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Abstract
Dermatomyositis (DM) is a rare autoimmune disease characterized by chronic

muscle inflammation, weakness, and skin rashes. Cutaneous Dermatomyositis (CDM),
the skin manifestation of the disease, typically presents as purple or red rashes on the
eyelids, joints, knuckles, and other areas; while there is no cure, treatment can allevi-
ate symptoms, and monitoring disease progression is crucial. This study introduces
a novel image-based approach for assessing CDM severity, aiming to create an ob-
jective, predictive model based on dermatological images, with expert assessments
of the Cutaneous Dermatomyositis Activity Score as the gold standard. Through
our collaboration with clinicians at the University of Pittsburgh Medical Center, we
analyze a dataset of high-resolution 3D in-clinic hand images from DM patients.
Key clinical features, including the extent, intensity and texture of the rash, are ana-
lyzed alongside CNN-based image features, enabling a comprehensive assessment of
disease severity. We evaluate multiple state-of-the-art image classification models,
fine-tuning them on our dataset to optimize performance. Our approach includes
utilizing semantic image segmentation to accurately highlight regions of interest,
with significant improvements achieved through this integration. Our study lays the
groundwork for the use of patient-taken images for remote monitoring, demonstrat-
ing the potential for patients to track their condition at home. By combining clinical
insights with advanced image analysis, this work contributes to improved automated
assessment of CDM and better monitoring of disease progression.
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Chapter 1

Introduction

Figure 1.1: An image of Cutaneous Dermatomyositis rash on the hands. The rash often appears
patchy, with purple or red discolorations, and develops on muscles used to extend joints such as
the knuckles. The rashes typically distribute symmetrically across both hands.

Dermatomyositis (DM) is a rare multi-system autoimmune disease that can involve chronic
muscle inflammation, muscle weakness, and skin rash. Cutaneous Dermatomyositis (CDM) is
the skin manifestation of Dermatomyositis, with the rash often appearing patchy, with purple or
red discolorations, and characteristically developing on the eyelids and on the extensor surface
of the joints, including knuckles, elbows, knees, and toes. Rashes may also occur on the face,
neck, upper chest, back, and other locations, with potential swelling in the affected areas [34].
The disease is quite rare, with an estimated fewer than 5000 people in the United States being
affected [35], and can affect adults and children, occurring in the late 40s to early 60s in adults
and appearing between 5 and 15 years of age in children. Additionally, women are twice as likely
as men to be diagnosed with the disease [31] [8]. The rash can sometimes occur without obvious
muscle involvement and often becomes more evident with sun exposure. Periods of symptom
improvement can occur with medical therapy and skin treatment, with sunscreen or antihistamine
drugs potentially helping clear the skin rash [31].

This work presents a novel image-based approach to assessing CDM severity in patients, with
several contributions to the fields of medical image analysis and classification. Our main goal
is the development of a predictive model aimed at generating an objective image-based disease
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severity score, with an expert assessment of the Cutaneous Dermatomyositis Disease Area and
Severity Index (CDASI) score [53] serving as the gold standard. Automating the severity evalu-
ation of a CDM rash will assist clinicians in tracking the progression of the disease over time for
improvement after initiating treatment.

This study is made possible through our collaboration with clinicians from the Division of
Rheumatology and Clinical Immunology at the University of Pittsburgh Medical Center. This
collaboration gave us access to valuable real-world data and a more comprehensive understand-
ing of the clinical features most indicative of CDM severity. Our first step was to analyze these
key clinical features such as the extent, intensity, and texture of the rash. These features are ini-
tially extracted using K-means clustering, an unsupervised learning technique that groups pixels
with similar characteristics, and their predictive power is evaluated using three robust classifi-
cation algorithms. We observed that textural features played a significant role in improving our
classification algorithm’s ability to classify the rash severity; Specifically, the features of contrast
and dissimilarity helped in identifying heterogeneous regions and capturing textural irregulari-
ties.

One of the challenges, however, in assessing the rash is accurately highlighting the region
of interest. Semantic image segmentation helps us achieve this objective by delineating the rash
regions, ensuring a more accurate evaluation of the extent of the disease. We fine-tuned multiple
state-of-the-art semantic segmentation models on our dataset, to produce segmented crops that
can be fed into our clustering algorithms for subsequent feature extraction. This pre-processing
step aims to improve the classifier’s ability to differentiate between healthy and affected skin,
leading to a more accurate measurement of disease severity.

We then investigated the potential of Convolutional Neural Networks (CNNs) to extract
complex patterns and hierarchical features from our image data, and automatically identify and
quantify the characteristics of the rash. After thorough testing, we determined that combining
CNN-based feature extraction with the Support Vector Machine (SVM) classifier yielded the best
performance, achieving an accuracy of approximately 85%, which the clinicians deemed to be
within a satisfactory range. This approach was particularly effective at distinguishing between
very mild and severe cases of CDM, which is crucial for clinicians. We also assessed the effec-
tiveness of fine-tuning pre-trained CNNs on our dataset and evaluated these results against our
previous pipelines involving explicit feature extraction and classification.

Finally, we utilized Grad-CAM [47] to generate class activation maps to visualize the regions
of focus for our fine-tuned model. This provided the clinicians with a degree of transparency and
explainability into the otherwise black-box CNN, to better understand and interpret which parts
of the hand images the model is focusing on when making a prediction.

Ultimately, this study leveraged key clinical insights provided by domain experts, along with
the more complex, hierarchical features produced by deep learning models, to create a framework
for an efficient, automated assessment of CDM. In summary, our work presents the following
contributions:

• We partnered with clinicians at UPMC to curate a novel dataset of in-clinic and smartphone-
based Cutaneous Dermatomyositis hand images

• We leveraged the K-means clustering algorithm to extract key clinical features including
rash extent, intensity and texture, and further refined this feature extraction process with
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the use of region of interest segmentation as a pre-processing step
• We improved on the performance of the handcrafted features with CNN-extracted features,

achieving a top accuracy of 85% with the SVM classifier
• We applied the Grad-CAM visualization technique to provide clinicians with visual in-

sights into our fine-tuned model’s decision-making process, enhancing interpretability and
trust
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Chapter 2

Related Work

2.1 Image Segmentation

Image segmentation is the process of partitioning an image into meaningful regions correspond-
ing to areas of interest [25]; Medical image segmentation is typically utilized to assist clinicians
in diagnosing, planning treatments, or monitoring disease progression. Historically, segmen-
tation in medical imaging involved thresholding and region-growing techniques, where simple
intensity-based methods were applied to delineate object boundaries. The growth of imaging
technology and machine learning led to more sophisticated methods like edge detection and
active contours, as well as statistical methods, such as K-means clustering and support vector
machines. However, it was the deep learning that revolutionized segmentation, which became
much more automated and accurate, with CNNs drastically improving the performance of seg-
mentation tasks by learning features directly from data [43].

A notable deep learning-based architecture for image segmentation is the U-Net architecture
[41], which was specifically designed for medical semantic segmentation and has become a gold
standard in the field. Semantic segmentation associates a label or category with every pixel in an
image, enabling accurate localization of areas of interest [21]. The U-Net is a fully convolutional
network with an encoder-decoder structure, where the encoder extracts features while the decoder
rebuilds the segmented output.

The U-Net is particularly effective because of its ability to work with relatively small datasets,
which is a common issue in medical imaging, where labeled data is scarce. It is especially effec-
tive for tasks like segmenting tumors, organs, and other medical structures, and helps clinicians
by automating the delineation of critical structures, reducing the time spent on manual annota-
tion.

A typical encoder-decoder image segmentation model, as seen in Figure 2.1 follows an ar-
chitecture that is designed to effectively capture spatial features in images while preserving the
fine details necessary for accurate segmentation. The encoder part of the network consists of
convolutional layers followed by max pooling layers. These layers extract hierarchical features
from the image, progressively reducing the spatial dimensions while increasing the number of
feature maps. The encoder captures low-level features such as edges, textures, and shapes, which
are important to distinguish between different structures. The bottleneck represents the deepest
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part of the network, where the model captures the most abstract features. Afterwards, the de-
coder consists of up-sampling layers and skip connections from the corresponding layers in the
encoder. These skip connections help retain fine-grained spatial details that are lost during down-
sampling in the encoder. The decoder progressively increases the spatial resolution of the feature
maps, reconstructing the segmentation mask in the process. Finally, the final layer typically uses
a softmax activation function to output a pixel-wise probability map representing the probability
or likelihood that each pixel belongs to a certain class [6].

Figure 2.1: Typical Encoder-Decoder architecture. The encoder consists of convolutional layers
followed by max pooling layers and the decoder consists of up-sampling layers. The final layer
uses a softmax activation function.

2.2 Image Classification
Image classification involves classifying images into different categories based on the various
visual features present in the image. This is critical in medical imaging, where classifying the
severity of a disease can potentially guide clinical decisions and treatment plans. Historically,
severity classification in medical imaging was done manually by clinicians, but the advent of
deep learning has automated this process, making it more efficient and reliable. The typical
workflow for severity classification involves using CNNs to learn relevant patterns in images and
classify them into severity levels. Transfer learning approaches are frequently used to overcome
the challenge of limited annotated data, leveraging pre-trained models on large datasets and fine-
tuning them for medical tasks [42].

A typical image classification model, as seen in Figure 2.2, starts with a pre-trained convo-
lutional base, such as a ResNet, which extracts features from the input image. These pre-trained
networks are well-suited for feature extraction, as they have already learned to detect low-level
and high-level features from large image datasets. The feature extractor is followed by one or
more fully connected layers that classify the extracted features into different classes or output a
continuous score. For multi-class classification, cross-entropy loss with softmax activation in the
final layer is typically used [32].

As mentioned earlier, transfer learning is often applied in medical image classification as it
allows the model to benefit from the vast knowledge learned on large, non-medical datasets and
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Figure 2.2: Typical CNN architecture. The architecture consists of convolutional and pooling
layers, which form the pre-trained convolutional base, followed by fully connected layers that
classify the extracted features.

adapt it to the specific medical domain which often has relatively small datasets. For severity
classification, fine-tuning the pre-trained network ensures that the model can adjust its weights to
better classify specific features relevant to the severity of the disease in question. Deep learning
techniques such as these have been increasingly applied to the study of skin rashes, with the
growing demand for accurate and automated diagnostic tools. Some of the most common skin
diseases associated with rashes that have been extensively studied in the context of machine
learning include Psoriasis, Eczema, Contact Dermatitis and Rosacea.

2.3 Segmentation and Classification of Skin Disease Images

Cutaneous Dermatomyositis is a relatively under-researched condition, and we therefore sought
out prior work on diseases that manifested similarly to CDM, as red rashes or textured skin le-
gions. Prior work on medical image segmentation for diseases similar to CDM include Rahman
Attar et al. (2023) [40], who presented a fully automated method for assessing eczema severity
using digital camera images. The authors developed a model, EczemaNet2, to detect eczema
lesions from 1,345 dermatological images using data augmentation and pixel-level segmenta-
tion. They concluded that the quality and robustness of eczema lesion detection increased by
approximately 25% and 40% with the use of pixel-level segmentation, with no real impact on the
performance of the downstream severity prediction, however.

We aim to integrate a variety of methods including segmentation, feature extraction, and
classification techniques to create a comprehensive solution for accurate disease severity predic-
tion. Ahammed et al. (2022) [1] presented an innovative approach for automated skin disease
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detection and lesion segmentation utilizing some of these methods. The authors introduced the
GrabCut algorithm, enhanced by K-means clustering and the HSV color space, for automatic
lesion segmentation. Key features of the lesions are then extracted through the use of the Gray
Level Co-occurrence Matrix (GLCM). The paper finally investigates the performance of various
machine learning algorithms including SVM, KNN and Decision Tree, for skin disease classifi-
cation on the ISIC 2019 and HAM 10000 datasets.

We also aim to incorporate self-training algorithms and class-activation maps in future work
to augment our current analysis. Wang et al. (2023) [51] propose a Collaborative Learning
Deep Convolutional Neural Networks (CL-DCNN) model, based on the teacher-student learning
method for dermatological segmentation and classification. Their method leverages self-training
to generate high-quality pseudo-labels, which are screened and selectively retrained via the clas-
sification network, enhancing the segmentation quality. Additionally, the model incorporates
class activation maps to refine the segmentation network’s accuracy and utilizes lesion segmen-
tation masks to aid the classification network in better recognizing skin diseases.

All of these studies present innovative and effective techniques for skin legion segmentation
and classification. We aim to incorporate some of the ideas discussed in this section in our
analysis. Cutaneous Dermatomyositis is not a disease that has been extensively studied in the
past and therefore, our work provides a foundation for future research into the disease.
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Chapter 3

Cutaneous Dermatomyositis Dataset

3.1 DART Study

Clinicians from the Division of Rheumatology and Clinical Immunology at the University of
Pittsburgh Medical Center investigated the feasibility of telemedicine in evaluating CDM skin
rashes compared to traditional in-clinic assessments. To this end, they also aimed to assess the
validity, reliability, and responsiveness of the three new image-based CDM skin rash assess-
ments, consisting of in-clinic 3D imaging, telemedicine application-based imaging, and patient
rash mapping. CDM patients, according to the 2017 EULAR/ACR criteria, were prospectively
enrolled in an observational study called DART or Dermatomyositis Assessment of Rash via
Telemedicine. Each patient underwent evaluations by two independent rheumatologists (MD1

and MD2) during both in-clinic and telemedicine visits, which occurred 2-4 weeks apart. The
Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI) [50] were scored during
these evaluations.

Figure 3.1: Paired left and right-hand photographs of in-clinic 3D images (top) and smartphone
images (bottom). For both types of visits, there were approximately 2 visits per patient and 1 set
of images per visit.

9



As a preliminary result, a total of 27 DM patients underwent evaluation. 26 patients were
Caucasian-American, and 1 patient was African-American, with a majority of the patients being
female, approximately 82.6%. The patients had a mean age of 48.6 ± 17.4 years and a median
disease duration of 38.0 months. For both types of visits, there were approximately 2 visits per
patient and 1 set of images per visit, capturing skin rashes on various body areas, including the
hands, the upper chest, the upper back, and the face. This resulted in a total of approximately 46
sets of 3D in-clinic images being captured. For this research study, the focus will be specifically
on the in-clinic hand images, with our initial dataset consisting of 90 hand (left and right) im-
ages, as shown in Figure 3.1 To simplify our analysis, these 3D images were converted into 2D
representations that were used throughout this study.

It is important to note that the rashes presented differently in the African-American patient,
with the rash area being difficult to distinguish and map for the clinicians. Therefore, after
consulting with the clinicians, the images associated with this patient were removed from our
dataset. The lack of diversity in skin color in our dataset is a limitation that we hope to overcome
in the future, and we aim to address the challenges posed by darker skin tones by utilizing image-
enhancing techniques to increase rash visibility and incorporating non-chromatic features such
as texture.

Figure 3.2: The Vectra software application. This is utilized by the clinicians to map and measure
the extent and intensity features of the rash for the 3D in-clinic images

The 3D in-clinic images were taken by a research coordinator using a VECTRA H1 camera,
enhanced by studio-quality lighting to ensure optimal visualization of skin topography. The
VECTRA H1 camera is a handheld imaging system that provides clinical-quality high-resolution
3D imaging, using different lenses and filters to give a complex, in-depth view of the skin [44].
The VECTRA application software, showcased in Figure 3.2, is utilized by clinicians to study
and analyze the in-clinic images, enabling them to map and measure features such as the rash
extent and intensity [44]. The telemedicine images were taken by patients during visits using
the SkinIO smartphone application [48]. The quality of the telemedicine images is generally
lower than that of the in-clinic data, with noticeable variations in lighting and angle. These
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discrepancies should be addressed when applying the image analysis techniques used for the
in-clinic images to the telemedicine dataset. This will likely require the introduction of pre-
processing steps to normalize factors such as lighting and hand positioning across the images.

3.2 CDASI Scoring

Figure 3.3: The CDASI form used by clinicians to assess CDM severity. It is a partially vali-
dated, clinician-scored, one-page outcome measure used to assess skin disease in CDM patients,
evaluating the skin in 15 anatomic locations and comprising of two separate scores based on
activity and damage.

Furthermore, as mentioned earlier, we are provided with MD assessments of the CDASI
score for all of the images in our dataset. In the past, the cutaneous manifestations of DM were
among the least systematically studied aspects of this disease due to a lack of validated instru-
ments for reliably determining the impact of therapy on CDM disease activity. [50] The CDASI,
a partially validated, clinician-scored, one-page outcome measure used to assess skin disease in
CDM patients, was developed and validated for use by dermatologists as a reliable measure in
direct response to this need. An example of the CDASI form is shown in Figure 3.3. Previous
studies have demonstrated that the CDASI has the best responsiveness to clinical change when
compared to other outcome measures that assess cutaneous manifestations of DM. [50] It evalu-
ates the skin in 15 anatomic locations and is comprised of two separate scores based on activity
and damage, among other factors, with higher scores indicating greater disease severity. Activity
indicates the current level of disease activity and damage measures the long-term, irreversible
changes caused by CDM. The MDs utilized activity to evaluate severity, specifically the three
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factors of erythema, scale, and erosion. [50][3] The CDASI scores for the hand images range
from 0 to 14, with lower scores indicating milder severity and higher scores reflecting greater
severity. Images of the right and left hands are evaluated simultaneously by one CDASI score,
as the rashes almost always distribute symmetrically in patients.

3.3 Redness and Area Features

Figure 3.4: Spearman’s Rho between handcrafted features and patient and expert CDASI as-
sessments. The values are consistently above 0.6, indicating a substantial degree of association
between rash redness and area and the CDASI scores.

In addition to the CDASI scores, the clinicians provided us with 4 features per image, cap-
turing the extent and intensity of the rash:

• The area of the rashes in cm2

• The area of the entire hand in cm2

• The redness of the rash, measured as the average a∗ of the rash pixels in the L∗a∗b∗ color
space [20]

• The redness of the entire hand, measured as the average a∗ of the normal skin pixels in the
L∗a∗b∗ color space [20]

In the upcoming sections, we will explore the reasoning behind measuring redness in this
manner and representing our images in the L∗a∗b∗ color space. The clinicians determined that
the features of rash redness and area highly correlate with both expert and patient assessments
of CDASI. Figure 3.4 showcases Spearman’s rho [49], a measure of the strength of association
between two variables, between both expert and patient CDASI assessments and the rash area
and redness. Spearman’s Rho ranges from -1 to 1 with positive values indicating a positive asso-
ciation, where when one variable increases, so does the other. From the table, it can be observed
that the Rho values are consistently above 0.6, indicating a substantial degree of positive associa-
tion between rash redness and area and the CDASI scores. This analysis essentially demonstrates
that the larger and redder the rash is, the higher its CDASI score and the more severe the rash.

The area feature was transformed into the ratio of rash area to normal hand area to account
for variations in the hand size, and the ratio of redness between the rash and surrounding normal
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skin was added as a feature to normalize against skin tone variation. These three variables of
relative area, redness, and relative redness, form the initial handcrafted features we use to predict
the CDASI score.

3.4 Collaboration with Domain Experts
A key feature of this work is the close collaboration with the medical research team at UPMC.
This collaboration greatly enhanced the quality of our research and provided us with several
advantages. It granted us access to valuable real-world data and fostered a deeper understand-
ing of the clinical features most representative of CDM. Furthermore, it helped establish clear
benchmarks for our research, allowing us to determine what would be considered acceptable
and valuable from a clinical standpoint, and evaluate how closely aligned our findings are with
clinical expectations.
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Chapter 4

Preliminary Analysis

4.1 Interrater Relability

Our preliminary analysis included measuring the degree of agreement between the CDASI rat-
ings of the two MDs, for which we computed a metric of interrater reliability, the weighted
Cohen’s kappa. Cohen’s Kappa is a statistical measure used to quantify the level of agreement
between two raters who each classify items into categories [15]. We used the weighted version
of Cohen’s kappa as it applies to ordinally scaled samples, like severity scores [16].

The weighted Cohen’s kappa was found to be: 0.561 ± 0.0615, with a confidence interval
CI95% = [0.441, 0.682]. Landis and Koch (1977)[27] provided a widely referenced interpretation
of Cohen’s Kappa to assess the level of agreement between raters. According to their work, a
Cohen’s Kappa value of 0.41–0.60 indicates moderate agreement. This range suggests that while
there is some consistency between the raters, there is still a noticeable amount of disagreement,
which requires further investigation. After examining the dataset further, we found 12 out of
90 images to have discrepancies of 2 points or more on the 0-14 scale between the MDs. We
determined, after consulting with the clinicians, that these images should be removed from our
dataset, as considerable disagreement existed on their severity scores. This process resulted in a
final dataset of 78 images. With all other images, MD1’s scoring was used as the ground truth,
as the patients interacted more frequently with MD1 and were better known to them.

We also recognized that we might prefer to reduce the granularity of the classes to help inter-
pret the severity in broader terms. Specifically, we found that the MDs themselves made no clear
distinction between many pairs of successive values on the CDASI scale and that the number
of images associated with a majority of the classes was quite low (≤ 5). Therefore, grouping
the classes might help to create a ”coarser” interpretation of severity and improve model per-
formance. The clinicians had originally suggested that the scores be mapped to the four broad
categories of normal, mild, moderate and severe. However, we wanted to ensure that our cate-
gories were not too narrow or broad, capturing enough variation while maintaining interpretabil-
ity. Therefore, we decided to group our data in the following manner to create a balance between
the number of values in each category and the significance of the severity classes. There are only
two images with a CDASI score above 8, and therefore we included these two images in our
most severe category to simplify our analysis.
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• 0: Normal
• 1-2: Very Mild
• 3-4: Mild to Moderate
• 5-6: Moderate
• 7-8: Severe

Figure 4.1: Label Distribution before
grouping. Classes 0 - 8 are displayed, with
Class 0 having the highest frequency, and
multiple classes having less than 5 images.

Figure 4.2: Label Distribution after grouping.
Classes 0 - 5 are displayed, with a more equal
distribution of labels across classes.

Figure 4.1 and Figure 4.2 display the distribution of labels before and after our final grouping.
We observe that severity classes 0 and 2 have the highest frequency, while classes 1, 3, and 4 have
a much lower number of labels. This class imbalance highlights the need for data augmentation,
which ensures that our models receive a more balanced representation of all severity classes.

4.2 Dataset Augmentation

Normal

33.3%

Very Mild

12.8%

Mild-Moderate

28.2%

Moderate
12.8%

Moderate-Severe

12.8%

Figure 4.3: Label distribution across classes. Classes 0 and 2 have the highest frequency, while
classes 1, 3, and 4 have a substantially lower number of labels.
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We observe in Figure 4.3 that the percentage of the smallest minority class, the Moderate-
Severe images, is approximately half of that of the Normal images. This, coupled with the small
size of our dataset, prompts us to utilize data augmentation to increase the size of our dataset.
Data augmentation is utilized to artificially increase the size of a dataset by applying random
transformations to the original data. This can address class imbalance issues and help our models
generalize better by training on more diverse examples.

Figure 4.4: Sample augmented images. The two images on the right were produced after apply-
ing horizontal flipping and random horizontal and vertical translation to the left-most image.

Method Range of values
Horizontal Flip p = 0.75
Resized Crop 0 - 0.5%
Horizontal Translation 0 - 2.5%
Vertical Translation 0 - 0.5%
Random Gaussian Noise (µ=0, σ2=0.05)

Table 4.1: Data augmentation methods. Techniques include horizontal flipping, random shifts
and crops, and the addition of random Gaussian noise, all of which serve to simulate a wide
range of potential real-world variations in the images.

We employed several data augmentation techniques to increase the variability of the training
data and help the model generalize better to unseen examples. These techniques, seen in Ta-
ble 4.1, include horizontal flipping, random shifts and crops, and the addition of random Gaussian
noise, all of which serve to simulate a wide range of potential real-world variations in the images.
These techniques, with parameters chosen based on practices in medical image augmentation for
similar datasets, were used to increase the diversity of our dataset without significantly altering
the data distribution [4]. For example, due to the consistency of lighting across the in-clinic im-
ages, transformations that altered the brightness or contrast of the images were not applied. We
upsampled the minority classes until all classes were roughly equally represented in our dataset.
Our dataset size increased by effectively 3 times to around 230 images post-augmentation, and
this aligns with the ideal increase in dataset size according to our literature review [39].
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4.3 Redness and Area Feature Analysis

Figure 4.5: Distribution of Redness across
severity classes. Displays a somewhat positive
correlation between redness and severity, with
a dip in average redness for class 3 and high
variation in values in class 2.

Figure 4.6: Distribution of relative Area across
severity classes. Displays a more strongly
positive correlation between area and severity,
with high variation in values in class 3.

We conducted a statistical analysis on the rash redness values provided by the clinicians for
the abnormal image classes (classes 1 through 4). The rash redness values, represented as the
average a∗ value of the rash pixels in the L∗a∗b∗ color space, ranged from -128 to 128 on the
red-green scale, where 0 corresponds to a neutral color and 128 indicates a strongly red hue. We
plotted the redness mean and standard deviation across four severity classes, as seen in Figure 4.5.

Our analysis revealed a somewhat positive correlation between redness and severity, with
greater redness values associated with higher severity classes. However, we observed a slight dip
in the average redness value for class 3, which suggests some variation in how redness manifests
in this particular class, perhaps due to the grouping of CDASI scores associated with this class.
Additionally, it is possible that the distinguishing power of MD1 for the CDASI scores of 5 and 6
was lower than other CDASI scores, leading to more inconsistencies in classifying cases within
this severity class. Additionally, class 2 had a substantially greater number of images, leading to
a higher deviation in the redness values for this class, likely due to the increased variability in
the images.

When analyzing the relative area values (Figure 4.6), we observed a more strongly positive
correlation between area and severity, indicating that as severity increases, the affected area
tends to be larger. We observed a considerable spread of area values for severity class 3, similar
to the redness distribution for this class. These variations highlight the inherent subjectivity and
difficulty in differentiating between certain severity classes, more specifically those in the mild
to moderate range. Some potential solutions to address this issue include incorporating more
expert raters and aggregating their assessments, increasing the granularity of the severity scoring
scale after increasing the dataset size, and predicting CDASI scores on a continuous scale.
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Chapter 5

Handcrafted Features

5.1 Motivation
Our first task is to accurately capture the regions of interest in our images, which are the areas
of the hands affected by CDM. We will then focus on automating the feature extraction process
(previously done manually by the clinicians using the Vectra software) for subsequent classifi-
cation and analysis. In image processing, thresholding is a common technique for segmenting
images by classifying pixels based on their values, effectively distinguishing objects or features
from the background [18]. However, determining a fixed threshold is challenging due to the high
variability in the color, texture, and intensity of rashes. These characteristics can differ signif-
icantly not only between individuals but also within the same individual, influenced by factors
such as skin tone, lighting conditions, and the nature of the rash. As a result, threshold values
become difficult to define, limiting the effectiveness of this method.

Therefore, we sought to experiment with clustering algorithms, whereby pixels exhibiting
similar redness were grouped. Among the clustering algorithms, K-means clustering is a popular
unsupervised algorithm. K-means is an iterative, centroid-based clustering algorithm that parti-
tions a dataset into similar groups based on the distance between their cluster centers [26]. If we
are guaranteed that pixels representing similar colors are closer together in space than dissimilar
pixels, this algorithm can be used to effectively group the pixels corresponding to the rash areas.

5.2 L*a*b Color Space
We first investigate which color space would be best to represent the images in. A color space is
a specific organization of colors that can be mapped into a 2-D, 3-D, or 4-D coordinate system
[13]. The various color spaces exist because they present color information in ways that make
certain calculations more convenient or because they provide a more intuitive way to identify
colors [30]. The CIELAB color space, also referred to as L∗a∗b∗, is a color space defined by
the International Commission on Illumination in 1976. It expresses color as three values: L∗ for
perceptual lightness and a∗ and b∗ for the four unique colors of human vision: red, green, blue
and yellow. The lightness value, L∗, defines black at 0 and white at 100. The a∗ axis represents
the green–red opponent colors, with negative values toward green and positive values toward red,
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Figure 5.1: Diagram of the L*a*b space. It expresses color as three values: L∗ for perceptual
lightness and a∗ and b∗ for the four unique colors of human vision: red, green, blue and yellow.

and the b∗ axis represents the blue–yellow opponent colors [12].
L∗a∗b∗ was intended as a perceptually uniform space, where a given numerical change cor-

responds to a similar perceived change in color [12]. This is important as in K-means cluster-
ing, the algorithm typically uses Euclidean distance to determine the similarity between data
points (in this case, color values). When using L∗a∗b∗, this distance calculation better reflects
the human perception of color differences, making the segmentation more effective for tasks like
distinguishing skin rashes. This color space is also useful as it decorrelates luminance, the L∗

channel, from chrominance information, which is what we are most interested in. This allows us
to focus on the color attributes of pixels without the influence of brightness, which is crucial for
accurately identifying colors associated with rashes.

The clinicians had previously identified that the pixels associated with the rash areas tend to
have the highest a∗ values in an image. Based on this observation, we determined that applying
K-means clustering to the a∗ and b∗ color channels, could effectively isolate the rash areas.

5.3 K-means Clustering

The K-means clustering algorithm involves an iterative process to partition data into K distinct
clusters. Initially, K centroids are randomly selected from the dataset. For each data point,
the Euclidean distance to each centroid is calculated, and the points are assigned to the cluster
corresponding to the closest centroid. After this, the centroids are recalculated by computing the
mean of all the data points assigned to each cluster, and this reassignment and recalculation is
repeated until the centroids no longer change significantly.

Choosing the correct number of clusters, K, is a critical step. To determine an appropriate
value for K, we used the Elbow method, which computes the within-cluster sum of squares
across a range of K values. By plotting the sum of squares against different values of K, we
can identify the point where the rate of decrease in the sum of squares slows down, known as the
”elbow” [14]. After applying this method to a range of images, we found that a value of K = 4
consistently produced the best clustering results.

To avoid irrelevant pixels interfering with our K-means clustering results, we pre-process our
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images by utilizing Python’s rembg [10] package to isolate the hand from the background, and
set the background pixels in the transformed image to be black. It is important to note that the
range of values for the a∗ and b∗ channels in Python’s OpenCV [9] package spans from 0 to 255.
In the L∗a∗b∗ color space, the color black is represented with values of 128 for the a∗ and b∗

channels. Given that all patients in our dataset are Caucasian, we can reasonably assume that
both the a∗ and b∗ values for normal skin and rashes will be greater than or equal to 128, and
therefore that the background pixels will not be associated with our rash clusters.

From this clustering, we then selected the cluster with the highest a∗ centroid, as it corre-
sponded to the region of the image most likely to represent the rash. The highest a∗ center value
is taken to be the redness feature value and the relative area is computed by taking the ratio be-
tween the number of pixels in the highest a∗ cluster and the entire hand. As mentioned earlier,
the three variables of relative area, redness, and relative redness, formed the initial handcrafted
features we use to predict the CDASI score.

5.4 Classification with Handcrafted Features

We evaluated three separate classifiers to determine the most effective model for our dataset:
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Tree. SVM was
chosen for its robustness to overfitting, being particularly effective on small datasets [24]. KNN
was selected for its simplicity and interpretability, making it easy to understand and explain the
results [23]. Lastly, the Decision Tree was considered for its flexibility and ease of use with small
datasets. Decision Trees can capture complex non-linear relationships and properly tuned, are
resistant to overfitting [22]. To assess the performance of these classifiers, we used Leave-One-
Out Cross-Validation (LOOCV) on our training set (approximately 80% of our images), which
is particularly useful given the small size of our dataset. LOOCV maximizes the training data by
using each data point once as a test set, providing a more accurate estimate of performance. [28]

Number of Neighbors

3 5 7 9

53.9 49.2 45.3 41.4

Max Depth

3 4 5 6

47.7 46.9 44.5 39.8

C Gamma

0.1 0.5 1 5

0.5 37.5 46.9 45.3 50
1 46.9 46.1 45.3 46.1

5 49.2 46.9 49.2 59.4

Table 5.1: LOOCV accuracies for KNN (left), SVM (bottom), Decision Tree (right). We have
higlighted the best hyperparameters for each classifier, determined through Grid Search.
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We compute the accuracies during LOOCV and display the results in Table 5.1. To fine-
tune the classifiers, we performed a grid search to determine the best hyperparameters for each
classifier, ensuring optimal performance and reducing bias. After testing various combinations
of parameters for each classifier, we found that applying SVM with the RBF kernel [46] and
Gamma and C values of 5 produced the highest accuracy. Gamma is the kernel coefficient
parameter that controls the influence of a single training example on the decision boundary and
C is a regularization parameter that controls the trade-off between low training and testing error.
Both parameters are vital to controlling the complexity of the classifier and its generalization
capabilities.

The best-performing models yielded accuracies ranging between 45% and 60%, indicating
moderate performance, with substantial room for improvement. Accuracy was chosen as the
primary metric for evaluation, as it is the most relevant for clinicians in determining the model’s
effectiveness in real-world applications. Clinicians determined that an accuracy range of 70% to
80% was acceptable, with 80% and above considered ideal for practical use.

SVM KNN DT
Accuracy (%) 57.3± 8.84 51.9 ± 7.55 41.5 ± 8.56
Precision (macro) (%) 55.4 ± 9.49 49.5 ± 8.81 35.4 ± 7.56
Recall (macro) (%) 55.1 ± 9.55 51.5 ± 9.54 42.9 ± 8.40
F1-score (macro) (%) 52.9 ± 8.42 47.3 ± 8.49 35.6 ± 6.48
Off-by-1 acc (%) 71.2 ± 6.49 68.1 ± 7.28 63.5 ± 8.64

Table 5.2: Test data metrics for SVM, KNN and Decision Tree. SVM performed the best across
all metrics, with an accuracy of 57.3%. The standard deviations generally fell between 5% to
8%, indicating a reasonable level of variability that can be lowered with additional data.

We also evaluated the classifiers on held-out test sets using the best parameters identified
through our grid search. We display our results in Table 5.2. To ensure robust performance,
we averaged the metrics across 10 train-test (80-20) splits of our entire dataset. The standard
deviations generally fell between 5% to 8%, indicating a reasonable level of variability. We
expect this variation in performance metrics to decrease as additional data is added, providing
more reliable and stable results.

The scores were consistently higher for SVM compared to the other classifiers. Similar to
the results from LOOCV, the overall accuracy for SVM was between 40% and 60%, with a
value of 57.3%. While this indicates moderate performance, an important aspect for clinicians
is how close the predictions are on average to the actual outcomes. This is captured by ”off-by-
1” accuracy, which measures how often the classifier’s prediction was one class away from the
correct class. This metric is useful in clinical settings where small discrepancies in classification
can still provide valuable insights. The off-by-1 accuracy for SVM was 71.2%, which is within
the clinician’s acceptable range of 70% to 80%, however, there is still room for improvement.

We also explored the impact of incorporating textural features into our classifier. The textural
features we considered, displayed in Figure 5.2, included Contrast, Dissimilarity, Homogeneity,
Correlation, and Energy, all of which were extracted using the Gray-Level Co-occurrence Matrix
(GLCM) [29]. These features are particularly useful in capturing the degree of inflammation,
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Figure 5.2: Textural Features, including Contrast, Dissimilarity, Homogeneity, Correlation and
Energy

uniformity, and complexity of the rash. Two of the most important features, as we will see in
the upcoming sections, were contrast and dissimilarity, which measure the intensity variation
between neighboring pixels. By incorporating these textural features, we aimed to enhance the
classifier’s ability to capture subtle variations in the rash’s appearance, which present differently
in different classes.

SVM KNN DT
Accuracy (%) 65.4 ± 7.88 55.4 ± 10.6 56.2 ± 6.0
Precision (macro) (%) 66.8 ± 8.8 57.0 ± 9.9 51.8 ± 8.02
Recall (macro) (%) 63.8 ± 7.82 53.5 ± 9.67 50.2 ± 7.74
F1-score (macro) (%) 61.6 ± 8.50 52.8 ± 10.2 47.8 ± 6.9
Off-by-1 acc (%) 84.2 ± 4.69 73.8 ± 5.9 79.9 ± 5.91

Table 5.3: Test data metrics with textural features for SVM, KNN and Decision Tree. All metrics
improved considerably for all three classifiers. SVM performed the best across all metrics, with
an accuracy of 65.4%, an 8% jump from its accuracy without textural features.

We observed that incorporating textural features led to an improvement in classifier perfor-
mance, as shown in Table 5.3. For SVM, our best-performing classifier, the accuracy increased
by around 8%, and other metrics showed notable improvements as well. One of the most sub-
stantial increases was the off-by-1 accuracy, which measures how often the classifier’s prediction
was one step away from the correct class. The addition of textural features helped reduce large
errors between more distant classes, which is particularly crucial for our clinicians, as even small
differences between predicted severity and the ground truth can have significant clinical implica-
tions. This improvement suggests that the spatial arrangement of pixel intensities—captured by
the textural features—plays an important role in our classification task, highlighting the benefit
of considering not just raw pixel values, but also the patterns and relationships between them.
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Chapter 6

Semantic Image Segmentation

6.1 Motivation
We investigated the potential reasons behind the unsatisfactory results by comparing our clus-
tering results against the actual rash areas as determined by the clinicians. For each image, we
highlighted the pixels corresponding to the rash cluster from our K-means results, and set the
remaining pixels to a fixed value. The clinicians then manually highlighted the rash areas on the
original images using the Pixlr image editing tool (https://pixlr.com). The pixels corresponding
to the rash clusters were set to 255, and the rest of the pixels were set to 0.

To assess the performance of our clustering, we computed the mean Intersection over Union
(IoU) score between each K-means highlighted image and its clinician-highlighted counterpart.
The IoU score measures the overlap between the predicted area and the ground truth mask,
providing a quantitative assessment of how well the clustering algorithm’s output aligns with the
expert annotations [2]. By evaluating the IoU scores for each class, we were able to gain deeper
insights into which specific classes the clustering algorithm performed poorly on and why. Our
results are displayed below in Table 6.1

Mean IoU (%)
Class 0 54.6
Class 1 61.7
Class 2 60.9
Class 3 64.9
Class 4 66.8

Table 6.1: Mean IoU across classes. The mean IoU score across categories was generally ac-
ceptable, but the normal class had a mean IoU value of 54.6%, considerably lower than the other
categories.

The mean IoU score across categories was acceptable, with all values greater than 50%,
though this is not optimal. Specifically, the normal class had a mean IoU value of 54.6%, which
is considerably lower than the other categories. Upon further visual inspection of the segmented
images, it is apparent that K-means clustering erroneously highlights a large number of pixels for

25



the normal hand images. This occurs because the K-means algorithm simply selects the cluster
with the highest a∗ value, which, in the case of a person with no rash, results in a selection of a
significant number of normal skin pixels, as seen in Figure 6.1.

Figure 6.1: Normal hand highlighted with K-means results. For a hand image with no rash, our
current clustering algorithm erroneously selects a large number of normal skin pixels.

This over-selection of pixels in the normal category contributes to the lower IoU score. Given
these findings, it seems prudent to explore more complex methods to better distinguish between
milder and more severe cases of CDM. This highlights the need for more precise segmentation
methods to better delineate the rash areas.

To address this, we explored more advanced approaches, specifically using semantic seg-
mentation models designed to classify each pixel in an image according to its semantic category.
These models can more effectively capture the fine-grained distinctions between different regions
of interest (ROI), such as the rash areas and the surrounding normal skin. Post-segmentation, the
region corresponding to the rash area class will be isolated from the rest of the image and these
regions will be fed into the clustering algorithms for feature extraction. We hypothesize that
allowing the clustering algorithms to focus on segmented input that specifically targets the the
area of the image that contains the rash, could significantly improve the downstream classifier’s
performance. By restricting the analysis to the ROI and extracting features only from this rele-
vant region, we expect to reduce the influence of irrelevant background pixels, leading to more
precise classifications and higher overall performance.

6.1.1 Ground Truth Mask Creation
In collaboration with the clinicians, we created masks for the in-clinic image dataset. First,
using Python’s rembg package, [10] we separated the hand from the background in the images,
allowing for a more focused analysis of the relevant regions. We then leveraged the Pixlr software
to manually highlight the rash area, ensuring that the highlighted areas were broad enough to
account for the diverse presentations of the rash across different patients. This approach of
grouping together the smaller rash areas into one large region of interest aims to improve the
model’s ability to generalize to various appearances of the rash.

We finally created grayscale masks with three distinct classes of pixels. An example of this
is showcased in Figure 6.2. Class 0 mapped to the background, class 1 mapped to the normal
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Figure 6.2: Image and corresponding ground truth mask. Masks contain three distinct classes of
pixels. Class 0 mapped to the background, class 1 mapped to the normal skin pixels, and class 2
mapped to the rash area.

skin pixels, and class 2 mapped to the rash area. Through this process, we created a ”ground
truth” mask, representing an accurate delineation of the rash areas identified by the clinicians.
By defining these clear classes, we can better distinguish between normal skin and the rash area,
ultimately improving the predictive accuracy of downstream classifiers.

6.2 Architecture and Training Setup

6.2.1 Explored Segmentation Architectures
We explored three state-of-the-art models for semantic segmentation. The U-Net model is widely
used in the medical analysis domain due to its encoder-decoder structure with skip connections,
which helps capture both high-level semantic features and fine-grained details, making it ideal
for tasks like segmenting rash areas. [41] U-Net++, an enhanced version of U-Net, improves
upon the original by utilizing nested skip pathways to learn more intricate features, improving
its ability to handle diverse presentations of the rashes. [54] DeepLabV3+ utilizes an encoder-
decoder structure with atrous convolutions, enabling the model to capture features at multiple
scales. This is especially useful for handling complex boundaries and irregular textures, which
are common in our dataset. [7] All three of these models capture varying levels of detail and
complex patterns, making them highly effective for this semantic segmentation task.

6.2.2 Training Setup
We leveraged pre-trained backbone/encoder weights from PyTorch [38] for several advanced
models, including ResNet-50, Xception, and EfficientNet-b7, all of which were trained on the
ImageNet1K Dataset [11]. These pre-trained weights provided a strong foundation for our mod-
els, enabling them to leverage knowledge learned from large-scale image classification tasks,
which can be transferred effectively to our medical image segmentation problem.
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To evaluate model performance, we performed k-fold cross-validation with 4 folds, which
allowed us to test the model’s generalization capability by training it on different subsets of the
data while validating on the remaining fold. For optimization, we used the AdamW optimizer
with the ReduceLROnPlateau learning rate scheduler. AdamW is particularly advantageous due
to its decoupled weight decay, which helps with better regularization and generalization, reduc-
ing the risk of overfitting [36]. Furthermore, the learning rate scheduler helps by reducing the
learning rate when the validation loss plateaus, preventing unnecessary fluctuations in training
and allowing the model to converge more efficiently [37].

The images were resized to (320, 320), and were normalized according to the ImageNet
mean and standard deviation values, which helps scale the input data properly and improves
convergence during training. Additionally, light data augmentation was applied during training
to introduce variability in the dataset, which can help the model generalize better. Through
experimentation with different initial learning rates and weight decay values, we found that the
ideal initial learning rate was a low value of 1e−5. This low learning rate helped the model
converge more smoothly, allowing for more stable training and better overall performance.

Figure 6.3: Dice Loss. This loss measures the overlap between the predicted segmentation mask
and the target segmentation mask.

Figure 6.4: Cross Entropy Loss. This loss measures the difference between the predicted proba-
bility distribution and the true distribution of labels.

The loss function used was a combination of Dice Loss and Cross Entropy Loss, seen in
Figure 6.3 and Figure 6.4. This summation of losses helps balance between pixel-wise accuracy
and boundary alignment, encouraging more precise segmentation of the rash areas. Dice Loss, in
particular, helps improve the overlap between predicted and ground truth areas, which is key to
segmenting irregular or complex rash shapes. By incorporating the Dice Coefficient, the model is
also encouraged to produce more balanced predictions, which is especially important in medical
image analysis where our target class of pixels is often heavily underrepresented in the images
[5].

We also incorporated regularization methods, including weight decay and early stopping, to
further prevent overfitting and improve model generalization. Weight decay helps by penalizing
large weights, encouraging the model to learn more robust features. Early stopping was used to
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stop training when the validation loss stopped improving, ensuring that the model didn’t overfit
the training data. In the next chapter, we will explore and analyze the results of this segmentation
model training process.

29



30



Chapter 7

Segmentation Results

7.1 Image Segmentation Results

ResNet-50 Xception EfficientNet-b7
U-Net 0.7406 0.7411 0.7242
U-Net++ 0.7345 0.6978 0.7314
DeepLabv3+ 0.7415 0.7359 0.7250

Table 7.1: Mean IoU across encoder-decoder combinations. The mean IoU was found to be high-
est for DeepLabv3+ with a ResNet-50 backbone. IoU for most encoder-decoder combinations
ranged between 0.70 and 0.75.

The mean IoU score was found to be highest for DeepLabv3+ with a ResNet-50 backbone,
with the mean IoU for most encoder-decoder combinations ranging between 0.70 and 0.75, as
seen in Table 7.1. These scores are considered good, with acceptable IoU values typically being
above 0.5, implying that our models’ segmentation performance is strong. We hypothesize that
DeepLabv3+ benefits from dilated convolutions, which enable the model to capture both local
and global contexts, strengthening its ability to recognize complex patterns and boundaries, such
as those found in irregular rash shapes. Additionally, the ResNet-50 backbone contributes to the
model’s high performance by providing detailed feature extraction across different spatial scales,
allowing the model to effectively capture fine-grained details and large-scale features.

As discussed earlier, after segmentation, the region corresponding to the rash area class will
be isolated from the rest of the image and these regions will be fed into the clustering algorithms
for feature extraction. To examine the effect of segmentation on our feature distributions, we
plotted the redness and relative area distributions across severity classes for images pre and post-
segmentation. This can be seen in Figure 7.1 and Figure 7.2. The features were extracted from
the segmented images in the same manner as described in chapter 5. We observe that the general
trend in mean redness values across severity classes was somewhat positive in both cases. How-
ever, the variation in values for each severity class and the mean redness values themselves were
noticeably different. To better capture the redness values for class 0, we introduced a threshold:
if the segmented output area was below this threshold, we set the redness value to 128, effec-
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Figure 7.1: Redness Distribution before
segmentation. Average redness generally in-
creased as severity did, with large spread of
values in the more extreme classes.

Figure 7.2: Redness Distribution after
segmentation. The mean redness values for
each class increased, with a large spread of
values in class 2.

tively treating the image as a normal hand image and ignoring small, insignificant regions that
might be present in the segmented output. This adjustment aligned well with the normal class
images, as evidenced by the average redness of the normal class post-segmentation being close
to 128. For the abnormal classes, the mean redness increased slightly after segmentation, as K-
means focused on more relevant rash areas, where redness is typically more pronounced. This
demonstrates that segmentation and K-means clustering were together able to more accurately
highlight the rash regions.

Figure 7.3: Relative Area Distribution be-
fore segmentation. No real trend observed
and a large spread of values for class 0.

Figure 7.4: Relative Area Distribution post
segmentation. Stronger positive correlation
and average rash area of 0 for normal class.

We performed a similar analysis on the relative area values and observed a large variance
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in the pre-segmentation values for the normal class (Figure 7.3), likely due to the presence of
background noise or irrelevant regions in the image influencing the clustering output. To address
this, we once again used a threshold: if the segmented output area was below a certain size, we
set the relative area value to 0. This adjustment aligned well with the normal class, as evidenced
by the average relative area being around 0 in Figure 7.4.

We also observed a clear, positive trend in the relative area values for the abnormal classes
post-segmentation, as opposed to no clear trend existing for the pre-segmentation data. The mean
relative area values decreased significantly post-segmentation as well, signifying that the model
was successfully identifying and highlighting more relevant rash areas, rather than the surround-
ing skin as it did previously. Ultimately, segmentation ensured that regions not corresponding
to the rash or abnormal skin areas did not contribute to the clustering results, which in turn is
expected to refine the downstream classifier’s performance.

7.2 Classification with Segmented Images

SVM KNN DT
Accuracy (%) 65.4 ± 7.88 55.4 ± 10.6 56.2 ± 6.0
Precision (macro) (%) 66.8 ± 8.8 57.0 ± 9.9 51.8 ± 8.02
Recall (macro) (%) 63.8 ± 7.82 53.5 ± 9.67 50.2 ± 7.74
F1-score (macro) (%) 61.6 ± 8.50 52.8 ± 10.2 47.8 ± 6.9
Off-by-1 acc (%) 84.2 ± 4.69 73.8 ± 5.9 79.9 ± 5.91

Table 7.2: Test data metrics with textural features for SVM, KNN and Decision Tree. SVM
performed the best across all metrics, with an accuracy of 65.4% and an off-by-1 accuracy of
84.2%, an 8% and 13% jump from its accuracies without textural features.

SVM KNN DT
Accuracy (%) 76.2 ± 5.91 66.9 ± 5.49 67.3 ± 4.94
Precision (macro) (%) 80.1 ± 5.35 74.2 ± 5.62 71.3 ± 7.15
Recall (macro) (%) 76.2 ± 5.91 71.8 ± 6.38 69.7 ± 6.93
F1-score (macro) (%) 76.7 ± 5.79 68.8 ± 6.52 68.0 ± 5.92
Off-by-1 acc (%) 94.6 ± 3.53 94.2 ± 3.94 87.7 ± 5.1

Table 7.3: Test data metrics on segmented images. All metrics improved considerably for all
three classifiers. SVM performed the best across all metrics, with an accuracy of 76.2%, an 11%
jump from its accuracies without textural features.

Our metrics showcased segmentation producing an even greater accuracy boost than the in-
corporation of textural features, with this trend observed across all evaluation metrics and clas-
sifiers, as seen in Table 7.2 and Table 7.3. The SVM classifier had the highest accuracy, with
its F1-score seeing the greatest improvement, highlighting how segmentation enhanced the clas-
sifier’s ability to distinguish between different classes and correctly identify positive instances
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while avoiding false positives. By focusing specifically on the ROI, segmentation ensures that
the model concentrates on the relevant areas of the image, which is crucial for accurate classi-
fication and diagnosis. This approach significantly reduces noise from irrelevant areas, such as
background or non-rash regions, allowing the model to make more precise predictions.

Figure 7.5: ROC curve for segmented images plotted for each class using the one-vs-rest method.
Classes 0 and 4 had the highest AUC, indicating that the classifier had better discriminative ability
for identifying these classes.

Class 0 1 2 3 4
TPR 0.87 0.52 0.43 0.67 0.85

Table 7.4: TPR at FPR of 0.05 for segmented images. TPR was highest for classes 0 and 4,
supporting our hypothesis that extreme classes are easier to distinguish from the rest.

We also plotted ROC curves on the held-out test data (seen in Figure 7.5), which plot the True
Positive Rate (TPR) against the False Positive Rate (FPR) at various thresholds, using the one-
vs-rest method. [17] This method computes the ROC curve for each class separately, each time
regarding the given class as the positive class and the remaining classes as a combined negative
class.

We evaluated the TPR at the FPR that the clinicians were willing to tolerate and display the
results in Table 7.4. This value was determined to be 0.05. At this threshold, the TPR was highest
for class 0 (normal) and class 4 (severe), supporting our hypothesis that extreme classes are much
easier to distinguish when compared to intermediate classes. This was further corroborated by
the higher Area Under the Curve (AUC) in Figure 7.5 for these extreme classes, indicating that
the classifier had better discriminative ability for identifying these classes as expected. [17] This
suggests that the classifier can more accurately classify both the absence and presence of severe
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symptoms, which are typically more distinct and easier to differentiate than more subtle cases
and vital to get correct for clinicians.

Figure 7.6: Confusion matrix on segmented
image results. Classes that were most likely
to be confused by the classifier were Class
1 and Class 2, as well as Class 2 and Class
3.

Figure 7.7: Off-by-1 Confusion matrix on
segmented image results. Outliers were
primarily responsible for confusing Class 0
(normal) with Class 4 (severe), as well as
Class 1 (mild) with Class 4.

Through computing confusion matrices on our held-out test data, (Figure 7.6) we found that
the classes that were most likely to be confused by the classifier were Class 1 and Class 2, as
well as Class 2 and Class 3. This finding aligns with both our hypothesis and the analysis of the
data. We recognize that the MDs did not display a clear distinction between these very similar
classes when rating the images. The subtle differences between these intermediate classes may
have contributed to the model’s difficulty in accurately distinguishing them, as the boundaries
between these categories were not sharply defined in the clinicians’ assessments. These results
highlight the importance of addressing class ambiguity in the data to improve classifier accuracy,
particularly in cases where the severity is more nuanced.

We computed the off-by-1 confusion matrix, seen in Figure 7.7, while considering predic-
tions that were off by one class as accurate, which allowed for a more forgiving evaluation of
the classifier’s performance. The analysis revealed that outliers were primarily responsible for
confusing Class 0 (normal) with Class 4 (severe), as well as Class 1 (mild) with Class 4. Upon
further inspection, we found that some images in Class 0 and 1 were poorly segmented, with the
K-means algorithm picking up irrelevant regions in the background or non-rash areas, leading to
misclassifications.

We also observed that in calculating the area and redness features, the K-means clustering
algorithm highlighted a considerable number of irrelevant pixels for certain images. Images con-
taining more distinct, well-defined, and often uneven rash regions were clustered and classified
more accurately, as opposed to rashes that presented as a general reddish region. To combat
this issue, we could utilize more powerful clustering algorithms or CNN-extracted features to
better handle multiple types of rash presentations. Recognizing the limits of handcrafted feature
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extraction and perhaps using the handcrafted features to augment the abilities of CNN-extracted
features would result in more accurate and reliable classifications.

Figure 7.8: Feature Importance graph. Textural features were found to be vital to the classifier,
with contrast and dissimilarity standing out as particularly impactful. Area and redness were
also found to be key, reaffirming the clinicians’ hypothesis that these features were important in
classifying rash severity.

We were also interested in better understanding which specific features had the greatest im-
pact on the classifier’s predictive power and we visualized this by plotting a feature importance
graph, [45] shown in Figure 7.8. Textural features were found to be vital to the classifier, with
contrast and dissimilarity standing out as particularly impactful. Contrast and dissimilarity are
valuable for identifying heterogeneous regions and textural irregularities within the images as
they measure the intensity difference between neighboring pixels. This helps the classifier dis-
tinguish areas with significant variabilities, such as the rash, from more uniform regions like
normal skin. Along with the textural features, area and redness also ranked quite high, reaffirm-
ing the clinicians’ hypothesis that these features were highly useful in classifying rash severity.
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Chapter 8

CNN-based Classification

8.1 Motivation

Figure 8.1: A typical CNN architecture

We recognize that while handcrafted features incorporate domain knowledge and provide a
degree of explainability for clinicians, they may not be as flexible or robust in capturing the
complex, abstract patterns present in medical images, especially those with subtle variations in
rash appearance. Additionally, they pose a high risk of overfitting to the dataset, as they are
often tailored to specific patterns in the training data and may not generalize well to unseen
examples. In contrast, Convolutional Neural Networks (CNNs), particularly those with pre-
trained backbones, are capable of learning multi-scale hierarchical feature representations and
are capable of extracting complex and abstract features from the data. Therefore, the CNN-
based features are likely to produce better classification results on our data as they capture more
subtle patterns in the images and aren’t overly reliant on predefined rules in the way handcrafted
features might be [33] [52].

To leverage these advantages, we harnessed a pre-trained ResNet-18 model [19] for feature
extraction. This model was chosen due to its high performance during our fine-tuning procedure,
which will be discussed in the upcoming sections.
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8.2 Classification with CNN-extracted Features

SVM
Accuracy (%) 76.2 ± 5.91
Precision (macro) (%) 80.1 ± 5.35
Recall (macro) (%) 76.2 ± 5.91
F1-score (macro) (%) 76.7 ± 5.79
Off-by-1 acc (%) 94.6 ± 3.53

Table 8.1: Test data metrics on segmented images. SVM had an accuracy of 76.2%, an 11%
jump from its accuracy without segmentation.

SVM
Accuracy (%) 85.4 ± 3.77
Precision (macro) (%) 86.8 ± 4.62
Recall (macro) (%) 84.2 ± 2.85
F1-score (macro) (%) 83.4 ± 3.8
Off-by-1 acc (%) 94.2 ± 5.51

Table 8.2: Test data metrics for CNN-extracted features. All metrics improved considerably.
SVM had an accuracy of 85.4%, a 9% jump from its accuracy on handcrafted features alone.

We analyze the results for only the SVM classifier, as it outperforms the other classifiers by a
wide margin. The classification results for the CNN-extracted features and the handcrafted fea-
tures (extracted from the segmented output) are displayed in Table 8.1 and Table 8.2. We see that
the inclusion of CNN features resulted in a substantial accuracy boost, improving the SVM’s per-
formance across all metrics except for off-by-1 accuracy, which saw virtually no improvement.

We also experimented with fusing our previously used handcrafted features with the CNN-
extracted features. We performed Principal Component Analysis (PCA) on the CNN features to
reduce their dimensionality, and then concatenated these reduced feature vectors with the hand-
crafted features. However, this fusion did not result in a significant boost in accuracy or other
performance metrics. This suggests that the multi-scale, hierarchical feature representations cap-
tured by the CNN likely encompassed the relevant patterns that the handcrafted features aimed
to highlight, making the fusion unnecessary.

Class 0 1 2 3 4
TPR 0.97 0.93 0.91 0.98 1.00

Table 8.3: TPR at FPR of 0.05 for CNN-extracted features. TPR was highest for classes 0, 3,
and 4, supporting our hypothesis that extreme classes are easier to distinguish from the rest.

We also computed the ROC curve, seen in Figure 8.2, for each class using the one-vs-rest
method [17]. Once again, for each class, we evaluated the TPR at the FPR that clinicians were
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Figure 8.2: ROC curve for CNN-extracted features, plotted for each class using the one-vs-rest
method. Extreme classes had the highest AUC scores, indicating that the classifier had better
discriminative ability for identifying these classes.

willing to tolerate, which was determined to be 0.05. The TPR was highest for Class 0, Class 3,
and Class 4, at this FPR value, as showcased in Table 8.3. This finding supported our hypothesis
that extreme classes are much easier to distinguish than intermediate classes, and was further
supported by the higher Area Under the Curve (AUC) values observed for these classes, seen
in Figure 8.2 [17]. The model showed better performance in accurately identifying the more
distinct and clearly defined classes, which is consistent with clinical observations where classes
with subtler differences in severity are more difficult to classify.

Through computing confusion matrices on our held-out test data, seen in Figure 8.3, we
found that the classes that are most likely to be confused by the model were Class 0 and Class
1, as well as Class 1 and Class 2. This pattern suggests that for the CNN-based features, milder
cases (Class 0, 1, and 2) were particularly challenging to differentiate; as more data is added,
the model’s ability to distinguish between these similar classes should improve, especially with
the added variety that a larger dataset can provide. However, the model performed quite well in
distinguishing between Class 0, the normal class, and the extreme classes, Class 3 and Class 4,
an improvement from the handcrafted features. The outliers that were present while using the
handcrafted features aren’t an issue for the CNN-extracted features, which is a testament to the
predictive power of these features. The ability to accurately classify these extreme cases is key
for clinicians, as it enables them to identify both the absence and presence of severe symptoms
effectively. This performance ensures that the model is useful in clinical settings, where a clear
distinction between normal and severe cases is often more critical than differentiating between
milder, similar conditions.

The level of agreement between the CNN feature-based SVM model and the ground truth
(MD1) was measured using Weighted Cohen’s Kappa, which yielded a value of 0.788 ± 0.0736,
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Figure 8.3: Confusion matrix for
CNN-extracted features. Classes that were
most likely to be confused by the classifier
were Class 0 and Class 1, as well as Class
1 and Class 2, suggesting that milder classes
were particularly challenging to differentiate.

Figure 8.4: Off-by-1 confusion matrix for
CNN-extracted features. Class 2 seemed to be
confused with class 0 and class 4, suggesting
that the discriminative power of the MDs for
class 2 was particularly low.

with a 95% confidence interval of [0.644, 0.933]. This indicates substantial agreement according
to Landis and Koch (1977), [27] who classify Kappa values between 0.61–0.80 as substantial.
In contrast, the initial Kappa between the two MDs was 0.561 ± 0.0615, showing moderate
agreement. The stronger agreement between the model and MD1 suggests that the model, trained
on MD1’s data, aligns more closely with MD1’s assessments than another human rater like MD2.
These results highlight the model’s potential for clinical adoption, as its substantial agreement
with MD1 indicates it could be a useful tool in supporting clinicians.

8.3 Fine-tuning Setup

We evaluated the impact of fine-tuning pre-trained models on our dataset by leveraging pre-
trained weights from PyTorch, specifically those trained on the ImageNet1k dataset, a diverse
dataset with 1000 different categories covering a wide range of objects [11]. Fine-tuning a pre-
trained model allows the model to benefit from the high number of complex features learned
on a large, diverse dataset like ImageNet and adapt this knowledge to our specific task, which is
crucial for capturing low-level features in the images such as edges and textures. The models that
we tested were ResNet-18, ResNet-34, ResNet-50, EfficientNet-b4, and Mobilenet-v2. These
models were chosen for both their high performance and for working well with limited data.

As part of our pre-processing procedure, we resized all input images to (320, 320), and
normalized them based on the mean and standard deviation of ImageNet, ensuring that the input
data distribution aligns with the distribution of the data the pre-trained model was originally
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trained on. We applied light data augmentation techniques during training, such as random
rotations and flips, to artificially increase the dataset’s diversity and help the model generalize
better to unseen data.

We froze the earlier layers of the pre-trained model, which capture more general, low-level
features. By freezing these layers, we greatly reduced the number of learnable parameters and
allowed the model to focus on learning the more task-specific layers, crucial for classifying
images more accurately. For example, in ResNet-18, all layers but the last two blocks of layer 4
were frozen, leveraging the strengths of the pre-trained model while allowing it to specialize on
our medical image dataset [19]. We employed k-fold cross-validation with 4 folds to compute
a reliable estimate of model performance across different subsets of the dataset and mitigate
overfitting.

We used the AdamW optimizer, known for handling sparse gradients and weight decay ef-
ficiently. The learning rate was dynamically adjusted during training using a scheduler, Re-
duceLROnPlateau, which reduces the learning rate when the validation loss plateaus, helping the
model avoid overshooting the optimal minimum. The loss function chosen was Cross-Entropy
Loss, which is commonly used for multi-class classification tasks and works well with the soft-
max output. In future iterations, a weighted loss function could be incorporated to account for
the unequal distances between successive ordinal severity classes and to assign greater penalties
for misclassifying certain classes than others.

To prevent overfitting, we incorporated several regularization techniques, including weight
decay and early stopping. Weight decay is a form of regularization that penalizes large weights
in the model, which helps prevent overfitting by encouraging simpler models. Early stopping
monitors the validation loss during training and halts training when performance starts to de-
grade, ensuring the model doesn’t overfit to the training data. We conducted a grid search to
determine optimal hyperparameters for the learning rate and weight decay. Based on the search
results, the best learning rate values were found to be between 3e−4 and 5−5, which provided
the best balance between fast convergence and stable training. Similarly, the best weight decay
values ranged between 5e−3 and 1e−2, which helped prevent overfitting while still allowing the
model to adapt to the dataset.

8.4 Fine-tuning Results

Top-k Accuracy (k=1) (%) Top-k Accuracy (k=2) (%)
ResNet-18 76.7± 7.94 87.9± 6.61
ResNet-34 74.4 ± 2.87 89.4 ± 3.64
ResNet-50 71.9 ± 6.06 85.4 ± 3.71
EfficientNet-b4 74.2 ± 5.32 89.7 ± 4.58
MobileNet-v2 75.1 ± 3.89 89.1 ± 6.11

Table 8.4: Mean Top-1 and Top-2 test accuracy for all models. We observe that ResNet-18 has
the highest top-1 accuracy, with most accuracies falling between the 70% to 76% range
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As seen in Table 8.4, we evaluated the average (across folds) top-k test accuracy for both
k = 1 and k = 2 for each model, which is particularly useful for classes that are not easily
distinguishable, providing insight into whether the model might still predict classes close to the
ground truth despite not predicting the exact class. We observe that the top-1 accuracies all fall
within the 70% to 77% range, with the ResNet-18 model achieving the highest top-1 accuracy.
As mentioned earlier, the clinicians previously determined that an accuracy range of 70% to
80% was acceptable, which all of our model average accuracies fall in. Furthermore, the top-
2 accuracies all fall between 85% and 90%, which is within the ideal range for our clinicians,
indicating that our model predicts relevant classes with high probability. Further analysis could
determine whether the top-2 classes are close on the severity scale, further supporting our claims
that the model struggles with differentiating between subtle variations in severity.

However, when considering the k=1 accuracy, the ResNet-18 model still performed worse
than our current best-performing model, which involved coupling CNN feature extraction with
an SVM classifier. This discrepancy is likely due to the ResNet-18 model final layers being
trained with a large number of parameters on a small dataset, which leads to overfitting and less
robust performance when compared to the simpler SVM model.

8.5 Grad-CAM Visualization

Figure 8.5: Resnet-18 Grad-CAM results. Grad-CAM highlighted the regions of the image
corresponding to the fingers and knuckles of the hand, which were regions identified by the
clinicians as typical areas for rashes.

Grad-CAM (Gradient-weighted Class Activation Mapping) uses the gradients of a specific
class to generate a saliency map that highlights the important regions of an image for that class.
[47] This technique is particularly useful for visualizing which parts of the image are most in-
fluential in the model’s decision-making process. Incorporating Grad-CAM provides a degree of
transparency and explainability for clinicians, which is crucial for increasing trust and ensuring
that the model can be effectively integrated into clinical practice.

When applied to the fine-tuned ResNet-18 model, Grad-CAM highlighted the regions of the
image corresponding to the fingers and knuckles of the hand, which were regions identified by
the clinicians as typical areas for rashes. This can be seen in Figure 8.5. The fact that the
model’s focus aligned with the clinicians’ expertise suggests that the model learnt meaningful
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features that are relevant for clinical decision-making and is consistent with human judgment,
which builds confidence in the model’s predictions.

Finally, we hope to explore the possibility of incorporating Grad-CAM attention weights into
the classification pipeline to enhance both the model’s predictive performance and interpretabil-
ity. We aim to first use the fine-tuned ResNet-18 model to generate Grad-CAM attention maps,
and then fuse the ResNet-18 extracted features with the attention map weights. This fusion al-
lows the model to combine both the high-level, multi-scale features learned by ResNet-18 and the
spatially weighted regions emphasized by Grad-CAM. The resulting feature representation will
then be passed through a final classification layer. This aims to improve the model’s ability to
focus on clinically relevant areas of the image and improve classification accuracy by integrating
both the learned features and the regions identified through attention mapping.
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Chapter 9

Conclusion

9.1 Summary
Ultimately, this work integrated a variety of methods including image preprocessing, segmenta-
tion, feature extraction, and machine learning classification techniques to create a novel, image-
based approach to assessing CDM severity in patients. Automating the severity evaluation of
CDM rashes will assist clinicians in tracking the progression of the disease over time for im-
provement after initiating treatment.

Through this work, we explored a variety of approaches for feature extraction and classifi-
cation to determine the most effective method for our dataset. After a thorough evaluation, we
found that CNN feature extraction combined with an SVM classifier performed the best, achiev-
ing an accuracy of approximately 85%. This approach was particularly effective at distinguishing
between mild and severe classes, which is crucial for clinicians who need clear demarcation be-
tween normal and abnormal skin conditions for accurate diagnosis and treatment.

However, this study currently functions as a proof-of-concept due to the small size of our
dataset. Further data collection and training are necessary to determine the robustness of our
methods and enhance our model’s predictive power for the more intermediate or less extreme
classes, where the distinctions are subtler. Despite this limitation, the current approach demon-
strated substantial agreement with MD1, indicating that the model’s predictions align well with
clinical judgment for the more pronounced cases. This strong agreement highlights the model’s
potential to support clinical decision-making, and utility for remote monitoring and disease pro-
gression tracking.

9.2 Limitations and Future Work
One major limitation of our current dataset is the lack of diversity in skin color, which could
affect the model’s ability to generalize across different populations. To address this, we aim to
expand our dataset to include patients with a wide range of skin tones, and address the challenges
posed by darker skin tones by utilizing image-enhancing techniques to increase rash visibility
and incorporating non-chromatic features such as texture. We will also evaluate our methods on
similar datasets, such as Eczema images, which are more widely available in the public domain
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and may offer a better range of skin tones and disease presentations than the dataset that we can
procure.

As mentioned in chapter 4, another limitation of our analysis lies in the inherent subjectiv-
ity and difficulty in differentiating between certain severity classes for our expert MDs, more
specifically those in the mild to moderate range. As discussed earlier, we consider potential
solutions to address this issue including incorporating more expert raters and aggregating their
assessments, increasing the granularity of the severity scoring scale after increasing the dataset
size, and predicting CDASI scores on a continuous scale as an ordinal regression task.

The goal is to extend this work to the telemedicine image dataset, building on the reasonable
results achieved so far, which support the feasibility of remote monitoring for disease detection
and progression. With continued improvements, this model could become a valuable tool in
supporting clinicians and enhancing patient care, especially in areas where access to specialists
is limited.

Additionally, we plan to explore the use of pseudo-labelling algorithms, which can help train
and generate labels on more data as it becomes available. By leveraging semi-supervised learning
techniques, these algorithms can make use of unlabeled data and expert feedback to improve
model performance and extend the training dataset without requiring manual labelling for every
new image. As more data becomes available, we will continuously refine our models, ensuring
they remain robust, accurate, and adaptable.
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Appendix A

LOOCV Results

K

3 5 7 9

0.578 0.555 0.461 0.453

Max Depth

3 4 5 6

0.469 0.508 0.508 0.586

C Gamma

0.1 0.5 1 5

0.5 0.484 0.593 0.578 0.461
1 0.578 0.641 0.664 0.633

5 0.633 0.679 0.679 0.648

Table A.1: LOOCV results with textural features for KNN (left), SVM (bottom), Decision Tree
(right)
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K

3 5 7 9

0.688 0.672 0.633 0.672

Max Depth

3 4 5 6

0.656 0.57 0.656 0.695

C Gamma

0.1 0.5 1 5

0.5 0.484 0.656 0.679 0.633
1 0.594 0.688 0.711 0.719

5 0.648 0.766 0.773 0.75

Table A.2: LOOCV results after segmentation for KNN (left), SVM (bottom), Decision Tree
(right)
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