
New Spectral Techniques in Algorithms,
Combinatorics, and Coding Theory:

The Kikuchi Matrix Method

Peter Manohar

CMU-CS-24-142

August 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Venkatesan Guruswami, Co-Chair (UC Berkeley)

Pravesh K. Kothari, Co-Chair (IAS & Princeton University)
Ryan O’Donnell

Uriel Feige (Weizmann Institute)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Peter Manohar

This research was sponsored by: the National Science Foundation under the 2019 GRFP Fellowship program; the
National Science Foundation under award numbers CCF1563742, CCF1908125, CCF2211971 and CCF1814603; the
David and Lucille Packard Foundation under award number 200529094A; the ARCS Foundation; and a Cylab
Presidential Fellowship. The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Spectral Methods, Constraint Satisfaction Problems, Locally Decodable Codes

To my wife Magdalen

iv

Abstract
In this thesis, we present a new method to solve algorithmic and combinatorial

problems by (1) reducing them to bounding the maximum, over 𝑥 ∈ {−1, 1}𝑛 , of
homogeneous degree-𝑞 multilinear polynomials, and then (2) bounding the maxi-
mum value attained by these polynomials by analyzing the spectral properties of
appropriately chosen induced subgraphs of Cayley graphs on the hypercube (and
related variants) called “Kikuchi matrices”.

We will present the following applications of this method.
(1) Designing algorithms for refuting/solving semirandom and smoothed instances

of constraint satisfaction problems;
(2) Proving Feige’s conjectured hypergraph Moore bound on the extremal girth vs.

density trade-off for hypergraphs;
(3) Proving a cubic lower bound for 3-query locally decodable codes and an exponen-

tial lower bound for 3-query locally correctable codes.

vi

Acknowledgments

First and foremost, I would like to thank my wife Magdalen for all her invaluable support
throughout the past years.

I also want to thank my advisors, Venkatesan Guruswami and Pravesh K. Kothari, for their
mentorship and support. I would especially like to thank Pravesh for being a constant source of
optimism and motivation, and for helping me prove [KM24a] as a wedding present! I also would
like to thank the rest of my thesis committee, Ryan O’Donnell and Uriel Feige, for attending my
thesis proposal and defense, and for providing suggestions that improved this thesis.

I am very grateful to Alessandro Chiesa, who was responsible for introducing me to research
many years ago back in 2015, when I was an undergraduate at UC Berkeley. My talks, writing,
and research would not be where they are today without your diligent mentorship. I also want
to thank Yi-Ren Ng for the time I did research in his computer graphics lab, even though it was
rather brief. I would also like to thank Luca Trevisan, who sadly passed away too soon just a few
months ago, for his mentorship and guidance, as well as his amazing blog, which has been a
great source of ideas and inspiration these past years.

I also want to thank Madhur Tulsiani, as well as Yury Makarychev and Siddharth Bhandari,
for their mentorship during Summer 2023 when I was an intern at TTIC.

I would also like to thank my great collaborators, as well as my many friends and outstanding
members of the CS Theory community whom I’ve had the pleasure to interact with these past
years: Omar Alrabiah, Mitali Bafna, Ainesh Bakshi, Guy Blanc, Jun-Ting (Tim) Hsieh, Max
Hopkins, Rahul Ilango, Siqi Liu, Sidhanth Mohanty, Jonathan Mosheiff, Shivam Nadimpalli,
Pedro Paredes, Kevin Pratt, Nic Resch, João Riberio, Igor Shinkar, Nick Spooner, Shashank
Srivastava, Thuy-Duong (June) Vuong, Jeff Xu, Goran Žužić, and many others; the research
community wouldn’t be the same without you. I also want to especially thank Guy Blanc for all
the great times that we spent together at conferences across the years.

I also want to thank the other professors and my friends within the CMU CSD community
for making this department a great place to be a PhD student: Anupam Gupta, Ryan O’Donnell,
Justine Sherry, and Danny Sleator, as well as my CSD friends Jatin Arora and Brian Hu Zhang. I
am especially thankful to Anupam for his immaculate talk advice, which has been shared with
countless other students, and for his wise, sage-like presence and guidance (and also for selling
me his car!). I am also thankful to Jatin, for the great times we had watching Champions League
(even if you are a Barça fan...), and to Brian, for the many hours we spent together watching and
discussing Formula 1 and Star Wars together.

I would like to give a big shoutout to Patricia Loring, Pravesh’s administrative assistant, as
well as the rest of the CMU CSD administrative staff, for handling all of my administrative tasks
quickly and efficiently, and for keeping the department running smoothly. You’re the best!

I am deeply thankful for my high school friends, Eric Chen and Joy Li. Eric, thanks for the
amazing speech you gave at my wedding. Joy, I’m glad you finally got those cats you always
wanted; Tako and Vinnie are adorable!

I would also like to thank my friends Sudeep Dasari and Jason Zhang, along with their
fiancées, Varsha Venkat and Helen Jiang, and the rest of the RoboFantasy crew, for all the great
times we enjoyed 7 hours of commercial-free football while watching me lose my weekly fantasy
matchup because Josh Allen “only” put up 35 points.

I am very grateful to my wife’s parents, Ted Dobson and Susan Cook, along with her siblings

vii

Blue and Alcuin — it’s an honor to be a part of your great family. I would like to especially thank
Susan for the hard work she puts in every year to make me feel at home when we visit them in
Slovenia for Christmas, and Alcuin for truly endless discussions about Minecraft and for working
tirelessly to ensure that my wedding was spotted lanternfly-free!

Finally, I would like to thank my parents, Aneesh and Elizabeth, and my brother, Nathan, for
all their love and support, and also for instilling within me a love for science and mathematics.
This was where my PhD journey began.

viii

Contents

1 Introduction 1

2 An Overview of the Method and Key Technical Ideas 5
2.1 The main approach and Kikuchi matrices for even 𝑞 7
2.2 Handling arbitrary hypergraphs with row bucketing 11
2.3 Handling correlated randomness with row pruning 14

3 Background and Preliminaries 21
3.1 Basic notation . 21

3.1.1 Graph pruning and expander decomposition 21
3.2 Hypergraphs . 22
3.3 Locally decodable and correctable codes . 23
3.4 Concentration inequalities . 25
3.5 The sum-of-squares algorithm . 26
3.6 Facts about binomial coefficients . 27

I Algorithms for Semirandom and Smoothed Constraint Satisfaction Problems 29

4 Background and Results 31
4.1 Refuting CSPs in semirandom and smoothed models 32

4.1.1 Algorithms for refuting smoothed CSPs . 34
4.1.2 Refutation witnesses for smoothed CSPs below the spectral threshold . . . 37

4.2 Solving planted CSPs in semirandom models . 37
4.2.1 Our semirandom planted model and results 39

5 Algorithms for Strongly Refuting Smoothed CSPs 43
5.1 Proof overview: refuting semirandom 𝑘-XOR for odd 𝑘 43

5.1.1 Refuting semirandom 𝑘-XOR for 𝑘 > 3: hypergraph regularity 46
5.2 A hypergraph decomposition lemma . 47
5.3 Refuting semirandom sparse polynomials over the hypercube 50

5.3.1 Regular bipartite polynomials . 51
5.3.2 Reduction to regular bipartite polynomials 52

5.4 Refuting regular bipartite polynomials . 53
5.4.1 The initial Kikuchi matrix . 54

ix

5.4.2 Proof plan . 56
5.4.3 Row pruning . 59
5.4.4 Bounding the spectral norm of the “reweighted pruned matrix”: proof of

Lemma 5.4.7 . 63
5.5 Strong CSP refutation: smoothed via semirandom 65

5.5.1 Proof of Theorem 5.5.4 . 67
5.6 Analyzing the [WAM19] approach for random 3-XOR 69

6 Short Refutation Witnesses for Smoothed CSPs Below the Spectral Threshold 71

7 Efficient Algorithms for Semirandom Planted CSPs at the Refutation Threshold 77
7.1 Technical overview . 77

7.1.1 Approximate recovery for 2-XOR from refutation 78
7.1.2 The challenges for 𝑘-XOR and our strategy 78
7.1.3 Information-theoretic exact recovery from relative cut approximation . . . 81
7.1.4 Efficient exact recovery from relative spectral approximation 82
7.1.5 The case of odd 𝑘 . 84

7.2 From planted CSPs to noisy XOR . 85
7.3 From 𝑘-XOR to spread bipartite 𝑘-XOR . 88

7.3.1 Proof of Theorem 5 from Lemma 7.3.2 . 89
7.4 Identifying noisy constraints in spread bipartite 𝑘-XOR 90

7.4.1 Setup and key notation . 91
7.4.2 Proof outline . 92
7.4.3 Graph pruning and expander decomposition 93
7.4.4 Rank-1 SDP solution from expansion and relative spectral approximation . 94
7.4.5 Recovery of corrupted constraints from corrupted pairs 97
7.4.6 Finishing the proof of Lemma 7.3.2 . 100

7.5 Notions of relative approximation . 101
7.6 Hypergraph decomposition . 102
7.7 Theorem 5 when 𝑘 = 1 . 103

II Extremal Girth vs. Density Trade-Offs for Hypergraphs 105

8 Background and Results 107

9 A Proof of the Hypergraph Moore Bound 109
9.1 Proof of Theorem 6 for even 𝑘 . 109
9.2 Proof of Theorem 6 for all 𝑘 . 111

9.2.1 Proof of Lemma 9.2.2 . 112

III Lower Bounds for Locally Decodable and Correctable Codes 117

10 Background and Results 119
10.1 Our results . 121

x

10.1.1 A near-cubic lower bound for 3-LDCs . 122
10.1.2 Exponential lower bounds for 3-LCCs . 122

11 A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes 127
11.0.1 Hypergraph decomposition: proof of Lemma 11.0.2 130
11.0.2 Refuting the 2-XOR instance: proof of Lemma 11.0.3 130

11.1 Refuting the 3-XOR instance: proof of Lemma 11.0.4 131
11.1.1 Bounding val(𝑓𝐿,𝑅) using CSP refutation . 132
11.1.2 Counting nonzero entries: proof of Lemma 11.1.7 135
11.1.3 Spectral norm bound: proof of Lemmas 11.1.6 and 11.1.9 136

11.2 Improved lower bounds for 3-LDCs over larger alphabets 136
11.3 Our proof as a black-box reduction to 2-LDC lower bounds 139

12 Exponential Lower Bounds for 3-Query Locally Correctable Codes 143
12.1 The proof strategy . 143

12.1.1 The naive XOR instance and LDC lower bounds 144
12.1.2 Long chain derivations: stronger spectral refutations by increased density . 146
12.1.3 From the heuristic to a proof . 148

12.2 Proof of Theorem 9 . 149
12.2.1 Bounding the second moment of the degrees: proof of Lemma 12.2.6 153

12.3 Warmup: an 𝑛 ≥ Ω̃(𝑘4) lower bound via 2-chains 157
12.3.1 Step 1: the Cauchy–Schwarz trick . 158
12.3.2 Step 2: spectral refutation via Kikuchi matrices 159
12.3.3 Step 3: row pruning, the key technical step 160
12.3.4 Step 4: hypergraph decomposition to handle large heavy pair degree . . . 162
12.3.5 Preview: extending the warmup to a proof of Theorem 8 165

12.4 Proof of Theorem 8: from LCCs to XOR formulas 167
12.5 Smooth partitions of chains . 170
12.6 Spectral refutation via Kikuchi matrices . 172

12.6.1 Step 1: the Cauchy–Schwarz trick . 173
12.6.2 Step 2: defining the Kikuchi matrices . 174
12.6.3 Step 3: finding a regular submatrix of the Kikuchi matrix 175
12.6.4 Step 4: finishing the proof . 176
12.6.5 Step 5: optimizing the log 𝑛 factor and proving Theorem 8 177

12.7 Row pruning: proof of Lemma 12.6.4 . 178
12.8 From adaptive decoders to chain XOR polynomials 182

12.8.1 Constructing polynomials from adaptive smoothed decoders 186
12.8.2 Proof of Lemma 12.8.10 . 189

12.9 Refuting the graph-tail instances . 190
12.10 Linear 3-LCC lower bounds over larger fields . 194
12.11 Design 3-LCCs over F2 from Reed–Muller codes . 196

xi

IV Future Directions 199

13 Kikuchi Matrices over Larger Alphabets 201

14 Improved Algorithms for Planted CSPs 205
14.1 Subexponential-time algorithms for planted CSPs 205
14.2 Smoothed models of planted CSPs . 206

15 Improved Lower Bounds for LDCs/LCCs 209
15.1 Better LDC lower bounds: barriers and a path forward 209

15.1.1 Improving odd 𝑞 LDC lower bounds . 209
15.1.2 Improving even 𝑞 LDC lower bounds . 210

15.2 The “LDC barrier” for LCC lower bounds . 212

16 Improved Nondeterministic and Interactive Refutations 215

Bibliography 219

xii

Chapter 1

Introduction

Spectral methods — understanding eigenvectors, eigenvalues, and related linear algebraic proper-
ties — have a rich history in algorithm design, forming the backbone of the field of spectral graph
theory [HLW06, Spi19]. For example, spectral expander graphs, a ubiquitous object in theoretical
computer science with numerous applications such as the construction of good error-correcting
codes [SS94], are graphs whose expansion (a combinatorial quantity) is characterized by the
eigenvalues of its adjacency matrix. In the past 30 years, there have been remarkable advances in
designing algorithms through the use of spectral methods. Such algorithms typically construct a
carefully chosen matrix from the input, and analyze its eigenvectors and eigenvalues to find solu-
tions [AKS98, GK01]. Notable examples of spectral algorithms include algorithms for problems
such as max cut [Tre09], graph partitioning [McS01], community detection in networks [Abb18],
graph sparsification [SS08], and fast linear equation solving [ST11], the latter of which has led to
the recent development of a near-linear time algorithm for maximum flow [CKL+22]. Spectral
algorithms are often used in average-case algorithm design, a setting where the input to the algo-
rithm is drawn from a (problem-specific) random distribution. This is because the randomness of
the input causes the matrix constructed by the algorithm to be random, and so one can analyze
the spectral properties of the matrix (and thereby prove correctness of the algorithm) by using
the toolkit of random matrix theory.

Spectral methods arise somewhat naturally in the context of graphs, as one can associate a
graph 𝐺 to its adjacency matrix or Laplacian matrix and analyze their eigenvectors/eigenvalues.
This makes such methods rather natural to employ when studying computational problems
involving graphs such as clique, or instances of arity 2 constraint satisfaction problems (CSPs)
such as 2-SAT or 2-XOR, which have an underlying graph structure. However, when studying a
more complex CSP such as 3-SAT (since 2-SAT is in P while 3-SAT is NP-complete), the natural
object that arises is a 3-uniform hypergraph, rather than a graph, and this makes designing spectral
algorithms for such problems comparatively more challenging. For example, one could attempt
to design an algorithm by naturally associating a 3-uniform hypergraph with a 3-tensor and
then computing its injective tensor norm, but this approach immediately runs into issues, as
computing (or even approximating!) the injective tensor norm is a notoriously challenging task
(see [Bha19]).

Nonetheless, spectral methods give very simple and beautiful algorithms for many problems.
However, eigenvectors and eigenvalues of matrices are notoriously brittle properties: small
perturbations to a matrix can change this structure quite substantially. As a result, many spectral

1

algorithms, in particular algorithms for average-case variants of foundational computational
problems like 3-SAT or clique, are quite brittle as well. For the example, of, say, clique, the
classic spectral algorithm succeeds with high probability when given a graph drawn from the
Erdős-Rényi distribution 𝐺(𝑛, 1/2), but the algorithm will fail with high probability if one allows
an adversarial addition/deletion of 𝑂(𝑛) edges to the graph. One can interpret this brittleness as
showing that these algorithms are overfitting to the particular choice of input distribution (e.g.,
𝐺(𝑛, 1/2)) and thus fail to generalize to other input distributions, even those that are merely small
deviations from the initial choice of distribution that should intuitively not affect the behavior of
a “good” algorithm.

Contributions of this thesis. In this thesis, we present a new collection of spectral techniques
to solve algorithmic and combinatorial problems over hypergraphs. Our techniques give a general
method to bound the maximum, over 𝑥 ∈ {−1, 1}𝑛 , of a (problem-dependent) homogeneous
degree-𝑞 multilinear polynomial 𝑓 — a very general problem with many applications — by
analyzing the spectral norm of a family of appropriately chosen induced subgraphs (and related
variants) of weighted Cayley graphs on the hypercube {0, 1}𝑛 . The techniques that we introduce
are robust and allow us to obtain good bounds on max𝑥∈{−1,1}𝑛 𝑓 (𝑥) even for polynomials sampled
from semirandom or smoothed input distributions: distributions where the sampled polynomial 𝑓
has a significant amount of adversarial structure. This is unlike typical spectral methods, which
are usually brittle and ill-suited to give good bounds in these more adversarial settings.

In more detail, we map the natural 𝑞-tensor associated to the polynomial 𝑓 to a (hierarchy of)
matrices where the spectral norm of the ℓ -th level matrix in the hierarchy yields progressively
tighter upper bounds on max𝑥∈{−1,1}𝑛 𝑓 (𝑥) as ℓ increases. These matrices, first introduced in a
work of [WAM19] to design an algorithm for Gaussian tensor PCA, are called “Kikuchi matrices”
or the “Kikuchi hierarchy”, and hence we call our approach the Kikuchi matrix method.

In Chapter 2, we will give a technical overview of Kikuchi matrices and how to use them to
certify bounds on max𝑥∈{−1,1}𝑛 𝑓 (𝑥); in the course of this overview, we will demonstrate our basic
approach along with two key ideas, row bucketing and row pruning, that allow us to construct
spectral certificates that bound max𝑥∈{−1,1}𝑛 𝑓 (𝑥) even for polynomials 𝑓 that have significant
adversarial structure and correlated randomness. Next, in Chapter 3 we will formally define
notation and concepts that we will use in the thesis. The remainder of the thesis is divided up into
three parts, where we will discuss the results that we have shown thus far using our “Kikuchi
matrix method”. The results will be presented and organized as follows.

Part I: Algorithms for Semirandom and Smoothed Constraint Satisfaction Problems:

Chapter 5: Algorithms for strongly refuting semirandom and smoothed CSPs. This chapter
is based on [GKM22, Sections 4–7].

Chapter 6: Existence of short refutation witnesses for smoothed CSPs below the spectral
threshold. This chapter is based on [GKM22, Section 9].

Chapter 7: Efficient algorithms to solve semirandom planted CSPs. This chapter is based
on [GHKM23].

Part II: Extremal Girth vs. Density Trade-Offs for Hypergraphs:

Chapter 9: A proof of the hypergraph Moore bound. This chapter is based on [GKM22,
Section 8].

2

Part III: Lower Bounds for Locally Decodable and Correctable Codes:

Chapter 11: A near-cubic lower bound for 3-query locally decodable codes. This chapter is
based on [AGKM23].

Chapter 12: Exponential lower bounds for 3-query locally correctable codes. This chapter is
based on [KM24a, KM24b].

Finally, in Part IV we discuss open problems and directions for future work.

3

4

Chapter 2

An Overview of the Method and Key
Technical Ideas

In this chapter, we will give a brief overview of Kikuchi matrices and the related spectral methods
that we develop in this thesis. The problems that we will discuss here are specific instantiations
of the general task of algorithmically certifying a good bound on val(𝑓) B max𝑥∈{−1,1}𝑛 𝑓 (𝑥),
where 𝑓 (𝑥) is a homogeneous degree-𝑞 multilinear polynomial 𝑓 in variables 𝑥1, . . . , 𝑥𝑛 , i.e.,
𝑓 (𝑥) = ∑

𝐶∈([𝑛]𝑞) 𝑏𝐶𝑥𝐶 , where 𝑏𝐶 ∈ R is a coefficient and 𝑥𝐶 is the monomial
∏

𝑖∈𝐶 𝑥𝑖 . More

formally, we will design an algorithm that is given as input such a polynomial 𝑓 , and then the
algorithm efficiently computes a real number alg-val(𝑓) such that val(𝑓) ≤ alg-val(𝑓) always
holds. The goal is to argue that when 𝑓 is chosen from a (problem-specific) family of distributions,
the output alg-val(𝑓) of the algorithm provides a meaningful bound on val(𝑓). For the purpose
of this chapter, we will focus on the case when 𝑞 is even, i.e., the polynomial 𝑓 has even degree.
This case turns out to be, from a technical standpoint, substantially easier to handle.

Before we delve into the techniques, we will give some motivating examples and state the
theorems that we will prove in this chapter.

Example 2.0.1 (Random and Semirandom 𝑞-XOR). Let 𝐻 be an arbitrary 𝑞-uniform hypergraph
and let 𝑏𝐶 ∈ {−1, 1} for each 𝐶 ∈ 𝐻. We think of the collection (𝐻, {𝑏𝐶}𝐶∈𝐻) as specifying a
𝑞-XOR instance 𝜓 with 𝑛 variables and 𝑚 = |𝐻 | constraints, i.e., we associate each 𝐶 ∈ 𝐻 and
𝑏𝐶 ∈ {−1, 1} with the 𝑞-XOR constraint

∏
𝑖∈𝐶 𝑥𝑖 = 𝑏𝐶 . Setting 𝑓 (𝑥) = ∑

𝐶∈𝐻 𝑏𝐶𝑥𝐶 , we see that
for any assignment 𝑥 ∈ {−1, 1}𝑛 to the variables, 𝑓 (𝑥) simply computes the number of satisfied
constraints minus the number of violated constraints. Hence, val(𝑓) = 𝑚 if and only if the
instance is satisfiable, and val(𝑓) ≤ 𝜀𝑚 implies that at most 1

2 + 1
2𝜀 fraction of constraints can be

simultaneously satisfied.
A 𝑞-XOR instance is random if 𝐻 and the 𝑏𝐶 ’s are chosen at random, and it is semirandom if

𝐻 is arbitrary but the 𝑏𝐶 ’s are still chosen at random. The main technical contribution of Part I
of this thesis is an algorithm to certify a bound on val(𝑓)where 𝑓 is defined via a semirandom
𝑞-XOR instance. This is the task of refutation, or certifying unsatisfiability, as an algorithm that
outputs alg-val(𝑓) such that (1) val(𝑓) ≤ alg-val(𝑓) holds for any 𝑓 , and (2) alg-val(𝑓) ≤ 𝜀𝑚 with
high probability for, e.g., a random 𝑞-XOR polynomial 𝑓 , is an algorithm that refutes (certifies
unsatisfiability) of a random 𝑞-XOR instance with high probability. In fact, such an algorithm

5

strongly refutes the random instance, as it shows that only 1
2 + 1

2𝜀 fraction of the constraints can be
satisfied simultaneously.

Refuting semirandom instances of XOR, or of any constraint satisfaction problem more
generally, and other related algorithmic tasks is the focus of Part I of this thesis. In this overview,
we will prove our result for refuting semirandom 𝑞-XOR instances, for the case when 𝑞 is even.
Theorem 2.0.2 (Refutation algorithm for semirandom 𝑞-XOR, even 𝑞). Let 𝑞 be even. For every
integer ℓ ≥ 𝑞/2, there is an algorithm𝒜 that takes as input a 𝑞-XOR polynomial 𝑓 (𝑥) = ∑

𝐶∈𝐻 𝑏𝐶𝑥𝐶 in
𝑛 variables 𝑥1, . . . , 𝑥𝑛 , specified by a 𝑞-uniform hypergraph 𝐻 with 𝑚 = |𝐻 | hyperedges and “right-hand
sides” 𝑏𝐶 ∈ {−1, 1}, and outputs in 𝑛𝑂(ℓ)-time a value alg-val(𝑓) ∈ [−𝑚,𝑚] with the following two
properties:
(1) val(𝑓) ≤ alg-val(𝑓) for all 𝑞-XOR polynomials 𝑓 ;

(2a) If 𝑚 ≥ 𝑂
(

1
𝜀2

(
𝑛
ℓ

) 𝑞/2
ℓ log 𝑛

)
and the input polynomial 𝑓 is a random 𝑞-XOR polynomial, i.e., 𝐻 is

a random collection of 𝑚 hyperedges 𝐶 and each 𝑏𝐶 is chosen from {−1, 1} uniformly at random, then
with high probability over the draw of 𝐻 and the 𝑏𝐶 ’s, it holds that alg-val(𝑓) ≤ 𝜀𝑚.

(2b) If 𝑚 ≥ 𝑂
(

1
𝜀2

(
𝑛
ℓ

) 𝑞/2
ℓ log 𝑛

)
and the input polynomial 𝑓 is a semirandom 𝑞-XOR polynomial, i.e.,

𝐻 is an arbitrary collection of 𝑚 hyperedges 𝐶 and each 𝑏𝐶 is chosen from {−1, 1} uniformly at
random, then with high probability over the draw of the 𝑏𝐶 ’s, it holds that alg-val(𝑓) ≤ 𝜀𝑚.
We note that Item (2b) above subsumes Item (2a), as it handles a more general case (𝐻

is arbitrary rather than random). We have separated out Item (2a) because we will prove
Theorem 2.0.2 in two stages; we will first prove Item (2a), before generalizing the proof to handle
Item (2b).

Example 2.0.3 (Locally Decodable Codes). A (𝑞, 𝛿, 𝜀)-locally decodable code (LDC) 𝒞 : {−1, 1}𝑘 →
{−1, 1}𝑛 is equivalent (Fact 3.3.3) to a collection of 𝑞-uniform hypergraph matchings 𝐻1, . . . ,𝐻𝑘 ,1

each of size 𝛿𝑛, such that for any choice of 𝑏 ∈ {−1, 1}𝑘 , the polynomial 𝑓𝑏(𝑥) B
∑𝑘
𝑖=1

∑
𝐶∈𝐻𝑖 𝑏𝑖𝑥𝐶

has value val(𝑓𝑏) ≥ 𝜀𝑚, where 𝑚 =
∑𝑘
𝑖=1 |𝐻𝑖 | = 𝑘𝛿𝑛. Thus, for a particular choice of 𝑛 as a function

of 𝑘, 𝑞, 𝛿, and 𝜀, to show that no such locally decodable code exists, i.e., to prove a lower bound, it
suffices to argue that val(𝑓𝑏) < 𝜀𝑚 with high probability when 𝑏 ← {−1, 1}𝑘 is chosen at random.

The application of our method to proving lower bounds for locally decodable codes and the
related stronger notion of locally correctable codes (LCCs) is the focus of Part III of this thesis. In
this overview, we will give a proof of the following lower bounds for (𝑞, 𝛿, 𝜀)-LDCs. We remark
that, prior to this thesis, these were the best known lower bounds for LDCs (or LCCs).
Theorem 2.0.4. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a code that is (𝑞, 𝛿, 𝜀)-locally decodable, for constant
𝑞 ≥ 2. Then, the following hold:
(1) If 𝑞 is even, 𝑘 ≤ 𝑛1−2/𝑞𝑂(log 𝑛)/(𝜀4𝛿2), and
(2) If 𝑞 is odd, 𝑘 ≤ 𝑛1−2/(𝑞+1)𝑂(log 𝑛)/(𝜀4𝛿2).

Examples 2.0.1 and 2.0.3 have been chosen to showcase the core technical contributions of this
thesis: the basic approach of our method along with two key ideas, row bucketing/reweighting and
row pruning. We will start by explaining the basic approach of our method in Section 2.1, where we
use it to give a simple algorithm to refute random 𝑞-XOR instances (Item (2a) of Theorem 2.0.2).
Then, in Section 2.2 we will give an algorithm to refute semirandom 𝑞-XOR instances (Item (2b) of

1A hypergraph 𝐻𝑖 is a matching if its constituent hyperedges are disjoint.

6

Theorem 2.0.2). Compared to the case of random 𝑞-XOR, the new challenge is that a semirandom
instance has a worst-case hypergraph 𝐻, and overcoming this challenge requires a new technical
idea: row bucketing/reweighting. Finally, in Section 2.3 we will prove Theorem 2.0.4. Compared to
the two previous cases, the new challenge posed by Theorem 2.0.4 is that the coefficients 𝑏𝐶 of
the polynomial 𝑓 from an LDC instance are not independent, and handling this issue will require
a different key technical idea: row pruning.

2.1 The main approach and Kikuchi matrices for even 𝑞

The high-level idea of our approach is to bound val(𝑓) by first expressing the polynomial 𝑓 as a
quadratic form on a matrix 𝐴 𝑓 , and then using the spectral norm ∥𝐴 𝑓 ∥2 to bound the maximum
quadratic form on 𝐴 𝑓 . As one can compute ∥𝐴 𝑓 ∥2 in poly(𝑁) time, where 𝑁 is the size of the
matrix 𝐴 𝑓 , this will yield an algorithm to bound val(𝑓), e.g., as required in Theorem 2.0.2. For
technical reasons, such a matrix is substantially easier to define and analyze when 𝑞 is even, so
we shall restrict ourselves to this case in this overview for simplicity.

The way we shall express 𝑓 as a matrix 𝐴 𝑓 is as follows. For every monomial 𝑥𝐶 B
∏

𝑖∈𝐶 𝑥𝑖 ,
we “lift” it to a matrix 𝐴𝐶 ∈ R𝑁×𝑁 such that for each assignment 𝑥 ∈ {−1, 1}𝑛 , there is a vector
𝑥⊙ℓ ∈ {−1, 1}𝑁 where (𝑥⊙ℓ)⊤𝐴𝐶𝑥⊙ℓ = 𝐷𝑥𝐶 , for some positive integer 𝐷. If we have such a
collection of matrices 𝐴𝐶 , then we can clearly associate 𝑓 =

∑
𝐶 𝑏𝐶𝑥𝐶 to the matrix 𝐴 𝑓 =

∑
𝐶 𝑏𝐶𝐴𝐶 .

We then have 𝐷 𝑓 (𝑥) = (𝑥⊙ℓ)⊤𝐴 𝑓 𝑥
⊙ℓ for all 𝑥 ∈ {−1, 1}𝑛 and therefore 𝐷 val(𝑓) = 𝐷 𝑓 (𝑥∗) ≤

∥𝑥∗⊙ℓ ∥22∥𝐴 𝑓 ∥2 = 𝑁 ∥𝐴 𝑓 ∥2, where 𝑥∗ is a maximizer.
The matrices 𝐴𝐶 are Kikuchi matrices, first introduced in the work of [WAM19].

Definition 2.1.1 (Kikuchi matrices for even 𝑞). Let 𝐶 ⊆ [𝑛] be a set of size 𝑞, where 𝑞 is even, and
let ℓ ≥ 𝑞/2 be an integer. We define the matrix 𝐴𝐶 ∈ R𝑁×𝑁 as follows. Let 𝑁 =

(𝑛
ℓ

)
and identify

𝑁 with subsets 𝑆 ⊆ [𝑛] of size exactly ℓ . We let 𝐴𝐶(𝑆,𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶 and 0 otherwise, where
𝑆 ⊕ 𝑇 denotes the symmetric difference of 𝑆 and 𝑇, i.e., 𝑆 ⊕ 𝑇 B (𝑆 ∪𝑇) \ (𝑆 ∩𝑇).

The integer ℓ in Definition 2.1.1 is a parameter that dictates the size of the matrix. A larger
choice of ℓ yields a larger matrix, and hence a slower algorithm (as computing ∥𝐴 𝑓 ∥2 is poly(𝑁)
time, where 𝑁 is the size of the matrix), but as ℓ grows the spectral norm ∥𝐴 𝑓 ∥2 yields a tighter
bound on val(𝑓) (as implicitly indicated in Theorem 2.0.2).

The matrices defined in Definition 2.1.1 have the following properties.
Proposition 2.1.2. Let 𝐶 ⊆ [𝑛] be a set of size 𝑞, where 𝑞 is even, let ℓ ≥ 𝑞/2 be an integer, and let 𝐴𝐶 be
defined as in Definition 2.1.1. Then, the following hold:

1. 𝐴𝐶 has at most one nonzero entry per row or column, and has exactly 𝐷 =
(𝑞

𝑞/2
) (𝑛−𝑞
ℓ−𝑞/2

)
nonzero

entries;
2. For any 𝑥 ∈ {−1, 1}𝑛 , let 𝑥⊙ℓ ∈ {−1, 1}𝑁 be the vector where the 𝑆-th entry is 𝑥⊙ℓ

𝑆
=

∏
𝑖∈𝑆 𝑥𝑖 .

Then, (𝑥⊙ℓ)⊤𝐴𝐶𝑥⊙ℓ = 𝐷𝑥𝐶 .

Proof. The fact that 𝐴𝐶 has at most one nonzero entry per row or column follows because for a
fixed 𝐶 and a fixed choice of the row 𝑆, 𝐴𝐶(𝑆,𝑇) is nonzero if and only if 𝑆 ⊕ 𝐶 has size exactly ℓ .
One can compute the number of nonzero entries by observing that a pair (𝑆,𝑇) satisfies 𝑆 ⊕ 𝑇 = 𝐶

if and only if 𝑆 and 𝑇 each contain disjoint halves of equal size of the set 𝐶, along with some
shared set 𝑅 of size exactly ℓ − 𝑞/2. There are

(𝑞

𝑞/2
)

ways to split 𝐶 into disjoint halves, followed

by
(𝑛−𝑞
ℓ−𝑞/2

)
ways to choose the set 𝑅 ⊆ [𝑛] \ 𝐶, which gives us the number of nonzero entries 𝐷.

7

1 2 4 5

1 2

4 5

3 61 2 3 6

S

C1

C2

S ⊕ C1

S ⊕ C2

Figure 2.1: A part of the graph from the “basic spectral relaxation” when 𝑞 = 4, or equivalently a
Kikuchi graph with ℓ = 𝑞/2 = 2. The vertices 𝑆 of the graph are in green, and the hyperedges 𝐶
are in blue.

Notice that here we crucially need that 𝑞 is even so that we can divide the set 𝐶 into two halves
of equal size.

To prove Item (2), we observe that

(𝑥⊙ℓ)⊤𝐴𝐶𝑥⊙ℓ =
∑

(𝑆,𝑇):𝑆⊕𝑇=𝐶
𝑥𝑆𝑥𝑇 =

∑
(𝑆,𝑇):𝑆⊕𝑇=𝐶

∏
𝑖∈𝑆∩𝑇

𝑥2
𝑖

∏
𝑖∈𝑆⊕𝑇

𝑥𝑖 =
∑

(𝑆,𝑇):𝑆⊕𝑇=𝐶
𝑥𝐶 = 𝐷𝑥𝐶 ,

where we use that 𝑥2
𝑖
= 1 since 𝑥 ∈ {−1, 1}𝑛 . □

With Proposition 2.1.2 in hand, we have thus shown that for 𝐴 𝑓 B
∑
𝐶∈𝐻 𝑏𝐶𝐴𝐶 , it holds that

𝐷 val(𝑓) ≤ 𝑁 ∥𝐴 𝑓 ∥2, and so if we set alg-val(𝑓) B ∥𝐴 𝑓 ∥2 ·𝑁/𝐷, then val(𝑓) ≤ alg-val(𝑓) holds for
all 𝑓 . Hence, to prove, e.g., Item (2a) in Theorem 2.0.2, it suffices to argue that ∥𝐴 𝑓 ∥2 ≤ 𝜀𝑚𝐷/𝑁
with high probability when the hypergraph 𝐻 is random, the 𝑏𝐶 ’s are chosen independently from

{−1, 1}, and 𝑚 ≥ 𝑂
(

1
𝜀2

(
𝑛
ℓ

) 𝑞/2
ℓ log 𝑛

)
.

Before we prove Item (2a) in Theorem 2.0.2, we give two interpretations of the Kikuchi
matrices defined in Definition 2.1.1.

Kikuchi matrices as generalizations of the “basic spectral relaxation”. Definition 2.1.1 arises
naturally from the viewpoint of trying to “lift” a polynomial 𝑓 to a quadratic form on a matrix 𝐴 𝑓 .
The setting of ℓ = 𝑞/2 corresponds to the well-studied setting of the “basic” spectral relaxation:
the matrix 𝐴𝐶 is indexed by sets 𝑆 and 𝑇 of size 𝑞/2, and we have 𝐴𝐶(𝑆,𝑇) = 1 if and only if
𝑆 ∪ 𝑇 = 𝐶. When ℓ = 𝑞/2, this matrix is a flattening of the natural 𝑞-tensor associated to the
polynomial 𝑓 . The Kikuchi matrices in Definition 2.1.1 give a generalization of this basic matrix to
larger and larger matrices, with the hope (that we will prove!) that the larger matrices will yield
tighter bounds on val(𝑓). A rather interesting observation is that when ℓ > 𝑞/2, the matrix 𝐴𝐶 is
not a flattening of the natural 𝑞-tensor of the monomial 𝑥𝐶 . This viewpoint can be thought of as a
“bottom-up” approach, where we view the Kikuchi matrices at level ℓ as a natural generalization
of the “basic” matrix at level 𝑞/2.

Kikuchi matrices as induced subgraphs of Cayley graphs. Definition 2.1.1 arises naturally
from the perspective of Cayley graphs on the hypercube. Given a polynomial 𝑓 =

∑
𝐶∈𝐻 𝑏𝐶𝑥𝐶 ,

8

1 2 4 5

1 2 3 8 9 10

3 4 5 8 9 10

2 6 7 8 9 10

1 4 5 6 7 8 9 10

1 3 6 7

1 3 6 7

1 2 4 5

S

C1

C2

C2

C1

S ⊕ C1

S ⊕ C2

S ⊕ C1 ⊕ C2

Figure 2.2: A part of the full Cayley graph when 𝑞 = 4. The vertices 𝑆 of the graph are in green,
and the hyperedges 𝐶 are in blue. In a Cayley graph, any pair 𝐶1,𝐶2 of hyperedges (generators)
along with a vertex 𝑆 forms a 4-cycle.

one can associate 𝑓 to a (weighted) Cayley graph on the hypercube {0, 1}𝑛 as follows. The Cayley
graph has vertices {0, 1}𝑛 , with the group operation being addition over F𝑛

2 , and the generators
are given by the hypergraph 𝐻, i.e., for each 𝐶 ∈ 𝐻 we identify 𝐶 with its corresponding weight
𝑞 indicator vector in {0, 1}𝑛 . Equivalently, we can identify the vertices of the graph with subsets
𝑆 ⊆ [𝑛] (of any size), and we put an edge (𝑆,𝑇)with edge weight 𝑏𝐶 if 𝑆 ⊕𝑇 = 𝐶. Let 𝐵 denote the
adjacency matrix of this Cayley graph, i.e., 𝐵 is a 2𝑛 × 2𝑛 matrix where 𝐵(𝑆,𝑇) = 𝑏𝐶 if 𝑆 ⊕ 𝑇 = 𝐶

for some 𝐶 ∈ 𝐻, and otherwise 𝐵(𝑆,𝑇) = 0.
A well-known fact about Cayley graphs over the hypercube is that the eigenvectors of 𝐵 are

the character functions. Namely, for each 𝑥 ∈ {−1, 1}𝑛 , the vector 𝜒(𝑥) ∈ {−1, 1}2𝑛 , defined as
𝜒(𝑥)
𝑆

=
∏

𝑖∈𝑆 𝑥𝑖 for each 𝑆 ⊆ [𝑛], is an eigenvector of 𝐵, and one can compute that its corresponding
eigenvalue 𝜆𝑥 is simply 𝑓 (𝑥). Thus, ∥𝐵∥2 = max𝑥∈{−1,1}𝑛 𝑓 (𝑥). The problem is that for, e.g., the
case of algorithms as in Theorem 2.0.2, computing ∥𝐵∥2 requires 2𝑂(𝑛) time, as 𝐵 is a very large
matrix, and this is no better than simply computing 𝑓 (𝑥) for all 𝑥 ∈ {−1, 1}𝑛 via brute force.

A rather naive way to lower the size of the matrix (and thereby lower the runtime) is to
simply take an induced subgraph of the full Cayley graph. Indeed, the Kikuchi matrices in
Definition 2.1.1 are obtained by restricting the matrix 𝐵 to the set of vertices {𝑆 : |𝑆 | = ℓ }. When
taking induced subgraphs, there are two potential problems that can arise. The first issue is that
the induced subgraph may have no edges in it at all, as it is the induced subgraph is on a very
small fraction of all 2𝑛 vertices! In fact, this is precisely the issue that arises in the case when 𝑞
is odd in Definition 2.1.1. The second issue is that the induced subgraph is no longer a Cayley
graph, and in particular it will not have the same nice eigenvector/eigenvalue structure that is
present in the matrix 𝐵. Thus, it might be the case that the spectral norm of the matrix from the
induced subgraph no longer provides an upper bound on val(𝑓). When 𝑞 is odd, this is trivially
the case as the induced subgraph has no edges. (Note that the spectral norm of the induced
subgraph is a lower bound on ∥𝐵∥2, the spectral norm of the full Cayley graph.) However, as we
observed in Proposition 2.1.2, when 𝑞 is even, neither of these two issues arise.

In contrast to the “bottom-up” viewpoint discussed previously, this viewpoint can be thought

9

1 2 4 5

1 2 3 8 9 10

3 4 5 8 9 10

2 6 7 8 9 10

1 3 6 7

S

C1

C2

S ⊕ C1

S ⊕ C2

Figure 2.3: A part of the Kikuchi graph at level ℓ = 6 when 𝑞 = 4. The vertices 𝑆 of the graph
are in green, and the hyperedges 𝐶 are in blue. Unlike in a Cayley graph, any pair 𝐶1,𝐶2 of
hyperedges (generators) along with a vertex 𝑆 need not form a 4-cycle in the Kikuchi graph.

of as a “top-down” approach, where we view the Kikuchi matrices at level ℓ as a restriction of the
“full” matrix at level 𝑛.

One may be wondering why we have defined Kikuchi matrices as the induced subgraph on
subsets of size exactly ℓ rather than sets ≤ ℓ , as one could easily do the latter without substantially
increasing the size of the matrix. It turns out that defining the matrix using all sets of size ≤ ℓ
does not result in any major differences when 𝑞 is even,2 as the contribution from the sets of size
ℓ will be the dominant term in the spectral norm, so the matrix with sets of size ≤ ℓ is essentially
“no better” than the matrix with sets of size exactly ℓ as defined in Definition 2.1.1.

With this Cayley graph viewpoint, we can view Kikuchi matrices as a way to transform a
𝑞-uniform hypergraph 𝐻 to a (family of) graphs, one for each choice of the parameter ℓ . An
important fact is that a cycle (or even cover) in the hypergraph 𝐻 — a collection of distinct
hyperedges 𝐶1, . . . ,𝐶𝑟 such that 𝐶1 ⊕ · · · ⊕ 𝐶𝑟 = ∅— gives a cycle in the Cayley graph: simply
take any vertex 𝑆 and use the edges from the generators 𝐶1, . . . ,𝐶𝑟 . Moreover, any cycle in the
Cayley graph corresponds to a collection of (possibly not distinct) hyperedges 𝐶1, . . . ,𝐶𝑟 that
form a cycle. This key observation forms the start of the proof of the hypergraph Moore bound in
Part II, where we use Kikuchi graphs to show the existence of short cycles in sufficiently dense
hypergraphs.

Refuting random 𝑞-XOR for 𝑞 even. Let us now prove Item (2a) in Theorem 2.0.2. The
analysis presented here is due to [WAM19], the original work that introduced the Kikuchi
matrices in Definition 2.1.1. We are given as input a random 𝑞-uniform hypergraph 𝐻 with 𝑚 ≥
𝑂

(
1
𝜀2

(
𝑛
ℓ

) 𝑞/2
ℓ · log 𝑛

)
hyperedges with “right-hand sides” 𝑏𝐶 ∈ {−1, 1} chosen independently for

each 𝐶 ∈ 𝐻. As stated earlier, our goal is to argue that ∥𝐴∥2 ≤ 𝜀𝑚𝐷/𝑁 , where 𝐴 =
∑
𝐶∈𝐻 𝑏𝐶𝐴𝐶

2When 𝑞 is odd, this is a major difference; the Kikuchi matrix with sets of size ℓ is identically 0 whereas the Kikuchi
matrix with sets of size ≤ ℓ is not and can be used to bound val(𝑓). However, this matrix achieves, e.g., in the setting

of Theorem 2.0.2, a suboptimal bound of 𝑚 ≳ 1
𝜀2

(
𝑛
ℓ

) ⌈𝑞/2⌉
ℓ log 𝑛.

10

and the matrices 𝐴𝐶 are defined in Definition 2.1.1. Because the 𝑏𝐶 ’s are independent and
random, the matrix 𝐴 is the sum of mean 0 independent random matrices. Thus, by Matrix
Khintchine (Fact 3.4.2), it follows that with high probability, we have ∥𝐴∥2 ≤ 𝑂(𝜎

√
ℓ log 𝑛), where

𝜎2 = ∥∑𝐶∈𝐻 𝐴
2
𝐶
∥2. So, it remains to compute 𝜎2.

Because each 𝐴𝐶 has at most 1 nonzero entry per row/column (Proposition 2.1.2), it follows
that 𝐴2

𝐶
is a diagonal matrix. In fact, Υ =

∑
𝐶∈𝐻 𝐴

2
𝐶

is a diagonal matrix where the 𝑆-th diagonal
entry is Υ𝑆 B {𝐶 ∈ 𝐻 : |𝑆 ∩ 𝐶 | = 𝑞/2}, as the 𝑆-th row of 𝐴𝐶 has a nonzero entry if and only if
|𝑆 ∩ 𝐶 | = 𝑞/2. We note that by Proposition 2.1.2,

∑
𝑆 Υ𝑆 = 𝑚𝐷, as

∑
𝑆 Υ𝑆 is equal to the number of

nonzero entries in all the 𝐴𝐶 ’s, and there are 𝑚 choices of 𝐶 with each 𝐴𝐶 contributing 𝐷 nonzero
entries. The average is simply 𝑚𝐷/𝑁 where 𝑁 =

(𝑛
ℓ

)
is the size of the matrices 𝐴𝐶 . Now, because

the hypergraph 𝐻 is random, it holds that with high probability over 𝑆, max𝑆 Υ𝑆 ≤ 𝑂(𝑚𝐷/𝑁). With
this fact,3 we can now finish the proof.

Indeed, by Matrix Khintchine (Fact 3.4.2), we have shown that with high probability over 𝐻
and the 𝑏𝐶 ’s, it holds that

∥𝐴∥2 ≤ 𝑂
(√

𝑚𝐷ℓ log 𝑛
𝑁

)
≤ 𝜀𝑚𝐷/𝑁 ,

where the last inequality follows by (1) standard binomial coefficient estimates (Fact 3.6.1) to

show that 𝐷/𝑁 ∼
(
ℓ
𝑛

) 𝑞/2
, and (2) using that 𝑚 ≥ 𝑂

(
1
𝜀2

(
𝑛
ℓ

) 𝑞/2
ℓ · log 𝑛

)
. This finishes the proof of

Item (2a) in Theorem 2.0.2, i.e., the case of random 𝑞-XOR.

Summary: Method Overview

(1) For each monomial 𝑥𝐶 B
∏

𝑖∈𝐶 𝑥𝑖 where |𝐶 | = 𝑞, we define a matrix 𝐴𝐶 ∈ R𝑁×𝑁 , where
𝑁 =

(𝑛
ℓ

)
, and 𝐴𝐶(𝑆,𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶 and 0 otherwise. The parameter ℓ controls the size

of the matrix, and the matrix satisfies

𝑥⊙ℓ
⊤
𝐴𝐶𝑥

⊙ℓ = 𝐷𝑥𝐶

for any 𝑥 ∈ {−1, 1}𝑛 , where (𝑥⊙ℓ)𝑆 =
∏

𝑖∈𝑆 𝑥𝑖 and 𝐷 =
(𝑞

𝑞/2
) (𝑛−𝑞
ℓ−𝑞/2

)
.

(2) We associate a degree-𝑞 multilinear polynomial 𝑓 (𝑥) = ∑
𝐶:|𝐶 |=𝑞 𝑏𝐶𝑥𝐶 to the matrix 𝐴 𝑓 =∑

𝐶:|𝐶 |=𝑞 𝑏𝐶𝑥𝐶 . For every 𝑥 ∈ {−1, 1}𝑛 , the matrix satisfies

𝑥⊙ℓ
⊤
𝐴 𝑓 𝑥

⊙ℓ = 𝐷 𝑓 (𝑥) .

In particular, val(𝑓) = max𝑥∈{−1,1}𝑛 𝑓 (𝑥) ≤ 𝑁
𝐷 ∥𝐴 𝑓 ∥2 ≲

(
𝑛
ℓ

) 𝑞/2 ∥𝐴 𝑓 ∥2.

2.2 Handling arbitrary hypergraphs with row bucketing

In this section, we will prove Item (2b) in Theorem 2.0.2, i.e., we will give an algorithm to refute
semirandom instances of even-arity 𝑞-XOR. Compared to the case of random 𝑞-XOR with even 𝑞

3We will not prove this fact here, although it follows from a simple Chernoff bound (see [WAM19, Section F.1.4]).
In any case, the statement proven (Item (2a) in Theorem 2.0.2) will be subsumed by Section 2.2.

11

handled in Section 2.1, the key challenge (and indeed, the only difference) is that we now allow
the hypergraph 𝐻 to be arbitrary. The purpose of this section is to explain the key idea, row
bucketing/row reweighting,4 that we use to handle this challenge.

More formally, a semirandom 𝑞-XOR instance 𝑓 is represented as an arbitrary 𝑞-uniform
hypergraph 𝐻 with random right-hand sides 𝑏𝐶 ∈ {−1, 1} for each 𝐶 ∈ 𝐻. Our goal is to give,
for any ℓ , an 𝑛𝑂(ℓ)-time algorithm that will certify that val(𝑓) ≤ 1

2 + 1
2𝜀𝑚 where 𝑚 = |𝐻 | is the

number of constraints, provided that 𝑚 ≥ 𝑂((𝑛/ℓ)𝑞/2ℓ log 𝑛/𝜀2).
Let us now conduct a post-mortem of the proof in Section 2.1 of Item (2a) in Theorem 2.0.2

to see where we used the randomness of the hypergraph 𝐻. Even after fixing 𝐻, the 𝐴𝐶 ’s
are independent random matrices, with all the randomness coming from the 𝑏𝐶 ’s. Thus, we
can still apply the Matrix Khintchine inequality to obtain the same bound on ∥𝐴∥2. The only
point in the proof where we used the randomness of the hypergraph 𝐻 was to establish that
Υ𝑆 = 𝑂(𝑚𝐷/𝑁) = 𝑂(ℓ log 𝑛) for every 𝑆. So, the proof in Section 2.1 immediately extends to
semirandom instances where the instance hypergraph 𝐻 is such that Υ𝑆 = 𝑂(𝑚𝐷/𝑁) for every 𝑆.

This bound is delicate: when Υ𝑆 = Ω(ℓ 2), we obtain no non-trivial refutation guarantee and
even Υ𝑆 ∼ ℓ 1.1 results in a suboptimal trade-off. On the other hand, in arbitrary 𝐻, Υ𝑆 can be as
large as 𝑚 (but no larger). Further, this is a “real” issue and not an artifact of a potentially loose
spectral norm bound from the Matrix Khintchine inequality: when Υ𝑆 is large, so is the spectral
norm of 𝐴.

Key observation: only sparse vectors cause large quadratic forms. The key observation is
that even though Υ𝑆 can be large, making ∥𝐴∥2 large, the “offending” large quadratic forms
are induced only by “sparse” vectors, i.e., vectors where the ℓ2-norm is contributed by a small
fraction of the coordinates. On the other hand, we only care about upper bounding quadratic
forms of 𝐴 on vectors 𝑥⊙ℓ for some 𝑥 ∈ {−1, 1}𝑛 , in particular, on vectors where all coordinates
are ±1 and are thus are maximally “non-sparse” or “flat”. More formally, in order to certify a
bound on val(𝑓), it suffices for us to bound ∥𝐴∥∞→1, rather than ∥𝐴∥2.

Row bucketing. We can formalize this observation via row bucketing. Let 𝑑0 = 𝑚𝐷/𝑁 ∼
𝑚 · (ℓ/𝑛)𝑞/2 be the average value of Υ𝑆. Let us partition the row indices in 𝑁 =

(𝑛
ℓ

)
into multi-

plicatively close buckets ℱ0,ℱ1, · · · ,ℱ𝑡 so that for each 𝑖 ≥ 1,

ℱ𝑖 =
{
𝑆 | 2𝑖−1𝑑0 < Υ𝑆 ≤ 2𝑖𝑑0

}
.

and ℱ0 = {𝑆 | Υ𝑆 ≤ 𝑑0}. Then, since Υ𝑆 ≤ 𝑚 and 𝑑0 ≥ 1 (as 𝑚 ≥ 𝑂((𝑛/ℓ)𝑞/2 · ℓ log 𝑛)), we can take
𝑡 ≤ log2 𝑚. Further, by Markov’s inequality, |ℱ𝑖 | ≤ 2−𝑖

(𝑛
ℓ

)
= 2−𝑖𝑁 . For each 𝑖, 𝑗 ≤ 𝑡, let 𝐴𝑖,𝑗 be the

matrix obtained by zeroing out all rows not in ℱ𝑖 and all columns not in ℱ𝑗 from the Kikuchi
matrix 𝐴. Then, 𝐴 =

∑
0≤𝑖,𝑗≤𝑡 𝐴𝑖,𝑗 .

The key observation is the following: while 𝐴𝑖,𝑗 has nonzero rows and columns where Υ𝑆 is
larger by a 2𝑖 (2𝑗 , respectively) factor than the average, we are compensated for this by a reduction
in the number of nonzero rows and columns.

Let 𝑦 ∈ R𝑁 be any vector with entries in {−1, 1}𝑁 , and let 𝑦ℱ𝑖 be the vector obtained by
zeroing out all coordinates of 𝑦 that are not indexed by elements of ℱ𝑖 . Then, by Cauchy-Schwarz,

4Row reweighting, introduced in the work of [HKM23], is a refined version of the row bucketing method
of [GKM22].

12

we must have:

max
𝑦∈{−1,1}𝑁

𝑦⊤𝐴𝑖,𝑗𝑦 = max
𝑦∈{−1,1}𝑁

(𝑦ℱ𝑖)⊤𝐴𝑖,𝑗(𝑦ℱ𝑗) ≤
√
|ℱ𝑖 | |ℱ𝑗 | ·

𝐴𝑖,𝑗

2 .

We apply the Matrix Khintchine inequality in a similar manner to the previous analysis. The
“variance” term grows by a factor of max(2𝑖 , 2𝑗) over the bound of 𝑚𝐷/𝑁 obtained for the random
case. As a result, the spectral norm of 𝐴𝑖,𝑗 is higher by a factor of max(2𝑖/2, 2𝑗/2). On the other
hand, the effective ℓ2-norm of the vector drops by 2−(𝑖+𝑗)/2. The trade-off “breaks in our favor”
and the dominating term in the bound is 𝐴0,0, whose spectral norm is on the same order as the
spectral norm of the 𝐴 in the case of the previous random 𝑞-XOR analysis!

More formally, we have that with high probability over the draw of the 𝑏𝐶 ’s, it holds that

max
𝑦∈{−1,1}𝑁

𝑦⊤
∑

0≤𝑖,𝑗≤𝑡
𝐴𝑖,𝑗𝑦 ≤

∑
0≤𝑖,𝑗≤𝑡

√
|ℱ𝑖 | |ℱ𝑗 | ·

𝐴𝑖,𝑗

2 ≤
∑

0≤𝑖,𝑗≤𝑡
𝑁 · 2−(𝑖+𝑗)/2 ·𝑂 ©­«

√
2max(𝑖,𝑗)𝑚𝐷ℓ log 𝑛

𝑁

ª®¬
≤ 𝑁 ·𝑂

(√
𝑚𝐷ℓ log 𝑛

𝑁

) ∑
0≤𝑖,𝑗≤𝑡

2−(𝑖+𝑗)/2 · 2max(𝑖,𝑗)/2 = 𝑁 ·𝑂
(√

𝑚𝐷ℓ log 𝑛
𝑁

)
𝑡∑
𝑖=0

𝑖∑
𝑗=0

2−𝑗/2

≤ 𝑁 ·𝑂
(√

𝑚𝐷ℓ log 𝑛
𝑁

)
·𝑂(log 𝑛) ,

where we use that 𝑡 ≤ 𝑂(log𝑚) ≤ 𝑂(log 𝑛). Thus, the latter quantity is ≤ 𝜀𝐷 provided that
𝑚 ≥ 𝑂((𝑛/ℓ)𝑞/2ℓ log3 𝑛/𝜀2). Note that this is a log2 𝑛 factor higher than the threshold in Item (2b)
in Theorem 2.0.2.

Row reweighting. This row bucketing analysis loses this extra log2 𝑛 factor because it uses “hard
cut-offs” to determine the buckets. A slicker analysis, due to [HKM23], instead uses the following
row reweighting strategy, which one can view as a smoother version of the row bucketing analysis.
Let 𝑊 be the diagonal matrix with 𝑆-th entry 𝑊𝑆 = Υ𝑆 +𝑚𝐷/𝑁 , i.e., it is Υ𝑆 plus the average
of the Υ𝑆’s, and we now consider the matrix 𝐴̃ =𝑊−1/2𝐴𝑊−1/2. When we use 𝐴̃, there are two
immediate issues to resolve. First, we need to relate val(𝑓) and ∥𝐴̃∥2, and second, we need to
bound ∥𝐴̃∥2.

To handle the first issue, we observe that for any 𝑥 ∈ {−1, 1}𝑛 , letting 𝑦 = 𝑥⊙ℓ , we have that

𝑓 (𝑥) = 1
𝑚𝐷

𝑦⊤𝐴𝑦 =
1
𝑚𝐷
(𝑊1/2𝑦)⊤𝐴̃(𝑊1/2𝑦) ≤ 1

𝑚𝐷
∥𝐴̃∥2 · ∥𝑊1/2𝑦∥22 (2.1)

=
1
𝑚𝐷
∥𝐴̃∥2 · tr(𝑊) =

1
𝑚𝐷
∥𝐴̃∥2 · 2𝑚𝐷 = 2∥𝐴̃∥2 . (2.2)

Here, the bound ∥𝑊1/2𝑦∥22 ≤ tr(𝑊) uses that 𝑊 is diagonal and that 𝑦 ∈ {−1, 1}𝑁 .
It thus remains to bound ∥𝐴̃∥, which we will do using Matrix Khintchine (Fact 3.4.2). To do

this, we need to compute the variance term, which is ∥E[𝐴̃2]∥. We have

E[𝐴̃2] =
∑
𝐶∈𝐻

𝑊−1/2𝐴𝐶𝑊
−1𝐴𝐶𝑊

−1/2 .

Recall that, as we observed in Section 2.1, for a fixed 𝐶 ∈ 𝐻, the matrix 𝐴𝐶 has at most one
nonzero entry per row/column. Because 𝑊 is diagonal, this implies that 𝑊−1/2𝐴𝐶𝑊−1𝐴𝐶𝑊

−1/2

13

is a diagonal matrix as well, and so E[𝐴̃2] is diagonal. Furthermore, the 𝑆-th diagonal entry of
E[𝐴̃2] is

1√
𝑊𝑆

(∑
𝑇 :𝑆⊕𝑇∈𝐻

𝐴𝐶(𝑆,𝑇) 1
𝑊𝑇

𝐴𝐶(𝑇, 𝑆)
)

1√
𝑊𝑆

=
1
𝑊𝑆

∑
𝑇 :𝑆⊕𝑇∈𝐻

1
𝑊𝑇

=
1

Υ𝑆 + 𝑚𝐷
𝑁

∑
𝑇 :𝑆⊕𝑇∈𝐻

1

Υ𝑇 + 𝑚𝐷
𝑁

≤ 1
Υ𝑆

∑
𝑇 :𝑆⊕𝑇∈𝐻

𝑁

𝑚𝐷
≤ 𝑁

𝑚𝐷
,

where the last inequality uses that for a fixed 𝑆, the number of 𝑇 where 𝑆 ⊕ 𝑇 ∈ 𝐻 is exactly Υ𝑆.
By applying Fact 3.4.2, we thus conclude that with probability 1− 𝑜(1) over the draw of the

𝑏𝐶 ’s, it holds that ∥𝐴̃∥2 ≤ 𝑂(
√

𝑁
𝑚𝐷 · ℓ log 𝑛). Thus,

max
𝑥∈{−1,1}𝑛

𝑓 (𝑥) ≤ 2∥𝐴̃∥2 ≤ 𝑂
(√

𝑁ℓ log 𝑛
𝑚𝐷

)
.

Using that 𝐷/𝑁 ∼ (ℓ/𝑛)𝑞/2 (Fact 3.6.1), it follows that the right-hand side above is ≤ 𝜀 when
𝑚 ≥ 𝑂((𝑛/ℓ)𝑞/2ℓ log 𝑛/𝜀2), which finishes the proof.

Summary: Row Bucketing/Reweighting

(1) When 𝐻 is arbitrary (the semirandom case), ∥𝐴∥2 might no longer provide a good bound
on val(𝑓) because Υ𝑆 = |{𝐶 ∈ 𝐻 : |𝑆 ∩ 𝐶 | = 𝑞/2}| may be much larger than the average
value for some 𝑆, and this quantity controls the variance of ∥𝐴∥2.

(2) However, val(𝑓) is controlled by quadratic forms 𝑦⊤𝐴𝑦 for Boolean vectors 𝑦 ∈ {−1, 1}𝑁 ,
whereas the “bad” quadratic forms that make ∥𝐴∥2 large come from sparse vectors. In
other words, it suffices to bound ∥𝐴∥∞→1 instead of ∥𝐴∥2.

(3) We can bound ∥𝐴∥∞→1 by either the row bucketing strategy or the “smoother” row
reweighting strategy of [HKM23]. Both approaches use that Boolean vectors 𝑦 ∈ {−1, 1}𝑁
are “spread” to handle the issue that the variance term Υ𝑆 might be very large for some
𝑆’s.

2.3 Handling correlated randomness with row pruning

In this section, we will prove Theorem 2.0.4. Unlike in Sections 2.1 and 2.2, in this section we will
consider a random process that generates polynomials 𝑓𝑏(𝑥)with correlated coefficients 𝑏𝐶 . We
will thus develop a new technical idea, row pruning, that we use to handle the challenges posed
by the correlated coefficients.

As we mentioned in Example 2.0.3, by standard definitions and transformations (Defini-
tion 3.3.1 and Fact 3.3.3), in order to prove Theorem 2.0.4, it suffices to prove the following
lemma.
Lemma 2.3.1. Let 𝑞, 𝑘 and 𝑛 be integers with 𝑘 ≤ 𝑛 and 𝑞 even. Let 𝛿, 𝜀 ∈ (0, 1). Let 𝐻1, . . . ,𝐻𝑘

be 𝑞-uniform hypergraph matchings on the vertex set [𝑛] with |𝐻𝑖 | = 𝛿𝑛, i.e., for every 𝑖 ∈ [𝑘], the
hypergraph 𝐻𝑖 is a collection of 𝛿𝑛 disjoint hyperedges, and each hyperedge 𝐶 ∈ 𝐻𝑖 has size |𝐶 | = 𝑞.

14

For each 𝑏 ∈ {−1, 1}𝑘 , let 𝑓𝑏(𝑥) =
∑𝑘
𝑖=1 𝑏𝑖

∑
𝐶∈𝐻𝑖

∏
𝑣∈𝐶 𝑥𝑣 . Suppose that E𝑏←{−1,1}𝑘 [val(𝑓𝑏)] ≥

𝜀𝛿𝑛𝑘. Then, 𝑘 ≤ 𝑛1−2/𝑞𝑂(log 𝑛)/(𝜀2𝛿2).
Before we proceed with the proof of Lemma 2.3.1, let us comment on the differences between

the setting of Lemma 2.3.1 compared to Theorem 2.0.2. In Theorem 2.0.2, in the semirandom 𝑞-XOR
setting (Item (2b)), we define a polynomial 𝑓 (𝑥) = ∑

𝐶∈𝐻 𝑏𝐶𝑥𝐶 , where (1) the hypergraph 𝐻 is
arbitrary and (2) each 𝑏𝐶 is independently chosen from {−1, 1}. To compare with Theorem 2.0.2,
we can view the polynomial 𝑓𝑏 in Lemma 2.3.1 as being defined by (1) the “full” hypergraph
𝐻 B ∪𝑘

𝑖=1𝐻𝑖 , and (2) signs 𝑏𝐶 ∈ {−1, 1} for each 𝐶 ∈ 𝐻. However, unlike in Theorem 2.0.2, the
𝑏𝐶 ’s are no longer independent! Indeed, the randomness is correlated; we can view the partition
of the hypergraph 𝐻 into the matchings 𝐻1, . . . ,𝐻𝑘 as partitioning the hyperedges according to
their correlated signs 𝑏𝐶 . Namely, if 𝐶,𝐶′ ∈ 𝐻𝑖 for some 𝑖 ∈ [𝑘], then 𝑏𝐶 = 𝑏𝐶′ = 𝑏𝑖 . On the other
hand, unlike in the semirandom case, the hypergraph 𝐻 = ∪𝑘

𝑖=1𝐻𝑖 in Lemma 2.3.1 is not arbitrary,
as it is the union of 𝑘 matchings 𝐻1, . . . ,𝐻𝑘 . We have thus traded correlations in the “right-hand
sides” 𝑏𝐶 for additional structure in the hypergraph 𝐻. Note that the structure in 𝐻, i.e., that
𝐻 = ∪𝑘

𝑖=1𝐻𝑖 is the union of 𝑘 matchings, is crucial, as without this condition Lemma 2.3.1 is false.
Another key difference is that, unlike the algorithmic setting of Theorem 2.0.2, in Lemma 2.3.1

we are merely seeking to prove an existential statement and we do not care about the runtime of
the (implicit) algorithm at all! For this reason one might expect to prove Lemma 2.3.1 by using
natural probabilistic arguments. Indeed, in the case of semirandom 𝑞-XOR, one can argue that
the polynomial 𝑓 has low value by a simple union bound argument, and so the main difficulty
in Theorem 2.0.2 is finding an algorithm that can certify that val(𝑓) is low. In the setting of
Lemma 2.3.1, the main challenge is that the polynomials 𝑓𝑏 have significantly limited randomness
even compared to the semirandom setting. Namely, all the constraints 𝐶 ∈ 𝐻𝑖 share the same
right-hand side 𝑏𝑖 , and so there are only 𝑘 ≪ 𝑛 bits of independent randomness, which is
insufficient randomness to execute a union bound argument.

Nonetheless, we can establish a good bound on the value of the polynomial 𝑓𝑏 in Lemma 2.3.1
by constructing a subexponential-sized spectral certificate of low value. A priori, bounding the
spectral value might seem like a rather roundabout route to bound val(𝑓). However, shifting to
this (stronger) target allows us to leverage the spectral techniques based on Kikuchi matrices.
The significantly smaller amount of randomness in the polynomials 𝑓𝑏 produced in Lemma 2.3.1,
compared to, e.g., semirandom instances, poses additional technical challenges which we shall
handle with a technique called row pruning. This technique crucially exploits the combinatorial
matching structure in the hypergraphs 𝐻1, . . . ,𝐻𝑘 .

Spectral refutations for 𝒇𝒃. To prove Lemma 2.3.1, we need to upper bound E𝑏←{−1,1}𝑘 [val(𝑓𝑏)],
which we will do by bounding the spectral norm of an appropriately chosen Kikuchi matrix.
As a first attempt, we will use the general approach outlined in Section 2.1 to define a matrix
whose quadratic form is equal to 𝑓𝑏(𝑥). Namely, for a choice of the parameter ℓ (to be determined
later) and every 𝑏 ∈ {−1, 1}𝑘 , we define the Kikuchi matrix 𝐴 𝑓𝑏 =

∑𝑘
𝑖=1 𝑏𝑖

∑
𝐶∈𝐻𝑖 𝐴𝐶 , where 𝐴𝐶 is

defined in Definition 2.1.1. For notational convenience, we will suppress the subscript 𝑓𝑏 and let
𝐴 B 𝐴 𝑓𝑏 .

By Proposition 2.1.2, for any 𝑥 ∈ {−1, 1}𝑛 (and letting 𝑥⊙ℓ be defined as in Proposition 2.1.2),
we have that

𝑓𝑏(𝑥) ≤
1
𝐷

𝑥⊙ℓ

2
2 ∥𝐴∥2 =

𝑁

𝐷
∥𝐴∥2 ≤ 𝑂(1)

(𝑛
ℓ

) 𝑞/2
∥𝐴∥2 ,

15

where we have that 𝐷/𝑁 ∼ (ℓ/𝑛)𝑞/2 by Fact 3.6.1. We thus conclude that

𝜀𝛿𝑛𝑘 ≤ E𝑏[val(𝑓𝑏)] ≤ 𝑂(1)
(𝑛
ℓ

) 𝑞/2
E𝑏[∥𝐴∥2] , (2.3)

where the first inequality is by assumption in Lemma 2.3.1, and so it remains to bound E𝑏←{−1,1}𝑘 [∥𝐴∥2].
We can write 𝐴 =

∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 as a matrix Rademacher series, where 𝐴𝑖 B

∑
𝐶∈𝐻𝑖 𝐴𝐶 . By the

matrix Khintchine inequality (Fact 3.4.2), we have E[∥𝐴∥2] ≤ 𝑂(
√

log𝑁)

∑

𝑖 𝐴
2
𝑖

1/2
2 .

A combinatorial proxy for ∥𝑨∥2. As mentioned in Section 2.1, we can view the matrix 𝐴𝐶 as
the adjacency matrix of a graph: the vertices are sets 𝑆 ∈

(𝑛
ℓ

)
, and we have an edge (𝑆,𝑇) if and

only if 𝑆 ⊕ 𝑇 = 𝐶. We can thus view the matrix 𝐴𝑖 as a graph, which is obtained by taking the
union, over all 𝐶 ∈ 𝐻𝑖 , of the graphs 𝐴𝐶 .

Let Δ𝑖 be the maximum degree of any node in the Kikuchi graph 𝐴𝑖 , and let Δ = max1≤𝑖≤𝑘 Δ𝑖 .
Notice that because Δ𝑖 is the maximum degree of any node in the graph 𝐴𝑖 , it follows that Δ𝑖 is
the maximum ℓ1-norm of any row/column in 𝐴𝑖 , and hence is an upper bound on ∥𝐴𝑖 ∥2. Thus,
we obtain the bound

∑
𝑖 𝐴

2
𝑖

2 ≤

∑
𝑖 ∥𝐴𝑖 ∥22 ≤ 𝑘Δ2, and we conclude that the maximum degree of

the 𝐴𝑖’s naturally controls the spectral norm of 𝐴. Indeed, we have E𝑏[∥𝐴∥2] ≤ Δ ·𝑂(
√
𝑘ℓ log 𝑛).

The quantity Δ𝑖 arises naturally in the setting of LDC lower bounds due to the correlated
randomness of the coefficients in the polynomial 𝑓𝑏 . Indeed, as we saw above, the quantity

Δ𝑖 comes from the variance term

∑

𝑖 𝐴
2
𝑖

1/2
2 in our application of Matrix Khintchine, and this

variance term arises because of the correlated randomness. As we have stated earlier, one can
view the hypergraph 𝐻𝑖 as simply grouping the hyperedges 𝐶 that share the same coefficient 𝑏𝑖 ,
and likewise the matrix 𝐴𝑖 =

∑
𝐶∈𝐻𝑖 𝐴𝐶 simply extracts the “𝑏𝑖-component” of the matrix 𝐴. One

can thus view the quantity Δ𝑖 as a means of controlling the contribution of the “𝑏𝑖-component” to
the overall variance term for the random matrix 𝐴.

Let us now investigate bounds on Δ. By Proposition 2.1.2, we have already observed that for
each 𝐶 ∈ 𝐻𝑖 , the graph 𝐴𝐶 is a matching with 𝐷 edges. Therefore, the total number of edges in
𝐴𝑖 is exactly 𝐷 |𝐻𝑖 | = 𝐷𝛿𝑛, and so the average degree of 𝐴𝑖 is 𝑑𝑖 = 𝛿𝑛𝐷/𝑁 ∼ 𝑛(ℓ/𝑛)𝑞/2. We must
have Δ ≥ 𝑑𝑖 and Δ ≥ 1, and so we have Δ ≳ 𝑂(1)max{1, 𝑛(ℓ/𝑛)𝑞/2}. If Δ happens to be equal to
this minimum possible value, then substituting it in Eq. (2.3) yields:

𝜀𝛿𝑛𝑘 ≤ 𝑂(1)
(𝑛
ℓ

) 𝑞/2 √
𝑘ℓ log 𝑛 ·max{1, 𝑛(ℓ/𝑛)𝑞/2} ,

which implies that 𝑘 ≤ 𝑂(ℓ log 𝑛) ·max{𝑛𝑞−2/ℓ 𝑞 , 1}. This is minimized at ℓ = 𝑛1−2/𝑞 to give the
bound of 𝑘 ≤ 𝑂̃(𝑛1−2/𝑞), which is the bound we would like to show in Lemma 2.3.1.

However, there is one crucial problem: Δ𝑖 is much larger than the average degree 𝑑𝑖 of 𝐴𝑖 . In
fact, with some thought, one can see that Δ𝑖 = ⌊ 2ℓ

𝑞 ⌋. This is achieved by a row 𝑆 constructed by

(1) choosing 𝐶1, . . . ,𝐶𝑡 ∈ 𝐻𝑖 , where 𝑡 = ⌊ 2ℓ
𝑞 ⌋, (2) choosing an arbitrary subset 𝐶′

𝑗
⊆ 𝐶 𝑗 of size 𝑞/2

from each such 𝐶 𝑗 , and then (3) setting 𝑆 to be the union of the 𝐶′
𝑗
’s (which are disjoint since the

𝐶 𝑗’s are disjoint as 𝐻𝑖 is a matching) along with ℓ − 𝑡𝑞

2 arbitrary extra elements from [𝑛] \ ∪𝑡
𝑗=1𝐶 𝑗

to pad 𝑆 so that it has size ℓ . We can also observe that if 𝑞 ≥ 3 and we substitute Δ = Ω(ℓ) into
Eq. (2.3), we obtain the best lower bound by setting ℓ to be as large as possible, i.e., ℓ = Ω(𝑛). But
if we do so, our “lower bound” becomes 𝑘 ≤ 𝑂(𝑛 log 𝑛), which is worse than the trivial 𝑘 ≤ 𝑛
bound!

16

Handling irregularities: row pruning. The fact that the maximum degree Δ𝑖 is much larger
than the average degree 𝑑𝑖 ∼ 𝑛(ℓ/𝑛)𝑞/2 of 𝐴𝑖 is an inherent issue that we need to overcome. In
handling this issue, we will need to crucially use that the 𝐻𝑖 ’s are matchings; notice that we have
not used this property so far, and Lemma 2.3.1 is clearly false without this assumption!

We will now make the following key observation. While there are some nodes in the graph
𝐴𝑖 that have degree much larger than the average 𝑑𝑖 , these nodes are “rare”, and we can remove
them while only deleting a small number of vertices (and therefore also edges) from 𝐴𝑖 . Of course,
a small fraction of bad rows can still cause ∥𝐴𝑖 ∥2 (and also ∥𝐴∥2) to be too large. But, we can
now combine this with the key observation that we made in Section 2.2: to bound val(𝑓𝑏), we
only need to bound 𝑦⊤𝐴𝑦 for Boolean vectors 𝑦 ∈ {−1, 1}𝑁 , or equivalently, we need to bound
∥𝐴∥∞→1 rather than ∥𝐴∥2. Unlike ∥𝐴∥2, the quantity ∥𝐴∥∞→1 is insensitive to deleting a small
fraction of rows/columns, since ±1-coordinate vectors when restricted to a small number of
rows must have correspondingly small ℓ2-norm. Hence, we can simply delete the bad nodes,
or equivalently “zero out” the bad rows/columns, of the matrix 𝐴𝑖 and thus obtain a matrix 𝐵𝑖
where (1) ∥𝐴𝑖 − 𝐵𝑖 ∥∞→1 is small, and (2) the maximum degree of 𝐵𝑖 is 𝑂(𝑑𝑖) = 𝑂(𝑛(ℓ/𝑛)𝑞/2). The
first property ensures that ∥𝐴∥∞→1 ≈ ∥𝐵∥∞→1 where 𝐵 B

∑𝑘
𝑖=1 𝑏𝑖𝐵𝑖 , and the second property

implies that, by our earlier calculations, ∥𝐵∥2 yields the desired bound on val(𝑓𝑏).

To prove that only a small fraction of nodes can have a large degree in any 𝐴𝑖 , we view the
degree of any node 𝑆 as a polynomial in the corresponding indicator variables 𝑧 ∈ {0, 1}𝑛 with∑
𝑖 𝑧𝑖 = ℓ and use tail inequalities for low-degree polynomials (that generalize concentration

of Lipschitz functions) of Kim and Vu and extensions [KV00, SS12] (Fact 3.4.3) to bound the
probability that the degree of a random node 𝑆 is at least polylog(𝑛) times the average 𝑑𝑖 . This
relies on establishing strong bounds on the expected partial derivatives of the degree polynomial
by using that the 𝐻𝑖’s are matchings.

Indeed, the degree of a node 𝑆 is at most Deg(𝑧) B ∑
𝐶∈𝐻𝑖

∑
𝐶′⊆𝐶:|𝐶′ |=𝑞/2 𝑧𝐶′ , where 𝑧 is the 0/1

indicator vector of 𝑆. Using Fact 3.4.3, we can show that with probability 1− 1/poly(𝑛), a random
𝑆 has degree at most polylog(𝑛) · 𝑑𝑖 , provided that ℓ ≳ 𝑛1−2/𝑞 (which implies that 𝑑𝑖 ≫ 1). Note
that this crucially requires that 𝐻𝑖 is a hypergraph matching!

We now let 𝐵 be the matrix obtained by deleting (“zeroing out”) each row/column 𝑆 where 𝑆
has degree ≥ polylog(𝑛) · 𝑑𝑖 in some 𝑑𝑖 . We also write 𝐵 =

∑𝑘
𝑖=1 𝑏𝑖𝐵𝑖 , where the 𝐵𝑖’s are defined

similarly from the 𝐴𝑖’s. We have that

∥𝐴 − 𝐵∥∞→1 ≤ 𝑁 ·
2𝑘

poly(𝑛) · 𝑘𝑛 ≤
𝑁𝑛3

poly(𝑛) =
𝑁

poly(𝑛) ,

as (1) the total number of rows/columns removed is at most 𝑁 · 1
poly(𝑛) · 𝑘, using the concentration

bound along with a union bound over all 𝑖 ∈ [𝑘], (2) the maximum number of nonzero entries per
row/column of 𝐴𝑖 is at most 𝛿𝑛, and (3) we have 𝑘 ≤ 𝑛. By construction, we also have that for
any 𝑖 ∈ [𝑘], each row/column of 𝐵𝑖 has at most 𝑑𝑖 polylog(𝑛) nonzero entries. We thus conclude

17

that for ℓ ≳ 𝑛1−2/𝑞 ,

𝜀𝛿𝑛𝑘 ≤ E𝑏[val(𝑓𝑏)] ≤
1
𝐷

E𝑏[∥𝐴∥∞→1] ≤
1
𝐷

E𝑏[∥𝐴 − 𝐵∥∞→1 + ∥𝐵∥∞→1] ≤
1
𝐷
(𝑜(𝑁) +E𝑏[𝑁 ∥𝐵∥2])

≤ 1
𝐷

(
𝑜(𝑁) +𝑂(𝑁

√
log𝑁)

∑
𝑖

𝐵2
𝑖

1/2

2

)
≤

(𝑛
ℓ

) 𝑞/2 ©­«𝑜(1) +𝑂(1)
√
ℓ log 𝑛 · polylog(𝑛)

√√√
𝑘∑
𝑖=1

𝑑2
𝑖

ª®¬
≤

(𝑛
ℓ

) 𝑞/2 (
𝑜(1) +𝑂(1)

√
𝑘ℓ polylog(𝑛) · 𝑛(ℓ/𝑛)𝑞/2

)
= 𝑂

(√
𝑘ℓ polylog(𝑛) · 𝑛

)
=⇒ 𝜀2𝛿2𝑘 ≤ 𝑂(ℓ polylog(𝑛)) .

Setting ℓ = 𝑛1−2/𝑞 , we thus conclude that 𝑘 ≤ 𝑂(𝑛1−2/𝑞 polylog(𝑛)/(𝜀2𝛿2)), which proves Lemma 2.3.1
up to a small loss in the polylog(𝑛) factor.

Obtaining a better polylog(𝒏) factor. The above row pruning approach is rather intuitive, but
it is a bit lossy in the final polylog(𝑛) factor. We can sharpen the final bound on 𝑘 via a modified,
but perhaps less intuitive or general, row pruning argument.

We now define the matrix 𝐵 as follows. For each 𝑖 ∈ [𝑘], we let 𝐵𝑖 be the matrix obtained from
𝐴𝑖 by replacing any row/column in 𝐴𝑖 B

∑
𝐶∈𝐻𝑖 𝐴𝐶 with all 0’s if it has at least 2 nonzero entries.

We will then show that if ℓ ≲ 𝑛1−2/𝑞 , i.e., the average degree 𝑑𝑖 of 𝐴𝑖 is 𝑑𝑖 ≪ 1, then because 𝐻𝑖 is
a matching, 𝐵𝑖 has at least a constant fraction of the entries of 𝐴𝐶 for every 𝐶 ∈ 𝐻𝑖 . We can then
further delete entries of 𝐵𝑖 so that each 𝐶 ∈ 𝐻𝑖 contributes exactly the same number of entries
to 𝐵𝑖 ; this ensures that each monomial 𝑥𝐶 in 𝑓𝑏 has the same contribution to the corresponding
quadratic form on 𝐵. Then, we bound val(𝑓𝑏) via ∥𝐵∥2, using that ∥𝐵𝑖 ∥2 ≤ 1 for all 𝑖 ∈ [𝑘] as 𝐵𝑖
has at most one nonzero entry per row/column.

In more detail, we make the following definition.

Definition 2.3.2. Let ℓ B 𝑛1−2/𝑞/𝑐 for some absolute constant 𝑐 ≥ 𝑒16 if 𝑞 ≥ 4, and let ℓ = 1 if
𝑞 = 2. Note that in either case, ℓ = 𝑂(𝑛1−2/𝑞). Let 𝑁 B

(𝑛
ℓ

)
. For each 𝑞-uniform hypergraph

matching 𝐻𝑖 , let 𝐵𝑖 ∈ R𝑁×𝑁 denote the matrix indexed by sets 𝑆,𝑇 ∈
([𝑛]
ℓ

)
where 𝐵𝑖(𝑆,𝑇) = 1 if

the pair (𝑆,𝑇) satisfies (1) 𝑆 ⊕ 𝑇 = 𝐶 ∈ 𝐻𝑖 , and (2) |𝑆 ⊕ 𝐶′ | ≠ ℓ , |𝑇 ⊕ 𝐶′ | ≠ ℓ for every 𝐶′ ∈ 𝐻𝑖 with
𝐶′ ≠ 𝐶. We set 𝐵𝑖(𝑆,𝑇) = 0 otherwise. We let 𝐵 B

∑𝑘
𝑖=1 𝑏𝑖𝐵𝑖 .

As we have said, the matrices in Definition 2.3.2 are almost the same as setting 𝐵𝑖 =
∑
𝐶∈𝐻𝑖 𝐴𝐶

where 𝐴𝐶 is defined as in Definition 2.1.1; the key difference is that the definition of 𝐵𝑖 in
Definition 2.3.2 “zeros out” all rows/columns in

∑
𝐶∈𝐻𝑖 𝐴𝐶 that have more than one nonzero

entry. Because we have removed entries from the matrix
∑
𝐶∈𝐻𝑖 𝐴𝐶 , one might be worried that

we have removed all the entries and the matrix 𝐵𝑖 is identically 0. This is not the case because 𝐻𝑖

is a matching and ℓ ≲ 𝑛1−2/𝑞 , as we show in the lemma below.

Lemma 2.3.3. There is an integer 𝐷′ such that the following holds. Fix 𝑖 ∈ [𝑘], and let 𝐵𝑖 be one of the
matrices defined in Definition 2.3.2. For any 𝐶 ∈ 𝐻𝑖 , the number of pairs (𝑆,𝑇) with 𝑆 ⊕ 𝑇 = 𝐶 and
𝐵𝑖(𝑆,𝑇) = 1 is exactly 𝐷′. Moreover, we have that 𝐷′/𝑁 ≥ 1

2

(𝑞

𝑞/2
)
𝑒−3𝑞 · (ℓ𝑛)𝑞/2.

We postpone the proof of Lemma 2.3.3, and now finish the proof of Lemma 2.3.1.

18

For each 𝑥 ∈ {−1, 1}𝑛 , let 𝑦 ∈ {−1, 1}𝑁 be the vector where 𝑦𝑆 =
∏

𝑣∈𝑆 𝑥𝑣 . We then have that

𝑦⊤𝐵𝑦 =

𝑘∑
𝑖=1

𝑏𝑖(𝑦⊤𝐵𝑖𝑦) =
𝑘∑
𝑖=1

𝑏𝑖

∑
𝐶∈𝐻𝑖

∑
(𝑆,𝑇):𝑆⊕𝑇=𝐶

𝑦𝑆𝑦𝑇

=

𝑘∑
𝑖=1

𝑏𝑖

∑
𝐶∈𝐻𝑖

𝐷′ · 𝑦𝑆𝑦𝑇 (by Lemma 2.3.3)

= 𝐷′
𝑘∑
𝑖=1

𝑏𝑖

∑
𝐶∈𝐻𝑖

∏
𝑣∈𝐶

𝑥𝑣

= 𝐷′ 𝑓𝑏(𝑥)

=⇒ E𝑏[val(𝑓𝑏)] ≤
𝑁

𝐷′
·E𝑏[∥𝐵∥2] ,

where the last inequality uses that ∥𝑦∥22 = 𝑁 ; here, 𝑚 =
∑𝑘
𝑖=1 |𝐻𝑖 | = 𝛿𝑛𝑘 is the total number of

constraints.
It thus remains to bound E𝑏←{−1,1}𝑘 [∥𝐵∥2]. As each 𝑏𝑖 is an independent bit from {−1, 1}, the

matrix 𝐵 =
∑𝑘
𝑖=1 𝑏𝑖𝐵𝑖 is the sum of 𝑘 independent, mean 0 random matrices. We will use Matrix

Khintchine (Fact 3.4.2) to bound E[∥𝐵∥2]. We observe that ∥𝐵𝑖 ∥2 ≤ 1 by construction, as the
ℓ1-norm of any row/column of 𝐵𝑖 is at most 1. It then follows that ∥∑𝑘

𝑖=1 𝐵
2
𝑖
∥2 ≤

∑𝑘
𝑖=1∥𝐵𝑖 ∥22 ≤ 𝑘.

Hence, by Fact 3.4.2, it follows that E[∥𝐵∥2] ≤ 𝑂(
√
𝑘 log𝑁) = 𝑂(

√
𝑘ℓ log 𝑛).

We thus have

𝜀𝛿𝑛𝑘 ≤ E𝑏∈{−1,1}𝑘 [val(𝑓𝑏)] ≤
𝑁

𝐷′
𝑂(

√
𝑘ℓ log 𝑛) ≤

(𝑛
ℓ

) 𝑞/2
·𝑂(

√
𝑘ℓ log 𝑛) ≤ 𝑛 ·𝑂

(√
𝑘𝑛1−2/𝑞 log 𝑛

)
,

where we use that ℓ = 𝑛1−2/𝑞/𝑐 and the bound on 𝐷′
𝑁 from Lemma 2.3.3. We thus conclude that

𝑘 ≤ 𝑛1−2/𝑞 ·𝑂(log 𝑛)/(𝜀2𝛿2).
It remains to prove Lemma 2.3.3.

Proof of Lemma 2.3.3. First, let 𝐶 ∈ 𝐻𝑖 be any element. We first show that the number of pairs
(𝑆,𝑇) with 𝑆 ⊕ 𝑇 = 𝐶 and 𝐵𝑖(𝑆,𝑇) = 1 is independent of 𝐶. Indeed, let 𝐶′ ∈ 𝐻𝑖 be different
from 𝐶. As 𝐻𝑖 is a matching, we have that 𝐶 and 𝐶′ are disjoint. Let 𝜋 be an arbitrary bijection
between 𝐶 and 𝐶′ and extend 𝜋 to act on all of [𝑛] by acting as the identity on elements not in
𝐶 ∪ 𝐶′. It is simple to observe that if (𝑆,𝑇) is any pair satisfying the above criterion for 𝐶, then
(𝑆′,𝑇′), obtained by applying 𝜋 to all elements of 𝑆 and 𝑇, satisfies the criterion for 𝐶′. Hence,
the number of pairs is independent of the choice of 𝐶 ∈ 𝐻𝑖 .

We note that it is clear from symmetry that 𝐷′ depends only on |𝐻𝑖 |, 𝑞, and 𝑛. As |𝐻𝑖 | = 𝛿𝑛
for all 𝑖, it follows that 𝐷′ does not depend on 𝑖.

We now finish the proof. We have two cases. If 𝑞 = 2, then ℓ = 1 and 𝑁 =
(𝑛
ℓ

)
= 𝑛. This

implies that 𝐷′ = 2, as each 𝐻𝑖 is a matching, so if 𝐶 = {𝑢, 𝑣} ∈ 𝐻𝑖 , then 𝐵𝑖(𝑢, 𝑣) = 𝐵𝑖(𝑣, 𝑢) = 1.
Thus, in this case the conclusion trivially holds.

Now, suppose 𝑞 ≥ 4. Let 𝐶 ∈ 𝐻𝑖 be arbitrary. We first lower bound 𝐷′. We observe that
𝑆 ⊕ 𝑇 = 𝐶 if and only if 𝑆 = 𝐶𝑆 ∪𝑄 and 𝑇 = 𝐶𝑇 ∪𝑄, where 𝐶𝑆,𝐶𝑇 ⊆ 𝐶 are disjoint subsets of
size exactly 𝑞/2, so that 𝐶 = 𝐶𝑆 ∪ 𝐶𝑇 , and 𝑄 ⊆ [𝑛] \ 𝐶 has size exactly ℓ − 𝑞/2. It follows that if

19

𝑆 ⊕ 𝑇 = 𝐶 and for some 𝐶′ ≠ 𝐶 ∈ 𝐻𝑖 , either |𝑆 ⊕ 𝐶′ | = ℓ or |𝑇 ⊕ 𝐶′ | = ℓ , then it must be the case
that |𝑄 ∩ 𝐶′ | = 𝑞/2. Hence, we have that

𝐷′ ≥
(
𝑞

𝑞/2

) (
𝑛 − 𝑞
ℓ − 𝑞/2

)
− |𝐻𝑖 | ·

(
𝑞

𝑞/2

)2 (
𝑛 − 2𝑞
ℓ − 𝑞

)
.

Applying Fact 3.6.1, we thus have that

𝐷′/𝑁 ≥
(
𝑞

𝑞/2

)
𝑒−3𝑞

(
ℓ

𝑛

) 𝑞/2
− 𝑛 ·

(
𝑞

𝑞/2

)2

𝑒3𝑞
(
ℓ

𝑛

) 𝑞
=

(
𝑞

𝑞/2

)
𝑒−3𝑞

(
ℓ

𝑛

) 𝑞/2 (
1− 𝑛 · 2𝑞𝑒6𝑞

(
ℓ

𝑛

) 𝑞/2)
≥ 1

2

(
𝑞

𝑞/2

)
𝑒−3𝑞

(
ℓ

𝑛

) 𝑞/2
,

where we use that ℓ ≤ 𝑛1−2/𝑞/𝑒16. □

Summary: Row Pruning

(1) In the LDC setting, 𝐻 = ∪𝑘
𝑖=1𝐻𝑖 where each 𝐶 ∈ 𝐻𝑖 shares the same coefficient 𝑏𝑖 . The

correlated coefficients make ∥𝐴∥2 too large to provide a good bound on val(𝑓), even
when each 𝐻𝑖 is a matching (in some sense, the “nicest” case).

(2) ∥𝐴∥2 is controlled by the maximum degrees Δ𝑖’s of the Kikuchi graphs 𝐴𝑖 =
∑
𝐶∈𝐻𝑖 𝐴𝐶

for each 𝑖 ∈ [𝑘]. To get a good bound, we need Δ𝑖 ≈ 𝑑𝑖 , where the 𝑑𝑖’s are the average
degrees.

(3) Even when 𝐻𝑖 is a matching, Δ𝑖 ≫ 𝑑𝑖 , which causes ∥𝐴∥2 to be too large. However, the
“bad nodes” of large degree in each 𝐴𝑖 are rare, which one can show using Kim–Vu-style
concentration bounds ([KV00, SS12], Fact 3.4.3). By deleting all of the bad nodes from 𝐴𝑖 ,
we obtain a new graph 𝐵𝑖 , and we can use ∥𝐵∥2, where 𝐵 =

∑𝑘
𝑖=1 𝑏𝑖𝐵𝑖 , to bound val(𝑓𝑏).

20

Chapter 3

Background and Preliminaries

3.1 Basic notation

We let [𝑛] denote the set {1, . . . , 𝑛}. For two subsets 𝑆,𝑇 ⊆ [𝑛], we let 𝑆 ⊕ 𝑇 denote the symmetric
difference of 𝑆 and 𝑇, i.e., 𝑆 ⊕ 𝑇 B {𝑖 : (𝑖 ∈ 𝑆 ∧ 𝑖 ∉ 𝑇) ∨ (𝑖 ∉ 𝑆 ∧ 𝑖 ∈ 𝑇)}. For a natural number
𝑡 ∈ N, we let

([𝑛]
𝑡

)
be the collection of subsets of [𝑛] of size exactly 𝑡.

For a rectangular matrix 𝐴 ∈ R𝑚×𝑛 , we let ∥𝐴∥2 B max𝑥∈R𝑚 ,𝑦∈R𝑛 :∥𝑥∥2=∥𝑦∥2=1 𝑥
⊤𝐴𝑦 denote

the spectral norm of 𝐴, and ∥𝐴∥∞→1 B max𝑥∈{−1,1}𝑚 ,𝑦∈{−1,1}𝑛 𝑥
⊤𝐴𝑦. We note that ∥𝐴∥∞→1 ≤√

𝑛𝑚∥𝐴∥2.
Given a multiset 𝐻, we will use the notation 𝐶 ∈ 𝐻 to refer to a distinct element of 𝐶, and

𝐶 ≠ 𝐶′ for 𝐶,𝐶′ ∈ 𝐻 to denote that 𝐶 and 𝐶′ are distinct elements in 𝐻 (even if they are two
different copies of the same element).

Given a set 𝑅 and variables 𝑥1, . . . , 𝑥𝑛 , we will let 𝑥𝑅 B
∏

𝑖∈𝑅 𝑥𝑖 . In particular, 𝑥𝐶 B
∏

𝑖∈𝐶 𝑥𝑖 .
Given a graph 𝐺 = (𝑉 ,𝐸) with 𝑛 vertices and 𝑚 edges (including self-loops1), we write

𝐷𝐺 ∈ R𝑛×𝑛 as the diagonal degree matrix, 𝐴𝐺 ∈ R𝑛×𝑛 as the adjacency matrix, and 𝐿𝐺 = 𝐷𝐺 −𝐴𝐺
as the unnormalized Laplacian (note that the self-loops do not contribute to 𝐿𝐺). Furthermore,
we write 𝐿𝐺 = 𝐷

−1/2
𝐺

𝐿𝐺𝐷
−1/2
𝐺

to be the normalized Laplacian, and denote its eigenvalues as
0 = 𝜆1(𝐿𝐺) ≤ 𝜆2(𝐿𝐺) ≤ · · · ≤ 𝜆𝑛(𝐿𝐺) ≤ 2.

For any subset 𝑆 ⊆ 𝑉 , we denote 𝐺[𝑆] as the subgraph of 𝐺 induced by 𝑆, and 𝐺{𝑆} as the
induced subgraph 𝐺[𝑆] but with self-loops added so that any vertex in 𝑆 has the same degree as
its degree in 𝐺.

3.1.1 Graph pruning and expander decomposition

It is a standard result that given a graph with 𝑚 edges and average degree 𝑑, one can delete
vertices such that the resulting graph has minimum degree 𝜀𝑑 and at least (1− 2𝜀)𝑚 edges. We
include a short proof for completeness.
Lemma 3.1.1 (Graph pruning). Let 𝐺 be an 𝑛-vertex graph with average degree 𝑑 and 𝑚 = 𝑛𝑑

2 edges,
and let 𝜀 ∈ (0, 1/2). There is an algorithm that deletes vertices of 𝐺 such that the resulting graph has
minimum degree 𝜀𝑑 and at least (1− 2𝜀)𝑚 edges.

1Each self-loop contributes 1 to the degree of a vertex.

21

Proof. The algorithm is simple: repeatedly remove any vertex with degree < 𝜀𝑑. First, we show
by induction that each deletion cannot decrease the average degree. Suppose there are 𝑛′ ≤ 𝑛
vertices left and average degree 𝑑′ ≥ 𝑑. Then, after deleting a vertex 𝑢 with degree 𝑑𝑢 < 𝜀𝑑, the
average degree becomes 𝑛′𝑑′−2𝑑𝑢

𝑛′−1 > 𝑛′𝑑−2𝜀𝑑
𝑛′−1 = 𝑑 · 𝑛′−2𝜀

𝑛′−1 . Thus, for 𝜀 < 1/2, the average degree is
always at least 𝑑. Furthermore, since the algorithm can delete at most 𝑛 vertices, it can delete at
most 𝜀𝑑𝑛 = 2𝜀𝑚 edges. □

We will also need an algorithm that partitions a graph into expanding clusters such that total
number of edges across different clusters is small. Expander decomposition has been developed
in a long line of work [KVV04, ST11, Wul17, SW19] and has a wide range of applications. For
our algorithm, we only require a very simple expander decomposition that recursively applies
Cheeger’s inequality.
Fact 3.1.2 (Expander decomposition). Given a (multi)graph 𝐺 = (𝑉 ,𝐸) with 𝑚 edges and a parameter
𝜀 ∈ (0, 1), there is a polynomial-time algorithm that finds a partition of 𝑉 into 𝑉1, . . . ,𝑉𝑇 such that
𝜆2(𝐿𝐺{𝑉𝑖}) ≥ Ω(𝜀2/log2 𝑚) for each 𝑖 ∈ [𝑇] and the number of edges across partitions is at most 𝜀𝑚.

Proof. Fix 𝜆 = 𝑐𝜀2/log2 𝑚 for some constant 𝑐 to be chosen later. The algorithm is very simple.
Given a graph 𝐺 = (𝑉 ,𝐸) (with potentially parallel edges and self-loops), if 𝜆2(𝐿𝐺) < 𝜆, then
by Cheeger’s inequality we can efficiently find a subset 𝑆 ⊆ 𝑉 with vol(𝑆) ≤ vol(𝑆) such

that |𝐸(𝑆,𝑆)|
vol(𝑆) <

√
2𝜆. Here vol(𝑆) B ∑

𝑣∈𝑆 deg(𝑣). Then, we cut along 𝑆, add self-loops to the

induced subgraphs 𝐺[𝑆] and 𝐺[𝑆] so that the vertex degrees remain the same (each self-loop
contributes 1 to the degree). This produces two graphs 𝐺{𝑆} and 𝐺{𝑆}, and we recurse on each.
By construction, in the end we will have partitions 𝑉1, . . . ,𝑉𝑇 where either 𝑉𝑖 is either a single
vertex or satisfies 𝜆2(𝐿𝐺{𝑉𝑖}) ≥ 𝜆.

We now bound the number of edges cut via a charging argument. Consider the “half-edges”
in the graph, where each edge (𝑢, 𝑣) contributes one half-edge to 𝑢 and one to 𝑣, and each self-
loop counts as one half-edge. Then, vol(𝑆) equals the number of half-edges attached to 𝑆. Now,
imagine we have a counter for each half-edge, and every time we cut along 𝑆 we add

√
2𝜆 to

each half-edge attached to 𝑆 (the smaller side). Since 𝐸(𝑆, 𝑆) <
√

2𝜆 · vol(𝑆), it follows that the
number of edges cut is at most the total sum of the counters. On the other hand, each half-edge
can appear on the smaller side of the cut at most log2 2𝑚 times, as each time the half-edge is on
the smaller side of the cut, vol(𝑆) decreases by at least a factor of 2, and vol([𝑛]) = 2𝑚. So, the
total sum must be ≤

√
2𝜆 · 2𝑚 log2 2𝑚 ≤ 𝜀𝑚 for a small enough constant 𝑐. □

3.2 Hypergraphs

Definition 3.2.1 (Hypergraphs). An (unweighted and undirected) hypergraph 𝐻 on a vertex set
[𝑛] is a collection of subsets 𝐶 ⊆ [𝑛] called hyperedges. We say that a hypergraph 𝐻 is 𝑞-uniform
if |𝐶 | = 𝑞 for all 𝐶 ∈ 𝐻, and that 𝐻 is a matching if for all distinct 𝐶,𝐶′ ∈ 𝐻, 𝐶 and 𝐶′ are disjoint.

For a subset 𝑄 ⊆ [𝑛], we define the degree of 𝑄 in 𝐻, denoted deg𝐻(𝑄), to be |{𝐶 ∈ 𝐻 : 𝑄 ⊆
𝐶}|.

We will allow hypergraphs to be multisets, in which case we will use the notation 𝐶 ∈ 𝐻 to
refer to a distinct element of 𝐶, and 𝐶 ≠ 𝐶′ for 𝐶,𝐶′ ∈ 𝐻 to denote that 𝐶 and 𝐶′ are distinct
elements in 𝐻 (even if they are two different copies of the same set).

22

Definition 3.2.2 (Weighted hypergraphs). A (weighted and undirected) hypergraph 𝐻 on vertex
set [𝑛] is a weight function wt𝐻 : 2[𝑛] → R≥0, i.e., a function from unordered sets 𝐶 ⊆ [𝑛] to
R≥0. The hypergraph is ≤ 𝑞-uniform if |𝐶 | > 𝑞 implies that wt𝐻(𝐶) = 0 and 𝑞-uniform if |𝐶 | ≠ 𝑞

implies that wt𝐻(𝐶) = 0.
A (weighted and directed) hypergraph 𝐻 on vertex set [𝑛] is a weight function wt𝐻 : 𝑆→ R≥0,

where 𝑆 denotes the set of all ordered subsets of [𝑛]. The hypergraph is ≤ 𝑞-uniform if for any
ordered set 𝐶 ⊆ [𝑛], |𝐶 | > 𝑞 implies that wt𝐻(𝐶) = 0 and 𝑞-uniform if |𝐶 | ≠ 𝑞 implies that
wt𝐻(𝐶) = 0.

For a subset𝑄 ⊆ [𝑛], we define the degree of𝑄 in𝐻, denoted deg𝐻(𝑄), to be
∑
𝐶∈[𝑛]𝑞 :𝑄⊆𝐶 wt𝐻(𝐶),

where we say that 𝑄 ⊆ 𝐶 if this containment holds as sets.

3.3 Locally decodable and correctable codes

We refer the reader to the survey [Yek12] for background.
A code is a map 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 . We say that 𝒞 is linear if the map 𝒞, when viewed as

a map from {0, 1}𝑘 → {0, 1}𝑛 via the mapping 0↔ 1 and 1↔ −1, is a linear map. We note that
for linear codes, 𝑘 = dim(𝒱), where𝒱 is the image of {0, 1}𝑘 under the map 𝒞. We will typically
let ℒ, as opposed to 𝒞, denote a linear code, and view ℒ as a map ℒ : {0, 1}𝑘 → {0, 1}𝑛 . We say
that 𝒞 is systematic if for every 𝑏 ∈ {−1, 1}𝑘 , 𝒞(𝑏)|[𝑘] = 𝑏. For a code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 , we
will write 𝑥 ∈ 𝒞 to denote an 𝑥 = 𝒞(𝑏) for some 𝑏 ∈ {−1, 1}𝑘 .
Locally decodable codes. A locally decodable code is a code where one can recover any bit 𝑏𝑖 of
the original message 𝑏 with good confidence while only reading a few bits of the encoded string
in the presence of errors.
Definition 3.3.1 (Locally Decodable Code). A code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is (𝑞, 𝛿, 𝜀)-locally
decodable if there exists a randomized decoding algorithm Dec(·) with the following properties.
The algorithm Dec(·) is given oracle access to some 𝑦 ∈ {−1, 1}𝑛 , takes an 𝑖 ∈ [𝑘] as input, and
satisfies the following: (1) the algorithm Dec makes at most 𝑞 queries to the string 𝑦, and (2) for
all 𝑏 ∈ {−1, 1}𝑘 , 𝑖 ∈ [𝑘], and all 𝑦 ∈ {−1, 1}𝑛 such that Δ(𝑦,𝒞(𝑏)) ≤ 𝛿𝑛, Pr[Dec𝑦(𝑖) = 𝑏𝑖] ≥ 1

2 + 𝜀.
Here, Δ(𝑥, 𝑦) denotes the Hamming distance between 𝑥 and 𝑦, i.e., the number of indices 𝑣 ∈ [𝑛]
where 𝑥𝑣 ≠ 𝑦𝑣 .

Following known reductions [Yek12], locally decodable codes can be reduced to the following
normal form, which is more convenient to work with.
Definition 3.3.2 (Normal LDC). A code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is (𝑞, 𝛿, 𝜀)-normally decodable if
for each 𝑖 ∈ [𝑘], there is a 𝑞-uniform hypergraph matching 𝐻𝑖 with at least 𝛿𝑛 hyperedges such
that for every 𝐶 ∈ 𝐻𝑖 , it holds that Pr𝑏←{−1,1}𝑘 [𝑏𝑖 =

∏
𝑣∈𝐶 𝒞(𝑏)𝑣] ≥ 1

2 + 𝜀.
Fact 3.3.3 (Reduction to LDC Normal Form, Lemma 6.2 in [Yek12]). Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be
a code that is (𝑞, 𝛿, 𝜀)-locally decodable. Then, there is a code 𝒞′ : {−1, 1}𝑘 → {−1, 1}𝑂(𝑛) that is (𝑞, 𝛿′, 𝜀′)
normally decodable, with 𝛿′ ≥ 𝜀𝛿/3𝑞22𝑞−1 and 𝜀′ ≥ 𝜀/22𝑞 .

We recall the lower bound for linear 2-LDCs from [GKST06].
Fact 3.3.4 (Lemma 3.3, Lemma 3.5 in [GKST06]). Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a linear map, and
let 𝐺1, . . . ,𝐺𝑘 be matchings on 𝑛 vertices such that for every 𝑏 ∈ {0, 1}𝑘 and every 𝑖 ∈ [𝑘] and every
(𝑢, 𝑣) ∈ 𝐺𝑖 , it holds that 𝑥𝑢 + 𝑥𝑣 = 𝑏𝑖 , where 𝑥 = ℒ(𝑏). Suppose that 1

𝑘

∑𝑘
𝑖=1 |𝐺𝑖 | ≥ 𝛿𝑛. Then,

2𝛿𝑘 ≤ log2 𝑛.

23

Locally correctable codes. A locally correctable code is defined similarly to a locally correctable
code, except that the decoder must now recover any bit 𝑥𝑢 of the (uncorrupted) encoded string.
Definition 3.3.5 (Locally correctable code). A map 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is a (𝑞, 𝛿, 𝜀)-locally
correctable code if there exists a randomized decoding algorithm Dec(·) that takes input an oracle
access to some 𝑦 ∈ {−1, 1}𝑛 and a 𝑢 ∈ [𝑛], and has the following properties:

(1) (𝑞 queries) For any 𝑦 ∈ {−1, 1}𝑛 and 𝑢 ∈ [𝑛], Dec𝑦(𝑢)makes at most 𝑞 queries to the string 𝑦;
(2) ((1/2 + 𝜀)-correction with 𝛿𝑛 errors) For all 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], and all 𝑦 ∈ {−1, 1}𝑛 such

that Δ(𝑦,𝒞(𝑏)) ≤ 𝛿𝑛, Pr[Dec𝑦(𝑢) = 𝒞(𝑏)𝑢] ≥ 1/2 + 𝜀. Here, Δ(𝑥, 𝑦) denotes the Hamming
distance between 𝑥 and 𝑦, i.e., the number of indices 𝑣 ∈ [𝑛]where 𝑥𝑣 ≠ 𝑦𝑣 .

Definition 3.3.6 (Smooth LCCs [KT00]). A map 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is a 𝛿-smooth 𝑞-locally
correctable code with completeness 1− 𝜀 if there exists a randomized decoding algorithm Dec(·)
that takes input an oracle access to some 𝑦 ∈ {−1, 1}𝑛 and a 𝑢 ∈ [𝑛], and has the following
properties:

(1) (𝑞 queries) For any 𝑦 ∈ {−1, 1}𝑛 and 𝑢 ∈ [𝑛], Dec𝑦(𝑢)makes at most 𝑞 queries to the string 𝑦;
(2) ((1− 𝜀)-completeness) For all 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], Pr[Dec𝒞(𝑏)(𝑢) = 𝒞(𝑏)𝑢] ≥ 1− 𝜀.
(3) (𝛿-smoothness) For all 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], 𝑥 = 𝒞(𝑏), 𝑣 ∈ [𝑛], Pr[Dec𝒞(𝑏)(𝑢) queries 𝑣] ≤ 1

𝛿𝑛 .
We will call such codes (𝑞, 𝛿, 1− 𝜀)-smooth LCCs.
Remark 3.3.7. Any 𝛿-smooth 𝑞-LCC with completeness 1 − 𝜀 is a (𝑞,𝜂𝛿, 1 − 𝜀 − 𝜂)-LCC for any
𝜂 > 0. Indeed, this follows because if we let 𝑦 ∈ {−1, 1}𝑛 be a corruption of a codeword 𝑥 ∈ 𝒞
with 𝜂𝛿𝑛 errors, then the probability that the smooth decoder queries a corrupted entry is ≤ 𝜂.
Fact 3.3.8 (Systematic Nonlinear Codes, Lemma A.5, Thm A.6 in [BGT17]). Let 𝒞 : {−1, 1}𝑘 →
{−1, 1}𝑛 be a 𝛿-smooth 𝑞-LCC with completeness 1− 𝜀. Then, there is a systematic code 𝒞′ : {−1, 1}𝑘′ →
{−1, 1}𝑛 that is a 𝛿-smooth 𝑞-LCC with completeness 1− 𝜀, where 𝑘′ = Ω(𝑘/log(1/𝛿)).

Like LDCs, (linear) LCCs admit a standard combinatorial characterization, formalized in the
definition below.
Definition 3.3.9 (Linear LCC in normal form). A linear code ℒ : {0, 1}𝑘 → {0, 1}𝑛 is (𝑞, 𝛿)-
normally correctable if for each 𝑢 ∈ [𝑛], there is a 𝑞-uniform hypergraph matching 𝐻𝑢 with at
least 𝛿𝑛 hyperedges such that for every 𝐶 ∈ 𝐻𝑢 and 𝑏 ∈ {−1, 1}𝑘 , it holds that

∏
𝑣∈𝐶 𝑥𝑣 = 𝑥𝑢

where 𝑥 = 𝒞(𝑏).
Every linear LCC can be transformed into a linear LCC in normal form with only a small loss

in parameters.
Fact 3.3.10 (Reduction to LCC normal form, Theorem 8.1 in [Dvi16]). Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be
a linear code that is (𝑞, 𝛿, 𝜀)-locally correctable. Then, there is a linear code ℒ′ : {0, 1}𝑘 → {0, 1}2𝑛 that is
(𝑞, 𝛿′)-normally correctable, with 𝛿′ ≥ 𝛿/2𝑞.

Below, we define design 3-LCCs, which are an idealized form of linear 3-LCCs in normal
form. We note that Reed–Muller codes, the best known construction of 3-LCCs, are designs (see
Section 12.11).
Definition 3.3.11 (Design 3-LCCs). Let 𝐻 ⊆

([𝑛]
4

)
denote a collection of subsets of 𝑛 of size exactly

4. We say that 𝐻 is a design if, for every pair of vertices 𝑢 ≠ 𝑣 ∈ [𝑛], there exists exactly one 𝐶 ∈ 𝐻
with {𝑢, 𝑣} ⊆ 𝐶.

We say that such an 𝐻 is a design 3-LCC of dimension 𝑘 if the subspace𝒱 B {𝑥 ∈ {0, 1}𝑛 :∑
𝑣∈𝐶 𝑥𝑣 = 0 ∀𝐶 ∈ 𝐻} ⊆ {0, 1}𝑛 has dimension 𝑘.

24

Remark 3.3.12 (Connection between Definition 3.3.11 and Definition 3.3.9). Given a design 3-LCC
𝐻, we can construct the hypergraphs 𝐻𝑢 for 𝑢 ∈ [𝑛] in Definition 3.3.11 by letting 𝐻𝑢 B {𝐶 \ {𝑢} :
𝐶 ∈ 𝐻 and 𝑢 ∈ 𝐶} be the set of 𝐶 ∈ 𝐻 that contain 𝑢 (and then remove 𝑢). Because 𝐻 is a design,
for every pair 𝑢 ≠ 𝑣 ∈ [𝑛], there exists 𝐶 ∈ 𝐻 containing 𝑢 and 𝑣. So, there is exactly one 𝐶′ ∈ 𝐻𝑢

containing 𝑣, which implies that 𝐻𝑢 is a perfect 3-uniform hypergraph matching on [𝑛] \ {𝑢}, i.e.,
|𝐻𝑢 | = 𝑛−1

3 .

3.4 Concentration inequalities

We will rely on the following concentration inequalities. The first is the standard rectangular
Matrix Bernstein inequality.
Fact 3.4.1 (Rectangular Matrix Bernstein, Theorem 1.6 of [Tro12]). Let 𝑋1, . . . ,𝑋𝑘 be independent ran-
dom 𝑑1× 𝑑2 matrices with E[𝑋𝑖] = 0 and ∥𝑋𝑖 ∥ ≤ 𝑅 for all 𝑖. Let 𝜎2 ≥ max(∥E[∑𝑘

𝑖=1 𝑋𝑖𝑋
⊤
𝑖
]∥2, ∥E[∑𝑘

𝑖=1 𝑋
⊤
𝑖
𝑋𝑖]∥2).

Then for all 𝑡 ≥ 0, Pr[∥∑𝑘
𝑖=1 𝑋𝑖 ∥2 ≥ 𝑡] ≤ (𝑑1 + 𝑑2) exp(−𝑡

2/2
𝜎2+𝑅𝑡/3).

The second is the following non-commutative Khintchine inequality [LP91].
Fact 3.4.2 (Rectangular Matrix Khintchine Inequality, Theorem 4.1.1 of [Tro15]). Let 𝑋1, . . . ,𝑋𝑘 be
fixed 𝑑1× 𝑑2 matrices and 𝑏1, . . . , 𝑏𝑘 be i.i.d. from {−1, 1}. Let 𝜎2 ≥ max(∥∑𝑘

𝑖=1 𝑋𝑖𝑋
⊤
𝑖
]∥2, ∥∑𝑘

𝑖=1 𝑋
⊤
𝑖
𝑋𝑖]∥2).

Then

E

[
∥

𝑘∑
𝑖=1

𝑏𝑖𝑋𝑖 ∥2
]
≤

√
2𝜎2 log(𝑑1 + 𝑑2) ,

and

Pr[∥
𝑘∑
𝑖=1

𝑏𝑖𝑋𝑖 ∥2 ≥ 𝑡] ≤ (𝑑1 + 𝑑2) exp(−𝑡
2

2𝜎2
) .

The third concentration inequality is a result for combinatorial polynomials due to Schudy
and Sviridenko [SS12] that is the culmination of an influential line of work begun by Kim and
Vu [KV00].
Fact 3.4.3 (Concentration of polynomials, Theorem 1.2 in [SS12], specialized). Let 𝐻 ⊆

([𝑛]
𝑡

)
be a

collection of multilinear monomials of degree 𝑡 in 𝑛 {0, 1}-valued variables, and let 𝑓 (𝑥) B ∑
𝐶∈𝐻

∏
𝑖∈𝐶 𝑥𝑖 .

Let 𝑌1,𝑌2, . . . ,𝑌𝑛 be independent and identically distributed Bernoulli random variables with Pr[𝑌𝑖 =
1] = 𝜏. Then, for some absolute constant 𝑅 ≥ 1,

Pr[| 𝑓 (𝑌) −E 𝑓 (𝑌)| ≥ 𝜆] ≤ 𝑒2 max
{

max
𝑟=1,2,...,𝑡

𝑒−𝜆
2/𝜈0𝜈𝑟𝑅𝑡 , max

𝑟=1,2,...,𝑡
𝑒
−(𝜆

𝜈𝑟 𝑅𝑡
)1/𝑟

}
,

where, for every 𝑟 ≤ 𝑡, 𝜈𝑟 = 𝜏𝑡−𝑟 maxℎ0⊆[𝑛],|ℎ0 |=𝑟 |{ℎ ∈ 𝐻 : ℎ ⊇ ℎ0}|.
Fact 3.4.4 (Chernoff bound). Let 𝑋1, . . . ,𝑋𝑛 be independent random variables taking values in {0, 1}.
Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜇 = E[𝑋]. Then, for any 𝛿 ∈ [0, 1],

Pr {|𝑋 − 𝜇| ≥ 𝛿𝜇} ≤ 2𝑒−𝛿
2𝜇/3 .

Fact 3.4.5 (Matrix Chernoff [Tro15, Theorem 5.1.1]). Let 𝑋1, . . . ,𝑋𝑛 ∈ R𝑑×𝑑 be independent, random,
symmetric matrices such that 𝑋𝑖 ⪰ 0 and 𝜆max(𝑋𝑖) ≤ 𝑅 almost surely. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜇 =

25

𝜆max(E[𝑋]). Then, for any 𝛿 ∈ [0, 1],

Pr {𝜆max(𝑋) ≥ (1+ 𝛿)𝜇} ≤ 𝑑 · exp
(
−𝛿

2𝜇

3𝑅

)
.

3.5 The sum-of-squares algorithm

We briefly define the key sum-of-squares facts that we use. These facts are all taken from [BS16,
FKP19].
Definition 3.5.1 (Pseudo-expectations over the hypercube). A degree 𝑑 pseudo-expectation Ẽ

over {−1, 1}𝑛 is a linear operator that maps degree ≤ 𝑑 polynomials on {−1, 1}𝑛 into real numbers
with the following three properties:

1. (Normalization) Ẽ[1] = 1.
2. (Booleanity) For any 𝑥𝑖 and any polynomial 𝑓 of degree ≤ 𝑑 − 2, Ẽ[𝑓 𝑥2

𝑖
] = Ẽ[𝑓].

3. (Positivity) For any polynomial 𝑓 of degree at most 𝑑/2, Ẽ[𝑓 2] ≥ 0.

We note that if E is the expectation operator of a distribution over {−1, 1}𝑛 , then E is a degree
𝑑 pseudo-expectation (for any 𝑑), and thus max𝑥∈{−1,1}𝑛 𝑓 (𝑥) ≤ maxẼ Ẽ[𝑓], where the second max
is taken over all degree 𝑑 pseudo-expectations Ẽ.

The SoS algorithm shows that we can efficiently maximize Ẽ[𝑓] over degree 𝑑 pseudo-
expectations Ẽ for a polynomial 𝑓 .
Fact 3.5.2 (Sum-of-squares algorithm, Corollary 3.40 in [FKP19]). Let 𝑓 (𝑥1, . . . , 𝑥𝑛) be a polynomial
of degree 𝑘, where the coefficients of 𝑓 are rational numbers with poly(𝑛) bit complexity. Let 𝑑 ≥ 𝑘. There
is an algorithm that, on input 𝑓 , 𝑑, runs in time 𝑛𝑂(𝑑) and outputs a value 𝛼 such that 𝛽 + 2−𝑛 ≥ 𝛼 ≥ 𝛽,
where 𝛽 is the maximum, over all degree 𝑑 pseudo-expectations Ẽ over {−1, 1}𝑛 , of Ẽ[𝑓].

We now list the other key properties of pseudo-expectations that we will use. First, we note
that pseudo-expectations satisfy the Cauchy-Schwarz inequality.
Fact 3.5.3 (SoS Cauchy-Schwarz inequality). Let 𝑓 , 𝑔 be polynomials with deg(𝑓), deg(𝑔) ≤ 𝑑/2, and

let Ẽ be a degree 𝑑 pseudo-expectation. Then Ẽ[𝑓 𝑔] ≤
√

Ẽ[𝑓 2]Ẽ[𝑔2].
Next, we observe that SoS captures Grothendieck’s inequality, which we recall below.

Fact 3.5.4 (Grothendieck’s inequality). Let𝐴 be an 𝑛×𝑛 matrix and let 𝑠 = max𝑍∈R𝑛×𝑛 ,𝑍⪰0,𝑍𝑖,𝑖=1∀𝑖 tr(𝐴 ·
𝑍). Then, 𝑠 ≤ 𝐾𝐺∥𝐴∥∞→1, where 𝐾𝐺 ≤ 1.8 is a universal constant independent of 𝐴.
Fact 3.5.5 (SoS “knows of" Grothendieck). Let 𝐴 ∈ R𝑛×𝑛 . Let Ẽ be a pseudo-expectation over {−1, 1}𝑛
of degree ≥ 2. Then

Ẽ[𝑥⊤𝐴𝑥] ≤ 𝐾𝐺∥𝐴∥∞→1 ≤ 1.8∥𝐴∥∞→1 .

Proof. Since Ẽ is a pseudo-expectation of degree ≥ 2, the pseudo-moment matrix Ẽ[𝑥𝑥⊤] ⪰ 0.
Further, since Ẽ is over {−1, 1}𝑛 , Ẽ[𝑥2

𝑖
] = 1 for every 𝑖 ∈ [𝑛]. Thus, the matrix 𝑍 = Ẽ[𝑥𝑥⊤] ⪰ 0,

and has 𝑍𝑖,𝑖 = 1. Applying Fact 3.5.4 completes the proof. □

Fact 3.5.6 (SoS “knows” spectral norm bounds). Let 𝐴 ∈ R𝑛×𝑛 . Let Ẽ be a pseudo-expectation over
{−1, 1}𝑛 of degree ≥ 2, and let 𝑊 be a symmetric PSD matrix. Then

Ẽ[𝑥⊤𝐴𝑥] ≤ ∥𝑊−1/2𝐴𝑊−1/2∥2Ẽ[𝑥⊤𝑊𝑥] ≤ ∥𝑊−1/2𝐴𝑊−1/2∥2 · tr(𝑊) .

26

Proof. Since Ẽ is a pseudo-expectation of degree ≥ 2, the pseudo-moment matrix Ẽ[𝑥𝑥⊤] ⪰ 0.
Further, since Ẽ is over {−1, 1}𝑛 , Ẽ[𝑥2

𝑖
] = 1 for every 𝑖 ∈ [𝑛]. Thus, the matrix 𝑍 = Ẽ[𝑥𝑥⊤] ⪰ 0,

and has 𝑍𝑖,𝑖 = 1.
We then have that

Ẽ[𝑥⊤𝐴𝑥] = Ẽ[(𝑊1/2𝑥)⊤𝑊−1/2𝐴𝑊−1/2(𝑊𝑥)] ≤ ∥𝑊−1/2𝐴𝑊−1/2∥2Ẽ[𝑥⊤𝑊𝑥] ≤ ∥𝑊−1/2𝐴𝑊−1/2∥2tr(𝑊) ,

where the first inequality holds because for any matrix 𝐵, the matrix ∥𝐵∥2 · I− 𝐵 is PSD, and the
second inequality holds because Ẽ[𝑥⊤𝑊𝑥] = ∑𝑛

𝑖=1 𝑍𝑖,𝑖𝑊𝑖 = tr(𝑊). □

Finally, we observe that Ẽ[𝑓] ≥ 0 holds for all nonnegative 𝑓 on 𝑘 variables, provided that the
degree 𝑑 is at least 2𝑘.
Fact 3.5.7. Let 𝑓 (𝑥1, . . . , 𝑥𝑘) be a non-negative degree ≤ 𝑘 multilinear polynomial in 𝑥1, . . . , 𝑥𝑘 , i.e.,
𝑓 (𝑥1, . . . , 𝑥𝑘) ≥ 0 for all 𝑥1, . . . , 𝑥𝑘 ∈ {−1, 1}𝑘 . Let Ẽ be a pseudo-expectation of degree 𝑑 over {−1, 1}𝑛 ,
where 𝑑 ≥ 2𝑘. Then, Ẽ[𝑓] ≥ 0.

3.6 Facts about binomial coefficients

Fact 3.6.1. Let 𝑛, ℓ , 𝑞 be positive integers such that 𝑛/2 ≥ ℓ ≥ 𝑞. Then, 𝑒3𝑞(ℓ/𝑛)𝑞 ≥
(𝑛−2𝑞
ℓ−𝑞

)
/
(𝑛
ℓ

)
≥

𝑒−3𝑞(ℓ/𝑛)𝑞 .

Proof. We compute the ratio(
𝑛 − 2𝑞
ℓ − 𝑞

)
/
(
𝑛

ℓ

)
=

(𝑛 − 2𝑞)!
(ℓ − 𝑞)!(𝑛 − ℓ − 𝑞)! ·

ℓ !(𝑛 − ℓ)!
𝑛!

=

(
𝑛 − ℓ
𝑞

) (
ℓ

𝑞

)
/
(
2𝑞
𝑞

) (
𝑛

2𝑞

)
.

This implies that(
𝑛 − 2𝑞
ℓ − 𝑞

)
/
(
𝑛

ℓ

)
≤ 𝑒2𝑞

(
𝑛 − ℓ
𝑞

) 𝑞 (
ℓ

𝑞

) 𝑞
· 2−𝑞

(
𝑛

2𝑞

)−2𝑞

≤ 𝑒2𝑞𝑞−2𝑞2−𝑞(2𝑞)2𝑞
(
𝑛 − ℓ
𝑛

) 𝑞 (
ℓ

𝑛

) 𝑞
≤ 𝑒3𝑞

(
ℓ

𝑛

) 𝑞
,

and that(
𝑛 − 2𝑞
ℓ − 𝑞

)
/
(
𝑛

ℓ

)
≥

(
𝑛 − ℓ
𝑞

) 𝑞 (
ℓ

𝑞

) 𝑞
· 2−2𝑞

(
𝑒𝑛

2𝑞

)−2𝑞

= 𝑒−2𝑞 ·
(
𝑛 − ℓ
𝑛

) 𝑞 (
ℓ

𝑛

) 𝑞
≥ 𝑒−2𝑞2−𝑞

(
ℓ

𝑛

) 𝑞
≥ 𝑒−3𝑞

(
ℓ

𝑛

) 𝑞
,

where we use that ℓ ≤ 𝑛/2. Throughout, we use that
(
𝑛
𝑘

) 𝑘 ≤ (𝑛
𝑘

)
≤

(
𝑒𝑛
𝑘

) 𝑘 . □

Fact 3.6.2. Let 𝑛, ℓ , 𝑞 be positive integers such that 𝑛/2 ≥ ℓ ≥ 𝑞. Then, 𝑒2𝑞(ℓ/𝑛)𝑞 ≥
(𝑛
ℓ−𝑞

)
/
(𝑛
ℓ

)
≥

𝑒−𝑞(ℓ/𝑛)𝑞 .

Proof. We compute the ratio(
𝑛

ℓ − 𝑞

)
/
(
𝑛

ℓ

)
=

𝑛!
(ℓ − 𝑞)!(𝑛 − ℓ + 𝑞)! ·

ℓ !(𝑛 − ℓ)!
𝑛!

=

(
ℓ

𝑞

)
/
(
𝑛 − ℓ + 𝑞

𝑞

)
.

27

This implies that (
𝑛

ℓ − 𝑞

)
/
(
𝑛

ℓ

)
≤ 𝑒𝑞ℓ 𝑞

(𝑛 − ℓ + 𝑞)𝑞 ≤ 𝑒
𝑞 ·

(
2ℓ
𝑛

) 𝑞
≤ 𝑒2𝑞ℓ 𝑞

𝑛𝑞
, and(

𝑛

ℓ − 𝑞

)
/
(
𝑛

ℓ

)
≥ 𝑒−𝑞ℓ 𝑞

(𝑛 − ℓ + 𝑞)𝑞 ≥
𝑒−𝑞ℓ 𝑞

𝑛𝑞
,

where we use that
(
𝑛
𝑘

) 𝑘 ≤ (𝑛
𝑘

)
≤

(
𝑒𝑛
𝑘

) 𝑘 . □

Fact 3.6.3. Let 𝑛, 𝑟, 𝑡, ℓ be integers with 𝑡 ≤ 𝑟 and ℓ ≥ 𝑟. Then, it holds that(𝑟
𝑡

)
𝑡!
(𝑛
ℓ

) (𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) ≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑛𝑡

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) .

Proof. First, we have that(𝑛
ℓ

) (𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) ≤ (
1+ 𝑂(ℓ

2)
𝑛

)
𝑛ℓ

ℓ !
· 𝑛ℓ−(2𝑟−𝑡)

(ℓ − (2𝑟 − 𝑡))! ·
(ℓ − 𝑟)!
𝑛ℓ−𝑟

(ℓ − 𝑟)!
𝑛ℓ−𝑟

≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑛𝑡
(ℓ − 𝑟)!
ℓ !

· (ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))! .

We now observe that(
𝑟

𝑡

)
𝑡!
(ℓ − 𝑟)!
ℓ !

· (ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))! =

𝑟!
(𝑟 − 𝑡)! ·

(ℓ − 𝑟)!
ℓ !

· (ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))!

=
1(ℓ
𝑟

) · 1
(𝑟 − 𝑡)! ·

(ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))!

=

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) ,

which finishes the proof. □

28

Part I

Algorithms for Semirandom and
Smoothed Constraint Satisfaction

Problems

29

Chapter 4

Background and Results

Four decades of work in computational complexity has uncovered strong hardness results for
constraint satisfaction problems (CSPs) such as 𝑘-SAT that leave only a little room for non-trivial
efficient algorithms in the worst case. Strong hardness of approximation [Hås01] essentially rule
out (unless P = NP) any improvement over simply returning a uniformly random assignment
when the input instance is sparse (i.e., has 𝑚 = 𝑂(𝑛) constraints on 𝑛 variables). While there is
a polynomial time approximation scheme (PTAS) [AKK95] for maximally dense instances (e.g.,
with 𝑚 = 𝑂(𝑛𝑘) constraints for 𝑘-SAT), under the exponential time hypothesis [IP01], we can
already rule out polynomial time algorithms for 𝑜(𝑛𝑘) dense instances and more generally, 2𝑛

1−𝛿

time algorithms for any 𝛿 > 0 for 𝑜(𝑛𝑘−1) dense instances [FLP16].

Search and refutation in the average case. In sharp contrast, in well-studied average-case settings,
there appears to be significant space for new algorithms and markedly better guarantees for
CSPs. CSPs can be studied as two natural problems in such average-case settings: the problem of
refutation — where we focus on efficiently finding witnesses of unsatisfiability for models largely
supported on unsatisfiable instances, and the problem of search — where our goal is to find an
assignment that the model guarantees is planted in the instance.

The refutation problem has been heavily investigated in the past two decades. For fully random
𝑘-CSPs with uniformly random clause structure (i.e., which variables appear in each clause) and
“literal pattern” (i.e., which variables appear negated in each clause), there is a polynomial-time
algorithm that, with high probability over the instance, certifies that the instance is unsatisfiable,
provided that 𝑚 is at least 𝑂̃(𝑛𝑘/2) [GL03, CGL04, AOW15, BM16, RRS17]. This threshold is far
below the ∼ 𝑛𝑘 hardness threshold of [FLP16] for worst-case instances. Furthermore, lower bounds
in various restricted models [Fei02, BGMT12, OW14, MW16, BCK15, KMOW17, FPV18] provide
some evidence that this threshold might be tight for polynomial time algorithms. Adding to this
rich theory is the fascinating work of [FKO06] that shows that random CSPs admit polynomial-
time verifiable certificates of non-trivial upper bounds on the value even when 𝑚 ∼ 𝑛𝑘/2−𝛿𝑘 – i.e.,
when number of constraints are polynomially smaller than the threshold for efficient refutation.

The search problem for planted models of CSPs has also received a fair bit of attention. The
setting naturally arises in the investigation of local one-way functions and pseudorandom gen-
erators in cryptography. Indeed, the security of the well-known one-way function proposed
by Goldreich [Gol00] (also conjectured to be a pseudorandom generator [MST06, App16]) is
equivalent to the hardness of recovering a satisfying assignment planted (via a carefully chosen

31

procedure) in a random CSP instance with an appropriate predicate. This has led to significant
research on solving fully random planted CSPs [BHL+02, JMS07, BQ09, CCF10, FPV15]. Specifi-
cally, Feldman, Perkins and Vempala [FPV15] showed that for fully random planted 𝑘-CSPs with
planted assignment 𝑥∗, there is a polynomial-time algorithm that, with high probability over
the instance, recovers the planted assignment 𝑥∗ exactly, provided that the instance has at least
𝑂̃(𝑛𝑘/2) constraints. That is, the refutation and search versions have the same clause threshold.

Beyond the average case: semirandom and smoothed instances. The phenomenal progress in
average-case algorithm design notwithstanding, there is a nagging concern that the algorithms
that have been developed rely too heavily on “brittle” properties of a specific random model.
That is, the methods may have “overfitted” to the specific setting of random CSPs, and thus the
resulting algorithms only apply in this limited setting. Unfortunately, this fear turns out to be
rather well-founded — natural spectral algorithms for refuting random 𝑘-CSPs and solving the
natural planted variants break down under minor perturbations, including very weak modifica-
tions to the input model such as the introduction of a vanishingly small fraction of additional
clauses.

Motivated by such concerns, Blum and Spencer [BS95] and later Feige and Kilian [FK01, Fei07]
and Spielman and Teng [ST03] introduced semirandom and smoothed models for optimization
problems. In semirandom models, the instances are constructed by a combination of benign
average-case and adversarial worst-case choices; in smoothed models, the instances are con-
structed by applying only a small perturbation to an otherwise worst-case input. Algorithms that
succeed for such models are naturally “robust” to perturbations of the input instance.

For CSPs, a semirandom instance is generated by first choosing a “worst-case” clause structure
and then choosing the literal negation patterns in each clause via some sufficiently random
(and thus “benign”) process. In the model for refutation, the literal negation patterns are chosen
uniformly at random, which makes the instance unsatisfiable with high probability. In the planted
model, one has to sample these negation patterns carefully to simultaneously ensure that (1) the
instance has a planted assignment and (2) the negation patterns do not leak information about
the planted assignment in a trivial way.

The smoothed model is a generalization of the semirandom model for refutation. In the
smoothed model with smoothing probability 𝑝, an instance is generated by starting from an
arbitrary (i.e., worst-case) instance, and then negating each literal in each clause independently
with probability 𝑝. Note that when we take 𝑝 = 1/2, we recover the semirandom model for
refutation, and in both the semirandom and smoothed models, the clause structure of the instance
is worst-case, with the only randomness coming from the literal negation patterns.

4.1 Refuting CSPs in semirandom and smoothed models

We will break our results into two sections, one to discuss the task of refutation and one to discuss
solving CSPs in planted models. For the case of refutation, we will focus the discussion on the
case of smoothed models, of which the semirandom model is a special case.

In this thesis, we develop new spectral techniques, namely the Kikuchi matrix method, that
yield strong refutation algorithms for all smoothed Boolean 𝑘-CSPs with (a possibly sharp)
trade-off between running time and number of constraints matching that of fully random 𝑘-
CSPs [RRS17], up to polylogarithmic factors. In particular, our results show that the algorithmic

32

task of strong refutation in the significantly “randomness starved” setting of smoothed instances
is no harder than in a fully random instance.

In Part II, we will use these same techniques to prove Feige’s conjectured hypergraph Moore
bound, a conjecture on the extremal girth vs. density trade-off for hypergraphs that generalizes
the well-known Moore bound for graphs. Our proof uses Kikuchi matrices to give a new spectral
double counting argument that relates subexponential-time smoothed refutation algorithms and
the existence of cycles (even covers) in hypergraphs. As a corollary of the hypergraph Moore
bound, we show that there are efficiently verifiable witnesses of unsatisfiability for smoothed
instances of all 𝑘-CSPs with 𝑚 ∼ 𝑛𝑘/2−𝛿𝑘 constraints, for some constant 𝛿𝑘 , which is polynomially
smaller than the threshold at which efficient refutation algorithms exist even for random 𝑘-CSPs.
This second result generalizes the work of [FKO06] for random CSPs to the semirandom and
smoothed models.

Taken together, our results can be interpreted as suggesting that the worst-case picture of
complexity of CSPs arises entirely because of islands of pathology: most instances “around” the
worst-case hard ones are in fact essentially as easy as random, for both refutation algorithms as
well as existence of refutation witnesses. Further, in a precise sense, the difficulty of worst-case
instances can be attributed to the worst-case literal patterns, rather than the clause structure.

Our contribution is shown visually in Fig. 4.1. Fig. 4.1 plots the time vs. # constraints trade-off
for refuting random and smoothed 3-SAT instances (along with the analogous trade-off for
approximation schemes for worst-case instances). Our contribution is the smoothed case (blue
line), which shows that smoothed 3-SAT instances can be refuted with the same trade-off as
random ones (green line). We also show that there exist efficiently verifiable refutation witnesses
for smoothed instances at 𝑛1.4 constraints (purple line), matching the result for random instances
due to [FKO06].

Before we formally state our results, let us recall the standard notation to talk about CSPs.
Definition 4.1.1 (𝑘-ary Boolean CSPs). A CSP instance Ψ with a 𝑘-ary predicate 𝑃 : {−1, 1}𝑘 →
{0, 1} is a set of𝑚 constraints on variables 𝑥1, . . . , 𝑥𝑛 of the form 𝑃(𝜉(®𝐶)1𝑥 ®𝐶1

, 𝜉(®𝐶)2𝑥 ®𝐶2
, . . . , 𝜉(®𝐶)𝑘𝑥 ®𝐶𝑘) =

1. Here, ®𝐶 ranges over a collection ®𝐻 of scopes1 (a.k.a. clause structure) of 𝑘-tuples of 𝑛 variables
and 𝜉(®𝐶) ∈ {−1, 1}𝑘 are “literal negations”, one for each ®𝐶 in ®𝐻. We let valΨ(𝑥) denote the fraction
of constraints satisfied by an assignment 𝑥 ∈ {−1, 1}𝑛 , and we define the value of Ψ, val(Ψ), to be
max𝑥∈{−1,1}𝑛 valΨ(𝑥).
Definition 4.1.2 (Random, semirandom, and smoothed models for refutation). In a random
(sometimes, fully random in order to disambiguate from related models) instance, 𝐻 is a collection
of 𝑚 uniformly random and independently chosen 𝑘-tuples and the 𝜉(𝐶)’s are chosen uniformly
at random and independently from {−1, 1}𝑘 for each 𝐶.

In a semirandom instance, 𝐻 is arbitrary (i.e., worst-case) and 𝜉(𝐶) ∈ {−1, 1}𝑘 are sampled
uniformly at random and independently for each 𝐶.

In a smoothed instance, 𝐻 is arbitrary (i.e., worst-case) and 𝜉(𝐶) ∈ {−1, 1}𝑘 are obtained by
starting with arbitrary (i.e., worst-case) 𝜉′(𝐶) ∈ {−1, 1}𝑘 for each 𝐶 and then for each 𝐶, 𝑖, setting
𝜉(𝐶)𝑖 = 𝜉′(𝐶)𝑖 with probability 0.99 and 𝜉(𝐶)𝑖 = −𝜉′(𝐶)𝑖 with probability 0.01, independently.

We note that the semirandom model is more general than the random model, and the
smoothed model is more general than the semirandom model.

1We additionally allow ®𝐻 to be a multiset, i.e., that multiple clauses can contain the same ordered set of variables.

33

n3n2n1.5

Ru
nt

im
e

(lo
gl

og
 sc

al
e)

constraints (log scale)

2n

[IP01]

n

nO(1)
[AKK95]

[FLP16]

2nδ

[RRS17]

[This thesis]
[AOW15]

Smoothed
Random

Worst case

n1.4

Figure 4.1: Time vs. # constraints trade-off for refuting random and smoothed 3-SAT instances,
and for approximation schemes for worst-case instances. The smoothed case is our contribution.
We also prove that refutation witnesses exist for smoothed instances at the purple line, i.e., 𝑛1.4

constraints.

Definition 4.1.3 (Weak, Strong and Tight refutation algorithms). A refutation algorithm takes as
input a CSP instance 𝜙 and outputs a value alg-val(𝜙) ∈ [0, 1] with alg-val(𝜙) ≥ val(𝜙) for all 𝜙.
For a distribution𝒟 over 𝜙, we say that the refutation algorithm weakly refutes instances drawn
from 𝒟 if with high probability over 𝜙 ∼ 𝒟, alg-val(𝜙) < 1. We also define strong refutation
(alg-val(𝜙) < 1− 𝛿 for some absolute constant 𝛿 > 0) and 𝜀-tight refutation (alg-val(𝜙) < val(𝜙)+ 𝜀,
where 𝜀 is a parameter of the algorithm that can be made arbitrarily small) analogously.

4.1.1 Algorithms for refuting smoothed CSPs

Our first main result gives a (possibly sharp) trade-off between running time and number of
constraints for strongly refuting smoothed CSP instances.
Theorem 1 (Smoothed refutation, informal Theorem 5.5.4). For every ℓ = ℓ (𝑛), there is a 𝑛𝑂(ℓ)-time

strong refutation algorithm for smoothed CSPs with 𝑚 ≥ 𝑚0 = 𝑂̃(𝑛) ·
(
𝑛
ℓ

) (𝑡2−1) constraints. That is, for
any CSP instance 𝜙 with 𝑚 ≥ 𝑚0 constraints, with probability 0.99 over the smoothing 𝜙𝑠 of 𝜙, the
algorithm outputs alg-val(𝜙𝑠) ≤ 1− 𝛿 for some absolute constant 𝛿 > 0.

Here, 𝑡 = 𝑡(𝑃) ≤ 𝑘 is the “degree of uniformity” of 𝑃 – the smallest integer 𝑡 ≤ 𝑘 such that there is no
𝑡-wise uniform distribution (Definition 5.5.3) on {−1, 1}𝑘 supported entirely on the satisfying assignments
𝑃−1(1) ⊆ {−1, 1}𝑘 .

In order to understand the trade-off described by the theorem, let us apply it to two examples.
Example 4.1.4. For 𝑘-SAT, 𝑃 is the Boolean OR function. We thus have 𝑡(𝑃) = 𝑘, as the uniform
distribution on odd-parity strings is supported on 𝑃−1(1) and is (𝑘 − 1)-wise uniform. Our result
gives a polynomial time algorithm to strongly refute smoothed instances of 𝑘-SAT whenever the

34

number of constraints 𝑚 ≥ 𝑂̃(𝑛 𝑘
2). More generally, for any 𝛿 > 0, in time 2𝑂(𝑛

𝛿) the algorithm
strongly refutes smoothed instances with ≥ 𝑂̃(𝑛(1−𝛿) 𝑘2+𝛿) constraints.
Example 4.1.5. Consider the “Hadamard predicate” 𝑃 on 𝑘 = 22𝑞−1 bits where 𝑃(𝑥) = 1 if and
only if 𝑥 is a codeword of the truncated Hadamard code, i.e., 𝑥 is a truth table of a linear function,
excluding the all 0’s function. Hadamard CSPs naturally appear in the design of query efficient
PCPs. Here, 𝑡(𝑃) = 3 ≪ 𝑘, so our theorem gives a polynomial-time algorithm to strongly
refute smoothed instances of the Hadamard CSP with at least 𝑂̃(𝑛1.5) constraints, and a 2𝑛

𝛿
-time

algorithm for instances with at least 𝑂̃(𝑛1.5−𝛿/2) constraints ∀𝛿 ∈ (0, 1].
Comparison with prior results. Theorem 1 can be directly compared to works on refuting
random, semirandom and smoothed (in the order of increasing generality) CSPs.

Building on [AOW15, BM16], Raghavendra, Rao and Schramm [RRS17] proved the same
trade-off (up to a polylog(𝑛) factor in 𝑚) between running time and number of constraints
required as in Theorem 1 for the significantly simpler special case of fully random CSPs – when
the clause structure and the literal patterns are chosen uniformly at random from the respective
domains. Our result shows that the same trade-off holds for smoothed instances – i.e., with
worst-case clause structure and small random perturbations of worst-case literal patterns. All
known efficient refutation algorithms, including ours and that of [RRS17], can in hindsight be
interpreted as an analysis of the canonical sum-of-squares (SoS) relaxation (Section 3.5) for the
max 𝑘-CSP problem. For random CSPs (and thus also for the more general smoothed instances
we study) the trade-off we obtain is known to be essentially tight [KMOW17, BCK15] for such
“SoS-encapsulated” algorithms: this fact is often taken as evidence of sharpness of this trade-off.

Much less is known about refuting CSPs in the more general semirandom and smoothed models.
Feige [Fei07] gave a weak refutation algorithm for refuting smoothed and semirandom instances of
3-SAT. His techniques apply to all 3-CSPs but do not seem to extend to either strong refutation or 4-
CSPs. More recently, in a direct precursor to this work, Abascal, Guruswami and Kothari [AGK21]
gave a polynomial time algorithm for refuting semirandom instances of all CSPs – thus obtaining
one of the extreme points (corresponding to ℓ = 𝑂(1)) in the trade-off in Theorem 1 above.
Theorem 1 relies on a key idea from their work (row bucketing) along with several new ideas
discussed below.

Algorithms for refuting semirandom 𝑘-XOR. Our main technical result is an algorithm for
tight refutation of semirandom instances of 𝑘-XOR. Theorem 1 then follows by a simple blackbox
reduction (see Section 5.5) that relies on a dual polynomial introduced in [AOW15]. For the
special case of 𝑘-XOR, an instance 𝜙 is completely described by an arbitrary 𝑘-uniform instance
hypergraph 𝐻 and a collection of “right-hand sides” 𝑏𝐶 ∈ {−1, 1}, one for each 𝐶 ∈ 𝐻; in the
notation of Definition 4.1.1, we have 𝑏𝐶 =

∏𝑘
𝑖=1 𝜉(𝐶)𝑖 . One can associate to 𝜙 a homogeneous

degree 𝑘 polynomial 𝜙(𝑥) on the hypercube {−1, 1}𝑛 :

𝜙(𝑥) = 1
𝑚

∑
𝐶∈𝐻

𝑏𝐶

∏
𝑖∈𝐶

𝑥𝑖 .

This polynomial 𝜙(𝑥) computes the “advantage over 1/2” of an assignment 𝑥. That is, the value
of the associated instance is 1

2 + 1
2 max𝑥∈{−1,1}𝑛 𝜙(𝑥). Tight refutation corresponds to certifying

that 𝜙(𝑥) ≤ 𝜖 for arbitrary 𝜖 > 0.
Theorem 4.1.6 (Tight refutation of semirandom 𝑘-XOR, informal Theorem 5.3.1). For every 𝑘 ∈ N

and ℓ = ℓ (𝑛) and every 𝜖 > 0, there is a 𝑛𝑂(ℓ) time 𝜖-tight refutation algorithm for homogeneous degree 𝑘

35

polynomials that succeeds with probability at least 0.99 over the draw of the coefficients i.i.d. uniform on

{−1, 1}, whenever the associated hypergraph 𝐻 has 𝑚 ≥ 𝑛
(
𝑛
ℓ

) 𝑘
2−1 · poly(log 𝑛

𝜖) hyperedges.
In particular, for every 𝛿 > 0, we obtain a 2𝑂(𝑛

𝛿)-time 𝜖-tight refutation algorithm for semirandom
𝑘-XOR instances with 𝑚 ≫ 𝑂̃(𝑛) · 𝑛(1−𝛿)(𝑘2−1)poly(1𝜀)-constraints.

Prior works and brief comparison of techniques. The trade-off above (up to polylog(𝑛) factors in
𝑚) matches the one obtained for refuting fully random 𝑘-XOR [RRS17]. Our techniques, however,
necessarily need to be significantly different, as the analysis in [RRS17] (and related works it
built on [CGL04, BM16, AOW15]) crucially rely on the randomness of the hypergraph 𝐻. In
particular, the refutation in [RRS17] uses the spectral norm of a certain “symmetric tensor power”
of the canonical matrix obtained from the instance. They analyze this matrix using a technical
tour-de-force argument using the trace moment method.2 A couple of follow-up works have
attempted to simplify the analyses in [RRS17]. Wein, Alaoui and Moore [WAM19] succeeded in
giving a simpler proof (introducing the Kikuchi matrix, a variant of which is central to this work)
for the case of random 𝑘-XOR for even 𝑘, and they also suggest that a natural generalization of
their Kikuchi matrix for random odd 𝑘 will work (their suggestion does not pan out, as we prove
in Section 5.6). In a recent work, Ahn [Ahn20] simplified some aspects of the analysis of the
“symmetric tensor power” matrix in the analysis of [RRS17]. To summarize, the tools in prior
works on random CSPs for analyzing the spectra of relevant correlated random matrices seem to
use the randomness of the hypergraph both heavily and in a rather opaque manner.

For the more general setting of semirandom 𝑘-XOR refutation, the best known result [AGK21]
obtained an extreme point in the trade-off (i.e., the case of ℓ = 𝑂(1)). That work analyzes the
∞→ 1-norm of the canonical matrix associated with the CSP instance. In this special case when
ℓ = 𝑂(1), it turns out that handling 3-XOR instances allows deriving all larger 𝑘 as a corollary.
For the case of 3-XOR, their analysis relies on a new row bucketing step according to the butterfly
degree of a pair of vertices (a new notion that they define), along with a certain pseudo-random vs
structure decomposition for arbitrary 3-uniform hypergraphs associated with the 3-XOR instance.

To prove Theorem 4.1.6, we build on [AGK21] and introduce a few new tools. For even 𝑘,
the Kikuchi matrix of [WAM19] analyzed using the row bucketing idea (with an appropriate
generalization of the butterfly degree) of [AGK21] yields a correct trade-off (see Section 2.2). The
case of odd 𝑘 turns out to be significantly more challenging (as has always been the case in CSP
refutation) and needs new ideas. We introduce a variant of the Kikuchi matrix for this purpose.
Unlike the case of even 𝑘 (and the algorithm in [AGK21]), the spectral norm of this matrix is
provably too large to yield a refutation, even for random instances. Indeed, this is why the strategy
suggested by [WAM19] fails, as we show in Section 5.6. Instead, we use the row pruning strategy
(Section 2.3) and refute the instance using the spectral norm of a matrix obtained by pruning
away appropriately chosen rows. We then show that the number of pruned rows is not too large,
and so does not contribute too much to the∞→ 1-norm of the full matrix.

The row pruning step motivates a definition of regularity, a collection of natural pseudorandom
properties that relate to well-spreadness in the intersection structure of the hyperedges in the
instance hypergraph.3 We then show that the hyperedges in every 𝑘-uniform hypergraph can
be decomposed, via a regularity decomposition lemma, into 𝑘′-uniform hypergraphs for 𝑘′ ≤ 𝑘,

2Just the technical argument in [RRS17] runs over 20 pages!
3This is closely related to the notion of spread encountered in recent work on the sunflower conjecture [ALWZ20,

Rao23].

36

along with some “error” hyperedges, such that (i) each of the 𝑘′-uniform hypergraphs satisfies
regularity, and (ii) refuting all of these 𝑘′-XOR instances provides a refutation for the original
instance. We explain our row pruning and the regularity decomposition steps in more detail in
Section 5.1.

4.1.2 Refutation witnesses for smoothed CSPs below the spectral threshold

In a one-of-a-kind result, Feige, Kim and Ofek [FKO06] (henceforth, FKO) proved that with high
probability over the draw of a fully random 3-SAT instance 𝜓, there is a polynomial size witness
that weakly refutes 𝜓 if 𝜓 has 𝑚 ∼ 𝑂̃(𝑛1.4) constraints. Formally, there is a polynomial time
non-deterministic refutation algorithm that succeeds in finding a refutation with high probability
over the drawn of a fully random 3-SAT instance with 𝑚 ∼ 𝑂̃(𝑛1.4) constraints. On the other hand,
all known polynomial time deterministic refutation algorithms require the input random instance
to have Ω(𝑛1.5) constraints – this bound is often called the spectral threshold. The fastest known
refutation algorithm [RRS17] for instances with ∼ 𝑛1.4 constraints runs in time 2𝑛

0.2
, matching

the SoS lower bound [KMOW17]. Thus, intriguingly, the FKO result shows the existence of
polynomial time verifiable refutation witnesses (i.e., certificates of an upper bound of 1− 𝑜𝑛(1) on
the value) at a constraint density at which there are no known 2𝑛

𝑜(1)
-time refutation algorithms.

Does such a “gap” between thresholds for existence vs efficient computability of refutation
witnesses persist for semirandom and smoothed instances, i.e., instances with worst-case constraint
hypergraphs?

In 2008, Feige [Fei08] made an elegant conjecture on the existence of even covers in sufficiently
dense hypergraphs. This conjecture can be interpreted as generalizing to hypergraphs the classical
Moore bound on the girth of graphs with a given number of edges. If true, Feige’s conjecture
implies that the FKO result holds for all semirandom and smoothed CSP instances – in particular,
the FKO result does not rely on the properties of the underlying hypergraph at all.

In Part II of this thesis, we will prove this conjecture. Combining this result with our smoothed
refutation algorithms (Theorem 1), we immediately obtain a generalization of the FKO result that
yields a polynomial time non-deterministic refutation algorithm for smoothed instances of all
𝑘-ary CSPs with number of constraints 𝑚 polynomially below the spectral threshold of 𝑛𝑘/2.
Theorem 2 (Informal Theorem 6.0.2). There is a non-deterministic polynomial time algorithm that

weakly refutes smoothed instances of any 𝑘-CSP with 𝑚 ≥ 𝑚0 = 𝑂̃(𝑛
𝑘
2−

𝑘−2
2(𝑘+8))-constraints. For the special

case of 𝑘 = 3, 𝑚0 = 𝑂̃(𝑛1.4).

4.2 Solving planted CSPs in semirandom models

In this section, we discuss our results for solving CSPs in planted models.
In this thesis, we give an algorithm for the search variant of CSPs in the semirandom setting.

Our result gives an efficient algorithm for solving semirandom planted CSPs that succeeds in
finding the planted assignment whenever the number of constraints exceeds 𝑂̃(𝑛𝑘/2)— the same
threshold at which polynomial time algorithms exist for the refutation problem for random (and
semirandom) instances.
Theorem 3 (Algorithm for planted CSPs, informal Theorem 4). There is an efficient algorithm that
takes as input a 𝑘-CSP Ψ and outputs an assignment 𝑥 with the following guarantee: if Ψ is a semirandom

37

planted 𝑘-CSP with 𝑚 ≥ 𝑂̃(𝑛𝑘/2) constraints, then with high probability over Ψ, the output 𝑥 satisfies
valΨ(𝑥) ≥ 1− 𝑜(1), i.e., 𝑥 satisfies 1− 𝑜(1)-fraction of the constraints in Ψ.

We note that in the semirandom setting, it is not possible to efficiently recover an assignment
that satisfies all of the constraints without being able to do so even when 𝑚 = 𝑂(𝑛).4 This
is because it is easy to construct a semirandom instance Ψ that is the “union” of two disjoint
instances Ψ1 and Ψ2, where Ψ1 and Ψ2 use disjoint sets of 𝑛/2 variables, but Ψ1 only has
𝑚1 ∼ 𝑂(𝑛) clauses (and Ψ2, therefore, contains almost all of the 𝑚 ∼ 𝑛𝑘/2 clauses). Thus, the
guarantee in Theorem 3 of satisfying a 1− 𝑜(1)-fraction of constraints is qualitatively the best we
can hope for.

Search vs. refutation. It is natural to compare Theorem 3 to the problem of refuting semiran-
dom CSPs discussed in Section 4.1 [AGK21, GKM22, HKM23]. For average-case optimization
problems, techniques for refuting random instances can typically be adapted to solving the
search problem in the related planted model. This can be formalized in the proofs to algorithms
paradigm [BS14, FKP19] where spectral/SDP-based refutations can be transformed into “sim-
ple” (i.e., ”captured" within the low-degree sum-of-squares proof system) efficient certificates
of near-uniqueness of optimal solution — that is, every optimal solution is close to the planted
assignment. Unfortunately, this intuition breaks down even in the simplest setting of semirandom
2-XOR where there can be multiple maximally far-off solutions that satisfy as many (or even more)
constraints as the planted assignment. Such departure from uniqueness also breaks algorithms
for recovery [FPV15] that rely on the top eigenvector of a certain matrix built from the instance
being correlated with the planted assignment. In the semirandom setting, one can build instances
where the top eigenspace of such matrices is the span of the multiple optimal solutions and
has dimension 𝜔(1) (searching for a Boolean vector close to the subspace is, in general, hard in
super-constant dimensional subspaces).

Our key insight. Our starting point is a new, efficiently checkable certificate of the unique
identifiability of the planted solution for noisy planted 𝑘-XOR (i.e., where each equation in a
satisfiable 𝑘-sparse linear system is corrupted independently with some fixed constant probability)
whenever the constraint hypergraph satisfies a certain weak expansion property. For random
graphs in case of 2-XOR (and generalizations to multiple community stochastic block models), such
certificates (in the form of explicit dual solutions to a semidefinite program) were shown to exist
in [ABH16, MNS15]; these two works independently discovered the threshold for exact recovery
for 2-community SBMs.

Our certificate naturally yields an efficient algorithm for exactly recovering the planted as-
signment in noisy 𝑘-XOR instances whenever the constraint hypergraph satisfies a deterministic
weak expansion property and has size exceeding the refutation threshold ∼ 𝑛𝑘/2. Finally, we use
expander decomposition procedures to decompose the input constraint hypergraph into pieces
that satisfy the above condition. This is done in a manner that further allows us to find a good
assignment via a consistent patching scheme to combine solutions across all the pieces in our
decomposition.

4Achieving this would break a hardness assumption for the search problem analogous to Feige’s random 3-SAT
hypothesis for the refutation problem [Fei02].

38

4.2.1 Our semirandom planted model and results

Before formally stating our results, we define the semirandom planted model that we work with
and explain some of the subtleties in the definition. Our model is the natural one that arises
if we wish to enforce independent randomness (for each clause) in the literal negations, while
still fixing a particular satisfying assignment. Recall that we have formally defined a 𝑘-CSP in
Definition 4.1.1.
Definition 4.2.1 (Semirandom planted 𝑘-ary Boolean CSPs). Let 𝑃 : {−1, 1}𝑘 → {0, 1} be a
predicate. We say that a distribution 𝑄 over {−1, 1}𝑘 is a planting distribution for 𝑃 if Pr𝑦←𝑄[𝑃(𝑦) =
1] = 1.

We say that an instance Ψ with predicate 𝑃 is a semirandom planted instance with planting
distribution 𝑄 if it is sampled from a distribution Ψ(®𝐻, 𝑥∗,𝑄)where

(1) the scopes ®𝐻 ⊆ [𝑛]𝑘 and planted assignment 𝑥∗ ∈ {−1, 1}𝑛 are arbitrary, and
(2) Ψ(®𝐻, 𝑥∗,𝑄) is defined as follows: for each ®𝐶 ∈ ®𝐻, sample literal negations 𝜉(®𝐶) ← 𝑄(𝜉(®𝐶) ⊙

𝑥∗®𝐶
), where “⊙” denotes the element-wise product of two vectors. That is, Pr[𝜉(®𝐶) = 𝜉] =

𝑄(𝜉⊙ 𝑥∗®𝐶) for each 𝜉 ∈ {−1, 1}𝑘 . Then, add the constraint 𝑃(𝜉(®𝐶)1𝑥 ®𝐶1
, 𝜉(®𝐶)2𝑥 ®𝐶2

, . . . , 𝜉(®𝐶)𝑘𝑥 ®𝐶𝑘) =
1 to Ψ.

Notice that because 𝑄 is supported only on satisfying assignments to 𝑃, it follows that if Ψ←
Ψ(®𝐻, 𝑥∗,𝑄), then 𝑥∗ satisfies Ψ with probability 1.

A (fully) random planted CSP, e.g., as defined in [FPV15], is generated by first sampling
®𝐻 ← [𝑛]𝑘 uniformly at random, and then sampling Ψ ← Ψ(®𝐻, 𝑥∗,𝑄). The difference in the

semirandom planted model is that we allow ®𝐻 to be worst-case.
Notice that in Definition 4.2.1, there are some choices of 𝑄 for which the planted instance

becomes easy to solve. In the case of, e.g., 3-SAT, one could set the planting distribution 𝑄 to be
uniform over all 7 satisfying assignments, which results in the literal negations in each clause
being chosen uniformly conditioned on 𝑥∗ satisfying the clause. However, by simply counting
how many times the variable 𝑥𝑖 appears negated versus not negated and taking the majority vote,
we recover 𝑥∗ with high probability [BHL+02, JMS07] (see Section 7.7).

Instead of sampling clauses uniformly from all those satisfied by 𝑥∗, one can create more
challenging distributions, e.g., ones where true and false literals appear in equal proportion.
Such distributions are termed “quiet plantings” and have been studied extensively [JMS07, KZ09,
CCF10, KMZ12]. Our semirandom model follows definitions in [FPV15, FPV18] and is a general
planted model with respect to a planting distribution 𝑄, which unifies various plantings studied in
the past.

Unlike in the case of random planted CSPs, we cannot hope to recover the planted assignment
𝑥∗ exactly in the semirandom setting. Indeed, the scopes ®𝐻 may not use some variable 𝑥𝑖 at all,
and so we cannot hope to recover 𝑥∗

𝑖
! Thus, our goal is instead to recover an assignment 𝑥 that

has nontrivially large value, ideally value 1− 𝜀 for arbitrarily small 𝜀. Our result, stated formally
below, gives an algorithm to accomplish this task.
Theorem 4 (Formal Theorem 3). Let 𝑘 ∈ N be constant. There is a polynomial-time algorithm that takes
as input a 𝑘-CSP Ψ and outputs an assignment 𝑥 with the following guarantee. If Ψ is a semirandom

planted 𝑘-CSP with 𝑚 ≥ 𝑐𝑘𝑛𝑘/2 · log3 𝑛

𝜀9 constraints drawn from Ψ(®𝐻, 𝑥∗,𝑄), then with probability
1− 1/poly(𝑛) over Ψ, the output 𝑥 of the algorithm has valΨ(𝑥) ≥ 1− 𝜀. Here, 𝑐 is a universal constant.

39

In particular, setting 𝜀 = 1/polylog(𝑛), if 𝑚 ≥ 𝑂̃(𝑛𝑘/2), then with high probability over Ψ ←
Ψ(®𝐻, 𝑥∗,𝑄), the algorithm outputs 𝑥 with valΨ(𝑥) ≥ 1− 𝑜(1).

Theorem 4 shows that one can nearly solve a semirandom planted 𝑘-CSP at the same 𝑂̃(𝑛𝑘/2)
threshold as done in the random case [FPV15], matching the same 𝑂̃(𝑛𝑘/2) threshold as for
semirandom refutation (Theorem 1, [AGK21, GKM22, HKM23]). However, as explained earlier
(and will be discussed further in Section 7.1), there are several unanticipated technical hurdles to
overcome in the semirandom planted setting that are not present in the semirandom refutation
setting, and this causes many of the natural approaches that “springboard off” the refutation case
to fail. Curiously enough, for the special case of 𝑘 = 2 there is a simple reduction from search to
refutation for the case of 2-XOR, which we will describe in Section 7.1.1, but the same approach
for 𝑘-XOR encounters a hardness barrier for 𝑘 ≥ 3, as we will discuss in Section 7.1.2.

Theorem 4 also breaks Goldreich’s candidate pseudorandom generators [Gol00] and its
variants [App16],5 when they have Ω̃(𝑛𝑘/2) stretch and any 𝑘-hypergraph (not just a random one).
In fact, not only does Theorem 4 break the PRG, it also gives an algorithm that nearly inverts it.

Noisy planted 𝒌-XOR. Similar to work on random planted CSPs [FPV15] and the refutation
setting [AOW15, RRS17, AGK21, GKM22, HKM23], our proof of Theorem 4 goes through a
reduction to noisy 𝑘-XOR. Our algorithm achieves very strong guarantees in the noisy 𝑘-XOR
case, as we now explain. We define the noisy 𝑘-XOR model below and then state our result.
Definition 4.2.2 (Noisy planted 𝑘-XOR). Let 𝐻 ⊆

([𝑛]
𝑘

)
be a 𝑘-uniform hypergraph on 𝑛 vertices,

let 𝑥∗ ∈ {−1, 1}𝑛 , and let 𝜂 ∈ [0, 1/2). Let 𝜓(𝐻, 𝑥∗,𝜂) denote the distribution on 𝑘-XOR instances
over 𝑛 variables 𝑥1, . . . , 𝑥𝑛 ∈ {−1, 1} obtained by, for each 𝐶 ∈ 𝐻, adding the constraint

∏
𝑖∈𝐶 𝑥𝑖 =∏

𝑖∈𝐶 𝑥
∗
𝑖

with probability 1− 𝜂, and otherwise adding the constraint
∏

𝑖∈𝐶 𝑥𝑖 = −
∏

𝑖∈𝐶 𝑥
∗
𝑖
. In the

latter case, we say that the constraint 𝐶 is corrupted or noisy.
We call 𝜓 a noisy planted 𝑘-XOR instance if it is sampled from 𝜓(𝐻, 𝑥∗,𝜂), for some 𝐻, 𝑥∗, and

𝜂; the hypergraph 𝐻 is the constraint hypergraph, 𝑥∗ is the planted assignment, and 𝜂 is the noise
parameter. Furthermore, we let ℰ𝜓 ⊆ 𝐻 denote the (unknown) set of corrupted constraints.
Theorem 5 (Algorithm for noisy 𝑘-XOR). Let 𝜂 ∈ [0, 1/2), let 𝑘, 𝑛 ∈ N, and let 𝜀 ∈ (0, 1). Let

𝑚 ≥ 𝑐𝑛𝑘/2 · 𝑘
4 log3 𝑛

𝜀5(1−2𝜂)4 for a universal constant 𝑐. There is a polynomial-time algorithm𝒜 that takes as input
a 𝑘-XOR instance 𝜓 with constraint hypergraph 𝐻 and outputs two disjoint sets 𝒜1(𝐻),𝒜2(𝜓) ⊆ 𝐻
with the following guarantees: (1) for any instance 𝜓 with 𝑚 constraints, |𝒜1(𝐻)| ≤ 𝜀𝑚 and𝒜1(𝐻) only
depends on 𝐻, and (2) for any 𝑥∗ ∈ {−1, 1}𝑛 and any 𝑘-uniform hypergraph 𝐻 with at least 𝑚 hyperedges,
with probability at least 1− 1/poly(𝑛) over 𝜓← 𝜓(𝐻, 𝑥∗,𝜂), it holds that𝒜2(𝜓) = ℰ𝜓 ∩ (𝐻 \𝒜1(𝐻)).

In words, the algorithm discards a small number of constraints, and among the constraints
that are not discarded, correctly identifies all (and only) the corrupted constraints. In particular,
the subinstance obtained by discarding the ≲ (𝜀 + 𝜂)𝑚 constraints𝒜1(𝐻) ∪𝒜2(𝜓) is satisfiable
(and a solution can be found by Gaussian elimination). Thus, Theorem 5 immediately implies
that for 𝑘-XOR, the NP-hard task of deciding if 𝜓 has value ≥ 1− 𝜂 or ≤ 1

2 + 𝜂 is actually easy if
𝜓 has ∼ 𝑛𝑘/2 constraints (far below the ∼ 𝑛𝑘-hardness of [FLP16]), provided that the 𝜂-fraction
of corrupted constraints in the “yes” case are a randomly chosen subset of the otherwise arbitrary
constraints.

Exact vs. approximate recovery. As alluded to above, the guarantees of Theorem 5 are much

5Goldreich’s original PRG is essentially a planted 𝑘-CSP with a Boolean predicate 𝑃 on a random hypergraph,
containing both 𝑃 and ¬𝑃 constraints.

40

stronger: not only can we find a good assignment to 𝜓, we can break the constraints into two
parts, a small fraction,𝒜1(𝐻), where we are unable to determine the corrupted constraints,6 and a
large fraction, 𝐻 \𝒜1(𝐻), where we can determine exactly all of the corrupted constraints,𝒜2(𝜓).
Moreover, this partition depends only on the hypergraph 𝐻 and is independent of the noise. We
remark that it is not immediately obvious that this guarantee is achievable even for exponential-
time algorithms, as 𝑥∗ may not be the globally optimal assignment with constant probability. This
strong guarantee of Theorem 5 is in fact required for the reduction from Theorem 4 to Theorem 5;
the weaker (and more intuitive) guarantee of approximate recovery — obtaining an assignment
of value 1− 𝜂 − 𝑜(1) for the noisy XOR instance — is insufficient for the reduction.

One can view Theorem 5 as an algorithm that extracts almost all the information about the
planted assignment 𝑥∗ encoded by the instance 𝜓. Indeed, notice that even if 𝜂 = 0, the instance
𝜓 only determines 𝑥∗ “up to a linear subspace.”7 Namely, if we let 𝑦 ∈ {−1, 1}𝑛 be any solution to
the system of constraints

∏
𝑖∈𝐶 𝑦𝑖 = 1 for 𝐶 ∈ 𝐻, then 𝑦 ⊙ 𝑥∗ is also a planted assignment for 𝜓:

formally, 𝜓(𝐻, 𝑥∗,𝜂) = 𝜓(𝐻, 𝑦 ⊙ 𝑥∗,𝜂) as distributions. So, aside from the 𝜀𝑚 constraints that are
discarded, with high probability over 𝜓 the algorithm determines the uncorrupted right-hand
sides

∏
𝑖∈𝐶 𝑥

∗
𝑖

for every remaining constraint, which is all the information about the planted
assignment 𝑥∗ encoded in the remaining constraints.

The importance of relative spectral approximation. As a key technical ingredient in the
algorithm, we uncover a deterministic condition — relative spectral approximation of the Laplacian
of a graph (associated with the input instance) by a certain correlated random sample from it —
which when satisfied implies uniqueness of the SDP solution (Lemma 7.1.4). In Lemma 7.1.5 and
Lemma 7.4.7, we establish such spectral approximation guarantees.

This spectral approximation property is the key ingredient in our certificate of unique identi-
fiability of the planted assignment in a noisy 𝑘-XOR instance (see Section 7.1.4 for details) and
allows us to exactly recover the planted assignment for 2-XOR instances where the constraint
graph 𝐺 is a weak spectral expander (i.e., spectral gap≫ 1/poly log 𝑛) (Lemma 7.1.4), and forms
the backbone of our final algorithm. We note that our spectral approximation condition can
be seen as an analog of (and is, in fact, stronger than) the related spectral norm upper bound
property that underlie the refutation algorithm of [AGK21].

This process of extracting a “deterministic property of random instances sufficient for the
analysis” is an important conceptual theme underlying recent progress on semirandom optimiza-
tion, and manifests as, e.g., the notion of “butterfly degree” in [AGK21], “hypergraph regularity”
or spreadness in [GKM22] in the context of semirandom CSP refutation, and biclique number
bounds in the context of planted clique [BKS22].

6Note that discarding a small fraction of constraints is necessary in the semirandom setting, as 𝜓 may contain many
disconnected constant-size subinstances where it is not possible, even information-theoretically, to exactly identify the
corrupted constraints with 1− 𝑜(1) probability.

7A 𝑘-XOR constraint 𝑥𝐶1 · · · 𝑥𝐶𝑘 = 𝑏𝐶 ∈ {−1, 1} can be equivalently written as a linear equation 𝑥′
𝐶1
+ · · · + 𝑥′

𝐶𝑘
= 𝑏′

𝐶

over F2, where we map +1 to 0 and −1 to 1.

41

42

Chapter 5

Algorithms for Strongly Refuting
Smoothed CSPs

In this chapter, we will prove Theorem 1 using the Kikuchi matrix method. As we will show in
Section 5.5, to prove Theorem 1, it suffices to prove Theorem 4.1.6. We note that in the case of
even 𝑘, Theorem 4.1.6 is Theorem 2.0.2, which we have already proven in Section 2.2. Thus, the
majority of this chapter will focus on proving Theorem 4.1.6 when 𝑘 is odd.

In Section 5.1 we will give an overview of the proof for 𝑘 odd, and then in Sections 5.2 to 5.4,
we will present the full proof of Theorem 4.1.6. Finally, in Section 5.5, we will use Theorem 4.1.6
to prove Theorem 1.

5.1 Proof overview: refuting semirandom 𝑘-XOR for odd 𝑘

The case of odd arity XOR refutation is lot more challenging. Even in the well-studied special
case of random 𝑘-XOR and the special case of ℓ = 𝑂(1) (i.e., polynomial time refutation), the case
of odd 𝑘 turns out to be significantly more challenging than the even case. So, let us start by
focusing on the case of random 3-XOR first.

Analogous to the case of even 𝑘, we would like to begin by finding a simpler argument
(compared to [RRS17]) for the special case of random 3-XOR using some appropriate variant of the
Kikuchi matrix. In fact, [WAM19] attempted this by introducing a variant of the Kikuchi matrix,
and suggested an explicit approach (see Section F.1 of [WAM19]) to prove that the spectral norm
of that matrix yields a refutation, but unfortunately this approach does not work (see Section 5.6).
Indeed, unlike the case of even 𝑘, we do not know of any reasonable variant of the Kikuchi matrix
whose spectral norm yields a refutation for even fully random 3-XOR instances with the expected
trade-off.

Instead, we will introduce a variant of the Kikuchi matrix and use it to give a refutation
algorithm for random 3-XOR instances by relying not on the spectral norm (which is too large)
but, instead, the spectral norm of a “pruned” version of the matrix. In other words, to handle
the case of random 3-XOR, we will need a variant of the “basic approach” (Section 2.1) along
with the “row pruning” method (Section 2.3). Finally, we refute semirandom 𝑘-XOR for odd 𝑘 by
adding two new ideas to this approach: regularity decomposition and row bucketing (Section 2.2).

Bipartite 3-XOR. The Kikuchi matrix we introduce relates directly to a polynomial obtained by

43

applying the standard “Cauchy-Schwarz trick” to the input polynomial. Consider the polynomial
𝜓(𝑥) = 1

𝑚

∑
𝐶∈𝐻 𝑏𝐶𝑥𝐶 associated with a 3-XOR instance described by a 3-uniform hypergraph 𝐻

with 𝑚 hyperedges and “right-hand sides” 𝑏𝐶 ’s. Here, for a set 𝑅 we define 𝑥𝑅 B
∏

𝑖∈𝑅 𝑥𝑖 , and in
particular, 𝑥𝐶 =

∏
𝑖∈𝐶 𝑥𝑖 . For each 𝐶 ∈ 𝐻, let 𝐶min be the minimum indexed element in 𝐶 (using

the natural ordering on [𝑛]). Then,

max
𝑥∈{−1,1}𝑛

𝜓(𝑥) ≤ max
𝑥,𝑦∈{−1,1}𝑛

1
𝑚

∑
𝐶∈𝐻

𝑏𝐶𝑦𝐶min𝑥𝐶\𝐶min ,

where each 𝑦𝑢 is formally a new variable, but we think of 𝑦𝑢 as equal to 𝑥𝑢 . Let us reformulate
this expression a bit: let 𝐻𝑢 = {𝐶 | 𝐶′ = (𝐶, 𝑢) ∈ 𝐻,𝐶′min = 𝑢}. Then,

max
𝑥∈{−1,1}𝑛

𝜓(𝑥) ≤ max
𝑥,𝑦∈{−1,1}𝑛

1
𝑚

∑
𝑢∈[𝑛]

𝑦𝑢

∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶 .

One can think of the RHS as the polynomial associated with a bipartite instance of the 3-XOR
problem on 2𝑛 variables, since every constraint uses one 𝑦 variable and two 𝑥 variables. Our
refutation algorithm works for such bipartite instances more generally.

For such a bipartite instance, using the Cauchy-Schwarz inequality, we can derive:

©­« 1
𝑚

∑
𝑢∈[𝑛]

𝑦𝑢

∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶
ª®¬

2

≤ 𝑛

𝑚2

∑
𝑢

∑
𝐶,𝐶′∈𝐻𝑢

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′

=
𝑛𝑚

𝑚2
+ 𝑛

𝑚2

∑
𝑢

∑
𝐶≠𝐶′∈𝐻𝑢

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′ B
𝑛

𝑚
+ 𝑓 (𝑥) (5.1)

The first term on the RHS is ≤ 𝜖2/2 if 𝑚 ≥ 2𝑛/𝜖2. The second term produces a ≤ 4-XOR instance.
We thus end up with a 4-XOR instance — an even arity instance — albeit with significantly

less randomness than required in the argument from Section 2.1. So, we need some different
tools to refute such instances. The first of this is the following variant of the Kikuchi matrix that
is designed specifically for “playing well” with the symmetries produced by the squaring step
above.

Our Kikuchi matrix. Our Kikuchi matrix is indexed by subsets of size ℓ on a universe of size 2𝑛,
corresponding to two labeled copies of each of the original 𝑛 𝑥 variables. For each 𝐶 ∈ 𝐻, let 𝐶(1)

be the subset of [𝑛] × [2] where every variable is labeled with “1”, and similarly for 𝐶(2). This
trick is done to ensure that the clauses 𝑥𝐶(1)𝑥𝐶′(2) form a 4-XOR instance, as now 𝐶(1) and 𝐶′(2) by
definition cannot intersect.

For even 𝑘, the “independent” pieces in the Kikuchi matrix were the matrices 𝐴𝐶 , one for
each 𝐶 ∈ 𝐻. For odd 𝑘, the independence pieces will be 𝐴𝑢 , one for each 𝑦𝑢 because of the loss of
independence due to the Cauchy-Schwarz step above.
Definition 5.1.1 (Kikuchi Matrix, 3-XOR). Let 𝑁 =

([2𝑛]
ℓ

)
. For every 𝑢 ∈ [𝑛], let 𝐴𝑢 ∈ R𝑁×𝑁 be

defined as follows: for each 𝑆,𝑇 ⊆ [𝑛] × [2] of size ℓ , we will set 𝐴𝑢(𝑆,𝑇) to be nonzero if there are
𝐶,𝐶′ ∈ 𝐻𝑢 such that 𝑆 ⊕ 𝑇 = 𝐶(1) ⊕ 𝐶′(2) and 1 = |𝑆 ∩ 𝐶(1) | = |𝑆 ∩ 𝐶′(2) | = |𝑇 ∩ 𝐶(1) | = |𝑇 ∩ 𝐶′(2) |.
That is, 𝐴𝑢(𝑆,𝑇) is nonzero if each of 𝑆,𝑇 contain one variable from each of 𝐶(1) and 𝐶′(2). In that
case, we will set 𝐴𝑢(𝑆,𝑇) = 𝑏𝑢,𝐶 · 𝑏𝑢,𝐶′. Finally, set 𝐴 =

∑
𝑢 𝐴𝑢 .

44

Equivalently, 𝐴𝑢(𝑆,𝑇) is nonzero if there are 𝐶,𝐶′ ∈ 𝐻𝑢 such that the 1-labeled (respectively,
2-labeled) elements in 𝑆,𝑇 have symmetric difference 𝐶 (𝐶′, respectively). This construction is
important for the success of our row pruning step (which we will soon discuss) and at the same
time ensures that every pair (𝐶,𝐶′) of constraints in 𝐻𝑢 contributes an equal number of nonzero
entries in the Kikuchi matrix 𝐴. We note that if we do not introduce the 2 copies of each variable,
the number of times a pair (𝐶,𝐶′) appears in the matrix would depend on |𝐶 ∩ 𝐶′ |.

The quadratic forms of 𝐴 relate to the value of the underlying 4-XOR instance: for 𝐷 = 4
(2𝑛−4
ℓ−2

)
,

val(𝜙)2 ≤ 𝑛

𝑚
+ val(𝑓) ≤ 𝑛

𝑚
+ 𝑛

𝑚2𝐷
(max
𝑧∈{−1,1}𝑁

𝑧⊤𝐴𝑧) .

Bounding 𝑧⊤𝐴𝑧. In the even arity case, we were able to obtain a refutation at this point by simply
using the spectral norm of 𝐴 to bound the right-hand side above. However, this turns out to
provably fail here. To see why, let us define the relevant notion of degree — the count of the
number of nonzero entries in each row of 𝐴𝑢 :

deg(𝑆) = |{𝐶,𝐶′ ∈ 𝐻𝑢 | |𝑆 ∩ 𝐶(1) | = |𝑆 ∩ 𝐶′(2) | = 1}|

Because 𝐴𝑢 is itself a random matrix, rather than a random sign times a fixed matrix, we cannot
apply the Matrix Khintchine inequality (Fact 3.4.2) anymore. We can, however, still apply the
related Matrix Bernstein inequality (Fact 3.4.1), but if we do so, the upper bound on ∥𝐴𝑢 ∥2 for all
𝑢 is at least as large as ∼ max𝑆

√
deg(𝑆) and it is not too hard to show that there are 𝑆 for which

this bound is at least ℓ . As a result, the best possible spectral norm upper bound that we can hope
to obtain on 𝐴 is Ω(ℓ log2 𝑁) = Ω̃(ℓ 2), a bound that gives us no non-trivial refutation algorithm.

Row pruning. The key observation that “rescues” this bad bound is the key observation that
we made in Section 2.3: deg(𝑆) cannot be large for too many rows. To see why, consider the
random variable that selects a uniformly random 𝑆 ∈

([2𝑛]
ℓ

)
and outputs deg(𝑆). This can be well

approximated (for our purposes) by a random set where every element is included independently
with probability ∼ ℓ/2𝑛. The expectation of deg(𝑆) on this distribution is 𝑂(1). By relying on
the fact that |𝐶 ∩ 𝐶′ | = ∅ in 𝐻𝑢 for almost all pairs with high probability, Var[deg(𝑆)] = 𝑂(1). A
Chernoff bound yields that the fraction of 𝑆 for which |{𝐶 ∈ 𝐻𝑢 | |𝑆 ∩ 𝐶 | > 𝑂(log 𝑛)}| is inverse
polynomially small in 𝑛. A union bound on all 𝑢 then shows the fraction of rows that are “bad”
for any 𝑢 is at most an inverse polynomial.

It turns out we can ignore such “bad” rows with impunity. This is because, as we observed in
Sections 2.2 and 2.3, we are interested in certifying upper bounds on quadratic forms of 𝐴 over
“flat” vectors again and we can argue that removing “bad” rows cannot appreciably affect them.
For the “residual matrix”, we can now apply the Matrix Bernstein inequality and finish off the
proof!

Extending to semirandom 3-XOR. Looking back, the previous analysis uses that the graphs 𝐻𝑢 ’s
obtained from the random 3-uniform hypergraph 𝐻 satisfy a “spread” condition: there are few
to none distinct pairs 𝐶,𝐶′ ∈ 𝐻𝑢 such that 𝐶 ∩ 𝐶′ ≠ ∅. This notion of regularity is the precise
pseudorandom property of 𝐻 that is enough for our argument (i.e. the row pruning step) above
to go through. This immediately poses an issue for the row pruning step, as unlike the case of
LDCs highlighted in Section 2.3, where the constituent hypergraphs 𝐻𝑢’s were matching, here
the 𝐻𝑢’s are arbitrary and need not be regular!

45

For the case of 3-XOR, such a regularity property is relatively easy to ensure by a certain ad
hoc argument: if too many pairs 𝐶,𝐶′ ∈ 𝐻𝑢 happen to share a variable, then, “resolving” them
yields a system of 2-XOR constraints. Refutation in the special case of 2-XOR is easy using the
Grothendieck inequality; this has been observed in several works, including [Fei07, AGK21].
Indeed, this was roughly the strategy employed in the recent work [AGK21] for the case of
ℓ = 𝑂(1) for semirandom 𝑘-XOR. In fact, in the ℓ = 𝑂(1) regime, it turns out that one can reduce
𝑘-XOR for all 𝑘 to the case of 3-XOR and get the right trade-off; thus, such a decomposition for
3-XOR is enough for the argument of [AGK21] to go through for all 𝑘.

A second issue is that the variance term in the application of Matrix Bernstein may become
large. This is analogous to the issue with the variance term that appears in the even 𝑘 case
(Section 2.2), which we handled earlier using row bucketing/reweighting. The execution here
is essentially the same, but now requires bucketing with respect to a different combinatorial
parameter called the butterfly degree (generalizing a similar notion in [AGK21]) that controls the
variance term in the odd 𝑘 setting.

5.1.1 Refuting semirandom 𝑘-XOR for 𝑘 > 3: hypergraph regularity

When ℓ ≫ 𝑂(1), the case of higher arity 𝑘 does not reduce to 𝑘 = 3. Once again, working through
the case of random 𝑘-XOR inspires our more general argument. We work with a generalization
of the Kikuchi matrix introduced in the previous section for the case of 𝑘 = 3. When analyzing
the row pruning step, we need a significantly stricter notion of regularity — we call this (𝜖, ℓ)-
regularity — for our row pruning argument to go through.

Hypergraph regularity decomposition. Roughly speaking the notion of (𝜖, ℓ)-regularity (indexed
by the parameter ℓ and an accuracy bound 𝜖) we need demands that for each subset 𝑄 ⊆ [𝑛], the
number of hyperedges 𝐶 ∈ 𝐻𝑢 such that 𝑄 ⊆ 𝐶 is bounded above by an appropriate function of
𝑚, 𝑛 and ℓ . Random hypergraphs 𝐻 satisfy such a regularity property naturally.

In order to handle arbitrary hypergraphs, we introduce a new regularity decomposition for
hypergraphs. Our regularity decomposition is based on a certain bipartite contraction operation
that takes a bipartite hyperedge (𝑢,𝐶) ∈ 𝐻 and a subset 𝑄 ⊆ 𝐶 and replaces it with ((𝑢,𝑄),𝐶 \𝑄).
This operation should be thought of as “merging” all the elements in 𝑄 and 𝑢 into a new single
element (𝑢,𝑄) and obtaining a smaller arity hyperedge in a variable extended space.

We give a greedy (and efficient) algorithm that starts from a 𝑘-uniform hypergraph and re-
peatedly applies bipartite contraction operations to obtain a sequence of 𝑘′-uniform hypergraphs
for 𝑘′ ≤ 𝑘 along with some “error” hyperedges, with the property that each of the 𝑘′-uniform hy-
pergraphs produced are (𝜖, ℓ)-regular. Each of the 𝑘′-uniform hypergraphs produced is naturally
associated with a 𝑘′-XOR instance related to the input 𝑘-XOR instance. We show that refuting
each of these output instances yields a refutation for the original 𝑘-XOR instance.

Cauchy-Schwarz even in the even-arity setting. Unlike in the case of 3-XOR where the resulting
bipartite 3-XOR instance had an equal number of 𝑦 and 𝑥 variables above, the bipartite 𝑘′-XOR
instances produced via our regularity decomposition are lopsided – the number of 𝑦 variables can
be polynomially larger in 𝑛 than the number 𝑛 of the 𝑥 variables. A naive bound on the number
of constraints required to refute such instances is too large to yield the required trade-off, even in
the case for even 𝑘.

46

Instead (and in contrast to all previous works on CSP refutation), we show that an appropriate
application of the “Cauchy-Schwarz” trick above to even-arity 𝑘-XOR instances allows us to “kill”
the 𝑦𝑢’s appearing in the polynomial, leaving us with only a polynomial in the 𝑥𝑖’s. This is a
rather different usage of the technique; in prior works (and as in the case of 3-XOR highlighted
above), it was instead used to build the right “square” matrices for obtaining spectral refutations
of the associated CSP instances when 𝑘 is odd.

5.2 A hypergraph decomposition lemma

We are now ready to start the full proof of Theorem 4.1.6. A key ingredient in our proof is a
regular hypergraph decomposition algorithm that takes an arbitrary 𝑘-uniform hypergraph and
decomposes it into a 𝑘 − 1 different regular sub-hypergraphs (after removing a small fraction of
the hyperedges). In this section, we present this decomposition step. We first introduce some
notation, and then explain the decomposition.
Definition 5.2.1 (Uniform hypergraphs). A 𝑘-uniform hypergraph 𝐻 on 𝑛 vertices is a collection
𝐻 of subsets of [𝑛] of size exactly 𝑘. For a set 𝑄 ⊆ [𝑛], we define deg(𝑄) B |{𝐶 ∈ 𝐻 : 𝑄 ⊆ 𝐶}|.
Remark 5.2.2. We will not assume that 𝐻 is simple, i.e., 𝐻 can be a multiset. For simplicity, we will
abuse notation and let 𝐶 ∈ 𝐻 refer to an element of the multiset 𝐻. We will say that 𝐶 ≠ 𝐶′ if 𝐶
and 𝐶′ are different elements of the multiset 𝐻, even if 𝐶 and 𝐶′ are equal as sets, i.e., they are
distinct copies of the same element in the underlying set of 𝐻. As an example, we use the above
definition of deg(𝑄) to refer to the number of 𝐶 ∈ 𝐻 with 𝑄 ⊆ 𝐶, counted with multiplicity. We
encourage the reader to assume that 𝐻 is simple, and then observe that nothing changes if 𝐻 is a
multiset, and definitions are changed appropriately to count multiplicities.

Our decomposition lemma will decompose a uniform hypergraph into bipartite hypergraphs,
which we introduce.
Definition 5.2.3 (Bipartite hypergraphs). A 𝑝-bipartite 𝑡-uniform hypergraph on 𝑛 vertices is
a collection {𝐻𝑢}𝑢∈[𝑝], where each 𝐻𝑢 is a collection of subsets of [𝑛] of size exactly 𝑡 − 1. We
call each 𝐻𝑢 , or just 𝑢, a partition of the bipartite hypergraph. A set 𝐶 ∈ 𝐻𝑢 corresponds to the
hyperedge (𝑢,𝐶). For a set 𝑄 ⊆ [𝑛] and 𝑢 ∈ [𝑝], we define deg𝑢(𝑄) B |{𝐶 ∈ 𝐻𝑢 : 𝑄 ⊆ 𝐶}|.
When 𝑝 is clear from context or not relevant, we just use the terminology “bipartite 𝑡-uniform
hypergraph”.

One should think of a bipartite hypergraph {𝐻𝑢}𝑢∈[𝑝] as a hypergraph 𝐻 on two sets of
vertices, [𝑝] and [𝑛], where each hyperedge (𝑢,𝐶) ∈ 𝐻 contains one vertex 𝑢 ∈ [𝑝] and 𝑘 − 1
vertices in [𝑛]; for 𝑢 ∈ [𝑝], the (𝑘 − 1)-uniform hypergraph 𝐻𝑢 contains all hyperedges 𝐶 such
that the hyperedge (𝑢,𝐶) is in the hypergraph 𝐻.
Definition 5.2.4 (Hypergraph regularity). We say that a 𝑝-bipartite 𝑘-uniform hypergraph

{𝐻𝑢}𝑢∈[𝑝] is (𝜀, ℓ)-regular if deg𝑢(𝑄) ≤ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑘
2−1−|𝑄 | , 1) for all 𝑄 ⊆ [𝑛] of size at most

𝑘 − 1 and all 𝑢 ∈ [𝑝]. For convenience, we will say {𝐻𝑢}𝑢∈[𝑝] is regular when 𝜀, ℓ are clear from
context.
Remark 5.2.5 (Regularity is a pseudorandom property). Informally speaking, a collection of 𝑘-
tuples is regular if the number of 𝑘-tuples in 𝐻𝑢 that all contain a fixed set of size 𝑗 is appropriately
upper bounded. It is not hard to show that if 𝐻 = ∪𝑢∈[𝑝]𝐻𝑢 is a uniformly random bipartite

hypergraph with 𝑝 = 𝑛 partitions and 𝑚 = ℓ (𝑛ℓ)
𝑘
2 random 𝑘-tuples, then with high probability,

47

for every 𝑢 ∈ [𝑝],𝑄, deg𝑢(𝑄) ≤ max(𝑚
𝑝𝑛 |𝑄 |

, 1) ·𝑂(log 𝑛) ≤ max(
(
𝑛
ℓ

) 𝑘
2−1−|𝑄 | , 1) ·𝑂(log 𝑛), which is

the same condition of regularity, up to the 𝑂(log 𝑛) extra factor. Thus, regularity can be seen as a
(weak) pseudorandom property of a bipartite hypergraph.

Next, we define a notion of hypergraph decomposition that we call a bipartite contraction.
Definition 5.2.6 (Bipartite contractions). Let 𝐻 be a 𝑘-uniform hypergraph on 𝑛 vertices. We say
that a pair of subsets (𝑄,𝐶′) (of [𝑛]) is a contraction of the hyperedge 𝐶 ∈ 𝐻 if 𝐶 = 𝑄 ∪ 𝐶′ and
𝑄,𝐶′ are disjoint. It is sometimes useful to think of this pair as denoting a set of size 1+ 𝑘 − |𝑄 |,
where the first “element” of the set is the entire set 𝑄, and the remaining 𝑘 − |𝑄 | elements come
from the set 𝐶 \𝑄.

A bipartite contraction of 𝐻 is a collection of 𝑘 − 1 bipartite hypergraphs {𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] for
𝑡 = 2, . . . , 𝑘, along with a set 𝐻(1) of “discarded edges” where:

(1) each {𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] is a bipartite 𝑡-uniform hypergraph,

(2) each 𝑢 ∈ [𝑝(𝑡)] corresponds to a subset 𝑄𝑢 ⊆ [𝑛] of size 𝑘 + 1− 𝑡 (it is possible that 𝑄𝑢 = 𝑄𝑢′

for distinct 𝑢, 𝑢′),
(3) every hyperedge in any 𝐻(𝑡)𝑢 is a bipartite contraction of some hyperedge in 𝐻, i.e., for every 𝑡

and any 𝑢 ∈ [𝑝(𝑡)] and 𝑅 ∈ 𝐻(𝑡)𝑢 , the set 𝑄𝑢 ∪ 𝑅 = 𝐶 for some 𝐶 ∈ 𝐻, so that the hyperedge
(𝑄𝑢 ,𝑅) is a contraction of 𝐶,

(4) every hyperedge 𝐶 is contracted exactly once, i.e., for each 𝐶 ∈ 𝐻, either 𝐶 ∈ 𝐻(1) or there
exists unique 𝑡, 𝑢 ∈ [𝑝(𝑡)],𝑅 ∈ 𝐻(𝑡)𝑢 such that 𝑄𝑢 ∪ 𝑅 = 𝐶.

Our hypergraph contraction lemma shows that for any 𝑘-uniform hypergraph 𝐻, we can
efficiently find a bipartite contraction of 𝐻 such that each of the resulting bipartite hypergraphs
is regular.
Lemma 5.2.7 (Hypergraph contraction lemma). Let 𝐻 be a 𝑘-uniform hypergraph on 𝑛 vertices with
𝑘 ≥ 2 and |𝐻 | = 𝑚. Then, there is a bipartite contraction of 𝐻 such that

(1) 𝑚(1) B |𝐻(1) | ≤ 𝑛
𝑘𝜀2

(
𝑛
ℓ

) 𝑘
2−1.

(2) For 𝑡 ≥ 2, each bipartite 𝑡-uniform hypergraph {𝐻(𝑡)}𝑢∈[𝑝(𝑡)] is
(a) (𝜀, ℓ)-regular,

(b) |𝐻(𝑡)𝑢 | = 𝑚(𝑡)/𝑝(𝑡) = ⌊ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1)⌋ for all 𝑢 ∈ [𝑝(𝑡)], where 𝑚(𝑡) B
∑
𝑢∈[𝑝(𝑡)] |𝐻

(𝑡)
𝑢 |.

Further, given 𝐻, the decomposition itself can be computed by an algorithm running in time 𝑂(𝑛𝑘 |𝐻 |2).
Observe that the lemma does not assume any lower bound on 𝑚. Indeed if 𝑚 is too small

then we will have 𝑚(𝑡) = 0 for all 𝑡 ≥ 2.

Proof of Lemma 5.2.7. We prove Lemma 5.2.7 by analyzing the following greedy algorithm to
construct the bipartite contraction. Before stating the formal algorithm, we first explain the high
level idea of the algorithm, as it is very simple.

If 𝐻 does not have enough hyperedges, then we set 𝐻(1) = 𝐻 and are done. Otherwise, there
must be some “violating” set 𝑄: namely, a set 𝑄 where deg(𝑄) is above a threshold 𝜏 (related to
the definition of regularity). We choose a “maximal” such violating 𝑄, i.e., no set containing 𝑄 is
a violation, and then (1) remove an arbitrary 𝜏 hyperedges of the form 𝑄 ∪ 𝐶 from 𝐻, (2) take
bipartite contractions (𝑄,𝐶 \𝑄) of all such hyperedges, and (3) add them all to 𝐻(𝑘+1−|𝑄 |)

𝑢 where
𝑢 is “new” partition where 𝑄𝑢 B 𝑄. Notice that we may pick the same 𝑄 more than once since
we only decrease deg(𝑄) by 𝜏 in one such step. We repeatedly fix such violations greedily until

48

we cannot and stop. Notice that this procedure is “one-shot” – we do not recursively operate on
the 𝐻(𝑡)𝑢 ’s produced, as (we will show) that they are guaranteed to (𝜖, ℓ)-regular by the design of
our decomposition procedure.

We now state and analyze the greedy algorithm.

Algorithm 5.2.8.

Given: A 𝑘-uniform hypergraph 𝐻 over 𝑛 vertices, where 𝑚 = |𝐻 |.
Output: A bipartite contraction {{𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)]}𝑡=2,...,𝑘 of 𝐻.
Operation:

1. Initialize: 𝑝(𝑡) = 0 for 𝑡 = 2, . . . , 𝑘.
2. Fix violations greedily:

(a) Find a maximal nonempty violating 𝑄. That is, find 𝑄 ⊆ [𝑛] of size 1 ≤
|𝑄 | ≤ 𝑘 − 1 such that deg(𝑄) = |{𝐶 ∈ 𝐻 : 𝑄 ⊆ 𝐶}| > 1

𝜀2 max(
(
𝑛
ℓ

) 𝑘
2−|𝑄 | , 1), and

deg(𝑄′) ≤ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑘
2−|𝑄′ | , 1) for all 𝑄′ ⊋ 𝑄.

(b) Let 𝑞 = |𝑄 |. Let 𝑢 = 1 + 𝑝(𝑘+1−𝑞) be a new “label”, and define 𝐻′ to be an

arbitrary subset of {𝐶 ∈ 𝐻 : 𝑄 ⊆ 𝐶} of size exactly ⌊ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑘
2−𝑞 , 1)⌋. Let

𝑄 be the set 𝑄𝑢 associated with 𝑢, and define 𝐻(𝑘+1−𝑞)
𝑢 B {𝐶 \𝑄 : 𝐶 ∈ 𝐻′}.

(c) Set 𝑝(𝑘+1−𝑞) ← 1+ 𝑝(𝑘+1−𝑞), and 𝐻 ← 𝐻 \𝐻′.
3. If no such 𝑄 exists, then put the remaining hyperedges in 𝐻(1).

First, we argue that 𝑚(1) is small. By construction, 𝐻(1) is the set of remaining hyperedges when

the inner loop terminates, and so we must have deg({𝑖}) ≤ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑘
2−1 , 1) = 1

𝜀2

(
𝑛
ℓ

) 𝑘
2−1 for

every 𝑖 ∈ [𝑛]; we abuse notation and let deg only count hyperedges remaining in 𝐻. We then
have

∑
𝑖∈[𝑛] deg({𝑖}) = 𝑘 |𝐻(1) |, as every 𝐶 ∈ 𝐻(1) is counted exactly 𝑘 times in the sum. Hence,

𝑚(1) ≤ 𝑛
𝑘𝜀2

(
𝑛
ℓ

) 𝑘
2−1.

We now argue that for each 𝑡, the bipartite hypergraphs {𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] have the desired proper-

ties. Fix 𝑡 ∈ {2, . . . , 𝑘}. By construction, each 𝐻(𝑡)𝑢 has the same size, namely ⌊ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1)⌋.
It then follows that 𝑚(𝑡) B

∑
𝑢∈[𝑝(𝑡)] |𝐻

(𝑡)
𝑢 | = 𝑝(𝑡) · ⌊ 1

𝜀2 max
((
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1
)
⌋, and so 𝑝(𝑡) ≤ 𝜀2𝑚(𝑡) and

|𝐻(𝑡)𝑢 | = 𝑚(𝑡)

𝑝(𝑡)
. This proves property (b) in Item (2).

It remains to show property (a), that {𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] is (𝜀, ℓ)-regular. To see this, let 𝑢 ∈ [𝑝(𝑡)],
and let 𝑄𝑢 be the set associated with the label 𝑢. Note that we must have |𝑄𝑢 | = 𝑘 + 1 − 𝑡. Let
𝐻′ denote the set of constraints in 𝐻 at the time when 𝑢 and 𝐻

(𝑡)
𝑢 are added to the bipartite

hypergraph. Namely, we have that for every 𝐶 ∈ 𝐻(𝑡)𝑢 , 𝑄𝑢 ∪ 𝐶 ∈ 𝐻′. Now, let 𝑅 ⊆ [𝑛] be a
nonempty set of size at most 𝑡 − 1. First, observe that if 𝑅 ∩ 𝑄𝑢 is nonempty, then we must
have deg𝑢(𝑅) = 0 (this degree is in the hypergraph 𝐻(𝑡)𝑢). Indeed, this is because 𝐶 ∩𝑄𝑢 = ∅ for
all 𝐶 ∈ 𝐻(𝑡)𝑢 . So, we can assume that 𝑅 ∩𝑄𝑢 = ∅. Next, we see that deg𝑢(𝑅) ≤ deg𝐻′(𝑄𝑢 ∪ 𝑅)
(where deg𝐻′ is the degree in 𝐻′), as 𝑄𝑢 ∪ 𝐶 ∈ 𝐻′ for every 𝐶 ∈ 𝐻(𝑡)𝑢 . Because 𝑄𝑢 was maximal
whenever it was processed in our decomposition algorithm and 𝑄𝑢 ⊊ 𝑄𝑢 ∪ 𝑅 as 𝑅 is nonempty

49

and 𝑅 ∩𝑄𝑢 = ∅, it follows that

deg𝐻′(𝑄𝑢 ∪ 𝑅) ≤
1
𝜀2

max(
(𝑛
ℓ

) 𝑘
2−|𝑄𝑢∪𝑅 |

, 1) = 1
𝜀2

max(
(𝑛
ℓ

) 𝑘
2−|𝑄𝑢 |−|𝑅 |

, 1)

=
1
𝜀2

max(
(𝑛
ℓ

) 𝑡− 𝑘2−1−|𝑅 |
, 1) ≤ 1

𝜀2
max(

(𝑛
ℓ

) 𝑡
2−1−|𝑅 |

, 1) ,

where the last inequality follows because 𝑡 − 𝑘
2 − 1− |𝑅 | ≤ 𝑡

2 − 1− |𝑅 | always holds, as 𝑡 ≤ 𝑘. This
finishes the proof.

Finally, when 𝑅 = ∅, we trivially have deg𝑢(∅) = |𝐻
(𝑡)
𝑢 | = ⌊ 1

𝜀2 max(
(
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1)⌋ ≤ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1) ≤
1
𝜀2 max(

(
𝑛
ℓ

) 𝑡
2−1 , 1), where we use again that 𝑡 − 𝑘

2 ≤ 𝑡
2 as 𝑡 ≤ 𝑘.

To argue the runtime bound, we simply observe that each iteration takes 𝑂(|𝐻 |𝑛𝑘) time via
brute-force, and there are clearly at most |𝐻 | iterations. □

5.3 Refuting semirandom sparse polynomials over the hypercube

In this section, we describe an algorithm to tightly refute semirandom instances of homogenous,
multilinear degree-𝑘 polynomials. Concretely, our algorithm takes as input a homogenous,
multilinear degree-𝑘 polynomial 𝜙 in 𝑛 variables 𝑥1, . . . , 𝑥𝑛 and outputs a correct upper bound
on val(𝜙) B max𝑥∈{−1,1}𝑛 𝜙(𝑥). Whenever the coefficients of the polynomial are generated
from independent random probability distributions on [−1, 1] and the (multi-)hypergraph of
coefficients has sufficiently many hyperedges, with high probability, the algorithm outputs a
value that is smaller than a target 𝜖. The guarantees of our algorithm are captured by the theorem
below.
Theorem 5.3.1 (Refuting semirandom sparse polynomials). Let 𝑘 ∈ N and ℓ : N→N be a function
such that 2(𝑘 − 1) ≤ ℓ (𝑛) ≤ 𝑛. There is an algorithm that takes as input a homogeneous, multilinear
polynomial 𝜙 in 𝑛 variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 of total degree 𝑘 specified by a 𝑘-uniform multi-hypergraph 𝐻
and a collection of rational numbers {𝑏𝐶}𝐶∈𝐻 :

𝜙(𝑥) = 1
𝑚

∑
𝐶∈𝐻

𝑏𝐶 ·
∏
𝑖≤𝑘

𝑥𝐶𝑖 , (5.2)

and the algorithm outputs a value alg-val(𝜙) ∈ [−1, 1] in time 𝑛𝑂(ℓ) satisfying the following:

(1) 1 ≥ alg-val(𝜙) ≥ val(𝜙).
(2) There is an absolute constant Γ > 0 such that if 𝑛log2 𝑛 ≥ |𝐻 | = 𝑚 ≥ 𝑚0 = Γ𝑘 ·

(
𝑛
ℓ

) 𝑘
2 ℓ · log2 𝑛

𝜀5

and the 𝑏𝐶 ’s are independent, mean 0 random variables supported in [−1, 1], then with probability
1− 1/poly(𝑛) over the draw of 𝑏𝐶 ’s, it holds that alg-val(𝜙) ≤ 𝜀 + 2−𝑛 .
Moreover, our algorithm is “captured” by the canonical degree 2ℓ sum-of-squares relaxation of polyno-

mial maximization problem over the hypercube. Specifically, under the same hypothesis on 𝜙 as above, for
every pseudo-expectation Ẽ of degree ≥ 2ℓ over {−1, 1}𝑛 , it holds that Ẽ[𝜙] ≤ 𝜖.

As is the case in Section 5.2, we will not assume that 𝐻 is simple, and we will adopt the same
notational conventions as in Remark 5.2.2.

50

5.3.1 Regular bipartite polynomials

Our proof of Theorem 5.3.1 goes via a reduction to refuting sparse polynomials with additional
structure that we call bipartite polynomials. Bipartite polynomials can be seen as a generalization
of partitioned 2-XOR instances introduced in [AGK21]. We next present this class of polynomials
and identify a regularity property of such polynomials that will be a key technical ingredient in
our algorithm.
Definition 5.3.2 (𝑝-bipartite polynomials). Let 𝑘 ∈ N. A 𝑝-bipartite polynomial 𝜓 is a homoge-
neous degree 𝑘 polynomial in 𝑝 + 𝑛 variables 𝑦 = {𝑦𝑢}𝑢∈[𝑝] and 𝑥 = {𝑥 𝑗} 𝑗∈[𝑛] defined by

𝜓(𝑦, 𝑥) = 1
𝑚

𝑝∑
𝑢=1

𝑦𝑢

∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶 ,

where {𝐻𝑢}𝑢∈[𝑝] is a 𝑝-bipartite 𝑘-uniform hypergraph (Definition 5.2.3), 𝑏𝑢,𝐶 ∈ [−1, 1] for
every 𝐶 ∈ 𝐻, 𝑥𝐶 B

∏
𝑖∈𝐶 𝑥𝑖 , and 𝑚 B

∑
𝑢∈[𝑝] |𝐻𝑢 |. The value of 𝜓, denoted by val(𝜓), is

max𝑦∈{−1,1}𝑝 ,𝑥∈{−1,1}𝑛 𝜓(𝑦, 𝑥). Note that val(𝜓) ∈ [−1, 1] always. We also note that 𝜓 is a homoge-
neous degree 1 polynomial in 𝑦.
Definition 5.3.3 (Regular 𝑝-bipartite polynomials). We say that a 𝑝-bipartite polynomial 𝜓
is (𝜀, ℓ)-regular if the underlying 𝑝-bipartite 𝑘-uniform hypergraph {𝐻𝑢}𝑢∈[𝑝] is (𝜀, ℓ)-regular
(Definition 5.2.4). When 𝜀, ℓ are clear from context, we will simply say that 𝜓 is regular.

The bulk of the technical work in proving Theorem 5.3.1 is in analyzing a refutation algorithm
for regular instances of 𝑝-bipartite polynomials encapsulated in the following theorem.
Theorem 5.3.4 (Refuting regular bipartite polynomials). Let 𝑘 ∈ N. For any ℓ : N → N with
2(𝑘 − 1) ≤ ℓ (𝑛) ≤ 𝑛 for all 𝑛 ∈ N, there is an algorithm with the following properties: the algorithm takes
as input a 𝑝-bipartite, homogeneous, polynomial 𝜓 = 𝜓(𝑦, 𝑥) in variables 𝑦 = {𝑦𝑢}𝑢∈[𝑝] and 𝑥 = {𝑥𝑖}𝑖∈[𝑛]
of total degree 𝑘:

𝜓(𝑦, 𝑥) = 1
𝑚

𝑝∑
𝑢=1

𝑦𝑢

∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶 ,

specified by a collection of (𝑘 − 1)-uniform hypergraphs {𝐻𝑢}𝑢∈[𝑝] and rational numbers in [−1, 1]
{𝑏𝑢,𝐶}𝑢∈[𝑝],𝐶∈𝐻𝑢 . The algorithm runs in time (𝑝 + 𝑛)𝑂(ℓ) time and outputs alg-val(𝜓) ∈ [−1, 1] satisfying
the following:

1. For every 𝜓, alg-val(𝜓) ≥ val(𝜓).
2. Whenever 𝜓 and 𝑏𝑢,𝐶 ’s satisfy:

(a) 𝜓 is (𝜀, ℓ)-regular,
(b) |𝐻𝑢 | ≤ 2𝑚

𝑝 for all 𝑢 ∈ [𝑝],

(c) 𝑚 ≥ max
{
Γ𝑘 ·

(
𝑛
ℓ

) 𝑘−1
2

√
𝑝ℓ log 𝑛 · 1

𝜀3 , 𝑝

𝜖2

}
, where Γ is an absolute constant, and

(d) Each 𝑏𝑢,𝐶 is chosen uniformly at random from {−1, 1}.
Then with probability 1− 1/poly(𝑛) over the draw of 𝑏𝑢,𝐶 ’s, alg-val(𝜓) ≤ 𝑂(𝜀) + 2−𝑛 .

Further, our algorithm is “captured” by the sum-of-squares algorithm of degree 2ℓ : for every pseudo-
expectation Ẽ in variables 𝑥, 𝑦 of degree 2ℓ over {−1, 1}𝑝+𝑛 , Ẽ[𝜓(𝑥, 𝑦)] ≤ 𝑂(𝜀).

We defer the proof of Theorem 5.3.4 to Section 5.4.

51

5.3.2 Reduction to regular bipartite polynomials

We now use Lemma 5.2.7 along with Theorem 5.3.4 to complete the proof of Theorem 5.3.1 by
analyzing the following algorithm:

Main Refutation Algorithm

Algorithm 5.3.5.
Given: A polynomial 𝜙 specified by a 𝑘-uniform multi-hypergraph 𝐻 over 𝑛 vertices and

rational numbers {𝑏𝐶}𝐶∈𝐻 .
Output: A value alg-val ∈ [−1, 1].
Operation:

1. Apply the decomposition algorithm from Lemma 5.2.7 to construct bipartite
hypergraphs {𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] for 2 ≤ 𝑡 ≤ 𝑘, and a set of discarded edges 𝐻(1).

2. For every 𝑡, 𝑢 ∈ [𝑝(𝑡)] and for every hyperedge 𝐶 ∈ 𝐻(𝑡)𝑢 , set 𝑏𝑢,𝐶 = 𝑏𝑄𝑢∪𝐶 .
3. For 2 ≤ 𝑡 ≤ 𝑘, apply the refutation algorithm for regular bipartite polynomials

from Theorem 5.3.4 to the degree 𝑡 𝑝(𝑡)-bipartite polynomial specified by the
bipartite hypergraph {𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] and 𝑏𝑢,𝐶 ’s to obtain alg-val𝑡 . Set alg-val1 = 1.

4. Output alg-val = 1
𝑚

∑
𝑡=1𝑘 𝑚

(𝑡) · alg-val𝑡 , where 𝑚(𝑡) =
∑
𝑢∈[𝑝(𝑡)] |𝐻

(𝑡)
𝑢 |.

Proof of Theorem 5.3.1 from Lemma 5.2.7 and Theorem 5.3.4. First, without loss of generality we will
assume that 𝜀 ≤ 1√

2
, so that 1

𝜀2 ≥ 2. This is without loss of generality, as it only changes the
universal constant in Theorem 5.3.1.

For each 𝑡 and 𝑢 ∈ [𝑝(𝑡)], let 𝑄𝑢 ⊆ [𝑛] denote the subset of size 𝑘 + 1 − 𝑡 associated to 𝑢,
and let 𝜓𝑡 be the polynomial associated with the 𝑡-uniform (𝜀, ℓ)-regular bipartite hypergraph
{𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] obtained from the hypergraph 𝐻 specifying the input polynomial 𝜙 by applying the
decomposition algorithm from Lemma 5.2.7. Thus, 𝜓𝑡 is a polynomial in the 𝑝(𝑡) + 𝑛 variables
{𝑦(𝑡)𝑢 }𝑢∈[𝑝(𝑡)] ∪ {𝑥𝑖}𝑖∈[𝑛], and 𝜓𝑡({𝑦(𝑡)𝑢 }𝑢∈[𝑝(𝑡)], 𝑥) B 1

𝑚(𝑡)
∑
𝑢∈[𝑝(𝑡)] 𝑦

(𝑡)
𝑢

∏
𝐶∈𝐻(𝑡)𝑢

𝑏𝑄𝑢∪𝐶𝑥𝐶 . We then have
that

𝜙(𝑥) = 1
𝑚

𝑘∑
𝑡=2

𝑚(𝑡)𝜓𝑡({𝑥𝑄𝑢 }𝑢∈[𝑝(𝑡)], 𝑥) +
1
𝑚

∑
𝐶∈𝐻(1)

𝑏𝐶𝑥𝐶 . (5.3)

Indeed, this follows immediately from the definition of a bipartite contraction, because when we
substitute 𝑥𝑄𝑢 for 𝑦𝑢 for some 𝑢 ∈ [𝑝(𝑡)], then 𝑦𝑢𝑥𝐶 = 𝑥𝑄𝑢∪𝐶 = 𝑥𝐶′ for 𝐶′ ∈ 𝐻.

Let alg-val𝑡 = alg-val(𝜓𝑡) be the output of the refutation algorithm from Theorem 5.3.4 applied
to 𝜓𝑡 . Then, val(𝜓𝑡) ≤ alg-val𝑡 . Thus, using (5.3), val(𝜙) ≤ 1

𝑚

∑𝑘
𝑡=1 𝑚

(𝑡)alg-val𝑡 = alg-val.
Next, if for some 𝑡, 𝑚(𝑡) ≤ 𝜀𝑚, then using the trivial bound of alg-val(𝜓𝑡) ≤ 1 yields

𝑚(𝑡)alg-val(𝜓𝑡) ≤ 𝜀𝑚. Note that in particular, 𝑚(1) ≤ 𝜀𝑚 always holds, as 𝑚 ≥ 1
𝜀3

(
𝑛
ℓ

) 𝑘
2 · ℓ

and 𝑚(1) ≤ 𝑛
𝑘𝜀2

(
𝑛
ℓ

) 𝑘
2−1.

Now, suppose that for some 𝑡, 𝑚(𝑡) ≥ 𝜀𝑚. We now prove that in this setting, 𝑚(𝑡) ≥ Γ𝑡 ·(
𝑛
ℓ

) 𝑡−1
2

√
𝑝(𝑡)ℓ · (log2 𝑛)2𝑡+0.5

𝜀3 . We know that 𝑚(𝑡) = 𝑝(𝑡) · ⌊ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1)⌋. Hence, it suffices to

52

show

𝜀𝑚 ≥ Γ2𝑡 ·
(𝑛
ℓ

) 𝑡−1
ℓ ·

log2 𝑛

𝜀6
· 1

1
2𝜀2 max(

(
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1)
,

where we use that ⌊ 1
𝜀2 max(

(
𝑛
ℓ

) 𝑡− 𝑘2−1 , 1)⌋ ≥ ⌊ 1
𝜀2 ⌋ ≥ 1

2𝜀2 as 1
𝜀2 ≥ 2.

Hence, for 𝑡 ≥ 𝑘
2 + 1, it suffices to have

𝜀𝑚 ≥ 2Γ2𝑡 ·
(𝑛
ℓ

) 𝑘
2
ℓ ·

log2 𝑛

𝜀4
,

and for 𝑡 < 𝑘
2 + 1, it suffices to have

𝜀𝑚 ≥ 2Γ2𝑡 ·
(𝑛
ℓ

) 𝑡−1
ℓ ·

log2 𝑛

𝜀4
.

As 𝑚 ≥ Γ′𝑘 ·
(
𝑛
ℓ

) 𝑘
2 ℓ · log2 𝑛

𝜀5 , for the absolute constant Γ′ = 2Γ2, both conditions are satisfied.
We have thus shown that if 𝑚(𝑡) ≥ 𝜀𝑚, then 𝜓𝑡 satisfies the conditions of Theorem 5.3.4, and

so we have 𝑚(𝑡)alg-val𝑡 ≤ 𝜀𝑚(𝑡) ≤ 𝜀𝑚 with probability 1 − 1/poly(𝑛) over the draw of 𝑏𝐶 ’s. By
union bound over all 𝑡, we thus get that alg-val(𝜙) ≤ 𝑂(𝑘𝜀) with probability 1 − 𝑘/poly(𝑛) ≥
1− 1/poly(𝑛) over the draw of 𝑏𝐶 ’s. This completes the analysis of the second guarantee.

The running time of the algorithm is dominated by the time required to apply the refutation
algorithm from Theorem 5.3.4 to each of the bipartite polynomials produced by the decomposition
algorithm. This cost is bounded above by 𝑛𝑂(ℓ).

Finally, the fact that this algorithm is “captured” by SoS follows because Theorem 5.3.4 is
“captured” by SoS and the linearity of the pseudo-expectations. □

5.4 Refuting regular bipartite polynomials

In this section, we prove Theorem 5.3.4. Our algorithm is based on the semidefinite programming
relaxation of the “∞→ 1”-norm of an appropriate matrix associated with the polynomial 𝜓. The
analysis of the algorithm will naturally establish the “Further,...” part of the statement.

As in several prior works starting with [CGL04], our proof of Theorem 5.3.4 applies the
“Cauchy-Schwarz” trick in order to work with an even-degree polynomial associated with 𝜓.
Lemma 5.4.1 (Cauchy-Schwarz trick). Let 𝜓 be a 𝑝-bipartite, homogeneous, polynomial 𝜓 = 𝜓(𝑦, 𝑥) in
variables 𝑦 = {𝑦𝑢}𝑢∈[𝑝] and 𝑥 = {𝑥𝑖}𝑖∈[𝑛] of total degree 𝑘:

𝜓(𝑦, 𝑥) = 1
𝑚

𝑝∑
𝑢=1

𝑦𝑢

∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶 .

Let 𝑓 be the following polynomial obtained from 𝜓:

𝑓 (𝑥) = 𝑝

𝑚2

𝑝∑
𝑢=1

∑
(𝐶,𝐶′)∈𝐻𝑢×𝐻𝑢 ,𝐶≠𝐶′

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′ .

Then val(𝜓)2 ≤ 𝑝

𝑚 + val(𝑓). Further, for every pseudo-expectation Ẽ of degree ≥ 2𝑘 over {−1, 1}𝑝+𝑛 ,
Ẽ[𝜓]2 ≤ 𝑝

𝑚 + Ẽ[𝑓].

53

Proof. Fix an assignment in {−1, 1} to the 𝑦𝑢’s and 𝑥𝑖’s. We then have

𝜓2(𝑦, 𝑥) =
(

1
𝑚

𝑝∑
𝑢=1

𝑦𝑢

∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶

)2

≤ 1
𝑚2

(
𝑝∑
𝑢=1

𝑦2
𝑢

) ©­«
𝑝∑
𝑢=1

(∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶

)2ª®¬
≤

𝑝

𝑚2
·
𝑝∑
𝑢=1

∑
𝐶∈𝐻𝑢

𝑏2
𝑢,𝐶𝑥

2
𝐶 +

𝑝

𝑚2

∑
𝑢≤𝑝

∑
(𝐶,𝐶′)∈𝐻𝑢×𝐻𝑢 ,𝐶≠𝐶′

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′

≤
𝑝

𝑚
+

𝑝

𝑚2

𝑝∑
𝑢=1

∑
(𝐶,𝐶′)∈𝐻𝑢×𝐻𝑢 ,𝐶≠𝐶′

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′ ,

where the first inequality above uses the Cauchy-Schwarz inequality, the second uses that 𝑦2
𝑢 = 1

for every 𝑢, and the third uses that 𝑏2
𝑢,𝐶 ≤ 1 and 𝑥2

𝐶
= 1. Further, observe that by using the SoS

version of the Cauchy-Schwarz inequality (Fact 3.5.3) and the fact that Ẽ is over {−1, 1}𝑝+𝑛 , we
see that the above also holds for all degree 𝑑 ≥ 2(𝑘 − 1) pseudo-expectations Ẽ.

Taking the maximum over 𝑥 and 𝑦 on both sides then yields that val(𝜓)2 ≤ 𝑝

𝑚 + val(𝑓). Taking
the maximum over all pseudo-expectations Ẽ on {−1, 1}𝑝+𝑛 and using Fact 3.5.3 yields that
Ẽ[𝜓]2 ≤ Ẽ[𝜓2] ≤ 𝑝

𝑚 + Ẽ[𝑓]. □

5.4.1 The initial Kikuchi matrix

As Lemma 5.4.1 shows, it suffices to upper bound val(𝑓). Our certificate of an upper bound on
val(𝑓) is based on an appropriate variant of the Kikuchi matrix of [WAM19]. The definition of
the final matrix that we use is rather technical, so we will first define a simpler Kikuchi matrix
that will be helpful for intuition and in the analysis. Our final matrix will be obtained by keeping
a carefully chosen subset of the entries of the initial matrix.

To define the initial matrix, it is convenient to think of having two clones of each of the 𝑛
possible “𝑥” variables. For every 𝑖, we will use (𝑖, 1) and (𝑖, 2) to denote the two clones of the
𝑖-th variable below. For any set 𝐶 ⊆ [𝑛], we will use 𝐶(1) to denote the set {(𝑖, 1) | 𝑖 ∈ 𝐶}, i.e.,
the clause 𝐶 using the first type of clones, and 𝐶(2) to be the clause 𝐶 using the second type of
clones. Recall that for any sets 𝑆,𝑇, let 𝑆 ⊕ 𝑇 denote the symmetric difference of the two sets.
More generally, let 𝑆1 ⊕ 𝑆2 ⊕ · · · ⊕ 𝑆𝑡 denote the set of all elements that occur in an odd number of
different 𝑆𝑖’s.
Definition 5.4.2 (Our initial Kikuchi Matrix). Let ℓ ∈ N and let 𝑁 B

(2𝑛
ℓ

)
.

Fix a 𝑝-bipartite 𝑘-uniform hypergraph {𝐻𝑢}𝑢∈[𝑝]. For each 𝑢 ∈ [𝑝], define the 𝑁 ×𝑁 matrix
𝐴𝑢 , indexed by sets 𝑆 ⊆ [𝑛] × [2] of size ℓ , as follows. For any two sets 𝑆,𝑇 ⊆ [𝑛] × [2] of size ℓ

and sets 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 of size 𝑘 − 1, we say that 𝑆
𝐶,𝐶′↔ 𝑇 if

1. 𝑆 ⊕ 𝑇 = 𝐶(1) ⊕ 𝐶′(2),
2. 𝑘 is odd, and |𝑆 ∩ 𝐶(1) | = |𝑆 ∩ 𝐶′(2) | = |𝑇 ∩ 𝐶(1) | = |𝑇 ∩ 𝐶′(2) | = 𝑘−1

2 , or,
3. 𝑘 is even, and |𝑆 ∩ 𝐶(1) | = |𝑇 ∩ 𝐶′(2) | = 𝑘

2 and |𝑆 ∩ 𝐶′(2) | = |𝑇 ∩ 𝐶(1) | = 𝑘−2
2 , or,

4. 𝑘 is even, and |𝑆 ∩ 𝐶(1) | = |𝑇 ∩ 𝐶′(2) | = 𝑘−2
2 and |𝑆 ∩ 𝐶′(2) | = |𝑇 ∩ 𝐶(1) | = 𝑘

2 .
Note that 𝐶(1) ⊕ 𝐶′(2) = 𝐶(1) ∪ 𝐶′(2), as 𝐶(1) and 𝐶′(2) are disjoint by construction.

54

For 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 , we define

𝐴𝑢,𝐶,𝐶′(𝑆,𝑇) =
{

1 if 𝑆
𝐶,𝐶′↔ 𝑇,

0 otherwise.

We then set
𝐴𝑢 =

∑
𝐶≠𝐶′∈𝐻𝑢

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝐴𝑢,𝐶,𝐶′ . (5.4)

Note that the sum is over pairs of different elements 𝐶,𝐶′ of the multiset 𝐻 (which may nonethe-
less be equal as sets).

Our (overall) Kikuchi matrix 𝐴 for the polynomial 𝑓 is defined as

𝐴 B

𝑝∑
𝑢=1

𝐴𝑢 . (5.5)

The matrix 𝐴 allows us to write 𝑓 as a quadratic form, as the following lemma shows.
Lemma 5.4.3. Let 𝑁 B

(2𝑛
ℓ

)
and let 𝐴 be the Kikuchi matrix in Definition 5.4.2 associated with an

arbitrary 𝑝-bipartite 𝜓 specified by a bipartite hypergraph 𝐻 and coefficients {𝑏𝑢,𝐶}𝑢∈[𝑝],𝐶∈𝐻 . For any
𝑥 ∈ {−1, 1}𝑛 , let 𝑥⊙ℓ ∈ {−1, 1}𝑁 be the vector where the 𝑆-th entry of 𝑥⊙ℓ is 𝑥𝑆 B

∏
𝑏∈[2]

∏
(𝑖,𝑏)∈𝑆 𝑥𝑖 .

Then,

(𝑥⊙ℓ)⊤𝐴𝑥⊙ℓ = 𝑚2𝐷

𝑝
· 𝑓 (𝑥) (5.6)

for 𝐷 as defined in Eq. (5.9).
Furthermore, since 𝑥⊙ℓ has ±1-valued entries, for any symmetric PSD matrix 𝑊 ⪰ 0, it holds that

val(𝑓) ≤ 𝑝

𝑚2𝐷
∥𝑊−1/2𝐴𝑊−1/2∥2 · tr(𝑊). Moreover, for every pseudo-expectation Ẽ of degree ≥ 2ℓ over

{−1, 1}𝑛 ,
Ẽ[𝑓] = 𝑝

𝑚2𝐷
Ẽ[(𝑥⊙ℓ)⊤𝐴𝑥⊙ℓ] ≤ 𝑝

𝑚2𝐷
∥𝑊−1/2𝐴𝑊−1/2∥2 · tr(𝑊) .

Proof. To see (5.6), observe that by definition of 𝐴, if 𝑘 is odd then every pair (𝐶,𝐶′) in 𝐻𝑢 with

𝐶 ≠ 𝐶′ appears exactly
(𝑘−1
𝑘−1

2

)2 (2𝑛−2(𝑘−1)
ℓ−(𝑘−1)

)
= 𝐷 times when we expand the LHS. This is because

we can choose 𝑆 by first picking its size 𝑘−1
2 intersection with 𝐶(1) and its intersection with 𝐶′(2)

(
(𝑘−1
𝑘−1

2

)2
choices) and then picking the rest of the set (

(2𝑛−2(𝑘−1)
ℓ−(𝑘−1)

)
choices), and this also completely

determines 𝑇. A similar calculation yields the value of 𝐷 when 𝑘 is even, and so Eq. (5.6) then
follows. This is the place where we crucially use the “clones” of the variables to ensure that each
pair (𝐶,𝐶′) appears the same number of times on the LHS. Without this trick, the number of
times a pair (𝐶,𝐶′) appears would instead depend on |𝐶 ∩ 𝐶′ |.

The “furthermore” follows by Fact 3.5.6. □

Below, we summarize the definitions that we have made so far.

55

Key Notation

1. The input polynomial 𝜓

𝜓(𝑦, 𝑥) = 1
𝑚

𝑝∑
𝑢=1

𝑦𝑢

∑
𝐶∈𝐻𝑢

𝑏𝑢,𝐶𝑥𝐶 , (5.7)

is (𝜀, ℓ)-regular, and 𝑝-bipartite, homogeneous of total degree 𝑘 and is described by
a collection of (𝑘 − 1)-uniform hypergraphs {𝐻𝑢}𝑢∈[𝑝] one for every 𝑢 ∈ [𝑝] and a
collection of rationals {𝑏𝑢,𝐶}𝑢∈[𝑝],𝐶∈𝐻𝑢 .

2. The polynomial 𝑓 obtained after the Cauchy-Schwarz trick applied to 𝜓:

𝑓 (𝑥) = 𝑝

𝑚2

𝑝∑
𝑢=1

∑
(𝐶,𝐶′)∈𝐻𝑢×𝐻𝑢 ,𝐶≠𝐶′

𝑏𝑢,𝐶𝑏𝑢,𝐶′𝑥𝐶𝑥𝐶′ , (5.8)

is homogeneous of total degree 2(𝑘 − 1). Furthermore, val(𝜓)2 ≤ val(𝑓) + 𝑝

𝑚 ≤ val(𝑓) +
𝜀2.

3. The Kikuchi matrix 𝐴 =
∑
𝑢 𝐴𝑢 of 𝑓 is an 𝑁 × 𝑁 matrix for 𝑁 =

(2𝑛
ℓ

)
. The entries of

𝐴 are indexed by sets 𝑆,𝑇 ⊆ [𝑛] × [2] of size ℓ and the entry 𝐴𝑢(𝑆,𝑇) is nonzero (and

equal to 𝑏𝑢,𝐶𝑏𝑢,𝐶′) if and only if 𝑆
𝐶,𝐶′↔ 𝑇 for some distinct pair 𝐶,𝐶′ ∈ 𝐻𝑢 . Each pair

(𝐶,𝐶′) from 𝐻𝑢 contributes 𝐷 nonzero entries in 𝐴 where

𝐷 =


(𝑘−1
𝑘−1

2

)2 (2𝑛−2(𝑘−1)
ℓ−(𝑘−1)

)
if 𝑘 is odd

2
(𝑘−1

𝑘
2

) (𝑘−1
𝑘−2

2

) (2𝑛−2(𝑘−1)
ℓ−(𝑘−1)

)
if 𝑘 is even.

(5.9)

Furthermore, val(𝑓) ≤ 𝑝

𝑚2𝐷
∥𝑊−1/2𝐴𝑊−1/2∥2 · tr(𝑊) for any symmetric PSD matrix 𝑊 .

5.4.2 Proof plan

Using Lemma 5.4.3, our task reduces to finding a symmetric PSD matrix𝑊 such that ∥𝑊−1/2𝐴𝑊−1/2∥2 ·
tr(𝑊) ≤ 𝑚2𝐷𝜀2

𝑝 whenever 𝑏𝑢,𝐶 ’s are chosen independently at random from {−1, 1}. Our proof
proceeds in three conceptual steps:

1. Row pruning (Section 2.3). It turns out that the matrix 𝐴 is not quite sufficient for the
analysis to go through. Specifically, there can be rows in the matrix𝐴𝑢 that have ℓ1-norm that
is much larger than the average of 𝑚2𝐷

𝑝𝑁 . The first step of the proof is to remove rows in each
𝐴𝑢 that have too large ℓ1-norm and show that, by furthermore deleting an extra small set of
entries, we are left with a matrix 𝐵 =

∑𝑝

𝑢=1 𝐵𝑢 that satisfies all the properties of Lemma 5.4.3
and each 𝐵𝑢 has rows with bounded ℓ1-norm. This is somewhat delicate and crucially
relies on regularity of the 𝐻𝑢 ’s. We will prove this by computing conditional first moments,
a strategy that is due to [Yan24] and is a generalization of the edge deletion method of
row pruning in [HKM23]. The original proof in [GKM22] used a careful application of
the celebrated Schudy-Sviridenko polynomial concentration inequality for combinatorial
polynomials [SS12].

56

2. Row bucketing/reweighting (Section 2.2). The row pruning ensures that no row has a
large ℓ1-norm in any single 𝐵𝑢 . Taking inspiration from spectral analyses of combinatorial
random matrices, one might expect that the spectral norm of 𝐵 after row pruning is upper
bounded. However, this turns out not to be true when the 𝐻𝑢’s are arbitrary regular
hypergraphs. Instead, we show that by reweighting by a careful choice of the PSD matrix
𝑊 , we can make all the rows/columns have roughly equal contribution to the “variance
term” in the reweighted matrix 𝑊−1/2𝐵𝑊−1/2, which will make it have a good spectral
norm. This row reweighting strategy is due to [HKM23], which is a smoother version of
the row bucketing strategy employed in [GKM22].

3. Spectral norm bound. Our final step involves proving a spectral norm upper bound on
∥𝑊−1/2𝐵𝑊−1/2∥2. This is the only step where we use randomness of the right-hand sides
𝑏𝐶 ’s.

Let us now proceed with the details of each of the three steps above.
In the row pruning step, we prove the following lemma.

Lemma 5.4.4 (Row pruned Kikuchi matrices). Let 𝐴 be the Kikuchi matrix associated with the
polynomial 𝑓 obtained from an (𝜖, ℓ)-regular 𝑝-bipartite polynomial 𝜓 of total degree 𝑘 defined by (𝑘 − 1)
uniform hypergraphs {𝐻𝑢}𝑢∈[𝑝]. Let Δ = 𝑐𝑘 1

𝜀4 for a sufficiently large absolute constant 𝑐. Then, for each
𝑢 ∈ [𝑝] and each pair 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 , there exists a matrix 𝐵𝑢,𝐶,𝐶′ ∈ {0, 1}𝑁×𝑁 such that

(1) The matrix 𝐵𝑢,𝐶,𝐶′ is a “subset” of the matrix 𝐴𝑢,𝐶,𝐶′ . Namely, for any pair (𝑆,𝑇), if 𝐵𝑢,𝐶,𝐶′(𝑆,𝑇) = 1,
then 𝐴𝑢,𝐶,𝐶′(𝑆,𝑇) = 1, and if 𝐴𝑢,𝐶,𝐶′(𝑆,𝑇) = 0 then 𝐵𝑢,𝐶,𝐶′(𝑆,𝑇) = 0.

(2) The matrix 𝐵𝑢,𝐶,𝐶′ has exactly 1
2𝐷 nonzero entries.

(3) The matrix
∑
𝐶≠𝐶′∈𝐻𝑢 𝐵𝑢,𝐶,𝐶′ has maximum row/column ℓ1-norm at most Δ.

Similarly to Definition 5.4.2, we let 𝐵𝑢 B
∑
𝐶≠𝐶′∈𝐻𝑢 𝐵𝑢,𝐶,𝐶′𝑏𝑢,𝐶𝑏𝑢,𝐶′ and 𝐵 B

∑
𝑢∈[𝑝] 𝐵𝑢 .

We note that the above properties of the matrices 𝐵𝑢,𝐶,𝐶′ imply that Lemma 5.4.3 holds for the
matrix 𝐵 as well if we replace 𝐷 with 1

2𝐷.
The reweighting matrix uses the following definition, which is a combinatorial notion that

bounds the ℓ1-norm of rows in 𝐵𝑢 .

Definition 5.4.5 (Combinatorial proxy for the row ℓ1-norm in 𝐵𝑢). For 𝑢 ∈ [𝑝] and 𝑆 ∈
(2𝑛
ℓ

)
, we

let 𝑑𝑢(𝑆) B
∑
𝑇 |𝐵𝑢,𝐶,𝐶′(𝑆,𝑇)|. We also define 𝑑(𝑆) B ∑

𝑢∈[𝑝] 𝑑𝑢(𝑆).
Remark 5.4.6. We note that 𝑑𝑢(𝑆) is an upper bound on the ℓ1-norm of the 𝑆-th row in 𝐵𝑢 , with the
difference being that 𝐵𝑢 is a random matrix (with randomness coming from the 𝑏𝑢,𝐶 ’s), and so the
ℓ1-norm of the 𝑆-th row may be lower depending on the draw of the 𝑏𝑢,𝐶 ’s if 𝐻𝑢 is a multigraph.

We also have that
∑
𝑆 𝑑(𝑆) ≤ 2𝑚2𝐷

𝑝 . This is because this simply counts the total number of
nonzero entries across all the 𝐵𝑢,𝐶,𝐶′’s, and there are exactly 𝐷/2 nonzero entries in each matrix,
and there are 𝑝 choices for 𝑢 and |𝐻𝑢 |2 ≤ 4𝑚2/𝑝2 choices for 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 .

The reweighting and spectral norm bound steps are captured via the following lemma.

Lemma 5.4.7. Let 𝐴 be the Kikuchi matrix associated with the polynomial 𝑓 obtained from an (𝜖, ℓ)-
regular 𝑝-bipartite polynomial 𝜓 of total degree 𝑘 defined by (𝑘 − 1) uniform hypergraphs {𝐻𝑢}𝑢∈[𝑝] and
coefficients {𝑏𝑢,𝐶}𝑢∈[𝑝],𝐶∈𝐻𝑢 . Let 𝐵 be the pruned Kikuchi matrix defined in Lemma 5.4.4, and let 𝑊 be
the diagonal PSD matrix where 𝑊𝑆 is 𝑑(𝑆) + 𝑚2𝐷

𝑝𝑁 .

57

Then, with probability 1− 1/poly(𝑛) over the draw of 𝑏𝑢,𝐶 ’s, it holds that

∥𝑊−1/2𝐵𝑊−1/2∥2 ≤ 𝑂
(√

𝑝𝑁ℓ log 𝑛
𝑚2𝐷

+Δ
𝑝𝑁ℓ log 𝑛
𝑚2𝐷

)
.

We now finish the proof assuming Lemmas 5.4.4 and 5.4.7.

Finishing the proof of Theorem 5.3.4. We have already shown that

val(𝑓) ≤ 2𝑝
𝑚2𝐷

∥𝑊−1/2𝐵𝑊−1/2∥2 · tr(𝑊) ,

where 𝐵 is defined by Lemma 5.4.4.
Thus, our refutation algorithm operates as follows. First, we construct the matrices 𝐴𝑢,𝐶,𝐶′,

and then we construct the matrices 𝐵𝑢,𝐶,𝐶′ (which exist and are well-defined, by Lemma 5.4.4).
Then, we compute the matrix 𝑊 and 2𝑝

𝑚2𝐷
∥𝑊−1/2𝐵𝑊−1/2∥2, to obtain an upper bound on val(𝑓).

We note that because the spectral norm is a real number, we can only compute it to an additive
error of 2−𝑂(𝑛), Finally, we use Lemma 5.4.1 to compute an upper bound on val(𝜓).

It thus remains to argue that with probability 1 − 1/poly(𝑛), the output of the idealized
algorithm (namely, ignoring the 2−𝑛 error from real number computation) is 𝑂(𝜀), i.e., it produces
an upper bound of 𝑂(𝜀) on val(𝜓).

By Lemma 5.4.7, we have that with probability 1− 1/poly(𝑛) over the draw of 𝑏𝑢,𝐶 ’s, it holds
that

∥𝑊−1/2𝐵𝑊−1/2∥2 ≤ 𝑂
(√

𝑝𝑁ℓ log 𝑛
𝑚2𝐷

+Δ
𝑝𝑁ℓ log 𝑛
𝑚2𝐷

)
.

Therefore, our algorithm certifies that

val(𝑓) ≤
2𝑝
𝑚2𝐷

∥𝑊−1/2𝐵𝑊−1/2∥2 · tr(𝑊) .

We have that tr(𝑊) ≤ 𝑂
(
𝑚2𝐷
𝑝

)
, as

∑
𝑆 𝑑(𝑆) ≤ 2𝑚2𝐷

𝑝 , because for each 𝑢 ∈ [𝑝] and pair 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢

(of which there are at most 4𝑚2/𝑝), the pair (𝐶,𝐶′) contributes exactly 𝐷/2 entries, each of
magnitude at most 1.

It thus follows that we certify that

val(𝑓) ≤ 𝑂
(√

𝑝𝑁ℓ log 𝑛
𝑚2𝐷

+Δ
𝑝𝑁ℓ log 𝑛
𝑚2𝐷

)
By Fact 3.6.2, we have that 𝑁/𝐷 ≤ 2𝑂(𝑘) ·

(
𝑛
ℓ

) 𝑘−1. Recall that Δ = 𝑐𝑘𝜀−4, for some absolute constant

𝑐. Because we have 𝑚 ≥ Γ𝑘 ·
(
𝑛
ℓ

) 𝑘−1
2

√
𝑝ℓ log 𝑛 · 𝜀−3 for a sufficiently large constant Γ, it follows

that we have val(𝑓) ≤ 𝑂(𝜀2).
Finally, we have Lemma 5.4.1 that val(𝜓)2 ≤ 𝑝

𝑚 + val(𝑓). As 𝑚 ≥ 𝑝/𝜀2, it follows that we
certify that val(𝜓)2 ≤ 𝑂(𝜀2), i.e., val(𝜓) ≤ 𝑂(𝜀). This finishes the proof. □

58

5.4.3 Row pruning

In order to implement our row pruning step and prove Lemma 5.4.4, we will define bad
rows/columns of 𝐴𝑢 for each 𝑢. The following key definition abstracts out the property (of
the hypergraphs defining the input polynomial) that decides which rows are bad:
Definition 5.4.8 (Butterfly Degree). Let 𝐻𝑢 be a (𝑘 − 1)-uniform hypergraph on [𝑛]. For any
𝐶,𝐶′ ∈ 𝐻𝑢 , let

ℛ(𝐶,𝐶′) =

{
𝑅 ⊆ [𝑛] × [2]

���� |𝑅 | = 𝑘 − 1,
{
|𝑅 ∩ 𝐶(1) |, |𝑅 ∩ 𝐶′(2) |

}
=

{⌈ 𝑘 − 1
2

⌉
,
⌊ 𝑘 − 1

2

⌋}}
.

For any 𝑆 ⊆ [𝑛] × [2], and (𝑘 − 1)-uniform hypergraph 𝐻𝑢 on [𝑛], the butterfly degree of 𝑆 in 𝐻𝑢 is
defined by:

𝛾𝑢(𝑆) =
∑

(𝐶,𝐶′)∈𝐻𝑢×𝐻𝑢 ,𝐶≠𝐶′

∑
𝑅∈ℛ(𝐶,𝐶′)

1(𝑆 ∩ (𝐶(1) ∪ 𝐶′(2)) = 𝑅) .

For a collection of (𝑘 − 1)-uniform hypergraphs 𝐻𝑢 on [𝑛] for 𝑢 ∈ [𝑝], the total butterfly degree of 𝑆
is defined by 𝛾(𝑆) = ∑

𝑢∈[𝑝] 𝛾𝑢(𝑆).
We note that the notion of total butterfly degree above generalizes the notion of butterfly

degree studied in [AGK21]; the original notion of “butterfly degree” is so named because it counts
numbers of butterfly-shaped graphs.

The following lemma shows that the butterfly degree characterizes the maximum ℓ1-norm of
the rows of the Kikuchi matrix 𝐴𝑢 .
Lemma 5.4.9 (Butterfly Degree and the ℓ1-norm of rows of the Kikuchi Matrix). Let 𝐻𝑢 be a
(𝑘 − 1)-uniform hypergraph on [𝑛] and 𝐴𝑢 be the associated matrix in Definition 5.4.2. Then, for any
𝑆 ⊆ [𝑛] × [2], we have:

𝛾𝑢(𝑆) ≥
∑
𝑇

∑
𝐶≠𝐶′∈𝐻𝑢

|𝐴𝑢,𝐶,𝐶′(𝑆,𝑇)| .

Proof. If 𝑘 is odd, we observe that 𝛾𝑢(𝑆) is the number pairs (𝐶,𝐶′) ∈ 𝐻𝑢 × 𝐻𝑢 with 𝐶 ≠ 𝐶′

such that |𝑆 ∩ 𝐶(1) | = |𝑆 ∩ 𝐶′(2) | = 𝑘−1
2 , and if 𝑘 is even, 𝛾𝑢(𝑆) is the number of pairs such that

|𝑆 ∩ 𝐶(1) | = 𝑘
2 and |𝑆 ∩ 𝐶′(2) | = 𝑘−2

2 or |𝑆 ∩ 𝐶(1) | = 𝑘−2
2 and |𝑆 ∩ 𝐶′(2) | = 𝑘

2 . The lemma now
follows. □

We now identify “bad rows” in 𝐴𝑢 as those that have too large total butterfly degrees.
Definition 5.4.10 (Δ-Bad rows in 𝐴𝑢). We define the set of Δ-bad rows in 𝐴 to be:

ℬ𝑢 B {𝑆 : 𝛾𝑢(𝑆) > Δ} .

Note that the set ℬ𝑢 does not depend on the values of the 𝑏𝑢,𝐶 ’s.

Observe that by Lemma 5.4.9, every row that is not bad has an ℓ1-norm that is bounded by Δ.
The following lemma bounds the expectation of 𝛾𝑢(𝑆) over the rows 𝑆 where 𝑆 is a nonzero row
in 𝐴𝑢,𝐶,𝐶′. We defer the proof of Lemma 5.4.11 to the end of this subsection.
Lemma 5.4.11 (Conditional first moment of 𝛾𝑢(𝑆)). Let 𝐴 be the Kikuchi matrix associated with
the polynomial 𝑓 obtained from an (𝜖, ℓ)-regular 𝑝-bipartite polynomial 𝜓 of total degree 𝑘 defined by
(𝑘 − 1) uniform hypergraphs {𝐻𝑢}𝑢∈[𝑝]. Let 𝑢 ∈ [𝑝]. For 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 , let𝒰𝑢,𝐶,𝐶′ denote the uniform
distribution over nonzero rows in 𝐴𝑢,𝐶,𝐶′. Then, E𝑆←𝒰𝑢,𝐶,𝐶′ [𝛾𝑢(𝑆)] ≤ 2𝑂(𝑘)𝜀−4.

59

By Markov’s inequality, this immediately implies the following corollary, which bounds the
number of entries that are deleted for a particular pair (𝐶,𝐶′) by the row deletion process.
Corollary 5.4.12 (Row pruned Kikuchi matrices). Let 𝐴 be the Kikuchi matrix associated with the
polynomial 𝑓 obtained from an (𝜖, ℓ)-regular 𝑝-bipartite polynomial 𝜓 of total degree 𝑘 defined by (𝑘 − 1)
uniform hypergraphs {𝐻𝑢}𝑢∈[𝑝]. Let 𝑢 ∈ [𝑝]. Let ℬ𝑢 is the set of Δ-bad rows in 𝐴𝑢 for

Δ = 𝑐𝑘
1
𝜀4

, (5.10)

where 𝑐 is an absolute constant. Then, for each 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 , the number pairs (𝑆,𝑇) with 𝑆,𝑇 ∉ ℬ𝑢
such that 𝐴𝑢,𝐶,𝐶′(𝑆,𝑇) = 1 is at least 1

2𝐷.
In particular, for each pair 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 , there exists a symmetric matrix 𝐵𝑢,𝐶,𝐶′ ∈ {0, 1}𝑁×𝑁 such

that

(1) The matrix 𝐵𝑢,𝐶,𝐶′ is a “subset” of the matrix 𝐴𝑢,𝐶,𝐶′ . Namely, for any pair (𝑆,𝑇), if 𝐵𝑢,𝐶,𝐶′(𝑆,𝑇) = 1,
then 𝐴𝑢,𝐶,𝐶′(𝑆,𝑇) = 1, and if 𝐴𝑢,𝐶,𝐶′(𝑆,𝑇) = 0 then 𝐵𝑢,𝐶,𝐶′(𝑆,𝑇) = 0.

(2) The matrix 𝐵𝑢,𝐶,𝐶′ has exactly 1
2𝐷 nonzero entries.

(3) For every 𝑆,
∑
𝑇

∑
𝐶≠𝐶′∈𝐻𝑢 𝐵𝑢,𝐶,𝐶′(𝑆,𝑇) ≤ Δ.

Proof of Corollary 5.4.12 from Lemma 5.4.11. Fix 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 . We observe that, because 𝑐 is a
large enough absolute constant, by applying Markov’s inequality and using Lemma 5.4.11, the
probability that a row 𝑆 ← 𝒟𝑢,𝐶,𝐶′ has 𝛾𝑢(𝑆) ≥ Δ is at most 0.01. Let 𝐴′

𝑢,𝐶,𝐶′ be the matrix
obtained by (1) starting with the matrix 𝐴𝑢,𝐶,𝐶′, and (2) “zeroing out” all rows/columns in ℬ𝑢 ,
i.e., setting 𝐴′

𝑢,𝐶,𝐶′(𝑆,𝑇) = 0 if 𝑆 ∈ ℬ𝑢 or 𝑇 ∈ ℬ𝑢 .
By the above, this can remove at most 2 · 0.01 ·𝐷 nonzero entries from 𝐴𝑢,𝐶,𝐶′, so 𝐴′

𝑢,𝐶,𝐶′ has
at least 0.98 ·𝐷 nonzero entries. We then let 𝐵𝑢,𝐶,𝐶′ be an arbitrary matrix obtained by taking a
subset of exactly 1

2𝐷 of the nonzero entries of 𝐴′
𝑢,𝐶,𝐶′ . Because 𝐴𝑢,𝐶,𝐶′ is symmetric, the set of bad

rows and bad columns is the same, and so 𝐴′
𝑢,𝐶,𝐶′ is symmetric. Thus, we can also make 𝐵𝑢,𝐶,𝐶′

be symmetric as well.
We have clearly found symmetric matrices 𝐵𝑢,𝐶,𝐶′ that satisfy the first two properties. To show

the last property, we observe that for any row 𝑆, we have either 𝑆 ∈ ℬ𝑢 , in which case the 𝑆-th
row of 𝐵𝑢,𝐶,𝐶′ is zero, or else 𝑆 ∉ ℬ𝑢 , in which case we have∑

𝑇

∑
𝐶≠𝐶′∈𝐻𝑢

𝐵𝑢,𝐶,𝐶′(𝑆,𝑇) ≤
∑
𝑇

∑
𝐶≠𝐶′∈𝐻𝑢

𝐴𝑢,𝐶,𝐶′(𝑆,𝑇) ≤ 𝛾𝑢(𝑆) ≤ Δ ,

where we use Lemma 5.4.9 and the observation that if 𝐵𝑢,𝐶,𝐶′ has a nonzero entry, then so does
𝐴𝑢,𝐶,𝐶′. □

It remains to prove Lemma 5.4.11, which we do now.

Proof of Lemma 5.4.11. Let 𝐶 ≠ 𝐶′ ∈ 𝐻𝑢 , and let𝒰𝑢,𝐶,𝐶′ be the uniform distribution over the rows
in 𝐴𝑢,𝐶,𝐶′ that contain a nonzero entry. Note that by definition, if a row 𝑆 has a nonzero entry,
then it has exactly one nonzero entry, and there are exactly 𝐷 nonzero entries in 𝐴𝑢,𝐶,𝐶′, so there

60

are exactly 𝐷 rows with nonzero entries. If 𝑘 is even, we have

E𝑆←𝒰𝑢,𝐶,𝐶′ [𝛾𝑢(𝑆)] =
1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1

2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝐶′′≠𝐶′′′∈𝐻𝑢

|{𝑆 : 𝑆 ∈ 𝒥(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}|

+ 1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌈ 𝑘−1

2 ⌉

∑
𝐽2⊆𝐶:|𝐽2 |=⌊ 𝑘−1

2 ⌋

∑
𝐶′′≠𝐶′′′∈𝐻𝑢

|{𝑆 : 𝑆 ∈ 𝒥(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}| ,

and if 𝑘 is odd, we have

E𝑆←𝒰𝑢,𝐶,𝐶′ [𝛾𝑢(𝑆)] =
1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |= 𝑘−1

2

∑
𝐽2⊆𝐶:|𝐽2 |= 𝑘−1

2

∑
𝐶′′≠𝐶′′′∈𝐻𝑢

|{𝑆 : 𝑆 ∈ 𝒥(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}| .

Below, we will bound

1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1

2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝐶′′≠𝐶′′′∈𝐻𝑢

|{𝑆 : 𝑆 ∈ 𝒥(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}| ,

when 𝑘 is either even or odd. It will be clear from the calculation that, by symmetry, the bound
we show will also apply to the term when 𝑘 is even.

Consider a fixed choice of 𝐽1 ⊆ 𝐶, 𝐽2 ⊆ 𝐶′ with |𝐽1 | = ⌊ 𝑘−1
2 ⌋ and |𝐽2 | = ⌈ 𝑘−1

2 ⌉. Let us fix
𝑟1 ≤ ⌊ 𝑘−1

2 ⌋ and 𝑟2 ≤ ⌈ 𝑘−1
2 ⌉, and let 𝑅1 ⊆ 𝐽1, 𝑅2 ⊆ 𝐽2 with |𝑅1 | = 𝑟1 ≤ ⌊ 𝑘−1

2 ⌋ and |𝑅2 | = 𝑟2 ≤ ⌈ 𝑘−1
2 ⌉.

Let us also consider a fixed choice of 𝐶′′,𝐶′′′ ∈ 𝐻𝑢 with 𝐶′′ ≠ 𝐶′′′, 𝐶′′ ∩ 𝐽1 = 𝑅1, and 𝐶′′′ ∩ 𝐽2 = 𝑅2.
We will bound |{𝑆 : 𝑆 ∈ ℛ(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽

(2)
2 ⊆ 𝑆}|.

Observe that |𝑆 | = ℓ and 𝐽
(1)
1 ∪ 𝐽

(2)
2 ⊆ 𝑆. Thus, to count the number of 𝑆, we simply need to

count the choices for the remaining ℓ − (𝑘 − 1) elements of 𝑆. Because 𝑆 ∈ ℛ(𝐶′′,𝐶′′′), it must contain
at least ⌊ 𝑘−1

2 ⌋ elements of 𝐶′′ and ⌈ 𝑘−1
2 ⌉ elements of 𝐶′′′. Because |𝐶′′ ∩ 𝐽1 | = 𝑟1 and |𝐶′′′ ∩ 𝐽2 | = 𝑟2,

this means that the ℓ − (𝑘 − 1) elements of 𝑆 \ (𝑅(1)1 ∪𝑅
(2)
2)must contain at least ⌊ 𝑘−1

2 ⌋ − 𝑟1 elements
of (𝐶′′ \ 𝑅1)(1) and ⌈ 𝑘−1

2 ⌉ − 𝑟2 elements of (𝐶′′′ \ 𝑅2)(2). Thus, the number of choices for 𝑆 is

|{𝑆 : 𝑆 ∈ ℛ(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}| ≤

(
𝑘 − 1

⌊ 𝑘−1
2 ⌋ − 𝑟1

)
·
(

𝑘 − 1
⌈ 𝑘−1

2 ⌉ − 𝑟2

) (
2𝑛

ℓ − 2(𝑘 − 1) + 𝑟1 + 𝑟2

)
,

where we note that ℓ − (𝑘 − 1) − (⌊ 𝑘−1
2 ⌋ − 𝑟1) − (⌈ 𝑘−1

2 ⌉ − 𝑟2) = ℓ − 2(𝑘 − 1).
We thus have that

1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1

2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝐶′′≠𝐶′′′∈𝐻𝑢

|{𝑆 : 𝑆 ∈ 𝒥(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}|

=
1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1

2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝑅1⊆𝐽1,𝑅2⊆𝐽2

∑
𝐶′′≠𝐶′′′∈𝐻𝑢 :𝐶′′∩𝐽1=𝑅1,𝐶′′′∩𝐽2=𝑅2

|{𝑆 : 𝑆 ∈ ℛ(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}|

≤ 1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1

2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝑅1⊆𝐽1,𝑅2⊆𝐽2

∑
𝐶′′≠𝐶′′′∈𝐻𝑢 :𝐶′′∩𝐽1=𝑅1,𝐶′′′∩𝐽2=𝑅2

2𝑂(𝑘)
(

2𝑛
ℓ − 2(𝑘 − 1) + |𝑅1 | + |𝑅2 |

)
.

Now, applying Facts 3.6.1 and 3.6.2, we have that(2𝑛
ℓ−2(𝑘−1)+𝑟1+𝑟2

)
𝐷

≤ 2𝑂(𝑘)
(
ℓ

𝑛

)2(𝑘−1)−𝑟1−𝑟2−(𝑘−1)
= 2𝑂(𝑘)

(
ℓ

𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 |
.

61

Thus, we have the bound

1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1

2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝐶′′≠𝐶′′′∈𝐻𝑢

|{𝑆 : 𝑆 ∈ 𝒥(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}|

≤
∑

𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1
2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝑅1⊆𝐽1,𝑅2⊆𝐽2

∑
𝐶′′≠𝐶′′′∈𝐻𝑢 :𝐶′′∩𝐽1=𝑅1,𝐶′′′∩𝐽2=𝑅2

2𝑂(𝑘)
(
ℓ

𝑛

) (𝑘−1)−𝑟1−𝑟2

≤
∑

𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1
2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝑅1⊆𝐽1,𝑅2⊆𝐽2

deg𝑢(𝑅1)deg𝑢(𝑅2)2𝑂(𝑘)
(
ℓ

𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 |
.

Because the 𝐻𝑢’s are (𝜀, ℓ)-regular, we have that for any 𝑏 ∈ {1, 2}, deg𝑢(𝑅𝑏) ≤ 1
𝜀2

(
𝑛
ℓ

) 𝑘
2−1−|𝑅𝑏 | if

|𝑅𝑏 | ≤ 𝑘−2
2 , and deg𝑢(𝑅𝑏) ≤ 1

𝜀2 if |𝑅𝑏 | = 𝑘−1
2 (if 𝑘 odd) or 𝑘

2 (if 𝑘 even). We have a few cases. If
|𝑅𝑏 | ≤ 𝑘

2 − 1, then

deg𝑢(𝑅1)deg𝑢(𝑅2)
(
ℓ

𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 |
≤ 1

𝜀4
· ℓ
𝑛

.

If 𝑘 is odd and |𝑅𝑏 | = 𝑘−1
2 for one choice of 𝑏 and |𝑅𝑏 | ≤ 𝑘

2 − 1 for the other choice of 𝑏, then we
have

deg𝑢(𝑅1)deg𝑢(𝑅2)
(
ℓ

𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 |
≤ 1

𝜀4
·
√
ℓ

𝑛
.

If 𝑘 is odd and |𝑅1 | = |𝑅2 | = 𝑘−1
2 , then we have

deg𝑢(𝑅1)deg𝑢(𝑅2)
(
ℓ

𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 |
≤ 1

𝜀4
.

Finally, if 𝑘 is even and |𝑅𝑏 | = 𝑘
2 for one choice of 𝑏, then we must have |𝑅𝑏 | ≤ 𝑘

2 − 1 for the other
choice of 𝑏, and we thus have

deg𝑢(𝑅1)deg𝑢(𝑅2)
(
ℓ

𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 |
≤ 1

𝜀4
.

In all cases, we conclude that deg𝑢(𝑅1)deg𝑢(𝑅2)
(
ℓ
𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 | ≤ 1
𝜀4 , and so we have a bound of

1
𝐷

∑
𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1

2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝐶′′≠𝐶′′′∈𝐻𝑢

|{𝑆 : 𝑆 ∈ 𝒥(𝐶′′,𝐶′′′), 𝐽(1)1 ∪ 𝐽
(2)
2 ⊆ 𝑆}|

≤
∑

𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1
2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝑅1⊆𝐽1,𝑅2⊆𝐽2

deg𝑢(𝑅1)deg𝑢(𝑅2)2𝑂(𝑘)
(
ℓ

𝑛

) (𝑘−1)−|𝑅1 |−|𝑅2 |

≤
∑

𝐽1⊆𝐶:|𝐽1 |=⌊ 𝑘−1
2 ⌋

∑
𝐽2⊆𝐶:|𝐽2 |=⌈ 𝑘−1

2 ⌉

∑
𝑅1⊆𝐽1,𝑅2⊆𝐽2

2𝑂(𝑘)

𝜀4

≤ 2𝑂(𝑘)

𝜀4
.

□

62

5.4.4 Bounding the spectral norm of the “reweighted pruned matrix”: proof of
Lemma 5.4.7

We now prove Lemma 5.4.7. The proof is based on the trace moment method, and will also be
important to us in Chapter 9 in Part II of this thesis.

Proof. We observe that ∥𝑊−1/2𝐵𝑊−1/2∥2𝑟2 ≤ tr((𝑊−1/2𝐵𝑊−1/2)2𝑟) = tr((𝑊−1𝐵)2𝑟). We will proceed
with the proof in two steps. First, we upper bound E[tr((𝑊−1𝐵)2𝑟)] by a combinatorial quantity:
the total weight of “even walk sequences”, which we define below. Then, we bound the total
weight of such sequences.

Definition 5.4.13. Let 𝑆 ∈
(2𝑛
ℓ

)
. We say that a sequence (𝑢1,𝐶1,𝐶′1), . . . , (𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟)with 𝑢ℎ ∈ [𝑝]

and 𝐶ℎ ≠ 𝐶′
ℎ
∈ 𝐻𝑢ℎ is a “walk sequence” for 𝑆 if the sets 𝑆ℎ B 𝑆 ⊕

⊕
𝑗≤ℎ(𝐶

(1)
𝑗
⊕ 𝐶′

𝑗
(2)) each have

size exactly ℓ and the entries 𝐵𝑢ℎ (𝑆ℎ , 𝑆ℎ+1) are nonzero for each ℎ ∈ {0, . . . , 2𝑟}, where 𝑆0 B 𝑆.
Moreover, the sequence is even if each (𝑢,𝑄) appears an even number of times in the multiset
{(𝑢ℎ ,𝐶ℎ), (𝑢ℎ ,𝐶′

ℎ
)}ℎ∈[2𝑟].

The weight of the sequence is
∏2𝑟−1

ℎ=0
1

𝑊𝑆ℎ
.

Proposition 5.4.14. We have

E[tr((𝑊−1𝐵)2𝑟)] ≤
∑
𝑆∈(2𝑛ℓ)

∑
even walk sequences

(𝑢1,𝐶1,𝐶′1),...,(𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) for 𝑆

wt(𝑆, (𝑢1,𝐶1,𝐶′1), . . . , (𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟)) .

Lemma 5.4.15 (Sequence counting). For each 𝑆, it holds that∑
even walk sequences

(𝑢1,𝐶1,𝐶′1),...,(𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) for 𝑆

wt(𝑆, (𝑢1,𝐶1,𝐶′1), . . . , (𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟)) ≤ (4𝑟)𝑟
(
𝑝𝑁

𝑚2𝐷

)2𝑟 (2𝑚2𝐷

𝑝𝑁
+ 𝑟Δ2

) 𝑟
.

We observe that Proposition 5.4.14 and Lemma 5.4.15 immediately imply Lemma 5.4.7. Indeed,
we have that

E[tr((𝑊−1𝐵)2𝑟)] ≤ 𝑁(4𝑟)𝑟
(
𝑝𝑁

𝑚2𝐷

)2𝑟 (2𝑚2𝐷

𝑝𝑁
+ 𝑟Δ2

) 𝑟
,

and hence by Markov’s inequality,

Pr[∥𝑊−1/2𝐵𝑊−1/2∥2 ≥ 𝜆] ≤
E[∥𝑊−1/2𝐵𝑊−1/2∥2𝑟2]

𝜆2𝑟
≤
𝑁(4𝑟)𝑟

(
𝑝𝑁

𝑚2𝐷

)2𝑟 (
2𝑚2𝐷
𝑝𝑁 + 𝑟Δ2

) 𝑟
𝜆2𝑟

.

Taking 𝑟 = ⌈log2 𝑁⌉ and 𝜆 = 𝑐

(√
𝑝𝑁𝑟

𝑚2𝐷
+ 𝑟Δ 𝑝𝑁

𝑚2𝐷

)
for a large enough absolute constant 𝑐 thus

implies

Pr

[
∥𝑊−1/2𝐵𝑊−1/2∥2 ≥ 𝑐

(√
𝑝𝑁𝑟

𝑚2𝐷
+ 𝑟Δ

𝑝𝑁

𝑚2𝐷

)]
≤ 𝑁4𝑟

𝑐2𝑟
≤ 1

poly(𝑁) ,

which finishes the proof of Lemma 5.4.7, as 𝑟 ≤ 𝑂(log𝑁) = 𝑂(ℓ log 𝑛). □

63

We now prove Proposition 5.4.14 and Lemma 5.4.15.

Proof of Proposition 5.4.14. We compute:

E[tr((𝑊−1𝐵)2𝑟)] =
∑

(𝑢1,𝑆1),...,(𝑢2𝑟 ,𝑆2𝑟)
E[

2𝑟∏
ℎ=1

1
𝑊𝑆ℎ−1

𝐵𝑢ℎ (𝑆ℎ−1, 𝑆ℎ)] ,

where we use the convention that 𝑢2𝑟+1 B 𝑢1 and 𝑆0 B 𝑆2𝑟 . Next, we observe that this is equal to

=
∑
𝑆

∑
(𝑢1,𝐶1,𝐶′1),...,(𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) walk sequence for 𝑆

E[
2𝑟∏
ℎ=1

1
𝑊𝑆ℎ−1

𝐵𝑢ℎ−1(𝑆ℎ−1, 𝑆ℎ)]

=
∑
𝑆

∑
(𝑢1,𝐶1,𝐶′1),...,(𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) walk sequence for 𝑆

E[
2𝑟∏
ℎ=1

1
𝑊𝑆ℎ−1

𝑏𝑢ℎ−1,𝐶ℎ−1𝑏𝑢ℎ−1,𝐶′
ℎ−1
]

≤
∑
𝑆

∑
even walk sequences

(𝑢1,𝐶1,𝐶′1),...,(𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) for 𝑆

wt(𝑆, (𝑢1,𝐶1,𝐶′1), . . . , (𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟)) ,

as the term in the sum is 0 unless the walk sequence is even. □

Proof of Lemma 5.4.15. We shall upper bound the total weight of such sequences for each 𝑆 via
an encoding argument. For a set 𝑆 and 𝑢 ∈ [𝑝], we will say that 𝐶,𝐶′ ∈ 𝐻𝑢 extends 𝑆 if
𝐵𝑢(𝑆, 𝑆 ⊕ 𝐶(1) ⊕ 𝐶′(2)) is well-defined and nonzero. The encoding is as follows:

(1) Choose 𝑧 ∈ [𝑟], the number of distinct 𝑢’s that appear in the sequence. Note that 𝑧 must be at
most 𝑟 because the sequence is even; 𝑢ℎ cannot appear once in {𝑢1, . . . , 𝑢2𝑟}, as then we must
pair (𝑢ℎ ,𝐶ℎ)with (𝑢ℎ ,𝐶′

ℎ
), but we must have 𝐶ℎ ≠ 𝐶′

ℎ
.

(2) Choose 2𝑧 locations 𝐿 in [2𝑟]. These will denote the first and last occurrence of each distinct
𝑢ℎ for ℎ ∈ [𝑧].

(3) Choose a perfect matching 𝜋 for the 2𝑧 chosen locations. We will think of 𝜋 as a function
𝜋 : 𝐿 → [𝑧], satisfying 𝑡1 < 𝑡2 < · · · < 𝑡𝑧 , where 𝑡ℎ is the first preimage of ℎ in 𝐿 (using the
natural ordering on 𝐿 inherited from [2𝑟]). We let 𝑡′

ℎ
denote the second preimage of ℎ in 𝐿.

(4) Proceed in order of steps 𝑡 = 1, . . . , 2𝑟. We thus know the set 𝑆𝑡 that we are currently “at”.
There are three cases.

(a) Suppose 𝑡 = 𝑡ℎ for some ℎ. Then, (1) choose 𝑢 ∈ [𝑝] (that has not yet been chosen);
(2) choose 𝐶,𝐶′ ∈ 𝐻𝑢 extending 𝑆𝑡 ; (3) set the 𝑡-th element of the sequence to be (𝑢,𝐶,𝐶′).

(b) Suppose that 𝑡 ≠ 𝑡ℎ , 𝑡′
ℎ

for all ℎ ∈ [𝑧]. Then, pick a previously chosen 𝑢 (that has not yet
reached its last occurrence according to the matching 𝜋), and pick 𝐶,𝐶′ ∈ 𝐻𝑢 that extends
𝑆𝑡 . Set the 𝑡-th element of the sequence to be (𝑢,𝐶,𝐶′).

(c) Suppose that 𝑡 = 𝑡′
ℎ

for some ℎ. Then, choose 𝑢 = 𝑢ℎ and let 𝐶,𝐶′ ∈ 𝐻𝑢 be the unique pair
that extends 𝑆𝑡 and keeps the sequence even. Set the 𝑡-th element of the sequence to be
either (𝑢,𝐶,𝐶′) or (𝑢,𝐶′,𝐶).

We now count the number of choices. Let us first think of the first 3 steps as fixed. There are 3
cases. If we are choosing a new 𝑢, then there are

∑
𝑢 𝑑𝑢(𝑆𝑡) = 𝑑(𝑆𝑡) ways to pick (𝑢,𝐶,𝐶′), and

this is multiplied by a weight of 1
𝑊𝑆𝑡
≤ 1

𝑑(𝑆𝑡) , so this adds a total weight of at most 1.

64

If we are choosing an old 𝑢, then there are 𝑧Δ ways to pick (𝑢,𝐶,𝐶′), as we have 𝑧 choices
for 𝑢 and then 𝑑𝑢(𝑆𝑡) ≤ 𝛾𝑢(𝑆𝑡) ≤ Δ choices for the pair 𝐶,𝐶′. This is multiplied by a weight of

1
𝑊𝑆𝑡
≥ 𝑝𝑁

𝑚2𝐷
, for a total contribution of 𝑧Δ𝑝𝑁

𝑚2𝐷
.

Finally, if we are at 𝑡 = 𝑡′
ℎ

for some ℎ, then we have 2 choices, and thus the total contribution

to the weight is at most 2𝑝𝑁
𝑚2𝐷

. Hence, across all steps, we have 1𝑧 ·
(

2𝑝𝑁
𝑚2𝐷

) 𝑧
·
(
𝑧Δ𝑝𝑁

𝑚2𝐷

)2𝑟−2𝑧
choices.

Next, we think of 𝑧 as fixed, and count the choices for Steps (2) and (3). These have
(2𝑟
2𝑧

)
choices and (2𝑧)!2𝑧𝑧! choices, respectively. Combining, we thus have the bound

(𝑢1,𝐶1,𝐶′1), . . . , (𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) even, well-formed for 𝑆 ≤
𝑟∑
𝑧=1

(
2𝑟
2𝑧

)
(2𝑧)!
2𝑧𝑧!

(
2𝑝𝑁
𝑚2𝐷

) 𝑧
·
(
𝑧Δ𝑝𝑁

𝑚2𝐷

)2𝑟−2𝑧

.

We now observe that (
2𝑟
2𝑧

)
(2𝑧)!
𝑧!

𝑧2𝑟−2𝑧 =
(2𝑟)!

(2𝑟 − 2𝑧)!𝑧!
· 𝑧2𝑟−2𝑧

=
(2𝑟)!
𝑟!𝑟!
· (𝑟 − 𝑧)!(𝑟 − 𝑧)!(2𝑟 − 2𝑧)! · 𝑟!

(𝑟 − 𝑧)! ·
𝑟!

𝑧!(𝑟 − 𝑧)! · 𝑧
2𝑟−2𝑧

≤ 22𝑟 · 1 · 𝑟𝑧 ·
(
𝑟

𝑧

)
· 𝑟2𝑟−2𝑧

≤ (4𝑟)𝑟
(
𝑟

𝑧

)
𝑟𝑟−𝑧 .

Thus, the total weight is at most

𝑟∑
𝑧=1

(
2𝑟
2𝑧

)
(2𝑧)!
2𝑧𝑧!

(
2𝑝𝑁
𝑚2𝐷

) 𝑧
·
(
𝑧Δ𝑝𝑁

𝑚2𝐷

)2𝑟−2𝑧

≤ (4𝑟)𝑟
𝑟∑
𝑧=1

(
𝑟

𝑧

)
2𝑧

(
𝑝𝑁

𝑚2𝐷

)2𝑟−𝑧
𝑟𝑟−𝑧Δ2𝑟−2𝑧

= (4𝑟)𝑟
(
𝑝𝑁

𝑚2𝐷

)2𝑟 𝑟∑
𝑧=1

(
𝑟

𝑧

) (
2𝑚2𝐷

𝑝𝑁

) 𝑧
(𝑟Δ2)𝑟−𝑧

= (4𝑟)𝑟
(
𝑝𝑁

𝑚2𝐷

)2𝑟 (2𝑚2𝐷

𝑝𝑁
+ 𝑟Δ2

) 𝑟
,

which finishes the proof. □

5.5 Strong CSP refutation: smoothed via semirandom

In this section, we show how the tight refutation of semirandom sparse polynomials in Section 5.3
can be used in a black-box way to derive nearly optimal algorithms for strongly refuting smoothed
CSPs and, as a special case, semirandom CSPs.

Smoothed model. Let us first formally describe the model of smoothed Boolean CSPs.
Definition 5.5.1 (Smoothed CSP Instances [Fei07]). Let 𝑘 ∈ N. Let 𝜓 be an instance of a CSP
with predicate 𝑃 : {−1, 1}𝑘 → {0, 1} specified by a collection of 𝑘-tuples 𝐻 and literal patterns 𝜉.
Let ®𝑝 = {𝑝𝐶,𝑖}𝐶∈𝐻,𝑖∈[𝑘] with each 𝑝𝐶,𝑖 ∈ [0, 1] be smoothing parameters, one for every 𝐶 ∈ 𝐻 and
𝑖 ∈ [𝑘]. A ®𝑝-smoothing of 𝜓 is obtained as follows:

65

1. For every 𝐶 ∈ 𝐻, let 𝑆𝐶 ⊆ [𝑘] be obtained by adding 𝑖 to 𝑆𝐶 with probability 𝑝𝐶,𝑖 indepen-
dently for every 𝑖 ∈ 𝐶.

2. For every 𝑖 ∈ 𝑆𝐶 , reset 𝜉(𝐶, 𝑖) to be a uniform and independent random bit in ±1.
Remark 5.5.2. 1. The notion of smoothing allows using a different probability of “rerandomiz-

ing” each of 𝑚𝑘 literals in a 𝑘-CSP instance 𝜓 with 𝑚 constraints.
2. The two-step random process above is equivalent to flipping the negation pattern 𝜉(𝐶, 𝑖) of

the 𝑖-th literal in clause 𝐶 ∈ 𝐻 independently of others with probability 𝑝𝐶,𝑖/2.
3. Setting 𝑝𝐶,𝑖 = 1 for every 𝑖,𝐶 yields the model where the literal patterns are uniformly

random and independent in {±1}. This is the semirandom model of CSPs.
We now proceed to state and prove our main results concerning refutation of smoothed

instances, along the way noting also a better bound for the special semirandom case. We recall
the notion of 𝑡-wise uniform distributions before presenting the main result.
Definition 5.5.3 (𝑡-wise uniform distribution). A probability distribution 𝜇 on {−1, 1}𝑘 is said to
be 𝑡-wise uniform if E𝑧∼𝜇

∏
𝑖∈𝑆 𝑧𝑖 = 0 for every 𝑆 ⊆ [𝑘] of size |𝑆 | ≤ 𝑡.

Theorem 5.5.4 (Smoothed Boolean CSP Refutation). Let 𝑃 : {−1, 1}𝑘 → {0, 1} be a 𝑘-ary Boolean
predicate such that there is no 𝑡-wise uniform distribution supported on 𝑃−1(1). Let ℓ be an integer with
2(𝑘 − 1) ≤ ℓ ≤ 𝑛. There is an algorithm that takes as input an instance Θ of CSP(𝑃) and outputs a value
alg-val(Θ) ∈ [0, 1] in time 𝑛𝑂(ℓ) satisfying the following:
(1) val(Θ) ≤ alg-val(Θ) ≤ 1.
(2) Suppose the input instance Θ is a smoothing 𝜓𝑠 of an arbitrary CSP instance 𝜓 = (𝐻, 𝜉) with 𝑛

variables and 𝑚 constraints w.r.t. a vector of smoothing parameters ®𝑝 = {𝑝𝐶,𝑖} in [0, 1]. Suppose that
𝑚 ≥ 2𝑚0

𝑞(®𝑝) , where

𝑚0 =
2𝑂(𝑘) log2 𝑛

𝜀5
· ℓ

(𝑛
ℓ

) 𝑡
2

and

𝑞(®𝑝) = 1
𝑚

∑
𝐶∈𝐻

∏
𝑖∈𝐶

𝑝𝐶,𝑖 . (5.11)

Then with probability at least 1− 1/poly(𝑛) over the randomness of the smoothening process, it holds
that alg-val(Θ) ≤ 1− 𝑞(®𝑝)

2 · (𝛿𝑡 − 𝜖) + 2−𝑛 . Here, 𝛿𝑡 ≥ 2−𝑂̃(𝑘
𝑡) depends only on the predicate 𝑃.

Furthermore, in the semirandom case (where all 𝑝𝐶,𝑖 = 1), we have alg-val(Θ) ≤ 1 − 𝛿𝑡 + 𝜖 + 2−𝑛

with probability 1− 1/poly(𝑛).
Moreover, the algorithm is captured by the canonical degree 2ℓ sum-of-squares relaxation of the CSP
maximization problem over the hypercube.

The following result, proved in [AOW15] using LP duality, plays a crucial role in our proof
of the above theorem, by allowing us to bound the value of CSP with predicate 𝑃 that does not
support a 𝑡-wise uniform distribution by a degree-𝑡 polynomial as proxy.
Fact 5.5.5 (Separating Polynomials, Lemma 3.16 and Theorem 4.10 in [AOW15]). Let 𝑃 :
{−1, 1}𝑘 → {0, 1} be a predicate such that there is no 𝑡-wise uniform distribution supported on 𝑃−1(1).
Then, there is a 𝛿𝑡 ≥ 2−𝑂̃(𝑘

𝑡) such that for every 𝑡-wise uniform distribution 𝜁, E𝜁[𝑃] ≤ 1− 𝛿𝑡 . Further-
more, there is a degree-𝑡 polynomial 𝑄 : {−1, 1}𝑘 → R such that 𝑄(𝑧) = ∑

𝑇⊆[𝑘] 𝑄̂(𝑇)𝑧𝑇 and:
1. 𝑃(𝑧) ≤ 1− 𝛿𝑡 +𝑄(𝑧) for every 𝑧 ∈ {−1, 1}𝑘
2. 𝑄̂(∅) = 0, i.e. 𝑄 has no constant coefficient, and,

66

3.
∑
𝑇⊆[𝑘] |𝑄̂(𝑇)| ≤ 22𝑘 .

We now turn to the task of proving Theorem 5.5.4.

5.5.1 Proof of Theorem 5.5.4

By Fact 3.5.2, there is an algorithm that in 𝑛𝑂(ℓ)-time outputs a value alg-val(Θ) ∈ [0, 1] such that
𝛽 ≤ alg-val(Θ) ≤ 𝛽 + 2−𝑛 , where 𝛽 = max Ẽ[Θ], Θ(𝑥) B ∑

𝐶∈𝐻 𝑃(𝜉(𝐶, 1)𝑥𝐶1 , . . . , 𝜉(𝐶, 𝑘)𝑥𝐶𝑘) is a
degree ≤ 2𝑘 polynomial, and the maximum is taken over degree-2ℓ pseudo-expectations Ẽ over
{−1, 1}𝑛 . Note that Θ is indeed a degree ≤ 2𝑘 polynomial, as 𝑃 can always be expressed as a
degree ≤ 2𝑘 polynomial.

First, we observe that Item (1), i.e., completeness, is completely trivial: simply take Ẽ to be the
expectation E𝜇 of a distribution 𝜇 supported only on optimal solutions to Θ. Indeed, this implies
that val(Θ) ≤ 𝛽 ≤ alg-val(Θ). We thus focus on proving Item (2).

We will analyze the smoothing random process using the two steps that define it. Let us first
consider the event that the first step chooses to re-randomize all the literals in a given clause 𝐶 ∈ 𝐻;
the probability of this event is

∏𝑘
𝑖=1 𝑝𝐶,𝑖 . Let 𝒢 be the set of clauses for which this occurs. Observe

that the 0-1 indicator of “all literals are chosen to be re-randomized in 𝐶” is independent across
clauses 𝐶 ∈ 𝐻. The expected number of clauses in 𝒢 equals 𝑚𝑞(®𝑝) = ∑

𝐶∈𝐻
∏𝑘

𝑖=1 𝑝𝐶,𝑖 . Thus, by
Chernoff bound, |𝒢| ≥ 0.5𝑚𝑞(®𝑝)with probability at least 1− 𝑒−𝑚𝑞(®𝑝)/8 ≥ 1− 𝑒−𝑚0/4 ≥ 1−1/poly(𝑛),
as 𝑚𝑞(®𝑝) ≥ 2𝑚0. Let us proceed assuming that |𝒢| ≥ 0.5𝑚𝑞(®𝑝).

Let 𝜉 denote the literal patterns after re-randomizing. We see that for every 𝐶 ∈ 𝒢 and 𝑖 ∈ [𝑘],
𝜉(𝐶, 𝑖) is drawn uniformly and independently from {−1, 1}. We shall view 𝜉(𝐶, 𝑖) as fixed for all
𝐶 ∉ 𝒢, 𝑖 ∈ [𝑘], and think of the 𝜉(𝐶, 𝑖)’s for 𝐶 ∈ 𝒢, 𝑖 ∈ [𝑘] as being random. For 𝐶 ∈ 𝒢, let 𝑟𝐶,𝑖

denote the random variable 𝜉(𝐶, 𝑖), which is uniformly random in {−1, 1}.
Let

𝜓𝑔 =
1
|𝒢|

∑
𝐶∈𝒢

𝑃(𝑟𝐶1𝑥𝐶1 , . . . , 𝑟𝐶𝑘 𝑥𝐶𝑘) ,

𝜓𝑏 =
1

|𝐻 | − |𝒢|
∑
𝐶∉𝒢

𝑃(𝜉(𝐶, 1)𝑥𝐶1 , . . . , 𝜉(𝐶, 𝑘)𝑥𝐶𝑘) ,

so that |𝐻 |𝜓𝑠 = |𝒢|𝜓𝑔 + (|𝐻 | − |𝒢|)𝜓𝑏 . Thus, by linearity of pseudo-expectations, we must have
that for any pseudo-expectation Ẽ,

Ẽ[𝜓𝑠] ≤
|𝒢|
|𝐻 | |Ẽ[𝜓𝑔]| + (1−

|𝒢|
|𝐻 |)|Ẽ[𝜓𝑏]| . (5.12)

Note that 𝜓𝑔 and 𝜓𝑏 are not known to our algorithm; these quantities appear only in our analysis.
Now, we know that for every 𝑥, 𝑃(𝜉(𝐶, 1)𝑥𝐶1 , . . . , 𝜉(𝐶, 𝑘)𝑥𝐶𝑘) ≤ 1. As 𝑃 is a degree 𝑘

polynomial on 𝑘 variables, by Fact 3.5.7, for every pseudo-expectation Ẽ of degree 2ℓ ≥ 2𝑘,
Ẽ[𝑃(𝜉(𝐶, 1)𝑥𝐶1 , . . . , 𝜉(𝐶, 𝑘)𝑥𝐶𝑘)] ≤ 1. Using linearity of Ẽ and adding up the inequalities above
for 𝐶 ∉ 𝒢 yields that:

Ẽ[𝜓𝑏] ≤ 1 . (5.13)

Let us now analyze Ẽ[𝜓𝑔]. First, we invoke Fact 5.5.5 to conclude that for every 𝑥, it holds
that:

𝑃(𝑟𝐶,1𝑥𝐶1 , . . . , 𝑟𝐶,𝑘𝑥𝐶𝑘) ≤ 1− 𝛿𝑡 +𝑄(𝑟𝐶,1𝑥𝐶1 , . . . , 𝑟𝐶,𝑘𝑥𝐶𝑘) .

67

As deg(𝑄) = 𝑡 ≤ 𝑘, by Fact 3.5.7 and summing up over 𝐶 ∈ 𝒢, for every pseudo-expectation of
degree 2ℓ ≥ 2𝑘, we must have that:

Ẽ[𝜓𝑔] ≤ 1− 𝛿𝑡 +
1
|𝒢|

∑
𝐶∈𝒢

Ẽ[𝑄(𝑟𝐶,1𝑥𝐶1 , . . . , 𝑟𝐶,𝑘𝑥𝐶𝑘)] .

Next, let 𝑇 ⊆ [𝑘] of size ≤ 𝑡. For each 𝐶, let 𝑥𝐶 |𝑇 =
∏

𝑖∈𝑇 𝑥𝐶𝑖 and 𝑏𝐶 |𝑇 = Π𝑖∈𝑇𝑟𝐶,𝑖 . Observe that
𝑄(𝑧) = ∑

0<|𝑇 |≤𝑡 𝑄̂(𝑇)𝑧𝑇 from Fact 5.5.5 and that further,
∑

0<|𝑇 |≤𝑡 |𝑄̂(𝑇)| ≤ 22𝑘 . Thus, we have:

Ẽ[𝜓𝑔] ≤ 1− 𝛿𝑡 +
1
|𝒢|

∑
𝐶∈𝒢

∑
𝑇⊆[𝑘],0<|𝑇 |≤𝑡

|𝑄̂(𝑇)|𝑏𝐶 |𝑇 Ẽ
[
𝑥𝐶 |𝑇

]
.

Define 𝜙𝑇 to be the homogenous degree |𝑇 | polynomial described by:

𝜙𝑇(𝑥) =
1
|𝒢|

∑
𝐶∈𝒢

𝑏𝐶 |𝑇 𝑥𝐶 |𝑇

Then, notice that:
Ẽ[𝜓𝑔] ≤ 1− 𝛿𝑡 +

∑
𝑇⊆[𝑘],0<|𝑇 |≤𝑡

|𝑄̂(𝑇)|Ẽ[𝜙𝑇] . (5.14)

We now observe that each 𝜙𝑇 is a polynomial with independent random coefficients in {−1, 1}.
Further, since |𝒢| ≥ 0.5𝑞(®𝑝)𝑚 ≥ 𝑚0, by Theorem 5.3.1, with probability at least 1− 1/poly(𝑛), we
must have that for every pseudo-expectation Ẽ of degree at least 2ℓ ,

Ẽ[𝜙𝑇] ≤
𝜖

22𝑘
.

By a union bound over ≤ 2𝑘 possible 𝑇, this bound holds for every 𝑇 with probability at least
1− 1/poly(𝑛). Conditioning on this event, combining with (5.14), and using that

∑
𝑇 |𝑄̂(𝑇)| ≤ 22𝑘

gives:
Ẽ[𝜓𝑔] ≤ 1− 𝛿𝑡 + 𝜖 . (5.15)

Thus, plugging this bound into (5.12) and using (5.13) yields:

Ẽ[𝜓𝑠] ≤
(
1− |𝒢||𝐻 |

)
· 1+ |𝒢||𝐻 | · (1− 𝛿𝑡 + 𝜖) ≤ 1− |𝒢||𝐻 | (𝛿𝑡 − 𝜖) ≤ 1− (𝛿𝑡 − 𝜖) ·

𝑞(®𝑝)
2

, (5.16)

where we use that |𝒢||𝐻 | ≥ 𝑞(®𝑝)/2. Note that here we require 𝛿𝑡 ≥ 𝜀, although the conclusion is

trivial if this does not hold. As alg-val(𝜓𝑠) ≤ 𝛽 + 2−𝑛 ≤ 1− (𝛿𝑡 − 𝜖) · 𝑞(®𝑝)2 + 2−𝑛 , this completes the
proof for the smoothed case.

As the semirandom model is the special case of the smoothed model (where 𝑝𝐶,𝑖 = 1 for
every 𝑖), the above argument directly yields an upper bound of Ẽ[𝜓] ≤ 1 − 0.5(𝛿𝑡 − 𝜖) + 2−𝑛

for the case of semirandom instances. However, we incurred the 0.5 factor entirely due to the
probabilistic bound on |𝒢|, and in the semirandom setting, |𝒢| = |𝐻 | with probability 1. Hence,
for semirandom refutation, we do not lose this extra 0.5 factor.

68

5.6 Analyzing the [WAM19] approach for random 3-XOR

In this section, we will prove that the approach suggested by [WAM19] (in their Appendix F.1,
F.2) for strongly refuting random 𝑘-XOR with 𝑘 odd does not yield the right trade-off for 𝑚 as a
function of 𝑛, ℓ . Our proof reduces to showing that a certain matrix defined in [WAM19] does not
have small spectral norm. For simplicity, we present the argument for 𝑘 = 3.

First, we give a brief overview of their approach. Let 𝜙 be a random 3-XOR instance in 𝑛

variables and 𝑚 clauses, with hypergraph 𝐻 and coefficients {𝑏𝐶}𝐶∈𝐻 . We will assume that each
pair 𝐶1 ≠ 𝐶2 ∈ 𝐻 has |𝐶1 ∩ 𝐶2 | ≤ 1; this “morally” holds with high probability provided that
𝑚 ≪ 𝑛2 (and recall that we are working in the regime of 𝑚 ∼ 𝑛1.5 or smaller, as for 𝑚 ≫ 𝑛1.5

there is a polynomial-time refutation [AGK21]). More formally, when 𝑚 ≪ 𝑛2, then with high
probability over 𝐻, one can remove 𝑜(𝑚) constraints from 𝐻 so that the remaining hypergraph
satisfies this condition.

The construction of [WAM19] is as follows. First, partition the hyperedges 𝐻 arbitrarily into
𝐻1, . . . ,𝐻𝑛 , such that if 𝐶 ∈ 𝐻𝑢 then 𝑢 ∈ 𝐶. From now on, we shall think of 𝐻 as ∪𝑛

𝑢=1𝐻𝑢 . We
note that our lower bound will hold regardless of the choice of the partition here.

Next, let 𝜙 be the polynomial 𝜙(𝑥) := 1
𝑚

∑
𝐶∈𝐻 𝑏𝐶𝑥𝐶 , where 𝑥𝐶 :=

∏
𝑖∈𝐶 𝑥𝑖 . Applying the

Cauchy-Schwarz inequality, we have that

𝜙(𝑥)2 ≤ 1
𝑚

𝑛∑
𝑢=1

𝑥2
𝑢 +

𝑛

𝑚2

𝑛∑
𝑢=1

∑
𝐶≠𝐶′∈𝐻𝑢

𝑏𝐶𝑏𝐶′𝑥𝐶\{𝑢}𝑥𝐶′\{𝑢} =
𝑛

𝑚
+ 𝑓 (𝑥) ,

where 𝑓 (𝑥) := 𝑛
𝑚2

∑𝑛
𝑢=1

∑
𝐶≠𝐶′∈𝐻𝑢 𝑏𝐶𝑏𝐶′𝑥𝐶\{𝑢}𝑥𝐶′\{𝑢}.

We now recall the following definition from [WAM19].
Definition 5.6.1. Let ℓ ∈ N, and let 𝐻 = ∪𝑛

𝑢=1𝐻𝑢 be a 3-uniform hypergraph. For ®𝑆, ®𝑇 ∈ [𝑛]ℓ and

𝐶1 = {𝑢, 𝑣1,𝑤1},𝐶2 = {𝑢, 𝑣2,𝑤2} ∈ 𝐻𝑢 with {𝑣1,𝑤1} ∩ {𝑣2,𝑤2} = ∅, we write ®𝑆 𝐶1,𝐶2↔ ®𝑇 if there
exist 𝑖 ≠ 𝑗 ∈ [ℓ] such that (1) ®𝑆𝑡 = ®𝑇𝑡 for all 𝑡 ≠ 𝑖, 𝑗, and (2) { ®𝑆𝑖 , ®𝑆 𝑗} contains exactly one element
from each of {𝑣1,𝑤1} and {𝑣2,𝑤2}, and { ®𝑇𝑖 , ®𝑇𝑗} contains the other two remaining elements. Here,

®𝑆𝑖 denotes the 𝑖-th element in the tuple ®𝑆 ∈ [𝑛]ℓ . We note that if ®𝑆 𝐶1,𝐶2↔ ®𝑇 for some 𝐶1,𝐶2, then we

cannot have ®𝑆
𝐶′1,𝐶′2↔ ®𝑇 for any other pair 𝐶′1,𝐶′2.

Let 𝐴𝑢 ∈ R𝑛ℓ×𝑛ℓ be the matrix where 𝐴𝑢(®𝑆, ®𝑇) = 𝑏𝐶1𝑏𝐶2 if ®𝑆 𝐶1,𝐶2↔ ®𝑇 for some 𝐶1 ≠ 𝐶2 ∈ 𝐻𝑢 ,
and 0 otherwise, and let 𝐴 :=

∑𝑛
𝑢=1 𝐴𝑢 .

It is simple to observe that max𝑥∈{−1,1}𝑛 𝑓 (𝑥) ≤ 𝑛
𝑚2 ·𝑂(𝑛

2

ℓ2)∥𝐴∥2, as 𝑚2

𝑛 𝑓 (𝑥) = 1
4(ℓ2)(𝑛−4)ℓ−2 (𝑥⊗ℓ)⊤𝐴𝑥⊗ℓ

for all 𝑥 ∈ {−1, 1}𝑛 because each pair 𝐶1 ≠ 𝐶2 ∈ 𝐻𝑢 “appears” exactly 4
(ℓ
2

)
(𝑛 − 4)ℓ−2 times in

the matrix 𝐴. Thus, in order to get the correct 𝑚 = 𝑛1.5/
√
ℓ trade-off, we need to show that

∥𝐴∥2 ≤ 𝑂(ℓ), with high probability over 𝐻 and the 𝑏𝐶 ’s.
We prove that ∥𝐴∥2 is in fact large with high probability, and so the above approach of [WAM19]

fails. Formally, we prove that with high probability, the matrix𝐴 has a spectral norm Ω(min(ℓ 2, 𝑚
2

𝑛2)),
which has the following implications. If the minimum is 𝑚2

𝑛2 , then the upper bound certified on
𝑓 is Ω(𝑛/ℓ 2), and thus the upper bound certified on 𝜙 is Ω(

√
𝑛/ℓ). This is not very useful, as it

is greater than 1 when ℓ ≪
√
𝑛. If the minimum is ℓ 2, then we certify a good upper bound on 𝑓

(and therefore also 𝜙) only if 𝑚 ≥ 𝑛1.5, which is higher than the desired threshold of 𝑛1.5/
√
ℓ .

69

Proposition 5.6.2. Let 𝜙 be a 3-XOR instance with 𝑛 variables and 𝑚 constraints, with constraint
hypergraph 𝐻 = ∪𝑛

𝑢=1𝐻𝑢 and coefficients {𝑏𝐶}𝐶∈𝐻 . Suppose that 2𝑛 ≤ 𝑚, and that for every pair
of constraints 𝐶1 ≠ 𝐶2 ∈ 𝐻, it holds that |𝐶1 ∩ 𝐶2 | ≤ 1. Let ℓ ≤ 𝑛. Then, ∥𝐴∥2 ≥

(ℓ ′
2

)
, where

ℓ ′ := min(⌈ 𝑚2𝑛 ⌉, ℓ).
We note that Proposition 5.6.2 holds regardless of the choice of the partitioning of 𝐻 into the

𝐻𝑢 ’s, and also for any choice of the 𝑏𝐶 ’s (and so, in particular, for random 𝑏𝐶 ’s). We also note that
Proposition 5.6.2 essentially holds for a random 𝐻, provided that 𝑚 ≪ 𝑛2, for the same reason
mentioned earlier: when 𝑚 ≪ 𝑛2, with high probability over 𝐻, after removing 𝑜(𝑚) constraints
from 𝐻, the resulting hypergraph 𝐻′ satisfies |𝐶1 ∩ 𝐶2 | ≤ 1 for all 𝐶1 ≠ 𝐶2 ∈ 𝐻′.

Proof. As 𝑚 ≥ 2𝑛, there must exist some variable 𝑢 ∈ [𝑛] that appears in at least 𝑚
𝑛 constraints.

Hence, there must exist at least ⌈ 𝑚2𝑛 ⌉ constraints that include 𝑢 and all have the same sign
𝑏 ∈ {−1, 1}.

Let ℓ ′ := min(⌈ 𝑚2𝑛 ⌉, ℓ). By the above, we have ℓ ′ constraints {𝐶𝑖}𝑖∈[ℓ ′] = {{𝑢, 𝑣𝑖 ,𝑤𝑖}}𝑖∈[ℓ ′] such
that 𝑏𝐶𝑖 = 𝑏 for all 𝑖. Furthermore, by assumption on 𝐻, we have |𝐶𝑖 ∩ 𝐶 𝑗 | ≤ 1 for all 𝑖 ≠ 𝑗 ∈ [ℓ ′].
As 𝑢 ∈ 𝐶𝑖 ∩ 𝐶 𝑗 , it thus follows that {𝑣𝑖 ,𝑤𝑖} ∩ {𝑣 𝑗 ,𝑤 𝑗} = ∅. Let 𝑧 ∈ [𝑛] be arbitrary. Let ℛ denote
the set of tuples (𝑟1, . . . , 𝑟ℓ ′, 𝑧, . . . , 𝑧) ∈ [𝑛]ℓ such that 𝑟𝑖 ∈ {𝑣𝑖 ,𝑤𝑖} for all 𝑖 ∈ [ℓ ′]. We note that the
element 𝑧 merely pads each tuple in ℛ to have length exactly ℓ when ℓ ′ < ℓ .

Let 𝑀 be the submatrix of 𝐴 indexed by the tuples in ℛ. Note that 𝑀 is a 2ℓ
′ × 2ℓ

′
matrix, as

|𝑅 | = 2ℓ
′
. Let ®𝑆 = (𝑟1, . . . , 𝑟ℓ ′ , 𝑧, . . . , 𝑧) be a row in 𝑀. We will show that each row of 𝑀 has exactly(ℓ ′

2

)
nonzero entries, each of which is 1.
First, let us consider the contribution to 𝑀 from 𝐴𝑢 . Fix a row ®𝑆 ∈ ℛ. For each pair of

indices 𝑖 ≠ 𝑗 ∈ [ℓ ′], we can replace the 𝑖-th and 𝑗-th elements of ®𝑆 with the elements of {𝑣𝑖 ,𝑤𝑖}

and {𝑣 𝑗 ,𝑤 𝑗} not used in ®𝑆, and this will yield some ®𝑇 ∈ ℛ with ®𝑆
{𝑢,𝑣𝑖 ,𝑤𝑖},{𝑢,𝑣 𝑗 ,𝑤 𝑗}

↔ ®𝑇. Hence,
𝐴𝑢(®𝑆, ®𝑇) = 𝑏2 = 1. Any other ®𝑇 ∈ ℛ will differ from ®𝑆 by at least 2 elements, and thus we must
have 𝐴𝑢(®𝑆, ®𝑇) = 0 for such ®𝑇.

Next, let us consider the contribution to 𝑀 from 𝐴𝑢′ for 𝑢′ ≠ 𝑢. Fix a row ®𝑆 ∈ ℛ. It
suffices to only consider ®𝑇 obtained by swapping the 𝑖-th and 𝑗-th entries of ®𝑆, for some 𝑖 ≠

𝑗 ∈ [ℓ ′], as above. If 𝐴𝑢′(®𝑆, ®𝑇) is nonzero, then we must have ®𝑆
{𝑢′,𝑣𝑖 ,𝑤𝑖},{𝑢′,𝑣 𝑗 ,𝑤 𝑗}

↔ ®𝑇, and thus that
{𝑢′, 𝑣𝑖 ,𝑤𝑖}, {𝑢′, 𝑣 𝑗 ,𝑤 𝑗} ∈ 𝐻𝑢′. However, this implies that |{𝑢, 𝑣𝑖 ,𝑤𝑖}, {𝑢′, 𝑣𝑖 ,𝑤𝑖}| = 2 > 1, which
contradicts our assumption on 𝐻.

We have thus shown that the matrix 𝑀 is 2ℓ
′ × 2ℓ

′
, with each row having exactly

(ℓ ′
2

)
nonzero

entries, all of which are 1. It thus follows that ∥𝐴∥2 ≥ ∥𝑀∥2 ≥ (12ℓ
′
)⊤𝑀12ℓ

′
/2ℓ ′ =

(ℓ ′
2

)
, which

finishes the proof. □

70

Chapter 6

Short Refutation Witnesses for Smoothed
CSPs Below the Spectral Threshold

In this chapter, we use our smoothed refutation algorithm along with our proof of Feige’s
conjecture to show the existence of polynomial size refutation witnesses below the spectral
threshold for smoothed instances of Boolean CSPs. Modulo the use of our key new ingredients —
Theorem 5.3.1 and Theorem 6 — the rest of the proof plan largely follows the influential work of
Feige, Kim and Ofek [FKO06] who proved that fully random instances of 3-SAT admit polynomial
size refutation witnesses whenever they have at least 𝑂̃(𝑛1.4) constraints. Our new ingredients
allow us to (1) show a similar result for not just fully random instances, but also semirandom and
smoothed ones, and (2) provide an arguably simpler refutation witness even for the fully random
instances of 3-SAT studied by [FKO06].

Let us first formalize the idea of a refutation witness, or equivalently, a nondeterministic
refutation algorithm.
Definition 6.0.1 (Nondeterministic refutation). Fix 𝑘 ∈ N, and let 𝑃 : {−1, 1}𝑘 → {0, 1} be a
predicate. We say that a nondeterministic algorithm𝑉 is an nondeterministic efficient weak refutation
algorithm if 𝑉 takes as input a CSP instance 𝜓 with predicate 𝑃 in 𝑛 variables and 𝑚 clauses and
in poly(𝑛,𝑚)-nondeterministic time outputs either “unsatisfiable” or “don’t know”, such that for
every 𝜓, if 𝑉(𝜓) outputs “unsatisfiable” then 𝜓 is unsatisfiable. If 𝑉(𝜓) outputs “unsatisfiable”,
then we say that 𝑉 weakly refutes 𝜓. The string 𝜋 ∈ {0, 1}poly(𝑛,𝑚) of nondeterministic guesses of
𝑉 is called the weak refutation witness.

We will sketch a proof of the following theorem. We only provide a proof sketch, as the proof
merely combines the ideas of [FKO06] with our theorems, Theorem 5.3.1 and Theorem 6.
Theorem 6.0.2. Let 𝑘 ≥ 3, and let 𝑃 : {−1, 1}𝑘 → {0, 1} be a non-trivial predicate. Then there is a
nondeterministic efficient weak refutation algorithm 𝑉 with the following properties. Let 𝜓 be an instance
of a CSP with predicate 𝑃 with 𝑛 variables and 𝑚 clauses, specified by a collection of 𝑚 𝑘-tuples 𝐻 and
literal patterns 𝜉. Then:

(1) If 𝜓 is a uniformly random instance with 𝑚 ≥ 𝑂̃(1) · 𝑛
𝑘
2−

𝑘−2
2(𝑘+2) clauses, then 𝑉 weakly refutes 𝜓 with

probability at least 1− 1/poly(𝑛).
(2) If 𝜓 is a semirandom instance with 𝑚 ≥ 𝑂̃(1) · 𝑛

𝑘
2−

𝑘−2
2(𝑘+8) clauses, then 𝑉 weakly refutes 𝜓 with

probability at least 1− 1/poly(𝑛).

71

(3) If 𝜓 is a smoothed instance obtained using smoothing parameters ®𝑝 = {𝑝𝐶,𝑖}𝐶∈𝐻,𝑖∈[𝑘] with 𝑚 ≥
𝑂̃(1) · 𝑛

𝑘
2−

𝑘−2
2(𝑘+8) /𝑞(®𝑝) clauses, where 𝑞(®𝑝) B 1

𝑚

∑
𝐶∈𝐻

∏
𝑖∈𝐶 𝑝𝐶,𝑖 , then 𝑉 weakly refutes 𝜓 with

probability at least 1− 1/poly(𝑛).
Finally, if 𝑘 = 3, the threshold of 𝑚 for the semirandom/smoothed case can be improved to 𝑂̃(𝑛1.4) and
𝑂̃(𝑛1.4)/𝑞(®𝑝), respectively, matching the random case.

We will first begin by focusing on the case of 𝑘-XOR. As in the case of Section 5.5, refuting
arbitrary predicates 𝑃 will reduce to refuting XOR.

In [FKO06], FKO observed that the following type of refutation witnesses, which we shall
call ideal FKO witnesses, allow for a non-trivial1 weak refutation of instances of 𝑘-XOR whenever
the 𝑏𝐶 ’s are chosen uniformly and independently at random. Informally speaking, ideal FKO
witnesses are simply a disjoint collection of even covers in 𝐻.
Definition 6.0.3 (Ideal FKO witnesses). Let 𝐻 be 𝑘-uniform hypergraph on [𝑛]. We say that a
collection of even covers 𝐸1,𝐸2, . . . ,𝐸𝑟 ⊆ 𝐻 is an ideal FKO witness of length ℎ if each 𝐸𝑖 ∩ 𝐸 𝑗 = ∅
for every 𝑖 ≠ 𝑗 and |𝐸𝑖 | ≤ ℎ for every 𝑖, where |𝐸𝑖 | denotes the length of the even cover 𝐸𝑖 . The
size of the witness is 𝑠 =

∑𝑟
𝑖=1 |𝐸𝑖 | ≤ ℎ𝑟.

Ideal FKO witnesses yield non-trivial weak refutation witnesses for semi-random instances of
𝑘-XOR.
Lemma 6.0.4 (Ideal FKO witnesses yield refutation witnesses for XOR). Let 𝜓 = (𝐻, 𝑏) be an
instance of 𝑘-XOR on 𝑛 variables. Suppose 𝐸1,𝐸2, . . . ,𝐸𝑟 ⊆ 𝐻 is an ideal FKO witness in 𝐻. Suppose
further that each 𝑏𝐶 is a uniformly random and independent bit in ±1. Then, with probability at least
1− exp(Ω(𝑟)) over the draw of 𝑏 = {𝑏𝐶}𝐶∈𝐻 , val(𝜓) ≤ 1− 𝑟

3𝑚 .

Proof. For each 𝑖, consider 𝑍𝑖 =
∏

𝐶∈𝐸𝑖 𝑏𝐶 . Then, notice that 𝑍1,𝑍2, . . . ,𝑍𝑟 are independent ran-
dom variables, each uniformly drawn from {−1, 1}. Thus, by a Chernoff bound, with probability
at least 1− exp(Ω(𝑟)) there must exist at least 𝑟/3 𝐸𝑖’s such that 𝑍𝑖 = −1. Consider any such 𝐸𝑖
where this holds.

Suppose some 𝑥 ∈ {−1, 1}𝑛 satisfies all the constraints in 𝜓 corresponding to 𝑘-tuples 𝐶 ∈ 𝐸𝑖 .
Then,

∏
𝐶∈𝐸𝑖 𝑏𝐶 =

∏
𝐶∈𝐸𝑖

∏
𝑗≤𝑘 𝑥𝐶 𝑗 . Since 𝐸𝑖 is an even cover, every variable occurs an even

number of times in the 𝐶’s in 𝐸𝑖 . Since even powers of any 𝑥 𝑗 evaluate to 1, the RHS above must
evaluate to 1. Since we know that

∏
𝐶∈𝐸𝑖 𝑏𝐶 = −1, this implies that such an 𝑥 cannot exist: every 𝑥

must violate at least one constraint in each 𝐸𝑖 if
∏

𝐶∈𝐸𝑖 𝑏𝐶 = −1. Since 𝐸𝑖 ’s are disjoint, this implies
that every 𝑥 violates at least 𝑟/3 constraints in 𝜓. The bound on val(𝜓) now follows. □

The key question is whether Ideal FKO witnesses exist in the 𝑘-uniform hypergraph specifying
the 𝑘-XOR instance. In [FKO06], the authors study the question of finding such refutation
witnesses in random sufficiently dense hypergraphs. They comment that, while they expect Ideal
FKO witnesses to exist in the regime they are working in, proving that they exist appears hard.
They instead show that a related form of witnesses (these are “almost disjoint” even covers
instead of perfectly disjoint) exist by means of a sophisticated second moment method argument.

Here, we show that Ideal FKO witnesses do indeed exist – not only in random dense hy-
pergraphs but in arbitrary hypergraphs with the same density. Indeed, this follows almost
immediately from Theorem 6.

1Note that by running Gaussian elimination, one can decide if a 𝑘-XOR instance is unsatisfiable in polynomial time.
This is a trivial weak refutation.

72

Lemma 6.0.5. Fix 𝑘 ∈ N and ℓ = ℓ (𝑛). Let 𝐻 be any 𝑘-uniform hypergraph with 𝑚 ≥ 2𝑚0 hyperedges,

where 𝑚0 = Γ𝑘 · 𝑛
(
𝑛
ℓ

) 𝑘
2−1 log 𝑛 is the threshold appearing in Theorem 6. Then, 𝐻 contains a collection of

𝑚0/ℎ(𝑛) hyperedge-disjoint even covers each of length at most ℎ(𝑛) = 𝑂(ℓ log 𝑛).

Proof. The idea is simple. Let 𝑚0 be the number of constraints required in Theorem 6. Choose
𝑚 = 2𝑚0. Then, by an application of Theorem 6, there is an even cover in 𝐻, say, 𝐸1 of size
|𝐸1 | ≤ ℎ(𝑛) = 𝑂(ℓ log 𝑛). Let 𝐻0 = 𝐻. We now repeat the following process for 𝑖 = 1, 2, . . . , 𝑟:
apply Theorem 6 to 𝐻𝑖 B 𝐻𝑖−1 \ 𝐸𝑖 to find an even cover 𝐸𝑖+1 ⊆ 𝐻𝑖 of size ≤ ℎ(𝑛) = 𝑂(ℓ log 𝑛).
Notice that the conditions of Theorem 6 are met so long as |𝐻𝑖 | ≥ 𝑚 − ℎ(𝑛)𝑟 ≥ 𝑚/2, i.e., if
𝑟 ≤ 0.5𝑚/ℎ(𝑛). Further, each of the even covers 𝐸1,𝐸2, . . . ,𝐸𝑟 are pairwise disjoint by construction.
This completes the proof. □

By combining the above observation with semirandom refutation algorithms, one can show
that Ideal FKO witnesses yield weak refutation witnesses for all 𝑘-CSPs at densities polynomially
below 𝑛𝑘/2. This is one of the key insights of FKO [FKO06] – to use the non-trivial weak refutation
offered by (their variant of) ideal FKO witnesses in order to show the existence of polynomial size
weak-refutation witnesses for random 3-SAT with 𝑚 = Ω̃(𝑛1.4) constraints: namely, in a regime of
𝑚 where known spectral algorithms, and more generally those based on the polynomial-time
canonical sum-of-squares relaxation, provably fail. Theorem 6 (and its consequence Lemma 6.0.5)
implies that the same result holds for arbitrary constraint hypergraphs, up to additional polylog(𝑛)
factors in the number of constraints.
Lemma 6.0.6 (Ideal FKO witnesses yield weak refutation witnesses for 3-SAT). Let 𝜓 = (𝐻, 𝜉) be an
instance of 3-SAT described by a 3-uniform hypergraph 𝐻 on [𝑛] with 𝑚 ≥ 𝑂̃(𝑛1.4) arbitrary constraints
and uniformly randomly generated literal patterns. Then, with probability at least 1 − 1/poly(𝑛) over
the draw of the literal patterns in the instance, there is a polynomial-size refutation witness that certifies
val(𝜓) < 1.

Proof Sketch. Let 𝑃 : {−1, 1}3 → {0, 1} be the 3-SAT predicate. Then, 𝑃(𝑧) = 7
8 + 1

8 (𝑧1 + 𝑧2 + 𝑧3) −
1
8 (𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧1𝑧3 − 𝑧1𝑧2𝑧3). We write

𝜓(𝑥) = 1
|𝐻 |

∑
𝐶∈𝐻

𝑃(𝑥𝐶1𝜉𝐶,1, 𝑥𝐶2𝜉𝐶,2, 𝑥𝐶3𝜉𝐶,3)

=
7
8
+ 1

8|𝐻 |
∑
𝐶∈𝐻
(𝜉𝐶,1𝑥𝐶1 + 𝜉𝐶,2𝑥𝐶2 + 𝜉𝐶,3𝑥𝐶3 − 𝜉𝐶,1𝑥𝐶1𝜉𝐶,2𝑥𝐶2 − 𝜉𝐶,2𝑥𝐶2𝜉𝐶,3𝑥𝐶3

− 𝜉𝐶,1𝑥𝐶1𝜉𝐶,3𝑥𝐶3 + 𝜉𝐶,1𝜉𝐶,2𝜉𝐶,3𝑥𝐶1𝑥𝐶2𝑥𝐶3) .

where the 𝜉𝐶,𝑖’s are the literal negation patterns in {−1, 1}. Note that 𝜓(𝑥) computes the fraction
of constraints satisfied by the assignment 𝑥 ∈ {−1, 1}𝑛 . We refute each of the 7 different XOR
instances produced by taking each of the 7 non-constant terms in the expansion of 𝑃 as a
multilinear polynomial above separately.

Our refutation witness helps us efficiently refute each of the instances corresponding to the 7
terms in the expansion above. Specifically, by collecting coefficients together, each the first three
terms each produce a linear polynomial of the form

∑
𝑖 𝐵𝑖𝑥𝑖 . The next three terms each produce

a homogenous quadratic polynomial of the form 1
|𝐻 |

∑
𝐶∈𝐻 𝐵𝐶𝑥𝐶1𝑥𝐶2 , and finally the last term

is a cubic polynomial of the form 1
|𝐻 |

∑
𝐶∈𝐻 𝐵𝐶𝑥𝐶1𝑥𝐶2𝑥𝐶3 . Our refutation witness for each linear

73

polynomial is simply ∥𝐵∥1, where 𝐵 = (𝐵1, . . . , 𝐵𝑛), noting that this is exactly the maximum of
the first kind of terms as 𝑥 varies over the hypercube. For the quadratic case, our refutation
witness is the value of SDP relaxation for the∞→ 1-norm that gives a < 2 factor approximation
to maximum of bilinear forms over the hypercube. For the homogeneous degree 3 term, our
witness is an ideal FKO witness guaranteed by Lemma 6.0.5.

By Chernoff and union bound argument (applied to every assignment in {−1, 1}𝑛), ∥𝐵∥1 for
any linear term above is at most 𝑂(

√
𝑛/𝑚).

By Chernoff and union bound argument, the∞→ 1-norm of the matrix defining the 2-XOR
constraints is at most 𝑂(

√
𝑛/𝑚). By Grothendieck’s inequality (Fact 3.5.4), we can certify this

value efficiently (with an additional loss of at most a factor of < 2) using an SDP.
Thus, we can certify an upper bound of 𝑂(

√
𝑛/𝑚) on all but homogeneous degree 3 poly-

nomial produced in the Fourier expansion above. When 𝑚 ≥ Ω̃(𝑛)𝑛0.5(1−𝛿), i.e., ℓ = 𝑛𝛿, by
Lemma 6.0.5, 𝐻 has a collection of 𝑚

𝑂̃(𝑛𝛿) pairwise disjoint even covers of length at most 𝑂̃(𝑛𝛿).
By Chernoff bounds, at least 1

3 of these even covers must violated and thus, we have obtained a
certificate for an upper bound of 1− 1

𝑂̃(𝑛𝛿) on the value of the final term.

Putting these upper bounds together gives an upper bound of 7
8 + 1

8𝑂(
√

𝑛
𝑚) + 1

8 (1− 1
𝑂̃(𝑛𝛿)) on

the value of the 3-SAT instance. For 𝛿 = 0.2, we observe that
√

𝑛
𝑚 = 𝑂̃(−𝑛0.25+𝛿/4) ≪ 1

𝑂̃(𝑛𝛿) . Thus,

for 𝑚 ≥ 𝑂̃(𝑛1.4), with probability at least 1− 1/poly(𝑛), we obtain a refutation for the input 3-SAT
instance. □

Lemma 6.0.6 generalizes to all 𝑘-CSPs with predicate 𝑃, provided that 𝑃 is non-trivial, i.e., 𝑃
is not identically 1. We only need the following basic fact (and the rest of the proof remains the
same as above), as well as known results for spectral refutation of random 𝑘 − 1 and smaller-arity
XOR instances.
Lemma 6.0.7 (Highest Fourier Coefficient of Boolean Functions). Let 𝑃 : {−1, 1}𝑘 → {0, 1}. Let∑
𝑆⊆[𝑘] 𝑃̂(𝑆)𝑥𝑆 be the Fourier polynomial representation of 𝑃. Then, 𝑃̂(∅) + |𝑃̂([𝑘])| ≤ 1.

Proof. For each 𝑏 ∈ {−1, 1}, consider the distribution that is uniform on all 𝑥 such that
∏

𝑖 𝑥𝑖 = 𝑏.
Then, the expectation of 𝑃 on this distribution is exactly 𝑃̂(∅) + 𝑏𝑃̂([𝑘]). On the other hand, since
𝑃 takes values in {0, 1}, this expectation cannot exceed 1. Thus, 1 ≥ 𝑃̂(∅) + 𝑏𝑃̂([𝑘]) for both values
of 𝑏 and in particular, 1 ≥ 𝑃̂(∅) + |𝑃̂([𝑘])| as desired. □

We now sketch a proof of the generalization of Lemma 6.0.6 to all fully random CSPs. This
is captured by Item (1) in Theorem 6.0.2. We will assume that the Fourier coefficient 𝑃̂([𝑘]) is
nonzero, as otherwise by Theorem 5.5.4, we have enough constraints to give a polynomial time
deterministic refutation.2

Lemma 6.0.8 (Polynomial Size Refutation Witnesses for all random 𝑘-CSPs). Let 𝑃 : {−1, 1}𝑘 →
{0, 1} be an arbitrary 𝑘-ary Boolean predicate for 𝑘 ≥ 3. Let 𝜓 be a CSP instance with predicate 𝑃 specified

by 𝐻– a collection of uniformly at random and independently generated 𝑚 ≥ 𝑚0 = 𝑂̃(1) · 𝑛
𝑘
2−

𝑘−2
2(𝑘+2)

𝑘-tuples and uniformly random and independently generated literal patterns {𝜉(𝐶, 𝑖)}𝐶∈𝐻,𝑖∈[𝑘]. Then,

2This is because there cannot be a (𝑘 − 1)-uniform distribution 𝜇 supported on 𝑃−1(1), as otherwise we would have
1 = E𝑥∼𝜇[𝑃(𝑥)] = 𝑃̂(∅) < 1, where we have 𝑃̂(∅) < 1 as 𝑃 is nontrivial. And then we observe that the CSP instance has

at least 𝑂̃(𝑛
𝑘
2− 𝑘−2

2(𝑘+2)) constraints, which is at least 𝑂̃(𝑛 𝑘−1
2).

74

with probability at least 1 − 1/poly(𝑛) over the draw of 𝐻 and 𝜉(𝐶, 𝑖)’s, there exists a polynomial size
refutation witness for 𝜓.

Proof. Observe that the instance 𝜓 has 𝑚 = 𝑂̃(1) ·
(
𝑛
ℓ

) 𝑘/2
ℓ constraints for ℓ ≤ 𝑂̃(𝑛 1

𝑘+2). We now
use Fourier analysis to decompose 𝜓(𝑥) B 1

|𝐻 |
∑
𝐶∈𝐻 𝑃(𝑥𝐶1𝜉𝐶,1, . . . , 𝑥𝐶𝑘𝜉𝐶,𝑘) into 2𝑘 polynomials,

each of degree 𝑡 ≤ 𝑘. We use the same certificate as in Lemma 6.0.6 for the linear polynomials
appearing in this decomposition. For quadratic and higher degree (≤ 𝑘 − 1) terms, we now
use spectral refutation from prior results on refuting fully random CSPs, such as Theorem 1
in [AOW15]. Each degree 𝑡 polynomial (with 𝑡 ≤ 𝑘 − 1) that appears requires at least 𝑂̃(𝑛𝑡/2/𝜀2)
constraints to certify an upper bound of 𝜀 on its value; we can thus certify an upper bound of

𝜀 =

√
𝑛(𝑘−1)/2
𝑚 on each polynomial. Note that by choice of 𝑚, we have 𝜀 ≤ 1.

Finally, to refute the final and highest degree polynomial obtained by taking the [𝑘]-indexed
Fourier coefficient of 𝑃, we use the Ideal FKO witness from Lemma 6.0.4. Then, as in the argument
for 3-SAT above, we arrive at a certificate that (with probability at least 1− 1/poly(𝑛)) certifies an

upper bound of 𝑃̂(∅)+ 𝑂̃(
√

𝑛(𝑘−1)/2
𝑚)+ |𝑃̂([𝑘])| · (1− 𝑂̃(1)

ℓ log 𝑛) on the value of 𝜓, using Lemma 6.0.5. The
size of the witness is 𝑠(𝑛) ≤ 𝑚0 = poly(𝑛), as the degree < 𝑘 terms used deterministic refutations.

Using Lemma 6.0.7, we thus certify an upper bound of 1+ 𝑂̃(
√

𝑛(𝑘−1)/2
𝑚) − 𝑂̃(1)

ℓ log 𝑛 = 1− 𝑜(1) on 𝜓(𝑥),

which finishes the proof. Note that this is indeed 1 − 𝑜(1) as 𝑂̃(1)
√

𝑛(𝑘−1)/2
𝑚 = 𝑂̃(1) · ℓ 𝑘4− 1

2 /𝑛 1
4 ≪

𝑂̃(1/ℓ), since ℓ ≤ 𝑂̃(1)𝑛 1
𝑘+2 . □

By switching the CSP refutation algorithms in [AOW15] with the semirandom refutation
algorithm from Theorem 5.3.1 in this work, we arrive at Item (2) of Theorem 6.0.2, a version
of the above result that shows the existence of polynomial size refutation witnesses below the
𝑛𝑘/2-threshold for semirandom instances. As the proof is very similar, we omit the details of
the proof; the final bound is stated in Item (2). Note that the precise value of 𝑚 at which
this refutation succeeds is strictly larger (though still polynomially smaller than 𝑛𝑘/2) than the
one in Lemma 6.0.8, i.e., Item (1). The difference comes from the fact that the dependence
on 𝜖 (the strength of the refutation) in our semirandom refutation algorithms grows as 1/𝜖5

instead of the 1/𝜖2 dependence of algorithms for fully random instances; we thus have to

take 𝜀 =

(
𝑛(𝑘−1)/2/𝑚

)1/5
instead of

(
𝑛(𝑘−1)/2/𝑚

)1/2
, which in turn makes ℓ = 𝑛1/(𝑘+8) and then

𝑚 ≥ 𝑂̃(1)𝑛
𝑘
2−

𝑘−2
2(𝑘+8) . Our belief is that the 1/𝜀5 dependence is sub-optimal in the semirandom

setting but inherent to our current proof techniques.
We note that for large 𝑘, the density required for the polynomial size refutation witnesses to

exist in both Item (1) and Item (2) is ∼ 𝑛 𝑘
2−0.5+𝑜𝑘 (1), effectively giving a

√
𝑛 factor “win” over the

threshold at which spectral (and sum-of-squares based methods more generally) succeed.
In the specific case of 𝑘 = 3, we can improve the bound in the semirandom case to match the

𝑂̃(𝑛1.4) achieved in the random case. This is because the instances appearing in the decomposition
are all semirandom 2-XOR instances, and we can refute these instances with the correct 1/𝜀2

dependence: see Proposition 5.2.2 and Theorem 5.2.3 in [Wit17], combined with the fact that the
value of a semirandom 2-XOR instance is at most 1

2 + 𝜀 when 𝑚 ≫ 𝑛/𝜀2.
Finally, to handle Item (3), we observe that by Chernoff bound, if 𝑚 ≥ 𝑂(1)𝑚0/𝑞(®𝑝), where

𝑚0 = 𝑂̃(1) · 𝑛
𝑘
2−

𝑘−2
2(𝑘+8) , then with high probability there are at least 𝑚0 clauses in 𝜓 where all literals

75

in the clause are re-randomized by the smoothing process. Call this subinstance 𝜓′. As 𝜓′ is
semirandom, by Item (2) there is a weak refutation for 𝜓′. As we can nondeterministically guess
𝜓′, it follows that the smoothed instance 𝜓 also has a weak refutation.

We note that technically speaking, the smoothed nondeterministic refutation algorithm 𝑉

is different than the 𝑉 for the random/semirandom settings, as it has the additional step of
guessing 𝜓′. However, we can use the 𝑉 for the smoothed case also in the random/semirandom
settings, by simply guessing 𝜓′ = 𝜓.

76

Chapter 7

Efficient Algorithms for Semirandom
Planted CSPs at the Refutation
Threshold

In this chapter, we will prove Theorem 4. First, in Section 7.1, we give intuition and an overview
for the proof. Then, in Section 7.2, we prove Theorem 4 from Theorem 5 by reducing semirandom
planted CSPs to noisy XOR. In Sections 7.3 and 7.4, we prove Theorem 5, following the blueprint
that we will explain in Section 7.1.

7.1 Technical overview

In this section, we give an overview of the proof of Theorem 5 and our algorithm for noisy
planted 𝑘-XOR. We defer discussion of the reduction from general 𝑘-CSPs to 𝑘-XOR used to
obtain Theorem 4 to Section 7.2. There, we explain the additional challenges encountered in the
semirandom case as compared to the random case [FPV15, Section 4]. Somewhat surprisingly,
the reduction is complicated and quite different from the random planted case or even the
semirandom refutation setting, where the reduction to XOR is straightforward.

We now explain Theorem 5. As is typical in algorithm design for 𝑘-XOR, the case when 𝑘

is even is considerably simpler than when 𝑘 is odd. For the purpose of this overview, we will
focus mostly on the even case, and only briefly discuss the additional techniques for odd 𝑘 in
Section 7.1.5.
Notation. We will use the following notation in this chapter. Given a 𝑘-XOR instance 𝜓 on hyper-
graph 𝐻 ⊆

([𝑛]
𝑘

)
with 𝑚 = |𝐻 | and right-hand sides {𝑏𝐶}𝐶∈𝐻 , we define 𝜓(𝑥) B ∑

𝐶∈𝐻 𝑏𝐶
∏

𝑖∈𝐶 𝑥𝑖
to be a degree-𝑘 polynomial mapping {−1, 1}𝑛 → [−𝑚,𝑚]. We note that val𝜓(𝑥) = 1

2 + 1
2𝑚𝜓(𝑥) ∈

[0, 1] is the fraction of constraints in 𝜓 satisfied by 𝑥. Moreover, we will write 𝑥𝐶 B
∏

𝑖∈𝐶 𝑥𝑖 .
Unless otherwise stated, we will use 𝜙 to denote a 2-XOR instance and 𝜓 to denote a 𝑘-XOR

instance for any 𝑘 ≥ 2.
We note that for even arity 𝑘-XOR, we have val𝜓(𝑥) = val𝜓(−𝑥), and so it is only possible for

the optimal solution to be unique up to a global sign. We will abuse terminology and say that 𝑥∗ is
the unique optimal assignment if ±𝑥∗ are the only optimal assignments, and we will say that we
have recovered 𝑥∗ exactly if we obtain one of ±𝑥∗.

77

7.1.1 Approximate recovery for 2-XOR from refutation

First, let us focus on the case of 𝑘 = 2, the simplest case, and let us furthermore suppose that we
only want to achieve the weaker goal of recovering an assignment of value 1− 𝜂− 𝑜(1). (Note that
we do need the stronger guarantee of Theorem 5 to solve general planted CSPs in Theorem 4.)

For 2-XOR, this goal is actually quite straightforward to achieve using 2-XOR refutation as a
blackbox. Let us represent the 2-XOR instance 𝜙 as a graph 𝐺 on 𝑛 vertices, along with right-hand
sides 𝑏𝑖 𝑗 for each edge (𝑖, 𝑗) ∈ 𝐸. Recall that we have 𝑏𝑖 𝑗 = 𝑥∗

𝑖
𝑥∗
𝑗

with probability 1 − 𝜂, and
𝑏𝑖 𝑗 = −𝑥∗𝑖 𝑥

∗
𝑗

otherwise. Note that by concentration, val𝜙(𝑥∗) = 1− 𝜂 ± 𝑜(1)with high probability.
We now make the following observation. Let us suppose that we sample the noise in two

steps: first, we add each (𝑖, 𝑗) ∈ 𝐸 to a set 𝐸′ with probability 2𝜂 independently; then for each
(𝑖, 𝑗) ∈ 𝐸′ we set 𝑏𝑖 𝑗 to be uniformly random from {−1, 1}. Using known results for semirandom
2-XOR refutation, it is possible to certify, via an SDP relaxation, that no assignment 𝑥 can satisfy
(or violate) more than 1

2 + 𝑜(1) fraction of the constraints in 𝐸′.
Thus, we can simply solve the SDP relaxation for 𝜙 and obtain a degree-2 pseudo-expectation

Ẽ in the variables 𝑥1, . . . , 𝑥𝑛 over {−1, 1}𝑛 that maximizes 𝜙(𝑥). Let 𝜙𝐸′ be the subinstance con-
taining only the constraints in 𝐸′, and let 𝜙𝐸\𝐸′ be the subinstance containing only the constraints
in 𝐸 \ 𝐸′, which are uncorrupted. We have Ẽ[val𝜙(𝑥)] ≥ 1− 𝜂 − 𝑜(1), and the guarantee of refu-
tation implies that Ẽ[val𝜙𝐸′ (𝑥)] ≤ 1

2 + 𝑜(1). As val𝜙(𝑥) = (1 − 2𝜂) · val𝜙𝐸\𝐸′ (𝑥) + 2𝜂 · val𝜙𝐸′ (𝑥), we
therefore have that Ẽ[val𝜙𝐸\𝐸′ (𝑥)] ≥ 1− 𝑜(1), i.e., Ẽ satisfies 1− 𝑜(1) fraction of the constraints in

𝐸 \ 𝐸′. Then, applying the standard Gaussian rounding, we obtain an 𝑥 that satisfies 1−
√
𝑜(1)

fraction of the constraints in 𝐸 \𝐸′ and thus has value val𝜙(𝑥) ≥ 1− 𝜂− 𝑜(1) (as any 𝑥 must satisfy
at least 1

2 − 𝑜(1) fraction of the constraints in 𝐸′, with high probability over the noise).
One interesting observation is that in the above discussion, we can additionally allow 𝐸′ to be

an arbitrary subset of 𝐸 of size 2𝜂𝑚. Indeed, this is because the rounding only “remembers” that
Ẽ[val𝜙𝐸\𝐸′ (𝑥)] has value 1− 𝑜(1). As we shall see shortly, this is the key reason that the reduction
breaks down for 𝑘-XOR.

7.1.2 The challenges for 𝑘-XOR and our strategy

Unfortunately, the natural blackbox reduction to refutation given in Section 7.1.1 does not
generalize to 𝑘-XOR for 𝑘 ≥ 3. Following the approach described in the previous section, given
a 𝑘-XOR instance 𝜓, one can solve a sum-of-squares SDP and obtain a pseudo-expectation Ẽ

where Ẽ[val𝜓(𝑥)] ≥ 1− 𝜂 − 𝛿 and Ẽ[val𝜓𝐸\𝐸′ (𝑥)] ≥ 1− 𝛿 as before, where 𝛿 ∼ 1/polylog(𝑛)when
𝑚 ≳ 𝑛𝑘/2, due to the guarantees of refutation algorithms [AGK21]. However, unlike 2-XOR
where we have Gaussian rounding, for 𝑘-XOR there is no known rounding algorithm that takes
a pseudo-expectation Ẽ with Ẽ[val𝜓𝐸\𝐸′ (𝑥)] ≥ 1 − 𝛿 and outputs an assignment 𝑥 such that
val𝜓𝐸\𝐸′ (𝑥) ≥ 1− 𝑓 (𝛿), for some 𝑓 (·) such that 𝑓 (𝛿) → 0 as 𝛿→ 0. In fact, if we only “remember”
that 𝜓𝐸\𝐸′ has value 1− 𝛿, then it is NP-hard to find an 𝑥 with value > 1/2+ 𝛿 even when 𝛿 = 𝑛−𝑐

for some constant 𝑐 > 0, assuming a variant of the Sliding Scale Conjecture [BGLR93]1 (see
e.g. [MR10, Mos15] for more details).

As we have seen, while semirandom 𝑘-XOR refutation allows us to efficiently approximate

1Note that we do need the Sliding Scale Conjecture, as the hardness shown in [MR10] is not strong enough; it only
proves hardness for 𝛿 ≥ (log log 𝑛)−𝑐 , whereas we have 𝛿 ∼ 1/polylog(𝑛).

78

321 654

1

2

87

3

4

5

6

2

3

+1

7

8

+1 –1 –1

–1

–1

Figure 7.1: An example of the 2-XOR instance 𝜙 from a 4-XOR instance 𝜓.

and certify the value of the planted instance, the challenge lies in the rounding of the SDP, where
the goal is to recover an assignment 𝑥. This is a technical challenge that does not arise in the
context of CSP refutation, as there we are merely trying to bound the value of the instance. As a
result, new ideas are required to address this challenge.

Reduction from 𝒌-XOR to 2-XOR for even 𝒌. One could still consider the following natural
approach. For simplicity, let 𝑘 = 4. Given a 4-XOR instance 𝜓, we can write down a natural and
related 2-XOR instance 𝜙, as follows.
Definition 7.1.1 (Reduction to 2-XOR). Let 𝜓 be a 4-XOR instance, and let 𝜙 be the 2-XOR defined
as follows. The variables of 𝜙 are 𝑦{𝑖,𝑗} and correspond to pairs of variables {𝑥𝑖 , 𝑥 𝑗}, and for each
constraint 𝑥𝑖𝑥 𝑗𝑥𝑖′𝑥 𝑗′ = 𝑏𝑖,𝑗,𝑖′,𝑗′ in 𝜓, we split {𝑖, 𝑗, 𝑖′, 𝑗′} into {𝑖, 𝑗} and {𝑖′, 𝑗′} arbitrarily and add a
constraint 𝑦{𝑖,𝑗}𝑦{𝑖′,𝑗′} = 𝑏𝑖,𝑗,𝑖′,𝑗′ to 𝜙. See Fig. 7.1 for an example. This reduction easily generalizes
to 𝑘-XOR for any even 𝑘.

By following the approach for 2-XOR described in Section 7.1.1, we can recover an assignment
𝑦 that satisfies 1 − 𝜂 − 𝑜(1) fraction of the constraints in 𝜙. However, we need to recover an
assignment 𝑥 to the original 𝑘-XOR 𝜓, and it is quite possible that while 𝑦 is a good assignment
to 𝜙, it is not close to 𝑥⊗2 for any 𝑥 ∈ {−1, 1}𝑛 . If this happens, we will be unable to recover a good
assignment to the 4-XOR instance 𝜓.

The key reason that this simple idea fails is because, unlike for random noisy XOR, the assign-
ment 𝑦 recovered is not necessarily unique, and we cannot hope for it to be in the semirandom
setting! For random noisy XOR, one can argue that with high probability, 𝑦 will be equal to 𝑥∗⊗2,
and then we can immediately decode and recover 𝑥∗ up to a global sign, i.e., we recover ±𝑥∗. But
for semirandom instances, the situation can be far more complex.

Approximate 2-XOR recovery does not suffice for 4-XOR. When constructing the 2-XOR
instance 𝜙 from the 4-XOR 𝜓 (Definition 7.1.1), it may be the case that 𝜙 can be partitioned into
multiple disconnected clusters (or have very few edges across different clusters), even when
the hypergraph 𝐻 of 𝜓 is connected; see Fig. 7.1 for example. By the algorithm described in
Section 7.1.1, we can get an assignment 𝑦 that satisfies 1 − 𝜂 − 𝑜(1) fraction of the constraints
within each cluster.

The main challenge is to combine the information gathered from each cluster to recover an
assignment 𝑥 for the original 4-XOR 𝜓. Unfortunately, we do not know of a way to obtain a good
assignment 𝑥 based solely on the guarantee that 𝑦 satisfies 1− 𝜂 − 𝑜(1) fraction of constraints in

79

each cluster. The issue occurs because the same variable 𝑖 ∈ [𝑛] can appear in different clusters,
e.g., 𝑦{1,2} and 𝑦{2,3} lie in different clusters in Fig. 7.1, and the recovered assignments in each
cluster may implicitly choose different values for 𝑥𝑖 because of the noise. Indeed, even if the
local optimum is consistent with 𝑥∗, there can still be multiple “good” assignments that achieve
1− 𝜂 − 𝑜(1) value on the subinstance restricted to a cluster. So, unless the SDP can certify unique
optimality of 𝑥∗, standard rounding techniques such as Gaussian rounding will merely output a
“good” 𝑦, which may be inconsistent with 𝑥∗ and thus can choose inconsistent values of 𝑥𝑖 across
the different clusters.

Exact 2-XOR recovery implies exact 4-XOR recovery. This leads to our main insight: if the
subinstance of 𝜙 admits a unique local optimal assignment 𝑦∗ (restricted to the cluster) that
matches the planted assignment up to a sign, i.e., 𝑦∗{𝑖,𝑗} = ±𝑥

∗
𝑖
𝑥∗
𝑗
, then for each edge in the cluster

we know 𝑦∗{𝑖,𝑗}𝑦
∗
{𝑖′,𝑗′} = 𝑥∗

𝑖
𝑥∗
𝑗
𝑥∗
𝑖′𝑥
∗
𝑗′ , and so the local constraints that are violated must be exactly the

corrupted ones. Moreover, if the SDP can certify the uniqueness of the local optimal assignment
for a cluster, then the SDP solution will be a rank 1 matrix 𝑦∗𝑦∗⊤, and so we can precisely identify
which constraints in 𝜙 are corrupted. By repeating this for every cluster, we can identify all
corrupted constraints in the original 4-XOR 𝜓 (except for the small number of “cross cluster”
edges), and thus achieve the guarantee stated in Theorem 5.

The general algorithmic strategy. The above discussion suggests that given a 𝑘-XOR instance
𝜓, we should first construct the 2-XOR 𝜙, and then decompose the constraint graph 𝐺 of 𝜙 into
pieces in some particular way so that the induced local instances have unique solutions. Namely,
the examples suggest the following algorithmic strategy.

Strategy 1 (Algorithm Blueprint for even 𝑘). Given a noisy 𝑘-XOR instance 𝜓 with planted
assignment 𝑥∗ and 𝑚 constraints, we do the following:
(1) Construct the 2-XOR instance 𝜙 described in Definition 7.1.1, which is a noisy 2-XOR

on 𝑛𝑘/2 variables with planted assignment 𝑦∗. Moreover, there is a one-to-one mapping
between constraints in 𝜙 and 𝜓.

(2) Let 𝐺 be the constraint graph of 𝜙. Decompose 𝐺 into subgraphs 𝐺1, . . . ,𝐺𝑇 while only
discarding a 𝑜(1)-fraction of edges such that each subgraph 𝐺𝑖 satisfies “some property”.
For each subgraph 𝐺𝑖 , we define 𝜙𝑖 to be the subinstance of 𝜙 corresponding to the
constraints in 𝐺𝑖 . The goal is to identify a local property that the 𝐺𝑖’s satisfy so that
(1) we can perform the decomposition efficiently, and (2) for each subinstance 𝜙𝑖 , we can
“recover 𝑦∗ locally”, i.e., we can find an assignment 𝑦(𝑖) to the 2-XOR instance 𝜙𝑖 that is
consistent with the planted assignment 𝑦∗.

(3) As each 𝑦(𝑖) is consistent with 𝑦∗, the constraints in 𝜙𝑖 violated by 𝑦(𝑖) must be precisely
the corrupted constraints in 𝜙𝑖 . Hence, for the constraints that appear in one of the 𝜙𝑖’s,
we have determined exactly which ones are corrupted.

(4) We have thus determined, for all but 𝑜(𝑚) constraints, precisely which ones are corrupted
in the original 𝑘-XOR instance 𝜓. (Note that this is the stronger guarantee that we
achieve in Theorem 5.) By discarding the corrupted constraints along with the 𝑜(𝑚)
constraints where we “give up”, we thus obtain a system of 𝑘-sparse linear equations
with 𝑚(1−𝜂− 𝑜(1)) equations that has at least one solution (namely 𝑥∗), and so by solving
it we obtain an 𝑥 with val𝜓(𝑥) ≥ 1− 𝜂 − 𝑜(1).

80

7.1.3 Information-theoretic exact recovery from relative cut approximation

Following Strategy 1, the first technical question to now ask is: given a noisy 2-XOR instance 𝜙
with 𝑛 variables, 𝑚 ≫ 𝑛 constraints, and planted assignment 𝑥∗, what conditions do we need
to impose on the constraint graph 𝐺 so that we can recover 𝑥∗ (up to a sign) exactly? As a
natural first step, we investigate what conditions are required so that we can accomplish this
information-theoretically.
Fact 7.1.2. Let 𝐺 = (𝑉 ,𝐸𝐺) be an 𝑛-vertex graph, and let 𝐻 = (𝑉 ,𝐸𝐻) be a subgraph of 𝐺 where
𝐸𝐻 ⊆ 𝐸𝐺. Let 𝐿𝐺, 𝐿𝐻 be the unnormalized Laplacians of 𝐺 and 𝐻. Consider a noisy planted 2-XOR
instance 𝜙 on 𝐺 with planted assignment 𝑥∗ ∈ {−1, 1}𝑛 (Definition 4.2.2), and suppose 𝐸𝐻 is the set of
corrupted edges. Suppose that for every 𝑥 ∈ {−1, 1}𝑛 \ {®1,−®1}, it holds that 𝑥⊤𝐿𝐻𝑥 < 1

2𝑥
⊤𝐿𝐺𝑥. Then,

𝑥∗ and −𝑥∗ are the only two optimal assignments to 𝜙.
Note that the condition 𝑥⊤𝐿𝐻𝑥 < 1

2𝑥
⊤𝐿𝐺𝑥 for 𝑥 ∉ {®1,−®1} implies that 𝐺 is connected, as

otherwise 𝐿𝐺 has a kernel of dimension ≥ 2, which would contradict this assumption.

Proof. Let 𝑥 ∈ {−1, 1}𝑛 be any assignment. We wish to show that 𝜙(𝑥) is uniquely maximized
when 𝑥 = 𝑥∗,−𝑥∗. We observe that

𝜙(𝑥) =
∑
(𝑖,𝑗)∈𝐸𝐺

𝑥𝑖𝑥 𝑗𝑏𝑖 𝑗 =
∑
(𝑖,𝑗)∈𝐸𝐺

𝑥𝑖𝑥 𝑗𝑥
∗
𝑖 𝑥
∗
𝑗 − 2

∑
(𝑖,𝑗)∈𝐸𝐻

𝑥𝑖𝑥 𝑗𝑥
∗
𝑖 𝑥
∗
𝑗 .

Hence, by replacing 𝑥 with 𝑥 ⊙ 𝑥∗, without loss of generality we can assume that 𝑥∗ = ®1. Now, let
𝐷𝐺,𝐷𝐻 and 𝐴𝐺,𝐴𝐻 be the degree and adjacency matrices of 𝐺 and 𝐻, so that 𝐿𝐺 = 𝐷𝐺 −𝐴𝐺 and
𝐿𝐻 = 𝐷𝐻 −𝐴𝐻 . We thus have that

2𝜙(𝑥) = 𝑥⊤𝐴𝐺𝑥 − 2𝑥⊤𝐴𝐻𝑥 = 𝑥⊤(𝐷𝐺 − 2𝐷𝐻)𝑥 − 𝑥⊤(𝐿𝐺 − 2𝐿𝐻)𝑥
= 2(|𝐸𝐺 | − 2|𝐸𝐻 |) − 𝑥⊤(𝐿𝐺 − 2𝐿𝐻)𝑥 .

By assumption, if 𝑥 ∈ {−1, 1}𝑛 and 𝑥 ≠ ®1,−®1, then we have that 𝑥⊤(𝐿𝐺 − 2𝐿𝐻)𝑥 > 0, which implies
that 𝜙(𝑥) < 𝜙(®1), and finishes the proof. □

Fact 7.1.2 shows that if we can argue that 𝑥⊤𝐿𝐻𝑥 < 1
2𝑥
⊤𝐿𝐺𝑥 for every 𝑥 ∈ {−1, 1}𝑛 \ {®1,−®1},

then at least information-theoretically we can uniquely determine 𝑥∗. Observe that if we view 𝑥

as the signed indicator vector of a subset 𝑆 ⊆ [𝑛], then 𝑥⊤𝐿𝐺𝑥 = 𝐸𝐺(𝑆, 𝑆̄), the number of edges
in 𝐺 crossing the cut defined by 𝑆, and similarly for 𝑥⊤𝐿𝐻𝑥. So, one can view the condition in
Fact 7.1.2 as saying that the subgraph 𝐻 needs to be a (one-sided) cut sparsifier of 𝐺, i.e., it needs
to roughly preserve the size of all cuts in 𝐺. The following relative cut approximation result of
Karger [Kar94] shows that this will hold with high probability when 𝐻 is a randomly chosen
subset of 𝐺, provided that the minimum cut in 𝐺 is not too small.
Lemma 7.1.3 (Relative cut approximation [Kar94]). Let 𝜂 ∈ (0, 1). Suppose an 𝑛-vertex graph 𝐺 has
min-cut 𝑐min ≥ 12 log 𝑛

𝜂 , and suppose 𝐻 is a subgraph of 𝐺 by selecting each edge with probability 𝜂. Then,
with probability 1− 𝑜(1),

(1− 𝛿)𝑥⊤𝐿𝐺𝑥 ≤
1
𝜂
· 𝑥⊤𝐿𝐻𝑥 ≤ (1+ 𝛿)𝑥⊤𝐿𝐺𝑥 , for all 𝑥 ∈ {−1, 1}𝑛

for 𝛿 =

√
12 log 𝑛
𝜂𝑐min

.

81

With Lemma 7.1.3 and Fact 7.1.2 in hand, we now have at least an information-theoretic
algorithm with the same guarantees as in Theorem 5. We follow the strategy highlighted in
Strategy 1. To decompose the graph 𝐺, we recursively find a min cut and split if it is below
the threshold in Lemma 7.1.3. Notice that this discards at most 𝑂(𝑛 log 𝑛) = 𝑜(𝑚) constraints
(for 𝑚 ≫ 𝑛 log 𝑛), and these are precisely the constraints that we “give up” on and do not
determine which ones are corrupted. Then, with high probability the local optimal assignment
is consistent with 𝑥∗, and so locally we have learned exactly which constraints are corrupted.
Hence, we have produced two sets of constraints: 𝐸1, the 𝑜(1)-fraction of edges discarded during
the decomposition, and 𝐸2 = (𝐺 \ 𝐸1) ∩ ℰ𝜙, which is exactly the set of corrupted constraints
after discarding 𝐸1. We note that it is a priori not obvious that this is achievable even for an
exponential-time algorithm, as even though the 2𝑛-time brute force algorithm will find the best
assignment 𝑥 to 𝜙, it may not necessarily be 𝑥∗, and so the set of constraints violated by the
globally optimal assignment might not be ℰ𝜙.

7.1.4 Efficient exact recovery from relative spectral approximation

Information-theoretic uniqueness implies that the planted assignment 𝑥∗ is the unique optimal
assignment. But can we efficiently recover 𝑥∗? One natural approach is to simply solve the basic
SDP relaxation of 𝜙: for 𝑋 ∈ R𝑛×𝑛 , maximize 𝜙(𝑋) B ∑

(𝑖,𝑗)∈𝐺 𝑋𝑖 𝑗𝑏𝑖 𝑗 subject to 𝑋 ⪰ 0, 𝑋 = 𝑋⊤,
and diag(𝑋) = I. If the optimal SDP solution is simply 𝑋 = 𝑥∗𝑥∗⊤, then we trivially recover 𝑥∗

from the SDP solution. We thus ask: does the min cut condition of Fact 7.1.2 and Lemma 7.1.3
imply that 𝑥∗𝑥∗⊤ is the unique optimal solution to the SDP? Namely, is the min cut condition
sufficient for the SDP to certify that 𝑥∗ is the unique optimal assignment?

Unfortunately, it turns out that this is not the case, and we give a counterexample in Section 7.5.
We thus require a stronger condition than the min cut one in order to obtain efficient algorithms.
Nonetheless, an analogue of Fact 7.1.2 continues to hold, although now we require a stronger
version that holds for all SDP solutions 𝑋, not just 𝑥 ∈ {−1, 1}𝑛 . This stronger statement shows
the SDP can certify that 𝑥∗ is the unique optimal assignment if and only if a certain relative spectral
approximation guarantee holds for the corrupted edges.
Lemma 7.1.4 (SDP-certified uniqueness from relative spectral approximation). Let 𝐺 = (𝑉 ,𝐸𝐺) be
an 𝑛-vertex connected graph, and let 𝐻 = (𝑉 ,𝐸𝐻) be a subgraph of 𝐺 where 𝐸𝐻 ⊆ 𝐸𝐺. Let 𝐿𝐺, 𝐿𝐻 be the
unnormalized Laplacians of 𝐺 and 𝐻. Consider a noisy planted 2-XOR instance 𝜙 on 𝐺 with planted
assignment 𝑥∗ ∈ {−1, 1}𝑛 (Definition 4.2.2), and suppose 𝐸𝐻 is the set of corrupted edges.

The SDP relaxation of 𝜙 satisfies

max
𝑋⪰0, 𝑋=𝑋⊤, diag(𝑋)=I

𝜙(𝑋) = 𝜙(𝑥∗) = |𝐸𝐺 | − 2|𝐸𝐻 | ,

where 𝑋 = 𝑥∗𝑥∗⊤ is the unique optimum if and only if 𝐺 and 𝐻 satisfy

⟨𝑋, 𝐿𝐻⟩ <
1
2
⟨𝑋, 𝐿𝐺⟩ , ∀𝑋 ⪰ 0, 𝑋 = 𝑋⊤, diag(𝑋) = I, 𝑋 ≠ ®1®1⊤ .

Proof. Recall that each 𝑒 = {𝑖, 𝑗} ∈ 𝐸 corresponds to a constraint 𝑥𝑖𝑥 𝑗 = 𝑏𝑒 where 𝑏𝑒 = 𝑥∗
𝑖
𝑥∗
𝑗

if
𝑒 ∈ 𝐸𝐺 \ 𝐸𝐻 and 𝑏𝑒 = −𝑥∗𝑖 𝑥

∗
𝑗

if 𝑒 ∈ 𝐸𝐻 , meaning that 𝜙(𝑋) = ∑
{𝑖,𝑗}∈𝐺\𝐸 𝑋𝑖 𝑗𝑥

∗
𝑖
𝑥∗
𝑗
−∑

{𝑖,𝑗}∈𝐸 𝑋𝑖 𝑗𝑥
∗
𝑖
𝑥∗
𝑗
.

Without loss of generality, we can assume that 𝑥∗ = ®1 and that 𝜙(𝑋) = 1
2 ⟨𝑋,𝐴𝐺 − 2𝐴𝐻⟩, where

𝐴𝐺, 𝐴𝐻 are the adjacency matrices of 𝐺 and 𝐻.

82

Note that 𝐿𝐺 = 𝐷𝐺 − 𝐴𝐺 and 𝐿𝐻 = 𝐷𝐻 − 𝐴𝐻 , and tr(𝐷𝐺) = 2|𝐸𝐺 |, tr(𝐷𝐻) = 2|𝐸𝐻 |. For any
𝑋 ⪰ 0 with diag(𝑋) = I,

⟨𝑋,𝐴𝐺 − 2𝐴𝐻⟩ = ⟨𝑋, (𝐷𝐺 − 𝐿𝐺) − 2(𝐷𝐻 − 𝐿𝐻)⟩ = 2(|𝐸𝐺 | − 2|𝐸𝐻 |) + ⟨𝑋, 2𝐿𝐻 − 𝐿𝐺⟩ .

Suppose ⟨𝑋, 𝐿𝐻⟩ < 1
2 ⟨𝑋, 𝐿𝐺⟩ for all 𝑋 ≠ ®1®1⊤. Since ⟨®1®1⊤, 𝐿𝐺⟩ = ⟨®1®1⊤, 𝐿𝐻⟩ = 0, we have that the

maximum of 1
2 ⟨𝑋,𝐴𝐺 − 2𝐴𝐻⟩ is |𝐸𝐺 | − 2|𝐸𝐻 | and 𝑋 = ®1®1⊤ is the unique maximum.

For the other direction, suppose there is an 𝑋 ≠ ®1®1⊤ such that ⟨𝑋, 𝐿𝐻⟩ ≥ 1
2 ⟨𝑋, 𝐿𝐺⟩. Then,

𝜙(𝑋) ≥ |𝐸𝐺 | − 2|𝐸𝐻 | = 𝜙(®1®1⊤), meaning that ®1®1⊤ is not the unique optimum. □

Relative spectral approximation from uniform subsamples. We now come to a key technical
observation. Suppose that 𝐻 is a spectral sparsifier of 𝐺, so that 𝑣⊤(1𝜂𝐿𝐻)𝑣 is (1± 𝛿)𝑣⊤𝐿𝐺𝑣 for any

𝑣 ∈ R𝑛 . Then clearly ⟨𝑋, 𝐿𝐻⟩ < 1
2 ⟨𝑋, 𝐿𝐺⟩ if 𝜂 < 1/2 and 𝛿 = 𝑜(1), as we can write 𝑋 =

∑𝑛
𝑖=1 𝜆𝑖𝑣𝑖𝑣

⊤
𝑖

,
and

⟨𝑋, 𝐿𝐻⟩ =
𝑛∑
𝑖=1

𝜆𝑖𝑣
⊤
𝑖 𝐿𝐻𝑣𝑖 ≤ 𝜂(1+ 𝛿)

𝑛∑
𝑖=1

𝜆𝑖𝑣
⊤
𝑖 𝐿𝐺𝑣𝑖 = 𝜂(1+ 𝛿) · ⟨𝑋, 𝐿𝐺⟩ <

1
2
⟨𝑋, 𝐿𝐺⟩ .

Furthermore, note that above we only required that 𝐿𝐻 ⪯ 𝜂(1+ 𝛿)𝐿𝐺, i.e., we only use the upper
part of the spectral approximation.

We are now ready to state the key relative spectral approximation lemma. We observe that
when 𝐻 is a uniformly random subsample of 𝐺 and 𝐺 has a spectral gap and minimum degree
polylog(𝑛), then with high probability 𝐿𝐻 ⪯ 𝜂(1+ 𝛿)𝐿𝐺. We note that, while we do not provide
a formal proof, the same argument using the lower tail of Matrix Chernoff can also establish a
lower bound on 𝐿𝐻 , which proves that 𝐻 is indeed a spectral sparsifier of 𝐺.
Lemma 7.1.5 (Relative spectral approximation from uniform subsamples). Let 𝜂 ∈ (0, 1). Suppose
𝐺 = (𝑉 ,𝐸) is an 𝑛-vertex graph with minimum degree 𝑑min (self-loops allowed) and spectral gap
𝜆2(𝐿𝐺) = 𝜆 such that 𝑑min𝜆 > 18

𝜂 log 𝑛, where 𝐿𝐺 B 𝐷
−1/2
𝐺

𝐿𝐺𝐷
−1/2
𝐺

is the normalized Laplacian. Let
𝐻 be a subgraph of 𝐺 obtained by selecting each edge with probability 𝜂. Then, with probability at least
1−𝑂(𝑛−2),

𝐿𝐻 ⪯ 𝜂(1+ 𝛿) · 𝐿𝐺

for 𝛿 =

√
18 log 𝑛
𝜂𝑑min𝜆

.

Proof. First, note that ®1 lies in the kernel of both 𝐿𝐺 and 𝐿𝐻 , and because of the spectral gap of 𝐺,
dim(ker(𝐿𝐺)) = 1. Therefore, recalling that 𝐿𝐺 = 𝐷

1/2
𝐺
𝐿𝐺𝐷

1/2
𝐺

, it suffices to prove that

(𝐿†𝐺)1/2𝐷−1/2
𝐺

𝐿𝐻𝐷
−1/2
𝐺
(𝐿†𝐺)

1/2

2
≤ 𝜂(1+ 𝛿) .

Here 𝐿†
𝐺

is the pseudo-inverse of 𝐿𝐺, and ∥𝐿†
𝐺
∥2 ≤ 1/𝜆 because 𝐺 has spectral gap 𝜆. We will

write 𝑋 B (𝐿†
𝐺
)1/2𝐷−1/2

𝐺
𝐿𝐻𝐷

−1/2
𝐺
(𝐿†
𝐺
)1/2 for convenience.

Note that 𝐿𝐺 =
∑
𝑒∈𝐸 𝐿𝑒 , where 𝐿𝑒 ⪰ 0 is the Laplacian of a single edge 𝑒 and ∥𝐿𝑒 ∥2 = 2. Let

𝑋𝑒 = (𝐿†
𝐺
)1/2𝐷−1/2

𝐺
𝐿𝑒𝐷

−1/2
𝐺
(𝐿†
𝐺
)1/2 if 𝑒 is chosen in 𝐻 and 0 otherwise. Then, 𝑋 =

∑
𝑒∈𝐸 𝑋𝑒 and

83

∥E[𝑋]∥2 = 𝜂. Moreover, each 𝑋𝑒 satisfies 𝑋𝑒 ⪰ 0 and ∥𝑋𝑒 ∥2 ≤ ∥𝐿†𝐺∥2 · ∥𝐷
−1
𝐺
∥2 · ∥𝐿𝑒 ∥2 ≤ 2

𝑑min𝜆
.

Thus, by Matrix Chernoff (Fact 3.4.5),

Pr {∥𝑋∥2 ≥ 𝜂(1+ 𝛿)} ≤ 𝑛 · exp
(
−
𝛿2𝜂

3
· 𝑑min𝜆

2

)
≤ 𝑂(𝑛−2)

as long as 18 log 𝑛
𝜂𝑑min𝜆

≤ 𝛿2 ≤ 1. □

Finishing the algorithm. By Lemmas 7.1.4 and 7.1.5, we can thus recover 𝑥∗ exactly if the
constraint graph 𝐺 of 𝜙 has a nontrivial spectral gap and minimum degree 𝑑min ≥ polylog(𝑛). To
finish the implementation of Strategy 1, we thus need to explain how to algorithmically decom-
pose any graph 𝐺 into subgraphs 𝐺1, . . . ,𝐺𝑇 , each with reasonable min degree and nontrivial
spectral gap, while only discarding a 𝑜(1)-fraction of the edges in 𝐺. This is the well-studied task
of expander decomposition, for which we appeal to known results [KVV04, ST11, Wul17, SW19].

This completes the high-level description of the algorithm in the even 𝑘 case. Below, we
summarize the steps of the final algorithm.

Algorithm 7.1.6 (Algorithm for 𝑘-XOR for even 𝑘).
Input: 𝑘-XOR instance 𝜓 on 𝑛 variables with 𝑚 constraints and constraint hypergraph 𝐻.
Output: Disjoint sets of constraints𝒜1,𝒜2 ⊆ 𝐻 such that |𝒜1 | ≤ 𝑜(𝑚) and only depends on

𝐻, and𝒜2 = (𝐻 \𝒜1) ∩ ℰ𝜓.
Operation:

1. Construct the 2-XOR instance 𝜙 with constraint graph 𝐺, as described in Defini-
tion 7.1.1.

2. Remove small-degree vertices and run expander decomposition on 𝐺 to produce
expanders 𝐺1, . . . ,𝐺𝑇 . Set𝒜1 to be the set of discarded constraints of size 𝑜(𝑚).

3. For each 𝑖 ∈ [𝑇], solve the basic SDP on the subinstance 𝜙𝑖 defined by the con-
straints 𝐺𝑖 . Let𝒜(𝑖)2 denote the set of constraints violated by the optimal local SDP
solution.

4. Output𝒜1 and𝒜2 =
⋃𝑇
𝑖=1𝒜

(𝑖)
2 .

7.1.5 The case of odd 𝑘

We are now ready to briefly explain the differences in the case when 𝑘 is odd. For the purposes of
this overview, we will focus only on the case of 𝑘 = 3. Recall that we are given a 3-XOR instance
𝜓, specified by a 3-uniform hypergraph 𝐻 ⊆

([𝑛]
3

)
, as well as the right-hand sides 𝑏𝐶 ∈ {−1, 1}

for 𝐶 ∈ 𝐻, where 𝑏𝐶 = 𝑥∗
𝐶

with probability 1− 𝜂 and 𝑏𝐶 = −𝑥∗
𝐶

otherwise and 𝑥∗ ∈ {−1, 1}𝑛 is the
planted assignment.

We now produce a 4-XOR instance using the well-known “Cauchy-Schwarz trick” from CSP
refutation [CGL04]. The general idea is to, for any pair of clauses (𝐶,𝐶′) that intersect, add
the “derived constraint” 𝑥𝐶𝑥𝐶′ = 𝑏𝐶𝑏𝐶′ to the 4-XOR instance. Notice that if, e.g., 𝐶 = {𝑢, 𝑖, 𝑗}
and 𝐶′ = {𝑢, 𝑖′, 𝑗′}, then 𝑥𝑢 appears twice on the left-hand side, and thus the constraint is
𝑥𝑖𝑥 𝑗𝑥𝑖′𝑥 𝑗′ = 𝑏𝐶𝑏𝐶′. Given this 4-XOR, we produce a 2-XOR following a similar strategy as
in Definition 7.1.1. The above description omits many technical details, which we handle in

84

Sections 7.3 and 7.4; we remark here that these are the same issues that arise in the CSP refutation
case, and we handle them using the techniques in [GKM22].

We have thus produced a 2-XOR instance 𝜙 that is noisy but not in the sense of Definition 4.2.2.
Indeed, each edge 𝑒 in 𝜙 is “labeled” by a pair (𝐶,𝐶′) of constraints in 𝜓, and 𝑒 is noisy if and only
if exactly one of (𝐶,𝐶′) is, and so the noise is not independent across constraints. Nonetheless, we
can still follow the general strategy as in Algorithm 7.1.6. The main technical challenge is to argue
that the relative spectral approximation guarantee of Lemma 7.1.5 holds even when the noise has
the aforementioned correlations, and we do this in Lemma 7.4.7. This allows us to recover, for
most intersecting pairs (𝐶,𝐶′), the quantity 𝜉(𝐶)𝜉(𝐶′), where 𝜉(𝐶) = −1 if 𝐶 is corrupted, and
is 1 otherwise, i.e., 𝑏𝐶 = 𝑥∗

𝐶
𝜉(𝐶); we do not determine 𝜉(𝐶)𝜉(𝐶′) if and only if the pair (𝐶,𝐶′)

corresponds to an edge 𝑒 that was discarded during the expander decomposition.
However, we are not quite done, as we would like to recover 𝜉(𝐶) for most 𝐶, but we only

know 𝜉(𝐶)𝜉(𝐶′) for most intersecting pairs (𝐶,𝐶′). Let us proceed by assuming that we know
𝜉(𝐶)𝜉(𝐶′) for all intersecting pairs (𝐶,𝐶′), and then we will explain how to do a similar decoding
process when we only know most pairs. Let us fix a vertex 𝑢, and let 𝐻𝑢 denote the set of 𝐶 ∈ 𝐻
containing 𝑢. Now, we know 𝜉(𝐶)𝜉(𝐶′) for all 𝐶,𝐶′ ∈ 𝐻𝑢 , and so by Gaussian elimination we
can determine 𝜉(𝐶) for all 𝐶 ∈ 𝐻𝑢 up to a global sign. Now, we know that the vector {𝜉(𝐶)}𝐶∈𝐻𝑢
should have roughly 𝜂|𝐻𝑢 | entries that are −1. So, choosing the global sign that results in fewer
−1’s, we thus correctly determine 𝜉(𝐶) for all 𝐶 ∈ 𝐻𝑢 . We can then repeat this process for each
choice of 𝑢 to decode 𝜉(𝐶) for all 𝐶.

Of course, we only actually know 𝜉(𝐶)𝜉(𝐶′) for most intersecting pairs (𝐶,𝐶′). This implies
that for most choices of 𝑢, the graph 𝐺𝑢 with vertices 𝐻𝑢 and edges (𝐶,𝐶′) if we know 𝜉(𝐶)𝜉(𝐶′)
is obtained from the complete graph on vertices 𝐻𝑢 and deleting some 𝑜(1)-fraction of edges.
This implies that 𝐺𝑢 has a connected component of size (1− 𝑜(1))|𝐻𝑢 |, and again via Gaussian
elimination and picking the proper global sign, we can determine 𝜉(𝐶) on this large connected
component. By repeating this process for each choice of 𝑢, we thus recover 𝜉(𝐶) for most 𝑢.

7.2 From planted CSPs to noisy XOR

In this section, we show how to use Theorem 5 to prove Theorem 4. Before we delve into the
formal proof, we will first explain the reduction given in [FPV15]. We begin with some definitions.

Setup. Let Ψ be sampled from Ψ(®𝐻, 𝑥∗,𝑄), where 𝑥∗ ∈ {−1, 1}𝑛 , ®𝐻 ⊆ [𝑛]𝑘 , and 𝑄 is a planting
distribution for the predicate 𝑃. Let 𝑄(𝑦) = ∑

𝑆⊆[𝑘] 𝑄̂(𝑆)
∏

𝑖∈𝑆 𝑦𝑖 be the Fourier decomposition
of 𝑄, where 𝑄̂(𝑆) = 1

2𝑘
∑
𝑦∈{−1,1}𝑘 𝑄(𝑦)

∏
𝑖∈𝑆 𝑦𝑖 ∈ [−2−𝑘 , 2−𝑘]. Recall (Definition 4.2.1) that Ψ is

specified by a collection ®𝐻 ⊆ [𝑛]𝑘 of scopes, along with a vector 𝜉(®𝐶) ∈ {−1, 1}𝑘 for each ®𝐶 ∈ ®𝐻
of literal negations.
Definition 7.2.1. Let 𝑆 ⊆ [𝑘] be nonempty. Let 𝜓(𝑆,+) be the |𝑆 |-XOR instance obtained by, for
each constraint ®𝐶 in Ψ, adding the constraint

∏
𝑖∈𝑆 𝑥 ®𝐶𝑖 =

∏
𝑖∈𝑆 𝜉(®𝐶)𝑖 . Similarly, let 𝜓(𝑆,−) have

constraints
∏

𝑖∈𝑆 𝑥 ®𝐶𝑖 = −
∏

𝑖∈𝑆 𝜉(®𝐶)𝑖 .
We make use of the following simple claim.

Claim 7.2.2. For each nonempty 𝑆 ⊆ [𝑘], 𝜓(𝑆,+) is a noisy |𝑆 |-XOR instance (Definition 4.2.2) with
planted assignment 𝑥∗ and noise 𝜂 = 1

2 (1− 2𝑘𝑄̂(𝑆)). Similarly, 𝜓(𝑆,−) is a noisy |𝑆 |-XOR instance
with planted assignment 𝑥∗ and noise 𝜂 = 1

2 (1+ 2𝑘𝑄̂(𝑆)).

85

Proof. For each ®𝐶, the literal negation 𝜉(®𝐶) is sampled such that Pr[𝜉(®𝐶) = 𝜉] = 𝑄(𝜉 ⊙ 𝑥∗®𝐶),
where ⊙ denotes the element-wise product. This is equivalent to sampling 𝑦 ← 𝑄 and setting
𝜉(®𝐶) = 𝑦 ⊙ 𝑥∗®𝐶 . It thus follows that the probability that the constraint ®𝐶 produces a corrupted

constraint in 𝜓(𝑆,+) is

Pr
𝑦←𝑄

{∏
𝑖∈𝑆

𝑦𝑖 = −1

}
=

1
2

(
1−E𝑦←𝑄

{∏
𝑖∈𝑆

𝑦𝑖

})
=

1
2
(1− 2𝑘𝑄̂(𝑆)) ,

and is independent for each ®𝐶. A similar calculation handles the case of 𝜓(𝑆,−). □

With the above observations in hand, we can now easily describe the reduction in [FPV15].
First, their reduction requires the algorithm to have a description of the distribution 𝑄. Given
𝑄, the algorithm then finds the smallest 𝑆 such that 𝑄̂(𝑆) is nonzero. Since they know the exact
value of 𝑄̂(𝑆), they can determine its sign correctly. Suppose that 𝑄̂(𝑆) > 0 (the other case is
similar). Then, by solving the |𝑆 |-XOR instance 𝜓(𝑆,+), they recover the planted assignment of
𝜓(𝑆,+) exactly.2 But this planted assignment is precisely 𝑥∗, and so they have also succeeded in
recovering the planted assignment of 𝜓.

The aforementioned reduction clearly does not generalize to the semirandom setting, as in
general the subinstances 𝜓(𝑆,±) will not uniquely determine 𝑥∗. Furthermore, their reduction
additionally requires knowing 𝑄, and while it is not too unreasonable to assume this for random
planted CSPs (as it is perhaps natural for the algorithm to know the distribution), in the semi-
random setting this assumption is a bit strange because we want to view semirandom CSPs as
“moving towards” worst-case ones.

We now prove Theorem 4 from Theorem 5.

Proof of Theorem 4 from Theorem 5. We will present the proof in three steps. First, like [FPV15], we
will assume that the algorithm is given a description of 𝑄 and we will assume that each |𝑄̂(𝑆)| is
either 0 or at least 2−𝑘𝜀 > 0.3 Then, we will remove this assumption provided that 𝑄(𝑦) > 2𝜀 for
all 𝑦 with 𝑄(𝑦) > 0, i.e., the every 𝑦 in the support of 𝑄 has some minimum probability. Finally,
we will remove the last assumption.

Step 1: the proof when we are given 𝑸. For each 𝑆 where 𝑄̂(𝑆) ≠ 0, we construct the instance
𝜓(𝑆,+) (if 𝑄̂(𝑆) > 0) or 𝜓(𝑆,−) (if 𝑄̂(𝑆) < 0). We then apply4 Theorem 5 to each such instance.
Note that by Claim 7.2.2, the instance has noise 𝜂 = 1

2 (1 − 2𝑘 |𝑄̂(𝑆)|) ≤ 1
2 (1 − 𝜀) (because we

picked the correct sign when choosing between 𝜓(𝑆,+) and 𝜓(𝑆,−), and we assume |𝑄̂(𝑆)| ≥ 2−𝑘𝜀).

Then, since 𝑚 ≥ 𝑐𝑘𝑛𝑘/2 · log3 𝑛

𝜀9 and |𝑆 | ≤ 𝑘, by applying Theorem 5 with noise 𝜂 and parameter

𝜀′ B 2−𝑘𝜀, we obtain sets ®𝐻(𝑆,1) (the discarded set) and ®𝐻(𝑆,2) (the corrupted constraints) where
| ®𝐻(𝑆,1) | ≤ 𝜀′𝑚 and ®𝐻(𝑆,2) = (®𝐻 \ ®𝐻(𝑆,1)) ∩ ℰ𝜓(𝑆) . Hence, for every constraint ®𝐶 ∈ ®𝐻 \ ®𝐻(𝑆,1), it
follows that we have learned

∏
𝑖∈𝑆 𝑥

∗
®𝐶𝑖

, where 𝑥∗ is the planted assignment for Ψ. By setting

2Here, they also treat |𝑄̂(𝑆)| as constant, as if |𝑄̂(𝑆)| ≪ 1/𝑛, say, then their algorithm would not succeed in
recovering the planted assignment on the XOR instance.

3This assumption is implicit in [FPV15]; see the previous footnote.
4Note that Theorem 5 only applies when |𝑆 | ≥ 2. When |𝑆 | = 1, there is a trivial algorithm; see Section 7.7 for

details.

86

®𝐻′ B ®𝐻 \ ∪𝑆:𝑄̂(𝑆)≠0
®𝐻(𝑆,1), it follows that we know

∏
𝑖∈𝑆 𝑥

∗
®𝐶𝑖

for all ®𝐶 ∈ ®𝐻′ and 𝑆 with 𝑄̂(𝑆) ≠ 0,

where | ®𝐻′ | ≥ (1− 2𝑘𝜀′)𝑚 = (1− 𝜀)𝑚.
We now solve the system of linear equations given by

∏
𝑖∈𝑆 𝑥

∗
®𝐶𝑖

for all ®𝐶 ∈ ®𝐻′ and 𝑆 with

𝑄̂(𝑆) ≠ 0 to obtain some assignment 𝑥 ∈ {−1, 1}𝑛 . As 𝑥∗ is a valid solution to these equations,
such an 𝑥 exists, although it may not be 𝑥∗.

The final step is to argue that for every ®𝐶 ∈ ®𝐻′, 𝑥 satisfies the constraint ®𝐶, namely that
𝑃(𝜉(®𝐶)1𝑥 ®𝐶1

, 𝜉(®𝐶)2𝑥 ®𝐶2
, . . . , 𝜉(®𝐶)𝑘𝑥 ®𝐶𝑘) = 1. Indeed, if this is true then we are done, as 𝑥 satisfies at

least (1− 𝜀)𝑚 constraints in Ψ, and so we have obtained the desired assignment.
Let ®𝐶 ∈ ®𝐻′. We know that for every 𝑆 with 𝑄̂(𝑆) ≠ 0, we have that

∏
𝑖∈𝑆 𝑥 ®𝐶𝑖 =

∏
𝑖∈𝑆 𝑥

∗
®𝐶𝑖

.

Hence, it follows that

𝑄(𝜉(®𝐶) ⊙ 𝑥) =
∑
𝑆⊆[𝑘]

𝑄̂(𝑆)
∏
𝑖∈𝑆

𝜉(®𝐶)𝑖𝑥 ®𝐶𝑖 =
∑
𝑆⊆[𝑘]

𝑄̂(𝑆)
∏
𝑖∈𝑆

𝜉(®𝐶)𝑖𝑥∗®𝐶𝑖 = 𝑄(𝜉(
®𝐶) ⊙ 𝑥∗) > 0 ,

where the last inequality is because 𝜉(®𝐶) was sampled from the distribution 𝑄(𝜉(®𝐶) ⊙ 𝑥∗), and so
it must be sampled with nonzero probability. As 𝑄 is supported only on satisfying assignments
to the predicate 𝑃, it thus follows that 𝜉(®𝐶) ⊙ 𝑥∗ must also satisfy 𝑃.
Step 2: removing the dependence on 𝑸 assuming a lower bound on 𝑸(𝒚). First, we observe
that because 𝑘 is constant, we can, for each 𝑆, guess a symbol {0,+,−}, where 0 denotes, informally,
the belief that |𝑄̂(𝑆)| < 2−𝑘𝜀, + denotes that 𝑄̂(𝑆) ≥ 2−𝑘𝜀, and − denotes that 𝑄̂(𝑆) ≤ −2−𝑘𝜀. For
each of the 32𝑘 choices of guesses, i.e., functions 𝑓 : {𝑆 ⊆ [𝑘]} → {0,+,−}, we run algorithm
mentioned in the previous step. Namely, for each 𝑆: (1) if 𝑓 (𝑆) = 0, then we ignore 𝑆, (2) if
𝑓 (𝑆) = +, then we run Theorem 5 on 𝜓(𝑆,+) to obtain ®𝐻(𝑆,1) and ®𝐻(𝑆,2), and (3) if 𝑓 (𝑆) = −, then
we run Theorem 5 on 𝜓(𝑆,+) to obtain ®𝐻(𝑆,1) and ®𝐻(𝑆,2). As before, we solve the system of linear
equations to obtain some assignment 𝑥(𝑓) ∈ {−1, 1}𝑛 . By enumerating over all possible choices of
𝑓 , we obtain a list of at most 32𝑘 = 𝑂(1) assignments. We then try all of them and output the best
one.

It thus remains to show that at least one of the assignments in the list has high value. As one
may expect, this will be the assignment 𝑥(𝑓

∗), where 𝑓 ∗ is the correct label function. Indeed, when
𝑓 = 𝑓 ∗, then we are precisely running the algorithm in Step 1, and as observed, after solving the
linear system of equations we obtain an assignment 𝑥 B 𝑥(𝑓

∗) with the following property. For
every ®𝐶 ∈ ®𝐻′ and every 𝑆 with |𝑄̂(𝑆)| ≥ 2−𝑘𝜀, we have that

∏
𝑖∈𝑆 𝑥 ®𝐶𝑖 =

∏
𝑖∈𝑆 𝑥

∗
®𝐶𝑖

, where ®𝐻′ ⊆ ®𝐻
has size ≥ (1− 𝜀)𝑚.

Finally, we show that for every ®𝐶 ∈ ®𝐻′, 𝑥 satisfies the constraint ®𝐶. Namely, we have
𝑃(𝜉(®𝐶)1𝑥 ®𝐶1

, 𝜉(®𝐶)2𝑥 ®𝐶2
, . . . , 𝜉(®𝐶)𝑘𝑥 ®𝐶𝑘) = 1. Let ®𝐶 ∈ ®𝐻′. We know that for every 𝑆 with |𝑄̂(𝑆)| ≥

2−𝑘𝜀, we have that
∏

𝑖∈𝑆 𝑥 ®𝐶𝑖 =
∏

𝑖∈𝑆 𝑥
∗
®𝐶𝑖

. Hence, it follows that

���𝑄(𝜉(®𝐶) ⊙ 𝑥) −𝑄(𝜉(®𝐶) ⊙ 𝑥∗)��� = ������ ∑𝑆⊆[𝑘] 𝑄̂(𝑆)
∏
𝑖∈𝑆

𝜉(®𝐶)𝑖𝑥 ®𝐶𝑖 −
∑
𝑆⊆[𝑘]

𝑄̂(𝑆)
∏
𝑖∈𝑆

𝜉(®𝐶)𝑖𝑥∗®𝐶𝑖

������
=

������ ∑
𝑆⊆[𝑘]:|𝑄̂(𝑆)|<2−𝑘𝜀

𝑄̂(𝑆)
(∏
𝑖∈𝑆

𝜉(®𝐶)𝑖𝑥 ®𝐶𝑖 −
∏
𝑖∈𝑆

𝜉(®𝐶)𝑖𝑥∗®𝐶𝑖

)������ ≤ 2𝑘 · 2−𝑘+1𝜀 .

87

Now, if we assume that 𝑄(𝑦) > 2𝜀 for every 𝑦 ∈ {−1, 1}𝑘 with 𝑄(𝑦) > 0, then it follows that
𝑄(𝜉(®𝐶) ⊙ 𝑥) > 0, and so 𝑥 satisfies the constraint 𝑃(𝜉(®𝐶)1𝑥 ®𝐶1

, 𝜉(®𝐶)2𝑥 ®𝐶2
, . . . , 𝜉(®𝐶)𝑘𝑥 ®𝐶𝑘) = 1.

Step 3: removing the lower bound on 𝑸(𝒚). In Step 2, we assumed that 𝑄(𝑦) > 2𝜀 for all
𝑦 ∈ {−1, 1}𝑘 with 𝑄(𝑦) > 0. However, we only used this fact in the final step, when we argue
that 𝑄(𝜉(®𝐶) ⊙ 𝑥) > 0 by observing that 𝑄(𝜉(®𝐶) ⊙ 𝑥) ≥ 𝑄(𝜉(®𝐶) ⊙ 𝑥∗) − 2𝜀 > 0. To remove the
assumption, we will show that for at most 2𝑘+2𝜀 constraints ®𝐶 ∈ ®𝐻, it holds that𝑄(𝜉(®𝐶) ⊙ 𝑥∗) ≤ 2𝜀.
This then implies that 𝑥 satisfies at least (1− 𝜀− 2𝑘+2𝜀)𝑚 = (1−𝑂(𝜀))𝑚 constraints, which finishes
the proof.

Let 𝒮 denote the set of ®𝐶 ∈ ®𝐻 where 𝑄(𝜉(®𝐶) ⊙ 𝑥∗) ≤ 2𝜀. Observe that the probability, over
the choice of 𝜉(®𝐶), that ®𝐶 ∈ 𝒮 is at most 2𝑘 · 2𝜀 = 2𝑘+1𝜀, and moreover this is independent for
each ®𝐶 ∈ ®𝐻. Thus, by a Chernoff bound, it follows that with probability ≥ 1− exp(−𝑂(𝜀𝑚)) ≥
1− 1/poly(𝑛), it holds that |𝒮| ≤ 2 · 2𝑘+1𝜀, and so we are done. □

Remark 7.2.3 (Tolerating fewer constraints for structured 𝑄’s). We have shown that the above
algorithm succeeds in finding an assignment 𝑥 that satisfies at least (1−𝑂(𝜀))𝑚 constraints when
𝑚 ≥ 𝑛𝑘/2 · poly(log 𝑛, 1/𝜀). However, if the distribution 𝑄 has |𝑄̂(𝑆)| < 2−𝑘𝜀 for all 𝑆 with |𝑆 | > 𝑟,
then we only need 𝑛𝑟/2 · poly(log 𝑛, 1/𝜀) constraints. (If 𝑟 = 0, then for small enough constant 𝜀,
𝑄 will be supported on all of {−1, 1}𝑘 , and so any assignment satisfies all constraints. If 𝑟 = 1, we
require 𝑂(𝑛 · log 𝑛

𝜀) constraints; see Lemma 7.7.1.) Indeed, this follows because for such 𝑄, the
true label function 𝑓 ∗ will have 𝑓 ∗(𝑆) = 0 for any 𝑆 with |𝑆 | > 𝑟. Hence, for this choice of 𝑓 ∗, we
only call Theorem 5 on noisy 𝑡-XOR instances for 𝑡 ≤ 𝑟, and so we have enough constraints. It
therefore follows that the assignment 𝑥(𝑓

∗) that we obtain for the label function 𝑓 ∗ will be, with
high probability an assignment that satisfies at least (1−𝑂(𝜀))𝑚 constraints.

An example where this gives an improvement is the well-studied NAE-3-SAT (not-all-equal-
3SAT) predicate [AE98, ACIM01, DSS14]. Suppose 𝑄 is the uniform distribution over satisfying
assignments to NAE-3-SAT: 𝑄(𝑥1, 𝑥2, 𝑥3) = 1

6 · 1
4 (3 − 𝑥1𝑥2 − 𝑥2𝑥3 − 𝑥1𝑥3). Then, we only need

𝑚 ≥ 𝑂̃(𝑛) constraints, even though it is a 3-CSP (𝑘 = 3).

7.3 From 𝑘-XOR to spread bipartite 𝑘-XOR

In this section, we begin the proof of Theorem 5. See Definition 4.2.2 for a reminder of our
semirandom planted 𝑘-XOR model 𝜓(𝐻, 𝑥∗,𝜂) given a 𝑘-uniform hypergraph 𝐻, assignment
𝑥∗ ∈ {−1, 1}𝑛 , and noise parameter 𝜂 ∈ (0, 1/2). Recall also that ℰ𝜓 denotes the set of corrupted
hyperedges.

We think of 𝒜1(𝐻) as the small set of edges that we discard (or give up on), and this will
only depend on the hypergraph 𝐻. For the rest of the graph, the algorithm will correctly identify
which edges are corrupted.

Our proof of Theorem 5 goes via a reduction to spread bipartite 𝑡-XOR instances for 𝑡 =

2, . . . , 𝑘, which are 𝑡-XOR instances with some additional desired structure. Such instances were
introduced in [GKM22] to study the refutation of semirandom 𝑘-XOR instances. The reduction
here is nearly identical to the corresponding reduction in [GKM22, Section 4].
Definition 7.3.1 (Spread bipartite 𝑘-XOR). A 𝑝-bipartite 𝑘-XOR instance 𝜓 on 𝑛 variables with
𝑚 constraints is defined by a collection of (𝑘 − 1)-uniform hypergraphs 𝐻 = {𝐻𝑢}𝑢∈[𝑝] on the

88

vertex set [𝑛], as well as “right-hand sides” 𝑏𝑢,𝐶 for each 𝑢 ∈ [𝑝] and 𝐶 ∈ 𝐻𝑢 . There are two sets
of variables of 𝜓: the “normal” variables 𝑥1, . . . , 𝑥𝑛 , and the “special” variables 𝑦1, . . . , 𝑦𝑝 . The
constraints of 𝜓 are 𝑦𝑢

∏
𝑖∈𝐶 𝑥𝑖 = 𝑏𝑢,𝐶 for each 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻𝑢 .

We furthermore say that 𝜓 is 𝜏-spread if it has the following additional properties:
(1) |𝐻𝑢 | = 𝑚

𝑝 ≥ 2⌊ 1
2𝜏2 ⌋ and 𝑚

𝑝 is even for each 𝑢 ∈ [𝑝],
(2) For each 𝑢 ∈ [𝑝] and set 𝑄 ⊆ [𝑛], deg𝑢(𝑄) ≤ 1

𝜏2 max(1, 𝑛
𝑘
2−1−|𝑄 |).

Analogously to Definition 4.2.2, we call 𝜓 a semirandom planted instance with planted as-
signment (𝑥∗, 𝑦∗) and noise parameter 𝜂 if the right-hand sides 𝑏𝑢,𝐶 are generated by setting
𝑏𝑢,𝐶 = 𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖

with probability 1 − 𝜂 and 𝑏𝑢,𝐶 = −𝑦∗𝑢
∏

𝑖∈𝐶 𝑥
∗
𝑖

otherwise, independently
for each choice of 𝑢,𝐶. For a choice of 𝑥∗, 𝑦∗, 𝐻 = {𝐻𝑢}𝑢∈[𝑝], and 𝜂, we call this distribution
𝜓({𝐻𝑢}𝑢∈[𝑝], 𝑥∗, 𝑦∗,𝜂). As before, if an edge (𝑢,𝐶) has 𝑏𝑢,𝐶 = −𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖
, we call (𝑢,𝐶) a cor-

rupted hyperedge, and we denote the set of corrupted hyperedges in 𝜓 by ℰ𝜓.

The main technical result of this chapter is the following lemma, which gives an algorithm to
find the noisy constraints in a semirandom planted 𝜏-spread bipartite 𝑘-XOR instance.
Lemma 7.3.2 (Algorithm for 𝜏-spread bipartite 𝑘-XOR). Let 𝑘 ≥ 2, 𝑛, 𝑝 ∈ N, 𝜀 ∈ (0, 1), 𝜂 ∈ [0, 1/2),
and let 𝛾 B 1− 2𝜂 > 0. Let 𝜏 ≤ 𝑐𝛾√

𝑘 log 𝑛
, and let 𝑚 ≥ 𝐶𝑛 𝑘−1

2
√
𝑝 · (𝑘 log 𝑛)3/2

𝜏𝛾2𝜀3/2 for some universal constants

𝑐,𝐶. There is a polynomial-time algorithm𝒜 that takes as input an 𝜏-spread 𝑝-bipartite 𝑘-XOR instance
𝜓 with constraint hypergraph 𝐻 = {𝐻𝑢}𝑢∈[𝑝] and outputs two disjoint sets𝒜1(𝐻),𝒜2(𝜓) ⊆ 𝐻 with the
following guarantee: (1) for any instance 𝜓 with 𝑚 constraints, |𝒜1(𝐻)| ≤ 𝜀𝑚 and𝒜1(𝐻) only depends
on 𝐻, and (2) for any 𝑥∗ ∈ {−1, 1}𝑛 , 𝑦∗ ∈ {−1, 1}𝑝 and any 𝐻 = {𝐻𝑢}𝑢∈[𝑝] with |𝐻 | B ∑

𝑢∈[𝑝] |𝐻𝑢 | ≥ 𝑚,
with probability 1− 1

poly(𝑛) over 𝜓← 𝜓({𝐻𝑢}𝑢∈[𝑝], 𝑥∗, 𝑦∗,𝜂), it holds that𝒜2(𝜓) = ℰ𝜓 ∩ (𝐻 \𝒜1(𝐻)).
Note that as 𝜂 → 1

2 , 𝛾 = 1 − 2𝜂 → 0 and 𝜏 → 0, which blows up 𝑚. This is the expected
behavior since when 𝜂 = 1

2 , it is impossible to recover the planted assignment since the signs of
the constraints are uniformly random.

7.3.1 Proof of Theorem 5 from Lemma 7.3.2

With Lemma 7.3.2, we can finish the proof of Theorem 5. The high-level idea of this proof is very
simple. First, we decompose the 𝑘-XOR instance 𝜓 into subinstances 𝜓(𝑡) for each 𝑡 = 2, . . . , 𝑘,
using a hypergraph decomposition algorithm very similar to the one used in [GKM22, HKM23].
The algorithm and its guarantees are shown in Section 7.6. Then, we run the algorithm in
Lemma 7.3.2 to identify a set of corrupted constraints and a small set of discarded constraints
within each subinstance 𝜓(𝑡). We then take the union of these outputs to be the final output of the
algorithm.

Proof of Theorem 5. We begin with the decomposition of 𝜓 into 𝜓(2), . . . ,𝜓(𝑘) along with a set of
“discarded” hyperedges 𝐻(1), which is done using Algorithm 7.6.1 with spread parameter 𝜏 B
𝑐(1−2𝜂)√
𝑘 log 𝑛

where 𝑐 is the constant in Lemma 7.3.2. For each 𝑡 = 2, . . . , 𝑘, 𝜓(𝑡) is a semirandom (with

noise 𝜂) planted 𝜏-spread 𝑝(𝑡)-bipartite 𝑡-XOR instance specified by (𝑡 − 1)-uniform hypergraphs
{𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)].

Let 𝑚(𝑡) B
∑
𝑢∈[𝑝(𝑡)] |𝐻

(𝑡)
𝑢 |. Algorithm 7.6.1 has the following guarantees:

(1) The runtime is 𝑛𝑂(𝑘),

89

(2) For each 𝑡 ∈ {2, . . . , 𝑘} and 𝑢 ∈ [𝑝(𝑡)], |𝐻(𝑡)𝑢 | = 𝑚(𝑡)

𝑝(𝑡)
= 2⌊ 1

2𝜏2 max(1, 𝑛𝑡−
𝑘
2−1)⌋; in particular, |𝐻(𝑡)𝑢 |

is even and is at least 2⌊ 1
2𝜏2 ⌋,

(3) For each 𝑡 = 2, . . . , 𝑘, the instance 𝜓(𝑡) is 𝜏-spread,

(4) The number of “discarded” hyperedges is 𝑚(1) B |𝐻(1) | ≤ 1
𝑘𝜏2 𝑛

𝑘
2 ,

(5) For 𝑡 ∈ {2, . . . , 𝑘}, each 𝐶 ∈ 𝐻(𝑡)𝑢 is obtained by removing 𝑘 − (𝑡 − 1) vertices from an edge
in the original hypergraph 𝐻. Thus, there is a one-to-one map Decomp : 𝐻 → 𝐻(1) ∪⋃𝑘
𝑡=2{𝐻

(𝑡)
𝑢 }𝑢∈[𝑝(𝑡)], such that an edge 𝐶 ∈ 𝐻 is corrupted if and only if the edge Decomp(𝐶) is

corrupted in the instance 𝜓(𝑡) that it lies in.

For convenience, we denote 𝛾 B 1 − 2𝜂 and 𝛽 B 4𝐶 · (𝑘 log 𝑛)3/2
𝜏𝛾2𝜀3/2 = 4𝐶

𝑐 ·
𝑘2 log2 𝑛

𝛾3𝜀3/2 where 𝐶, 𝑐
are the constants in Lemma 7.3.2. The algorithm in Theorem 5 works as follows. First, it runs
Algorithm 7.6.1 to produce the instances 𝜓(2), . . . ,𝜓(𝑘). Then, for each 𝑡 = 2, . . . , 𝑘, if 𝑚(𝑡) ≥
𝑛
𝑡−1

2
√
𝑝(𝑡) · 𝛽, we run Lemma 7.3.2 on 𝜓(𝑡) and obtain, with probability 1 − 1/poly(𝑛), a set 𝐴(𝑡)1

where |𝐴(𝑡)1 | ≤
𝜀
2𝑚
(𝑡) and 𝐴(𝑡)2 = ℰ𝜓(𝑡) \𝐴

(𝑡)
1 . Otherwise, if 𝑚(𝑡) < 𝑛

𝑡−1
2
√
𝑝(𝑡) · 𝛽, we set 𝐴(𝑡)1 = 𝐻(𝑡) and

𝐴
(𝑡)
2 = ∅. Finally, we output 𝒜1 B 𝐻(1) ∪⋃𝑘

𝑡=2 Decomp−1(𝐴(𝑡)1) and 𝒜2 B
⋃𝑘
𝑡=2 Decomp−1(𝐴(𝑡)2),

where Decomp is the mapping in property (5) of Algorithm 7.6.1.
Note that 𝑚(𝑡) = 𝑝(𝑡) |𝐻(𝑡)𝑢 | ≥ 𝑝(𝑡) · 1

2𝜏2 𝑛
𝑡− 𝑘2−1, which means 𝑝(𝑡) ≤ 2𝜏2𝑛

𝑘
2−𝑡+1𝑚(𝑡), and since∑

𝑡

√
𝑚(𝑡) ≤

√
𝑘
∑
𝑡 𝑚
(𝑡) ≤
√
𝑘𝑚 by Cauchy-Schwarz, we have

𝑘∑
𝑡=2

𝑛
𝑡−1

2

√
𝑝(𝑡) · 𝛽 ≤ 𝑂(𝜏) · 𝑛 𝑘

4
√
𝑘𝑚 · 𝛽 ≤ 𝑜(𝜀)𝑚

as long as 𝑚 ≫ 𝑛
𝑘
2 · 𝑘𝜏2𝛽2/𝜀2. Moreover, 𝑚(1) ≤ 1

𝑘𝜏2 𝑛
𝑘
2 =

log 𝑛
𝑐2𝛾2 𝑛

𝑘
2 ≤ 𝑜(𝜀)𝑚. One can verify, by

plugging in 𝛽, that the lower bound on 𝑚 in Theorem 5 suffices.
By union bound over 𝑡, it thus follows that

|𝒜1 | ≤ 𝑚(1) +
𝑘∑
𝑡=2

𝜀
2
𝑚(𝑡) +

𝑘∑
𝑡=2

𝑛
𝑡−1

2

√
𝑝(𝑡)𝛽 ≤ 𝜀𝑚 ,

and 𝒜2 = ℰ𝜓 \ 𝒜1. Moreover, by Lemma 7.3.2, 𝒜1 only depends on the hypergraph 𝐻. This
completes the proof. □

7.4 Identifying noisy constraints in spread bipartite 𝑘-XOR

In this section, we prove Lemma 7.3.2. The proof will be decomposed into the following steps.
First, we take the semirandom planted bipartite 𝑘-XOR instance 𝜓 and transform it into a 2-
XOR instance 𝜙. Second, we decompose the constraint graph of 𝜙 into expanders. For each
expander in the decomposition, we argue that the SDP solution to this subinstance is rank 1,
and moreover agrees exactly with the planted assignment. This allows us to identify, for each
expanding subinstance, exactly which edges in 𝜙 are errors. Finally, we use this information to
identify the set of corrupted constraints in the original instance 𝜓, which finishes the proof.

90

7.4.1 Setup and key notation

We now introduce the key notation that shall be used throughout this section. Let 𝜓 be the
semirandom 𝜏-spread 𝑝-bipartite 𝑘-XOR instance (recall Definition 7.3.1) with 𝑚 constraints
given as the input to the algorithm. Recall that the instance 𝜓 is specified by a collection of
𝑝 hypergraphs {𝐻𝑢}𝑢∈[𝑝], where each 𝐻𝑢 is a (𝑘 − 1)-uniform hypergraph on 𝑛 vertices and
|𝐻𝑢 | = 𝑚/𝑝. Each constraint in 𝜓 is specified by a pair (𝑢,𝐶) where 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻𝑢 , and has
a right-hand side 𝑏𝑢,𝐶 ∈ {−1, 1}, and the constraints are 𝑦𝑢

∏
𝑖∈𝐶 𝑥𝑖 = 𝑏𝑢,𝐶 , where {𝑦𝑢}𝑢∈[𝑝] and

{𝑥𝑖}𝑖∈[𝑛] are variables. Because the instance 𝜓 is semirandom with noise parameter 𝜂 and planted
assignment (𝑥∗, 𝑦∗), for each constraint (𝑢,𝐶) we have, with probability 1 − 𝜂 independently,
𝑏𝑢,𝐶 = 𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖
, and otherwise 𝑏𝑢,𝐶 = −𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖
. Our goal is to output, in 𝑛𝑂(𝑘)-time, a set

𝒜1(𝐻) of size ≤ 𝜏𝑚 to discard, and then for the rest of the instance, identify exactly the corrupted
constraints, i.e., those for which 𝑏𝑢,𝐶 = −𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖
.

We now define the 2-XOR instance 𝜙 from 𝜓. An example is shown in Fig. 7.2.
Definition 7.4.1 (2-XOR instance 𝜙 from bipartite 𝑘-XOR 𝜓). For every 𝑢 ∈ [𝑝] and 𝐻𝑢 , we
partition 𝐻𝑢 arbitrarily into two sets 𝐻(𝐿)𝑢 and 𝐻(𝑅)𝑢 of equal size.

• If 𝑘 is odd, then there are
(𝑛
𝑘−1

2

)2 variables in 𝜙, one variable 𝑧(𝑆1,𝑆2) for each pair of sets

𝑆1, 𝑆2 ⊆ [𝑛]where |𝑆1 | = |𝑆2 | = 𝑘−1
2 .

• If 𝑘 is even, then there are 2
(𝑛
⌈ 𝑘−1

2 ⌉
) (𝑛
⌊ 𝑘−1

2 ⌋
)

variables in 𝜙, one variable 𝑧(𝑆1,𝑆2) for each pair of

sets 𝑆1, 𝑆2 ⊆ [𝑛] where either |𝑆1 | = ⌈ 𝑘−1
2 ⌉ and |𝑆2 | = ⌊ 𝑘−1

2 ⌋ or |𝑆1 | = ⌊ 𝑘−1
2 ⌋ and |𝑆2 | = ⌈ 𝑘−1

2 ⌉.
For each 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻(𝐿)𝑢 and 𝐶′ ∈ 𝐻(𝑅)𝑢 , we arbitrarily partition 𝐶 into sets 𝑆1 ∪ 𝑆2 and 𝐶′

into sets 𝑆′1 ∪ 𝑆
′
2, where |𝑆1 | = |𝑆′1 | = ⌈

𝑘−1
2 ⌉ and |𝑆2 | = |𝑆′2 | = ⌊

𝑘−1
2 ⌋. We then add the constraint

𝑧(𝑆1,𝑆′2)𝑧(𝑆2,𝑆′1) = 𝑏𝑢,𝐶𝑏𝑢,𝐶′ to 𝜙.

It is intuitive to think of clauses from 𝐻
(𝐿)
𝑢 and 𝐻

(𝑅)
𝑢 as having different colors, and each

variable 𝑧(𝑆1,𝑆′2) contains roughly 𝑘/2 of each color. See Fig. 7.2 for an example of a 2-XOR 𝜙
constructed from a bipartite 𝑘-XOR 𝜓.
Observation 7.4.2 (Size of 𝜙). The number of variables in 𝜙 is at most 𝑛𝑘−1 (for both even and
odd 𝑘). Since each |𝐻𝑢 | = 𝑚/𝑝, |𝐻(𝐿)𝑢 | = |𝐻(𝑅)𝑢 | = 𝑚

2𝑝 , and the number of constraints in 𝜙 is exactly

𝑝 · (𝑚2𝑝)2 = 𝑚2

4𝑝 . In particular, when 𝑚 ≥ 𝑛 𝑘−1
2
√
𝑝 · 𝛽 for 𝛽 = poly(log 𝑛) as assumed in Lemma 7.3.2,

the average degree of 𝜙 is at least 1
4𝛽

2.
Remark 7.4.3 (Corrupted constraints in 𝜙). A constraint 𝑧(𝑆1,𝑆′2)𝑧(𝑆2,𝑆′1) = 𝑏𝑢,𝐶𝑏𝑢,𝐶′ in 𝜙 is corrupted
if exactly one of 𝑏𝑢,𝐶 and 𝑏𝑢,𝐶′ is corrupted in 𝜓. Thus, if each constraint in 𝜓 is corrupted with
probability 𝜂 ∈ (0, 1/2), then each constraint in 𝜙 is corrupted with probability 2𝜂(1− 𝜂) < 1/2.
Note, however, that the constraints in 𝜙 are not corrupted independently.

We need some more definitions about the constraint graph of 𝜙.
Definition 7.4.4 (Constraint graph of 𝜙). Let 𝐺(𝜙) = (𝑉 ,𝐸) be the constraint graph of 𝜙. Notice
that each edge 𝑒 ∈ 𝐸 uniquely identifies 𝑢(𝑒) ∈ [𝑝] and 𝐶𝐿(𝑒) ∈ 𝐻(𝐿)𝑢(𝑒), 𝐶𝑅(𝑒) ∈ 𝐻

(𝑅)
𝑢(𝑒). For each

𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻(𝐿)𝑢 , define 𝐺(𝐿)
𝑢,𝐶(𝜙) to be the subgraph of 𝐺 that 𝐶 participates in, i.e., with edge set

{𝑒 ∈ 𝐸 : 𝑢(𝑒) = 𝑢, 𝐶𝐿(𝑒) = 𝐶}. We similarly define 𝐺(𝑅)
𝑢,𝐶′(𝜙) for 𝐶′ ∈ 𝐻(𝑅)𝑢 .

We next make the important observation that the degree of a vertex in 𝐺
(𝐿)
𝑢,𝐶(𝜙) is upper

bounded by the number of 𝐶′ ∈ 𝐻(𝑅)𝑢 sharing at least ⌊ 𝑘−1
2 ⌋ vertices. See Fig. 7.2 also for an

91

u
1

6
7

3
2

1

8
9

6
5

4

1

2

1

3

6

7

3

8

9

4

5

1

6

6

7

6

8

9

+1
–1

–1 +1

–1

–1+1

+1

Figure 7.2: An example of the 2-XOR instance 𝜙 from a bipartite 4-XOR 𝜓 (Definition 7.4.1). On
the left, 𝐻(𝐿)𝑢 consists of 𝐶1 = {1, 2, 3} and 𝐶2 = {4, 5, 6} (with green vertices), and 𝐻

(𝑅)
𝑢 consists

of 𝐶′1 = {1, 6, 7} and 𝐶′2 = {1, 8, 9} (with blue vertices). On the right, the constraint graph 𝐺(𝜙)
has vertices 𝑧𝑆1,𝑆2 where either |𝑆1 | = 2, |𝑆2 | = 1 or |𝑆1 | = 1, |𝑆2 | = 2 (we can view 𝑆1, 𝑆2 as
having green, blue vertices). Each edge corresponds to two clauses in 𝜓; for example, the edge{
𝑧{1,2},{1}, 𝑧{3},{6,7}

}
comes from the clauses 𝐶1 and 𝐶′1.

Corruptions. In the figure, we label a clause −1 if it is corrupted and +1 otherwise. An edge in 𝐺
is corrupted if exactly one of the two corresponding clauses in 𝜓 is corrupted.
Degree of 𝐺(𝐿)

𝑢,𝐶(𝜙). For 𝐶1 ∈ 𝐻(𝐿)𝑢 , the subgraph 𝐺
(𝐿)
𝑢,𝐶1
(𝜙) corresponds to the edges colored

red, i.e., all edges that 𝐶1 participates in. The vertex 𝑧{1,2},{1} has degree 2 in 𝐺(𝐿)
𝑢,𝐶1
(𝜙) because

|𝐶′1 ∩ 𝐶
′
2 | = 1.

illustration. Therefore, assuming that 𝜓 is 𝜏-spread, we have a maximum degree bound on
𝐺
(𝐿)
𝑢,𝐶(𝜙) and 𝐺(𝑅)

𝑢,𝐶′(𝜙) for all 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻(𝐿)𝑢 and 𝐶′ ∈ 𝐻(𝑅)𝑢 .

Lemma 7.4.5 (Degree bounds for 𝐺(𝐿)
𝑢,𝐶 , 𝐺(𝑅)

𝑢,𝐶′). Let 𝜓 be an 𝜏-spread 𝑝-bipartite 𝑘-XOR instance. Then,

for any 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻(𝐿)𝑢 and 𝐶′ ∈ 𝐻(𝑅)𝑢 , the maximum degree of 𝐺(𝐿)
𝑢,𝐶(𝜙), 𝐺

(𝑅)
𝑢,𝐶′(𝜙) is at most 1/𝜏2.

Proof. Consider any 𝐶 ∈ 𝐻(𝐿)𝑢 and two adjacent edges {𝑧(𝑆1,𝑆′2), 𝑧(𝑆2,𝑆′1)} and {𝑧(𝑆1,𝑆′′2), 𝑧(𝑆2,𝑆′′1)} in

𝐺
(𝐿)
𝑢,𝐶(𝜙) formed by joining 𝐶 = 𝑆1 ∪ 𝑆2 with 𝐶′ = 𝑆′1 ∪ 𝑆

′
2 and 𝐶′′ = 𝑆′′1 ∪ 𝑆

′′
2 ∈ 𝐻

(𝑅)
𝑢 . As the edges

are adjacent, it must be the case that either 𝑆′1 = 𝑆′′1 or 𝑆′2 = 𝑆′′2 , which means that |𝐶′∩𝐶′′ | ≥ ⌊ 𝑘−1
2 ⌋.

Thus, the degree of a vertex 𝑧(𝑆1,𝑆′2) in 𝐺 is upper bounded by the maximum number of 𝐶′ ∈ 𝐻(𝑅)𝑢

that all share the same ⌊ 𝑘−1
2 ⌋ variables.

Suppose 𝜓 is 𝜏-spread, meaning that deg𝑢(𝑄) ≤ 1
𝜏2 max(1, 𝑛

𝑘
2−1−|𝑄 |) for 𝑄 ⊆ [𝑛]. Since

𝑘
2 − 1− ⌊ 𝑘−1

2 ⌋ ≤ 0, we have that 𝐺(𝐿)𝑢,𝑐(𝜙) has maximum degree ≤ 1/𝜏2. □

7.4.2 Proof outline

With the setup in Section 7.4.1 in hand, our proof now proceeds in three conceptual steps.

Step 1: graph pruning and expander decomposition. Suppose the instance 𝜙 has average
degree 𝑑. We first prune the instance using Lemma 3.1.1 such that the resulting constraint graph
has minimum degree ≥ 𝜀𝑑 while only removing 𝜀 fraction of the constraints, where 𝜀 = 𝑜(1). We

92

further apply expander decomposition (Fact 3.1.2) to the pruned instance to obtain subinstances
𝜙1, . . . , 𝜙𝑇 while discarding only a 𝜀 fraction of the constraints of 𝜙 such that the constraint graph
of each 𝜙𝑖 has spectral gap Ω̃(𝜀2).
Step 2: relative spectral approximation and recovery of corrupted pairs. We show that for
each expanding subinstance 𝜙𝑖 , the basic SDP for the 2-XOR instance 𝜙𝑖 is equal to 𝑥∗(𝑥∗)⊤,
where 𝑥∗ is the planted assignment for 𝜙. That is, the SDP solution is rank 1 and agrees with
the planted assignment for 𝜙. We show this by arguing that, for each 𝜙𝑖 , the Laplacian of the
corrupted constraints in 𝜙𝑖 is a spectral sparsifier of the Laplacian of the constraint graph of 𝜙𝑖 (see
Lemma 7.1.4). Here, we crucially use that each such constraint graph has large minimum degree
and spectral gap.

From this, it is trivial to identify the corrupted edges in each 𝜙𝑖 , as they are the ones violated by
the SDP solution. We are not quite done yet, however, because each constraint in 𝜙 corresponds
to a pair of constraints in the original instance 𝜓.

Step 3: recovery of corrupted constraints from corrupted pairs. The previous step shows that
for all but a 𝜀 fraction of tuples (𝑢,𝐶,𝐶′)where 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻(𝐿)𝑢 , and 𝐶′ ∈ 𝐻(𝑅)𝑢 , we can recover
the product 𝜉𝑢(𝐶)𝜉𝑢(𝐶′), where 𝜉𝑢(𝐶) = −1 if (𝑢,𝐶) is noisy in 𝜓, and is +1 otherwise. Because 𝜀
is small, it must be the case that for most 𝑢 ∈ [𝑝], we know the product 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) (from Step 2)
for most pairs (𝐶,𝐶′)with 𝐶 ∈ 𝐻(𝐿)𝑢 and 𝐶′ ∈ 𝐻(𝑅)𝑢 .

Suppose we knew 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) for all (𝐶,𝐶′) ∈ 𝐻(𝐿)𝑢 × 𝐻(𝑅)𝑢 . Then, it is trivial to decode
𝜉𝑢(𝐶) up to a global sign. Formally, we could obtain 𝑧 ∈ {−1, 1}𝐻𝑢 where 𝑧𝐶 = 𝛼𝜉𝑢(𝐶) for some
𝛼 ∈ {−1, 1}. From this, it is easy to obtain 𝜉𝑢(𝐶), as the fraction of 𝐶 ∈ 𝐻𝑢 for which 𝜉𝑢(𝐶) = −1
should be roughly 𝜂 < 1

2 ; so, if 𝑧 has < 1
2 -fraction of −1’s, then 𝑧 = 𝜉𝑢(𝐶), and otherwise

−𝑧 = 𝜉𝑢(𝐶). This, however, requires |𝐻𝑢 | ≥ Ω

(
log 𝑛
(1−2𝜂)2

)
for a high-probability result.

Additionally, we do not quite know 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) for all (𝐶,𝐶′) ∈ 𝐻(𝐿)𝑢 ×𝐻(𝑅)𝑢 : we only know
this for all but a 𝜀𝑢-fraction of the pairs. By forming a graph 𝐺𝑢 where we have an edge (𝐶,𝐶′) if
(𝐶,𝐶′) is a pair where we know 𝜉𝑢(𝐶)𝜉𝑢(𝐶′), we can thus obtain such a 𝑧 for all 𝐶 in the largest
connected component of 𝐺𝑢 . Because 𝐺𝑢 is obtained by taking a complete biclique and deleting
only a 𝜀𝑢-fraction of all edges, the largest connected component has size (1− 𝜀𝑢)|𝐻𝑢 |, and so we
can recover 𝜉𝑢(𝐶) for all but a 𝜀𝑢-fraction of constraints in 𝐻𝑢 . We do this for each partition 𝑢,
which finishes the proof.

7.4.3 Graph pruning and expander decomposition

This step is a simple combination of graph pruning and expander decomposition.
Lemma 7.4.6. Fix 𝜀 ∈ (0, 1). There is a polynomial-time algorithm such that, given a 2-XOR instance 𝜙
whose constraint graph has 𝑚 edges and average degree 𝑑, outputs subinstances 𝜙1, . . . , 𝜙𝑇 on disjoint
variables with the following guarantees: 𝜙1, . . . , 𝜙𝑇 contain at least 1− 𝜀 fraction of the constraints in 𝜙,
and for each 𝑖 ∈ [𝑇], the constraint graph 𝐺𝑖 of 𝜙𝑖 , after adding some self-loops, has minimum degree at
least 1

3𝜀𝑑 and 𝜆2(𝐿𝐺𝑖) ≥ Ω(𝜀2/log2 𝑚).
The self-loops in Lemma 7.4.6 are only for the analysis of 𝐿𝐺𝑖 and do not correspond to actual

constraints in 𝜙𝑖 . Observe that adding self-loops to a graph 𝐺 does not change the unnormalized
Laplacian 𝐿𝐺, but as 𝐷𝐺 (the degree matrix) increases, the spectral gap of the normalized Laplacian,
i.e. 𝜆2(𝐿𝐺) = 𝜆2(𝐷−1/2

𝐺
𝐿𝐺𝐷

−1/2
𝐺
), may decrease. The expander decomposition algorithm (Fact 3.1.2)

93

guarantees that each piece, even after adding self-loops to preserve degrees, has large spectral
gap. This does not change the subinstances 𝜙1, . . . , 𝜙𝑇 , but in the next section, it is crucial that we
use this stronger guarantee to ensure a lower bound on the minimum degree.

Proof of Lemma 7.4.6. We first apply the graph pruning algorithm (Lemma 3.1.1) such that the
resulting instance has minimum degree ≥ 𝜀

3 𝑑 and at least (1− 2
3𝜀)𝑚 constraints. Then, we apply

expander decomposition (Fact 3.1.2) that partitions the vertices of the pruned graph 𝐺′ into
𝑉1, . . . ,𝑉𝑇 such that the number of edges across partitions is at most 𝜀

3𝑚, and for each 𝑖 ∈ [𝑇],
the normalized Laplacian satisfies 𝜆2(𝐿𝐺′{𝑉𝑖}) ≥ Ω(𝜀2/log2 𝑚). Here we recall that 𝐺′{𝑉𝑖} is the
induced subgraph of 𝐺′ with self-loops such that the vertices in 𝐺′{𝑉𝑖} have the same degrees as
in 𝐺′.

In total, we have removed at most 𝜀𝑚 edges. This completes the proof. □

7.4.4 Rank-1 SDP solution from expansion and relative spectral approximation

We next show that for each subinstance 𝜙𝑖 obtained from Lemma 7.4.6, its constraint graph 𝐺
and the subgraph of corrupted edges 𝐻 satisfy 𝐿𝐻 ≺ 1

2𝐿𝐺. Recall from Lemmas 7.1.4 and 7.1.5
that this implies the basic SDP for the 2-XOR 𝜙𝑖 is rank 1 and agrees with the planted assignment
of 𝜙.

The next lemma is analogous to Lemma 7.1.5 but differs in an important way: a constraint in
𝜙 is corrupted if and only if exactly one of the two corresponding constraints in 𝜓 is corrupted;
thus, the corruptions in 𝜙 are correlated. This is why each constraint in 𝜙 is obtained from one
clause in 𝐻(𝐿)𝑢 and one clause in 𝐻(𝑅)𝑢 (recall Definition 7.4.1), so that in the proof below we have
independent randomness to perform a “2-step sparsification” proof. It is also worth noting that
the following lemma requires not just a lower bound on the minimum degree and spectral gap of
𝐺 but also that the original bipartite 𝑘-XOR instance 𝜓 is well-spread, which allows us to apply
Lemma 7.4.5.

Same as Lemma 7.1.5, the following lemma is a purely graph-theoretic statement.
Lemma 7.4.7 (Relative spectral approximation with correlated subsamples). Suppose 𝐺 = (𝑉 ,𝐸)
is an 𝑛-vertex graph with minimum degree 𝑑min (self-loops and parallel edges allowed) and spectral gap
𝜆2(𝐿𝐺) = 𝜆 > 0. Let 𝑚1,𝑚2 ∈ N, 𝜂 ∈ [0, 1/2), and let 𝜉(1)1 , . . . , 𝜉(1)𝑚1 , 𝜉(2)1 , . . . , 𝜉(2)𝑚2 be i.i.d. random
variables that take value −1 with probability 𝜂 and +1 otherwise. Suppose there is an injective map that
maps each edge 𝑒 ↦→ (𝑐1(𝑒), 𝑐2(𝑒)) ∈ [𝑚1] × [𝑚2], and for each 𝑖 ∈ [𝑚1] (resp. 𝑗 ∈ [𝑚2]) define 𝐺(1)

𝑖
(resp.

𝐺
(2)
𝑗

) be the subgraph of 𝐺 with edge set {𝑒 ∈ 𝐸 : 𝑐1(𝑒) = 𝑖} (resp. {𝑒 ∈ 𝐸 : 𝑐2(𝑒) = 𝑗}). Moreover,

suppose 𝐺(1)
𝑖

and 𝐺(2)
𝑗

have maximum degree ≤ Δ for all 𝑖 ∈ [𝑚1], 𝑗 ∈ [𝑚2].
Let 𝐻 be the subgraph of 𝐺 with edge set

{
𝑒 ∈ 𝐸 : 𝜉(1)

𝑐1(𝑒)𝜉
(2)
𝑐2(𝑒) = −1

}
. There is a universal constant

𝐵 > 0 such that if 𝑑min𝜆 ≥ 𝐵Δ log 𝑛, then with probability 1−𝑂(𝑛−2),

𝐿𝐻 ⪯ max
(
(1+ 𝛿) · 2𝜂(1− 𝜂), 1

3

)
· 𝐿𝐺

for 𝛿 =

√
𝐵Δ log 𝑛
𝑑min𝜆

.

Let 𝛾 B 1 − 2𝜂 > 0 since 𝜂 < 1
2 . Notice that 2𝜂(1 − 𝜂) = 1

2 (1 − 𝛾2), which approaches 1
2 as

𝜂→ 1
2 . Thus, if 𝛿 ≤ 𝛾2, then (1+ 𝛿) · 2𝜂(1− 𝜂) ≤ (1+ 𝛾2) · 1

2 (1− 𝛾2) < 1
2 , and 𝐿𝐻 ≺ 1

2𝐿𝐺 suffices to

94

conclude via Lemma 7.1.4 that the SDP relaxation on the expanding subinstance is rank 1 and
recovers the planted assignment, which also gives us the set of corrupted constraints.

Proof of Lemma 7.4.7. First, note that by the definition of Laplacian and the spectral gap of 𝐿𝐺,
span(®1) is exactly the null space of 𝐿𝐺 and is contained in the null space of 𝐿𝐻 . Therefore, recalling
that 𝐿𝐺 = 𝐷

1/2
𝐺
𝐿𝐺𝐷

1/2
𝐺

, it suffices to prove that

(𝐿†𝐺)1/2𝐷−1/2
𝐺

𝐿𝐻𝐷
−1/2
𝐺
(𝐿†𝐺)

1/2

2
≤ max

(
(1+ 𝛿) · 2𝜂(1− 𝜂), 1

3

)
. (7.1)

Here 𝐿†
𝐺

is the pseudo-inverse of 𝐿𝐺, and ∥𝐿†
𝐺
∥2 ≤ 1/𝜆. For simplicity, for any graph 𝐺′, we will

write 𝐿𝐺′ B (𝐿†𝐺)1/2𝐷
−1/2
𝐺

𝐿𝐺′𝐷
−1/2
𝐺
(𝐿†
𝐺
)1/2. Thus,

𝐿𝐻 =
∑
𝑒∈𝐸

1
(
𝜉(1)
𝑐1(𝑒)𝜉

(2)
𝑐2(𝑒) = −1

)
· 𝐿𝑒 , and E[𝐿𝐻] = 2𝜂(1− 𝜂)

∑
𝑒∈𝐸

𝐿𝑒 .

Note that
∑
𝑒∈𝐸 𝐿𝑒 = 𝐿𝐺, a projection matrix, thus

∑
𝑒∈𝐸 𝐿𝑒

2 = 1.

For each 𝑖 ∈ [𝑚1], we further define 𝐺(1)
𝑖,+ and 𝐺(1)

𝑖,− to be (random) edge-disjoint subgraphs of

𝐺
(1)
𝑖

where 𝐺(1)
𝑖,+ has edge set

{
𝑒 ∈ 𝐸 : 𝑐1(𝑒) = 𝑖, 𝜉(2)

𝑐2(𝑒) = +1
}

and 𝐺(1)
𝑖,− has edge set

{
𝑒 ∈ 𝐸 : 𝑐1(𝑒) =

𝑖, 𝜉(2)
𝑐2(𝑒) = −1

}
. Note that 𝐺(1)

𝑖,+, 𝐺(1)
𝑖,− are independent of 𝜉(1) = (𝜉(1)1 , . . . , 𝜉(1)𝑚1). By the maximum

degree bound on 𝐺(1)
𝑖

, we have that

𝐿

𝐺
(1)
𝑖,+

2 and

𝐿
𝐺
(1)
𝑖,−

2 ≤

𝐿
𝐺
(1)
𝑖

2 ≤ 2Δ. Thus,

𝐿

𝐺
(1)
𝑖,+

2
,

𝐿

𝐺
(1)
𝑖,−

2
≤

𝐿
𝐺
(1)
𝑖

2
≤ 2Δ ·

𝐿†𝐺

2
·

𝐷−1

𝐺

2 ≤

2Δ
𝑑min𝜆

. (7.2)

Similarly, for 𝑗 ∈ [𝑚2], 𝐺(2)𝑗,+ and 𝐺(2)
𝑗,− are (random) edge-disjoint subgraphs of 𝐺(2)

𝑗
independent of

𝜉(2) = (𝜉(2)1 , . . . , 𝜉(2)𝑚2) such that

𝐿

𝐺
(2)
𝑗,+

2 and

𝐿
𝐺
(2)
𝑗,−

2 ≤

2Δ
𝑑min𝜆

.

Now, we first fix 𝜉(2) ∈ {−1, 1}𝑚2 . Observe that we can write 𝐿𝐻 as

𝐿𝐻 =
∑
𝑖∈[𝑚1]

1(𝜉(1)
𝑖

= +1) · 𝐿
𝐺
(1)
𝑖,−
+ 1(𝜉(1)

𝑖
= −1) · 𝐿

𝐺
(1)
𝑖,+

, (7.3)

and
E[𝐿𝐻 |𝜉(2)] = (1− 𝜂)

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖,−
+ 𝜂

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖,+

=
∑
𝑒∈𝐸

(
(1− 𝜂) · 1(𝜉(2)

𝑐2(𝑒) = −1) + 𝜂 · 1(𝜉(2)
𝑐2(𝑒) = +1)

)
· 𝐿𝑒

B
∑
𝑒∈𝐸

𝑤𝑐2(𝑒) · 𝐿𝑒 .

(7.4)

Here 𝑤𝑐2(𝑒) ∈ {𝜂, 1− 𝜂}, thus

E[𝐿𝐻 |𝜉(2)]

2 ≥ 𝜂

∑
𝑒∈𝐸 𝐿𝑒

2 = 𝜂.

We now split the analysis into two cases. Let 𝜂0 B 1/12.

95

Case 1: 𝜼 ≥ 𝜼0. In light of Eq. (7.3), we define 𝑋𝑖 B 1(𝜉(1)
𝑖

= +1) · 𝐿
𝐺
(1)
𝑖,−
+ 1(𝜉(1)

𝑖
= −1) · 𝐿

𝐺
(1)
𝑖,+

such that 𝐿𝐻 =
∑
𝑖∈[𝑚1] 𝑋𝑖 . Moreover, we have that 𝑋𝑖 ⪰ 0 and ∥𝑋∥2 ≤ 2Δ

𝑑min𝜆
almost surely from

Equation (7.2). Thus, applying matrix Chernoff (Fact 3.4.5), we get

Pr
𝜉(1)

{

𝐿𝐻

2
≥ (1+ 𝛿)

E[𝐿𝐻 |𝜉(2)]

2

}
≤ 𝑛 · exp

(
−1

3
𝛿2

E[𝐿𝐻 |𝜉(2)]

2
· 𝑑min𝜆

2Δ

)
≤ 𝑛 · exp

(
−
𝛿2𝜂𝑑min𝜆

6Δ

)
,

(7.5)

which is at most 𝑂(𝑛−2) as long as 𝛿2 ≥ 𝐵1Δ log 𝑛
𝑑min𝜆

for a large enough constant 𝐵1.

Next, we similarly prove concentration for

E[𝐿𝐻 |𝜉(2)]

2 over 𝜉(2). Recalling Equation (7.4),

E[𝐿𝐻 |𝜉(2)] =
∑
𝑒∈𝐸

𝑤𝑐2(𝑒) · 𝐿𝑒 =
∑
𝑗∈[𝑚2]

𝑤 𝑗

∑
𝑒∈𝐺(2)

𝑗

𝐿𝑒 =
∑
𝑗∈[𝑚2]

𝑤 𝑗 · 𝐿𝐺(2)
𝑗

.

E[𝑤 𝑗] = 2𝜂(1 − 𝜂), and

E𝜉(2)E[𝐿𝐻 |𝜉(2)]

2 = 2𝜂(1 − 𝜂)

∑
𝑒∈𝐸 𝐿𝑒

2 = 2𝜂(1 − 𝜂). Since

𝑤 𝑗𝐿𝐺(2)
𝑗

2 ≤

2(1−𝜂)Δ
𝑑min𝜆

, we can apply matrix Chernoff again:

Pr
𝜉(2)

{

E[𝐿𝐻 |𝜉(2)]

2
≥ (1+ 𝛿′) · 2𝜂(1− 𝜂)

}
≤ 𝑛 · exp

(
−1

3
𝛿′2 · 2𝜂(1− 𝜂) · 𝑑min𝜆

2(1− 𝜂)Δ

)
(7.6)

which is at most 𝑂(𝑛−2) as long as 𝛿′2 ≥ 𝐵2Δ log 𝑛
𝑑min𝜆

for a large enough constant 𝐵2. Combining

both tail bounds, by the union bound, we have that with probability at least 1−𝑂(𝑛−2),

𝐿𝐻

2 ≤
(1 + 𝛿) · 2𝜂(1 − 𝜂) as long as 𝛿2 ≥ 𝐵Δ log 𝑛

𝑑min𝜆
for a large enough 𝐵. This establishes Equation (7.1),

proving the lemma for this case.

Case 2: 𝜼 < 𝜼0. To handle this case, observe that the exact same analysis goes through for
𝐻 = {𝑒 ∈ 𝐸 : 𝜉(1)

𝑐1(𝑒) = −1 or 𝜉(2)
𝑐2(𝑒) = −1} ⊇ 𝐻. Indeed, similar to Eqs. (7.3) and (7.4), we have

𝐿
𝐻

=
∑
𝑖∈[𝑚1] 𝑋𝑖 where 𝑋𝑖 = 1(𝜉(1)

𝑖
= +1) · 𝐿

𝐺
(1)
𝑖,−
+ 1(𝜉(1)

𝑖
= −1) · 𝐿

𝐺
(1)
𝑖

(notice the 2nd term is 𝐺(1)
𝑖

instead of 𝐺(1)
𝑖,+), and

E[𝐿
𝐻
|𝜉(2)] = (1− 𝜂)

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖,−
+ 𝜂

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖

=
∑
𝑒∈𝐸

𝑤𝑐2(𝑒) · 𝐿𝑒 =
∑
𝑗∈[𝑚2]

𝑤 𝑗 · 𝐿𝐺(2)
𝑗

,

where 𝑤 𝑗 = 1 if 𝜉(2)
𝑗

= −1 and 𝜂 if 𝜉(2)
𝑗

= +1, hence E[𝑤 𝑗] = 𝜂 + 𝜂(1 − 𝜂) = 𝜂(2 − 𝜂). Moreover,

E𝜉(2)E[𝐿𝐻 |𝜉(2)]

2 = 𝜂(2− 𝜂)

∑

𝑒∈𝐸 𝐿𝑒

2 = 𝜂(2− 𝜂).
First, set 𝜂 = 𝜂0, and let 𝐻0 be the random subgraph as defined above. Similar to Eqs. (7.5)

and (7.6), we apply matrix Chernoff (Fact 3.4.5) and get that with probability 1−𝑂(𝑛−2),

𝐿

𝐻0

2 ≤

(1+ 𝛿) · 𝜂0(2− 𝜂0) for 𝛿 =

√
𝐵Δ log 𝑛
𝑑min𝜆

≤ 1. In particular, this means that 𝐿
𝐻0
⪯ 2𝜂0(2− 𝜂0)𝐿𝐺 ⪯ 1

3𝐿𝐺

when 𝜂0 = 1/12.
Now, fix any 𝜂 < 𝜂0. We can obtain a coupling between this case and the case when 𝜂 = 𝜂0

by randomly changing 𝜉(1)
𝑖

and 𝜉(2)
𝑗

from +1 to −1 (while not flipping the ones with −1). Notice

96

that 𝐻 is monotone increasing as we change any +1 to −1 (whereas 𝐻 is not!), thus we must have
𝐻 ⊆ 𝐻0 in this coupling. Then, as 𝐻 ⊆ 𝐻, we have

𝐿𝐻 ⪯ 𝐿𝐻 ⪯ 𝐿𝐻0
⪯ 1

3
𝐿𝐺

with probability 1−𝑂(𝑛−2). This finishes the proof of Lemma 7.4.7. □

7.4.5 Recovery of corrupted constraints from corrupted pairs

We have thus shown that, with probability ≥ 1 − 1/poly(𝑛), we can exactly recover the set of
corrupted constraints within each expanding subinstance 𝜙1, . . . , 𝜙𝑇 . Recall that after pruning
and expander decomposition (Lemma 7.4.6), the expanding subinstances contain a (1− 𝜀)-fraction
of all edges in the instance 𝜙, and the set of edges removed only depends on the constraint graph
and not the right-hand sides of 𝜙. As stated in Observation 7.4.2, the instance 𝜙 has exactly
𝑚2/4𝑝 edges, and they correspond exactly to the set {(𝑢,𝐶,𝐶′) : 𝑢 ∈ [𝑝],𝐶 ∈ 𝐻(𝐿)𝑢 ,𝐶′ ∈ 𝐻(𝑅)𝑢 }, and
moreover an edge 𝑒 in 𝜙 is corrupted if and only if exactly one of the two constraints (𝑢,𝐶), (𝑢,𝐶′)
is corrupted in the original instance 𝜓, where 𝑒 corresponds to (𝑢,𝐶,𝐶′). For each 𝑢 ∈ [𝑝] and
𝐶 ∈ 𝐻𝑢 = 𝐻

(𝐿)
𝑢 ∪𝐻(𝑅)𝑢 , let 𝜉𝑢(𝐶) = −1 if (𝑢,𝐶) is corrupted in 𝜓, and 1 otherwise. It thus follows

that we have learned, for 1− 𝜀 fraction of all {(𝑢,𝐶,𝐶′) : 𝑢 ∈ [𝑝],𝐶 ∈ 𝐻(𝐿)𝑢 ,𝐶′ ∈ 𝐻(𝑅)𝑢 }, the product
𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′).

It now remains to show how to recover 𝜉𝑢(𝐶) for most 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻𝑢 . For each 𝑢 ∈ [𝑝],
let 𝑃𝑢 ⊆ {(𝐶,𝐶′) : 𝐶 ∈ 𝐻(𝐿)𝑢 ,𝐶′ ∈ 𝐻(𝑅)𝑢 } such that we have determined 𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′), and let
𝑃 = ∪𝑢∈[𝑝]𝑃𝑢 . We know that |𝑃 | ≥ (1− 𝜀)𝑚2

4𝑝 . Let 𝜀𝑢 be chosen so that |𝑃𝑢 | = (1− 𝜀𝑢) 𝑚
2

4𝑝2 , i.e., 𝜀𝑢 is

the fraction of pairs in 𝐻(𝐿)𝑢 ×𝐻(𝑅)𝑢 that were deleted in Lemma 7.4.6. Notice that we have

(1− 𝜀)𝑚
2

4𝑝
≤ |𝑃 | =

∑
𝑢∈[𝑝]
|𝑃𝑢 | =

𝑚2

4𝑝2

∑
𝑢∈[𝑝]
(1− 𝜀𝑢)

=⇒ 1
𝑝

∑
𝑢∈[𝑝]

𝜀𝑢 ≤ 𝜀 .
(7.7)

One can think of this problem as a collection of disjoint satisfiable (noiseless) 2-XOR instances on
𝑃𝑢 , where each 𝑃𝑢 is a biclique (𝑚2𝑝 vertices on each side) with 𝜀𝑢 fraction of edges are removed.

Algorithm 7.4.8 (Recover corrupted constraints from corrupted pairs).
Given: For each 𝑢 ∈ [𝑝], a set 𝑃𝑢 ⊆ 𝐻(𝐿)𝑢 ×𝐻(𝑅)𝑢 such that |𝑃𝑢 | = (1 − 𝜀𝑢) 𝑚

2

4𝑝2 for 𝜀𝑢 ∈ [0, 1],
along with “right-hand sides” 𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′) for each (𝐶,𝐶′) ∈ 𝑃𝑢 .

Output: For each 𝑢 ∈ [𝑝], disjoint subsets𝒜(1)𝑢 ,𝒜(2)𝑢 ⊆ 𝐻𝑢 .
Operation:

1. Initialize: 𝒜(1)𝑢 ,𝒜(2)𝑢 = ∅ for each 𝑢 ∈ [𝑝].
2. For each 𝑢 ∈ [𝑝]:

(a) If 𝜀𝑢 ≥ 1/3, set𝒜(1)𝑢 = 𝐻𝑢 and𝒜(2)𝑢 = ∅.
(b) Else if 𝜀𝑢 < 1/3, let 𝐺𝑢 be the graph with vertex set 𝐻𝑢 = 𝐻

(𝐿)
𝑢 ∪𝐻(𝑅)𝑢 with

edges given by 𝑃𝑢 , and let 𝑆𝑢 be the size of the largest connected component

97

in 𝐺𝑢 .
(c) As 𝑆𝑢 is connected in 𝐺𝑢 , and we know 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) for each edge (𝐶,𝐶′)

in 𝐺𝑢 , by solving a linear system of equations we obtain 𝑧 ∈ {−1, 1}𝐻𝑢 such
that either 𝑧𝐶 = 𝜉𝑢(𝐶) for all 𝐶 ∈ 𝑆𝑢 , or 𝑧𝐶 = −𝜉𝑢(𝐶) for all 𝐶 ∈ 𝑆𝑢 . That is,
𝑧𝐶 = 𝜉𝑢(𝐶) up to a global sign.

(d) Pick the global sign to minimize the number of 𝐶 ∈ 𝑆𝑢 for which 𝑧𝐶 = −1. Set
𝒜(1)𝑢 = 𝐻𝑢 \ 𝑆𝑢 and𝒜(2)𝑢 = {𝐶 ∈ 𝑆𝑢 : 𝑧𝐶 = −1}.

3. Output {𝒜(1)𝑢 }𝑢∈[𝑝], {𝒜(2)𝑢 }𝑢∈[𝑝].

We now analyze Algorithm 7.4.8 via the following lemma.

Lemma 7.4.9. Let 𝜂 ∈ [0, 1/2), and let |𝐻𝑢 | = 𝑚
𝑝 ≥ 24𝑘

(1−2𝜂)2 log 𝑛 and |𝑃𝑢 | = (1 − 𝜀𝑢) 𝑚
2

4𝑝2 with 𝜀𝑢 ∈
[0, 1] for each 𝑢 ∈ [𝑝], and 1

𝑝

∑
𝑢∈[𝑝] 𝜀𝑢 ≤ 𝜀. The outputs of Algorithm 7.4.8 satisfy the following:

(1)
∑
𝑢∈[𝑝] |𝒜

(1)
𝑢 | ≤ 4𝜀𝑚, and (2) with probability 1 − 𝑛−𝑘 over the noise {𝜉𝑢(𝐶)}𝑢∈[𝑝],𝐶∈𝐻𝑢 , for every

𝑢 ∈ [𝑝] we have that𝒜(2)𝑢 = {𝐶 ∈ 𝐻𝑢 : 𝜉𝑢(𝐶) = −1} \ 𝒜(1)𝑢 .

Proof. Suppose that 𝜀𝑢 < 1/3. Observe that 𝐺𝑢 is a graph obtained by taking a biclique with left
vertices 𝐻(𝐿)𝑢 and right vertices 𝐻(𝑅)𝑢 , i.e., with 𝑚/2𝑝 left vertices and 𝑚/2𝑝 right vertices. The
following lemma shows that the largest connected component 𝑆𝑢 in 𝐺𝑢 has size at least 𝑚

𝑝 (1− 𝜀𝑢).

Claim 7.4.10. Let 𝐾𝑛,𝑛 be the complete bipartite graph with 𝑛 left vertices 𝐿 and 𝑛 right vertices
𝑅. Let 𝐺 be a graph obtained by deleting 𝜀𝑛2 edges from 𝐾𝑛,𝑛 . Then, the largest connected
component in 𝐺 has size ≥ 2𝑛(1− 𝜀).

We postpone the proof of Claim 7.4.10 to the end of the section, and continue with the proof
of Lemma 7.4.9.

We now argue that we can efficiently obtain the vector 𝑧 in Step (2c) of Algorithm 7.4.8.
Indeed, this is done as follows. First, pick one 𝐶0 ∈ 𝑆𝑢 arbitrarily, and set 𝑧𝐶0 = 1. Then, we
propagate in a breadth-first search manner: for any edge (𝐶,𝐶′) in 𝑆𝑢 where 𝑧𝐶 is determined, set
𝑧𝐶′ = 𝑧𝐶 · 𝜉𝑢(𝐶)𝜉𝑢(𝐶′). We repeat this process until we have labeled all of 𝑆𝑢 . Notice that as 𝑆𝑢 is
a connected component, fixing 𝑧𝐶0 for any 𝐶0 ∈ 𝑆𝑢 uniquely determines the assignment of all 𝑆𝑢 ,
thus we have obtained 𝑧𝐶 = 𝜉𝑢(𝐶) up to a global sign.

Now, we observe that 𝑆𝑢 does not depend on the noise in 𝜓. Indeed, this is because the pruning
and expander decomposition (and thus the graph 𝐺𝑢) depends solely on the constraint graph 𝐺
of the instance 𝜙, and not on the right-hand sides of the constraints. The following lemma thus
shows that with high probability over the noise, the number of 𝐶 ∈ 𝑆𝑢 where 𝜉𝑢(𝐶) = −1 is strictly
less than 1/2|𝑆𝑢 |. Hence, in Step (2d), by picking the assignment ±𝑧 that minimizes the number
of 𝐶 ∈ 𝑆𝑢 with 𝜉𝑢(𝐶) = −1, we see that𝒜(2)𝑢 = {𝐶 ∈ 𝑆𝑢 : 𝑧𝐶 = −1} = {𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}.

Claim 7.4.11. Let 𝜂 ∈ (0, 1/2) be the corruption probability, and assume that 𝑝 ≤ 𝑛𝑘 and 𝑚
𝑝 ≥

24𝑘
(1−2𝜂)2 log 𝑛. With probability 1 − 𝑛−𝑘 over the noise in 𝜓, it holds that for each 𝑢 ∈ [𝑝] with

𝜀𝑢 < 1/3, |{𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}| < 1
2 |𝑆𝑢 |.

We postpone the proof of Claim 7.4.11, and finish the proof of Lemma 7.4.9. We next bound

98

∑
𝑢∈[𝑝] |𝒜

(1)
𝑢 |. By Eq. (7.7) we have that 1

𝑝

∑
𝑢 𝜀𝑢 ≤ 𝜀. Thus,∑

𝑢:𝜀𝑢≥1/3
|𝐻𝑢 | ≤

𝑚

𝑝

∑
𝑢:𝜀𝑢≥1/3

3𝜀𝑢 ≤ 3𝜀𝑚 .

Moreover, by Claim 7.4.10 we have |𝑆𝑢 | ≥ (1− 𝜀𝑢)|𝐻𝑢 | = (1− 𝜀𝑢)𝑚𝑝 . Thus,∑
𝑢:𝜀𝑢<1/3

|𝐻𝑢 \ 𝑆𝑢 | ≤
∑

𝑢:𝜀𝑢<1/3
𝜀𝑢 ·

𝑚

𝑝
≤ 𝜀𝑚 .

Therefore, combining the two,∑
𝑢∈[𝑝]
|𝒜(1)𝑢 | =

∑
𝑢:𝜀𝑢<1/3

|𝐻𝑢 \ 𝑆𝑢 | +
∑

𝑢:𝜀𝑢≥1/3
|𝐻𝑢 | ≤ 4𝜀𝑚 ,

which finishes the proof of Lemma 7.4.9. □

In the following, we prove Claims 7.4.10 and 7.4.11.

Proof of Claim 7.4.10. Let 𝑆1, . . . , 𝑆𝑡 be the connected components of 𝐺. Let ℓ𝑖 = |𝑆𝑖 ∩ 𝐿| and
𝑟𝑖 = |𝑆𝑖 ∩ 𝑅 |. The number of edges in 𝐺 is at most

∑𝑡
𝑖=1 ℓ𝑖𝑟𝑖 .

Now, suppose that the largest connected component of 𝐺 has size at most 𝑀. Then, we have
that ℓ𝑖 + 𝑟𝑖 ≤ 𝑀 for all 𝑖 ∈ [𝑡]. Notice that the number of edges deleted from 𝐾𝑛,𝑛 to produce
𝐺 must be at least 𝑛2 −∑𝑡

𝑖=1 ℓ𝑖𝑟𝑖 , and this is at most 𝜀𝑛2. Hence, by maximizing the quantity∑𝑡
𝑖=1 ℓ𝑖𝑟𝑖 subject to ℓ𝑖 + 𝑟𝑖 ≤ 𝑀 for all 𝑖 ∈ [𝑡] and

∑𝑡
𝑖=1 ℓ𝑖 + 𝑟𝑖 = 2𝑛, we can obtain a lower bound on

the number of edges deleted from 𝐾𝑛,𝑛 in order for the largest connected component of 𝐺 to have
size at most 𝑀. We have that

𝑡∑
𝑖=1

ℓ𝑖𝑟𝑖 ≤
𝑡∑
𝑖=1

(
ℓ𝑖 + 𝑟𝑖

2

)2

≤ 𝑀

2
·

𝑡∑
𝑖=1

ℓ𝑖 + 𝑟𝑖
2

=
𝑛𝑀

2
,

where the first inequality is by the AM-GM inequality. Thus,

𝜀𝑛2 ≥ 𝑛2 − 𝑛𝑀
2

=⇒ 𝑀 ≥ 2𝑛(1− 𝜀) ,

which finishes the proof. □

Proof of Claim 7.4.11. Let 𝑢 be such that 𝜀𝑢 < 1/3, and let 𝑆𝑢 be the largest connected component
in 𝐺𝑢 . Observe that 𝑆𝑢 is determined solely by the constraint graph of 𝜙, and in particular
does not depend on the noise in 𝜙 (and hence on the noise in 𝜓). As 𝑝 ≤ 𝑛𝑘 by assumption,
it thus suffices to show that for each 𝑢 ∈ [𝑝], with probability 1 − 𝑛−2𝑘 it holds that |{𝐶 ∈ 𝑆𝑢 :
𝜉𝑢(𝐶) = −1}| < 1

2 |𝑆𝑢 |. Notice that |{𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}| is simply the sum of |𝑆𝑢 | Bernoulli(𝜂)
random variables. By Hoeffding’s inequality, with probability ≥ 1− exp(−2𝛿2 |𝑆𝑢 |) it holds that
|{𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}| ≤ (𝜂 + 𝛿)|𝑆𝑢 |. We choose 𝛿 = 1

2 (12 − 𝜂) such that 𝜂 + 𝛿 < 1
2 for 𝜂 ∈ (0, 1

2).
Then, by noting that 2𝛿2 |𝑆𝑢 | ≥ 2𝛿2(1− 𝜀𝑢)|𝐻𝑢 | ≥ 1

2 (12 −𝜂)2 · 2
3 · 𝑚𝑝 ≥ 2𝑘 log 𝑛 since 𝑚

𝑝 ≥ 24𝑘
(1−2𝜂)2 log 𝑛,

Claim 7.4.11 follows. □

99

7.4.6 Finishing the proof of Lemma 7.3.2

Proof of Lemma 7.3.2. We are given an 𝜏-spread 𝑝-bipartite 𝑘-XOR instance 𝜓 with constraint
graph 𝐻 = {𝐻𝑢}𝑢∈[𝑝], where we recall from Definition 7.3.1 that (1) 𝑚 = |𝐻 | and each |𝐻𝑢 | = 𝑚

𝑝 ≥
2⌊ 1

2𝜏2 ⌋ and 𝑚
𝑝 is even, and (2) for any 𝑄 ⊆ [𝑛], deg𝑢(𝑄) ≤ 1

𝜏2 max(1, 𝑛
𝑘
2−1−|𝑄 |). For convenience,

let 𝑚 ≥ 𝑛 𝑘−1
2
√
𝑝 · 𝛽 where 𝛽 B 𝐶 · (𝑘 log 𝑛)3/2

𝜏𝛾2𝜀3/2 and 𝛾 B 1− 2𝜂 ∈ (0, 1] since 𝜂 ∈ [0, 1
2).

First, we construct the 2-XOR instance 𝜙 defined in Definition 7.4.1. As stated in Observa-
tion 7.4.2, the average degree is at least 𝑑 B 1

4𝛽
2, and furthermore, by Lemma 7.4.5, the maximum

degree of 𝐺(𝐿)
𝑢,𝐶(𝜙) and 𝐺(𝑅)

𝑢,𝐶′(𝜙) for any 𝑢 ∈ [𝑝], 𝐶 ∈ 𝐻(𝐿)𝑢 and 𝐶′ ∈ 𝐻(𝑅)𝑢 is bounded by Δ B 1/𝜏2.
The algorithm then follows the steps outlined in Section 7.4.2.

Step 1. We apply graph pruning and expander decomposition (Lemma 7.4.6) with parameter
𝜀′ B 1

4𝜀, which decomposes 𝜙 into 𝜙1, . . . , 𝜙𝑇 such that they contain 1 − 𝜀′ fraction of the
constraints in 𝜙, and their constraint graphs (after adding some self-loops due to expander
decomposition) have minimum degree 𝑑min ≥ 1

3𝜀
′𝑑 = 1

48𝜀𝛽
2 and spectral gap 𝜆 ≥ Ω(𝜀′2/log2 𝑚) =

Ω(𝜀2/(𝑘2 log2 𝑛)).
Step 2. We solve the SDP relaxation for each subinstance 𝜙𝑖 . Let 𝐺 be the constraint graph
of 𝜙𝑖 (with at most 𝑁 ≤ 𝑛𝑘−1 vertices) and 𝐻 be the corrupted edges of 𝐺. We apply the
relative spectral approximation result (Lemma 7.4.7) with 𝜉(1)1 , . . . , 𝜉(1)

𝑚/2𝑝 (resp. 𝜉(2)1 , . . . , 𝜉(2)
𝑚/2𝑝)

being {−1, 1} random variables indicating whether each 𝐶 ∈ 𝐻(𝐿)𝑢 (resp. 𝐶′ ∈ 𝐻(𝑅)𝑢) is corrupted.
Moreover, the subgraphs 𝐺(1)

𝑖
and 𝐺(2)

𝑗
in Lemma 7.4.7 (which are simply subgraphs of 𝐺(𝐿)

𝑢,𝐶(𝜙)
and 𝐺(𝑅)

𝑢,𝐶′(𝜙)) have maximum degree ≤ Δ = 1/𝜏2. Thus, we have that with probability 1−𝑂(𝑁−2),

𝐿𝐻 ⪯ max
(
(1+ 𝛿) · 2𝜂(1− 𝜂), 1

3

)
· 𝐿𝐺

where 𝛿 =

√
𝐵Δ log𝑁
𝑑min𝜆

≤ 𝑂
(√

𝑘3 log3 𝑛

𝜏2𝜀3𝛽2

)
. Plugging in 𝛽 (for large enough 𝐶), we get that 𝛿 ≤ 𝛾2 =

1 − 4𝜂(1 − 𝜂). Therefore, we have (1 + 𝛿) · 2𝜂(1 − 𝜂) ≤ (1 + 𝛾2) · 1
2 (1 − 𝛾2) < 1

2 , hence 𝐿𝐻 ≺ 1
2𝐿𝐺.

By union bound over all 𝑇 ≤ 𝑁 subinstances, this holds for all subinstances 𝜙𝑖 with probability
1− 1

poly(𝑛) over the randomness of the noise.
Then, by Lemma 7.1.4, the SDP relaxation has a unique optimum which is the planted

assignment. Thus, we can identify the set of corrupted edges in each 𝜙𝑖 .

Step 3. So far we have identified, for ≥ 1− 𝜀′ fraction of all {(𝑢,𝐶,𝐶′) : 𝑢 ∈ [𝑝],𝐶 ∈ 𝐻(𝐿)𝑢 ,𝐶′ ∈
𝐻
(𝑅)
𝑢 }, the product 𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′), where 𝜉𝑢(𝐶) = −1 if (𝑢,𝐶) is corrupted in 𝜓, and +1 otherwise.

Let 𝑃𝑢 ⊆ {(𝐶,𝐶′) : 𝐶 ∈ 𝐻(𝐿)𝑢 ,𝐶′ ∈ 𝐻(𝑅)𝑢 } be such pairs for each 𝑢 ∈ [𝑝], and let 𝑃 = ∪𝑢∈[𝑝]𝑃𝑢 . Note
that |𝑃 | ≥ (1− 𝜀′)𝑚2

4𝑝 and 𝑃 depends only on 𝐻 and not on the noise.

We then run Algorithm 7.4.8. By the assumption that 𝜏 ≤ 𝑐𝛾√
𝑘 log 𝑛

for a small enough 𝑐, we

have |𝐻𝑢 | = 𝑚
𝑝 ≥ 2⌊ 1

2𝜏2 ⌋ ≥ 24𝑘
(1−2𝜂)2 , which is the condition we need in Lemma 7.4.9. Thus, with

probability 1− 𝑛−𝑘 , Algorithm 7.4.8 outputs (1)𝒜1 ⊆ 𝐻 which only depends on 𝐻 and such that
|𝒜1 | ≤ 4𝜀′𝑚 = 𝜀𝑚, and (2) 𝒜2 ⊆ 𝐻, the set of corrupted constraints in 𝐻 \ 𝒜1. This completes
the proof of Lemma 7.3.2. □

100

7.5 Notions of relative approximation

In this chapter, we have encountered several notions of relative graph approximations. Let 𝐺
be an 𝑛-vertex graph, and let 𝐻 be a random subgraph of 𝐺 by selecting each edge with a fixed
probability 𝜂 ∈ (0, 1). We are interested in the sufficient conditions on 𝐺 for each of the following
to hold with probability 1− 𝑜(1) (for some 𝛿 = 𝑜(1)):
(1) Relative cut approximation: 𝑥⊤𝐿𝐻𝑥 ≤ (1+ 𝛿)𝜂 · 𝑥⊤𝐿𝐺𝑥 for all 𝑥 ∈ {−1, 1}𝑛 .

(2) Relative SDP approximation: ⟨𝑋, 𝐿𝐻⟩ ≤ (1+ 𝛿)𝜂 · ⟨𝑋, 𝐿𝐺⟩ for all symmetric matrices 𝑋 ⪰ 0
with diag(𝑋) = I.

(3) Relative spectral approximation: 𝐿𝐻 ⪯ (1+ 𝛿)𝜂 · 𝐿𝐺.

Here, we only state one-sided inequalities, as solving noisy XOR requires only an upper bound
on 𝐿𝐻 . Note also that the above is in increasing order: relative spectral approximation implies
relative SDP approximation, which in turn implies relative cut approximation.

Recall from Lemma 7.1.3 that a lower bound on the min-cut of 𝐺 suffices for cut approximation
to hold, while Lemma 7.1.5 shows that lower bounds on the minimum degree and spectral gap of
𝐺 suffice for spectral approximation to hold. It is natural to wonder whether a min-cut lower
bound is sufficient for SDP approximation as well, since it allows us to efficiently recover the
planted assignment in a noisy planted 2-XOR via solving an SDP relaxation (see Lemma 7.1.4).
Unfortunately, there is a counterexample.

Separation of cut and SDP approximation. The example is the same graph that separates cut
and spectral approximation described in [ST11]. Let 𝑛 be even and 𝑘 = 𝑘(𝑛). Define 𝐺 = (𝑉 ,𝐸)
be a graph on 𝑁 = 𝑛𝑘 vertices where 𝑉 = {0, 1, . . . , 𝑛 − 1} × {1, . . . , 𝑘} and (𝑢, 𝑖), (𝑣, 𝑗) ∈ 𝑉 are
connected if 𝑣 = 𝑢 ± 1 mod 𝑛. Moreover, there is one additional edge 𝑒∗ between (0, 1) and
(𝑛/2, 1). In other words, 𝐺 consists of 𝑛 clusters of vertices of size 𝑘, where the clusters form a
ring with a complete bipartite graph between adjacent clusters, along with a special edge 𝑒∗ in
the middle.

Clearly, the minimum cut of 𝐺 is 2𝑘, which means that cut approximation holds. Essentially,
the special edge 𝑒∗ does not play a role here.

However, we will show that 𝑒∗ breaks SDP approximation. Define vector 𝑥0 ∈ R𝑉 such that
the (𝑢, 𝑖) entry is

𝑥0(𝑢, 𝑖) = min(𝑢, 𝑛 − 𝑢) ,

and vectors 𝑥1, . . . , 𝑥𝑛−1 to be cyclic shifts of 𝑥0: for 𝑤 ∈ {0, 1, . . . , 𝑛 − 1},

𝑥𝑤(𝑢, 𝑖) = 𝑥0(𝑢 −𝑤 (mod 𝑛), 𝑖) .

We note that 𝑥0 is the vector shown in [ST11] that breaks spectral approximation. We now show
that 𝑋 =

∑𝑛−1
𝑤=0 𝑥𝑤𝑥

⊤
𝑤 (scaled so that 𝑋 has all 1s on the diagonal) breaks SDP approximation.

First, it is easy to see that the diagonal entries of 𝑋 are all equal due to symmetry. Thus, for
some scaling 𝑐, 𝑐𝑋 ⪰ 0 and diag(𝑐𝑋) = I.

Observe that for 𝑤 ≤ 𝑛
2 − 1, 𝑥𝑤(0, 1) = 𝑤 and 𝑥𝑤(𝑛2 , 1) = 𝑛

2 −𝑤. For 𝑤 ≥ 𝑛
2 , 𝑥𝑤(0, 1) = 𝑛 −𝑤

101

and 𝑥𝑤(𝑛2 , 1) = 𝑤 − 𝑛
2 . Thus, as 𝑥⊤𝑤𝐿𝑒∗𝑥𝑤 =

(
𝑥𝑤(0, 1) − 𝑥𝑤(𝑛2 , 1)

)2,

⟨𝑋, 𝐿𝑒∗⟩ =
𝑛−1∑
𝑤=0

𝑥⊤𝑤𝐿𝑒∗𝑥𝑤 =

𝑛
2−1∑
𝑤=0

(𝑛
2
− 2𝑤

)2
+

𝑛−1∑
𝑤= 𝑛

2

(
3𝑛
2
− 2𝑤

)2

= Θ(𝑛3) .

On the other hand, 𝑥⊤𝑤𝐿𝐺\𝑒∗𝑥𝑤 = 𝑛𝑘2 for any 𝑤, thus ⟨𝑋, 𝐿𝐺\𝑒∗⟩ = 𝑛2𝑘2. This is 𝑜(𝑛3), i.e. domi-
nated by ⟨𝑋, 𝐿𝑒∗⟩, when 𝑘 = 𝑜(

√
𝑛). Since 𝑒∗ is selected in 𝐻 with probability 𝜂, we have that with

probability 𝜂,
⟨𝑋, 𝐿𝐻⟩ ≥ ⟨𝑋, 𝐿𝑒∗⟩ ≥ (1− 𝑜(1)) · ⟨𝑋, 𝐿𝐺⟩ ,

which violates the desired SDP approximation.

7.6 Hypergraph decomposition

In this section, we describe the hypergraph decomposition algorithm used in Section 7.3 (for the
proof of Theorem 5). This algorithm is nearly identical to the hypergraph decomposition step of
Section 5.2.

Algorithm 7.6.1.
Given: A semirandom (with noise 𝜂) 𝑘-XOR instance 𝜓 with constraint hypergraph 𝐻 over

𝑛 vertices, and a spread parameter 𝜏 ∈ (0, 1).
Output: For each 𝑡 = 2, . . . , 𝑘, a semirandom (with noise 𝜂) planted 𝜏-spread 𝑝(𝑡)-bipartite

𝑡-XOR instance 𝜓(𝑡) with constraint hypergraph {𝐻(𝑡)𝑢 }𝑢∈[𝑝(𝑡)], along with “discarded”
hyperedges 𝐻(1).

Operation:

1. Initialize: 𝜓(𝑡) to the empty instance, and 𝑝(𝑡) = 0 for 𝑡 = 2, . . . , 𝑘.
2. Fix violations greedily:

(a) Find a maximal nonempty violating 𝑄. That is, find 𝑄 ⊆ [𝑛] of size 1 ≤
|𝑄 | ≤ 𝑘 − 1 such that deg(𝑄) = |{𝐶 ∈ 𝐻 : 𝑄 ⊆ 𝐶}| > 1

𝜏2 max(1, 𝑛
𝑘
2−|𝑄 |), and

deg(𝑄′) ≤ 1
𝜏2 max(1, 𝑛

𝑘
2−|𝑄′ |) for all 𝑄′ ⊋ 𝑄.

(b) Let 𝑞 = |𝑄 |. Let 𝑢 = 1 + 𝑝(𝑘+1−𝑞) be a new “label”, and define 𝐻
(𝑘+1−𝑞)
𝑢

to be an arbitrary subset of {𝐶 \ 𝑄 : 𝐶 ∈ 𝐻,𝑄 ⊆ 𝐶} of size exactly 2 ·
⌊ 1

2𝜏2 max(1, 𝑛
𝑘
2−𝑞)⌋.

(c) Set 𝑝(𝑘+1−𝑞) ← 1+ 𝑝(𝑘+1−𝑞), and 𝐻 ← 𝐻 \𝐻(𝑘+1−𝑞)
𝑢 .

3. If no such 𝑄 exists, then put the remaining hyperedges in 𝐻(1).

Lemma 7.6.2. Algorithm 7.6.1 has the following guarantees:
(1) The runtime is 𝑛𝑂(𝑘),
(2) The number of “discarded” hyperedges is 𝑚(1) B |𝐻(1) | ≤ 1

𝑘𝜏2 𝑛
𝑘
2 ,

(3) For each 𝑡 ∈ {2, . . . , 𝑘} and 𝑢 ∈ [𝑝(𝑡)], |𝐻(𝑡)𝑢 | = 𝑚(𝑡)

𝑝(𝑡)
= 2⌊ 1

2𝜏2 max(1, 𝑛𝑡−
𝑘
2−1)⌋,

(4) For each 𝑡 = 2, . . . , 𝑘, the instance 𝜓(𝑡) is 𝜏-spread.

102

Proof. The runtime of Algorithm 7.6.1 is obvious. We now argue that 𝑚(1) is small. By construc-
tion, 𝐻(1) is the set of remaining hyperedges when the inner loop terminates, and so we must
have deg({𝑖}) ≤ 1

𝜏2 max(1, 𝑛
𝑘
2−1) = 1

𝜏2 𝑛
𝑘
2−1 for every 𝑖 ∈ [𝑛]; here, deg only counts hyperedges

remaining in 𝐻. We then have
∑
𝑖∈[𝑛] deg({𝑖}) = 𝑘 |𝐻(1) |, as every 𝐶 ∈ 𝐻(1) is counted exactly 𝑘

times in the sum. Hence, 𝑚(1) ≤ 1
𝑘𝜏2 𝑛

𝑘
2 .

Next, for each 𝑡 ∈ {2, . . . , 𝑘}, by construction (Step (2b)) each 𝐻(𝑡)𝑢 has the same size, namely
2⌊ 1

2𝜏2 max(1, 𝑛𝑡−
𝑘
2−1)⌋. It then follows that 𝑚(𝑡) :=

∑
𝑢∈[𝑝(𝑡)] |𝐻

(𝑡)
𝑢 | = 𝑝(𝑡) · 2⌊ 1

2𝜏2 max(1, 𝑛𝑡−
𝑘
2−1)⌋, and

so |𝐻(𝑡)𝑢 | = 𝑚(𝑡)

𝑝(𝑡)
. We also note that 𝑚(𝑡)/𝑝(𝑡) is clearly even.

We now argue that for each 𝑡, the instance 𝜓(𝑡) is 𝜏-spread. From Definition 7.3.1, we need
to prove that for each 𝑢 ∈ [𝑝(𝑡)] and 𝑄 ⊆ [𝑛], deg𝑢(𝑄) ≤ 1

𝜏2 max(1, 𝑛
𝑘
2−1−|𝑄 |). To see this, let

𝑢 ∈ [𝑝(𝑡)], and let 𝑄𝑢 be the set “associated” with the label 𝑢, i.e., the set picked in Step (2a) of
Algorithm 7.6.1 when the label 𝑢 is added in Step (2b). Note that we must have |𝑄𝑢 | = 𝑘 + 1− 𝑡.
Let 𝐻′ denote the set of constraints in 𝐻 at the time when 𝑢 and 𝐻(𝑡)𝑢 is added to 𝜓(𝑡). Namely, we
have that for every 𝐶 ∈ 𝐻(𝑡)𝑢 , 𝑄𝑢 ∪𝐶 ∈ 𝐻′, and 𝑄𝑢 ,𝐶 are disjoint. Now, let 𝑅 ⊆ [𝑛] be a nonempty
set of size at most 𝑡 − 1. First, observe that if 𝑅 ∩𝑄𝑢 is nonempty, then we must have deg𝑢(𝑅) = 0
(this degree is in the hypergraph 𝐻(𝑡)𝑢). Indeed, this is because 𝐶 ∩𝑄𝑢 = ∅ for all 𝐶 ∈ 𝐻(𝑡)𝑢 . So,
we can assume that 𝑅 ∩𝑄𝑢 = ∅. Next, we see that deg𝑢(𝑅) ≤ deg𝐻′(𝑄𝑢 ∪ 𝑅) (where deg𝐻′ is the
degree in 𝐻′), as 𝑄𝑢 ∪ 𝐶 ∈ 𝐻′ for every 𝐶 ∈ 𝐻(𝑡)𝑢 . Because 𝑄𝑢 was maximal whenever it was
processed in our decomposition algorithm and 𝑄𝑢 ⊊ 𝑄𝑢 ∪ 𝑅 as 𝑅 is nonempty and 𝑅 ∩𝑄𝑢 = ∅, it
follows that

deg𝐻′(𝑄𝑢 ∪ 𝑅) ≤
1
𝜏2

max(1, 𝑛
𝑘
2−|𝑄𝑢∪𝑅 |) = 1

𝜏2
max(1, 𝑛

𝑘
2−|𝑄𝑢 |−|𝑅 |)

=
1
𝜏2

max(1, 𝑛𝑡−
𝑘
2−1−|𝑅 |) ≤ 1

𝜏2
max(1, 𝑛

𝑡
2−1−|𝑅 |) ,

where the last inequality follows because 𝑡 − 𝑘
2 − 1− |𝑅 | ≤ 𝑡

2 − 1− |𝑅 | always holds, as 𝑡 ≤ 𝑘.
Finally, when 𝑅 = ∅, we trivially have

deg𝑢(∅) =
���𝐻(𝑡)𝑢 ��� = 2

⌊
1

2𝜏2
max(1, 𝑛𝑡−

𝑘
2−1)

⌋
≤ 1

𝜏2
max(1, 𝑛𝑡−

𝑘
2−1) ≤ 1

𝜏2
max(1, 𝑛

𝑡
2−1) ,

where we use again that 𝑡 − 𝑘
2 ≤ 𝑡

2 as 𝑡 ≤ 𝑘. This finishes the proof. □

7.7 Theorem 5 when 𝑘 = 1

In this section, we state and prove a variant of Theorem 5 for the degenerate case of 𝑘 = 1. The
algorithm here is straightforward, and we include it only for completeness.
Lemma 7.7.1 (Algorithm for noisy 1-XOR). Let 𝜂 ∈ (0, 1/2) be a constant. Let 𝑛 ∈ N and 𝜀 ∈ (0, 1),
and let 𝑚 ≥ 𝑂(𝑛 log 𝑛/𝜀). There is a polynomial-time algorithm𝒜 that takes as input a 1-XOR instance
𝜓 with constraint hypergraph 𝐻 and outputs two disjoint sets 𝒜1(𝐻),𝒜2(𝜓) ⊆ 𝐻 with the following
guarantees: (1) for any instance 𝜓 with 𝑚 constraints, |𝒜1(𝐻)| ≤ 𝜀𝑚 and 𝒜1(𝐻) only depends on 𝐻,
and (2) for any 𝑥∗ ∈ {−1, 1}𝑛 and any 𝑘-uniform hypergraph 𝐻 with at least 𝑚 hyperedges, with high
probability over 𝜓← 𝜓(𝐻, 𝑥∗,𝜂), it holds that𝒜2(𝜓) = ℰ𝜓 ∩ (𝐻 \𝒜1(𝐻)).

103

Proof. First, observe that a 1-XOR instance is a degenerate case where 𝐻 is a multiset of [𝑛] of size
𝑚. Let 𝑆 ⊆ [𝑛] denote the set of 𝑖 ∈ [𝑛] where 𝑖 appears in 𝐻 with multiplicity ≤ 𝑐 log 𝑛, where 𝑐
is a constant to be determined later. Let𝒜1(𝐻) denote 𝐻 ∩ 𝑆, i.e., the set of elements in 𝐻 that are
in 𝑆. We clearly have that |𝒜1(𝐻)| ≤ 𝑐𝑛 log 𝑛 ≤ 𝜀𝑚.

Now, let 𝑖 ∉ 𝑆. Observe that for each occurrence of 𝑖 in𝐻, we have a corresponding independent
right-hand side 𝑏 ∈ {−1, 1} where 𝑏 = 𝑥∗

𝑖
with probability 1 − 𝜂 and −𝑥∗

𝑖
with probability 𝜂.

Thus, by taking the majority, we can with high probability decode 𝑥∗
𝑖

and thus determine the
corrupted constraints. It thus remains to show that with probability ≥ 1− 1/poly(𝑛), the fraction
of corrupted right-hand sides for 𝑖 is < 1

2 . Indeed, by a Chernoff bound, with probability
≥ 1− exp(−2𝛿2𝑐 log 𝑛), it holds that the fraction of corrupted right-hand sides is at most (𝜂 + 𝛿).
By choosing 𝛿 = 1

2 (12 − 𝜂) and 𝑐 to be a sufficiently large constant, Lemma 7.7.1 follows. □

104

Part II

Extremal Girth vs. Density Trade-Offs for
Hypergraphs

105

Chapter 8

Background and Results

A very basic, well-studied problem in extremal combinatorics is to understand the length of the
shortest cycle in 𝑑-regular graph 𝐺. If 𝑑 ≥ 3, by computing the size of the ball of some radius
𝑟 around a vertex 𝑣 in 𝐺, one can show that 𝐺 must have a cycle of length 2 log𝑑−1 𝑛 + 2; this is
the well-known Moore bound for graphs. One can ask the same question more generally for
irregular graphs with average degree 𝑑, i.e., what is the extremal girth vs. density trade-off for
graphs? This question was resolved in the work of [AHL02], which extended the classical Moore
bound to the setting of irregular graphs.
Feige’s conjectured Moore bound for hypergraphs. In [Fei08], motivated by the refutation
witnesses established in [FKO06] (which is covered in detail in Section 4.1.2 in Part I of this
thesis), Feige made an elegant conjecture on the existence of even covers (hypergraph cycles) in
sufficiently dense hypergraphs. This conjecture can be interpreted as generalizing the classical
Moore bound to hypergraphs. Let us explain this conjecture below.
Definition 8.0.1 (Even covers and girth). For a 𝑘-uniform hypergraph 𝐻 on [𝑛], an even cover
(hypergraph cycle) of length 𝑟 is a collection of 𝑟 distinct hyperedges 𝐶1,𝐶2, . . . ,𝐶𝑟 in 𝐻 such that
every vertex in [𝑛] appears in an even number of 𝐶𝑖 ’s. The girth of 𝐻 is the length of the smallest
even cover in 𝐻.
Conjecture 8.0.2 (Feige’s conjecture, Conjecture 1.2 in [Fei08]). Every 𝑘-uniform hypergraph 𝐻 on

[𝑛] with 𝑚 ≥ 𝑚0 = 𝑂(𝑛)
(
𝑛
ℓ

) 𝑘
2−1 hyperedges has an even cover of length 𝑂(ℓ log 𝑛).

Conjecture 8.0.2 has implications beyond finding FKO certificates. For example, one can
identify the 𝑘-uniform hypergraph 𝐻 with its incidence matrix 𝐴 ∈ F𝑛×𝑚

2 that has 𝑘-sparse
columns; the girth of 𝐻 is the size of the smallest set of linearly dependent columns of 𝐴. By
viewing 𝐴 as the parity check matrix of a low-density parity check (LDPC) code, Conjecture 8.0.2
conjectures an extremal rate vs. distance trade-off for LDPC codes.

In this thesis, we prove Feige’s conjecture using Kikuchi matrices. This argument is a spectral
double counting argument that relates subexponential-time smoothed refutation algorithms and
the existence of even covers in hypergraphs. As explained in Section 4.1.2, as a corollary of our
proof of Conjecture 8.0.2, we show that there are efficiently verifiable witnesses of unsatisfiability
for smoothed instances of all 𝑘-CSPs with 𝑚 ∼ 𝑛𝑘/2−𝛿𝑘 constraints, for some constant 𝛿𝑘 , which is
polynomially smaller than the threshold at which efficient refutation algorithms exist even for
random 𝑘-CSPs.

A brief history of the conjecture. For 𝑘 = 2, an even cover is a 2-regular subgraph (and thus a

107

union of cycles) in a graph, and thus the conjecture above reduces to the question of determining
the maximum girth (the length of the smallest cycle) in a graph with 𝑛 vertices and 𝑛𝑑/2 edges
for parameter 𝑑. As mentioned earlier, the best-known bound is due to [AHL02], which proved
that for every graph on 𝑛 vertices with 𝑛𝑑/2 edges for 𝑑 > 2, there is a cycle of length at
most 𝑐 log𝑑−1 𝑛 for 𝑐 ≤ 2. The best-known lower bound on the girth is 𝑐 log𝑑−1 𝑛 for 𝑐 ≥ 4/3
by Margulis [Mar88] and Lubotzky, Philips and Sarnak [LPS88] via explicit constructions of
Ramanujan graphs. Obtaining a tight bound on 𝑐 has been an outstanding open problem for the
last 3 decades.

As is typically the case for hypergraph Turán problems, much less is known for hypergraphs.
When 𝑘 even and ℓ = 𝑂(1), Naor and Verstraete [NV08] proved the conjecture. They were
motivated by the connection to the rate vs. distance trade-off for LDPC codes explained above.
In the more challenging case when 𝑘 is odd, the bounds for ℓ = 𝑂(1) case in [NV08] were
improved to essentially optimal ones in [Fei08]. For ℓ ≫ 1, the best previous bound for 3-uniform
hypergraphs is due to a simple argument of Alon and Feige [AF09] (Lemma 3.3), who proved
that every 3-uniform hypergraph with 𝑂̃(𝑛2/ℓ) hyperedges has an even cover of size ℓ (this
is off by ∼

√
𝑛 factor in 𝑚). For 3-uniform hypergraphs with 𝑚 ≫ 𝑛1.5+𝜖 (and the case when

𝑚 ≫ 𝑛𝑘/2 in general), [JHL+12] proved that there are even covers of size 𝑂(1/𝜖). Finally, Feige
and Wagner [FW16] proved some variants (“generalized girth problems”) in order to build tools
to approach this conjecture.

To summarize, prior to this thesis, the conjecture was known to be true only for ℓ = 𝑂(1). For
larger ℓ , the only approach was the combinatorial strategy introduced in [FW16]. In this thesis,
we prove Feige’s conjecture (up to log 𝑛 slack in 𝑚) via a new spectral double counting argument.
Theorem 6 (Feige’s conjecture is true). For every 𝑘 ∈ N and ℓ = ℓ (𝑛), every 𝑘-uniform hypergraph 𝐻
with 𝑚 ≥ 𝑚0 = 𝑛 · 2𝑂(𝑘)(𝑛ℓ)

𝑘
2−1 · log2 𝑛 hyperedges has an even cover of size 𝑂(ℓ log 𝑛).

We note that the original version of this theorem proven in [GKM22] had a larger polylog(𝑛)
factor, which was improved in a follow-up work of [HKM23]. In this thesis, we include the
improvements of [HKM23] to the original proof in order to show the stronger result.

Our spectral double counting argument is heavily derived from our analysis for smoothed
refutation using our Kikuchi matrices. Indeed, our proof of Theorem 6 mirrors our steps in the
analysis of our refutation algorithm. In fact, in a precise sense (as we explain in Chapter 9), our
approach gives a tight connection between even covers in hypergraphs and simple cycles (and in
turn, the spectral norm of the corresponding adjacency matrix) in the “Kikuchi graph” built from
the hypergraph.

108

Chapter 9

A Proof of the Hypergraph Moore Bound

In this chapter, we prove Feige’s conjecture (Theorem 6), that every 𝑘-uniform hypergraph with a
sufficient number of hyperedges has a short even cover.

We begin by defining even (multi)covers.
Definition 9.0.1 (Even (multi)covers). Let 𝐻 be a 𝑘-uniform hypergraph on [𝑛]. A set of distinct
hyperedges 𝐶1,𝐶2, . . . ,𝐶𝑟 ∈ 𝐻 is said to be an even cover of length 𝑟 in 𝐻 if every element 𝑗 ∈ [𝑛]
belongs to an even number of 𝐶𝑖’s; equivalently, ⊕𝑟

𝑖=1𝐶𝑖 = ∅. An even multicover in 𝐻 is exactly
the same except 𝐶1,𝐶2, . . . ,𝐶𝑟 ∈ 𝐻 need not be distinct. Even (multi)covers are defined similarly
for bipartite hypergraphs, using the hyperedges (𝑢,𝐶).

We note that if 𝐻 is not simple, i.e., 𝐻 is a multi-set, then 𝐻 trivially has an even cover of
length 2. Indeed, 𝐻 must contain distinct elements 𝐶1 and 𝐶2 that are equal as sets, and so
𝐶1 ⊕ 𝐶2 = ∅.

Analogous to the proof of Theorem 4.1.6 presented in Part I, we will first give a simple proof
of Theorem 6 when 𝑘 is even (Section 9.1), which will serve as a warmup to the full proof. Then,
we will prove the full theorem in Section 9.2, which has a substantially more technical proof.

9.1 Proof of Theorem 6 for even 𝑘

Let 𝐻 be a 𝑘-uniform hypergraph, and suppose that 𝐻 has 𝑚 ≥ Γ𝑘 · 𝑛
(
𝑛
ℓ

) 𝑘
2−1 log2 𝑛 hyperedges,

where Γ is an absolute constant. In Section 2.2, we gave an algorithm to certify that, for random
𝑏𝐶 ’s chosen in {−1, 1} independently for each 𝐶, the polynomial 𝜙(𝑥) = 1

𝑚

∑
𝐶∈𝐻 𝑏𝐶𝑥𝐶 satisfies

val(𝜙) ≤ 0.5 (we can set 0.5 to be any constant < 1).
We will now observe that if we assume that 𝐻 has no length 𝑂(ℓ log 𝑛) even cover, then a

near-identical proof implies that the same conclusion holds, namely that val(𝜙) ≤ 0.5, regardless
of the choice of 𝑏𝐶 ’s! This conclusion is absurd, as by setting 𝑏𝐶 = 1 for all 𝐶 ∈ 𝐻, we clearly
val(𝜙) = 1 > 0.5. Hence, we conclude that 𝐻 has a length 𝑂(ℓ log 𝑛) even cover.

We will present the argument below by choosing 𝑏𝐶 = 1 for all 𝐶, which suffices to prove
Theorem 6. We can also view this argument as spectral double counting argument: the choice of
𝑏𝐶 = 1 for all 𝐶 yields a lower bound on ∥𝐴̃∥2, where 𝐴̃ is the matrix from Section 2.2. We then
upper bound ∥𝐴̃∥2 using the fact that 𝐻 has no length 𝑂(ℓ log 𝑛) even cover.

Let us now present the full proof. We will assume familiarity with the notation and definitions
from Section 2.2. Recall that by Eq. (2.2), we have that 𝐴̃2 ≥ 1

2 val(𝜙) = 1
2 . Hence, it suffices to

109

show that when 𝐻 has no even cover, ∥𝐴̃∥2 < 1
2 . To show this, we will use the trace moment method.

Let 𝑟 = 𝑂(ℓ log 𝑛). Because 𝐴̃ is symmetric, we have that

∥𝐴̃∥2𝑟2 ≤ tr(𝐴2𝑟) = tr((𝑊−1/2𝐴𝑊−1/2)2𝑟) = tr((𝑊−1𝐴)2𝑟) .

We can view𝑊−1𝐴 as the (weighted) adjacency matrix of a graph, and so the quantity tr((𝑊−1𝐴)2𝑟)
counts weighted closed walks of length 2𝑟 in the graph.

The graph 𝑊−1𝐴 has an edge (𝑆,𝑇) with weight 1
Υ𝑆

if and only if 𝑆 ⊕ 𝑇 ∈ 𝐻. Thus, a closed
walk of length 2𝑟 is a sequence 𝑆0, 𝑆1, . . . , 𝑆2𝑟 such that 𝑆0 = 𝑆2𝑟 and 𝑆𝑖−1 ⊕ 𝑆𝑖 = 𝐶𝑖 ∈ 𝐻 for all
𝑖 ∈ [2𝑟]. It then follows that

∅ = 𝑆0 ⊕ 𝑆2𝑟 = (𝑆0 ⊕ 𝑆1) ⊕ (𝑆1 ⊕ 𝑆2) ⊕ · · · ⊕ (𝑆2𝑟−1 ⊕ 𝑆2𝑟) = 𝐶1 ⊕ · · · ⊕ 𝐶2𝑟 .

The critical observation: closed walks are even multicovers. We can thus make the following

critical observation: every closed walk in the Kikuchi graph 𝑊−1𝐴 corresponds to an even
multicover in 𝐻 — an even cover where a 𝐶 ∈ 𝐻 may be used multiple times. Furthermore,
because we assumed that 𝐻 has no even cover of length ≤ 2𝑟 = 𝑂(ℓ log 𝑛), it follows that
any closed walk must correspond to a trivial even multicover — an even multicover where each
hyperedge 𝐶 ∈ 𝐻 appears an even number of times. Indeed, for any closed walk, we can consider
its corresponding multicover, and try to “pair up” the hyperedges used in the closed walk. The
set of “unpaired” hyperedges in the walk clearly forms an even multicover and has no repeated
edges, i.e., it is an even cover, and it clearly has length ≤ 2𝑟. But, the hypergraph 𝐻 has no such
even cover, and so there can be no “unpaired” hyperedges.

To finish the proof, we will bound the total weight of all walks that correspond to trivial even
multicovers. We can encode the walk as follows.
(1) We choose the starting vertex 𝑆0 ∈

([𝑛]
ℓ

)
.

(2) We choose a bit 𝑧𝑖 ∈ {0, 1} where 𝑧𝑖 = 0 indicates that 𝐶𝑖 will be a “new” hyperedge that is
distinct from all 𝐶1, . . . ,𝐶𝑖−1, and 𝑧𝑖 = 1 indicates that 𝐶𝑖 will be an “old” hyperedge, i.e., it is
one of 𝐶1, . . . ,𝐶𝑖−1. We note that, as argued above, we must have at least 𝑟 “old” hyperedges.

(3) We construct the walk by choosing 𝐶1, . . . ,𝐶2𝑟 in order. On the 𝑖-th step, if 𝑧𝑖 = 0 then we
pick 𝐶𝑖 from one of the neighbors of 𝑆𝑖−1. If 𝑧𝑖 = 1, then we pick 𝐶𝑖 from 𝐶1, . . . ,𝐶𝑖−1 and set
𝑆𝑖 = 𝑆𝑖−1 ⊕ 𝐶𝑖 .

Note that it is possible that some choices will yield an invalid walk, i.e., we try to set 𝑆𝑖 = 𝑆𝑖−1 ⊕ 𝐶𝑖
but |𝑆𝑖 | ≠ ℓ . This is acceptable because we are overcounting the number of walks.

Let us now count the total weight of all walks. We pay 𝑁 · 22𝑟 to choose 𝑆0 and 𝑧1, . . . , 𝑧2𝑟 .
For a fixed choice of 𝑆0 and 𝑧1, . . . , 𝑧2𝑟 , we pay 1

𝑊𝑆𝑖−1
·Υ𝑆𝑖−1 on the 𝑖-th step if 𝑧𝑖 = 0, as 𝑆𝑖−1 has

Υ𝑆𝑖−1 neighbors (recall this is the definition of Υ𝑆), and the edge has weight 1
𝑊𝑆𝑖−1

. Note that
𝑊𝑆𝑖−1 ≥ Υ𝑆𝑖−1 , so this is at most 1. If 𝑧𝑖 = 1, then we pay at most 𝑟

𝑊𝑆𝑖−1
, as there are at most 𝑟

distinct hyperedges used in the entire walk. Because 𝑊𝑆𝑖−1 ≥ 𝑚𝐷/𝑁 , it then follows that we pay
at most 𝑁𝑟

𝑚𝐷 for each step, and we have set 𝑧𝑖 = 1 for at most 𝑟 choices of 𝑖. Hence, in total, we
have

tr((𝑊−1𝐴)2𝑟) ≤ 𝑁22𝑟
(
𝑁𝑟

𝑚𝐷

) 𝑟
.

110

Recall that by Fact 3.6.1, 𝑁/𝐷 ∼ (𝑛/ℓ)𝑘/2, and so by our choice of 𝑚, it follows that 𝑁𝑟
𝑚𝐷 ≤ 𝜀, where

𝜀 is a small constant to be chosen later. Taking 2𝑟-th roots, we thus conclude that

∥𝐴̃∥2 ≤ 𝑂(
√
𝜀) .

Setting 𝜀 to be a sufficiently small constant then finishes the proof.

9.2 Proof of Theorem 6 for all 𝑘

We now prove Theorem 6 for all 𝑘, and in particular when 𝑘 is odd. Our proof closely mimics
the steps taken in Sections 5.2 to 5.4 on the way to obtaining an efficient refutation algorithm for
semirandom sparse multilinear polynomials. In the first step, we observe that without loss of
generality, we can assume that 𝐻 is a simple, 𝑝-bipartite, (𝜖, ℓ)-regular hypergraph for 𝜖 = 1/4.
Lemma 9.2.1 (Reduction to Simple, 𝑝-bipartite, (1/4, ℓ)-regular hypergraphs). Fix 𝑘, ℓ = ℓ (𝑛) ∈ N

with 2(𝑘 − 1) ≤ ℓ ≤ 𝑛. Suppose that for every 𝑝-bipartite, (1/4, ℓ)-regular, simple 𝑘-uniform hypergraph

𝐻 = {𝐻𝑢}𝑢∈[𝑝] with 𝑚 ≥ max{𝑐𝑘
(
𝑛
ℓ

) 𝑘−1
2

√
𝑝ℓ log2 𝑛, 16𝑝} hyperedges for some absolute constant 𝑐 and

|𝐻𝑢 | = 𝑚
𝑝 for all 𝑢, there exists an even cover in 𝐻 of length at most 𝑟. Then, every 𝑘-uniform hypergraph

𝐻 with 𝑚 ≥ Γ𝑘 · 𝑛
(
𝑛
ℓ

) 𝑘
2−1 log2 𝑛 hyperedges has an even cover of length at most 𝑟.

Proof. Let 𝐻 be an arbitrary 𝑘-uniform hypergraph. First, note that if 𝐻 is not simple, we are
immediately done since any pair of parallel hyperedges yields an even cover of size 2. We
thus assume that 𝐻 is simple. Apply the decomposition algorithm from Lemma 5.2.7 to 𝐻

to get bipartite hypergraphs 𝐻(1), . . . ,𝐻(𝑘); these hypergraphs must be simple, as 𝐻 was. As∑𝑘
𝑡=1 𝑚

(𝑡) = 𝑚, there must exist some 𝑡 with 1 ≤ 𝑡 ≤ 𝑘 such that 𝑚(𝑡) ≥ 𝑚/𝑘. As 𝑚(1) ≤ 𝜀𝑚/𝑘
always holds, we must have 𝑡 ≠ 1. The bound on 𝑚(𝑡)/𝑝(𝑡) in Lemma 5.2.7 implies that 𝑚(𝑡) ≥
𝑚/𝑘 ≥ max{𝑐𝑘

(
𝑛
ℓ

) 𝑘−1
2

√
𝑝(𝑡)ℓ log2 𝑛, 16𝑝(𝑡)}. Thus, the 𝑝(𝑡)-bipartite (1/4, ℓ)-regular hypergraph

𝐻(𝑡) must contain an even cover, say (𝑢1,𝐶1), . . . (𝑢𝑟′,𝐶𝑟′) for some 𝑟′ ≤ 𝑟. From Lemma 5.2.7, for
each 𝑢𝑖 , there is a 𝑄𝑖 such that each hyperedge (𝑢𝑖 ,𝐶𝑖) in 𝐻(𝑡) is a bipartite contraction of the
unique hyperedge (𝑄𝑖 ∪ 𝐶𝑖) in 𝐻. We then observe that (𝑄1 ∪ 𝐶1), . . . , (𝑄𝑟′ ∪ 𝐶𝑟′) is trivially an
even cover of length 𝑟′ ≤ 𝑟 in 𝐻, which finishes the proof. □

This brings us to the crux of the argument presented in the following lemma.
Lemma 9.2.2 (No even covers implies refutation for semirandom polynomials on regular bipartite
hypergraphs). Fix an odd 𝑘 ∈ N and ℓ = ℓ (𝑛)with 2(𝑘−1) ≤ ℓ ≤ 𝑛. Let𝐻 = {𝐻𝑢}𝑢∈[𝑝] be a 𝑝-bipartite

(1/4, ℓ)-regular simple 𝑘-uniform hypergraph with 𝑚 ≥ 𝑚0 = max(𝑐𝑘
(
𝑛
ℓ

) 𝑘−1
2

√
𝑝ℓ log2 𝑛, 16𝑝) hyper-

edges, where 𝑐 is an absolute constant, and |𝐻𝑢 | = 𝑚
𝑝 for all 𝑢. Let 𝜓 be the polynomial 1

𝑚

∑
𝑢∈[𝑝]

∑
𝐶∈𝐻𝑢 𝑏𝑢,𝐶𝑦𝑢𝑥𝐶

for arbitrary 𝑏𝑢,𝐶 ∈ {−1, 1}. Suppose that 𝐻 has no even covers of length ≤ 𝑂(ℓ log 𝑛). Then,
val(𝜓) ≤ 0.5.

Observe that this lemma has an absurd conclusion. Clearly, if one sets 𝑏𝑢,𝐶 = 1 for all 𝑢,𝐶,
then val(𝜓) is trivially 1: simply set 𝑥 = 1𝑛 and 𝑦 = 1𝑝 . Thus, this lemma immediately gives a
contradiction, in that 𝐻 must admit an even cover of length 𝑂(ℓ log 𝑛).

The reason we state the (somewhat absurd) lemma is because as we will see, our proof mimics
our refutation argument from Section 5.4 and shows that we can essentially carry out all the

111

steps for arbitrary 𝑏𝑢,𝐶 ’s as long as we can assume that 𝐻 has no even covers of length 𝑂(ℓ log 𝑛).
Lemma 9.2.2 effectively captures this argument and, in our opinion, is the most enjoyable way to
present it.

It is easy to finish the proof of Theorem 6 assuming the Lemma 9.2.2.

Proof of Theorem 6. By Lemma 9.2.1, we can assume that𝐻 B ∪𝑢∈[𝑝]𝐻𝑢 is a (1/4, ℓ)-regular, simple,
𝑘-uniform bipartite hypergraph with 𝑝 ≤ 𝑛𝑘 partitions and 𝑚 ≥ 𝑚0 hyperedges.

Suppose for the sake of contradiction that the hypergraph 𝐻 has no even cover of length
𝑂(ℓ log 𝑛). We set 𝑏𝑢,𝐶 = 1 for every 𝑢,𝐶, and consider the polynomial 𝜓 = 1

|𝐻′ |
∑
𝑢∈[𝑝]

∑
𝐶∈𝐻𝑢 𝑏𝑢,𝐶𝑦𝑢𝑥𝐶

in 𝑥, 𝑦. Observe that by setting 𝑥 = 1𝑛 , 𝑦 = 1𝑝 , we obtain that val(𝜓) = 1. On the other hand,
applying Lemma 9.2.2 to 𝜓 yields that val(𝜓) ≤ 0.5. This is a contradiction, and so 𝐻 must have
an even cover of length ≤ 𝑂(ℓ log 𝑛). □

We now focus on the proof of Lemma 9.2.2.

9.2.1 Proof of Lemma 9.2.2

Our proof follows the exact same outline as in Section 5.4 for finding an efficient refutation
algorithm for the polynomial 𝜓. One important difference is that in this section, we will use the
argument to argue an upper bound on val(𝜓); we do not care about finding an efficient certificate
for a bound on val(𝜓) here.

The key observation that we use in this proof is that there is exactly one step of the proof
in Section 5.4 that uses the randomness of the coefficients 𝑏𝑢,𝐶 ’s – namely, Lemma 5.4.7. Our
proof in this section is exactly the same with the key innovation being an analog of Lemma 5.4.7
that works for arbitrary 𝑏𝑢,𝐶 ’s as long as 𝐻 has no 𝑂(ℓ log 𝑛)-length even cover. Indeed, as the hy-
pergraph 𝐻 satisfies the assumptions of Theorem 5.3.4, with this observation we immediately see
that in order to finish the proof, it suffices to show that the spectral norm bounds in Lemma 5.4.7
still hold. In what follows, we use the exact same notation and conventions as in Section 5.4.

Let 𝑓 be the polynomial obtained in Lemma 5.4.1 to the polynomial 𝜓. Let 𝐵 be the pruned
Kikuchi matrix (Definition 5.4.2 and Lemma 5.4.4) corresponding to the polynomial 𝑓 . Us-
ing Lemma 5.4.3 (and the fact that it holds for 𝐵 as well), we obtain that:

val(𝜓)2 ≤ 1
12
+ val(𝑓) ≤ 1

12
+

𝑝

𝑚2𝐷
∥𝑊−1/2𝐵𝑊−1/2∥2 · tr(𝑊) ,

where we use that 12𝑝 ≤ 𝑚, and 𝑊 is the matrix defined in Lemma 5.4.7.1 Recall also that

𝐷 B
(𝑘−1
𝑘−1

2

)2 (2𝑛−2(𝑘−1)
ℓ−(𝑘−1)

)
if 𝑘 is odd and 2

(𝑘−1
𝑘
2

) (𝑘−1
𝑘−2

2

) (2𝑛−2(𝑘−1)
ℓ−(𝑘−1)

)
if 𝑘 is even.

Then, following the steps in the proof of Section 5.4.4, all that remains to be shown is the
conclusion of Lemma 5.4.7 holds. In Section 5.4.4, we proved Lemma 5.4.7 by crucially exploiting
the randomness of 𝑏𝑢,𝐶 ’s. Here, the 𝑏𝑢,𝐶 ’s are allowed to be arbitrary. We nonetheless show that
the same conclusion holds if we additionally assume that 𝐻 has no small even cover. Formally,
we prove the following lemma.

1We note that this is the only other part where we deviate at all from the proof in Section 5.4; here, we now have
12𝑝 ≤ 𝑚 instead of 16𝑝 ≤ 𝑚 because we removed 4𝑝 edges; this is not important.

112

Lemma 9.2.3 (Spectral Norm of 𝑊−1/2𝐵𝑊−1/2 when 𝐻 has no small even cover). Suppose that the
(1/4, ℓ)-regular 𝑝-bipartite simple 𝑘-uniform hypergraph 𝐻 associated to the polynomial 𝜓 has no even
cover of length ≤ 𝑐0ℓ log2 𝑛 for some large enough constant 𝑐0. Then, we have

∥𝑊−1/2𝐵𝑊−1/2∥2 ≤ 𝑂
(√

𝑝𝑁ℓ log 𝑛
𝑚2𝐷

+Δ
𝑝𝑁ℓ log 𝑛
𝑚2𝐷

)
.

Lemma 9.2.3 finishes the proof of Lemma 9.2.2. Indeed, via the identical calculation in
Section 5.4, it implies that ∥𝑊−1/2𝐵𝑊−1/2∥2 · tr(𝑊) ≤ 𝜀2 = 1

16 , and thus val(𝜙) ≤ 1
12 + 1

16 ≤ 1
3 , so

we are done.
It thus remains to prove Lemma 9.2.3.

Proof of Lemma 9.2.3. We will follow the proof of Lemma 5.4.7 that uses the trace method (Sec-
tion 5.4.4). We know that ∥𝑊−1/2𝐵𝑊−1/2∥2 ≤ tr((𝑊−1/2𝐵𝑊−1/2)2𝑟)1/2𝑟 = tr((𝑊−1𝐵)2𝑟)1/2𝑟 for every
𝑟 ∈ N. We prove Lemma 9.2.3 by upper bounding tr((𝑊−1𝐵)2𝑟) for some 𝑟 = 𝑂(ℓ log2 𝑛).

We remind the reader that the trace moment method is classically used in analyzing the
spectral norms of random matrices. In that setting, one bounds the expectation of tr((𝑊−1𝐵)2𝑟)
which is analyzed by understanding the terms on the expansion on the right-hand side above
that contribute a nonzero expectation often by utilizing inherent independence in the random
variables appearing as entries of the matrix 𝐵. In contrast, there is no randomness in the matrix
𝐵, and so we are not bounding the expectation. Instead, we will analyze the “contributing”
terms on the right-hand side by appealing to a crucial (and hitherto unobserved) property of the
contributing walks in the Kikuchi matrix. We stress that the analysis appearing below does (as in
fact any such analysis must!) strongly rely on the combinatorial structure of the support of the
nonzero entries in our Kikuchi matrix 𝐵 and cannot work for arbitrary matrices.

In fact, our key observation is to show that if 𝐻 has no short even covers, then our upper
bound on the expectation of tr((𝑊−1𝐵)2𝑟) in the semirandom setting (Proposition 5.4.14) still holds
for tr((𝑊−1𝐵)2𝑟), i.e., when the 𝑏𝑢,𝐶 ’s are arbitrary. Formally, we show the following.

Proposition 9.2.4. Suppose that the (1/4, ℓ)-regular 𝑝-bipartite simple 𝑘-uniform hypergraph 𝐻 asso-
ciated to the polynomial 𝜓 has no even cover of length ≤ 4𝑐0ℓ log2 𝑛 for some large enough constant 𝑐0.
Then, for 𝑟 ≤ 𝑐0ℓ log2 𝑛, it holds that

tr((𝑊−1𝐵)2𝑟) ≤
∑
𝑆∈(2𝑛ℓ)

∑
even walk sequences

(𝑢1,𝐶1,𝐶′1),...,(𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) for 𝑆

wt(𝑆, (𝑢1,𝐶1,𝐶′1), . . . , (𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟)) .

We note (at the cost of repetition) that Proposition 9.2.4 holds regardless of the 𝑏𝑢,𝐶 ’s and is a
consequence of the combinatorial structure of the support of Kikuchi matrices.

We now finish the proof of Lemma 9.2.3 assuming Proposition 9.2.4. This is immediate given
the calculations in Section 5.4.4. By Lemma 5.4.15, we know that for each 𝑆, the total weight of

such sequences is at most (4𝑟)𝑟
(
𝑝𝑁

𝑚2𝐷

)2𝑟 (
2𝑚2𝐷
𝑝𝑁 + 𝑟Δ2

) 𝑟
. Hence,

∥𝑊−1/2𝐵𝑊−1/2∥2𝑟2 ≤ tr((𝑊−1𝐵)2𝑟) ≤ 𝑁(4𝑟)𝑟
(
𝑝𝑁

𝑚2𝐷

)2𝑟 (2𝑚2𝐷

𝑝𝑁
+ 𝑟Δ2

) 𝑟
.

113

Setting 𝑟 = 𝑐0ℓ log2 𝑛 for 𝑐0 a sufficiently large constant, the above implies that

∥𝑊−1/2𝐵𝑊−1/2∥2 ≤ 𝑂
(√

𝑝𝑁𝑟

𝑚2𝐷
+ 𝑟Δ

𝑝𝑁

𝑚2𝐷

)
,

assuming that 𝐻 has no even cover of length ≤ 4𝑟 = 4𝑐0ℓ log2 𝑛. This finishes the proof, up to
Proposition 9.2.4. □

Proof of Proposition 9.2.4. We compute:

tr((𝑊−1𝐵)2𝑟) =
∑

(𝑢1,𝑆1),...,(𝑢2𝑟 ,𝑆2𝑟)
E[

2𝑟∏
ℎ=1

1
𝑊𝑆ℎ−1

𝐵𝑢ℎ (𝑆ℎ−1, 𝑆ℎ)] , (9.1)

where we use the convention that 𝑢2𝑟+1 B 𝑢1 and 𝑆0 B 𝑆2𝑟 .
Observe that each term in (9.1), ignoring the weights from𝑊 , can contribute a value at most 1

since all 𝑏𝑢,𝐶 ’s are {±1} and 𝐻 is simple. Thus, the RHS of (9.1) is upper bounded by the total
weight of nonzero “walk” terms, i.e., the total weight of the terms in the sum in (9.1).

The central observation is the following lemma that observes a combinatorial property of
nonzero terms on the RHS in (9.1).

Claim 9.2.5 (nonzero terms are even multicovers). If the walk term corresponding to (𝑢1, 𝑆1, 𝑢2, 𝑆2, . . . , 𝑢2𝑟 , 𝑆2𝑟)
is nonzero, then for every ℎ ∈ [2𝑟], there exist 𝐶ℎ ≠ 𝐶′

ℎ
∈ 𝐻𝑢ℎ such that 𝑆ℎ+1 = 𝑆ℎ ⊕ 𝐶(1)ℎ ⊕ 𝐶

′
ℎ
(2).

Moreover,
⊕

ℎ≤2𝑟(𝑢ℎ ,𝐶ℎ) ⊕ (𝑢ℎ ,𝐶′
ℎ
) = ∅, i.e., {(𝑢ℎ ,𝐶ℎ), (𝑢ℎ ,𝐶′

ℎ
)}ℎ≤2𝑟 is an even multicover in 𝐻.

Proof. By definition of the Kikuchi matrix, the (unweighted) walk term equals∏
ℎ≤2𝑟

𝐵𝑢ℎ (𝑆ℎ−1, 𝑆ℎ) ≤
∏
ℎ≤2𝑟

1(𝑆ℎ−1
𝐶
(1)
ℎ

,𝐶′
ℎ
(2)

←→ 𝑆ℎ) ,

where for each ℎ, 𝐶ℎ ,𝐶′
ℎ
∈ 𝐻𝑢ℎ . Here, the inequality holds because 𝐵𝑢’s are the pruned matrices

(Lemma 5.4.4); we have equality if we used the 𝐴𝑢’s instead and included the coefficients 𝑏𝑢ℎ ,𝐶ℎ
and 𝑏𝑢ℎ ,𝐶′

ℎ
.

Clearly, if the term corresponding to (𝑢1, 𝑆1, 𝑢2, 𝑆2, . . . , 𝑢2𝑟 , 𝑆2𝑟) is nonzero then 1(𝑆ℎ−1
𝐶
(1)
ℎ

,𝐶′
ℎ
(2)

←→
𝑆ℎ) = 1 for every ℎ ≤ 2𝑟. Expanding the definition, this implies that 𝑆ℎ = 𝑆ℎ−1 ⊕ 𝐶(1)ℎ ⊕ 𝐶

′
ℎ
(2).

To show the “moreover”, we observe that by adding up all the aforementioned two equations,
we obtain:

2𝑟⊕
ℎ=1

𝑆ℎ =

2𝑟−1⊕
ℎ=0

𝑆ℎ ⊕
2𝑟⊕
ℎ=1

𝐶
(1)
ℎ
⊕ 𝐶′ℎ

(2) .

As 𝑆0 B 𝑆2𝑟 , canceling the 𝑆ℎ’s on both sides yields
⊕

ℎ≤2𝑟 𝐶
(1)
ℎ
⊕ 𝐶′

ℎ
(2)

= ∅. This then trivially
implies that

⊕
ℎ≤2𝑟 𝐶ℎ =

⊕
ℎ≤2𝑟 𝐶

′
ℎ
= ∅, and hence

⊕
ℎ≤2𝑟(𝑢ℎ ,𝐶ℎ) ⊕ (𝑢ℎ ,𝐶′

ℎ
) = ∅, as (𝑢ℎ ,𝐶ℎ) ⊕

(𝑢ℎ ,𝐶′
ℎ
) = 𝐶ℎ ⊕ 𝐶′ℎ . □

Observe that the even multicover {(𝑢ℎ ,𝐶ℎ), (𝑢ℎ ,𝐶′
ℎ
)}ℎ≤2𝑟 in Claim 9.2.5 need not be an even

cover as the (𝑢ℎ ,𝐶ℎ)’s need not be distinct. Indeed, the main punch of what follows is that when
there are no small even covers in 𝐻, then the (𝑢ℎ ,𝐶ℎ)’s must occur in pairs, i.e., each (𝑢ℎ ,𝐶ℎ)
appears an even number of times in the two multicovers obtained in Claim 9.2.5.

114

Claim 9.2.6 (No short even cover implies short multicovers are unions of pairs). Suppose 𝐻 =

{𝐻𝑢}𝑢∈[𝑝] has no even cover of length ≤ 4𝑟. Then, if the walk term in (9.1) corresponding to
{𝑢ℎ , 𝑆ℎ ,𝐶ℎ ,𝐶′

ℎ
}ℎ≤2𝑟 is nonzero, then each (𝑢,𝐶) ∈ ∪𝑢∈[𝑝]𝐻𝑢 occurs an even number of times in

the multiset {(𝑢ℎ ,𝐶ℎ), (𝑢ℎ ,𝐶′
ℎ
)}ℎ≤2𝑟 . In particular, {(𝑢ℎ ,𝐶ℎ ,𝐶′

ℎ
)}ℎ≤2𝑟 is an even walk sequence for 𝑆0,

as defined in Definition 5.4.13.

Proof. From Claim 9.2.5,
⊕2𝑟

ℎ=1(𝑢ℎ ,𝐶ℎ) ⊕ (𝑢ℎ ,𝐶′
ℎ
) = ∅. Start from the multiset {(𝑢ℎ ,𝐶ℎ), (𝑢ℎ ,𝐶′

ℎ
)}ℎ≤2𝑟 ,

and remove pairs greedily until this is no longer possible. Observe that the symmetric difference
of the resulting set must also be empty since we removed sets in equal pairs. If at the end of this
process, we are left with a nonzero number of hyperedges, i.e., we assume that the conclusion
does not hold, then we have at most 4𝑟 distinct hyperedges whose symmetric difference is empty.
Thus, the remaining set must be an even cover of length ≤ 4𝑟 in 𝐻, which is a contradiction. □

Combining Claims 9.2.5 and 9.2.6, we thus see that the RHS of (9.1) is upper bounded by∑
𝑆

∑
even walk sequences

(𝑢1,𝐶1,𝐶′1),...,(𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟) for 𝑆

wt(𝑆, (𝑢1,𝐶1,𝐶′1), . . . , (𝑢2𝑟 ,𝐶2𝑟 ,𝐶′2𝑟)) ,

which finishes the proof of Proposition 9.2.4. □

115

116

Part III

Lower Bounds for Locally Decodable and
Correctable Codes

117

Chapter 10

Background and Results

A locally decodable code (LDC) is an error-correcting code that admits a local decoding algorithm
that can recover any symbol of the original message by reading only a small number of randomly
chosen symbols from the received corrupted codeword. A locally correctable code (LCC) is a
closely-related notion: a code is locally correctable if it admits a local correction (or self correction)
algorithm that can recover any symbol of the original codeword by reading only a small number
of randomly chosen symbols from the received corrupted codeword. More formally, we say
that a code 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 is 𝑞-locally decodable (correctable) if for any codeword 𝑥, a
corruption 𝑦 of 𝑥, and input 𝑖 ∈ [𝑘] (𝑢 ∈ [𝑛]), the local decoding (correction) algorithm reads
at most 𝑞 symbols (typically a small constant such as 2 or 3) of 𝑦 and recovers the bit 𝑏𝑖 (𝑥𝑢)
with probability 1/2+ 𝜀 whenever Δ(𝑥, 𝑦) B |{𝑣 ∈ [𝑛] : 𝑥𝑣 ≠ 𝑦𝑣}| ≤ 𝛿𝑛, where 𝛿, the “distance”
of the code, and 𝜀, the decoding accuracy, are constants. Local correction is known to be the
stronger notion: any LCC can be turned into an LDC with only a small loss in parameters.1

The central two questions in the study of LDCs/LCCs are to (1) determine the smallest possible
blocklength 𝑛 as a function of the message length 𝑘 for a fixed number of queries 𝑞, and (2)
determine the relationship between local decoding and correction, i.e., determine if LDCs and
LCCs are equivalent, or if LDCs are strictly weaker than LCCs.

Though formalized later in [KT00], local decoding/correction was first introduced for pro-
gram checking [BK95], and early applications utilized that Reed–Muller codes are locally cor-
rectable via polynomial interpolation. Since then, LDCs/LCCs have been a mainstay in com-
plexity and algorithmic coding theory with a long array of applications. An abridged list
(the surveys [Tre04, Yek12, Dvi12] provide details) of applications includes sublinear algo-
rithms and property testing [RS96, BLR93], probabilistically checkable proofs [ALM+98, AS98],
IP=PSPACE [LFKN90, Sha90], worst-case to average-case reductions [BFNW93], constructions
of explicit rigid matrices [Dvi10], derandomization [DS05], data structures [Wol09, CGW10],
fault-tolerant computation [Rom06], secure multiparty computation [IK04], and 𝑡-private in-
formation retrieval protocols [IK99, BIW10]. The existence of LCCs turns out to have natural
connections to incidence geometry [Dvi12], additive combinatorics [BDL13], and the theory of
block designs [BIW10].

For any constant 𝑞 ∈ N, Reed–Muller codes (i.e., evaluations of (𝑞 − 1)-degree polynomials)

1See Fact 3.3.8.

119

yield binary, linear2 𝑞-LCCs (and therefore also 𝑞-LDCs) with a blocklength 𝑛 ≤ 2𝑂(𝑘
1
𝑞−1). Given

their extensive applications and connections, finding LDCs/LCCs of smaller blocklength has
been a major project in theoretical computer science over the past three decades with some
remarkable successes over the years. For example, multiplicity codes [KSY14] significantly beat
the blocklength of Reed–Muller codes in the super-constant query regime. In the constant-query
regime, matching vector codes [Efr09, Yek08] give a construction of linear 3-LDCs with a strictly
subexponential (i.e., 𝑛 ≤ exp(exp(𝑂(

√
log 𝑘 log log 𝑘)))) blocklength; it is not known whether

or not these codes are locally correctable. To sidestep the difficulty of finding more efficient
LDCs/LCCs, the work of [BGH+04] introduced relaxed LCCs that soften the local correction
property and has seen exciting recent developments [GRR20, AS21, CGS20, KM24c, CY23]. These
successes notwithstanding, constructing better constant-query LDCs/LCCs has remained a major
open question (see, e.g., Chapter 8 in [Yek12]), and for constant 𝑞, Reed–Muller codes remain the
best-known construction of 𝑞-LCCs.

LDC and LCC lower bounds. The lack of progress on finding better constant-query LCCs has
motivated a long-investigated conjecture that Reed–Muller codes might be optimal constant query
LCCs. The work of [KW04, GKST06] essentially confirmed this conjecture for the “base case”
of 𝑞 = 2 by proving that 𝑛 ≥ 2Ω(𝑘) for any two-query LDC. This matches the construction of
Hadamard codes, which are 2-LCCs (and therefore also 2-LDCs) with 𝑛 = 2𝑘 . For 𝑞 ≥ 3, however,
the best-known lower bounds for LDCs/LCCs are substantially weaker, and in particular are
only a (small) polynomial in 𝑘: the works of [KW04, Woo07] prove that 𝑞-LDCs (and therefore
also 𝑞-LCCs) must have 𝑛 ≥ Ω̃(𝑘1/(1−1/⌈ 𝑞2 ⌉)), which is 𝑛 ≥ ˜Ω(𝑘2) in the case of 𝑞 = 3.3

Limitations of prior lower bound techniques for LCCs. Beyond the weakness in the quantitative
results, all the above lower bounds, when applied to LCCs, suffer from an important inherent
limitation — they also hold even for the weaker setting of locally decodable codes (LDCs). As we
mentioned above, there are subexponential length (and thus substantially beating Reed–Muller)
3-query binary, linear codes that are locally decodable [Yek08, Efr09]. Indeed, characterizing the
limitations of prior proof techniques and finding methods that could separate LCCs and LDCs
has itself been a major research goal. For example, Dvir, Gopi, Gu and Wigderson [DGGW19]
formalize the limitations of prior lower bound techniques for LCCs by showing that the “random
restriction” approach in [KT00] applies to a more general setting of “spanoids” where they are, in
fact, tight. On the other hand, to show a strong separation between LCCs and LDCs, Barkol, Ishai
and Weinreb [BIW10] build an approach for stronger LCC lower bounds via connections to the
well-studied Hamada conjecture ([Ham73], see lecture notes [Ton11]) and its generalizations in
the theory of block designs, while Dvir, Saraf and Wigderson [DSW14] develop new geometric
techniques to prove a slightly superquadratic lower bound for an appropriate formulation of
3-LCCs over the reals.

Connections to the Hamada Conjecture. As mentioned above, locally correctable codes have
a deep connection — first formalized by Barkol, Ishai and Weinreb [BIW10] — to the widely
open Hamada conjecture from the 1970s in combinatorial design theory (with deep connections

2A code is linear over a field F if the encoding map 𝒞 is an F-linear map.
3These lower bounds all hold for non-linear codes over small (i.e., polylog(𝑘)) size alphabets. A weaker polynomial

lower bound [KT00, IS18] is known to hold for linear codes over all fields and for the specific case of 𝑞 = 3, [Woo10]
shows a lower bound of Ω(𝑘2) for linear 3-LDCs over all fields.

120

to coding theory, see [AK92] for a classical reference). For positive integers 𝑚, 𝑠,𝜆, a 2-(𝑚, 𝑠,𝜆)-
design is a collection ℬ ⊆ [𝑚] of subsets (called blocks) of size 𝑠, such that every pair of elements
in [𝑚] appears in exactly 𝜆 subsets in ℬ. For any prime 𝑝, the 𝑝-rank of a design ℬ is the rank,
over F𝑝 , of the incidence matrix of ℬ: the 0-1 matrix with rows labeled by elements of [𝑚], columns
labeled by elements of ℬ and an entry (𝑖, 𝐵) is 1 iff 𝐵 contains 𝑖. A central question in algebraic
design theory is understanding the smallest possible 𝑝-rank of a 2-(𝑚, 𝑠,𝜆)-design.

In [BIW10], the authors showed that given any 2-(𝑚, 𝑠,𝜆)-design 𝒟 of 𝑝-rank 𝑚 − 𝑘, the
dual subspace to the column space of the incidence matrix of 𝒟 yields a linear (𝑠 − 1)-query
locally correctable code on F𝑚

𝑝 of dimension 𝑘. In particular, applying this transformation to the
well-studied geometric designs yields the folklore construction of Reed–Muller locally correctable
codes discussed earlier. Specifically, the 3-query locally correctable binary code obtained from
Reed–Muller codes on F4 corresponds to a 2-(𝑛, 4, 1)-design over F2 (see Section 12.11).

In 1973, Hamada [Ham73] made a foundational conjecture (see [Jun11] for a recent survey) in
the area that states4 that affine geometric designs (i.e., duals to the Reed–Muller LCCs) minimize
the 𝑝-rank among all algebraic designs of the same parameters. Over the past few decades, the
conjecture has been confirmed in various special cases [HO75, DHV78, Tei80, Ton99] that all
correspond to 𝑠 ≤ 3 or 𝑠 = 𝑛 − 1. In particular, the case of 𝑠 = 4 (the setting of 3-LCCs) is widely
open. The connection between Hamada’s conjecture and LCC lower bounds was suggested
in [BIW10] as evidence for the difficulty of proving LCC lower bounds.

Summary. To summarize, for 2-LDCs/LCCs, the best-known construction is the Hadamard code,
which achieves 𝑛 = 2𝑘 and is a linear code, and the matching lower bound of 𝑛 ≥ 2Ω(𝑘) shown
in [KW04, GKST06] proves that this is optimal. For 3-LCCs, the best-known construction is the
Reed–Muller code, which achieves 𝑛 = 22

√
2𝑘 and additionally is a block design (and hence also

linear). For 3-LDCs, the best construction comes from the matching vector codes of [Yek08, Efr09],

which achieve 𝑛 = 22
√
𝑂(log 𝑘 log log 𝑘)

and are linear. For either 3-LDCs/LCCs, the best lower bound is
𝑛 ≥ Ω̃(𝑘2) [KW04].

More generally, there is an exponential gap between best-known constructions and lower
bounds for 𝑞-LCCs for 𝑞 ≥ 3 and a subexponential gap for 𝑞-LDCs. Furthermore, the best known
lower bound techniques for 𝑞-LCCs apply also to 𝑞-LDCs and thus provably cannot yield an
exponential lower bound, and showing better lower bounds for 𝑞-LCCs would yield better
bounds for the Hamada conjecture for block designs.

10.1 Our results

In this thesis, we prove a near-cubic lower bound of 𝑛 ≥ 𝑘3/polylog(𝑘) for 3-LDCs and an
exponential lower bound for 3-LCCs. Because there exist 3-LDCs of subexponential length, this
gives the first separation between 3-LCCs and 3-LDCs. No such separation was known for 𝑞-LDCs
and 𝑞-LCCs for any constant 𝑞 ≥ 3.5 For 3-LCCs, our lower bounds are (1) 𝑛 ≥ 2Ω(𝑘

1/5) for

4Hamada’s original conjecture is that affine geometric designs, or, dual codes to Reed–Muller codes, are the unique
optimal designs with the same parameters. This strong form has since then been disproved – there are non-affine
geometric designs that achieve the same (but not better!) parameters [Jun84, Kan94, LLT00, LLT01, LT02, JT09]. The
version of the problem we study here is called the weak version of Hamada conjecture.

5The work of [BGT17] shows a separation between 2-LCCs and 2-LDCs over poly(𝑛)-sized alphabets. For 2-LCCs
on small alphabets, a strong separation cannot exist. For example, on F2, the Hadamard code gives both an essentially

121

general nonlinear 3-LCCs with “high completeness”, (2) 𝑛 ≥ 2Ω(𝑘
1/4) for linear 3-LCCs, and (3)

𝑛 ≥ 2(1−𝑜(1))
√
𝑘 for 3-LCCs that are designs. Because Reed–Muller codes give design 3-LCCs of

length 𝑛 ≤ 2
√

8𝑘 (see Section 12.11), this last result is tight up to a factor of
√

8 in the exponent,
and additionally proves Hamada’s conjecture for 2-(𝑛, 4, 1)-designs up to a factor of 8 in the
codimension.

Our main tool is a new connection between the existence of locally decodable/correctable
codes and refutation of instances of Boolean CSPs with limited randomness. This connection
is similar in spirit to the connection between PCPs and hardness of approximation for CSPs, in
which one produces a 𝑞-ary CSP from a PCP with a 𝑞-query verifier by adding, for each possible
query set of the verifier, a local constraint that asserts that the verifier accepts when it queries
this particular set. To refute the resulting CSP instance, our proof builds on the spectral analysis
of Kikuchi matrices employed in the work of [GKM22] (and the refined argument in [HKM23]),
which obtained strong refutation algorithms for semirandom and smoothed CSPs and proved
the hypergraph Moore bound conjectured by Feige [Fei08] up to a single logarithmic factor.

10.1.1 A near-cubic lower bound for 3-LDCs

In our first result, we show a near-cubic lower bound 𝑛 ≥ 𝑘3/polylog(𝑘) on the blocklength of any
3-query LDC. This improves on the previous best lower bound by a 𝑂̃(𝑘) factor. More precisely,
we prove:
Theorem 7. Let 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 be a code that is (3, 𝛿, 𝜀)-locally decodable. Then, it must hold that
𝑘3 ≤ 𝑛 ·𝑂((log6 𝑛)/𝜀32𝛿16). In particular, if 𝛿, 𝜀 are constants, then 𝑛 ≥ Ω(𝑘3/log6 𝑘).

We have not attempted to optimize the dependence on 𝜀 and 𝛿 in Theorem 7; for the specific
case of binary linear codes, one can obtain slightly better dependencies on log 𝑘, 𝜀, 𝛿, as we
show in Theorem 11.3.2 and Corollary 11.3.3. It is straightforward to extend Theorem 7 to
nonbinary alphabets with a polynomial loss in the alphabet size, and we do so in Theorem 11.2.2
in Section 11.2. Finally, using known relationships between locally correctable codes (LCCs) and
LDCs (Fact 3.3.8), Theorem 7 implies a similar lower bound for 3-query LCCs.

Up to polylog(𝑘) factors, the best known lower bound of 𝑛 ≥ 𝑘
𝑞+1
𝑞−1 /polylog(𝑘) for 𝑞-LDCs

for odd 𝑞 can be obtained by simply observing that a 𝑞-LDC is also a (𝑞 + 1)-LDC, and then
invoking the lower bound for (𝑞 + 1)-query LDCs. Our improvement for 𝑞 = 3 thus comes from
obtaining the same tradeoff with 𝑞 as in the case of even 𝑞, but now for 𝑞 = 3. Our proof does
not extend to odd 𝑞 ≥ 5; we briefly mention at the end of the proof overview in Chapter 11 the
place in the proof where the natural generalization fails. We leave proving a lower bound of

𝑛 ≥ 𝑘
𝑞
𝑞−2 /polylog(𝑘) for all odd 𝑞 ≥ 5 as an intriguing open problem, which we discuss in more

detail in Section 15.1.

10.1.2 Exponential lower bounds for 3-LCCs

In our second set of results, we prove an exponential lower bound for 3-LCCs. Our lower bounds
vary slightly depending on whether one is willing to assume that the LCC is linear, or a block
design. We note that the best-known constructions of LCCs and LDCs, namely Reed–Muller

optimal 2-LCC and 2-LDC.

122

codes and matching vector codes, are F2-linear, and the best-known construction of 3-LCCs from
Reed–Muller codes is a block design (see Section 12.11).

Linear 3-LCCs. In our first result, we prove a lower bound of 𝑛 ≥ 2Ω(𝑘
1/4) for linear 3-LCCs.

Theorem 8. Let ℒ : F𝑘 → F𝑛 be a linear (3, 𝛿, 𝜀)-LCC. Then, 𝑛 ≥ 2Ω((𝛿
2𝑘/(|F|−1)2)1/4). In particular, if

ℒ : F𝑘
2 → F𝑛

2 is a (3, 𝛿, 𝜀)-LCC where 𝛿 is constant, then 𝑛 ≥ 2Ω(𝑘
1/4).

Theorem 8 first appeared in [KM24a] with an exponent of 1/8. This was subsequently
improved by [Yan24] to 1/4 by optimizing the technical “row pruning” step of the proof. In this
thesis, we incorporate the improvements of [Yan24] into our original proof to give the stronger
theorem and the simpler proof.

As stated earlier, Theorem 8 also yields the first separation between (linear) 3-LCCs and 3-LDCs.
In particular, Theorem 8 implies that matching vector codes that yield linear 3-LDCs over F2 of
subexponential blocklength, such as the codes in [Yek08, Efr09], cannot admit a local correction
algorithm, answering a question of Yekhanin (see Chapter 8 in [Yek12]).

Design 3-LCCs. In our second result, we prove a lower bound that is sharp up to a
√

8 factor in
the exponent on the blocklength of any binary linear 3-LCC where the local correction query sets
form a 2-(𝑛, 4, 1)-design. This is equivalent to asking for the hypergraph of local correction sets
𝐻𝑢 for correcting any bit 𝑥𝑢 of the codeword to be a perfect 3-uniform hypergraph matching and
that every pair of codewords bits appears in exactly 2 triples across all matchings.6 Specifically,
for such design 3-LCCs, we prove:

Theorem 9. Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a design 3-LCC. Then, 𝑛 ≥ 2(1−𝑜(1))
√
𝑘 . Here, the 𝑜(1)-factor is

𝑂(log 𝑘/
√
𝑘).

Reed–Muller codes, in particular, are design LCCs. In Section 12.11 we observe that the
folklore best-known construction of binary 3-query LCCs — obtained by projecting Reed–Muller
codes of degree-2 polynomials over F4 to F2 via the trace map — is a design 3-LCC with 𝑛 ≤ 2

√
8𝑘 ,

or equivalently, a 2-(𝑛, 4, 1) design of rank 𝑛 − 𝑘. Thus, the bound in Theorem 9 is tight up to
a factor of

√
8 in the exponent. As a direct corollary, we also confirm the Hamada conjecture for

2-(𝑛, 4, 1)-designs up to a factor of 8 in the co-dimension.

Nonlinear 3-LCCs. In final second result, we obtain improved lower bounds for smooth 3-LCCs
with high completeness. These codes may be non-linear and may have adaptive correction
algorithms.

A 3-LCC is said to be 𝛿-smooth if no codeword bit is queried with probability more than 1
𝛿𝑛 on

any particular invocation of the decoder. Introduced by Katz and Trevisan [KT00], smooth codes
provide a clean formalization of general locally correctable/decodable codes. We say that such
a code has completeness 1− 𝜖, if, when running the 𝛿-smooth local correction algorithm on an
uncorrupted codeword, the algorithm succeeds with probability at least 1− 𝜖. Recall that the usual
notion of completeness (e.g., in [KT00]) for LCCs is for an input with a 𝛿-fraction of corruptions.

6The reason that this is 2 instead of 𝜆 = 1 is because a 4-tuple (𝑢, 𝑣, 𝑠, 𝑡) yields 2 decoding triples, (𝑢, 𝑠, 𝑡) for 𝑣 and
(𝑣, 𝑠, 𝑡) for 𝑢, that contain the pair (𝑠, 𝑡).

123

Our result shows that for any (1− 𝜖)-complete 𝛿-smooth code where 𝛿 is a constant, 𝑛 ≥ 𝑘𝑂(1/𝜖).
In particular, when 𝜖 ≤ 1/polylog(𝑛), we obtain a exponential lower bound on the block length,
and as 𝜀 approaches 0 the bound becomes 𝑛 ≥ 2Ω(𝑘

1/5).
Theorem 10. There is an absolute constant 𝛾 > 0 such that the following holds. Let 𝒞 : {0, 1}𝑘 → {0, 1}𝑛
be a 𝛿-smooth (possibly non-linear and adaptive) 3-LCC with completeness 1− 𝜀. Then for any 𝜂 ∈ (0, 1),
it holds that 𝑘 ≤ log(1/𝛿)

𝜂4𝛿3 ·𝑂(𝑛
1
𝑟 log5 𝑛), where 𝑟 = ⌊ 1−𝜂

2𝜀 ⌋.
In particular, if 𝛿 is a constant and 𝜀 = 0, then 𝑘 ≤ 𝑂(log5 𝑛), i.e., 𝑛 ≥ 2Ω(𝑘

1/5), and if 𝜀 > 0 is a small
constant and 1/(2𝜀) is not an integer, then taking 𝜂 = 1/log 𝑛 implies that 𝑘 ≤ 𝑂̃(𝑛2𝜀), i.e., 𝑘 ≥ Ω̃(𝑘 1

2𝜀).
As we shall discuss towards at the end of this section, Theorem 10 implies a lower bound for

general (3, 𝛿, 𝜀)-LCCs that beats the best-known 𝑛 ≥ Ω̃(𝑘3) lower bound (Theorem 7, [AGKM23])
by a polynomial factor when 𝜀 is a small constant. Moreover, in the case of near-perfect com-
pleteness, our result above obtains the first exponential lower bound for (possibly adaptive and
non-linear) smooth 3-LCCs.

Smooth vs. general LCCs. Smooth LCCs (Definition 3.3.6) were defined in the work of [KT00],
motivated by their connection to general LCCs (Definition 3.3.5). A simple reduction in [KT00]
shows that any (3, 𝛿, 1− 𝜀)-LCC, i.e., an LCC with distance 𝛿 and completeness 1− 𝜀, can be turned
into a (3, 𝛿/3, 1− 𝜀)-smooth LCC, i.e., a 𝛿/3-smooth 3-LCC with completeness 1− 𝜀. Conversely,
any (3, 𝛿, 1− 𝜀)-smooth LCC is a (3,𝜂𝛿, 1− 𝜀 − 𝜂)-LCC for any 𝜂 > 0 (see Remark 3.3.7).

Thus, when 𝜀 is a small constant, Theorem 10 implies a lower bound for general (3, 𝛿, 1− 𝜀)-
LCCs that beats the prior best 𝑛 ≥ Ω̃(𝑘3) lower bound (Theorem 7, [AGKM23]) by a polynomial
factor.

However, in the setting of perfect completeness (and 𝜀 = 𝑜(1)more generally), the comparison
between smooth LCCs and general LCCs begins to break down. This is because, for a general
LCC, 𝛿 is the fraction of errors one can tolerate while still decoding correctly with probability
1− 𝜀; the parameters 𝛿 and 𝜀 are coupled! In particular, it is likely not possible to simultaneously
have 𝜀 = 𝑜(1), 𝛿 = 𝑂(1) and 𝑞 = 𝑂(1). On the other hand, for a smooth LCC, 𝛿 is the smoothness
parameter, and 1− 𝜀 is the probability that the decoder succeeds on an uncorrupted codeword. Thus,
for smooth codes, it is perfectly sensible to set 𝛿 = 𝑂(1), 𝜀 = 0, and 𝑞 = 𝑂(1).

In retrospect, the definition of LCCs inherently couples 𝛿 and the completeness 𝜀, whereas
for smooth codes these parameters become independent. In particular, a smooth code allows us
to seamlessly trade off between the fraction of errors 𝜂𝛿 tolerated and the success probability
1− 𝜀 − 𝜂 of the decoder in the presence of this fraction of errors. For this reason, a smooth code is
a stronger object, but also perhaps a more natural one.

Indeed, in some important applications of LDCs/LCCs, smooth LDCs/LCCs are the right
notion to consider. For example, a perfectly smooth (𝑞, 1, 1 − 𝜀)-smooth LDC gives a 𝑞-server
information-theoretically secure private information retrieval scheme with completeness 1− 𝜀.

The subtle definitional issues above did not affect prior lower bound (or upper bound)
techniques. Indeed, known constructions of 𝑞-LDCs and LCCs are perfectly smooth and satisfy
perfect completeness, i.e., (𝑞, 1, 1)-smooth LDCs/LCCs, and the lower bound techniques of [KT00,
KW04, AGKM23] succeed for smooth LDCs/LCCs even with low completeness.

Concurrent work. In concurrent work, [AG24] builds on [KM24a, Yan24] and proves an 𝑛 ≥
2Ω(
√
𝑘/log 𝑘) lower bound for all linear 3-LCCs over F2, improving on the 2Ω(𝑘

1/4) shown in [Yan24],
and their result can be extended to linear 3-LCCs over any small field F of characteristic 2. This is

124

incomparable to Theorem 8, as the lower bound is stronger but it requires that the field F has
characteristic 2. It is also incomparable to Theorem 9, as it proves a weaker (and possibly not
tight) lower bound, as compared to the sharp statement in Theorem 9, but it applies for all linear
3-LCCs over F2, not just design 3-LCCs. The work of [AG24] does not prove any lower bound
for nonlinear codes.

125

126

Chapter 11

A Near-Cubic Lower Bound for 3-Query
Locally Decodable Codes

In this chapter, we will prove Theorem 7, our improved lower bound for 3-LDCs.
Setup. We follow the proof strategy and setup that we introduced in Section 2.3. Namely, we
define a 3-XOR instance corresponding to the normal LDC decoder. By Definition 3.3.2, the
3-XOR instance we define has a high value, i.e., there is an assignment to the variables satisfying a
nontrivial fraction of the constraints. To finish the proof, we show that if 𝑛 ≪ 𝑘3, then the 3-XOR
instance must have small value, which is a contradiction.

By Fact 3.3.3, in order to show that 𝑘3 ≤ 𝑛 · 𝑂(log6 𝑛)
𝜀32𝛿16 , it suffices for us to show that for any

code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 that is (3, 𝛿, 𝜀)-normally decodable, it holds that 𝑘3 ≤ 𝑛 · 𝑂(log6 𝑛)
𝜀16𝛿16 . As

𝒞 is (3, 𝛿, 𝜀)-normally decodable, this implies that there are 3-uniform hypergraph matchings
𝐻1, . . . ,𝐻𝑘 satisfying the property in Definition 3.3.2. Let 𝑚 B

∑𝑘
𝑖=1 |𝐻𝑖 | be the total number of

hyperedges in the hypergraph 𝐻 B ∪𝑘
𝑖=1𝐻𝑖 .

We define the relevant family of 3-XOR instances below.

The Key 3-XOR Instances

For each 𝑏 ∈ {−1, 1}𝑘 , we define the 3-XOR instance Ψ𝑏 , where:
(1) The variables are 𝑥1, . . . , 𝑥𝑛 ∈ {−1, 1},
(2) The constraints are, for each 𝑖 ∈ [𝑘] and 𝐶 ∈ 𝐻𝑖 ,

∏
𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 .

We associate an instance Ψ𝑏 with the polynomial Ψ𝑏(𝑥) B 1
𝑚

∑𝑘
𝑖=1 𝑏𝑖

∑
𝐶∈𝐻𝑖

∏
𝑣∈𝐶 𝑥𝑣 , and

define val(Ψ𝑏) B max𝑥∈{−1,1}𝑛 Ψ𝑏(𝑥). We note that the maximum fraction of constraints in
the 3-XOR instance Ψ𝑏 satisfied by any assignment 𝑥 is 1

2 + 1
2 val(Ψ𝑏).

We first observe that Definition 3.3.2 immediately implies that every 3-XOR instance Ψ𝑏 in the
above family (indexed by 𝑏 ∈ {−1, 1}𝑘) must have a non-trivially large value. Formally, we have
that

E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≥ E𝑏←{−1,1}𝑘 [Ψ𝑏(𝒞(𝑏))] ≥ 2𝜀 , (11.1)

where the first inequality is by definition of val(·), and the second inequality uses Definition 3.3.2,
as for each constraint 𝐶 ∈ 𝐻𝑖 for some 𝑖, the encoding 𝒞(𝑏) of 𝑏 satisfies this constraint with
probability 1

2 + 𝜀 for a random 𝑏.

127

Overview: refuting the XOR instances. To finish the proof, it thus suffices to argue that
E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] is small. We would like to do this using Kikuchi matrices, similar to those
defined in Definition 2.3.2. However, when 𝑞 = 3, or more generally when 𝑞 is odd, the matrices
𝐴𝑖 defined in Definition 2.3.2 are no longer meaningful, as the condition 𝑆 ⊕ 𝑇 = 𝐶 is never
satisfied. A naive attempt to salvage the above approach is to simply allow the columns of 𝐴𝑖
to be indexed by sets of size ℓ + 1, rather than ℓ . However, this asymmetry in the matrix causes
the spectral certificate to obtain a worse dependence in terms of 𝑞, leading to a final bound of
𝑘 ≤ 𝑛1−2/(𝑞+1)𝑂(log 𝑛), the same as the current state-of-the-art lower bound for odd 𝑞. This is
precisely the issue that in general makes refuting 𝑞-XOR instances for odd 𝑞 technically more
challenging than even 𝑞. The asymmetric matrix effectively pretends that 𝑞 is 𝑞 + 1, and thus
obtains the “wrong” dependence on 𝑞.

Instead, our main idea is to transform a 3-LDC into a 4-XOR instance and then use an appro-
priate Kikuchi matrix to find a refutation for the resulting 4-XOR instance. The transformation
works as follows. We randomly partition [𝑘] into two sets, 𝐿,𝑅, and fix 𝑏 𝑗 = 1 for all 𝑗 ∈ 𝑅. Then,
for each intersecting pair of constraints 𝐶𝑖 ,𝐶 𝑗 that intersect with 𝐶𝑖 ∈ 𝐻𝑖 , 𝑖 ∈ 𝐿, 𝐶 𝑗 ∈ 𝐻𝑗 , 𝑗 ∈ 𝑅, we
add the derived constraint 𝐶𝑖 ⊕ 𝐶 𝑗 to our new 4-XOR instance, with right-hand side 𝑏𝑖 .1 Because
the 3-XOR instance has high value, by the Cauchy-Schwarz inequality the 4-XOR instance also has
high value. Moreover, the 4-XOR instance has ∼ 𝑘2𝑛 constraints, as a typical 𝑣 ∈ [𝑛] participates
in ∼ 𝑘 hyperedges in ∪𝑘

𝑖=1𝐻𝑖 , and hence can be “canceled” to form 𝑘2 derived constraints.
We can then apply the Kikuchi matrix method and CSP refutation machinery to try to refute

this 4-XOR instance. However, because each 𝐻′
𝑖

is no longer a matching, the resulting Kikuchi
matrices (which, recall, are “zeroed out” versions of the original matrices in Definition 2.1.1)
may have very few nonzero entries. Namely, the analogue of Lemma 2.3.3 does not necessarily
hold. However, it does hold if we assume that any pair 𝑝 = (𝑢, 𝑣) of vertices appears in at most
polylog(𝑛) hyperedges in the original 3-uniform hypergraph ∪𝑘

𝑖=1𝐻𝑖 . If we make this assumption,
then we can prove that 𝑛 ≥ 𝑘3/polylog(𝑘). We note that a recent work [BCG20] managed to
reprove that 𝑛 ≥ 𝑘2/polylog(𝑘) under a similar assumption about pairs of vertices.

Thus, the final step of the proof is to remove the assumption by showing that no pair of
vertices can appear in too many hyperedges. Suppose that we do have many “heavy” pairs
𝑝 = (𝑢, 𝑣) that appear in ≫ log 𝑛 clauses in the original 3-uniform hypergraph 𝐻 B ∪𝑘

𝑖=1𝐻𝑖 .
Now, we transform the 3-XOR instance into a bipartite 2-XOR instance ([AGK21, GKM22]) by
replacing each heavy pair 𝑝 with a new variable 𝑦𝑝 . That is, the 3-XOR clause 𝐶 = (𝑢, 𝑣,𝑤) in 𝐻𝑖

now becomes the 2-XOR clause (𝑝,𝑤), where 𝑝 is a new variable. In other words, the constraint
𝑥𝑢𝑥𝑣𝑥𝑤 = 𝑏𝑖 is replaced by 𝑦𝑝𝑥𝑤 = 𝑏𝑖 . Each clause in the bipartite 2-XOR instance now uses one
variable from the set of heavy pairs, and one from the original set of variables [𝑛]. We then show
that if there are too many heavy pairs, then this instance has a sufficient number of constraints in
order to be refuted, and is thus not satisfiable, which is again a contradiction.

Finally, we note that for larger odd 𝑞 ≥ 5, the proof showing that there not too many heavy
pairs breaks down, and this is what prevents us from generalizing Theorem 7 to all odd 𝑞.

Formally, the argument to bound E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] proceeds in two steps:
(1) Decomposition: First, we take any pair 𝑄 = {𝑢, 𝑣} of vertices that appears in ≫ log 𝑛 of

the hyperedges in 𝐻 B ∪𝑘
𝑖=1𝐻𝑖 , and we replace this pair with a new variable 𝑦𝑄 in all the

1If |𝐶𝑖 ∩ 𝐶 𝑗 | = 2, then the derived constraint is a 2-XOR constraint, not 4-XOR. This is a minor technical issue that
can be circumvented easily, so we will ignore it for the proof overview.

128

constraints containing this pair. This process decomposes the 3-XOR instance into a bipartite
2-XOR instance ([AGK21, GKM22]), and a residual 3-XOR instance where every pair of
variables appears in at most 𝑂(log 𝑛) constraints.

(2) Refutation: We then produce a “strong refutation” for each of the bipartite 2-XOR and the
residual 3-XOR instances that shows that the average value of the instance over the draw
of 𝑏 ← {−1, 1}𝑘 is small. This implies that each of the two instances produced and thus the
original 3-XOR instance has a small expected value and finishes the proof.

The decomposition and refuting the XOR instances. We now formally define the decomposition
process. We recall a notion of degree in hypergraphs that turns out to be useful in our argument
(similar to the analysis in Section 5.2).
Definition 11.0.1 (Degree). Let 𝐻 be a 𝑞-uniform hypergraph on 𝑛 vertices, and let 𝑄 ⊆ [𝑛]. The
degree of 𝑄, deg𝐻(𝑄), is the number of 𝐶 ∈ 𝐻 with 𝑄 ⊆ 𝐶.
Lemma 11.0.2 (Hypergraph Decomposition). Let 𝐻1, . . . ,𝐻𝑘 be 3-uniform hypergraphs on 𝑛 vertices,
and let 𝐻 B ∪𝑘

𝑖=1𝐻𝑖 . Let 𝑑 ∈ N be a threshold. Let 𝑃 B {{𝑢, 𝑣} : deg𝐻({𝑢, 𝑣}) > 𝑑}. Then, there are
3-uniform hypergraphs 𝐻′1, . . . ,𝐻′

𝑘
and bipartite graphs 𝐺1, . . . ,𝐺𝑘 , with the following properties.

(1) Each 𝐺𝑖 is a bipartite graph with left vertices [𝑛] and right vertices 𝑃.
(2) Each 𝐻′

𝑖
is a subset of 𝐻𝑖 .

(3) For each 𝑖 ∈ [𝑘], there is a one-to-one correspondence between hyperedges 𝐶 ∈ 𝐻𝑖 \𝐻′𝑖 and edges 𝑒 in
𝐺𝑖 , given by 𝑒 = (𝑤, {𝑢, 𝑣}) ↦→ 𝐶 = {𝑢, 𝑣,𝑤}.

(4) Let 𝐻′ B ∪𝑘
𝑖=1𝐻

′
𝑖
. Then, for any 𝑢 ≠ 𝑣 ∈ [𝑛], it holds that deg𝐻′({𝑢, 𝑣}) ≤ 𝑑.

(5) If 𝐻𝑖 is a matching, then 𝐻′
𝑖

and 𝐺𝑖 are also matchings.
The proof of Lemma 11.0.2 is simple, and is given in Section 11.0.1.
Given the decomposition, the two main steps in our refutation are captured in the following

two lemmas, which handle the 2-XOR and 3-XOR instances, respectively.
Lemma 11.0.3 (2-XOR refutation). Fix 𝑛 ∈ N and 𝑘 ≤ 𝑛. Let 𝐺1, . . . ,𝐺𝑘 be bipartite matchings with
left vertices [𝑛] and a right vertex set 𝑃 of size |𝑃 | ≤ 𝑛𝑘/𝑑 for some 𝑑 ∈ N. For 𝑏 ∈ {−1, 1}𝑘 , let 𝑔𝑏(𝑥, 𝑦)
be a homogeneous quadratic polynomial defined by

𝑔𝑏(𝑥, 𝑦) B
𝑘∑
𝑖=1

𝑏𝑖

∑
𝑒={𝑣,𝑝}∈𝐺𝑖 :𝑣∈[𝑛],𝑝∈𝑃

𝑥𝑣𝑦𝑝 ,

and let val(𝑔𝑏) B max𝑥∈{−1,1}𝑛 ,𝑦∈{−1,1}𝑃 𝑔𝑏(𝑥, 𝑦). Then, E𝑏←{−1,1}𝑘 [val(𝑔𝑏)] ≤ 𝑂(𝑛𝑘
√
(log 𝑛)/𝑑).

Lemma 11.0.4 (3-XOR refutation). Let 𝐻1, . . . ,𝐻𝑘 be 3-uniform hypergraph matchings on 𝑛 ver-
tices, and let 𝐻 B ∪𝑘

𝑖=1𝐻𝑖 . Suppose that for any {𝑢, 𝑣} ⊆ [𝑛], deg𝐻({𝑢, 𝑣}) ≤ 𝑑. Let 𝑓𝑏(𝑥) B∑𝑘
𝑖=1 𝑏𝑖

∑
𝐶∈𝐻𝑖

∏
𝑣∈𝐶 𝑥𝑣 . Then, it holds that

E𝑏←{−1,1}𝑘 [val(𝑓𝑏)] ≤ 𝑛
√
𝑘𝑑 ·𝑂

(
(𝑛𝑘)1/8 log1/4 𝑛

)
.

We prove Lemma 11.0.3 in Section 11.0.2, and we prove Lemma 11.0.4 in Section 11.1.
With the above ingredients, we can now finish the proof of Theorem 7.

Proof of Theorem 7. Applying Lemma 11.0.2 with 𝑑 = 𝑂((log 𝑛)/𝜀2𝛿2) for a sufficiently large

129

constant, we decompose the instance Ψ𝑏 into 2-XOR and 3-XOR subinstances.2 Note that as
𝑚 ≤ 𝑛𝑘, we will have |𝑃 | ≤ 𝑚/𝑑 ≤ 𝑛𝑘/𝑑. We have that 𝑚 val(Ψ𝑏) ≤ val(𝑓𝑏) + val(𝑔𝑏) because
of the one-to-one correspondence property in Lemma 11.0.2. We also note that 𝑚 ≥ 𝛿𝑛𝑘, as
|𝐻𝑖 | ≥ 𝛿𝑛 for each 𝑖. By Lemma 11.0.3 and by taking the constant in the choice of 𝑑 sufficiently
large, we can ensure that E𝑏←{−1,1}𝑘 [val(𝑔𝑏)] ≤ 𝜀𝛿𝑛𝑘/3. Hence, by Eq. (11.1) and Lemma 11.0.4,
we have

2𝜀𝛿𝑛𝑘 ≤ 2𝜀𝑚 ≤ 𝑚E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤ E𝑏←{−1,1}𝑘 [val(𝑓𝑏) + val(𝑔𝑏)]

≤ 𝜀𝛿𝑛𝑘
3
+ 𝑛
√
𝑘 ·𝑂(

√
log 𝑛)/(𝜀𝛿) · (𝑛𝑘)1/8 log1/4 𝑛

=⇒ 𝜀2𝛿2
√
𝑘 ≤ 𝑂(

√
log 𝑛) · (𝑛𝑘)1/8 log1/4 𝑛

=⇒ 𝑘3 ≤ 𝑛 ·𝑂(log6 𝑛)/(𝜀16𝛿16) .

We thus conclude that 𝑘3 ≤ 𝑛 ·𝑂
(

log6 𝑛

𝜀16𝛿16

)
, which finishes the proof. □

11.0.1 Hypergraph decomposition: proof of Lemma 11.0.2

We prove Lemma 11.0.2 by analyzing the following greedy algorithm.

Algorithm 11.0.5.
Given: 3-uniform hypergraphs 𝐻1, . . . ,𝐻𝑘 .
Output: 3-uniform hypergraphs 𝐻′1, . . . ,𝐻′

𝑘
and bipartite graphs 𝐺1, . . . ,𝐺𝑘 .

Operation:
1. Initialize: 𝐻′

𝑖
= 𝐻𝑖 for all 𝑖 ∈ [𝑘], 𝑃 = {{𝑢, 𝑣} : deg𝐻′({𝑢, 𝑣}) > 𝑑}, where

𝐻′ = ∪𝑖∈[𝑘]𝐻′𝑖 .
2. While 𝑃 is nonempty:

(1) Choose 𝑝 = {𝑢, 𝑣} ∈ 𝑃 arbitrarily.
(2) For each 𝑖 ∈ [𝑘], 𝐶 ∈ 𝐻′

𝑖
with 𝑝 ∈ 𝐶, remove 𝐶 from 𝐻′

𝑖
, and add the edge

(𝐶 \ 𝑝, 𝑝) to 𝐺𝑖 .
(3) Recompute 𝑃 = {{𝑢, 𝑣} : deg𝐻′({𝑢, 𝑣}) > 𝑑}.

3. Output 𝐻′1, . . . ,𝐻′
𝑘
, 𝐺1, . . . ,𝐺𝑘 .

Indeed, properties (1), (2) and (5) in Lemma 11.0.2 trivially hold. Property (4) holds because
otherwise the algorithm would not have terminated, as the set 𝑃 would still be nonempty.
Property (3) holds because each hyperedge 𝐶 ∈ 𝐻𝑖 starts in 𝐻′

𝑖
, and is either removed exactly

once and added to 𝐺𝑖 as (𝐶 \ 𝑝, 𝑝), or remains in 𝐻′
𝑖

for the entire operation of the algorithm. This
finishes the proof.

11.0.2 Refuting the 2-XOR instance: proof of Lemma 11.0.3

We now prove Lemma 11.0.3. We do this as follows. For each 𝑒 = {𝑣, 𝑝}, with 𝑣 ∈ [𝑛], 𝑝 ∈ 𝑃,
define the matrix 𝐴(𝑒) ∈ R𝑛×𝑃 , where 𝐴(𝑒)(𝑣′, 𝑝′) = 1 if 𝑣′ = 𝑣 and 𝑝′ = 𝑝, and 0 otherwise. Let

2We remark that it is possible that one (but not both!) of the 2-XOR or 3-XOR subinstances has very few constraints,
or even no constraints at all. This is not a problem, however, as then the upper bound on the value of the instance
shown in corresponding lemma (either Lemma 11.0.3 or Lemma 11.0.4) becomes trivial.

130

𝐴𝑖 B
∑
𝑒∈𝐺𝑖 𝐴

(𝑒), the bipartite adjacency matrix of 𝐺𝑖 . Finally, let 𝐴 B
∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 .

First, we observe that val(𝑔𝑏) ≤
√
𝑛 |𝑃 |∥𝐴∥2. Indeed, this is because for any 𝑥 ∈ {−1, 1}𝑛 , 𝑦 ∈

{−1, 1}𝑃 , we have 𝑔𝑏(𝑥, 𝑦) = 𝑥⊤𝐴𝑦 ≤ ∥𝑥∥2∥𝑦∥2∥𝐴∥2 =
√
𝑛 |𝑃 |∥𝐴∥2. Thus, in order to bound

E𝑏←{−1,1}𝑘 [val(𝑔𝑏)], it suffices to bound E𝑏[∥𝐴∥2].
We use Fact 3.4.2 to bound E[∥𝐴∥2]. Indeed, we observe that ∥𝐴𝑖 ∥2 ≤ 1 for each 𝑖, as each

row/column of 𝐴𝑖 has at most one nonzero entry of magnitude 1 because each 𝐺𝑖 is a matching.
Thus, max(∥∑𝑘

𝑖=1 𝐴𝑖𝐴
⊤
𝑖
∥, ∥∑𝑘

𝑖=1 𝐴
⊤
𝑖
𝐴𝑖 ∥) ≤ 𝑘. As the 𝑏𝑖’s are i.i.d. from {−1, 1}, by Fact 3.4.2

we have that E[∥𝐴∥2] ≤ 𝑂(
√
𝑘 log 𝑛). It thus follows that E[val(𝑔𝑏)] ≤

√
𝑛 |𝑃 |𝑂(

√
𝑘 log 𝑛) ≤

𝑂(𝑛𝑘
√
(log 𝑛)/𝑑).

11.1 Refuting the 3-XOR instance: proof of Lemma 11.0.4

In this section, we will omit the subscript and write 𝑓 instead of 𝑓𝑏 . We will also let 𝑚 B |𝐻 | =∑𝑘
𝑖=1 |𝐻𝑖 |.

For a vertex 𝑢 ∈ [𝑛] and a subset 𝐶 ∈
([𝑛]

2

)
, we will use the notation (𝑢,𝐶) to denote the set

{𝑢} ∪ 𝐶. We will assume that 𝑘 ≤ 𝑛/𝑐 for some sufficiently large absolute constant 𝑐. This is
without loss of generality, as otherwise we can partition 𝑘 into at most 𝑐 disjoint blocks of size
≤ 𝑛/𝑐, and refute each of these subinstances separately.

The main idea is inspired by the “Cauchy-Schwarz” trick in the context of refuting odd-arity
XOR instances. Specifically, we will construct a 4-XOR instance by “canceling” out every 𝑥𝑢 that
appears in two different clauses. Concretely, include every element in [𝑘] into one of two sets
𝐿,𝑅 uniformly at random. Then, for any (𝑢,𝐶) ∈ 𝐻𝑖 with 𝑖 ∈ 𝐿 and (𝑢,𝐶′) ∈ 𝐻𝑗 with 𝑗 ∈ 𝑅, we
construct the “derived clause” 𝐶 ⊕ 𝐶′ by XOR-ing both sides of the two constraints. We then
relate the value of the instance with such derived constraints to the original 3-XOR instance and
produce a spectral refutation for the derived instance via an appropriate subexponential-sized
matrix. This will show that the expected value of the derived instance, over the randomness of
the 𝑏𝑖’s, is small, and complete the proof.

Relating the derived 4-XOR to the original 3-XOR. First, let (𝐿,𝑅) be a partition of [𝑘] into two
sets of equal size 𝑘/2. Let 𝑓𝐿,𝑅(𝑥) be the following polynomial:

𝑓𝐿,𝑅(𝑥) B
∑
𝑖∈𝐿
𝑗∈𝑅

∑
𝑢∈[𝑛]

∑
(𝑢,𝐶)∈𝐻𝑖
(𝑢,𝐶′)∈𝐻𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶𝑥𝐶′ ,

where 𝑥𝐶 is defined as
∏

𝑣∈𝐶 𝑥𝑣 . We note that because the 𝐻𝑖 ’s are matchings, after fixing 𝑖, 𝑗, and
𝑢, there is at most one pair (𝐶,𝐶′) in the inner sum. Informally speaking, only working with
clauses derived across the partition allows us to “preserve” ∼ 𝑘 independent bits of randomness
in the right-hand sides of the 4-XOR instance while eliminating nontrivial correlations. This is
crucial in eventually applying the Matrix Khintchine inequality to produce a spectral refutation.

The following lemma relates val(𝑓𝐿,𝑅) to val(𝑓).
Lemma 11.1.1 (Cauchy-Schwarz Trick). Let 𝑓 be as in Lemma 11.0.4 and let 𝐿,𝑅 ⊆ [𝑘] be constructed
by including every element in [𝑘] to be in 𝐿 with probability 1/2 independently and defining 𝑅 = [𝑘] \ 𝐿.
Then, it holds that 9 · val(𝑓)2 ≤ 3𝑛𝑚 + 4𝑛E(𝐿,𝑅) val(𝑓𝐿,𝑅). In particular, E𝑏∈{−1,1}𝑘 [9 · val(𝑓)2] ≤
3𝑛𝑚 + 4𝑛E(𝐿,𝑅)E𝑏∈{−1,1}𝑘 [val(𝑓𝐿,𝑅)].

131

Proof. Fix any assignment to 𝑥 ∈ {−1, 1}𝑛 . We have that

(3 𝑓 (𝑥))2 =
©­«
∑
𝑢∈[𝑛]

𝑥𝑢

∑
𝑖∈[𝑘]

∑
(𝑢,𝐶)∈𝐻𝑖

𝑏𝑖𝑥𝐶
ª®¬

2

≤ ©­«
∑
𝑢∈[𝑛]

𝑥2
𝑢
ª®¬
©­­«
∑
𝑢∈[𝑛]

©­«
∑
𝑖∈[𝑘]

∑
(𝑢,𝐶)∈𝐻𝑖

𝑏𝑖𝑥𝐶
ª®¬

2ª®®¬
= 𝑛

∑
𝑢∈[𝑛]

∑
𝑖,𝑗∈[𝑘]

∑
(𝑢,𝐶)∈𝐻𝑖
(𝑢,𝐶′)∈𝐻𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶𝑥𝐶′ = 𝑛

©­­­­«
3
∑
𝑖∈[𝑘]
|𝐻𝑖 | +

∑
𝑢∈[𝑛]

∑
𝑖,𝑗∈[𝑘],𝑖≠𝑗

∑
(𝑢,𝐶)∈𝐻𝑖
(𝑢,𝐶′)∈𝐻𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶𝑥𝐶′

ª®®®®¬
= 3𝑛𝑚 + 4𝑛 ·E(𝐿,𝑅) 𝑓𝐿,𝑅(𝑥) ,

where the first equality is because there are 3 ways to decompose a set 𝐶𝑖 ∈ 𝐻𝑖 with |𝐶𝑖 | = 3
into a pair (𝑢,𝐶), the inequality follows by the Cauchy-Schwarz inequality, and the last equality
follows because for a pair of hypergraphs 𝐻𝑖 and 𝐻𝑗 , we have 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅 with probability
1/4. Finally, max𝑥∈{−1,1}𝑛 E(𝐿,𝑅) 𝑓𝐿,𝑅(𝑥) ≤ E(𝐿,𝑅)max𝑥∈{−1,1}𝑛 𝑓𝐿,𝑅(𝑥) = E(𝐿,𝑅) val(𝑓𝐿,𝑅). Thus, we
have that 9 · val(𝑓)2 ≤ 3𝑛𝑚 + 4𝑛 ·E(𝐿,𝑅) val(𝑓𝐿,𝑅). □

11.1.1 Bounding val(𝑓𝐿,𝑅) using CSP refutation

It remains to bound E𝑏∈{−1,1}𝑘 val(𝑓𝐿,𝑅) for each choice of partition (𝐿,𝑅). We will do this by
introducing a matrix 𝐵 for each 𝑏 ∈ {−1, 1}𝑘 and partition (𝐿,𝑅), and then we will relate val 𝑓𝐿,𝑅 to
∥𝐵∥2. Note that 𝐵 will depend on the choice of 𝑏 and the partition (𝐿,𝑅). Then, we will bound
E𝑏∈{−1,1}𝑘 [∥𝐵∥2].

To define the matrix 𝐵, we introduce the following definitions.
Definition 11.1.2. Let 𝑢 ∈ [𝑛] be a vertex. We let 𝑢(1) and 𝑢(2) denote the elements (𝑢, 1) and (𝑢, 2)
of [𝑛] × [2], i.e., if we think of [𝑛] × [2] as two copies of [𝑛], then 𝑢(1) is the first copy and 𝑢(2)

is the second one. We use similar notation for sets, so if 𝐶 ⊆ [𝑛], then 𝐶(1) and 𝐶(2) denote the
subsets of [𝑛] × [2] defined as 𝐶(𝑏) = {(𝑖, 𝑏) : 𝑖 ∈ 𝐶} for 𝑏 ∈ [2].
Definition 11.1.3 (Half clauses). For 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑅, we define the set 𝑃𝑖,𝑗 of “half clauses” to consist
of all pairs (𝑣(1),𝑤(2)) such that there exist clauses (𝑢,𝐶) ∈ 𝐻𝑖 , (𝑢,𝐶′) ∈ 𝐻𝑗 where 𝑣 ∈ 𝐶 and
𝑤 ∈ 𝐶′.

We let 𝑃𝑖 B ∪𝑗∈𝑅𝑃𝑖,𝑗 .
Our matrix is easiest to define in two steps. We first define a matrix 𝐴. Then, we will specify

some modifications to 𝐴 that yield the final matrix 𝐵.

Definition 11.1.4 (Our initial Kikuchi matrix). Let ℓ B (
√
𝑛/𝑘)/𝑐 for some sufficiently large

constant 𝑐,3 and let 𝑁 B
(2𝑛
ℓ

)
. For any two sets 𝑆,𝑇 ⊆ [𝑛] × [2] and sets 𝐶,𝐶′ ∈

([𝑛]
2

)
, we say that

𝑆
𝐶,𝐶′↔ 𝑇 if
1. 𝑆 ⊕ 𝑇 = 𝐶(1) ⊕ 𝐶′(2),
2. |𝑆 ∩ 𝐶(1) | = |𝑆 ∩ 𝐶′(2) | = |𝑇 ∩ 𝐶(1) | = |𝑇 ∩ 𝐶′(2) | = 1.

Note that 𝐶(1) ⊕ 𝐶′(2) = 𝐶(1) ∪ 𝐶′(2), as 𝐶(1) and 𝐶′(2) are disjoint by construction.

3We note that the matrix is only well-defined if ℓ ≥ 2, but this holds because we assumed that 𝑘 ≤ 𝑛/𝑐′ for some
sufficiently large absolute constant 𝑐′. This is the only place where we will use this assumption.

132

For each 𝑖 ∈ 𝐿 and 𝐶,𝐶′ ∈
([𝑛]

2

)
, define the 𝑁 ×𝑁 matrix 𝐴(𝑖,𝐶,𝐶′), indexed by sets 𝑆 ⊆ [𝑛] × [2]

of size ℓ , by setting 𝐴(𝑖,𝐶,𝐶′)(𝑆,𝑇) = 1 if (1) 𝑆
𝐶,𝐶′↔ 𝑇, and (2) each of 𝑆 and 𝑇 contains at most one

half clause from 𝑃𝑖 . Otherwise, we set 𝐴(𝑖,𝐶,𝐶′)(𝑆,𝑇) = 0.
Finally, we let

𝐴𝑖,𝑗 B
∑
𝑢∈[𝑛]

∑
(𝑢,𝐶)∈𝐻𝑖 ,(𝑢,𝐶′)∈𝐻𝑗

𝐴(𝑖,𝐶,𝐶′), 𝐴𝑖 B
∑
𝑗∈𝑅

𝑏 𝑗𝐴𝑖,𝑗 , and 𝐴 B
∑
𝑖∈𝐿

𝑏𝑖𝐴𝑖 .

Remark 11.1.5. For a fixed choice of (𝑢,𝐶) ∈ 𝐻𝑖 , (𝑢,𝐶′) ∈ 𝐻𝑗 with 𝑗 ∈ 𝑅, the matrix 𝐴(𝑖,𝐶,𝐶′) has
exactly 4

(2𝑛−4
ℓ−2

)
nonzero entries, if we ignore the additional condition that 𝑆 and 𝑇 each contain at

most one half clause from 𝑃𝑖 . Indeed, this is because 𝑆
𝐶,𝐶′↔ 𝑇 if and only if 𝑆 and 𝑇 each contain

one entry of 𝐶 and 𝐶′ (2 choices per clause), and the remaining part of 𝑆 and 𝑇 is the same set
𝑄 ⊆ [𝑛] × [2] \ (𝐶(1) ⊕ 𝐶′(2)) of size ℓ − 2 (which has

(2𝑛−4
ℓ−2

)
choices).

We note that this fact is the reason for using subsets of [𝑛] × [2] rather than just [𝑛]. If we used
subsets of [𝑛] only, the number of nonzero entries in 𝐴(𝑖,𝐶,𝐶′) would depend on |𝐶 ⊕ 𝐶′ |, whereas
with subsets of [𝑛] × [2]we always have |𝐶(1) ⊕ 𝐶′(2) | = 4.

Observe that if 𝑆
𝐶,𝐶′↔ 𝑇, then 𝑆 and 𝑇 each contain at least one half clause from 𝑃𝑖 , namely

coming from (𝐶,𝐶′). Thus, the additional condition on 𝑆 and 𝑇 is that they contain no other half
clauses. As we shall show below, this additional condition implies that 𝐴𝑖 has at most 2𝑑 nonzero
entries per row and thus ∥𝐴𝑖 ∥2 ≤ 2𝑑, where 𝑑 is the parameter in the statement of Lemma 11.0.4,
without meaningfully affecting the number of nonzero entries in each of the 𝐴(𝑖,𝐶,𝐶′)’s. We note
that without this condition, one can show that ∥𝐴𝑖 ∥2 ≥ Ω(ℓ), which is large.
Lemma 11.1.6 (Nonzero entry bound). For 𝑖 ∈ 𝐿, let 𝐴𝑖 be defined as in Definition 11.1.4. Then, 𝐴𝑖
has at most 2𝑑 nonzero entries per row/column.

We postpone the proof of Lemma 11.1.6 to Section 11.1.3, and now continue with the proof.
The following lemma shows that the number of nonzero entries in 𝐴(𝑖,𝐶,𝐶′) is at least 2

(2𝑛−4
ℓ−2

)
,

i.e., half of 4
(2𝑛−4
ℓ−2

)
; thus, the additional condition only decreases the number of nonzero entries by

a factor of 2 per derived constraint. The factor of 2 is not important and is chosen for convenience,
and determines the constant 𝑐 in the parameter ℓ .
Lemma 11.1.7 (Counting nonzero entries). For some (𝑢,𝐶) ∈ 𝐻𝑖 and (𝑢,𝐶′) ∈ 𝐻𝑗 with 𝑗 ∈ 𝑅, let
𝐴(𝑖,𝐶,𝐶′) be as in Definition 11.1.4. Then, the number of nonzero entries in 𝐴(𝑖,𝐶,𝐶′) is at least 2

(2𝑛−4
ℓ−2

)
.

We postpone the proof of Lemma 11.1.7 to Section 11.1.2, and now continue with the proof.
We obtain the final matrix 𝐵 by, for each 𝐵(𝑖,𝐶,𝐶′), zero-ing out entries of 𝐴(𝑖,𝐶,𝐶′) until it has

exactly 2
(2𝑛−4
ℓ−2

)
nonzero entries. This is identical to the “equalizing step” of the edge deletion

process in [HKM23].
Definition 11.1.8 (Our final Kikuchi matrix). For each 𝑖 ∈ 𝐿 and each pair of clauses (𝑢,𝐶) ∈ 𝐻𝑖

and (𝑢,𝐶′) ∈ 𝐻𝑗 with 𝑗 ∈ 𝑅, let 𝐵(𝑖,𝐶,𝐶′) be the matrix obtained from 𝐴(𝑖,𝐶,𝐶′) by arbitrarily zero-ing
out entries of 𝐴(𝑖,𝐶,𝐶′) until the resulting matrix has exactly 𝐷 B 2

(2𝑛−4
ℓ−2

)
nonzero entries.

We let

𝐵𝑖,𝑗 B
∑
𝑢∈[𝑛]

∑
(𝑢,𝐶)∈𝐻𝑖 ,(𝑢,𝐶′)∈𝐻𝑗

𝐵(𝑖,𝐶,𝐶′), 𝐵𝑖 B
∑
𝑗∈𝑅

𝑏 𝑗𝐵𝑖,𝑗 , and 𝐴 B
∑
𝑖∈𝐿

𝑏𝑖𝐵𝑖 .

133

We are now ready to finish the proof. First, we relate ∥𝐵∥2 to val(𝑓𝐿,𝑅). Fix an assignment 𝑥 ∈
{−1, 1}𝑛 , and let 𝑧 ∈ {−1, 1}𝑁 be defined as 𝑧𝑆 B

∏
𝑢∈𝑆1

𝑥𝑢
∏

𝑣∈𝑆2
𝑥𝑣 for 𝑆 = 𝑆

(1)
1 ∪ 𝑆

(2)
2 ⊆ [𝑛] × [2]

satisfying |𝑆 | = ℓ .
We observe that 𝐷 · 𝑓𝐿,𝑅(𝑥) = 𝑧⊤𝐵𝑧. This is because:

(1) For 𝑆,𝑇 ⊆ [𝑛] × [2]with 𝑆 ⊕ 𝑇 = 𝐶(1) ⊕ 𝐶′(2), we have
𝑧𝑆𝑧𝑇 =

∏
𝑢∈𝑆1

𝑥𝑢
∏

𝑣∈𝑆2
𝑥𝑣

∏
𝑢′∈𝑇1

𝑥𝑢
∏

𝑣′∈𝑇2
𝑥𝑣 =

∏
𝑢∈𝑆1⊕𝑇1

𝑥𝑢
∏

𝑣∈𝑆2⊕𝑇2
𝑥𝑣 =

∏
𝑢∈𝐶 𝑥𝑢

∏
𝑣∈𝐶′ 𝑥𝑣 ,

(2) For a pair of clauses (𝑢,𝐶) ∈ 𝐻𝑖 and (𝑢,𝐶′) ∈ 𝐻𝑗 with 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅, there are exactly
𝐷 = 2

(2𝑛−4
ℓ−2

)
nonzero entries (𝑆,𝑇) of 𝐵(𝑖,𝐶,𝐶′), and these entries have 𝑆 ⊕ 𝑇 = 𝐶(1) ⊕ 𝐶′(2),

which implies that 𝑧⊤𝐵(𝑖,𝐶,𝐶′)𝑧 = 𝐷𝑥𝐶𝑥𝐶′. Hence,

𝑧⊤𝐵𝑧 =
∑
𝑖∈𝐿
𝑗∈𝑅

∑
𝑢∈[𝑛]

∑
(𝑢,𝐶)∈𝐻𝑖
(𝑢,𝐶′)∈𝐻𝑗

𝑏𝑖𝑏 𝑗 · 𝑧⊤𝐵(𝑖,𝐶,𝐶′)𝑧 =
∑
𝑖∈𝐿
𝑗∈𝑅

∑
𝑢∈[𝑛]

∑
(𝑢,𝐶)∈𝐻𝑖
(𝑢,𝐶′)∈𝐻𝑗

𝑏𝑖𝑏 𝑗 ·𝐷𝑥𝐶𝑥𝐶′ = 𝐷 · 𝑓𝐿,𝑅(𝑥) .

In particular, this implies

val(𝑓𝐿,𝑅) ≤
𝑁

𝐷
· ∥𝐵∥2 . (11.2)

It thus remains to bound E𝑏∈{−1,1}𝑘 [∥𝐵∥2], which we do in the following lemma.

Lemma 11.1.9 (Spectral norm bound). E𝑏∈{−1,1}𝑘 [∥𝐵∥2] ≤ 𝑑 ·𝑂(
√
𝑘ℓ log 𝑛).

We postpone the proof of Lemma 11.1.9 to Section 11.1.3, and now finish the proof of
Lemma 11.0.4.

Proof of Lemma 11.0.4. By Eq. (11.2) and Lemma 11.1.9, we have that

E𝑏∈{−1,1}𝑘 [val(𝑓𝐿,𝑅)] ≤
𝑁

𝐷
E𝑏∈{−1,1}𝑘 [∥𝐵∥2]

≤ 𝑁

𝐷

(
𝑑 ·𝑂(

√
𝑘ℓ log 𝑛)

)
≤ 𝑛2

ℓ 2
𝑑 ·𝑂(

√
𝑘ℓ log 𝑛)

= 𝑛𝑘𝑑 ·𝑂((𝑛𝑘)1/4
√

log 𝑛) ,

where we use that ℓ = (
√
𝑛/𝑘)/𝑐 for some constant 𝑐, and we use Fact 3.6.1 to bound 𝑁/𝐷. Finally,

combining with Lemma 11.1.1 and using that 𝑚 ≤ 𝑛𝑘, we have that

E[val(𝑓)]2 ≤ E[val(𝑓)2] ≤ 1
9
·
(
3𝑛2𝑘 + 4𝑛E(𝐿,𝑅)E𝑏∈{−1,1}𝑘 [val(𝑓𝐿,𝑅)]

)
≤ 𝑛2𝑘𝑑 ·𝑂((𝑛𝑘)1/4

√
log 𝑛) .

Hence,

E[val(𝑓)] ≤ 𝑛
√
𝑘𝑑 ·𝑂

(
(𝑛𝑘)1/8 log1/4 𝑛

)
,

which finishes the proof of Lemma 11.0.4. □

134

11.1.2 Counting nonzero entries: proof of Lemma 11.1.7

Proof of Lemma 11.1.7. Let 𝑗 ∈ 𝑅 and clauses (𝑢,𝐶) ∈ 𝐻𝑖 and (𝑢,𝐶′) ∈ 𝐻𝑗 . Recall that in Re-

mark 11.1.5, we observed that there are exactly 4
(2𝑛−4
ℓ−2

)
pairs (𝑆,𝑇)with 𝑆

𝐶,𝐶′↔ 𝑇. Indeed, this is

because 𝑆
𝐶,𝐶′↔ 𝑇 if and only if 𝑆 and 𝑇 each contain one entry of 𝐶 and 𝐶′ (2 choices per clause),

and the remaining part of 𝑆 and 𝑇 is the same set 𝑄 ⊆ [𝑛] × [2] \ (𝐶(1) ⊕ 𝐶′(2)) of size ℓ − 2 (which
has

(2𝑛−4
ℓ−2

)
choices).

From the above, we observe that for each 𝑄 ⊆ [𝑛] × [2] \ (𝐶(1) ⊕ 𝐶′(2)) of size ℓ − 2, we can

identify 𝑄 with 4 different pairs (𝑆,𝑇) with 𝑆
𝐶,𝐶′↔ 𝑇; namely, each pair (𝑆,𝑇) corresponds to a

subset of size 2 of (𝐶,𝐶′) containing exactly one entry from each of 𝐶,𝐶′. We note that these 4
choices of (𝑆,𝑇) correspond exactly to the 4 half clauses in 𝑃𝑖 contributed by the derived clause
(𝐶,𝐶′). We will show that for at least 1

2

(2𝑛−4
ℓ−2

)
choices of 𝑄, all 4 corresponding choices of (𝑆,𝑇)

will contain exactly one derived clause from 𝑃𝑖 : namely, the half clause of (𝐶,𝐶′) that we add to
𝑄 to obtain 𝑆 or 𝑇. This clearly suffices to finish the proof.

Call such a set 𝑄 bad if it does not have the above property, i.e., there is some pair (𝑆,𝑇)
identified with 𝑄 such that one of 𝑆 or 𝑇 contains more than one half clause from 𝑃𝑖 . Since

𝑆
𝐶,𝐶′↔ 𝑇 already implies that each of 𝑆 and 𝑇 has exactly one half clause from 𝐶(1) ⊕ 𝐶′(2), there

are three ways that 𝑄 can be bad:

(1) 𝑄 contains a half clause from 𝑃𝑖 ,
(2) there is 𝑣(1) ∈ 𝐶(1) and 𝑤(2) ∈ 𝑄 such that (𝑣(1),𝑤(2)) ∈ 𝑃𝑖 ,
(3) there is 𝑣(1) ∈ 𝑄 and 𝑤(2) ∈ 𝐶′(2) such that (𝑣(1),𝑤(2)) ∈ 𝑃𝑖 .

We thus have that the number of bad 𝑄’s is at most

𝑝0

(
2𝑛 − 6
ℓ − 4

)
+ 𝑝1

(
2𝑛 − 5
ℓ − 3

)
+ 𝑝2

(
2𝑛 − 5
ℓ − 3

)
,

where 𝑝0 = |𝑃𝑖 |, 𝑝1 = |{(𝑣(1),𝑤(2)) ∈ 𝑃𝑖 : 𝑣(1) ∈ 𝐶(1)}|, 𝑝2 = |{(𝑣(1),𝑤(2)) ∈ 𝑃𝑖 : 𝑤(2) ∈ 𝐶′(2)}|.
We now upper bound 𝑝0, 𝑝1, 𝑝2. Recall that a half clause in 𝑃𝑖 is a pair (𝑣(1),𝑤(2)) such that

there are clauses (𝑢,𝐶1) ∈ 𝐻𝑖 , (𝑢,𝐶2) ∈ 𝐻𝑗 with 𝑗 ∈ 𝑅, and 𝑣 ∈ 𝐶1, 𝑤 ∈ 𝐶2.

(1) We have 𝑝0 ≤ 4𝑛𝑘, as for each 𝑢 ∈ [𝑛], because the 𝐻𝑖’s are matchings, there is at most one
𝐶1 such that (𝑢,𝐶1) ∈ 𝐻𝑖 , and at most 𝑘 choices of (𝑢,𝐶2) ∈ 𝐻𝑗 with 𝑗 ∈ 𝑅, as |𝑅 | ≤ 𝑘. Finally,
each choice of (𝐶1,𝐶2) yields 4 half clauses.

(2) We have 𝑝1 ≤ 8𝑘. First, there are at most 2 choices for 𝑣, each coming from 𝐶. For each such 𝑣,
there is at most one 𝐶𝑖 ∈ 𝐻𝑖 with 𝑣 ∈ 𝐶𝑖 . (Note that |𝐶𝑖 | = 3.) Once 𝐶𝑖 is fixed, we have at
most 2 choices for 𝑢, given by 𝐶𝑖 \ {𝑣}, and there are at most 𝑘 hyperedges (𝑢,𝐶2) ∈ 𝐻𝑗 for
𝑗 ∈ 𝑅 (as each 𝐻𝑗 is a matching and |𝑅 | ≤ 𝑘). Finally, for each such 𝐶2 there are 2 possible
choices for 𝑤.

(3) We have 𝑝2 ≤ 8𝑘. First, there are at most 2 choices for 𝑤, each coming from 𝐶′. For each
such 𝑤, there are at most 𝑘 choices of 𝐶 𝑗 ∈ ∪𝑗∈𝑅𝐻𝑗 with 𝑤 ∈ 𝐶 𝑗 , as each 𝐻𝑗 is a matching and
|𝑅 | ≤ 𝑘. (Note that |𝐶 𝑗 | = 3.) For each such 𝐶 𝑗 , there are at most 2 choices for 𝑢, given by
𝐶 𝑗 \ {𝑤}, and for each 𝑢, there is at most one choice of 𝐶1 such that (𝑢,𝐶1) ∈ 𝐻𝑖 . Finally, such
a 𝐶1, if it exists, gives 2 choices for 𝑣.

135

Combining, we thus have that the number of bad 𝑄’s is at most

4𝑛𝑘
(
2𝑛 − 6
ℓ − 4

)
+ 16𝑘

(
2𝑛 − 5
ℓ − 3

)
.

We have that

4𝑛𝑘
(2𝑛−6
ℓ−4

)
+ 16𝑘

(2𝑛−5
ℓ−3

)(2𝑛−4
ℓ−2

) =
4𝑛𝑘 (2𝑛−6)!

(ℓ−4)!(2𝑛−2−ℓ)! + 16𝑘 (2𝑛−5)!
(ℓ−3)!(2𝑛−2−ℓ)!

(2𝑛−4)!
(ℓ−2)!(2𝑛−2−ℓ)!

= 4𝑛𝑘
(ℓ − 2)(ℓ − 3)
(2𝑛 − 4)(2𝑛 − 5) + 16𝑘

ℓ − 2
2𝑛 − 4

≤ 1
2

,

as we have ℓ ≤ (
√
𝑛/𝑘)/𝑐, for some sufficiently large constant 𝑐, ℓ ≥ 2, and 𝑘 ≤

√
𝑛𝑘 since

𝑘 ≤ 𝑛. □

11.1.3 Spectral norm bound: proof of Lemmas 11.1.6 and 11.1.9

Proof of Lemma 11.1.6. Fix 𝑖 ∈ 𝐿. We show that each row/column of 𝐴𝑖 has at most 2𝑑 nonzero
entries. Indeed, this is because if 𝑆 is a nonzero row (or column) in 𝐴𝑖 , then 𝑆 contains at most

one half clause from 𝑃𝑖 . If (𝐶,𝐶′) is a derived clause where 𝑆
𝐶,𝐶′↔ 𝑇 for some 𝑇, then 𝑆 must

contain a half clause in 𝑃𝑖 that is contained in 𝐶(1) ⊕ 𝐶′(2), i.e., a half clause coming from (𝐶,𝐶′).
As 𝑆 contains at most one half clause, it follows that the number of nonzero entries in the 𝑆-th
row is upper bounded by the maximum, over all half clauses, of the number of derived clauses
(𝐶,𝐶′) that contain this half clause. One can observe that this is 2𝑑. Indeed, if we fix 𝑣(1) and 𝑤(2),
there is at most one clause 𝐶 ∈ 𝐻𝑖 containing 𝑣. Once 𝑣 is fixed, there are two choices for 𝑢 in
𝐶 \ {𝑣}. Once we have chosen 𝑢, the second clause must be (𝑢,𝐶′) ∈ 𝐻𝑗 for some 𝑗 ∈ 𝑅, where 𝐶′

contains 𝑤. By assumption, the number of hyperedges in ∪𝑘
𝑖=1𝐻𝑖 containing the pair {𝑢,𝑤} is at

most 𝑑, so there are at most 𝑑 choices for 𝐶′. □

Proof of Lemma 11.1.9. We have that 𝐵 =
∑
𝑖∈𝐿 𝑏𝑖𝐵𝑖 , where the 𝑏𝑖’s are i.i.d. from {−1, 1}. By

Lemma 11.1.6, we know that the number of nonzero entries in a row/column of 𝐴𝑖 is at most
2𝑑. As 𝐵𝑖 is obtained by zero-ing out entries of 𝐴𝑖 , it follows that this also holds for 𝐵𝑖 . It thus
follows that the ℓ1-norm of any row/column of 𝐵𝑖 is at most 2𝑑, and thus ∥𝐵𝑖 ∥2 ≤ 2𝑑. This
additionally implies that ∥∑𝑖∈𝐿 𝐵𝑖𝐵

⊤
𝑖
∥2 ≤ |𝐿|(2𝑑)2 ≤ 𝑘(2𝑑)2, and that ∥∑𝑖∈𝐿 𝐵

⊤
𝑖
𝐵𝑖 ∥2 ≤ |𝐿|(2𝑑)2 ≤

𝑘(2𝑑)2. Applying Matrix Khintchine (Fact 3.4.2), we conclude that E[∥𝐵∥2] ≤ 𝑑 ·𝑂(
√
𝑘 log𝑁). As

log𝑁 = 𝑂(ℓ log 𝑛), Lemma 11.1.9 follows. □

11.2 Improved lower bounds for 3-LDCs over larger alphabets

In this appendix, we will extend Theorem 7 to 3-query LDCs over larger alphabets, which will
follow from combining Theorem 7 with standard results from [KT00, KW04]. We first define
LDCs over general alphabets.
Definition 11.2.1 (LDCs over general alphabets). Given a positive integer 𝑞, constants 𝛿, 𝜀 > 0,
and an alphabet Σ, we say a code 𝒞 : {0, 1}𝑘 → Σ𝑛 is (𝑞, 𝛿, 𝜀)-locally decodable code (abbreviated

136

(𝑞, 𝛿, 𝜀)-LDC) if there exists a randomized decoding algorithm Dec(·) with the following proper-
ties. The algorithm Dec(·) is given oracle access to some 𝑦 ∈ Σ𝑛 , takes an 𝑖 ∈ [𝑘] as input, and
satisfies the following: (1) the algorithm Dec makes at most 𝑞 queries to the string 𝑦, and (2) for
all 𝑏 ∈ {0, 1}𝑘 , 𝑖 ∈ [𝑘], and all 𝑦 ∈ Σ𝑛 such that Δ(𝑦,𝒞(𝑏)) ≤ 𝛿𝑛, Pr[Dec𝑦(𝑖) = 𝑏𝑖] ≥ 1

2 + 𝜀.
Our extension of Theorem 7 to larger alphabets is the following theorem.

Theorem 11.2.2. Let 𝒞 : {0, 1}𝑘 → Σ𝑛 be a (3, 𝛿, 𝜀)-LDC. Then, it must hold that 𝑘3 ≤ |Σ|41𝑛 ·
𝑂(log6(|Σ|𝑛)/𝜀32𝛿16). In particular, if 𝛿, 𝜀 are constants and |Σ| ≤ 𝑛, then 𝑛 ≥ Ω(𝑘3/(|Σ|41 log6 𝑘)).

Note that the conclusion of Theorem 11.2.2 is trivial if |Σ| = Ω̃(𝑘3/41). To prove Theorem 11.2.2,
it suffices to show the following lemma.
Lemma 11.2.3. Let 𝒞 : {0, 1}𝑘 → Σ𝑛 be a (3, 𝛿, 𝜀)-LDC. Then, there exists a binary code 𝒞′ : {0, 1}𝑘 →
{0, 1}𝑛′ with 𝑛′ ≤ 4𝑛 |Σ| and 3-uniform matchings 𝐻′1, . . . ,𝐻′

𝑘
over 𝑛′ vertices such that for all 𝑖 ∈ [𝑘],

we have |𝐻′
𝑖
| ≥ 𝜀𝛿𝑛′/(36|Σ|). Furthermore, for any query set 𝐶 ∈ 𝐻′

𝑖
, we have that Pr𝑏←{0,1}𝑘 [𝑏𝑖 =

⊕𝑣∈𝐶𝒞(𝑏)𝑣] ≥ 1
2 + 𝜀

8|Σ|3/2 .

Indeed, once we have Lemma 11.2.3, then by applying Theorem 7 on the resulting normal
LDC,4 we obtain Theorem 11.2.2. Now, to prove Lemma 11.2.3, we first need the following result
from [KT00].
Lemma 11.2.4 (Theorem 1 + Lemma 4 in [KT00]). Let 𝒞 : {0, 1}𝑘 → Σ𝑛 be a (𝑞, 𝛿, 𝜀)-LDC. Then,
there exists 𝑞-uniform matchings 𝐻1, . . . ,𝐻𝑘 over [𝑛] such that for all 𝑖 ∈ [𝑘], we have |𝐻𝑖 | ≥ 𝜀𝛿𝑛/𝑞2.
Furthermore, for any query set 𝐶 ∈ 𝐻𝑖 , there exists a function 𝑓𝐶 : Σ𝑞 → {0, 1} such that Pr𝑏←{0,1}𝑘 [𝑏𝑖 =
𝑓𝐶(𝒞(𝑏)|𝐶)] ≥ 1

2 + 𝜀
2 .

Note that formally the statement in [KT00] only guarantees that each query set in 𝐻𝑖 has size
at most 𝑞 rather than exactly 𝑞. However, we can trivially make each set be of size exactly 𝑞 by
padding each codeword of 𝒞 with 𝑛 zeros.

Next, we need the following lemma, which is a generalized and improved version of a similar
lemma appearing in [KW04].
Lemma 11.2.5 (Lemma 2 of [KW04]). Let 𝑞 ≥ 2 be an integer and let 𝒞 : {0, 1}𝑘 → Σ𝑛 be a code.
Let 𝐻1, . . . ,𝐻𝑘 be 𝑞-uniform matchings over [𝑛] such that for each 𝑖 ∈ [𝑘], we have |𝐻𝑖 | ≥ 𝜀𝛿𝑛/𝑞2,
and suppose that for each 𝐶 ∈ 𝐻𝑖 , there exists a function 𝑓𝐶 : Σ𝑞 → {0, 1} such that Pr𝑏←{0,1}𝑘 [𝑏𝑖 =
𝑓𝐶(𝒞(𝑏)|𝐶)] ≥ 1

2 + 𝜀
2 .

Then, there exists a binary code 𝒞′ : {0, 1}𝑘 → {0, 1}𝑛′ with 𝑛′ ≤ 4𝑛 |Σ| and 𝑞-uniform matchings
𝐻′1, . . . ,𝐻′

𝑘
over 𝑛′ vertices such that for all 𝑖 ∈ [𝑘], we have |𝐻′

𝑖
| ≥ 𝜀𝛿𝑛′/(4𝑞2 |Σ|). Furthermore, for any

query set 𝐶 ∈ 𝐻′
𝑖
, we have that Pr𝑏←{0,1}𝑘 [𝑏𝑖 = ⊕𝑣∈𝐶𝒞′(𝑏)𝑣] ≥ 1

2 + 𝜀
2𝑞 |Σ|𝑞/2 .

Combining Lemma 11.2.4 and Lemma 11.2.5, we immediately obtain Lemma 11.2.3; Theo-
rem 11.2.2 then follows by applying Theorem 7. Thus, it remains to prove Lemma 11.2.5. In what
follows, we use conventional notations of Boolean analysis from [O’D14].

Proof of Lemma 11.2.5. Consider a natural number ℓ ∈ N such that |Σ| < 2ℓ ≤ 2|Σ|, and let
𝑛′ B 𝑛2ℓ+1. Without loss of generality, say that Σ ⊆ {0, 1}ℓ . Consider the first-order Reed-Muller
encoding RM1 : {0, 1}ℓ → {0, 1}2ℓ+1

defined as RM1(𝜎) = (⟨𝑎⟩𝜎 + 𝑡)𝑎∈{0,1}ℓ ,𝑡∈{0,1}.5 We define our
new code 𝒞′ : {0, 1}𝑘 → {0, 1}𝑛′ as 𝒞′(𝑏) B (RM1(𝒞(𝑏)1), . . . , RM1(𝒞(𝑏)𝑛)).

4Note that we obtain a better dependence on 𝜀 in Theorem 7 when our initial LDC is in normal form, as shown at
the beginning of Chapter 11.

5Here, ⟨·⟩· denotes the pointwise inner product over Fℓ2.

137

Consider any message index 𝑖 ∈ [𝑘] and query set 𝐶 ∈ 𝐻𝑖 . We are going to find a correspond-
ing query set for 𝐶 in 𝒞′. Write 𝐶 = {𝑣1, . . . , 𝑣𝑞}. Arbitrarily extend our function 𝑓𝐶 to a function
over ({0, 1}ℓ)𝑞 by setting 𝑓𝐶(𝜎) = 0 for 𝜎 ∈ {0, 1}ℓ \Σ. For any message 𝑏 ∈ {0, 1}𝑘 , set 𝑥 B 𝒞(𝑏).
Switching from {0, 1} to {−1, 1} in the natural way, we find that

Pr
𝑏←{0,1}𝑘

[𝑏𝑖 = 𝑓𝐶(𝒞(𝑏)|𝐶)] ≥
1
2
+ 𝜀

2
⇐⇒ E

𝑏←{−1,1}𝑘
[𝑏𝑖 𝑓𝐶(𝑥𝑣1 , . . . , 𝑥𝑣𝑞)] ≥ 𝜀 .

Consider the Fourier expansion of 𝑓𝐶 , written as 𝑓𝐶(𝑦1, . . . , 𝑦𝑞) =
∑
𝑆1,...,𝑆𝑞⊆[ℓ] 𝑓𝐶(𝑆1, . . . , 𝑆𝑞)

∏𝑞

𝑡=1
∏

𝑗∈𝑆𝑡 (𝑦𝑡)𝑗 .
Using the Fourier expansion of 𝑓𝐶 , the Cauchy-Schwarz inequality, and Parseval’s identity, we
have

𝜀2 ≤ E
𝑏←{−1,1}𝑘

[𝑏𝑖 𝑓𝐶(𝑥𝑣1 , . . . , 𝑥𝑣𝑞)]2

=
©­«

∑
𝑆1,...,𝑆𝑞⊆[ℓ]

𝑓𝐶(𝑆1, . . . , 𝑆𝑞) E
𝑏←{−1,1}𝑘

𝑏𝑖
𝑞∏
𝑡=1

∏
𝑗∈𝑆𝑡
(𝑥𝑣𝑡)𝑗

ª®¬
2

≤ ©­«
∑

𝑆1,...,𝑆𝑞⊆[ℓ]
𝑓𝐶(𝑆1, . . . , 𝑆𝑞)2ª®¬

©­­«
∑

𝑆1,...,𝑆𝑞⊆[ℓ]
E

𝑏←{−1,1}𝑘

𝑏𝑖
𝑞∏
𝑡=1

∏
𝑗∈𝑆𝑡
(𝑥𝑣𝑡)𝑗


2ª®®¬

=

(
E

𝑦1,...𝑦𝑞←{−1,1}ℓ
[𝑓𝐶(𝑦1, . . . , 𝑦𝑞)2]

) ©­­«
∑

𝑆1,...,𝑆𝑞⊆[ℓ]
E

𝑏←{−1,1}𝑘

𝑏𝑖
𝑞∏
𝑡=1

∏
𝑗∈𝑆𝑡
(𝑥𝑣𝑡)𝑗


2ª®®¬

=
∑

𝑆1,...,𝑆𝑞⊆[ℓ]
E

𝑏←{−1,1}𝑘

𝑏𝑖
𝑞∏
𝑡=1

∏
𝑗∈𝑆𝑡
(𝑥𝑣𝑡)𝑗


2

≤ 2𝑞ℓ max
𝑆1,...,𝑆𝑞⊆[ℓ]

 E
𝑏←{−1,1}𝑘

𝑏𝑖
𝑞∏
𝑡=1

∏
𝑗∈𝑆𝑡
(𝑥𝑣𝑡)𝑗


2

Thus we can find sets 𝑅𝐶1 , . . . ,𝑅𝐶𝑞 ⊆ [ℓ] and bit 𝑡𝐶 ∈ {0, 1} such that

(−1)𝑡𝐶 E
𝑏←{−1,1}𝑘

𝑏𝑖
𝑞∏
𝑡=1

∏
𝑗∈𝑆𝑡
(𝑥𝑣𝑡)𝑗

 ≥ 𝜀

2𝑞ℓ/2
≥ 𝜀

2𝑞−1 |Σ|𝑞/2
.

Reverting back from {−1, 1} to {0, 1} in the natural way, the last expression is equivalent to

Pr
𝑏←{0,1}𝑘

[
𝑡𝐶 +

𝑞∑
𝑖=1

⟨1𝑅𝐶1 ⟩𝑥𝑣𝑖 = 𝑏𝑖

]
≥ 1

2
+ 𝜀

2𝑞 |Σ|𝑞/2
.

Thus, we can form a new query set 𝐶′ B {(𝑣1, (1𝑅𝐶1 , 𝑡𝐶)), (𝑣2, (1𝑅𝐶2 , 0)), . . . , (𝑣𝑞 , (1𝑅𝐶𝑞 , 0))} for 𝒞′

that recovers 𝑏𝑖 with probability 1/2 + 𝜀/(2𝑞 |Σ|𝑞/2). Indeed, this is how we construct our new
hypergraphs 𝐻′1, . . . ,𝐻′

𝑘
. Since we are mapping each query set to a new one, then we see that

|𝐻𝑖 | = |𝐻′𝑖 | ≥ 𝜀𝛿𝑛/𝑞2 ≥ 𝜀𝛿𝑛′/(4𝑞2 |Σ|) for all 𝑖 ∈ [𝑘]. Furthermore, the query mapping preserves
disjointness and size, implying that the new hypergraph is a collection of 𝑘 𝑞-uniform matchings.
This finishes the proof. □

138

11.3 Our proof as a black-box reduction to 2-LDC lower bounds

In this appendix, we reinterpret our proof of Theorem 7 in the specific case of linear 3-LDCs by
formulating it as a black-box reduction to existing linear 2-LDC lower bounds. Because we are
reinterpreting the proof, we will assume familiarity with the proof in Chapter 11 and Section 11.1.
Formally, we show that our proof of Theorem 7 in fact provides the following transformation:
given a linear 3-LDC ℒ, we produce 2 different linear codes ℒ2 and ℒ3 corresponding to the
2-XOR instance 𝑔𝑏 and 3-XOR instance 𝑓𝑏 from Chapter 11, with the guarantee that at least one of
these codes is a linear 2-LDC. We note that unlike Theorem 7, this reduction-based proof will only
apply to linear 3-LDCs. However, in this case we will obtain slightly better dependencies on log 𝑛,
𝜀, and 𝛿 than that in Theorem 7; this comes entirely from the fact that 2-LDC lower bounds for
linear codes have slightly better dependencies on 𝜀 and 𝛿 than 2-LDC lower bounds for general,
nonlinear codes.

Our transformation naturally produces objects that are formally not quite linear 2-LDCs,
which we call “weak LDCs”, defined below.
Definition 11.3.1 (Linear weak LDC). Given a code ℒ : {0, 1}𝑘 → {0, 1}𝑛 , we say that ℒ is a linear
(𝑞, 𝛿)-weakly locally decodable code (or, (𝑞, 𝛿)-wLDC) if ℒ is a linear code and there are 𝑞-uniform
hypergraph matchings 𝐻1, . . . ,𝐻𝑘 over [𝑛] such that (1)

∑𝑘
𝑖=1 |𝐻𝑖 | ≥ 𝛿𝑛𝑘 for any 𝑖 ∈ [𝑘], and

(2) 𝐶 ∈ 𝐻𝑖 , we have that
⊕

𝑣∈𝐶 ℒ(𝑏)𝑣 = 𝑏𝑖 for all messages 𝑏 ∈ {0, 1}𝑘 .
We note that we work with weak LDCs solely for notational convenience, as it is straightfor-

ward to observe that they are equivalent to LDCs, up to constant factors in parameters. Indeed,
the difference between a weak LDC and a true LDC is that the weak LDC only requires that∑𝑘
𝑖=1 |𝐻𝑖 | ≥ 𝛿𝑛𝑘, rather than the stronger condition that |𝐻𝑖 | ≥ 𝛿𝑛 for all 𝑖 ∈ [𝑘]. So, by removing

all hypergraphs 𝐻𝑖 with |𝐻𝑖 | ≤ 𝛿𝑛/2 and setting the corresponding 𝑏𝑖’s to 0, we obtain a new
code ℒ′ : {0, 1}𝑘′ → {0, 1}𝑛 where 𝑘′ ≥ 𝛿𝑘 and |𝐻𝑖 | ≥ 𝛿𝑛/2 for all 𝑖 ∈ [𝑘′].

Regardless, we note that the linear 2-LDC lower bound of [GKST06] (Fact 3.3.4), which here
we will use as a black-box, holds for linear weak 2-LDCs as well.

As the main theorem in this section, we will prove the following theorem.
Theorem 11.3.2. Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a linear (3, 𝛿)-wLDC, and let 𝑑 ∈ N. Then, there are codes
ℒ2 : {0, 1}𝑘2 → {0, 1}𝑛 and ℒ3 : {0, 1}𝑘3 → {0, 1}𝑁 such that either ℒ2 is a linear (2,Ω(𝛿 · 𝑑

𝑑+𝑘))-wLDC
or ℒ3 is a linear (2,Ω(𝛿2/𝑑))-wLDC, where 𝑘2, 𝑘3 ≥ 𝑘/2, 𝑁 =

(2𝑛
ℓ

)
and ℓ =

√
𝑛/𝑘/𝑐, where 𝑐 is an

absolute constant.
We note that by applying Fact 3.3.4 twice, we immediately obtain the following corollary.

Corollary 11.3.3. Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a (3, 𝛿)-linear LDC. Then, 𝑛 ≥ Ω

(
𝛿6𝑘3

log4 𝑘

)
.

Proof. Apply Theorem 11.3.2 with 𝑑 = 𝑐 log2 𝑛/𝛿 for a sufficiently large constant 𝑐. If 𝑘 ≤ 𝑑,
then we are done, so suppose that 𝑘 ≥ 𝑑. If ℒ2 is a linear weak (2,Ω(𝛿 · 𝑑

𝑑+𝑘))-LDC, then by
Fact 3.3.4 we conclude that log2 𝑛 ≥ Ω(𝛿𝑑𝑘/(𝑘 + 𝑑)) ≥ Ω(𝛿𝑑), as 𝑘 + 𝑑 ≤ 2𝑘. As 𝑑 = 𝑐 log2 𝑛/𝛿 for
a sufficiently large constant 𝑐, this is a contradiction.

It thus cannot be the case that ℒ2 is a linear weak (2,Ω(𝛿 · 𝑑
𝑑+𝑘))-LDC, and therefore it must be

the case that ℒ3 is a linear weak (2,Ω(𝛿2/𝑑))-LDC. By Fact 3.3.4, this implies that 𝑂(
√
𝑛/𝑘 log 𝑛) ≥

ℓ log2 𝑛 ≥ Ω(𝛿2/𝑑 · 𝑘), and therefore we conclude that 𝑛 ≥ Ω(𝛿6𝑘3/log4 𝑛). Finally, we have
log2 𝑛 = Θ(log 𝑘) or else Corollary 11.3.3 trivially holds, and so this finishes the proof. □

139

We now prove Theorem 11.3.2.

Proof of Theorem 11.3.2. Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a linear (3, 𝛿)-wLDC, so that there exist 3-
uniform hypergraph matchings 𝐻1, . . . ,𝐻𝑘 such that

∑𝑘
𝑖=1 |𝐻𝑖 | ≥ 𝛿𝑛𝑘, and for every 𝑖 ∈ [𝑘] and

𝐶 ∈ 𝐻𝑖 , it holds that
⊕

𝑣∈𝐶 ℒ(𝑏)𝑣 = 𝑏𝑖 for all 𝑏 ∈ {0, 1}𝑘 .
We now define the codes ℒ2 and ℒ3. Let 𝐺1, . . . ,𝐺𝑘 ,𝐻′1, . . . ,𝐻′

𝑘
denote the output of the

hypergraph decomposition algorithm Lemma 11.0.2 applied with the parameter 𝑑 chosen in the
statement of Theorem 11.3.2.
Constructing 𝓛2. Let 𝐿2 ⊆ [𝑘] be a subset of size |𝐿2 | ≥ 𝑘/2 to be specified later. We let
ℒ2 : {0, 1}𝐿2 → {0, 1}𝑛 be the code that encodes a message 𝑏′ ∈ {0, 1}𝐿2 as ℒ(𝑏), where 𝑏 is
obtained by padding 𝑏′ with 0’s to obtain 𝑏 ∈ {0, 1}𝑘 . Formally, ℒ2(𝑏′) B ℒ(𝑏), where 𝑏 ∈ {0, 1}𝑘
satisfies 𝑏𝑖 = 𝑏′𝑖 for all 𝑖 ∈ 𝐿2 and 𝑏 𝑗 = 0 otherwise.

We will now show that if
∑𝑘
𝑖=1 |𝐺𝑖 | ≥ 𝛿𝑛𝑘/2, then there exists a set 𝐿2 ⊆ [𝑘] of size |𝐿2 | ≥ 𝑘/2

such that ℒ2 is a linear (2,Ω(𝛿 · 𝑑
𝑑+𝑘))-wLDC. Recall that each 𝐺𝑖 is a bipartite matching on [𝑛] × 𝑃,

where 𝑃 = {𝑝 = (𝑢, 𝑣) : deg𝐻(𝑝) ≥ 𝑑}, where 𝐻 = ∪𝑘
𝑖=1𝐻𝑖 . First, we can furthermore assume that

each 𝑝 ∈ 𝑃 appears not just in at least 𝑑 edges across all 𝐺𝑖 ’s, but also in at most 2𝑑 edges. Indeed,
if some 𝑝 violates this condition and has 𝑡 > 𝑑 edges, then we split 𝑝 into 𝑡′ = ⌊𝑡/𝑑⌋ new elements
𝑝1, . . . , 𝑝𝑡′, each of which is adjacent to exactly 𝑑 of the original edges, and then we connect the
“residual” 𝑡 − 𝑡′𝑑 < 𝑑 edges to 𝑝1. Each new 𝑝ℎ obtained by splitting 𝑝 now appears in exactly 𝑑
edges across all 𝐺𝑖’s except for 𝑝1, which appears in at least 𝑑 edges and at most 2𝑑 edges.

Next, partition [𝑘] into 𝐿2∪𝑅2, and without loss of generality assume |𝐿2 | ≥ 𝑘/2. For 𝑖 ∈ 𝐿2, let
𝐺′
𝑖

denote the graph on 𝑛 vertices with edges 𝐸𝑖 = {(𝑢, 𝑣) : ∃𝑝 ∈ 𝑃, 𝑗 ∈ 𝑅2, (𝑢, 𝑝) ∈ 𝐺𝑖 , (𝑣, 𝑝) ∈ 𝐺 𝑗}.
Observe that

∑
𝑖∈𝐿2
|𝐺′

𝑖
| ≥ Ω(𝛿𝑛𝑘𝑑) in expectation over a random partition 𝐿2 ∪ 𝑅2, and hence

there exists such a partition 𝐿2 ∪ 𝑅2 with
∑
𝑖∈𝐿2
|𝐺′

𝑖
| ≥ Ω(𝛿𝑛𝑘𝑑).

Next, we observe that for any vertex 𝑢 ∈ [𝑛] and 𝑖 ∈ 𝐿2, 𝑢 has degree at most 2𝑑 + 𝑘 in 𝐺′
𝑖
.

Indeed, since the 𝐺𝑖’s are matchings and each 𝑝 appears in at most 2𝑑 edges, it follows that for
each 𝑢, there are at most 2𝑑 edges (𝑢, 𝑣) in 𝐺′

𝑖
formed from the edge (𝑢, 𝑝) in 𝐺𝑖 . Second, for each

𝑣, there are at most 𝑘 edges (𝑢, 𝑣) in 𝐺′
𝑖
, as these can only be formed from the edges (𝑣, 𝑝) in 𝐺 𝑗 ,

for 𝑗 ∈ 𝑅2, and each 𝐺 𝑗 is a matching so there is at most one edge per choice of 𝑗 ∈ 𝑅2. Hence,
each 𝐺′

𝑖
has a matching 𝑀′

𝑖
of size at least Ω(|𝐺′

𝑖
|/(𝑑 + 𝑘)), and so

∑𝑘
𝑖=1 |𝑀′𝑖 | ≥ Ω(𝛿𝑛𝑘 · 𝑑

𝑑+𝑘).
Finally, for each 𝑖 ∈ 𝐿2 and each edge (𝑢, 𝑣) ∈ 𝑀′

𝑖
, it holds that ℒ2(𝑏′)𝑢 ⊕ ℒ2(𝑏′)𝑣 = 𝑏′𝑖 . Indeed,

this is because ℒ(𝑏) satisfies ℒ(𝑏)𝑢 ⊕ ℒ(𝑏)𝑝 = 𝑏𝑖 and ℒ(𝑏)𝑣 ⊕ ℒ(𝑏)𝑝 = 𝑏 𝑗 = 0, where 𝑝 ∈ 𝑃 is the
shared pair used to add (𝑢, 𝑣) to 𝐺′

𝑖
in the definition, 𝑗 ∈ 𝑅2, and (𝑢, 𝑝) ∈ 𝐺𝑖 , (𝑣, 𝑝) ∈ 𝐺 𝑗 . We have

thus shown that if
∑𝑘
𝑖=1 |𝐺𝑖 | ≥ 𝛿𝑛𝑘/2, then ℒ2 is a linear (2,Ω(𝛿 · 𝑑

𝑑+𝑘))-wLDC.

Constructing 𝓛3. Let 𝐿3 ⊆ [𝑘] be a subset of size |𝐿3 | ≥ 𝑘/2 to be specified later. Let ℓ =
√
𝑛/𝑘/𝑐

for a sufficiently large constant 𝑐, and identify 𝑁 =
(2𝑛
ℓ

)
with the collection of sets

([𝑛]×[2]
ℓ

)
. We

let ℒ3 : {0, 1}𝐿3 → {0, 1}𝑁 be the code that encodes a message 𝑏′ ∈ {0, 1}𝐿3 with the string ℒ3(𝑏′),
where the 𝑆-th entry, for 𝑆 ∈

([𝑛]×[2]
ℓ

)
, is

ℒ3(𝑏′)𝑆 B (
⊕
𝑢(1)∈𝑆

ℒ(𝑏)𝑢) ⊕ (
⊕
𝑣(2)∈𝑆

ℒ(𝑏)𝑣) ,

where 𝑏 ∈ {0, 1}𝑘 satisfies 𝑏𝑖 = 𝑏′𝑖 for all 𝑖 ∈ 𝐿3 and 𝑏 𝑗 = 0 otherwise.
We now argue that if

∑𝑘
𝑖=1 |𝐻′𝑖 | ≥ 𝛿𝑛𝑘/2, then there exists a set 𝐿3 ⊆ [𝑘] of size |𝐿3 | ≥ 𝑘/2 such

that ℒ3 is a linear (2,Ω(𝛿2/𝑑))-wLDC. Recall that each 𝐻′
𝑖

is a 3-uniform hypergraph matching

140

on 𝑛 vertices, where deg𝐻′({𝑢, 𝑣}) ≤ 𝑑 for all 𝑢, 𝑣 ∈ [𝑛], where 𝐻′ B ∪𝑘
𝑖=1𝐻

′
𝑖
. Partition [𝑘]

into 𝐿3 ∪ 𝑅3, and without loss of generality assume |𝐿3 | ≥ 𝑘/2. Following Section 11.1, we set
ℓ =

√
𝑛/𝑘/𝑐 for a sufficiently large constant 𝑐 and let 𝐵𝑖 ∈ R𝑁×𝑁 for 𝑖 ∈ 𝐿3 be the matrices defined

in Definition 5.4.2.
Let 𝐺′′

𝑖
denote the graph with adjacency matrix 𝐵𝑖 , i.e., for 𝑆,𝑇 ∈ [𝑁], we have (𝑆,𝑇) as an

edge in 𝐺′′
𝑖

if 𝐵𝑖(𝑆,𝑇) ≠ 0. By Lemma 11.1.6, the max degree of any vertex in 𝐺′′
𝑖

is at most 2𝑑.
Hence, 𝐺′′

𝑖
contains a matching 𝑀′′

𝑖
where |𝑀′′

𝑖
| ≥ Ω(|𝐺′′

𝑖
|/𝑑). Now, since |𝐻′ | ≥ 𝛿𝑛𝑘/2, then by

double counting, the number of clauses 𝐶1,𝐶2 ∈ 𝐻′ with |𝐶1 ∩ 𝐶2 | ≥ 1 is at least Ω(𝛿2𝑛𝑘2). Thus,
by picking a random partition and using Lemma 12.6.4, we find that

∑𝑘
𝑖=1 |𝐺′′𝑖 | ≥ Ω(𝐷𝛿2𝑛𝑘2) in

expectation, where 𝐷 = 2
(2𝑛−ℓ
ℓ−4

)
, and hence there is a partition 𝐿3 ∪ 𝑅3 achieving this. By applying

Fact 3.6.1, we see that 𝐷/𝑁 ≥ Ω(ℓ 2/𝑛2), and so we have
∑𝑘
𝑖=1 |𝑀′′𝑖 | ≥ Ω(𝛿2𝑁𝑘/𝑑), using that

ℓ =
√
𝑛/𝑘/𝑐.

It is now straightforward to observe that, for each 𝑖 ∈ 𝐿3 and (𝑆,𝑇) ∈ 𝑀′′
𝑖

, it holds that
𝑏′
𝑖
= ℒ3(𝑏′)𝑆 ⊕ ℒ3(𝑏′)𝑇 ; indeed, this is because ℒ3(𝑏′)𝑆 ⊕ ℒ3(𝑏′)𝑇 = ℒ(𝑏)𝑆 ⊕ ℒ(𝑏)𝑇 = 𝑏𝑖 ⊕ 𝑏 𝑗 = 𝑏′

𝑖
,

as 𝑏′
𝑖
= 𝑏𝑖 and 𝑏 𝑗 = 0 because 𝑗 ∈ 𝑅2. We have thus shown that if

∑𝑘
𝑖=1 |𝐻′𝑖 | ≥ 𝛿𝑛𝑘/2, then ℒ3 is a

linear (2,Ω(𝛿2/𝑑))-wLDC.

By Lemma 11.0.2, we thus have that either
∑𝑘
𝑖=1 |𝐺𝑖 | ≥ 𝛿𝑛𝑘/2 or

∑𝑘
𝑖=1 |𝐻′𝑖 | ≥ 𝛿𝑛𝑘/2. Hence, at

least one of ℒ2 and ℒ3 must have the desired property, which finishes the proof. □

Remark 11.3.4 (A note on the linearity of ℒ). In Theorem 11.3.2, we assumed that the code ℒ was
linear. The reason that this assumption is necessary is because of the following. The constraints
used to locally decode ℒ2 and ℒ3 are obtained by XORing two clauses 𝐶1 and 𝐶2 in the original
set of local constraints defining ℒ. We then observe that by using 𝐶1 ⊕ 𝐶2, we can decode, e.g.,
𝑏𝑖 ⊕ 𝑏 𝑗 , and so by setting ∼ 𝑘/2 of the 𝑏 𝑗’s to be hardcoded to 0, we have many constraints to
recover 𝑏𝑖 . The issue for nonlinear codes is that this “hardcoding” procedure does not work, as
even though we can set 𝑏 𝑗 to be 0, the individual constraints 𝐶1 and 𝐶2 are only guaranteed to
decode 𝑏𝑖 and 𝑏 𝑗 , respectively, in expectation over a random choice of 𝑏 ∈ {0, 1}𝑘 . Thus, when we
hardcode some bits, we are no longer guaranteed that the derived constraint 𝐶1 ⊕ 𝐶2 decodes 𝑏𝑖
in expectation over the remaining “free” bits 𝑏𝑖 for 𝑖 ∈ 𝐿.

141

142

Chapter 12

Exponential Lower Bounds for 3-Query
Locally Correctable Codes

In this chapter, we prove Theorems 8 to 10. We first give an overview of the strategy that leads
to the proofs of Theorems 8 to 10. We will then give a standalone proof of Theorem 9, which
is substantially simpler than the more general cases handled by Theorems 8 and 10. Then, as a
warmup to the proof of Theorem 8, we give a proof sketch of a 𝑛 ≥ Ω̃(𝑘4) lower bound for linear
3-LCCs. Finally, we prove Theorems 8 and 10.

12.1 The proof strategy

We will start by giving a high-level overview of the proof strategy that we will use to prove
Theorems 8 to 10. We will focus on the case of linear 3-LCCs, i.e., the case of Theorem 8, as well as
on the case of F = F2. Without loss of generality, we can assume that ℒ is a systematic linear map
ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 , so that the first 𝑘 bits in any codeword are the message bits themselves,
i.e., for any 𝑏 ∈ {−1, 1}𝑘 , 𝑥 = ℒ(𝑏) satisfies 𝑥𝑖 = 𝑏𝑖 for all 𝑖 ∈ [𝑘]. We will use the notation ≳ and ≲
to suppress a multiplicative polylog(𝑛) factor.

The Kikuchi matrix method. Our proof uses the Kikuchi matrix method developed in this
thesis. This method works in two steps: (1) formulate a hypergraph possessing some relevant
structure as a family of satisfiable XOR formulas, and, (2) construct a spectral refutation (i.e., a
certificate of unsatisfiability) of a randomly chosen member of this family. The spectral refutations
in the second step rely on appropriate Kikuchi matrices — a term that we have been loosely using
to describe induced subgraphs of an appropriately chosen Cayley graph associated with the
hypergraph. The success of the spectral refutation naturally relies on the structure of the XOR
instances. The power of the method comes from the ease (at least in hindsight, given Parts I and II
and Chapter 11, i.e., [GKM22, HKM23, AGKM23]) in identifying the relevant combinatorial
structure that is sufficient for the success of the spectral refutations.

Our proof can be seen as an upgrade on the methods we developed in Chapters 2 and 11,
which we used to show a lower bound of 𝑛 ≥ Ω̃(𝑘3) on the block length 𝑛 of a 3-query LDC (and
therefore also a 3-query LCC) of dimension 𝑘 and constant distance. The key conceptual idea that
helps us move beyond the cubic to an exponential lower bound for 3-LCCs (a bound that provably
cannot hold for 3-LDCs [Efr09, Yek08]) is a new family of XOR instances that crucially exploits

143

the additional structure in LCCs. Our new family of XOR instances is produced by performing a
certain structured variant of low-width resolution (well-studied in proof complexity [Gri01, Sch08])
on the “basic” family. We call this process long chain derivations.

In the following, we will first recall the conceptual crux of the lower bound for 𝑞-LDCs in
Section 2.3 and Chapter 11 and then use it to motivate our approach for 3-LCCs.

12.1.1 The naive XOR instance and LDC lower bounds

To begin, we will summarize the approach of Section 2.3 and Chapter 11 for the case of 𝑞-LDCs.
Let us start by recalling the combinatorial characterization (formalized as the normal form in
Definition 3.3.9). A code ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 is a (𝑞, 𝛿)-LDC if for every 1 ≤ 𝑖 ≤ 𝑘, there exists
a 𝑞-uniform hypergraph matching 𝐻𝑖 over [𝑛] of size 𝛿𝑛 such that for every 𝑏 ∈ {−1, 1}𝑘 and
codeword 𝑥 = ℒ(𝑏), for every 𝑖 ∈ [𝑘] and every 𝐶 ∈ 𝐻𝑖 , it holds that 𝑥𝐶 = 𝑏𝑖 . The combinatorial
characterization above can be easily seen to be equivalent to the satisfiability of a family of 𝑞-XOR
instances.
Observation 12.1.1 (LDCs and a Family of XOR Instances). Let 𝐻1,𝐻2, . . . ,𝐻𝑘 be 𝑞-uniform hyper-
graph matchings on [𝑛] of size 𝛿𝑛. For every 𝑏 ∈ {−1, 1}𝑘 , define the following 𝑞-XOR instance
Ψ𝑏 in 𝑛 variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 .

∀𝑖 ∈ [𝑘], ∀𝐶 ∈ 𝐻𝑖 , 𝑥𝐶 = 𝑏𝑖 . (12.1)

Then, there exists a (normal form) linear LDC ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 described by the collection
of 𝑞-uniform matchings 𝐻1,𝐻2, . . . ,𝐻𝑘 on [𝑛] if and only if Ψ𝑏 is satisfiable for every 𝑏 ∈ {−1, 1}𝑘 .

If ℒ is a (𝑞, 𝛿)-LDC described by matchings 𝐻1,𝐻2, . . . ,𝐻𝑘 , then 𝑥 = ℒ(𝑏) satisfies all the
constraints in Ψ𝑏 . Conversely, if Ψ𝑏 is satisfiable for every 𝑏, then one can easily construct a linear
map ℒ (easily seen to be a linear (𝑞, 𝛿)-LDC) where ℒ(𝑏) is some satisfying assignment to Ψ𝑏 .

The main idea of Section 2.3 and Chapter 11 is to show that for any collection of 𝛿𝑛-size
𝑞-matchings 𝐻1,𝐻2, . . . ,𝐻𝑘 , if 𝑘 is large enough as a function of 𝑛, then for a randomly chosen
𝑏, Ψ𝑏 is unsatisfiable with high probability. This implies an upper bound on 𝑘. Now, when 𝑏
is random, Ψ𝑏 is XOR formula generated via 𝑘 ≪ 𝑛 bits, i.e., much smaller than the number
of variables. Thus, a naive union bound argument cannot establish unsatisfiability of Ψ𝑏 . In
Section 2.3 and Chapter 11, we established unsatisfiability of Ψ𝑏 for a random 𝑏 via a spectral
refutation using Kikuchi matrices.

Spectral refutations for 𝚿𝒃. Let us now recall how the spectral refutation in Section 2.3 and Chap-
ter 11 works. For our purpose of illustrating the conceptual idea, we will focus on the simpler
setting of even 𝑞 and sketch the proof that 𝑘 ≤ 𝑂̃(𝑛1−2/𝑞) for 𝑞-LDCs, which we saw in Section 2.3.

First, we observe that for the XOR instance Ψ𝑏 , there is an associated “instance polyno-
mial” Ψ𝑏(𝑥) B

∑𝑘
𝑖=1

∑
𝐶∈𝐻𝑖 𝑏𝑖𝑥𝐶 . We note that Ψ𝑏(𝑥) is the number of constraints satisfied

by 𝑥 minus the number of constraints violated, and thus Ψ𝑏 is unsatisfiable if and only if
val(Ψ𝑏) B max𝑥∈{−1,1}𝑛 Ψ𝑏(𝑥) is less than

∑𝑘
𝑖=1 |𝐻𝑖 | = 𝑘 · 𝛿𝑛. Thus, to show that Ψ𝑏 is unsatisfiable,

we will bound val(Ψ𝑏).
To do this, we define a Kikuchi matrix whose quadratic form is equal to Ψ𝑏(𝑥) using the

strategy we developed in Chapter 2.
Definition 12.1.2 (Kikuchi matrix and graphs, Definition 2.1.1 restated). Let 𝐶 ∈

([𝑛]
𝑞

)
, let ℓ be a

parameter, and let 𝑁 B
(𝑛
ℓ

)
. Let 𝐴𝐶 ∈ {0, 1}𝑁×𝑁 be the matrix indexed by sets 𝑆 ∈

([𝑛]
ℓ

)
where

144

𝐴𝐶(𝑆,𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶, and 0 otherwise. Let 𝐴𝑖 B
∑
𝐶∈𝐻𝑖 𝐴𝐶 , and let 𝐴 B

∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 . We

naturally interpret (and by abuse of notation, also call) 𝐴𝐶 , 𝐴𝑖 and 𝐴 as adjacency matrices of
“Kikuchi graphs” on the vertex set

([𝑛]
ℓ

)
.

Observe that 𝐴𝐶 is a matching on vertex set
([𝑛]
ℓ

)
of size 𝐷 =

(𝑛−𝑞
ℓ−𝑞/2

) (𝑞

𝑞/2
)

(see Proposition 2.1.2).

For any 𝑥 ∈ {−1, 1}𝑛 , let 𝑥⊙ℓ denote the ℓ -wise monomial vector indexed by 𝑆 ∈
([𝑛]
ℓ

)
with

corresponding entry equal to 𝑥𝑆. Then, 𝑥⊙ℓ⊤𝐴𝐶𝑥⊙ℓ = 𝐷𝑥𝐶 . Consequently, 𝑥⊙ℓ⊤𝐴𝑥⊙ℓ = 𝐷Ψ𝑏(𝑥).
Thus, if 𝑥 ∈ {−1, 1}𝑛 satisfies Ψ𝑏 , then we have the following inequality that upper bounds 𝑘 in
terms of ∥𝐴∥2:

𝑘𝛿𝑛 = Ψ𝑏(𝑥) ≤
1
𝐷

𝑥⊙ℓ

2
2 ∥𝐴∥2 =

(𝑛
ℓ

)
𝐷
∥𝐴∥2 ≤ 𝑂((𝑛/ℓ)𝑞/2) ∥𝐴∥2 . (12.2)

We now choose 𝑏 ∈ {−1, 1}𝑘 uniformly at random and consider 𝐴 =
∑
𝑖 𝑏𝑖𝐴𝑖 , which is a ma-

trix Rademacher series of the 𝐴𝑖’s. By the Matrix Khintchine inequality (Fact 3.4.2), ∥𝐴∥2 ≤
𝑂(

√
log𝑁)

∑
𝑖 𝐴

2
𝑖

1/2
2 with high probability.

A combinatorial proxy for ∥𝑨∥2. Let Δ𝑖 be the maximum degree of any node in the Kikuchi
graph 𝐴𝑖 , and let Δ = max1≤𝑖≤𝑘 Δ𝑖 . Then, we can naively bound

∑
𝑖 𝐴

2
𝑖

2 ≤

∑
𝑖 ∥𝐴𝑖 ∥22 ≤ 𝑘Δ2.

Thus, the maximum degree of the 𝐴𝑖’s naturally controls the spectral norm of 𝐴 as ∥𝐴∥2 ≤
Δ ·𝑂(

√
𝑘ℓ log 𝑛).

Let us now investigate bounds on Δ. Since for each 𝐶 ∈ 𝐻𝑖 , 𝐴𝐶 contributes 𝐷 edges to 𝐴𝑖 ,
the average degree of 𝐴𝑖 is clearly 𝛿𝑛𝐷/𝑁 ∼ 𝑛(ℓ/𝑛)𝑞/2. Thus, Δ ≥ 𝑂(1)max{1, 𝑛(ℓ/𝑛)𝑞/2}. If Δ
happens to be equal to this minimum possible value, then substituting it in Eq. (12.2) yields:

𝑘𝛿𝑛 ≤ 𝑂(1)
(𝑛
ℓ

) 𝑞/2 √
𝑘ℓ log 𝑛 ·max{1, 𝑛(ℓ/𝑛)𝑞/2} ,

which implies that 𝑘 ≤ 𝑂(ℓ log 𝑛) ·max{𝑛𝑞−2/ℓ 𝑞 , 1}. This is minimized at ℓ = 𝑛1−2/𝑞 to give the
lower bound of 𝑘 ≤ 𝑂̃(𝑛1−2/𝑞), i.e., 𝑛 ≥ Ω̃(𝑘𝑞/(𝑞−2)).
Handling irregularities: row pruning via polynomial concentration. We will now (for the first
time in the argument) use that the 𝐻𝑖’s are matchings to argue that while the 𝐴𝑖’s are certainly
not approximately regular (i.e., max degree Δ𝑖 at most a polylog(𝑛) factor larger than the average-
degree), there is only a small fraction of nodes in any 𝐴𝑖 that have a large degree. Of course, a
small fraction of rows can still cause ∥𝐴∥2 to be too large. In order to circumvent this issue, we
observe that the argument in Eq. (12.2) works even if we were to replace 𝑁 ∥𝐴∥2 (maximum over
arbitrary quadratic forms) by ∥𝐴∥∞→1 (maximum over quadratic forms on ±1-coordinate vectors).
The latter quantity is insensitive to dropping a small fraction of rows since ±1-coordinate vectors
when restricted to a small number of rows must have correspondingly small ℓ2-norm.

To prove that only a small fraction of nodes can have a large degree in any 𝐴𝑖 , we view the
degree of any node 𝑆 as a polynomial in the corresponding indicator variables 𝑧 ∈ {0, 1}𝑛 with∑
𝑖 𝑧𝑖 = ℓ and use tail inequalities for low-degree polynomials (that generalize concentration of

Lipschitz functions) of Kim and Vu and extensions [KV00, SS12] to bound the chance that it takes
a value polylog(𝑛) times the average. This relies on establishing strong bounds on the expected
partial derivatives of the degree polynomial by using that the 𝐻𝑖’s are matchings.

The key heuristic: high density for Kikuchi graphs at low levels. Let’s summarize the crucial
steps of the above argument as follows: (1) 𝑞-LDCs naturally yield XOR instances of arity 𝑞, (2)

145

to obtain our lower bound, we need that the Kikuchi matrices 𝐴𝑖 corresponding to a matching 𝐻𝑖

are approximately regular (after dropping a negligible fraction of rows), and (3) the argument
can only yield a bound of the form 𝑘 ≲ ℓ where ℓ is the smallest level of the Kikuchi graphs 𝐴𝑖
with an average degree ≫ 1. More precisely, if there are 𝑚𝑖 constraints of arity 𝑞 in 𝐻𝑖 , then
the threshold ℓ is the smallest integer satisfying 𝑚𝑖(ℓ/𝑛)𝑞/2 ≫ 1 for all 𝑖 ∈ [𝑘]. Note that this
threshold ℓ increases as 𝑞 increases.

We assert that even though the argument Chapter 11 for the case when 𝑞 = 3 requires
more work (in both the design of the Kikuchi matrix itself and its analysis), the heuristic above
continues to hold. Let us also note that ensuring approximate regularity is usually the trickiest
aspect of the proof. In particular, while the heuristic above makes sense for all odd 𝑞 (and not just
𝑞 = 3), and in Chapter 11 we failed to obtain an improved lower bound for odd 𝑞 > 3 because we
were unable to find an appropriate “decomposition” that ensures approximate regularity of the
resulting Kikuchi matrices.

Thus, in order to obtain an exponential lower bound, as in Theorem 8, via the schema above,
we must construct Kikuchi graphs that have constant density (i.e., average degree) at much a
lower level ℓ . Specifically, we will need to be able to take ℓ = polylog(𝑛).1

12.1.2 Long chain derivations: stronger spectral refutations by increased density

Given the key heuristic above, we now show how to build XOR instances from 3-LCCs that
yield constant density Kikuchi matrices at level ℓ = polylog(𝑛). Our instances will balance two
opposing concerns. On the one hand, the constraints will be of large arity (in fact, 𝑂(log 𝑛) arity)
which, given the discussion above, hurts the density at lower levels. Nonetheless, we will show
that the number of higher arity constraints that we produce grows fast enough to compensate for
this and gives us an overall increase in density at lower ℓ . We note (with the hope of pointing
the reader to the trickiest part of the proof that motivates all our setup) that the analysis of “row
pruning” i.e., arguing approximate regularity after removing a negligible fraction of rows, will
get significantly more involved and motivates all our design choices. This includes the specific
type of Kikuchi matrices that we will choose and a new decomposition for the constraints that,
while a bit unnatural at the outset, helps guarantee approximate regularity. Let us see these ideas
in more detail next.

Like 3-LDCs, 3-LCCs can, without loss of generality, be assumed to be (3, 𝛿)-normal. Thus,
for any 3-LCC ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 , there are 3-uniform hypergraph matchings 𝐻1, . . . ,𝐻𝑛 on
[𝑛], each of size 𝛿𝑛, such that for every 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], and 𝐶 ∈ 𝐻𝑢 , the encoding 𝑥 = ℒ(𝑏)
satisfies 𝑥𝐶 = 𝑥𝑢 . Note that the key difference between LCCs and LDCs is that here we have a
“local correcting” hypergraph 𝐻𝑢 for each 𝑢 ∈ [𝑛], instead of only a hypergraph for each 𝑖 ∈ [𝑘] in
the case of LDCs.

The naive XOR instances. Similar to Observation 12.1.1, the combinatorial characterization

1We note that while our lower bounds appear to get weaker as ℓ grows, generic convergence results about the
Kikuchi matrices imply that taking ℓ ∼ 𝑛 and bounding Ψ𝑏 in terms of ∥𝐴∥2 yields the optimal bound on 𝑘, whatever
it may be! The reason the current argument (which is likely suboptimal) does not extend beyond ℓ = 𝑛1−2/𝑞 is
the potentially superfluous

√
log𝑁 multiplicative loss in the matrix Khintchine inequality. Investigating when

this
√

log𝑁 factor (which is tight in the worst case) can be removed is the topic of an ongoing research effort in
random matrix theory [BBH23] and is naturally related to other problems such as resolving the matrix Spencer
conjecture [Zou12, Mek14].

146

u v1 v2 w v3 v4 w′

 C C′

Figure 12.1: A 2-chain with head 𝑢. Note that 𝐶 ∪ {𝑤} ∈ 𝐻𝑢 and 𝐶′ ∪ {𝑤′} ∈ 𝐻𝑤 , and that
𝑥 = ℒ(𝑏) satisfies 𝑥𝐶𝑥𝑤 = 𝑥𝑢 and 𝑥𝐶′𝑥𝑤′ = 𝑥𝑤 , and therefore 𝑥𝐶𝑥𝐶′𝑥𝑤′ = 𝑥𝑢 .

yields that the XOR instance with constraints 𝑥𝐶 = 𝑥𝑢 for every 𝐶 ∈ 𝐻𝑢 and 𝑢 ∈ [𝑛] (where on
the right-hand side, we set 𝑥𝑢 = 𝑏𝑢 whenever 𝑢 ∈ [𝑘]) is satisfiable for every 𝑏 ∈ {−1, 1}𝑘 . If we
focus only on the constraints corresponding to 𝐻𝑢 for 𝑢 ∈ [𝑘] (i.e., the “systematic” bits in the
codeword), then we recover the same XOR instance as in the case of 3-LDCs and our method
from above yields 𝑘 ≤ 𝑂̃(𝑛1/3). To improve on this significantly lossy formulation, we must make
use of the additional constraints 𝐻𝑢 for 𝑢 ∉ [𝑘]. More specifically, if we were to only use the
hypergraphs 𝐻𝑢 for 𝑢 ∈ [𝑘], then any lower bound we could prove would hold for LDCs as well,
and in particular one could not hope to prove Theorem 8, which is false for LDCs.

Long chain derivations. We now show how to use the additional constraints in order to build a
higher arity XOR instance that is (1) approximately regular (after an appropriate decomposition),
and (2) results in high-density Kikuchi graphs at polylog(𝑛) levels. We will construct higher arity
XOR instances that use the additional constraints above using a structured variant of low-width
XOR resolution [Gri01, Sch08] that we call long chain derivations.

Let us start by forming extra constraints via 2-chains. Observe that for any 𝑢 ∈ [𝑛] and
𝐶 ∈ 𝐻𝑢 , we have that for any 𝑏 ∈ {−1, 1}𝑘 , 𝑥 = ℒ(𝑏) ∈ {−1, 1}𝑛 satisfies the equation 𝑥𝑢𝑥𝐶 = 1.
Now, let us choose 𝑤 ∈ 𝐶 and 𝐶′ ∈ 𝐻𝑤 . We also have that 𝑥𝑤𝑥𝐶′ = 1. As 𝑥𝐶 = 𝑥𝐶\{𝑤}𝑥𝑤 , it follows
that the “derivation” 𝑥𝑢𝑥𝐶\{𝑤}𝑥𝐶′ = 1 also holds, since 𝑥2

𝑤 = 1. We shall call such a constraint
a “2-chain” — it connects two constraints intersecting in one variable. We can think of such a
2-chain as a tuple (𝑢,𝐶,𝑤,𝐶′,𝑤′), where 𝐶 ∪ {𝑤} ∈ 𝐻𝑢 and 𝐶′ ∪ {𝑤′} ∈ 𝐻𝑤 , and this yields the
constraint 𝑥𝐶𝑥𝐶′𝑥𝑤′ = 𝑥𝑢 (see Fig. 12.1).

Consider now the 2-chains ∪𝑖∈[𝑘]ℋ (2)𝑖 , i.e., 2-chains of the form (𝑖,𝐶,𝑤,𝐶′,𝑤′)where 𝑖 ∈ [𝑘].
Then, the constraints have the form 𝑥𝐶𝑥𝐶′𝑥𝑤′ = 𝑏𝑖 , so they decode the 𝑖-th independent bit 𝑏𝑖 . We
have thus formed a new set of constraints with “right-hand side” 𝑏𝑖 .

A heuristic calculation. Let us now do a heuristic calculation (that ignores the key issue of
approximate regularity) to see if we improve the density at lower Kikuchi levels by taking
the XOR instances corresponding to 2-chains. For any fixed “head” 𝑖 ∈ [𝑘], there are (3𝛿𝑛)2
2-chains. This is because we have 𝛿𝑛 choices for 𝐶 ∪ {𝑤} ∈ 𝐻𝑖 , followed by 3 ways to choose
𝑤 from 𝐶 ∪ {𝑤}, and then similarly 3𝛿𝑛 choices in total for (𝐶′,𝑤′). Let ℋ (2)

𝑖
denote the set of

2-chains with head 𝑖. We have thus produced ∼ 𝑛2 constraints and each constraint has arity 5,2 as
|𝐶 | = |𝐶′ | = 2.

The Kikuchi matrix in Definition 12.1.2 only makes sense for even 𝑞, but let us still do a
“pretend” calculation of the relative density for the arity 5 constraints we have produced. This

2Some constraints may have additional variable cancellations and thus have arity < 5. However, as the density gets
worse as the arity increases, this is only “better” for us.

147

can be made precise with a slightly more sophisticated Kikuchi matrix (which we have seen in
Chapter 11), so this is still a meaningful heuristic.

The density (i.e., average degree) for the Kikuchi matrix 𝐴𝑖 is now 𝑛2(ℓ/𝑛)𝑞/2 ∼ 𝑛2(ℓ/𝑛)5/2 ∼
ℓ 2.5/𝑛0.5. This density is ≫ 1 whenever ℓ ≫ 𝑛1/5, so one might expect to obtain a bound of
𝑘 ≲ 𝑛1/5 (beating the 𝑛1/3 bound for the naive XOR instance) when working with 2-chains — a
construction that crucially relies on additional structure in 3-LCC! While there are lot of details
that we have simply ignored in doing this calculation, it does suggest that we are able to achieve
a constant-density Kikuchi matrix 𝐴𝑖 at a lower level ℓ . A similar calculation (that we will omit
here) for chains of larger length, say 𝑟, shows that the smallest level ℓ at which we can obtain
constant density Kikuchi matrices is ℓ ∼ 𝑛1/2𝑟 , and this suggests that we might be able to obtain
constant density at level ℓ = polylog(𝑛) if we work with 𝑟 ∼ log 𝑛 length chains.

In Section 12.3, as a warmup to our somewhat technical proof of the main theorem, we present
a complete analysis of the 2-chains (with extended commentary) to obtain a 𝑘 ≤ 𝑂̃(𝑛1/4) bound
(giving a polynomial improvement on the ∼ 𝑛1/3 lower bound on 3-LDCs already!) in order to
illustrate (a simplified version of) the set of new tools that go into the analysis.

12.1.3 From the heuristic to a proof

In the remaining part of this overview, we briefly discuss the technical tools we develop to turn
the above heuristic calculation into a full proof. We note that the actual parameters become rather
delicate. For readers familiar with the literature on random CSP refutation (our setting resembles
semirandom XOR refutation with complicated correlations in the right-hand sides), this is similar
to the analysis getting rather delicate when dealing with XOR instances with super-constant arity.

Setting up the Kikuchi matrix. The instances produced by forming 𝑟-chains yield XOR instances
of (odd) arity 2𝑟 + 1. We build a different Kikuchi matrix by first applying the “Cauchy–Schwarz”
trick — a standard idea in CSP refutation also utilized in Section 5.1 and Chapter 11. In our case,
the XOR instance produced after this trick corresponds to constraints formed by joining two
𝑟-chains at their “tails” whenever the tails match. We choose a variant of the Kikuchi matrix for
the “Cauchy–Schwarzed instance” except for the key difference that it is indexed by 2𝑟-tuples of
sets of size ℓ (instead of a single set of size ℓ) in the sketch above.

Regularity decomposition. If 𝐻1,𝐻2, . . . 𝐻𝑛 are such that no pair of variables appears in more
than one hyperedge (“no heavy pairs”) across all the 𝐻𝑖’s, then it turns out that the resulting
Kikuchi matrices satisfy approximate regularity after pruning a negligible fraction of rows. This
“no heavy pair” property holds, e.g., if 𝐻𝑖’s are uniformly random and independent hypergraph
matchings of size 𝛿𝑛. It also holds in the design case (Theorem 9) by assumption.

However, when the𝐻𝑖 ’s are arbitrary, and in particular when there are “heavy pairs” (i.e. pairs
of variables that appear in≫ log 𝑛 hyperedges across the 𝐻𝑖’s), the resulting Kikuchi matrices
are far from being approximately regular. Our key technical idea is a new decomposition procedure
that operates directly on the chains. Such a decomposition procedure partitions the chains into
∼ 𝑟 different groups such that each group admits a (different, appropriately defined) Kikuchi
matrix that satisfies approximate regularity. Regularity decompositions have been used many
times already in this thesis (see Sections 5.2, 7.3 and 11.0.1). However, our notion of regularity is
(necessarily) significantly weaker (we call it “smoothed partitioning”) that, unlike the method in,
say, Section 5.2, does not “by design” ensure approximate regularity of the Kikuchi matrices after

148

removing only a negligible fraction of rows. Instead, our argument for approximate regularity
relies on combining the guarantees of the decomposition with (1) an appropriate choice of Kikuchi
matrix for each piece in the partition, and (2) the structure in the chains arising by virtue of 𝐻𝑖’s
being matchings.

Polynomial concentration: bounding expected derivatives. Our main technical step (the subject
of Section 12.7) is proving that our weak notion of regularity combined with the fact that 𝐻𝑖’s
are matchings is enough to control expected partial derivatives of the “degree-polynomial” that
computes the degrees of nodes in the Kikuchi graph.

Our original proof of approximate regularity of the Kikuchi graph from the smoothed par-
titioning of the chains (which appeared in [KM24a]) used a “partite” version of the Kim–Vu
inequality [KV00, SS12]. This original proof results in a final bound of 𝑘 ≤ 𝑂(log8 𝑛), or a lower
bound of 𝑛 ≥ 2Ω(𝑘

1/8). In the proof presented in this thesis, we shall incorporate the second
moment method row pruning argument of [Yan24], which saves a few polylog(𝑛) factors and
results in a 2Ω(𝑘

1/4) bound.
We note that the analysis of the expected partial derivatives of the “degree polynomial”

(which we use to prove approximate regularity) and the interplay of these bounds with our
decomposition of chains is the key technical part (and the focus of Section 12.7) of our proof. In
order to illustrate this technical part in a “base” case that still captures some of the complications,
we present the case of 2-chains as a warmup in the next section.

12.2 Proof of Theorem 9

In this section, we prove Theorem 9. The proof is substantially simpler than the proofs of
Theorems 8 and 10. The proof here will be self-contained, and will also serve as a partial warmup
to Theorems 8 and 10.

The proof presented follows the overall blueprint described in Sections 12.1 and 12.3, although
we will present it via a slightly different lens. Namely, we will use the design 3-LCCℒ to construct
a 2-query linear locally decodable code, and then we will apply the lower bound of [GKST06].3 We
will incorporate the clever second moment method proof of the row pruning step due to [Yan24],
which is very similar to the edge deletion method of [HKM23] done in the context of semirandom
and smoothed CSP refutation (Part I). The key reason that we save the final log 𝑛 factors is by
using a more carefully chosen Kikuchi graph, a sharp accounting of binomial coefficients, and
the crucial use of the fact that in the design case, the hypergraph matchings are perfect.

Let us now proceed with the proof. Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a design 3-LCC. Namely,
there exists a 4-uniform hypergraph design 𝐻 ⊆

([𝑛]
4

)
such that for all 𝐶 ∈ 𝐻,

∑
𝑣∈𝐶 𝑥𝑣 = 0 for all

𝑥 ∈ ℒ. Without loss of generality, we may assume that ℒ is systematic, i.e., for each 𝑏 ∈ {0, 1}𝑘 ,
ℒ(𝑏)𝑖 = 𝑏𝑖 . To bound 𝑘, we will give another linear map ℒ′ : {0, 1}𝑛 → {0, 1}2𝑛𝑁 , where 𝑁 =

(𝑛
ℓ

)
for some parameter ℓ = (1 + 𝑜(1)) log2 𝑛, and we will show that ℒ′ ◦ ℒ : {0, 1}𝑘 → {0, 1}𝑁 is

3The proof overview in Sections 12.1 and 12.3 is presented using the perspective of spectral refutation and matrix
concentration bounds, even though the final proof in the case of linear LCCs (Theorem 8) can be phrased as a reduction
to a 2-LDC. Here, we present the proof as a reduction as it is a more accessible and combinatorial analysis, although
we note that one could prove the same result using matrix concentration as well. The proof of the nonlinear case
(Theorem 10) requires the spectral refutation perspective.

149

a 2-query linear locally decodable code with 𝛿 = 1
2 (1 − 𝑜(1)). We can then apply Fact 3.3.4 to

conclude that (1− 𝑜(1))𝑘 ≤ 2𝛿𝑘 ≤ log2 𝑁 ≤ (ℓ + 1) log2 𝑛 where ℓ = (1+ 𝑜(1)) log2 𝑛.
For each 𝑢 ∈ [𝑛], we let 𝐻𝑢 denote the 3-uniform hypergraph defined from 𝐻 as specified in

Remark 3.3.12, i.e., 𝐻𝑢 = {𝐶 : 𝐶 ∪ {𝑢} ∈ 𝐻}. As shown in Remark 3.3.12, 𝐻𝑢 is a matching of size
𝛿𝑛 = 𝑛−1

3 , i.e., 𝛿 B 1
3 − 1

3𝑛 .

Step 1: forming long chain derivations. In the first step of the proof, we use the initial system
of constraints 𝐻 to define a larger system of constraints, called long chain derivations.
Definition 12.2.1. Let 𝐻1, . . . ,𝐻𝑛 be the 3-uniform hypergraph matchings defined from the 4-
design 𝐻. An 𝑟-chain with head 𝑢0 is an ordered sequence of vertices of length 3𝑟 + 1, given by
𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟), such that all the 𝑣ℎ’s are distinct4 and for
each ℎ = 0, . . . , 𝑟 − 1, it holds that {𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1} ∈ 𝐻𝑢ℎ . We letℋ (𝑟)𝑢 denote the set of 𝑟-chains
with head 𝑢.

We let 𝐶𝐿 = (𝑣1, 𝑣3, 𝑣5, . . . , 𝑣2(𝑟−1)+1) denote the “left half” of the chain, and 𝐶𝑅 = (𝑣2, 𝑣4, 𝑣6, . . . , 𝑣2(𝑟−1)+2)
denote the “right half”. We call 𝑢𝑟 the “tail”.

We observe thatℋ (𝑟)𝑢 has size at most (6𝛿𝑛)𝑟 and size at least (6𝛿𝑛 − 4𝑟)𝑟 . Indeed, the upper
bound follows because, given a partial chain (𝑢0, 𝑣1, 𝑣2, . . . , 𝑢ℎ), there are exactly 6𝛿𝑛 choices of
(𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) (which we note are ordered), and the lower bound follows because there are
always at least 6𝛿𝑛 − 4ℎ ≥ 6𝛿𝑛 − 4𝑟 choices, as each vertex 𝑣 can appear in either the first or
second spot in at most 2 ordered hyperedges in 𝐻𝑢′ for any 𝑢′ ∈ [𝑛].

The following observation asserts that the system of linear equations given by the chains are
satisfied by every 𝑥 ∈ ℒ.
Observation 12.2.2. Let 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟) ∈ ℋ (𝑟)𝑢 be an 𝑟-chain,
with left half 𝐶𝐿 and right half 𝐶𝑅. Then, for any 𝑥 ∈ ℒ, it holds that 𝑥𝑢𝑟 +

∑
𝑣∈𝐶𝐿 𝑥𝑣 +

∑
𝑣∈𝐶𝑅 𝑥𝑣 =

𝑥𝑢0 .

Proof. For any chain 𝐶, we have that for all ℎ = 0, . . . , 𝑟 − 1, it holds that {𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1} ∈ 𝐻𝑢ℎ ,
which implies that 𝑥𝑣2ℎ+1 + 𝑥𝑣2ℎ+2 + 𝑥𝑢ℎ+1 = 𝑥𝑢ℎ for all 𝑥 ∈ ℒ. By taking the product over all these
equations, Observation 12.2.2 follows. □

Step 2: defining the Kikuchi graphs. In this step, we will define two linear maps ℒ1 : {0, 1}𝑛 →
{0, 1}𝐿 and ℒ2 : {0, 1}𝑛 → {0, 1}𝑅, where 𝐿 =

([𝑛]
ℓ

)
× [𝑛], 𝑅 =

([𝑛]
ℓ

)
, and ℓ is a parameter, as follows.

Let ℒ1(𝑥)(𝑆,𝑣) B 𝑥𝑣 +
∑
𝑣′∈𝑆 𝑥𝑣′, and let ℒ2(𝑥)𝑇 B

∑
𝑣′∈𝑇 𝑥𝑣′. Note that |𝐿| = 𝑛𝑁 and |𝑅 | = 𝑁 ,

where 𝑁 =
(𝑛
ℓ

)
.

Now, for each 𝑢 ∈ [𝑛], we will use the set of 𝑟-chains ℋ (𝑟)𝑢 to define a bipartite graph 𝐺𝑢
with left vertices 𝐿 and right vertices 𝑅 such that, for each edge ((𝑆, 𝑣),𝑇) in 𝐺𝑢 , it holds that
ℒ1(𝑥)(𝑆,𝑣) +ℒ2(𝑥)𝑇 = 𝑥𝑢 . This graph 𝐺𝑢 will be the following Kikuchi graph.
Definition 12.2.3 (Kikuchi graph). Let ℓ be a parameter, to be determined later, and let 𝐺𝑢
be the graph with left vertex set 𝐿 =

([𝑛]
ℓ

)
× [𝑛] and right vertex set 𝑅 =

([𝑛]
ℓ

)
. For a chain

𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟) ∈ ℋ (𝑟)𝑢 with left half 𝐶𝐿 and right half 𝐶𝑅,
we add an edge ((𝑆,𝑤),𝑇) to 𝐺𝑢 “labeled” by 𝐶 if 𝑆 = 𝐶𝐿 ∪𝑈 , 𝑇 = 𝐶𝑅 ∪𝑈 where |𝑈 | = ℓ − 𝑟5 and
𝑤 = 𝑢𝑟 . Two distinct chains may produce the same edge — we add edges with multiplicity.

4In this section only, we will enforce that all the 𝑣ℎ ’s are distinct, as this will be slightly more convenient.
5Note that here we will use that all the 𝑣ℎ ’s are distinct, so that |𝐶𝐿 | = |𝐶𝑅 | = 𝑟 and |𝐶𝐿 | + |𝐶𝑅 | = 2𝑟.

150

We now make the following simple observations about the graph 𝐺𝑢 .
Observation 12.2.4. For any chain 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟) ∈ ℋ (𝑟)𝑢 , the
number of edges in 𝐺𝑢 “labeled” by 𝐶 is exactly

(𝑛−2𝑟
ℓ−𝑟

)
.

In particular, the average left degree of 𝐺𝑢 , denoted by 𝑑𝑢,𝐿 is
(𝑛−2𝑟
ℓ−𝑟

)
/𝑛𝑁 , and the average

right degree, denoted by 𝑑𝑢,𝑅 is
(𝑛−2𝑟
ℓ−𝑟

)
/𝑁 .

Proof. Let 𝐶𝐿 be the left half of 𝐶 and let 𝐶𝑅 be the right half. Because all the 𝑣ℎ’s are distinct, we
have |𝐶𝐿 | = |𝐶𝑅 | = 𝑟 and |𝐶𝐿 ∪ 𝐶𝑅 | = 2𝑟. It follows that the number of pairs ((𝑆,𝑤),𝑇) such that
((𝑆,𝑤),𝑇) is an edge in 𝐺𝑢 labeled by 𝐶 is simply the number of choices for the set 𝑈 , which is a
subset of [𝑛] \ (𝐶𝐿 ∪ 𝐶𝑅) of size ℓ − 𝑟. Thus, there are exactly

(𝑛−2𝑟
ℓ−𝑟

)
choices. □

Observation 12.2.5. For every edge ((𝑆,𝑤),𝑇) in 𝐺𝑢 and 𝑥 ∈ ℒ, it holds that ℒ1(𝑥)(𝑆,𝑤) +ℒ2(𝑥)𝑇 =

𝑥𝑢 .

Proof. Suppose that ((𝑆,𝑤),𝑇) in 𝐺𝑢 is an edge labeled by the chain 𝐶, which has left half 𝐶𝐿 and
right half 𝐶𝑅. We then have that 𝑤 = 𝑢𝑟 , 𝑢 = 𝑢0, and 𝑆 = 𝐶𝐿 ∪𝑈 , 𝑇 = 𝐶𝑅 ∪𝑈 . Therefore,

ℒ1(𝑥)(𝑆,𝑤) +ℒ2(𝑥)𝑇 = 𝑥𝑢𝑟 +
∑
𝑧∈𝑆

𝑥𝑧 +
∑
𝑧∈𝑇

𝑥𝑧

= 𝑥𝑢𝑟 +
∑
𝑧∈𝐶𝐿

𝑥𝑧 +
∑
𝑧∈𝐶𝑟

𝑥𝑧 +
∑
𝑧∈𝑈
(𝑥𝑧 + 𝑥𝑧) = 𝑥𝑢𝑟 +

∑
𝑧∈𝐶𝐿

𝑥𝑧 +
∑
𝑧∈𝐶𝑟

𝑥𝑧 = 𝑥𝑢 ,

where the last equality uses Observation 12.2.2. □

The plan for the remainder of the proof. Let us now take a brief moment to outline the steps for
the remainder of the proof. To construct a 2-LCC, it suffices to show that 𝐺𝑢 admits a matching
𝑀𝑢 of size Ω(𝑁). Indeed, if this were the case, then the matching 𝑀𝑢 would be the matching that
we require to invoke Fact 3.3.4 and thus finish the proof.

To show that 𝐺𝑢 has a large matching, it suffices bound the maximum degree of the graph
by 𝑑, as then 𝐺𝑢 must admit a matching of size at least |𝐸(𝐺𝑢)|/𝑑. However to do this, there
are two issues to resolve. The most obvious issue is that the bipartite graph is unbalanced, i.e.,
|𝐿| = 𝑛 |𝑅 |, and so this prevents us from obtaining a matching of size Ω(|𝐿|). This issue can be
easily fixed by the following trick:6 for each right vertex 𝑇 ∈ 𝑅, we can create 𝑛 copies of 𝑇,
denoted by 𝑇(1), . . . ,𝑇(𝑛), and split the edges adjacent to 𝑇 evenly across the copies. This decreases
the average (and maximum) right degree by a factor of (1− 𝑜(1))𝑛, and fixes the issue.

The second, and much more challenging problem, is that the graph 𝐺𝑢 need not be approxi-
mately biregular. Indeed, if the graph 𝐺𝑢 was exactly biregular, then apply the above “splitting
trick” would imply that the resulting graph has a perfect matching of size 𝑛𝑁/2.

This irregularity issue is a common problem for Kikuchi matrices and has arisen many
times in this thesis. The way to handle this issue is to show that 𝐺𝑢 admits a subgraph 𝐺′𝑢
that is approximately biregular and still contains a significant fraction of the edges of 𝐺𝑢 , i.e.,
|𝐸(𝐺′𝑢)| ≥ Ω(|𝐸(𝐺𝑢)|). This is the “row pruning” step (Section 2.3), which is so named because it
involves pruning rows (and columns) of the adjacency matrix of 𝐺𝑢 . This row pruning step is the
crucial, and by far the most technical, component of the proof.

6This is a nice trick of [Yan24] that, while it does not affect the final bounds, saves a use of the Cauchy–Schwarz
inequality and thus makes the graph 𝐺𝑢 a bit simpler to describe.

151

Step 3: Finding a near-perfect matching in 𝑮𝒖 . We now argue that 𝐺𝑢 admits a degree-bounded
subgraph 𝐺′𝑢 containing (1− 𝑜(1))|𝐸(𝐺𝑢)| edges. The strategy in Sections 12.1 and 12.3 is to use
the moment method to argue that with high probability, a random left (or right) vertex of the
graph has degree at most 𝑂(𝑑𝑢,𝐿) (or 𝑂(𝑑𝑢,𝑅)) with high probability. Here, we will follow the
approach of [HKM23, Yan24], which is to observe that it suffices to compute first and second
moments only. Indeed, it is computing higher moments that causes the loss of several extra log 𝑛
factors in the original proof of [KM24a], as compared to [Yan24].

The key reason we shall save the final log 𝑛 factor is because the matchings 𝐻𝑢 are nearly
perfect, i.e., they have size 𝛿𝑛 where 𝛿 = 1

3 − 1
3𝑛 . This, combined with the careful choice of the

matrix, allows us to take ℓ = 𝑂(𝑟) instead of ℓ = 𝑂(𝑟2), which saves a log 𝑛 factor. We note that
in order to get the sharp constant achieved in Theorem 9, we need to show that 𝐺𝑢 contains a
near-perfect matching.

Let deg𝑢,𝐿(𝑆,𝑤) denote the left degree of (𝑆,𝑤) in 𝐺𝑢 , and let deg𝑢,𝑅(𝑇) denote the right
degree of 𝑇 in 𝐺𝑢 . In the following lemma, we compute the first7 and second moments of the
degree functions. This lemma is the key technical lemma of the proof, and immediately implies
the existence of a degree-bounded subgraph of 𝐺𝑢 of comparable density, as we shall shortly see.
Lemma 12.2.6 (Second moment bounds for the left and right degree). Let ℓ be a parameter with
ℓ ≥ 𝑟 such that 𝑟, ℓ = 𝑜(𝑛1/4). Let 𝐺𝑢 be the graph defined in Definition 12.2.3. Then, it holds that

E(𝑆,𝑤)[deg𝐿(𝑆,𝑤)2] ≤ (1+ 𝑜(1) + 𝜂)E(𝑆,𝑤)[deg𝐿(𝑆,𝑤)] ,
E𝑇[deg𝑅(𝑇)2] ≤ (1+ 𝑜(1))E𝑇[deg𝑅(𝑇)] .

Here, the 𝑜(1) is 𝑂(ℓ 2)/𝑛 and 𝜂 = 𝑛/
(ℓ
𝑟

)
.

We note that when we apply Lemma 12.2.6, we will take 𝑟 = 1
2 log2 𝑛 + 𝑂(log log 𝑛) and

ℓ = 2𝑟 − 1, which will end up satisfying the conditions with 𝜂 = 1/polylog(𝑛).
We postpone the proof of Lemma 12.2.6 to Section 12.2.1. Let us now use Lemma 12.2.6

to extract a near-perfect matching from 𝐺𝑢 . We will assume that ℓ , 𝑟 are chosen so that 𝜂 ≤
1/𝑂(log2 𝑛) = 𝑜(1), which will be the case when we choose parameters.

Using Lemma 12.2.6, we apply Chebyshev’s inequality to observe that for the graph 𝐺𝑢 :
1. There are at least (1 − 𝑜(1))|𝐿| left vertices with degree 𝑑𝑢,𝐿(1 ± 𝑜(1)). Let 𝐿′𝑢 denote these

left vertices.

2. There are at least (1− 𝑜(1))|𝑅 | right vertices with degree 𝑑𝑢,𝑅(1± 𝑜(1)). Let 𝑅′𝑢 denote these
right vertices.

Let 𝐺′𝑢 = 𝐺𝑢[𝐿′𝑢 ,𝑅′𝑢] be the induced subgraph. First, we observe that |𝐸(𝐺′𝑢)| ≥ (1− 𝑜(1))|𝐸(𝐺𝑢)|.
This is because there are at least (1− 𝑜(1))𝑑𝑢,𝐿 |𝐿′𝑢 | ≥ (1− 𝑜(1))(1− 𝑜(1))𝑑𝑢,𝐿 |𝐿| ≥ (1− 𝑜(1))|𝐸(𝐺)|
edges in 𝐺[𝐿′,𝑅] and at least (1 − 𝑜(1))𝑑𝑢,𝑅 |𝑅′𝑢 | ≥ (1 − 𝑜(1))(1 − 𝑜(1))𝑑𝑢,𝑅 |𝑅 | ≥ (1 − 𝑜(1))|𝐸(𝐺)|
edges in 𝐺[𝐿,𝑅′], and therefore 𝐺[𝐿′,𝑅′]must have at least (1− 𝑜(1))|𝐸(𝐺)| edges. Furthermore,
each left vertex in 𝐺′ has degree at most (1+ 𝑜(1))𝑑𝑢,𝐿, and similarly each right vertex has degree
at most (1+ 𝑜(1))𝑑𝑢,𝑅.

Recall that 𝑛 · 𝑑𝑢,𝐿 = 𝑑𝑢,𝑅 and |𝐿| = |𝑅 | · 𝑛. Therefore, by making 𝑛 copies 𝑇(1), . . . ,𝑇(𝑛) of
each vertex 𝑇 in 𝑅 and splitting the edges equally across all copies (and doing the same induced
transformation on 𝐺′𝑢), we can create a new bipartite graph 𝐺′′𝑢 with left vertex set 𝐿 and right
vertex set 𝑅×[𝑛]where 𝐺′′𝑢 has max left (or right!) degree (1+ 𝑜(1))𝑑𝑢,𝐿 and at least (1− 𝑜(1))|𝐸(𝐺)|

7Note that Observation 12.2.4 computes the first moments already.

152

edges. Therefore, 𝐺′′𝑢 contains a matching 𝑀𝑢 of size at least (1− 𝑜(1))|𝐸(𝐺)|𝑑𝑢,𝐿 ≥ (1− 𝑜(1))|𝐿|.
Note that this matching is nearly perfect, as the graph 𝐺′′𝑢 has 2|𝐿| vertices, |𝐿| left vertices and |𝐿|
right vertices.

Step 4: proving the final bound. Recall that we began with a linear map ℒ : {0, 1}𝑘 → {0, 1}𝑛
that is a design 3-LCC. We then built the maps ℒ1 : {0, 1}𝑛 → {0, 1}𝐿 and ℒ2 : {0, 1}𝑛 → {0, 1}𝑅,
where 𝐿 =

([𝑛]
ℓ

)
× [𝑛] and 𝑅 =

([𝑛]
ℓ

)
, and the matchings 𝑀𝑢 for each 𝑢 ∈ [𝑛] on the left vertex set 𝐿

and the right vertex set 𝑅 × [𝑛]. To do this, we needed to apply Lemma 12.2.6, which requires
that ℓ , 𝑟 = 𝑜(𝑛1/4). We thus set 𝑟 = ⌈1

2 log2 𝑛 + Γ log2 log2 𝑛⌉ for a sufficiently large constant Γ and
ℓ = 2𝑟 − 1, which satisfies the conditions. We additionally have 𝜂 = 1/log2

2 𝑛, as(
ℓ

𝑟

)
=

(
2𝑟 − 1
𝑟

)
≥ 22𝑟−1

2𝑟
≥ 𝑛 · 2Γ log2 log2 𝑛

𝑂(log 𝑛) ≥ 𝑛 · (log2 𝑛)Γ−1−𝑜(1) ≥ 𝑛(log2
2 𝑛) ,

where we use that
(2𝑟−1
𝑡

)
is maximized at 𝑡 = 𝑟 and 𝑡 = 𝑟 − 1.

Let ℒ′2 : {0, 1}𝑛 → {0, 1}𝑅 × [𝑛] be the map where ℒ′2(𝑥)𝑇(ℎ) = ℒ2(𝑥)𝑇 , where 𝑇(ℎ) is the
ℎ-th copy of 𝑇 in 𝑅 × [𝑛]. A simple corollary of Observation 12.2.5 is that, for any 𝑥 ∈ ℒ,
𝑢 ∈ [𝑛], and edge ((𝑆,𝑤),𝑇(ℎ)) in 𝑀𝑢 , it holds that ℒ1(𝑥)(𝑆,𝑤) + ℒ′2(𝑥)𝑇(ℎ) = 𝑥𝑢 . In particular,
since ℒ is systematic, for any 𝑖 ∈ [𝑘], edge ((𝑆,𝑤),𝑇(ℎ)) in 𝑀𝑢 , and 𝑏 ∈ {0, 1}𝑘 , it holds that
ℒ1(𝑥)(𝑆,𝑤) +ℒ′2(𝑥)𝑇(ℎ) = 𝑥𝑖 = 𝑏𝑖 .

Let ℒ′ : {0, 1}𝑛 → {0, 1}𝐿∪(𝑅×[𝑛]) � {0, 1}2𝑛𝑁 be the map where ℒ′(𝑥)(𝑆,𝑤) = ℒ1(𝑥) and
ℒ′(𝑥)𝑇(ℎ) = ℒ′2(𝑥)𝑇(ℎ) . We have that ℒ ◦ ℒ′ is linear map from {0, 1}𝑘 → {0, 1}2𝑛𝑁 and that
𝑀𝑖 is a matching of size ≥ (1 − 𝑜(1))𝑛𝑁 = 1

2 (1 − 𝑜(1)) · 2𝑛𝑁 that decodes 𝑏𝑖 . Therefore, by
Fact 3.3.4, we conclude that (1− 𝑜(1))𝑘 ≤ log2 𝑁 ≤ (ℓ + 1)(log2 𝑛) = 2𝑟 log2 𝑛 = (1+ 𝑜(1))(log2 𝑛)2,
which proves Theorem 9.

12.2.1 Bounding the second moment of the degrees: proof of Lemma 12.2.6

In this subsection, we compute upper bounds on the second moments of degree functions. This
constitutes the main technical component of the proof.

As one can imagine, computing second moments requires counting the number of chains
𝐶 ∈ ℋ (𝑟)𝑢 where the left half 𝐶𝐿 (or right half 𝐶𝑅) contains a particular set 𝑍. Because of this, we
first prove the following claim.
Claim 12.2.7 (Ideal smoothness of chains from designs). Let 𝐻 be a design 3-LCC and let
𝐻1, . . . ,𝐻𝑛 be the 3-uniform hypergraphs defined in Remark 3.3.12. Let 𝑟 ≥ 1 be an integer,
and let 𝑍 ⊆ [𝑛] be a subset of size 𝑡, for some 0 ≤ 𝑡 ≤ 𝑟. Then, the number of chains 𝐶 ∈ ℋ (𝑟)𝑢
with 𝑍 ⊆ 𝐶𝑅 is at most

(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡 · 2𝑟 . And, for any 𝑤 ∈ [𝑛], the number of chains 𝐶 ∈ ℋ (𝑟)𝑢

with tail 𝑤 and 𝑍 ⊆ 𝐶𝐿 is at most
(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡−1 · 2𝑟 if 𝑡 ≤ 𝑟 − 1 and 𝑟! · 2𝑟 if |𝑍 | = 𝑟.

Proof. First, let us count the number of chains 𝐶 ∈ ℋ (𝑟)𝑢 with 𝑍 ⊆ 𝐶𝑅. We compute this in a
similar way to our upper bound on |ℋ (𝑟)𝑢 |. First, we pick the

(𝑟
𝑡

)
locations in 𝐶𝑅 (recall that 𝐶𝑅 is

implicitly ordered by the order that the vertices appear in the chain) that will contain 𝑍, and then
we pick one of the 𝑡! ways of ordering the entries of 𝑍 in these locations. Formally, we view this
as fixing an ordered tuple 𝑄 ∈ {[𝑛] ∪★}𝑟 , where the set of non-★ elements of 𝑄 is equal to 𝑍. The
notation 𝑄ℎ = ★ means that the element 𝑣2(ℎ−1)+2 in the chain 𝐶 is “free”, and 𝑄ℎ = 𝑣 means that
we must have 𝑣2(ℎ−1)+2 = 𝑣.

153

Next, we count the number of chains as follows. We start with 𝑢0 = 𝑢, and then we choose an
ordered constraint (𝑣1, 𝑣2, 𝑢1) ∈ 𝐻𝑢0 as follows. If 𝑄1 ≠ ★, then we clearly have at most 2 choices,
as we have forced 𝑣2 = 𝑣 for where 𝑣 = 𝑄1, which leaves at most one (unordered) 𝐶 ∈ 𝐻𝑢0 that
contains 𝑣, and then we have 2 ways to order 𝐶. If this is not one of the locations where we have
placed an entry of 𝑍, i.e., 𝑄1 = ★, then we have at most 6𝛿𝑛 choices. In total, we pay at most(𝑟
𝑡

)
𝑡!(6𝛿𝑛)𝑟−|𝑍 |2|𝑍 | =

(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−|𝑍 |2𝑟 .

Now, we fix 𝑤 ∈ [𝑛] and count the number of chains 𝐶 ∈ ℋ (𝑟)𝑢 with tail 𝑤 and 𝑍 ⊆ 𝐶𝐿. We
first observe that if |𝑍 | = 𝑟, then we have at most 2𝑟 · 𝑟! choices. Indeed, this means that 𝑍 = 𝐶𝐿,
so we first pick an ordering on 𝑍 (to determine the ordering of the vertices in 𝐶𝐿), and then we
pay a factor of 2 per step in the chain (as in the analysis in the previous paragraph). In total, there
are 2𝑟 · 𝑟! choices.

Next, suppose that |𝑍 | ≤ 𝑟 − 1. As before, we pay
(𝑟
𝑡

)
· 𝑡! to determine 𝑄, i.e., the locations and

ordering of 𝑍 within the (ordered) set 𝐶𝐿. Let us now consider a fixed choice of the locations and
ordering. We have two cases.

In the first case, suppose that 𝑄𝑟 = ★, i.e., the vertex of 𝐶𝐿 in the “last link” (namely, 𝑣2(𝑟−1)+1),
is not one of the locations chosen. Then, we can proceed as in the case of 𝐶𝑅, where we pay a
factor of 2 to choose a link where 𝑣2ℎ+1 is determined by 𝑄, and a factor of 6𝛿𝑛 on the other steps.
There is one exception, which is the last step of the chain. Now, because we have also fixed the
tail 𝑤, there are again only 2 choices for this step, even though 𝑄𝑟 = ★. Thus, in total, we have
paid at most 2|𝑍 |+1(6𝛿𝑛)𝑟−|𝑍 |−1 = (3𝛿𝑛)𝑟−|𝑍 | · 2𝑟 .

In the second case, suppose that 𝑄𝑟 ≠ ★, so that the vertex 𝑣2(𝑟−1)+1 is one of the locations
chosen. Let ℎ∗ denote the index of the last ★ in 𝑄, so 𝑄ℎ∗ = ★ and 𝑄ℎ ≠ ★ for all ℎ∗ < ℎ ≤ 𝑟. We
now start at the tail of the chain and work our way backwards until we reach the ℎ-th link in the
chain. In the first step, we have already fixed the tail 𝑤 and the vertex 𝑣2(𝑟−1)+1, and so because 𝐻
is a design, there are at most 2 ordered tuples (𝑣, 𝑣′, 𝑣2(𝑟−1)+1,𝑤)where {𝑣, 𝑣′, 𝑣2(𝑟−1)+1,𝑤} ∈ 𝐻, as
there is one such unordered tuple and then we can swap the locations of 𝑣 and 𝑣′. We continue
backwards along the chain in this way until we reach the location ℎ∗, so that 𝑣2(ℎ∗−1)+1 is not
determined by 𝑄 since 𝑄ℎ∗ = ★. In particular, we have completely determined 𝑢ℎ∗ , along with
the all elements after 𝑢ℎ∗ in the chain, namely (𝑣2ℎ∗+1, 𝑣2ℎ∗+2, . . . , 𝑢𝑟).

Next, we proceed from the start of the chain, again paying 2 for each non-★ entry and 6𝛿𝑛
for each ★ entry, until we reach the ℎ∗-th link. We have thus determined the chain up until (and
including) 𝑢ℎ∗−1, i.e., (𝑢0, 𝑣1, 𝑣2, . . . , 𝑢ℎ∗−1). For the final 2 vertices (𝑣2(ℎ∗−1)+1, 𝑣2(ℎ∗−1)+2), we have
at most 2 choices, because there is at most one hyperedge in 𝐻𝑢ℎ∗−1 that contains 𝑢ℎ∗ , and then we
have 2 ways to order the vertices. In total, we have paid (6𝛿𝑛)𝑟−|𝑍 |−1 · 2|𝑍 |+1 = (3𝛿𝑛)𝑟−|𝑍 |−1 · 2𝑟 , the
same as in the other case.

In total, when |𝑍 | = 𝑡 ≤ 𝑟 − 1, we have at most
(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−|𝑍 |−1 · 2𝑟 choices. □

With Claim 12.2.7 in hand, we are almost ready to compute the second moments. To begin, we
will first compute good upper bounds on the first moments E(𝑆,𝑤)[deg𝑢,𝐿(𝑆,𝑤)] and E𝑇[deg𝑢,𝑅(𝑇)].
For the remainder of the proof, we may omit the subscript 𝑢 in some places for convenience.

154

We have

1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛 − 4𝑟)𝑟 ≤ 𝑑𝑅 = E𝑇[deg𝑅(𝑇)] ≤

1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛)𝑟 ,

1
𝑛 ·

(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛 − 4𝑟)𝑟 ≤ 𝑑𝐿 = E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)] ≤ 1

𝑛 ·
(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛)𝑟 .

This is because each chain 𝐶 contributes
(𝑛−2𝑟
ℓ−𝑟

)
edges to the graph 𝐺, and we have already

computed (6𝛿𝑛 − 4𝑟)𝑟 ≤ |ℋ (𝑟)𝑢 | ≤ (6𝛿𝑛)𝑟 . We also clearly have (6𝛿𝑛 − 4𝑟)𝑟 ≥ (6𝛿𝑛)𝑟(1−𝑂(𝑟2/𝑛)),
and so we have:(

1− 𝑂(𝑟
2)

𝑛

)
1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛)𝑟 ≤ 𝑑𝑅 = E𝑇[deg𝑅(𝑇)] ≤

1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛)𝑟 , (12.3)(

1− 𝑂(𝑟
2)

𝑛

)
1

𝑛 ·
(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛)𝑟 ≤ 𝑑𝐿 = E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)] ≤ 1

𝑛 ·
(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛)𝑟 . (12.4)

Computing second moment of the right degree. We now compute the second moments. We
will begin with E𝑇[deg𝑅(𝑇)2], as this case is simpler. We have

E𝑇[deg𝑅(𝑇)2]
≤

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤′)

Pr[𝐶𝑅,𝐶′𝑅 ⊆ 𝑇] (𝑇 adjacent to edge labeled by 𝐶 implies 𝐶𝑅 ⊆ 𝑇)

=
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤′)
|𝐶𝑅∩𝐶′𝑅 |=𝑡

Pr[𝐶𝑅,𝐶′𝑅 ⊆ 𝑇]

=
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤′)
|𝐶𝑅∩𝐶′𝑅 |=𝑡

(𝑛
ℓ−(2𝑟−𝑡)

)(𝑛
ℓ

) (as 𝐶𝑅 ∪ 𝐶′𝑅 ⊆ 𝑇 and |𝐶𝑅 ∪ 𝐶′𝑅 | = 2𝑟 − 𝑡)

≤
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

(
𝑟

𝑡

)
·
(
𝑟

𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡 · 2𝑟 ·

(𝑛
ℓ−(2𝑟−𝑡)

)(𝑛
ℓ

) (by Claim 12.2.7 and
(
𝑟

𝑡

)
to pick 𝑍 ⊆ 𝐶𝑅 where 𝐶𝑅 ∩ 𝐶′𝑅 = 𝑍)

≤
𝑟∑
𝑡=0

(6𝛿𝑛)𝑟
(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡 · 2𝑟 ·

(𝑛
ℓ−(2𝑟−𝑡)

)(𝑛
ℓ

)
≤

(
1+ 𝑂(𝑟

2)
𝑛

)
𝑑2
𝑅

𝑟∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)−𝑡

(𝑛
ℓ

) (𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) (by Eq. (12.3) .

Now, we apply Fact 3.6.3 to conclude that

E𝑇[deg𝑅(𝑇)2] ≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝑅

𝑟∑
𝑡=0

(
𝑟

𝑡

)
(3𝛿𝑛)−𝑡𝑛𝑡

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

)
=

(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝑅

𝑟∑
𝑡=0

(3𝛿)−𝑡
(𝑟
𝑡

) (ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) .

155

Now, we observe that
∑𝑟
𝑡=0
(𝑟𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

= 1, as this is the probability mass function of a hypergeometric

distribution, and that 3𝛿 = 1− 1
𝑛 (as 𝐻 is a design), and so (3𝛿)−𝑡 ≤ (3𝛿)−𝑟 ≤

(
1+ 𝑂(𝑟)

𝑛

)
. Thus,

E𝑇[deg𝑅(𝑇)2] ≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝑅 ,

which gives the desired bound on the second moment.

Computing second moment of left degree. We now compute E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2]. We have

E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2] ≤
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤),𝐶′=(𝐶′
𝐿
,𝐶′
𝑅

,𝑤)
Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤] (both chains have same fixed tail 𝑤)

=
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤]

=

©­­­­«
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤]
ª®®®®¬
+

(𝑛−2𝑟
ℓ−𝑟

)
𝑛 ·

(𝑛
ℓ

) · (6𝛿𝑛)𝑟 · 𝑟!2𝑟 ,

where the last equality is because when 𝑡 = 𝑟, then 𝐶𝐿 = 𝐶′
𝐿
, and so Pr[𝐶𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤] = (

𝑛−2𝑟
ℓ−𝑟)
𝑛·(𝑛ℓ)

,

and by Claim 12.2.7, there are 𝑟!2𝑟 choices for 𝐶′.
Let us quickly handle this second term. We have by Eq. (12.4),(𝑛−2𝑟

ℓ−𝑟
)

𝑛 ·
(𝑛
ℓ

) · (6𝛿𝑛)𝑟 · 𝑟!2𝑟 ≤ (
1+ 𝑂(𝑟

2)
𝑛

)
𝑑𝐿 · 𝑟!2𝑟 .

We now compare 𝑑𝐿 and 𝑟!2𝑟 . By Eq. (12.4), we have

𝑑𝐿 ≥
(
1− 𝑂(𝑟

2)
𝑛

)
ℓ !
𝑛ℓ+1
· (𝑛 − 2𝑟)ℓ−𝑟
(ℓ − 𝑟)! · (6𝛿𝑛)

𝑟 ≥
(
1− 𝑂(𝑟

2)
𝑛
− 𝑂(𝑟ℓ)

𝑛

)
(6𝛿)𝑟 · 1

𝑛
· ℓ !
(ℓ − 𝑟)! .

Therefore,

𝑑𝐿

2𝑟𝑟!
≥

(
1− 𝑂(𝑟

2)
𝑛
− 𝑂(𝑟ℓ)

𝑛

)
(3𝛿)𝑟 · 1

𝑛
· ℓ !
(ℓ − 𝑟)!𝑟! =

(
1− 𝑂(𝑟

2)
𝑛
− 𝑂(𝑟ℓ)

𝑛

) (
1− 1

𝑛

) 𝑟
· 1
𝑛
·
(
ℓ

ℓ − 𝑟

)
=

(
1− 𝑂(𝑟ℓ)

𝑛

) (
1− 1

𝑛

) 𝑟
· 1
𝑛
·
(
ℓ

ℓ − 𝑟

)
.

As
(ℓ
ℓ−𝑟

)
= 𝜂𝑛 is the definition of 𝜂 in Lemma 12.2.6, we conclude that

𝑑𝐿

2𝑟𝑟!
≥ 𝜂

(
1− 𝑂(𝑟ℓ)

𝑛

)
,

and so the second term is 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
.

156

We now return to the main calculation. We have

E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2] ≤
©­­­­«

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤]
ª®®®®¬
+ 𝜂𝑑2

𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
+

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

(𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

) (as 𝐶𝐿 ∪ 𝐶′𝐿 ⊆ 𝑆 and |𝐶𝐿 ∪ 𝐶′𝐿 | = 2𝑟 − 𝑡)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
+

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!2𝑟(3𝛿𝑛)𝑟−𝑡−1

(𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

) (by Claim 12.2.7 and
(
𝑟

𝑡

)
to pick 𝑍 = 𝐶𝐿 ∩ 𝐶′𝐿)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
+

𝑟−1∑
𝑡=0

(6𝛿𝑛)𝑟
(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!2𝑟(3𝛿𝑛)𝑟−𝑡−1

(𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

)
≤ 𝜂𝑑2

𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
+ (6𝛿𝑛)

2𝑟

3𝛿𝑛

𝑟−1∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)−𝑡

(𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

)
≤ 𝜂𝑑2

𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
+

(
1+ 𝑂(𝑟

2)
𝑛

)
𝑑2
𝐿 · (3𝛿)

−1
𝑟−1∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)−𝑡

(𝑛
ℓ

) (𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) (by Eq. (12.4))

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
+

(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝐿 · (3𝛿)

−1
𝑟−1∑
𝑡=0

(
𝑟

𝑡

)
(3𝛿𝑛)−𝑡𝑛𝑡

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) (by Fact 3.6.3)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ)

𝑛

)
+

(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝐿 · (3𝛿)

−1
𝑟−1∑
𝑡=0

(3𝛿)−𝑡
(𝑟
𝑡

) (ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) .

Now, we have
∑𝑟
𝑡=0
(𝑟𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

= 1 as this is the probability mass function of a hypergeometric

distribution. As 3𝛿 = 1 − 1/𝑛, it follows that (3𝛿)−𝑡−1 ≤ (3𝛿)−𝑟 ≤ 1 +𝑂(𝑟/𝑛), and therefore we
conclude that E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2] ≤

(
1+ 𝑂(ℓ2)

𝑛 + 𝜂
)
𝑑2
𝐿
.

12.3 Warmup: an 𝑛 ≥ Ω̃(𝑘4) lower bound via 2-chains

In this section, we give a detailed sketch of the proof of the following theorem, which is a weaker
version of Theorem 8. Notice that this theorem already improves the prior best known 3-LCC
lower bound, established in Chapter 11, by a polynomial factor in 𝑘.
Theorem 12.3.1 (Weak version of Theorem 8). Let ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 be a linear (3, 𝛿)-LCC in
normal form with 𝛿 = 𝑂(1). Then, 𝑛 ≥ Ω̃(𝑘4).

The theorem above obtains a lower bound of 𝑛 ≳ 𝑘4 — worse than the bound of 𝑛 ≳ 𝑘5

predicted by the heuristic but still beating 𝑛 ≳ 𝑘3 from Theorem 7; we discuss the reason that we
do not match the heuristic in Remark 12.3.2.

Proof. As before, we have 3-uniform hypergraph matchings𝐻1, . . . ,𝐻𝑛 , where for any 𝑢 ∈ [𝑛] and
𝐶 ∈ 𝐻𝑢 , we have that for any 𝑏 ∈ {−1, 1}𝑘 , 𝑥 = ℒ(𝑏) satisfies 𝑥𝐶 = 𝑥𝑢 . Following Section 12.1.2,

157

we shall letℋ (2)
𝑖

denote the set of 2-chains with head 𝑖. We define the 5-XOR instance Ψ𝑏(𝑥) as

Ψ𝑏(𝑥) B
𝑘∑
𝑖=1

𝑏𝑖

∑
®𝐶=(𝑖,𝐶0,𝑤0,𝐶1,𝑤1)∈ℋ (2)𝑖

𝑥𝐶0𝑥𝐶1𝑥𝑤1 .

We note that val(Ψ𝑏) = 𝑘(3𝛿𝑛)2 for any 𝑏 ∈ {−1, 1}𝑘 , as the instance is satisfiable and has 𝑘(3𝛿𝑛)2
constraints in total. Following the strategy in Section 12.1.1, we shall use spectral refutation via
Kikuchi matrices to bound val(Ψ𝑏)with high probability for a random 𝑏 ∈ {−1, 1}𝑘 .

12.3.1 Step 1: the Cauchy–Schwarz trick

As we have observed, the basic Kikuchi matrices in Definition 12.1.2 are only defined for con-
straints of even arity, but the constraints inℋ (2)

𝑖
have arity 5, i.e., odd arity. The standard way to

handle odd arity XOR instances is to use the “Cauchy–Schwarz trick”, which produces even arity
instances as follows. Let ®𝐶 ∈ ℋ (2)

𝑖
and ®𝐶′ ∈ ℋ (2)

𝑗
for 𝑖 ≠ 𝑗 ∈ [𝑘] be two constraints in our initial

5-XOR instance, where ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) and ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1)where 𝑤1 = 𝑤′1, i.e., the
last element of both chains is the same. From this pair, we can “cancel” 𝑤1 = 𝑤′1, producing
the derived constraint 𝑥𝐶0𝑥𝐶1𝑥𝐶′0𝑥𝐶

′
1
= 𝑏𝑖𝑏 𝑗 , which has arity 8. We do this for all pairs of chains

with the same “tail” vertex 𝑤. We note that this process produces at least (𝑘(3𝛿𝑛)2)2/𝑛 ∼ 𝑘2𝑛3

constraints.
We now define the following “Cauchy–Schwarzed instance” polynomial:

𝑓𝑏(𝑥) =
∑
𝑖≠𝑗∈[𝑘]

𝑏𝑖𝑏 𝑗

∑
𝑤∈[𝑛]

∑
®𝐶∈ℋ (2)

𝑖
, ®𝐶′∈ℋ (2)

𝑗
:𝑤1=𝑤

′
1=𝑤

𝑥𝐶0𝑥𝐶1𝑥𝐶′0𝑥𝐶
′
1

.

The phrase “Cauchy–Schwarz trick” refers to the fact that one can show 𝑘2𝑛4 ∼ Ψ𝑏(𝑥)2 ≤
𝑛 · 𝑓𝑏(𝑥) + 𝑜(𝑘2𝑛4) via a simple application of the Cauchy–Schwarz inequality and a bound on the
“diagonal terms” where 𝑖 = 𝑗. This reduces the task to bounding the cross-term polynomial 𝑓𝑏 .

We now observe that the “right-hand sides” of the constraints in 𝑓𝑏 are no longer independent,
as they are of the form 𝑏𝑖𝑏 𝑗 for 𝑖 ≠ 𝑗 ∈ [𝑘], and this will cause an issue “downstream” when
we apply matrix concentration bounds, as the matrices will not be independent. To recover
independence, we consider the polynomial 𝑓𝑀,𝑏(𝑥) defined for a (directed) matching 𝑀 on [𝑘]:

𝑓𝑀,𝑏(𝑥) =
∑
(𝑖,𝑗)∈𝑀

𝑏𝑖𝑏 𝑗

∑
𝑤∈[𝑛]

∑
®𝐶∈ℋ (2)

𝑖
, ®𝐶′∈ℋ (2)

𝑗
:𝑤1=𝑤

′
1=𝑤

𝑥𝐶0𝑥𝐶1𝑥𝐶′0𝑥𝐶
′
1

.

Because we now sum over a matching, we have that 𝑏𝑖𝑏 𝑗 and 𝑏𝑖′𝑏 𝑗′ are independent for
different directed edges (𝑖, 𝑗) and (𝑖′, 𝑗′) in 𝑀. And, we can easily relate 𝑓𝑏 and 𝑓𝑀,𝑏 , as 𝑓𝑏(𝑥) =
2(𝑘 − 1)E𝑀 𝑓𝑀,𝑏(𝑥)when 𝑘 is even, and 𝑓𝑏(𝑥) = 2𝑘E𝑀 𝑓𝑀,𝑏(𝑥)when 𝑘 is odd, where the expectation
is over a maximum matching 𝑀. This is because the chance that 𝑀 contains a directed edge (𝑖, 𝑗)
is 1

2(𝑘−1) if 𝑘 is even and 1
2𝑘 if 𝑘 is odd. In particular, there exists a maximum matching 𝑀 such

that val(𝑓𝑀,𝑏) ≥ 2
𝑘

val(𝑓𝑏) ∼ 𝑘𝑛3.

Remark 12.3.2. Restricting to a matching 𝑀 loses a factor of 𝑘 in the number of constraints. This
leads to a factor 𝑘 “loss” in the density of the corresponding Kikuchi matrix and is the main reason

158

why we obtain weaker bound of 𝑛 ≥ 𝑂̃(𝑘4) instead of 𝑘5 suggested by our heuristic calculation
in Section 12.1.2. A better bound could be obtained by instead following the setup in Chapter 11,
where we split [𝑘] randomly into a left and right set 𝐿 and 𝑅 and only consider constraints where
𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅 (thereby losing only ∼ 1/2 of the constraints instead of a factor 𝑘). This careful
setup is necessary in Chapter 11 to achieve our goal of obtaining a cubic (as opposed to the known
quadratic) bound, but this makes the “row pruning” step (i.e., arguing approximate regularity of
Kikuchi graphs after removing a negligible fraction of constraints) significantly more challenging.
In our case, the effect of this loss on the final lower bound diminishes as the length of the chain 𝑟
grows and when 𝑟 ∼ log 𝑛, disappears asymptotically, and so we pick a matching 𝑀 to make the
row pruning easier.

12.3.2 Step 2: spectral refutation via Kikuchi matrices

Let us now bound val(𝑓𝑀,𝑏) (with high probability over 𝑏 ∈ {−1, 1}𝑘) for any maximum matching
𝑀. We introduce our Kikuchi matrices:

Definition 12.3.3. For 𝑖 ≠ 𝑗 ∈ [𝑘] and ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) and ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) with

𝑤1 = 𝑤′1, we define the matrix 𝐴(
®𝐶, ®𝐶′)
𝑖,𝑗 as follows. The rows/columns of the matrix 𝐴(

®𝐶, ®𝐶′)
𝑖,𝑗 are

indexed by a 4-tuple of sets (𝑆0, 𝑆1, 𝑆′0, 𝑆′1), each in
([𝑛]
ℓ

)
, and the ((𝑆0, 𝑆1, 𝑆′0, 𝑆′1), (𝑇0,𝑇1,𝑇′0 ,𝑇′1))-th

entry is 1 if 𝑆0 ⊕ 𝑇0 = 𝐶0, 𝑆1 ⊕ 𝑇1 = 𝐶1, 𝑆′0 ⊕ 𝑇′0 = 𝐶′0, 𝑆′1 ⊕ 𝑇
′
1 = 𝐶′1, and is 0 otherwise.

We let 𝐴𝑖,𝑗 =
∑
®𝐶∈ℋ (2)

𝑖
, ®𝐶′∈ℋ (2)

𝑗
:𝑤1=𝑤

′
1
𝐴
(®𝐶, ®𝐶′)
𝑖,𝑗 and 𝐴 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 .

We now observe that each matrix 𝐴(
®𝐶, ®𝐶′)
𝑖,𝑗 has exactly 𝐷4 nonzero entries, where 𝐷 = 2 ·

(𝑛−2
ℓ−1

)
,

and the matrix has 𝑁4 rows/columns, where 𝑁 =
(𝑛
ℓ

)
. We note that 𝐷/𝑁 ∼ ℓ/𝑛, and so the

average number of nonzero entries per row (or column), i.e., the density, is (𝐷/𝑁)4 ∼ (ℓ/𝑛)4 =

(ℓ/𝑛)𝑞/2, as the arity of the constraints is 8.
We also observe that for any 𝑥 ∈ {−1, 1}𝑛 , 𝐷4 𝑓𝑀,𝑏(𝑥) = 𝑥′⊤𝐴𝑥′, where 𝑥′ is the vector with

(𝑆0, 𝑆1, 𝑆′0, 𝑆′1)-th entry equal to
∏

𝑣∈𝑆0
𝑥𝑣

∏
𝑣∈𝑆1

𝑥𝑣
∏

𝑣∈𝑆′0 𝑥𝑣
∏

𝑣∈𝑆′1 𝑥𝑣 . We thus have that

𝑘𝑛3 ·𝐷4 ≤ 𝐷4 · val(𝑓𝑀,𝑏) ≤ ∥𝐴∥∞→1 ≤ 𝑁4∥𝐴∥2 .

For any 𝑖 ≠ 𝑗, the matrix 𝐴𝑖,𝑗 has density ∼ 𝑚𝑖,𝑗(𝐷/𝑁)4 ∼ (ℓ/𝑛)4, where 𝑚𝑖,𝑗 is the number of the
constraints in 𝑓𝑏 with right-hand side 𝑏𝑖𝑏 𝑗 . Let us now argue that each𝑚𝑖,𝑗 is at most𝑂(𝑛3). Indeed,
𝑚𝑖,𝑗 is the number of pairs of 2-chains (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖 and (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ

(2)
𝑗

where

𝑤1 = 𝑤′1. To show that 𝑚𝑖,𝑗 ≤ 𝑂(𝑛3), we pick 𝑤0,𝑤1 and 𝑤′0, for a total of 𝑛3 choices, and observe
that this completely determines both chains. Indeed, because 𝐻𝑖 is a matching, there is at most
one constraint 𝐶 in 𝐻𝑖 that contains 𝑤0, and then 𝐶0 must be 𝐶 \ {𝑤}. This similarly shows that
we have at most one choice of 𝐶1 and also 𝐶′0. Finally, because 𝑤′1 = 𝑤1, and we know 𝑤1, we
thus know 𝑤′1 as well, which by similar reasoning gives us at most one choice for 𝐶′1, and we
have determined the entire chain. We note that we have a lower bound of ∼ 𝑘𝑛3 on the total
number of constraints

∑
(𝑖,𝑗)∈𝑀 𝑚𝑖,𝑗 , so this calculation also shows that no 𝑚𝑖,𝑗 can be much larger

than the average.
Returning to the density calculation, we have shown that 𝐴𝑖,𝑗 has density at most 𝑛3(ℓ/𝑛)4 =

ℓ 4/𝑛. Again, following the blueprint in Section 12.1.1, we will set ℓ = 𝑛1/4 · polylog(𝑛), and we

159

want to show that the matrices 𝐴𝑖,𝑗 satisfy the approximate regularity condition, i.e., the number
of rows/columns with more than Δ = ℓ 4 · polylog(𝑛)/𝑛 nonzero entries is at most 𝑁4/poly(𝑛).
Let us finish the proof, assuming that this holds.

Proof assuming approximate regularity. Let ℬ denote the set of rows/columns that are “bad”
for some pair (𝑖, 𝑗), i.e., the matrix 𝐴𝑖,𝑗 has more than Δ nonzero entries in that row. Let 𝐵𝑖,𝑗 be
the matrix where the rows and columns in ℬ have been all set to 0. Let 𝐵 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐵𝑖,𝑗 . We

have that 𝐵 is the sum of mean 0 independent matrices, each with spectral norm ∥𝐵𝑖,𝑗 ∥2 ≤ Δ.
Therefore, by matrix Khintchine (Fact 3.4.2), we have that with high probability over 𝑏, ∥𝐵∥2 ≤
𝑂(Δ

√
𝑘 log(𝑁4)) = 𝑂(Δ

√
𝑘ℓ log 𝑛).

Now, we observe that ∥𝐴 − 𝐵∥∞→1 ≤ 𝑜(𝑁). This is because the number of nonzero entries that
we have removed from 𝐴 to produce 𝐵 is at most 𝑘 · 𝑛3 · 𝑁4/poly(𝑛) = 𝑜(𝑁4) (there are 𝑘 edges
(𝑖, 𝑗) in the matching 𝑀, each has 𝑚𝑖,𝑗 ≤ 𝑛3 constraints, and each row of 𝐴𝑖,𝑗 has at most 𝑚𝑖,𝑗 ≤ 𝑛3

nonzero entries) provided that the poly(𝑛) factor is large enough. We thus conclude that

𝑘𝑛3 ·𝐷4 ≤ 𝐷4 · val(𝑓𝑀,𝑏) ≤ ∥𝐴 − 𝐵∥∞→1 +𝑁4∥𝐵∥2 ≤ 𝑜(𝑁4) +𝑁4𝑂(Δ
√
𝑘ℓ log 𝑛) .

Substituting the value for Δ and rearranging, we conclude that 𝑘 ≤ ℓ · polylog(𝑛) ≤ 𝑂̃(𝑛1/4).
We remark that Sections 12.3.1 and 12.3.2 are fairly mechanical, and they justify the use of

the heuristic calculation. The place where we had “freedom” is in the choice of constraints to
use in the initial XOR instance, which we chose to be the 2-chainsℋ (2)

𝑖
. It thus remains to bound

the number of bad rows ℬ. This “row pruning” step is key to converting the heuristic into a full
proof.

12.3.3 Step 3: row pruning, the key technical step

We want to understand if, after dropping a 1/poly(𝑛) fraction of the rows, every Kikuchi graph
𝐴𝑖,𝑗 satisfies approximate regularity. This is equivalent to showing that for every matrix 𝐴𝑖,𝑗 , with
probability at least 1− 1/poly(𝑛) a uniformly random row (𝑆0, 𝑆1, 𝑆′0, 𝑆′1), has at most Δ nonzero
entries in 𝐴𝑖,𝑗 for Δ = ℓ 4 · polylog(𝑛)/𝑛 = Δ𝑎𝑣𝑔 polylog(𝑛).
The heavy pair degree. We now make a key observation. Whether the above approximate
regularity property holds for a given collection of matchings 𝐻1,𝐻2, . . . ,𝐻𝑛 is governed by
a single parameter that we call the heavy pair degree 𝑑. This is the maximum, over all pairs
{𝑣, 𝑣′} ⊆ [𝑛], of the number of hyperedges across the 𝐻𝑖 ’s that contain {𝑣, 𝑣′}. We will prove that
if 𝑑 is small enough then approximate regularity holds for every 𝐴𝑖,𝑗 after dropping a 1/poly(𝑛)-
fraction of rows. When 𝑑 is large, this property will not hold for the 𝐴𝑖,𝑗’s from Definition 12.3.3.
Instead, we will define a different collection of Kikuchi matrices that have high density and for
which row pruning succeeds.

Lemma 12.3.4 (Row pruning for 2-chains with no heavy pairs). Let 𝐻1, . . . ,𝐻𝑛 be 3-uniform
hypergraph matchings of size 𝛿𝑛, and let 𝑑 be the maximum, over all pairs {𝑣, 𝑣′} of vertices, of the number
of pairs (𝑢,𝐶) with 𝑢 ∈ [𝑛] and 𝐶 ∈ 𝐻𝑢 where {𝑣, 𝑣′} ⊆ 𝐶. Fix 𝑖 ≠ 𝑗 ∈ [𝑘], and let 𝐴𝑖,𝑗 be the matrix
defined in Definition 12.3.3 at level ℓ ∈ N.

Suppose that 𝑑 ≤ ℓ 2. Then, the number of rows (𝑆0, 𝑆1, 𝑆′0, 𝑆′1) of 𝐴𝑖,𝑗 with more than Δ = ℓ 4 ·
polylog(𝑛)/𝑛 nonzero entries is at most 𝑁4/poly(𝑛).

160

We note that if the matchings 𝐻1, . . . ,𝐻𝑛 are random, then we have 𝑑 ≤ polylog(𝑛) with high
probability, and so random matchings satisfy the “small heavy-pair degree” assumption with
high probability. We can thus think of 𝑑 ≤ polylog(𝑛) as a pseudorandom property of a collection
𝐻1, . . . ,𝐻𝑛 of matchings. We now sketch a proof of Lemma 12.3.4.

The degree polynomial and its partial derivatives. As the first step in the proof of Lemma 12.3.4,
we define a degree 4 polynomial Deg𝑖,𝑗 : {0, 1}4𝑛 → N, where we think of the 4𝑛 variables as
split into 4 groups of 𝑛 variables 𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1), which are indicator variables of the 4 sets
𝑆0, 𝑆1, 𝑆′0, 𝑆′1, respectively. This polynomial Deg𝑖,𝑗(𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1)) upper bounds the number of
nonzero entries in the (𝑆0, 𝑆1, 𝑆′0, 𝑆′1)-th row in the matrix 𝐴𝑖,𝑗 in Definition 12.3.3.

Formally, let 𝒯𝑖,𝑗 denote the (multi)-set of 4-tuples (𝑢0, 𝑢1, 𝑣0, 𝑣1) such that there exists ®𝐶 =

(𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖 and ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ
(2)
𝑗

with 𝑤1 = 𝑤′1 such that 𝑢0 ∈ 𝐶0, 𝑢1 ∈
𝐶1, 𝑣0 ∈ 𝐶′0, 𝑣1 ∈ 𝐶′1; if there are multiple such pairs (®𝐶, ®𝐶′) that produce the same (𝑢0, 𝑢1, 𝑣0, 𝑣1),
then we add this tuple multiple times. Then, we set

Deg𝑖,𝑗(𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1)) B
∑

(𝑢0,𝑢1,𝑣0,𝑣1)∈𝒯𝑖,𝑗

𝑠
(0)
𝑢0 𝑠
(1)
𝑢1 𝑠
′(0)
𝑣0 𝑠

′(1)
𝑣1 .

Note that Deg𝑖,𝑗 is a polynomial with non-negative coefficients. We are interested in the prob-
ability that Deg𝑖,𝑗 , on uniform draws of 4-tuples of ℓ -size sets, takes a value that deviates from
its expectation 𝜇 by some multiplicative factor. It is not too difficult to show that we can pass
on to independent 𝑝-biased product distribution on {0, 1}4𝑛 for 𝑝 ∼ ℓ/𝑛 without much loss. This
is helpful because the tail behavior of low-degree polynomials with non-negative coefficients
on product distributions is determined by a bound on its expected partial derivatives. Namely,
variants of the Kim-Vu inequality (see Fact 3.4.3) show the following: if the expectation of every
partial derivative of Deg𝑖,𝑗 is at most 𝜇, then Deg𝑖,𝑗(𝑆0, 𝑆1, 𝑆′0, 𝑆′1) ≤ 𝑂(𝜇 log 𝑛) with probability at least
1− 1/poly(𝑛).

Let us now examine the expected partial derivatives of Deg𝑖,𝑗(𝑠). We start by introducing
notation to refer to them. Let 𝑍 = (𝑧0, 𝑧1, 𝑧′0, 𝑧′1) ∈ ([𝑛] ∪ {★})4 be an ordered tuple of length 4,
with entries either in 𝑛 or set to ★, which we think of as an “unfixed” value. Then, 𝑍 encodes
partial derivatives with respect to any subset of variables that use at most one variable in each
of the groups 𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1). All other partial derivatives of Deg𝑖,𝑗 are 0 since Deg𝑖,𝑗 has
degree 1 in each of the 4 groups of variables (i.e., Deg𝑖,𝑗 is 4-partite). We know that E[Deg𝑖,𝑗(𝑠)] =
𝜇(★,★,★,★) ≤ 24(ℓ/𝑛)4 · 𝑛3 = 𝑂(1) · ℓ 4/𝑛; the factor of 24 comes from the fact that each pair (®𝐶, ®𝐶′)
adds 24 different tuples to 𝒯𝑖,𝑗 . Now, Fact 3.4.3 implies that the chance that Deg𝑖,𝑗 takes a value
larger than 𝜇 · polylog(𝑛) is at most 1/poly(𝑛) if 𝜇𝑍 ≤ 𝜇 for all 𝑍.

Computing expected partial derivatives. To help bound the expected partial derivatives 𝜇𝑍 , let
us relate these parameters to combinatorial quantities of the hypergraphs 𝐻1,𝐻2, . . . ,𝐻𝑛 . Notice
that when we take partial derivatives with respect to some 𝑍, the only monomials that “survive”
are ones that “contain” 𝑍, and furthermore the expectation of the partial derivative is simply
(ℓ/𝑛)# of ★ entries in 𝑍 times the number of such monomials. Formally, let deg𝑖,𝑗(𝑍) be the number

of pairs (®𝐶, ®𝐶′) ∈ ℋ (2)
𝑖
×ℋ (2)

𝑗
where 𝑤1 = 𝑤′1 and 𝑧0 ∈ 𝐶0, 𝑧1 ∈ 𝐶1, 𝑧′0 ∈ 𝐶′0, 𝑧′1 ∈ 𝐶

′
1, where for the

symbol ★, we say that ★ ∈ 𝐶 always holds — we say that such a pair (®𝐶, ®𝐶′) contains 𝑍. Then,
the expected partial derivative at 𝑍 is 𝜇𝑍 = 24−|𝑍 |(ℓ/𝑛)4−|𝑍 | deg𝑖,𝑗(𝑍), where |𝑍 | is the number

161

of non-★ entries in 𝑍.8 For example, 𝑍 = (★,★,★,★) is contained in all such pairs of 2-chains,
and so deg𝑖,𝑗(★,★,★,★) = 𝑚𝑖,𝑗 ≤ 𝑂(𝑛3) and 𝜇𝑍 = 𝜇 = 16(ℓ/𝑛)4𝑚𝑖,𝑗 . Let us use the shorthand
𝜇𝑡 = max𝑍:|𝑍 |=𝑡 𝜇𝑍.

Let 𝑍 be an arbitrary 4-tuple with at least one non-★ entry. As explained above, estimating
𝜇𝑍 is, up to scaling, equivalent to counting deg𝑖,𝑗(𝑍), the number of pairs (®𝐶, ®𝐶′) that contain 𝑍.

We next observe that if 𝑍 has no ★ entries, then the number of 2-chains (®𝐶, ®𝐶′) containing 𝑍 is an
absolute constant. This is because there is at most one constraint 𝐶0 ∪ {𝑤0} that contains 𝑧0 in 𝐻𝑖 .
Given this constraint, there are 2 choices for 𝑤0, as 𝑤0 ∈ 𝐶0 ∪ {𝑤0} \ {𝑧0}. Given 𝑤0, there is at
most one constraint 𝐶1 ∪ {𝑤1} in 𝐻1 that contains 𝑧1, and then at most 2 choices for 𝑤1. We can
similarly use the knowledge of (𝑧′0, 𝑧′1) to bound the number of choices for 𝐶′0,𝐶′1. All in all, we
have at most 16 = 𝑂(1) choices for the pair (®𝐶, ®𝐶′) given 𝑍 with no ★ entries. This immediately
shows that for 𝑍 such that |𝑍 | = 4, 𝜇𝑍 ≤ 𝑂(1) ≤ 𝜇.

Let us now deal with 𝑍’s with at least one ★ entry by breaking up into cases depending on |𝑍 |.
We will view the counting of deg𝑖,𝑗(𝑍) as a procedure that makes a bounded number of choices

to decode the pair (®𝐶, ®𝐶′).
Let us deal with the case when |𝑍 | = 1. By swapping the roles of 𝑖 and 𝑗 if needed, without

loss of generality we can assume that one of 𝑧0 or 𝑧1 is non-★, and all other entries in 𝑍 are ★.
There are at most 𝑛 choices for 𝑧0 (if 𝑧1 ≠ ★) or 𝑧1 (if 𝑧0 ≠ ★). We now have 𝑛 choices for 𝑧′0, which
again determines 𝐶′0 and 𝑤′0 up to 2 choices. We now observe that (𝐶′1,𝑤′1) is uniquely determined.
Indeed, this is because we know 𝑤′1, as it equals 𝑤1 (the two 2-chains must have matching tails),
and therefore this determines the hyperedge 𝐶′1 ∪ {𝑤

′
1} ∈ 𝐻𝑤′0

uniquely. We have thus shown that
for 𝑍 with |𝑍 | = 1, we have deg𝑖,𝑗(𝑍) ≤ 𝑂(𝑛2), and so 𝜇𝑍 ≤ (ℓ/𝑛)3 ·𝑂(𝑛2) ≤ 𝑂(ℓ 3/𝑛) ≤ 𝑂(ℓ 4/𝑛).

Let us now handle the case when |𝑍 | = 2. Similar arguments as above show that Deg𝑖,𝑗(𝑍) ≤
𝑂(𝑛) holds for all 𝑍 except when the non-★ entries of 𝑍 look like 𝑍 = (★, 𝑧1,★, 𝑧′1)where 𝑧1, 𝑧′1 ≠ ★,
and thus 𝜇𝑍 ≤ (ℓ/𝑛)2 ·𝑂(𝑛) ≤ 𝑂(ℓ 4/𝑛) for these 𝑍’s. To count deg𝑖,𝑗(𝑍) for 𝑍 = (★, 𝑧1,★, 𝑧′1)where
𝑧1, 𝑧′1 ≠ ★, we pay a factor of 𝑛 to determine 𝑧0, and then this determines (up to an 𝑂(1) factor)
𝐶0 and 𝐶1 as well. Now, we know 𝑤′1 (because it is equal to 𝑤1) and 𝑧′1 which is in 𝐶′1. Thus,
the hyperedge 𝐶′1 ∪ {𝑤

′
1} must contain the pair {𝑧′1,𝑤′1}. Using the heavy pair degree, there are

at most 𝑑 choices for the pair (𝑤′0,𝐶′1 ∪ {𝑤
′
1}), and after learning 𝑤′0 we also know 𝐶′0. Hence,

we have paid a total of 𝑂(𝑛𝑑) choices, which implies that 𝜇2 ≤ (ℓ/𝑛)2 ·𝑂(𝑛𝑑) = 𝑂(ℓ 2𝑑/𝑛). For
|𝑍 | = 3, a similar issue arises and gives a bound of 𝜇3 ≤ 𝑂(ℓ 𝑑/𝑛).

We can now finish the proof of Lemma 12.3.4.

Proof of Lemma 12.3.4. Notice that if 𝑑 ≤ ℓ 2 then 𝜇𝑡 ≤ 𝜇 for every 𝑡. Applying Fact 3.4.3 now
yields that the probability that Deg𝑖,𝑗 > 𝜇 · polylog(𝑛) is at most 1/poly(𝑛). Taking a union bound
on 𝑘 < 𝑛 yields that the fraction of bad rows |ℬ|/𝑁 is at most 1/poly(𝑛), as desired. □

12.3.4 Step 4: hypergraph decomposition to handle large heavy pair degree

We will handle the case when the heavy pair degree is high by designing a different Kikuchi
matrix. To do this, we will construct the cross term polynomial (obtained by applying the
Cauchy–Schwarz inequality) slightly differently. Our current Kikuchi matrix is built from the

8The extra factor of 24−|𝑍 | comes from the fact that for every 𝑍 and pair (®𝐶, ®𝐶′) containing 𝑍, the pair (®𝐶, ®𝐶′)
produces 24−|𝑍 | tuples (𝑢0, 𝑢1, 𝑣0, 𝑣1) in 𝒯𝑖,𝑗 that contain 𝑍. In this case, this is just a constant factor, so we can ignore it.

162

XOR instance obtained by pairing up chains that agree on their tails and thus “cancel” (i.e., square
out) one variable. When the heavy pair degree is large, we will build chains by cancelling a pair
of variables instead. The number of pairs of chains that agree in a pair of variables instead of just
their tails, i.e., the new number of “Cauchy–Schwarzed” constraints, will of course be smaller
than before. On the other hand, since we cancel a pair of variables instead of just the tail, the arity
of the resulting XOR instance will be smaller: 6 instead of 8. The punchline is that the density vs.
arity trade-off (i.e., our key heuristic discussed in Section 12.1.2) breaks in our favor, provided that
there are many “heavy pairs”.

To formally implement this argument, we decompose the set of chains by “labeling” each chain
by the heavy pair contained within, if one exists. Intuitively, this is the pair of variables in the
chain that we intend to cancel in the Cauchy–Schwarz trick. If the chain does not contain any
heavy pair, then we label it by its tail variable 𝑤, which we will cancel in the Cauchy–Schwarz
trick as done before in Section 12.3.1. We letℋ (𝑄) denote the set of chains labeled by the heavy
pair 𝑄, andℋ (1,𝑤) denote the set of chains labeled by the tail variable 𝑤.

Formally, our hypergraph decomposition is as follows. Given the collectionℋ (1) = {(𝑢,𝐶,𝑤) :
𝑢 ∈ [𝑛],𝐶 ∪ {𝑤} ∈ 𝐻𝑢} of 1-chains, we perform the following greedy algorithm: if there exists
an ordered pair 𝑄 = (𝑄1,𝑄2) such that there are more than 𝑑 B ℓ 2 1-chains (𝑢,𝐶,𝑤) in ℋ (1)
with 𝑄1 ∈ 𝐶 and 𝑄2 = 𝑤, i.e., 𝑄 is a heavy pair contained in the chain (𝑢,𝐶,𝑤), then we choose
an arbitrary set of exactly 𝑑 such 1-chains, remove them from ℋ (1), and place them in a new
“partition”ℋ (1,𝑄).9 Finally, if there is no such heavy pair 𝑄, then we create partitionsℋ (1,𝑤) for
each 𝑤 ∈ [𝑛], and add all remaining 1-chains with “tail 𝑤”, i.e., 1-chains of the form (𝑢,𝐶,𝑤), to
ℋ (1,𝑤).

This decomposition has the following properties:

(1) ℋ (1) = (∪𝑤ℋ (1,𝑤))⋃(∪𝑄ℋ (1,𝑄)) is a disjoint partition ofℋ (1);
(2) For each 𝑄 = (𝑄1,𝑄2),ℋ (1,𝑄) is a set of 1-chains that “contain” the tuple 𝑄, i.e., each (𝑢,𝐶,𝑤)

inℋ (1,𝑄) has 𝑤 = 𝑄2 and 𝐶 ∋ 𝑄1;
(3) For each 𝑄, |ℋ (1,𝑄) | = 𝑑;
(4) For each 𝑤 ∈ [𝑛], there is only one partitionℋ (1,𝑤);
(5) The total number of partitionsℋ (1,𝑄) is at most 𝑂(𝑛2/𝑑), as there are at most 𝑂(𝑛2) 1-chains,

and eachℋ (1,𝑄) has exactly 𝑑 1-chains.

We stress that the decomposition is only on 1-chains, not the set of 2-chains ∪𝑖∈[𝑘]ℋ (2)𝑖 that are the

constraints in the XOR instance! At a high level, this is because, e.g., the 2-chains inℋ (2)
𝑖

(orℋ (2)
𝑗

)
are formed by taking a 1-chain and prepending it with a hyperedge in 𝐻𝑖 (or 𝐻𝑗), and so “first link”
in each 2-chain is specific to the choice of 𝑖 ∈ [𝑘], but the “second link” is an arbitrary 1-chain,
and so it is “shared” across theℋ (2)

𝑖
’s in some informal sense.10 This property turns out to be

important when it comes time to bound the expected partial derivatives.

9There may be more than 𝑑 such chains, in which case we may produce multiple different partitions that have the
same pair 𝑄. Thus, the 𝑄’s form a multiset, and we will use 𝑄 to refer to a particular partitionℋ (1,𝑄). In Section 12.5,
we handle this issue by reweighting the chains instead.

10For this reason, in Section 12.5, the length of the chains defining the XOR constraints is 𝑟 + 1, but we only
decompose length 𝑟 chains.

163

Now, we define ℋ (2,𝑄)
𝑖

to be the set of 2-chains (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) where the “second link”
(𝑤0,𝐶1,𝑤1) is inℋ (1,𝑄). Using the decomposition, we now define the following polynomials:

Ψ𝑏(𝑥) B
𝑘∑
𝑖=1

𝑏𝑖

∑
®𝐶=(𝑖,𝐶0,𝑤0,𝐶1,𝑤1)∈ℋ (2)𝑖

𝑥𝐶0𝑥𝐶1𝑥𝑤1 ,

Ψ𝑖,𝑤(𝑥) B
∑

𝐶0,𝑤0 :𝐶0∪{𝑤0}∈𝐻𝑖

∑
(𝑤0,𝐶1,𝑤1)∈ℋ (1,𝑤)

𝑥𝐶0𝑥𝐶1 ,

Ψ𝑖,𝑄(𝑥) B
∑

(𝑖,𝐶0,𝑤0,𝐶1,𝑤1)∈ℋ (2,𝑄)
𝑖

𝑥𝐶0𝑥𝐶1\𝑄1 ,

Ψ
(0)
𝑏
(𝑥, 𝑦) B

𝑘∑
𝑖=1

∑
𝑤∈[𝑛]

𝑏𝑖𝑦𝑤Ψ𝑖,𝑤(𝑥) ,

Ψ
(1)
𝑏
(𝑥, 𝑦) B

𝑘∑
𝑖=1

∑
𝑄

𝑏𝑖𝑦𝑄Ψ𝑖,𝑄(𝑥) ,

where above 𝑦𝑄 and 𝑦𝑤 are new variables. By definition, if we set 𝑦𝑤 = 𝑥𝑤 and 𝑦𝑄 = 𝑥𝑄1𝑥𝑄2 ,
then we have that Ψ𝑏(𝑥) = Ψ(0)(𝑥, 𝑦) +Ψ(1)(𝑥, 𝑦). Indeed, all we have done is partitioned the
constraints into these two polynomials and removed the “𝑥𝑄1𝑥𝑄2 term” from each monomial,
replacing it with the new variable 𝑦𝑄 .

We now refute the two polynomials Ψ(0)(𝑥, 𝑦) and Ψ(1)(𝑥, 𝑦) separately using the machinery
in Sections 12.3.1 to 12.3.3. In fact, Sections 12.3.1 to 12.3.3 immediately show that we can
successfully refute the polynomial Ψ(0)(𝑥, 𝑦). Indeed, the only issue that we encountered was in
Section 12.3.3, where the row pruning failed if there was a pair {𝑣, 𝑣′} that appeared in more than
ℓ 2 1-chains in ℋ (1). However, this cannot happen, as otherwise our decomposition algorithm
would not have terminated.

It thus remains to handle the second polynomial, Ψ(1)(𝑥, 𝑦). Applying the “Cauchy–Schwarz
trick” of Section 12.3.1, we can reduce this to the case of bounding the polynomial:

𝑓𝑀,𝑏(𝑥) =
∑
(𝑖,𝑗)∈𝑀

𝑏𝑖𝑏 𝑗

∑
𝑄

Ψ𝑖,𝑄(𝑥)Ψ𝑗,𝑄(𝑥) ,

where 𝑀 is a maximum matching, as before. Notice that the constraints in 𝑓𝑀,𝑏 have arity 6 (see
Fig. 12.2). Following the blueprint of Section 12.3.2, we define the following Kikuchi matrices.

Definition 12.3.5. For 𝑖 ≠ 𝑗 ∈ [𝑘], 𝑄, and ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2,𝑄)
𝑖

, ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈
ℋ (2,𝑄)
𝑗

, we define the matrix 𝐴(
®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 as follows. The matrix 𝐴(

®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 is indexed by a 3-tuple of

sets (𝑆0,𝑅, 𝑆′0), each in
([𝑛]
ℓ

)
, and the (𝑆0,𝑅, 𝑆′0), (𝑇0,𝑊 ,𝑇′0)-th entry is 1 if 𝑆0 ⊕𝑇0 = 𝐶0, 𝑆′0 ⊕𝑇′0 = 𝐶′0,

and 𝑅 = {𝑢} ∪𝑈 , 𝑊 = {𝑣} ∪𝑉 , where 𝐶1 = {𝑢,𝑄1}, 𝐶′1 = {𝑣,𝑄1}, and 𝑈 ⊆ [𝑛] is a set of size
ℓ − 1 where 𝑢, 𝑣 ∉ 𝑈 .

We let 𝐴𝑖,𝑗 =
∑
𝑄

∑
®𝐶∈ℋ (2,𝑄)

𝑖
, ®𝐶′∈ℋ (2,𝑄)

𝑗

𝐴
(®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 and 𝐴 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 .

Notice that for ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖,𝑄,𝑝 and ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ
(2)
𝑗,𝑄,𝑝 , the split of

the elements in the constraint across the row (𝑆0,𝑅, 𝑆′0) and the column (𝑇0,𝑊 ,𝑇′0) is asymmetric:
see Fig. 12.2.

164

bi w0 Q1 Q2 bjw′ 0

S0∈

T0∈

S′ 0∈

T′ 0∈

R

∈

W

∈

Figure 12.2: A pair of 2-chains ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2,𝑄)
𝑖

, ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ
(2,𝑄)
𝑗

.

The blue vertices appear in the sets (𝑆0,𝑅, 𝑆′0) for the rows of the matrix 𝐴(
®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 , and the green

vertices appear in the columns. The orange vertices are the elements of 𝑄 that are canceled via
the Cauchy–Schwarz operation. The purple vertices are the independent random bits that we
“disconnect” from the chain and use for the right-hand sides.

Applying the same machinery in Section 12.3.2 to the matrices in Definition 12.3.5 will yield
the correct lower bound provided that the row pruning step succeeds. It thus remains to bound
the number of rows in 𝐴𝑖,𝑗 for a fixed pair (𝑖, 𝑗)with a number of nonzero entries exceeding the
average by a polylog(𝑛) factor.

We now apply Fact 3.4.3. As before, we define a similar degree polynomial Deg𝑖,𝑗 , and the tail
bound boils down to computing the expected partial derivatives 𝜇𝑍 , where 𝑍 = (𝑧0, 𝑟, 𝑧′0) ∈ ([𝑛] ∪
{★})3 is now a tuple of length 3, and 𝜇𝑍 = (ℓ/𝑛)3−|𝑍 | deg𝑖,𝑗(𝑍), as the constraints have arity 3. We

observe that deg𝑖,𝑗(★,★,★) ≤ 𝑂(𝑛2𝑑), as we have 𝑂(𝑛2) choices for ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖
(which then determines 𝑄), followed by 𝑂(𝑑) choices for (𝑤′0,𝐶′1,𝑤′1) (because this must be in
ℋ (1,𝑄), which has size 𝑑), and then a unique choice for 𝐶0. Therefore, 𝜇0 ≤ (ℓ/𝑛)3 · 𝑂(𝑛2𝑑) =
𝑂(ℓ 3𝑑/𝑛).

Bounding 𝜇1 is straightforward, and we omit the calculations. We obtain a bound of 𝜇1 ≤
(ℓ/𝑛)2 · 𝑂(𝑛𝑑) = 𝑂(ℓ 2𝑑/𝑛). Bounding 𝜇2 can be done with a trivial bound of deg𝑖,𝑗(𝑍) ≤ 𝑂(𝑛),
yielding 𝜇2 ≤ (ℓ/𝑛) ·𝑂(𝑛) = 𝑂(ℓ). Finally, it is simple to bound deg𝑖,𝑗(𝑍) ≤ 𝑂(1) when |𝑍 | = 3,
and so we obtain 𝜇3 ≤ 𝑂(1).

We notice that 𝜇0 ≥ 𝜇1 and 𝜇2 ≥ 𝜇3 always hold. So, either 𝜇0 or 𝜇2 must be the maximum.
Because 𝑑 = ℓ 2, we have 𝜇0 = 𝑂(ℓ 3𝑑/𝑛) ∼ ℓ 5/𝑛 ≫ ℓ ∼ 𝜇2 because ℓ 4 ≫ 𝑛, by choice of ℓ .
Thus, 𝜇0 ≫ 𝜇2, and so the row pruning argument, etc., will all succeed. This, combined with
the refutation argument for Ψ(0)

𝑏
(𝑥), implies that our heuristic calculation succeeds and we get

a bound of 𝑘 ≤ 𝑂̃(ℓ), where ℓ is chosen to be 𝑂̃(𝑛1/4). Thus, we obtain a lower bound of
𝑘 ≤ 𝑂̃(𝑛1/4). □

12.3.5 Preview: extending the warmup to a proof of Theorem 8

We now give a brief overview of how we shall extend the ideas used in this warmup to prove
Theorem 8. First, we observe that in the argument we presented in Sections 12.3.1 to 12.3.4, there
were only two crucial moments in the proof where we had a lot of freedom: (1) the choice of
the constraints in the initial XOR instance (in this warmup, we chose the set of 2-chains with
head 𝑖 ∈ [𝑘]), and (2) the choice of the hypergraph decomposition in Section 12.3.4 — the rest of
the proof was fairly mechanical, and boiled down to computing the expected partial derivatives

165

𝜇𝑍. Namely, if we can choose the constraints and the decomposition so that the row pruning
succeeds for all the resulting Kikuchi matrices, i.e., the expected partial derivatives of the degree
polynomials are appropriately bounded, then the general machinery in Sections 12.3.1 to 12.3.3
succeeds in proving the lower bound predicted by the heuristic calculation in Section 12.1.2 (up
to a small loss, see Remark 12.3.2).

As discussed in Section 12.1.2, we shall define the XOR instance using (𝑟 + 1)-chains for a
parameter 𝑟 = 𝑂(log 𝑛), and the heuristic calculation predicts that this will yield an exponential
lower bound. Thus, the key technical component of the proof is to choose the decomposition of
the (𝑟 + 1)-chains so that the degree polynomials of the resulting Kikuchi matrices all satisfy the
bounded expected partial derivatives condition. In Section 12.3.4, we showed how to do this for
the case when 𝑟 = 1.

We now wish to point out the following crucial observation: the decomposition in Sec-
tion 12.3.4 is “informed” by the row pruning calculation for the undecomposed chains done in
Section 12.3.3. Specifically, in Section 12.3.3, we argued that if there is a violating partial derivative
for the undecomposed chains, then there is some combinatorial structure in the chains (namely, a
heavy pair) that is the “cause” of the large expected partial derivative, and this combinatorial
structure is exactly the criteria that we use to decompose the hypergraph. In some sense, the
hypergraph decomposition (along with the modified Cauchy–Schwarz trick and Kikuchi matri-
ces) can be thought of as a precise way to “fix” this high expected partial derivative. For longer
chains, there is once again an intimate relationship between the existence of a violating expected
partial derivative and a certain “denser-than-anticipated” combinatorial structure (analogous to
heavy pairs) being present in the chains we construct. For larger chains, this structure is a more
complicated to describe, but an analogous chain decomposition for this structure accomplishes
the same job.

More precisely, we generalize the decomposition of Section 12.3.4 as follows. As done in
Section 12.3.4, we shall think of an (𝑟 + 1)-chain inℋ (𝑟+1)

𝑖
as being split into two subchains, the

“first link” in 𝐻𝑖 and then the rest of the chain, which is an 𝑟-chain. As before, our decomposition
shall decompose the 𝑟-chain part only, and this induces a decomposition of the (𝑟 + 1)-chains in
ℋ (𝑟+1)
𝑖

. Recall that in Section 12.3.4, we decomposed a 1-chain (𝑢,𝐶,𝑤) by picking a 𝑄 where
𝑄1 ∈ 𝐶 and 𝑄2 = 𝑤. Notice that 𝑄 only contains one element of the hyperedge 𝐶; there was
no need to do a further decomposition to handle, e.g., heavy triples 𝑄 = (𝑄1,𝑄′1,𝑄2) where
{𝑄1,𝑄′1} = 𝐶 and 𝑄2 = 𝑤.

Now, we have 𝑟-chains (𝑢,𝐶1,𝑤1, . . . ,𝐶𝑟 ,𝑤𝑟), and we shall decompose if there is a 𝑄 =

(𝑄1, . . . ,𝑄𝑟+1) ∈ ([𝑛] ∪ {★})𝑟 × [𝑛] such that (1) 𝑄 is heavy, i.e., is contained in many 𝑟-chains,
meaning that (a) 𝑄ℎ+1 = 𝑤𝑟 , and so in particular 𝑄ℎ+1 ≠ ★, and (b) 𝑄ℎ ∈ 𝐶ℎ for ℎ = 1, . . . , 𝑟; and
(2) 𝑄 is contiguous, meaning that if ℎ ∈ [𝑟 + 1] is the minimal ℎ such that 𝑄ℎ ≠ ★, then 𝑄ℎ′ ≠ ★ for
all ℎ′ ≥ ℎ, i.e., 𝑄 has ★’s followed by only non-★ entries.

Condition (1) above is a somewhat natural extension of the decomposition method in Sec-
tion 12.3.4, but condition (2) is trickier. It turns out (in a somewhat subtle way) that because
the 𝐻𝑖’s are matchings, if there is a violating expected partial derivative, then not only is there
a heavy 𝑄, but there must be a heavy contiguous 𝑄. In a sense (that can be made precise), the
contiguous 𝑄’s are irreducible violations and thus it is enough to only handle them.

166

12.4 Proof of Theorem 8: from LCCs to XOR formulas

We now present the proof of Theorem 8 for the case of F = F2. The proof is spread over
Sections 12.4 to 12.7 and follows the steps in the warmup. In the current section, we define
𝑟-chains and the family of XOR instances associated to the LCC that we wish to refute. Then,
in Section 12.5, we decompose the 𝑟-chains, and thereby decompose the (𝑟 + 1)-chains forming
the constraints in the XOR instance. Then, in Section 12.6, we define the Kikuchi matrices and
finish the argument up to the proof of the row pruning lemma, Lemma 12.6.4, an analogue of
Lemma 12.3.4 that is the key technical lemma. Finally, in Section 12.7, we prove Lemma 12.6.4.

Let ℒ : F𝑘
2 → F𝑛

2 be (3, 𝛿, 𝜀)-locally correctable. Without loss of generality, by Fact 3.3.10 we
can assume thatℒ is (3, 𝛿′)-normally decodable, where 𝛿′ ≥ 𝛿/6 and 𝑛′ = 2𝑛. For the remainder of
the proof, we will redefine 𝛿 to be 𝛿′, and 𝑛 to be 2𝑛. We shall also think of the code ℒ : F𝑘

2 → F𝑛
2

as a map ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 .
We will now define satisfiable XOR formulas Φ associated with the linear code ℒ. Let

ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 be a linear (3, 𝛿)-normally correctable code. Recall that without loss of
generality, ℒ is systematic, meaning that the first 𝑘 bits of ℒ are the message bits. In particular,
for every 𝑏 ∈ {−1, 1}𝑘 , there is a unique 𝑥 ∈ ℒ such that 𝑥 |[𝑘] = 𝑏. We can thus generate 𝑥 ← ℒ
uniformly at random by first choosing 𝑏 ← {−1, 1}𝑘 uniformly at random, and then setting 𝑥 to
be the unique extension of 𝑏.

Since ℒ is a linear (3, 𝛿)-normally correctable code, there exist 3-uniform hypergraph match-
ings 𝐻1, . . . ,𝐻𝑛 , each of size exactly 𝛿𝑛, such that every 𝑥 ∈ ℒ satisfies the following system of
4-XOR constraints, i.e., each constraint has arity 4:

∀𝑢 ∈ [𝑛],𝐶 ∈ 𝐻𝑢 , 𝑥𝐶𝑥𝑢 = 1 . (12.5)

In the proof, we will think of each 𝐻𝑢 as being a directed and weighted 3-uniform hypergraph
(Definition 3.2.2). Namely, for each hyperedge {𝑣1, 𝑣2, 𝑣3} ∈ 𝐻𝑢 , we define the weight of the
ordered tuple (𝑣1, 𝑣2, 𝑣3) to be wt𝐻𝑢 (𝑣1, 𝑣2, 𝑣3) B 1

6𝛿𝑛 . For (𝑣1, 𝑣2, 𝑣3) with {𝑣1, 𝑣2, 𝑣3) ∉ 𝐻𝑢 , we
additionally define wt𝐻𝑢 (𝑣1, 𝑣2, 𝑣3) = 0, and so

∑
(𝑣1,𝑣2,𝑣3)wt𝐻𝑢 (𝑣1, 𝑣2, 𝑣3) = 1. Directed and

weighted hypergraphs will become important when proving Theorem 10, and so we will state
our definitions and intermediate lemmas in terms of directed and weighted hypergraphs so that
we may reuse them when we prove Theorem 10.

We will construct an XOR formula by long chain derivations. Intuitively, a long chain derivation
starts from the natural XOR constraints (12.5) and derives new ones by chaining together 𝑡
constraints with an appropriate combinatorial structure. Below, we formalize the set of constraints
in this formula as a family of hypergraphs built from the 𝐻𝑢’s.

Definition 12.4.1 (𝑡-chain hypergraph ℋ (𝑡)𝑢). Let 𝑡 ≥ 1 be an integer. For any 𝑢 ∈ [𝑛], let ℋ (𝑡)𝑢
denote the weight function wtℋ (𝑡)𝑢 : [𝑛]3𝑡+1 → R≥0, i.e., from length 3𝑡 + 1 tuples of the form
𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑢𝑡) to R≥0, where wtℋ (𝑡)𝑢 (𝐶) = 0 if 𝑢0 ≠ 𝑢, and
otherwise:

wtℋ (𝑡)𝑢 (𝐶) =
𝑡−1∏
ℎ=0

wt𝐻𝑢ℎ (𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) .

For a 𝑡-chain 𝐶, we call 𝑢0 the head, the 𝑢ℎ ’s the pivots for 1 ≤ ℎ ≤ 𝑡 − 1, and 𝑢𝑡 the tail of the chain
𝐶. The monomial associated to 𝐶, which we denote by 𝑔𝐶 , is defined to be 𝑥𝑢𝑡

∏𝑡−1
ℎ=0 𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 .

167

u v1 v2 u1 v3 v4 u2 v5 v6 u3

{v1, v2, u1} ∈ Hu

xu2xv5xv6xu3 = 1
Figure 12.3: A 3-chain. The pairs of blue vertices are the “uncanceled vertices”, and the red
vertices are the “pivots”. Note that for any 𝑥 ∈ ℒ, we have 𝑥𝑢ℎ𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2𝑥𝑢ℎ+1 = 1.

We note that for any 𝑢 ∈ [𝑛],ℋ (1)𝑢 is equivalent to 𝐻𝑢 , i.e.,ℋ (1)𝑢 = {𝑢} ×𝐻𝑢 .
The following simple observation helps us understand the combinatorial structure in the

chains.
Observation 12.4.2. Let 𝑥 = ℒ(𝑏) for a linear LCC over F2 with {𝐻𝑢}𝑢∈[𝑛] being the associated
matchings. Then, for any 𝑡-chain 𝐶 with head 𝑢, 𝑥 satisfies 𝑥𝑢𝑔𝐶 = 1.

Proof. We know that 𝑥 satisfies 𝑥𝑢ℎ𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2𝑥𝑢ℎ+1 = 1 for every 0 ≤ ℎ ≤ 𝑡 − 1. Taking products
of the left-hand sides of each of these 𝑡 equations, we observe that for every 1 ≤ ℎ ≤ 𝑡 − 1, 𝑥𝑢ℎ is
“squared out” (since 𝑥2

𝑣 = 1 for every 𝑣 ∈ [𝑛]), and this finishes the proof. □

Building chains iteratively. It is useful to think of 𝑡-chains as being built by extending smaller
chains by iteratively adding hyperedges to the head (i.e., to the left). The following notation and
observation formalizes this.
Definition 12.4.3 (Extending Chains). For the 𝑡-chain hypergraph ℋ (𝑡) built from 3-uniform
matchings 𝐻1,𝐻2, . . . ,𝐻𝑛 on [𝑛], we define 𝐻𝑢 ◦ℋ (𝑡+1) as:

𝐻𝑢 ◦ℋ (𝑡) = ∪𝑤0∈[𝑛]
{
(𝑢, 𝑣1, 𝑣2,𝐶) | 𝐶 ∈ ℋ (𝑡)𝑢1 , {𝑣1, 𝑣2, 𝑢1} ∈ 𝐻𝑢

}
.

We extend this definition to weighted hypergraphs in the analogous way.
Observation 12.4.4. For 𝑡 ≥ 1, letℋ (𝑡) be the 𝑡-chain hypergraph built from 3-matchings𝐻1,𝐻2, . . . ,𝐻𝑛

on [𝑛]. Then,ℋ (𝑡+1) = ∪𝑢∈[𝑛]𝐻𝑢 ◦ℋ (𝑡) = ∪𝑢∈[𝑛]ℋ (𝑡
′)

𝑢 ◦ℋ (𝑡−𝑡
′) for any 0 < 𝑡′ < 𝑡.

Chains that fix some positions. We will often refer to the set of chains where some of the
links, i.e., pairs (𝑣2ℎ+1, 𝑣2ℎ+2) are forced to contain some 𝑣 ∈ [𝑛]. Towards this, we introduce the
following terminology.
Definition 12.4.5 (Chains containing𝑄). Let 𝑡, 𝑟 be integers with 𝑡 ≤ 𝑟. For any𝑄 = (𝑄1, . . . ,𝑄𝑡 ,𝑄𝑡+1) ∈
{[𝑛]∪★}𝑡+1, we say that a length 3𝑟+1 tuple 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟)
contains 𝑄, denoted by 𝑄 ⊆ 𝐶, if 𝑄𝑡+1 ∈ {★, 𝑢𝑟} and for 1 ≤ ℎ ≤ 𝑡, if 𝑄ℎ ≠ ★, then either
𝑄ℎ = 𝑣2(𝑟−1−𝑡+ℎ)+1 or 𝑄ℎ = 𝑣2(𝑟−1−𝑡+ℎ)+2.

We say that a 𝑄 is contiguous if there exists 𝑠 ≤ 𝑡 such that 𝑄ℎ ≠ ★ for every ℎ ≥ 𝑠 + 1 and
𝑄ℎ = ★ for every 1 ≤ ℎ ≤ 𝑠, i.e., the first 𝑠 entries are ★, and the remaining entries are non-★. We
note that by definition, 𝑄𝑡+1 ≠ ★ always.

We say that 𝑄 is complete if 𝑄 does not contain any ★. We say that 𝑄′ ⊇ 𝑄 if whenever 𝑄ℎ ≠ ★,
𝑄′
ℎ
= 𝑄ℎ . We define the size |𝑄 | to be the number of coordinates in 𝑄 that do not equal ★.

168

We also prove a simple bound on the total weight of the hyperedges inℋ (𝑡)𝑢 .
Observation 12.4.6. For any 𝑡 ≥ 1 and 𝑢 ∈ [𝑛], it holds that

∑
𝐶∈[𝑛]3𝑡+1 wtℋ (𝑡)𝑢 (𝐶) = 1.

Proof. The proof is by induction. The base case of 𝑡 = 1 is simple, as by definition we have∑
𝐶∈[𝑛]4

wtℋ (1)𝑢 (𝐶) =
∑

(𝑢,𝐶)∈[𝑛]4
wtℋ (1)𝑢 (𝑢,𝐶) =

∑
𝐶∈[𝑛]3

wt𝐻𝑢 (𝐶) = 1 .

We now show the induction step. Let 𝐶 ∈ [𝑛]3𝑡+1 have tail 𝑢𝑡 . Let 𝑆 denote the set of tuples
in [𝑛]3𝑡+4 that extend 𝐶, i.e., the first 3𝑡 + 1 coordinates are 𝐶. We observe that 𝑆 = 𝐶 × [𝑛]3.
Moreover, we have ∑

𝐶′∈𝑆
wtℋ (𝑡+1)

𝑢
(𝐶′) =

∑
𝐶′∈[𝑛]3

wtℋ (𝑡)𝑢 (𝐶)wt𝐻𝑢𝑡 (𝐶
′) ≤ wtℋ (𝑡)𝑢 (𝐶) .

Summing over 𝐶 and applying the induction hypothesis proves the claim. □

XOR Formulas from 𝒓-chains. Next, we define XOR formulas associated withℋ (𝑟+1) that are
guaranteed to be satisfiable. The length of the chain depends on a parameter 𝑟, which we shall
set later.

We are now ready to define the chain XOR instances.
Definition 12.4.7 (The chain XOR instance Ψ𝑏). Let 𝐻1, . . . ,𝐻𝑛 be weighted 3-uniform hyper-
graphs. Let 𝑘 ≤ 𝑛 and 𝑟 ≥ 0 be an integer. For each 1 ≤ 𝑡 ≤ 𝑟 + 1, we define the polynomial

Ψ𝑏(𝑥) =
𝑘∑
𝑖=1

∑
𝐶∈[𝑛]3(𝑟+1)+1

wtℋ (𝑟+1)
𝑖

(𝐶) · 𝑏𝑖𝑔𝐶 .

Note that in the above sum, if the first entry of the tuple 𝐶 is not 𝑖, then wtℋ (𝑟+1)
𝑖

(𝐶) = 0. We

will omit the subscript 𝑏 from Ψ𝑏 when it is clear from context. Above, each 𝑔𝐶 is the monomial
associated with the chain 𝐶, as defined in Definition 12.4.1.

We now observe that Ψ𝑏(𝑥) is satisfiable and thus has a high value.
Lemma 12.4.8. For every 𝑏 ∈ {−1, 1}𝑘 , Ψ𝑏 is satisfied by 𝑥 = ℒ(𝑏) and thus val(Φ𝑏) = 𝑘.

Proof. Observe that each monomial in Ψ𝑏 is corresponds to an (𝑟 + 1)-chain, each of which is
satisfied by 𝑥 = ℒ(𝑏) by Observation 12.4.2. Thus, val(Ψ𝑏) equals the total weight of chains of
length 𝑟 + 1 with head in [𝑘]. By Observation 12.4.6, we have that for every 𝑖 ∈ [𝑘], the total
weight of chains inℋ (𝑟+1)

𝑖
is 1. As there are 𝑘 choices of 𝑖, the total weight is 𝑘. □

To finish the proof of Theorem 8, we need to argue that E𝑏[val(Ψ𝑏)] is low when 𝑘 ≥ 𝑂(log4 𝑛).
We will argue this using the following lemma, which gives a spectral certificate to bound
E𝑏[val(Ψ𝑏)].
Lemma 12.4.9 (Refuting the chain XOR instances). Let𝐻1, . . . ,𝐻𝑛 be 3-uniform hypergraph matchings
of size 𝛿𝑛, and let 𝑘 ≤ 𝑛. Let ℓ , 𝑑, 𝑟 ≥ 1 be parameters such that 𝑑𝑟+1 ≥ 𝑛, ℓ ≥ 6𝑑(𝑟 + 1)/𝛿, and ℓ 𝑟 = 𝑜(𝑛).
Furthermore, suppose that 𝑘 ≥ 1/𝛿. Then, it holds that

E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤
(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2
.

169

We observe that Lemma 12.4.9 immediately proves that 𝑘 ≤ 𝑂𝛿(log5 𝑛), which is a single
log 𝑛 factor off of the bound we wish to show to prove Theorem 8 Indeed, we set 𝑟 = 𝑂(log 𝑛),
𝑑 = 2, and ℓ = 𝑂(𝑑𝑟/𝛿) = 𝛿−1𝑂(log 𝑛) and apply Lemmas 12.4.8 and 12.4.9. The conditions of
Lemma 12.4.9 are all satisfied, and so we have

𝑘 = E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤
(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2
≤ 𝑂

(
𝑘3/4 log5/4 𝑛

𝛿3/4

)
=⇒ 𝑘 ≤ 𝑂(log5 𝑛/𝛿3) .

We will prove the stronger bound of 𝑘 ≤ 𝑂𝛿(log4 𝑛) claimed in Theorem 8 using a simple
trick. We will show this in Section 12.6.5 by using the technical lemmas that we need to prove
Lemma 12.4.9. Even though Lemma 12.4.9 is not strictly needed to prove Theorem 8, we state it
on its own because we will need it in the proof of Theorem 10 later.

12.5 Smooth partitions of chains

In this section, we begin the proof of Lemma 12.4.9.
For notation, we letℋ (𝑡) be the union, over 𝑢, ofℋ (𝑡)𝑢 , and wtℋ (𝑡)(·) =

∑
𝑢∈[𝑛]wtℋ (𝑡)𝑢 (·).

Lemma 12.5.1. Let 𝑡 ≥ 1 and 𝑑 ≥ 1 be integers. There is a subset 𝑃𝑡 ⊆ [𝑛]𝑡+1 and disjoint sets 𝒯 (𝑄) ⊆
[𝑛]3𝑡+1 for 𝑄 ∈ 𝑃𝑡 such that (1) 𝑄 ⊆ 𝐶 for each 𝐶 ∈ 𝒯 (𝑄), and (2) wt(𝑄) B ∑

𝐶∈𝒯 (𝑄) wtℋ (𝑡)(𝐶) ≥
𝑛𝑑𝑡 · (𝛿𝑛)−𝑡−1.

We say 𝑄 is heavy if 𝑄 ∈ 𝑃𝑡 . Note that if 𝑄 is heavy then 𝑄 is contiguous and complete by definition.
Finally, as a trivial case, we let 𝑃0 = [𝑛] and for 𝑄 = (𝑣) ∈ 𝑃0, we let 𝒯 (𝑄) = (𝑣). Here, we let

wt(𝑄) = 1.

Proof. The proof follows by a simple greedy algorithm. Let 𝑆 = [𝑛]3𝑡+1. If there exists 𝑄 such that∑
𝐶∈𝑆:𝑄⊆𝐶 wtℋ (𝑡)(𝐶) ≥ 𝑛𝑑𝑡 · (𝛿𝑛)−𝑡−1, then we remove all such 𝐶 from 𝑆 and add them to 𝒯 (𝑄). We

repeat until there is no such 𝑄 remaining. We note that 𝑄 cannot be used twice in this sequence,
as when we pick a 𝑄 we remove all 𝐶 ∈ 𝑆 containing 𝑄. □

Definition 12.5.2 (Partitions of the chains). Let 𝑟 ≥ 1 be an integer. For each 1 ≤ 𝑡 ≤ 𝑟 and heavy
𝑄 ∈ 𝑃𝑡 , we letℋ (𝑟,𝑄) denote the set of tuples 𝐶 ∈ [𝑛]3𝑟+1 where:

1. 𝐶 is extends a tuple in 𝒯 (𝑄) “backwards”, i.e., (𝐶3(𝑟−𝑡)+1, . . . ,𝐶3𝑟+1) ∈ 𝒯 (𝑄);
2. 𝑄 is maximal: for any 𝑡′ > 𝑡 and 𝑄′ ∈ 𝑃𝑡′, (𝐶3(𝑟−𝑡′)+1, . . . ,𝐶3𝑟+1) ∉ 𝒯 (𝑄

′).
Observation 12.5.3. We have that for each 𝑡 = 0, . . . , 𝑟, it holds that

∑
𝑄∈𝑃𝑡 wt(𝑄) ≤ 𝑛, and so∑𝑟

𝑡=0
∑
𝑄∈𝑃𝑡 wt(𝑄) ≤ (𝑟 + 1)𝑛.

Proof. We observe that for any 𝑡 = 0, . . . , 𝑟, it holds that∑
𝑄∈𝑃𝑡

wt(𝑄) =
∑
𝑄∈𝑃𝑡

∑
𝐶∈𝒯 (𝑄)

wtℋ (𝑡)(𝐶) ≤
∑

𝐶∈[𝑛]3𝑡+1

wtℋ (𝑡)(𝐶) = 𝑛 . □

We note that Definition 12.5.2 gives a partition of the 𝑟-chains, but the polynomial Ψ(𝑥) uses a
restricted set of (𝑟 + 1)-chains, namely those that have their head in [𝑘]. In the following definition,
we use the partition of the 𝑟-chains to induce a partition of the special (𝑟 + 1)-chains.

170

Definition 12.5.4 (Induced partition ofℋ (𝑟+1)
𝑖

). Let 𝑟 ≥ 1 be an integer. For each 0 ≤ 𝑡 ≤ 𝑟 and

each 𝑄 ∈ 𝑃𝑡 , we letℋ (𝑟+1,𝑄)
𝑖

denote the set of length 3𝑟 + 4 tuples of the form (𝑖,𝑤1,𝑤2,𝐶) where
𝐶 ∈ ℋ (𝑟,𝑄).
Definition 12.5.5 (Bipartite XOR formulas from a smoothed partition). Fix integers 𝑟, 𝑑 ≥ 1.
For each 1 ≤ 𝑡 ≤ 𝑟 and 𝑄 ∈ 𝑃𝑡 , we define Ψ𝑖,𝑄 as the following XOR formula with terms
corresponding to (𝑟 + 1)-chains in ℋ (𝑟+1,𝑄) with 𝑥𝑄 “modded out” from the corresponding
monomial.

Ψ𝑖,𝑄(𝑥) =
∑

𝐶=(𝑖,𝑣1,𝑣2,𝑢1,...,𝑢𝑟+1)∈ℋ (𝑟+1,𝑄)
𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) · 𝑥𝑣1𝑥𝑣2

𝑟∏
ℎ=1

𝑥{𝑣2ℎ+1,𝑣2ℎ+2}\𝑄ℎ
.

Here, we use the convention that if 𝑄ℎ = ★, then {𝑣, 𝑣′} \𝑄ℎ B {𝑣, 𝑣′}.
For each 0 ≤ 𝑡 ≤ 𝑟, let Ψ(𝑡)(𝑥, 𝑦) =

∑𝑘
𝑖=1

∑
𝑄∈𝑃𝑡 𝑏𝑖𝑦𝑄Ψ𝑖,𝑄(𝑥). Finally, we let Ψ(𝑥, 𝑦) =∑

0≤𝑡≤𝑟Ψ
(𝑡)(𝑥, 𝑦); here, for every heavy 𝑄 ∈ 𝑃𝑡 for some 0 ≤ 𝑡 ≤ 𝑟 used in the smoothed

partition, we introduce a new variable 𝑦𝑄 .

We next observe that Ψ(𝑥, 𝑦) is a relaxation of the polynomial Ψ(𝑥). Indeed, we have abused
notation and labeled them both as “Ψ” for this reason. This follows from the observation is that
Ψ(𝑥, 𝑦) is produced by simply replacing the monomial 𝑥𝑄 in Ψ(𝑥) with a new variable 𝑦𝑄 for
each heavy 𝑄. More formally, the following holds.
Lemma 12.5.6. Fix 𝑥 ∈ {−1, 1}𝑛 . Then, there is a 𝑦 ∈ {−1, 1}

∑𝑟
𝑡=0 |𝑃𝑡 | such that Ψ(𝑥, 𝑦) = Ψ(𝑥).

Proof. For each 0 ≤ 𝑡 ≤ 𝑟, set 𝑦𝑄 = 𝑥𝑄 for every 𝑄 ∈ 𝑃𝑡 , where 𝑥𝑄 B
∏

ℎ:𝑄ℎ≠★ 𝑥𝑄ℎ
. □

We finish this section by proving the following statement, which intuitively shows that the
partitions of the chains are smooth.
Lemma 12.5.7 (Smoothness of partitioned chains). Fix 𝑖 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Let 𝑍 ∈ ([𝑛] ∪
{★})𝑟+1 × {★} be a 𝑍 that has a ★ in the last entry. Then,

∑
𝐶∈ℋ (𝑟+1)

𝑖
:𝑍⊆𝐶 wtℋ (𝑟+1)

𝑖

(𝐶) ≤ (𝛿𝑛)−|𝑍 |.

Let 𝑄 ∈ 𝑃𝑡 and ℋ (𝑟+1,𝑄)
𝑖

be as defined in Definition 12.5.4. Let 𝑍 ∈ ([𝑛] ∪ {★})𝑟+1 × [𝑛] be such
that 𝑍 extends 𝑄, i.e., 𝑍𝑟−𝑡+ℎ = 𝑄ℎ for all 1 ≤ ℎ ≤ 𝑡 + 1. Then,

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
:𝑍⊆𝐶 wtℋ (𝑟+1)

𝑖

(𝐶) is at most

wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 | if |𝑍 | ≤ 𝑟 + 1, and at most (𝛿𝑛)−𝑟−1 if |𝑍 | = 𝑟 + 2. Furthermore, if 𝑑𝑟+1 ≥ 𝑛,
then (𝛿𝑛)−𝑟−1 ≤ wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 |.
Remark 12.5.8. We remark that this is place where we need the assumption that 𝑑𝑟+1 ≥ 𝑛.

Proof. The first statement follows immediately by 𝛿-smoothness of the original hypergraphs.
Indeed, for any 𝑢 ∈ [𝑛] and 𝑣 ∈ [𝑛], we have that

∑
𝐶∈[𝑛]3 :𝑣∈𝐶 wt𝐻𝑢 (𝐶) ≤ 1/𝛿𝑛. We now have that∑

𝐶∈ℋ (𝑟+1)
𝑖

:𝑍⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶)

≤
∑

(𝑣1,𝑣2,𝑢1)
𝑍1∈{𝑣1,𝑣2}

wt𝐻𝑖 (𝑣1, 𝑣2, 𝑢1) ·
(∑
(𝑣3,𝑣4,𝑢2)
𝑍2∈{𝑣3,𝑣4}

wt𝐻𝑢1
(𝑣3, 𝑣4, 𝑢2)

(
· · ·

(∑
(𝑣2𝑟+1,𝑣2𝑟+2,𝑢𝑟+1)
𝑍𝑟∈{𝑣2𝑟+1,𝑣2𝑟+2}

wt𝐻𝑢𝑟 (𝑣2𝑟+1, 𝑣2𝑟+2, 𝑢𝑟+1)
)
· · ·

))
.

We notice that the ℎ-th term is at most 1/𝛿𝑛 if 𝑍ℎ ≠ ★, and otherwise it is at most 1. So, in total,
we get a bound of (𝛿𝑛)−|𝑍 |.

171

We now prove the second part of the statement. Let |𝑄 | = 𝑡 + 1. We have two cases.
Case 1: 𝒁 does not contain a ★ entry. This means that |𝑍 | = 𝑟 + 2. Let 𝑍′ ∈ [𝑛]𝑟+1 × {★} be 𝑍
with the last entry replaced by a ★, i.e., 𝑍′

ℎ
= 𝑍ℎ for all 1 ≤ ℎ ≤ 𝑟 + 1, and 𝑍′

𝑟+2 = ★. We observe
that ∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
:𝑍⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶) ≤
∑

𝐶∈ℋ (𝑟+1)
𝑖

:𝑍⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶) ≤
∑

𝐶∈ℋ (𝑟+1)
𝑖

:𝑍′⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶) ≤ (𝛿𝑛)−|𝑍′ | = (𝛿𝑛)−𝑟−1 ,

where we use the first statement that we have already shown. To finish the argument in this case,
we need to argue that wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 | ≥ (𝛿𝑛)−𝑟−1. Indeed, we have by definition that
wt(𝑄) ≥ 𝑛𝑑 |𝑄 |−1(𝛿𝑛)−|𝑄 |, and so

wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 | ≥ 1
𝛿
𝑑 |𝑍 |−1(𝛿𝑛)−|𝑍 | = (𝛿𝑛)−𝑟−1 · 1

𝛿2𝑛
𝑑𝑟+1 .

Thus, the desired inequality holds if 𝑑𝑟+1 ≥ 𝑛.
Case 2: 𝒁 contains a★ entry. This means that |𝑍 | ≤ 𝑟 +1. Then, we have that 𝑍 = (𝑍(1),★,𝑍(2),𝑄),
where 𝑍(2) contains no ★ entries.

We observe that each 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

with 𝑍 ⊆ 𝐶 can be split into 3 parts: 𝐶 = (𝑖,𝐶(1),𝐶(2),𝐶(3)),
where 𝐶(3) ∈ 𝒯 (𝑄) is a length 𝑡 chain, (𝑖,𝐶(1)) is a length |𝑍(1) | chain with head 𝑖, and 𝐶(2) is a
length 𝑟 − 𝑡 − |𝑍(1) | chain whose head is the tail of 𝐶(1) and whose tail is the head of 𝐶(3). By
𝛿-smoothness,

∑
𝐶(1) :𝑍(1)⊆𝐶(1) wt

ℋ (|𝑍
(1) |)

𝑖

(𝑖,𝐶(1)) ≤ (𝛿𝑛)−|𝑍(1) |.

We either have that (𝑍(2),𝑄) is 𝑄, i.e., 𝑍(2) is empty, or that (𝑍(2),𝑄) is not 𝑄. In the first
case,

∑
𝐶(3)∈𝒯 (𝑄) wtℋ (𝑡)(𝐶(3)) = wt(𝑄) by definition (note that if 𝑡 = 0, then 𝐶(3) is just the single

vertex 𝑣 where 𝑄 = (𝑣), and we have defined wt(𝑄) = 1). In the second case, we observe
that by Definitions 12.5.2 and 12.5.4, (𝑍(2),𝑄) cannot be heavy. Indeed, if it was, then either

𝐶(3) ∈ 𝒯 (𝑍(2),𝑄), and so 𝐶 ∈ ℋ (𝑟+1,(𝑍(2),𝑄))
𝑖

, or else there is some other 𝑄′ with |𝑄′ | = |𝑍(2) | + 𝑡 + 1

with 𝐶(3) ∈ 𝒯 (𝑄′), in which case we would have 𝐶 ∈ ℋ (𝑟+1,𝑄′)
𝑖

. We note that here we must use that
𝑍 contains at least one ★, so that |𝑍(2) | + |𝑄 | ≤ 𝑟 + 1. This is because all heavy 𝑄′ have |𝑄′ | ≤ 𝑟 + 1,
as they are defined for the length 𝑟-chains.

Thus, (𝑍(2),𝑄) cannot be heavy. It then follows that
∑
𝐶(3) :𝐶(3)∉𝒯 (𝑄′) ∀𝑄′∈𝑃

𝑡+|𝑍(2) |
wtℋ (𝑡)(𝐶(3)) ≤

𝑛𝑑 |𝑍
(2) |+𝑡(𝛿𝑛)−|𝑍(2) |−𝑡−1 ≤ wt(𝑄)𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) |. We note that any 𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
must have 𝐶(3) ∉

𝒯 (𝑄′) ∀𝑄′ ∈ 𝑃𝑡+|𝑍(2) |, as otherwise we would violate Item (2) in Definition 12.5.2 since |𝑍(2) | ≥ 1.
To finish the proof, we observe that once 𝐶(1) and 𝐶(3) are chosen, the total weight of all “valid”

𝐶(2), i.e., 𝐶(2)’s that could complete the chain to form 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

, is at most 1/𝛿𝑛. Indeed,
this is because the head of 𝐶(2) is the tail of 𝐶(1) and its tail is the head of 𝐶(3), and the total
weight of all length ℎ chains, for any ℎ, with a fixed head 𝑢 and fixed tail 𝑣 is at most 1/𝛿𝑛 by
𝛿-smoothness. Thus, in total, we have shown that

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) ≤ (𝛿𝑛)−|𝑍(2) | · (𝛿𝑛)−1 ·

wt(𝑄)𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) | = wt(𝑄) · 𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 |. □

12.6 Spectral refutation via Kikuchi matrices

In Section 12.5, we defined polynomials Ψ(𝑡)(𝑥, 𝑦) and a map from 𝑥 ↦→ 𝑦 such that Ψ(𝑥) =∑𝑟
𝑡=0 Ψ

(𝑡)(𝑥, 𝑦)when 𝑦 is the image of 𝑥 under this map. Thus, to prove Lemma 12.4.9, we need

172

to upper bound E𝑏[val(∑𝑟
𝑡=0 Ψ

(𝑡)(𝑥, 𝑦))]. In this section, we will use the Kikuchi matrix method
to bound this quantity, thus proving Lemma 12.4.9.

12.6.1 Step 1: the Cauchy–Schwarz trick

First, we show that we can relate
∑𝑟
𝑡=0 Ψ

(𝑡)(𝑥, 𝑦) to a certain “cross-term” polynomial obtained
via applying the Cauchy–Schwarz inequality.
Lemma 12.6.1 (Cauchy–Schwarz trick). Let 𝑀 be a maximum directed matching1112 of [𝑘] and let 𝑓𝑀
be the cross-term polynomial defined as

𝑓
(𝑡)
𝑀

=
∑
{𝑖,𝑗}∈𝑀

𝑏𝑖𝑏 𝑗

∑
𝑄∈𝑃𝑡

1
wt(𝑄)Ψ𝑖,𝑄(𝑥)Ψ𝑗,𝑄(𝑥) ,

𝑓𝑀 =

𝑟∑
𝑡=0

𝑓
(𝑡)
𝑀

.

Then for every 𝑥, 𝑦 with ±1 values, it holds that(
𝑟∑
𝑡=0

Ψ(𝑡)(𝑥, 𝑦)
)2

≤ 𝑛(𝑟 + 1)
(
𝑘(𝑟 + 1)
𝛿2𝑛

+ 2𝑘E𝑀[𝑓𝑀]
)

,

where the expectation E𝑀 is over a uniformly random maximum directed matching 𝑀.

Proof. We will first apply the Cauchy–Schwarz inequality to eliminate the 𝑦 variables:(
𝑟∑
𝑡=0

Ψ(𝑡)(𝑥, 𝑦)
)2

=

(
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

𝑦𝑄 ·
√

wt(𝑄)
(
𝑘∑
𝑖=1

𝑏𝑖
Ψ𝑖,𝑄√
wt(𝑄)

))2

≤
(
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

𝑦2
𝑄wt(𝑄)

) ©­«
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

(
𝑘∑
𝑖=1

𝑏𝑖
Ψ𝑖,𝑄√
wt(𝑄)

)2ª®¬ .

By Observation 12.5.3, this is at most

≤ 𝑛(𝑟 + 1) ©­«
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

(
𝑘∑
𝑖=1

𝑏𝑖
Ψ𝑖,𝑄√
wt(𝑄)

)2ª®¬
≤ 𝑛(𝑟 + 1) ©­«

𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

𝑘∑
𝑖,𝑗=1

𝑏𝑖𝑏 𝑗Ψ𝑖,𝑄Ψ𝑗,𝑄
ª®¬

≤ 𝑛(𝑟 + 1) ©­«
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

𝑘∑
𝑖=1

Ψ2
𝑖,𝑄 +

𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝑖≠𝑗∈[𝑘]

𝑏𝑖𝑏 𝑗Ψ𝑖,𝑄Ψ𝑗,𝑄
ª®¬ .

11A directed matching is a matching, only the edges are additionally directed
12This is a perfect matching if 𝑘 is even, and will leave one element of [𝑘] unmatched if 𝑘 is odd.

173

By Lemma 12.5.7, we have that

|Ψ𝑖,𝑄(𝑥)| ≤
∑

𝐶∈ℋ (𝑟+1,𝑄)
𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) ≤ wt(𝑄) · (𝛿𝑛)−1 ,

Hence,
∑𝑟
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑𝑘
𝑖=1 Ψ

2
𝑖,𝑄 ≤

𝑘
𝛿2𝑛2

∑𝑟
𝑡=0

∑
𝑄∈𝑃𝑡 wt(𝑄) ≤ 𝑘(𝑟+1)

𝛿2𝑛
.

To finish the proof, we observe that the probability that a pair (𝑖, 𝑗) is contained in a directed
matching 𝑀 is at least 1

2𝑘 . □

12.6.2 Step 2: defining the Kikuchi matrices

It thus remains to bound E𝑏[val(𝑓𝑀)] for an arbitrary directed maximum matching 𝑀.
We define the Kikuchi matrices that we consider below.

Definition 12.6.2. Let 𝑖, 𝑗 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Let 𝑄 ∈ 𝑃𝑡 .
Let 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, . . . , 𝑢𝑟+1) ∈ ℋ (𝑟+1,𝑄)

𝑖
and 𝐶′ = (𝑗, 𝑣′1, 𝑣′2, 𝑢1, 𝑣′3, 𝑣′4, . . . , 𝑢𝑟+1) ∈

ℋ (𝑟+1,𝑄)
𝑗

. We let 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 ∈ {0, 1}(

[𝑛]
ℓ)

2𝑟+2

be the matrix with rows and columns by indexed by
(2𝑟 + 2)-tuples of sets (𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟) of size exactly ℓ defined as follows.

We set 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 ((𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟), (𝑇0, . . . ,𝑇𝑟 ,𝑇′0 , . . . 𝑇′𝑟)) equal to 1 if the following holds,

and otherwise we set this entry to be 0. In what follows, we let 𝐶ℎ = {𝑣2ℎ+1, 𝑣2ℎ+2}, and we note
that |𝐶ℎ | = 2 for any chain with nonzero weight, by Definition 3.2.1.

1. For ℎ = 0, . . . , 𝑟 − 𝑡, we have 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ and 𝑣2ℎ+1 ∈ 𝑆ℎ , 𝑣2ℎ+2 ∈ 𝑇ℎ .
2. For ℎ = 0, . . . , 𝑟 − 𝑡, we have 𝑆′

ℎ
⊕ 𝑇′

ℎ
= 𝐶′

ℎ
and 𝑣′2ℎ+1 ∈ 𝑆

′
ℎ
, 𝑣′2ℎ+2 ∈ 𝑇

′
ℎ
,

3. For ℎ = 1, . . . , 𝑡, the following holds. Let 𝑤ℎ = 𝐶𝑟−𝑡+ℎ \𝑄ℎ , and 𝑤′
ℎ
= 𝐶′

𝑟−𝑡+ℎ \𝑄ℎ . We have
𝑆𝑟−𝑡+ℎ = 𝑅 ∪ {𝑤ℎ}, 𝑇𝑟−𝑡+ℎ = 𝑅 ∪ {𝑤′

ℎ
}, and 𝑆′

𝑟−𝑡+ℎ = 𝑇
′
𝑟−𝑡+ℎ .13

We let𝐴(𝑡)
𝑖,𝑗 =

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) ·𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 and𝐴𝑖,𝑗 =

∑𝑟
𝑡=0

1
𝐷𝑡
𝐴
(𝑡)
𝑖,𝑗 ,

where 𝐷𝑡 =
(𝑛−2
ℓ−1

)2𝑟+2−𝑡 ·
(𝑛
ℓ

) 𝑡 . For any matching 𝑀 on [𝑘], let 𝐴𝑀 =
∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 . We will abuse

notation and let 𝐴 B 𝐴𝑀 .
The following lemma shows that we can express 𝑓𝑀(𝑥) as a (scaling of a) quadratic form on

the matrix 𝐴(𝑡).
Lemma 12.6.3. Let 𝑥 ∈ {−1, 1}𝑛 , and let 𝑥′ ∈ {−1, 1}𝑁 , where 𝑁 =

(𝑛
ℓ

)2𝑟+2, denote the vector where the
(𝑆0, 𝑆1, . . . , 𝑆𝑟 , 𝑆′0, 𝑆′1, . . . , 𝑆′𝑟)-th entry of 𝑥′ is

∏𝑟
ℎ=0 𝑥𝑆ℎ𝑥𝑆′ℎ . Let 𝑖, 𝑗 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Let𝑄 ∈ 𝑃𝑡 ,

and let let 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, . . . , 𝑢𝑟+1) ∈ ℋ (𝑟+1,𝑄)
𝑖

and 𝐶′ = (𝑗, 𝑣′1, 𝑣′2, 𝑢1, 𝑣′3, 𝑣′4, . . . , 𝑢𝑟+1) ∈
ℋ (𝑟+1,𝑄)
𝑗

. Then,

𝑥′⊤𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 𝑥′ = 𝐷𝑡𝑥𝑣1𝑥𝑣2

𝑟∏
ℎ=1

𝑥{𝑣2ℎ+1,𝑣2ℎ+2}\𝑄ℎ
· 𝑥𝑣′1𝑥𝑣′2

𝑟∏
ℎ=1

𝑥{𝑣′2ℎ+1,𝑣′2ℎ+2}\𝑄ℎ
,

13It is possible that one could have 𝑤ℎ = 𝑤′
ℎ

here. In that case, we pick a canonical extra vertex 𝑣, and require that

𝑣 ∉ 𝑅 as well. This is to ensure that the number of choices here for 𝑆𝑟−𝑡+ℎ and 𝑆′
𝑟−𝑡+ℎ is exactly

(𝑛−2
ℓ−1

) (𝑛
ℓ

)
; otherwise it

would be
(𝑛−1
ℓ−1

) (𝑛
ℓ

)
. The difference in the two cases is immaterial but it is convenient to have an exact count.

174

i.e., the product of the monomials associated to 𝐶 and 𝐶′, modded out by 𝑄ℎ , where 𝐷𝑡 =
(𝑛−2
ℓ−1

)2𝑟+2−𝑡 ·
(𝑛
ℓ

) 𝑡 .
Moreover, for any matrix 𝐵(𝐶,𝐶′,𝑄)

𝑖,𝑗 obtained by “zeroing out” exactly 𝛼𝐷𝑡 entries of 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 , the equality

holds with a factor of 1− 𝛼 on the right.
In particular, 𝑥′⊤𝐴𝑥′ = 𝑓𝑀(𝑥).

Proof. Let ®𝑆 = (𝑆0, 𝑆1, . . . , 𝑆𝑟 , 𝑆′0, 𝑆′1, . . . , 𝑆′𝑟) and ®𝑇 = (𝑇0, . . . ,𝑇𝑟 ,𝑇′0 , . . . 𝑇′𝑟) be such that𝐴(
®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 (®𝑆, ®𝑇) =

1. Then, we have that

𝑥′®𝑆
𝑥′®𝑇

=

𝑟∏
ℎ=0

𝑥𝑆ℎ𝑥𝑇ℎ𝑥𝑆′ℎ𝑥𝑇
′
ℎ
=

𝑟−𝑡∏
ℎ=0

𝑥𝑆ℎ⊕𝑇ℎ𝑥𝑆′ℎ⊕𝑇
′
ℎ

𝑡∏
ℎ=1

𝑥𝑆𝑟−𝑡+ℎ⊕𝑇𝑟−𝑡+ℎ𝑥𝑆′𝑟−𝑡+ℎ⊕𝑇
′
𝑟−𝑡+ℎ

=

𝑟−𝑡∏
ℎ=0

𝑥𝐶ℎ𝑥𝐶′ℎ

𝑡∏
ℎ=1

𝑥𝐶𝑟−𝑡+ℎ\𝑄ℎ
𝑥𝐶′

𝑟−𝑡+ℎ\𝑄ℎ
,

which is equal to the product of monomials on the right-hand side of the equation we wish to
show.

It thus remains to argue that 𝐴(
®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 has exactly 𝐷𝑡 nonzero entries. We observe that, for

each ℎ = 0, . . . , 𝑟 − 𝑡, there are exactly
(𝑛−2
ℓ−1

)
pairs (𝑆ℎ ,𝑇ℎ) such that 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ with 𝑣2ℎ+1 ∈ 𝑆ℎ

and 𝑣2ℎ+2 ∈ 𝑇ℎ . Indeed, this is because we must simply choose a set of size ℓ − 1 that does not
contain either of 𝑣2ℎ+1 and 𝑣2ℎ+2, and then this determines 𝑆ℎ and 𝑇ℎ .

For ℎ = 1, . . . , 𝑡, there are exactly
(𝑛−2
ℓ−1

)
choices of (𝑆𝑟−𝑡+ℎ ,𝑇𝑟−𝑡+ℎ). Indeed, this is because

𝑆𝑟−𝑡+ℎ must contain 𝑤ℎ and 𝑇𝑟−𝑡+ℎ must contain 𝑤′
ℎ
. Note that if 𝑤ℎ = 𝑤

′
ℎ
, then there are actually(𝑛−1

ℓ−1

)
choices! However, using the slightly modified definition of the matrix in the footnote in

Definition 12.6.2, we can again force there to be exactly
(𝑛−2
ℓ−1

)
choices. Finally, there are

(𝑛
ℓ

)
choices

for (𝑆′
𝑟−𝑡+ℎ ,𝑇′

𝑟−𝑡+ℎ), as we must have 𝑆′
𝑟−𝑡+ℎ = 𝑇

′
𝑟−𝑡+ℎ .

Combining, we see that 𝐷𝑡 =
(𝑛−2
ℓ−1

)2(𝑟−𝑡+1) · (
(𝑛−2
ℓ−1

) (𝑛
ℓ

)
)𝑡 =

(𝑛−2
ℓ−1

)2𝑟+2−𝑡 (𝑛
ℓ

) 𝑡 , as required. □

12.6.3 Step 3: finding a regular submatrix of the Kikuchi matrix

By Lemma 12.6.3, in order to upper bound E𝑏[val(𝑓𝑀)], it suffices to bound E𝑏[∥𝐴∥∞→1] ≤
𝑁E𝑏[∥𝐴∥2], where 𝑁 =

(𝑛
ℓ

)2𝑟+2; here, we use that ∥𝐴∥∞→1 ≤ 𝑁 ∥𝐴∥2 always holds.
To bound ∥𝐴∥2, we will write 𝐴 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 and apply Fact 3.4.2. To do this, we need to

bound ∥𝐴𝑖,𝑗 ∥2, which we shall do by upper bounding the maximum ℓ1-norm of any row/column
of the matrix. In turns out there are some rows that indeed have a large ℓ1-norm. To handle this
issue, we shall zero out the “bad rows”, as follows. To do this, we will need to use the following
technical lemma, proven in Section 12.7, that bounds the expected ℓ1-norm of a row and the
conditional expectation given that the row has a nonzero entry in a specific matrix 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 .

Lemma 12.6.4 (First and conditional moment bounds). Fix 𝑟 ≥ 1, 𝑖, 𝑗 ∈ [𝑘], and let ℋ (𝑟+1)
𝑖

and
ℋ (𝑟+1)
𝑗

denote the (𝑟 + 1)-chain hypergraph with heads in 𝑖 and 𝑗 respectively. Let ∪𝑟
𝑡=0 ∪𝑄∈𝑃𝑡 ℋ

(𝑟+1,𝑄)
𝑖

be

a smooth partition ofℋ (𝑟+1)
𝑖

, as defined in Definitions 12.5.2 and 12.5.4. Let 𝐴𝑖,𝑗 be the Kikuchi matrix
defined in Definition 12.6.2, which depends on 𝑟, 𝑖, 𝑗, and the pieces ∪𝑄∈𝑃𝑡ℋ (𝑟+1,𝑄) of the refinement, and
the matching 𝑀.

175

Let ®𝑆 = (𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟) ∈
([𝑛]
ℓ

)2𝑟+2
be a row of the matrix, and let deg𝑖,𝑗(®𝑆) denote the ℓ1-norm

of the ®𝑆-th row of 𝐴𝑖,𝑗 . Then,

E®𝑆[deg𝑖,𝑗(®𝑆)] ≤
1

𝑁 · 𝛿𝑛 ,

where 𝑁 =
(𝑛
ℓ

)2𝑟+2.
Furthermore, let 𝑡 ∈ {0, . . . , 𝑟}, 𝑄 ∈ 𝑃𝑡 , and 𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
and 𝐶′ ∈ ℋ (𝑟+1,𝑄)

𝑗
. Let 𝒟𝐶,𝐶′,𝑄 denote

the uniform distribution over rows of 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 that contain a nonzero entry. Then, if 𝑑𝑟+1 ≥ 𝑛 and

ℓ ≥ 2𝑑(𝑟 + 1)/𝛿, it holds that

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗(®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 4
𝑁𝛿𝑛

.

Let us now use Lemma 12.6.4 to argue the following. For a sufficiently large constant Γ, there
exist submatrices 𝐵(𝐶,𝐶′,𝑄)

𝑖,𝑗 , i.e., a {0, 1}-matrix where 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 (®𝑆, ®𝑇) = 1 implies 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 (®𝑆, ®𝑇) = 1,

such that (1) each 𝐵
(𝐶,𝐶′,𝑄)
𝑖,𝑗 contains exactly 𝐷𝑡/2 nonzero entries, and (2) the ℓ1-norm of any

row/column of 𝐵𝑖,𝑗 (defined analogously to 𝐴𝑖,𝑗) is at most Γ
𝑁 ·𝛿𝑛 .

We do this as follows. First, we observe that 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 (®𝑆, ®𝑇) = 𝐴

(𝐶′,𝐶,𝑄)
𝑗,𝑖 (®𝑅, ®𝑊), where ®𝑅 =

(𝑆′0, . . . , 𝑆′𝑟 , 𝑆0, . . . , 𝑆𝑟) and ®𝑊 = (𝑇′0 , . . . ,𝑇′𝑟 ,𝑇0, . . . ,𝑇𝑟). In particular, this symmetry implies that
the bounds on the moments for rows in Lemma 12.6.4 hold for columns as well.

Let ℬ1 = { ®𝑆 : deg𝑖,𝑗(®𝑆) ≥ Γ
𝑁 ·𝛿𝑛 } denote the set of bad rows with ℓ1-norm at least Γ

𝑁 ·𝛿𝑛 ,
and similarly let ℬ2 be the same but for the columns. Applying Markov’s inequality and the
conditional degree bound, we see that ℬ1 contains at most 𝑂(1/Γ)-fraction of the rows where
𝐴
(𝐶,𝐶′,𝑄)
𝑖,𝑗 is nonzero, and similarly ℬ2 contains at most 𝑂(1/Γ)-fraction of the columns where

𝐴
(𝐶,𝐶′,𝑄)
𝑖,𝑗 is nonzero. Thus, after removing these rows, we still have at least (1−𝑂(1/Γ))𝐷𝑡 nonzero

entries in 𝐴
(𝐶,𝐶′,𝑄)
𝑖,𝑗 . When Γ is a sufficiently large constant, this is at least 1/2, and so we can

choose an arbitrary subset of exactly 𝐷𝑡/2 nonzero entries. We let 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 be the matrix with

those nonzero entries.
The first property is clearly satisfied by construction. The second property is satisfied because

the ℓ1-norm of any row/column of 𝐵𝑖,𝑗 is clearly at most Γ
𝑁 ·𝛿𝑛 , again by construction.

12.6.4 Step 4: finishing the proof

Let 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 be the matrix produced in Section 12.6.3.

We let 𝐵(𝑡)
𝑖,𝑗 =

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) ·𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 and 𝐵𝑖,𝑗 =

∑𝑟
𝑡=0

1
𝐷𝑡
𝐵
(𝑡)
𝑖,𝑗 .

For any matching 𝑀 on [𝑘], let 𝐵𝑀 =
∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐵𝑖,𝑗 . We will abuse notation and let 𝐵 B 𝐵𝑀 .

By Lemma 12.6.3 and the fact that 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 has exactly 𝐷𝑡/2 nonzero entries of 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 in it,

we see that for every 𝑥 ∈ {−1, 1}𝑛 , there exists 𝑥′ ∈ {−1, 1}𝑁 such that 𝑥′⊤𝐵𝑥′ = 1
2 𝑓𝑀(𝑥). We also

have that ∥𝐵𝑖,𝑗 ∥2 ≤ Γ
𝑁 ·𝛿𝑛 , by construction in Section 12.6.3.

By Fact 3.4.2, it therefore follows that

E𝑏[val(𝑓𝑀(𝑥))] ≤ 2E𝑏[𝑁 ∥𝐵∥2] ≤ 𝑁 ·
Γ

𝑁 · 𝛿𝑛 ·𝑂(
√
𝑘 log𝑁) = 𝑂(

√
𝑘ℓ 𝑟 log 𝑛) · 1

𝛿𝑛

176

Hence,

E𝑏[val(Ψ(𝑥, 𝑦))]2 ≤ E𝑏[val(Ψ(𝑥, 𝑦)2)] ≤ 𝑛(𝑟 + 1)
(
𝑘(𝑟 + 1)
𝛿2𝑛

+ 2𝑘E𝑏,𝑀[val(𝑓𝑀)]
)

≤ 𝑛(𝑟 + 1)
(
𝑘(𝑟 + 1)
𝛿2𝑛

+ 2𝑘𝑂(
√
𝑘ℓ 𝑟 log 𝑛) · 1

𝛿𝑛

)
=
𝑘(𝑟 + 1)

𝛿

(
𝑟 + 1
𝛿
+ 2𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)
≤ 𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

as ℓ ≥ 𝑂(𝑟/𝛿) and we can assume that 𝑘 ≥ 1/𝛿 (as otherwise we are already done).

12.6.5 Step 5: optimizing the log 𝑛 factor and proving Theorem 8

We will now prove Theorem 8 using the tools that we have developed in Sections 12.4 to 12.6. Let
ℒ be a (3, 𝛿)-linear LCC in normal form (Definition 3.3.9), with 3-uniform hypergraph matchings
𝐻1, . . . ,𝐻𝑛 each of size 𝛿𝑛. Similar to the analysis in Section 12.2, we will use the 3-LCC ℒ to
construct a 2-LDC, and then we apply the lower bound of [GKST06] (Fact 3.3.4).

The reason this approach saves a single log 𝑛 factor is that, in the case of 2-query linear codes,
Fact 3.3.4 shows a lower bound of 𝛿𝑘 ≤ 2 log2 𝑛, which saves a factor of 𝛿 over the lower bound
from spectral refutation of 𝛿2𝑘 ≤ 𝑂(log 𝑛) for nonlinear 2-LDCs. In our reduction, we shall
produce a 2-LDC with 𝛿′ ∼ 𝛿/log 𝑛, so this optimization saves us a 𝑂(log 𝑛) factor. As a result,
we get a final lower bound of 𝑘 ≤ 𝑂(log4 𝑛), as opposed to the lower bound of 𝑘 ≤ 𝑂(log5 𝑛) that
we obtained earlier.

We set 𝑟 = 𝑂(log 𝑛), 𝑑 = 2, and ℓ = 𝑂(𝑑𝑟/𝛿) = 𝛿−1𝑂(log 𝑛) and follow the steps above.
We construct the polynomial Ψ (Definition 12.4.7) and then decompose Ψ into Ψ(0), . . . ,Ψ(𝑟)

(Definition 12.5.5). By Lemmas 12.4.8 and 12.6.1, we have

𝑘2 = E𝑏[val(Ψ)]2 ≤ E𝑏[val(Ψ(𝑥, 𝑦))]2 ≤ E𝑏[val(Ψ(𝑥, 𝑦)2)] ≤ 𝑛(𝑟 + 1)
(
𝑘(𝑟 + 1)
𝛿2𝑛

+ 2𝑘E𝑏,𝑀[val(𝑓𝑀)]
)

.

Hence, either 𝑘 ≤ (𝑟 + 1)2/𝛿2 = 𝑂(log2 𝑛/𝛿2) and we are done, or else E𝑏,𝑀[val(𝑓𝑀)] ≥ 𝑘
2𝑛(𝑟+1) , and

hence there exists a directed matching 𝑀 such that val(𝑓𝑀) ≥ 𝑘
2𝑛(𝑟+1) . Let us proceed assuming

that we are in the second case.
Let us now construct the new code and argue that it is a 2-LDC. We define a mapℒ′ : {0, 1}𝑛 →

{0, 1}2𝑁 , where 𝑁 =
(𝑛
ℓ

)2𝑟+2, in an analogous way to Section 12.2. Namely, there are 2𝑁 entries
of ℒ′(𝑥), corresponding to the rows and columns of the Kikuchi matrices in Definition 12.6.2.
For each row ®𝑆 = (𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟), we let ℒ′(𝑥)®𝑆 be 𝑥 ®𝑆 B

∏𝑟
𝑡=0 𝑥𝑆𝑡 𝑥𝑆′𝑡 , and similarly for the

columns ®𝑇.
Let 𝐿 = {𝑖 : (𝑖, 𝑗) ∈ 𝑀} denote the “left halves” of the edges in the matching 𝑀. Without loss

of generality, we can assume that 𝑘′ B |𝐿| ≥ 𝑘−1
2 , as otherwise we can swap the left and right

halves of 𝑀. Let ℒ′′ : {−1, 1}𝐿 → {−1, 1}2𝑁 be the linear code defined from ℒ as follows. For
each 𝑏 ∈ {−1, 1}𝐿, we first extend 𝑏 to be in {−1, 1}𝑘 by setting 𝑏 𝑗 = 1 for all 𝑗 ∉ 𝐿 (for 𝑏 ∈ {−1, 1}𝐿,
we shall abuse notation and think of 𝑏 as in {−1, 1}𝑘 using this trivial extension). Then, we let
𝑥 = ℒ(𝑏), and finally we let 𝑥′ B ℒ′(𝑥).

We now argue that ℒ′′ is a (2, 𝛿′)-linear LDC with 𝛿′ = Ω(𝛿/log 𝑛). Let 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 be the matrix

produced in Section 12.6.3. Similar to the proof of Lemma 12.4.8, we observe that for any nonzero

177

entry (®𝑆, ®𝑇) of 𝐵𝑖,𝑗 and any 𝑥 = ℒ(𝑏), it holds that 𝑥 ®𝑆𝑥 ®𝑇 = 𝑏𝑖𝑏 𝑗 . Hence, for any codeword 𝑥′ ∈ ℒ′′,
it holds that 𝑥′®𝑆

𝑥′®𝑇
= 𝑏𝑖 , as 𝑏 𝑗 = 1 since 𝑗 ∉ 𝐿. We can thus use the 𝐵(𝐶,𝐶′,𝑄)

𝑖,𝑗 matrices to decode the
message bits.

Hence, it remains to argue that each 𝑖 ∈ 𝐿 admits a large matching on [2𝑁]. As before, let
𝐵
(𝑡)
𝑖,𝑗 =

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) · 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 and 𝐵𝑖,𝑗 =

∑𝑟
𝑡=0

1
𝐷𝑡
𝐵
(𝑡)
𝑖,𝑗 . We

also let 𝐵 =
∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝐵𝑖,𝑗 . We will view each 𝐵𝑖,𝑗 as a weighted graph, where 𝑚𝑖,𝑗 denotes the total

weight of the edges in 𝐵𝑖,𝑗 . By the observation in the previous paragraph, if we let 𝑥′ be a codeword
of ℒ′′, we have that 𝑥′⊤𝐵𝑥′ = 𝑚, where 𝑚 =

∑
(𝑖,𝑗)∈𝑀 𝑚𝑖,𝑗 . Moreover, 𝑚 = 1

2 val(𝑓𝑀) ≥ 𝑘
4𝑛(𝑟+1) .

By construction, the ℓ1-norm of any row/column of 𝐵𝑖,𝑗 is at most Δ = Γ
𝑁 ·𝛿𝑛 . We can thus find

an unweighted matching 𝐺𝑖,𝑗 of size 𝑚𝑖,𝑗/2Δ where 𝐺𝑖,𝑗 is a subgraph of 𝐵𝑖,𝑗 . Indeed, this follows
by a simple greedy algorithm, where we pick an arbitrary edge in 𝐵𝑖,𝑗 to add to 𝐺𝑖,𝑗 and then
remove all the neighboring edges. At each step, the total weight of all the edges we remove is at
most 2Δ, and therefore we construct a matching of size at least 𝑚𝑖,𝑗/2Δ.

We are now ready to apply Fact 3.3.4. We have∑
(𝑖,𝑗)∈𝑀

|𝐺𝑖,𝑗 | ≥
1

2Δ

∑
(𝑖,𝑗)∈𝑀

𝑚𝑖,𝑗 =
𝑚

2Δ
≥ 𝑘

8𝑛(𝑟 + 1)Δ =
𝑘𝑁 · 𝛿

8Γ(𝑟 + 1) ≥ Ω

(
𝛿𝑘𝑁
log 𝑛

)
,

where we use that Γ = 𝑂(1) is a constant and 𝑟 = 𝑂(log 𝑛). Hence, by Fact 3.3.4, we have that

𝑘 − 1
2
≤ |𝐿| ≤ 𝑂

(
log 𝑛
𝛿
· log𝑁

)
≤ 𝑂

(
log 𝑛
𝛿
· 𝑟ℓ log 𝑛

)
= 𝑂

(
log4 𝑛

𝛿2

)
.

Hence, 𝑘 ≤ 𝑂(log4 𝑛/𝛿2), which finishes the proof of Theorem 8 for the case of F = F2, up to the
proof of Lemma 12.6.4.

12.7 Row pruning: proof of Lemma 12.6.4

In this section, we prove Lemma 12.6.4, restated below.

Lemma 12.7.1 (First and conditional moment bounds). Fix 𝑟 ≥ 1, 𝑖, 𝑗 ∈ [𝑘], and let ℋ (𝑟+1)
𝑖

and
ℋ (𝑟+1)
𝑗

denote the (𝑟 + 1)-chain hypergraph with heads in 𝑖 and 𝑗 respectively. Let ∪𝑟
𝑡=0 ∪𝑄∈𝑃𝑡 ℋ

(𝑟+1,𝑄)
𝑖

be

a smooth partition ofℋ (𝑟+1)
𝑖

, as defined in Definitions 12.5.2 and 12.5.4. Let 𝐴𝑖,𝑗 be the Kikuchi matrix
defined in Definition 12.6.2, which depends on 𝑟, 𝑖, 𝑗, and the pieces ∪𝑄∈𝑃𝑡ℋ (𝑟+1,𝑄) of the refinement, and
the matching 𝑀.

Let ®𝑆 = (𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟) ∈
([𝑛]
ℓ

)2𝑟+2
be a row of the matrix, and let deg𝑖,𝑗(®𝑆) denote the ℓ1-norm

of the ®𝑆-th row of 𝐴𝑖,𝑗 . Then,

E®𝑆[deg𝑖,𝑗(®𝑆)] ≤
1

𝑁 · 𝛿𝑛 ,

where 𝑁 =
(𝑛
ℓ

)2𝑟+2.
Furthermore, let 𝑡 ∈ {0, . . . , 𝑟}, 𝑄 ∈ 𝑃𝑡 , and 𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
and 𝐶′ ∈ ℋ (𝑟+1,𝑄)

𝑗
. Let 𝒟𝐶,𝐶′,𝑄 denote

the uniform distribution over rows of 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 that contain a nonzero entry. Then, if 𝑑𝑟+1 ≥ 𝑛 and

178

ℓ ≥ 2𝑑(𝑟 + 1)/𝛿, it holds that

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗(®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 4
𝑁𝛿𝑛

.

Proof. We begin by estimating the first moment, i.e., E®𝑆[deg𝑖,𝑗(®𝑆)]. By definition, we have that

E®𝑆[deg𝑖,𝑗(®𝑆)] =
1
𝑁

𝑟∑
𝑡=0

1
𝐷𝑡

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) ·𝐷𝑡

=
1
𝑁

𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) .

We note that the latter quantity is simply equal to 1
𝑁

∑
𝐶∈ℋ (𝑟+1)

𝑖

wtℋ (𝑟+1)
𝑖

(𝐶)∑
𝐶′∈ℋ (𝑟+1,𝑄)

𝑗
:𝐶∈ℋ (𝑟+1,𝑄)

𝑖

1
wt(𝑄) ·

wtℋ (𝑟+1)
𝑗

(𝐶′), where the second sum is over 𝐶′ ∈ ℋ (𝑟+1,𝑄)
𝑗

where 𝑄 is determined by the choice of

𝐶. We note that for any 𝑄,
∑
𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑗

(𝐶′) ≤ wt(𝑄)
𝛿𝑛 , and hence we conclude that

E®𝑆[deg𝑖,𝑗(®𝑆)] ≤
1
𝑁

∑
𝐶∈ℋ (𝑟+1)

𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) 1
𝛿𝑛
≤ 1
𝑁 · 𝛿𝑛 .

Next, we estimate the conditional first moment. Fix a 𝑄 ∈ 𝑃𝑡 for some 0 ≤ 𝑡 ≤ 𝑟, and let
𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
,𝐶′ ∈ ℋ (𝑟+1,𝑄)

𝑗
. We now bound E®𝑆∼𝒟𝐶,𝐶′,𝑄

[deg𝑖,𝑗(®𝑆)], where 𝒟𝐶,𝐶′,𝑄 is the uniform

distribution over all rows ®𝑆 such that 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 has a nonzero entry. We note that there are exactly

𝐷𝑡 such rows.
We shall proceed in two steps. First, we consider a fixed (𝐷,𝐷′,𝑄′)with 𝐷 ∈ ℋ (𝑟+1,𝑄′)

𝑖
,𝐷′ ∈

ℋ (𝑟+1,𝑄′)
𝑗

. Let |𝑄′ | = 𝑡′ + 1. We will upper bound the number of rows ®𝑆 where 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 and

𝐴
(𝐷,𝐷′,𝑄′)
𝑖,𝑗 , normalized by the factor of 1/𝐷𝑡′ . This will depend on the number of shared vertices 𝑧

between these two pairs of chains, for an appropriate definition of shared vertices. Then, we will,
for each choice of 𝑧, bound the total weight of the number of chains (𝐷,𝐷′,𝑄′) have “intersection
𝑧” with (𝐶,𝐶′,𝑄), which will conclude the argument.

Step 1: bounding the normalized number of entries for a fixed (𝑫,𝑫′,𝑸′). To begin, we will
define the number of “shared vertices” between two pairs of chains (𝐶,𝐶′,𝑄) and (𝐷,𝐷′,𝑄′).

Definition 12.7.2 (Left vertices). Let (𝐶,𝐶′,𝑄) be such that 𝑄 ∈ 𝑃𝑡 and 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

,𝐶′ ∈
ℋ (𝑟+1,𝑄)
𝑗

. Let 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑟+1) and 𝐶′ = (𝑗, 𝑣′1, 𝑣′2, 𝑢′1, . . . , 𝑢′
𝑟+1). The tuple of left vertices

of (𝐶,𝐶′,𝑄) is the sequence (𝑣1, 𝑣3, 𝑣5, . . . , 𝑣2(𝑟−𝑡)+1,𝑤1, . . . ,𝑤𝑡 , 𝑣′1, 𝑣′3, . . . , 𝑣′2(𝑟−𝑡)+1), where 𝐶ℎ =

{𝑣2ℎ+1, 𝑣2ℎ+2} = {𝑤ℎ ,𝑄ℎ}. We denote this sequence by 𝐿(𝐶,𝐶′,𝑄).

Remark 12.7.3. The reason for the above definition is the following. If ®𝑆 is a row where the matrix
𝐴
(𝐶,𝐶′,𝑄)
𝑖,𝑗 has a nonzero entry, then the entries of 𝐿(𝐶,𝐶′,𝑄) (in order) are contained in the sets
(𝑆0, . . . , 𝑆𝑟−𝑡 , 𝑆𝑟−𝑡+1, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟−𝑡), e.g., 𝑣1 ∈ 𝑆0, 𝑣3 ∈ 𝑆1, 𝑤1 ∈ 𝑆𝑟−𝑡+1, etc.

179

Definition 12.7.4 (Intersection patterns). Let (𝐶,𝐶′,𝑄) and (𝐷,𝐷′,𝑄′) be such that 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

,𝐶′ ∈
ℋ (𝑟+1,𝑄)
𝑗

and 𝐷 ∈ ℋ (𝑟+1,𝑄′)
𝑖

,𝐷′ ∈ ℋ (𝑟+1,𝑄′)
𝑗

.

The intersection pattern of (𝐶,𝐶′,𝑄) and (𝐷,𝐷′,𝑄′), given by 𝑍 ∈ {0, 1}2𝑟+2−𝑡 , is defined as
𝑍ℎ = 1 if 𝐿(𝐶,𝐶′,𝑄)ℎ = 𝐿(𝐷,𝐷′,𝑄′)ℎ , and it is 0 otherwise. Note that the sequences 𝐿(𝐶,𝐶′,𝑄)
and 𝐿(𝐷,𝐷′,𝑄′)may not have the same length; if ℎ is “out of bounds” for 𝐿(𝐷,𝐷′,𝑄′), then we
set 𝑍ℎ = 0.

We now fix (𝐷,𝐷′,𝑄′) and count the number of rows as a function of the intersection pattern
𝑍. Let 𝑡′ = |𝑄′ | − 1. We have two cases. In the first case, 𝑡 ≥ 𝑡′, which implies that |𝐿(𝐶,𝐶′,𝑄)| ≤
|𝐿(𝐷,𝐷′,𝑄)|. We observe that in order for a row ®𝑆 to have a nonzero entry for both pairs of
chains, the following must hold:

1. for ℎ = 1, . . . , 𝑟 + 2 (the first 𝑟 + 1 sets), we have {𝐿(𝐶,𝐶′,𝑄)ℎ , 𝐿(𝐷,𝐷′,𝑄)ℎ} ⊆ 𝑆ℎ ,

2. for ℎ = 𝑟 + 2, . . . , 2𝑟 + 3− 𝑡 (the next 𝑟 + 1− 𝑡 sets), we have {𝐿(𝐶,𝐶′,𝑄)ℎ , 𝐿(𝐷,𝐷′,𝑄)ℎ} ⊆
𝑆′
ℎ−(𝑟+2),

3. for ℎ = 2𝑟 + 3− 𝑡, . . . , 2𝑟 + 2− 𝑡′ (the next 𝑡 − 𝑡′ sets), we have 𝐿(𝐷,𝐷′,𝑄)ℎ ∈ 𝑆′ℎ−(𝑟+2),

4. for ℎ = 2𝑟 + 2− 𝑡′ + 1, . . . , 2𝑟 + 2 (the final 𝑡′ sets), we have 𝑆′
ℎ−(𝑟+2) is arbitrary.

We observe that for each intersection point, i.e., an ℎ such that 𝐿(𝐶,𝐶′,𝑄)ℎ = 𝐿(𝐷,𝐷′,𝑄)ℎ , there
are

(𝑛
ℓ−1

)
choices for the corresponding set, as it needs to only contain one vertex. For each

nonintersection point, i.e., an ℎ ∈ {1, . . . , 2𝑟 + 2− 𝑡} where 𝐿(𝐶,𝐶′,𝑄)ℎ ≠ 𝐿(𝐷,𝐷′,𝑄)ℎ , we have(𝑛
ℓ−2

)
choices, because the set needs to contain both vertices. Finally, we have

(𝑛
ℓ−1

)
choices for

each of the 𝑡 − 𝑡′ sets in the third case, and
(𝑛
ℓ

)
choices for the last 𝑡 sets in the final case. In total,

we have
(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

)2𝑟+2−𝑡−𝑧 (𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′.
In the second case, 𝑡 ≤ 𝑡′. We observe that by swapping the roles of 𝑡 and 𝑡′ above, we get a

bound of
(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

)2𝑟+2−𝑡′−𝑧 (𝑛
ℓ−1

) 𝑡′−𝑡 (𝑛
ℓ

) 𝑡 .
Now, although the above counts are different, we observe that they are within constant factors

of each other. Indeed, we have

(𝑛
ℓ−2

)−𝑡′ (𝑛
ℓ−1

) 𝑡′−𝑡 (𝑛
ℓ

) 𝑡(𝑛
ℓ−2

)−𝑡 (𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′ = ((
𝑛

ℓ − 2

)−1 (
𝑛

ℓ − 1

)2 (
𝑛

ℓ

)−1
) 𝑡′−𝑡

=

(
ℓ (𝑛 − ℓ + 2)

(ℓ − 1)(𝑛 − ℓ + 1)

) 𝑡′−𝑡
=

(
1+ 𝑛 − 1
(ℓ − 1)(𝑛 − ℓ + 1)

) 𝑡′−𝑡
,

and this ratio is between 1
2 and 2 since |𝑡′ − 𝑡 | ≤ 𝑟 and 𝑛−1

(ℓ−1)(𝑛−ℓ+1) ≥
2
ℓ ≥ 1

Γ𝑟 for a sufficiently large
constant Γ.

Next, we observe that while we have an upper bound of 2 ·
(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

)2𝑟+2−𝑡 (𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′ on
the number of rows, which depends on 𝑡′, each entry has a scaling factor of 1

𝐷𝑡′
. We now give an

180

upper bound on the normalized number of entries that does not depend on 𝑡′. We have

2

(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

)2𝑟+2−𝑡−𝑧 (𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′
𝐷𝑡′

= 2

(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

)2𝑟+2−𝑡−𝑧 (𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′(𝑛−2
ℓ−1

)2𝑟+2−𝑡′ ·
(𝑛
ℓ

) 𝑡′ = 2
((𝑛
ℓ−2

)(𝑛
ℓ−1

))2𝑟+2−𝑡−𝑧

·
((𝑛

ℓ−1

)(𝑛−2
ℓ−1

))2𝑟+2−𝑡′

= 2
(
ℓ − 1

𝑛 − ℓ + 2

)2𝑟+2−𝑡−𝑧
·
(

𝑛(𝑛 − 1)
(𝑛 − ℓ + 1)(𝑛 − ℓ)

)2𝑟+2−𝑡′

≤ 2
(
ℓ

𝑛

)2𝑟+2−𝑡−𝑧
·
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
.

Step 2: bounding the weight of (𝑫, 𝑫′,𝑸′) with a fixed intersection pattern 𝒁. Let us fix the in-
tersection pattern 𝑍 and then determine the total weight of all (𝐷,𝐷′,𝑄′)with 𝐷 ∈ ℋ (𝑟+1,𝑄′)

𝑖
,𝐷′ ∈

ℋ (𝑟+1,𝑄′)
𝑗

with these intersection points. To do this, we will apply Lemma 12.5.7.

First, we observe that fixing an intersection pattern induces a 𝑍(1) ∈ {[𝑛] ∪ {★}}𝑟+1 × {★},
simply by filling in 𝑍(1)’s non-★ entries with the appropriate vertices of 𝐿(𝐶,𝐶′,𝑄). We note
that such a 𝑍(1) never has the tail filled in, as the tail is not a potential intersection point. By
Lemma 12.5.7, this implies that the total weight of 𝐷 that contain 𝑍(1) is at most (𝛿𝑛)−|𝑍(1) |.

Next, we bound the total weight of all 𝐷′ that are valid for a fixed 𝐷. We observe that
𝐷 ∈ ℋ (𝑟+1,𝑄′)

𝑖
for some 𝑖, and hence𝐷′must be inℋ (𝑟+1,𝑄′)

𝑗
. We note that 𝑍 induces an intersection

pattern 𝑍(2) on𝐷′, and moreover 𝑍(2) does not intersect with the “𝑄′-part” of the chain𝐷′, namely
the links that contain vertices from 𝑄′. So, it follows that 𝐷′ contains (𝑍(2),𝑄′).

By Lemma 12.5.7, we have that the total weight of all 𝐷′ is at most wt(𝑄)𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) |−1. As
each entry in 𝐴(𝐷,𝐷′,𝑄′)

𝑖,𝑗 is scaled down by a factor of wt(𝑄′), the normalized weight is therefore at

most 𝑑 |𝑍
(2) |(𝛿𝑛)−|𝑍(2) |−1.

In total, we get a bound of (𝛿𝑛)−|𝑍(1) | · 𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) |−1, which is at most 𝑑 |𝑍 |(𝛿𝑛)−|𝑍 |−1. Here,
we use that |𝑍 | = |𝑍(1) | + |𝑍(2) |.
Putting it all together. By combining steps (1) and (2) (and paying an additional

(2𝑟+2−𝑡
𝑧

)
factor

to choose the nonzero entries of 𝑍), we thus obtain the final bound of

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗(®𝑆)] ≤

1
𝐷𝑡

2𝑟+2−𝑡∑
𝑧=0

(
2𝑟 + 2− 𝑡

𝑧

)
·
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 2

(
ℓ

𝑛

)2𝑟+2−𝑡−𝑧
· 𝑑𝑧(𝛿𝑛)−𝑧−1

≤
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
2
𝐷𝑡

(
ℓ

𝑛

)2𝑟+2−𝑡
·

2𝑟+2−𝑡∑
𝑧=0

(2𝑟 + 2− 𝑡)𝑧 ·
(
ℓ

𝑛

)−𝑧
· 𝑑𝑧(𝛿𝑛)−𝑧−1

=

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
2

𝐷𝑡 · 𝛿𝑛

(
ℓ

𝑛

)2𝑟+2−𝑡
·

2𝑟+2−𝑡∑
𝑧=0

(
(2𝑟 + 2− 𝑡) · 𝑑

𝛿ℓ

) 𝑧
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4

𝐷𝑡 · 𝛿𝑛

(
ℓ

𝑛

)2𝑟+2−𝑡
,

where we use that ℓ ≥ 2𝑑(2𝑟 + 2)/𝛿.

181

To finish the proof, we need to compute 𝐷𝑡
𝑁 . We have that

𝐷𝑡

𝑁
=

(𝑛−2
ℓ−1

)2𝑟+2−𝑡 ·
(𝑛
ℓ

) 𝑡(𝑛
ℓ

)2𝑟+2
=

((𝑛−2
ℓ−1

)(𝑛
ℓ

))2𝑟+2−𝑡

=

(
ℓ (𝑛 − ℓ)
𝑛(𝑛 − 1)

)2𝑟+2−𝑡

≥
(
ℓ

𝑛

)2𝑟+2−𝑡
·
(
1− ℓ − 1

𝑛 − 1

)2𝑟+2−𝑡
≥

(
ℓ

𝑛

)2𝑟+2−𝑡 (
1− (ℓ − 1)(2𝑟 + 2)

𝑛 − 1

)
=

(
ℓ

𝑛

)2𝑟+2−𝑡 (
1− 𝑂(ℓ 𝑟)

𝑛

)
,

Thus,

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗(®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4

𝐷𝑡 · 𝛿𝑛

(
ℓ

𝑛

)2𝑟+2−𝑡
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4

𝑁 · 𝛿𝑛 ,

which finishes the proof. □

12.8 From adaptive decoders to chain XOR polynomials

In this section, we begin the proof of Theorem 10. We start with a (possibly nonlinear) smooth
3-LCC with a (possibly adaptive) decoder. First, we define an abstract notion of a (smooth)
3-LCC hypergraph collection, which captures the fact that, unlike the linear case (Theorem 8),
our hyperedges might now have size 2 in addition to being of size 3. Then, we will use the
hypergraph collection to define a family of chain XOR instances similar to Definition 12.4.7.
Finally, we will use Kikuchi matrices to argue (Lemma 12.8.6) that any “chain XOR instance”
from a 3-LCC hypergraph collection must have small value. Finally, we will show that, given a
3-LCC, we can extract a 3-LCC hypergraph collection such that the resulting chain XOR instance
has high value, which finishes the proof.

We begin by defining a (𝛿-smooth) 3-LCC hypergraph collection. One should view this as a
generalization of the standard “combinatorial” definition of (linear) 3-LCCs (Definition 3.3.9).
In the below definition, the hypergraph 𝐻𝑢 is 3-uniform and intuitively captures decoding
constraints that make 3 queries; the hypergraph 𝐺𝑢 is 2-uniform, i.e., it is a graph, and it
intuitively captures decoding constraints that only make at most 2 queries.
Definition 12.8.1 (3-LCC hypergraph collection). A 3-LCC hypergraph collection on [𝑛] vertices
is a collection of pairs (𝐻𝑢 ,𝐺𝑢), one for each 𝑢 ∈ [𝑛], where 𝐺𝑢 is a (weighted and directed)
2-uniform hypergraph and 𝐻𝑢 is a (weighted and directed) 3-uniform hypergraph14 such that for
every 𝑢 ∈ [𝑛], ∑𝐶∈[𝑛]2 wt𝐺𝑢 (𝐶) +

∑
𝐶∈[𝑛]3 wt𝐻𝑢 (𝐶) ≤ 4 and

∑
𝐶∈[𝑛]3 wt𝐻𝑢 (𝐶) ≤ 1.

For each 𝑢 ∈ [𝑛], we define the polynomial 𝑓𝑢(𝑥) = 𝜙𝑢(𝑥)+𝜓𝑢(𝑥), where 𝜙𝑢(𝑥) =
∑
𝐶∈[𝑛]2 wt𝐺𝑢 (𝐶)𝑥𝐶

is the homogeneous degree-2 component of 𝑓𝑢 and 𝜓𝑢(𝑥) =
∑
𝐶∈[𝑛]3 wt𝐻𝑢 (𝐶)𝑥𝐶 is the homoge-

neous degree-3 component of 𝑓𝑢 .
We furthermore say that the hypergraph collection is 𝛿-smooth if for every 𝑢, 𝑣 ∈ [𝑛],∑

𝐶∈[𝑛]2:𝑣∈𝐶 wt𝐺𝑢 (𝐶) +
∑
𝐶∈[𝑛]3:𝑣∈𝐶 wt𝐻𝑢 (𝐶) ≤ 1

𝛿𝑛

We now use the above collection of polynomials to construct chain XOR polynomials. To
define these polynomials, we first define the 𝑡-chain hypergraphsℋ (𝑡)𝑢 and 𝒢(𝑡)𝑢 .

14Note that Definition 3.2.1 requires that each tuple with nonzero weight has distinct vertices.

182

Definition 12.8.2 (𝑡-chain hypergraph ℋ (𝑡)𝑢 , Definition 12.4.1). Let 𝑡 ≥ 1 be an integer, and
let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 3-LCC hypergraph collection. For any 𝑢 ∈ [𝑛], let ℋ (𝑡)𝑢 denote
the weight function wtℋ (𝑡)𝑢 : [𝑛]3𝑡+1 → R≥0, i.e., from length 3𝑡 + 1 tuples of the form 𝐶 =

(𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑢𝑡) to R≥0, where wtℋ (𝑡)𝑢 (𝐶) = 0 if 𝑢0 ≠ 𝑢, and
otherwise:

wtℋ (𝑡)𝑢 (𝐶) =
𝑡−1∏
ℎ=0

wt𝐻𝑢ℎ (𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) .

For a 𝑡-chain 𝐶, we call 𝑢0 the head, the 𝑢ℎ ’s the pivots for 1 ≤ ℎ ≤ 𝑡 − 1, and 𝑢𝑡 the tail of the chain
𝐶. The monomial associated to 𝐶, which we denote by 𝑔𝐶 , is defined to be 𝑥𝑢𝑡

∏𝑡−1
ℎ=0 𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 .

We call the 𝑡-chain hypergraphℋ (𝑡)𝑢 “hypergraph-tailed”, as the last link uses one of the hyper-
graphs 𝐻𝑣 .

We note that for any 𝑢 ∈ [𝑛],ℋ (1)𝑢 is equivalent to 𝐻𝑢 , i.e.,ℋ (1)𝑢 = {𝑢} ×𝐻𝑢 .

Definition 12.8.3 (𝑡-chain hypergraph 𝒢(𝑡)𝑢). Let 𝑡 ≥ 1 be an integer, and let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a
3-LCC hypergraph collection. For any 𝑢 ∈ [𝑛], let 𝒢(𝑡)𝑢 denote the weight function wt𝒢(𝑡)𝑢 : [𝑛]3𝑡 →
R≥0, i.e., from length 3𝑡 tuples of the form 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2)
to R≥0, where wt𝒢(𝑡)𝑢 (𝐶) = 0 if 𝑢0 ≠ 𝑢, and otherwise:

wtℋ (𝑡)𝑢 (𝐶) = wt𝐺𝑢𝑡−1
(𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2) ·

𝑡−2∏
ℎ=0

wt𝐻𝑢ℎ (𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) .

Note that the chains in 𝒢(𝑡) have no tail vertex 𝑢𝑡 . The monomial associated to 𝐶, which we denote
by 𝑥𝐶 , is defined to be 𝑔𝐶 =

∏𝑡−1
ℎ=0 𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 . We call the 𝑡-chain hypergraph 𝒢(𝑡)𝑢 “graph-tailed”,

as the last link uses one of the graphs 𝐺𝑣 .

We note that for any 𝑢 ∈ [𝑛], 𝒢(1)𝑢 is equivalent to 𝐺𝑢 , i.e., 𝒢(1)𝑢 = {𝑢} ×𝐺𝑢 .
We are now ready to define the chain XOR instances.

Definition 12.8.4 (Chain XOR instance). Let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 3-LCC hypergraph collection.
Let 𝑘 ≤ 𝑛 and 𝑟 ≥ 0 be an integer. For each 1 ≤ 𝑡 ≤ 𝑟 + 1, we define the “graph-tailed” polynomial

Φ
(𝑡)
𝑏
(𝑥) =

𝑘∑
𝑖=1

∑
𝐶∈[𝑛]3𝑡

wt𝒢(𝑡)
𝑖

(𝐶) · 𝑏𝑖𝑔𝐶 ,

and we also define the “hypergraph-tailed” polynomial

Ψ𝑏(𝑥) =
𝑘∑
𝑖=1

∑
𝐶∈[𝑛]3(𝑟+1)+1

wtℋ (𝑟+1)
𝑖

(𝐶) · 𝑏𝑖𝑔𝐶 .

We will omit the subscript 𝑏 when it is clear from context. We note that in the above definitions,
each 𝑔𝐶 is the monomial associated with the chain 𝐶, as defined in Definitions 12.8.2 and 12.8.3.
Remark 12.8.5 (Iterative view of the chain construction). We can view the chains as being con-
structed iteratively in the following way. We start with a fixed 𝑢0, and have 2 choices. We either
pick a hyperedge (𝑣1, 𝑎2, 𝑣2, 𝑎2, 𝑢1) ∈ 𝐻𝑢0 , and then recurse onto 𝑢1, or else we pick an edge
(𝑣1, 𝑎2, 𝑣2, 𝑎2) ∈ 𝐺𝑢0 , in which case the chain is in 𝒢(1)𝑢 and we stop.

183

With the above setup in hand, we can now state the main technical lemma.
Lemma 12.8.6 (Refuting the chain XOR instances). Let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 𝛿-smooth 3-LCC
hypergraph collection and let 𝑘 ≤ 𝑛. Let ℓ , 𝑑, 𝑟 ≥ 1 be parameters such that 𝑑𝑟+1 ≥ 𝑛, ℓ ≥ 6𝑑(𝑟 + 1)/𝛿,
and ℓ 𝑟 = 𝑜(𝑛). Furthermore, suppose that 𝑘 ≥ 1/𝛿. Then, for each 1 ≤ 𝑡 ≤ 𝑟 + 1, it holds that

E𝑏←{−1,1}𝑘 [val(Φ(𝑡)
𝑏
)] ≤ 𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤
(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2
.

We observe that we have already proven Lemma 12.4.9, which is the second inequality above.
Thus, we only need to show the first inequality, i.e., we need to refute the graph-tailed instances,
which we will do in Section 12.9.

Finally, to finish the proof of Theorem 10, it remains to argue that, given any (3, 𝛿, 𝜀)-smooth
LCC, one can extract a 3-LCC hypergraph collection such that the resulting chain XOR polynomi-
als (Definition 12.8.4) have large value. This is captured by the following lemma.
Lemma 12.8.7. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a 3-LCC. Let 𝒞′ : {−1, 1}𝑘 → {−1, 1}4𝑛 be defined as
𝒞′(𝑏) = (𝒞(𝑏),−𝒞(𝑏), 1𝑛 , (−1)𝑛), i.e., 𝒞′ is a “padded” version of 𝒞, and let Dec(·) denote its (possibly
adaptive) decoder.

Then, there exists a 3-LCC hypergraph collection (𝐻𝑢 ,𝐺𝑢)𝑢∈[4𝑛] with the following properties.

1. For every 1 ≤ 𝑢 ≤ 4𝑛 and every codeword 𝑥 ∈ 𝒞′, we have 𝑓𝑢(𝑥)𝑥𝑢 = E[Dec(𝑥)(𝑢)𝑥𝑢], where the
expectation is taken over the randomness of the decoder. In particular, if 𝒞 has completeness 1− 𝜀,
then 𝑓𝑢(𝑥)𝑥𝑢 ≥ 1− 2𝜀 for all 𝑥 ∈ 𝒞′.

2. If 𝒞 is systematic and has completeness 1− 𝜀, then for any 𝑟 such that 1− 2(𝑟 + 1)𝜀 > 0, it holds
that for every 𝑏 ∈ {−1, 1}𝑘 and 𝑥 = 𝒞′(𝑏), Ψ𝑏(𝑥) +

∑𝑟+1
𝑡=1 Φ

(𝑡)
𝑏
(𝑥) ≥ 𝑘(1− 2(𝑟 + 1)𝜀).

3. If 𝒞 is 𝛿-smooth, then 𝒞′ is 𝛿/4-smooth, and (𝐻𝑢 ,𝐺𝑢)𝑢∈[𝑛′] is a (𝛿/𝑐)-smooth hypergraph collection
for some constant 𝑐 ≥ 4.

We prove Lemma 12.8.7 in Section 12.8.1.
Let us now finish the proof of Theorem 10.

Proof of Theorem 10. Let 𝒞 be a 3-LCC that is 𝛿-smooth and has completeness 1− 𝜀. By Fact 3.3.8,
by adjusting 𝑘 by a factor of log(1/𝛿), we can assume that 𝒞 is additionally systematic. By
Lemma 12.8.7, the padded code 𝒞′ is (𝛿/4)-smooth with completeness 1 − 𝜀 and has a (𝛿/4)-
smooth uniform hypergraph collection (𝐻𝑢 ,𝐺𝑢)𝑢∈[4𝑛]. Let 𝑟 be such that 1 − 2(𝑟 + 1)𝜀 > 0. We
have that for every 𝑏 ∈ {−1, 1}𝑘 and 𝑥 = 𝒞′(𝑏), Ψ𝑏(𝑥) +

∑𝑟+1
𝑡=1 Φ

(𝑡)
𝑏
(𝑥) ≥ 𝑘(1− 2(𝑟 + 1)𝜀).

On the other hand, by Lemma 12.8.6, it holds that

E𝑏←{−1,1}𝑘 [val(Φ(𝑡)
𝑏
)] ≤ 𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤
(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2
,

where 𝑑 and ℓ are parameters chosen so that 𝑑𝑟 ≥ 𝑛, ℓ ≥ 6𝑑𝑟/𝛿, and ℓ 𝑟 = 𝑜(𝑛).
First, let us handle the case in Theorem 10 when 𝜀 = 0. Here, we set 𝑟 = 𝑂(log 𝑛), 𝑑 = 2, and

ℓ = 𝑂(𝑑𝑟/𝛿) = 𝛿−1𝑂(log 𝑛). We clearly have that all the conditions of Lemma 12.8.6 are satisfied.

184

Hence, we have that

𝑘 = 𝑘(1− 2(𝑟 + 1)𝜀) ≤ E𝑏[Ψ𝑏(𝒞′(𝑏)) +
𝑟+1∑
𝑡=1

Φ
(𝑡)
𝑏
(𝒞′(𝑏))]

≤ (𝑟 + 1) ·𝑂(
√
𝑘ℓ 𝑟 log 𝑛) +

(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2
≤ 𝑂 ©­«

√
𝑘 log5 𝑛

𝛿
+
𝑘3/4 log5/4 𝑛

𝛿3/4
ª®¬

=⇒ 𝑘 ≤ 𝑂(log5 𝑛/𝛿3) ,

which proves the statement when 𝜀 = 0.
Now, let us consider the case when 𝜀 > 0. When we apply Lemma 12.8.6, we now set

parameters as follows. Let 𝜂 > 0, and set 𝑟0 be such that 𝑟0 + 1 = ⌊ 1−𝜂
2𝜀 ⌋ and 𝑟1 = log2 𝑛. We then

let 𝑟 = min(𝑟0, 𝑟1). Note that by choice of 𝑟, 1−𝜂
2𝜀 ≥ 𝑟 + 1, and so 1 − 2(𝑟 + 1)𝜀 ≥ 2𝜂, and we also

have 𝑟 ≤ 𝑂(log 𝑛).
Now, we set 𝑑 to be such that 𝑑𝑟+1 ≥ 𝑛, so we have to set 𝑑 = 𝑛1/(𝑟+1). Finally, we set ℓ = 𝑑𝑟/𝛿.

We thus have that

2𝜂𝑘 = 𝑘(1− 2(𝑟 + 1)𝜀) ≤ E𝑏[Ψ𝑏(𝒞′(𝑏)) +
𝑟+1∑
𝑡=1

Φ
(𝑡)
𝑏
(𝒞′(𝑏))]

≤ (𝑟 + 1) ·𝑂(
√
𝑘ℓ 𝑟 log 𝑛) +

(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2

≤ (𝑟 + 1) ·𝑂(
√
𝑘𝑛1/(𝑟+1)𝑟2 log 𝑛/𝛿) +

(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘𝑛1/(𝑟+1)𝑟2 log 𝑛/𝛿)

)1/2
.

This implies that either

𝜂2𝑘 ≤ 1
𝛿
·𝑂(𝑛1/(𝑟+1) log5 𝑛) ,

or

𝜂4𝑘 ≤ 1
𝛿3
𝑂(𝑛1/(𝑟+1) log5 𝑛) .

The second equation is always the dominant term, which finishes the proof. Note that the final
log(1/𝛿) loss comes from Fact 3.3.8. □

The remainder of this section is dedicated to proving Lemma 12.8.7, which we do in Sec-
tion 12.8.1. We will prove Lemma 12.8.6 in Section 12.9, which will complete the proof of
Theorem 10.

We also make the following observation, which bounds the total weight of the hyperedges in
ℋ (𝑡)𝑢 and 𝒢(𝑡)𝑢 .
Observation 12.8.8. Let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 3-LCC hypergraph collection. Then, for any 𝑡 ≥ 1
and 𝑢 ∈ [𝑛], it holds that

∑
𝐶∈[𝑛]3𝑡+1 wtℋ (𝑡)𝑢 (𝐶) ≤ 1 and

∑
𝐶∈[𝑛]3𝑡 wt𝒢(𝑡)𝑢 (𝐶) ≤ 4.

185

Proof. Let us first prove the statement forℋ (𝑡)𝑢 . This follows by induction. The base case of 𝑡 = 1
is simple, as by definition we have∑

𝐶∈[𝑛]4
wtℋ (1)𝑢 (𝐶) =

∑
(𝑢,𝐶)∈[𝑛]4

wtℋ (1)𝑢 (𝑢,𝐶) =
∑
𝐶∈[𝑛]3

wt𝐻𝑢 (𝐶) ≤ 1 .

We now show the induction step. Let 𝐶 ∈ [𝑛]3𝑡+1 have tail 𝑢𝑡 . Let 𝑆 denote the set of tuples
in [𝑛]3𝑡+4 that extend 𝐶, i.e., the first 3𝑡 + 1 coordinates are 𝐶. We observe that 𝑆 = 𝐶 × [𝑛]3.
Moreover, we have ∑

𝐶′∈𝑆
wtℋ (𝑡+1)

𝑢
(𝐶′) =

∑
𝐶′∈[𝑛]3

wtℋ (𝑡)𝑢 (𝐶)wt𝐻𝑢𝑡 (𝐶
′) ≤ wtℋ (𝑡)𝑢 (𝐶) .

Summing over 𝐶 and applying the induction hypothesis proves the claim.
Now, we prove the statement for 𝒢(𝑡)𝑢 . Let 𝐶 ∈ [𝑛]3𝑡+1 have tail 𝑢𝑡 . Let 𝑆 denote the set of

tuples in [𝑛]3𝑡+3 that extend 𝐶, i.e., the first 3𝑡 + 1 coordinates are 𝐶. We observe that 𝑆 = 𝐶 × [𝑛]2.
We have ∑

𝐶′∈𝑆
wt𝒢(𝑡+1)

𝑢
(𝐶′) =

∑
𝐶′∈[𝑛]2

wtℋ (𝑡)𝑢 (𝐶)wt𝐺𝑢𝑡 (𝐶
′) ≤ 4wtℋ (𝑡)𝑢 (𝐶) .

Summing over 𝐶 and applying the claim forℋ (𝑡)𝑢 then proves the claim for 𝒢(𝑡)𝑢 . □

12.8.1 Constructing polynomials from adaptive smoothed decoders

In this subsection, we prove Lemma 12.8.7. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a 3-LCC with an
adaptive decoder Dec(·). The vast majority of the proof will be for proving Item (1), which will
be done in two steps. First, we will prove the following lemma, which is an analogue of Item (1)
in Lemma 12.8.7 but for the AND polynomial, which is defined below.
Definition 12.8.9 (AND polynomial). Let AND: {−1, 1}2 → {0, 1} be the function where AND(𝜎, 𝜎′) =
1 if 𝜎 = 𝜎′ = 1, and 0 otherwise. We note that AND(𝜎, 𝜎′) = 1

2 (1+ 𝜎) · 1
2 (1+ 𝜎′).

Lemma 12.8.10. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a 3-LCC with an adaptive decoder Dec(·) that uses at
most r bits of randomness. Then, for every 𝑢 ∈ [𝑛], there are weight functions wt𝐻𝑢 : [𝑛] × {−1, 1} ×
[𝑛] × {−1, 1} × [𝑛] × {0, 1}r → R≥0 and wt𝐺𝑢 : [𝑛] × {−1, 1} × [𝑛] × {−1, 1} × {0, 1}r → R≥0 and bits
𝜎(𝑢,𝑣1,𝑎1,𝑣2,𝑎2,𝑣3,r) ∈ {−1, 1}, 𝜎(𝑢,𝑣1,𝑎1,𝑣2,𝑎2,r) ∈ {−1, 1} such that for every 𝑥 ∈ 𝒞,

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,r)

©­«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ = 4 , (12.6)

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,r)

©­«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = 1 , (12.7)

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,r)

©­«wt𝐺𝑢 (𝐶)𝜎(𝑢,𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)𝜎(𝑢,𝐶,𝑣3)𝑥𝑣3
ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = E[Dec𝑥(𝑢)] ,

(12.8)

186

where the expectation E[Dec𝑥(𝑢)] is over the internal randomness of the decoder.
Furthermore, if Dec(·) is 𝛿-smooth, then for any 𝑣 ∈ [𝑛], we have∑

(𝐶,𝑣3)=(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3)
𝑣1=𝑣∨𝑣2=𝑣∨𝑣3=𝑣

wt𝐻𝑢 (𝐶, 𝑣3) +
∑

𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)
𝑣1=𝑣∨𝑣2=𝑣

wt𝐺𝑢 (𝐶) ≤
4
𝛿𝑛

.

We postpone the proof of Lemma 12.8.10 to Section 12.8.2, and now finish the rest of the proof
of Lemma 12.8.7.

Let 𝒞′ : {−1, 1}𝑘 → {−1, 1}4𝑛 be the “padded” version of 𝒞, i.e., for each 𝑏 ∈ {−1, 1}𝑘 , 𝒞′(𝑏) =
(𝒞(𝑏),−𝒞(𝑏), 1𝑛 , (−1)𝑛). Note that if 𝒞 is systematic, then so is 𝒞′.

Let us extend Dec(·) to be a decoder Dec′(·) for 𝒞′ by defining its behavior on 𝑢 ∈ {2𝑛 +
1, . . . , 4𝑛} to be: (1) if 𝑢 is a “1 bit”, i.e., 𝑢 ∈ {2𝑛 + 1, . . . , 3𝑛}, then Dec′(𝑢) queries a random pair
of the “padded” bits of the same sign (namely, it queries either two bits that are supposed to be 1
or two bits that are −1), and (2) if 𝑢 is a “−1 bit”, i.e., 𝑢 ∈ {3𝑛 + 1, . . . , 4𝑛}, then Dec(′𝑢) queries a
random pair of the “padded” bits that have opposite signs. We note that if the original decoder
Dec(·) has completeness 1− 𝜀, then so does the padded decoder Dec′(·), and if the original decoder
is 𝛿-smooth, then the padded decoder Dec′(·) is (𝛿/3)-smooth.

Proof of Item (1). We are now ready to prove Item (1) in Lemma 12.8.7. Fix 𝑢 ∈ [3𝑛]. We will
now construct the desired hypergraph pair (𝐻′𝑢 ,𝐺′𝑢) as follows.

First, if 𝑢 ∈ [4𝑛] \ [2𝑛] is one of the “constant” padded vertices, then this is simple. We let 𝐻′𝑢
be empty, i.e., all weights are 0, and if 𝑢 ∈ {𝑛 + 1, . . . , 2𝑛} is one of the “1 bit” padded vertices,
then we let 𝐺′𝑢 denote the graph with weight 1/2𝑛(𝑛 − 1) on all ordered pairs of vertices (𝑣1, 𝑣2)
where 𝑣1, 𝑣2 ∈ {2𝑛 + 1, . . . , 3𝑛} or 𝑣1, 𝑣2 ∈ {3𝑛 + 1, . . . , 4𝑛}. If 𝑢 ∈ {2𝑛 + 1, . . . , 3𝑛} is one of the
“−1 bit” padded vertices, then we let 𝐺′𝑢 denote the graph with weight 1/2𝑛2 on all ordered
pairs of vertices (𝑣1, 𝑣2) where 𝑣1 ∈ {2𝑛 + 1, . . . , 3𝑛}, 𝑣2 ∈ {3𝑛 + 1, . . . , 4𝑛} or vice-versa. It is
straightforward to observe that this satisfies the desired condition, as for every 𝑥 ∈ 𝒞′, 𝑥𝑣1𝑥𝑣2 = 1
if 𝑣1, 𝑣2 ∈ {𝑛 + 1, . . . , 2𝑛} or 𝑣1, 𝑣2 ∈ {2𝑛 + 1, . . . , 3𝑛}, and in the other case 𝑥𝑣1𝑥𝑣2 = −1 holds for
all codewords.

It remains to handle the case when 𝑢 ∈ [2𝑛]. We will do this for the case when 𝑢 ∈ [𝑛], and
then observe that we can handle the case of 𝑢 ∈ [2𝑛] \ [𝑛] by flipping the “sign” of the first query.

Let 𝑢 ∈ [𝑛]. We construct (𝐻′𝑢 ,𝐺′𝑢) from the pair (𝐻𝑢 ,𝐺𝑢) given to us in Lemma 12.8.10,
as follows. Recall that each term 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, r) with wt𝐺𝑢 (𝐶) > 0 contributes the term
wt𝐺𝑢 (𝐶)𝜎𝐶AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) in Eq. (12.8). We have that for any 𝑥 ∈ 𝒞′,

𝜎𝐶AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) =
1
4
𝜎𝐶 (1+ 𝑎1𝑥𝑣1 + 𝑎2𝑥𝑣2 + 𝑎1𝑎2𝑥𝑣1𝑥𝑣2)

=
1
4

(
𝑥
𝜎
(𝑣1)
𝐶

𝑥1(𝑣2) + 𝑥𝑎1𝑣1𝑥𝜎(𝑣2)
𝐶

+ 𝑥
𝜎
(𝑣1)
𝐶

𝑥𝑎2𝑣2 + 𝑥𝜎𝐶 𝑎1𝑣1𝑥𝑎2𝑣2

)
,

where (1) for any 𝜎 ∈ {−1, 1}, 𝑥𝜎(𝑣1) refers to the 𝑣1-th copy of 𝜎, i.e., if 𝜎 = 1 then 𝑥𝜎(𝑣1) = 𝑥2𝑛+𝑣1

and if 𝜎 = −1 then 𝑥𝜎(𝑣1) = 𝑥3𝑛+𝑣1 , and (2) 𝑥𝑎1𝑣1 is 𝑥𝑣1 if 𝑎1 = 1 and 𝑥𝑛+𝑣1 , i.e., the copy of −𝑥𝑣1 , if
𝑎1 = −1, and similar notation is used for 𝑥𝑣2 .

Now, we add 4 edges to 𝐺′𝑢 for each such edge in 𝐺𝑢 . Namely, for any 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, r)with
wt𝐺𝑢 (𝐶) > 0 and term wt𝐺𝑢 (𝐶)𝜎𝐶AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2), we add the 4 edges (𝜎(𝑣1)

𝐶
, 1(𝑣2)), (𝑎1𝑣1, 𝜎(𝑣2)

𝐶
),

(𝜎(𝑣1)
𝐶

, 𝑎2𝑣2), (𝜎𝐶𝑎1𝑣1, 𝑎2𝑣2) to 𝐺𝑢 , each with weight 1
4 wt𝐺𝑢 (𝐶). We note that it is possible to add

187

the same edge to 𝐺′𝑢 multiple times: in this case, we “merge” the edges by adding their weights
together.

We now process the edges in𝐻𝑢 to form𝐻′𝑢 in a similar way. The difference here is that we will
add the “degree 3 term” to 𝐻′𝑢 , and all other terms will again be added to 𝐺′𝑢 . More formally, each
term 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3, r)with wt𝐻𝑢 (𝐶) > 0 contributes the term wt𝐻𝑢 (𝐶)𝜎𝐶AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝑥𝑣3

in Eq. (12.8). From this term, we add the edge (𝜎𝐶𝑎1𝑣1, 𝑎2𝑣2, 𝑣3) to 𝐻′𝑢 with weight 1
4 wt𝐻𝑢 (𝐶), and

we add the 3 edges (𝜎(𝑣1)
𝐶

, 𝑣3), (𝜎𝐶𝑎1𝑣1, 𝑣3), (𝜎𝐶𝑎2𝑣2, 𝑣3) to 𝐺′𝑢 with weight 1
4 wt𝐺𝑢 (𝐶).

This defines the pair (𝐻′𝑢 ,𝐺′𝑢) for all 𝑢 ∈ [4𝑛] \ {𝑛 + 1, . . . , 2𝑛}. To define the pair for 𝑢 ∈
{𝑛 + 1, . . . , 2𝑛}, we simply observe that −𝑢 ∈ [𝑛], and so we flip the “sign” of the first vertex in
each edge in 𝐻′−𝑢 or 𝐺′−𝑢 , and this defines (𝐻′𝑢 ,𝐺′𝑢) for 𝑢 ∈ {𝑛 + 1, . . . , 2𝑛}.

We now need to show that the pair (𝐻′𝑢 ,𝐺′𝑢) satisfies the normalization conditions of Defi-
nition 12.8.1, namely that

∑
𝐶∈[𝑛]2 wt𝐺′𝑢 (𝐶) +

∑
𝐶∈[𝑛]3 wt𝐻′𝑢 (𝐶) ≤ 4 and

∑
𝐶∈[𝑛]3 wt𝐻′𝑢 (𝐶) ≤ 1. We

note that for 𝑢 ∈ [4𝑛] \ [2𝑛], this clearly holds, so it suffices to argue this for 𝑢 ∈ [𝑛] (which then
implies the statement for 𝑢 ∈ [2𝑛]). The first inequality follows from Eq. (12.6), as the total weight
of all edges is preserved. The second inequality follows because the total weight in 𝐻′𝑢 is at most
1/4 of the total weight in 𝐻𝑢 , which is at most 4.

Finally, to finish the proof of Item (1), let 𝑓𝑢 be the polynomial defined in Definition 12.8.1
from (𝐻′𝑢 ,𝐺′𝑢). We clearly have that for any 𝑥 ∈ 𝒞′, 𝑓𝑢(𝑥) = E[Dec′(𝑢)], as by construction 𝑓𝑢(𝑥) is
equal to the left hand side of Eq. (12.8).

Proof of Item (2). We are now ready to prove Item (2). For simplicity, we will replace 4𝑛
with 𝑛. Let 𝑝𝒢(𝑡)𝑢 (𝑥) =

∑
𝐶∈[𝑛]3𝑡 wt𝒢(𝑡)𝑢 (𝐶) · 𝑥𝑢𝑔𝐶 and 𝑝ℋ (𝑡)𝑢

=
∑
𝐶∈[𝑛]3𝑡+1 wtℋ (𝑡)𝑢 (𝐶) · 𝑥𝑢𝑔𝐶 denote the

“graph-tailed” and “hypergraph-tailed” polynomials with head 𝑢, defined in a similar manner to
the polynomials in Definition 12.8.4. We will show by induction on 𝑟 that if 1− 2(𝑟 + 1)𝜀 > 0, then
𝑝ℋ (𝑟+1)

𝑢
(𝑥) +∑𝑟+1

𝑡=1 𝑝𝒢(𝑟+1)
𝑢
(𝑥) ≥ 1− 2(𝑟 + 1)𝜀.

For the base case, we observe that when 𝑟 = 0, 𝑝ℋ (1)𝑢 (𝑥) = 𝑥𝑢𝜓𝑢(𝑥) and 𝑝𝒢(1)𝑢
(𝑥) = 𝑥𝑢𝜙𝑢(𝑥)

(see Definition 12.8.1). Therefore, for any 𝑥 ∈ 𝒞′, 𝑝ℋ (1)𝑢 (𝑥) + 𝑝𝒢(1)𝑢 (𝑥) = 𝑥𝑢 𝑓𝑢(𝑥) = E[𝑥𝑢Dec(𝑥)(𝑢)] ≥
1 − 2𝜀, as 𝒞 (and therefore 𝒞′) has completeness 1 − 𝜀. Note that we also have |1 − 𝑥𝑢 𝑓𝑢(𝑥)| =
|𝑥𝑢 − 𝑓𝑢(𝑥)| ≤ 2𝜀 for all 𝑥 ∈ 𝒞′.

For the induction step, we have by definition (see Remark 12.8.5) that for any 𝑥 ∈ 𝒞′,

𝑝ℋ (𝑟+1)
𝑢
(𝑥) + 𝑝𝒢(𝑟+1)

𝑢 (𝑥) − 𝑝ℋ (𝑟)𝑢 (𝑥) =
∑
𝑣∈[𝑛]

∑
𝐶∈[𝑛]3𝑟+1 :tail(𝐶)=𝑣

wtℋ (𝑟)𝑢 (𝐶) · 𝑥𝑢𝑔𝐶 · (𝑥𝑣 𝑓𝑣(𝑥) − 1)

≤ ©­«
∑
𝑣∈[𝑛]

∑
𝐶∈[𝑛]3𝑟+1:tail(𝐶)=𝑣

wtℋ (𝑟)𝑢 (𝐶) · |𝑥𝑢𝑔𝐶 | · |1− (𝑥𝑣 𝑓𝑣(𝑥))|
ª®¬

≤ ©­«
∑
𝑣∈[𝑛]

∑
𝐶∈[𝑛]3𝑟+1:tail(𝐶)=𝑣

wtℋ (𝑟)𝑢 (𝐶) · 1 · 2𝜀
ª®¬

≤ 2𝜀 .

The final inequality uses the fact that
∑
𝐶∈[𝑛]3𝑟+1 wtℋ (𝑟)𝑢 (𝐶) ≤ 1, which follows by induction using

that
∑
𝐶∈[𝑛]3 wt𝐻′𝑢 (𝐶) ≤ 1.

188

Hence, we conclude that

𝑝ℋ (𝑟+1)
𝑢
(𝑥) +

𝑟+1∑
𝑡=1

𝑝𝒢(𝑟+1)
𝑢
(𝑥) =

(
𝑝ℋ (𝑟+1)

𝑢
(𝑥) + 𝑝𝒢(𝑟+1)

𝑢
(𝑥) − 𝑝ℋ (𝑟)𝑢 (𝑥)

)
+

(
𝑝ℋ (𝑟)𝑢
(𝑥) +

𝑟∑
𝑡=1

𝑝𝒢(𝑟+1)
𝑢
(𝑥)

)
≥ −2𝜀 + 1− 2𝑟𝜀 ,

which finishes the proof of Item (2).

Proof of Item (3). The proof of smoothness is straightforward. First, if 𝑢 ∈ [4𝑛] \ [2𝑛], then the
condition immediately holds by construction. Let us now consider the interesting case of 𝑢 ∈ [𝑛].
By Lemma 12.8.10, the pair (𝐻𝑢 ,𝐺𝑢) satisfies the smoothness condition. Thus, it remains to verify
that the pair (𝐻′𝑢 ,𝐺′𝑢) is 𝛿/𝑐)-smooth for some constant 𝑐. This follows immediately because, for
each edge in 𝐻′𝑢 or 𝐺′𝑢 that contains some 𝑣′ ∈ [4𝑛], we can uniquely identify 𝑣 ∈ [𝑛] such that the
“original edge” in (𝐻𝑢 ,𝐺𝑢) that the new edge “comes from” contains 𝑣. Hence, if we consider the
total weight of all hyperedges in (𝐻′𝑢 ,𝐺′𝑢) containing some vertex 𝑣′ ∈ [4𝑛], there is a 𝑣 ∈ [𝑛] such
that the weight is upper bounded by the total weight of all hyperedges in (𝐻𝑢 ,𝐺𝑢) containing
𝑣. The extra constant factor 𝑐 comes from the fact that the number of vertices is now 4𝑛 and the
constant factor loss in Lemma 12.8.10.

12.8.2 Proof of Lemma 12.8.10

In this subsection, we prove Lemma 12.8.10. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a 3-LCC with an
adaptive decoder. For each 𝑢 ∈ [𝑛], we use the decoding algorithm Dec(𝑢) to define weight
functions wt𝐻𝑢 and wt𝐺𝑢 . In what follows, we consider a fixed 𝑢 ∈ [𝑛].

First, without loss of generality, we may assume that the decoder Dec(𝑢) makes exactly 3
queries. We can view the decoder as a decision tree: first, Dec(𝑢) generates the first query 𝑣1

from some distribution. Then, Dec(𝑢) receives a bit 𝑎1 ∈ {−1, 1}, the answer to the query 𝑣1.
This answer selects the branch of the decision tree, which determines the distribution of the
next query 𝑣2. Then, the decoder receives another answer 𝑎2 ∈ {−1, 1}, which selects the branch
of the decision tree, and gives the distribution of the final query 𝑣3. Finally, the decoder first
selects some randomness r ∈ {0, 1}r, receives an answer 𝑎3, and then it computes a (deterministic)
function 𝑓(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3,r) of 𝑎3 to produce its output. This function is deterministic because the
randomness is handled in r. We note that there are exactly 4 valid deterministic functions: 1, −1,
𝑎3, and −𝑎3, so 𝑓(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3,r) must be one of these.

For each choice of 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3, r) ∈ ([𝑛] × {−1, 1})2 × [𝑛] × {0, 1}r, we let wt𝑢(𝐶) be
the probability that the decoder makes the set of queries 𝐶 (with the appropriate answers) when
given oracle access to any 𝑥 that is consistent with 𝐶, meaning that 𝑥𝑣1 = 𝑎1 and 𝑥𝑣2 = 𝑎2. Indeed,
this does not depend on the choice of 𝑥, as there is some probability 𝑝𝑣1 that the decoder queries
𝑣1 (which does not depend on 𝑥), and then given 𝑥𝑣1 = 𝑎1, there is a probability 𝑝𝑣2 that the
decoder queries 𝑣2, etc.

We now partition the query sets into two types. If 𝐶 is such that 𝑓(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3,r) is a constant
function 𝜎 ∈ {−1, 1} (so it does not depend on 𝑎3), then we set wt𝐺𝑢 (𝑣1, 𝑎1, 𝑣2, 𝑎2, r) = wt𝑢(𝐶) and
𝜎(𝑣1,𝑎1,𝑣2,𝑎2,r) = 𝜎. Otherwise, we have that 𝐶 is such that 𝑓(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3,r) = 𝜎𝑎3, and then we set
wt𝐻𝑢 (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3, r) = wt𝑢(𝐶) and 𝜎(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3,r) = 𝜎.

We now show that this weight function has the desired properties. Indeed, we have essentially
encoded the behavior of the arbitrary decoder as this system of polynomials.

189

First, let us show that ∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,r)

©­«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ = 4 .

Consider the decoder Dec′(𝑢) that simulates Dec𝑢 by generating random bits as the answers to
the queries of Dec(𝑢). It follows that the probability that Dec′(𝑢) queries a particular 𝐶 is wt(𝐶)/4,
and hence Eq. (12.6) holds.

Next, let us show that for any 𝑥 ∈ 𝒞∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,r)

©­«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = 1 .

Indeed, we observe that for any 𝑥 ∈ 𝒞 and any 𝐶, wt𝐻𝑢 (𝐶, 𝑣3) ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) is 0 if 𝐶 is
inconsistent with 𝑥, and otherwise it is the probability that Dec𝑥(𝑢) queries 𝐶, and the same
statement holds for wt𝐺𝑢 (𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2). Hence, the sum must be 1.

Finally, we have

𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,r)

©­«wt𝐺𝑢 (𝐶)𝜎𝐶 +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)𝜎(𝐶,𝑣3)𝑥𝑣3
ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = E[Dec𝑥(𝑢)𝑥𝑢] .

Indeed, this is because for any 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3, r) and any 𝑥 ∈ 𝒞, then the execution
of Dec(𝑥)(𝑢) queries 𝐶 with probability wt𝐻𝑢 (𝐶, 𝑣3)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2), and then the output of
the decoder is the decoding function, which is 𝜎(𝐶,𝑣3)𝑥𝑣3 . A similar statement holds for 𝐶 =

(𝑣1, 𝑎1, 𝑣2, 𝑎2, r) as well, which finishes the proof.

12.9 Refuting the graph-tail instances

In this section, we prove the first equation of Lemma 12.8.6. Let 𝑟 ≥ 1 and let 1 ≤ 𝑡 ≤ 𝑟 + 1 be
fixed. We begin by defining the Kikuchi matrices.
Definition 12.9.1. Let 𝑟 ≥ 1 and 1 ≤ 𝑡 ≤ 𝑟+1. Let 𝑖 ∈ [𝑘]. For a tuple 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, . . . , 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2) ∈
[𝑛]3𝑡 , we define the matrix 𝐴(𝐶)

𝑖
∈ {0, 1}𝑁 where 𝑁 =

(𝑛
ℓ

) 𝑡 , to be the matrix indexed by tuples

of sets ®𝑆 = (𝑆0, . . . , 𝑆𝑡−1), where 𝐴(𝐶)
𝑖
((𝑆0, . . . , 𝑆𝑡−1), (𝑇0, . . . ,𝑇𝑡−1)) = 1 if for all ℎ = 0, . . . , 𝑡 − 1,

𝑆ℎ ⊕ 𝑇ℎ = {𝑣2ℎ+1, 𝑣2ℎ+2} with 𝑣2ℎ+1 ∈ 𝑆ℎ , 𝑣2ℎ+2 ∈ 𝑇ℎ . If this does not hold, then the entry of the
matrix is 0.

We let 𝐴𝑖 = 1
𝐷𝑡

∑
𝐶∈[𝑛]3𝑡 wt𝒢(𝑡)

𝑖

(𝐶)𝐴(𝐶)
𝑖

and 𝐴 =
∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 . Here, 𝐷𝑡 =

(𝑛−2
ℓ−1

) 𝑡
.

Next, we relate Φ(𝑡)(𝑥) to a quadratic form on the matrix 𝐴.
Lemma 12.9.2. Let 𝑥 ∈ {−1, 1}𝑛 , and let 𝑥′ ∈ {−1, 1}𝑁 , where 𝑁 =

(𝑛
ℓ

) 𝑡 , denote the vector where
the (𝑆0, 𝑆1, . . . , 𝑆𝑡−1)-th entry of 𝑥′ is

∏𝑡−1
ℎ=0 𝑥𝑆ℎ . Let 𝑖 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Then, for any 𝐶 =

(𝑖, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, . . . , 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2) ∈ [𝑛]3𝑡 , it holds that

𝑥′⊤𝐴(𝐶)
𝑖
𝑥′ = 𝐷𝑡

𝑡−1∏
ℎ=0

𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 ,

190

i.e., the product of the monomials associated to 𝐶, where 𝐷𝑡 =
(𝑛−2
ℓ−1

) 𝑡
. Moreover, for any matrix 𝐵(𝐶)

𝑖

obtained by “zeroing out” exactly 𝛼𝐷𝑡 entries of 𝐴(𝐶)
𝑖

, the equality holds with a factor of 1− 𝛼 on the right.
In particular, 𝑥′⊤𝐴𝑥′ = Φ(𝑡)(𝑥).

Proof. Let ®𝑆 = (𝑆0, 𝑆1, . . . , 𝑆𝑡−1) and ®𝑇 = (𝑇0, . . . ,𝑇𝑡−1) be such that 𝐴(𝐶)
𝑖
(®𝑆, ®𝑇) = 1. Then, we have

that

𝑥′®𝑆
𝑥′®𝑇

=

𝑡−1∏
ℎ=0

𝑥𝑆ℎ𝑥𝑇ℎ =

𝑡−1∏
ℎ=0

𝑥𝑆ℎ⊕𝑇ℎ =
𝑡−1∏
ℎ=0

𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 ,

which is equal to the product of monomials on the right-hand side of the equation we wish to
show.

It thus remains to argue that 𝐴(𝐶)
𝑖

has exactly 𝐷𝑡 nonzero entries. We observe that, for each
ℎ = 0, . . . , 𝑡 − 1, there are exactly

(𝑛−2
ℓ−1

)
pairs (𝑆ℎ ,𝑇ℎ) such that 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ with 𝑣2ℎ+1 ∈ 𝑆ℎ and

𝑣2ℎ+2 ∈ 𝑇ℎ . Indeed, this is because by Definition 3.2.1, these vertices must be distinct, and then
we must simply choose a set of size ℓ − 1 that does not contain either of 𝑣2ℎ+1 and 𝑣2ℎ+2 and this
determines 𝑆ℎ and 𝑇ℎ . Thus, 𝐷𝑡 =

(𝑛−2
ℓ−1

) 𝑡
, as required. □

We would like to now apply matrix Khintchine (Fact 3.4.2) to bound E𝑏[∥𝐴∥2] and thus
bound E𝑏[val(Φ(𝑡)

𝑏
(𝑥))]. However, to do this, we need good bounds on the ∥𝐴𝑖 ∥2 of the individual

matrices 𝐴𝑖 . It turns out that the bounds we require for this approach to work are false, but one
can find a submatrix 𝐵𝑖 of 𝐴𝑖 such that the bounds hold. To argue this, we will need the following
first moment bounds.
Lemma 12.9.3 (First and conditional moment bounds). Fix 𝑟 ≥ 1, 1 ≤ 𝑡 ≤ 𝑟 + 1, and 𝑖 ∈ [𝑘]. Let 𝐴𝑖
be the Kikuchi matrix defined in Definition 12.9.1.

Let ®𝑆 = (𝑆0, . . . , 𝑆𝑡−1) ∈
([𝑛]
ℓ

) 𝑡
be a row of the matrix, and let deg𝑖(®𝑆) denote the ℓ1-norm of the ®𝑆-th

row of 𝐴𝑖 . Then,

E®𝑆[deg𝑖(®𝑆)] ≤
4
𝑁

,

where 𝑁 =
(𝑛
ℓ

) 𝑡 .
Furthermore, let 𝐶 ∈ [𝑛]3𝑡 be a chain with head 𝑖. Let𝒟𝐶 denote the uniform distribution over rows

of 𝐴(𝐶)
𝑖

that contain a nonzero entry. Then, it holds that

E®𝑆∼𝒟𝐶
[deg𝑖(®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 16
𝑁

.

Finally, the same bounds hold for the columns of the matrix.
With Lemma 12.9.3, we can now do the following. Let Γ be a sufficiently large constant, let

ℬ1 = { ®𝑆 : deg𝑖(®𝑆) ≥ Γ/𝑁} be the set of rows with ℓ1-norm at least Γ/𝑁 , and similarly let ℬ2 be
defined for the columns. We observe that by the conditional moment bounds in Lemma 12.9.3
and Markov’s inequality, each 𝐴

(𝐶)
𝑖

has at least 1 − 𝑂(1/Γ)-fraction of its nonzero rows not in
ℬ1, and similarly for columns and ℬ2. It thus follows that after setting all the rows in ℬ1 and
columns in ℬ2 to 0, the resulting matrix still has at least 1−𝑂(1/Γ)-fraction of its original nonzero
entries. By taking Γ large enough, we can ensure that this fraction is at least 1/2. Now, we let 𝐵(𝐶)

𝑖

191

be the matrix where we have deleted all rows in ℬ1 and columns in ℬ2 from 𝐴
(𝐶)
𝑖

, and we have

additionally set more entries to 0 so that 𝐵(𝐶)
𝑖

has exactly 𝐷𝑡/2 nonzero entries, where 𝑡 is such
that 𝐶 ∈ [𝑛]3𝑡 .

Let us define: 𝐵𝑖 = 1
𝐷𝑡

∑
𝐶∈[𝑛]3𝑡 wt𝒢(𝑡)

𝑖

(𝐶)𝐵(𝐶)
𝑖

and 𝐵 =
∑𝑘
𝑖=1 𝑏𝑖𝐵𝑖 . By Lemma 12.9.2 (and the

“moreover” part), we have that for every 𝑥 ∈ {−1, 1}𝑛 , there exists 𝑥′ ∈ {−1, 1}𝑁 such that
𝑥′⊤𝐵𝑥′ = 1

2Φ
(𝑡)(𝑥). By construction, we have that ∥𝐵𝑖 ∥2 ≤ Γ/𝑁 , as this is an upper bound on the

ℓ1-norm of any row/column in 𝐵𝑖 .
Thus, applying matrix Khintchine (Fact 3.4.2), we obtain

E𝑏[val(Φ(𝑡)
𝑏
)] ≤ E𝑏[𝑁 ∥𝐵∥2] ≤ 𝑁 ·

Γ

𝑁
𝑂(

√
𝑘 log𝑁) = 𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

where we use that Γ is constant. This finishes the proof of the first equation in Lemma 12.8.6, up
to the proof of Lemma 12.9.3.

Proof of Lemma 12.9.3. We will only prove the statement for the rows. One can observe from the
proof that it will immediately hold for the columns also.

We begin by estimating the first moment, i.e., E®𝑆[deg𝑖(®𝑆)]. By definition, we have that

E®𝑆[deg𝑖(®𝑆)] =
1
𝑁

1
𝐷𝑡

∑
𝐶∈[𝑛]3𝑡

wt𝒢(𝑡)
𝑖

(𝐶) ·𝐷𝑡 ≤
4
𝑁

,

as the sum of the weights of all chains is at most 4 by Observation 12.8.8.
We now fix 𝑡 ∈ {1, . . . , 𝑟 + 1}, 𝐶 ∈ [𝑛]3𝑡 with head 𝑖. Let𝒟𝐶 denote the uniform distribution

over rows of 𝐴(𝐶)
𝑖

that contain a nonzero entry. We compute the conditional expectation as follows.

First, we shall bound, for 𝐶′ ∈ [𝑛]3𝑡 with head 𝑖, the number of rows ®𝑆 such that 𝐴(𝐶)
𝑖

and 𝐴(𝐶
′)

𝑖

both have a nonzero entry in the ®𝑆-th row, normalized by the scaling factor 1/𝐷𝑡 . This quantity
will depend on some parameter 𝑧, which is the number of “shared vertices” between 𝐶 and
𝐶′. Then, we will bound, for each 𝑧, the total weight of all 𝐶′ ∈ [𝑛]3𝑡 that has at least 𝑧 “shared
vertices” with 𝐶.

Step 1: bounding the normalized number of entries for a fixed 𝑪′. To begin, we define the
number of “shared vertices” between two pairs of chains 𝐶 and 𝐶′.

Definition 12.9.4 (Left vertices). Let 𝐶 ∈ [𝑛]3𝑡 . The tuple of left vertices of 𝐶 is the sequence
𝐿(𝐶) = (𝑣1, 𝑣3, 𝑣5, . . . , 𝑣2(𝑡−1)+1). We note that if ®𝑆 is a row such that 𝐴(𝐶)

𝑖
has nonzero entry in the

®𝑆-th row, then 𝑣2ℎ+1 ∈ 𝑆ℎ for ℎ = 0, . . . , 𝑡 − 1.

Definition 12.9.5 (Intersection patterns). Let 𝐶 ∈ [𝑛]3𝑡 and 𝐶′ ∈ [𝑛]3𝑡 .
The intersection pattern of 𝐶 with 𝐶′, given by 𝑍 ∈ {0, 1}𝑡 , is defined as 𝑍ℎ = 1 if 𝐿(𝐶)ℎ = 𝐿(𝐶′)ℎ ,

and it is 0 otherwise.

We now fix 𝐶′ ∈ [𝑛]3𝑡 and count the number of rows as a function of the intersection pattern
𝑍. We observe that in order for a row ®𝑆 to have a nonzero entry for both pairs of chains, we must
have {𝐿(𝐶)ℎ , 𝐿(𝐶′)ℎ} ⊆ 𝑆ℎ−1 for all ℎ = 1, . . . , 𝑡.

We observe that for each intersection point, i.e., an ℎ such that 𝐿(𝐶)ℎ = 𝐿(𝐶′)ℎ , there are
(𝑛
ℓ−1

)
choices for the corresponding set, as it needs to only contain one vertex. For each nonintersection

192

point, i.e., an ℎ ∈ {1, . . . , 𝑡} where 𝐿(𝐶)ℎ ≠ 𝐿(𝐶′)ℎ , we have
(𝑛
ℓ−2

)
choices, because the set needs to

contain both vertices. In total, we have
(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

) 𝑡−𝑧 .
Now, this implies an upper bound of

(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

) 𝑡−𝑧/𝐷𝑡 on the normalized number of entries,
which we can compute as

(
𝑛

ℓ − 1

) 𝑧 (
𝑛

ℓ − 2

) 𝑡−𝑧
/𝐷𝑡 =

(𝑛
ℓ−1

) 𝑧 (𝑛
ℓ−2

) 𝑡−𝑧(𝑛−2
ℓ−1

) 𝑡 = 2
((𝑛
ℓ−2

)(𝑛
ℓ−1

)) 𝑡−𝑧 · ((𝑛
ℓ−1

)(𝑛−2
ℓ−1

)) 𝑡
≤

(
ℓ − 1

𝑛 − ℓ + 2

) 𝑡−𝑧
·
(

𝑛(𝑛 − 1)
(𝑛 − ℓ + 1)(𝑛 − ℓ)

) 𝑡
≤

(
ℓ

𝑛

) 𝑡−𝑧
·
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
.

Step 2: bounding the weight of 𝑪′ with a fixed intersection pattern 𝒁. Let us fix the intersection
pattern 𝑍. We observe that this determines a set of |𝑍 | vertices that must be contained in 𝐶′.
We will abuse notation and let 𝑍 ∈ [𝑛] ∪ {★}𝑡 denote this sequence of vertices (with ★’s for the
unfixed entries). Let 𝑡′′ denote the largest ℎ ∈ {1, . . . , 𝑡} for which 𝑍𝑡′′ ≠ ★. We then have

∑
𝐶′∈[𝑛]3𝑡 :𝑍⊆𝐶

wt𝒢(𝑡)
𝑖

(𝐶)

=
∑

𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©­«
∑

𝐶′∈[𝑛]3(𝑡−𝑡′′)
wt𝒢(𝑡)

𝑖

(𝐶′′,𝐶′)ª®¬
=

∑
𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©­«
∑

(𝑢,𝐶′)∈[𝑛]3(𝑡−𝑡′′)
wtℋ (𝑡′′)

𝑖

(𝐶′′, 𝑢)wt𝒢(𝑡−𝑡′′)𝑢
(𝑢,𝐶′)ª®¬

=
∑

𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©­«
∑
𝑢∈[𝑛]

wtℋ (𝑡′′)
𝑖

(𝐶′′, 𝑢)
∑

𝐶′∈[𝑛]3(𝑡−𝑡′′)−1

wt𝒢(𝑡−𝑡′′)𝑢
(𝑢,𝐶′)ª®¬

≤ 4
∑

𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©­«
∑
𝑢∈[𝑛]

wtℋ (𝑡′′)
𝑖

(𝐶′′, 𝑢)ª®¬ .

Above, we use that
∑
𝐶′∈[𝑛]3(𝑡−𝑡′′)−1 wt𝒢(𝑡−𝑡′′)𝑢

(𝑢,𝐶′) ≤ 4, which follows by Observation 12.8.8.

We now clearly have that
∑
𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

(∑
𝑢∈[𝑛]wtℋ (𝑡′′)

𝑖

(𝐶′′, 𝑢)
)
≤ 4(𝛿𝑛)−|𝑍 |. This follows by

𝛿-smoothness, as when we sum over a link with no fixed vertex, it has weight 1 (unless it is the
last link, where it has weight 4), and when we sum over a link where 𝑍ℎ ≠ ★, by 𝛿-smoothness it
must have weight at most 1/𝛿𝑛. We thus have a bound of 4(𝛿𝑛)−|𝑍 |.

Putting it all together. By combining steps (1) and (2) (and paying an additional
(𝑡
𝑧

)
factor to

193

choose the nonzero entries of 𝑍), we thus obtain the final bound of

E®𝑆∼𝒟𝐶
[deg𝑖(®𝑆)] ≤

4
𝐷𝑡

𝑡∑
𝑧=0

(
𝑡

𝑧

)
· 2

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
·
(
ℓ

𝑛

) 𝑡−𝑧
· (𝛿𝑛)−𝑧

≤
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
8
𝐷𝑡

(
ℓ

𝑛

) 𝑡
·

𝑡∑
𝑧=0

·
(
𝑡

𝛿ℓ

) 𝑧
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
8
𝐷𝑡

(
ℓ

𝑛

) 𝑡
·

𝑟∑
𝑧=0

·
(𝑟
𝛿ℓ

) 𝑧
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
16
𝐷𝑡

(
ℓ

𝑛

) 𝑡
,

where we use that ℓ ≥ 2𝑟/𝛿.
Finally, we need to compute 𝐷𝑡/𝑁 . We have

𝐷𝑡

𝑁
=

(𝑛−2
ℓ−1

) 𝑡 · (𝑛ℓ) 𝑟+1−𝑡(𝑛
ℓ

) 𝑟+1
=

((𝑛−2
ℓ−1

)(𝑛
ℓ

)) 𝑡
(
ℓ (𝑛 − ℓ)
𝑛(𝑛 − 1)

) 𝑡
≥

(
ℓ

𝑛

) 𝑡 (
1− 𝑂(ℓ 𝑟)

𝑛

)
.

Thus, we have

E®𝑆∼𝒟𝐶
[deg𝑖(®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
16
𝐷𝑡

(
ℓ

𝑛

) 𝑡
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
16
𝑁

,

which finishes the proof. □

12.10 Linear 3-LCC lower bounds over larger fields

In this section, we prove Theorem 8 in the case where the finite field F is not F2. The proof will
be nearly identical to the proof in Sections 12.4 to 12.7 for the case of F = F2, and so we shall only
give a proof sketch and mainly focus on the parts of the proof where modifications are required.

To begin, we recall that by Definition 3.3.9, there exist 3-uniform hypergraph matchings
𝐻1, . . . ,𝐻𝑛 , each of size at least 𝛿𝑛, such that for each 𝑢 ∈ [𝑛] and 𝐶 = {𝑣1, 𝑣2, 𝑣3} ∈ 𝐻𝑢 , there
exists 𝛼1, 𝛼2, 𝛼3 ∈ F \ {0} such that for every 𝑥 ∈ ℒ, it holds that 𝛼1𝑥𝑣1 + 𝛼2𝑥𝑣2 + 𝛼3𝑥𝑣3 = 𝑥𝑢 .
Furthermore, without loss of generality we can assume that the code is systematic, i.e., for any
𝑏 ∈ F𝑘 , 𝑥 = ℒ(𝑏) satisfies 𝑥𝑖 = 𝑏𝑖 for all 𝑖 ∈ [𝑘].

Next, let us define a codeℒ′ : {−1, 1}𝑘 → {−1, 1}𝑛(|F|−1)where, for each 𝑢 ∈ [𝑛] and 𝛼 ∈ F\ {0},
we set ℒ′(𝑏)(𝑢,𝛼) = 𝛼ℒ(𝑏)𝑢 . Let 𝑛′ = 𝑛(|F| − 1), and associate [𝑛′]with the set [𝑛] × (F \ {0}). We
now observe that ℒ′ is a 3-LCC in normal form with the additional property that the coefficients
of all constraints can be taken to be 1 without loss of generality. Formally, there exist 3-uniform

194

hypergraph matchings 𝐻1, . . . ,𝐻𝑛′ such that (1) each 𝐻𝑢 has |𝐻𝑢 | ≥ 𝛿𝑛′/(|F| − 1), and (2) for each
𝑢 ∈ [𝑛′] and each 𝐶 = {𝑣1, 𝑣2, 𝑣3} ∈ 𝐻(𝑢,𝛼), every 𝑥 ∈ ℒ satisfies 𝑥𝑢 = 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 .

Moreover, there is now a group action of (F \ {0},×) on the elements of [𝑛′], namely for
any 𝛼 ∈ F \ {0}, this action maps 𝑢 ↦→ 𝛼𝑢. We note that this action respects the constraints.
Namely, for 𝐶 = {𝑣1, 𝑣2, 𝑣3} ∈

([𝑛′]
3

)
, if we define 𝛼𝐶 = {𝛼𝑣1, 𝛼𝑣2, 𝛼𝑣3}, then we have that

𝐻𝛼𝑢 = 𝛼𝐻𝑢 = {𝛼𝐶 : 𝐶 ∈ 𝐻𝑢}. For the proof, we will be using the fact that there is a negation
action for 𝛼 = −1; this is because this transformation has made all coefficients in the constraints
be equal to 1, so to cancel a variable 𝑥𝑢 we shall only need 𝑥−𝑢 .

We shall now abuse notation and redefine 𝑛′ to be 𝑛, and we now simply assume that we
have this group action on [𝑛]. We have thus added this additional property to the code, and in
doing so we have only decreased 𝛿 by a factor of |F| − 1.

We now turn to the main part of the proof. Following Section 12.4, we define 𝑡-chains. The
definition of 𝑡-chains now requires a small modification because in the original definition we
formed longer chains by canceling a variable 𝑥𝑤 via the operation 𝑥𝑤 + 𝑥𝑤 = 0, which was specific
to the field F2. Now, we use the negation action on [𝑛] to cancel a variable.

Definition 12.10.1 (𝑡-chain hypergraph ℋ (𝑡)𝑢). Let 𝑡 ≥ 1 be an integer. For any 𝑢 ∈ [𝑛], let
ℋ (𝑡)𝑢 denote the weight function wtℋ (𝑡)𝑢 : [𝑛]3𝑡+1 → R≥0, i.e., from length 3𝑡 + 1 tuples of the
form 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑢𝑡) to R≥0, where wtℋ (𝑡)𝑢 (𝐶) = 0 if 𝑢0 ≠ 𝑢, and
otherwise:

wtℋ (𝑡)𝑢 (𝐶) =
𝑡−1∏
ℎ=0

wt𝐻−𝑢ℎ (𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) .

For a 𝑡-chain 𝐶, we call 𝑢0 the head, the 𝑢ℎ ’s the pivots for 1 ≤ ℎ ≤ 𝑡 − 1, and 𝑢𝑡 the tail of the chain
𝐶. The monomial associated to 𝐶, which we denote by 𝑔𝐶 , is defined to be 𝑥𝑢𝑡

∏𝑡−1
ℎ=0 𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 .

Given any 𝑡-chain 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑢𝑡), we let the negation of the
chain, denoted by −𝐶, be the chain (−𝑢0,−𝑣1,−𝑣2,−𝑢1, . . . ,−𝑢𝑡−1,−𝑣2(𝑡−1)+1,−𝑣2(𝑡−1)+2,−𝑢𝑡).

As before, we note that the linear equation defined by a 𝑡-chain or its negation is satisfied by
any 𝑥 ∈ ℒ.

In Section 12.4, we defined an instance polynomial Φ𝑏 related to the system of linear con-
straints. This was natural over F2 as there is a group isomorphism between (F2,+) and {−1, 1} ∈
(R,×). Here, we can make a similar definition by using a nontrivial group homomorphism 𝜋 from
(F,+) to (C,×) where the image of 𝜋 is contained in the unit circle {𝑧 ∈ C : |𝑧 | = 1}. However,
the instance polynomial Φ𝑏 (and the “decomposed polynomials” Ψ𝑖,𝑄 defined later) were only
formally needed to discuss sets of linear constraints that are satisfied by the subspace ℒ. Thus, to
avoid using the group homomorphism 𝜋, here we shall simply use these polynomials to refer to
the underlying sets of constraints.

We now perform the hypergraph decomposition step as in Section 12.5, which is unchanged
(once we use the updated definition of chain).15 This produces the subinstances Ψ(𝑡)(𝑥, 𝑦), as
before.

To finish the proof, we follow Section 12.6.5 in Section 12.6. A near-identical calculation

15We note that the naive application of the decomposition step will produce partitions ℋ (𝑟,𝑄) where ℋ (𝑟,−𝑄) is
not necessarily equal to −ℋ (𝑟,𝑄). This turns out to not matter in the proof; as it turns out, we merely need that both
decompositions ∪𝑄 −ℋ (𝑟,𝑄) and ∪𝑄ℋ (𝑟,𝑄) are both smooth partitions ofℋ (𝑟), which obviously holds. Nonetheless,
we note that one could also easily modify the decomposition step to respect this negation action.

195

as before shows that ℒ′′ is a (2, 𝛿)-LDC for 𝛿′ = Ω(𝛿/𝑟) provided that 𝛿2𝑘 ≤ 𝑂(log2 𝑛). We
then apply Fact 3.3.4, and conclude that 𝑘 ≤ 𝑂(log4 𝑛/𝛿2). In either case, we thus have that
𝑘 ≤ 𝑂(log4 𝑛/𝛿2).

Now, we recall that we had redefined 𝑛 to be 𝑛(|F| − 1) and 𝛿 to be 𝛿/(|F| − 1). Thus, we have
that for the original code, 𝑘𝛿2

(|F|−1)2 ≤ 𝑂(log4 𝑛) provided that |F| ≤ 𝑛. Note that if |F| ≥ 𝑘, then
Theorem 8 becomes trivial, and so we can assume that |F| ≤ 𝑘 ≤ 𝑛 (as we always have 𝑘 ≤ 𝑛).
This finishes the proof of Theorem 8 for larger fields.

12.11 Design 3-LCCs over F2 from Reed–Muller codes

In this section, we give a simple folklore construction of a design 3-LCCs (Definition 3.3.11) using
Reed–Muller codes.
Lemma 12.11.1 (Design 3-LCCs over F2 from Reed–Muller Codes). Let 𝑡 be an integer, and let
𝑘 = 1 + 𝑡 +

(𝑡
2

)
. Then, there is a design 3-LCC with blocklength 𝑛 = 4𝑡 of dimension 𝑘. In particular,

𝑛 ≤ 22
√

2𝑘 .
To prove this lemma, we will need the following fact about polynomials over F4.

Fact 12.11.2. Let 𝑓 (𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 be a degree-2 polynomial over F4. Then,

∑
𝛽∈F4

𝑓 (𝛽) = 0.

Proof. Recall that the field F4 is equivalent to the polynomial ring F2[𝛽] modulo the equation
𝛽2 + 𝛽 + 1 = 0. We have

𝑓 (0) = 𝛼0

𝑓 (1) = 𝛼0 + 𝛼1 + 𝛼2

𝑓 (𝛽) = 𝛼0 + 𝛼1𝛽 + 𝛼2𝛽
2

𝑓 (1+ 𝛽) = 𝛼0 + 𝛼1(1+ 𝛽) + 𝛼2(1+ 𝛽)2

=⇒ 𝑓 (0) + 𝑓 (1) + 𝑓 (𝛽) + 𝑓 (1+ 𝛽) = 𝛼0 · 4+ 𝛼1 · 2(1+ 𝛽) + 𝛼2(1+ 𝛽2 + (1+ 2𝛽 + 𝛽2))
= 0 ,

as 2 = 0 in F4. □

Proof of Lemma 12.11.1. We will define the code in two stages. First, we will define, via an encod-
ing map, a code over F4 with the desired dimension argue that it is a design 3-LCC. Then, we
will use this code to construct a code over F2.

Let𝒱 denote the vector space of degree ≤ 2 polynomials over F4 in 𝑡 variables 𝑥1, . . . , 𝑥𝑡 . We
note that𝒱 has dimension 𝑘.

For each 𝑏 ∈ F𝑘
4 , we encode 𝑏 by (1) letting 𝑓𝑏(𝑥1, . . . , 𝑥𝑡) be the degree-2 polynomial with

coefficients given by 𝑏, and (2) evaluating 𝑓𝑏 over all 𝑥 ∈ F𝑡
4; this yields an output 𝑍 ∈ F4

4𝑡 = F𝑛
4 ,

which is the encoding Enc(𝑏). We note that Enc is clearly an F4 linear map.
We now argue that this encoding map is a design 3-LCC. Indeed, we need to define a system of

constraints such that for every pair 𝑥(0), 𝑥(1) ∈ F𝑡
4, there is a unique constraint containing 𝑥(0), 𝑥(1).

Let 𝑥(𝛽) = 𝑥(0) + 𝛽(𝑥(1) − 𝑥(0)) and 𝑥(1+𝛽) = 𝑥(0) + (1 + 𝛽)(𝑥(1) − 𝑥(0)). We note that 𝑥(0), 𝑥(1), 𝑥(𝛽)

and 𝑥(1+𝛽) is the line 𝐿(𝑡) = 𝑥(0) + 𝜆(𝑥(1) − 𝑥(0)) containing 𝑥(0), 𝑥(1). Fix 𝑏 ∈ F𝑘
4 , and let 𝑓𝑏 be the

corresponding polynomial. We know that 𝑔(𝜆) = 𝑓𝑏(𝐿(𝜆)) is a degree-2 univariate polynomial
in 𝜆. Hence, by Fact 12.11.2, it follows that 𝑓𝑏(𝑥(0)) + 𝑓𝑏(𝑥(1)) + 𝑓𝑏(𝑥(𝛽)) + 𝑓𝑏(𝑥(1+𝛽)) = 0. Hence, for

196

each pair 𝑥(0), 𝑥(1) ∈ F𝑡
4, there exists a constraint containing this pair, and moreover, because two

points determine a line, any constraint containing this pair must be exactly this line. Thus, the
code given by Enc is a design 3-LCC.

We now use the above code to construct a binary code. Let Tr : F4 → F2 be the trace map.
We let𝒱′ be the image of𝒱 under Tr (applied element-wise to each vector in𝒱). We note that
because 𝒱 has dimension 𝑘 over F4 is a linear code, it is systematic, meaning that there is a
subset 𝑆 ⊆ F𝑡

4 such that𝒱|𝑆 = F𝑘
4 . Therefore, because the trace map is identity on F2, it follows

that𝒱′ |𝑆 = F𝑘
2 , i.e., that𝒱′ has dimension 𝑘 also.

To finish the proof, we need to argue that𝒱′ is a design 3-LCC. Let 𝑔 ∈ 𝒱′. We will show that
for each line 𝑥(0), 𝑥(1), 𝑥(𝛽), 𝑥(1+𝛽) in F𝑡

4 as defined earlier, it holds that 𝑔(𝑥(0)) + 𝑔(𝑥(1)) + 𝑔(𝑥(𝛽)) +
𝑔(𝑥(1+𝛽)) = 0. Indeed, we have that 𝑔 = Tr(𝑓) for some 𝑓 ∈ 𝒱, and that 𝑓 (𝑥(0)) + 𝑓 (𝑥(1)) + 𝑓 (𝑥(𝛽)) +
𝑓 (𝑥(1+𝛽)) = 0. Because all the coefficients in the linear constraint are 1, i.e., they are in F2, the
constraint still holds after applying Tr(·), as this is an F2-linear map. Thus, the constraint holds,
which finishes the proof. □

197

198

Part IV

Future Directions

199

Chapter 13

Kikuchi Matrices over Larger Alphabets

In the majority of this thesis, we have considered problems over F2 or binary alphabets. In this
section, we will sketch how to extend our methods (specifically, the basic approach outlined in
Section 2.1) to the case of arbitrary prime finite fields F𝑝 ; we remark that this likely extends to
arbitrary finite fields F𝑞 , rings Z𝑡 where 𝑡 is composite, and more generally any Abelian group
𝐺. It is likely not too difficult to prove generalizations of the main results of this thesis to larger
alphabets/fields using the ideas in this chapter, though we will not formally do so in this thesis.

As an example, let us consider task of refuting a random 𝑘-XOR instance Ψ in 𝑛 variables
over the finite field F𝑝 , where 𝑝 is prime and 𝑘 is even. We represent Ψ, the random system of
𝑘-sparse linear equations over F𝑝 , as a set 𝐻 ⊆ F𝑛

𝑝 where each 𝑧 ∈ 𝐻 is 𝑘-sparse, i.e., has exactly
𝑘 nonzero entries, along with “right-hand sides” 𝑏𝑧 ∈ F𝑝 for each 𝑧 ∈ 𝐻. The equations are then
given by

∑𝑛
𝑖=1 𝑥𝑖𝑧𝑖 = 𝑏𝑧 for all 𝑧 ∈ 𝐻, where we note that the left-hand side of the equation is

𝑘-sparse because 𝑧 contains 𝑘 nonzero coordinates.
In this section, we will sketch the proof of the following theorem.

Theorem 13.0.1 (Theorem 2.0.2 for random 𝑘-XOR over larger fields). Let 𝑘 be even. For every integer
ℓ ≥ 𝑘/2, there is an algorithm𝒜 that takes as input a 𝑘-XOR instance Ψ in 𝑛 variables 𝑥1, . . . , 𝑥𝑛 over
the field F𝑝 , specified by a set of 𝑘-sparse vectors 𝐻 ⊆ F𝑛

𝑝 of 𝑚 = |𝐻 | vectors, along with “right-hand sides”
𝑏𝑧 ∈ F𝑝 for each 𝑧 ∈ 𝐻. The algorithm 𝒜 outputs in ((𝑝 − 1)𝑛)𝑂(ℓ)-time a value alg-val(Ψ) ∈ [0,𝑚]
with the following two properties:
(1) val(Ψ) ≤ alg-val(Ψ) for all 𝑘-XOR instances Ψ over F𝑝 ;

(2) If 𝑚 ≥ 𝑂
(

1
𝜀2

(
𝑛(𝑝−1)
ℓ

) 𝑘
2−1

𝑛 log 𝑛
)

and the input Ψ is a random 𝑘-XOR instance, i.e., 𝐻 is a random

collection of 𝑚 𝑘-sparse vectors 𝑧 and each 𝑏𝑧 is chosen from F𝑝 uniformly at random, then with high
probability over the draw of 𝐻 and the 𝑏𝑧’s, it holds that alg-val(Ψ) ≤ 𝑚(1𝑝 + 𝜀).
Above, val(Ψ) denotes the maximum number of constraints that one can simultaneously

satisfy with a single assignment 𝑥 ∈ F𝑛
𝑝 .

Proof sketch of Theorem 13.0.1. We follow the basic approach outlined in Section 2.1. As a first step,
we need to encode the instance Ψ as a polynomial. We do this by embedding F𝑝 into C via the
map 𝛼 ∈ F𝑝 ↦→ 𝜔𝛼, where 𝜔 = 𝑒2𝜋𝑖/𝑝 ∈ C is a primitive 𝑝-th root of unity.

Namely, let Ω = {𝜔𝛼 : 𝛼 ∈ F𝑝} be the set of 𝑝-th roots of unity, and let Ω𝑛 denote the “F𝑝

hypercube” in C𝑛 . For an assignment 𝑥 ∈ F𝑛
𝑝 , let 𝑦 ∈ C𝑛 be given by 𝑦𝑖 = 𝜔𝑥𝑖 . We can then embed

201

a 𝑘-XOR constraint
∑𝑛
𝑖=1 𝑥𝑖𝑧𝑖 = 𝑏𝑧 into C via the polynomial

∑
𝛼∈F𝑝\{0}

(
𝜔−𝑏𝑧

∏𝑛
𝑖=1 𝑦

𝑧𝑖
𝑖

)𝛼; here, we
think of 𝑧𝑖 ∈ F𝑝 and 𝑏𝑧 ∈ F𝑝 as integers in {0, . . . , 𝑝 − 1}, and we note that this is well-defined
since 𝜔𝑝 = 1. Notice that this polynomial is 𝑝 − 1 if

∑𝑛
𝑖=1 𝑥𝑖𝑧𝑖 = 𝑏𝑧 , i.e., the constraint is satisfied,

and otherwise it is −1. Indeed, we have that 𝑦𝑧𝑖
𝑖

= 𝜔𝑥𝑖𝑧𝑖 , so that 𝜔−𝑏𝑧
∏𝑛

𝑖=1 𝑦
𝑧𝑖
𝑖

= 𝜔−𝑏𝑧+
∑𝑛
𝑖=1 𝑥𝑖𝑧𝑖 .

Therefore, if the constraint is unsatisfied, then the polynomial is
∑

𝛼≠0 𝜔
𝛼𝛽 for some 𝛽 ≠ 0, and so

it is −1 (as for any 𝛽 ≠ 0,
∑

𝛼∈F𝑝
𝜔𝛼𝛽 = 0), and if the constraint is satisfied, then this sum is simply

𝑝 − 1.
Thus, we let 𝑓 (𝑦) B ∑

𝑧∈𝐻
∑

𝛼≠0
(
𝜔−𝑏𝑧

∏𝑛
𝑖=1 𝑦

𝑧𝑖
𝑖

)𝛼
=

∑
𝑧∈𝐻

∑
𝛼≠0 𝜔

−𝛼𝑏𝑧 ∏𝑛
𝑖=1 𝑦

𝛼𝑧𝑖
𝑖

, and we have
argued that max𝑦∈Ω𝑛 𝑓 (𝑦) = 𝑞 val(Ψ) −𝑚. Hence, we define val(𝑓) B max𝑦∈Ω𝑛 𝑓 (𝑦), and we have
that val(Ψ) = 1

𝑞 (val(𝑓) +𝑚). It thus remains to give an algorithm to upper bound val(𝑓), which
we do by defining Kikuchi matrices over larger fields.

Definition 13.0.2 (Definition 2.1.1 for larger fields). Let 𝑝 be a prime. Let 𝑧 ∈ F𝑛
𝑝 be a 𝑘-sparse

vector where 𝑘 is even, and let ℓ ≥ 𝑘/2 be an integer. We define the matrix 𝐴𝑧 ∈ C𝑁×𝑁 as follows.
Let 𝑁 =

(𝑛
ℓ

)
(𝑝 − 1)ℓ and identify 𝑁 with ℓ -sparse vectors 𝑢 ∈ F𝑛

𝑝 . We let 𝐴𝑧(𝑢, 𝑣) = 1 if (1) 𝑣 −𝑢 = 𝑧,
and (2) supp(𝑢) ∩ supp(𝑧) = 𝑘/2, supp(𝑣) ∩ supp(𝑧) = 𝑘/2, and supp(𝑢) ∩ supp(𝑧) ∩ supp(𝑣) = ∅.
Otherwise, we set 𝐴𝑧(𝑢, 𝑣) = 0. Here, supp(𝑢) is the support of 𝑢, i.e., the set supp(𝑢) B {𝑖 ∈ [𝑛] :
𝑢𝑖 ≠ 0}.
Proposition 13.0.3 (Proposition 2.1.2 for larger fields). Let 𝑧 ∈ F𝑛

𝑝 be a 𝑘-sparse vector where 𝑘 is
even. Let ℓ ≥ 𝑘/2 be an integer, and let 𝐴𝑧 be defined as in Definition 13.0.2. Then, the following hold:

1. 𝐴𝑧 has at most one nonzero entry per row or column, and has exactly 𝐷 nonzero entries, where
𝐷 =

(𝑘
𝑘/2

) (𝑛−𝑘
ℓ−𝑘/2

)
(𝑝 − 1)ℓ−𝑘/2;

2. For any 𝑦 ∈ Ω𝑛 , let 𝑦⊙ℓ ∈ Ω𝑁 be the vector where the 𝑢-th entry is 𝑦⊙ℓ𝑢 =
∏𝑛

𝑖=1 𝑦
𝑢𝑖
𝑖

. Then,
(𝑦⊙ℓ)†𝐴𝑧𝑦⊙ℓ = 𝐷

∏𝑛
𝑖=1 𝑦

𝑧𝑖
𝑖

.

Remark 13.0.4. We remark that one could define 𝐴𝑧 in Definition 13.0.2 without condition (2), i.e.,
the restrictions on the support. This makes the quantity 𝐷 in Proposition 13.0.3 more complicated
(but only affects lower order terms) and also introduces some additional technical difficulties in
the analysis.

Proof. The fact that 𝐴𝑧 has at most one nonzero entry per row or column follows because for
a fixed 𝑧 and a fixed choice of the row 𝑢, there is at most one 𝑣 such that 𝑣 − 𝑢 = 𝑧. One can
compute the number of nonzero entries by counting the number of pairs (𝑢, 𝑣) satisfying the two
conditions. Indeed, the two conditions imply 𝐴𝑧(𝑢, 𝑣) = 1 if and only if we can write 𝑧 = 𝑧1 + 𝑧2

where 𝑧1, 𝑧2 are 𝑘/2-sparse vectors with disjoint support and 𝑢 = 𝑧1 +𝑤, 𝑣 = 𝑧2 +𝑤, where 𝑤 is a
(ℓ − 𝑘/2)-sparse vector with supp(𝑤) ∩ supp(𝑧) = ∅. There are

(𝑘
𝑘/2

)
ways to split 𝑧 into 𝑧1, 𝑧2, and

after that there are
(𝑛−𝑘
ℓ−𝑘/2

)
(𝑝 − 1)ℓ−𝑘/2 ways to choose 𝑤. So, 𝐷 =

(𝑘
𝑘/2

) (𝑛−𝑘
ℓ−𝑘/2

)
(𝑝 − 1)ℓ−𝑘/2. Notice

that here we crucially need that 𝑘 is even so that we can divide 𝑧 into two halves of equal sparsity.
To prove Item (2), we observe that for any 𝑦 ∈ Ω𝑛 ,

(𝑦⊙ℓ)†𝐴𝑧𝑦⊙ℓ =
∑

(𝑢,𝑣):𝐴𝑧(𝑢,𝑣)=1

𝑛∏
𝑖=1

𝑦
−𝑢𝑖
𝑖
𝑦
𝑣𝑖
𝑖
=

∑
(𝑢,𝑣):𝐴𝑧(𝑢,𝑣)=1

𝑛∏
𝑖=1

𝑦
𝑧𝑖
𝑖
= 𝐷

𝑛∏
𝑖=1

𝑦
𝑧𝑖
𝑖

.

Note that in the above, we raise 𝑦𝑖 to an element of F𝑝 , and such operations are well-defined
since 𝑦𝑖 ∈ Ω for each 𝑖 ∈ [𝑛]. □

202

We thus define 𝐴 =
∑
𝑧∈𝐻

∑
𝛼∈F𝑝\{0} 𝜔

−𝛼𝑏𝑧𝐴𝛼𝑧 . By Proposition 13.0.3, it remains to bound
max𝑦∈Ω𝑁 𝑦†𝐴𝑦, which we do using, e.g., the Matrix Bernstein inequality (Fact 3.4.1). To do
this, we observe that for a fixed hypergraph 𝐻, 𝐴 =

∑
𝑧∈𝐻 𝐵𝑧 , where 𝐵𝑧 =

∑
𝛼≠0 𝜔

−𝛼𝑏𝑧𝐴𝛼𝑧 is a
mean 0 random matrix. Because each 𝐴𝑧 has at most one nonzero entry per row/column and
|𝑏𝑧 | = 1, we have that ∥𝐴𝑧 ∥2 ≤ 1 holds, and so ∥𝐵𝑧 ∥2 ≤ 𝑝 − 1 holds. In fact, we can show that
∥𝐵𝑧 ∥ ≤ 1, crucially saving a factor of 𝑝 − 1, as follows. We observe that for any row 𝑢 (column
𝑣) and any fixed 𝑧, there is at most one column 𝑣 (row 𝑢) such that 𝑣 − 𝑢 = 𝛼𝑧 for some 𝛼 ≠ 0.
That is, if the row 𝑢 is such that 𝑣 − 𝑢 = 𝛼𝑧, then there cannot exist a column 𝑣′ such that
𝑣′ − 𝑢 = 𝛼′𝑧 where 𝛼′ ≠ 𝛼. This follows from the observation that supp(𝑢) contains exactly half
of supp(𝛼𝑧) = supp(𝑧) for some 𝛼 ≠ 0, and so supp(𝑢) ∩ supp(𝛼𝑧) = supp(𝑢) ∩ supp(𝛼′𝑧) for all
𝛼′ ≠ 0. Hence, given 𝑢 and 𝑧, we can determine the unique choice of 𝛼 (if one exists) by reading
the coefficients of 𝑢 on the variables in supp(𝑢) ∩ supp(𝑧). We note that this is the main reason
we have the condition on the support in Definition 13.0.2 (see Remark 13.0.4).

By a similar calculation as done in Section 2.1, we observe that E[𝐴𝐴†] = ∑
𝑧∈𝐻

∑
𝛼≠0 𝐴𝛼𝑧𝐴

†
𝛼𝑧 ,

and that E[𝐴†𝐴] = ∑
𝑧∈𝐻

∑
𝛼≠0 𝐴

†
𝛼𝑧𝐴𝛼𝑧 . These matrices are equal, as 𝐴†𝛼𝑧 = 𝐴−𝛼𝑧 , and both these

matrices are diagonal. Let Υ = E[𝐴𝐴†] = E[𝐴†𝐴]. The 𝑢-th diagonal entry Υ𝑢 is the total
number of 1’s occurring in the 𝑢-th row of

∑
𝑧∈𝐻

∑
𝛼≠0 𝐴𝛼𝑧 , which is also is the total number of 1’s

occurring in the 𝑢-th column of
∑
𝑧∈𝐻

∑
𝛼≠0 𝐴𝛼𝑧 .

To apply Matrix Bernstein, it remains to bound Υ𝑢 for all 𝑘-sparse 𝑢. This now requires using
that the set of 𝑘-sparse vectors 𝐻 is random, and by a simple Chernoff bound1 we conclude
that the maximum is 𝑂(𝑚𝐷(𝑝 − 1)/𝑁). Hence, we can apply Matrix Bernstein to conclude that

∥𝐴∥2 ≤ 𝑂
(
log𝑁 +

√
𝑚𝐷(𝑝−1) log𝑁

𝑁

)
with high probability over the draw of 𝐻 and the 𝑏𝑧’s, where

|𝐻 | = 𝑚. By Fact 3.6.1, we have that 𝐷/𝑁 ∼ (ℓ
(𝑝−1)𝑛)

𝑘/2, and so we can rephrase our assumption

on 𝑚 as 𝑚 ≥ 𝑂
(
𝑁 log𝑁
𝐷(𝑝−1)𝜀2

)
.

Thus, the second term above dominates, and so we have shown that

𝐷 val(𝑓) ≤ 𝑁 ∥𝐴∥2 ≤ 𝑁 ·𝑂
(√

𝑚𝐷(𝑝 − 1) log𝑁
𝑁

)
=⇒ val(𝑓) ≤ 𝑂(1) ·𝑚 ·

√
𝑁(𝑝 − 1) log𝑁

𝐷𝑚
≤ 𝑚 · 𝜀𝑝 .

As val(Ψ) = 1
𝑝 (val(𝑓) + 𝑚), we have thus certified a bound of 𝑚(1𝑝 + 𝜀), which finishes the

proof. □

1See [WAM19, Section F.1.4] for a similar calculation in the F2 case.

203

204

Chapter 14

Improved Algorithms for Planted CSPs

14.1 Subexponential-time algorithms for planted CSPs

In Part I, we defined two different average-case problems for CSPs: refutation and search,
and we discussed our results for each in Sections 4.1 and 4.2, respectively. For the task of
semirandom/smoothed CSP refutation, we gave a family of algorithms that achieve a runtime vs.
clause threshold trade-off. Namely, one can refute a semirandom 𝑘-ary CSP in 𝑛𝑂(ℓ)-time when
the instance has 𝑚 ≥ 𝑂̃((𝑛/ℓ) 𝑘2 · ℓ) constraints (Theorem 1). However, for the task of solving
semirandom planted CSPs, we only gave a poly(𝑛)-time algorithm to find an assignment that
satisfies 1− 𝑜(1) fraction of constraints when the instance has 𝑚 ≥ 𝑂̃(𝑛𝑘/2) constraints, where 𝑘
is the arity of the CSP (Theorem 3). That is, we only gave an algorithm for the “ℓ = 𝑂(1) case”,
and in particular we do not show any runtime vs. clause threshold trade-off. Thus, a lingering
question is:
Question 14.1.1. Can we give algorithms for solving semirandom planted CSPs that achieve the same
runtime vs. clause threshold trade-off as in the case of refutation?

In fact, this question is open also for the simpler case of random CSPs!
Below, we explain the key technical barrier that we need to overcome to extend the proof

techniques of Theorem 3 to give such an algorithm. At a high level, the reason the algorithm in
Theorem 3 does not generalize to the subexponential-time case is because some of the additional
polylog(𝑛) factors in 𝑚 that are hidden in the 𝑂̃(·) notation are actually polylog(𝑁), where 𝑁
is the size of the matrix used in the spectral algorithm. In the polynomial-time case, 𝑁 =

(𝑛
𝑘/2

)
,

so log𝑁 is simply 𝑂(log 𝑛), and we can afford to lose these extra factors. However, in the
subexponential-time case, 𝑁 =

(𝑛
ℓ

)
, and so log𝑁 = 𝑂(ℓ log 𝑛), and losing factors of ℓ will not

yield the “correct” threshold of 𝑚 = 𝑂̃((𝑛/ℓ) 𝑘2 · ℓ).
The proof of Theorem 3 relies on two key ingredients: (1) expander decomposition, and (2) a

spectral sparsification lemma. In order to extend this approach to achieve the subexponential-time
trade-off, we expect that we need to prove a generalized spectral sparsification lemma, which we
describe below. For simplicity, we will describe the lemma for the even 𝑘 case only.
Definition 14.1.2 (Kikuchi Graph and Laplacian). Let 𝑘 be even. Given a parameter ℓ and a set
𝐶 ∈

([𝑛]
𝑘

)
, we let 𝐺𝐶 be the graph with adjacency matrix 𝐴𝐶 that is defined in Definition 2.1.1.

Namely, 𝐺𝐶 has vertex set 𝑁 =
(𝑛
ℓ

)
, where we have an edge (𝑆,𝑇) ∈ 𝐸(𝐺𝐶) if 𝑆 ⊕ 𝑇 = 𝐶. For

a 𝑘-uniform hypergraph 𝐻, we let 𝐺𝐻 denote the union of the graphs 𝐺𝐶 for 𝐶 ∈ 𝐻. We let

205

𝒦 =
([𝑛]
𝑘

)
denote the complete hypergraph, and 𝐺𝒦 denote the corresponding Kikuchi graph.

We let 𝐿𝐶 denote the Laplacian of 𝐺𝐶 , and 𝐿𝐻 =
∑
𝐶∈𝐻 𝐿𝐶 denote the Laplacian of 𝐻. We also let

𝐿𝒦 =
∑
𝐶∈([𝑛]𝑘) 𝐿𝐶 denote the Laplacian of the complete graph.

The main spectral sparsification statement that we would like to show is the following: if 𝐻
is a random 𝑘-uniform hypergraph with |𝐻 | = 𝑚 ≥ 𝑂̃((𝑛/ℓ) 𝑘2 · ℓ) hyperedges, then 𝐿𝐻 is a good
spectral approximation of 𝐿𝒦 .

Conjecture 14.1.3. Let 𝐻 be a random 𝑘-uniform hypergraph with |𝐻 | = 𝑚 ≥ 𝑂̃((𝑛/ℓ) 𝑘2 · ℓ) hyperedges.
Then, with probability ≥ 1 − 1/poly(𝑛), it holds that 𝜂(1 − 𝑜(1))𝐿𝒦 ⪯ 𝐿𝐻 ⪯ 𝜂(1 + 𝑜(1))𝐿𝒦 , where
𝜂 = 𝑚/

(𝑛
𝑘

)
is the appropriate normalization factor.

We now explain the difficulty in proving Conjecture 14.1.3 for the subexponential-time case,
i.e., when ℓ is super-constant. To see this, let us first consider the case of ℓ = 𝑘/2, which is the case
that suffices to argue Theorem 3 for random CSPs. Here, the graph 𝐺𝐻 is almost1 the normalized
adjacency matrix of a random graph on 𝑁 vertices with 𝑚 = 𝑂(𝑁 polylog(𝑁)) edges, and the
graph 𝐺𝒦 is the complete graph on 𝑁 =

(𝑛
𝑘/2

)
vertices. One can easily show that 𝐺𝐻 is a good

expander graph with spectral gap 1/
√
𝑑, where 𝑑 = 𝑂̃(1) is the average degree inℋ , and thus it

follows that the smallest nonzero eigenvalue of 𝐿ℋ is 1− 1/
√
𝑑 = 1− 𝑜(1), and so Conjecture 14.1.3

holds.
However, the issue is that for larger ℓ , the graph 𝐺𝐻 is not a good expander, even for random

𝐻 or in the “complete” case𝒦 . These non-expanding sets are easy to construct. For example, let
𝑅 ⊆ [𝑛] be any set of size, say, (1 −𝑂(1/ℓ))𝑛. Then, the set of all 𝑆 of size ℓ with 𝑆 ⊆ 𝑅 is a set
of at least Ω(𝑁) vertices in the Kikuchi graph that is typically non-expanding. This is because a
hyperedge 𝐶 can only cross this cut if |𝐶 ∩ 𝑅 | ≤ 𝑘 − 1, and a random hyperedge 𝐶 will satisfy
𝐶 ⊆ 𝑅 with probability 1−𝑂(𝑘/ℓ) = 1− 𝑜(1)when ℓ is superconstant.

But, we can observe that such a non-expanding set is not just non-expanding for a typical
hypergraph 𝐻, it is also non-expanding even for the complete hypergraph𝒦 . In particular, this
suggests that such vectors will have a correspondingly low quadratic form in 𝐿𝒦 also, and so
this example does not disprove Conjecture 14.1.3. However, it does give solid evidence that in
order to prove Conjecture 14.1.3, one will need to do a more fined-grained analysis that uses
that spectrum of 𝐿𝒦 has eigenvalues of very different scales. This unlike the case of ℓ = 𝑘/2,
where 𝐿𝒦 is an expander and so all its eigenvalues (except for the trivial 0 eigenvalue) are have
approximately the same magnitude.

14.2 Smoothed models of planted CSPs

In Part I, we gave algorithms to refute semirandom and smoothed CSPs, whereas for the task
of solving planted CSPs, we only gave an algorithm in the semirandom case. This is because in
the case of planted CSPs, there is a natural way to define a semirandom planted model that is
analogous to the semirandom refutation model, whereas defining a planted model analogous
to the smoothed refutation model appears to be tricky. In this section, we propose a candidate
smoothed model for planted CSPs. Unlike the semirandom planted model studied in Theorem 3,

1The gap is that a constraint 𝐶 has
(𝑘
𝑘/2

)
= 𝑂(1)ways of being partitioned into two sets of size 𝑘/2. However, as

this is constant, this is not a substantial difference.

206

where the instances generated are satisfiable, i.e., have value 1, in our proposed smoothed planted
model, the CSPs generated will have low but nontrivial value.

A candidate smoothed model for planted CSPs. To generate the smoothed planted instance Ψ,
we start from an arbitrary CSP instance Φ with predicate 𝑃, along with an initial assignment 𝑥∗

that satisfies a 𝜇𝑃-fraction of constraints in Φ. Here, 𝜇𝑃 is the fraction of constraints satisfied by a
random assignment. For example, 𝜇𝑃 = 7/8 for 3-SAT, or 1/2 for 3-XOR. As a result, there always
exists such an 𝑥∗ regardless of the choice of Ψ.

We now produce a 𝑝-smoothed instance Ψ from Φ by doing the following. For each con-
straint in Φ, with probability 𝑝 independently we rerandomize the literal negation pattern for
that constraint according to the planting distribution 𝑄 and the assignment 𝑥∗. That is, for
each constraint, with probability 𝑝 we replace its literal negation pattern with one sampled as
done in Definition 4.2.1. As a result, the assignment 𝑥∗ satisfies each constraint that has been
“rerandomized”, and so 𝑥∗ will, with high probability, satisfy at least 𝜇𝑃(1− 𝑝) + 𝑝 − 𝑜(1)-fraction
of the constraints in Ψ, which is larger than 𝜇𝑃 . The computational task is to now recover an
assignment 𝑥 that satisfies 𝜇𝑃 + 𝜀-fraction of constraints in Ψ, for some constant 𝜀 B 𝜀(𝑝) that is
a function of 𝑝.
Question 14.2.1. Consider the smoothed planted CSP model defined above. Can we give an algorithm for
this task, or can we prove hardness?

To understand the above question, it is perhaps best to start with the case of 𝑘-XOR, as
this case forms the backbone of the existing algorithms in the semirandom case. In the case of
𝑘-XOR, our proposed smoothed model is equivalent to the following process. First, we start
with an arbitrary 𝑘-XOR instance Φ = (𝐻, {𝑏𝐶}𝐶∈𝐻), where 𝐻 is a 𝑘-uniform hypergraph and
𝑏𝐶 ∈ {−1, 1} for each 𝐶 ∈ 𝐻. We also let 𝑥∗ denote an arbitrary assignment such that valΦ(𝑥∗) ≥ 1

2 .
To construct the smoothed instance Ψ, we do the following. For each 𝐶 ∈ 𝐻, with probability
𝑝 independently, we set 𝑏𝐶 to be

∏
𝑖∈𝐶 𝑥

∗
𝑖
, i.e., we change it to agree with 𝑥∗. Thus, with high

probability, valΨ(𝑥∗) ≥ 1
2 (1− 𝑝) + 𝑝 = 1

2 (1+ 𝑝). The computational task is to then find an 𝑥 such
that valΨ(𝑥) ≥ 1

2 + 𝜀, where 𝜀 is a function of 𝑝.
Our proposed model is potentially hard. Indeed, one fundamental barrier is that the SDP

value of the initial instance Φ may be very close to 1 (even if the true value is 𝜇𝑃 + 𝑜(1)), and it is
quite believable that this will remain the case after the smoothing process. If this happens, then
intuitively it seems that the SDP is unable to “detect” that any smoothing has occurred, and from
this it seems difficult to round the SDP to find an assignment 𝑥.

To sidestep this barrier, one could instead consider a similar model in which the initial instance
Φ is furthermore guaranteed to (1) have value at most 𝜇𝑃 + 𝑜(1), and (2) be sampled from the
smoothed model for refutation (Definition 4.1.2). Thus, by applying Theorem 1, we know that the
SDP value of the initial instance Φ will be 𝜇𝑃 + 𝑜(1) with high probability over the initial instance
Φ, whereas after the smoothing it must be at least 𝜇𝑃(1− 𝑝) + 𝑝 − 𝑜(1) with high probability. This
means that the SDP is able to “detect” that some change has occurred to the instance Φ, which
gives us more hope to find a rounding algorithm. Nonetheless, recovering an assignment 𝑥 with
value ≥ 𝜇𝑃 + 𝜀 is still a nontrivial, intriguing rounding task, even in this potentially easier setting.

207

208

Chapter 15

Improved Lower Bounds for LDCs/LCCs

In Part III, we discussed in detail the problem of understanding the optimal blocklength 𝑛 of
a 𝑞-query locally decodable (or correctable) code with 𝑘 message bits. After this thesis, the
best-known upper and lower bounds on the blocklength 𝑛 can be summarized as follows.
(1) When 𝑞 = 2, the best 2-LCC (also LDC) is the Hadamard code with 𝑛 = 2𝑘 , and there is a

matching lower bound of 𝑛 ≥ 2Ω(𝑘) due to [KW04, GKST06].

(2) For 3-LCCs, the best-known contruction is the degree 2 Reed–Muller code, which achieves
𝑛 = 22

√
2𝑘 (Section 12.11). The best-known lower bound is 2Ω(𝑘

1/5) (Theorem 10), with better
lower bounds possible if one assumes that the code is linear (Theorem 8 and the follow-up
works of [Yan24, AG24]) or a design LCC (Theorem 9).

(3) For 3-LDCs, the best-known construction is the matching vector code of [Yek08, Efr09], which

achieves 𝑛 = 22𝑂(
√

log 𝑘 log log 𝑘)
. The best-known lower bound is 𝑛 ≥ Ω̃(𝑘3) (Theorem 7).

(4) For 𝑞 ≥ 4, the best-known 𝑞-LCC is the degree 𝑞 − 1 Reed–Muller code, which achieves

𝑛 = 2𝑂(𝑘
1
𝑞−1). The best-known 𝑞-LDC comes from matching vector codes [Yek08, Efr09], and

achieves 𝑛 ≤ 2𝑘
𝑜(1)

. The best-known lower bound is 𝑛 ≥ Ω̃(𝑘
𝑞
𝑞−2) for even 𝑞, and 𝑛 ≥ Ω̃(𝑘

𝑞+1
𝑞−1)

for odd 𝑞 ([KW04] and Theorem 2.0.4).
As mentioned in Section 10.1, the contributions of this thesis are to (1) improve the lower bound

for 3-LDCs from Ω̃(𝑘2) to Ω̃(𝑘3), achieving the bound of Ω̃(𝑘
𝑞
𝑞−2) (that we know for even 𝑞) for the

odd value 𝑞 = 3, and (2) improve the lower bound for 3-LCCs from Ω̃(𝑘2) to 2Ω(𝑘
1/5), with better

lower bounds possible for linear and design LCCs. The obvious open question is to improve any
of the above bounds (either constructions or lower bounds). In the following sections, we discuss
certain concrete plausible improvements and discuss the technical barriers to proving them.

15.1 Better LDC lower bounds: barriers and a path forward

In this section, we discuss the barriers towards improving the current lower bounds for LDCs.

15.1.1 Improving odd 𝑞 LDC lower bounds

The first open question, and possibly the easiest one to tackle, is to extend Theorem 7 to all odd 𝑞.

209

Question 15.1.1. Theorem 7 achieves a lower bound of Ω̃(𝑘
𝑞
𝑞−2) (which we can prove for even 𝑞) for the

odd value of 𝑞 = 3. Can we prove a lower bound of Ω̃(𝑘
𝑞
𝑞−2) for all odd 𝑞 ≥ 5 as well?

As we briefly mentioned at the end of the proof overvew in Chapter 11, the techniques used
to prove Theorem 7 fail for 𝑞 ≥ 5 because of an issue with the hypergraph decomposition step
that comes from the potential existence of “heavy pairs” in the hypergraphs 𝐻1, . . . ,𝐻𝑘 . We can

thus prove a lower bound of Ω̃(𝑘
𝑞
𝑞−2) for odd 𝑞 ≥ 5 under the assumption that the hypergraphs

𝐻1, . . . ,𝐻𝑘 have no heavy pairs, which is an analogous assumption to the design case for LCCs.
The main technical barrier to proving Question 15.1.1 is the following. When we have heavy

pairs, the natural way to handle them is via a hypergraph decomposition step, as done in several
other instances in this thesis, e.g., Sections 5.2 and 12.5. In the decomposition step, we set “cut-off
thresholds” that determine when a set 𝑄 is “heavy”; these thresholds are determined by the
regularity property that we need to enforce on the initial hypergraphs to make the row pruning
step succeed for the “top level” 𝑞-XOR instance. Once we have set these thresholds, the decom-
position step produces a family of “bipartite” instances, analogous to Section 5.4, and for each of
these instances, we need the underlying hypergraph to satisfy a (possibly different) regularity
condition so that the row pruning for each bipartite instance will also succeed. The hypergraph
for each bipartite instance does inherit some regularity properties via the decomposition. In,
e.g., Sections 5.2 and 5.4, the inherited regularity of each bipartite instance matches the required
regularity that we need to refute the instance, and so the analysis works out. The technical issue
to proving Question 15.1.1 is that if one uses the natural generalization of the decomposition
in Section 5.2, the inherited regularity is weaker than required, and we are unable to refute the
bipartite instances. The primary reason we are able to succeed for 𝑞 = 3 is that the resulting
bipartite instance is arity 3 − 1 = 2, and refuting 2-XOR instances is substantially easier than
larger arity XOR.

15.1.2 Improving even 𝑞 LDC lower bounds

A perhaps more intriguing question is whether one can prove a 𝑞-LDC lower bound beyond

Ω̃(𝑘
𝑞
𝑞−2) for any choice of 𝑞 (in particular, 𝑞 = 4, say). An affirmative answer to this question

would be interesting even if one assumes that the code is a linear 𝑞-LDC, or even a design 𝑞-LDC
(which has no heavy pairs).
Question 15.1.2. Can we prove a 𝑞-LDC lower bound (even for linear or design LDCs) beyond 𝑛 ≥
Ω̃(𝑘

𝑞
𝑞−2) for some 𝑞 ≥ 3?

To explain the technical barriers to answering Question 15.1.2, let us first recall how the Ω̃(𝑘
𝑞
𝑞−2)

threshold arises. This bounds arises from the degree heuristic calculation done in Section 12.1.1,
where we observe that the Kikuchi graph 𝐴𝑖 B

∑
𝐶∈𝐻𝑖 𝐴𝐶 has average degree ∼ 𝛿𝑛(ℓ/𝑛)𝑞/2. By

applying Matrix Khintchine (Fact 3.4.2) and rearranging terms, we found that our lower bound
has the form 𝑘 ≤ 𝑂̃(ℓ), and we need to choose ℓ to make the average degree of 𝐴𝑖 be ≳ 1, i.e., we

need ℓ ≳ 𝑛1−2/𝑞 . Thus, going beyond the Ω̃(𝑘
𝑞
𝑞−2) requires a new method to proving LDC lower

bounds that goes beyond the “degree heuristic”.

The trace moment method behaves poorly for large ℓ. Ideally, one would like to take ℓ = Ω(𝑛),
as we expect the Kikuchi matrices to yield tighter bounds on the value of the 𝑞-LDC XOR instance
Ψ𝑏 as ℓ increases. However, a strange feature of the current analysis is that the bounds get weaker

210

as ℓ increases beyond 𝑛1−2/𝑞 , which is counter to the expected behavior.
The reason this behavior appears1 is that we bound E𝑏[val(Ψ𝑏)] by E𝑏[∥𝐴∥2], which we then

bound (implicitly via the trace moment method) by
(
E𝑏[tr(𝐴2𝑟)]

)1/2𝑟 where 𝑟 = 𝑂(log𝑁). The
issue is that with probability 2−𝑘 over the draw of 𝑏 ← {−1, 1}𝑘 , we have 𝑏𝑖 = 1 for all 𝑖 ∈ [𝑘],
and when this happens we have val(Ψ𝑏) = 1, and so ∥𝐴∥2 is truly large. However, to bound
E𝑏[∥𝐴∥2], we compute E𝑏[tr(𝐴2𝑟)] and then take 2𝑟-th roots. Thus, the contribution of this “bad
event” to (E𝑏[tr(𝐴2𝑟)])1/2𝑟 is quite large when 𝑘 ≪ 𝑟, as then 2−𝑘/2𝑟 = 1− 𝑜(1), and this prevents
us from obtaining a good lower bound when 𝑟 = 𝑂(ℓ log 𝑛) is much larger than 𝑘. A natural way
to circumvent this issue is to separate out the “rank 1 component” by considering the matrix(∑𝑘

𝑖=1 𝑏𝑖(𝐴𝑖 − 𝐽𝑁)
)
+

(∑𝑘
𝑖=1 𝑏𝑖 𝐽𝑁

)
, where 𝐽𝑁 is the 𝑁 ×𝑁 all 1’s matrix, but so far we have not been

able to use this approach to prove a better lower bound.

The necessity of larger ℓ: rainbow even covers. On the other hand, we can argue formally that
one cannot improve Theorem 2.0.4 or tighten the analysis in Section 2.3 without taking ℓ ≫ 𝑛1−2/𝑞 .
This argument goes by connecting the problem of LDC lower bounds to the problem of finding
certain colored even covers in hypergraphs, as we now explain.
Definition 15.1.3 (Odd-colored and rainbow even covers). Let 𝐻1, . . . ,𝐻𝑘 be 𝑞-uniform hyper-
graph matchings on 𝑛 vertices, each of size 𝛿𝑛. Let 𝐻 B ∪𝑘

𝑖=1𝐻𝑖 be a collection of hyperedges
colored by 𝑘 different colors, where we view a hyperedge 𝐶 ∈ 𝐻𝑖 as appearing in 𝐻 with color 𝑖.
An even cover (Definition 9.0.1) in 𝐻 B ∪𝑘

𝑖=1𝐻𝑖 is a collection of hyperedges 𝐶1, . . . ,𝐶𝑡 in 𝐻 such
that 𝐶1 ⊕ · · · ⊕ 𝐶𝑡 = ∅. We say that the even cover is odd-colored if some color 𝑖 ∈ [𝑘] appears an
odd number of times, and we say that the even cover is rainbow if every color appears at most
once in the even cover.

The odd-colored even cover problem is to determine the extremal value of 𝑘 (as a function of 𝑛,
𝛿) such that any 𝑘 𝑞-uniform matchings 𝐻1, . . . ,𝐻𝑘 must contain an odd-colored even cover. The
rainbow even cover problem is defined similarly, just for rainbow even covers.

The connection between Definition 15.1.3 and LDC lower bounds is the following. One can
observe that a set of 𝑞-uniform matchings 𝐻1, . . . ,𝐻𝑘 form a valid linear 𝑞-LDC if and only if,
for any choice of 𝑏1, . . . , 𝑏𝑘 , there is a solution to the 𝑞-XOR instance corresponding to these
matchings. One can also observe, via a simple linear-algebraic argument, that there is a solution
for any 𝑏 ∈ {−1, 1}𝑘 if and only if 𝐻1, . . . 𝐻𝑘 do not contain an odd-colored even cover. Thus, the
odd-colored even cover threshold 𝑘 is exactly the maximum dimension of a (𝑞, 𝛿)-linear LDC in
normal form!

Reinterpreting our proof in Section 2.3 through this lens, we see that it shows that for 𝑞 even, if
𝑘 ≥ 𝑂(𝑛1−2/𝑞 log 𝑛), then there must exist an odd-colored even cover of length ≤ 𝑂(𝑛1−2/𝑞 log 𝑛)
In fact, if we use the connection between the trace moments for Kikuchi matrices and even
covers that we discussed in Part II, we can observe that our proof shows the following stronger
statement: not only is there an odd-colored even cover of length ≤ 𝑂(𝑛1−2/𝑞 log 𝑛), the even cover
uses each color 𝑖 ∈ [𝑘] at most once. Namely, it is a rainbow even cover.

We can now explain why analysis in Section 2.3 is tight for ℓ = 𝑛1−2/𝑞 . The crux of the issue
is that, if one chooses 𝐻1, . . . 𝐻𝑘 at random, then the above result for rainbow even covers is
in fact tight: if 𝑘 ≲ 𝑛1−2/𝑞 , then with high probability over 𝐻1, . . . ,𝐻𝑘 chosen randomly, there
is no rainbow even cover. This can be shown via some simple concentration bounds. To get

1The following observations were made in joint discussions with Jun-Ting Hsieh and Pravesh K. Kothari.

211

some intuition for why this is the right threshold, we note that the hypergraph 𝐻 = ∪𝑘
𝑖=1𝐻𝑖 is a

𝑞-uniform hypergraph with 𝑚 = 𝛿𝑛𝑘 hyperedges, so following Conjecture 8.0.2, we expect the

length of the shortest even cover to be ∼ ℓ , where 𝑚 ∼ (𝑛/ℓ)
𝑞
2 ℓ , and so here ℓ ∼ 𝑛𝑘−

2
𝑞−2 . Thus,

if 𝑘 ≪ 𝑛1−2/𝑞 , then we expect the shortest even cover to have length ≫ 𝑘. In particular, there
is no rainbow even cover, as any rainbow even cover has length ≤ 𝑘. The key point is that, by
using the connection between the trace moments for Kikuchi matrices and even covers that we
discussed in Part II, the spectral norm ∥𝐴∥2 only “contains information” about even covers of
length at most 𝑂(ℓ log 𝑛). When 𝑘 ≪ 𝑛1−2/𝑞 , there are no violated2 rainbow even covers (or any
rainbow even covers at all!), and so the spectral norm ∥𝐴∥2 cannot “see” any contradictions and
therefore “thinks” that the instance is satisfiable.

The above shows that when 𝑘 ≪ 𝑛1−2/𝑞 , we cannot prove better LDC lower bounds using only
rainbow even covers. We must therefore make use of odd-colored even covers. The challenge
with generalizing to odd-colored even covers comes from the bound on the spectral norm of
𝐴 =

∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 that we obtain via the trace method. Currently, our techniques are not very good

at bounding the number of walk terms that correspond to using each 𝑏𝑖 at least 4 times (rather
than the typical “at least 2 times”), and this is the dominant term when 𝑘 ≪ 𝑛1−2/𝑞 .

As a final remark, we note that the recent work of [HKM+24] proves a linear 3-LDC lower
bound of 𝑘 ≤ 𝑂(𝑛1/3 log 𝑛), which has a better polylog(𝑛) factor than Theorem 7, which achieves
𝑘 ≤ 𝑂(𝑛1/3 log2 𝑛), or Corollary 11.3.3, which achieves 𝑘 ≤ 𝑂(𝑛1/3 log4/3 𝑛). They obtain this
small improvement by working with an intermediate notion of odd-colored even covers, where
they show the existence of an even cover that uses some color exactly once.

15.2 The “LDC barrier” for LCC lower bounds

In this thesis, we have proven exponential lower bounds for 3-LCCs. In the design 3-LCC case,
we proved a tight lower bound, proving that Reed–Muller codes give optimal design 3-LCCs,
and in the case of linear and nonlinear (smooth) LCCs, we proved that Reed–Muller codes are
near-optimal. The major open question is now: can we extend these results to 4-query LCCs?
Question 15.2.1. Can we prove better lower bounds for 4-LCCs? Namely, can we show:
(1) A superpolynomial lower bound?
(2) An exponential lower bound?

Let us now discuss the main technical barriers that we will encounter when trying to answer
Question 15.2.1 by using the methods in this thesis.

The “degree heuristic calculation” for 𝒒 ≥ 4. First, we observe that a naive application of the
long chain derivation can likely improve the lower bounds for 𝑞-LCCs beyond those known for
LDCs, even for 𝑞 ≥ 4, although this naive application of our approach will likely to only yield a
polynomial factor improvement. Our explanation is rooted in the “degree heuristic” calculation
based on the density of the Kikuchi matrices explained earlier in Section 12.1.1. For larger 𝑞,
the number of length (𝑟 + 1)-chains with head 𝑖 ∈ [𝑘] is still 𝑘(3𝛿𝑛)𝑟+1. The arity of the derived
constraints, however, is now (𝑞 − 1)(𝑟 + 1) + 1. This means that the density (i.e., average degree

of the natural Kikuchi matrix) at level ℓ is (3𝛿𝑛)𝑟+1(ℓ/𝑛)
(𝑞−1)(𝑟+1)+1

2 →
(
𝑛(ℓ/𝑛)

𝑞−1
2

) 𝑟+1
for large 𝑟.

2Even covers whose “right-hand sides” multiply to −1.

212

Thus, the optimal ℓ turns out to be 𝑛1− 2
𝑞−1 , and so we can only hope to achieve a lower bound of

𝑘 ≤ 𝑂̃(𝑛1− 2
𝑞−1). This nevertheless would yield an improvement on the current best-known lower

bound3 of 𝑘 ≤ 𝑂̃(𝑛1− 2
𝑞), inherited from 𝑞-LDCs, by a polynomial factor via long chains. In fact,

for odd 𝑞, our methods generalize to this case in a fairly straightforward manner, and one can
indeed prove this bound, though we will not do so in this thesis.4

A reduction from 𝒒-LCCs to (𝒒 − 1)-LDCs via long chains. We observe that one obtains the

threshold of 𝑛1− 2
𝑞−1 by substituting in 𝑞 − 1 for 𝑞 in the existing5 𝑞-LDC lower bounds of 𝑛1− 2

𝑞 ,
which potentially suggests a connection between 𝑞-LCCs and (𝑞 − 1)-LDCs. In fact, as we showed
in Sections 12.2 and 12.6.5, we can use our long chain derivation strategy to give a reduction
from a 3-LCC of length 𝑛 to a 2-LDC of length 𝑛polylog(𝑛). More generally, one might hope to use
long chain derivations to give a reduction from a 𝑞-LCC of length 𝑛 to a (𝑞 − 1)-LDC of length
𝑛polylog(𝑛), and this does appear to be fairly straightforward to show using the techniques in this
thesis.6 However, because the reduction blows up the length of the code by a polylog(𝑛) factor in
the exponent, current (𝑞 − 1)-LDC lower bounds are not strong enough to yield any improved
𝑞-LCC lower bounds via this route except for 𝑞 = 3, which succeeded because for 2-LDCs we can
prove exponential lower bounds.

The subexponential “LDC barrier” for long chains. The above discussion thus implies that if
we could obtain (a large enough) superpolynomial 3-LDC lower bound, then we could prove
a superpolynomial 4-LCC lower bound and thus answer Item (1) of Question 15.2.1 in the
affirmative. On the other hand, one cannot use a reduction from 4-LCCs to 3-LDCs to prove an
exponential lower bound for 4-LCCs (and thus answer Item (2) of Question 15.2.1), as there are
constructions of 3-LDCs of subexponential length! Thus, even if we could obtain substantially
better 3-LDC lower bounds, or even prove that the existing constructions of [Yek08, Efr09] are
optimal, the reduction from 4-LCCs to 3-LDCs will at best only yield a subexponential lower
bound for 4-LCCs.7 On the other hand, one could wonder if this barrier is appearing not because
of a defect of our techniques, but rather because it is the “truth”. That is, perhaps the connection
between 4-LCCs and 3-LDCs also goes in the reverse direction, and so we can ask:
Question 15.2.2. Do there exist 4-LCCs of subexponential length?

The above discussion could be viewed as suggesting that such a construction is plausible.
Finally, we remark that a very recent work of [AG24] proves, for LCCs over small fields of

characteristic 2: (1) a lower bound of 𝑘 ≤ 𝑂(log2 𝑛 log log 𝑛) for linear 3-LCCs, and (2) a lower
bound of 𝑘 ≤ 𝑂̃(𝑛1−2/(𝑞−1)) for linear 𝑞-LCCs where 𝑞 is odd (this matches, up to polylog(𝑛)

3At least, for even 𝑞. For odd 𝑞, the best-known lower bound is weaker.
4When 𝑞 is even, there are additional technical challenges to overcome because each “link” in the chain has 𝑞 − 1

vertices, which is odd.
5At least for even 𝑞 and 𝑞 = 3, although the degree heuristic calculation predicts this threshold for all 𝑞.
6Let us spell out the reduction in a bit more detail in this footnote. Rather than construct a Kikuchi matrix with

rows 𝑆(1) and columns 𝑆(2) (which corresponds to 2 queries), we now construct a (𝑞 − 1)-tensor with modes indexed by
𝑆(1), . . . , 𝑆(𝑞−1). For each “link” in the chain, we split the 𝑞 − 1 uncanceled entries across the 𝑞 − 1 sets 𝑆(1), . . . , 𝑆(𝑞−1),
which form the 𝑞 − 1 queries.

7There is still some hope that, if one were to prove such an LDC lower bound, combining the new proof strategy
with the long chains might yield better LCC lower bounds than the ones predicted by the 𝑞-LCC to (𝑞 − 1)-LDC
reduction. This is not that inconceivable, as one can use long chains to prove a 𝑞-LCC lower bound, for odd 𝑞 ≥ 5, of
𝑘 ≤ 𝑂̃(𝑛1−2/(𝑞−1)), whereas one cannot obtain any improvement using the 𝑞-LCC to (𝑞 − 1)-LDC reduction because it
increases the length from 𝑛 to 𝑛polylog(𝑛).

213

factors, the threshold predicted by our earlier heuristic calculation). Their proof goes via a
reduction from 𝑞-LCCs to the rainbow even cover problem for (𝑞 − 1)-uniform hypergraph
matchings (Definition 15.1.3), and then applies (in Case (1)) the recent breakthrough of [ABS+23]
on the rainbow cycle bound for graphs, and (in Case (2)) the rainbow cycle bound shown
implicitly (via the analysis in Section 2.3) by existing (𝑞 − 1)-LDC lower bounds where 𝑞 − 1 is
even (as 𝑞 is odd). Their approach is reminiscent of the 𝑞-LCC to (𝑞 − 1)-LDC reduction discussed
above, although their reduction is to the (stronger) problem of rainbow cycles. Although we
can reduce LDC lower bounds to the rainbow cycle problem, the difference between LDCs and
rainbow cycles turns out to be a major difference because, as we discussed in Section 15.1.2, we
have a lower bound of 𝑘 ≳ 𝑛1−2/𝑞 on the rainbow cycle threshold for 𝑞-uniform matchings. Thus,
we know that one cannot obtain 𝑞-LCC lower bounds better than 𝑘 ≤ 𝑂(𝑛1−2/(𝑞−1) polylog(𝑛))
(except for small polylog(𝑛) factor improvements) for 𝑞 ≥ 4 via this reduction.

Nonetheless, the work of [AG24] does not obtain any improved lower bounds for 4-LCCs,
and so the simplest open problem for 𝑞 = 4 remains:
Question 15.2.3. Can we prove a lower bound of 𝑘 ≲ 𝑛

1
2−𝜀 for binary 4-LCCs, for some constant 𝜀 > 0?

214

Chapter 16

Improved Nondeterministic and
Interactive Refutations

In this chapter, we give some open problems related to the work of [FKO06] and our extensions
to semirandom/smoothed instances done in Chapter 6. Recall that in Chapter 6, we showed
that there is a nondeterministic polynomial-time refutation algorithm to (weakly) refute semiran-
dom/smoothed instances of 3-SAT with 𝑚 ≥ 𝑂̃(𝑛1.4) constraints, which is below the 𝑂̃(𝑛1.5)
constraint threshold required for polynomial-time algorithms (Chapter 5). This extends the results
of [FKO06], which was for fully random instances, to the case of semirandom/smoothed instances.
Equivalently, this shows the existence of short, efficiently verifiable witnesses of unsatisfiability
for semirandom/smoothed instances with 𝑂̃(𝑛1.4) constraints, whereas we can only find such
witnesses efficiently when instances have 𝑂̃(𝑛1.5) constraints. We also showed analogous results
for 𝑘-ary CSPs more generally, extending results of [FW15, Wit17] to the semirandom/smoothed
setting.

The first immediate open question is the following.
Question 16.0.1. Is there a nondeterministic polynomial-time algorithm to refute random 3-SAT instances
with 𝑚 ≲ 𝑛1.4−𝜀 constraints, for some constant 𝜀 > 0?

We note that the FKO-style strategy used in Chapter 6 cannot go beyond the 𝑛1.4 threshold.
This is because Theorem 6 achieves the optimal girth vs. density trade-off for hypergraphs (up to
polylog(𝑛) factors), and so the weak refutation of the “top level” 3-XOR instance using the even
covers cannot be improved. In fact, it cannot be improved even for random hypergraphs, as the
proof of near-optimality for the trade-off in Theorem 6 argues near-optimality by showing that a
random 𝑘-uniform hypergraph 𝐻 with 𝑚 ≲ (𝑛/ℓ)𝑘/2ℓ hyperedges has no even cover of length
𝑂(ℓ log 𝑛).

On the other hand, it is possible that 𝑛1.4 is the optimal threshold for nondeterministic
refutation. However, so far the only (rather weak) evidence we have to suggest that this is the
case is the argument in the above paragraph. Of course, proving any lower bound requires
making some complexity assumption (at the very least, e.g., NP ≠ coNP), and so we can ask:
Question 16.0.2. Can we prove, under plausible assumptions, that there is no nondeterministic polynomial-
time algorithm to refute random 3-SAT instances with 𝑚 ≲ 𝑛1.4−𝜀 constraints, for some constant 𝜀 > 0?

One way to approach the above question is to try to prove lower bounds in restricted proof
systems, such as sum-of-squares. As we have mentioned in Part I, there is a known lower bound,

215

due to [KMOW17], of 𝑚 ≲ (𝑛/ℓ)𝑘/2ℓ for SoS proofs of degree 𝑂(ℓ), i.e., if 𝑚 ≲ (𝑛/ℓ)𝑘/2ℓ , then with
high probability over the draw of the random 𝑘-SAT instance, there is no degree 𝑂(ℓ) SoS proof
of unsatisfiability. In the lower bound of [KMOW17], the “measure of complexity” of the proof is
the SoS degree, which is analogous to the runtime of the corresponding deterministic SoS-based
algorithm. To capture the notion of nondeterministic algorithms, the correct measure of complexity
is the size of the SoS proof.
Question 16.0.3. Can we prove, for some constant 𝜀 > 0, that with high probability over the draw
of a random 3-SAT instance with 𝑚 ≲ 𝑛1.4−𝜀 constraints, there is no polynomial-sized SoS proof of
unsatisfiability?

This question of proving polynomial-size lower bounds for SoS, as well as in other proof
systems, was also posed in Section 5.3.2 in [Wit17].

We note that there is known relationship between size and degree of SoS proofs due to [AH19]:
if there is an SoS proof of size 𝑠, then there is a proof of degree 𝑂(

√
𝑛 log 𝑠). Combining this with

the SoS lower bound of [KMOW17] (and setting ℓ = 𝑂(
√
𝑛 polylog(𝑛))), we can show that, e.g.,

for 𝑘-SAT, there is no poly(𝑛)-sized SoS proof of unsatisfiability when 𝑚 ≲ 𝑛𝑘/4+1/2. For 3-SAT,
this narrows the range of possible 𝑚 to between 𝑛1.25 and 𝑛1.4.

Subexponential-time nondeterministic refutations. We can also ask what we can achieve if we
allow our nondeterministic refutation algorithm to run in subexponential time.
Question 16.0.4. For what𝑚, as a function of 𝑛, 𝑘, and ℓ , is there a nondeterministic 𝑛𝑂(ℓ)-time algorithm
to refute random 𝑘-SAT instances with 𝑚 constraints?

We note than one can trivially improve the thresholds shown in Chapter 6 by using the 𝑛𝑂(ℓ)-
time deterministic algorithm of Chapter 5 (instead of the poly(𝑛)-time algorithm) to better refute
the 𝑡-XOR instances for 𝑡 ≤ 𝑘 − 1, and then, as before, using violated even covers to construct
the polynomial-time verifiable certificate for the “top level” 𝑘-XOR instance. Thus, to obtain an
interesting answer to the above question, one would need to use the extra allotted runtime in the
“nondeterministic part” of the algorithm.

Nondeterministic interactive refutations. Another interesting question, posed by [Wit17], is to
ask what we can achieve if we allow the refutation procedure to be interactive. That is, we can
consider AM protocols instead of NP algorithms.
Question 16.0.5. Is there an AM protocol (or constant round interactive proof) to refute random 3-SAT
instances with 𝑚 ≲ 𝑛1.4−𝜀 constraints, for some constant 𝜀 > 0?

FKO for other refutation problems. Another final interesting question is to find other problems
with “FKO-like” behavior. Namely, can we find other refutation problems where there is a
nondeterministic refutation algorithm that outperforms the best-known deterministic algorithms?
As a concrete example, we pose the following question for the well-studied planted clique
problem for 𝐺(𝑛, 1/2).
Question 16.0.6. Is there a nondeterministic polynomial-time algorithm to refute the existence of a clique
of size 𝑛

1
2−𝜀 in a random graph 𝐺 ∼ 𝐺(𝑛, 1/2), for some constant 𝜀 > 0?

We note that for planted clique, the classic spectral algorithm certifies that there is no clique
of size larger than

√
𝑛, and moreover there is an SoS lower bound ([BHK+16]) that gives evidence

216

that the
√
𝑛 threshold is optimal for polynomial-time deterministic algorithms.

Finally, we remark that the recent work of [BR23] gives a nondeterministic interactive refutation
protocol for the “nearest boolean vector” problem that beats known SoS lower bounds, which is a
result in the spirit of Questions 16.0.5 and 16.0.6.

217

218

Bibliography

[Abb18] Emmanuel Abbe. Community detection and stochastic block models: recent devel-
opments. Journal of Machine Learning Research, 18(177):1–86, 2018.

[ABH16] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the
stochastic block model. IEEE Trans. Inf. Theory, 62(1):471–487, 2016.

[ABS+23] Noga Alon, Matija Bucić, Lisa Sauermann, Dmitrii Zakharov, and Or Zamir. Es-
sentially tight bounds for rainbow cycles in proper edge-colourings. arXiv preprint
arXiv:2309.04460, 2023.

[ACIM01] Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and Cristopher Moore. The
phase transition in 1-in-k SAT and NAE 3-SAT. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, pages 721–722, 2001.

[AE98] Gunnar Andersson and Lars Engebretsen. Better approximation algorithms for Set
splitting and Not-All-Equal SAT. Information Processing Letters, 65(6):305–311, 1998.

[AF09] Noga Alon and Uriel Feige. On the power of two, three and four probes. In
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 346–354. SIAM, Philadelphia, PA, 2009.

[AG24] Omar Alrabiah and Venkatesan Guruswami. Near-tight bounds for 3-query locally
correctable binary linear codes via rainbow cycles. In 65th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024.
IEEE, 2024.

[AGK21] Jackson Abascal, Venkatesan Guruswami, and Pravesh K. Kothari. Strongly refuting
all semi-random Boolean CSPs. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages
454–472. SIAM, 2021.

[AGKM23] Omar Alrabiah, Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. A
near-cubic lower bound for 3-query locally decodable codes from semirandom CSP
refutation. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1438–1448. ACM, 2023.

[AH19] Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for sums-of-squares
and positivstellensatz proofs. In 34th Computational Complexity Conference, CCC 2019,
July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 24:1–24:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for irregular

219

graphs. Graphs Comb., 18(1):53–57, 2002.

[Ahn20] Kwangjun Ahn. A simpler strong refutation of random k-xor. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume 176 of LIPIcs,
pages 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[AK92] E. F. Assmus and J. D. Key. Designs and their Codes. Cambridge Tracts in Mathematics.
Cambridge University Press, 1992.

[AKK95] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approx-
imation schemes for dense instances of NP-hard problems. In Proceedings of the
Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995,
Las Vegas, Nevada, USA, pages 284–293. ACM, 1995.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique
in a random graph. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA, pages 594–598.
ACM/SIAM, 1998.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM), 45(3):501–555, 1998.

[ALWZ20] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds
for the sunflower lemma. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 624–630.
ACM, 2020.

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to Refute a Random
CSP. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 689–708. IEEE Computer Society, 2015.

[App16] Benny Applebaum. Cryptographic Hardness of Random Local Functions: Survey.
Computational complexity, 25:667–722, 2016.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of np. Journal of the ACM (JACM), 45(1):70–122, 1998.

[AS21] Vahid R Asadi and Igor Shinkar. Relaxed locally correctable codes with improved
parameters. In 48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[BBH23] Afonso S Bandeira, March T Boedihardjo, and Ramon van Handel. Matrix con-
centration inequalities and free probability. Inventiones mathematicae, pages 1–69,
2023.

[BCG20] Arnab Bhattacharyya, L Sunil Chandran, and Suprovat Ghoshal. Combinatorial
lower bounds for 3-query ldcs. In 11th Innovations in Theoretical Computer Science
Conference (ITCS 2020), volume 151, page 85. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2020.

[BCK15] Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of Squares Lower Bounds
from Pairwise Independence. In Proceedings of the Forty-Seventh Annual ACM on

220

Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 97–106. ACM, 2015.

[BDL13] Abhishek Bhowmick, Zeev Dvir, and Shachar Lovett. New bounds for matching
vector families. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 823–832. ACM, 2013.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Comput. Complex.,
3:307–318, 1993.

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust pcps of proximity, shorter pcps and applications to coding. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June
13-16, 2004, pages 1–10. ACM, 2004.

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient
probabilistically checkable proofs and applications to approximations. In Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, pages 294–304, 1993.

[BGMT12] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani.
SDP gaps from pairwise independence. Theory of Computing, 8(1):269–289, 2012.

[BGT17] Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds for 2-query
lccs over large alphabet. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[Bha19] Vijay Bhattiprolu. On the Approximability of Injective Tensor Norm. Phd thesis, Carnegie
Mellon University, June 2019.

[BHK+16] Boaz Barak, Samuel B. Hopkins, Jonathan A. Kelner, Pravesh Kothari, Ankur Moitra,
and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted
clique problem. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages
428–437. IEEE Computer Society, 2016.

[BHL+02] Wolfgang Barthel, Alexander K Hartmann, Michele Leone, Federico Ricci-Tersenghi,
Martin Weigt, and Riccardo Zecchina. Hiding solutions in random satisfiability
problems: A statistical mechanics approach. Physical review letters, 88(18):188701,
2002.

[BIW10] Omer Barkol, Yuval Ishai, and Enav Weinreb. On locally decodable codes, self-
correctable codes, and t-private pir. Algorithmica, 58(4):831–859, 2010.

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work.
Journal of the ACM (JACM), 42(1):269–291, 1995.

[BKS22] Rares-Darius Buhai, Pravesh K Kothari, and David Steurer. Algorithms approaching
the threshold for semi-random planted clique. In Proceedings of the 55th Annual ACM
SIGACT Symposium on Theory of Computing, 2022.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. Journal of computer and system sciences, 47(3):549–

221

595, 1993.

[BM16] Boaz Barak and Ankur Moitra. Noisy Tensor Completion via the Sum-of-Squares
Hierarchy. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New
York, USA, June 23-26, 2016, volume 49 of JMLR Workshop and Conference Proceedings,
pages 417–445. JMLR.org, 2016.

[BQ09] Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s one-way
function. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques: 12th International Workshop, APPROX 2009, pages 392–405. Springer,
2009.

[BR23] Andrej Bogdanov and Alon Rosen. Nondeterministic interactive refutations for
nearest boolean vector. In 50th International Colloquium on Automata, Languages, and
Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs,
pages 28:1–28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[BS95] Avrim Blum and Joel Spencer. Coloring Random and Semi-Random k-Colorable
Graphs. J. Algorithms, 19(2):204–234, 1995.

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal
algorithms. CoRR, abs/1404.5236, 2014.

[BS16] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the
lens of sum-of-squares, 2016. Lecture notes in preparation, available on http:
//sumofsquares.org.

[CCF10] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse regularity
concept. SIAM Journal on Discrete Mathematics, 23(4):2000–2034, 2010.

[CGL04] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation heuristics
for random k-sat. In Approximation, Randomization, and Combinatorial Optimization,
Algorithms and Techniques, volume 3122 of Lecture Notes in Computer Science, pages
310–321. Springer, 2004.

[CGS20] Alessandro Chiesa, Tom Gur, and Igor Shinkar. Relaxed locally correctable codes
with nearly-linear block length and constant query complexity. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 1395–1411. SIAM, 2020.

[CGW10] Victor Chen, Elena Grigorescu, and Ronald de Wolf. Efficient and error-correcting
data structures for membership and polynomial evaluation. In 27th International
Symposium on Theoretical Aspects of Computer Science, STACS 2010, March 4-6, 2010,
Nancy, France, volume 5 of LIPIcs, pages 203–214. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2010.

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear
time. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022,
Denver, CO, USA, October 31 - November 3, 2022, pages 612–623. IEEE, 2022.

[CY23] Gil Cohen and Tal Yankovitz. Asymptotically-good rlccs with $(\log{n})ˆ{2+o(1)}$
queries. Electron. Colloquium Comput. Complex., TR23-110, 2023.

222

http://sumofsquares.org
http://sumofsquares.org

[DGGW19] Zeev Dvir, Sivakanth Gopi, Yuzhou Gu, and Avi Wigderson. Spanoids - an abstrac-
tion of spanning structures, and a barrier for lccs. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA, volume 124 of LIPIcs, pages 32:1–32:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[DHV78] Jean Doyen, Xavier Hubaut, and Monique Vandensavel. Ranks of incidence matrices
of steiner triple systems. Mathematische Zeitschrift, 163:251–259, 1978.

[DS05] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. In Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 592–601. ACM,
2005.

[DSS14] Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random regular NAE-
SAT. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 814–822, 2014.

[DSW14] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic barrier for
3-lcc’s over the reals. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 784–793. ACM, 2014.

[Dvi10] Zeev Dvir. On matrix rigidity and locally self-correctable codes. In Proceedings of
the 25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge,
Massachusetts, USA, June 9-12, 2010, pages 291–298. IEEE Computer Society, 2010.

[Dvi12] Zeev Dvir. Incidence theorems and their applications. CoRR, abs/1208.5073, 2012.

[Dvi16] Zeev Dvir. Lecture notes on linear locally decodable codes. https://www.cs.
princeton.edu/~zdvir/LDCnotes/LDC8.pdf, Fall 2016.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 39–44. ACM, 2009.

[Fei02] Uriel Feige. Relations between average case complexity and approximation complex-
ity. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 534–543, 2002.

[Fei07] Uriel Feige. Refuting Smoothed 3CNF Formulas. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA,
Proceedings, pages 407–417. IEEE Computer Society, 2007.

[Fei08] Uriel Feige. Small linear dependencies for binary vectors of low weight. In Building
Bridges: Between Mathematics and Computer Science, pages 283–307. Springer, 2008.

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Comput.
Syst. Sci., 63(4):639–671, 2001.

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek. Witnesses for non-satisfiability of dense
random 3cnf formulas. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
497–508. IEEE Computer Society, 2006.

223

https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC8.pdf
https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC8.pdf

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic Proofs and
Efficient Algorithm Design. Foundations and Trends® in Theoretical Computer Science,
14(1-2):1–221, 2019.

[FLP16] Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-exponential Ap-
proximation Schemes for CSPs: From Dense to Almost Sparse. In 33rd Symposium
on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, volume 47 of LIPIcs, pages 37:1–37:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[FPV15] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. Subsampled Power Iteration:
a Unified Algorithm for Block Models and Planted CSP’s. In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 2836–2844, 2015.

[FPV18] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. On the Complexity of
Random Satisfiability Problems with Planted Solutions. SIAM Journal on Computing,
47(4):1294–1338, 2018.

[FW15] Uriel Feige and David Witmer. Nondeterministic refutation of any csp beyond spec-
tral methods. 2015.

[FW16] Uriel Feige and Tal Wagner. Generalized girth problems in graphs and hypergraphs,
2016.

[GHKM23] Venkatesan Guruswami, Jun-Ting Hsieh, Pravesh K. Kothari, and Peter Manohar.
Efficient algorithms for semirandom planted csps at the refutation threshold. In 64th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz,
CA, USA, November 6-9, 2023, pages 307–327. IEEE, 2023.

[GK01] Andreas Goerdt and Michael Krivelevich. Efficient recognition of random unsatisfi-
able k-sat instances by spectral methods. In STACS 2001, 18th Annual Symposium on
Theoretical Aspects of Computer Science, Dresden, Germany, February 15-17, 2001, Pro-
ceedings, volume 2010 of Lecture Notes in Computer Science, pages 294–304. Springer,
2001.

[GKM22] Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. Algorithms and
certificates for Boolean CSP refutation: smoothed is no harder than random. In
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 678–689. ACM, 2022.

[GKST06] Oded Goldreich, Howard Karloff, Leonard J Schulman, and Luca Trevisan. Lower
bounds for linear locally decodable codes and private information retrieval. Compu-
tational Complexity, 15(3):263–296, 2006.

[GL03] Andreas Goerdt and André Lanka. Recognizing more random unsatisfiable 3-sat
instances efficiently. Electron. Notes Discret. Math., 16:21–46, 2003.

[Gol00] Oded Goldreich. Candidate One-Way Functions Based on Expander Graphs. Electron.
Colloquium Comput. Complex., 2000.

[Gri01] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theoretical Computer Science, 259(1):613–622, 2001.

224

[GRR20] Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable
codes. Theory of Computing, 16(1):1–68, 2020.

[Ham73] Noboru Hamada. On the 𝑝-rank of the incidence matrix of a balanced or partially
balanced incomplete block design and its applications to error correcting codes.
Hiroshima Mathematical Journal, 3(1):153–226, 1973.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

[HKM23] Jun-Ting Hsieh, Pravesh K. Kothari, and Sidhanth Mohanty. A simple and sharper
proof of the hypergraph Moore bound. In Proceedings of the 2023 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
2324–2344. SIAM, 2023.

[HKM+24] Jun-Ting Hsieh, Pravesh K. Kothari, Sidhanth Mohanty, David Munhá Correia, and
Benny Sudakov. Small even covers, locally decodable codes and restricted subgraphs
of edge-colored kikuchi graphs. CoRR, abs/2401.11590, 2024.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[HO75] N Hamada and H Ohmori. On the bib design having the minimum p-rank. Journal
of Combinatorial Theory, Series A, 18(2):131–140, 1975.

[IK99] Yuval Ishai and Eyal Kushilevitz. Improved upper bounds on information-theoretic
private information retrieval (extended abstract). In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA,
pages 79–88. ACM, 1999.

[IK04] Yuval Ishai and Eyal Kushilevitz. On the hardness of information-theoretic mul-
tiparty computation. In Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzer-
land, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science,
pages 439–455. Springer, 2004.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

[IS18] Eran Iceland and Alex Samorodnitsky. On coset leader graphs of structured linear
codes. Electron. Colloquium Comput. Complex., TR18-023, 2018.

[JHL+12] Domingos Dellamonica Jr., Penny E. Haxell, Tomasz Luczak, Dhruv Mubayi, Bren-
dan Nagle, Yury Person, Vojtech Rödl, Mathias Schacht, and Jacques Verstraëte. On
even-degree subgraphs of linear hypergraphs. Comb. Probab. Comput., 21(1-2):113–
127, 2012.

[JMS07] Haixia Jia, Cristopher Moore, and Doug Strain. Generating Hard Satisfiable For-
mulas by Hiding Solutions Deceptively. Journal of Artificial Intelligence Research,
28:107–118, 2007.

[JT09] Dieter Jungnickel and Vladimir D. Tonchev. Polarities, quasi-symmetric designs,
and Hamada’s conjecture. Des. Codes Cryptogr., 51(2):131–140, 2009.

225

[Jun84] Dieter Jungnickel. The number of designs with classical parameters grows exponen-
tially. Geom. Dedicata, 16(2):167–178, 1984.

[Jun11] Dieter Jungnickel. Recent results on designs with classical parameters. J. Geom.,
101(1-2):137–155, 2011.

[Kan94] William M. Kantor. Automorphisms and isomorphisms of symmetric and affine
designs. J. Algebraic Combin., 3(3):307–338, 1994.

[Kar94] David R Karger. Random sampling in cut, flow, and network design problems. In
Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages
648–657, 1994.

[KM24a] Pravesh K. Kothari and Peter Manohar. An exponential lower bound for linear
3-query locally correctable codes. In Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages
776–787. ACM, 2024.

[KM24b] Pravesh K. Kothari and Peter Manohar. Superpolynomial lower bounds for smooth
3-lccs and sharp bounds for designs. In 65th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024. IEEE, 2024.

[KM24c] Vinayak M. Kumar and Geoffrey Mon. Relaxed local correctability from local testing.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024,
Vancouver, BC, Canada, June 24-28, 2024, pages 1585–1593. ACM, 2024.

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 132–145. ACM, 2017.

[KMZ12] Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Reweighted Belief Propaga-
tion and Quiet Planting for Random k-SAT. Journal on Satisfiability, Boolean Modeling
and Computation, 8(3-4):149–171, 2012.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. Journal of the ACM (JACM), 61(5):1–20, 2014.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 80–86, 2000.

[KV00] Jeong Han Kim and Van H Vu. Concentration of multivariate polynomials and its
applications. Combinatorica, 20(3):417–434, 2000.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. Journal of the ACM (JACM), 51(3):497–515, 2004.

[KW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. Journal of Computer and System Sciences,
69(3):395–420, 2004.

[KZ09] Florent Krzakala and Lenka Zdeborová. Hiding Quiet Solutions in Random Con-
straint Satisfaction Problems. Physical review letters, 102(23):238701, 2009.

226

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. In 31st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 2–10.
IEEE Computer Society, 1990.

[LLT00] Clement Lam, Sigmund Lam, and Vladimir D. Tonchev. Bounds on the number of
affine, symmetric, and Hadamard designs and matrices. J. Combin. Theory Ser. A,
92(2):186–196, 2000.

[LLT01] Clement Lam, Sigmund Lam, and Vladimir D. Tonchev. Bounds on the number of
Hadamard designs of even order. J. Combin. Des., 9(5):363–378, 2001.

[LP91] Françoise Lust-Piquard and Gilles Pisier. Noncommutative Khintchine and Paley
inequalities. Ark. Mat., 29(2):241–260, 1991.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–
277, 1988.

[LT02] Clement Lam and Vladimir D. Tonchev. A new bound on the number of designs
with classical affine parameters. volume 27, pages 111–117. 2002. Special issue in
honour of Ronald C. Mullin, Part II.

[Mar88] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes
and their applications in the construction of expanders and concentrators. Problemy
Peredachi Informatsii, 24(1):51–60, 1988.

[McS01] Frank McSherry. Spectral partitioning of random graphs. In 42nd Annual Symposium
on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA, pages 529–537. IEEE Computer Society, 2001.

[Mek14] Raghu Meka. Discrepancy and beating the union
bound. https://windowsontheory.org/2014/02/07/
discrepancy-and-beating-the-union-bound, February 2014.

[MNS15] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted
bisection model. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 69–75.
ACM, 2015.

[Mos15] Dana Moshkovitz. The Projection Games Conjecture and the NP-Hardness of ln 𝑛-
Approximating Set-Cover. Theory Comput., 11:221–235, 2015.

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM,
57(5):29:1–29:29, 2010.

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On 𝜀-biased generators in NC0.
Random Structures & Algorithms, 29(1):56–81, 2006.

[MW16] Ryuhei Mori and David Witmer. Lower Bounds for CSP Refutation by SDP Hierar-
chies. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of
LIPIcs, pages 41:1–41:30, 2016.

[NV08] Assaf Naor and Jacques Verstraëte. Parity check matrices and product representa-

227

https://windowsontheory.org/2014/02/07/discrepancy-and-beating-the-union-bound
https://windowsontheory.org/2014/02/07/discrepancy-and-beating-the-union-bound

tions of squares. Combinatorica, 28(2):163–185, 2008.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In 2014 IEEE 29th Conference on Computational Complexity (CCC),
pages 1–12. IEEE, 2014.

[Rao23] Anup Rao. Sunflowers: from soil to oil. Bulletin of the American Mathematical Society,
60(1):29–38, 2023.

[Rom06] Andrei E. Romashchenko. Reliable computations based on locally decodable codes.
In STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science,
Marseille, France, February 23-25, 2006, Proceedings, volume 3884 of Lecture Notes in
Computer Science, pages 537–548. Springer, 2006.

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random
CSPs below the spectral threshold. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 121–131. ACM, 2017.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[Sch08] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 593–602. IEEE Computer Society, 2008.

[Sha90] Adi Shamir. Ip=pspace. In 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 11–15. IEEE Computer
Society, 1990.

[Spi19] Daniel Spielman. Spectral and algebraic graph theory. Yale lecture notes, draft of
December, 4:47, 2019.

[SS94] Michael Sipser and Daniel A. Spielman. Expander codes. In 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994,
pages 566–576. IEEE Computer Society, 1994.

[SS08] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008, pages 563–568. ACM, 2008.

[SS12] Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for
polynomials of independent random variables. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 437–446. SIAM, 2012.

[ST03] Daniel A. Spielman and Shang-Hua Teng. Smoothed Analysis (Motivation and
Discrete Models). In Algorithms and Data Structures, 8th International Workshop,
WADS 2003, Ottawa, Ontario, Canada, July 30 - August 1, 2003, Proceedings, volume
2748 of Lecture Notes in Computer Science, pages 256–270. Springer, 2003.

[ST11] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM

228

Journal on Computing, 40(4):981–1025, 2011.

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2616–2635. SIAM, 2019.

[Tei80] Luc Teirlinck. On projective and affine hyperplanes. Journal of Combinatorial Theory,
Series A, 28(3):290–306, 1980.

[Ton99] Vladimir D Tonchev. Linear perfect codes and a characterization of the classical
designs. Designs, Codes and Cryptography, 17:121–128, 1999.

[Ton11] Vladimir D. Tonchev. Finite geometry designs, codes, and Hamada’s conjecture. In
Information security, coding theory and related combinatorics, volume 29 of NATO Sci.
Peace Secur. Ser. D Inf. Commun. Secur., pages 437–448. IOS, Amsterdam, 2011.

[Tre04] Luca Trevisan. Some applications of coding theory in computational complexity.
arXiv preprint cs/0409044, 2004.

[Tre09] Luca Trevisan. Max cut and the smallest eigenvalue. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 -
June 2, 2009, pages 263–272. ACM, 2009.

[Tro12] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, Aug 2012.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends
Mach. Learn., 8(1-2):1–230, 2015.

[WAM19] Alexander S. Wein, Ahmed El Alaoui, and Cristopher Moore. The Kikuchi Hierarchy
and Tensor PCA. In 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1446–1468. IEEE
Computer Society, 2019.

[Wit17] David Witmer. Refutation of random constraint satisfaction problems using the sum of
squares proof system. PhD thesis, Carnegie Mellon University, 2017.

[Wol09] Ronald de Wolf. Error-correcting data structures. In 26th International Symposium
on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg,
Germany, Proceedings, volume 3 of LIPIcs, pages 313–324. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany, 2009.

[Woo07] David Woodruff. New lower bounds for general locally decodable codes. In Elec-
tronic Colloquium on Computational Complexity (ECCC), volume 14, 2007.

[Woo10] David P. Woodruff. A quadratic lower bound for three-query linear locally decodable
codes over any field. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th Inter-
national Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings,
volume 6302 of Lecture Notes in Computer Science, pages 766–779. Springer, 2010.

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved
worst-case update time. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1130–1143, 2017.

229

[Yan24] Tal Yankovitz. A stronger bound for linear 3-lcc. In 65th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024.
IEEE, 2024.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
Journal of the ACM (JACM), 55(1):1–16, 2008.

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical
Computer Science, 6(3):139–255, 2012.

[Zou12] Anastasios Zouzias. A matrix hyperbolic cosine algorithm and applications. In
Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012,
Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in
Computer Science, pages 846–858. Springer, 2012.

230

	Abstract
	1 Introduction
	2 An Overview of the Method and Key Technical Ideas
	2.1 The main approach and Kikuchi matrices for even q
	2.2 Handling arbitrary hypergraphs with row bucketing
	2.3 Handling correlated randomness with row pruning

	3 Background and Preliminaries
	3.1 Basic notation
	3.1.1 Graph pruning and expander decomposition

	3.2 Hypergraphs
	3.3 Locally decodable and correctable codes
	3.4 Concentration inequalities
	3.5 The sum-of-squares algorithm
	3.6 Facts about binomial coefficients

	I Algorithms for Semirandom and Smoothed Constraint Satisfaction Problems
	4 Background and Results
	4.1 Refuting CSPs in semirandom and smoothed models
	4.1.1 Algorithms for refuting smoothed CSPs
	4.1.2 Refutation witnesses for smoothed CSPs below the spectral threshold

	4.2 Solving planted CSPs in semirandom models
	4.2.1 Our semirandom planted model and results

	5 Algorithms for Strongly Refuting Smoothed CSPs
	5.1 Proof overview: refuting semirandom k-XOR for odd k
	5.1.1 Refuting semirandom k-XOR for k > 3: hypergraph regularity

	5.2 A hypergraph decomposition lemma
	5.3 Refuting semirandom sparse polynomials over the hypercube
	5.3.1 Regular bipartite polynomials
	5.3.2 Reduction to regular bipartite polynomials

	5.4 Refuting regular bipartite polynomials
	5.4.1 The initial Kikuchi matrix
	5.4.2 Proof plan
	5.4.3 Row pruning
	5.4.4 Bounding the spectral norm of the "reweighted pruned matrix": proof of Lemma 5.4.7

	5.5 Strong CSP refutation: smoothed via semirandom
	5.5.1 Proof of Theorem 5.5.4

	5.6 Analyzing the [WAM19] approach for random 3-XOR

	6 Short Refutation Witnesses for Smoothed CSPs Below the Spectral Threshold
	7 Efficient Algorithms for Semirandom Planted CSPs at the Refutation Threshold
	7.1 Technical overview
	7.1.1 Approximate recovery for 2-XOR from refutation
	7.1.2 The challenges for k-XOR and our strategy
	7.1.3 Information-theoretic exact recovery from relative cut approximation
	7.1.4 Efficient exact recovery from relative spectral approximation
	7.1.5 The case of odd k

	7.2 From planted CSPs to noisy XOR
	7.3 From k-XOR to spread bipartite k-XOR
	7.3.1 Proof of Theorem 5 from Lemma 7.3.2

	7.4 Identifying noisy constraints in spread bipartite k-XOR
	7.4.1 Setup and key notation
	7.4.2 Proof outline
	7.4.3 Graph pruning and expander decomposition
	7.4.4 Rank-1 SDP solution from expansion and relative spectral approximation
	7.4.5 Recovery of corrupted constraints from corrupted pairs
	7.4.6 Finishing the proof of Lemma 7.3.2

	7.5 Notions of relative approximation
	7.6 Hypergraph decomposition
	7.7 Theorem 5 when k = 1

	II Extremal Girth vs. Density Trade-Offs for Hypergraphs
	8 Background and Results
	9 A Proof of the Hypergraph Moore Bound
	9.1 Proof of Theorem 6 for even k
	9.2 Proof of Theorem 6 for all k
	9.2.1 Proof of Lemma 9.2.2

	III Lower Bounds for Locally Decodable and Correctable Codes
	10 Background and Results
	10.1 Our results
	10.1.1 A near-cubic lower bound for 3-LDCs
	10.1.2 Exponential lower bounds for 3-LCCs

	11 A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes
	11.0.1 Hypergraph decomposition: proof of Lemma 11.0.2
	11.0.2 Refuting the 2-XOR instance: proof of Lemma 11.0.3

	11.1 Refuting the 3-XOR instance: proof of Lemma 11.0.4
	11.1.1 Bounding val(f_{L,R}) using CSP refutation
	11.1.2 Counting nonzero entries: proof of Lemma 11.1.7
	11.1.3 Spectral norm bound: proof of Lemmas 11.1.6 and 11.1.9

	11.2 Improved lower bounds for 3-LDCs over larger alphabets
	11.3 Our proof as a black-box reduction to 2-LDC lower bounds

	12 Exponential Lower Bounds for 3-Query Locally Correctable Codes
	12.1 The proof strategy
	12.1.1 The naive XOR instance and LDC lower bounds
	12.1.2 Long chain derivations: stronger spectral refutations by increased density
	12.1.3 From the heuristic to a proof

	12.2 Proof of Theorem 9
	12.2.1 Bounding the second moment of the degrees: proof of Lemma 12.2.6

	12.3 Warmup: an n > k^4 lower bound via 2-chains
	12.3.1 Step 1: the Cauchy–Schwarz trick
	12.3.2 Step 2: spectral refutation via Kikuchi matrices
	12.3.3 Step 3: row pruning, the key technical step
	12.3.4 Step 4: hypergraph decomposition to handle large heavy pair degree
	12.3.5 Preview: extending the warmup to a proof of Theorem 8

	12.4 Proof of Theorem 8: from LCCs to XOR formulas
	12.5 Smooth partitions of chains
	12.6 Spectral refutation via Kikuchi matrices
	12.6.1 Step 1: the Cauchy–Schwarz trick
	12.6.2 Step 2: defining the Kikuchi matrices
	12.6.3 Step 3: finding a regular submatrix of the Kikuchi matrix
	12.6.4 Step 4: finishing the proof
	12.6.5 Step 5: optimizing the log n factor and proving Theorem 8

	12.7 Row pruning: proof of Lemma 12.6.4
	12.8 From adaptive decoders to chain XOR polynomials
	12.8.1 Constructing polynomials from adaptive smoothed decoders
	12.8.2 Proof of Lemma 12.8.10

	12.9 Refuting the graph-tail instances
	12.10 Linear 3-LCC lower bounds over larger fields
	12.11 Design 3-LCCs over F_2 from Reed–Muller codes

	IV Future Directions
	13 Kikuchi Matrices over Larger Alphabets
	14 Improved Algorithms for Planted CSPs
	14.1 Subexponential-time algorithms for planted CSPs
	14.2 Smoothed models of planted CSPs

	15 Improved Lower Bounds for LDCs/LCCs
	15.1 Better LDC lower bounds: barriers and a path forward
	15.1.1 Improving odd q LDC lower bounds
	15.1.2 Improving even q LDC lower bounds

	15.2 The "LDC barrier" for LCC lower bounds

	16 Improved Nondeterministic and Interactive Refutations
	Bibliography

