
(l)
2 move towards loss reduction. In

Theorem 5, we show how PASS measures the alignment between −dL/dh(l)
i and h

(l)
j and how it

increases the sampling probability q(l)(j|i) in proportion to this alignment.
Theorem 5. Given a source node vi and its neighbor node vj , PASS increases a sampling proba-
bility q(l)(j|i) in proportion to the dot product of −dL/dh(l)

i and h
(l)
j .

48

Figure 4.3: Interpretation of why PASS assigns higher sampling probability to node v3 than v5 given
source node v2. Node v3’s embedding h

(l)
3 helps v2’s embedding h

(l)
2 move in the direction −dL/dh(l)2 that

decreases the performance loss L while aggregating the embedding of node v5 would move v2 in the opposite
direction.

Proof. Let z(l)i = Ej∼q(l)(j|i)[h
(l)
j] denote an intermediate hidden embedding of node vi at the l-th

layer after the aggregation operation. By the chain rule, −dL/dq(l)(j|i) decomposes into(
−dL/dz(l)i

)
·
(
dz

(l)
i /dq(l)(j|i)

)
. The first component−dL/dz(l)i is the direction z

(l)
i needs to move

towards to decrease the loss L. The second component dz(l)i /dq(l)(j|i) is computed as follows:

dz
(l)
i

dq(l)(j|i)
=

d

dq(l)(j|i)
Ek∼q(l)(k|i)[h

(l)
k]

=
d

dq(l)(j|i)

N(i)∑
k=0

q(l)(uk|i)h(l)uk

=
d

dq(l)(j|i)
(q(l)(j|i)h(l)j) = h

(l)
j

where the nodes {uk}N(i)
k=1 are neighbors of vi. In the third equation,∇q(j|i)q(uk|i) is zero for nodes

uk ̸= j. Then −dL/dq(l)(j|i) is presented as follows:

− dL
dq(l)(j|i)

= (− dL
dz

(l)
i

) ·
dz

(l)
i

dq(l)(j|i)
= (− dL

dz
(l)
i

) · h(l)j (4.9)

Since dL/dz(l)i = dL/dh(l)
i , −dL/dq(l)(j|i) is decided by the dot product of −dL/dh(l)

i and h
(l)
j .

When−dL/dh(l)
i and h

(l)
j have similar directions,−dL/dq(l)(j|i) becomes large and the probability

q(l)(j|i) is updated to increase by the gradient descent.

In Theorem 5, PASS estimates the alignment between −dL/dh(l)
i and h

(l)
j from their dot product.

49

Table 4.3: Dataset statistics. LinkedIn dataset on member networks has two labels, member industry and job
title.

Dataset Nodes Edges Features Labels

Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,324 500 3
AmazonC 13,381 245,778 767 10
AmazonP 7,487 119,043 745 8
MsCS 18,333 81,894 6,805 15
MsPhysics 34,493 247,962 8,415 5

LinkedIn 39K+ 1.7M+ 20+
(industry) ∼150

(title) ∼8,000

However, the dot product as a measure of alignment prefers h(l)
j with a large L1 norm. To prevent

this issue, we normalize h
(l)
j in our experiments.

This reasoning process leads to two important considerations. First, it crystallizes our un-
derstanding of the aggregation operation in GCNs. The aggregation operation enables a node’s
embedding to move towards its neighbors’ to reduce the performance loss. Second, this reasoning
process shows the benefits of jointly optimizing the GCN and the sampling policy. Optimizing the
sampling policy for task performance allows an embedding to choose which neighbors to move
towards, leading to the minimum loss more efficiently.

4.4.1 Design of Sampling Policy

In Equation 4.9, −dL/dq(l)(j|i) measures alignment/similarity between −dL/dz(l)i and h
(l)
j by a

dot product. We choose the same similarity measurer, the dot product, to estimate the importance of
neighbors in our sampling policy (Equation 4.4). When we choose another similarity measurer, for
instance, a concatenation-based measurer a(vi, vj) = a · [W · h(l)

i ||W · h(l)
j] used in graph attention

networks (GAT), we observe up to 28% drop in accuracy (more details in Section 4.5). This shows
a careful design of the sampling policy has a large impact on performance.

4.5 Experiments

In this section, we evaluate the performance of PASS compared to state-of-the-art sampling
algorithms on GCNs.

50

Ta
bl

e
4.

4:
E

ff
ec

tiv
en

es
so

fP
A

SS
.P

A
SS

ou
tp

er
fo

rm
s

al
lb

as
el

in
es

up
to

10
.4
%

on
th

e
be

nc
hm

ar
k

da
ta

se
ts

an
d

up
to

10
.2
%

on
ou

rp
ro

du
ct

io
n

da
ta

se
ts

(L
nk

In
du

st
ry

,L
nk

Ti
tle

).
R

es
ul

ts
on

th
e

be
nc

hm
ar

k
da

ta
se

ts
ar

e
pr

es
en

te
d

in
pr

ec
is

io
n.

R
es

ul
ts

on
ou

rp
ro

du
ct

io
n

da
ta

se
ts

ar
e

pr
es

en
te

d
in

pe
rc

en
ta

ge
po

in
t(

pp
)w

ith
re

sp
ec

tt
o

G
ra

ph
Sa

ge
(r

an
do

m
sa

m
pl

in
g)

.A
hi

gh
er

pr
ec

is
io

n/
pe

rc
en

ta
ge

po
in

ti
s

be
tte

r.

M
et

ho
d

C
or

a
C

ite
se

er
Pu

bm
ed

A
m

az
on

C
A

m
az

on
P

M
sC

S
M

sP
hy

si
cs

L
nk

In
du

st
ry

L
nk

Ti
tle

Fa
st

G
C

N
0.

58
2

0.
49

6
0.

56
9

0.
48

0
0.

54
2

0.
52

0
0.

63
8

-4
.2

pp
-2

.0
pp

A
S-

G
C

N
0.

46
2

0.
38

7
0.

50
2

0.
41

9
0.

48
0

0.
40

3
0.

51
6

-7
.1

pp
-0

.6
pp

G
ra

ph
Sa

ge
0.

78
8

0.
69

8
0.

79
2

0.
70

7
0.

78
7

0.
76

6
0.

87
5

0.
0p

p
0.

0p
p

G
C

N
-B

S
0.

78
8

0.
69

3
0.

80
9

0.
73

6
0.

80
0

0.
78

0
0.

88
7

1.
8p

p
0.

7p
p

PA
SS

0.
82

1
0.

71
5

0.
85

8
0.

75
7

0.
85

5
0.

88
4

0.
93

4
10

.2
pp

1.
3p

p

51

4.5.1 Experimental setting
We compare the performance of PASS and other sampling algorithms on semi-supervised node
classification tasks. All experiments were conducted on the same p2.xlarge Amazon EC2 instance.
Datasets. We use seven public datasets — three citation networks (Cora, Citeseer, and Pubmed) [126],
two co-purchase graphs (Amazon Computers and Amazon Photo) [127], and two co-authorship
graphs (MS CS and MS Physics) [127]. In addition, we also evaluate on a subset of LinkedIn social
networks where nodes are alumni from a US university, and edges are connections between them.
We use members’ latest job [88] title and their industry as labels. We split 50%/10%/40% of the
datasets into the training/validation/test sets, respectively. We report their statistics in Table 4.3.
Baselines. We compare PASS with four state-of-the-art sampling methods: GraghSage [55],
FastGCN [23], AS-GCN [68], and GCN-BS [97]; and one attention method: GAT [155]. For fair
comparison, all methods share the same network structure, two-hidden-layer GCN with all hidden
dimensions set to 64. Please refer to Appendix 4.8.2 for more details.
Unified time complexity bound. With the batch size set to 64, layer-wise sampling methods
(FastGCN, AS-GCN) sample 64 nodes per layer. For a fair comparison, node-wise sampling
methods (GraghSage, GCN-BS, and PASS) sample one neighbor per node, thus sampling 64 nodes
per layer in total. You can find the results with larger numbers of samples in Appendix 4.8.4.
Evaluation with Sampling. Previous works [23, 68, 97] sample during training but not during
testing: they compute node embeddings on the test set by aggregating full neighborhoods. This
setting is unrealistic: the prohibitive time and memory costs from the full neighborhood expansion
that prompted us to sample during training are also issues during testing. In this work, we sample
both during training and testing. This results in a significant drop in accuracy for certain baselines,
especially layer-wise samplers.

4.5.2 Effectiveness
We measure the accuracy of each sampling algorithm on the node classification tasks. In Table 4.4,
our proposed PASS shows the highest accuracy among all baselines across all datasets. Layer-wise
methods (FastGCN, AS-GCN) show lower accuracy than node-wise methods (GraphSage, GCN-BS,
PASS).

Layer-wise samplers define the probability of sampling node vj given a set of source nodes
{vk}ink=i1

as q(j|i1, · · · , in). Since they sample from a union pool of each source node’s neighbor-
hood, there is no guarantee for each source node to fairly sample their neighbors. Moreover, a
node’s sampling probability in a layer-wise sampler is proportional to its degree, which follows a
power-law distribution [39]. If a source node vi’s neighbors all have smaller degrees than neighbors
of other source nodes, none of vi’s neighbors are likely to be sampled, and vi fails to aggregate any
neighbor information. This results in sparse connections between layers and poor performance for
layer-wise samplers.

Among node-wise sampling methods, PASS outperforms GraphSage and GCN-BS. One inter-
esting result is that GraphSage, which just samples neighbor randomly, still shows good performance
among carefully-designed sampling algorithms. The seven public datasets are well-clustered; thus
there is not much room to be improved by importance sampling. In the following Section, we show

52

Ta
bl

e
4.

5:
R

ob
us

tn
es

s
of

PA
SS

PA
S

S
m

ai
nt

ai
ns

hi
gh

ac
cu

ra
cy

in
va

ri
ou

s
gr

ap
h

no
is

e
sc

en
ar

io
s,

w
hi

le
th

e
ac

cu
ra

cy
of

al
lo

th
er

ba
se

lin
es

pl
um

m
et

s
w

ith
no

is
e.

PA
S

S
is

ef
fe

ct
iv

e
no

to
nl

y
in

sa
m

pl
in

g
in

fo
rm

at
iv

e
ne

ig
hb

or
s

bu
ta

ls
o

in
re

m
ov

in
g

ir
re

le
va

nt
ne

ig
hb

or
s.

C
ite

,P
ub

,A
C

,
an

d
A

P
de

no
te

C
ite

se
er

,P
ub

m
ed

,A
m

az
on

C
,a

nd
A

m
az

on
P

,r
es

pe
ct

iv
el

y.

Fa
ke

co
nn

ec
tio

ns
am

on
g

ex
is

tin
g

no
de

s
Fa

ke
ne

ig
hb

or
sw

ith
ra

nd
om

fe
at

ur
e

ve
ct

or
s

M
et

ho
d

C
or

a
C

ite
Pu

b
A

C
A

P
M

sC
S

C
or

a
C

ite
Pu

b
A

C
A

P
M

sC
S

Fa
st

G
C

N
0.

29
3

0.
25

4
0.

41
6

0.
30

0
0.

30
7

0.
29

2
0.

59
7

0.
51

3
0.

61
4

0.
50

2
0.

56
6

0.
56

3
A

S-
G

C
N

0.
22

9
0.

17
1

0.
33

4
0.

20
6

0.
16

7
0.

17
6

0.
23

3
0.

15
2

0.
37

9
0.

27
1

0.
16

9
0.

25
2

G
ra

ph
Sa

ge
0.

31
2

0.
26

1
0.

43
9

0.
37

6
0.

30
6

0.
26

2
0.

28
2

0.
26

9
0.

45
9

0.
26

4
0.

26
4

0.
24

8
G

C
N

-B
S

0.
32

0
0.

26
5

0.
45

7
0.

38
7

0.
30

5
0.

26
4

0.
57

1
0.

49
3

0.
68

1
0.

63
9

0.
68

6
0.

62
2

PA
SS

0.
65

8
0.

60
3

0.
81

1
0.

66
9

0.
69

8
0.

82
2

0.
72

2
0.

68
1

0.
76

1
0.

67
2

0.
78

3
0.

66
7

53

when the graphs have noise (e.g., random connections between different communities), GraphSage
plummets in accuracy. GCN-BS shows higher accuracy than other baselines but lower than our
method. While PASS learns a shared sampling policy across all edges with the performance loss,
GCN-BS trains individual sampling probabilities for each edge with variance reduction loss. This
result presents the effectiveness of the parameter sharing and the performance loss of PASS.

4.5.3 Robustness
To examine the robustness of sampling algorithms, we inject noise into graphs. We investigate two
different noise scenarios: 1) fake connections among existing nodes, and 2) fake neighbors with
random feature vectors. These two scenarios are common in real-world graphs. The first "fake
connection" scenario simulates connections made by mistake or unfit for purpose (e.g., connections
between family members in a job search platform). The second scenario simulates fake accounts
with random attributes used for fraudulent activities. For each node, we generate five true neighbors
and five fake neighbors for each scenario. We keep the rest of the experimental setting as in
Section 4.5.1.

Table 4.5 shows that PASS consistently has high accuracy across all scenarios, while the
performance of all other methods plummets. The sparse connection problems of layer-wise sampling
methods (FastGCN, AS-GCN) become worse with graph noise. Node-wise sampling methods
also show much lower accuracy than on the original graphs (Table 4.4). GraphSage gives the
same sampling probability to true neighbors and fake neighbors, resulting in a sharp drop in
accuracy. GCN-BS is likely to sample high-degree or dense-feature nodes, which help stabilize the
sampling variance, regardless of their relationship with the source node. Thus GCN-BS fails to
distinguish fake neighbors from true neighbors. On the other hand, PASS learns which neighbors
are informative or fake from gradients of the performance loss (Theorem 5). These results show
that the optimization of the sampling policy toward performance brings robustness to graph noise.

4.5.4 Convergence & Variance
In this section, we analyze the convergence and variance of sampling algorithms across epochs. We
train each algorithm 5 times and plot the mean and standard deviation. PASS shows the highest
accuracy by a significant margin (+5.5%) with a slightly higher variance (0.5−1.2%) than baselines
(0.1− 0.6%). Static algorithms, including GraphSage and FastGCN, show low variance since their
sampling policy is decided heuristically and fixed. Learnable algorithms, including AS-GCN and
GCN-BS, show low variance because their sampling policy is optimized for variance reduction. On
the other hand, PASS optimizes for performance improvement. PASS explores neighbors to find
the most informative, leading to slightly higher variance and much higher accuracy than baselines
that exploit the neighbors that minimize variance.

4.5.5 Comparison with GAT
In this section, we compare PASS with GATs. PASS and GATs share the same objective of learning
the importance of neighbors, respectively through sampling probabilities and attention scores. While

54

Ta
bl

e
4.

6:
C

om
pa

ri
so

n
be

tw
ee

n
PA

SS
an

d
G

AT
s.

PA
SS

is
sc

al
ab

le
ac

ro
ss

al
ld

at
as

et
s

w
hi

le
G

A
T

s
ru

n
ou

to
fm

em
or

y
on

Pu
bm

ed
,A

m
az

on
C

om
pu

te
r,

M
S

C
S,

an
d

M
S

Ph
ys

ic
s

da
ta

se
ts

.W
e

ru
n

PA
S

S
w

ith
bo

th
1

an
d
5

sa
m

pl
ed

ne
ig

hb
or

s,
tr

ad
in

g-
of

fs
pe

ed
fo

ra
cc

ur
ac

y.
O

n
th

e
fe

w
da

ta
se

ts
w

he
re

G
A

T
s

ar
e

ap
pl

ic
ab

le
,P

A
SS

(5
)s

ho
w

s
co

m
pa

ra
bl

e
or

hi
gh

er
ac

cu
ra

cy
as

G
A

T
s

w
ith

co
ns

id
er

ab
ly

sh
or

te
rt

ra
in

in
g

an
d

te
st

tim
e.

A
cc

ur
ac

y
Tr

ai
ni

ng
tim

e
(s

)
Te

st
tim

e
(s

)

D
at

as
et

G
AT

s
PA

SS
(1

)
PA

SS
(5

)
G

AT
s

PA
SS

(1
)

PA
SS

(5
)

G
AT

s
PA

SS
(1

)
PA

SS
(5

)
C

or
a

0.
85

0
0.

82
1

0.
84

7
18

9.
67

0
9.

45
9

7.
22

6
0.

12
2

0.
02

2
0.

03
3

C
ite

se
er

0.
74

4
0.

71
5

0.
73

5
40

4.
90

4
13

.9
62

13
.2

25
0.

17
5

0.
04

3
0.

06
9

Pu
bm

ed
-

0.
85

8
0.

87
1

-
87

.6
60

94
.9

18
-

0.
61

2
1.

51
0

A
m

az
on

C
-

0.
75

7
0.

88
6

-
52

.0
60

18
4.

52
2

-
0.

25
6

1.
21

8
A

m
az

on
P

0.
90

5
0.

85
5

0.
94

4
18

69
.6

90
30

.0
60

68
.1

34
0.

70
9

0.
09

4
0.

33
8

M
S

C
S

-
0.

88
4

0.
91

8
-

10
1.

84
0

14
2.

09
9

-
0.

81
1

3.
11

3
M

S
Ph

ys
ic

s
-

0.
93

4
0.

95
2

-
43

9.
37

8
50

7.
81

6
-

4.
16

2
8.

44
5

55

(a) Amazon Computer

(b) Amazon Photo

Figure 4.4: The convergence of PASS on the test set in terms of epochs.

PASS solves the scalability issues of GCNs with sampling, GATs suffer from high computation
and memory footprints. To investigate their scalability, we train GATs and PASS on a GPU with
16GB of memory. We run PASS with both 1 and 5 sampled neighbors (denoted as PASS-1 and
PASS-5), trading-off speed for accuracy.

Table 4.6 shows PASS is scalable across all datasets while GAT runs out of memory on the
Pubmed, Amazon Computer, MS CS, and MS Physics datasets. On the few datasets where GATs
are applicable (Cora, Citeseer, and Amazon Photo), PASS-1 shows up to ×60 shorter training
time and ×8 shorter test time than GAT while having 5% lower accuracy. When sampling more
neighbors to increase accuracy at the price of speed, PASS-5 shows comparable or higher accuracy
as GATs while maintaining shorter training and test times. On the Amazon Photo dataset, where
neighbors have 20 neighbors on average, PASS-5 shows 5% higher accuracy than GATs while only
sampling 5 neighbors when GATs consider the full neighborhood. This shows PASS is scalable
and learns neighbors informative for performance improvement.

4.5.6 Ablation Study
In this section, we examine the effectiveness of importance and random sampling in PASS. We
compare the performance of our dot-product-based importance sampling with the importance
sampling mechanism introduced in GATs, presented as

q
(l)
GAT (j|i) = a · [W · h(l)

i ||W · h(l)
j]

56

Table 4.7: Ablation study of PASS. Our dot-product-based importance sampling qimp outperforms the
GAT-version importance sampling mechanism. Random sampling qrand complements importance sampling
qimp.

Dataset GAT-version qimp qimp + qrand

Cora 0.574 0.779 0.821
Citeseer 0.456 0.706 0.715
Pubmed 0.606 0.862 0.858
AmazonC 0.482 0.746 0.757
AmazonP 0.575 0.854 0.855
MsCS 0.661 0.883 0.884
MsPhysics 0.683 0.933 0.934

where W and a are a trainable (D(s) ×D(l)) matrix and a (1× 2D(s)) vector, respectively.
Table 4.7 shows our dot-product-based importance sampling outperforms the GATs version by

up to 27.9% accuracy. The addition of random sampling improves accuracy by up to another 4.2%
accuracy as the noise helps aggregate diverse neighbors (i.e., exploration), preventing the GCN
from overfitting.

4.5.7 Case Study

Figure 4.1 shows a case study where PASS is used to classify the job industry of nodes in the
LinkedIn social network. PASS learns which neighbors are informative for the task. Given Member
A from the "Computer software" industry, PASS learns high sampling probabilities for Members
B, C, and D from similar industries but low probabilities for Members E and F from different
industries. Given Member G from the "Hospital & health care" industry, PASS assigns a low
sampling probability to Member I, who has an unrelated career as a "Program Analyst" although he
works in the same industry. This shows PASS is able to determine that the attributes of Member I
are different from Member G’s and thus not informative. These case studies show the effectiveness
of PASS at identifying informative neighbors on real-world graphs. Additional case studies on the
Cora and Amazon photo datasets are in Appendix 4.8.

4.5.8 Visualization of PASS

In Section 4.4, we saw that PASS decides whether a neighbor vj is informative based on the
alignment between its embedding h

(l)
j and the gradient −dL/dh(l)

i of the loss w.r.t the source node
vi. Figure 4.5 shows the hidden-layer embeddings projected to 2D via t-SNE [17]. Numbers denote
the increase/decrease in sampling probabilities. The neighbors in the red area, which are close to the
gradient (the red cross), see an increase in their sampling probabilities. Conversely, the neighbors in
the blue area, which are far from the gradient, see a decrease in their sampling probabilities. This
result shows our theoretical foundation holds on real-world datasets.

57

Figure 4.5: Visualization of PASS. The hidden-layer embeddings of a neighborhood in the Amazon
Computer dataset (visualized by t-SNE [17]). The red cross denotes the gradient of the loss w.r.t the source
node and green points denote the embeddings of neighbor nodes. Numbers denote the increase/decrease in
sampling probabilities. PASS increases sampling probabilities for neighbors in the red area, close to the
gradient, while decreasing probabilities for the neighbors in the blue zone, which are far from the gradients.

4.6 Related Work

The sampling algorithms for GCNs broadly fall into two categories: node-wise sampling and
layer-wise sampling.
• Node-Wise Sampling. The sampling distribution q(j|i) is defined as a probability of sampling

node vj given a source node vi. In node-wise sampling, each node samples k neighbors from its
sampling distribution, then the total number of nodes in the l-th layer becomes O(kl). Graph-
Sage [55] is one of the most well-known node-wise sampling method with the uniform sampling
distribution q(j|i) = 1

N(i)
. GCN-BS [97] introduces a variance reduced sampler based on multi-

armed bandits. GCN-BS defines an individual sampling probability q(j|i) for each edge and
trains them toward minimum sampling variance.

• Layer-Wise Sampling. To alleviate the exponential neighbor expansion O(kl) of the node-wise
samplers, layer-wise samplers define the sampling distribution q(j|i1, · · · , in) as a probability
of sampling node vj given a set of nodes {vk}ink=i1

. Each layer samples k neighbors from their
sampling distribution q(j|i1, · · · , in), then the number of sampled nodes in each layer becomes
O(k). FastGCN [23] defines q(j|i1, · · · , in) proportional to the degree of the target node vj ,
thus every layer has independent-identical-distributions. LADIES [202] adopts the same iid as
FastGCN but limits the sampling domain to the neighborhood of the sampler layer. AS-GCN [68]
parameterizes the sampling distributions q(j|i1, i2, . . . , in) with a learnable linear function. While
the layer-wise samplers successfully regulate the neighbor expansion, they suffer from sparse
connection problems — some nodes fail to sample any neighbors while other nodes sample their

58

neighbors repeatedly in a given layer.
Learnable Sampling Policy. GraphSage [55], FastGCN [23], and LADIES [202] use the heuristic
sampling probability distributions (e.g., proportional to degrees of nodes). GCN-BS [97] and AS-
GCN [68] train their sampling distributions towards minimum sampling variance. They compute
the optimal sampling probability model with the minimum variance theoretically, then update their
sampling models towards the optimal variance.

Our proposed PASS is a learnable node-wise sampler. Table 4.2 compares PASS with existing
sampling methods.

4.7 Summary

In this paper, we propose a novel sampling algorithm PASS for graph convolutional networks. Our
main contributions are:
• Performance-adaptive sampler: PASS samples neighbors informative for the task performance.
• Effectiveness: PASS outperforms state-of-the-art samplers, being up to 10.4% more accurate.
• Robustness: PASS shows up to 53.1% higher accuracy than the baselines in the presence of

adversarial attacks.
• Theoretical foundation: PASS explains why a neighbor is considered informative and assigned

a high sampling probability.
Future works include learning an edge imputation policy and combining it with our proposed edge
sampling policy to improve the overall performance of graph neural networks.

4.8 Appendix

4.8.1 Proof of SUB-LOSS trick
Our model applies the log derivative trick to compute the gradient of an expectation of vectors (ma-
trices for a batch implementation) located in the middle of the neural network. The implementation
of the log derivative trick in this context requires hand-crafted backpropagation. Here, we introduce
an additional SUB-LOSS trick that allows us to leverage the backpropagation mechanisms built in
deep learning frameworks (e.g., PyTorch, TensorFlow).
Theorem 6 (SUB-LOSS trick). Given θ ∈ RD(s)

, a hidden embedding h(θ) ∈ RD(l)
, and a loss

L(h) ∈ R, the gradient of the loss L with respect to θ is presented as follows:

dL
dθ

=
d

dθ
(
dL
dh
· h)

with an assumption d
dθ
(dL
dh
) = 0.

Proof. By the chain rule, dL
dθ

is decomposed as follows:

dL
dθ

=
dL
dh
· dh
dθ

59

where dL
dh

is an (1 × D(l)) matrix and dh
dθ

is a (D(l) × D(s)) matrix. The i-th component of dL
dθ

is
presented as follows:

dL
dθi

=

D(l)∑
j=0

dL
dhj
· dhj
dθi

The dot product of dL
dh

and h is presented as follows:

dL
dh
· h =

dL
dh0

h0 +
dL
dh1

h1 + · · ·+
dL

dh(D(l)−1)

h(D(l)−1)

where dL
dh
· h is a scalar value. With an assumption d

dθi
(dL
dh
) = 0, the gradient of dL

dh
· h with respect

to θi is presented as follows:

d

dθi
(
dL
dh
· h) = dL

dh0

dh0
dθi

+
dL
dh1

dh1
dθi

+ · · ·+ dL
dh(D(l)−1)

dh(D(l)−1)

dθi

=

D(l)∑
j=0

dL
dhj

dhj
dθi

=
dL
dθi

Then dL
dθi

= d
dθi

(dL
dh
· h) for every 0 ≤ i < D(s). This shows dL

dθ
is equal to d

dθ
(dL
dh
· h).

With the SUB-LOSS trick, we compute an auxiliary loss Laux = dL/dh(l)
i · h

(l)
i and simply

call the backpropagation function of our deep learning framework on Laux to compute the gradient
w.r.t. θ.

4.8.2 Experimental Setting
Hyper-parameters. We use the Adam optimizer [73] and tune each baseline with a grid search
on each dataset. Most baselines perform best on most datasets with a learning rate of 0.01, weight
decay of 5× 10−4. We report the average performance across 5 runs for each experiment.
Baselines. We refer to the following websites when implementing the baseline models:
• FastGCN: https://github.com/matenure/FastGCN
• AS-GCN: https://github.com/huangwb/AS-GCN
• GraphSage: https://github.com/williamleif/GraphSAGE
• GCN-BS: https://github.com/xavierzw/ogb-geniepath-bs
• GAT: https://github.com/PetarV-/GAT

4.8.3 Case Study
In Figure 4.6(a), we find PASS distinguishes informative neighbors (same labels) from less infor-
mative ones (different labels). The node 464 with label 0 has a high sampling probability (0.27)

60

https://github.com/matenure/FastGCN
https://github.com/huangwb/AS-GCN
https://github.com/williamleif/GraphSAGE
https://github.com/xavierzw/ogb-geniepath-bs
https://github.com/PetarV-/GAT

(a) Nodes and subset of neighbors from the Cora dataset

(b) Nodes and subset of neighbors from the Amazon Photo dataset

Figure 4.6: PASS learns which neighbors are informative or not. The numbers in nodes denote node ids
and labels. The numbers in edges denote sampling probabilities computed by PASS.

for the node 2240 with label 0 while low probabilities (0.09) for the nodes 1940 and 1892 with
different labels. In Figure 4.6(b), the node 643 with label 1 gives a high sampling probability (0.21)
to the node 6572 with different label 4. The node 6572 has a high sampling probability (0.20) for
the neighbor node 5454 with label 1; thus, the node 6572 contains information of label 1. In the
two-layer GCNs, the node 643 aggregates the node 5454 through the node 6572 and supplements
its embedding with another label 1 node.

4.8.4 Different sample numbers
In Section 4.5, we sample one neighbor per node for a fair comparison between layer-wise samplers
and node-wise samplers. With the batch size set to 64, both the layer-wise and node-wise samplers
samples 64 nodes in total for each layer. Under the same time/memory efficiency, the node-wise
samplers outperform the layer-wise sampler in accuracy. Here, we compare the performance of the
node-wise samplers with larger numbers of samples (k > 1).
In Table 4.8, PASS shows higher or similar accuracy with its competitors. The accuracy gap
between PASS and its competitors is smaller than when the sampling number is 1. The large sample

61

Table 4.8: Comparison between node-wise samplers with large numbers of samples.

Dataset #sample GraphSage GCN-BS PASS

Cora 3 0.845 0.840 0.844
Citeseer 3 0.740 0.708 0.735
Pubmed 3 0.839 0.877 0.874
AmazonC 5 0.844 0.880 0.889
AmazonC 10 0.862 0.898 0.885
AmazonP 5 0.900 0.919 0.942
AmazonP 10 0.923 0.937 0.945
MsCS 3 0.862 0.909 0.912

number allows the informative neighbors sampled at some point by GraphSage and GCN-BS.
Thus the accuracy of GraphSage and GCN-BS could catch up with our accuracy, not surpass ours.
In addition, the accuracy is saturated around 0.88 and 0.94 from the sampling number 5 on the
AmazonC and AmazonP datasets, respectively. This shows the number of informative neighbors is
under 5. Thus sampling neighbors more than 5 does not bring further increase in accuracy. These
results show that our experimental setting with one sample per node is more effective at comparing
the performance of the sampling algorithms.

62

Chapter 5

Privacy I: transfer learning within a hetero-
geneous graph

Data continuously emitted from industrial ecosystems such as social or e-commerce platforms
are commonly represented as heterogeneous graphs (HG) composed of multiple node/edge types.
State-of-the-art graph learning methods for HGs known as heterogeneous graph neural networks
(HGNNs) are applied to learn deep context-informed node representations. However, many HG
datasets from industrial applications suffer from label imbalance between node types. As there is no
direct way to learn using labels rooted at different node types, HGNNs have been applied on only a
few node types with abundant labels. We propose a zero-shot transfer learning module for HGNNs
called a Knowledge Transfer Network (KTN) that transfers knowledge from label-abundant node
types to zero-labeled node types through rich relational information given in the HG. KTN is
derived from the theoretical relationship, which we introduce in this work, between distinct feature
extractors for each node types given in a HGNN model. KTN improves performance of 6 different
types of HGNN models by up to 960% for inference on zero-labeled node types and outperforms
state-of-the-art transfer learning baselines by up to 73% across 18 different transfer learning tasks
on HGs.

5.1 Motivation

Large technology companies commonly maintain large relational datasets, derived from their internal
logs, that can be represented as or joined into a massive heterogeneous graph (HG) composed of
nodes and edges with multiple types [141]. For instance, in e-commerce networks, there are product,
user, and review nodes, all interconnected by many edge types that represent forms of interactions
such as spending (user-product), reviewing (user-review), and reviews-of (product-review). To learn
powerful features representing the complex multimodal structure of HGs, various heterogeneous
graph neural networks (HGNN) have been proposed [65, 125, 158, 191].

A common issue in these industrial applications of HGNNs is the label imbalance among
different node types. For instance, publicly available content nodes – such as those representing
video, text, and image content – are abundantly labelled, whereas labels for other types (such as
user or account nodes) may be much more expensive to collect (or even not available, e.g. due to
privacy restrictions). This means that in most standard training settings, HGNN models can only
learn to make good inferences for a few label-abundant node types, and can usually not make any

63

inferences for the remaining node types, given the absence of any labels for them.
If there is a pair of label-abundant and zero-labeled node types which share an inference

task, could we transfer knowledge between them? One body of work has focused on transferring
knowledge between nodes of the same type from two different HGs (i.e., graph-to-graph transfer
learning) [67, 171]. However, these approaches are not applicable in many real-world scenarios for
three reasons. First, any external large-scale HG that could be used in a graph-to-graph transfer
learning setting would almost surely be proprietary. Second, even if practitioners could obtain
access to an external industrial HG, it is unlikely the distribution of that (source) graph would match
their target graph well enough to apply transfer learning. Finally, node types suffering label scarcity
are likely to suffer the same issue on other HGs (e.g. user nodes).

In this paper, we introduce a zero-shot transfer learning approach for a single HG (assumed
to be fully-owned by the practitioners), transferring knowledge from labelled to unlabelled node
types. This setting is distinct from any graph-to-graph transfer learning scenarios, since the source
and target domains exist in the same HG dataset, and are assumed to have different node types.
Our model utilizes the shared context between source and target node types; for instance, in
the e-commerce network, the latent (unknown) labels of user nodes can be strongly correlated
with spending/reviewing patterns that are encoded in the cross-edges between user nodes and
product/review nodes. We propose a novel zero-shot transfer learning problem for this HG learning
setting as follows:
Informal Problem Definition 1. Zero-shot cross-type transfer learning running on a HG:
Given a heterogeneous graph G with node types {s, t, · · · } with abundant labels for source type s
but no labels for target type t, can we train HGNNs to infer the labels of target-type nodes?

A naïve solution to this problem would be to re-use an HGNN pre-trained on the source nodes
for target node inference, given that both domains exist in the same HG. However, as we show in our
paper, HGNNs have distinct parameter sets for each node type [65], edge type [125], and meta-path
type [46, 158]. These facts cause HGNNs to learn entirely different feature extractors for nodes
and edges of different types – in other words, the final embeddings for source and target nodes are
computed by different sets of parameters in HGNNs. Thus, a classifier pre-trained on source nodes
will fail to perform well on inference tasks for target nodes. The field of domain adaptation (DA)
targets this setting, seeking to transfer knowledge from a source domain with abundant labels to a
target domain which lacks them [47, 99, 100, 128]. However, distinct feature extractors across node
types in HGNNs break a standard assumption of DA setting, namely that source and target domains
share the same feature extractors (e.g., CNNs for both source and target image domains). As we
demonstrate in this paper, in our problem setting, DA approaches fail to achieve the outstanding
performance they are known for in computer vision and NLP.

In our work, we first dissect the gradient path of HGNN models to see how feature extrac-
tors are designed independently for each node type, and some empirical consequences. Then
we theoretically analyze how feature extractors across node types relate to each other and how
their output distributions could be represented in terms of each other. We model this theoretical
relationship between two feature extractors as a Knowledge Transfer Network (KTN) which can
be optimized to transform target embeddings to fit the source domain distribution. We perform
an extensive evaluation of our method on 18 different transfer learning tasks on HGs where we

64

compare against state-of-the-art domain adaptation baselines. Additionally, in order to understand
which environments are ideal for transferring knowledge between different node types for HGs, we
formulate a synthetic heterogeneous graph generator that allows us to study the sensitivity of these
methods.

Our main contributions are:
• Novel and practical problem definition: To the best of our knowledge, KTN is the first zero-shot

cross-type transfer learning method running on a heterogeneous graph — transfer knowledge
across different node types within a heterogeneous graph.

• Generality: KTN is a principled approach analytically induced from the architecture of HGNNs,
thus applicable to any HGNN models, showing up to 960% performance improvement for zero-
labeled node inference across 6 different HGNN models.

• Effectiveness: We show that KTN outperforms state-of-the-art domain adaptation methods,
being up to 73.3% higher in MRR on 18 different transfer learning tasks on HGs.

• Sensitivity Analysis: We provide a HG generator model to analyze how the node attribute and
edge distributions of HGs affect the performance of KTN and other methods on the task.

5.2 Preliminaries

In this section we review heterogeneous graphs and heterogeneous graph neural networks (HGNNs).

5.2.1 Heterogeneous graph

Heterogeneous graphs (HGs) are an important abstraction for modeling the relational data of multi-
modal systems. Formally, a heterogeneous graph is defined as G = (V , E , T ,R) where the node set
V; the edge set E consisting of ordered tuples eij := (i, j) with i, j ∈ V , where eij ∈ E iff an edge
exists from i to j; the set of node types T with associated map τ : V 7→ T ; the set of relation types
R with associated map ϕ : E 7→ R. This flexible formulation allows directed, multi-type edges. We
additionally assume the existence of a node attribute vector xi ∈ Xτ(i) for each i ∈ V , where Xt is
an attribute matrix specific to nodes of type t.

5.2.2 Heterogeneous Graph Neural Networks (HGNN)

Various HGNN models have been proposed [65, 125, 158, 172, 191]. Fully-specified HGNN models
have specialized parameters for each node type [65], edge type [125], and meta-path type [46] to
most effectively utilize the complex relationships encoded in the HG data structure. In this paper,
we use a flavor of HGNN known as a Heterogeneous Message-Passing Neural Network (HMPNN)
as our base model on which to demonstrate KTN (though KTN can be implemented in almost
any HGNN, as we show in experiments in Section 5.5). The HMPNN merely extends the standard
MPNN [49] by specializing all transformation and message matrices in each node/edge type. With
its generality, HMPNN is itself a base model for RGCN [125] and HGT [65], and is also widely used
as a default HGNN model in popular GNN libraries (e.g., pyG [41], TF-GNN [40], DGL [157]).

65

In a HMPNN, for any node j, the embedding of node j at the l-th layer is obtained with the
following generic formulation:

h
(l)
j = Transform(l)

(
Aggregate(l)(E(j))

)
(5.1)

where E(j) = {(i, j) ∈ E : i, j ∈ V} denotes all the edges which connect (directionally) to j. The
above operations typically involve type-specific parameters to exploit the inherent multiplicity of
modalities in heterogeneous graphs. First, we define a linear Message function:

Message(l)(i, j) = M
(l)
ϕ((i,j)) ·

(
h
(l−1)
i ∥ h(l−1)

j

)
(5.2)

where M
(l)
r are the specific message passing parameters for each edge type r ∈ R and each of L

HMPNN layers. Then defining Er(j) as the set of edges of type r pointing to node j, the Aggregate
function mean-pools messages by edge type, and concatenates:

Aggregate(l)(E(j)) = ∥
r∈R

1
|Er(j)|

∑
e∈Er(j)

Message(l)(e) (5.3)

Finally, the Transform function maps the message into a type-specific latent space:

Transform(l)(j) = α(W
(l)
τ(j) · Aggregate(l)(E(j))) (5.4)

where W
(l)
t are the specific transformation parameters for each node type t ∈ T and each of

L HMPNN layers. By stacking L layers, HMPNN outputs highly contextualized final node
representations, and the final node representations can be fed into another model to perform
downstream heterogeneous network tasks, such as node classification or link prediction.

5.2.3 Problem definition
Using notations defined above, we formalize our novel transfer learning problem on HGs.
Problem 1. Zero-shot cross-type transfer learning running on a HG:
In a given heterogeneous graph G = (V , E , T ,R) with node attributes X = ∪t∈T Xt, assume node
types s and t share a classification task {(i, yi) : i ∈ Vs,Vt}. During the training phase, using
labels {(i, yi) : i ∈ Vs} only for source-type nodes, we train an HGNN model f : f(G,X) = hi to
get node embeddings hi for all nodes i ∈ V and a classifier g : g(hi) = ŷi to predict labels ŷi from
the node embeddings hi. During the test phase, our task is to predict labels {(j, yj) : j ∈ Vt} of
target-type nodes where none of labels of target-type nodes were used for training.

5.3 Cross-Type Feature Extractor Transformations in HGNNs

We define ft : G 7→ Rd to be the “feature extractor" of a HGNN, which is composed of parameters
participating to map input node attributes of type t into a shared feature space Rd. In this section,
we derive a strict transformation between feature extractors within a HMPNN. Specifically, for any

66

two nodes i, j with types τ(i) = s and τ(j) = t, we derive an expression for fs in terms of ft, and
use that expression to inspire a trainable transfer learning module called KTN in the following
section. For simplicity, throughout this section we ignore the activation α(·) within the Transform
function in Equation (5.4).

5.3.1 Feature extractors in HMPNNs
We first reason intuitively about the differences between fs and ft when s ̸= t, using a toy
heterogeneous graph shown in Figure 5.1(a). Consider nodes v1 and v2, noticing that τ(1) ̸= τ(2).
Using HMPNN’s equations (5.2)-(5.4) from Section 5.2.2, for any l ∈ {0, . . . , L− 1} we have

h
(l)
1 = W (l)

s

[
M (l)

ss

(
h
(l−1)
3 ∥ h(l−1)

1

)
∥M (l)

ts

(
h
(l−1)
2 ∥ h(l−1)

1

)]
(5.5)

h
(l)
2 = W

(l)
t

[
M

(l)
st

(
h
(l−1)
1 ∥ h(l−1)

2

)
∥M (l)

tt

(
h
(l−1)
4 ∥ h(l−1)

2

)]
(5.6)

where h
(0)
j = xj . From these equations, we see that h(l)

1 and h
(l)
2 , which are features of different

types, are extracted using disjoint sets of model parameters at l-th layer. In a 2-layer HMPNN,
this creates unique gradient backpropagation paths between the two node types, as illustrated in
Figures 5.1(b)-5.1(c). In other words, even though the same HMPNN is applied to node types s and
t, the feature extractors fs and ft have different computational paths. Therefore they project node
features into different latent spaces, and have different update equations during training.

5.3.2 Empirical gap between fs and ft

Here we study the experimental consequences of the above observation via simulation. We first
construct a synthetic graph extending the 2-type graph in Figure 5.1(a) to have multiple nodes per-
type, and multiple classes. To maximize the effects of having different feature extractors, we sample
source and target nodes from the same feature distributions and each classes are well-separated in
the both the graph and feature space (more details available in Appendix 5.8.7).

On such a well-aligned heterogeneous graph, without considering the observation in Sec-
tion 5.3.1, there may seem to be no need for domain adaptation from ft to fs. However, when we
train the HMPNN model solely on s-type nodes, as shown in Figure 5.2(a) we find the test accuracy
for s-type nodes to be high (90%, blue line) and the test accuracy for t-type nodes to be quite low
(25%, green line). Now if instead we make the t-type nodes use the source feature extractor fs,
much more transfer learning is possible (∼65%, orange line). This shows that the different feature
extractors present in the HMPNN model result in the significant performance drop, and simply
matching input data distributions can not solve the problem.

To analyze this phenomenon at the level of backpropagation, in Figures 5.2(b)-5.2(c) we show
the magnitude of gradients passed to parameters of source and target node types. As illustrated in
Figures 5.1(b)-5.1(c), we find that the final-layer Transform parameter W (2)

t for type-t nodes have
zero gradients (Figure 5.2(b)), and similarly for the final-layer Message parameters (Figure 5.2(c)).
Additionally, those same parameters in the first-layer for t-type nodes have much smaller gradients
than their s-type counterparts: W (1)

t (blue line in Figure 5.2(b)), M (1)
st and M

(1)
tt (blue and orange

67

(a) Toy graph (b) Gradient path for feature
extractor fs

(c) Gradient path for feature
extractor ft

Figure 5.1: Illustration of a toy heterogeneous graph and the gradient paths for feature extractors fs
and ft. Colored arrows in figures (b) and (c) show that the same HGNN nonetheless produces different
gradient paths for each feature extractor. Color density of each box in (b) and (c) is proportional to the degree
of participation of the corresponding parameter in each feature extractor.

(a) Test accuracy across various feature
extractors

(b) L2 norms of gradients of Wτ(·) (c) L2 norms of gradients of Mϕ(·)

Figure 5.2: HGNNs trained on a source domain underfit a target domain even on a “nice" heterogeneous
graph. (a) Performance on the simulated heterogeneous graph for 4 kinds of feature extractors; (source:
source extractor fs on source domain, target-src-path: source extractor fs on target domain, target-org-path:
target extractor ft on target domain, and theoretical-KTN: target extractor ft on target domain using KTN.)
(b-c) L2 norms of gradients of parameters Wτ(·) and Mϕ(·) in HGNN models.

lines in Figure 5.2(c)) appear below than other lines. This is because they contribute to fs less than
ft

This case study shows that even when an HGNN is trained on a relatively simple, balanced, and
class-separated heterogeneous graph, a model trained only on the source domain node type cannot
transfer to the target domain node type.

5.3.3 Relationship between feature extractors in HMPNNs
We show that a HMPNN model provides different feature extractors for each node type. However,
still, fs and ft are built inside one HMPNN model and interchange intermediate feature embeddings
with each other. Both H

(L)
s and H

(L)
t (the output of fs and ft) are computed using the previous

layer’s intermediate embeddings H(L−1)
s , H

(L−1)
t , and any other connected node type embeddings

H
(L−1)
x at the L-th HMPNN layer. Therefore H

(L)
s and H

(L)
t can be mathematically presented by

68

each other using the (L− 1)-th layer embeddings as connecting points, so do fs and ft. Based on
this intuition, we derive a strict transformation between fs and ft, which will motivate the core
domain adaptation component of our proposed KTN model.
Theorem 7. Given a heterogeneous graph G = {V , E , T ,R}. For any layer l > 0, define the set of
(l − 1)-th layer HMPNN parameters as

Q(l−1) = {M (l−1)
r : r ∈ R} ∪ {W (l−1)

t : t ∈ T }. (5.7)

Let A be the total n × n adjacency matrix. Then for any s, t ∈ T there exist matrices
A∗

ts = ats(A) and Q∗
ts = qts(Q(l−1)) such that

H(l)
s = A∗

tsH
(l)
t Q∗

ts (5.8)

where ats(·) and qts(·) are matrix functions that depend only on s, t.
The full proof of Theorem 1 can be found in Appendix 5.8.1. Notice that in Equation 5.8, Q∗

ts

acts as a macro-Transform operator that maps H(L)
t into the source domain, then A∗

ts aggregates
the mapped embeddings into s-type nodes. In other words, Q∗

ts acts as a mapping matrix from the
target domain to the source domain. To examine the implications, we run the same experiment as
described in Section 5.3.2, while this time mapping the target features H(L)

t into the source domain
by multiplying with Q∗

ts in Equation 5.8 before passing over to a task classifier. We see via the red
line in Figure 5.2(a) that, with this mapping, the accuracy in the target domain becomes much closer
to the accuracy in the source domain (∼70%). Thus, we use this theoretical transformation as a
foundation for our trainable HGNN domain adaptation module, introduced in the following section.

5.3.4 Generalized cross-type transformations for HGNNs
In this section we showed that a HMPNN feature extractor on the (label-abundant) source node
type can be expressed in terms of the (label-scarce) target node type feature extractor, and this
transformation enables cross-type zero-shot learning for the target node type. As most HGNNs have
distinct feature extractors for each node types (even single-layer HGNNs, which have specialized
parameters for each node/edge attribute projection layer), they will suffer from the under-trained
target embeddings phenomena we showed in Section 5.3.2. For instance, in the meta-path based
MAGNN model [46], meta-paths directing toward the target node types are generally less engaged
in the source node feature computation and thus receive smaller gradients. While we cannot derive
the exact cross-type transformation for all possible HGNNs, the core intuition in the HMPNN
theory holds, namely that H(L)

s and H
(L)
t are both computed using the previous layer’s intermediate

embeddings (see Section 5.3.3) across all HGNN models. This observation allows us to extend our
KTN and apply it to almost any HGNN. We illustrate this by applying KTN to 6 different HGNN
models in Section 5.5, where we see greatly increased target-type accuracy.

5.4 KTN: Trainable Cross-Type Transfer Learning for HGNNs

69

Algorithm 5: Training step on a source domain
Require: heterogeneous graph G = (V, E , T ,R), node feature matrices X , source node type s, target

node type t, adjacency matrix Ats, source node label matrix Ys.
Ensure: HGNN f, classifier g, KTN tKTN

1: H
(L)
s , H

(L)
t = f(G, H(0) = X)

2: H∗
t = tKTN (H

(L)
t) = AtsH

(L)
t Tts

3: LKTN =
∥∥∥H(L)

s −H∗
t

∥∥∥
2

4: L = LCL(g(H
(L)
s),Ys) + λLKTN

5: Update f, g, t using∇L

Algorithm 6: Test step on a target domain
Require: pretrained HGNN f, classifier g, KTN tKTN
Ensure: target node label matrix Yt

1: H
(L)
t = f(G, H(0) = X)

2: H∗
t = H

(L)
t Tts

3: return g(H∗
t)

Inspired by these derivations we introduce our primary contribution, Knowledge Transfer
Networks. We begin by noting Equation 5.8 in Theorem 7 has a similar form to a single-layer graph
convolutional network [75] with a deterministic transformation matrix (Q∗

ts) and a combination of
adjacency matrices directing from target node type t to source node type s (A∗

ts). Instead of hand-
computing the mapping function Q∗

ts for arbitrary HGs and HGNNs (which would be intractable),
we learn the mapping function by modelling Equation 5.8 as a trainable graph convolutional network,
named the Knowledge Transfer Network, tKTN(·). KTN replaces Q∗

ts and A∗
ts in Equation 5.8 as

follows:

tKTN(H
(L)
t) = AtsH

(L)
t Tts (5.9)

LKTN =
∥∥∥H(L)

s − tKTN(H
(L)
t)

∥∥∥
2

(5.10)

where Ats is an adjacency matrix from node type t to s, and Tts is a trainable transformation matrix.
By minimizing LKTN, Tts is optimized to a mapping function of the target domain into the source
domain.

5.4.1 Algorithm

We minimize a classification loss LCL and a transfer loss LKTN jointly with regard to a HGNN model
f, a classifier g, and a knowledge transfer network tKTN as follows:

min
f, g, tKTN

LCL(g(f(G,X)s),Ys) + λ ∥f(G,X)s − tKTN(f(G,X)t)∥2

70

where λ is a hyperparameter regulating the effect of LKTN; and f(G,X)s and f(G,X)t denote
H

(L)
s and H

(L)
t , respectively. Algorithm 5 describes a training step on the source domain. After

computing the node embeddings H(L)
s and H

(L)
t , we map H

(L)
t to the source domain using tKTN and

compute LKTN. Then, we update the models using gradients of LCL (computed using only source
labels) and LKTN. Algorithm 6 describes the test phase on the target domain. After we get node
embeddings H(L)

t from the trained HGNN model, we map H
(L)
t into the source domain using the

trained transformation matrix Tts. Finally we pass the transformed target embeddings H∗
t into the

classifier which was trained on the source domain.
Indirect Connections We note that in practice, the source and target node types can be indirectly
connected in HGs via other node types (i.e., there is no Ats). Appendix 5.8.2 describes how we can
easily extend KTN to cover domain adaption scenarios in this case.

5.5 Experiments

5.5.1 Datasets

Open Academic Graph (OAG). A dataset introduced in [192] composed of five types of nodes:
papers (P), authors (A), institutions (I), venues (V), fields (F) and their corresponding relationships.
Paper and author nodes have text-based attributes, while institution, venue, and field nodes have
text- and graph structure-based attributes. Paper, author, and venue nodes are labeled with research
fields in two hierarchical levels, L1 and L2. We construct three field-specific subgraphs from OAG:
computer science, computer networks, and machine learning academic graphs.
PubMed.[170] A network composed of of four types of nodes: genes (G), diseases (D), chemicals
(C), and species (S), and their corresponding relationships. Gene and chemical nodes have graph
structure-based attributes, while disease and species nodes have text-based attributes. Each gene
and disease is labeled with a set of diseases they belong to or cause.
Synthetic heterogeneous graphs. We generate stochastic block models [1] with multiple node/edge
types. We label each node types with the same set of classes. Then we control feature/edge distribu-
tions within/between node types by manipulating feature/edge signal-to-noise ratio within/between
classes. A complete definition of the generative model is given in Appendix 5.8.7.

5.5.2 Baselines

We compare KTN with two MMD-based DA methods (DAN [98], JAN [100]), three adversarial
DA methods (DANN [47], CDAN [99], CDAN-E [99]), one optimal transport-based method
(WDGRL [128]), and two traditional graph mining methods (LP and EP [200]). For KTN and DA
methods, we use HMPNN as their base HGNN model. More information of each method is in
Appendix 5.8.9.

71

Table
5.1:K

T
N

on
O

pen
A

cadem
ic

G
raph

on
C

om
puter

Science
field.The

gain
colum

n
show

s
the

relative
gain

ofourm
ethod

overusing
no

dom
ain

adaptation
(B

ase
colum

n).o.o.m
denotes

out-of-m
em

ory
errors.

Task
M

etric
B

ase
D

A
N

JA
N

D
A

N
N

C
D

A
N

C
D

A
N

-E
W

D
G

R
L

L
P

E
P

K
T

N
(gain)

P-A
(L

1)
N

D
C

G
0.399

0.452
0.405

0.292
0.262

0.261
0.260

0.178
0.425

0.623
(56%

)
M

R
R

0.297
0.361

0.314
0.179

0.129
0.111

0.138
0.041

0.363
0.629

(112%
)

A
-P

(L
1)

N
D

C
G

0.401
0.566

0.598
0.294

0.364
0.246

0.195
0.153

0.557
0.733

(83%
)

M
R

R
0.318

0.508
0.544

0.229
0.270

0.090
0.047

0.022
0.507

0.711
(123%

)

A
-V

(L
1)

N
D

C
G

0.459
0.457

0.470
0.382

0.346
0.359

0.403
0.207

0.461
0.671

(46%
)

M
R

R
0.364

0.413
0.458

0.341
0.205

0.253
0.327

0.011
0.389

0.698
(92%

)

V-A
(L

1)
N

D
C

G
0.283

0.443
0.435

0.242
0.372

0.418
0.272

0.153
0.154

0.584
(107%

)
M

R
R

0.133
0.365

0.345
0.094

0.241
0.444

0.144
0.006

0.006
0.586

(340%
)

P-A
(L

2)
N

D
C

G
0.229

0.230
o.o.m

0.239
o.o.m

o.o.m
0.168

o.o.m
0.215

0.282
(23%

)
M

R
R

0.121
0.118

o.o.m
0.140

o.o.m
o.o.m

0.020
o.o.m

0.143
0.2248

(86%
)

A
-P

(L
2)

N
D

C
G

0.197
0.162

o.o.m
0.204

0.158
0.161

0.132
o.o.m

0.208
0.287

(46%
)

M
R

R
0.095

0.052
o.o.m

0.106
0.032

0.045
0.017

o.o.m
0.132

0.242
(155%

)

A
-V

(L
2)

N
D

C
G

0.347
0.329

0.295
0.325

0.288
0.273

0.289
o.o.m

0.297
0.402

(16%
)

M
R

R
0.310

0.296
0.198

0.223
0.128

0.097
0.110

o.o.m
0.227

0.399
(29%

)

V-A
(L

2)
N

D
C

G
0.235

0.249
0.251

0.214
0.197

0.205
0.217

o.o.m
0.119

0.252
(7%

)
M

R
R

0.129
0.157

0.161
0.090

0.044
0.068

0.085
o.o.m

0.000
0.166

(28%
)

72

5.5.3 Zero-shot transfer learning
We run 18 different zero-shot transfer learning tasks across three OAG and PubMed graphs. We
run each experiment 3 times and report the average value. Due to the space limitation, we report
the standard deviations and results on OAG-computer networks and OAG-machine learning in
Appendix 5.8.3. Each heterogeneous graph has the same node classification task for both source and
target node types. During training, we are given 1) the heterogeneous graph structure information
(i.e., adjacency matrices), 2) input node attribute matrices for all node types, and 3) labels on
source-type nodes for the classification task. During the test phase, we predict labels on target-type
nodes for the same classification task. The performance is evaluated by NDCG and MRR — widely
adopted ranking metrics [64, 65].

In Tables 5.1 and 5.2, our proposed method KTN consistently outperforms all baselines on
all tasks and graphs by up to 73.3% higher in MRR (P-A(L1) task in OAG-CS, Table 5.1). When
we compare with the base accuracy using the model pretrained on the source domain without any
domain adaptation (3rd column, Base), the results are even more impressive. We see our method
KTN provides relative gains of up to 340% higher MRR without using any labels from the target
domain. These results show the clear effectiveness of KTN on zero-shot transfer learning tasks on a
heterogeneous graph. We mention that venue and author node types are not directly connected in
the OAG graphs (Figure 5.5(b) in Appendix), but KTN successfully transfer knowledge by passing
intermediate node types.
Baseline Performance. Among baselines, MMD-based models (DAN and JAN) outperform
adversarial-based methods (DANN, CDAN, and CDAN-E) and optimal transport-based method
(WDGRL), unlike results reported in [99, 128]. These reversed results are a consequence of
HGNN’s unique feature extractors for each domains. Adversarial- and optimal transport-based
methods define separate losses for source and target feature extractors (which are not separated in
their shared feature extractor assumption), resulting in divergent gradients between different feature
extractors and poor domain adaption performance. This shows again the importance of considering
different feature extractors in HGNNs. More analysis can be found in Appendix 5.8.4.

5.5.4 Generality of KTN
Here, we use 6 different HGNN models, R-GCN [125], HAN [158], HGT [65], MAGNN [46],
MPNN [49], and HMPNN. MPNN maps all node types to the shared embedding space using
projection matrices at the beginning then applies MPNN layers designed for homogeneous graphs.
In Table 5.3, KTN improves accuracy on the target nodes across all HGNN models by up to 960%.
This shows the strong generality of KTN. More results and analysis can be found in Appendix 5.8.5.

5.5.5 Sensitivity analysis
Using our synthetic heterogeneous graph generator, we generate non-trivial 2-type heterogeneous
graphs to examine how the feature and edge distributions affect the performance of KTN and other
baselines. We generate a range of test-case scenarios by manipulating (1) signal-to-noise ratio σe of
within-class edge distributions and (2) signal-to-noise ratio σf of within-class feature distributions

73

Table
5.2:K

T
N

on
PubM

ed
graph.T

he
gain

colum
n

show
s

the
relative

gain
overusing

B
ase

colum
n.

Task
M

etric
B

ase
D

A
N

JA
N

D
A

N
N

C
D

A
N

C
D

A
N

-E
W

D
G

R
L

L
P

E
P

K
T

N
(gain)

D
-G

N
D

C
G

0.587
0.629

0.615
0.614

0.624
0.646

0.604
0.601

0.571
0.700

(19%
)

M
R

R
0.372

0.425
0.414

0.397
0.428

0.443
0.388

0.389
0.336

0.499
(34%

)

G
-D

N
D

C
G

0.596
0.599

0.577
0.599

0.581
0.606

0.578
0.576

0.580
0.662

(11%
)

M
R

R
0.354

0.362
0.332

0.356
0.337

0.362
0.340

0.351
0.353

0.445
(26%

)

74

Table 5.3: KTN on different HGNN models. The Source column shows accuracy on for source node types.
Base and KTN columns show accuracy for target node types without/with using KTN, respectively. The Gain
column shows the relative gain of our method over using no domain adaptation.

P-A (L1) A-P (L1)
HGNN type Metric Source Base KTN Gain Source Base KTN Gain

R-GCN NDCG 0.765 0.337 0.577 71.12% 0.648 0.388 0.647 66.82%
MRR 0.757 0.236 0.587 148.73% 0.623 0.270 0.611 126.18%

HAN NDCG 0.476 0.179 0.520 190.56% 0.515 0.182 0.512 181.33%
MRR 0.416 0.047 0.497 960.55% 0.509 0.055 0.527 850.90%

HGT NDCG 0.757 0.294 0.574 95.07% 0.670 0.283 0.581 104.83%
MRR 0.749 0.178 0.563 216.17% 0.670 0.149 0.565 279.52%

MAGNN NDCG 0.657 0.463 0.574 24.01% 0.676 0.557 0.622 11.68%
MRR 0.631 0.378 0.556 47.33% 0.680 0.509 0.592 16.14%

MPNN NDCG 0.602 0.443 0.590 33.11% 0.646 0.307 0.621 101.92%
MRR 0.572 0.319 0.575 80.10% 0.660 0.145 0.595 311.42%

HMPNN NDCG 0.789 0.399 0.623 56.14% 0.671 0.401 0.733 82.88%
MRR 0.777 0.297 0.629 111.86% 0.661 0.318 0.711 123.30%

across all of the (a) source-source (s↔ s), (b) target-target (t↔ t), and (c) source-target (s↔ t)
relationships.

For instance, in Figure 5.3, for each edge type (s ↔ s, t ↔ t, and s ↔ t, differentiated by
colors), there are two different types of edges, edges within the same class (plain line) and edges
across different classes (dotted line). For each edge type, we manipulate σe by changing the ratio
of within-class and cross-class edges, and σf by diverging feature distributions between classes.
Thus there will be 6 signal-to-noise ratios in total. A higher signal-to-noise ratio for a particular
data dimension (edges or features) across a particular relationship r ∈ {s ↔ s, t ↔ t, s ↔ t}
means that classes are more separable in that data dimension, when comparing within r, and hence
easier for HGNNs. Note that while tuning one σ(·) on the range [1.0, 10.0], the remaining five σ(·)
are held at 10.0. Additionally, we vary σ(·) across two scenarios: (I) “easy": source and target node
types have same number of clusters and same feature dimensions, (II) “hard" source and target node
types have different number of clusters and feature dimensions. Note that clusters and classes are
different concepts in this experiment; several clusters could have the same class label.

Figures 5.4(a) and 5.4(c) show results from changing σe across the three relation types. We
see that KTN is affected only by σe across the s ↔ t (cross-types) relationship, which accords
with our theory, since KTN exploits the between-type adjacency matrix. Surprisingly, as seen
in Figures 5.4(b) and 5.4(d), we do not find a similar dependence of KTN on σf , which shows
that KTN is robust by learning purely from edge homophily in the absence of feature homophily.
Regarding the performance of other baselines, EP shows similar tendencies as KTN— only affected
by cross-type σe — because EP also relies on cross-type propagation along edges. However, its
accuracy is bounded above due to the fact that it does not exploit the (unlabelled) target features.
DAN and DANN, which do not exploit cross-type edges, are not affected by cross-type σe. However,

75

Figure 5.3: Synthetic HG generator.

they show either low or unstable performance across different scenarios. DAN shows especially
poor performance in the “hard" scenarios (Figure 5.4(c) and 5.4(d)), failing to deal with different
feature spaces for source and target domains.

5.6 Related Work

Various transfer learning problems have been defined on the graph domain. [101, 103, 165, 184]
construct synthetic graphs from unstructured data and transfer knowledge over the graphs using
GNNs. On the other hand, [62, 64, 118, 164] focus on extracting knowledge from the existing graph
structures. They pretrain a GNN model on a source graph and re-use the model on a target graph.
While these methods focus on homogeneous graphs, [67, 171] transfer HGNNs across different
HGs. However, none of them can be directly applied to our cross-type transfer learning problem
running on a single HG. Here we cover two classes of learning approaches that are related to our
problem. As HGNNs are the models to which our method can be applied, we cover them extensively
in Section 5.2.

Zero-shot domain adaptation (DA) transfers knowledge from a source domain with abundant
labels to a target domain which lacks them. Zero-shot DA can be categorized into three groups —
MMD-based methods, adversarial methods, and optimal-transport-based methods. MMD-based
methods [98, 100, 140] minimize the maximum mean discrepancy (MMD) [51] between the mean
embeddings of two distributions in reproducing kernel Hilbert space. Adversarial methods [47, 99]
are motivated by theory in [8, 9] suggesting that a good cross-domain representation contains no
discriminative information about the origin of the input. They learn domain-invariant features
by a min-max game between the domain classifier and the feature extractor. Optimal transport-
based methods [128] estimate the empirical Wasserstein distance [122] between two domains and
minimizes the distance in an adversarial manner. All three categories rely on two networks — a

76

(a) Edge dist. (easy) (b) Feature dist. (easy)

(c) Edge dist. (hard) (d) Feature dist. (hard)

Figure 5.4: Effects of edge and feature distributions across classes and types in heterogeneous graphs.

feature extractor network and a task classifier network. Adversarial and OT-based methods use an
additional domain classifier network. Due to the assumption that source and target domains have
the same modality 1, the standard DA setting assumes identical feature extractors across domains.
More descriptions can be found in Appendix 5.8.9.

Label propagation (LP) approaches (e.g., [200]) use message-passing to pass each node’s label
to its neighbors according to normalized edge weights. LP relies on only a graph’s edges, and
is therefore easily applied to a heterogeneous graph – labels are simply propagated across edges,
regardless of type. In this paper we also evaluate a similarly-simple baseline, embedding propagation
(EP). Similar to LP, EP recursively propagates source embeddings (computed using source labels)
until they reach the target domain. EP exploits both node attribute information and the node

1In our problem, source and target node types could have either (1) different distributions on the same attribute
space or (2) entirely different attribute spaces

77

adjacencies, but only uses the source node embeddings.

5.7 Summary

In this work, we proposed the first cross-type zero-shot transfer learning method for heterogeneous
graphs. Our method, Knowledge Transfer Networks (KTN) for Heterogeneous Graph Neural
Networks, transfers knowledge from label-abundant node types to label-scarce node types. We
illustrate KTN handily improves HGNN performances up to 960% for zero-labeled node types
across 6 different HGNN models and outperforms many challenging baselines up to 73% higher in
MRR. Future work in the area includes filtering noisy edges between source and target domains and
making KTN more robust and less dependent on structure of given noisy heterogeneous graphs.

Limitation Statement Our transfer learning method is limited to node types sharing the same
task (i.e., the same classifier). We plan to extend our work to transfer knowledge between different
tasks running on different node types on a heterogeneous graph.

Societal Impact Statement KTN allows organizations to learn better from their own graph data,
leveraging its structure without requiring external information. We believe this has a number of
positive applications (preserving model quality without needing extra datasets). However like all
modeling improvements, its true impact depends on what modeling tasks the technique is applied
to.

5.8 Appendix

5.8.1 Proof of Theorem 7

In this proof, we adopt a simplified version of our message-passing function that ignores the
skip-connection:

Message(l)(i, j) = M
(l)
ϕ(i,j)h

(j)
i . (5.11)

The HGNN trained in the experimental results shown in Figure 5.2 also does not use skip-
connections and hence represents a theoretically-exact KTN component. In the real experiments,
we use (1) skip-connections, exploiting their usual benefits [55], and (2) the trainable version of
KTN.

Proof. Without loss of generality, we prove the result for the case where R = {(s, t) : s, t ∈ T },
meaning the type of an edge is identified with the (ordered) types of the neighbor nodes. In other
words, there is only one edge modality possible, such as a social networks with multiple node types
(e.g. “users", “groups") but only one edge modality (“friendship"). In the case of multiple edge
modalities (e.g. “friendship" and “message"), the result is extended trivially (through with more
algebraically-dense forms of ats and qts).

78

Throughout this proof, we use the following notation for the set of all j-adjacent edges of
relation type r:

Er(j) := {(i, j) : i ∈ V, (i, j) = r}. (5.12)

We write Ax1x2 to denote the sub-matrix of the total nx1 × nx2 adjacency matrix A corresponding to
node types x1, x2 ∈ T , and Āx1x2 to denote the same matrix divided by its column sum. H(l)

x is the
(row-wise) nx × dl embedding matrix of x-type nodes at layer l.

We first compute the l-th output g(l)j of the Aggregate step defined for HGNNs in Equation 5.3,
for any node j ∈ V such that τ(j) = s. The output of Aggregate is a concatenation of edge-type-
specific aggregations (see Equation 5.3). Note that at most T = |T | elements of this concatenation
are non-zero, since the node j only participates in T out of T 2 relation types in R. Thus we can
write g

(l)
j as

g
(l)
j = ∥

r∈R

1
|Er(j)|

∑
e∈Er(j)

Message(l)(e)

= ∥
x∈T

1
|Exs(j)|

∑
e∈Exs(j)

Message(l)(e)

= ∥
x∈T

1
|Exs(j)|

∑
(i,j)∈Exs(j)

M (l)
xs h

(l−1)
i

= ∥
x∈T

1
|Exs(j)|M

(l)
xs

∑
(i,j)∈Exs(j)

h
(l−1)
i

= ∥
x∈T

M (l)
xs

(
H(l−1)

x

)′
Ā(j)

xs ,

where Ā
(j)
xs denotes the j-th column of Āxs. Notice that

h
(l)
j = Transform(l)(j) = W (l)

s g
(l)
j , (5.13)

and (again) at most T elements of the concatenation g
(l)
j are non-zero. Therefore let W (l)

xs be the
columns of W (l)

s that select the concatenated element of g(l)j corresponding to node type x. Then we
can write

h
(l)
j =

∑
x∈T

W (l)
xs M

(l)
xs

(
H(l−1)

x

)′
Ā(j)

xs . (5.14)

Defining the operator Q(l)
xs :=

(
W

(l)
xs M

(l)
xs

)′
, this implies that

H(l)
s =

∑
x∈T

ĀxsH
(l−1)
x Q(l−1)

xs

= [Āx1s, . . . , ĀxT s]

H(l−1)
x1 0 0
0 . . . 0

0 0 H
(l−1)
xT

Q(l−1)
x1s

. . .

Q
(l−1)
xT s


= Ā·sH

(l−1)
· Q(l−1)

·s

79

Algorithm 7: Training step for one minibatch (indirect version)
Require: heterogeneous graph G = (V, E , T ,R), node feature matrices X , adjacency matrices Axy

where ∀(x, y) ∈ R, source node type s, target node type t, source node label matrix Ys.
Ensure: HGNN f, classifier g, KTN tKTN

1: H
(L)
s , H

(L)
t = f(H(0) = X,G), H∗

t = 0
2: for each meta-path p = t→ s do
3: x = t, Z = H

(L)
t

4: for each node type y ∈ p do
5: Z = AxyZTxy

6: x = y
7: end for
8: H∗

t = H∗
t + Z

9: end for
10: LKTN =

∥∥∥H(L)
s −H∗

t

∥∥∥
2

11: L = LCL(g(H
(L)
s), Ys) + λLKTN

12: Update f, g, tKTN using∇L

Algorithm 8: Test step for a target domain (indirect version)
Require: pretrained HGNN f, classifier g, KTN tKTN
Ensure: target node label matrix Yt

1: H
(L)
t = f(H(0) = X,G), H∗

t = 0
2: for each meta-path p = t→ s do
3: x = t, Z = H

(L)
t

4: for each node type y ∈ p do
5: X = ZTxy

6: x = y
7: end for
8: H∗

t = H∗
t + Z

9: end for
10: return g(H∗

t)

Similarly we have H(l)
t = Ā·tH

(l−1)
· Q

(l−1)
·t . Since H(l)

s and H
(l)
t share the term H

(l−1)
· , we can write

H(l)
s = Ā·sĀ

−1
·t H

(l)
t (Q

(l−1)
·t)−1Q

(l−1)
·s , (5.15)

where X−1 denotes the pseudo-inverse.

5.8.2 Indirectly Connected Source and Target Node Types
When source and target node types are indirectly connected by another node type x, we can simply
extend tKTN(H

(L)
t) to (Axs(AtxH

(L)
t Ttx)Txs) where TtxTxs becomes a mapping function from target

to source domains. Algorithms 7 and 8 show how to extend KTN. For every step (x → y) in

80

Table 5.4: KTN on Open Academic Graph on Computer Science field. The gain column shows the
relative gain of our method over using no domain adaptation (Base column). o.o.m denotes out-of-memory
errors.

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

P-A (L1)

NDCG 0.399 0.452 0.405 0.292 0.262 0.261 0.26 0.178 0.425 0.623 (56)
std 0.010 0.012 0.032 0.009 0.021 0.014 0.021 0.000 0.006 0.004
MRR 0.297 0.361 0.314 0.179 0.129 0.111 0.138 0.041 0.363 0.629 (112)
std 0.024 0.006 0.041 0.011 0.032 0.031 0.033 0.000 0.005 0.004

A-P (L1)

NDCG 0.401 0.566 0.598 0.294 0.364 0.246 0.195 0.153 0.557 0.733 (83)
std 0.003 0.012 0.014 0.034 0.049 0.046 0.025 0.000 0.002 0.007
MRR 0.318 0.508 0.544 0.229 0.27 0.09 0.047 0.022 0.507 0.711 (123)
std 0.001 0.029 0.028 0.093 0.117 0.037 0.029 0.000 0.003 0.009

A-V (L1)

NDCG 0.459 0.457 0.47 0.382 0.346 0.359 0.403 0.207 0.461 0.671 (46)
std 0.030 0.033 0.036 0.015 0.029 0.109 0.024 0.000 0.002 0.004
MRR 0.364 0.413 0.458 0.341 0.205 0.253 0.327 0.011 0.389 0.698 (92)
std 0.079 0.08 0.093 0.05 0.098 0.143 0.044 0.000 0.004 0.003

V-A (L1)

NDCG 0.283 0.443 0.435 0.242 0.372 0.418 0.272 0.153 0.154 0.584 (107)
std 0.045 0.012 0.007 0.004 0.048 0.039 0.004 0.000 0.006 0.005
MRR 0.133 0.365 0.345 0.094 0.241 0.444 0.144 0.006 0.006 0.586 (340)
std 0.074 0.027 0.017 0.011 0.103 0.115 0.018 0.007 0.010

P-A (L2)

NDCG 0.229 0.23 o.o.m 0.239 o.o.m o.o.m 0.168 o.o.m 0.215 0.282 (23)
std 0.005 0.003 - 0.006 - - 0.007 - 0.004 0.002
MRR 0.121 0.118 o.o.m 0.14 o.o.m o.o.m 0.02 o.o.m 0.143 0.2248 (86)
std 0.019 0.004 - 0.01 - - 0.006 - 0.003 0.003

A-P (L2)

NDCG 0.197 0.162 o.o.m 0.204 0.158 0.161 0.132 o.o.m 0.208 0.287 (46)
std 0.006 0.009 - 0.006 0.019 0.022 0.012 - 0.004 0.001
MRR 0.095 0.052 o.o.m 0.106 0.032 0.045 0.017 o.o.m 0.132 0.242 (155)
std 0.009 0.022 - 0.016 0.018 0.027 0.008 - 0.005 0.002

A-V (L2)

NDCG 0.347 0.329 0.295 0.325 0.288 0.273 0.289 o.o.m 0.297 0.402 (16)
std 0.003 0.034 0.014 0.013 0.011 0.058 0.011 - 0.002 0.003
MRR 0.310 0.296 0.198 0.223 0.128 0.097 0.11 o.o.m 0.227 0.399 (29)
std 0.004 0.109 0.047 0.065 0.003 0.096 0.034 - 0.001 0.015

V-A (L2)

NDCG 0.235 0.249 0.251 0.214 0.197 0.205 0.217 o.o.m 0.119 0.252 (7)
std 0.002 0.002 0.006 0.004 0.008 0.004 0.002 - 0.001 0.007
MRR 0.130 0.157 0.161 0.09 0.044 0.068 0.085 o.o.m 0.000 0.166 (28)
std 0.010 0.011 0.009 0.015 0.007 0.009 0.005 - 0.000 0.012

a meta-path (t → · · · → s) connecting target node type t to source node type s, we define a
transformation matrix Txy, run a convolution operation with an adjacency matrix Axy, then map
the transformed embedding to the source domain. We run the same process for all meta-paths
connecting from target node type t to source node type s, and sum up them to match with the source
embeddings. In the test phase, we run the same process to get the transformed target embeddings,
but this time, without adjacency matrices. We run Algorithm 7 and 8 for transfer learning tasks
between author and venue nodes which are indirectly connected by paper nodes in OAG graphs
(Figure 5.5(b)). As shown in Tables 5.4, 5.6, and 5.7, we successfully transfer HGNN models
between author and venue nodes (A-V and V-A) for both L1 and L2 tasks.

Will lengths of meta-paths affect the performance? We examine the performance of KTN
varying the length of meta-paths between source and target node types. In Table 5.8, accuracy
decreases with longer meta-paths. When we add additional meta-paths than the minimum path, it
also brings noise in every edge types. Note that author and venue nodes are indirectly connected by
paper nodes; thus the minimum length of meta-paths in the A-V (L1) task is 2. The accuracy in the
A-V (L1) task with a meta-path of length 1 is low because KTN fails to transfer anything with a
meta-path shorter than the minimum. Using the minimum length of meta-paths is enough for KTN.

81

5.8.3 More results for Zero-shot Transfer Learning in Section 5.5.3
We show the zero-shot transfer learning results with error bars on OAG-computer science and
Pubmed in Tables 5.4 and 5.5. We also present the results with error bars on OAG-computer
networks and OAG-machine learning in Tables 5.6 and 5.7, respectively. Across all tasks and
graphs, our proposed method KTN consistently outperforms all baselines.

5.8.4 Analysis for Baselines in Section 5.5.3
Among baselines, MMD-based models (DAN and JAN) outperform adversarial based methods
(DANN, CDAN, and CDAN-E) and optimal transport-based method (WDGRL), unlike results
reported in [99, 128]. These reversed results are a consequence of HGNN’s unique feature extractors
for source and target domains. When fs and ft denote feature extractors for source and target
domains, respectively, DANN and CDAN define their adversarial losses as a cross entropy loss
(E[log fs] − E[log ft]) where gradients of the subloss E[log fs] are passed only back to fs, while
gradients of the subloss E[log ft] are passed only back to ft. Importantly, source and target feature
extractors do not share any gradient information, resulting in divergence. This did not occur in
their original test environments where source and target domains share a single feature extractor.
Similarly, WDGRL measures the first-order Wasserstein distance as an adversarial loss, which also
brings the same effect as the cross-entropy loss we described above, leading to divergent gradients
between source and target feature extractors. On the other hand, DAN and JAN define a loss in
terms of higher-order MMD between source and target features. Then the gradients of the loss
passed to each feature extractor contain both source and target feature information, resulting in a
more stable gradient estimation. This shows again the importance of considering different feature
extractors in HGNNs.

JAN, CDAN, and CDAN-E often show out of memory issues in Tables 5.4, 5.6, and 5.7. These
baselines consider the classifier prediction whose dimension is equal to the number of classes in
a given task. That is why JAN, CDAN, and CDAN-E fail at the L2 field prediction tasks in OAG
graphs where the number of classes is 17, 729.

LP performs worst among the baselines, showing the limitation of relying only on graph
structures. LP maintains a label vector with the length equal to the number of classes for each node,
thus shows out-of-memory issues on tasks with large number of classes on large-size graphs (L2
tasks with 17, 729 labels on the OAG-CS graph). EP performs moderately well similar to other DA
methods, but lower than KTN up to 60% absolute points of MRR, showing the limitation of not
using target node attributes.

5.8.5 More results for Generality of KTN in Section 5.5.4
We show KTN performance on 6 different types of HGNN models across 4 different zero-shot
domain adaptation tasks on the OAG-computer science dataset in Table 5.9. Descriptions of each
HGNN model can be found in Appendix 5.8.10. While KTN consistently improves all HGNN
models’ performance on zero-labeled node types using labels rooted at other node types, the
magnitude of improvements varies. While HAN sees up to 4958% (V-A (L1) task in Table 5.9),

82

Table 5.5: KTN on PubMed

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

D-G

NDCG 0.587 0.629 0.615 0.614 0.624 0.646 0.604 0.601 0.571 0.700 (19)
std 0.004 0.013 0.028 0.008 0.078 0.015 0.022 0.000 0.004 0.005
MRR 0.372 0.425 0.414 0.397 0.428 0.443 0.388 0.389 0.336 0.499 (34)
std 0.003 0.007 0.054 0.013 0.066 0.027 0.035 0.000 0.003 0.006

G-D

NDCG 0.596 0.599 0.577 0.599 0.581 0.606 0.578 0.576 0.580 0.662 (11)
std 0.007 0.020 0.032 0.011 0.054 0.019 0.019 0.000 0.011 0.003
MRR 0.354 0.362 0.332 0.356 0.337 0.362 0.340 0.351 0.353 0.445 (26)
std 0.005 0.015 0.019 0.008 0.023 0.031 0.015 0.000 0.008 0.002

Table 5.6: KTN on Open Academic Graph on Computer Network field

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

P-A (L2)

NDCG 0.331 0.344 o.o.m 0.335 o.o.m o.o.m 0.287 0.221 0.270 0.382 (16)
std 0.004 0.005 - 0.004 - - 0.012 0.000 0.003 0.004
MRR 0.250 0.277 o.o.m 0.280 o.o.m o.o.m 0.199 0.130 0.270 0.360 (44)
std 0.024 0.012 - 0.007 - - 0.004 0.000 0.003 0.010

A-P (L2)

NDCG 0.313 0.290 o.o.m 0.250 0.234 0.168 0.266 0.114 0.319 0.364 (17)
std 0.002 0.023 - 0.021 0.041 0.025 0.030 0.000 0.004 0.003
MRR 0.250 0.233 o.o.m 0.130 0.116 0.051 0.212 0.038 0.296 0.368 (47)
std 0.015 0.039 - 0.051 0.069 0.037 0.061 0.000 0.005 0.004

A-V (L2)

NDCG 0.539 0.521 0.519 0.510 0.467 0.362 0.471 0.232 0.443 0.567 (5)
std 0.012 0.031 0.008 0.022 0.008 0.045 0.024 0.000 0.002 0.008
MRR 0.584 0.528 0.461 0.510 0.293 0.294 0.365 0.000 0.406 0.628 (8)
std 0.042 0.015 0.011 0.054 0.013 0.088 0.019 0.000 0.004 0.016

V-A (L2)

NDCG 0.256 0.343 0.345 0.265 0.328 0.316 0.263 0.133 0.119 0.341 (33)
std 0.006 0.012 0.005 0.005 0.005 0.003 0.003 0.000 0.001 0.005
MRR 0.117 0.296 0.286 0.151 0.285 0.275 0.147 0.000 0.000 0.281 (141)
std 0.020 0.009 0.004 0.009 0.006 0.008 0.009 0.000 0.000 0.014

MAGNN is improved by up to 47% (P-A(L1) task) or sees no improvement (A-V(L1) task). This
gap stems from how many parameters each HGNN model shares across node types. HAN does
not share any parameters during message-passing operations (every parameters are specialized to
each meta-path), while MAGNN shares the transformation matrices across all node types at every
layer. By sharing more parameters with other node types, the gradients are more likely passed to
target node type-specific parameters, leaving less room for improvement by KTN. However, KTN
is still necessary for any HGNN models. MPNN who shares all parameters except the projection
matrices that map different input attributes into the same embedding space at the beginning still
sees improvements by up to 311%. Again, these experimental results show the impact of having
different feature extractors for each node type in HGNN models.

5.8.6 Effect of trade-off coefficient λ

We examine the effect of λ on transfer learning performance. In Table 5.10, as λ decreases, target
accuracy decreases as expected. Source accuracy also sees small drops since LKTN functions as a
regularizer; by removing the regularization effect, source accuracy decreases. When λ becomes
large, both source and target accuracy drop significantly. Source accuracy drops since the effect of
LKTN becomes larger than the classification loss LCL. Even the effect of transfer learning become
larger by having larger λ, since the source accuracy which will be transferred to the target domain
is low, the target accuracy is also low. Thus we set λ to 1 throughout the experiments.

83

Table 5.7: KTN on Open Academic Graph on Machine Learning field

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

P-A (L2)

NDCG 0.268 0.290 o.o.m 0.291 o.o.m 0.249 0.232 0.272 0.215 0.318 (19)
std 0.002 0.009 - 0.004 - 0.005 0.004 0.000 0.002 0.004
MRR 0.134 0.220 o.o.m 0.222 o.o.m 0.095 0.098 0.195 0.143 0.269 (102)
std 0.006 0.020 - 0.026 - 0.003 0.037 0.000 0.003 0.006

A-P (L2)

NDCG 0.261 0.225 o.o.m 0.234 0.228 0.241 0.241 0.119 0.267 0.319 (22)
std 0.002 0.009 - 0.004 0.005 0.011 0.002 0.000 0.001 0.005
MRR 0.207 0.127 o.o.m 0.155 0.152 0.095 0.182 0.035 0.214 0.287 (39)
std 0.018 0.042 - 0.008 0.009 0.003 0.017 0.000 0.012 0.011

A-V (L2)

NDCG 0.465 0.493 0.463 0.477 0.408 0.422 0.393 0.224 0.424 0.538 (16)
std 0.006 0.004 0.003 0.003 0.006 0.013 0.005 0.000 0.005 0.004
MRR 0.469 0.542 0.537 0.519 0.412 0.240 0.213 0.001 0.391 0.632 (35)
std 0.039 0.008 0.005 0.003 0.015 0.008 0.009 0.000 0.021 0.006

V-A (L2)

NDCG 0.252 0.293 0.292 0.237 0.242 0.255 0.250 0.137 0.119 0.302 (20)
std 0.006 0.011 0.009 0.004 0.003 0.002 0.004 0.000 0.003 0.007
MRR 0.131 0.212 0.199 0.086 0.085 0.129 0.118 0.000 0.000 0.227 (73)
std 0.016 0.023 0.013 0.005 0.021 0.007 0.012 0.000 0.000 0.015

Table 5.8: Meta-path length in KTN: increasing the meta-path longer than the minimum does not bring
significant improvement to KTN. Note that the minimum length of meta-paths in the A-V (L1) task is 2.

Task P-A (L1) A-V (L1)
Meta-path

length NDCG MRR NDCG MRR

1 0.623 0.621 0.208 0.010
2 0.627 0.628 0.673 0.696
3 0.608 0.611 0.627 0.648
4 0.61 0.623 0.653 0.671

5.8.7 Synthetic Heterogeneous Graph Generator
Our synthetic heterogeneous graph generator is based on attributed Stochastic Block Models
(SBM) [148, 149], using blocks (clusters) as the node classes. In the attributed SBM, graphs exhibit
within-type cluster homophily at the edge-level (nodes most-frequently connect to other nodes in
the same cluster), and at the feature-level (nodes are closest in feature space to other nodes in the
same cluster). To produce heterogeneous graphs, we additionally introduce between-type cluster
homophily, which allows us to model real-world heterogeneous graphs in which knowledge can be
shared across node types.

The first step in generating a heterogeneous SBM is to decide how many clusters will partition
each node type. Assume within-type cluster counts k1, . . . , kT . We allow for between-type cluster
homophily with a KT := mint{kt}-partition of clusters such that each cluster group has at least one
corresponding cluster from other node types.

Secondly, edge-level homophily is controlled by signal-to-noise ratios σe = p/q where nodes
within-cluster are connected with probability p and nodes between-cluster are connected with
probability q. Additionally, edges within one cluster group across different types (see previous
paragraph) is controlled together with edges between different cluster groups across different
types using some σe. In Section 5.5.5, we describe the manipulation of multiple σe parameters
within-and-between types.

84

Table 5.9: KTN on different HGNN models: The Source column shows accuracy on source node types.
Base and KTN columns show accuracy on target node types without/with using KTN, respectively. The
Gain column shows the relative gain of our method over using no transfer learning.

P-A (L1) A-P (L1)
HGNN type Metric Source Base KTN Gain% Source Base KTN Gain%

R-GCN

NDCG 0.765 0.337 0.577 71.12 0.648 0.388 0.647 66.82
std 0.004 0.005 0.002 0.006 0.007 0.004
MRR 0.757 0.236 0.587 148.73 0.623 0.270 0.611 126.18
std 0.002 0.003 0.001 0.005 0.008 0.004

HAN

NDCG 0.476 0.179 0.520 190.56 0.515 0.182 0.512 181.33
std 0.004 0.006 0.003 0.004 0.009 0.011
MRR 0.416 0.047 0.497 960.55 0.509 0.055 0.527 850.90
std 0.001 0.002 0.002 0.005 0.004 0.005

HGT

NDCG 0.757 0.294 0.574 95.07 0.670 0.283 0.581 104.83
std 0.002 0.003 0.004 0.001 0.003 0.009
MRR 0.749 0.178 0.563 216.17 0.670 0.149 0.565 279.52
std 0.005 0.007 0.001 0.002 0.007 0.006

MAGNN

NDCG 0.657 0.463 0.574 24.01 0.676 0.557 0.622 11.68
std 0.003 0.001 0.003 0.001 0.001 0.003
MRR 0.631 0.378 0.556 47.33 0.680 0.509 0.592 16.14
std 0.003 0.002 0.004 0.001 0.002 0.005

MPNN

NDCG 0.602 0.443 0.590 33.11 0.646 0.307 0.621 101.92
std 0.002 0.002 0.001 0.005 0.013 0.004
MRR 0.572 0.319 0.575 80.10 0.660 0.145 0.595 311.42
std 0.001 0.003 0.005 0.002 0.024 0.003

H-MPNN

NDCG 0.789 0.399 0.623 56.14 0.671 0.401 0.733 82.88
std 0.001 0.005 0.001 0.003 0.005 0.009
MRR 0.777 0.297 0.629 111.86 0.661 0.318 0.711 123.30
std 0.003 0.001 0.002 0.007 0.004 0.008

V-A (L1) A-V (L1)
HGNN type Metric Source Base KTN Gain% Source Base KTN Gain%

R-GCN

NDCG 0.664 0.426 0.530 24.36 0.660 0.599 0.744 24.26
std 0.003 0.006 0.002 0.001 0.008 0.004
MRR 0.683 0.325 0.514 58.39 0.656 0.524 0.785 49.87
std 0.003 0.008 0.004 0.011 0.009 0.005

HAN

NDCG 0.618 0.153 0.510 232.35 0.515 0.546 0.689 26.21
std 0.005 0.007 0.003 0.008 0.003 0.005
MRR 0.634 0.010 0.516 4958.82 0.508 0.511 0.758 48.28
std 0.002 0.005 0.002 0.001 0.008 0.007

HGT

NDCG 0.615 0.234 0.536 128.95 0.694 0.367 0.735 100.22
std 0.002 0.005 0.002 0.006 0.007 0.009
MRR 0.638 0.095 0.537 464.88 0.699 0.267 0.772 189.21
std 0.006 0.002 0.005 0.002 0.005 0.012

MAGNN

NDCG 0.536 0.513 0.513 0.00 0.684 0.676 0.692 2.37
std 0.005 0.001 0.001 0.001 0.002 0.001
MRR 0.586 0.522 0.522 0.00 0.686 0.751 0.752 0.13
std 0.004 0.001 0.002 0.002 0.001 0.004

MPNN

NDCG 0.578 0.380 0.532 40.03 0.639 0.578 0.794 37.19
std 0.008 0.008 0.004 0.007 0.007 0.005
MRR 0.603 0.253 0.505 100.12 0.652 0.584 0.847 44.96
std 0.001 0.003 0.007 0.006 0.001 0.006

H-MPNN

NDCG 0.670 0.283 0.584 106.50 0.676 0.459 0.671 46.22
std 0.002 0.002 0.006 0.005 0.004 0.003
MRR 0.689 0.133 0.586 339.76 0.677 0.364 0.698 91.92
std 0.003 0.003 0.005 0.01 0.005 0.002

Table 5.10: Effect of λ

P-A (L1) A-V (L1)
Metric NDCG MRR NDCG MRR

λ Source Target Source Target Source Target Source Target
10−5 0.780 0.587 0.772 0.595 0.689 0.626 0.690 0.642
10−3 0.788 0.58 0.779 0.576 0.687 0.654 0.689 0.677
100 0.792 0.621 0.788 0.633 0.689 0.670 0.692 0.696
102 0.750 0.617 0.757 0.623 0.654 0.644 0.659 0.668
104 0.143 0.177 0.007 0.031 0.411 0.432 0.373 0.421

85

Table 5.11: Statistics of Open Academic Graph

Domain #papers #authors #fields #venues #institues

Computer Science 544,244 510,189 45,717 6,934 9,097
Computer Network 75,015 82,724 12,014 2,115 4,193
Machine Learning 90,012 109,423 19,028 3,226 5,455
Domain #P-A #P-F #P-V #A-I #P-P #F-F

Computer Science 1,091,560 3,709,711 544,245 612,873 11,592,709 525,053
Computer Network 155,147 562,144 75,016 111,180 1,154,347 110,869
Machine Learning 166,119 585,339 90,013 156,440 1,209,443 163,837

Finally, node attributes are generated by a multivariate Normal mixture model, using the
cluster partition as the mixture groups. Thus feature-level homophily is controlled by increasing the
variance of the cluster centers σf , while keeping the within-cluster variance fixed. Cross-type feature
homophily is controlled by setting a center of cluster centers within-type with linear combinations
of centers (of cluster centers) of other types. Note that features of different types are allowed to
have different dimensions, as we generate different mixture-model cluster centers for each cluster
within each type.

Toy Heterogeneous Graph in Section 5.3.2 Using the synthetic graph procedure described
above, we used the following hyperparameters to simulate the toy heterogeneous graph shown in
Figure 5.2. We generate the graph with 2 node types and 4 edge types as described in Figure 5.1(a),
then we divide each node type into 4 classes of 400 nodes. To generate an easy-to-transfer scenario,
signal-to-noise ratio σf between means of feature distributions are all set to 10. The ratio σe of the
number of intra-class edges to the number of inter-class edges is set to 10 among the same node
types and across different node types. The dimension of features is set to 24 for both node types.

Sensitivity test in Section 5.5.5 Figure 5.5(a) shows the structures of graphs we used in Sec-
tion 5.5.5. The dimension of features are set to 24 for both node types for the "easy" scenario,
and 32 and 48 for types s and t, respectively, for the "hard" scenario. Additionally, for the "hard"
scenario, we divide the t nodes into 8 clusters instead of 4. The other hyperparameters σe and σf are
described in Section 5.5.5. For each unique value of σ(·) across the six (σ(·), r) pairs, we generate 5
heterogeneous graphs.

5.8.8 Real-world Dataset

Open Academic Graph (OAG) [134, 145, 192] is the largest publicly available heterogeneous
graph. It is composed of five types of nodes: papers, authors, institutions, venues, fields and
their corresponding relationships. Papers and authors have text-based attributes, while institutions,
venues, and fields have text- and graph structure-based attributes. To test the generalization of the

86

Table 5.12: Statistics of PubMed Graph

#gene #disease #chemicals #species

13,561 20,163 26,522 2,863
#G-G #G-D #D-D #C-G #C-D

32,211 25,963 68,219 31,278 51,324
#C-C #C-S #S-G #S-D #S-S

124,375 6,298 3,156 5,246 1,597

(a) Synthetic graph (b) OAG (c) PubMed

Figure 5.5: Schema of synthetic and real-world heterogeneous graphs.

proposed model, we construct three field-specific subgraphs from OAG: the Computer Science
(OAG-CS), Computer Networks (OAG-CN), and Machine Learning (OAG-ML) academic graphs.

Papers, authors, and venues are labeled with research fields in two hierarchical levels, L1 and L2.
OAG-CS has both L1 and L2 labels, while OAG-CN and OAG-ML have only L2 labels (their L1
labels are all "computer science"). Transfer learning is performed on the L1 and L2 field prediction
tasks between papers, authors, and venues for each of the aforementioned subgraphs. Note that
paper-author (P-A) and paper-venue (P-V) are directly connected, while author-venue (A-V) are
indirectly connected via papers.

The number of classes in the L1 task is 275, while the number of classes in the L2 task is 17, 729.
The graph statistics are listed in Table 5.11, in which P–A, P–F, P–V, A–I, P–P, and F-F denote the
edges between paper and author, paper and field, paper and venue, author and institute, the citation
links between two papers, and the hierarchical links between two fields. The graph structure is
described in Figure 5.5(b).

For paper nodes, features are generated from each paper’s title using a pre-trained XLNet [161].
For author nodes, features are averaged over features of papers they published. Feature dimension
of paper and author nodes is 769. For venue, institution, and field node types, features of dimension
400 are generated from their heterogeneous graph structures using metapath2vec [30].

87

PubMed [170] is a novel biomedical network constructed through text mining and manual
processing on biomedical literature. PubMed is composed of genes, diseases, chemicals, and
species. Each gene or disease is labeled with a set of diseases (e.g., cardiovascular disease) they
belong to or cause. Transfer learning is performed on a disease prediction task between genes and
disease node types.

The number of classes in the disease prediction task is 8. The graph statistics are listed in
Table 5.12, in which G, D, C, and S denote genes, diseases, chemicals, and species node types. The
graph structure is described in Figure 5.5(c).

For gene and chemical nodes, features of dimension 200 are generated from related PubMed
papers using word2vec [105]. For diseases and species nodes, features of dimension 50 are generated
based on their graph structures using TransE [13].

5.8.9 Baselines
Zero-shot domain adaptation can be categorized into three groups — MMD-based methods, ad-
versarial methods, and optimal-transport-based methods. MMD-based methods [98, 100, 140]
minimize the maximum mean discrepancy (MMD) [51] between the mean embeddings of two
distributions in reproducing kernel Hilbert space. DAN [98] enhances the feature transferability
by minimizing multi-kernel MMD in several task-specific layers. JAN [100] aligns the joint distri-
butions of multiple domain-specific layers based on a joint maximum mean discrepancy (JMMD)
criterion.

Adversarial methods [47, 99] are motivated by theory in [8, 9] suggesting that a good cross-
domain representation contains no discriminative information about the origin of the input. They
learn domain invariant features by a min-max game between the domain classifier and the feature
extractor. DANN [47] learns domain invariant features by a min-max game between the domain
classifier and the feature extractor. CDAN [99] exploits discriminative information conveyed in the
classifier predictions to assist adversarial adaptation. CDAN-E [99] extends CDAN to condition the
domain discriminator on the uncertainty of classifier predictions, prioritizing the discriminator on
easy-to-transfer examples.

Optimal transport-based methods [128] estimate the empirical Wasserstein distance [122]
between two domains and minimizes the distance in an adversarial manner. Optimal transport-
based method are based on a theoretical analysis [122] that Wasserstein distance can guarantee
generalization for domain adaptation. WDGRL [128] estimates the empirical Wasserstein distance
between two domains and minimizes the distance in an adversarial manner.

5.8.10 HGNN models
All heterogeneous graph neural networks (HGNN) models we used in the experiments have layer-
wise parameters. As the HGNN models have parameters specialized in either node/edge/meta-path
types, they all have distinct feature extractors for each node types, thus, they will suffer from the
under-trained target node phenomena we showed in Section 5.3.2. Also, because the core intuition
in KTN — namely that embeddings of any node types at the last layer are computed using the
same set of the previous layer’s intermediate embeddings (see Section 5.3.3) — holds across all

88

HGNN models, KTN can be applied to any HGNN models and show greatly increased target-type
accuracy.

5.8.11 Experimental Settings
All experiments were conducted on the same p2.xlarge Amazon EC2 instance. Here, we describe
the structure of HGNNs used in each heterogeneous graph.

Open Academic Graph: We use a 4-layered HGNN with transformation and message parameters
of dimension 128 for KTN and other baselines. Learning rate is set to 10−4.

PubMed: We use a single-layered HGNN with transformation and message parameters of dimen-
sion 10 for KTN and other baselines. Learning rate is set to 5× 10−5.

Synthetic Heterogeneous Graphs: We use a 2-layered HGNN with transformation and message
parameters of dimension 128 for KTN and other baselines. Learning rate is set to 10−4.

We implement LP, EP and KTN using Pytorch. For the domain adaptation baselines (DAN,
JAN, DANN, CDAN, CDAN-E, and WDGRL), we use a public domain adaptation library ADA 2.
We match the numbers of layers and dimensions of hidden embeddings across all HGNN models.
We implement MPNN and HMPNN using Pytorch. For other HGNN models (R-GCN, HAN,
HGT, and MAGNN), we use an open-source toolkit for Heterogeneous Graph Neural Network
(OpenHGNN) 3. Our code is publicly available 4.

2https://github.com/criteo-research/pytorch-ada
3https://github.com/BUPT-GAMMA/OpenHGNN
4https://github.com/minjiyoon/KTN

89

https://github.com/criteo-research/pytorch-ada
https://github.com/BUPT-GAMMA/OpenHGNN
https://github.com/minjiyoon/KTN

90

Chapter 6

Privacy II: privacy-enhanced graph genera-
tive model

As the field of Graph Neural Networks (GNN) continues to grow, it experiences a corresponding
increase in the need for large, real-world datasets to train and test new GNN models on challenging,
realistic problems. Unfortunately, such graph datasets are often generated from online, highly
privacy-restricted ecosystems, which makes research and development on these datasets hard, if
not impossible. This greatly reduces the amount of benchmark graphs available to researchers,
causing the field to rely only on a handful of publicly-available datasets. To address this problem,
we introduce a novel graph generative model, Computation Graph Transformer (CGT) that learns
and reproduces the distribution of real-world graphs in a privacy-controlled way. More specifically,
CGT (1) generates effective benchmark graphs on which GNNs show similar task performance
as on the source graphs, (2) scales to process large-scale graphs, (3) incorporates off-the-shelf
privacy modules to guarantee end-user privacy of the generated graph. Extensive experiments
across a vast body of graph generative models show that only our model can successfully generate
privacy-controlled, synthetic substitutes of large-scale real-world graphs that can be effectively used
to benchmark GNN models.

6.1 Motivation

Graph Neural Networks (GNNs) [20, 75] are machine learning models that learn the dependences
in graphs via message passing between nodes. Various GNN models have been widely applied on a
variety of industrial domains such as misinformation detection [10], financial fraud detection [156],
traffic prediction [197], and social recommendation [176]. However, datasets from these industrial
tasks are overwhelmingly proprietary and privacy-restricted and thus almost always unavailable for
researchers to study or evaluate new GNN architectures. This state-of-affairs means that in many
cases, GNN models cannot be trained or evaluated on graphs that are appropriate for the actual tasks
that they need to execute.

In this paper, we propose a novel graph generation problem to overcome the limited access to
real-world graph datasets. Given a graph, our goal is to generate synthetic graphs that follow its
distribution in terms of graph structure, node attributes, and labels, making them usable as substitutes
for the original graph for GNN research. Any observations or results from experiments on the
original graph should be near-reproduced on the synthetic graphs. Additionally, the graph generation

91

process should be scalable and privacy-controlled to consume large-scale and privacy-restricted
real-world graphs. Formally, our new graph generation problem is stated as follow:
Problem 2. Let A, X , and Y denote adjacency, node attribute, and node label matrices; given an
original graph G = (A,X ,Y), generate a synthetic graph dataset G ′ satisfying:
• Benchmark effectiveness: performance rankings among m GNN models on G ′ should be similar

to the rankings among the same m GNN models on G.
• Scalability: computation complexity of graph generation should be linearly proportional to the

size of the original graph O(|G|) (i.e., number of nodes or edges).
• Privacy guarantee: any syntactic privacy notions are given to end users (e.g., k-anonymity).

While there is already a vast body of work on graph generation, we found that no study has
fully addressed the problem setting above. [85, 111] generate random graphs using a few known
graph patterns, while [92, 183] learn only graph structures without considering node attribute/label
information, and [38] learn the structures with boolean node attributes. Recent graph generative
models [102, 130] are mostly specialized to small-scale molecule graph generation.

In this work, we introduce a novel graph generative model, Computation Graph Transformer
(CGT) that addresses the three requirements above for the benchmark graph generation problem.
First, we reframe the graph generation problem into a discrete-value sequence generation problem.
Motivated by GNN models that avoid scalability issues by operating on egonets sampled around
each node, called computation graphs [55], we learn the distribution of computation graphs rather
than the whole graph. In other words, our generated graph dataset G ′ will have a form of a set of
computation graphs where GNN models can run immediately without preceded egonet sampling
process. In addition to the scalability benefit, learning distributions of computation graphs which are
the direct input to GNN models may also help to get better benchmark effectiveness. Then, instead
of learning the joint distribution of graph structures and node attributes, we devise a novel duplicate
encoding scheme for computation graphs that transforms an adjacency and feature matrix pair into
a single, dense feature matrix that is isomorphic to the original pair. Finally, we quantize the feature
matrix into a discrete value sequence that will be consumed by a Transformer architecture [152]
adapted to our graph generation setting. After the quantization, our model can be easily extended to
provide k-anonymity or differential privacy guarantees on node attributes and edge distributions by
incorporating off-the-shelf privacy modules.

Extensive experiments on real-world graphs with a diverse set of GNN models demonstrate
CGT provides significant improvement over existing generative models in terms of benchmark
effectiveness (up to 1.03 higher Spearman correlations, up to 33% lower MSE between original
and reproduced GNN accuracies), scalability (up to 35k nodes and 8k node attributes), and pri-
vacy guarantees (k-anonymity and differential privacy for node attributes). CGT also preserves
graph statistics on computation graphs by up to 11.01 smaller Wasserstein distance than previous
approaches.

In sum, our contributions are: 1) a novel graph generation problem featuring three requirements
of modern graph learning; 2) reframing of the graph generation problem into a discrete-valued
sequence generation problem; 3) a novel Transformer architecture able to encode the original
computation graph structure in sequence learning; and finally 4) comprehensive experiments that
evaluate the effectiveness of graph generative models to benchmark GNN models.

92

Figure 6.1: Computation graphs with s = 2 neighbor samples and L = 2 depth. (a) input graph; (b)
original computation graphs have differently-shaped adjacency (blue) and attribute (yellow) matrices; (c)
duplicate encoding scheme outputs the same adjacency matrix and identically-shaped attribute matrices.

6.2 From Graph Generation to Sequence Generation

In this section, we illustrate how to convert the whole-graph generation problem into a discrete-
valued sequence generation problem. An input graph G is given as a triad of adjacency matrix
A ∈ Rn×n, node attribute matrix X ∈ Rn×d, and node label matrix Y ∈ Rn with n nodes and
d-dimensional node attribute vectors.

6.2.1 Computation graph sampling in GNN training

Given large-scale real-world graphs, instead of operating on the whole graph, GNNs extract each
node v’s egonet Gv, namely a computation graph, then compute embeddings of node v on Gv.
This means that in order to benchmark GNN models, we are not necessarily required to learn
the distribution of the whole graph; instead, we can learn the distribution of computation graphs
which are the direct input to GNN models. As with the global graph, a computation graph Gv is
composed of a sub-adjacency matrix Av ∈ Rnv×nv , a sub-feature matrix Xv ∈ Rnv×d, and node
v’s label Yv ∈ R, where each of nv rows correspond to nodes sampled into the computation graph.
Our problem then reduces to: given a set of computation graphs {Gv = (Av,Xv,Yv) : v ∈ G}
sampled from an original graph, we generate a set of computation graphs {G ′v = (A′

v,X ′
v,Y ′

v)}.
This reframing allows the graph generation process to scale to large-scale graphs.

93

6.2.2 Duplicate encoding scheme for computation graphs

Various sampling methods have been proposed to decide which neighboring nodes to add to a
computation graph Gv given a target node v [23, 55, 68, 181]. Two common rules across these
sampling methods are 1) the number of neighbors sampled for each node is limited to keep
computation graphs small and 2) the maximum distance (i.e., maximum number of hops) from the
target node v to sampled nodes is decided by the depth of GNN models. Details on how to sample
computation graphs can be found in Appendix 6.7.3. This maximum number of neighbors is called
the neighbor sampling number s and the maximum number of hops from the target node is called
the depth of computation graphs L. Figure 6.1(b) shows computation graphs of nodes A, B, and D
sampled with sampling number s = 2 and depth L = 2. Note that the shapes of computation graphs
are variable.

Here we introduce a duplicate encoding scheme for computation graphs that is conceptually
simple but brings a significant consequence: it fixes the structure of all computation graphs to
the L-layered s-nary tree structure, allowing us to model all adjacency matrices as a constant.
Starting from the target node v as a root node, we sample s neighbors iteratively L times from
the computation graph. When a node has fewer neighbors than s, the duplicate encoding scheme
defines a null node with zero attribute vector (node ’−’ in node B and D’s computation graphs in
Figure 6.1(c)) and samples it as a padding neighbor. When a node has a neighbor also sampled
by another node, the duplicate encoding scheme copies the shared neighbor and provides each
copy to parent nodes (node D in node A’s computation graph is copied in Figure 6.1(c)). Each
node attribute vector is also copied and added to the feature matrix. As shown in Figure 6.1(c), the
duplicate encoding scheme ensures that all computation graphs have an identical adjacency matrix
(presenting a balanced s-nary tree) and an identical shape of feature matrices. Under the duplicate
encoding scheme, the graph structure information is fully encoded into feature matrices, which we
will explain in details in Section 6.4.3. Note that in order to fix the adjacency matrix, we need to fix
the order of nodes in adjacency and attribute matrices (e.g., breadth-first ordering in Figure 6.1(c)).

Now our problem reduces to learning the distribution of (duplicate-encoded) feature matrices
of computation graphs: given a set of feature matrix-label pairs {(X̃v,Yv) : v ∈ G} of duplicate-
encoded computation graphs, we generate a set of feature matrix-label pairs {(X̃ ′

v,Y ′
v)}.

6.2.3 Quantization

To learn the distribution of feature matrices of computation graphs, we quantize feature vectors into
discrete bins; specifically, we cluster feature vectors in the original graph using k-means and map
each feature vector to its cluster id. Quantization is motivated by 1) privacy benefits and 2) ease
of modeling. By mapping different feature vectors (which are clustered together) into the same
cluster id, we can guarantee k-anonymity among them (more details in Section 6.3.2). Ultimately,
quantization further reduces our problem to learning the distribution of sequences of discrete values,
namely the sequences of cluster ids of feature vectors in each computation graph. Such a problem is
naturally addressed by Transformers, state-of-the-art sequence generative models [152]. In Section
6.3, we introduce the Computational Graph Transformer (CGT), a novel architecture which learns
the distribution of computation graph structures encoded in the sequences effectively.

94

Figure 6.2: Overview of our benchmark graph generation framework. (1) We sample a set of computation
graphs of variable shapes from the original graph, then (2) duplicate-encode them to fix adjacency matrices
to a constant. (3) Duplicate-encoded feature matrices are quantized into cluster id sequences and fed into our
Computation Graph Transformer. (4) Generated cluster id sequences are de-quantized back into duplicate-
encoded feature matrices and fed into GNN models with the constant adjacency matrix.

6.2.4 End-to-end framework for a benchmark graph generation problem
Figure 6.2 summarizes the entire process of mapping a graph generation problem into a discrete
sequence generation problem. In the training phase, we 1) sample a set of computation graphs
from the input graph, 2) encode each computation graph using the duplicate encoding scheme to fix
adjacency matrices, 3) quantize feature vectors to cluster ids they belong to, and finally 4) hand over
a set of (sequence of cluster ids, node label) pairs to our new Transformer architecture to learn their
distribution. In the generation phase, we follow the same process in the opposite direction: 1) the
trained Transformer outputs a set of (sequence of cluster ids, node label) pairs, 2) we de-quantize
cluster ids back into the feature vector space by replacing them with the mean feature vector of
the cluster, 3) we regenerate a computation graph from each sequence of feature vectors with the
adjacency matrix fixed by the duplicate encoding scheme, and finally 4) we feed the set of generated
computation graphs into the GNN model we want to train or evaluate.

6.3 Proposed Work

We present the Computation Graph Transformer that encodes the computation graph structure into
sequence generation process with minimal modification to the Transformer architecture. Then we
check our model satisfies the privacy and scalability requirements from Problem Definition 2.

6.3.1 Computation Graph Transformer (CGT)
In this work, we extend a two-stream self-attention mechanism, XLNet [173], which modifies the
Transformer architecture [152] with a causal self-attention mask to enable auto-regressive generation.
Given a sequence s = [s1, · · · , sT], the M -layered Transformer maximizes the likelihood under the

95

Figure 6.3: Computation Graph Transformer (CGT). (a,b) Given a sequence flattened from the input
computation graph, CGT generates context in the forward direction. e(st), q

(l)
t , and h

(l)
t denote the token,

query, and context embedding of t-th token at the l-th layer; pl(t) and ys1 denote the position embeddings of
t-th token and label embedding of the whole sequence, respectively. (c) The cost-efficient version of CGT
divides the input sequence into shorter ones composed only of direct ancestor nodes.

forward auto-regressive factorization as follows:

max
θ

logpθ(s) =
T∑
t=1

logpθ(st|s<t)

=
T∑
t=1

log
exp(q

(L)
θ (s1:t−1)

⊤e(st))∑
s′ ̸=st

exp(q
(L)
θ (s1:t−1)⊤e(s′))

where token embedding e(st) maps discrete input id st to a randomly initialized trainable vector,
and query embedding q

(L)
θ (s1:t−1) encodes information until (t− 1)-th token in the sequence. More

details on the XLNet architecture can be found in the Appendix 6.7.12. Here we describe how we
modify XLNet to encode computation graphs effectively.

Position embeddings: In the original Transformer architecture, each token receives a position
embedding encoding its position in the sequence. In our model, sequences are flattened compu-
tation graphs (the input computation graph in Figure 6.3(a) is flattened into input sequence in
Figure 6.3(b)). To encode the original computation graph structure, we provide different position
embeddings to different layers in the computation graph, while nodes at the same layer share the
same position embedding. When l(t) denotes the layer number where t-th node is located at the
original computation graph, position embedding pl(t) indexed by the layer number is assigned to
t-th node. In Figure 6.3(b), node C,D, F and H located at the 1-st layer in the computation graph
have the same position embedding p1.

Attention masks: In the original architecture, query and context embeddings, q(l)t and h
(l)
t , attend

to all context embeddings h(l−1)
1:t−1 before t. In the computation graph, each node is sampled based on

its parent node (which is sampled based on its own parent nodes) and is not directly affected by its

96

sibling nodes. To encode this relationship more effectively, we mask all nodes except direct ancestor
nodes in the computation graph, i.e., the root node and any nodes between the root node and the
leaf node. In Figure 6.3(b), node C’s context/query embeddings attend only to direct ancestors,
nodes A and B. Note that the number of unmasked tokens are fixed to L in our architecture because
there are always L− 1 direct ancestors in L-layered computation graphs. Based on this observation,
we design a cost-efficient version of CGT that has shorter sequence length and preserves XLNet’s
auto-regressive masking as shown in Figure 6.3(c).

Label conditioning: Distributions of neighboring nodes are not only affected by each node’s
feature information but also by its label. It is well-known that GNNs improve over MLP performance
by adding convolution operations that augment each node’s features with neighboring node features.
This improvement is commonly attributed to nodes whose feature vectors are noisy (outliers among
nodes with the same label) but that are connected with "good" neighbors (whose features are
well-aligned with the label). In this case, without label information, we cannot learn whether a
node has feature-wise homogeneous neighbors or feature-wise heterogeneous neighbors but with
the same label. In our model, query embeddings q(0)t are initialized with label embeddings ys1 that
encode the label of the root node s1.

6.3.2 Theoretical analysis
Our framework provides k-anonymity for node attributes and edge distributions by using k-means
clustering with the minimum cluster size k [14] during the quantization phase. Note that we define
edge distributions as neighboring node distributions of each node. The full proofs for the following
claims can be found in Appendix 6.7.4.
Claim 1 (k-anonymity for node attributes and edge distributions). In the generated computation
graphs, each node’s attributes and edge distribution appear at least k times.

We can also provide differential privacy (DP) for node attributes and edge distributions by
exploiting DP k-means clustering [21] during the quantization phase and DP stochastic gradient
descent (DP-SGD) [135] to train the Transformer. Unfortunately, however, DP-SGD for Transformer
networks doesn’t yet work reliably in practice. Thus we cannot guarantee strict DP for edge
distributions in practice (experimental results in Section 6.4.2 and more analysis in Appendix 6.7.4).
Thus, here, we claim DP only for node attributes.
Claim 2 ((ϵ, δ)-Differential Privacy for node attributes). With probability at least 1 − δ, our
generative model A gives ϵ-differential privacy for any graph G, any neighboring graph G−v without
any node v ∈ G, and any new computation graph Gcg generated from our model as follows:

e−ϵ ≤ Pr[A(G) = Gcg]
Pr[A(G−v) = Gcg]

≤ eϵ

Finally, we show that CGT satisfies the scalability requirement in Problem Definition 2:
Claim 3 (Scalability). To generate L-layered computation graphs with neighbor sampling number
s on a graph with n nodes, computational complexity of CGT training is O(s2Ln), and the cost-
efficient version is O(L2sLn).

97

(a) Reproduced GNN accuracy (b) Benchmark
effectiveness

(c) Scalability

Figure 6.4: Benchmark effectiveness and scalability in graph generation. (a) We evaluate graph generative
models by how well they reproduce GNN performance from the original graph (X-axis: original accuracy)
on synthetic graphs (Y -axis: reproduced accuracy). Our method is closest to x = y, which is ideal. (b) We
measure Mean Square Error (MSE) and Pearson/Spearman correlations from results in (a). Our method
shows the lowest MSE and highest correlations. (c) We measure the computation time (training + evaluation)
of each graph generative model. Only our method is scalable across all datasets while showing the best
performance. O.O.T denotes out-of-time (> 20 hrs) and O.O.M denotes out-of-memory errors.

6.4 Experiments

6.4.1 Experimental setting

Baselines: We choose 5 state-of-the-art graph generative models that learn graph structures with
node attribute information: two VAE-based general graph generative models, VGAE [76] and
GraphVAE [132] and three molecule graph generative models, GraphAF [130], GraphDF [102],
and GraphEBM [139]. While VGAE encodes the large-scale whole graph at once, the other 4 graph
generative models are designed to process a set of small-sized graphs. Thus we provide the original
whole graph to GVAE and a set of sampled computation graphs to the other baselines, respectively.

Datasets: We evaluate on 7 public datasets — 3 citation networks (Cora, Citeseer, and Pubmed) [126],
2 co-purchase graphs (AmazonC and AmazonP) [127], and 2 co-authorship graph (MS CS and MS
Physic) [127]. Note that these datasets are the largest ones the baselines have been applied on. Data
statistics can be found in Appendix 6.7.15.

GNN models: We choose 9 of the most popular GNN models for benchmarking: 4 GNN models
with different aggregators, GCN [75], GIN [168], SGC [162], and GAT [155], 4 GNN models with
different sampling strategies, GraphSage [55], FastGCN [23], AS-GCN [68], and PASS [181], and
one GNN model with PageRank operations, PPNP [79]. Descriptions of each GNN model can be
found in the Appendix 6.7.11.

98

Ta
bl

e
6.

1:
Pr

iv
ac

y-
Pe

rf
or

m
an

ce
tr

ad
e-

of
fi

n
gr

ap
h

ge
ne

ra
tio

n.

O
ri

gi
na

l
N

o
pr

iv
ac

y
K

-a
no

ny
m

ity
D

P
km

ea
n

(δ
=

0.
01

)
D

P
SG

D
(δ

=
0.
1)

k
=

10
0

k
=

50
0

k
=

10
00

ϵ
=

1
ϵ
=

10
ϵ
=

25
ϵ
=

10
6

ϵ
=

10
9

Pe
ar

so
n

(↑
)

1.
00

0
0.

93
4

0.
91

6
0.

86
2

0.
03

0
0.

87
4

0.
84

4
0.

80
4

0.
11

2
0.

89
0

Sp
ea

rm
an

(↑
)

1.
00

0
0.

93
5

0.
94

7
0.

81
2

0.
01

8
0.

86
9

0.
80

5
0.

80
7

0.
11

6
0.

95
9

99

6.4.2 Main results

In this experiment, each graph generative model learns the distributions of 7 graph datasets and
generates synthetic graphs. Then we train and evaluate 9 GNN models on each pair of original and
synthetic graphs, and measure Mean Square Error (MSE) and Pearson/Spearman correlations [107]
between the GNN performance on each pair of graphs. As shown in Figure 6.4(a), each graph
generative model compares up to 63 pairs of original and reproduced GNN performances. Unless
additionally specified, K-anonymity is set to K = 30 across all experiments.

Benchmark effectiveness. In Figure 6.4(b), our proposed CGT shows up to 33% lower MSE,
0.80 higher Pearson and 1.03 higher Spearman correlations than all baselines. GraphVAE fails
to converge, thus omitted in Figure 6.4. This results clearly show the graph generative models
specialized to molecules cannot be generalized to the large-scale graphs with a high-dimensional
feature space. The predicted distributions by baselines sometimes collapse to generating the the
same node feature/labels across all nodes (e.g., 0% or 100% accuracy for all GNN models in
Figure 6.4(a)), which is obviously not the most effective benchmark.

Scalability. Figure 6.4(c) shows scalability of each graph generative model. VGAE and GraphAF
meet out-of-memory errors on MS Physic and MS CS, respectively. GraphDF takes more than
20 hours on the third smallest dataset, AmazonP. As GraphDF does not generate any meaningful
graph structures even on the Cora and Citeseer datasets, we stop running GraphDF and declare an
out-of-time error. These results are not surprising, given they are originally designed for small-size
molecule graphs, thus having many un-parallelizable operations. Only CGT and GraphEBM scale
to all graphs successfully. However, note that GraphEBM fails to learn any meaningful distributions
from the original graphs as shown in Figures 6.4(a) and 6.4(b). In Appendix 6.7.5, we show our
proposed CGT scales to ogbn-arxiv (170K nodes and 1.2M edges) and ogbn-products (2.4M nodes
and 61.8M edges) successfully.

Privacy. As none of our baseline generative models provides privacy guarantees, we examine
the performance-privacy trade-off across different privacy guarantees on the Cora dataset only
using our method. For k-anonymity, we use the k-means clustering algorithm [14] varying the
minimum cluster size k. For Differential Privacy (DP) for node attributes, we use DP k-means [21]
varying the privacy cost ϵ while setting δ = 0.01. In Table 6.1, higher k and smaller ϵ (i.e., stronger
privacy) hinder the generative model’s ability to learn the exact distributions of the original graphs;
thus, the GNN performance gaps between original and generated graphs increase (lower Pearson
and Spearman correlations). To provide DP for edge distributions, we use DP stochastic gradient
descent [135] to train the transformer, varying the privacy cost ϵ while setting δ = 0.1. In Table 6.1,
even with astronomically low privacy cost (ϵ = 106), the performance of our generative model
degrades significantly. When we set ϵ = 109 (which is impractical), we can finally see a reasonable
performance. This shows the limited performance of DP SGD on the transformer architecture.
Detailed GNN accuracies could be found in Appendix 6.7.7.

100

Ta
bl

e
6.

2:
C

om
pa

ri
so

n
w

ith
si

m
pl

e
pr

iv
ac

y
ba

se
lin

es
th

at
ad

d
no

is
y

no
de

sa
nd

ed
ge

st
o

th
e

or
ig

in
al

gr
ap

h.
N

od
e/

E
dg

e
re

-i
de

nt
.c

ol
um

ns
sh

ow
no

de
/e

dg
e

re
-i

de
nt

ifi
ca

tio
n

pr
ob

ab
ili

tie
s

of
ea

ch
pr

iv
ac

y
m

et
ho

d.
-d

en
ot

es
no

pr
iv

ac
y

tr
ic

k
ha

s
ap

pl
ie

d.

N
od

e
at

tr
ib

ut
es

E
dg

e
di

st
ri

bu
tio

n
N

od
e

re
-id

en
t.

(↓
)

E
dg

e
re

-id
en

t.
(↓

)
G

C
N

SG
C

G
IN

G
AT

M
SE

(↓
)

-

E
dg

e
ad

di
tio

n
(×

2)
10

0%
50

%
0.

82
0.

82
0.

80
0.

55
0.

02
1

E
dg

e
ad

di
tio

n
(×

10
)

10
0%

10
%

0.
39

0.
40

0.
37

0.
70

0.
16

8
E

dg
e

de
le

tio
n

(5
0%

)
10

0%
50

%
0.

83
0.

83
0.

82
0.

84
0.

00
1

E
dg

e
de

le
tio

n
(1
00

%
)

10
0%

0%
0.

73
0.

73
0.

73
0.

72
0.

01
4

N
oi

se
ad

di
tio

n
(×

5
)

-
20

%
10

0%
0.

82
0.

82
0.

82
0.

18
0.

10
6

E
dg

e
ad

di
tio

n
(×

2)
20

%
50

%
0.

67
0.

67
0.

68
0.

07
0.

16
9

E
dg

e
ad

di
tio

n
(×

10
)

20
%

10
%

0.
07

0.
30

0.
31

0.
07

0.
44

9
E

dg
e

de
le

tio
n

(5
0%

)
20

%
50

%
0.

78
0.

77
0.

77
0.

15
0.

12
0

E
dg

e
de

le
tio

n
(1
00

%
)

20
%

0%
0.

39
0.

40
0.

38
0.

11
0.

29
1

K
-a

no
ny

m
ity

(5
)

K
-a

no
ny

m
ity

(5
)

20
%

20
%

0.
83

0.
82

0.
83

0.
83

0.
00

1
K

-a
no

ny
m

ity
(1
0
0
)

K
-a

no
ny

m
ity

(1
00

)
1%

1%
0.

75
0.

74
0.

76
0.

74
0.

01
0

K
-a

no
ny

m
ity

(5
0
0
)

K
-a

no
ny

m
ity

(5
00

)
0
.2
%

0
.2
%

0.
52

0.
49

0.
51

0.
52

0.
11

4
K

-a
no

ny
m

ity
(1
0
0
0)

K
-a

no
ny

m
ity

(1
00

0
)

0
.1
%

0
.1
%

0.
12

0.
12

0.
11

0.
08

0.
54

8
O

ri
gi

na
lg

ra
ph

10
0%

10
0%

0.
86

0.
85

0.
85

0.
83

0.
00

0

101

To verify the effectiveness of K-anonymity in terms of re-identification attacks, we compare it
with simple privacy baselines that add noise on nodes/edges as follow:
• Edge addition: We add x times more random edges than the original number of edges. Given a

corrupted graph, an original edge can be re-identified with a probability of 1/x.
• Edge deletion: We delete x% of edges from the original graph. Given a corrupted graph, an

original edge can be re-identified with a probability of (100− x)/100%.
• Noise addition to node attributes: Given a binary node attribute vector, when s elements in

the vector are ’1’, we randomly flip ’0’ to ’1’ for xs times. Given a corrupted graph, an original
attribute can be re-identified with a probability of 1/x.

• K-anonymity: As described in the paper, given a corrupted graph, a node attribute vector and an
edge distribution of a node can be re-identified with a probability of 1/K (Claim 1 in the original
paper).

We run four GNN models (GCN, SGC, GIN, GAT) with different privacy approaches on the Cora
dataset and computed MSE between GNN performance on the original and synthetic (corrupted)
graphs. As presented in the table, K-anonymity (K=5) shows the smallest MSE (0.001) while
providing stronger privacy guarantees (20% re-identification for both node and edge distribution)
than the baselines of adding noise. For instance, the edge deletion (50%, 3rd row) also shows the
smallest MSE (0.001), but this approach does not guarantee any privacy for node attributes and
provides a 50% chance of successful edge re-identification. Note that K-anonymity (K = 100),
which provides a 1% re-identification ratio, shows lower MSE (0.010) than most of the other
baselines.

These results are not surprising, according to a recent work [36] that analyzes noise required for
privacy guarantees on graph data. [36] shows that the noise addition approach does not work well
for low-degree nodes and requires many mutations to provide strong privacy guarantees. However,
as we stated in the limitations of this work (Appendix 6.7.2), we need stronger privacy guarantees
than K-anonymity to use the generator in practice. We believe that by formally defining the
benchmark graph generation problem and providing an end-to-end framework where we can easily
adapt off-the-shelf state-of-the-art privacy modules (e.g., differential privacy), we can promote more
research in this direction.

6.4.3 Graph statistics.

Given a source graph, our method generates a set of computation graphs without any node ids. In
other words, attackers cannot merge the generated computation graphs to restore the original graph
and re-identify node information. Thus, instead of traditional graph statistics such as orbit counts
or clustering coefficients that rely on the global view of graphs, we define new graph statistics for
computation graphs that are encoded by the duplicate scheme.

Duplicate scheme fixes adjacency matrices across all computation graphs by infusing structural
information (originally encoded in adjacency matrices) into feature matrices.
• Number of zero vectors: In duplicate-encoded feature matrices, zero vectors correspond to null

nodes that are padded when a node has fewer neighbors than a sampling neighbor number. This
metric is inversely proportional to node degree distributions of the underlying graph.

102

(a) (b)

Figure 6.5: CGT preserves distributions of graph statistics in generated graphs. Duplicate encoding
encodes graph structure into feature matrices of computation graphs. In each computation graph, # zero
vectors is inversely proportional to node degree, while # redundant vectors is proportional to edge density. We
measure Wasserstein distanceW(P,Q) between the original distribution Q and the distribution P generated
by each baseline.

• Number of duplicate feature vectors: Feature vectors are duplicated when nodes share neighbors.
This metric is proportional to number of cycles in a computation graph, indicating the edge density
of the underlying graph.

For fair comparison, we provide the same set of duplicate-encoded computation graphs to each
baseline as CGT, then compute the two proxy graph statistics we described above in each generated
computation graph. In Figure 6.5, we plot the distributions of this two statistics generated by each
baseline. Only our method successfully preserves the distributions of the graph statistics on the
generated computation graphs with up to 11.01 smaller Wasserstein distance than other baselines.

103

In Figure 6.5(a), the competing baselines have basically no zero vectors in the computation
graphs. In the set of duplicate-encoded computation graphs given to each baseline, the input graph
structures are fixed with variable feature matrices. GraphAF, GraphDF, and GraphEBM all fail to
learn the distributions of feature vectors (i.e., the number of zero vectors in each computation graph)
and generate highly dense feature matrices for almost all computation graphs. This shows that the
existing graph generative models cannot jointly learn the distribution of node features with graph
structures.

6.4.4 Various scenarios to evaluate benchmark effectiveness

To study the benchmark effectiveness of our generative model in depth, we design 4 different
scenarios where GNN performance varies widely. In each scenario, we make 3 variations of an
original graph and evaluate whether our graph generative model can reproduce these variations.
In Figure 6.6, we report average performance of 4 GNN models on each variation. We expect the
performance trends across variations of the original graph to be reproduced across variations
of synthetic graphs. Due to the space limitation, we present results on the AmazonP dataset in
Figure 6.6. Other datasets with detailed GNN accuracies can be found in Appendix 6.7.9.

SCENARIO 1: noisy edges on aggregation strategies. We choose 4 GNN models with different
aggregation strategies: GCN with mean aggregator, GIN with sum aggregator, SGC with linear
aggregator, and GAT with attention aggregator. We make 3 variations of the original graph by
adding different numbers of noisy edges (#NE) to each node. In Figure 6.6(a), when more noisy
edges are added, the GNN accuracy drops in the original graph. These trends are exactly reproduced
on the generated graph with 0.918 Pearson correlation, showing our method successfully reproduces
different amount of noisy edges in the original graphs.

SCENARIO 2: noisy edges on neighbor sampling. We choose 4 GNN models with different
neighbor sampling strategies: GraphSage with random sampling, FastGCN with heuristic layer-wise
sampling, AS-GCN with trainable layer-wise sampling, and PASS with trainable node-wise sam-
pling. We make 3 variations of the original graph by adding noisy edges (#NE) as in SCENARIO
1. In Figure 6.6(b), when more noisy edges are added, the sampling accuracy drops in the original
graph. This trend is reproduced in the generated graph, showing 0.958 Pearson correlation.

SCENARIO 3: different sampling numbers on neighbor sampling. We choose the same 4
GNN models with different neighbor sampling strategies as in SCENARIO 2. We make 3 variations
of the original graph by changing the number of sampled neighbor nodes (#SN). As shown in
Figure 6.6(c), trends among original graphs — GNN performance increases sharply from #SN = 1
to #SN = 3, then slowly from #SN = 3 to #SN = 5— are successfully captured in the
generated graphs with up to 0.961 Pearson correlation. This shows CGT reproduces the neighbor
distributions successfully.

104

(a) SCENARIO 1 (b) SCENARIO 2

(c) SCENARIO 3 (d) SCENARIO 4

Figure 6.6: CGT reproduces GNN performance changes with different number of noisy edges (#NE),
sampled neighbors (#SN), and different amount of distribution shifts (α) successfully.

SCENARIO 4: distribution shift. [199] proposed a biased training set sampler to examine each
GNN model’s robustness to distribution shift between the training/test time. The biased sampler
picks a few seed nodes and finds nearby nodes using the Personalized PageRank vectors [110]
πppr = (I − (1− α)Ã)−1 with decaying coefficient α, then uses them to compose a biased training
set. The higher α is, the larger the distribution is shifted between training/test sets. We make 3
variations of the original graph by varying α and check how 4 different GNN models, GCN, SGC,
GAT, and PPNP, deal with the biased training set. In Figure 6.6(d), the performance of GNN models
drops as α increases on the original graphs. This trend is reproduced on generated graphs, showing
that CGT can capture train/test distribution shifts successfully.

6.4.5 Ablation study

To show the importance of each component in our proposed model, we run four ablation studies:
CGT without 1) label conditioning, 2) position embedding trick, 3) masked attention trick, and 4)
all three modules (i.e., original Transformer) We run 9 GNN models on 3 datasets (Cora, Citeseer,

105

Table 6.3: Ablation study

Model MSE (↓) Pearson (↑) Spearman (↑)

w/o Label 0.067 0.592 0.591
w/o Position 0.072 0.411 0.413
w/o Attention 0.085 0.329 0.286
w/o All 0.034 0.739 0.574
CGT (Ours) 0.017 0.943 0.914

Pubmed) and compare the 9× 3 pairs of GNN accuracies on original and generated graphs. When
we remove the position embedding trick, we provide the different position embeddings to all nodes
in a computation graph, following the original transformer architecture. When we remove attention
masks from our model, the transformer attends all other nodes in the computation graphs to compute
the context embeddings. As shown in Table 6.3, removing any component negatively impacts the
model performance.

6.5 Related Work

Traditional graph generative models extract common patterns among real-world graphs (e.g.
nodes/edge/triangle counts, degree distribution, graph diameter, clustering coefficient) [19] and
generate synthetic graphs following a few heuristic rules [3, 37, 84, 85]. However, they cannot
generate unseen patterns on synthetic graphs [183]. More importantly, most of them generate
only graph structures with boolean node attributes [38]. General-purpose deep graph generative
models exploit GAN [50], VAE [74], and RNN [188] to learn graph distributions [54]. Most
of them focus on learning graph structures [52, 92, 132, 183], thus their evaluation metrics are
graph statistics such as orbit counts, degree coefficients, and clustering coefficients which do not
consider quality of generated node attributes and labels. Molecule graph generative models
are actively studied for generating promising candidate molecules using VAE [71], GAN [28],
RNN [115], and recently invertible flow models [102, 130]. However, most of their architectures
are specialized to small-scaled molecule graphs (e.g., 38 nodes per graph in the ZINC datasets)
with low-dimensional attribute space (e.g., 9 node attributes indicating atom types) and distinct
molecule-related information (e.g., SMILES representation or chemical structures such as bonds
and rings) [139].

6.6 Summary

We propose a new graph generative model CGT that (1) generates effective benchmark graphs
on which GNNs show similar performance as on the source graphs, (2) scales to process large-
scale graphs, and (3) incorporates off-the-shelf privacy modules to guarantee end-user privacy of
the generated graph. We hope our work sparks further research to address the limited access to

106

(highly proprietary) real-world graphs, enabling the community to develop new GNN models on
challenging, realistic problems.

6.7 Appendix

6.7.1 Reproducibility

Our code is publicly available 1. Dataset information can be found in Appendix 6.7.15 and can be
downloaded from the open data source 2. Open source libraries for DP K-means and DP-SGD we
used are listed in Appendix 6.7.13. Baseline graph generative models and their open source libraries
are described in Appendix 6.7.15. GNN models we benchmark during experiments and their open
source libraries are described in Appendix 6.7.11.

6.7.2 Limitation of the study
This paper shows that clustering-based solutions can achieve k-anonymity privacy guarantees. We
stress, however, that implementing a real-world system with strong privacy guarantees will need to
consider many other aspects beyond the scope of this paper. We leave as future work the study of
whether we can combine stronger privacy guarantees with those of k-anonymity to enhance privacy
protection

6.7.3 Computation graph sampling in GNN training
The main challenge of adapting GNNs to large-scale graphs is that GNNs expand neighbors
recursively in the aggregation operations, leading to high computation and memory footprints. For
instance, if the graph is dense or has many high degree nodes, GNNs need to aggregate a huge
number of neighbors for most of the training/test examples. To alleviate this neighbor explosion
problem, GraphSage [55] proposed to sample a fixed number of neighbors in the aggregation
operation, thereby regulating the computation time and memory usage.

To train a L-layered GNN model with a user-specified neighbor sampling number s, a com-
putation graph is generated for each node in a top-down manner (l : L → 1): A target node v is
located at the L-th layer; the target node samples s neighbors, and the sampled s nodes are located
at the (L− 1)-th layer; each node samples s neighbors, and the sampled s2 nodes are located at the
(L− 2)-th layer; repeat until the 1-st layer. When the neighborhood is smaller than s, we sample all
existing neighbors of the node. Which nodes to sample varies across different sampling algorithms.
The sampling algorithms for GNNs broadly fall into two categories: node-wise sampling and
layer-wise sampling.
• Node-Wise Sampling. The sampling distribution q(j|i) is defined as a probability of sam-

pling node vj given a source node vi. In node-wise sampling, each node samples k neighbors

1https://github.com/minjiyoon/CGT
2https://github.com/shchur/gnn-benchmark

107

https://github.com/minjiyoon/CGT
https://github.com/shchur/gnn-benchmark

from its sampling distribution, then the total number of nodes in the l-th layer becomes O(kl).
GraphSage [55] is one of the most well-known node-wise sampling method with the uniform
sampling distribution q(j|i) = 1

N(i)
. GCN-BS [97] introduces a variance reduced sampler based

on multi-armed bandits, and PASS [181] proposes a performance-adaptive node-wise sampler.
• Layer-Wise Sampling. To alleviate the exponential neighbor expansion O(kl) of the node-wise

samplers, layer-wise samplers define the sampling distribution q(j|i1, · · · , in) as a probability
of sampling node vj given a set of nodes {vk}ink=i1

in the previous layer. Each layer samples k
neighbors from their sampling distribution q(j|i1, · · · , in), then the number of sampled nodes in
each layer becomes O(k). FastGCN [23] defines q(j|i1, · · · , in) proportional to the degree of the
target node vj , thus every layer has independent-identical-distributions. LADIES [202] adopts the
same iid as FastGCN but limits the sampling domain to the neighborhood of the sampler layer.
AS-GCN [68] parameterizes the sampling distributions q(j|i1, i2, . . . , in) with a learnable linear
function. While the layer-wise samplers successfully regulate the neighbor expansion, they suffer
from sparse connection problems — some nodes fail to sample any neighbors while other nodes
sample their neighbors repeatedly in a given layer.

Note that the layer-wise samplers also define a maximum number of neighbors to sample (but per
each layer) and the depth of computation graphs as the depth of the GNN model. All sampling
methods we describe above can be applied to our computation graph sampling module described
in Section 6.2.2. As the depth of computation graph L is decided by the depth of GNN models,
oversmoothing [87] or oversquashing [4] could happen with the deep GNN models. To handle this
issue, [190] proposes to disentangle the depth of computation graphs and the depth of GNN models,
then limit the computation graph sizes to small to avoid oversmoothing/oversquashing.

There are many different clustering or subgraph sampling methodologies other than what we
described above. Note that, even after we get subgraphs using any clustering/subgraph sampling
methods, to do message-passing under GCN models, each node eventually has a tree-structure-
shaped computation graph that is composed of nodes engaged in the node’s embedding computation.
In other words, CGT receives subgraphs sampled by ClusterGCN [25] and GraphSAINT [189] and
extracts a computation graph for each node (in this case, we can set the sampling number as the max-
imum degree in the subgraph not to lose any further neighbors by sampling). GNNAutoScale [42]
and IGLU [108] are recently proposed frameworks for scaling arbitrary message-passing GNNs
to large graphs, as an alternative paradigm to neighbor sampling. As our method adopts neighbor
sampling — the most common way to deal with the scalability issue of GNNs so far — we cannot
directly apply our graph benchmark generation method to these methods. This is an interesting
avenue for future work.

6.7.4 Proof of privacy and scalability claims
Claim 1 (k-Anonymity for node attributes and edge distributions). In the generated computation
graphs, each node attribute and edge distribution appear at least k times, respectively.

Proof. In the quantization phase, we use the k-means clustering algorithm [14] with a minimum
cluster size k. Then each node id is replaced with the id of the cluster it belongs to, reducing the
original (n× n) graph into a (m×m) hypergraph where m = n/k is the number of clusters. Then

108

Computation Graph Transformer learns edge distributions among m hyper nodes (i.e., clusters) and
generates a new (m×m) hypergraph. In the hypergraph, there are at most m different node attributes
and m different edge distributions. During the de-quantization phase, a (m ×m) hypergraph is
mapped back to a (n × n) graph by letting k nodes in each cluster follow their cluster’s node
attributes/edge distributions as follows: k nodes in the same cluster will have the same feature vector
that is the average feature vector of original nodes belonging to the cluster. When s denotes the
number of sampled neighbor nodes, each node samples s clusters (with replacement) following its
cluster’s edge distributions among m clusters. When a node samples cluster i, it will be connected
to one of nodes in the cluster i randomly. At the end, each node will have s neighbor nodes
randomly sampled from s clusters the node samples with the cluster’s edge distribution, respectively.
Likewise, all k nodes belonging to the same cluster will sample neighbors following the same edge
distributions. Thus each node attribute and edge distribution appear at least k times in a generated
graph.

Claim 2 ((ϵ, δ)-Differential Privacy for node attributes). With probability at least 1 − δ, our
generative model A gives ϵ-differential privacy for any graph G, any neighboring graph G−v without
any node v ∈ G, and any new computation graph Gcg generated from our model as follows:

e−ϵ ≤ Pr[A(G) = Gcg]
Pr[A(G−v) = Gcg]

≤ eϵ

Proof. G−v denotes neighboring graphs to the original one G, but without a specific node v. During
the quantization phase, we use (ϵ, δ)-differential private k-means clustering algorithm on node
features [21]. Then clustering results are differentially private with regard to each node features. In
the generated graphs, each node feature is decided by the clustering results (i.e., the average feature
vector of nodes belonging to the same cluster). Then, by looking at the generated node features, one
cannot tell whether any individual node feature was included in the original dataset or not.

Remark 1 ((ϵ, δ)-Differential Privacy for edge distributions). In our model, individual nodes’ edge
distributions are learned and generated by the transformer. When we use (ϵ, δ)-differential private
stochastic gradient descent (DP-SGD) [135] to train the transformer, the transformer becomes
differentially private in the sense that by looking at the output (generated edge distributions), one
cannot tell whether any individual node’s edge distribution (input to the transformer) was included
in the original dataset or not. If we have DP-SGD that can train transformers successfully with
reasonably small ϵ and δ, we can guarantee (ϵ, δ)-differential privacy for edge distribution of any
graph generated by our generative model. However, as we show in Section 6.4.2, current DP-SGD
is not stable yet for transformer training, leading to very coarse or impractical privacy guarantees.
Claim 3 (Scalability). When we aim to generate L-layered computation graphs with neighbor
sampling number s on a graph with n nodes, computational complexity of CGT training is O(s2Ln),
and that of the cost-efficient version is O(L2sLn).

Proof. During k-means, we randomly sample nk node features to compute the cluster centers.
Then we map each feature vector to the closest cluster center. By sampling nk nodes, we limit
the k-mean computation cost to O(n2

k). The sequence flattened from each computation graph is

109

Table
6.4:C

G
T

on
ogbn-arxiv

and
ogbn-products:

Training
tim

e
(hr)colum

n
denotes

the
totaltraining/generation

tim
e

of
C

G
T

.

D
ataset

N
ode

num
E

dge
num

N
oise

num
M

odel
O

riginalacc.
G

enerated
acc/

M
SE

Training
tim

e
(hr)

Pearson

ogbn-arxiv
169,343

1,166,243

0

G
C

N
0.69

0.7

0.00032
1.1

0.989

SG
C

0.68
0.7

G
IN

0.69
0.71

G
A

T
0.69

0.71

2

G
C

N
0.58

0.6

0.00015
1.7

SG
C

0.57
0.58

G
IN

0.61
0.62

G
A

T
0.62

0.62

4

G
C

N
0.53

0.55

0.00015
2.8

SG
C

0.54
0.53

G
IN

0.56
0.56

G
A

T
0.57

0.58

ogbn-products
2,449,029

61,859,140
0

G
C

N
0.87

0.89

0.00258
14.7

SG
C

0.75
0.84

G
IN

0.86
0.89

G
A

T
0.87

0.9

110

Table 6.5: CGT as training/test set generators. We replace the original training/test sets of the target
dataset (Cora) with irrelevant graphs (Citeseer or Pubmed) and synthetic Cora generated by our proposed
CGT.

Train set Test set Accuracy

Cora Cora 0.86
Citeseer Cora 0.14
Pubmed Cora 0.09
Synthetic Cora (CGT) Cora 0.77
Cora Synthetic Cora (CGT) 0.74
Synthetic Cora (CGT) Synthetic Cora (CGT) 0.76

O(1 + s+ · · ·+ sL) and the number of sequences (computation graphs) is O(n). Then the training
time of the transformer is proportional to O(s2Ln). In total, the complexity is O(s2Ln+ n2

k). As
s2Ln >> n2

k, the final computation complexity becomes O(s2Ln). In the cost-efficient version,
the length of sequences (composed only of direct ancestor nodes) is reduced to L. However, the
number of sequences increases to sLn because each nodes has one computation graph composed of
sL shortened sequences. Then the final computation complexity become O(L2sLn).

6.7.5 CGT on ogbn-arxiv and ogbn-products
To examine its scalability, we run CGT on two large-scale datasets, ogbn-arxiv and ogbn-products [63].
We run CGT on 4 NVIDIA TITAN X GPUs with 12 GB memory size with sampling number 5 and
K = 30 for K-anonymity. In Table 6.4, CGT takes 1.1 hours for ogbn-arxiv with 170K nodes and
1.2M edges, while taking 14.7 hours for ogbn-products with 2.4M nodes and 61.8M edges. This
shows CGT’s strong scalability. In terms of benchmark effectiveness, CGT shows low MSE (up
to 1.5 × 10−4) and high Pearson correlation (0.989). Note that we could not compare with other
baselines as they all fail to scale even on MS Physic dataset with with 35K nodes and 248K edges
(Figure 6.4(c)).

6.7.6 CGT as training/test set generators
In this experiment, we train GNNs on synthetic graphs generated by CGT and test them on real
graphs, and vice versa. For comparison, we train GCN on the two independent graphs (Citeseer and
Pubmed) and test on the target graph (Cora). Since the feature dimensions of Citeseer and Pubmed
differ from those of Cora, we mapped the original node feature vectors to Cora’s feature dimension
using PCA. The results in the Table 6.5 demonstrate that our CGT generates synthetic graphs that
follow Cora’s distribution and preserve high accuracy, whereas GCN models trained on Citeseer
and Pubmed show low accuracy on Cora. The accuracy drop induced by CGT is mainly due to
privacy, as we provided 30-Anonymity in this experiment. We conducted a similar experiment in
Section 6.4.4 SCENARIO 4, where we prepared different distributions for the training and test sets
of GNNs. As the distribution shift becomes larger, the performance of GNNs drops. Our proposed

111

CGT successfully reproduces this distribution shift, and thus, it also reproduces the performance
drop in the generated graphs.

6.7.7 Detailed GNN performance in the privacy experiment in Section 6.4.2
Table 6.6 shows detailed privacy-GNN performance trade-off on the Cora dataset. In k-anonymity,
higher k (i.e., more nodes in the same clusters, thus stronger privacy) hinders the generative model’s
ability to learn the exact distributions of the original graphs, and the GNN performance gaps
between original and generated graphs increase, showing lower Pearson and Spearman coefficients.
DP kmeans shows higher Pearson and Spearman coefficients with smaller ϵ values (i.e., stronger
privacy). However, when we examine the detailed GNN performance, we observe that GNN
accuracy is significantly lower with smaller ϵ values. For your convenience, we compare their MSE
from the original accuracy as well as the correlation coefficients in Table 6.6: MSE is descreasing
from 0.134(ϵ = 1) to 0.093(ϵ = 10) and 0.063(ϵ = 25). Stronger privacy can lead to higher
correlations as DP k-means can remove noise in graphs (while hiding outliers for privacy) and
capture representative distributions from the original graph more effectively. While DP kmeans
is capable of providing reasonable privacy to node attribute distributions, DP-SGD is impractical,
showing low GNN performance even with astronomically low privacy cost (ϵ = 106) as explained
in Section 6.3.2. Note that reasonable ϵ values typically range between 0.1 and 5.

6.7.8 Additional experiments on graph statistics
Figure 6.7 shows distributions of graph statistics on computation graphs sampled from the origi-
nal/quantized/generated graphs. Quantized graphs are graphs after the quantization process: each
feature vector is replaced by the mean feature vector of a cluster it belongs to, and adjacency
matrices are a constant encoded by the duplicate encoding scheme. Quantized graphs are input to
CGT, and generated graphs are output from CGT as presented in Figure 6.2. While converting
from original graphs to quantized graphs, CGT trades off some of the graph statistics information
for k-anonymity privacy benefits. In Figure 6.7, we can see distributions of graphs statistics have
changed slightly from original graphs to quantized graphs. Then CGT learns distributions of graph
statistics on the quantized graphs and generates synthetic graphs. The variations given by CGT are
presented as differences in distributions between quantized and generated graphs in Figure 6.7.

6.7.9 Detailed GNN performance in the benchmark effectiveness experiment
in Section 6.4.4

As nodes are the minimum unit in graphs that compose edges or subgraphs, we can generate
subgraphs for edges by merging computation graphs of their component nodes. Here we show
link prediction results on original graphs are also preserved successfully on our generated graphs.
We run GCN, SGC, GIN, and GAT on graphs, followed by Dot product or MLP to predict link
probabilities. Table 6.7 shows Pearson and Spearman correlations across 8 different combinations
of link prediction models (4 GNN models × 2 link predictors) on each dataset and across the whole

112

Ta
bl

e
6.

6:
Pr

iv
ac

y-
Pe

rf
or

m
an

ce
tr

ad
e-

of
fi

n
gr

ap
h

ge
ne

ra
tio

n
on

th
e

C
or

a
da

ta
se

t.

#N
E

m
od

el
O

ri
gi

na
l

N
o

pr
iv

ac
y

K
-a

no
ny

m
ity

D
P

km
ea

n
(δ

=
0.
01

)
D

P
SG

D
(δ

=
0.
1)

k
=

10
0

k
=

50
0

k
=

10
00

ϵ
=

1
ϵ
=

10
ϵ
=

25
ϵ
=

10
6

ϵ
=

10
9

0

G
C

N
0.

86
0

0.
76

0
0.

75
0

0.
52

0
0.

12
0

0.
53

0
0.

57
0

0.
65

0
0.

13
0

0.
64

0
SG

C
0.

85
0

0.
75

0
0.

74
0

0.
49

0
0.

12
0

0.
51

0
0.

59
0

0.
62

0
0.

15
0

0.
62

0
G

IN
0.

85
0

0.
75

0
0.

76
0

0.
51

0
0.

11
0

0.
52

0
0.

57
0

0.
65

0
0.

14
0

0.
64

0
G

AT
0.

83
0

0.
75

0
0.

74
0

0.
52

0
0.

08
0

0.
44

0
0.

56
0

0.
64

0
0.

14
0

0.
61

0

2

G
C

N
0.

77
0

0.
68

0
0.

57
0

0.
38

0
0.

11
0

0.
50

0
0.

40
0

0.
45

0
0.

11
0

0.
58

0
SG

C
0.

77
0

0.
68

0
0.

58
0

0.
36

0
0.

08
0

0.
35

0
0.

41
0

0.
45

0
0.

14
0

0.
57

0
G

IN
0.

78
0

0.
67

0
0.

59
0

0.
39

0
0.

14
0

0.
39

0
0.

41
0

0.
47

0
0.

14
0

0.
58

0
G

AT
0.

68
0

0.
66

0
0.

56
0

0.
38

0
0.

11
0

0.
35

0
0.

39
0

0.
43

0
0.

12
0

0.
53

0

4

G
C

N
0.

72
0

0.
61

0
0.

51
0

0.
28

0
0.

09
0

0.
28

0
0.

39
0

0.
43

0
0.

10
0

0.
41

0
SG

C
0.

72
0

0.
60

0
0.

50
0

0.
28

0
0.

11
0

0.
30

0
0.

41
0

0.
45

0
0.

14
0

0.
41

0
G

IN
0.

66
0

0.
59

0
0.

48
0

0.
30

0
0.

16
0

0.
32

0
0.

41
0

0.
46

0
0.

15
0

0.
40

0
G

AT
0.

60
0

0.
57

0
0.

47
0

0.
29

0
0.

08
0

0.
25

0
0.

37
0

0.
45

0
0.

14
0

0.
38

0
Pe

ar
so

n
1.

00
0

0.
93

4
0.

91
6

0.
86

2
0.

03
0

0.
87

4
0.

84
4

0.
80

4
0.

11
2

0.
89

0
Sp

ea
rm

an
1.

00
0

0.
93

5
0.

94
7

0.
81

2
0.

01
8

0.
86

9
0.

80
5

0.
80

7
0.

11
6

0.
95

9
M

SE
0.

00
0

0.
00

8
0.

02
6

0.
13

6
0.

42
7

0.
13

4
0.

09
3

0.
06

3
0.

39
6

0.
05

3

113

Figure 6.7: CGT preserves distributions of graph statistics in generated graphs for each dataset: While
converting from original graphs to quantized graphs, CGT loses some of graph statistics information for
k-anonymity privacy benefit. The variations given by CGT are presented as differences in distributions
between quantized and generated graphs. X-axis denotes the number of zero vectors (z) and the number of
duplicate vectors (d) per computation graph, respectively. Y-axis denotes the number of computation graphs
with z zero vectors and d duplicate vectors, respectively.

datasets. Our model generates graphs that substitute original graphs successfully, preserving the
ranking of GNN link prediction performance with 0.754 Spearman correlation across the datasets.

6.7.10 Detailed GNN performance in the ablation study in Section 6.4.5
Table 6.8 shows CGT without label conditioning (conditioning on the label of the root node of the
computation graph), positional embedding trick (giving the same positional embedding to nodes at
the same layers on the computation graph), masked attention trick (attended only on direct ancestor
nodes on the computation graph), and all modules (pure Transformer) respectively. Note that this
experiment is done on the original version of CGT (not the cost-efficient version in Figure 6.3(c)).
When we remove the positional embedding trick, we provide the different positional embeddings to
all nodes in a computation graph, following the original transformer architecture. When we remove
attention masks from our model, the transformer attends all other nodes in the computation graphs
to compute the context embeddings.

6.7.11 GNN models used in the benchmark effectiveness experiment
We choose four different GNN models with different aggregation strategies to examine the effect of
noisy edges on the aggregation strategies: GCN [75] with mean aggregator, GIN [168] with sum
aggregator, SGC [162] with linear aggregator, and GAT [155] with attention aggregator. We choose
four different GNN models with different neighbor sampling strategies to examine the effect of

114

Table 6.7: GNN performance on link prediction.

Dataset predictor model Original std Cluster std Generated std pearson spearman

Cora

Dot

GCN 0.720 0.010 0.770 0.009 0.680 0.012

0.781 0.741

SGC 0.710 0.025 0.760 0.005 0.660 0.016
GIN 0.820 0.015 0.760 0.016 0.650 0.022
GAT 0.810 0.002 0.810 0.007 0.730 0.015

MLP

GCN 0.540 0.005 0.620 0.012 0.510 0.01
SGC 0.530 0.016 0.590 0.042 0.510 0.006
GIN 0.530 0.012 0.690 0.016 0.630 0.017
GAT 0.550 0.003 0.660 0.013 0.610 0.034

Dataset predictor model Original std Cluster std Generated std pearson spearman

Citeseer

Dot

GCN 0.690 0.007 0.740 0.009 0.650 0.026

0.808 0.824

SGC 0.700 0.003 0.730 0.013 0.670 0.022
GIN 0.830 0.008 0.720 0.003 0.650 0.01
GAT 0.750 0.005 0.780 0.012 0.680 0.021

MLP

GCN 0.580 0.005 0.650 0.012 0.590 0.01
SGC 0.580 0.008 0.640 0.025 0.590 0.023
GIN 0.570 0.011 0.720 0.012 0.610 0.024
GAT 0.610 0.005 0.680 0.001 0.620 0.009

Dataset predictor model Original std Cluster std Generated std pearson spearman

Pubmed

Dot

GCN 0.800 0.018 0.810 0.005 0.670 0.019

0.725 0.420

SGC 0.790 0.002 0.780 0.006 0.660 0.004
GIN 0.800 0.008 0.760 0.008 0.650 0.009
GAT 0.860 0.003 0.850 0.007 0.720 0.008

MLP

GCN 0.760 0.003 0.770 0.012 0.640 0.017
SGC 0.770 0.006 0.770 0.006 0.610 0.008
GIN 0.750 0.004 0.790 0.014 0.660 0.004
GAT 0.750 0.004 0.850 0.019 0.660 0.011

Dataset predictor model Original std Cluster std Generated std pearson spearman

Amazon
Computer

Dot

GCN 0.790 0.010 0.850 0.026 0.810 0.008

0.652 0.559

SGC 0.760 0.005 0.770 0.030 0.730 0.025
GIN 0.800 0.013 0.880 0.004 0.830 0.005
GAT 0.750 0.057 0.840 0.014 0.560 0.08

MLP

GCN 0.810 0.005 0.890 0.005 0.830 0.012
SGC 0.800 0.000 0.850 0.020 0.730 0.021
GIN 0.800 0.003 0.890 0.010 0.810 0.01
GAT 0.860 0.005 0.910 0.005 0.800 0.005

Dataset predictor model Original std Cluster std Generated std pearson spearman

Amazon
Photo

Dot

GCN 0.890 0.011 0.920 0.005 0.860 0.016

0.887 0.443

SGC 0.810 0.014 0.840 0.015 0.780 0.011
GIN 0.810 0.007 0.910 0.006 0.880 0.002
GAT 0.530 0.023 0.740 0.151 0.660 0.134

MLP

GCN 0.870 0.006 0.930 0.006 0.890 0.001
SGC 0.840 0.010 0.900 0.012 0.810 0.015
GIN 0.850 0.006 0.930 0.002 0.870 0.004
GAT 0.910 0.007 0.930 0.004 0.850 0.007

115

noisy edges and number of sampled neighbor numbers on GNN performance: GraphSage [55] with
random sampling, FastGCN [23] with heuristic layer-wise sampling, AS-GCN [68] with trainable
layer-wise sampling, and PASS [181] with trainable node-wise sampling. Finally, we choose four
different GNN models to check their robustness to distribution shifts in training/test time, as the
authors of the original paper [199] chose for their baselines: GCN [75], SGC [162], GAT [155],
and PPNP [79].

We implement GCN, SGC, GIN, and GAT from scratch for the SCENARIO 1: noisy edges
on aggregation strategies. For SCENARIOS 2 and 3: noisy edges and different sampling numbers
on neighbor sampling, we use open source implementations of each GNN model, ASGCN 3,
FastGCN 4, and PASS 5, uploaded by the original authors. Finally, for SCENARIO 4: distribution
shift, we use GCN, SGC, GAT, and PPNP implemented by [199] using DGL library 6.

6.7.12 Architecture of Computation Graph Transformer
Given a sequence s = [s1, · · · , sT], the M -layered transformer maximizes the likelihood under the
forward auto-regressive factorization as follow:

max
θ

logpθ(s) =
T∑
t=1

logpθ(st|s<t)

=
T∑
t=1

log
exp(q

(L)
θ (s1:t−1)

⊤e(st))∑
s′ ̸=st

exp(q
(L)
θ (s1:t−1)⊤e(s′))

where node embedding e(st) maps discrete input id st to a randomly initialized trainable vector, and
query embedding q

(L)
θ (s1:t−1) encodes information until (t − 1)-th token in the sequence. Query

embedding q
(l)
t is computed with context embeddings h(l−1)

1:t−1 of previous t − 1 tokens and query
embedding q

(l−1)
t from the previous layer. Context embedding h

(l)
t is computed from h

(l−1)
1:t , context

embeddings of previous t − 1 tokens and t-th token from the previous layer. Note that, while
the query embeddings have access only to the previous context embeddings h

(l)
1:t−1, the context

embeddings attend to all tokens h
(l)
1:t. The context embedding h

(0)
t is initially encoded by node

embeddings e(st) and position embedding pl(t) that encodes the location of each token in the
sequence. The query embedding is initialized with a trainable vector and label embeddings ys1 as
shown in Figure 6.3. This two streams (query and context) of self-attention layers are stacked M
time and predict the next tokens auto-regressively.

6.7.13 Differentially Private k-means and SGD algorithms
Given a set of data points, k-means clustering identifies k points, called cluster centers, by minimize
the sum of distances of the data points from their closest cluster center. However, releasing the

3https://github.com/huangwb/AS-GCN
4https://github.com/matenure/FastGCN
5https://github.com/linkedin/PASS-GNN
6https://github.com/GentleZhu/Shift-Robust-GNNs

116

https://github.com/huangwb/AS-GCN
https://github.com/matenure/FastGCN
https://github.com/linkedin/PASS-GNN
https://github.com/GentleZhu/Shift-Robust-GNNs

set of cluster centers could potentially leak information about particular users. For instance, if
a particular data point is significantly far from the rest of the points, so the k-means clustering
algorithm returns this single point as a cluster center. Then sensitive information about this single
point could be revealed. To address this, DP k-means clustering algorithm [21] is designed within
the framework of differential privacy. To generate the private core-set, DP k-means partitions the
points into buckets of similar points then replaces each bucket by a single weighted point, while
adding noise to both the counts and averages of points within a bucket.

Training a model is done through access to its parameter gradients, i.e., the gradients of the
loss with respect to each parameter of the model. If this access preserves differential privacy of the
training data, so does the resulting model, per the post-processing property of differential privacy. To
achieve this goal, DP stochastic gradient descent (DP-SGD) [135] modifies the minibatch stochastic
optimization process to make it differentially private.

We use the open source implementation of DP k-means provided by Google’s differential
privacy libraries 7. We extend implementations of DP SGD provided by a public differential library
Opacus 8.

6.7.14 Privacy-enhanced graph synthesis
Various privacy-enhanced graph synthesis [45, 116, 117, 124, 167, 169] has been proposed to ensure
differentially-private (DP) [34] graph sharing. However, most of them are limited to small-scaled
graphs using a few heuristic rules, while all of them do not consider node attributes and labels
in their graph generation process [124, 167]. Some GNN models have been proposed with DP
guarantees [109, 123], but this line of work concerns the models and not the graphs, and is therefore
outside of our scope.

6.7.15 Experimental settings
All experiments were conducted on the same p3.2xlarge Amazon EC2 instance. We run each
experiment three times and report the mean and standard deviation.

Dataset: We evaluate on seven public datasets — three citation networks (Cora, Citeseer, and
Pubmed) [126], two co-purchase graphs (Amazon Computer and Amazon Photo) [127], and two
co-authorship graph (MS CS and MS Physic) [127]. We use all nodes when training CGT. For GNN
training, we split 50%/10%/40% of each dataset into the training/validation/test sets, respectively.
We report their statistics in Table 6.9. AmazonC and AmazonP denote Amazon COmputer and
Amazon Photo datasets, respectively.

Baselines: For the molecule graph generative models, GraphAF, GraphDF, and GraphEBM, we
extend implementations in a public domain adaptation library DIG [96]. We extend implementations
of VGAE 9, GraphVAE 10 from codes uploaded by the authors of [76, 183].

7https://github.com/google/differential-privacy/tree/main/python/dp_
accounting

8https://github.com/pytorch/opacus
9https://github.com/tkipf/gae

10https://github.com/JiaxuanYou/graph-generation

117

https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/pytorch/opacus
https://github.com/tkipf/gae
https://github.com/JiaxuanYou/graph-generation

Model architecture: For our Computation Graph Transformer model, we use 3-layered trans-
formers for Cora, Citeseer, Pubmed, and Amazon Computer, 4-layered transformers for Amazon
Photo and MS CS, and 5-layered transformers for MS Physic, considering each graph size. For
all experiments to examine the benchmark effectiveness of our model in Section 6.4.4, we sample
s = 5 neighbors per node. For graph statistics shown in Section 6.4.3, we sample s = 20 neighbors
per node.

118

Table 6.8: Ablation study

Dataset model Original Label Position Attention All gone Ours

Cora

GCN 0.860 0.510 0.710 0.580 0.570 0.760
SGC 0.850 0.520 0.700 0.580 0.570 0.750
GIN 0.850 0.510 0.620 0.600 0.570 0.750
GAT 0.830 0.520 0.450 0.350 0.560 0.750
GraphSage 0.750 0.210 0.590 0.320 0.600 0.500
AS-GCN 0.120 0.170 0.240 0.070 0.140 0.110
FastGCN 0.450 0.570 0.830 0.560 0.630 0.380
PASS 0.800 0.470 0.750 0.410 0.600 0.540
PPNP 0.840 0.555 0.850 0.743 0.584 0.810

Dataset model Original Label Position Attention All gone Ours

Citeseer

GCN 0.730 0.450 0.670 0.530 0.520 0.590
SGC 0.730 0.460 0.640 0.530 0.530 0.580
GIN 0.710 0.450 0.520 0.530 0.510 0.570
GAT 0.710 0.460 0.210 0.590 0.530 0.570
GraphSage 0.680 0.280 0.580 0.370 0.550 0.440
AS-GCN 0.110 0.200 0.280 0.220 0.160 0.100
FastGCN 0.370 0.530 0.860 0.610 0.610 0.330
PASS 0.700 0.480 0.550 0.450 0.550 0.460
PPNP 0.690 0.540 0.760 0.393 0.547 0.610

Dataset model Original Label Position Attention All gone Ours

Pubmed

GCN 0.860 0.680 0.970 0.670 0.740 0.780
SGC 0.860 0.680 0.970 0.580 0.740 0.780
GIN 0.830 0.670 0.990 0.670 0.740 0.770
GAT 0.860 0.690 0.940 0.120 0.740 0.780
GraphSage 0.780 0.460 0.360 0.920 0.740 0.600
AS-GCN 0.250 0.320 0.200 0.770 0.360 0.260
FastGCN 0.480 0.670 0.560 0.650 0.740 0.440
PASS 0.860 0.690 0.330 1.000 0.740 0.660
PPNP 0.820 0.687 0.190 0.997 0.736 0.730

119

Table 6.9: Dataset statistics.

Dataset Nodes Edges Features Labels

Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,324 500 3
AmazonC 13,381 245,778 767 10
AmazonP 7,487 119,043 745 8
MS CS 18,333 81,894 6,805 15
MS Physic 34,493 247,962 8,415 5

120

Chapter 7

Multimodality

Multimodal learning combines multiple data modalities, broadening the types and complexity of
data our models can utilize: for example, from plain text to image-caption pairs. Most multimodal
learning algorithms focus on modeling simple one-to-one pairs of data from two modalities, such as
image-caption pairs, or audio-text pairs. However, in most real-world settings, entities of different
modalities interact with each other in more complex and multifaceted ways, going beyond one-to-
one mappings. We propose to represent these complex relationships as graphs, allowing us to capture
data with any number of modalities, and with complex relationships between modalities that can
flexibly vary from one sample to another. Toward this goal, we propose Multimodal Graph Learning
(MMGL), a general and systematic framework for capturing information from multiple multimodal
neighbors with relational structures among them. In particular, we focus on MMGL for generative
tasks, building upon pretrained Language Models (LMs), aiming to augment their text generation
with multimodal neighbor contexts. We study three research questions raised by MMGL: (1) how
can we infuse multiple neighbor information into the pretrained LMs, while avoiding scalability
issues? (2) how can we infuse the graph structure information among multimodal neighbors into
the LMs? and (3) how can we finetune the pretrained LMs to learn from the neighbor context in a
parameter-efficient manner? We conduct extensive experiments to answer these three questions on
MMGL and analyze the empirical results to pave the way for future MMGL research.

7.1 Motivation

There are diverse data modalities in real-world applications, from commonly observed texts, images,
and videos to time series data or domain-specific modalities like protein sequences. These various
modalities are not collected individually but together with multifaceted relations among them.
Wikipedia [18] is one of the most popular sources of multimodal web content, providing multimodal
data such as texts, images, and captions. TimeBuilder [144], recently released by Meta, builds
personal timelines using each user’s multimodal data, including their photos, maps, shopping, and
music history. In addition to these examples, important industrial and medical decisions are also
made by considering diverse multimodal data such as images, tables, or audio [66, 133]. These
multimodal data have complicated many-to-many relations among their multimodal entities —
which can be represented as graphs — providing open research space on how to understand them
holistically.

With the rise of multimodal datasets, various ground-breaking research has been done in

121

(a) 1-to-1 Multimodal Learning (b) many-to-many Multimodal Graph Learning

Figure 7.1: Multimodal datasets extracted from Wikipedia. (a) Most multimodal models target multimodal
datasets with clear 1-to-1 mappings between modalities. (b) Multimodal Graph Learning (MMGL) handles
multimodal datasets with complicated relations among multiple multimodal neighbors.

multimodal learning. Previously, multimodal learning focused on novel architectures, extending
transformers [58, 91, 146] or graph neural networks [65, 125], and training them from scratch using
large-scaled multimodal datasets. Fueled by the strong generative power of pretrained Language
Models (LMs), recent multimodal approaches [2, 80, 86] are built upon pretrained LMs and focus
on the generation of multimodal content. For instance, [80] generates images/text grounded on
given text/images using pretrained image encoders and LMs. However, all existing models assume
that a pair of modalities with a clear 1-to-1 mapping is provided as input (e.g., image-caption
pairs in Figure 7.1(a)). As a result, they cannot be directly applied on multimodal datasets with
more general many-to-many mappings among modalities (e.g., multimodal Wikipedia webpage in
Figure 7.1(b)).

Here, we expand the scope of multimodal learning beyond 1-to-1 mappings into multimodal
graph learning (MMGL) while preserving generative abilities by integrating them into pretrained
LMs. We introduce a systematic framework on how MMGL processes multimodal neighbor
information with graph structures among them and generate free-form texts using pretrained LMs
(Figure 7.2). Our MMGL framework extracts neighbor encodings, combines them with graph
structure information, and optimizes the model using parameter-efficient fine-tuning. Accordingly,
we define three design spaces to study three research questions for MMGL as follows:
• Research Question 1. How can we provide multiple multimodal neighbor information to LMs

while avoiding scalability issues?
• Research Question 2. How can we infuse graph structure information among multimodal

neighbors into LMs?
• Research Question 3. How can we finetune pretrained LMs to learn through multimodal neighbor

information in parameter-efficient ways?
In conventional multimodal learning with the 1-to-1 mapping assumption, typically only one
neighbor is provided (e.g., an image for a text caption) [2, 80, 86]. On the contrary, MMGL requires

122

the processing of several neighbors with various data sizes (e.g., image resolution and text sequences
of various lengths), which leads to the scalability issue. For Research Question 1, we study three
neighbor encoding models: (1) Self-Attention with Text + Embeddings (SA-Text+Embeddings)
precomputes image embeddings using frozen encoders, then concatenates them to the input text
sequences with any raw text from neighbors (originally proposed from [147]), (2) Self-Attention
with Embeddings (SA-Embeddings) precomputes embeddings for both text and image modalities
using frozen encoders and concatenates to the input text, and (3) Cross-Attention with Embeddings
(CA-Embeddings) feeds precomputed text or image embeddings into cross-attention layers of LMs.

In Research Question 2, we study how to infuse graph structure information among multimodal
neighbors into LMs (e.g., section hierarchy and image orders in Figure 7.1(b)). We compare the
sequential position encoding with two graph position encodings widely used in graph transform-
ers [121, 175]: Laplacian eigenvector position encoding (LPE) [33] and graph neural networks
encoding (GNN) [75] that runs GNNs on precomputed neighbor embeddings using graphs structures
before feeding them into LMs.

Research Question 3 seeks to improve the cost and memory efficiency compared to full fine-
tuning of LMs. In this work, we explore three parameter-efficient fine-tuning (PEFT) methods [59]:
Prefix tuning [89], LoRA [61], and Flamingo tuning [2]. Which PEFT methods to use depends on
the neighbor encoding model: when neighbor information is concatenated into the input sequences
(SA-Text+Embeddings or SA-Embeddings neighbor encodings), we can apply Prefix tuning or LoRA
for fine-tuning. When neighbor information is fed into cross-attention layers (CA-Embeddings
neighbor encoding), we apply Flamingo tuning that finetunes only cross-attention layers with gating
modules for stable finetuning [2].

Based on our MMGL framework, we run extensive experiments on the recently released
multimodal dataset, WikiWeb2M [18]. WikiWeb2M unifies each Wikipedia webpage content to
include all text, images, and their structures in a single example. This makes it useful for studying
multimodal content understanding with many-to-many text and image relationships, in the context of
generative tasks. Here, we focus on the section summarization task that aims to generate a sentence
that captures information about the contents of one section by understanding the multimodal content
on each Wikipedia page. Through rigorous testing on WikiWeb2M, we provide intuitive empirical
answers to research questions raised in MMGL.

In summary, our contributions are:
• Multimodal Graph Learning (MMGL): We introduce a systematic MMGL framework for

processing multimodal neighbor information with graph structures among them, and generating
free-form texts using pretrained LMs.

• Principled Research Questions: We introduce three research problems MMGL is required to
answer: (1) how to provide multiple neighbor information to the pretrained LMs, (2) how to infuse
graph structure information into LMs, and (3) how to fine-tune the LMs parameter-efficiently.
This paves research directions for future MMGL research.

• Extensive Empirical Results: We show empirically that (1) neighbor context improves generation
performance, (2) SA-Text+Embeddings neighbor encoding shows the highest performance while
sacrificing the scalability, (3) GNN embeddings are the most effective graph position encod-
ings, and (4) SA-Text+Embeddings neighbor encoding with LoRA and CA-Embeddings neighbor

123

encoding with Flamingo tuning show the highest performance among different PEFT models.
Our code is publicly available at 1.

7.2 Proposed work

Given multimodal graphs with text or images on each node, we aim to generate text conditioned on
each node and its neighbor nodes. More specifically, given text input on a target node, pretrained
LMs generate free-form text conditioned on the input text and the multimodal context around the
target node. In our multimodal graph learning (MMGL) framework, we first encode each neighbor’s
information individually using frozen encoders (Figure 7.2(b)). The frozen encoders could be
pretrained ViT [31] or ResNeT [56] for images that map pixels to embeddings, and pretrained
LMs [119] for texts that map texts to embeddings (similarly for other modalities). Then, we encode
the graph structure around the target node using graph position encodings (Figure 7.2(c)). Finally,
the encoded neighbor information with graph position encodings is fed into the pretrained LMs
with the input text to generate text conditioned on the multimodal input content (Figure 7.2(d)).

The framework leaves us with three design spaces: (1) how can we feed neighbor information
to the LMs? (2) how can we infuse graph structure information among multimodal neighbors into
LMs? (3) how can we finetune the pretrained LMs to learn from the neighbor context parameter-
efficiently? In this section, we investigate each problem and discuss possible methodologies we can
apply.

7.2.1 Research Question 1: Neighbor Encoding

Unlike existing multimodal learning, which assumes a single image (corresponding to the input
text) as input, multimodal graph learning considers an arbitrary number of neighbor images/texts as
input; thus, scalability is the first problem to solve to learn from multiple multimodal neighbors. In
vision-text models, a standard recipe is to first process images with an image encoder (e.g., ViT,
ResNet) into image embeddings, then map the embeddings into the text-only LM space, and finally
feed them into the LMs. Two popular ways to feed image embeddings into LMs are with full self-
attention over modalities concatenated across the sequence dimension [147] or with cross-modal
attention layers [146].

Motivated by these two approaches, we propose three neighbor encoding methods as follows:
• Self-Attention with Text + Embeddings (SA-Text+Embeddings): Text neighbors are concate-

nated as raw texts, while other modalities are first processed by frozen encoders (e.g., ViT for
images), and then their embeddings are concatenated to the input sequence. We add a linear
mapper that aligns precomputed embeddings into the text space of LLMs.

• Self-Attention with Embeddings (SA-Embeddings): Same as SA-Text+Embeddings except text
neighbors are also processed by separate frozen encoders, and their embeddings are concatenated
to the input sequence. Text encoders could be the same or different from the base LLM model.

1 https://github.com/minjiyoon/MMGL

124

https://github.com/minjiyoon/MMGL

(a) Multimodal neighbors with
graph structures

(b) Multimodal neighbor encoding using frozen vision/text encoders

(c) Graph position
encodings

(d) Text generation using frozen/finetuned LMs and encoded neighbor information

Figure 7.2: Multimodal Graph Learning (MMGL) framework. (a) Multiple multimodal neighbors are
given with the input text. (b) Multimodal neighbors are first encoded using frozen vision/text encoders
and then aligned to the text-only LM space using 1-layer MLP mappers. The mappers are trained during
LM fine-tuning. Based on the neighbor encoding scheme, texts could be used without any preprocessing
(Self-Attention with Text+Embeddings) or encoded into embeddings (Self-Attention with Embeddings or
Cross-Attention with Embeddings). Images are always encoded into embeddings to align to the text-only
LM space. (c) Graph structures among neighbors are encoded as graph position encodings. (d) Encoded
neighbor information could be infused either by concatenating to the input sequences (Self-Attention with
Text+Embeddings or Self-Attention with Embeddings) or feeding into cross-attention layers (Cross-Attention
with Embeddings). The graph position encodings are added to the input token/text/image embeddings.

• Cross-Attention with Embeddings (CA-Embeddings): All neighbors are processed by separate
frozen encoders, mapped into the text space by linear mappers, and then fed into cross-attention
layers.

In general, when we provide text embeddings instead of raw text, the amount of information the
LLMs are able to exploit is bottlenecked by the precomputed embeddings. However, raw texts

125

introduce scalability issues as the attention mechanism of LMs uses the O(T 2) compute with
the sequence length T . Thus, there is a trade-off between computation cost and scalability. For
SA-Text+Embeddings and SA-Embeddings, we have additional parameters only for mappers that
are located outside of the LMs, while CA-Embeddings inserts additional cross-attention layers
into pretrained LMs and trains them from scratch. This means CA-Embeddings could result in
an unstable initial state as the pretrained LLM layers are affected by randomly initialized cross-
attention layers. In Section 7.3.4, we explore these three approaches and discuss their empirical
results.

7.2.2 Research Question 2: Graph Structure Encoding
Given neighbor information, we can simply concatenate neighbor information either as raw texts
or embeddings and treat them as a sequence. But the neighbors have structures among them.
For instance, sections have hierarchical structures, and images are included in certain sections in
WikiWeb2M (Figure 7.1(b)). To encode this graph structure among the neighbor information, we
borrow two popular graph position encodings from graph transformers and compare them with
sequential position encoding.
• Laplacian Position Encoding (LPE): We exploit Laplacian eigenvectors of neighbors computed

from their graph structure as their position encodings.
• Graph Neural Networks (GNN): We first compute neighbor embeddings from frozen encoders

and run GNN over the embeddings using the graph structure. Then, we use the output GNN
embeddings, which encode graph structure information as position encodings.

LPE has an additional 1-layer MLP mapper to map the Laplacian eigenvectors to the text space of
LMs. Parameters used for graph structure encoding (e.g., mappers for LPE or GNN parameters) are
trained with LMs in an end-to-end manner during LM fine-tuning. In Section 7.3.5, we explore
how well these different position encodings bring additional graph structure information among
neighbors into LMs and improve performance.

7.2.3 Research Question 3: Parameter-Efficiency
While we need to fine-tune the pretrained LM model for the specific task and newly added neigh-
bor information, full fine-tuning requires high computation costs and also brings inconvenience
in sharing MMGL modules when users decide to use neighbor information. Recently, various
parameter-efficient fine-tuning (PEFT) methods have been proposed to fine-tune only a small
amount of parameters while preserving the full fine-tuning performance. We choose three different
PEFT models proper for the three neighbor encoding approaches we described above.
• Prefix tuning: When we choose SA-Text+Embeddings or SA-Embeddings for neighbor encoding,

we do not have any newly added parameters but self-attention layers; thus, we can easily apply
Prefix tuning [89], which keeps language model parameters frozen and instead optimizes a
sequence of continuous task-specific vectors prepended to the original activation vectors across all
layers.

• LoRA: Like Prefix tuning, low-rank adaptation (LoRA) [61] is suitable for SA-Text+Embeddings
or SA-Embeddings neighbor encodings. LoRA injects trainable rank decomposition matrices into

126

each layer while freezing the original parameters.
• Flamingo: For CA-Embeddings neighbor encoding, we can directly apply Flamingo [2], which

fine-tunes only newly added cross-attention layers with tanh gating to keep the pretrained LM
intact at initialization for improved stability and performance.

In Section 7.3.6, we explore how well PEFT models preserve the full fine-tuning performance by
tuning a small number of parameters.

7.3 Experiments

7.3.1 WikiWeb2M dataset
WikiWeb2M dataset [18] is built for the general study of multimodal content understanding with
many-to-many text and image relationships. Built upon the WIT dataset [136] which contains only
image-caption pairs, WikiWeb2M includes the page title, section titles, section text, images and
their captions, and indices for each section, their parent section, their children sections, and many
more.

In this work, we focus on the section summarization task to generate a single sentence that
highlights a particular section’s content. The summary is generated given all images and (non-
summary) text present in the target and context sections. We sample 600k Wikipedia pages randomly
from WikiWeb2M for the section summarization task. In total, the training/validation/test set sizes
for the section summarization task are 680k/170k/170k, respectively.

7.3.2 Experimental Settings
From WikiWeb2M, we can get four types of information for section summarization: (1) section
text, (2) section images, (3) text from page description and other sections, and (4) images from
page description and other sections. We provide information incrementally to LMs to study the
effectiveness of multimodal neighbor information: (1) section text, 2) section all (text + image), 3)
page text (all text from a Wikipedia page the input section belongs to), and 4) page all (all text and
images from the Wikipedia page).

We use Open Pre-trained Transformer (OPT-125m) [194] for the base LM to read the input
section text and generate a summary. For text and image encoders for neighbor information, we
use text/image encoders from CLIP [119]. Following [120], we finetune OPT for 10000 steps of
125 batch size with learning rate 10−4. The text/image encoders are frozen across all experiments.
We measure BLEU-4 [113], ROUGE-L [93], and CIDEr [154] scores on the validation set. All
experiments are run on 4 Nvidia-RTX 3090 GPUs with 24GB memory.

7.3.3 Effectiveness of Neighbor Information
We first examine the effectiveness of multimodal neighbor information. As described in Sec-
tion 7.3.2, we provide more information incrementally to the base LM: (1) section text, (2) section
all (text + image), 3) page text, and 4) page all (all texts and images). Here, we use Self-Attention

127

Table 7.1: Effectiveness of neighbor information. As more neighbor information is fed to LMs together
with input texts (section text, section all => page text, page all), generation performance is improved. We
increase the input sequence length to 1024 to encode page text and page all as more information is required
to be encoded. The best results are colored in red, while the second-best results are colored in blue.

Input type Input length BLEU-4 ROUGE-L CIDEr

Section text 512 8.31 40.85 79.68
Section all 512 8.03 40.41 77.45

Page text 1024 9.81 42.94 92.71
Page all 1024 9.96 43.32 96.62

Table 7.2: Neighbor encodings in MMGL. We encode multiple multimodal neighbor information using three
different neighbor encodings, Self-Attention with Text+Embeddings (SA-TE), Self-Attention with Embeddings
(SA-E), and Cross-Attenion with Embeddings (CA-E). While SA-TE shows the best performance, SA-TE
requires a longer input length (1024) to encode texts from neighbors in addition to the original text input,
leading to scalability issues. The best results are colored in red.

BLEU-4 ROUGE-L CIDEr

Input type SA-TE SA-E CA-E SA-TE SA-E CA-E SA-TE SA-E CA-E

Section all 8.03 7.56 8.35 40.41 39.89 39.98 77.45 74.33 75.12
Page text 9.81 8.37 8.47 42.94 40.92 41.00 92.71 80.14 80.72
Page all 9.96 8.58 8.51 43.32 41.01 41.55 96.01 82.28 80.31

Max input length 1024 512 512 1024 512 512 1024 512 512

with Text+Embeddings (SA-Text+Embeddings) neighbor encoding across different input types.
For images, we first compute the image embeddings from the frozen CLIP image encoder and
concatenate them right after the text of a section each image belongs to preserve the structure. The
results in Table 7.1 indicate that more multimodal neighbor information is helpful: performance
significantly improves when going from section to page content, and further when adding page all
content, based on their BLEU-4, ROUGE-L, and CIDEr scores.

Discussion: Missing Modalities. Performance of section all decreased slightly from section
text, despite the addition of section images. In Wikipedia, not every section has corresponding
images. Thus, in the section all case, input to the LMs is inconsistent with some samples having
text and images, while other samples only have text. This points to an important unaddressed
missing modality issue that is common in the real world, which is not typically encountered in
the conventional 1-to-1 multimodal setting, emphasizing the importance of developing MMGL
approaches that are robust to the presence of missing modalities.

128

Table 7.3: Graph structure encoding in MMGL. We encode graph structures among multimodal neighbors
using sequential position encodings (Sequence), Graph Neural Network embeddings (GNN), and Laplacian
position encodings (LPE). Computed position encodings are added to input token/text/image embeddings
and fed into LMs. We use Self-Attention with Embeddings (SA-E) neighbor encoding and Prefix tuning in this
experiment. The best results are colored in red.

Metric PEFT Sequence GNN LPE

BLEU-4 Prefix tuning 6.91 6.98 6.80
LoRA 7.12 7.30 7.13

ROUGE-L Prefix tuning 38.98 39.13 39.10
LoRA 39.05 39.48 39.35

CIDEr Prefix tuning 68.20 69.29 68.15
LoRA 68.86 70.86 69.34

7.3.4 Neighbor Encoding

We encode multiple multimodal neighbor information using three different neighbor encodings,
Self-Attention with Text+Embeddings (SA-TE), Self-Attention with Embeddings (SA-E), and Cross-
Attenion with Embeddings (CA-E). While SA-E and CA-E encode all modalities, including text,
into embeddings using frozen encoders, SA-TE encodes text neighbors as they are by concatenating
them to the input text sequence. Thus SA-TE requires longer input sequence lengths (1024) to
encode additional texts, leading to potential scalability issues. On the other hand, SA-E and CA-E
require one token length to encode one text neighbor, improving scalability with shorter input
lengths (512). The results in Table 7.2 indicate that scalability is traded off with performance:
SA-TE consistently performs better than SA-E and CA-E on different input types at the cost of
longer input lengths.

Discussion: Information Loss. In conventional multimodal learning with 1-to-1 mappings, SA-
TE is commonly used to infuse text input as it is, and image inputs as embeddings are precomputed
by frozen encoders [2, 80, 86]. These methods successfully generate texts grounded on the input
images, showing image embeddings’ effectiveness as input to the pretrained LMs. However, the
performance gap between SA-TE and SA-E in Table 7.2 indicates that text embeddings likely lead
to information loss in the LMs. This could be either because the 1-layer MLP mapper that aligns
precomputed text embeddings into the text space of the LMs is not expressive enough, or because
longer input texts compared to short texts used in the conventional multimodal learning (e.g., one-
sentence captions) makes LMs hard to learn from precomputed text embeddings. From a practical
angle, our results illuminate the trade-off between scalability and performance. Meanwhile, our
results emphasize the need for more MMGL research to address the challenging issue of information
loss when using embeddings to capture text information.

129

Table 7.4: Parameter-efficient finetuning in MMGL. We apply Prefix tuning and LoRA for Self-Attention
with Text+Embeddings (SA-TE) and Self-Attention with Embeddings (SA-E) neighbor encodings. For Cross-
Attention with Embeddings (CA-E) neighbor encoding, we apply Flamingo-style finetuning that finetunes
only newly added cross-attention layers with gating modules. Note that SA-E and CA-E neighbor encodings
have more parameters than SA-TE because (frozen) text encoders are added to encode text neighbors. The
best results are colored in red, while the second-best results are colored in blue.

Neighbor encoding (max length) SA-TE (1024) SA-E (512) CA-E (512)

Metric Input type Prefix tuning LoRA Prefix tuning LoRA Flamingo

BLEU-4
Section all 6.70 6.65 6.80 7.07 6.96
Page text 7.84 7.94 6.88 7.09 7.81
Page all 8.21 8.18 6.91 7.12 8.12

ROUGE-L
Section all 38.67 38.84 38.97 39.30 39.43
Page text 40.61 40.98 38.38 39.69 40.29
Page all 41.08 41.25 38.98 39.05 40.95

CIDEr
Section all 65.84 65.00 67.24 68.61 69.31
Page text 78.12 78.60 66.55 69.26 76.20
Page all 81.07 80.75 68.20 68.86 82.37

Finetuned parameters 20M 82M 20M 84M 90M
Total parameters 230M 250M 300M 320M 363M
% Finetuned parameters 9% 33% 7% 26% 25%

7.3.5 Graph Structure Encoding
In addition to each modality on neighbors, multimodal graphs contain graph structure information
among neighbors. We encode the graph structures among multimodal neighbors using sequential
position encodings (Sequence), Graph Neural Network embeddings (GNN), and Laplacian position
encodings (LPE). Computed position encodings are first mapped to the text space of LMs by
1-layer MLP, added to input token/text/image embeddings, and fed into LMs. In Table 7.3, GNN
embeddings show the best performance. Especially, the improvement over Sequence position
encoding shows the importance of graph-aware structure encoding methods in MMGL.

7.3.6 Parameter-Efficient Fine-Tuning
Full fine-tuning of pretrained LMs requires high computational costs. For parameter-efficient
fine-tuning for MMGL, we study Prefix tuning and LoRA for Self-Attention with Text+Embeddings
(SA-TE) and Self-Attention with Embeddings (SA-E) neighbor encodings. For Cross-Attention with
Embeddings (CA-E) neighbor encoding, we apply Flamingo-style finetuning that finetunes only
newly added cross-attention layers with gating modules.

The results in Table 7.4 show that LoRA performs better than Prefix tuning for SA-TE and
SA-E neighbor encodings with more fine-tuned parameters (7− 9% for Prefix tuning and 26− 33%

130

for LoRA). However, Prefix tuning still shows comparable performance with LoRA using nearly 4
times fewer parameters with SA-TE neighbor encoding. Flamingo with CA-E neighbor encoding
shows comparable performance with LoRA with SA-TE neighbor encoding employing the similar
numbers of fine-tuned parameters (82M for LoRA and 90M for Flamingo). Note that SA-E and
CA-E neighbor encodings have more parameters than SA-TE, attributed to the inclusion of (frozen)
text encoders for text neighbor processing.

In Table 7.2 (without PEFT), it is evident that CA-E neighbor encoding lags in performance
compared to SA-TE neighbor encoding. However, when infused with Flamingo, gating modules
in Flamingo effectively ensure that the pre-trained LMs remain unaffected by randomly set cross-
attention layers at initialization, thereby enhancing the performance of CA-E, as shown in Table 7.4
(with PEFT). This underscores the pivotal role of strategic initialization when introducing supple-
mentary modules for neighbor encoding in MMGL and when integrating them into the pre-trained
LMs.

7.4 Related Work

End-to-End Multimodal Learning: While many discriminative multimodal models [69, 119]
have also been developed, we primarily consider related work on generative multimodal models,
as this is most closely related with our approach. Several recent approaches tackle multimodal
learning by building upon the Transformer [152] architecture. Multimodal extensions typically use
either full self-attention over modalities concatenated across the sequence dimension [24, 138] or
a cross-modal attention layer [146]. Self-supervised multimodal pretraining methods train these
architectures from large-scale unlabeled multimodal data before transferring them to downstream
multimodal tasks via fine-tuning [58, 91]. These methods perform end-to-end pre-training, incurring
extremely high computation costs, especially as model parameters increase [86]. Moreover, this
framework is relatively inflexible for end-to-end pre-trained models to leverage readily available
unimodal pre-trained models, such as text-only LMs or pretrained vision models.

Multimodal Learning with Frozen Image Encoders and Large Language Models: Recently,
various vision-language models have been proposed to leverage off-the-shelf pre-trained models
and keep them frozen during pretrainig [2, 80, 86]. To input visual information directly to a
frozen text-only LLM, a key challenge is to align visual features to the text space. Motivated by
Frozen [147], which finetunes a visual encoder to map images into the hidden space of a text-only
LLM, Blip-2 [86] and GILL [80] finetune separate image mapping networks whose inputs are
precomputed by frozen image encoders and outputs are directly used as soft prompts to LLMs.
On the other hand, Flamingo [2] inserts new cross-attention layers into the LLM to inject visual
features and pre-trains the new layers on image-text pairs. Note that all these methods primarily
focus on processing interleaved image and text inputs to generate text outputs.

131

7.5 Summary

In this work, we extend the conventional multimodal learning with 1-to-1 mappings between a
pair of modalities into multimodal graph learning (MMGL) with many-to-many relations among
multiple modalities. Our MMGL framework is systematically structured around three critical
components: (1) neighbor encodings, (2) graph structure encodings, and (3) parameter-efficient
fine-tuning. Through rigorous testing on the WikiWeb2M dataset, we explored different options for
each component: (1) three variations of neighbor encodings, Self-Attention with Text+Embeddings,
Self-Attention with Embeddings, and Cross-Attention with Embeddings, highlighting the balance
between scalability and performance, (2) three different graph position encodings, sequence, LPE,
and GNN, and (3) three PEFT models, prefix tuning, LoRA, and Flamingo, and their trade-off
between parameter-efficiency and performance. Our in-depth analyses and findings aim to lay the
groundwork for future MMGL research, igniting further exploration in this field.

132

Chapter 8

Conclusion

In this thesis, we address factors limiting the adoption of DLG and its downstream impact on
real-world applications. First, DLG often requires tedious work for hyperparameter tuning as
hyperparameters for optimal algorithms vary across applications. Second, problem formulations
often do not consider real-world constraints like scalability and privacy. Finally, there has been
a growing demand for leveraging unimodal foundation models in multimodal graph learning to
manage multimodal graphs effectively. To cope with these challenges, we redefine conventional
problem formulations and develop novel algorithms for 1) automated, 2) scalable, 3) privacy-
enhanced, and 4) multimodal DLG. As the data collected by humanity increases in scale and
diversity, the relationships among individual elements increase quadratically in scale and complexity.
By making DLG more practical, we hope to enable better processing of these relationships and
positively impact a wide array of domains. For reproducibility and the benefit of the community, we
make most of the algorithms and datasets used throughout this thesis available at www.minjiyoon.
xyz.

133

www.minjiyoon.xyz
www.minjiyoon.xyz

134

Bibliography

[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments.
The Journal of Machine Learning Research, 18(1):6446–6531, 2017. 5.5.1

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a
visual language model for few-shot learning. Advances in Neural Information Processing
Systems, 35:23716–23736, 2022. 7.1, 7.1, 7.2.3, 7.3.4, 7.4

[3] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74(1):47, 2002. 6.5

[4] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205, 2020. 6.7.3

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 4.1

[6] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and personalized
pagerank. Proceedings of the VLDB Endowment, 4(3), 2010. 3.1, 3.2.3

[7] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018. 4.1

[8] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. Analysis of represen-
tations for domain adaptation. Advances in neural information processing systems, 19:137,
2007. 5.6, 5.8.9

[9] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning, 79
(1):151–175, 2010. 5.6, 5.8.9

[10] Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush K Ray, Manal Saadi, and
Fragkiskos D Malliaros. Semi-supervised learning and graph neural networks for fake news
detection. In 2019 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 568–569. IEEE, 2019. 1, 6.1

[11] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35. New York, 2007. 3.1

[12] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Faloutsos. Midas:
Microcluster-based detector of anomalies in edge streams. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 3242–3249, 2020. 2.5

135

[13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. Advances in neural
information processing systems, 26, 2013. 5.8.8

[14] Paul S Bradley, Kristin P Bennett, and Ayhan Demiriz. Constrained k-means clustering.
Microsoft Research, Redmond, 20(0):0, 2000. 6.3.2, 6.4.2, 1

[15] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical reinforce-
ment learning. arXiv preprint arXiv:1012.2599, 2010. 3.4.2, 3.6.2

[16] Sylvain Brohee and Jacques Van Helden. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC bioinformatics, 7(1):488, 2006. 3.1

[17] Andreas Buja, Dianne Cook, and Deborah F Swayne. Interactive high-dimensional data
visualization. JCGS, 5(1):78–99, 1996. (document), 4.5.8, 4.5

[18] Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Geoff Brown, Bryan A. Plummer, Kate
Saenko, Jianmo Ni, and Mandy Guo. A suite of generative tasks for multi-level multimodal
webpage understanding, 2023. 7.1, 7.1, 7.3.1

[19] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algo-
rithms. ACM computing surveys (CSUR), 38(1):2–es, 2006. 6.5

[20] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine
learning on graphs: A model and comprehensive taxonomy. Journal of Machine Learning
Research, 23(89):1–64, 2022. 1, 6.1

[21] Alisa Chang, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Locally private k-means in
one round. In International Conference on Machine Learning, pages 1441–1451. PMLR,
2021. 6.3.2, 6.4.2, 2, 6.7.13

[22] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky,
and Jure Leskovec. Mobility network models of covid-19 explain inequities and inform
reopening. Nature, 589(7840):82–87, 2021. 1

[23] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional
networks via importance sampling. arXiv preprint arXiv:1801.10247, 2018. 4.1, 4.2, 4.2,
4.5.1, 4.5.1, 4.6, 6.2.2, 6.4.1, 6.7.3, 6.7.11

[24] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng,
and Jingjing Liu. Uniter: Universal image-text representation learning. In European
conference on computer vision, pages 104–120. Springer, 2020. 7.4

[25] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 257–266, 2019. 6.7.3

[26] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic,
and Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood
prediction. arXiv preprint arXiv:2111.00064, 2021. 2.4

136

[27] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for
structured data. In International conference on machine learning, 2016. 4.1

[28] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018. 6.5

[29] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with
graph neural networks in google maps. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 3767–3776, 2021. 1

[30] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable repre-
sentation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 135–144, 2017.
5.8.8

[31] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020. 7.2

[32] Rafał Dreżewski, Jan Sepielak, and Wojciech Filipkowski. The application of social network
analysis algorithms in a system supporting money laundering detection. Information Sciences,
295:18–32, 2015. 3.1

[33] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699, 2020. 7.1

[34] Cynthia Dwork. Differential privacy: A survey of results. In International conference on
theory and applications of models of computation, pages 1–19. Springer, 2008. 6.7.14

[35] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma, Charles
Sugnet, Mark Ulrich, and Jure Leskovec. Pixie: A system for recommending 3+ billion items
to 200+ million users in real-time. In Proceedings of the 2018 world wide web conference,
2018. 3.2.3, 3.6.3

[36] Alessandro Epasto, Vahab Mirrokni, Bryan Perozzi, Anton Tsitsulin, and Peilin Zhong.
Differentially private graph learning via sensitivity-bounded personalized pagerank. arXiv
preprint arXiv:2207.06944, 2022. 6.4.2

[37] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960. 6.5

[38] Dhivya Eswaran, Reihaneh Rabbany, Artur W Dubrawski, and Christos Faloutsos. Social-
affiliation networks: Patterns and the soar model. In Joint European conference on machine
learning and knowledge discovery in databases, pages 105–121. Springer, 2018. 6.1, 6.5

[39] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of
the internet topology. SIGCOMM, 29(4):251–262, 1999. 4.5.2

[40] Oleksandr Ferludin, Arno Eigenwillig, Martin Blais, Dustin Zelle, Jan Pfeifer, Alvaro
Sanchez-Gonzalez, Sibon Li, Sami Abu-El-Haija, Peter Battaglia, Neslihan Bulut, et al.

137

Tf-gnn: Graph neural networks in tensorflow. arXiv preprint arXiv:2207.03522, 2022. 5.2.2

[41] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 5.2.2

[42] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable
and expressive graph neural networks via historical embeddings. In International Conference
on Machine Learning, pages 3294–3304. PMLR, 2021. 6.7.3

[43] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to
learning. Evolutionary intelligence, 1(1), 2008. 3.6.1

[44] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using
graph convolutional networks. In NIPS, pages 6530–6539, 2017. 4.1

[45] Arik Friedman and Assaf Schuster. Data mining with differential privacy. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 493–502, 2010. 6.7.14

[46] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph
neural network for heterogeneous graph embedding. In Proceedings of The Web Conference
2020, pages 2331–2341, 2020. 2.3, 5.1, 5.2.2, 5.3.4, 5.5.4

[47] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning research, 17(1):2096–2030, 2016.
5.1, 5.5.2, 5.6, 5.8.9

[48] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture
search. In Proceedings of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, pages 1403–1409, 2021. 3.6.3

[49] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pages 1263–1272. PMLR, 2017. 2.3, 5.2.2, 5.5.4

[50] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014. 6.5

[51] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012. 5.6, 5.8.9

[52] Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of
graphs. In International conference on machine learning, pages 2434–2444. PMLR, 2019.
6.5

[53] Mengying Guo, Tao Yi, Yuqing Zhu, and Yungang Bao. Jitune: Just-in-time hyperparameter
tuning for network embedding algorithms. arXiv preprint arXiv:2101.06427, 2021. 3.6.3

[54] Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph
generation. arXiv preprint arXiv:2007.06686, 2020. 6.5

138

[55] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 2.2, 3.2.3, 3.5.1, 3.7,
4.1, 4.2, 4.5.1, 4.6, 5.8.1, 6.1, 6.2.2, 6.4.1, 6.7.3, 6.7.11

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 7.2

[57] Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as features:
Llm-based features for text-attributed graphs. arXiv preprint arXiv:2305.19523, 2023. 2.4

[58] Lisa Anne Hendricks, John Mellor, Rosalia Schneider, Jean-Baptiste Alayrac, and Aida
Nematzadeh. Decoupling the role of data, attention, and losses in multimodal transformers.
Transactions of the Association for Computational Linguistics, 9:570–585, 2021. 7.1, 7.4

[59] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine Learning, pages 2790–2799.
PMLR, 2019. 7.1

[60] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network
architectures for matching natural language sentences. In NIPS, pages 2042–2050, 2014. 4.1

[61] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 7.1, 7.2.3

[62] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265, 2019. 5.6

[63] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. Advances in neural information processing systems, 33:22118–22133, 2020. 6.7.5

[64] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Gen-
erative pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1857–1867, 2020.
5.5.3, 5.6

[65] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer.
In Proceedings of The Web Conference 2020, pages 2704–2710, 2020. 2.3, 2.4, 3.7, 5.1, 5.1,
5.2.2, 5.5.3, 5.5.4, 7.1

[66] Bing Huang, Feng Yang, Mengxiao Yin, Xiaoying Mo, Cheng Zhong, et al. A review of
multimodal medical image fusion techniques. Computational and mathematical methods in
medicine, 2020, 2020. 7.1

[67] Tiancheng Huang, Ke Xu, and Donglin Wang. Da-hgt: Domain adaptive heterogeneous
graph transformer. arXiv preprint arXiv:2012.05688, 2020. 5.1, 5.6

[68] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards

139

fast graph representation learning. In NIPS, pages 4558–4567, 2018. 4.1, 4.2, 4.2, 4.5.1,
4.5.1, 4.6, 6.2.2, 6.4.1, 6.7.3, 6.7.11

[69] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In International conference on machine learning, pages
4904–4916. PMLR, 2021. 7.4

[70] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao
Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. Could graph neural networks learn better
molecular representation for drug discovery? a comparison study of descriptor-based and
graph-based models. Journal of cheminformatics, 13(1):1–23, 2021. 1

[71] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder
for molecular graph generation. In International conference on machine learning, pages
2323–2332. PMLR, 2018. 6.5

[72] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P
Xing. Neural architecture search with bayesian optimisation and optimal transport. In
Advances in Neural Information Processing Systems, pages 2016–2025, 2018. 3.1, 3.6.1

[73] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 3.5.1, 4.8.2

[74] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 6.5

[75] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 1, 2.2, 3.2.3, 3.5.1, 4.1, 5.4, 6.1, 6.4.1,
6.7.11, 7.1

[76] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016. 6.4.1, 6.7.15

[77] Hiroaki Kitano. Designing neural networks using genetic algorithms with graph generation
system. Complex systems, 4(4), 1990. 3.6.1

[78] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5), 1999. 3.1

[79] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.
6.4.1, 6.7.11

[80] Jing Yu Koh, Daniel Fried, and Ruslan Salakhutdinov. Generating images with multimodal
language models. arXiv preprint arXiv:2305.17216, 2023. 7.1, 7.1, 7.3.4, 7.4

[81] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao, and Christos
Faloutsos. Unifying guilt-by-association approaches: Theorems and fast algorithms. In
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II 22, pages 245–260.
Springer, 2011. 3.2.3

140

[82] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, pages 1097–1105, 2012. 4.1

[83] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. Structured pruning of neural
networks with budget-aware regularization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9108–9116, 2019. 3.1

[84] Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using kronecker
multiplication. In Proceedings of the 24th international conference on Machine learning,
pages 497–504, 2007. 6.5

[85] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahra-
mani. Kronecker graphs: an approach to modeling networks. Journal of Machine Learning
Research, 11(2), 2010. 6.1, 6.5

[86] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023. 7.1, 7.1, 7.3.4, 7.4, 7.4

[87] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional
networks for semi-supervised learning. In Thirty-Second AAAI conference on artificial
intelligence, 2018. 6.7.3

[88] Shan Li, Baoxu Shi, Jaewon Yang, Ji Yan, Shuai Wang, Fei Chen, and Qi He. Deep job
understanding at linkedin. In SIGIR, pages 2145–2148, 2020. 1, 4.5.1

[89] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021. 7.1, 7.2.3

[90] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial order pruning: for best
speed/accuracy trade-off in neural architecture search. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9145–9153, 2019. 3.1

[91] Paul Pu Liang, Yiwei Lyu, Xiang Fan, Jeffrey Tsaw, Yudong Liu, Shentong Mo, Dani
Yogatama, Louis-Philippe Morency, and Russ Salakhutdinov. High-modality multimodal
transformer: Quantifying modality & interaction heterogeneity for high-modality representa-
tion learning. Transactions on Machine Learning Research, 2022. 7.1, 7.4

[92] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud,
Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention
networks. Advances in Neural Information Processing Systems, 32, 2019. 6.1, 6.5

[93] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Sum-
marization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Com-
putational Linguistics. URL https://www.aclweb.org/anthology/W04-1013.
7.3.2

[94] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical representations for efficient architecture search. arXiv preprint
arXiv:1711.00436, 2017. 3.6.1

[95] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.

141

https://www.aclweb.org/anthology/W04-1013

arXiv preprint arXiv:1806.09055, 2018. 3.1

[96] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao
Xu, Jingtun Zhang, Yi Liu, et al. Dig: a turnkey library for diving into graph deep learning
research. Journal of Machine Learning Research, 22(240):1–9, 2021. 6.7.15

[97] Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song, and Yuan Qi.
Bandit samplers for training graph neural networks. arXiv preprint arXiv:2006.05806, 2020.
4.1, 4.2, 4.2, 4.5.1, 4.5.1, 4.6, 6.7.3

[98] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable
features with deep adaptation networks. In International conference on machine learning,
pages 97–105. PMLR, 2015. 5.5.2, 5.6, 5.8.9

[99] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversar-
ial domain adaptation. arXiv preprint arXiv:1705.10667, 2017. 5.1, 5.5.2, 5.5.3, 5.6, 5.8.4,
5.8.9

[100] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning
with joint adaptation networks. In International conference on machine learning, pages
2208–2217. PMLR, 2017. 5.1, 5.5.2, 5.6, 5.8.9

[101] Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotlagh. Progressive graph learning
for open-set domain adaptation. In International Conference on Machine Learning, pages
6468–6478. PMLR, 2020. 5.6

[102] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular
graph generation. In International Conference on Machine Learning, pages 7192–7203.
PMLR, 2021. 6.1, 6.4.1, 6.5

[103] Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. Gcan: Graph convolutional adversarial
network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8266–8276, 2019. 5.6

[104] Krzysztof Michalak and Jerzy Korczak. Graph mining approach to suspicious transaction
detection. In 2011 Federated conference on computer science and information systems
(FedCSIS). IEEE, 2011. 3.1

[105] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013. 5.8.8

[106] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. arXiv preprint arXiv:1906.10652, 2019. 4.1, 4.3.3

[107] Jerome L Myers, Arnold D Well, and Robert F Lorch Jr. Research design and statistical
analysis. Routledge, 2013. 6.4.2

[108] S Deepak Narayanan, Aditya Sinha, Prateek Jain, Purushottam Kar, and Sundararajan Sella-
manickam. Iglu: Efficient gcn training via lazy updates. arXiv preprint arXiv:2109.13995,
2021. 6.7.3

[109] Iyiola E Olatunji, Thorben Funke, and Megha Khosla. Releasing graph neural networks with

142

differential privacy guarantees. arXiv preprint arXiv:2109.08907, 2021. 6.7.14

[110] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999. 3.1, 3.1, 3.2.3,
3.5.1, 3.6.3, 3.7, 6.4.4

[111] John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake
graphs bring real insights for gnns. arXiv preprint arXiv:2203.00112, 2022. 6.1

[112] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. Transfer graph neural
networks for pandemic forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 4838–4845, 2021. 1

[113] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of
the Association for Computational Linguistics, pages 311–318, 2002. 7.3.2

[114] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In
Probabilistic and Causal Inference: The Works of Judea Pearl, pages 129–138. 2022. 3.2.3

[115] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Gener-
ating realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372,
2019. 6.5

[116] Davide Proserpio, Sharon Goldberg, and Frank McSherry. A workflow for differentially-
private graph synthesis. In Proceedings of the 2012 ACM workshop on Workshop on online
social networks, pages 13–18, 2012. 6.7.14

[117] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. Generating synthetic
decentralized social graphs with local differential privacy. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 425–438, 2017.
6.7.14

[118] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1150–1160, 2020. 5.6

[119] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021. 7.2, 7.3.2, 7.4

[120] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.
7.3.2

[121] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022. 7.1

143

[122] Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation
with optimal transport. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 737–753. Springer, 2017. 5.6, 5.8.9

[123] Sina Sajadmanesh and Daniel Gatica-Perez. Locally private graph neural networks. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2130–2145, 2021. 6.7.14

[124] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y Zhao. Sharing
graphs using differentially private graph models. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, pages 81–98, 2011. 6.7.14

[125] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European
semantic web conference, pages 593–607. Springer, 2018. 2.3, 2.4, 4.1, 5.1, 5.1, 5.2.2, 5.5.4,
7.1

[126] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008. 3.5.1,
4.5.1, 6.4.1, 6.7.15

[127] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 3.5.1,
4.5.1, 6.4.1, 6.7.15

[128] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided repre-
sentation learning for domain adaptation. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018. 5.1, 5.5.2, 5.5.3, 5.6, 5.8.4, 5.8.9

[129] Baoxu Shi, Jaewon Yang, Tim Weninger, Jing How, and Qi He. Representation learning in
heterogeneous professional social networks with ambiguous social connections. In IEEE
BigData, 2019. 4.1

[130] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint
arXiv:2001.09382, 2020. 6.1, 6.4.1, 6.5

[131] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining using
k-core analysis—patterns, anomalies and algorithms. In 2016 IEEE 16th international
conference on data mining (ICDM), pages 469–478. IEEE, 2016. 3.2.3

[132] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In International conference on artificial neural networks,
pages 412–422. Springer, 2018. 6.4.1, 6.5

[133] Prabhjot Singh, Yanyan Wu, Robert Kaucic, Jiaqin Chen, and Francis Little. Multimodal
industrial inspection and analysis. 2007. 7.1

[134] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
the 24th international conference on world wide web, pages 243–246, 2015. 5.8.8

144

[135] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, pages 245–248. IEEE, 2013. 6.3.2, 6.4.2, 6.7.4, 6.7.13

[136] Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, and Marc Najork.
Wit: Wikipedia-based image text dataset for multimodal multilingual machine learning. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 2443–2449, 2021. 7.3.1

[137] Alexander Strehl and Joydeep Ghosh. A scalable approach to balanced, high-dimensional
clustering of market-baskets. In International Conference on High-Performance Computing,
pages 525–536. Springer, 2000. 3.1

[138] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert:
Pre-training of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530,
2019. 7.4

[139] Mohammed Suhail, Abhay Mittal, Behjat Siddiquie, Chris Broaddus, Jayan Eledath, Gerard
Medioni, and Leonid Sigal. Energy-based learning for scene graph generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13936–
13945, 2021. 6.4.1, 6.5

[140] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016. 5.6, 5.8.9

[141] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks: principles and
methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2):1–159,
2012. 5.1

[142] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018. 4.1

[143] George Szekeres and Herbert S Wilf. An inequality for the chromatic number of a graph.
Journal of Combinatorial Theory, 4(1):1–3, 1968. 3.2.3, 3.6.3

[144] Wang-Chiew Tan, Jane Dwivedi-Yu, Yuliang Li, Lambert Mathias, Marzieh Saeidi,
Jing Nathan Yan, and Alon Y Halevy. Timelineqa: A benchmark for question answer-
ing over timelines. arXiv preprint arXiv:2306.01069, 2023. 7.1

[145] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extrac-
tion and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 990–998, 2008.
5.8.8

[146] Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency,
and Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language
sequences. In Proceedings of the conference. Association for Computational Linguistics.
Meeting, volume 2019, page 6558. NIH Public Access, 2019. 7.1, 7.2.1, 7.4

[147] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. Advances in Neural Information

145

Processing Systems, 34:200–212, 2021. 7.1, 7.2.1, 7.4

[148] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering
with graph neural networks. arXiv preprint arXiv:2006.16904, 2020. 5.8.7

[149] Anton Tsitsulin, Benedek Rozemberczki, John Palowitch, and Bryan Perozzi. Synthetic
graph generation to benchmark graph learning. WWW’21, Workshop on Graph Learning
Benchmarks, 2021. 5.8.7

[150] Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. Autone: Hyperparameter optimiza-
tion for massive network embedding. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 216–225, 2019. 3.6.3

[151] Robert J Vanderbei. Linear programming foundations and extensions, 2014. 3.4.1, 3.4.1

[152] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 6.1, 6.2.3, 6.3.1, 7.4

[153] Alexei Vazquez, Alessandro Flammini, Amos Maritan, and Alessandro Vespignani. Global
protein function prediction from protein-protein interaction networks. Nature biotechnology,
21(6):697–700, 2003. 3.1

[154] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based
image description evaluation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4566–4575, 2015. 7.3.2

[155] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 3.3.1,
4.1, 4.5.1, 6.4.1, 6.7.11

[156] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun
Zhou, Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial
fraud detection. In 2019 IEEE International Conference on Data Mining (ICDM), pages
598–607. IEEE, 2019. 1, 6.1

[157] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao
Ma, Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint arXiv:1909.01315, 2019. 5.2.2

[158] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
Heterogeneous graph attention network. In The World Wide Web Conference, pages 2022–
2032, 2019. 2.3, 5.1, 5.1, 5.2.2, 5.5.4

[159] Yiwei Wang, Shenghua Liu, Minji Yoon, Hemank Lamba, Wei Wang, Christos Faloutsos,
and Bryan Hooi. Provably robust node classification via low-pass message passing. In 2020
IEEE International Conference on Data Mining (ICDM), pages 621–630. IEEE, 2020. 2.5,
3.3.1

[160] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992. 4.3.2, 4.3.3

[161] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony

146

Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45,
2020. 5.8.8

[162] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153,
2019. 3.2.3, 3.5.1, 6.4.1, 6.7.11

[163] Liwei Wu, Hsiang-Fu Yu, Nikhil Rao, James Sharpnack, and Cho-Jui Hsieh. Graph dna:
Deep neighborhood aware graph encoding for collaborative filtering. In AISTAT, pages
776–787. PMLR, 2020. 4.1

[164] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In Proceedings of The Web Conference 2020, pages
1457–1467, 2020. 5.6

[165] Qitian Wu, Chenxiao Yang, and Junchi Yan. Towards open-world feature extrapolation: An
inductive graph learning approach. Advances in Neural Information Processing Systems, 34:
19435–19447, 2021. 5.6

[166] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu.
A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.
3.1

[167] Qian Xiao, Rui Chen, and Kian-Lee Tan. Differentially private network data release via
structural inference. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 911–920, 2014. 6.7.14

[168] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 6.4.1, 6.7.11

[169] Carl Yang, Haonan Wang, Ke Zhang, Liang Chen, and Lichao Sun. Secure deep graph
generation with link differential privacy. arXiv preprint arXiv:2005.00455, 2020. 6.7.14

[170] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network
representation learning: A unified framework with survey and benchmark. IEEE Transactions
on Knowledge and Data Engineering, 2020. 5.5.1, 5.8.8

[171] Shuwen Yang, Guojie Song, Yilun Jin, and Lun Du. Domain adaptive classification on
heterogeneous information networks. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pages 1410–1416,
2021. 5.1, 5.6

[172] Yaming Yang, Ziyu Guan, Jianxin Li, Wei Zhao, Jiangtao Cui, and Quan Wang. Interpretable
and efficient heterogeneous graph convolutional network. IEEE Transactions on Knowledge
and Data Engineering, 2021. 5.2.2

[173] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in
neural information processing systems, 32, 2019. 6.3.1

147

[174] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classifi-
cation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, 2019.
3.1

[175] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances
in Neural Information Processing Systems, 34:28877–28888, 2021. 7.1

[176] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974–983, 2018. 1, 6.1

[177] Minji Yoon. Graph fraud detection based on accessibility score distributions. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pages
483–498. Springer, 2021. 2.5

[178] Minji Yoon, Woojeong Jin, and U Kang. Fast and accurate random walk with restart on
dynamic graphs with guarantees. In Proceedings of the 2018 World Wide Web Conference,
2018. 3.2.3

[179] Minji Yoon, Jinhong Jung, and U Kang. Tpa: Fast, scalable, and accurate method for ap-
proximate random walk with restart on billion scale graphs. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, 2018. (document), 3.1, 3.2.3, 3.3

[180] Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos. Fast and accurate anomaly
detection in dynamic graphs with a two-pronged approach. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 647–657,
2019. 2.5, 3.1

[181] Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and Jaewon Yang.
Performance-adaptive sampling strategy towards fast and accurate graph neural networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 2046–2056, 2021. 6.2.2, 6.4.1, 6.7.3, 6.7.11

[182] Minji Yoon, John Palowitch, Dustin Zelle, Ziniu Hu, Ruslan Salakhutdinov, and Bryan
Perozzi. Zero-shot domain adaptation of heterogeneous graphs via knowledge transfer
networks. arXiv preprint arXiv:2203.02018, 2022. 2.4

[183] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models. In International conference on
machine learning, pages 5708–5717. PMLR, 2018. 6.1, 6.5, 6.7.15

[184] Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling
missing data with graph representation learning. Advances in Neural Information Processing
Systems, 33:19075–19087, 2020. 5.6

[185] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks.
Advances in Neural Information Processing Systems, 33:17009–17021, 2020. 3.6.3

[186] Yingfang Yuan, Wenjun Wang, George M Coghill, and Wei Pang. A novel genetic algo-

148

rithm with hierarchical evaluation strategy for hyperparameter optimisation of graph neural
networks. arXiv preprint arXiv:2101.09300, 2021. 3.6.3

[187] Oren Zamir and Oren Etzioni. Web document clustering: A feasibility demonstration.
In Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 46–54, 1998. 3.1

[188] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regulariza-
tion. arXiv preprint arXiv:1409.2329, 2014. 6.5

[189] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. Graphsaint: Graph sampling based inductive learning method. arXiv preprint
arXiv:1907.04931, 2019. 6.7.3

[190] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal
Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph
neural networks. Advances in Neural Information Processing Systems, 34:19665–19679,
2021. 6.7.3

[191] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla.
Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 793–803, 2019. 5.1, 5.2.2

[192] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan
Wang, Bin Shao, Rui Li, et al. Oag: Toward linking large-scale heterogeneous entity graphs.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2585–2595, 2019. 5.5.1, 5.8.8

[193] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks:
a comprehensive review. Computational Social Networks, 6(1):1–23, 2019. 2.4

[194] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022. 7.3.2

[195] Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey.
arXiv preprint arXiv:2103.00742, 2021. 3.6.3

[196] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian
Tang. Learning on large-scale text-attributed graphs via variational inference. arXiv preprint
arXiv:2210.14709, 2022. 2.4

[197] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Transactions on
Intelligent Transportation Systems, 21(9):3848–3858, 2019. 6.1

[198] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with q-learning.
arXiv preprint arXiv:1708.05552, 6, 2017. 3.6.1

[199] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming
the limitations of localized graph training data. Advances in Neural Information Processing
Systems, 34, 2021. 6.4.4, 6.7.11

149

[200] Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.
5.5.2, 5.6

[201] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016. 3.6.1

[202] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks. In
NIPS, pages 11249–11259, 2019. 4.1, 4.2, 4.6, 6.7.3

150

	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 Thesis Organization

	2 Background
	2.1 Graph-related Concepts and Notations
	2.2 Graph Neural Networks
	2.3 Heterogeneous Graph Neural Networks
	2.4 Graph Neural Networks on Multimodal Graphs
	2.5 End-to-End Pipeline in Deep Learning on Graphs (DLG)

	3 Automation
	3.1 Motivation
	3.2 Unified Graph Mining Framework
	3.2.1 Message Passing
	3.2.2 UnifiedGM
	3.2.3 Reproduction of Existing Algorithms
	3.2.4 Conventional GM vs. GNNs
	3.2.5 Parameter Selection

	3.3 Extended UnifiedGM
	3.3.1 Attention
	3.3.2 Importance sampling

	3.4 Automation of Graph Mining Algorithm Development
	3.4.1 Budget-aware objective function
	3.4.2 Bayesian optimization
	3.4.3 AutoGM
	3.4.4 Time Complexity Analysis

	3.5 Experiments
	3.5.1 Experimental Setting
	3.5.2 Effectiveness of AutoGM
	3.5.3 Search efficiency of AutoGM
	3.5.4 Effect of UnifiedGM parameters
	3.5.5 Discussion

	3.6 Related work
	3.6.1 AutoML
	3.6.2 Bayesian Optimization
	3.6.3 Graph Neural Architecture Search

	3.7 Summary

	4 Scalability
	4.1 Motivation
	4.2 Preliminaries
	4.3 Proposed Method
	4.3.1 Sampling Policy
	4.3.2 Training the Sampling Policy
	4.3.3 Algorithm

	4.4 Theoretical Foundation
	4.4.1 Design of Sampling Policy

	4.5 Experiments
	4.5.1 Experimental setting
	4.5.2 Effectiveness
	4.5.3 Robustness
	4.5.4 Convergence & Variance
	4.5.5 Comparison with GAT
	4.5.6 Ablation Study
	4.5.7 Case Study
	4.5.8 Visualization of PASS

	4.6 Related Work
	4.7 Summary
	4.8 Appendix
	4.8.1 Proof of SUB-LOSS trick
	4.8.2 Experimental Setting
	4.8.3 Case Study
	4.8.4 Different sample numbers

	5 Privacy I: transfer learning within a heterogeneous graph
	5.1 Motivation
	5.2 Preliminaries
	5.2.1 Heterogeneous graph
	5.2.2 Heterogeneous Graph Neural Networks (HGNN)
	5.2.3 Problem definition

	5.3 Cross-Type Feature Extractor Transformations in HGNNs
	5.3.1 Feature extractors in HMPNNs
	5.3.2 Empirical gap between fs and ft
	5.3.3 Relationship between feature extractors in HMPNNs
	5.3.4 Generalized cross-type transformations for HGNNs

	5.4 KTN: Trainable Cross-Type Transfer Learning for HGNNs
	5.4.1 Algorithm

	5.5 Experiments
	5.5.1 Datasets
	5.5.2 Baselines
	5.5.3 Zero-shot transfer learning
	5.5.4 Generality of KTN
	5.5.5 Sensitivity analysis

	5.6 Related Work
	5.7 Summary
	5.8 Appendix
	5.8.1 Proof of Theorem 7
	5.8.2 Indirectly Connected Source and Target Node Types
	5.8.3 More results for Zero-shot Transfer Learning in Section 5.5.3
	5.8.4 Analysis for Baselines in Section 5.5.3
	5.8.5 More results for Generality of KTN in Section 5.5.4
	5.8.6 Effect of trade-off coefficient
	5.8.7 Synthetic Heterogeneous Graph Generator
	5.8.8 Real-world Dataset
	5.8.9 Baselines
	5.8.10 HGNN models
	5.8.11 Experimental Settings

	6 Privacy II: privacy-enhanced graph generative model
	6.1 Motivation
	6.2 From Graph Generation to Sequence Generation
	6.2.1 Computation graph sampling in GNN training
	6.2.2 Duplicate encoding scheme for computation graphs
	6.2.3 Quantization
	6.2.4 End-to-end framework for a benchmark graph generation problem

	6.3 Proposed Work
	6.3.1 Computation Graph Transformer (CGT)
	6.3.2 Theoretical analysis

	6.4 Experiments
	6.4.1 Experimental setting
	6.4.2 Main results
	6.4.3 Graph statistics.
	6.4.4 Various scenarios to evaluate benchmark effectiveness
	6.4.5 Ablation study

	6.5 Related Work
	6.6 Summary
	6.7 Appendix
	6.7.1 Reproducibility
	6.7.2 Limitation of the study
	6.7.3 Computation graph sampling in GNN training
	6.7.4 Proof of privacy and scalability claims
	6.7.5 CGT on ogbn-arxiv and ogbn-products
	6.7.6 CGT as training/test set generators
	6.7.7 Detailed GNN performance in the privacy experiment in Section 6.4.2
	6.7.8 Additional experiments on graph statistics
	6.7.9 Detailed GNN performance in the benchmark effectiveness experiment in Section 6.4.4
	6.7.10 Detailed GNN performance in the ablation study in Section 6.4.5
	6.7.11 GNN models used in the benchmark effectiveness experiment
	6.7.12 Architecture of Computation Graph Transformer
	6.7.13 Differentially Private k-means and SGD algorithms
	6.7.14 Privacy-enhanced graph synthesis
	6.7.15 Experimental settings

	7 Multimodality
	7.1 Motivation
	7.2 Proposed work
	7.2.1 Research Question 1: Neighbor Encoding
	7.2.2 Research Question 2: Graph Structure Encoding
	7.2.3 Research Question 3: Parameter-Efficiency

	7.3 Experiments
	7.3.1 WikiWeb2M dataset
	7.3.2 Experimental Settings
	7.3.3 Effectiveness of Neighbor Information
	7.3.4 Neighbor Encoding
	7.3.5 Graph Structure Encoding
	7.3.6 Parameter-Efficient Fine-Tuning

	7.4 Related Work
	7.5 Summary

	8 Conclusion

